Science.gov

Sample records for activity mrna expression

  1. Calpain expression in lymphoid cells. Increased mRNA and protein levels after cell activation.

    PubMed

    Deshpande, R V; Goust, J M; Chakrabarti, A K; Barbosa, E; Hogan, E L; Banik, N L

    1995-02-10

    Although calpain is ubiquitously present in human tissues and is thought to play a role in demyelination, its activity is very low in resting normal lymphocytes. To determine the nature of calpain expression at the mRNA and protein levels in human lymphoid cells, we studied human T lymphocytic, B lymphocytic, and monocytic lines as well as peripheral blood mononuclear cells. Stimulation of cells with the phorbol ester phorbol myristate acetate and the calcium ionophore A23187 resulted in increased calpain mRNA and protein expression. Calpain mRNA expression is also increased in human T cells stimulated with anti-CD3. A dissociation between the increases of RNA and protein suggested that calpain could be released from the cells; the subsequent experiments showed its presence in the extracellular environment. 5,6-Dichloro-1b-D-ribofuranosylbenzimidazole, a reversible inhibitor of mRNA synthesis, reduced calpain mRNA levels by 50-67% and protein levels by 72-91%. Its removal resulted in resumption of both calpain mRNA and protein synthesis. Cycloheximide, a translational inhibitor, reduced calpain protein levels by 77-81% and calpain mRNA levels by 96% in activated THP-1 cells. Interferon-gamma induced calpain mRNA and protein in U-937 and THP-1 cells. Dexamethasone increased mRNA expression in THP-1 cells. Our results indicate that activation of lymphoid cells results in de novo synthesis and secretion of calpain. PMID:7852311

  2. Glucose induces FGF21 mRNA expression through ChREBP activation in rat hepatocytes.

    PubMed

    Iizuka, Katsumi; Takeda, Jun; Horikawa, Yukio

    2009-09-01

    Fibroblast growth factor 21 (FGF21) has beneficial effects of improving the plasma glucose and lipid profiles in diabetic rodents. Here, we investigated carbohydrate response element binding protein (ChREBP) involvement in the regulation of FGF21 mRNA expression in liver. Glucose stimulation and adenoviral overexpression of dominant active ChREBP increased FGF21 mRNA. Consistently, adenoviral expression of dominant negative Mlx inhibited glucose induction of FGF21 mRNA. Furthermore, deletion studies of mouse FGF21 gene promoter (-2000 to +65 bp) revealed a glucose responsive region between -74 and -52 bp. These findings suggest that FGF21 expression is regulated by ChREBP. PMID:19660458

  3. Replenishment of RANTES mRNA expression in activated eosinophils fromatopic asthmatics

    PubMed Central

    Velazquez, J R; Lacy, P; Moqbel, R

    2000-01-01

    Eosinophils have been shown to express the gene encoding regulated upon activation, normal T‐cell expressed and secreted (RANTES), a potent eosinophilotactic chemokine. RANTES protein expression in eosinophils has previously been shown to be up‐regulated by a number of agonists, including complement‐dependent factors (C3b/iC3b) and interferon‐γ (IFN‐γ). We hypothesized that gene expression of RANTES is regulated in these cells by eosinophil‐specific agonists. We analysed RANTES mRNA expression by reverse‐transcription polymerase chain reaction (RT‐PCR) in human peripheral blood eosinophils obtained from mild atopic asthmatics following stimulation over time. In resting eosinophils, a low level of RANTES mRNA was found to be constitutively expressed in all the atopic donors tested in this study (n = 6). Following stimulation with C3b/iC3b (serum‐coated surfaces), eosinophils released measurable levels of RANTES, while sustained transcript expression was detected for up to 24 hr of stimulation. In contrast, IFN‐γ (5 ng/ml) transiently and significantly (P < 0·05, n = 3) depleted relative amounts of RANTES PCR product (compared with β2‐microglobulin) after 1–4 hr of stimulation. RANTES transcript was again detectable after 24 hr of IFN‐γ incubation, suggesting that the pool of RANTES mRNA had been replenished. Other eosinophil‐active cytokines, interleukin‐3 (IL‐3), IL‐4, IL‐5 and granulocyte–macrophage colony‐stimulating factor, did not appear to modulate RANTES mRNA expression after 1 hr of incubation. The effect of IFN‐γ on RANTES mRNA was reversed by cycloheximide, suggesting that IFN‐γ may act by increasing the rate of translation of RANTES mRNA. These findings indicate that IFN‐γ may induce a rapid and transient effect on the translation and replenishment of RANTES mRNA in eosinophils. This novel observation supports the notion that eosinophils have the potential to replenish their stored and released

  4. RELATIONSHIP BETWEEN BRAIN AND OVARY AROMATASE ACTIVITY AND ISOFORM-SPECIFIC AROMATASE MRNA EXPRESSION IN THE FATHEAD MINNOW (PIMEPHALES PROMELAS)

    EPA Science Inventory

    There is growing evidence that some chemicals present in the environment have the capacity to inhibit, or potentially induce, aromatase activity. This study compared aromatase activities and isoform-specific mRNA expression in brain and ovary tissue from non-exposed fathead min...

  5. Distribution of PTPN22 polymorphisms in SLE from western Mexico: correlation with mRNA expression and disease activity.

    PubMed

    Machado-Contreras, Jesús René; Muñoz-Valle, José Francisco; Cruz, Alvaro; Salazar-Camarena, Diana Celeste; Marín-Rosales, Miguel; Palafox-Sánchez, Claudia Azucena

    2016-08-01

    Systemic lupus erythematosus (SLE) is a heterogeneous autoimmune inflammatory disease characterized by loss of self-tolerance with hyperactivation of autoreactive T and B cells. Protein tyrosine phosphatase non-receptor type 22 (PTPN22) encodes for lymphoid-specific phosphatase (Lyp), which is a key negative regulator of T lymphocyte activation. The aim of this study was to evaluate the genetic contribution of PTPN22 -1123G>C and +1858C>T polymorphisms and their haplotypes in SLE patients, as well as mRNA expression according to -1123G>C promoter polymorphism and disease activity. One hundred and fifty SLE patients and 150 unrelated healthy controls (HC), both Mexican mestizos, were genotyped by PCR-RFLP technique for the PTPN22 -1123G>C and +1858C>T polymorphisms. PTPN22 mRNA expression levels were determined by real-time PCR from PBMCs of thirty patients with SLE and fifteen HC carrying different genotypes. Distributions of genotype and allelic frequencies were similar between SLE and HC. The most frequent alleles were -1123 G and +1858 C in both groups (69 vs. 66 % and 97 vs. 98 %, in SLE and HC, respectively). However, the recessive model of inheritance analysis showed a lower frequency of -1123 CC genotype in SLE patients (7 vs. 15 %), suggesting a protection effect to develop SLE (OR 0.41, CI 1.10-5.28, p = 0.02). Haplotype analysis showed strong linkage disequilibrium D' = 0.98 for PTPN22 -1123G>C and +1858C>T polymorphisms, but haplotypes were not associated with SLE. The PTPN22 mRNA expression did not show differences among -1123G>C genotypes; nevertheless, a significant negative correlation with disease activity was found (r = -0.64, p < 0.01). SLE inactive patients showed similar PTPN22 mRNA expression levels to healthy controls, whereas in patients with severe flare, the expression was nearly depleted. In conclusion, we found a lack of association of PTPN22 -1123G>C and +1858C>T polymorphisms with the risk of developing SLE in a Mexican

  6. Strain differences in cytochrome P450 mRNA and protein expression, and enzymatic activity among Sprague Dawley, Wistar, Brown Norway and Dark Agouti rats

    PubMed Central

    NISHIYAMA, Yoshihiro; NAKAYAMA, Shouta M.M.; WATANABE, Kensuke P.; KAWAI, Yusuke K.; OHNO, Marumi; IKENAKA, Yoshinori; ISHIZUKA, Mayumi

    2016-01-01

    Rat cytochrome P450 (CYP) exhibits inter-strain differences, but their analysis has been scattered across studies under different conditions. To identify these strain differences in CYP more comprehensively, mRNA expression, protein expression and metabolic activity among Wistar (WI), Sprague Dawley (SD), Dark Agouti (DA) and Brown Norway (BN) rats were compared. The mRNA level and enzymatic activity of CYP1A1 were highest in SD rats. The rank order of Cyp3a2 mRNA expression mirrored its protein expression, i.e., DA>BN>SD>WI, and was similar to the CYP3A2-dependent warfarin metabolic activity, i.e., DA>SD>BN>WI. These results suggest that the strain differences in CYP3A2 enzymatic activity are caused by differences in mRNA expression. Cyp2b1 mRNA levels, which were higher in DA rats, did not correlate with its protein expression or enzymatic activity. This suggests that the strain differences in enzymatic activity are not related to Cyp2b1 mRNA expression. In conclusion, WI rats tended to have the lowest CYP1A1, 2B1 and 3A2 mRNA expression, protein expression and enzymatic activity among the strains. In addition, SD rats had the highest CYP1A1 mRNA expression and activity, while DA rats had higher CYP2B1 and CYP3A2 mRNA and protein expression. These inter-strain differences in CYP could influence pharmacokinetic considerations in preclinical toxicological studies. PMID:26806536

  7. mRNA and microRNA expression profiles of the NCI-60 integrated with drug activities

    PubMed Central

    Liu, Hongfang; D’Andrade, Petula; Fulmer-Smentek, Stephanie; Lorenzi, Philip; Kohn, Kurt W.; Weinstein, John N.; Pommier, Yves; Reinhold, William C.

    2010-01-01

    As part of the Spotlight on Molecular Profiling series, we present here new profiling studies of mRNA and microRNA expression for the 60 cell lines of the NCI DTP drug screen (NCI-60) using the 41,000-probe Agilent Whole Human Genome Oligo Microarray and the 15,000-feature Agilent Human microRNA Microarray V2. The expression levels of ~21,000 genes and 723 human microRNAs were measured. These profiling studies include quadruplicate technical replicates for six and eight cell lines for mRNA and microRNA, respectively, and duplicates for the remaining cell lines. The resulting data sets are freely available and searchable online in our CellMiner database. The result indicates high reproducibility for both platforms and an essential biological similarity across the various cell types. The mRNA and microRNA expression levels were integrated with our previously published 1,429-compound database of anticancer activity obtained from the NCI DTP drug screen. Large blocks of both mRNAs and microRNAs were identified with predominately unidirectional correlations to ~1,300 drugs including 121 drugs with known mechanisms of action. The data sets presented here will facilitate the identification of groups of mRNAs, microRNAs and drugs that potentially affect and interact with one another. PMID:20442302

  8. Lack of correlation between mRNA expression and enzymatic activity of the aspartate aminotransferase isoenzymes in various tissues of the rat.

    PubMed

    Abruzzese, F; Greco, M; Perlino, E; Doonan, S; Marra, E

    1995-06-12

    Little is known about control of expression of basal levels of the aspartate aminotransferases which are ubiquitous 'house keeping' enzymes in vertebrates. We have measured both mRNA and activity levels for both isoenzymes in various rat tissues as a function of age. Patterns of mRNA expression for the two isoenzymes were similar in a particular tissue about differed widely between tissues. Surprisingly, there was no simple correlation between mRNA levels and specific activities of the enzyme products. We conclude that translation for mRNA for these two isoenzymes is subject to tissue-specific, and in some cases age-related, regulation. PMID:7789537

  9. Vascular activation of adhesion molecule mRNA and cell surface expression by ionizing radiation.

    PubMed

    Heckmann, M; Douwes, K; Peter, R; Degitz, K

    1998-01-10

    During cutaneous inflammatory reactions the recruitment of circulating leukocytes into the tissue critically depends on the regulated expression of endothelial cell adhesion molecules (CAMs). Various proinflammatory stimuli upregulate endothelial CAMs, including cytokines and UV irradiation. We have investigated the effects of ionizing radiation (IR) on endothelial CAM expression. Organ cultures of normal human skin as well as cultured human dermal microvascular endothelial cells (HDMEC) were exposed to IR. Expression of three major endothelial CAMs was studied in skin organ cultures by immunohistochemistry and in cell culture by Northern blot analysis and flow cytometry. In skin organ cultures vascular immunoreactivity for ICAM-1, E-selectin, and VCAM-1 was strongly induced 24 h after exposure to 5 or 10 Gy of IR, while immunoreactivity for CD31/PECAM-1, a constitutively expressed endothelial cell adhesion molecule, remained unchanged. In cultured HDMEC IR upregulated ICAM-1, VCAM-1, and E-selectin mRNAs and cell surface expression in a time- and dose-dependent fashion. Cellular morphology and viability remained unaltered by IR up to 24 h postirradiation. This study characterizes microvascular activation of adhesion molecule expression in response to ionizing radiation in a clinically relevant IR dose range. The findings also underscore the ability of endothelial cells to integrate environmental electromagnetic stimuli. PMID:9457067

  10. Developmental Expression of CYP2B6: A Comprehensive Analysis of mRNA Expression, Protein Content and Bupropion Hydroxylase Activity and the Impact of Genetic Variation.

    PubMed

    Pearce, Robin E; Gaedigk, Roger; Twist, Greyson P; Dai, Hongying; Riffel, Amanda K; Leeder, J Steven; Gaedigk, Andrea

    2016-07-01

    Although CYP2B6 catalyzes the biotransformation of many drugs used clinically for children and adults, information regarding the effects of development on CYP2B6 expression and activity are scarce. Utilizing a large panel of human liver samples (201 donors: 24 fetal, 141 pediatric, and 36 adult), we quantified CYP2B6 mRNA and protein expression levels, characterized CYP2B6 (bupropion hydroxylase) activity in human liver microsomes (HLMs), and performed an extensive genotype analysis to differentiate CYP2B6 haplotypes such that the impact of genetic variation on these parameters could be assessed. Fetal livers contained extremely low levels of CYP2B6 mRNA relative to postnatal samples and fetal HLMs did not appear to catalyze bupropion hydroxylation; however, fetal CYP2B6 protein levels were not significantly different from postnatal levels. Considerable interindividual variation in CYP2B6 mRNA expression, protein levels, and activity was observed in postnatal HLMs (mRNA, ∼40,000-fold; protein, ∼300-fold; activity, ∼600-fold). The extremely wide range of interindividual variability in CYP2B6 expression and activity was significantly associated with age (P < 0.01) following log transformation of the data. Our data suggest that CYP2B6 activity appears as early as the first day of life, increases through infancy, and by 1 year of age, CYP2B6 levels and activity may approach those of adults. Surprisingly, CYP2B6 interindividual variability was not significantly associated with genetic variation in CYP2B6, nor was it associated with differences in gender or ethnicity, suggesting that factors other than these are largely responsible for the wide range of variability in CYP2B6 expression and activity observed among a large group of individuals/samples. PMID:26608082

  11. Effects of long-term smoking on the activity and mRNA expression of CYP isozymes in rats

    PubMed Central

    He, Xiao-Meng; Zhou, Ying; Xu, Ming-Zhen; Li, Yang; Li, Hu-Qun

    2015-01-01

    Background To investigate the effect of long-term smoking on the activity and mRNA expression of cytochrome P450 (CYP) enzymes. Methods Sprague-Dawley rats were exposed to passive smoking 6 cigarettes per day for 180 days. A cocktail solution which contained phenacetin (20 mg/kg), tolbutamide (5 mg/kg), chlorzoxazone (20 mg/kg) and midazolam (10 mg/kg) was given orally to rats. Blood samples were collected at pre-specified time points and the concentrations of probe drugs in plasma were determined by HPLC-MS/MS. The corresponding pharmacokinetic parameters were calculated by DAS 3.0. In addition, real-time RT-PCR was used to analyze the mRNA expression of CYP1A2, CYP2C11, CYP2E1 and CYP3A1 in rat liver. Results There were no significant influences of pharmacokinetic profiles of chlorzoxazone in long-term smoking pretreated rats. But many pharmacokinetic profiles of phenacetin, tolbutamide, and midazolam in long-term smoking pretreated rats were affected significantly (P<0.05). The results suggested that long-term smoking had significant inhibition effects on CYP2C11 and CYP3A1 while CYP1A2 enzyme activity was induced. Furthermore, Long-term smoking had no effects on rat CYP2E1. The mRNA expression results were consistent with the pharmacokinetic results. Conclusions Alterations of CYP450 enzyme activities may fasten or slow down excretion with corresponding influence on drug efficacy or toxicity in smokers compared to nonsmokers, which may lead to clinical failures of lung cancer therapy or toxicity in smokers. PMID:26623094

  12. Transforming Growth Factor β1 (TGF-β1) Activates Hepcidin mRNA Expression in Hepatocytes.

    PubMed

    Chen, Simeng; Feng, Teng; Vujić Spasić, Maja; Altamura, Sandro; Breitkopf-Heinlein, Katja; Altenöder, Jutta; Weiss, Thomas S; Dooley, Steven; Muckenthaler, Martina U

    2016-06-17

    The hepatic hormone hepcidin is the master regulator of systemic iron homeostasis. Its expression level is adjusted to alterations in iron levels, inflammatory cues, and iron requirements for erythropoiesis. Bone morphogenetic protein 6 (BMP6) contributes to the iron-dependent control of hepcidin. In addition, TGF-β1 may stimulate hepcidin mRNA expression in murine hepatocytes and human leukocytes. However, receptors and downstream signaling proteins involved in TGF-β1-induced hepcidin expression are still unclear. Here we show that TGF-β1 treatment of mouse and human hepatocytes, as well as ectopic expression of TGF-β1 in mice, increases hepcidin mRNA levels. The hepcidin response to TGF-β1 depends on functional TGF-β1 type I receptor (ALK5) and TGF-β1 type II receptor (TβRII) and is mediated by a noncanonical mechanism that involves Smad1/5/8 phosphorylation. Interestingly, increasing availability of canonical Smad2/3 decreases TGF-β1-induced hepcidin regulation, whereas the BMP6-hepcidin signal was enhanced, indicating a signaling component stoichiometry-dependent cross-talk between the two pathways. Although ALK2/3-dependent hepcidin activation by BMP6 can be modulated by each of the three hemochromatosis-associated proteins: HJV (hemojuvelin), HFE (hemochromatosis protein), and TfR2 (transferrin receptor 2), these proteins do not control the ALK5-mediated hepcidin response to TGF-β1. TGF-β1 mRNA levels are increased in mouse models of iron overload, indicating that TGF-β1 may contribute to hepcidin synthesis under these conditions. In conclusion, these data demonstrate that a complex regulatory network involving TGF-β1 and BMP6 may control the sensing of systemic and/or hepatic iron levels. PMID:27129231

  13. Human peroxisome proliferator-activated receptor mRNA and protein expression during development

    EPA Science Inventory

    The peroxisome proliferator-activated receptors (PPAR) are nuclear hormone receptors that regulate lipid and glucose homeostasis and are important in reproduction and development. PPARs are targets ofpharmaceuticals and are also activated by environmental contaminants, including ...

  14. RELATIONSHIP BETWEEN BRAIN AND OVARY AROMATASE ACTIVITY AND ISOFORM-SPECIFIC AROMATASE MRNA EXPRESSION IN THE FATHEAD MINNOW (PIMEPHALES PROMELAS) - JOURNAL ARTICLE

    EPA Science Inventory

    There is growing evidence that some chemicals present in the environment have the capacity to inhibit, or potentially induce, aromatase activity. This study compared aromatase activities and isoform-specific mRNA expression in brain and ovary tissue from non-exposed fathead minn...

  15. The regulation of gene expression in transformed maize aleurone and endosperm protoplasts. Analysis of promoter activity, intron enhancement, and mRNA untranslated regions on expression.

    PubMed Central

    Gallie, D R; Young, T E

    1994-01-01

    Gene expression in the aleurone and endosperm is highly regulated during both seed development and germination. Studies of alpha-amylase expression in the aleurone of barley (Hordeum vulgare) have generated the current paradigm for hormonal control of gene expression in germinating cereal grain. Gene expression studies in both the aleurone and endosperm tissues of maize (Zea mays) seed have been hampered because of a lack of an efficient transformation system. We report here the rapid isolation of protoplasts from maize aleurone and endosperm tissue, their transformation using polyethylene glycol or electroporation, and the regulation of gene expression in these cells. Adh1 promoter activity was reduced relative to the 35S promoter in aleurone and endosperm protoplasts compared to Black Mexican Sweet suspension cells in which it was nearly as strong as the 35S promoter. Intron-mediated stimulation of expression was substantially higher in transformed aleurone or endosperm protoplasts than in cell-suspension culture protoplasts, and the data suggest that the effect of an intron may be affected by cell type. To examine cytoplasmic regulation, the 5' and 3' untranslated regions from a barley alpha-amylase were fused to the firefly luciferase-coding region, and their effect on translation and mRNA stability was examined following the delivery of in vitro synthesized mRNA to aleurone and endosperm protoplasts. The alpha-amylase untranslated regions regulated translational efficiency in a tissue-specific manner, increasing translation in aleurone or endosperm protoplasts but not in maize or carrot cell-suspension protoplasts, in animal cells, or in in vitro translation lysates. PMID:7824660

  16. Hedgehog Signaling Pathway Is Active in GBM with GLI1 mRNA Expression Showing a Single Continuous Distribution Rather than Discrete High/Low Clusters

    PubMed Central

    Biswas, Nidhan K.; Rote, Sarang; Chatterjee, Uttara; Ghosh, Samarendra N.; Deb, Sumit; Saha, Suniti K.; Chowdhury, Anup K.; Ghosh, Subhashish; Rudin, Charles M.; Mukherjee, Ankur; Basu, Analabha; Dhara, Surajit

    2015-01-01

    Hedgehog (Hh) signaling pathway is a valid therapeutic target in a wide range of malignancies. We focus here on glioblastoma multiforme (GBM), a lethal malignancy of the central nervous system (CNS). By analyzing RNA-sequencing based transcriptomics data on 149 clinical cases of TCGA-GBM database we show here a strong correlation (r = 0.7) between GLI1 and PTCH1 mRNA expression—as a hallmark of the canonical Hh-pathway activity in this malignancy. GLI1 mRNA expression varied in 3 orders of magnitude among the GBM patients of the same cohort showing a single continuous distribution—unlike the discrete high/low-GLI1 mRNA expressing clusters of medulloblastoma (MB). When compared with MB as a reference, the median GLI1 mRNA expression in GBM appeared 14.8 fold lower than that of the “high-Hh” cluster of MB but 5.6 fold higher than that of the “low-Hh” cluster of MB. Next, we demonstrated statistically significant up- and down-regulation of GLI1 mRNA expressions in GBM patient-derived low-passage neurospheres in vitro by sonic hedgehog ligand-enriched conditioned media (shh-CM) and by Hh-inhibitor drug vismodegib respectively. We also showed clinically achievable dose (50 μM) of vismodegib alone to be sufficient to induce apoptosis and cell cycle arrest in these low-passage GBM neurospheres in vitro. Vismodegib showed an effect on the neurospheres, both by down-regulating GLI1 mRNA expression and by inducing apoptosis/cell cycle arrest, irrespective of their relative endogenous levels of GLI1 mRNA expression. We conclude from our study that this single continuous distribution pattern of GLI1 mRNA expression technically puts almost all GBM patients in a single group rather than discrete high- or low-clusters in terms of Hh-pathway activity. That is suggestive of therapies with Hh-pathway inhibitor drugs in this malignancy without a need for further stratification of patients on the basis of relative levels of Hh-pathway activity among them. PMID:25775002

  17. Interferon activity of mitogen-induced chicken splenic lymphocytes which do not express interferon mRNA.

    PubMed

    Agarwal, S K; Cloud, S S; Burnside, J

    1996-10-01

    Interferon activity was measured in media from virally infected chicken embryo fibroblasts and Concanavalin A-stimulated splenic lymphocytes using a viral inhibition assay. Both cell types produce interferon activity. A cDNA probe corresponding to a chicken interferon mRNA was used to probe Northern blots of RNA prepared from both cells. A single hybridizing species of 900 bases was detected in virally infected fibroblast RNA, but no hybridizing species was detected in the splenic lymphocytes. These results suggest that the interferon activity produced by lymphocytes is of different molecular origin than the corresponding activity produced by virally infected fibroblasts. PMID:8969047

  18. CsrA activates flhDC expression by protecting flhDC mRNA from RNase E-mediated cleavage

    PubMed Central

    Yakhnin, Alexander V.; Baker, Carol S.; Vakulskas, Christopher A.; Yakhnin, Helen; Berezin, Igor; Romeo, Tony; Babitzke, Paul

    2013-01-01

    Summary Csr is a conserved global regulatory system that controls expression of several hundred Escherichia coli genes. CsrA protein represses translation of numerous genes by binding to mRNA and inhibiting ribosome access. CsrA also activates gene expression, although an activation mechanism has not been reported. CsrA activates flhDC expression, encoding the master regulator of flagellum biosynthesis and chemotaxis, by stabilizing the mRNA. Computer modeling, gel mobility shift, and footprint analyses identified two CsrA binding sites extending from positions 1–12 (BS1) and 44–55 (BS2) of the 198-nt flhDC leader transcript. flhD'-'lacZ expression was reduced by mutations in csrA and/or the CsrA binding sites. The position of BS1 suggested that bound CsrA might inhibit 5' end-dependent RNase E cleavage of flhDC mRNA. Consistent with this hypothesis, CsrA protected flhDC leader RNA from RNase E cleavage in vitro and protection depended on BS1 and BS2. Primer extension studies identified flhDC decay intermediates in vivo that correspond to in vitro RNase E cleavage sites. Deletion of these RNase E cleavage sites resulted in increased flhD'-'lacZ expression. Data from mRNA decay studies and quantitative primer extension assays support a model in which bound CsrA activates flhDC expression by inhibiting the 5' end-dependent RNase E cleavage pathway. PMID:23305111

  19. CsrA activates flhDC expression by protecting flhDC mRNA from RNase E-mediated cleavage.

    PubMed

    Yakhnin, Alexander V; Baker, Carol S; Vakulskas, Christopher A; Yakhnin, Helen; Berezin, Igor; Romeo, Tony; Babitzke, Paul

    2013-02-01

    Csr is a conserved global regulatory system that controls expression of several hundred Escherichia coli genes. CsrA protein represses translation of numerous genes by binding to mRNA and inhibiting ribosome access. CsrA also activates gene expression, although an activation mechanism has not been reported. CsrA activates flhDC expression, encoding the master regulator of flagellum biosynthesis and chemotaxis, by stabilizing the mRNA. Computer modelling, gel mobility shift and footprint analyses identified two CsrA binding sites extending from positions 1-12 (BS1) and 44-55 (BS2) of the 198 nt flhDC leader transcript. flhD'-'lacZ expression was reduced by mutations in csrA and/or the CsrA binding sites. The position of BS1 suggested that bound CsrA might inhibit 5' end-dependent RNase E cleavage of flhDC mRNA. Consistent with this hypothesis, CsrA protected flhDC leader RNA from RNase E cleavage in vitro and protection depended on BS1 and BS2. Primer extension studies identified flhDC decay intermediates in vivo that correspond to in vitro RNase E cleavage sites. Deletion of these RNase E cleavage sites resulted in increased flhD'-'lacZ expression. Data from mRNA decay studies and quantitative primer extension assays support a model in which bound CsrA activates flhDC expression by inhibiting the 5' end-dependent RNase E cleavage pathway. PMID:23305111

  20. Antioxidant Activity and Induction of mRNA Expressions of Antioxidant Enzymes in HEK-293 Cells of Moringa oleifera Leaf Extract.

    PubMed

    Vongsak, Boonyadist; Mangmool, Supachoke; Gritsanapan, Wandee

    2015-08-01

    The leaves of Moringa oleifera, collected in different provinces in Thailand, were determined for the contents of total phenolics, total flavonoids, major components, and antioxidant activity. The extract and its major active components were investigated for the inhibition of H2O2-induced reactive oxygen species production and the effects on antioxidant enzymes mRNA expression. The extract, crypto-chlorogenic acid, isoquercetin and astragalin, significantly reduced the reactive oxygen species production inducing by H2O2 in HEK-293 cells. Treatment with isoquercetin significantly increased the mRNA expression levels of antioxidant enzymes such as superoxide dismutase, catalase and heme oxygenase 1. These results confirm that M. oleifera leaves are good sources of natural antioxidant with isoquercetin as an active compound. PMID:26166137

  1. Peroxisome Proliferator Activated Receptors Alpha, Beta, and Gamma mRNA and protein expression in human fetal tissues

    EPA Science Inventory

    Peroxisome proliferator-activated receptors (PPARs) regulate lipid and glucose homeostasis, are targets of pharmaceuticals, and are also activated by environmental contaminants. Almost nothing is known about expression of PPARs during human fetal development. This study examine...

  2. Cytotoxicity of zinc oxide nanoparticles on antioxidant enzyme activities and mRNA expression in the cocultured C2C12 and 3T3-L1 cells.

    PubMed

    Pandurangan, Muthuraman; Veerappan, Muthuviveganandavel; Kim, Doo Hwan

    2015-02-01

    The present study was aimed to investigate the dose-dependent effect of zinc oxide (ZnO) nanoparticles on antioxidant enzyme activities and messenger RNA (mRNA) expression in the cocultured C2C12 and 3T3-L1 cells. Coculturing experiments are 3D and more reliable compared to mono-culture (2D) experiment. Even though, there are several studies on ZnO nanoparticle-mediated cytotoxicity, but there are no studies on the effect of ZnO nanoparticle on antioxidant enzyme activities and mRNA expression in the cocultured C2C12 and 3T3-L1 cells. A cytotoxicity assay was carried out to determine the effect of ZnO nanoparticles on the C2C12 and 3T3-L1 cell viability. At higher concentration of ZnO nanoparticles, C2C12 and 3T3-L1 cells almost die. ZnO nanoparticles increased reactive oxygen species (ROS) and lipid peroxidation and reduced glutathione (GSH) levels in a dose-dependent manner in the C2C12 and 3T3-L1 cells. In addition, ZnO nanoparticles increased antioxidant enzyme activities and their mRNA expression in the C2C12 and 3T3-L1 cells. In conclusion, the present study showed that ZnO nanoparticles increased oxidative stress, antioxidant enzyme activities, and their mRNA expression in the cocultured C2C12 and 3T3-L1 cells. PMID:25380643

  3. Multiple mRNA isoforms of the transcription activator protein CREB: generation by alternative splicing and specific expression in primary spermatocytes.

    PubMed Central

    Ruppert, S; Cole, T J; Boshart, M; Schmid, E; Schütz, G

    1992-01-01

    We have characterized cDNA clones representing mouse CREB (cyclic AMP responsive element binding protein) mRNA isoforms. These include CREB delta and CREB alpha, of which the rat and human homologues have been previously identified. Both encode proteins with CRE-binding activity and identical transactivation potential. The additional CREB mRNA isoforms potentially encode CREB related proteins. From the structural organization of the mouse CREB gene we conclude that the multiple transcripts are generated by alternative splicing. Furthermore we show that specific CREB mRNA isoforms are expressed at a high level in the adult testis. Expression of these isoforms is induced after commencement of spermatogenesis. In situ hybridization suggests that this expression occurs predominantly in the primary spermatocytes. Comparison of the CREB gene with the recently isolated CREM (cAMP responsive element modulator) cDNAs illustrates that the two genes have arisen by gene duplication and have diverged to encode transcriptional activators and repressors of the cAMP signal transduction pathway. Images PMID:1532935

  4. American tegumentary leishmaniasis: mRNA expression for Th1 and Treg mediators are predominant in patients with recent active disease.

    PubMed

    Souza, Marina A; Almeida, Thays M; Castro, Maria Carolina A B; Oliveira-Mendes, Andresa P; Almeida, Amanda F; Oliveira, Beatriz C; Rocha, Lucas F; Medeiros, Angela C R; Brito, Maria E F; Dessein, Alain J J; Pereira, Valéria R A

    2016-02-01

    Besides the Th1×Th2 paradigm, Treg and Th17 cytokines may play a role in the response to American tegumentary leishmaniasis. Considering the sensitivity and accuracy of qPCR and the lack of studies using this approach, we evaluated mRNA expression for IFN-γ, TNF-α, IL-4, IL-10, IL-6, IL-17A, IL-22, TGF-β, Foxp3 and RORC in peripheral blood mononuclear cells (PBMC) from patients with active disease, after stimulation with L. (V.) braziliensis soluble or insoluble fractions. Our results show that the antigens promoted specific mRNA expression related to the immune response in patients with ATL, and the insoluble fraction seems to stimulate the immune response in a higher intensity. The pro-inflammatory response was also fueled by IFN-γ and TNF-α, probably due to the active disease. IL-4, in certain way, seems to regulate this response along with IL-10 that may be produced by Treg cells, which are supposedly present in the patients' samples due the evidenced expression of Foxp3, in the presence of AgIns. In contrast, down-regulated RORC suggests that the significant levels of IL-6 expressed in response to AgSol were not able to induce an expressive Th17 profile along with TGF-β, which might have predominantly contributed to the development of a regulatory profile in the active disease. PMID:26572279

  5. Activation of P2X(7) receptors stimulates the expression of P2Y(2) receptor mRNA in astrocytes cultured from rat brain.

    PubMed

    D'Alimonte, I; Ciccarelli, R; Di Iorio, P; Nargi, E; Buccella, S; Giuliani, P; Rathbone, M P; Jiang, S; Caciagli, F; Ballerini, P

    2007-01-01

    Under pathological conditions brain cells release ATP at concentrations reported to activate P2X(7) ionotropic receptor subtypes expressed in both neuronal and glial cells. In the present study we report that the most potent P2X(7) receptor agonist BzATP stimulates the expression of the metabotropic ATP receptor P2Y(2) in cultured rat brain astrocytes. In other cell types several kinds of stimulation, including stress or injury, induce P2Y(2) expression that, in turn, is involved in different cell reactions. Similarly, it has recently been found that in astrocytes and astrocytoma cells P2Y(2) sites can trigger neuroprotective pathways through the activation of several mechanisms, including the induction of genes for antiapoptotic factors, neurotrophins, growth factors and neuropeptides. Here we present evidence that P2Y(2) mRNA expression in cultured astrocytes peaks 6 h after BzATP exposure and returns to basal levels after 24 h. This effect was mimicked by high ATP concentrations (1 mM) and was abolished by P2X(7)-antagonists oATP and BBG. The BzATP-evoked P2Y(2) receptor up-regulation in cultured astrocytes was coupled to an increased UTP-mediated intracellular calcium response. This effect was inhibited by oATP and BBG and by P2Y(2)siRNA, thus supporting evidence of increased P2Y(2) activity. To further investigate the mechanisms by which P2X(7) receptors mediated the P2Y(2) mRNA up-regulation, the cells were pre-treated with the chelating agent EGTA, or with inhibitors of mitogen-activated kinase (MAPK) (PD98059) or protein kinase C, (GF109203X). Each inhibitor significantly reduced the extent to which BzATP induced P2Y(2) mRNA. Both BzATP and ATP (1 mM) increased ERK1/2 activation. P2X(7)-induced ERK1/2 phosphorylation was unaffected by pre-treatment of astrocytes with EGTA whereas it was inhibited by GF109203X. Phorbol-12-myristate-13-acetate (PMA), an activator of PKCs, rapidly increased ERK1/2 activation. We conclude that activation of P2X(7) receptors in

  6. Peroxisome proliferator-activated receptor gamma (PPARγ) in yellow catfish Pelteobagrus fulvidraco: molecular characterization, mRNA expression and transcriptional regulation by insulin in vivo and in vitro.

    PubMed

    Zheng, Jia-Lang; Zhuo, Mei-Qin; Luo, Zhi; Pan, Ya-Xiong; Song, Yu-Feng; Huang, Chao; Zhu, Qing-Ling; Hu, Wei; Chen, Qi-Liang

    2015-02-01

    Peroxisome proliferator-activated receptor gamma (PPARγ) is ligand-inducible transcription factor and has important roles in lipid metabolism, cell proliferation and inflammation. In the present study, yellow catfish Pelteobagrus fulvidraco PPARγ cDNA was isolated from liver by RT-PCR and RACE, and its molecular characterization and transcriptional regulation by insulin in vivo and in vitro were determined. The generation of PPARγ1 and PPARγ2 was due to alternative promoter of PPARγ gene. PPARγ1 and PPARγ2 mRNA covered 2426 bp and 2537 bp, respectively, with an open reading frame (ORF) of 1584 bp encoding 527 amino acid residues. Yellow catfish PPARγ gene was organized in a manner similar to that of their mammalian homologs, implying a modular organization of the protein's domains. A comparison between the yellow catfish PPARγ amino acid sequence and the correspondent sequences of several other species revealed the identity of 55-76.2%. Two PPARγ transcripts (PPARγ1 and PPARγ2) mRNAs were expressed in a wide range of tissues, but the abundance of each PPARγ mRNA showed the tissue- and developmental stage-dependent expression patterns. Intraperitoneal injection of insulin in vivo significantly stimulated the mRNA expression of total PPARγ and PPARγ1, but not PPARγ2 in the liver of yellow catfish. In contrast, incubation of hepatocytes with insulin in vitro increased the mRNA levels of PPARγ1, PPARγ2 and total PPARγ. To our knowledge, for the first time, the present study provides evidence that PPARγ1 and PPARγ2 are differentially expressed with and among tissues during different developmental stages and also regulated by insulin both in vivo and in vitro, which serves to increase our understanding on PPARγ physiological function in fish. PMID:25637673

  7. Benzo[a]pyrene effects on glycine N-methyltransferase mRNA expression and enzyme activity in Fundulus heteroclitus embryos

    PubMed Central

    Fang, Xiefan; Dong, Wu; Thornton, Cammi; Willett, Kristine L.

    2010-01-01

    Benzo[a]pyrene (BaP) is a ubiquitous environmental polycyclic aromatic hydrocarbon (PAH) contaminant that is both a carcinogen and a developmental toxicant. We hypothesize that some of BaP’s developmental toxicity may be mediated by effects on glycine N-methyltransferase (GNMT). GNMT is a mediator in the methionine and folate cycles, and the homotetrameric form enzymatically transfers a methyl group from S-adenosylmethionine (SAM) to glycine forming S-adenosylhomocysteine (SAH) and sarcosine. SAM homeostasis, as regulated by GNMT, is critically involved in regulation of DNA methylation, and altered GNMT expression is associated with liver pathologies. The homodimeric form of GNMT has been suggested as the 4S PAH-binding protein. To further study BaP-GNMT interactions, Fundulus heteroclitus embryos were exposed to waterborne BaP at 10 and 100 μg/L and both GNMT mRNA expression and enzyme activity were determined. Whole mount in situ hybridization showed GNMT mRNA expression was increased by BaP in the liver region of 7, 10 and 14 dpf F. heteroclitus embryos. In contrast to mRNA induction, in vivo BaP exposure decreased GNMT enzyme activity in 4, 10 and 14 dpf embryos. However, in vitro incubations of adult F. heteroclitus liver cytosol with BaP did not cause decreased enzyme activity. In conclusion, BaP exposure altered GNMT expression, which may represent a new target pathway for BaP-mediated embryonic toxicities and DNA methylation changes. PMID:20185185

  8. Behaviorally Activated mRNA Expression Profiles Produce Signatures of Learning and Enhanced Inhibition in Aged Rats with Preserved Memory

    PubMed Central

    Haberman, Rebecca P.; Colantuoni, Carlo; Koh, Ming Teng; Gallagher, Michela

    2013-01-01

    Aging is often associated with cognitive decline, but many elderly individuals maintain a high level of function throughout life. Here we studied outbred rats, which also exhibit individual differences across a spectrum of outcomes that includes both preserved and impaired spatial memory. Previous work in this model identified the CA3 subfield of the hippocampus as a region critically affected by age and integral to differing cognitive outcomes. Earlier microarray profiling revealed distinct gene expression profiles in the CA3 region, under basal conditions, for aged rats with intact memory and those with impairment. Because prominent age-related deficits within the CA3 occur during neural encoding of new information, here we used microarray analysis to gain a broad perspective of the aged CA3 transcriptome under activated conditions. Behaviorally-induced CA3 expression profiles differentiated aged rats with intact memory from those with impaired memory. In the activated profile, we observed substantial numbers of genes (greater than 1000) exhibiting increased expression in aged unimpaired rats relative to aged impaired, including many involved in synaptic plasticity and memory mechanisms. This unimpaired aged profile also overlapped significantly with a learning induced gene profile previously acquired in young adults. Alongside the increased transcripts common to both young learning and aged rats with preserved memory, many transcripts behaviorally-activated in the current study had previously been identified as repressed in the aged unimpaired phenotype in basal expression. A further distinct feature of the activated profile of aged rats with intact memory is the increased expression of an ensemble of genes involved in inhibitory synapse function, which could control the phenotype of neural hyperexcitability found in the CA3 region of aged impaired rats. These data support the conclusion that aged subjects with preserved memory recruit adaptive mechanisms to

  9. Behaviorally activated mRNA expression profiles produce signatures of learning and enhanced inhibition in aged rats with preserved memory.

    PubMed

    Haberman, Rebecca P; Colantuoni, Carlo; Koh, Ming Teng; Gallagher, Michela

    2013-01-01

    Aging is often associated with cognitive decline, but many elderly individuals maintain a high level of function throughout life. Here we studied outbred rats, which also exhibit individual differences across a spectrum of outcomes that includes both preserved and impaired spatial memory. Previous work in this model identified the CA3 subfield of the hippocampus as a region critically affected by age and integral to differing cognitive outcomes. Earlier microarray profiling revealed distinct gene expression profiles in the CA3 region, under basal conditions, for aged rats with intact memory and those with impairment. Because prominent age-related deficits within the CA3 occur during neural encoding of new information, here we used microarray analysis to gain a broad perspective of the aged CA3 transcriptome under activated conditions. Behaviorally-induced CA3 expression profiles differentiated aged rats with intact memory from those with impaired memory. In the activated profile, we observed substantial numbers of genes (greater than 1000) exhibiting increased expression in aged unimpaired rats relative to aged impaired, including many involved in synaptic plasticity and memory mechanisms. This unimpaired aged profile also overlapped significantly with a learning induced gene profile previously acquired in young adults. Alongside the increased transcripts common to both young learning and aged rats with preserved memory, many transcripts behaviorally-activated in the current study had previously been identified as repressed in the aged unimpaired phenotype in basal expression. A further distinct feature of the activated profile of aged rats with intact memory is the increased expression of an ensemble of genes involved in inhibitory synapse function, which could control the phenotype of neural hyperexcitability found in the CA3 region of aged impaired rats. These data support the conclusion that aged subjects with preserved memory recruit adaptive mechanisms to

  10. The number of preproghrelin mRNA expressing cells is increased in mice with activity-based anorexia.

    PubMed

    François, Marie; Barde, Swapnali; Achamrah, Najate; Breton, Jonathan; do Rego, Jean-Claude; Coëffier, Moïse; Hökfelt, Tomas; Déchelotte, Pierre; Fetissov, Sergueï O

    2015-06-01

    Plasma levels of ghrelin, an orexigenic peptide, are increased during conditions of chronic starvation, such as in patients with anorexia nervosa. However, it is not known whether such increase can be related to the number of preproghrelin mRNA-expressing cells in the stomach, and if chronic starvation may activate a tentative central ghrelin production. In this work, in situ hybridization technique was used to analyze the presence and number of preproghrelin mRNA-expressing cells in the stomach and the hypothalamus of mice with activity-based anorexia (ABA) induced by the combination of running wheel activity with progressive, during 10 days, feeding-time restriction (FTR) and compared with sedentary FTR, ABA pair-fed (PF) and ad libitum-fed control mice. All food-restricted mice lost more than 20% of body weight. Body weight loss was similar in ABA and PF mice, but it was more pronounced than in FTR mice. Food intake was also lower in ABA than in FTR mice. Preproghrelin mRNA-expressing cells in the stomach were increased proportionally to the body weight loss in all food-restricted groups with the highest number in ABA mice. No preproghrelin mRNA-producing cells were detectable in the hypothalamus of either control or food-restricted mice. Thus, the increased number of gastric preproghrelin mRNA-producing cells during chronic starvation proportionally to the body weight loss and reduced food intake may underlie increased plasma ghrelin. Hyperactivity-induced anorexia appears to further increase the number of preproghrelin mRNA-producing cells in the stomach. No evidence was found for ghrelin expression in the hypothalamus, not even in any of the present experimental models. PMID:25963530

  11. mRNA Composition and Control of Bacterial Gene Expression

    PubMed Central

    Liang, S.-T.; Xu, Y.-C.; Dennis, P.; Bremer, H.

    2000-01-01

    The expression of any given bacterial protein is predicted to depend on (i) the transcriptional regulation of the promoter and the translational regulation of its mRNA and (ii) the synthesis and translation of total (bulk) mRNA. This is because total mRNA acts as a competitor to the specific mRNA for the binding of initiation-ready free ribosomes. To characterize the effects of mRNA competition on gene expression, the specific activity of β-galactosidase expressed from three different promoter-lacZ fusions (Pspc-lacZ, PRNAI-lacZ, and PRNAII-lacZ) was measured (i) in a relA+ background during exponential growth at different rates and (ii) in relA+ and ΔrelA derivatives of Escherichia coli B/r after induction of a mild stringent or a relaxed response to raise or lower, respectively, the level of ppGpp. Expression from all three promoters was stimulated during slow exponential growth or at elevated levels of ppGpp and was reduced during fast exponential growth or at lower levels of ppGpp. From these observations and from other considerations, we propose (i) that the concentration of free, initiation-ready ribosomes is approximately constant and independent of the growth rate and (ii) that bulk mRNA made during slow growth and at elevated levels of ppGpp is less efficiently translated than bulk mRNA made during fast growth and at reduced levels of ppGpp. These features lead to an indirect enhancement in the expression of LacZ (or of any other protein) during growth in media of poor nutritional quality and at increased levels of ppGpp. PMID:10809680

  12. Role of hippocampus mitogen-activated protein kinase phosphatase-1 mRNA expression and DNA methylation in the depression of the rats with chronic unpredicted stress.

    PubMed

    Wang, Chang-Hong; Zhang, Xiao-Li; Li, Yan; Wang, Guo-Dong; Wang, Xin-Kai; Dong, Jiao; Ning, Qiu-Fen

    2015-05-01

    Stressful life events especially the chronic unpredictable stress are the obvious precipitating factors of depression. The biological information transduction in cells plays an important role in the molecular biology mechanism of depression. Mitogen-activated protein kinase phosphatase-1 (MKP-1) regulates the cell physiological activity and involves in the adjustment of neural plasticity, function, and survival. This experiment tried to explore the possible effects of MKP-1 in hippocampus on depression of rats by determining the expression of MKP-1 mRNA and DNA methylation in MKP-1 gene promoter. The animal model was established by chronic unpredictable stress, and evaluated by open-field test and weight changes. All the rats were divided into the sham stimulation, the physiological saline, and the fluoxetine (1.25, 2.50, and 5.00 mg/kg) groups randomly. The expression of MKP-1 mRNA in the hippocampus was measured by RT-PCR and the methylation of MKP-1 promoter DNA was detected by COBRA. The chronic unpredicted stress (1) increased the animal movement scores in open-field test, and fluoxetine could prevent this increasement; (2) increased the body weight, and fluoxetine could not prevent this increasement; and (3) increased MKP-1 mRNA expression in the hippocampus, and fluoxetine could prevent it. However, fluoxetine did not influence the DNA methylation of MKP-1 gene promoter in the hippocampus during the chronic unpredicted stress. MKP-1 in the hippocampus might be involved in the etiology of depression, and DNA methylation of MKP-1 gene promoter in the hippocampus did not related with the depression. PMID:25410305

  13. Aggressive Encounters Alter the Activation of Serotonergic Neurons and the Expression of 5-HT1A mRNA in the Hamster Dorsal Raphe Nucleus

    PubMed Central

    Cooper, Matthew A.; Grober, Matthew S.; Nicholas, Christopher; Huhman, Kim L.

    2009-01-01

    Serotonergic (5-HT) neurons in the dorsal raphe nucleus (DRN) have been implicated in stress-induced changes in behavior. Previous research indicates that stressful stimuli activate 5-HT neurons in select subregions of the DRN. Uncontrollable stress is thought to sensitize 5-HT neurons in the DRN and allow for an exaggerated 5-HT response to future stimuli. In the current study, we tested the hypothesis that following aggressive encounters, losing male Syrian hamsters would exhibit increased c-Fos immunoreactivity in 5-HT DRN neurons compared to winners or controls. In addition, we tested the hypothesis that losers would have decreased 5-HT1A mRNA levels in the DRN compared to winners or controls. We found that a single 15-min aggressive encounter increased c-Fos expression in 5-HT and non-5-HT neurons in losers compared to winners and controls. The increased c-Fos expression in losers was restricted to ventral regions of the rostral DRN. We also found that four 5-min aggressive encounters reduced total 5-HT1A mRNA levels in the DRN in losers compared to winners and controls, and that differences in mRNA levels were not restricted to specific DRN subregions. These results suggest that social defeat activates neurons in select subregions of the DRN and reduces message for DRN 5-HT1A autoreceptors. Our results support the hypothesis that social stress can activate 5-HT neurons in the DRN, reduce 5-HT1A autoreceptor-mediated inhibition, and lead to hyperactivity of 5-HT neurons. PMID:19362123

  14. Human Immunodeficiency Virus Tat-Activated Expression of Poliovirus Protein 2A Inhibits mRNA Translation

    NASA Astrophysics Data System (ADS)

    Sun, Xiao-Hong; Baltimore, David

    1989-04-01

    To study the effect of poliovirus protein 2A on cellular RNA translation, the tat control system of human immunodeficiency virus (HIV) was used. Protein 2A was expressed from a plasmid construct (pHIV/2A) incorporating the HIV long terminal repeat. Protein synthesis was measured by using chloramphenicol acetyltransferase as a reporter gene driven by the Rous sarcoma virus long terminal repeat. When HIV/2A was contransfected with the reporter, addition of a tat-producing plasmid caused at least a 50-fold drop in chloramphenicol acetyltransferase synthesis. A HeLa cell line carrying HIV/2A was established. In it, tat expression caused more than a 10-fold drop in chloramphenicol acetyltransferase synthesis from the reporter plasmid. Furthermore, 2A induction by tat caused cleavage of the cellular translation factor P220, a part of eukaryotic translation initiation factor 4F. Thus protein 2A can, by itself, carry out the inhibition of cellular protein synthesis characteristic of a poliovirus infection. Also, the HIV tat activation provides a very effective method to control gene expression in mammalian cells.

  15. Bixin regulates mRNA expression involved in adipogenesis and enhances insulin sensitivity in 3T3-L1 adipocytes through PPAR{gamma} activation

    SciTech Connect

    Takahashi, Nobuyuki; Goto, Tsuyoshi; Taimatsu, Aki; Egawa, Kahori; Katoh, Sota; Kusudo, Tatsuya; Sakamoto, Tomoya; Ohyane, Chie; Lee, Joo-Young; Kim, Young-il; Uemura, Taku; Hirai, Shizuka; Kawada, Teruo

    2009-12-25

    Insulin resistance is partly due to suppression of insulin-induced glucose uptake into adipocytes. The uptake is dependent on adipocyte differentiation, which is controlled at mRNA transcription level. The peroxisome proliferator-activated receptor (PPAR), a ligand-regulated nuclear receptor, is involved in the differentiation. Many food-derived compounds serve as ligands to activate or inactivate PPAR. In this study, we demonstrated that bixin and norbixin (annatto extracts) activate PPAR{gamma} by luciferase reporter assay using GAL4-PPAR chimera proteins. To examine the effects of bixin on adipocytes, 3T3-L1 adipocytes were treated with bixin or norbixin. The treatment induced mRNA expression of PPAR{gamma} target genes such as adipocyte-specific fatty acid-binding protein (aP2), lipoprotein lipase (LPL), and adiponectin in differentiated 3T3-L1 adipocytes and enhanced insulin-dependent glucose uptake. The observations indicate that bixin acts as an agonist of PPAR{gamma} and enhances insulin sensitivity in 3T3-L1 adipocytes, suggesting that bixin is a valuable food-derived compound as a PPAR ligand to regulate lipid metabolism and to ameliorate metabolic syndrome.

  16. Wfs1-deficient animals have brain-region-specific changes of Na+, K+-ATPase activity and mRNA expression of α1 and β1 subunits.

    PubMed

    Sütt, S; Altpere, A; Reimets, R; Visnapuu, T; Loomets, M; Raud, S; Salum, T; Mahlapuu, R; Kairane, C; Zilmer, M; Vasar, E

    2015-03-01

    Mutations in the WFS1 gene, which encodes the endoplasmic reticulum (ER) glycoprotein, cause Wolfram syndrome, a disease characterized by juvenile-onset diabetes mellitus, optic atrophy, deafness, and different psychiatric abnormalities. Loss of neuronal cells and pancreatic β-cells in Wolfram syndrome patients is probably related to the dysfunction of ER stress regulation, which leads to cell apoptosis. The present study shows that Wfs1-deficient mice have brain-region-specific changes in Na(+),K(+)-ATPase activity and in the expression of the α1 and β1 subunits. We found a significant (1.6-fold) increase of Na-pump activity and β1 subunit mRNA expression in mice lacking the Wfs1 gene in the temporal lobe compared with their wild-type littermates. By contrast, exposure of mice to the elevated plus maze (EPM) model of anxiety decreased Na-pump activity 1.3-fold in the midbrain and dorsal striatum and 2.0-fold in the ventral striatum of homozygous animals compared with the nonexposed group. Na-pump α1 -subunit mRNA was significantly decreased in the dorsal striatum and midbrain of Wfs1-deficient homozygous animals compared with wild-type littermates. In the temporal lobe, an increase in the activity of the Na-pump is probably related to increased anxiety established in Wfs1-deficient mice, whereas the blunted dopamine function in the forebrain of Wfs1-deficient mice may be associated with a decrease of Na-pump activity in the dorsal and ventral striatum and in the midbrain after exposure to the EPM. PMID:25385034

  17. In vitro Effects of Four Native Brazilian Medicinal Plants in CYP3A4 mRNA Gene Expression, Glutathione Levels, and P-Glycoprotein Activity

    PubMed Central

    Mazzari, Andre L. D. A.; Milton, Flora; Frangos, Samantha; Carvalho, Ana C. B.; Silveira, Dâmaris; de Assis Rocha Neves, Francisco; Prieto, Jose M.

    2016-01-01

    Erythrina mulungu Benth. (Fabaceae), Cordia verbenacea A. DC. (Boraginaceae), Solanum paniculatum L. (Solanaceae) and Lippia sidoides Cham. (Verbenaceae) are medicinal plant species native to Brazil shortlisted by the Brazilian National Health System for future clinical use. However, nothing is known about their effects in metabolic and transporter proteins, which could potentially lead to herb-drug interactions (HDI). In this work, we assess non-toxic concentrations (100 μg/mL) of the plant infusions for their in vitro ability to modulate CYP3A4 mRNA gene expression and intracellular glutathione levels in HepG2 cells, as well as P-glycoprotein (P-gp) activity in vincristine-resistant Caco-2 cells (Caco-2 VCR). Their mechanisms of action were further studied by measuring the activation of human pregnane X receptor (hPXR) in transiently co-transfected HeLa cells and the inhibition of γ-glutamyl transferase (GGT) in HepG2 cells. Our results show that P-gp activity was not affected in any case and that only Solanum paniculatum was able to significantly change CYP3A4 mRNA gene expression (twofold decrease, p < 0.05), this being correlated with an antagonist effect upon hPXR (EC50 = 0.38 mg/mL). Total intracellular glutathione levels were significantly depleted by exposure to Solanum paniculatum (-44%, p < 0.001), Lippia sidoides (-12%, p < 0.05) and Cordia verbenacea (-47%, p < 0.001). The latter plant extract was able to decrease GGT activity (-48%, p < 0.01). In conclusion, this preclinical study shows that the administration of some of these herbal medicines may be able to cause disturbances to metabolic mechanisms in vitro. Although Erythrina mulungu appears safe in our tests, active pharmacovigilance is recommended for the other three species, especially in the case of Solanum paniculatum. PMID:27594838

  18. In vitro Effects of Four Native Brazilian Medicinal Plants in CYP3A4 mRNA Gene Expression, Glutathione Levels, and P-Glycoprotein Activity.

    PubMed

    Mazzari, Andre L D A; Milton, Flora; Frangos, Samantha; Carvalho, Ana C B; Silveira, Dâmaris; de Assis Rocha Neves, Francisco; Prieto, Jose M

    2016-01-01

    Erythrina mulungu Benth. (Fabaceae), Cordia verbenacea A. DC. (Boraginaceae), Solanum paniculatum L. (Solanaceae) and Lippia sidoides Cham. (Verbenaceae) are medicinal plant species native to Brazil shortlisted by the Brazilian National Health System for future clinical use. However, nothing is known about their effects in metabolic and transporter proteins, which could potentially lead to herb-drug interactions (HDI). In this work, we assess non-toxic concentrations (100 μg/mL) of the plant infusions for their in vitro ability to modulate CYP3A4 mRNA gene expression and intracellular glutathione levels in HepG2 cells, as well as P-glycoprotein (P-gp) activity in vincristine-resistant Caco-2 cells (Caco-2 VCR). Their mechanisms of action were further studied by measuring the activation of human pregnane X receptor (hPXR) in transiently co-transfected HeLa cells and the inhibition of γ-glutamyl transferase (GGT) in HepG2 cells. Our results show that P-gp activity was not affected in any case and that only Solanum paniculatum was able to significantly change CYP3A4 mRNA gene expression (twofold decrease, p < 0.05), this being correlated with an antagonist effect upon hPXR (EC50 = 0.38 mg/mL). Total intracellular glutathione levels were significantly depleted by exposure to Solanum paniculatum (-44%, p < 0.001), Lippia sidoides (-12%, p < 0.05) and Cordia verbenacea (-47%, p < 0.001). The latter plant extract was able to decrease GGT activity (-48%, p < 0.01). In conclusion, this preclinical study shows that the administration of some of these herbal medicines may be able to cause disturbances to metabolic mechanisms in vitro. Although Erythrina mulungu appears safe in our tests, active pharmacovigilance is recommended for the other three species, especially in the case of Solanum paniculatum. PMID:27594838

  19. Preserved Expression of mRNA Coding von Willebrand Factor–Cleaving Protease ADAMTS13 by Selenite and Activated Protein C

    PubMed Central

    Ekaney, Michael L; Bockmeyer, Clemens L; Sossdorf, Maik; Reuken, Philipp A; Conradi, Florian; Schuerholz, Tobias; Blaess, Markus F; Friedman, Scott L; Lösche, Wolfgang; Bauer, Michael; Claus, Ralf A

    2015-01-01

    In sepsis, the severity-dependent decrease of von Willebrand factor (VWF)–inactivating protease, a disintegrin and metalloproteinase with thrombospondin motifs 13 (ADAMTS13), results in platelet aggregation and consumption, leading to sepsis-associated thrombotic microangiopathy (TMA) and organ failure. Previous reports assessing its functional deficiency have pinpointed involvement of autoantibodies or mutations to propagate thrombotic thrombocytopenic purpura (TTP). However, mechanisms of acquired ADAMTS13 deficiency during host response remain unclear. To enhance understanding of ADAMTS13 deficiency in sepsis, we evaluated changes in expression of mRNA coding ADAMTS13 during septic conditions using primary cellular sources of the protease. We hypothesized that proinflammatory cytokines and constituents of serum from septic patients affect the transcriptional level of ADAMTS13 in vitro, and previously recommended therapeutic agents as adjunctive therapy for sepsis interact therewith. Cultured hepatic stellate cells (HSCs), endothelial cells (HMEC) and human precision-cut liver slices as an ex vivo model were stimulated with sepsis prototypic cytokines, bacterial endotoxin and pooled serum obtained from septic patients. Stimulation resulted in a significant decrease in ADAMTS13 mRNA between 10% and 80% of basal transcriptional rates. Costimulation of selenite or recombinant activated protein C (APC) with serum prevented ADAMTS13 decrease in HSCs and increased ADAMTS13 transcripts in HMEC. In archived clinical samples, the activity of ADAMTS13 in septic patients treated with APC (n = 5) increased with an accompanying decrease in VWF propeptide as surrogate for improved endothelial function. In conclusion, proinflammatory conditions of sepsis repress mRNA coding ADAMTS13 and the ameliorating effect by selenite and APC may support the concept for identification of beneficial mechanisms triggered by these drugs at a molecular level. PMID:25860876

  20. Endotoxin activates human vascular smooth muscle cells despite lack of expression of CD14 mRNA or endogenous membrane CD14.

    PubMed Central

    Loppnow, H; Stelter, F; Schönbeck, U; Schlüter, C; Ernst, M; Schütt, C; Flad, H D

    1995-01-01

    During infection or inflammation, cells of the blood vessel wall, such as endothelial cells (EC) and smooth muscle cells (SMC), contribute to the regulation of the immune response by production of cytokines or expression of adhesion molecules. Little is known about the mechanism(s) involved in the stimulation of vascular cells by endotoxin (lipopolysaccharide [LPS]). As reported previously, LPS antagonists reduce LPS-induced cytokine production or adhesion in vitro specifically, suggesting a specific LPS recognition mechanism. We thus investigated the role of CD14 for stimulation of vascular SMC by LPS. Complement-fixing antibodies directed against CD14 (LeuM3, RoMo I, or Mo2) lysed monocytes but failed to mediate lysis of EC or SMC, indicating the lack of endogenous membrane CD14 in vascular cells. In addition, we did not detect expression of CD14 protein on EC and SMC in cell sorting analysis or cell immunoassay experiments. These observations are in line with our finding that a CD14 probe did not hybridize with mRNA or EC or SMC in Northern (RNA) blot experiments, although it hybridized well with monocyte-derived mRNA. We obtained the same results with the much more sensitive reverse transcription-PCR. Since the vascular SMC did not express endogenous CD14, we investigated the role of human serum-derived soluble CD14 (sCD14) for activation of SMC by LPS. In medium containing human serum, anti-CD14 antibodies inhibited activation of SMC by LPS. In contrast, the same antibodies did not inhibit activation of cells cultured in medium containing fetal calf serum. SMC cultured in sCD14-depleted medium responded 1,000-fold less to LPS than cells cultured in presence of sCD14. Reconstitution of sCD14-depleted serum or supplementation of serum-free medium with recombinant CD14 restored the capacity of the cells to respond to LPS. These results show that specific activation of vascular SMC by LPS does not involve binding to endogenous membrane CD14, but that the

  1. Adenosine A(1), A(2a), A(2b), and A(3) receptors in hematopoiesis. 2. Expression of receptor mRNA in resting and lipopolysaccharide-activated mouse RAW 264.7 macrophages.

    PubMed

    Streitová, D; Hofer, M; Holá, J; Vacek, A; Pospísil, M

    2010-01-01

    Expression of mRNA for adenosine receptor subtypes A(1), A(2a), A(2b), and A(3) in normal and lipopolysaccharide (LPS)-activated murine RAW 264.7 macrophages has been investigated using the method of quantitative real-time polymerase chain reaction. The results have shown a very low, unquantifiable expression of adenosine A(1) receptor mRNA in both normal and LPS-activated macrophages. The other three adenosine receptor mRNAs have been found to be expressed at various but always quantifiable levels. Activation of the macrophages by LPS induced upregulation of the expression of adenosine receptor A(2a) and A(2b) mRNA, whereas the expression of adenosine receptor A(3) mRNA was downregulated. Unstimulated macrophages exhibited a high expression of the A(2b) adenosine receptor mRNA. The findings are discussed from the point of view of the antiinflammatory and hematopoiesis-stimulating roles of the adenosine receptor signaling. PMID:19249906

  2. Vibrational force alters mRNA expression in osteoblasts

    NASA Technical Reports Server (NTRS)

    Tjandrawinata, R. R.; Vincent, V. L.; Hughes-Fulford, M.

    1997-01-01

    Serum-deprived mouse osteoblastic (MC3T3E1) cells were subjected to a vibrational force modeled by NASA to simulate a space shuttle launch (7.83 G rms). The mRNA levels for eight genes were investigated to determine the effect of vibrational force on mRNA expression. The mRNA levels of two growth-related protooncogenes, c-fos and c-myc, were up-regulated significantly within 30 min after vibration, whereas those of osteocalcin as well as transforming growth factor-beta1 were decreased significantly within 3 h after vibration. No changes were detected in the levels of beta-actin, histone H4, or cytoplasmic phospholipase A2 after vibration. No basal levels of cyclooxygenase-2 expression were detected. In addition, the extracellular concentrations of prostaglandin E2 (PGE2), a potent autocrine/paracrine growth factor in bone, were not significantly altered after vibration most likely due to the serum deprivation state of the osteoblasts. In comparison with the gravitational launch profile, vibrational-induced changes in gene expression were greater both in magnitude and number of genes activated. Taken together, these data suggest that the changes in mRNA expression are due to a direct mechanical effect of the vibrational force on the osteoblast cells and not to changes in the local PGE2 concentrations. The finding that launch forces induce gene expression is of utmost importance since many of the biological experiments do not dampen vibrational loads on experimental samples. This lack of dampening of vibrational forces may partially explain why 1-G onboard controls sometimes do not reflect 1-G ground controls. These data may also suggest that scientists use extra ground controls that are exposed to launch forces, have these forces dampened on launched samples, or use facilities such as Biorack that provide an onboard 1-G centrufuge in order to control for space shuttle launch forces.

  3. Bioinspired Nanocomplex for Spatiotemporal Imaging of Sequential mRNA Expression in Differentiating Neural Stem Cells

    PubMed Central

    2015-01-01

    Messenger RNA plays a pivotal role in regulating cellular activities. The expression dynamics of specific mRNA contains substantial information on the intracellular milieu. Unlike the imaging of stationary mRNAs, real-time intracellular imaging of the dynamics of mRNA expression is of great value for investigating mRNA biology and exploring specific cellular cascades. In addition to advanced imaging methods, timely extracellular stimulation is another key factor in regulating the mRNA expression repertoire. The integration of effective stimulation and imaging into a single robust system would significantly improve stimulation efficiency and imaging accuracy, producing fewer unwanted artifacts. In this study, we developed a multifunctional nanocomplex to enable self-activating and spatiotemporal imaging of the dynamics of mRNA sequential expression during the neural stem cell differentiation process. This nanocomplex showed improved enzymatic stability, fast recognition kinetics, and high specificity. With a mechanism regulated by endogenous cell machinery, this nanocomplex realized the successive stimulating motif release and the dynamic imaging of chronological mRNA expression during neural stem cell differentiation without the use of transgenetic manipulation. The dynamic imaging montage of mRNA expression ultimately facilitated genetic heterogeneity analysis. In vivo lateral ventricle injection of this nanocomplex enabled endogenous neural stem cell activation and labeling at their specific differentiation stages. This nanocomplex is highly amenable as an alternative tool to explore the dynamics of intricate mRNA activities in various physiological and pathological conditions. PMID:25494492

  4. Methamphetamine-induced stereotypy correlates negatively with patch-enhanced prodynorphin and arc mRNA expression in the rat caudate putamen: the role of mu opioid receptor activation.

    PubMed

    Horner, Kristen A; Noble, Erika S; Gilbert, Yamiece E

    2010-06-01

    Amphetamines induce stereotypy, which correlates with patch-enhanced c-Fos expression the patch compartment of caudate putamen (CPu). Methamphetamine (METH) treatment also induces patch-enhanced expression of prodynorphin (PD), arc and zif/268 in the CPu. Whether patch-enhanced activation of any of these genes correlates with METH-induced stereotypy is unknown, and the factors that contribute to this pattern of expression are poorly understood. Activation of mu opioid receptors, which are expressed by the neurons of the patch compartment, may underlie METH-induced patch-enhanced gene expression and stereotypy. The current study examined whether striatal mu opioid receptor blockade altered METH-induced stereotypy and patch-enhanced gene expression, and if there was a correlation between the two responses. Animals were intrastriatally infused with the mu antagonist CTAP (10 microg/microl), treated with METH (7.5 mg/kg, s.c.), placed in activity chambers for 3h, and then sacrificed. CTAP pretreatment attenuated METH-induced increases in PD, arc and zif/268 mRNA expression and significantly reduced METH-induced stereotypy. Patch-enhanced PD and arc mRNA expression in the dorsolateral CPu correlated negatively with METH-induced stereotypy. These data indicate that mu opioid receptor activation contributes to METH-induced gene expression in the CPu and stereotypy, and that patch-enhanced PD and arc expression may be a homeostatic response to METH treatment. PMID:20298714

  5. Elevated TREM2 mRNA expression in leukocytes in schizophrenia but not major depressive disorder.

    PubMed

    Yoshino, Yuta; Kawabe, Kentaro; Yamazaki, Kiyohiro; Watanabe, Shinya; Numata, Shusuke; Mori, Yoko; Yoshida, Taku; Iga, Junichi; Ohmori, Tetsuro; Ueno, Shu-Ichi

    2016-06-01

    The pathological mechanisms of schizophrenia (SCZ) have not been clarified, but the microglia hypothesis has recently been discussed. We previously reported that the mRNA for a protein related to activation of microglia, triggering receptor expressed on myeloid cell 2 (TREM2), is expressed higher in peripheral leukocytes in SCZ than controls. In this study, we analyzed TREM2 mRNA expression in leukocytes from both SCZ and major depressive disorder (MDD) patients. We compared 50 SCZ patients and 42 MDD patients with age-matched controls. Levels of TREM2 mRNA in leukocytes were analyzed with quantitative real-time PCR method using TaqMan probe. TREM2 mRNA expression was significantly higher in leukocytes of SCZ subjects than controls, but the expression level was non-significantly different in MDD subjects. We observed a decrease in TREM2 mRNA expression in leukocytes from one SCZ patient after clozapine treatment. The expression did not change following ECT, but the expression level in this patient was still significantly higher than that in controls. We conclude that the high amount of TREM2 mRNA expression in leukocytes is specific to SCZ but not MDD and that changes in TREM2 mRNA expression may be a trait biomarker for SCZ. PMID:27130565

  6. Human osteoclast and giant cell differentiation: the apparent switch from nonspecific esterase to tartrate resistant acid phosphatase activity coincides with the in situ expression of osteopontin mRNA.

    PubMed

    Connor, J R; Dodds, R A; James, I E; Gowen, M

    1995-12-01

    Animal model and in vitro cultures suggest that osteoclasts and cells of the mononuclear phagocyte system share a common precursor. However, the human osteoclast precursor has not been positively identified. We attempted to identify the precursor in situ by using a number of osteoclast- and macrophage-selective markers, together with the expression of osteopontin mRNA, previously shown to be abundant in human osteoclasts. Sections of osteophytic bone and a panel of inflammatory connective tissues were processed for in situ hybridization; serial sections were analyzed for tartrate-resistant acid phosphatase (TRAP) and nonspecific esterase (NSE) activity, selective cytochemical markers for the osteoclast and cells of the macrophage/monocyte lineage, respectively. The murine anti-human osteoclast monoclonal antibodies 23C6 (vitronectin receptor) and C35 (osteoclast-selective) were used to further identify the osteoclast phenotype. We compared osteoclasts, giant cells, and their respective putative mononuclear precursors. At resorption sites within osteophytic bone, osteopontin mRNA was expressed in osteoclasts and a distinct population of TRAP+, NSE- mononuclear cells. Adjacent clusters of mononuclear cells were TRAP- and NSE+ or were active for both enzymes; these cells demonstrated variable expression of osteopontin mRNA. In the inflammatory connective tissues, abundant macrophage-like cells (NSE+/TRAP-) did not express osteopontin mRNA. However, TRAP+ mononuclear cells observed among clusters of NSE+ cells did express osteopontin mRNA. At these sites, clusters of putative macrophage polykaryons removing fragments of bone debris were observed. These giant cells and associated mononuclear cells were NSE- and distinctly TRAP+, and expressed osteopontin mRNA, C35, and 23C6 (human osteoclast) reactivity. Therefore, cells involved in the remodeling (resorption) of bone or the removal of bone debris, together with their immediate precursors, switch from being NSE

  7. Performance, organ zinc concentration, jejunal brush border membrane enzyme activities and mRNA expression in piglets fed with different levels of dietary zinc.

    PubMed

    Martin, Lena; Pieper, Robert; Schunter, Nadine; Vahjen, Wilfried; Zentek, Jürgen

    2013-06-01

    This study aimed at investigating the effect of dietary zinc on performance, jejunal brush border membrane enzyme activities and mRNA levels of enzymes and two zinc transporters in piglets. A total of 126 piglets were weaned at 26 ±1 days of age and randomly allocated into three groups fed with diets 50, 150 and 2500 mg zinc/kg. Performance was recorded and at weekly intervals, eight piglets per group were killed. The activities of isolated brush border membrane enzymes including lactase, maltase, sucrase, aminopeptidase-N and intestinal alkaline phosphatase (IAP), and the relative transcript abundance of aminopeptidase-N (APN), sucrase-isomaltase (SUC), IAP and the two zinc transporters SLC39A4 (ZIP4) and SLC30A1 (ZnT1) were investigated in the jejunum. Feeding pharmacological zinc levels increased weight gain (p < 0.001) during the first week, but performance was lower (p < 0.05) in the third week. Organ zinc concentrations were increased by high dietary zinc level. The activity of IAP was higher (p < 0.05) with the highest dietary zinc level, no effects were determined for other enzymes. Dietary zinc level had no effect on transcript abundance of digestive enzymes. The mRNA levels decreased (p < 0.001) for ZIP4, and increased for ZnT1 (p < 0.05) with pharmacological zinc levels. In conclusion, pharmacological zinc levels improved performance in the short-term. Intestinal mRNA level of zinc transporters changed with high zinc supply, but this did not prevent zinc accumulation in tissues, suggesting hampered homoeostatic regulation. This might cause impaired performance during longer supply. PMID:23742645

  8. Regulation of LPS-induced mRNA expression of pro-inflammatory cytokines via alteration of NF-κB activity in mouse peritoneal macrophages exposed to fluoride.

    PubMed

    Tian, Yuhu; Huo, Meijun; Li, Guangsheng; Li, Yanyan; Wang, Jundong

    2016-10-01

    F toxicity to immune system, especially to macrophage, has been studied a lot recently. Nuclear factor-kappa B (NF-κB), as a transcription factor, plays a central role in immune and inflammatory responses via the regulation of downstream gene expression. Recent studies indicated that fluoride effect on inflammatory cytokine secretion, however, the molecular mechanism was less understood. In our study, peritoneal macrophages (PMs) were divided several groups and were administrated sodium fluoride (NaF, 50, 100, 200, 400, 800 μM) and/or lipopolysaccharide (LPS, 30 ng/mg). The mRNA expression of p65, inducible nitric oxide synthase (iNOS), tumor necrosis factor alpha (TNF-α) and interleukin-1 beta (IL-1β) in macrophages exposed to fluoride was determined by quantitative real-time RT-PCR respectively. The translocation of NF-κB from cytoplasm to nucleus, which in a way reflects NF-κB activity, was demonstrated by Immunofluorescence and ELISA. Our results showed that fluoride had a dose-dependent effect on NF-κB activity, which coincided with LPS-induced mRNA expression of its downstream genes, iNOS and IL-1β. Fluoride alone causes no effect on gene expression. However, the mRNA expression of TNF-α showed non-NF-κB-dependent manner. Therefore, we come to the conclusion that fluoride can regulate LPS-induced mRNA expression of iNOS and IL-1β via NF-κB pathway in mouse peritoneal macrophages. PMID:27421105

  9. The effect of moderate-intensity exercise on the expression of HO-1 mRNA and activity of HO in cardiac and vascular smooth muscle of spontaneously hypertensive rats.

    PubMed

    Ren, Cailing; Qi, Jie; Li, Wanwei; Zhang, Jun

    2016-04-01

    The objective of this study was to observe the effects of moderate-intensity training on the activity of heme oxygenase (HO) and expression of HO-1 mRNA in the aorta and the cardiac muscle of spontaneously hypertensive rats (SHRs). After 9 weeks of swimming exercise, the activity of HO and expression of HO-1 mRNA in the SHRs were measured. The resting blood pressure in the exercise group was increased by 1.7% (P > 0.05), whereas it was significantly elevated by 10.3% (P < 0.01) in the SHR rats. Compared with animals in the control and sedentary groups, the expression level of HO-1 mRNA of aorta and cardiac muscle in the exercise group was significantly enhanced (P < 0.01). The HO activity and the content of plasma carbon monoxide (CO) in the sedentary group were dramatically decreased (P < 0.05 and P < 0.01, respectively) compared with the control group. HO activity and content of plasma CO in the exercise group were significantly higher compared with those in the sedentary group (P < 0.05 and P < 0.01, respectively). The HO/CO metabolic pathway might be involved in the regulation of blood pressure of the SHR models. PMID:26928589

  10. mRNA modifications: Dynamic regulators of gene expression?

    PubMed Central

    Hoernes, Thomas Philipp; Hüttenhofer, Alexander; Erlacher, Matthias David

    2016-01-01

    ABSTRACT The expression of a gene is a tightly regulated process and is exerted by a myriad of different mechanisms. Recently, RNA modifications located in coding sequences of mRNAs, have been identified as potential regulators of gene expression. N6-methyladenosine (m6A), 5-methylcytosine (m5C), pseudouridine (Ψ) and N1-methyladenosine (m1A) have been found within open reading frames of mRNAs. The presence of these mRNA modifications has been implicated to modulate the fate of an mRNA, ranging from maturation to its translation and even degradation. However, many aspects concerning the biological functions of mRNA modifications remain elusive. Recently, systematic in vitro studies allowed a first glimpse of the direct interplay of mRNA modifications and the efficiency and fidelity of ribosomal translation. It thereby became evident that the effects of mRNA modifications were, astonishingly versatile, depending on the type, position or sequence context. The incorporation of a single modification could either prematurely terminate protein synthesis, reduce the peptide yield or alter the amino acid sequence identity. These results implicate that mRNA modifications are a powerful mechanism to post-transcriptionally regulate gene expression. PMID:27351916

  11. Disturbance effects of PM₁₀ on iNOS and eNOS mRNA expression levels and antioxidant activity induced by ischemia-reperfusion injury in isolated rat heart: protective role of vanillic acid.

    PubMed

    Dianat, Mahin; Radmanesh, Esmat; Badavi, Mohammad; Mard, Seyed Ali; Goudarzi, Gholamraza

    2016-03-01

    Myocardial infarction is the acute condition of myocardial necrosis that occurs as a result of imbalance between coronary blood supply and myocardial demand. Air pollution increases the risk of death from cardiovascular diseases (CVDs). The aim of this study was to investigate the effects of particulate matter (PM) on oxidative stress, the expression of inducible nitric oxide synthase (iNOS) and endothelial nitric oxide synthase (eNOS) messenger RNA (mRNA) level induced by ischemia-reperfusion injury, and the protective effects of vanillic acid (VA) in the isolated rat heart. Male Wistar rats were randomly divided into eight groups (n = 10), namely control, VAc, sham, VA, PMa (0.5 mg/kg), PMb (2.5 mg/kg), PMc (5 mg/kg), and PMc + VA groups. Particles with an aerodynamic diameter <10 μm (PM10) was instilled into the trachea through a fine intubation tube. Two days following the PM10 instillation, the animal's hearts were isolated and transferred to a Langendorff apparatus. The hearts were subjected to 30 min of global ischemia followed by 60 min of reperfusion. The activities of superoxide dismutase (SOD), glutathione peroxidase (GPx), catalase (CAT), xanthine oxidase (XOX), and lactate dehydrogenase (LDH) were measured using special kits. Reverse transcription polymerase chain reaction (RT-PCR) was used to determine levels of iNOS and eNOS mRNA. An increase in left ventricular end-diastolic pressure (LVEDP), S-T elevation, and oxidative stress in PM10 groups was observed. Ischemia-reperfusion (I/R) induction showed a significant augment in the expression of iNOS mRNA level and a significant decrease in the expression eNOS mRNA level. This effect was more pronounced in the PM groups than in the control and sham groups. Vanillic acid caused a significant decrease in LVEDP, S-T elevation, and also a significant difference in eNOS mRNA expression level, antioxidant enzymes, iNOS mRNA expression level, and oxidative stress occurred on myocardial dysfunction

  12. Astrocyte cultures derived from human brain tissue express angiotensinogen mRNA

    SciTech Connect

    Milsted, A.; Barna, B.P.; Ransohoff, R.M.; Brosnihan, K.B.; Ferrario, C.M. )

    1990-08-01

    The authors have identified human cultured cell lines that are useful for studying angiotensinogen gene expression and its regulation in the central nervous system. A model cell system of human central nervous system origin expressing angiotensinogen has not previously been available. Expression of angiotensinogen mRNA appears to be a basal property of noninduced human astrocytes, since astrocytic cell lines derived from human glioblastomas or nonneoplastic human brain tissue invariably produced angiotensinogen mRNA. In situ hybridization histochemistry revealed that angiotensinogen mRNA production was not limited to a subpopulation of astrocytes because >99% of cells in these cultures contained angiotensinogen mRNA. These cell lines will be useful in studies of the molecular mechanisms controlling angiotensin synthesis and the role of biologically active angiotensin in the human brain by allowing the authors to examine regulation of expression of the renin-angiotensin system in human astrocyte cultures.

  13. Effects of the PPARα agonist WY-14,643 on plasma lipids, enzymatic activities and mRNA expression of lipid metabolism genes in a marine flatfish, Scophthalmus maximus.

    PubMed

    Urbatzka, R; Galante-Oliveira, S; Rocha, E; Lobo-da-Cunha, A; Castro, L F C; Cunha, I

    2015-07-01

    Fibrates and other lipid regulator drugs are widespread in the aquatic environment including estuaries and coastal zones, but little is known on their chronic effects on non-target organisms as marine fish. In the present study, turbot juveniles were exposed to the PPARα model agonist WY-14,643 for 21 days by repeated injections at the concentrations of 5mg/kg (lo-WY) and 50mg/kg (hi-WY), and samples taken after 7 and 21 days. Enzyme activity and mRNA expression of palmitoyl-CoA oxidase and catalase in the liver were analyzed as first response, which validated the experiment by demonstrating interactions with the peroxisomal fatty acid oxidation and oxidative stress pathways in the hi-WY treatment. In order to get mechanistic insights, alterations of plasma lipids (free cholesterol, FC; HDL associated cholesterol, C-HDL; triglycerides, TG; non-esterified fatty acids, NEFA) and hepatic mRNA expression of 17 genes involved in fatty acid and lipid metabolism were studied. The exposure to hi-WY reduced the quantity of plasma FC, C-HDL, and NEFA. Microsomal triglyceride transfer protein and apolipoprotein E mRNA expression were higher in hi-WY, and indicated an increased formation of VLDL particles and energy mobilization from liver. It is speculated that energy depletion by PPARα agonists may contribute to a higher susceptibility to environmental stressors. PMID:25974001

  14. Expression of lipoprotein lipase mRNA and secretion in macrophages isolated from human atherosclerotic aorta.

    PubMed

    Mattsson, L; Johansson, H; Ottosson, M; Bondjers, G; Wiklund, O

    1993-10-01

    The expression of lipoprotein lipase (LPL) mRNA and the LPL activity were studied in macrophages (CD14 positive) from human atherosclerotic tissue. Macrophages were isolated after collagenase digestion by immunomagnetic isolation. About 90% of the cells were foam cells with oil red O positive lipid droplets. To analyze the mRNA expression, PCR with specific primers for LPL was used. Arterial macrophages were analyzed directly after isolation and the data showed low expression of LPL mRNA when compared with monocyte-derived macrophages. To induce the expression of LPL mRNA in macrophages, PMA was used. When incubating arterial macrophages with PMA for 24 h we could not detect any increase in LPL mRNA levels. Similarly, the cells secreted very small amounts of LPL even after PMA stimulation. In conclusion, these studies show a very low expression of LPL mRNA in the CD14-positive macrophage-derived foam cells isolated from human atherosclerotic tissue. These data suggest that the CD14-positive cells are a subpopulation of foam cells that express low levels of lipoprotein lipase, and the lipid content could be a major factor for downregulation of LPL. However, the cells were isolated from advanced atherosclerotic lesions, and these findings may not reflect the situation in early fatty streaks. PMID:8408628

  15. Prevention of graft-versus-host disease by adoptive T regulatory therapy is associated with active repression of peripheral blood Toll-like receptor 5 mRNA expression.

    PubMed

    Sawitzki, Birgit; Brunstein, Claudio; Meisel, Christian; Schumann, Julia; Vogt, Katrin; Appelt, Christine; Curtsinger, Julie M; Verneris, Michael R; Miller, Jeffrey S; Wagner, John E; Blazar, Bruce R

    2014-02-01

    Acute graft-versus-host disease (GVHD) occurs in 40% to 60% of recipients of partially matched umbilical cord blood transplantation (UCBT). In a phase I study, adoptive transfer of expanded CD4(+)CD25(+)Foxp3(+) natural regulatory T cells (nTregs) resulted in a reduced incidence of grade II-IV acute GVHD. To investigate potential mechanisms responsible for the reduced GVHD risk, we analyzed peripheral blood mononuclear cell mRNA expression of a tolerance gene set previously identified in operation- tolerant kidney transplant recipients, comparing healthy controls and patients who received nTregs and those who did not receive nTregs with and without experiencing GVHD. Samples from patients receiving nTregs regardless of GVHD status showed increased expression of Foxp3 expression, as well as B cell-related tolerance marker. This was correlated with early B cell recovery, predominately of naïve B cells, and nearly normal T cell reconstitution. CD8(+) T cells showed reduced signs of activation (HLA-DR(+) expression) compared with conventionally treated patients developing GVHD. In contrast, patients with GVHD had significantly increased TLR5 mRNA expression, whereas nTreg-treated patients without GVHD had reduced TLR5 mRNA expression. We identified Lin(-)HLADR(-)CD33(+)CD16(+) cells and CD14(++)CD16(-) monocytes as the main TLR5 producers, especially in samples of conventionally treated patients developing GVHD. Taken together, these data reveal interesting similarities and differences between tolerant organ and nTreg-treated hematopoietic stem cell transplantation recipients. PMID:24184334

  16. Nucleotide sequence and expression in vitro of cDNA derived from mRNA of int-1, a provirally activated mouse mammary oncogene.

    PubMed Central

    Fung, Y K; Shackleford, G M; Brown, A M; Sanders, G S; Varmus, H E

    1985-01-01

    The mouse int-1 gene is a putative mammary oncogene discovered as a target for transcriptionally activating proviral insertion mutations in mammary carcinomas induced by the mouse mammary tumor virus in C3H mice. We have isolated molecular clones of full- or nearly full-length cDNA transcribed from int-1 RNA (2.6 kilobases) in a virus-induced mammary tumor. Comparison of the nucleotide sequence of the cDNA clones with that of the int-1 gene (A. van Ooyen and R. Nusse, Cell 39:233-240, 1984) shows the following. The coding region of the int-1 gene is composed of four exons. The splice donor and acceptor sites conform to consensus; however, at least two closely spaced polyadenylation sites are used, and the transcriptional initiation site remains ambiguous. The major open reading frame is preceded by an open frame 10 codons in length. The mRNA encodes a 41-kilodalton protein with several striking features--a strongly hydrophobic amino terminus, a cysteine-rich carboxy terminus, and four potential glycosylation sites. There are no differences in nucleotide sequence between the known exons of the normal and a provirally activated allele. The length of the deduced open reading frame was further confirmed by in vitro translation of RNA transcribed from the cDNA clones with SP6 RNA polymerase. Images PMID:3018519

  17. Combined Expression of IFN-γ, IL-17, and IL-4 mRNA by Recall PBMCs Moderately Discriminates Active Tuberculosis from Latent Mycobacterium tuberculosis Infection in Patients with Miscellaneous Inflammatory Underlying Conditions.

    PubMed

    Savolainen, Laura E; Kantele, Anu; Knuuttila, Aija; Pusa, Liana; Karttunen, Riitta; Valleala, Heikki; Tuuminen, Tamara

    2016-01-01

    New biomarkers are needed for discriminating active tuberculosis (TB) from latent TB infection (LTBI), especially in vulnerable groups representing the major diagnostic challenge. This pilot study was carried out to explore the diagnostic potential of selected genes, IFN-γ, IL-17, IL-4, and FoxP3, associated with TB immunity and immunopathology. IFN-γ, IL-17, IL-4, and FoxP3 mRNA expression levels were measured by quantitative reverse transcription PCR (RT-qPCR) from antigen-stimulated peripheral blood mononuclear cells of patients with active TB (n = 25); patients with miscellaneous inflammatory disorders and concomitant LTBI (n = 20), rheumatoid arthritis (RA) being the most predominant in the group (n = 11); and in healthy Bacillus Calmette-Guérin (BCG) vaccinees (n = 8). While the levels of FoxP3 mRNA did not differ between the tested groups, the cumulative expression levels of purified protein derivative-stimulated IFN-γ, IL-17, and IL-4 mRNAs were found to distinguish active TB from the whole group of LTBI with 48% sensitivity and 85% specificity. When restricting the LTBI group to RA cases only, the sensitivity was 56% and specificity 100%. When interpreting the result as positive in at least one of the mRNAs IFN-γ, IL-17, or IL-4, sensitivity of 64% and specificities of 75% (heterogeneous group of LTBI) or 100% (LTBI with RA) were achieved. Moderate discrimination of active TB from LTBI with miscellaneous inflammatory underlying conditions by using combined quantitative expression of IFN-γ, IL-17, and IL-4 mRNA seems not to be of high diagnostic potential. PMID:27379100

  18. Combined Expression of IFN-γ, IL-17, and IL-4 mRNA by Recall PBMCs Moderately Discriminates Active Tuberculosis from Latent Mycobacterium tuberculosis Infection in Patients with Miscellaneous Inflammatory Underlying Conditions

    PubMed Central

    Savolainen, Laura E.; Kantele, Anu; Knuuttila, Aija; Pusa, Liana; Karttunen, Riitta; Valleala, Heikki; Tuuminen, Tamara

    2016-01-01

    New biomarkers are needed for discriminating active tuberculosis (TB) from latent TB infection (LTBI), especially in vulnerable groups representing the major diagnostic challenge. This pilot study was carried out to explore the diagnostic potential of selected genes, IFN-γ, IL-17, IL-4, and FoxP3, associated with TB immunity and immunopathology. IFN-γ, IL-17, IL-4, and FoxP3 mRNA expression levels were measured by quantitative reverse transcription PCR (RT-qPCR) from antigen-stimulated peripheral blood mononuclear cells of patients with active TB (n = 25); patients with miscellaneous inflammatory disorders and concomitant LTBI (n = 20), rheumatoid arthritis (RA) being the most predominant in the group (n = 11); and in healthy Bacillus Calmette–Guérin (BCG) vaccinees (n = 8). While the levels of FoxP3 mRNA did not differ between the tested groups, the cumulative expression levels of purified protein derivative-stimulated IFN-γ, IL-17, and IL-4 mRNAs were found to distinguish active TB from the whole group of LTBI with 48% sensitivity and 85% specificity. When restricting the LTBI group to RA cases only, the sensitivity was 56% and specificity 100%. When interpreting the result as positive in at least one of the mRNAs IFN-γ, IL-17, or IL-4, sensitivity of 64% and specificities of 75% (heterogeneous group of LTBI) or 100% (LTBI with RA) were achieved. Moderate discrimination of active TB from LTBI with miscellaneous inflammatory underlying conditions by using combined quantitative expression of IFN-γ, IL-17, and IL-4 mRNA seems not to be of high diagnostic potential. PMID:27379100

  19. Anti-Ehrlichia chaffeensis antibody complexed with E. chaffeensis induces potent proinflammatory cytokine mRNA expression in human monocytes through sustained reduction of IkappaB-alpha and activation of NF-kappaB.

    PubMed Central

    Lee, E H; Rikihisa, Y

    1997-01-01

    Ehrlichia chaffeensis is an obligatory intracellular bacterium that infects monocytes and macrophages and is the etiologic agent of human ehrlichiosis in the United States. Our previous studies showed that the exposure of human monocytes to E. chaffeensis induces the expression of interleukin-1beta (IL-1beta), IL-8, and IL-10 genes in vitro but not the expression of tumor necrosis factor alpha (TNF-alpha) and IL-6 mRNAs. In this study, the effect of anti-E. chaffeensis antibody complexed with E. chaffeensis on the expression of major proinflammatory cytokines in human monocytes was examined. Human monocytic cell line THP-1 was treated with E. chaffeensis which had been preincubated with human anti-E. chaffeensis serum for 2 h, and the levels of cytokine mRNAs were evaluated by competitive reverse transcription-PCR. Anti-E. chaffeensis antibody complexed with E. chaffeensis significantly enhanced mRNA expression of IL-1beta in THP-1 cells. The expression of TNF-alpha and IL-6 mRNAs was also induced. The levels of secreted IL-1beta, TNF-alpha, and IL-6 during 24 h of stimulation were comparable to those induced by Escherichia coli lipopolysaccharide at 1 microg/ml. Fab fragment of anti-E. chaffeensis immunoglobulin G complexed with E. chaffeensis did not induce any of these three cytokines, indicating that ehrlichial binding is required for IL-1beta mRNA expression and that binding of the immune complex to the Fc gamma receptor is required for TNF-alpha and IL-6 mRNA expression and enhanced IL-1beta mRNA expression. Furthermore, prolonged degradation of IkappaB-alpha and activation of NF-kappaB were demonstrated in THP-1 cells exposed to anti-E. chaffeensis serum and E. chaffeensis. This result implies that development of anti-E. chaffeensis antibody in patients can result in the production of major proinflammatory cytokines, which may play an important role in the pathophysiology of ehrlichiosis and immune responses to it. PMID:9199464

  20. Type 2 Diabetes Monocyte MicroRNA and mRNA Expression: Dyslipidemia Associates with Increased Differentiation-Related Genes but Not Inflammatory Activation

    PubMed Central

    Baldeón R., Lucy; Weigelt, Karin; de Wit, Harm; Ozcan, Behiye; van Oudenaren, Adri; Sempértegui, Fernando; Sijbrands, Eric; Grosse, Laura; van Zonneveld, Anton-Jan; Drexhage, Hemmo A.; Leenen, Pieter J. M.

    2015-01-01

    There is increasing evidence that inflammatory macrophages in adipose tissue are involved in insulin resistance of type 2 diabetes (T2D). Due to a relative paucity of data on circulating monocytes in T2D, it is unclear whether the inflammatory changes of adipose tissue macrophages are reflected in these easily accessible cells. Objective To study the expression pattern of microRNAs and mRNAs related to inflammation in T2D monocytes. Design A microRNA finding study on monocytes of T2D patients and controls using array profiling was followed by a quantitative Real Time PCR (qPCR) study on monocytes of an Ecuadorian validation cohort testing the top over/under-expressed microRNAs. In addition, monocytes of the validation cohort were tested for 24 inflammation-related mRNAs and 2 microRNAs previously found deregulated in (auto)-inflammatory monocytes. Results In the finding study, 142 significantly differentially expressed microRNAs were identified, 15 having the strongest power to discriminate T2D patients from controls (sensitivity 66%, specificity 90%). However, differences in expression of these microRNAs between patients and controls were small. On the basis of >1.4 or <0.6-fold change expression 5 microRNAs were selected for further validation. One microRNA (miR-34c-5p) was validated as significantly over-expressed in T2D monocytes. In addition, we found over expression of 3 mRNAs (CD9, DHRS3 and PTPN7) in the validation cohort. These mRNAs are important for cell morphology, adhesion, shape change, and cell differentiation. Classical inflammatory genes (e.g. TNFAIP3) were only over-expressed in monocytes of patients with normal serum lipids. Remarkably, in dyslipidemia, there was a reduction in the expression of inflammatory genes (e.g. ATF3, DUSP2 and PTGS2). Conclusions The expression profile of microRNAs/mRNAs in monocytes of T2D patients indicates an altered adhesion, differentiation, and shape change potential. Monocyte inflammatory activation was only found

  1. Gemin5 Binds to the Survival Motor Neuron mRNA to Regulate SMN Expression.

    PubMed

    Workman, Eileen; Kalda, Caitlin; Patel, Aalapi; Battle, Daniel J

    2015-06-19

    Reduced expression of SMN causes spinal muscular atrophy, a severe neurodegenerative disease. Despite the importance of maintaining SMN levels, relatively little is known about the mechanisms by which SMN levels are regulated. We show here that Gemin5, the snRNA-binding protein of the SMN complex, binds directly to the SMN mRNA and regulates SMN expression. Gemin5 binds with high specificity, both in vitro and in vivo, to sequence and structural elements in the SMN mRNA 3'-untranslated region that are reminiscent of the snRNP code to which Gemin5 binds on snRNAs. Reduction of Gemin5 redistributes the SMN mRNA from heavy polysomes to lighter polysomes and monosomes, suggesting that Gemin5 functions as an activator of SMN translation. SMN protein is not stoichiometrically present on the SMN mRNA with Gemin5, but the mRNA-binding activity of Gemin5 is dependent on SMN levels, providing a feedback mechanism for SMN to regulate its own expression via Gemin5. This work both reveals a new autoregulatory pathway governing SMN expression, and identifies a new mechanism through which SMN can modulate specific mRNA expression via Gemin5. PMID:25911097

  2. Leptin mRNA expresses in the bull reproductive organ.

    PubMed

    Abavisani, A; Baghbanzadeh, A; Shayan, P; Tajik, P; Dehghani, H; Mirtorabi, M

    2009-12-01

    Leptin, a 167-amino acid hormone, is secreted mainly by fat tissue. It has some powerful effects on the regulation of metabolism and reproductive function through endocrine and probably paracrine mechanisms. The contribution rate of leptin function on the male reproductive system is not still clear. Characterization of leptin expression in reproductive organs will suggest that in addition to its endocrine action, leptin has also paracrine/autocrine effects on reproduction. The expression of functional leptin receptor mRNA has been already recognized in testis of rodents, human and cattle. Thus, the aim of the present study was to investigate the presence of leptin mRNA in the bovine testis, because it will be the first step for understanding of its paracrine/autocrine effects on the male reproductive organs in cattle. The present study was the first to showed leptin mRNA expression in the testis of Holstein cattle using reverse transcription and polymerase chain reaction (RT-PCR) analysis. RT-PCR products were amplified with nested PCR using inner leptin primer pairs to emphasis the first results. Besides, bovine beta actin gene was acted as an internal positive control as well as RNA purification marker. Our findings suggest that in addition to its endocrine actions at the hypothalamic-pituitary axis, leptin can has an autocrine and/or paracrine role in bull testicular function. PMID:19466574

  3. Prolyl carboxypeptidase mRNA expression in the mouse brain.

    PubMed

    Jeong, Jin Kwon; Diano, Sabrina

    2014-01-13

    Prolyl carboxypeptidase (PRCP), a serine protease, is widely expressed in the body including liver, lung, kidney and brain, with a variety of known substrates such as plasma prekallikrein, bradykinin, angiotensins II and III, and α-MSH, suggesting its role in the processing of tissue-specific substrates. In the brain, PRCP has been shown to inactivate hypothalamic α-MSH, thus modulating melanocortin signaling in the control of energy metabolism. While its expression pattern has been reported in the hypothalamus, little is known on the distribution of PRCP throughout the mouse brain. This study was undertaken to determine PRCP expression in the mouse brain. Radioactive in situ hybridization was performed to determine endogenous PRCP mRNA expression. In addition, using a gene-trap mouse model for PRCP deletion, X-gal staining was performed to further determine PRCP distribution. Results from both approaches showed that PRCP gene is broadly expressed in the brain. PMID:24161824

  4. Stability regulation of mRNA and the control of gene expression.

    PubMed

    Cheadle, Chris; Fan, Jinshui; Cho-Chung, Yoon S; Werner, Thomas; Ray, Jill; Do, Lana; Gorospe, Myriam; Becker, Kevin G

    2005-11-01

    Microarray technology has become highly valuable for identifying complex global changes in gene expression patterns. Standard techniques measure changes in total cellular poly(A) mRNA levels. The assumption that changes in gene expression as measured by these techniques are directly and well correlated with changes in rates of new gene synthesis form the basis of attempts to connect coordinated changes in gene expression with shared transcription regulatory elements. Yet systematic attempts at this approach remain difficult to demonstrate convincingly. One reason for this difficulty may result from the intricate convergence of both transcriptional and mRNA turnover events which, together, directly influence steady-state mRNA levels. Recent technical advances have led to the successful scale-up and application of nuclear run-on procedures directly to microarrays. This development has allowed a gene-by-gene comparison between new gene synthesis in the nucleus and measured changes in total cellular polyA mRNA. Results from these studies have begun to challenge the strict interpretation of changes in gene expression measured by conventional microarrays as being closely correlated with changes in mRNA transcription rate, but rather they tend to support the significant expansion of the role played by changes in mRNA stability regulation to standard analyses of gene expression. Gene expression profiles obtained from both polyA mRNA (whole-cell) and nuclear run-on (newly transcribed) RNA across a time course of one hour following the activation of human Jurkat T cells with PMA plus ionomycin revealed that regulation of mRNA stability may account for as much as 50% of all measurements of changes in total cellular polyA mRNA in this system. Stability regulation was inferred by the absence of corresponding regulation of nuclear gene transcription activity for groups of genes strongly regulated at the whole cell level and which were also resistant to inhibition by Actinomycin

  5. Ribozyme cleaves rex/tax mRNA and inhibits bovine leukemia virus expression.

    PubMed Central

    Cantor, G H; McElwain, T F; Birkebak, T A; Palmer, G H

    1993-01-01

    Bovine leukemia virus (BLV) encodes at least two regulatory proteins, Rex and Tax. Tax, the transactivating protein, stimulates the long terminal repeat to promote viral transcription and may be involved in tumorigenesis. Rex is involved in the transition from early expression of regulatory proteins to later expression of viral structural proteins. We have targeted ribozymes against the mRNA encoding Rex and Tax. The ribozymes consist of the hammer-head catalytic motif flanked by antisense sequences that hybridize with the complementary rex/tax mRNA. To evaluate cleavage in a cell-free system, we transcribed portions of rex/tax mRNA and incubated them with synthetic RNA ribozymes. A ribozyme was identified that cleaves > 80% of the target RNA. Synthetic DNA encoding this ribozyme was cloned into the expression vector pRc/RSV and transfected into BLV-infected bat lung cells. Intracellular cleavage of rex/tax mRNA was confirmed by reverse transcriptase PCR. In cells expressing the ribozyme, viral expression was markedly inhibited. Expression of the BLV core protein p24 was inhibited by 61%, and reverse transcriptase activity in supernatant was inhibited by 92%. Ribozyme inhibition of BLV expression suggests that cattle expressing these sequences may be able to control BLV replication. Images Fig. 2 Fig. 4 Fig. 5 Fig. 6 PMID:7504287

  6. Gill-specific (Na(+), K(+))-ATPase activity and α-subunit mRNA expression during low-salinity acclimation of the ornate blue crab Callinectes ornatus (Decapoda, Brachyura).

    PubMed

    Leone, Francisco A; Garçon, Daniela P; Lucena, Malson N; Faleiros, Rogério O; Azevedo, Sergio V; Pinto, Marcelo R; McNamara, John C

    2015-08-01

    We evaluate (Na(+), K(+))-ATPase activity, and protein and gene expression of the α-subunit in posterior gills 6 and 7 of Callinectes ornatus, a euryhaline crab, during a 10-day acclimation period from seawater (33‰ S) to low salinity (21‰ S). (Na(+), K(+))-ATPase activity decreased within 1h after transfer to 21‰ S, values recovering by 24h and attaining a maximum of ≈180 nmol Pi min(-1) mg(-1) after 10 days (≈2.5-fold increase). (Na(+), K(+))-ATPase activity is ≈1.5-fold greater in gill 6 than in gill 7, independently of salinity. Relative expression of (Na(+), K(+))-ATPase α-subunit mRNA increased in both gills within 1- to 2-h exposure to low salinity, reaching an ≈8-fold maximum after 24-h exposure, decreasing slightly by 10 days acclimation to low salinity. This increase in α-subunit mRNA expression may underpin the increased (Na(+), K(+))-ATPase activity seen after 10 days acclimation to low salinity. Enzyme affinity for ATP was greater in gill 6 than in gill 7, in contrast to ouabain affinity that was greater in gill 7. Western blotting analysis identified a single immunoreactive band against the (Na(+), K(+))-ATPase α-subunit with an Mr of ≈105 kDa, independently of gill number and low salinity acclimation. Despite these differences, gills 6 and 7 appear to perform similar functions in salt uptake from the dilute medium. The partial cDNA sequence obtained for the gill (Na(+), K(+))-ATPase of C. ornatus (GenBank deposit KF056804) showed 97 to 91% identities with similar sequences from other portunid crab gills. The regulation of gill (Na(+), K(+))-ATPase activity during acclimation to low salinity is discussed. PMID:25934083

  7. Variations in cytokine mRNA expression during normal human pregnancy

    PubMed Central

    Kruse, N; Greif, M; Moriabadi, N F; Marx, L; Toyka, K V; Rieckmann, P

    2000-01-01

    Epidemiological data provide evidence that disease activity of T cell-mediated, organ-specific autoimmune diseases is reduced during pregnancy. Although there are several experimental animal studies on the effect of pregnancy on the immune system, the situation in humans is less clear. We therefore performed a prospective analysis of cytokine mRNA expression in whole blood by a new on-line reverse transcriptase-polymerase chain reaction technique and of serum hormone levels during pregnancy in healthy women. The control group included age-matched non-pregnant healthy women. Quantitativecytokine mRNA expression revealed significantly reduced IL-18, interferon-gamma (IFN-γ), and IL-2 mRNA levels in the first and second trimester in pregnancy compared with non-pregnant women. No difference between groups was detected for tumour necrosis factor-alpha (TNF-α) mRNA. IL-4 and IL-10 mRNA were detected at low levels in only 20% of pregnant women and were reduced to a statistically significant extent in the second and third trimester compared with the control group. Changes in IL-18 mRNA expression correlated inversely with serum values for human choriogonadotropin (HCG) and IL-10 serum levels correlated with increases in serum 17β-oestradiol levels. These data indicate immunomodulatory effects of pregnancy at the cytokine level which may be related to the variations in the clinical course of organ-specific, T cell-mediated autoimmune diseases during pregnancy. PMID:10632669

  8. OGG1 mRNA expression and incision activity in rats are higher in foetal tissue than in adult liver tissue while 8-oxo-2'-deoxyguanosine levels are unchanged.

    PubMed

    Riis, Bente; Risom, Lotte; Loft, Steffen; Poulsen, Henrik Enghusen

    2002-09-01

    This study was set up to investigate the relationships between the formation and removal of DNA damage in form of 8-oxodeoxyguanosine (8-oxodG) in neonatal (day 16 of gestation) as compared to adult rats. The hypothesis addressed was whether the rapidly dividing foetal tissue has an enhanced requirement of DNA repair providing protection against potentially mutagenic DNA damages such as 8-oxodG. The activity of the primary 8-oxodG-repair protein OGG1 was measured by a DNA incision assay and the expression of OGG1 mRNA was measured by Real-Time PCR normalised to 18S rRNA. The tissue level of 8-oxodG was measured by HPLC-ECD. We found a 2-3-fold increased incision activity in the foetal control tissue, together with a 3-15-fold increase in mRNA of OGG1 as compared to liver tissue from adult rats. The levels of 8-oxodG in the foetal tissue were unaltered as compared to the adult groups. To increase the levels of 8-oxodG, the rats received an injection (i.p.) of the hepatotoxin 2-nitropropane. The compound induced significant levels of 8-oxodG in male rat livers 5h after the injection and in the foetuses 24h after the injection, while the female rats showed no increase in 8-oxodG. The incision activity was slightly depressed in both male and female liver tissue and in the foetal tissue 5h after the injection, but significantly increased from 5 to 24h after the injection. However, it did not reach levels significantly above the control levels. In conclusion, this study confirms that foetal tissue has increased levels of OGG1 mRNA and correspondingly an enhanced incision activity on an 8-oxodG substrate in a crude tissue extract. PMID:12509275

  9. The mRNA expression of soluble urokinase plasminogen activator surface receptor in human adipose tissue is positively correlated with body mass index.

    PubMed

    Ng, Hien Fuh; Chin, Kin Fah; Chan, Kok-Gan; Ngeow, Yun Fong

    2015-06-01

    suPLAUR is the transcript variant that encodes the soluble form of the urokinase plasminogen activator surface receptor (suPLAUR). This soluble protein has been shown to enhance leukocyte migration and adhesion, and its circulatory level is increased in inflammatory states. In this pilot study, we used RNA-Seq to examine the splicing pattern of PLAUR in omental adipose tissues from obese and lean individuals. Of the three transcript variants of the PLAUR gene, only the proportion of suPLAUR (transcript variant 2) increases in obesity. After removing the effects of gender and age, the expression of suPLAUR is positively correlated with body mass index. This observation was validated using RT-qPCR with an independent cohort of samples. Additionally, in our RNA-Seq differential expression analysis, we also observed, in obese adipose tissues, an up-regulation of genes encoding other proteins involved in the process of chemotaxis and leukocyte adhesion; of particular interest is the integrin beta 2 (ITGB2) that is known to interact with suPLAUR in leukocyte adhesion. These findings suggest an important role for suPLAUR in the recruitment of immune cells to obese adipose tissue, in the pathogenesis of obesity. PMID:26284904

  10. Peroxisome proliferator-activated receptor alpha1 in yellow catfish Pelteobagrus fulvidraco: molecular characterization, mRNA tissue expression and transcriptional regulation by insulin in vivo and in vitro.

    PubMed

    Zheng, Jia-Lang; Zhuo, Mei-Qin; Luo, Zhi; Song, Yu-Feng; Pan, Ya-Xiong; Huang, Chao; Hu, Wei; Chen, Qi-Liang

    2015-05-01

    Peroxisome proliferator-activated receptor alpha1 (PPARα1) cDNA was isolated from liver of yellow catfish Pelteobagrus fulvidraco by RT-PCR and RACE. Its molecular characterization, tissue expression and transcriptional regulation by insulin in vitro and in vivo were determined. PPARα1 mRNA covered 1879 bp, with an open reading frame (ORF) of 1410 bp encoding 469 amino acid residues, a 5'-untranslated region (UTR) of 49 bp, and a 3'-UTR of 421 bp. PPARα1 consisted of 4 domains, the A/B domain, DNA-binding domain (DBD), D domain, and ligand-binding domain (LBD). The predicted tertiary structure of yellow catfish PPARα1 showed an increased size of the main cavity that was made up of side chains from helices 3, 5, 10, 11, and 12. Changes of PPARα1 structure might affect binding of mammalian PPARα1-specific ligand and cofactor in yellow catfish and may endow yellow catfish PPARα1 with new ligand-independent or -dependent transactivation activity. PPARα1 was differentially expressed in various tissues during development. Furthermore, intraperitoneal injection in vivo and incubation in vitro of insulin reduced the mRNA expression of PPARα1 in the liver and hepatocytes of yellow catfish. Based on the observation above, the present study provides evidence that PPARα1 is differentially expressed within and among tissues during three developmental stages and also regulated by insulin both in vivo and in vitro, which warrants further investigation of PPARα1 physiological function in fish. PMID:25645400

  11. Expression of Npas4 mRNA in Telencephalic Areas of Adult and Postnatal Mouse Brain

    PubMed Central

    Damborsky, Joanne C.; Slaton, G. Simona; Winzer-Serhan, Ursula H.

    2015-01-01

    The transcription factor neuronal PAS domain-containing protein 4 (Npas4) is an inducible immediate early gene which regulates the formation of inhibitory synapses, and could have a significant regulatory role during cortical circuit formation. However, little is known about basal Npas4 mRNA expression during postnatal development. Here, postnatal and adult mouse brain sections were processed for isotopic in situ hybridization using an Npas4 specific cRNA antisense probe. In adults, Npas4 mRNA was found in the telencephalon with very restricted or no expression in diencephalon or mesencephalon. In most telencephalic areas, including the anterior olfactory nucleus (AON), piriform cortex, neocortex, hippocampus, dorsal caudate putamen (CPu), septum and basolateral amygdala nucleus (BLA), basal Npas4 expression was detected in scattered cells which exhibited strong hybridization signal. In embryonic and neonatal brain sections, Npas4 mRNA expression signals were very low. Starting at postnatal day 5 (P5), transcripts for Npas4 were detected in the AON, CPu and piriform cortex. At P8, additional Npas4 hybridization was found in CA1 and CA3 pyramidal layer, and in primary motor cortex. By P13, robust mRNA expression was located in layers IV and VI of all sensory cortices, frontal cortex and cingulate cortex. After onset of expression, postnatal spatial mRNA distribution was similar to that in adults, with the exception of the CPu, where Npas4 transcripts became gradually restricted to the most dorsal part. In conclusion, the spatial distribution of Npas4 mRNA is mostly restricted to telencephalic areas, and the temporal expression increases with developmental age during postnatal development, which seem to correlate with the onset of activity-driven excitatory transmission. PMID:26633966

  12. Sequence and expression of ferredoxin mRNA in barley

    SciTech Connect

    Zielinski, R.; Funder, P.M.; Ling, V. )

    1990-05-01

    We have isolated and structurally characterized a full-length cDNA clone encoding ferredoxin from a {lambda}gt10 cDNA library prepared from barley leaf mRNA. The ferredoxin clone (pBFD-1) was fused head-to-head with a partial-length cDNA clone encoding calmodulin, and was fortuitously isolated by screening the library with a calmodulin-specific oligonucleotide probe. The mRNA sequence from which pBFD-1 was derived is expressed exclusively in the leaf tissues of 7-d old barley seedlings. Barley pre-ferredoxin has a predicted size of 15.3 kDal, of which 4.6 kDal are accounted for by the transit peptide. The polypeptide encoded by pBFD-1 is identical to wheat ferredoxin, and shares slightly more amino acid sequence similarity with spinach ferredoxin I than with ferredoxin II. Ferredoxin mRNA levels are rapidly increased 10-fold by white light in etiolated barley leaves.

  13. Activation of p38 signaling increases utrophin A expression in skeletal muscle via the RNA-binding protein KSRP and inhibition of AU-rich element-mediated mRNA decay: implications for novel DMD therapeutics.

    PubMed

    Amirouche, Adel; Tadesse, Helina; Lunde, John A; Bélanger, Guy; Côté, Jocelyn; Jasmin, Bernard J

    2013-08-01

    Several therapeutic approaches are currently being developed for Duchenne muscular dystrophy (DMD) including upregulating the levels of endogenous utrophin A in dystrophic fibers. Here, we examined the role of post-transcriptional mechanisms in controlling utrophin A expression in skeletal muscle. We show that activation of p38 leads to an increase in utrophin A independently of a transcriptional induction. Rather, p38 controls the levels of utrophin A mRNA by extending the half-life of transcripts via AU-rich elements (AREs). This mechanism critically depends on a decrease in the functional availability of KSRP, an RNA-binding protein known to promote decay of ARE-containing transcripts. In vitro and in vivo binding studies revealed that KSRP interacts with specific AREs located within the utrophin A 3' UTR. Electroporation experiments to knockdown KSRP led to an increase in utrophin A in wild-type and mdx mouse muscles. In pre-clinical studies, treatment of mdx mice with heparin, an activator of p38, causes a pronounced increase in utrophin A in diaphragm muscle fibers. Together, these studies identify a pathway that culminates in the post-transcriptional regulation of utrophin A through increases in mRNA stability. Furthermore, our results constitute proof-of-principle showing that pharmacological activation of p38 may prove beneficial as a novel therapeutic approach for DMD. PMID:23575223

  14. Gentiolactone, a Secoiridoid Dilactone from Gentiana triflora, Inhibits TNF-α, iNOS and Cox-2 mRNA Expression and Blocks NF-κB Promoter Activity in Murine Macrophages

    PubMed Central

    Yamada, Hidetoshi; Kikuchi, Sayaka; Inui, Tomoki; Takahashi, Hideyuki; Kimura, Ken-ichi

    2014-01-01

    Background Gentian roots have been used as a herbal medicine because of their anti-inflammatory activities. However, the molecular mechanisms of these anti-inflammatory effects remain to be completely explained. Methods and Findings Here, we investigated anti-inflammatory effects of gentian roots and showed that root extracts from Gentiana triflora inhibited lipopolysaccharide (LPS)-induced expression of TNF-α in RAW264.7 cells. The extracts also contained swertiamarin and gentiopicroside, which are the major active compounds of gentian roots; however, neither compound had any effect on LPS-induced TNF-α production in our test system. We isolated gentiolactone as an inhibitor of TNF-α production from the extracts. Gentiolactone also inhibited LPS-induced inducible nitric oxide synthase (iNOS) and cyclooxygenase-2 (Cox-2) expression at the mRNA level. Moreover, gentiolactone suppressed NF-κB transcriptional activity without inhibition of IκB degradation or NF-κB nuclear transport. Conclusions Our results indicate that inhibition of TNF-α, iNOS and Cox-2 expression by gentiolactone is one of the mechanisms of the anti-inflammatory properties of gentian roots. PMID:25423092

  15. Peripheral blood mRNA expressions of stress biomarkers in manic episode and subsequent remission.

    PubMed

    Köse Çinar, Rugül; Sönmez, Mehmet Bülent; Görgülü, Yasemin

    2016-08-01

    Theoretical models of the neuroprogressive nature of bipolar disorder (BD) are based on the hypothesis that it is an accelerated aging disease, with the allostatic load playing a major role. Glucocorticoids, oxidative stress markers, inflammatory cytokines and neurotrophins play important roles in BD. The messenger ribonucleic acid (mRNA) expressions of brain-derived neurotrophic factor (BDNF), tissue plasminogen activator (tPA), glucocorticoid receptor (GR), heat shock protein 70 (HSP70), tumour necrosis factor-alpha (TNF-α) were examined in the peripheral blood of 20 adult male, drug-free BD patients during manic and remission periods and in 20 adult male, healthy controls. mRNA expression was measured using the quantitative real-time polymerase chain reaction (qRT-PCR). Compared to the controls, the expressions of BDNF and tPA mRNA were down-regulated in mania. In remission, BNDF and tPA mRNA levels increased, but they were still lower than those of the controls. Between mania and remission periods, only the change in mRNA levels of BDNF reached statistical significance. The results suggest that BDNF and tPA may be biomarkers of BD and that proteolytic conversion of BDNF may be important in the pathophysiology of BD. The change in BDNF levels between mania and remission could be adaptive and used to follow the progression of BD. PMID:27138695

  16. Screening of mRNA Chemical Modification to Maximize Protein Expression with Reduced Immunogenicity.

    PubMed

    Uchida, Satoshi; Kataoka, Kazunori; Itaka, Keiji

    2015-01-01

    Chemical modification of nucleosides in mRNA is an important technology to regulate the immunogenicity of mRNA. In this study, various previously reported mRNA formulations were evaluated by analyzing in vitro protein expression and immunogenicity in multiple cell lines. For the macrophage-derived cell line, RAW 264.7, modified mRNA tended to have reduced immunogenicity and increased protein expression compared to the unmodified mRNA. In contrast, in some cell types, such as hepatocellular carcinoma cells (HuH-7) and mouse embryonic fibroblasts (MEFs), protein expression was decreased by mRNA modification. Further analyses revealed that mRNA modifications decreased translation efficiency but increased nuclease stability. Thus, mRNA modification is likely to exert both positive and negative effects on the efficiency of protein expression in transfected cells and optimal mRNA formulation should be determined based on target cell types and transfection purposes. PMID:26213960

  17. Screening of mRNA Chemical Modification to Maximize Protein Expression with Reduced Immunogenicity

    PubMed Central

    Uchida, Satoshi; Kataoka, Kazunori; Itaka, Keiji

    2015-01-01

    Chemical modification of nucleosides in mRNA is an important technology to regulate the immunogenicity of mRNA. In this study, various previously reported mRNA formulations were evaluated by analyzing in vitro protein expression and immunogenicity in multiple cell lines. For the macrophage-derived cell line, RAW 264.7, modified mRNA tended to have reduced immunogenicity and increased protein expression compared to the unmodified mRNA. In contrast, in some cell types, such as hepatocellular carcinoma cells (HuH-7) and mouse embryonic fibroblasts (MEFs), protein expression was decreased by mRNA modification. Further analyses revealed that mRNA modifications decreased translation efficiency but increased nuclease stability. Thus, mRNA modification is likely to exert both positive and negative effects on the efficiency of protein expression in transfected cells and optimal mRNA formulation should be determined based on target cell types and transfection purposes. PMID:26213960

  18. Expression of CCT6A mRNA in chicken granulosa cells is regulated by progesterone.

    PubMed

    Wei, Qingqing; Zhu, Guiyu; Cui, Xinxing; Kang, Li; Cao, Dingguo; Jiang, Yunliang

    2013-08-01

    CCT6A, the zeta subunit of the chaperonin containing TCP1 complex, is the only cytosolic chaperonin in eukaryotes and is estimated to assist in the folding of multiple proteins including actin, tubulin, cyclin E, myosin, transducin and the Von Hippel Lindau tumor suppressor. In this study, we examined the expression of CCT6A and progesterone receptor (PGR) mRNA in various tissues of chickens and the regulation of CCT6A and PGR mRNA in ovarian granulosa cells. Northern blot analysis revealed that CCT6A had one transcript and was highly expressed in the ovary tissues from chickens at both the sexually immature and mature stages. CCT6A mRNA expression was increased maximally from pre-hierarchy follicles to F5 follicles and subsequently declined in pre-ovulatory and post-ovulatory follicles. The expression of PGR mRNA exhibited the similar pattern to CCT6A. In granulosa cells isolated from pre-ovulatory follicles, follicle-stimulating hormone (FSH) inhibited the expression of CCT6A mRNA, whereas progesterone activated CCT6A and suppressed PGR expression in a time-dependent manner. We further investigated the regulation of CCT6A transcription by progesterone by constructing various progressive deletions and mutants and identified the core promoter element of CCT6A and the binding region of progesterone, which is located from -2056 to -2051. Taken together, our results indicate that CCT6A likely plays an important role in follicle growth, and in granulosa cells, progesterone activates CCT6A transcription via a progesterone response element (PRE) located in the distal promoter of CCT6A. PMID:23644154

  19. Effects of lutein or lutein in combination with vitamin C on mRNA expression and activity of antioxidant enzymes and status of the antioxidant system in SD rats

    PubMed Central

    Song, Min-Hae; Shin, Eu-Chul; Hwang, Dae-Youn

    2015-01-01

    This study was conducted to investigate the effects of lutein alone or in combination with vitamin C on the antioxidant defense system in rats. A total of 18 eight-week-old male Sprague Dawley (SD) rats were randomly assigned to three groups for 4 weeks: control (CON), lutein (LUT, 50 mg lutein/kg BW) and lutein plus vitamin C (LVC, 50 mg lutein/kg BW+1,000 mg vitamin C/kg BW). No differences in body weight, relative live weight or plasma biochemical profiles were observed among treatment groups. In the hepatic antioxidant defense systems, the mRNA expression of superoxide dismutase (SOD) in the LUT and LVC groups was significantly (P<0.05) higher than that in the CON group, whereas the mRNA level of glutathione peroxidase (GPX), catalase (CAT) and glutathione S-transferase (GST) was not affected by the administration of antioxidants. SOD and GST activities in the LUT and LVC groups were significantly higher (P<0.05) than those in the CON group, whereas GPX, CAT and lipid peroxidation did not differ among groups. In addition, the LVC group showed a significant (P<0.05) increase in plasma and hepatic total antioxidant power (TAP) relative to the CON group. Overall, administration of lutein in combination with vitamin C improved the status of the total antioxidant defense system in SD rats. PMID:26472964

  20. Monosodium glutamate neonatal intoxication associated with obesity in adult stage is characterized by chronic inflammation and increased mRNA expression of peroxisome proliferator-activated receptors in mice.

    PubMed

    Roman-Ramos, Ruben; Almanza-Perez, Julio C; Garcia-Macedo, Rebeca; Blancas-Flores, Gerardo; Fortis-Barrera, Angeles; Jasso, Edgar I; Garcia-Lorenzana, Mario; Campos-Sepulveda, Alfonso E; Cruz, Miguel; Alarcon-Aguilar, Francisco J

    2011-06-01

    The monosodium glutamate (MSG) neonatal administration in mice provides a model of obesity with impaired glucose tolerance (IGT) and insulin resistance. However, the inflammatory profile of cytokines produced from fat tissue and its relationship to the metabolic dysfunction induced by MSG have not yet been revealed. The aim of this study was to establish the inflammatory profile attributed to MSG by measuring the expression of adipokines in visceral fat and serum of 19-week-old mice as well as the peroxisome proliferator-activated receptors alpha and gamma (PPARα and γ). Some metabolic and biochemical parameters were also quantified. The MSG increased mRNA expression of interleukin-6 (IL-6), tumour necrosis factor-alpha (TNFα), resistin and leptin, but adiponectin did not exhibit any changes. In addition, impaired glucose tolerance, increased levels of insulin, resistin and leptin were observed in serum. Both PPARα and PPARγ were activated in MSG-induced obese mice, which might explain its inflammatory profile. However, liver transaminases were severely depressed, indicating that MSG may also induce liver injury, contributing to inflammation. The MSG neonatal neuro-intoxication in mice may thus provide a model of obesity and inflammation characterized by the dual activation of PPARα and PPARγ, which might offer new insights into the mechanism of inflammatory diabetes in obesity leading to steatohepatitis, as well as a suitable model to study the role of new therapeutic agents to prevent or reduce insulin resistance, the inflammatory state and liver steatosis. PMID:21205225

  1. RANKL, OPG and CTR mRNA expression in the temporomandibular joint in rheumatoid arthritis

    PubMed Central

    LIU, WEI-WEI; XU, ZHI-MIN; LI, ZHENG-QIANG; ZHANG, YAN; HAN, BING

    2015-01-01

    The calcitonin receptor (CTR) and receptor activator of nuclear factor κB ligand (RANKL) have been found to be involved in the differentiation of osteoclasts. The association between the RANKL:osteoprotegerin (OPG) expression ratio and the pathogenesis of bone-destructive rheumatoid arthritis (RA) has been described in several joints, but the available data for the temporomandibular joint (TMJ) are limited. The aim of the present study was to investigate the involvement of osteoclasts at sites of bone erosion by determining the CTR expression and the RANKL:OPG expression ratio in the TMJ in a collagen-induced arthritis (CIA) model. Forty-eight male Wistar rats were randomly divided into two groups: Control group, injected with saline solution for 6 weeks; and CIA group, injected with emulsion. The RANKL and OPG mRNA expression was significantly increased in immunized rats compared with that in non-immunized rats. The RANKL:OPG expression ratio on the trabecular bone surface was 9.0 and 6.4 in the CIA group at weeks 4 and 6, respectively, while the RANKL:OPG expression ratio in the controls was 1.0:2. CTR mRNA expression was significantly upregulated in immunized rats compared with that in non-immunized rats; the level of CTR mRNA in the CTR-positive osteoclasts on the trabecular bone surface was 10.9- and 7.8-fold higher in the CIA rats than that in the control rats at weeks 4 and 6, respectively. In conclusion, focal bone destruction in an experimental model of arthritis in the TMJ can be attributed to cells expressing CTR, a defining feature of osteoclasts. The expression of RANKL and OPG mRNA within the inflamed synovium provides an insight into the mechanism of osteoclast differentiation and function at the border of bone erosion in arthritis. PMID:26622411

  2. Regulation of bovine pyruvate carboxylase mRNA and promoter expression by thermal stress.

    PubMed

    White, H M; Koser, S L; Donkin, S S

    2012-09-01

    Pyruvate carboxylase (PC) catalyzes the rate-limiting step in gluconeogenesis from lactate and is a determinant of tricarboxylic acid cycle carbon flux. Bovine PC 5' untranslated region (UTR) mRNA variants are the products of a single PC gene containing 3 promoter regions (P3, P2, and P1, 5' to 3') that are responsive to physiological and nutritional stressors. The objective of this study was to determine the direct effects of thermal stress on PC mRNA and gene expression in bovine hepatocyte monolayer cultures, rat hepatoma (H4IIE) cells, and Madin-Darby bovine kidney epithelial (MDBK) cells. Hepatocytes were isolated from 3 Holstein bull calves and used to prepare monolayer cultures. Rat hepatoma cells and MDBK cells were obtained from American Type Culture Collection, Manassas, VA. Beginning 24 h after initial seeding, cells were subjected to either 37°C (control) or 42°C (thermal stress) for 24 h. Treatments were applied in triplicate in a minimum of 3 independent cell preparations. For bovine primary hepatocytes, endogenous expression of bovine PC mRNA increased (P < 0.1) with 24 h of thermal stress (1.31 vs. 2.79 ± 0.49, arbitrary units, control vs. thermal stress, respectively), but there was no change (P ≥ 0.1) in cytosolic phosphoenolpyruvate carboxykinase (PEPCK-C) mRNA expression. Similarly, exposure of MDBK cells to thermal stress increased (P < 0.1) expression of bovine PC mRNA without altering (P ≥ 0.1) PEPCK-C mRNA expression. Conversely, there was no effect (P ≥ 0.1) of thermal stress on endogenous rat PC (0.47 vs. 0.30 ± 0.08, control vs. thermal stress) or PEPCK-C (1.61 vs. 1.20 ± 0.48, arbitrary units, control vs. thermal stress, respectively) mRNA expressions in H4IIE cells. To further investigate the regulation of PC, H4IIE cells were transiently transfected with bovine promoter-luciferase constructs containing either P1, P2, or P3, and exposed to thermal stress for 23 h. Activity of P1 was suppressed (P < 0.1) 5-fold, activity of P2

  3. Influenza A viruses suppress cyclooxygenase-2 expression by affecting its mRNA stability

    PubMed Central

    Dudek, Sabine Eva; Nitzsche, Katja; Ludwig, Stephan; Ehrhardt, Christina

    2016-01-01

    Infection with influenza A viruses (IAV) provokes activation of cellular defence mechanisms contributing to the innate immune and inflammatory response. In this process the cyclooxygenase-2 (COX-2) plays an important role in the induction of prostaglandin-dependent inflammation. While it has been reported that COX-2 is induced upon IAV infection, in the present study we observed a down-regulation at later stages of infection suggesting a tight regulation of COX-2 by IAV. Our data indicate the pattern-recognition receptor RIG-I as mediator of the initial IAV-induced COX-2 synthesis. Nonetheless, during on-going IAV replication substantial suppression of COX-2 mRNA and protein synthesis could be detected, accompanied by a decrease in mRNA half-life. Interestingly, COX-2 mRNA stability was not only imbalanced by IAV replication but also by stimulation of cells with viral RNA. Our results reveal tristetraprolin (TTP), which is known to bind COX-2 mRNA and promote its rapid degradation, as regulator of COX-2 expression in IAV infection. During IAV replication and viral RNA accumulation TTP mRNA synthesis was induced, resulting in reduced COX-2 levels. Accordingly, the down-regulation of TTP resulted in increased COX-2 protein expression after IAV infection. These findings indicate a novel IAV-regulated cellular mechanism, contributing to the repression of host defence and therefore facilitating viral replication. PMID:27265729

  4. Ochratoxin A mediates MAPK activation, modulates IL-2 and TNF-α mRNA expression and induces apoptosis by mitochondria-dependent and mitochondria-independent pathways in human H9 T cells.

    PubMed

    Darif, Youssef; Mountassif, Driss; Belkebir, Abdelkarim; Zaid, Younes; Basu, Kaustuv; Mourad, Walid; Oudghiri, Mounia

    2016-01-01

    Ochratoxin A (OTA) is a natural fungal secondary metabolite that contaminates food and animal feed. Human exposure and involvement of this mycotoxin in several pathologies have been demonstrated worldwide. We investigated OTA immunotoxicity on H9 cells, a human cutaneous CD4+ T lymphoma cell line. Cells were treated with 0, 1, 5, 10, and 20 µM OTA for up to 24 hr. Western blotting revealed increased phosphorylation of all three major mitogen-activated protein kinases (extracellular signal-regulated kinase, c-Jun amino-terminal kinase, p38). OTA triggered mitochondrial transmembrane potential loss and caspase-3 activation. The 24-hr OTA treatment caused marked changes in cell morphology and DNA fragmentation, suggesting the occurrence of apoptotic events that involved a mitochondria-dependent pathway. Moreover, OTA triggered significant modulation of survivin, interleukin 2 (IL-2) and tumor necrosis factor α (TNF-α): mRNA expression of survivin and IL-2 were decreased, while TNF-α was increased. OTA also caused caspase-8 activation in a time-dependent manner, which evokes the death receptor pathway activation; we suspect that this occurred via the autocrine pro-apoptotic effect of TNF-α on H9 cells. PMID:27193732

  5. Epigenetic Regulation of Dopamine Transporter mRNA Expression in Human Neuroblastoma Cells.

    PubMed

    Green, Ashley L; Hossain, Muhammad M; Tee, Siew C; Zarbl, Helmut; Guo, Grace L; Richardson, Jason R

    2015-07-01

    The dopamine transporter (DAT) is a key regulator of dopaminergic neurotransmission. As such, proper regulation of DAT expression is important to maintain homeostasis, and disruption of DAT expression can lead to neurobehavioral dysfunction. Based on genomic features within the promoter of the DAT gene, there is potential for DAT expression to be regulated through epigenetic mechanisms, including DNA methylation and histone acetylation. However, the relative contribution of these mechanisms to DAT expression has not been empirically determined. Using pharmacologic and genetic approaches, we demonstrate that inhibition of DNA methyltransferase (DNMT) activity increased DAT mRNA approximately 1.5-2 fold. This effect was confirmed by siRNA knockdown of DNMT1. Likewise, the histone deacetylase (HDAC) inhibitors valproate and butyrate also increased DAT mRNA expression, but the response was much more robust with expression increasing over tenfold. Genetic knockdown of HDAC1 by siRNA also increased DAT expression, but not to the extent seen with pharmacological inhibition, suggesting additional isoforms of HDAC or other targets may contribute to the observed effect. Together, these data identify the relative contribution of DNMTs and HDACs in regulating expression. These finding may aid in understanding the mechanistic basis for changes in DAT expression in normal and pathophysiological states. PMID:25963949

  6. The prognostic value of epidermal growth factor receptor mRNA expression in primary ovarian cancer.

    PubMed Central

    Bartlett, J. M.; Langdon, S. P.; Simpson, B. J.; Stewart, M.; Katsaros, D.; Sismondi, P.; Love, S.; Scott, W. N.; Williams, A. R.; Lessells, A. M.; Macleod, K. G.; Smyth, J. F.; Miller, W. R.

    1996-01-01

    The expression of mRNA for the epidermal growth factor (EGF) receptor, EGF and transforming growth factor alpha (TGF-alpha) was determined in 76 malignant, six borderline and 15 benign primary ovarian tumours using the reverse transcriptase-polymerase chain reaction and related to clinical and pathological parameters. Of the malignant tumours, 70% (53/76) expressed EGF receptor mRNA, 31% (23/75) expressed EGF mRNA and 35% (26/75) expressed TGF-alpha mRNA. For the borderline tumours, four of six (67%) expressed EGF receptor mRNA, 1/6 (17%) expressed TGF-alpha mRNA and none expressed EGF mRNA. Finally, 33% (5/15) of the benign tumours expressed EGF receptor mRNA, whereas 40% (6/15) expressed EGF mRNA and 7% (1/15) expressed TGF-alpha mRNA. The presence of the EGF receptor in malignant tumours was associated with that of TGF-alpha (P = 0.0015) but not with EGF (P = 1.00), whereas there was no relationship between the presence of EGF and TGF-alpha (P = 1.00). EGF receptor mRNA expression was significantly and positively associated with serous histology (P = 0.006) but not with stage or grade. Neither EGF nor TGF-alpha showed any link with histological subtype or stage. The survival of patients with malignant tumours possessing EGF receptor mRNA was significantly reduced compared with that of patients whose tumours were negative (P = 0.030 for all malignant tumours; P = 0.007 for malignant epithelial tumours only). In contrast, neither the expression of TGF-alpha nor EGF was related to survival. These data suggest that the presence of EGF receptor mRNA is associated with poor prognosis in primary ovarian cancer. Images Figure 1 PMID:8562334

  7. Focal cerebral ischaemia induces a decrease in activity and a shift in ouabain affinity of Na+, K+-ATPase isoforms without modifications in mRNA and protein expression.

    PubMed

    Jamme, I; Barbey, O; Trouvé, P; Charlemagne, D; Maixent, J M; MacKenzie, E T; Pellerin, L; Nouvelot, A

    1999-02-20

    In a mouse model of focal cerebral ischaemia, we observed after 1 h of ischaemia, that the total Na+, K+-ATPase activity was decreased by 39.4%, and then did not vary significantly up to 6 h post-occlusion. In the sham group, the dose-response curves for ouabain disclosed three inhibitory sites of low (LA), high (HA) and very high (VHA) affinity. In ischaemic animals, we detected the presence of only two inhibitory sites for ouabain. After 1 h of permanent occlusion, the first site exhibited a low affinity while the second site presented an affinity intermediate between those of HA and VHA sites, which evolved after 3 h and 6 h of occlusion towards that of the VHA site. The presence of only two ouabain sites for Na+, K+-ATPase after ischaemia could result from a change in ouabain affinity of both HA and VHA sites (alpha2 and alpha3 isoforms, respectively) to form a unique component. Irrespective of the duration of ischaemia, the smaller activity of this second site accounted entirely for the loss in total activity. Surprisingly, no modifications in protein and mRNA expression of any alpha or beta isoforms of the enzyme were observed, thus suggesting that ischaemia could induce intrinsic modifications of the Na+, K+-ATPase. PMID:10082868

  8. First comparative characterization of three distinct ferritin subunits from a teleost: Evidence for immune-responsive mRNA expression and iron depriving activity of seahorse (Hippocampus abdominalis) ferritins.

    PubMed

    Oh, Minyoung; Umasuthan, Navaneethaiyer; Elvitigala, Don Anushka Sandaruwan; Wan, Qiang; Jo, Eunyoung; Ko, Jiyeon; Noh, Gyeong Eon; Shin, Sangok; Rho, Sum; Lee, Jehee

    2016-02-01

    Ferritins play an indispensable role in iron homeostasis through their iron-withholding function in living beings. In the current study, cDNA sequences of three distinct ferritin subunits, including a ferritin H, a ferritin M, and a ferritin L, were identified from big belly seahorse, Hippocampus abdominalis, and molecularly characterized. Complete coding sequences (CDS) of seahorse ferritin H (HaFerH), ferritin M (HaFerM), and ferritin L (HaFerL) subunits were comprised of 531, 528, and 522 base pairs (bp), respectively, which encode polypeptides of 177, 176, and 174 amino acids, respectively, with molecular masses of ∼20-21 kDa. Our in silico analyses demonstrate that these three ferritin subunits exhibit the typical characteristics of ferritin superfamily members including iron regulatory elements, domain signatures, and reactive centers. The coding sequences of HaFerH, M, and L were cloned and the corresponding proteins were overexpressed in a bacterial system. Recombinantly expressed HaFer proteins demonstrated detectable in vivo iron sequestrating (ferroxidase) activity, consistent with their putative iron binding capability. Quantification of the basal expression of these three HaFer sequences in selected tissues demonstrated a gene-specific ubiquitous spatial distribution pattern, with abundance of mRNA in HaFerM in the liver and predominant expression of HaFerH and HaFerL in blood. Interestingly, the basal expression of all three ferritin genes was found to be significantly modulated against pathogenic stress mounted by lipopolysaccharides (LPS), poly I:C, Streptococcus iniae, and Edwardsiella tarda. Collectively, our findings suggest that the three HaFer subunits may be involved in iron (II) homeostasis in big belly seahorse and that they are important in its host defense mechanisms. PMID:26747640

  9. Genetic organization and mRNA expression of enolase genes of Candida albicans.

    PubMed

    Postlethwait, P; Sundstrom, P

    1995-04-01

    In previous work, we cloned a Candida albicans cDNA for the glycolytic enzyme enolase and found a single, abundant enolase transcript on Northern (RNA) blots and a single protein on immunoblots, using antiserum raised against a recombinant enolase fusion protein. Because C. albicans enolase is abundantly produced during infection and elicits strong host immune responses, the mechanisms regulating enolase production are important for understanding the growth of C. albicans in vivo. To obtain more information on enolase gene expression by C. albicans, we used the enolase cDNA clone to investigate the genetic organization of enolase genes and the steady-state levels of enolase mRNA under several growth conditions. Gene disruption techniques in combination with Southern blot analyses of genomic DNA showed the presence of two enolase gene loci that could be distinguished by the locations of ClaI and Mn/I sites in their 3' flanking regions. Enolase steady-state mRNA levels were greatest during the middle phase of the logarithmic growth curve and were low during stationary phase. Minimal differences in enolase mRNA levels between yeast cells and hyphae were found. Propagation of C. albicans in glucose did not cause increased enolase mRNA levels compared with growth in a nonfermentable carbon source (pyruvate). It was concluded that two gene loci exist for C. albicans enolase and that enolase mRNA is constitutively produced at high levels during active metabolism. PMID:7896700

  10. mRNA as gene therapeutic: how to control protein expression.

    PubMed

    Tavernier, Geertrui; Andries, Oliwia; Demeester, Jo; Sanders, Niek N; De Smedt, Stefaan C; Rejman, Joanna

    2011-03-30

    For many years, it was generally accepted that mRNA is too unstable to be efficiently used for gene therapy purposes. In the last decade, however, several research groups faced this challenge and not only proved the feasibility of mRNA-mediated transfection with surprising results regarding transfection efficiency and duration of protein expression, but also were able to demonstrate major advantages over the use of pDNA. These advantages will be the first issue discussed in this review, which first of all addresses the notions that mRNA does not need to cross the nuclear barrier to exert its biological activity and in addition lacks CpG motifs, which reduces its immunogenicity. Secondly, it provides insight in the (in)stability of the mRNA molecule, in how mRNA can be modified to increase its half-life and in the necessities of exogenously produced mRNA to be successfully used in transfection protocols. Furthermore, this review gives an in-depth overview of the different techniques and vehicles for intracellular mRNA delivery exploited by us and other groups, comprising electroporation, gene gun injection, lipo- and polyplexes. Finally, it covers recent literature describing specific applications for mRNA based gene delivery, showing that until now most attention has been paid to vaccination strategies. This review offers a comprehensive overview of current knowledge of the major theoretical as well as practical aspects of mRNA-mediated transfection, showing both its possibilities and its pitfalls and should therefore be useful for a diverse scientific audience. PMID:20970469

  11. Aromatase and estrogen receptor alpha mRNA expression as prognostic biomarkers in patients with astrocytomas.

    PubMed

    Dueñas Jiménez, J M; Candanedo Arellano, A; Santerre, A; Orozco Suárez, S; Sandoval Sánchez, H; Feria Romero, I; López-Elizalde, R; Alonso Venegas, M; Netel, B; de la Torre Valdovinos, B; Dueñas Jiménez, S H

    2014-09-01

    Estrogens are oncogenic hormones at a high level in breast, prostate, endometrial and lung cancer. Estrogens are synthesized by aromatase which has been used as a biomarker both in breast and lung cancer. Estrogen biological activities are executed by their classic receptors (ERα and ERβ). ERα has been described as a cancer promoter and ERβ, as a possible tumor suppressor. Both receptors are present at low levels in primary multiforme glioblastoma (GBM). The GBM frequency is 50 % higher in men than in women. The GBM patient survival period ranges from 7 to 18 months. The purpose of this pilot study was to evaluate aromatase and estrogen receptor expression, as well as 17ß-estradiol concentration in astrocytoma patients biopsies to obtain a prognosis biomarker for these patients. We analyzed 36 biopsies of astrocytoma patients with a different grade (I-IV) of malignity. Aromatase and estrogen receptor mRNA expression were analyzed by semiquantitative RT-PCR, and the E2 levels, by ELISA. E2 concentration was higher in GBM, compared to grade II or III astrocytomas. The number of cells immunoreactive to aromatase and estrogen receptors decreased as the grade of tumor malignity increased. Aromatase mRNA expression was present in all biopsies, regardless of malignity grade or patient age or gender. The highest expression of aromatase mRNA in GBM patients was associated to the worst survival prognostic (6.28 months). In contrast lowest expression of ERα mRNA in astrocytoma patients had a worst prognosis. In conclusion, aromatase and ERα expression could be used as prognosis biomarkers for astrocytoma patients. PMID:25005528

  12. The angiotensin II receptor antagonist, losartan, enhances regulator of G protein signaling 2 mRNA expression in vascular smooth muscle cells of Wistar rats.

    PubMed

    Wu, Yaqiong; Nakagawa, Suguru; Takahashi, Hidenori; Kawabata, Yukari; Suzuki, Etsu; Uehara, Yoshio

    2016-05-01

    Angiotensin II (Ang II) reportedly enhances regulator of G-protein signaling 2 (RGS2), thus making a negative feedback loop for Ang II signal transduction. However, few studies have reported whether Ang II receptor (ATR) antagonists influence RGS2 mRNA expression. We investigated RGS2 mRNA expression when Ang II binding to ATR was blocked with Ang II subtype-1 receptor (AT1R) blockers using vascular smooth muscle cells from the thoracic aorta of male Wistar rats. RGS2 mRNA expression significantly increased with Ang II stimulation, and this increase was almost completely abolished by olmesartan, a potent AT1R-specific blocker. Ang II subtype-2 receptor (AT2R) was not involved in Ang II-mediated RGS expression. In contrast, the AT1R blocker, losartan, partially decreased Ang II-mediated RGS2 mRNA expression because this antagonist directly stimulated RGS2 mRNA expression in Ang II-free medium. EXP3174, which is an active metabolite of losartan, almost completely blunted Ang II-mediated RGS2 mRNA expression without direct stimulation of RGS2 mRNA expression. Moreover, pretreatment with olmesartan abolished Ang II-mediated RGS2 mRNA expression. Treatment with a protein kinase C inhibitor partially decreased losartan-mediated RGS2 mRNA expression. These results suggest that AT1R blockers inhibit RGS2 mRNA expression in response to Ang II via an AT1R-mediated mechanism. However, the AT1R blocker, losartan, behaves as a direct agonist for RGS2 mRNA expression via AT1R through protein kinase C-dependent and -independent pathways. In conclusion, losartan exhibits dual effects on RGS2 mRNA expression, and the direct upregulation of RGS2 mRNA expression may provide a new strategy for the treatment of hypertension. PMID:26763849

  13. Decline in c-myc mRNA expression but not the induction of c-fos mRNA expression is associated with differentiation of SH-SY5Y human neuroblastoma cells

    SciTech Connect

    Jalava, A.M.; Heikkilae, J.E.; Akerman, K.E.O. )

    1988-11-01

    The induction of differentiation in SH-SY5Y human neuroblastoma cells with 12-O-tetradecanoylphorbol-13-acetate (TPA) is accompanied by a rapid and a transient expression of c-fos mRNA and a down-regulation of c-myc RNA. The TPA-induced expression of c-fos mRNA was inhibited by H-7, a specific inhibitor of protein kinase C (PK-C). Dioctanoylglycerol (DiC{sub 8}) failed to induce differentiation of SH-SY5Y cells or to down-regulate c-myc mRNA but it did induce the expression of c-fos mRNA. Treatment of IMR-32 human neuroblastoma cells with TPA did not cause differentiation although c-fos mRNA was induced. Since PK-C in SH-SY5Y cells was activated by both TPA and DiC{sub 8} it is suggested that the activation of PK-C alone is not sufficient to induce differentiation in SH-SY5Y cells. The down-regulation of c-myc mRNA rather than the induction of c-fos mRNA seems to be associated with differentiation process in SH-SY5Y cells.

  14. Developmentally Regulated Expression of HDNF/NT-3 mRNA in Rat Spinal Cord Motoneurons and Expression of BDNF mRNA in Embryonic Dorsal Root Ganglion.

    PubMed

    Ernfors, Patrik; Persson, Håkan

    1991-01-01

    Northern blot analysis was used to demonstrate high levels of hippocampus-derived neurotrophic factor/neurotrophin-3 (HDNF/NT-3) mRNA in the embryonic day (E) 13 - 14 and 15 - 16 spinal cord. The level decreased at E18 - 19 and remained the same until postnatal day (P) 1, after which it decreased further to a level below the detection limit in the adult. In situ hybridization revealed that the NT-3 mRNA detected in the developing spinal cord was derived from motoneurons and the decrease seen at E18 - 19 was caused by a reduction in the number of motoneurons expressing NT-3 mRNA. The distribution of NT-3 mRNA-expressing cells in the E15 spinal cord was very similar to the distribution of cells expressing choline acetyltransferase or nerve growth factor receptor (NGFR) mRNA. Moreover, a striking similarity between the developmentally regulated expression of NT-3 and NGFR mRNA was noted in spinal cord motoneurons. A subpopulation of all neurons in the dorsal root ganglia expressed brain-derived neurotrophic factor (BDNF) mRNA from E13, the earliest time examined, to adulthood. These results are consistent with a trophic role of NT-3 for proprioceptive sensory neurons innervating the ventral horn, and imply a local action of BDNF for developing sensory neurons within the dorsal root ganglia. PMID:12106253

  15. Promoter Methylation and mRNA Expression of Response Gene to Complement 32 in Breast Carcinoma

    PubMed Central

    Eskandari-Nasab, Ebrahim; Hashemi, Mohammad; Rafighdoost, Firoozeh

    2016-01-01

    Background. Response gene to complement 32 (RGC32), induced by activation of complements, has been characterized as a cell cycle regulator; however, its role in carcinogenesis is still controversial. In the present study we compared RGC32 promoter methylation patterns and mRNA expression in breast cancerous tissues and adjacent normal tissues. Materials and Methods. Sixty-three breast cancer tissues and 63 adjacent nonneoplastic tissues were included in our study. Design. Nested methylation-specific polymerase chain reaction (Nested-MSP) and quantitative PCR (qPCR) were used to determine RGC32 promoter methylation status and its mRNA expression levels, respectively. Results. RGC32 methylation pattern was not different between breast cancerous tissue and adjacent nonneoplastic tissue (OR = 2.30, 95% CI = 0.95–5.54). However, qPCR analysis displayed higher levels of RGC32 mRNA in breast cancerous tissues than in noncancerous tissues (1.073 versus 0.959; P = 0.001), irrespective of the promoter methylation status. The expression levels and promoter methylation of RGC32 were not correlated with any of patients' clinical characteristics (P > 0.05). Conclusion. Our findings confirmed upregulation of RGC32 in breast cancerous tumors, but it was not associated with promoter methylation patterns. PMID:27118972

  16. Expression of connexin 43 mRNA and protein in developing follicles of prepubertal porcine ovaries

    USGS Publications Warehouse

    Melton, C.M.; Zaunbrecher, G.M.; Yoshizaki, G.; Patio, R.; Whisnant, S.; Rendon, A.; Lee, V.H.

    2001-01-01

    A major form of cell-cell communication is mediated by gap junctions, aggregations of intercellular channels composed of connexins (Cxs), which are responsible for exchange of low molecular weight (< 1200 Da) cytosolic materials. These channels are a growing family of related proteins. This study was designed to determine the ontogeny of connexin 43 (Cx43) during early stages of follicular development in prepubertal porcine ovaries. A partial-length (412 base) cDNA clone was obtained from mature porcine ovaries and determined to have 98% identity with published porcine Cx43. Northern blot analysis demonstrated a 4.3-kb mRNA in total RNA isolated from prepubertal and adult porcine ovaries. In-situ hybridization revealed that Cx43 mRNA was detectable in granulosa cells of primary follicles but undetectable in dormant primordial follicles. The intensity of the signal increased with follicular growth and was greatest in the large antral follicles. Immunohistochemical evaluation indicated that Cx43 protein expression correlated with the presence of Cx43 mRNA. These results indicate that substantial amounts of Cx43 are first expressed in granulosa cells following activation of follicular development and that this expression increases throughout follicular growth and maturation. These findings suggest an association between the enhancement of intercellular gap-junctional communication and onset of follicular growth. ?? 2001 Elsevier Science Inc. All rights reserved.

  17. Comparison of IgE expression at the mRNA and protein levels in vitro.

    PubMed Central

    Turner, K J; Creany, J; Coelen, R J; Cameron, K J; Holt, B J; Beilharz, M W

    1991-01-01

    The regulating effects of IL-4 and pokeweed mitogen on IgE synthesis in vitro by human peripheral blood leucocytes has been compared with the corresponding effect of these regulators on the expression of IgE mRNA. The latter was measured by dot blot hybridization with an oligonucleotide coding for a unique six amino acid region of the CH epsilon 2 domain. Specificity of the oligonucleotide probe was established by its inability to hybridize with RNA extracted from HMY-2 (IgG) and XQ-15 (IgM) secreting cell lines whilst producing intense signals with RNA extracted from the IgE secreting cell line U266. Whilst IgE mRNA was detected in RNA extracted from PBL of both atopic and control subjects, spontaneous IgE synthesis was restricted to atopic PBL. IL-4 increased both IgE mRNA and IgE synthesis in all PBL samples but PWM, while significantly increasing IgE mRNA expression either failed to modify IgE synthesis or actively suppressed it. The assay system employed to quantitate IgE synthesis in vitro was shown to be inhibited by both IgE binding factors and IgG anti-IgE autoantibodies which are produced in PBL cultures. IgE mRNA levels might therefore more accurately monitor the regulatory effects of IL-4 and PWM on IgE synthesis than quantitation of the IgE by radioimmunoassay. Images Figure 1 PMID:1783428

  18. Heterogeneous expression of protein and mRNA in pyruvate dehydrogenase deficiency.

    PubMed Central

    Wexler, I D; Kerr, D S; Ho, L; Lusk, M M; Pepin, R A; Javed, A A; Mole, J E; Jesse, B W; Thekkumkara, T J; Pons, G

    1988-01-01

    Deficiency of pyruvate dehydrogenase [pyruvate:lipoamide 2-oxidoreductase (decarboxylating and acceptor-acetylating), EC 1.2.4.1], the first component of the pyruvate dehydrogenase complex, is associated with lactic acidosis and central nervous system dysfunction. Using both specific antibodies to pyruvate dehydrogenase and cDNAs coding for its two alpha and beta subunits, we characterized pyruvate dehydrogenase deficiency in 11 patients. Three different patterns were found on immunologic and RNA blot analyses. (i) Seven patients had immunologically detectable crossreactive material for the alpha and beta proteins of pyruvate dehydrogenase. (ii) Two patients had no detectable crossreactive protein for either the alpha or beta subunit but had normal amounts of mRNA for both alpha and beta subunits. (iii) The remaining two patients also had no detectable crossreactive protein but had diminished amounts of mRNA for the alpha subunit of pyruvate dehydrogenase only. These results indicate that loss of pyruvate dehydrogenase activity may be associated with either absent or catalytically inactive proteins, and in those cases in which this enzyme is absent, mRNA for one of the subunits may also be missing. When mRNA for one of the subunits is lacking, both protein subunits are absent, suggesting that a mutation affecting the expression of one of the subunit proteins causes the remaining uncomplexed subunit to be unstable. The results show that several different mutations account for the molecular heterogeneity of pyruvate dehydrogenase deficiency. Images PMID:3140238

  19. Rev-erb beta regulates the Srebp-1c promoter and mRNA expression in skeletal muscle cells

    SciTech Connect

    Ramakrishnan, Sathiya N.; Lau, Patrick; Crowther, Lisa M.; Cleasby, Mark E.; Millard, Susan; Leong, Gary M.; Cooney, Gregory J.; Muscat, George E.O.

    2009-10-30

    The nuclear hormone receptor, Rev-erb beta operates as a transcriptional silencer. We previously demonstrated that exogenous expression of Rev-erb{beta}{Delta}E in skeletal muscle cells increased Srebp-1c mRNA expression. We validated these in vitro observations by injection of an expression vector driving Rev-erb{beta}{Delta}E expression into mouse tibialis muscle that resulted in increased Srebp-1c mRNA expression. Paradoxically, Rev-erb{beta} siRNA expression in skeletal muscle cells repressed Srebp-1c expression, and indicated that Rev-erb{beta} expression was necessary for Srebp-1c expression. ChIP analysis demonstrated that Rev-erb{beta} was recruited to the Srebp-1c promoter. Moreover, Rev-erb{beta} trans-activated the Srebp-1c promoter, in contrast, Rev-erb{beta} efficiently repressed the Rev-erb{alpha} promoter, a previously characterized target gene. Finally, treatment with the Rev-erb agonist (hemin) (i) increased the trans-activation of the Srebp-1c promoter by Rev-erb{beta}; and (ii) increased Rev-erb{beta} and Srebp-1c mRNA expression. These data suggest that Rev-erb{beta} has the potential to activate gene expression, and is a positive regulator of Srebp-1c, a regulator of lipogenesis.

  20. Distinct prognostic values of four-Notch-receptor mRNA expression in ovarian cancer.

    PubMed

    Zhou, Xinling; Teng, Lingling; Wang, Min

    2016-05-01

    Notch signaling pathway includes ligands and Notch receptors, which are frequently deregulated in several human malignancies including ovarian cancer. Aberrant activation of Notch signaling has been linked to ovarian carcinogenesis and progression. In the current study, we used the "Kaplan-Meier plotter" (KM plotter) database, in which updated gene expression data and survival information from a total of 1306 ovarian cancer patients were used to access the prognostic value of four Notch receptors in ovarian cancer patients. Hazard ratio (HR), 95 % confidence intervals, and log-rank P were calculated. Notch1 messenger RNA (mRNA) high expression was not found to be correlated to overall survival (OS) for all ovarian cancer, as well as in serous and endometrioid cancer patients followed for 20 years. However, Notch1 mRNA high expression is significantly associated with worsen OS in TP53 wild-type ovarian cancer patients, while it is significantly associated with better OS in TP53 mutation-type ovarian cancer patients. Notch2 mRNA high expression was found to be significantly correlated to worsen OS for all ovarian cancer patients, as well as in grade II ovarian cancer patients. Notch3 mRNA high expression was found to be significantly correlated to better OS for all ovarian cancer patients, but not in serous cancer patients and endometrioid cancer patients. Notch4 mRNA high expression was not found to be significantly correlated to OS for all ovarian cancer patients, serous cancer patients, and endometrioid cancer patients. These results indicate that there are distinct prognostic values of four Notch receptors in ovarian cancer. This information will be useful for better understanding of the heterogeneity and complexity in the molecular biology of ovarian cancer and for developing tools to more accurately predict their prognosis. Based on our results, Notch1 could be a potential drug target of TP53 wild-type ovarian cancer and Notch2 could be a potential drug

  1. Increased expression of C5a receptor (CD88) mRNA in canine mammary tumors.

    PubMed

    Hezmee, Mohd Noor Mohd; Kyaw-Tanner, Myat; Lee, Jia Yu Peppermint; Shiels, Ian A; Rolfe, Barbara; Woodruff, Trent; Mills, Paul C

    2011-01-01

    Mammary tumors are among the most common neoplastic conditions in dogs, and there is evidence that inflammation plays a role in the development of some tumor types in dogs. The complement system is a major participant in the inflammatory process and the complement activation component, C5a, is a potent inflammatory peptide. This study investigated the mRNA expression of the major receptor for C5a (C5aR; CD88) in histopathological samples of canine mammary tumors by quantitative reverse transcriptase-polymerase chain reaction (qRT-PCR) using canine-specific primers for CD88. A total of seven canine mammary tumors (four malignant carcinomas, two benign mixed mammary tumors, and one myoepithelioma) and eight normal mammary glands were analysed. All the tumor samples expressed low levels of CD88 mRNA, while none of the normal mammary tissues showed any detectable expression. These preliminary results suggest that C5a-CD88 interaction may play a contributory role in the inflammatory response associated with mammary tumor development in dogs. Further studies investigating the mechanisms behind complement activation and C5a receptor expression in canine mammary tumors are warranted. PMID:20846729

  2. Negative regulation of neuromedin U mRNA expression in the rat pars tuberalis by melatonin.

    PubMed

    Aizawa, Sayaka; Sakata, Ichiro; Nagasaka, Mai; Higaki, Yuriko; Sakai, Takafumi

    2013-01-01

    The pars tuberalis (PT) is part of the anterior pituitary gland surrounding the median eminence as a thin cell layer. The characteristics of PT differ from those of the pars distalis (PD), such as cell composition and gene expression, suggesting that the PT has a unique physiological function compared to the PD. Because the PT highly expresses melatonin receptor type 1, it is considered a mediator of seasonal and/or circadian signals of melatonin. Expression of neuromedin U (NMU) that is known to regulate energy balance has been previously reported in the rat PT; however, the regulatory mechanism of NMU mRNA expression and secretion in the PT are still obscure. In this study, we examined both the diurnal change of NMU mRNA expression in the rat PT and the effects of melatonin on NMU in vivo. In situ hybridization and quantitative PCR analysis of laser microdissected PT samples revealed that NMU mRNA expression in the PT has diurnal variation that is high during the light phase and low during the dark phase. Furthermore, melatonin administration significantly suppressed NMU mRNA expression in the PT in vivo. On the other hand, 48 h fasting did not have an effect on PT-NMU mRNA expression, and the diurnal change of NMU mRNA expression was maintained. We also found the highest expression of neuromedin U receptor type 2 (NMUR2) mRNA in the third ventricle ependymal cell layer, followed by the arcuate nucleus and the spinal cord. These results suggest that NMU mRNA expression in the PT is downregulated by melatonin during the dark phase and shows diurnal change. Considering that NMU mRNA in the PT showed the highest expression level in the brain, PT-NMU may act on NMUR2 in the brain, especially in the third ventricle ependymal cell layer, with a circadian rhythm. PMID:23843987

  3. Negative Regulation of Neuromedin U mRNA Expression in the Rat Pars Tuberalis by Melatonin

    PubMed Central

    Aizawa, Sayaka; Sakata, Ichiro; Nagasaka, Mai; Higaki, Yuriko; Sakai, Takafumi

    2013-01-01

    The pars tuberalis (PT) is part of the anterior pituitary gland surrounding the median eminence as a thin cell layer. The characteristics of PT differ from those of the pars distalis (PD), such as cell composition and gene expression, suggesting that the PT has a unique physiological function compared to the PD. Because the PT highly expresses melatonin receptor type 1, it is considered a mediator of seasonal and/or circadian signals of melatonin. Expression of neuromedin U (NMU) that is known to regulate energy balance has been previously reported in the rat PT; however, the regulatory mechanism of NMU mRNA expression and secretion in the PT are still obscure. In this study, we examined both the diurnal change of NMU mRNA expression in the rat PT and the effects of melatonin on NMU in vivo. In situ hybridization and quantitative PCR analysis of laser microdissected PT samples revealed that NMU mRNA expression in the PT has diurnal variation that is high during the light phase and low during the dark phase. Furthermore, melatonin administration significantly suppressed NMU mRNA expression in the PT in vivo. On the other hand, 48 h fasting did not have an effect on PT-NMU mRNA expression, and the diurnal change of NMU mRNA expression was maintained. We also found the highest expression of neuromedin U receptor type 2 (NMUR2) mRNA in the third ventricle ependymal cell layer, followed by the arcuate nucleus and the spinal cord. These results suggest that NMU mRNA expression in the PT is downregulated by melatonin during the dark phase and shows diurnal change. Considering that NMU mRNA in the PT showed the highest expression level in the brain, PT-NMU may act on NMUR2 in the brain, especially in the third ventricle ependymal cell layer, with a circadian rhythm. PMID:23843987

  4. Exercise training does not increase muscle FNDC5 protein or mRNA expression in pigs

    PubMed Central

    Fain, John N.; Company, Joseph M.; Booth, Frank W.; Laughlin, M. Harold; Padilla, Jaume; Jenkins, Nathan T.; Bahouth, Suleiman W.; Sacks, Harold S.

    2013-01-01

    Background Exercise training elevates circulating irisin and induces the expression of the FNDC5 gene in skeletal muscles of mice. Our objective was to determine whether exercise training also increases FNDC5 protein or mRNA expression in the skeletal muscles of pigs as well as plasma irisin. Methods Castrated male pigs of the Rapacz familial hypercholesterolemic (FHM) strain and normal (Yucatan miniature) pigs were sacrificed after 16–20 weeks of exercise training. Samples of cardiac muscle, deltoid and triceps brachii muscle, subcutaneous and epicardial fat were obtained and FNDC5 mRNA, along with that of 6 other genes, was measured in all tissues of FHM pigs by reverse transcription polymerase chain reaction. FNDC protein in deltoid and triceps brachii was determined by Western blotting in both FHM and normal pigs. Citrate synthase activity was measured in the muscle samples of all pigs as an index of exercise training. Irisin was measured by an ELISA assay. Results There was no statistically significant effect of exercise training on FNDC5 gene expression in epicardial or subcutaneous fat, deltoid muscle, triceps brachii muscle or heart muscle. Exercise-training elevated circulating levels of irisin in the FHM pigs and citrate synthase activity in deltoid and triceps brachii muscle. A similar increase in citrate synthase activity was seen in muscle extracts of exercise-trained normal pigs but there was no alteration in circulating irisin. Conclusion Exercise training in pigs does not increase FNDC5 mRNA or protein in the deltoid or triceps brachii of FHM or normal pigs while increasing circulating irisin only in the FHM pigs. These data indicate that the response to exercise training in normal pigs is not comparable to that seen in mice. PMID:23831442

  5. miR-155 targets Caspase-3 mRNA in activated macrophages.

    PubMed

    De Santis, Rebecca; Liepelt, Anke; Mossanen, Jana C; Dueck, Anne; Simons, Nadine; Mohs, Antje; Trautwein, Christian; Meister, Gunter; Marx, Gernot; Ostareck-Lederer, Antje; Ostareck, Dirk H

    2016-01-01

    To secure the functionality of activated macrophages in the innate immune response, efficient life span control is required. Recognition of bacterial lipopolysaccharides (LPS) by toll-like receptor 4 (TLR4) induces downstream signaling pathways, which merge to induce the expression of cytokine genes and anti-apoptotic genes. MicroRNAs (miRNAs) have emerged as important inflammatory response modulators, but information about their functional impact on apoptosis is scarce. To identify miRNAs differentially expressed in response to LPS, cDNA libraries from untreated and LPS-activated murine macrophages were analyzed by deep sequencing and regulated miRNA expression was verified by Northern blotting and qPCR. Employing TargetScan(TM) we identified CASPASE-3 (CASP-3) mRNA that encodes a key player in apoptosis as potential target of LPS-induced miR-155. LPS-dependent primary macrophage activation revealed TLR4-mediated enhancement of miR-155 expression and CASP-3 mRNA reduction. Endogenous CASP-3 and cleaved CASP-3 protein declined in LPS-activated macrophages. Accumulation of miR-155 and CASP-3 mRNA in miRNA-induced silencing complexes (miRISC) was demonstrated by ARGONAUTE 2 (AGO2) immunoprecipitation. Importantly, specific antagomir transfection effectively reduced mature miR-155 and resulted in significantly elevated CASP-3 mRNA levels in activated macrophages. In vitro translation assays demonstrated that the target site in the CASP-3 mRNA 3'UTR mediates miR-155-dependent Luciferase reporter mRNA destabilization. Strikingly, Annexin V staining of macrophages transfected with antagomir-155 and stimulated with LPS prior to staurosporine (SSP) treatment implied that LPS-induced miR-155 prevents apoptosis through CASP-3 mRNA down-regulation. In conclusion, we report that miR-155-mediated CASP-3 mRNA destabilization in LPS-activated RAW 264.7 macrophages suppresses apoptosis, as a prerequisite to maintain their crucial function in inflammation. PMID:26574931

  6. Olive Leaf Extract Elevates Hepatic PPAR α mRNA Expression and Improves Serum Lipid Profiles in Ovariectomized Rats.

    PubMed

    Yoon, Leena; Liu, Ya-Nan; Park, Hyunjin; Kim, Hyun-Sook

    2015-07-01

    We hypothesized that olive leaf extract might alleviate dyslipidemia resulting from estrogen deficiency. Serum lipid profile and mRNA expression of the related genes in the liver and adipose tissue were analyzed after providing olive leaf extract (200 or 400 mg/kg body weight; n=7 for each group) to ovariectomized rats for 10 weeks. After 10 weeks' administration, the rats in the olive leaf extract-administered groups showed significantly lower levels of serum triglyceride and very-low-density lipoprotein (VLDL)-cholesterol compared with the rats in the control group, whereas the administration of olive leaf extract did not significantly change the elevated low-density lipoprotein cholesterol levels. In addition, administration of high dose of olive leaf extract significantly decreased the liver triglyceride and increased serum estradiol levels. mRNA expressions of peroxisome proliferator-activated receptor alpha (PPAR α) and acyl-CoA oxidase (ACO) were not affected by ovariectomy, however, administration of olive leaf extract significantly increased both PPAR α and ACO mRNA expression. Expression of adiponectin mRNA in adipose tissue was significantly decreased in the ovariectomized control group. Rats administered low-dose olive leaf extract showed significantly elevated adiponectin mRNA expression compared with rats in the ovariectomized control group. Even though dose-dependent effects were not observed in most of the measurements, these results suggest that genes involved in lipid metabolism may be regulated by olive leaf extract administration in ovariectomized rats. PMID:25714618

  7. Olive Leaf Extract Elevates Hepatic PPAR α mRNA Expression and Improves Serum Lipid Profiles in Ovariectomized Rats

    PubMed Central

    Yoon, Leena; Liu, Ya-Nan; Park, Hyunjin

    2015-01-01

    Abstract We hypothesized that olive leaf extract might alleviate dyslipidemia resulting from estrogen deficiency. Serum lipid profile and mRNA expression of the related genes in the liver and adipose tissue were analyzed after providing olive leaf extract (200 or 400 mg/kg body weight; n=7 for each group) to ovariectomized rats for 10 weeks. After 10 weeks' administration, the rats in the olive leaf extract-administered groups showed significantly lower levels of serum triglyceride and very-low-density lipoprotein (VLDL)-cholesterol compared with the rats in the control group, whereas the administration of olive leaf extract did not significantly change the elevated low-density lipoprotein cholesterol levels. In addition, administration of high dose of olive leaf extract significantly decreased the liver triglyceride and increased serum estradiol levels. mRNA expressions of peroxisome proliferator-activated receptor alpha (PPAR α) and acyl-CoA oxidase (ACO) were not affected by ovariectomy, however, administration of olive leaf extract significantly increased both PPAR α and ACO mRNA expression. Expression of adiponectin mRNA in adipose tissue was significantly decreased in the ovariectomized control group. Rats administered low-dose olive leaf extract showed significantly elevated adiponectin mRNA expression compared with rats in the ovariectomized control group. Even though dose-dependent effects were not observed in most of the measurements, these results suggest that genes involved in lipid metabolism may be regulated by olive leaf extract administration in ovariectomized rats. PMID:25714618

  8. Expression of the mRNA encoding truncated PPAR alpha does not correlate with hepatic insensitivity to peroxisome proliferators.

    PubMed

    Hanselman, J C; Vartanian, M A; Koester, B P; Gray, S A; Essenburg, A D; Rea, T J; Bisgaier, C L; Pape, M E

    2001-01-01

    Two alternatively spliced forms of human PPAR alpha mRNA, PPAR alpha1 and PPAR alpha2, have been identified. PPAR alpha1 mRNA gives rise to an active PPAR alpha protein while PPAR alpha2 mRNA gives rise to a form of PPAR which lacks the ligand-binding domain. PPAR alpha2 is unable to activate a peroxisome proliferator response element (PPRE) reporter gene construct in transient transfection assays. Both PPAR alpha1 and PPAR alpha2 mRNA are present in human liver, kidney, testes, heart, small intestine, and smooth muscle. In human liver, PPAR alpha2 mRNA abundance is approximately half that of PPAR alpha1 mRNA; a correlation analysis of PPAR alpha1 and PPAR alpha2 mRNA mass revealed an r-value of 0.75 (n = 18). Additional studies with intact liver from various species, showed that the PPAR alpha2/PPAR alpha1 mRNA ratios in rat, rabbit, and mouse liver were less than 0.10; significantly lower than the 0.3 and 0.5 ratios observed in monkey and human livers, respectively. To determine if a high PPAR alpha2/PPAR alpha1 mRNA ratio was associated with insensitivity to peroxisome proliferators, we treated human, rat, and rabbit hepatocytes with WY14643, a potent PPAR alpha activator, and measured acyl CoA oxidase (ACO) mRNA levels. Rat ACO mRNA levels increased markedly in response to WY14643 while human and rabbit hepatocytes were unresponsive. Thus, although the PPAR alpha2/PPAR alpha1 mRNA ratio is low in rabbits, this species is not responsive to peroxisome proliferators. Further studies with male and female rats, which vary significantly in their response to peroxisome proliferators, showed little difference in the ratio of PPAR alpha2/PPAR alpha1 mRNA. These data suggest that selective PPAR alpha2 mRNA expression is not the basis for differential species or gender responses to peroxisome proliferators. PMID:11269670

  9. Posttraumatic temporal TGF-β mRNA expression in lens epithelial cells of paediatric patients.

    PubMed

    Berezowski, P; Strzalka-Mrozik, B; Forminska-Kapuscik, M; Mazurek, U; Filipek, E; Nawrocka, L; Pieczara, E; Banasiak, P; Kimsa, M

    2012-01-01

    The aim of the study was to determine temporal TGFB1, TGFB2 and TGFB3 gene expression profiles in the anterior lens capsule of paediatric patients with posttraumatic cataract. The patient group comprised 22 children selected with a fragment of anterior lens capsule obtained during elective cataract surgery and sampled for molecular analysis. The levels of TGF-β isoforms in the anterior lens capsule were determined based on the number of mRNA copies per 1 μg total RNA by real-time qRTPCR. Three time-related result clusters were identified based on hierarchical cluster analysis: 2.2, 4.4 and 15.0 months (time span from injury to anterior capsule sampling during surgery) and compared with regard to temporal gene expression profile and quantitative relations of TGF-β1, 2 and 3 mRNAs. TGF-β1, TGF-β2, and TGF-β3 mRNAs were detected in all anterior lens capsule samples. A comparative analysis revealed: TGF-β1>TGF-β2>TGF-β3 during the entire observation period. The TGF-β mRNA levels continued to increase up to four months after injury, then returning close to the base levels after around 15 months. The expression patterns of TGF-β isoforms showed a similar tendency. Differences in the expression levels of TGF-β1 and TGF-β2 between the particular clusters were statistically significant. Posttraumatic transcriptional activities of TGF-β1 and TGF-β2 in the anterior lens capsule of paediatric patients depend on the time elapsing from injury. Our findings indicate that the transcriptional activities of TGFB family genes show a transient period of over-expression during the months after injury. TGF-β1 is a dominant isoform expressed in lens epithelial cells following injury. PMID:22464821

  10. Dietary glycerol for quail: association between productive performance and COX III mRNA expression.

    PubMed

    Silva, S C C; Gasparino, E; Batista, E; Tanamati, F; Vesco, A P D; Lala, B; de Oliveira, D P

    2016-01-01

    This study was carry out to evaluate mRNA expression of mitochondrial cytochrome c oxidase III in the Pectoralis superficialis muscle of 28-day-old quails fed diets containing 0, 8, and 12% glycerol. Total RNA was extracted (N = 10) and cDNA was amplified using specifics primers for qRT-PCR. Feed efficiency and feed intake were evaluated. COX III mRNA expression in breast muscle was higher in the group fed with 12% glycerol (0.863 AU); no differences were observed in the expression of this gene between the muscle of animals fed diets without glycerol (0.357 AU) and 8% glycerol (0.415 AU). Quails that showed greater COX III mRNA expression also showed the lowest feed efficiency. These results show that there is a difference in COX III mRNA expression in breast muscle of 28-day-old quail fed diets different concentrations of glycerol. PMID:27323091

  11. Decreased parvalbumin mRNA expression in dorsolateral prefrontal cortex in Parkinson’s disease

    PubMed Central

    Lanoue, Amélie C.; Blatt, Gene J.; Soghomonian, Jean-Jacques

    2013-01-01

    It has recently been shown that expression of the rate-limiting GABA-synthesizing enzyme glutamic acid decarboxylase (GAD) is decreased in Brodmann area 9 (BA9) of the dorsolateral prefrontal cortex (DLPFC) in Parkinson’s disease (PD) compared to control brains (Lanoue, A.C., Dumitriu, A., Myers, R.H., Soghomonian, JJ., 2010. Exp Neurol. 206(1), 207–217). A subpopulation of cortical GABAergic interneurons expresses the calcium-binding protein parvalbumin and plays a critical role in the control of pyramidal neuron excitability and the generation of cortical gamma frequency oscillations. In view of its key role in the physiology of the cerebral cortex, we sought to determine whether the expression of parvalbumin and the number of parvalbumin-expressing neurons are altered in BA9 of PD brains. First, isotopic in situ hybridization histochemistry was used to examine mRNA expression of parvalbumin on post-mortem brain sections. Second, immunohistochemistry and design-based stereology were used to determine the density of parvalbumin-positive interneurons in BA9. Quantification of mRNA labeling at the single cell level showed a significant decrease in parvalbumin expression in PD cases. In contrast, neuronal density of parvalbumin-positive neurons was not significantly different between PD and controls. Results confirm that the GABAergic system is altered in the DLPFC in PD and identify the contribution of parvalbumin-expressing neurons in these alterations. We speculate that these effects could contribute to altered cortical excitability and oscillatory activity previously documented in PD. PMID:23891794

  12. IPLA2 mRNA expression by human neutrophils in type 2 diabetes and chronic periodontitis.

    PubMed

    Ayilavarapu, Srinivas; Kantarci, Alpdogan; Hasturk, Hatice; Van Dyke, Thomas E

    2014-10-01

    Type 2 diabetes mellitus (T2D) is becoming increasingly prevalent worldwide and complications of T2D cause significant systemic and dental morbidity in the susceptible individual. Although T2D has been linked as a significant risk factor for chronic periodontitis (CP), molecular mechanisms explaining the pathogenesis and inflammatory impact of CP in T2D are lacking. iPLA2 is the calcium-independent form of phospholipase A2. In previous studies, we demonstrated that iPLA2 enzyme activity is altered in T2D. The purpose of this study was to elucidate the level of the iPLA2 abnormality in T2D by measuring messenger RNA levels in T2D-associated CP. A total of 53 healthy and T2D subjects with CP were recruited for this study. The clinical periodontal exam included probing pocket depth, clinical attachment levels and bleeding on probing. Peripheral venous blood was collected and neutrophils were isolated. Real time polymerase chain reaction was used to quantify iPLA2 mRNA in neutrophils from healthy controls and people with diabetes. Results revealed that the prevalence of moderate to severe CP was increased in people with T2D. The iPLA, mRNA levels in diabetics with different severity of CP were not significantly different compared to healthy controls; 1.07 vs 0.97 (mild CP), 1.07 vs 0.85 (moderate CP) and 1.07 vs 1.05 (severe CP). Collectively, the data suggest that levels of iPLA2 mRNA in T2D are not different than in health and are not directly influenced by periodontal disease status. The impact of inflammation on iPLA2 regulation is at the level of activation of the enzyme rather than expression at the mRNA level. PMID:25654966

  13. Dynamics of c-fos and ICER mRNA expression in rat forebrain following lithium chloride injection.

    PubMed

    Spencer, C M; Houpt, T A

    2001-09-30

    Lithium is commonly used as a treatment for affective disorders in humans and as a toxin to produce conditioned taste aversions in rats. LiCl administration in rats has been correlated with activation of c-fos and cAMP-mediated gene transcription in many brain regions; however, little is known about the timing or duration of gene activation. We hypothesized that c-fos gene transcription is rapidly stimulated by LiCl, followed later by the expression of the inducible cAMP early repressor (ICER) transcription factor, a negative modulator of cAMP-mediated gene transcription. By in situ hybridization, we analyzed the timecourse of c-fos and ICER mRNA expression in the central nucleus of the amygdala (CeA), the paraventricular nucleus of the hypothalamus (PVN) and the supraoptic nucleus (SON) at seven time points (0, 0.3, 1, 3, 6, 9 and 12 h) after intraperitoneal LiCl injection (0.15 M, 12 ml/kg, 76 mg/kg). Expression of c-fos mRNA peaked between 20 min and 1 h and returned to baseline by 3 h in the CeA, PVN and SON. ICER mRNA was detected in these regions at 20 min, peaked at 1-3 h and returned to nearly baseline 9 h following LiCl injection. The time lag between c-fos mRNA expression and ICER mRNA expression within the same regions is consistent with ICER terminating c-fos gene transcription. However, no refractory period was detected for restimulation of c-fos transcription by a second injection of LiCl during the period of peak ICER mRNA expression, suggesting the involvement of other transcriptional modulators. PMID:11589989

  14. Attenuated mRNA expression of inflammatory mediators in neonatal rat lung following lipopolysaccharide treatment

    PubMed Central

    Le Rouzic, Valerie; Wiedinger, Kari; Zhou, Heping

    2012-01-01

    Neonates are known to exhibit increased susceptibility to bacterial and viral infections and increasing evidence demonstrates that the increased susceptibility is related to their attenuated immune response to infections. The lung is equipped with an innate defense system involving both cellular and humoral mediators. The present study was performed to characterize the expression of inflammatory mediators in the lung of neonatal rats in comparison with older animals. Rats at postnatal day 1 (P1), P21, and P70 were treated with saline or 0.25 mg/kg lipopolysaccharide (LPS) via intraperitoneal injection. Two hours later, animals were sacrificed and the transcriptional response of key inflammatory mediators and enzyme activity of myeloperoxidase (MPO) in the lung of these animals were examined. LPS-induced messenger RNA (mRNA) expression of pro-inflammatory cytokines, namely interleukin (IL)-1β, IL-6, and tumor necrosis factor-α, antiinflammatory cytokines, namely IL-10 and IL-1 receptor antagonist (IL-1ra), and chemokines, namely macrophage inflammatory protein (MIP)-1β, MIP-2, and monocyte chemotactic protein-1, in P1 lung was much reduced compared to that in P21 and P70 animals at 2 hours postinjection. These data suggest that LPS-induced transcriptional response of cytokines and chemokines was much reduced in P1 lung even though the protein levels of these genes were not ascertained and mRNA levels of these genes may not reflect their final protein levels. MPO activity in LPS-treated P1 lung was also significantly attenuated compared to that in LPS-treated P70 lung, suggesting impaired neutrophil infiltration in P1 lung at 2 hours following LPS treatment. In parallel, the baseline mRNA expression of LPS-binding protein (LBP) in P1 lung was much lower than that in P21 and P70 lungs. While the protein level of LBP was not examined and the mRNA level of LBP may not reflect its final protein level, the reduced transcriptional response of cytokines and chemokines in

  15. Prefrontal cortical-striatal dopamine receptor mRNA expression predicts distinct forms of impulsivity.

    PubMed

    Simon, Nicholas W; Beas, Blanca S; Montgomery, Karienn S; Haberman, Rebecca P; Bizon, Jennifer L; Setlow, Barry

    2013-06-01

    Variation in dopamine receptor levels has been associated with different facets of impulsivity. To further delineate the neural substrates underlying impulsive action (inability to withhold a prepotent motor response) and impulsive choice (delay aversion), we characterised rats in the Differential Reinforcement of Low Rates of Responding task and a delay discounting task. We also measured performance on an effort-based discounting task. We then assessed D1 and D2 dopamine receptor mRNA expression in subregions of the prefrontal cortex and nucleus accumbens using in situ hybridisation, and compared these data with behavioral performance. Expression of D1 and D2 receptor mRNA in distinct brain regions was predictive of impulsive action. A dissociation within the nucleus accumbens was observed between subregions and receptor subtypes; higher D1 mRNA expression in the shell predicted greater impulsive action, whereas lower D2 mRNA expression in the core predicted greater impulsive action. We also observed a negative correlation between impulsive action and D2 mRNA expression in the prelimbic cortex. Interestingly, a similar relationship was present between impulsive choice and prelimbic cortex D2 mRNA, despite the fact that behavioral indices of impulsive action and impulsive choice were uncorrelated. Finally, we found that both high D1 mRNA expression in the insular cortex and low D2 mRNA expression in the infralimbic cortex were associated with willingness to exert effort for rewards. Notably, dopamine receptor mRNA in these regions was not associated with either facet of impulsivity. The data presented here provide novel molecular and neuroanatomical distinctions between different forms of impulsivity, as well as effort-based decision-making. PMID:23510331

  16. Prefrontal cortical–striatal dopamine receptor mRNA expression predicts distinct forms of impulsivity

    PubMed Central

    Simon, Nicholas W.; Beas, Blanca S.; Montgomery, Karienn S.; Haberman, Rebecca P.; Bizon, Jennifer L.; Setlow, Barry

    2014-01-01

    Variation in dopamine receptor levels has been associated with different facets of impulsivity. To further delineate the neural substrates underlying impulsive action (inability to withhold a prepotent motor response) and impulsive choice (delay aversion), we characterised rats in the Differential Reinforcement of Low Rates of Responding task and a delay discounting task. We also measured performance on an effort-based discounting task. We then assessed D1 and D2 dopamine receptor mRNA expression in subregions of the prefrontal cortex and nucleus accumbens using in situ hybridisation, and compared these data with behavioral performance. Expression of D1 and D2 receptor mRNA in distinct brain regions was predictive of impulsive action. A dissociation within the nucleus accumbens was observed between subregions and receptor subtypes; higher D1 mRNA expression in the shell predicted greater impulsive action, whereas lower D2 mRNA expression in the core predicted greater impulsive action. We also observed a negative correlation between impulsive action and D2 mRNA expression in the prelimbic cortex. Interestingly, a similar relationship was present between impulsive choice and prelimbic cortex D2 mRNA, despite the fact that behavioral indices of impulsive action and impulsive choice were uncorrelated. Finally, we found that both high D1 mRNA expression in the insular cortex and low D2 mRNA expression in the infralimbic cortex were associated with willingness to exert effort for rewards. Notably, dopamine receptor mRNA in these regions was not associated with either facet of impulsivity. The data presented here provide novel molecular and neuroanatomical distinctions between different forms of impulsivity, as well as effort-based decision-making. PMID:23510331

  17. Alternative splicing of parathyroid hormone-related protein mRNA: expression and stability

    PubMed Central

    Sellers, R S; Luchin, A I; Richard, V; Brena, R M; Lima, D; Rosol, T J

    2011-01-01

    Parathyroid hormone-related protein (PTHrP) is a multifunctional protein that is often dysregulated in cancer. The human PTHrP gene is alternatively spliced into three isoforms, each with a unique 3′-untranslated region (3′-UTR), encoding 139, 173 and 141 amino acid proteins. The regulation of PTHrP mRNA isoform expression has not been completely elucidated, but it may be affected by transforming growth factor-β1 (TGF-β1). In this study, we examined differences in the PTHrP mRNA isoform expression in two squamous carcinoma cell lines (SCC2/88 and HARA), an immortalized keratinocyte cell line (HaCaT), and spontaneous human lung cancer with adjacent normal tissue. In addition, the effect of TGF-β1 on PTHrP mRNA isoform expression and stability was examined. Cell-type specific expression of PTHrP mRNA isoforms occurred between the various cell lines, normal human lung, and immortalized human keratinocytes (HaCaT). PTHrP isoform expression pattern was significantly altered between normal lung tissue and the adjacent lung cancer. In vitro studies revealed that TGF-β1 differentially altered the mRNA steady-state levels and mRNA stability of the PTHrP isoforms. Protein–RNA binding studies identified different proteins binding to the 3′-UTR of the PTHrP isoforms (139) and (141), which may be important in the differential mRNA stability and response to cytokines between the PTHrP isoforms. The data demonstrate that there is cell-type specific expression of PTHrP mRNA isoforms, and disruption of the normal regulation during cancer progression may in part be associated with TGF-β1-induced changes in PTHrP mRNA isoform expression and stability. PMID:15291755

  18. Chronic morphine exposure during puberty induces long-lasting changes in opioid-related mRNA expression in the mediobasal hypothalamus.

    PubMed

    Byrnes, Elizabeth M

    2008-01-23

    Substance abuse in developing females may have significant long-term effects on reproductive competency. Chronic morphine exposure during puberty has been shown to reduce prolactin secretion in lactating rats. Opioid activity within the mediobasal hypothalamus (MBH) regulates suckling-induced prolactin secretion. Thus, the current study was conducted to determine whether chronic pubertal morphine exposure alters the expression of mu- and/or kappa-opioid receptor mRNA or pro-opioimelanocortin (POMC) mRNA within the MBH. Using an increasing dose regimen, female Sprague-Dawley rats were injected twice daily for a total of 20 days with morphine sulfate or saline beginning at 30 days of age. Several weeks later, quantitative RT-PCR was used to determine mRNA expression within the MBH in diestrus, never pregnant (nulliparous) controls, postpartum day 5 (PPD5), PPD10, PPD18, and diestrus, reproductively experienced (primiparous) females. Pubertal morphine exposed females had increased mu- and kappa-receptor mRNA expression as well as decreased POMC mRNA expression on diestrus. During lactation, mu- and kappa-receptor mRNA expression in the MBH decreased while POMC mRNA expression increased in similarly treated females. No changes in mRNA expression were observed during lactation in pubertal saline-treated females; however, increased mu- and kappa-receptor mRNA expression as well as decreased POMC mRNA expression was observed in primiparous, pubertal saline-treated females when compared to nulliparous controls. Thus, chronic morphine exposure during puberty results in long-term alterations in mu- and kappa-receptor as well as POMC mRNA expression in the MBH which are similar to the changes observed following reproductive experience. These changes do not correlate with the decreased prolactin secretion observed during early lactation; however, they do demonstrate the enduring nature of the effects of chronic opiate exposure during puberty on hypothalamic opioid systems in

  19. Impact of STAT/SOCS mRNA Expression Levels after Major Injury

    PubMed Central

    Brumann, M.; Matz, M.; Kusmenkov, T.; Stegmaier, J.; Biberthaler, P.; Kanz, K.-G.; Mutschler, W.; Bogner, V.

    2014-01-01

    Background. Fulminant changes in cytokine receptor signalling might provoke severe pathological alterations after multiple trauma. The aim of this study was to evaluate the posttraumatic imbalance of the innate immune system with a special focus on the STAT/SOCS family. Methods. 20 polytraumatized patients were included. Blood samples were drawn 0 h–72 h after trauma; mRNA expression profiles of IL-10, STAT 3, SOCS 1, and SOCS 3 were quantified by qPCR. Results. IL-10 mRNA expression increased significantly in the early posttraumatic period. STAT 3 mRNA expressions showed a significant maximum at 6 h after trauma. SOCS 1 levels significantly decreased 6 h–72 h after trauma. SOCS 3 levels were significantly higher in nonsurvivors 6 h after trauma. Conclusion. We present a serial, sequential investigation in human neutrophil granulocytes of major trauma patients evaluating mRNA expression profiles of IL-10, STAT 3, SOCS 1, and SOCS 3. Posttraumatically, immune disorder was accompanied by a significant increase of IL-10 and STAT 3 mRNA expression, whereas SOCS 1 mRNA levels decreased after injury. We could demonstrate that death after trauma was associated with higher SOCS 3 mRNA levels already at 6 h after trauma. To support our results, further investigations have to evaluate protein levels of STAT/SOCS family in terms of posttraumatic immune imbalance. PMID:24648661

  20. Triptolide inhibits COX-2 expression by regulating mRNA stability in TNF-{alpha}-treated A549 cells

    SciTech Connect

    Sun, Lixin; Zhang, Shuang; Jiang, Zhenzhou; Huang, Xin; Wang, Tao; Huang, Xiao; Li, Han; Zhang, Luyong

    2011-12-09

    Highlights: Black-Right-Pointing-Pointer Triptolide inhibited COX-2 expression and the half-life of COX-2 mRNA is decreased. Black-Right-Pointing-Pointer The HuR protein shuttling from nucleus to cytoplasm is inhibited by triptolide. Black-Right-Pointing-Pointer Triptolide inhibited 3 Prime -UTR fluorescence reporter gene activity. Black-Right-Pointing-Pointer COX-2 mRNA binding to HuR is decreased by triptolide in pull-down experiments. -- Abstract: Cyclooxygenase-2 (COX-2) over-expression is frequently associated with human non-small-cell lung cancer (NSCLC) and involved in tumor proliferation, invasion, angiogenesis and resistance to apoptosis. In the present study, the effects of triptolide on COX-2 expression in A549 cells were investigated and triptolide was found to inhibit TNF-{alpha}-induced COX-2 expression. In our further studies, it was found that triptolide decreased the half-life of COX-2 mRNA dramatically and that it inhibited 3 Prime -untranslated region (3 Prime -UTR) fluorescence reporter gene activity. Meanwhile, triptolide inhibited the HuR shuttling from nucleus to cytoplasm. After triptolide treatment, decreased COX-2 mRNA in pull-down experiments with anti-HuR antibodies was observed, indicating that the decreased cytoplasmic HuR is responsible for the decreased COX-2 mRNA. Taken together, our results provided evidence for the first time that triptolide inhibited COX-2 expression by COX-2 mRNA stability modulation and post-transcriptional regulation. These results provide a novel mechanism of action for triptolide which may be important in the treatment of lung cancer.

  1. Electroacupuncture Enhances Preproenkephalin mRNA Expression in Rostral Ventrolateral Medulla of Rats

    PubMed Central

    Li, Min; Tjen-A-Looi, Stephanie C.; Longhurst, John C.

    2010-01-01

    Electroacupuncture (EA) causes prolonged suppression of reflex elevations in blood pressure for at least 60 minutes in anesthetized preparations. Thus, EA can modify sympathetic outflow and elevated blood pressure through actions in a number of hind brain regions, including the rostral ventrolateral medulla (rVLM). Since our previous data show that the opioid system plays a role in EA-related prolonged inhibition of presympathetic neuronal activity in the rVLM, we postulated that EA increases preproenkephalin (PPE) mRNA in this region, possibly for prolonged periods of time. Under α–chloralose anesthesia, rats received EA (1-2 mA, 2 Hz, 0.5 ms) at P5-P6 acupoints (overlying median nerves) or sham (needle placement without electrical stimulation) for 30 min. PPE mRNA in the rVLM also was evaluated in control rats that received surgery but no EA or sham treatment. 20 min, 1.5 h or 4 h following EA or sham treatment, PPE mRNA in the rVLM was analyzed by reverse transcription and quantitative real-time PCR. Relative ratios of PPE mRNA levels (normalized with 18s house keeping gene) were increased 1.5 h after EA stimulation (7.77 ± 1.39, n=6) relative to sham (2.84 ± 0.37, n=5) but were unchanged both 20 min and 4 h after EA, compared to the sham or surgery groups at the same time points. Thus, 30 min of EA transiently stimulates the production of enkephalin in a region of the brain that importantly regulates sympathetic outflow suggesting that even a single brief acupuncture treatment can increase the expression of this modulatory neuropeptide. PMID:20399834

  2. Different Profile of mRNA Expression in Sinoatrial Node from Streptozotocin-Induced Diabetic Rat

    PubMed Central

    Ferdous, Zannatul; Qureshi, Muhammad Anwar; Jayaprakash, Petrilla; Parekh, Khatija; John, Annie; Oz, Murat; Raza, Haider; Dobrzynski, Halina; Adrian, Thomas Edward; Howarth, Frank Christopher

    2016-01-01

    Background Experiments in isolated perfused heart have shown that heart rate is lower and sinoatrial node (SAN) action potential duration is longer in streptozotocin (STZ)–induced diabetic rat compared to controls. In sino-atrial preparations the pacemaker cycle length and sino-atrial conduction time are prolonged in STZ heart. To further clarify the molecular basis of electrical disturbances in the diabetic heart the profile of mRNA encoding a wide variety of proteins associated with the generation and transmission of electrical activity has been evaluated in the SAN of STZ-induced diabetic rat heart. Methodology/Principal Findings Heart rate was measured in isolated perfused heart with an extracellular suction electrode. Expression of mRNA encoding a variety of intercellular proteins, intracellular Ca2+-transport and regulatory proteins, cell membrane transport proteins and calcium, sodium and potassium channel proteins were measured in SAN and right atrial (RA) biopsies using real-time reverse transcription polymerase chain reaction techniques. Heart rate was lower in STZ (203±7 bpm) compared to control (239±11 bpm) rat. Among many differences in the profile of mRNA there are some worthy of particular emphasis. Expression of genes encoding some proteins were significantly downregulated in STZ-SAN: calcium channel, Cacng4 (7-fold); potassium channel, Kcnd2 whilst genes encoding some other proteins were significantly upregulated in STZ-SAN: gap junction, Gjc1; cell membrane transport, Slc8a1, Trpc1, Trpc6 (4-fold); intracellular Ca2+-transport, Ryr3; calcium channel Cacna1g, Cacna1h, Cacnb3; potassium channels, Kcnj5, Kcnk3 and natriuretic peptides, Nppa (5-fold) and Nppb (7-fold). Conclusions/Significance Collectively, this study has demonstrated differences in the profile of mRNA encoding a variety of proteins that are associated with the generation, conduction and regulation of electrical signals in the SAN of STZ-induced diabetic rat heart. Data from this

  3. BayMiR: inferring evidence for endogenous miRNA-induced gene repression from mRNA expression profiles

    PubMed Central

    2013-01-01

    Background Popular miRNA target prediction techniques use sequence features to determine the functional miRNA target sites. These techniques commonly ignore the cellular conditions in which miRNAs interact with their targets in vivo. Gene expression data are rich resources that can complement sequence features to take into account the context dependency of miRNAs. Results We introduce BayMiR, a new computational method, that predicts the functionality of potential miRNA target sites using the activity level of the miRNAs inferred from genome-wide mRNA expression profiles. We also found that mRNA expression variation can be used as another predictor of functional miRNA targets. We benchmarked BayMiR, the expression variation, Cometa, and the TargetScan “context scores” on two tasks: predicting independently validated miRNA targets and predicting the decrease in mRNA abundance in miRNA overexpression assays. BayMiR performed better than all other methods in both benchmarks and, surprisingly, the variation index performed better than Cometa and some individual determinants of the TargetScan context scores. Furthermore, BayMiR predicted miRNA target sets are more consistently annotated with GO and KEGG terms than similar sized random subsets of genes with conserved miRNA seed regions. BayMiR gives higher scores to target sites residing near the poly(A) tail which strongly favors mRNA degradation using poly(A) shortening. Our work also suggests that modeling multiplicative interactions among miRNAs is important to predict endogenous mRNA targets. Conclusions We develop a new computational method for predicting the target mRNAs of miRNAs. BayMiR applies a large number of mRNA expression profiles and successfully identifies the mRNA targets and miRNA activities without using miRNA expression data. The BayMiR package is publicly available and can be readily applied to any mRNA expression data sets. PMID:24001276

  4. Expression of D2 dopamine receptor mRNA in the arterial chemoreceptor afferent pathway.

    PubMed

    Czyzyk-Krzeska, M F; Lawson, E E; Millhorn, D E

    1992-11-01

    Dopamine is a major neurotransmitter in the arterial chemoreceptor pathway. In the present study we wished to determine if messenger RNAs for dopamine D1 and D2 receptor are expressed in carotid body (type I cells), in sensory neurons of the petrosal ganglion which innervate the carotid body and in sympathetic neurons of the superior cervical ganglion. We failed to detect D1 receptor mRNA in any of these tissues. However, we found that D2 receptor mRNA was expressed by dopaminergic carotid body type I cells. D2 receptor mRNA was also found in petrosal ganglion neurons that innervated the carotid sinus and carotid body. In addition, a large number of sympathetic postganglionic neurons in the superior cervical ganglion expressed D2 receptor mRNA. PMID:1362730

  5. Mechanical stretch of human uterine smooth muscle cells increases IL-8 mRNA expression and peptide synthesis.

    PubMed

    Loudon, J A Z; Sooranna, S R; Bennett, P R; Johnson, M R

    2004-12-01

    Labour is associated with increased synthesis of interleukin-8 (IL-8) by the fetal membranes and myometrium, which leads to an inflammatory infiltrate. Stretch has been shown to increase the expression of contraction-associated proteins in animal models of labour and in human myocytes in vitro. In this study, we tested the hypothesis that mechanical stretch of human myometrial cells increases IL-8 messenger ribonucleic acid (mRNA) expression. We isolated myocytes from non-pregnant women undergoing hysterectomy and pregnant women undergoing Caesarean section before and after the onset of labour. Myocytes in culture were subjected to stretch of varying intensity (6-16%) and duration (1 or 6 h) using the Flexercell system. IL-8 mRNA expression was lowest in myocytes from pregnant women not in labour, intermediate in those from non-pregnant women and greatest in those from pregnant women in labour. Stretch increased IL-8 mRNA expression independent of reproductive state. The stretch-induced increase in IL-8 mRNA expression was associated with higher IL-8 levels in the culture supernatant and enhanced promoter activity. These data suggest that stretch contributes to the increase in myometrial IL-8 synthesis associated with the onset of labour in humans. PMID:15489245

  6. Vesnarinone suppresses TNFα mRNA expression by inhibiting valosin-containing protein.

    PubMed

    Hotta, Kentaro; Nashimoto, Akihiro; Yasumura, Eiji; Suzuki, Masafumi; Azuma, Motoki; Iizumi, Yosuke; Shima, Daisuke; Nabeshima, Ryusuke; Hiramoto, Masaki; Okada, Akira; Sakata-Sogawa, Kumiko; Tokunaga, Makio; Ito, Takumi; Ando, Hideki; Sakamoto, Satoshi; Kabe, Yasuaki; Aizawa, Shinichi; Imai, Takeshi; Yamaguchi, Yuki; Watanabe, Hajime; Handa, Hiroshi

    2013-05-01

    Vesnarinone is a synthetic quinolinone derivative used in the treatment of cardiac failure and cancer. It is also known to cause agranulocytosis as a side effect, which restricts its use, although the mechanism underlying agranulocytosis is not well understood. Here, we show that vesnarinone binds to valosin-containing protein (VCP), which interacts with polyubiquitinated proteins and is essential for the degradation of IκBα to activate nuclear factor (NF)κB. We show that vesnarinone impairs the degradation of IκBα, and that the impairment of the degradation of IκBα is the result of the inhibition of the interaction between VCP and the 26S proteasome by vesnarinone. These results suggest that vesnarinone suppresses NFκB activation by inhibiting the VCP-dependent degradation of polyubiquitinated IκBα, resulting in the suppression of tumor necrosis factor-α mRNA expression. PMID:23393163

  7. Increased neutrophil adherence and adhesion molecule mRNA expression in endothelial cells during selenium deficiency.

    PubMed

    Maddox, J F; Aherne, K M; Reddy, C C; Sordillo, L M

    1999-05-01

    Leukocyte aggregation and activation on endothelial cells (EC) are important preliminary events in leukocyte migration into tissue and subsequent inflammation. Thus, an increase in leukocyte adherence has the potential to affect inflammatory disease outcome. Selenium (Se) is an integral part of the antioxidant enzyme glutathione peroxidase (GSH-Px) and plays an important role in the maintenance of the redox state of a cell. Se supplementation in the bovine has been shown to improve the outcome of acute mastitis caused by coliform bacteria, in part by enhancing the speed of neutrophil migration into the affected mammary gland. However, the mechanisms by which Se modulates neutrophil migration have not been elucidated. Therefore, an in vitro model of Se deficiency in primary bovine mammary artery EC was used to examine the impact of Se status on the adhesive properties of EC. The effect of Se on functional activities was examined by measuring neutrophil adherence to Se-deficient and Se-supplemented EC. Se-deficient EC showed significantly enhanced neutrophil adherence when stimulated with tumor necrosis factor alpha (TNF-alpha) for 4 or 24 h, interleukin-1 for 12 h, or H2O2 for 20 min (P < 0.05). To determine the mechanisms underlying these changes in neutrophil adherence, the expression of EC adhesion molecules, ICAM-1, E-selectin, and P-selectin were examined at the molecular level by a competitive reverse transcription-polymerase chain reaction. Results revealed higher mRNA expression for E-selectin and ICAM-1 in Se-deficient EC stimulated with TNF-alpha for 3 and 6 h, and greater expression of P-selectin mRNA in Se-supplemented EC with 3-h TNF-alpha stimulation. These studies provide new information to establish the role of Se nutrition in the initiation of leukocyte adherence to endothelium. PMID:10331495

  8. Redirecting T-Cell Specificity to EGFR Using mRNA to Self-limit Expression of Chimeric Antigen Receptor.

    PubMed

    Caruso, Hillary G; Torikai, Hiroki; Zhang, Ling; Maiti, Sourindra; Dai, Jianliang; Do, Kim-Anh; Singh, Harjeet; Huls, Helen; Lee, Dean A; Champlin, Richard E; Heimberger, Amy B; Cooper, Laurence J N

    2016-06-01

    Potential for on-target, but off-tissue toxicity limits therapeutic application of genetically modified T cells constitutively expressing chimeric antigen receptors (CARs) from tumor-associated antigens expressed in normal tissue, such as epidermal growth factor receptor (EGFR). Curtailing expression of CAR through modification of T cells by in vitro-transcribed mRNA species is one strategy to mitigate such toxicity. We evaluated expression of an EGFR-specific CAR coded from introduced mRNA in human T cells numerically expanded ex vivo to clinically significant numbers through coculture with activating and propagating cells (AaPC) derived from K562 preloaded with anti-CD3 antibody. The density of AaPC could be adjusted to affect phenotype of T cells such that reduced ratio of AaPC resulted in higher proportion of CD8 and central memory T cells that were more conducive to electrotransfer of mRNA than T cells expanded with high ratios of AaPC. RNA-modified CAR T cells produced less cytokine, but demonstrated similar cytolytic capacity as DNA-modified CAR T cells in response to EGFR-expressing glioblastoma cells. Expression of CAR by mRNA transfer was transient and accelerated by stimulation with cytokine and antigen. Loss of CAR abrogated T-cell function in response to tumor and normal cells expressing EGFR. We describe a clinically applicable method to propagate and modify T cells to transiently express EGFR-specific CAR to target EGFR-expressing tumor cells that may be used to limit on-target, off-tissue toxicity to normal tissue. PMID:27163741

  9. Unification of gene expression data applying standard mRNA quantification references for comparable analyses

    Technology Transfer Automated Retrieval System (TEKTRAN)

    High throughput quantitative measurements of gene expression data have problems of reproducibility and comparability due to a lack of standard mRNA quantification references. Efforts have been made to safeguard data fidelity, yet generating quality expression data of inherent value remains a challe...

  10. Integrated Expression Profiles of mRNA and miRNA in Polarized Primary Murine Microglia

    PubMed Central

    Freilich, Robert W.; Woodbury, Maya E.; Ikezu, Tsuneya

    2013-01-01

    Neuroinflammation contributes to many neurologic disorders including Alzheimer’s disease, multiple sclerosis, and stroke. Microglia is brain resident myeloid cells and have emerged as a key driver of the neuroinflammatory responses. MicroRNAs (miRNAs) provide a novel layer of gene regulation and play a critical role in regulating the inflammatory response of peripheral macrophages. However, little is known about the miRNA in inflammatory activation of microglia. To elucidate the role that miRNAs have on microglial phenotypes under classical (M1) or alternative (M2) activation under lipopolysaccharide (‘M1’-skewing) and interleukin-4 (‘M2a’-skewing) stimulation conditions, we performed microarray expression profiling and bioinformatics analysis of both mRNA and miRNA using primary cultured murine microglia. miR-689, miR-124, and miR-155 were the most strongly associated miRNAs predicted to mediate pro-inflammatory pathways and M1-like activation phenotype. miR-155, the most strongly up-regulated miRNA, regulates the signal transducer and activator of transcription 3 signaling pathway enabling the late phase response to M1-skewing stimulation. Reduced expression in miR-689 and miR-124 are associated with dis-inhibition of many canonical inflammatory pathways. miR-124, miR-711, miR-145 are the strongly associated miRNAs predicted to mediate anti-inflammatory pathways and M2-like activation phenotype. Reductions in miR-711 and miR-124 may regulate inflammatory signaling pathways and peroxisome proliferator-activated receptor-gamma pathway. miR-145 potentially regulate peripheral monocyte/macrophage differentiation and faciliate the M2-skewing phenotype. Overall, through combined miRNA and mRNA expression profiling and bioinformatics analysis we have identified six miRNAs and their putative roles in M1 and M2-skewing of microglial activation through different signaling pathways. PMID:24244499

  11. Basal expression of nucleoside transporter mRNA differs among small intestinal epithelia of beef steers and is differentially altered by ruminal or abomasal infusion of starch hydrolysate.

    PubMed

    Liao, S F; Alman, M J; Vanzant, E S; Miles, E D; Harmon, D L; McLeod, K R; Boling, J A; Matthews, J C

    2008-04-01

    In ruminants, microbial-derived nucleic acids are a major source of N and are absorbed as nucleosides by small intestinal epithelia. Although the biochemical activities of 2 nucleoside transport systems have been described for cattle, little is known regarding the regulation of their gene expression. This study was conducted to test 2 hypotheses: (1) the small intestinal epithelia of beef cattle differentially express mRNA for 3 concentrative (CNT1, 2, 3) and 2 equilibrative (ENT1, 2) nucleoside transporters (NT), and (2) expression of these NT is responsive to small intestine luminal supply of rumen-derived microbes (hence, nucleosides), energy (cornstarch hydrolysate, SH), or both. Eighteen ruminally and abomasally catheterized Angus steers (260 +/- 17 kg of BW) were fed an alfalfa cube-based diet at 1.33x NE(m) requirement. Six steers in each of 3 periods were blocked by BW (heavy vs. light). Within each block, 3 steers were randomly assigned to 3 treatments (n = 6): ruminal and abomasal water infusion (control), ruminal SH infusion/abomasal water infusion, or ruminal water infusion/abomasal SH infusion. The dosage of SH infusion amounted to 20% of ME intake. After a 14-or 16-d infusion period, steers were slaughtered, and duodenal, jejunal, and ileal epithelia were harvested for total RNA extraction and the relative amounts of mRNA expressed were determined using real-time RT-PCR quantification methodologies. All 5 NT mRNA were found expressed by each epithelium, but their abundance differed among epithelia. Specifically, jejunal expression of all 5 NT mRNA was higher than that by the ileum, whereas jejunal expression of CNT1, CNT3, and ENT1 mRNA was higher, or tended to be higher, than duodenal expression. Duodenal expression of CNT2, CNT3, and ENT2 mRNA was higher than ileal expression. With regard to SH infusion treatments, ruminal infusion increased duodenal expression of CNT3 (67%), ENT1 (51%), and ENT2 (39%) mRNA and ileal expression of CNT3 (210%) and

  12. merA gene expression in aquatic environments measured by mRNA production and Hg(II) volatilization.

    PubMed Central

    Nazaret, S; Jeffrey, W H; Saouter, E; Von Haven, R; Barkay, T

    1994-01-01

    The relationship of merA gene expression (specifying the enzyme mercuric reductase) to mercury volatilization in aquatic microbial communities was investigated with samples collected at a mercury-contaminated freshwater pond, Reality Lake, in Oak Ridge, Tenn. Levels of merA mRNA transcripts and the rate of inorganic mercury [Hg(II)] volatilization were related to the concentration of mercury in the water and to heterotrophic activity in field samples and laboratory incubations of pond water in which microbial heterotrophic activity and Hg(II) concentration were manipulated. Levels of merA-specific mRNA and Hg(II) volatilization were influenced more by microbial metabolic activity than by the concentration of mercury. merA-specific transcripts were detected in some samples which did not reduce Hg(II), suggesting that rates of mercury volatilization in environmental samples may not always be proportional to merA expression. PMID:7527625

  13. Cytochrome P450IA mRNA expression in feral Hudson River tomcod

    SciTech Connect

    Kreamer, G.L.; Squibb, K.; Gioeli, D.; Garte, S.J.; Wirgin, I. )

    1991-06-01

    The authors sought to determine if levels of cytochrome P450IA gene expression are environmentally induced in feral populations of Hudson River tomcod, a cancer prone fish, and whether laboratory exposure of tomcod to artificially spiked and naturally contaminated Hudson sediments can elicit a significant response. Using Northern blot analysis, they found levels of P450IA mRNA in tomcod collected from two Hudson River sites higher than those in tomcod from a river in Maine. Depuration of environmentally induced Hudson tomcod P450IA mRNA was rapid, with an initial detectable decline in P450 gene expression by 8 hr and basal levels reached by 5 days. Intraperitoneal injection of {beta}-napthoflavone in depurated Hudson tomcod resulted in a 15-fold induction of P450 gene expression within 26 hr. Exposure of depurated Hudson tomcod to natural sediment spiked with two PAHs resulted in a 7-fold induction of P450 gene expression. Exposure of depurated tomcod to sediment from a contaminated Hudson site also resulted in a 7- to 15-fold induction of P450IA mRNA expression. Northern blot analysis revealed a second polymorphic cytochrome P450IA mRNA band in some tomcod which was also detected by Southern blot analysis. Induction of cytochrome P450IA mRNA in Atlantic tomcod may provide a sensitive biomarker of environmentally relevant concentrations of some pollutants in the Hudson and other northeastern tidal rivers.

  14. Endoplasmic reticulum stress increases AT1R mRNA expression via TIA-1-dependent mechanism.

    PubMed

    Backlund, Michael; Paukku, Kirsi; Kontula, Kimmo K; Lehtonen, Jukka Y A

    2016-04-20

    As the formation of ribonucleoprotein complexes is a major mechanism of angiotensin II type 1 receptor (AT1R) regulation, we sought to identify novel AT1R mRNA binding proteins. By affinity purification and mass spectroscopy, we identified TIA-1. This interaction was confirmed by colocalization of AT1R mRNA and TIA-1 by FISH and immunofluorescence microscopy. In immunoprecipitates of endogenous TIA- 1, reverse transcription-PCR amplified AT1R mRNA. TIA-1 has two binding sites within AT1R 3'-UTR. The binding site proximal to the coding region is glyceraldehyde-3-phosphate dehydrogenase (GAPDH)-dependent whereas the distal binding site is not. TIA-1 functions as a part of endoplasmic reticulum (ER) stress response leading to stress granule (SG) formation and translational silencing. We and others have shown that AT1R expression is increased by ER stress-inducing factors. In unstressed cells, TIA-1 binds to AT1R mRNA and decreases AT1R protein expression. Fluorescence microscopy shows that ER stress induced by thapsigargin leads to the transfer of TIA-1 to SGs. In FISH analysis AT1R mRNA remains in the cytoplasm and no longer colocalizes with TIA-1. Thus, release of TIA-1-mediated suppression by ER stress increases AT1R protein expression. In conclusion, AT1R mRNA is regulated by TIA-1 in a ER stress-dependent manner. PMID:26681690

  15. Endoplasmic reticulum stress increases AT1R mRNA expression via TIA-1-dependent mechanism

    PubMed Central

    Backlund, Michael; Paukku, Kirsi; Kontula, Kimmo K.; Lehtonen, Jukka Y.A.

    2016-01-01

    As the formation of ribonucleoprotein complexes is a major mechanism of angiotensin II type 1 receptor (AT1R) regulation, we sought to identify novel AT1R mRNA binding proteins. By affinity purification and mass spectroscopy, we identified TIA-1. This interaction was confirmed by colocalization of AT1R mRNA and TIA-1 by FISH and immunofluorescence microscopy. In immunoprecipitates of endogenous TIA- 1, reverse transcription-PCR amplified AT1R mRNA. TIA-1 has two binding sites within AT1R 3′-UTR. The binding site proximal to the coding region is glyceraldehyde-3-phosphate dehydrogenase (GAPDH)-dependent whereas the distal binding site is not. TIA-1 functions as a part of endoplasmic reticulum (ER) stress response leading to stress granule (SG) formation and translational silencing. We and others have shown that AT1R expression is increased by ER stress-inducing factors. In unstressed cells, TIA-1 binds to AT1R mRNA and decreases AT1R protein expression. Fluorescence microscopy shows that ER stress induced by thapsigargin leads to the transfer of TIA-1 to SGs. In FISH analysis AT1R mRNA remains in the cytoplasm and no longer colocalizes with TIA-1. Thus, release of TIA-1-mediated suppression by ER stress increases AT1R protein expression. In conclusion, AT1R mRNA is regulated by TIA-1 in a ER stress-dependent manner. PMID:26681690

  16. BENZO(A)PYRENE DECREASES BRAIN AND OVARIAN AROMATASE mRNA EXPRESSION IN FUNDULUS HETEROCLITUS

    PubMed Central

    Dong, Wu; Wang, Lu; Thornton, Cammi; Scheffler, Brian E.; Willett, Kristine L.

    2008-01-01

    The higher molecular weight polycyclic aromatic hydrocarbons (PAHs) such as benzo(a)pyrene (BaP) are typically associated with genotoxicity, however, newer evidence suggests that these compounds may also act as endocrine system disruptors. We hypothesized that altered expression of the P450 enzyme aromatase genes could be a target for reproductive or developmental dysfunction caused by BaP exposure. Aromatase is at least partially responsible for estrogen homeostasis by converting androgens into estrogens. In fish, there are two isoforms of aromatase, a predominantly ovarian form, CYP19A1, and a brain form, CYP19A2. CYP19 mRNA expression was measured following BaP exposure (0, 10, 100 µg/L waterborne for 10 or 15 days) in Fundulus adults, juveniles and embryos by in situ hybridization. The CYP19A1 expression was significantly decreased after BaP exposure in the 3 month old Fundulus immature oocytes, but BaP did not affect CYP19A1 expression at any stage in adult oocytes. In embryo brains, BaP significantly decreased CYP19A2 compared to controls by 3.6-fold at 14 days post-fertilization. In adults, CYP19A2 expression was decreased significantly in the pituitary and hypothalamus (81% and 85% of controls, respectively). Promoter regions of Fundulus CYP19s were cloned, and putative response elements in the CYP19A1 and CYP19A2 promoters such as CRE, AhR and ERE may be involved in BaP-mediated changes in CYP19 expression. In order to compare the mechanism of BaP-mediated inhibition with that of a known aromatase inhibitor, fish were also exposed to fadrozole (20 and 100 µg/L). Fadrozole did not significantly decrease the mRNA expression in embryos or adult Fundulus. However, aromatase enzyme activity was significantly decreased in adult ovary and brain tissues. These studies provide a greater molecular understanding of the mechanisms of action of BaP and its potential to impact reproduction or development. PMID:18571745

  17. OPIATE EXPOSURE AND WITHDRAWAL DYNAMICALLY REGULATE mRNA EXPRESSION IN THE SEROTONERGIC DORSAL RAPHE NUCLEUS

    PubMed Central

    Lunden, Jason; Kirby, Lynn G.

    2013-01-01

    Previous results from our lab suggest that hypofunctioning of the serotonergic (5-HT) dorsal raphe nucleus (DRN) is involved in stress-induced opiate reinstatement. To further investigate the effects of morphine dependence and withdrawal on the 5-HT DRN system, we measured gene expression at the level of mRNA in the DRN during a model of morphine dependence, withdrawal and post withdrawal stress exposure in rats. Morphine pellets were implanted for 72h and then either removed or animals were injected with naloxone to produce spontaneous or precipitated withdrawal, respectively. Animals exposed to these conditions exhibited withdrawal symptoms including weight loss, wet dog shakes and jumping behavior. Gene expression for brain-derived neurotrophic factor (BDNF), TrkB, corticotrophin releasing-factor (CRF)-R1, CRF-R2, GABAA-α1, μ-opioid receptor (MOR), 5-HT1A, tryptophan hydroxylase2 and the 5-HT transporter was then measured using quantitative real-time PCR at multiple time-points across the model of morphine exposure, withdrawal and post withdrawal stress. Expression levels of BDNF, TrkB and CRF-R1 mRNA were decreased during both morphine exposure and following seven days of withdrawal. CRF-R2 mRNA expression was elevated after seven days of withdrawal. 5-HT1A receptor mRNA expression was decreased following 3 hours of morphine exposure, while TPH2 mRNA expression was decreased after seven days of withdrawal with swim stress. There were no changes in the expression of GABAA-α1, MOR or 5-HT transporter mRNA. Collectively these results suggest that alterations in neurotrophin support, CRF-dependent stress signaling, 5-HT synthesis and release may underlie 5-HT DRN hypofunction that can potentially lead to stress-induced opiate relapse. PMID:24055683

  18. Lifelong Parental Voluntary Wheel Running Increases Offspring Hippocampal Pgc-1α mRNA Expression But Not Mitochondrial Content or Bdnf Expression

    PubMed Central

    Venezia, Andrew C.; Guth, Lisa M.; Spangenburg, Espen E.; Roth, Stephen M.

    2015-01-01

    When exercise is initiated during pregnancy, offspring of physically active mothers have higher hippocampal expression of brain derived neurotrophic factor (Bdnf) and other plasticity and mitochondrial-associated genes, resulting in hippocampal structural and functional adaptations. In the present study, we examined the effects of lifelong parental voluntary wheel running (before, during, and after pregnancy) on offspring hippocampal mRNA expression of genes implicated in the exercise-induced improvement of cognitive function. C57BL/6 mice were individually housed at 8 weeks of age with (EX; n=20) or without (SED; n=20) access to a computer-monitored voluntary running wheel (VRW) for 12 weeks prior to breeding. EX breeders maintained access to the VRW throughout breeding, pregnancy, and lactation. Male offspring were housed in sedentary cages, regardless of parental group, and were sacrificed at 8 (n=18) or 28 weeks (n=19). PCR was used to assess mRNA expression of several genes and mitochondrial content (ratio of mitochondrial to nuclear DNA) in hippocampal homogenates. We found significantly higher peroxisome proliferator-activated receptor γ coactivator 1 alpha (Pgc-1α) mRNA expression in EX offspring compared to SED offspring at 8 wks (p=0.04), though the effect was no longer present at 28 wks. There was no difference in mitochondrial content or expression of Bdnf or any other mRNA targets between offspring at 8 or 28 wks. In contrast to exercise initiated during pregnancy, parental voluntary physical activity initiated early in life and maintained throughout pregnancy has little effect on offspring mRNA expression of genes implicated in exercise-induced hippocampal plasticity. PMID:25919993

  19. Relation between mRNA expression and sequence information in Desulfovibrio vulgaris: Combinatorial contributions of upstream regulatory motifs and coding sequence features to variations in mRNA abundance

    SciTech Connect

    Wu, Gang; Nie, Lei; Zhang, Weiwen

    2006-05-26

    ABSTRACT-The context-dependent expression of genes is the core for biological activities, and significant attention has been given to identification of various factors contributing to gene expression at genomic scale. However, so far this type of analysis has been focused whether on relation between mRNA expression and non-coding sequence features such as upstream regulatory motifs or on correlation between mRN abundance and non-random features in coding sequences (e.g. codon usage and amino acid usage). In this study multiple regression analyses of the mRNA abundance and all sequence information in Desulfovibrio vulgaris were performed, with the goal to investigate how much coding and non-coding sequence features contribute to the variations in mRNA expression, and in what manner they act together...

  20. Detection of MDR1 mRNA expression with optimized gold nanoparticle beacon

    NASA Astrophysics Data System (ADS)

    Zhou, Qiumei; Qian, Zhiyu; Gu, Yueqing

    2016-03-01

    MDR1 (multidrug resistance gene) mRNA expression is a promising biomarker for the prediction of doxorubicin resistance in clinic. However, the traditional technical process in clinic is complicated and cannot perform the real-time detection mRNA in living single cells. In this study, the expression of MDR1 mRNA was analyzed based on optimized gold nanoparticle beacon in tumor cells. Firstly, gold nanoparticle (AuNP) was modified by thiol-PEG, and the MDR1 beacon sequence was screened and optimized using a BLAST bioinformatics strategy. Then, optimized MDR1 molecular beacons were characterized by transmission electron microscope, UV-vis and fluorescence spectroscopies. The cytotoxicity of MDR1 molecular beacon on L-02, K562 and K562/Adr cells were investigated by MTT assay, suggesting that MDR1 molecular beacon was low inherent cytotoxicity. Dark field microscope was used to investigate the cellular uptake of hDAuNP beacon assisted with ultrasound. Finally, laser scanning confocal microscope images showed that there was a significant difference in MDR1 mRNA expression in K562 and K562/Adr cells, which was consistent with the results of q-PCR measurement. In summary, optimized MDR1 molecular beacon designed in this study is a reliable strategy for detection MDR1 mRNA expression in living tumor cells, and will be a promising strategy for in guiding patient treatment and management in individualized medication.

  1. Enhancement of mRNA expression of survivin and human beta-defensin-3 in lesions of psoriasis vulgaris.

    PubMed

    Wang, Fang; Zhang, Xia; Xia, Ping; Zhang, Li; Zhang, Zhenghua

    2016-02-01

    Suppression of apoptosis is one of the pathogenetic mechanisms for psoriasis vulgaris (PV). Survivin has the function of regulating cell division and inhibiting apoptosis. Patients with PV have an increased resistance to cutaneous infections. Human β-defensin-3 (hBD-3) is a kind of antimicrobial peptide with antimicrobial activities. To assess and compare the transcript levels of survivin and hBD-3 in pairwise skin from PV. A total of 20 patients, 10 with mild PV and 10 with severe PV, and 10 healthy control donors were recruited in the study. Real-time PCR was conducted to determine survivin and hBD-3 mRNA expression in skin lesions and normal-appearing skin of PV patients, and normal skin of healthy controls. Compared with normal control skin, the survivin mRNA expression of normal-appearing skin in the mild PV group, lesions of the mild PV group and the severe PV group were significantly elevated (P<0.05). hBD-3 mRNA expression was statistically increased in both normal-appearing skin and in lesions in mild and severe PV groups, in contrast to normal skin (P<0.001). Significant differences of hBD-3 mRNA were also found between lesions and non-lesional skin in the mild PV group and severe PV group (P<0.05). Survivin mRNA levels were mildly correlated with hBD-3 mRNA levels (rs = 0.398; P<0.05) in skin lesions from 20 PV patients. Survivin and hBD-3 may be involved in the pathogenesis of psoriasis. PMID:26771657

  2. Determination of the Absolute Number of Cytokine mRNA Molecules within Individual Activated Human T Cells

    NASA Technical Reports Server (NTRS)

    Karr, Laurel J.; Marshall, Gwen; Hockett, Richard D.; Bucy, R. Pat; Curreri, Peter A. (Technical Monitor)

    2002-01-01

    A primary function of activated T cells is the expression and subsequent secretion of cytokines, which orchestrate the differentiation of other lymphocytes, modulate antigen presenting cell activity, and alter vascular endothelium to mediate an immune response. Since many features of immune regulation probably result from modest alterations of endogenous rates of multiple interacting processes, quantitative analysis of the frequency and specific activity of individual T cells is critically important. Using a coordinated set of quantitative methods, the absolute number of molecules of several key cytokine mRNA species in individual T cells has been determined. The frequency of human blood T cells activated in vitro by mitogens and recall protein antigens was determined by intracellular cytokine protein staining, in situ hybridization for cytokine mRNA, and by limiting dilution analysis for cytokine mRNA+ cells. The absolute number of mRNA molecules was simultaneously determined in both homogenates of the entire population of cells and in individual cells obtained by limiting dilution, using a quantitative, competitive RT-PCR assay. The absolute numbers of mRNA molecules in a population of cells divided by the frequency of individual positive cells, yielded essentially the same number of mRNA molecules per cell as direct analysis of individual cells by limiting dilution analysis. Mean numbers of mRNA per positive cell from both mitogen and antigen activated T cells, using these stimulation conditions, were 6000 for IL-2, 6300 for IFN-gamma, and 1600 for IL-4.

  3. Expression of CD134 and CXCR4 mRNA in term placentas from FIV-infected and control cats.

    PubMed

    Scott, Veronica L; Burgess, Shane C; Shack, Leslie A; Lockett, Nikki N; Coats, Karen S

    2008-05-15

    Feline immunodeficiency virus (FIV) causes a natural infection of domestic cats that resembles HIV-1 in pathogenesis and disease progression. Feline AIDS is characterized by depression of the CD4+ T cell population and fatal opportunistic infections. Maternal-fetal transmission of FIV readily occurs under experimental conditions, resulting in infected viable kittens and resorbed or arrested fetal tissues. Although both FIV and HIV use the chemokine receptor CXCR4 as a co-receptor, FIV does not utilize CD4 as the primary receptor. Rather, CD134 (OX40), a T cell activation antigen and co-stimulatory molecule, is the primary receptor for FIV. We hypothesized that placental expression of CD134 and CXCR4 may render the placenta vulnerable to FIV infection, possibly facilitating efficient vertical transmission of FIV, and impact pregnancy outcome. The purpose of this project was to quantify the relative expression of CD134 and CXCR4 mRNA from the term placentas of three groups of cats: uninfected queens producing viable offspring, experimentally-infected queens producing only viable offspring, and experimentally-infected queens producing viable offspring among mostly non-viable fetuses. Total RNA was extracted from term placental tissues from all groups of cats. Real-time one-step reverse transcriptase-PCR was used to measure gene expression. The FIV receptors CD134 and CXCR4 were expressed in all late term feline placental tissues. Placentas from FIV-infected queens producing litters of only viable offspring expressed more CD134 and CXCR4 mRNA than those from uninfected queens, suggesting that infection may cause upregulation of the receptors. On the other hand, placentas from FIV-infected cats with non-successful pregnancies expressed similar levels of CD134 mRNA and slightly less CXCR4 mRNA than those from uninfected queens. Thus, it appears that cells expressing these receptors may play a role in pregnancy maintenance. PMID:18295905

  4. Digestive enzyme activity and mRNA level of trypsin in embryonic redclaw crayfish, Cherax quadricarnatus

    NASA Astrophysics Data System (ADS)

    Luo, Wen; Zhao, Yunlong; Zhou, Zhongliang; An, Chuanguang; Ma, Qiang

    2008-02-01

    The digestive enzyme activity and mRNA level of trypsin during the embryonic development of Cherax quadricarinatus were analyzed using biochemical and Fluorogenic Quantitative PCR (FQ—PCR) methods. The results show that the activities of trypsin and chymotrypsin had two different change patterns. Trypsin specific activity increased rapidly in the early stages of development and still remained high in preparation for the hatch stage. However, chymotrypsin activity peaked in stage 4 of embryonic development and decreased significantly in the last stage. The mRNA level of trypsin was elevated in all stages and two peak values were observed in stages 2 and 5 respectively. The results indicate that trypsin is very important for the utilization of the yolk during embryonic development and for the assimilation of dietary protein for larvae. The gene of trypsin is probably regulated at transcriptional level. The mRNA levels of trypsin can reflect not only trypsin activity, but also the regulatory mechanism for expression of trypsin gene to a certain degree.

  5. Tissue-specific mRNA expression profiling in grape berry tissues

    PubMed Central

    Grimplet, Jerome; Deluc, Laurent G; Tillett, Richard L; Wheatley, Matthew D; Schlauch, Karen A; Cramer, Grant R; Cushman, John C

    2007-01-01

    Background Berries of grape (Vitis vinifera) contain three major tissue types (skin, pulp and seed) all of which contribute to the aroma, color, and flavor characters of wine. The pericarp, which is composed of the exocarp (skin) and mesocarp (pulp), not only functions to protect and feed the developing seed, but also to assist in the dispersal of the mature seed by avian and mammalian vectors. The skin provides volatile and nonvolatile aroma and color compounds, the pulp contributes organic acids and sugars, and the seeds provide condensed tannins, all of which are important to the formation of organoleptic characteristics of wine. In order to understand the transcriptional network responsible for controlling tissue-specific mRNA expression patterns, mRNA expression profiling was conducted on each tissue of mature berries of V. vinifera Cabernet Sauvignon using the Affymetrix GeneChip® Vitis oligonucleotide microarray ver. 1.0. In order to monitor the influence of water-deficit stress on tissue-specific expression patterns, mRNA expression profiles were also compared from mature berries harvested from vines subjected to well-watered or water-deficit conditions. Results Overall, berry tissues were found to express approximately 76% of genes represented on the Vitis microarray. Approximately 60% of these genes exhibited significant differential expression in one or more of the three major tissue types with more than 28% of genes showing pronounced (2-fold or greater) differences in mRNA expression. The largest difference in tissue-specific expression was observed between the seed and pulp/skin. Exocarp tissue, which is involved in pathogen defense and pigment production, showed higher mRNA abundance relative to other berry tissues for genes involved with flavonoid biosynthesis, pathogen resistance, and cell wall modification. Mesocarp tissue, which is considered a nutritive tissue, exhibited a higher mRNA abundance of genes involved in cell wall function and

  6. Constitutive Activation of the G-Protein Subunit G[alpha]s within Forebrain Neurons Causes PKA-Dependent Alterations in Fear Conditioning and Cortical "Arc" mRNA Expression

    ERIC Educational Resources Information Center

    Kelly, Michele P.; Cheung, York-Fong; Favilla, Christopher; Siegel, Steven J.; Kanes, Stephen J.; Houslay, Miles D.; Abel, Ted

    2008-01-01

    Memory formation requires cAMP signaling; thus, this cascade has been of great interest in the search for cognitive enhancers. Given that medications are administered long-term, we determined the effects of chronically increasing cAMP synthesis in the brain by expressing a constitutively active isoform of the G-protein subunit G[alpha]s…

  7. mRNA expression pattern of gonadotropin receptors in bovine follicular cysts.

    PubMed

    Marelli, Belkis E; Diaz, Pablo U; Salvetti, Natalia R; Rey, Florencia; Ortega, Hugo H

    2014-12-01

    Follicular growth and steroidogenesis are dependent on gonadotropin binding to their receptors in granulosa and theca cells of ovarian follicles. The aim of the present study was to evaluate the expression patterns of follicle-stimulating hormone receptor (FSHR) and luteinizing hormone receptor (LHCGR) in ovarian follicular structures from cows with cystic ovarian disease (COD) as compared with those of regularly cycling cows. Relative real-time RT-PCR analysis showed that the expression of FSHR mRNA in granulosa cells was highest in small antral follicles, then decreased significantly as follicles increased in size, and was lowest in cysts. FSHR mRNA was not detected in the theca cells of any follicular category, including cysts. LHCGR mRNA expression in granulosa cells was significantly higher in large antral follicles than in cysts, and not detected in granulosa cells of small and medium antral follicles. In theca cells, the expression level of LHCGR mRNA in medium antral follicles was higher than in small and large antral follicles, whereas that in follicular cysts it was similar to those in small and medium antral follicles, but higher than that in large antral follicles. Our findings provide evidence that there is an altered gonadotropin receptor expression in bovine cystic follicles, and suggest that in conditions characterized by altered ovulation, such as COD, changes in the signaling system of gonadotropins may play a fundamental role in their pathogenesis. PMID:25454493

  8. mRNA Expression of Ovine Angiopoietin-like Protein 4 Gene in Adipose Tissues.

    PubMed

    Zhang, Jing; Jing, Jiong-Jie; Jia, Xia-Li; Qiao, Li-Ying; Liu, Jian-Hua; Liang, Chen; Liu, Wen-Zhong

    2016-05-01

    Angiopoietin-like protein 4 (ANGPTL4) is involved in a variety of functions, including lipoprotein metabolism and angiogenesis. To reveal the role of ANGPTL4 in fat metabolism of sheep, ovine ANGPTL4 mRNA expression was analyzed in seven adipose tissues from two breeds with distinct tail types. Forty-eight animals with the gender ratio of 1:1 for both Guangling Large Tailed (GLT) and Small Tailed Han (STH) sheep were slaughtered at 2, 4, 6, 8, 10, and 12 months of age, respectively. Adipose tissues were collected from greater and lesser omental, subcutaneous, retroperitoneal, perirenal, mesenteric, and tail fats. Ontogenetic mRNA expression of ANGPTL4 in these adipose tissues from GTL and STH was studied by quantitative real time polymerase chain reaction. The results showed that ANGPTL4 mRNA expressed in all adipose tissues studied with the highest in subcutaneous and the lowest in mesenteric fat depots. Months of age, tissue and breed are the main factors that significantly influence the mRNA expression. These results provide new insights into ovine ANGPTL4 gene expression and clues for its function mechanism. PMID:26954186

  9. mRNA Expression of Ovine Angiopoietin-like Protein 4 Gene in Adipose Tissues

    PubMed Central

    Zhang, Jing; Jing, Jiong-Jie; Jia, Xia-Li; Qiao, Li-Ying; Liu, Jian-Hua; Liang, Chen; Liu, Wen-Zhong

    2016-01-01

    Angiopoietin-like protein 4 (ANGPTL4) is involved in a variety of functions, including lipoprotein metabolism and angiogenesis. To reveal the role of ANGPTL4 in fat metabolism of sheep, ovine ANGPTL4 mRNA expression was analyzed in seven adipose tissues from two breeds with distinct tail types. Forty-eight animals with the gender ratio of 1:1 for both Guangling Large Tailed (GLT) and Small Tailed Han (STH) sheep were slaughtered at 2, 4, 6, 8, 10, and 12 months of age, respectively. Adipose tissues were collected from greater and lesser omental, subcutaneous, retroperitoneal, perirenal, mesenteric, and tail fats. Ontogenetic mRNA expression of ANGPTL4 in these adipose tissues from GTL and STH was studied by quantitative real time polymerase chain reaction. The results showed that ANGPTL4 mRNA expressed in all adipose tissues studied with the highest in subcutaneous and the lowest in mesenteric fat depots. Months of age, tissue and breed are the main factors that significantly influence the mRNA expression. These results provide new insights into ovine ANGPTL4 gene expression and clues for its function mechanism. PMID:26954186

  10. Steroid receptor mRNA expression in the ovarian follicles of cows with cystic ovarian disease.

    PubMed

    Alfaro, Natalia S; Salvetti, Natalia R; Velazquez, Melisa M; Stangaferro, Matías L; Rey, Florencia; Ortega, Hugo H

    2012-06-01

    Steroid receptors have been demonstrated to be important intra-ovarian regulators of follicular development and ovulatory processes. The aim of the present study was to determine the expression of steroid receptor mRNA in ovarian follicular structures from cows with cystic ovarian disease (COD) compared with ovarian structures from regularly cycling cows using reverse transcription polymerase chain reaction (RT-PCR). The cystic follicles showed a higher estrogen receptor α (ESR1) mRNA expression in the theca and granulosa and a lower estrogen receptor β (ESR2) expression. The cystic follicles also showed a strong expression of androgen receptor mRNA in the granulosa. No changes were observed in total progesterone receptor mRNA, but a very significant increase in the B isoform was found in the granulosa of the cystic follicles. The findings of the current study provide evidence that an altered steroid signaling system may be present in bovine follicular cysts, and we suggest that in conditions characterized by altered ovulation, such as COD, changes in the expression of ovarian steroid receptors could play a fundamental role in the pathogeny of this disease. PMID:21536311

  11. EWS represses cofilin 1 expression by inducing nuclear retention of cofilin 1 mRNA.

    PubMed

    Huang, L; Kuwahara, I; Matsumoto, K

    2014-06-01

    In Ewing's sarcoma family tumors (ESFTs), the proto-oncogene EWS that encodes an RNA-binding protein is fused by chromosomal translocation to the gene encoding one of the E-twenty six (ETS) family of transcription factors, most commonly friend leukemia virus integration 1 (FLI-1). Although EWS/FLI-1 chimeric proteins are necessary for carcinogenesis, additional events seem to be required for transformation to occur. We have previously reported that a protein product of an EWS mRNA target, whose expression is negatively regulated by EWS but not by EWS/FLI-1, contributes to ESFT development. However, the mechanism by which EWS represses protein expression remains to be elucidated. Here, we report that overexpression of full-length EWS repressed protein expression and induced nuclear retention of reporter mRNAs in a tethering assay. In contrast, when a mutant lacking the EWS C-terminal nuclear localization signal (classified as a PY-NLS) was expressed, reporter protein expression was upregulated, and the number of cells exporting reporter mRNA to the cytoplasm increased. EWS binds to the 3'-untranslated region in another mRNA target, cofilin 1 (CFL1), and negatively regulates the expression of CFL1. Overexpression of EWS induced nuclear retention of CFL1 mRNA. Furthermore, ESFT cell proliferation and metastatic potential were suppressed by small interfering RNA-mediated CFL1 knockdown. Together, our findings suggest that EWS induces nuclear retention of CFL1 mRNA, thereby suppressing expression of CFL1, and that CFL1 promotes development of ESFT. Targeting CFL1 might therefore provide another novel approach for treatment of this aggressive disease. PMID:23831569

  12. Limb segment vibration modulates spinal reflex excitability and muscle mRNA expression after spinal cord injury

    PubMed Central

    Chang, Shuo-Hsiu; Tseng, Shih-Chiao; McHenry, Colleen L.; Littmann, Andrew E.; Suneja, Manish; Shields, Richard K.

    2012-01-01

    Objective We investigated the effect of various doses of vertical oscillation (vibration) on soleus H-reflex amplitude and post-activation depression in individuals with and without SCI. We also explored the acute effect of short-term limb vibration on skeletal muscle mRNA expression of genes associated with spinal plasticity. Methods Six healthy adults and five chronic complete SCI subjects received vibratory stimulation of their tibia over three different gravitational accelerations (0.3g, 0.6g, and 1.2g) at a fixed frequency (30 Hz). Soleus H-reflexes were measured before, during, and after vibration. Two additional chronic complete SCI subjects had soleus muscle biopsies 3 h following a single bout of vibration. Results H-reflex amplitude was depressed over 83% in both groups during vibration. This vibratory-induced inhibition lasted over 2 min in the control group, but not in the SCI group. Post-activation depression was modulated during the long-lasting vibratory inhibition. A single bout of mechanical oscillation altered mRNA expression from selected genes associated with synaptic plasticity. Conclusions Vibration of the lower leg inhibits the H-reflex amplitude, influences post-activation depression, and alters skeletal muscle mRNA expression of genes associated with synaptic plasticity. Significance Limb segment vibration may offer a long term method to reduce spinal reflex excitability after SCI. PMID:21963319

  13. Elevated Intracellular Calcium Increases Ferritin H Expression Through an NFAT-Independent Posttranscriptional Mechanism Involving mRNA Stabilization

    PubMed Central

    MacKenzie, Elizabeth L.; Tsuji, Yoshiaki

    2009-01-01

    An increase in intracellular Ca2+ is one of the initiating events in T cell activation. A calcium-mediated signaling cascade in T cells involves activation of calcineurin and the dephosphorylation and translocation of Nuclear Factor of Activated T-cells (NFAT), resulting in the transcriptional activation of target genes such as IL-2. In the present study, we found that increased intracellular calcium leads to induction of the antioxidant protein ferritin H. We previously reported that the ferritin H gene is transcriptionally activated under oxidative stress conditions through an antioxidant responsive element (ARE). The facts that the ferritin H ARE contains a composite AP1 site, and that NFAT collaborates with AP1 transcription factors, led us to test whether calcium-activated NFAT is involved in the ferritin H induction through the ARE. Treatment of Jurkat T cells with the calcium ionophore, ionomycin, increased ferritin H mRNA and protein expression. Though NFAT translocated to the nucleus and bound a consensus NFAT sequence located in the IL-2 promoter following ionomycin treatment, it did not activate ferritin H transcription despite the presence of a putative NFAT binding sequence in the ferritin H ARE. In addition, the calcineurin inhibitor cyclosporin A treatment blocked ionomycin-mediated NFAT nuclear translocation but failed to abrogate the increase in ferritin H mRNA. Analysis of mRNA stability following actinomycin D treatment revealed that ionomycin prolongs ferritin H mRNA half-life. Taken together, these results suggest that ionomycin-mediated induction of ferritin H may occur in an NFAT-independent manner but through posttranscriptional stabilization of the ferritin H mRNA. PMID:18076382

  14. Connecting protein and mRNA burst distributions for stochastic models of gene expression

    NASA Astrophysics Data System (ADS)

    Elgart, Vlad; Jia, Tao; Fenley, Andrew T.; Kulkarni, Rahul

    2011-08-01

    The intrinsic stochasticity of gene expression can lead to large variability in protein levels for genetically identical cells. Such variability in protein levels can arise from infrequent synthesis of mRNAs which in turn give rise to bursts of protein expression. Protein expression occurring in bursts has indeed been observed experimentally and recent studies have also found evidence for transcriptional bursting, i.e. production of mRNAs in bursts. Given that there are distinct experimental techniques for quantifying the noise at different stages of gene expression, it is of interest to derive analytical results connecting experimental observations at different levels. In this work, we consider stochastic models of gene expression for which mRNA and protein production occurs in independent bursts. For such models, we derive analytical expressions connecting protein and mRNA burst distributions which show how the functional form of the mRNA burst distribution can be inferred from the protein burst distribution. Additionally, if gene expression is repressed such that observed protein bursts arise only from single mRNAs, we show how observations of protein burst distributions (repressed and unrepressed) can be used to completely determine the mRNA burst distribution. Assuming independent contributions from individual bursts, we derive analytical expressions connecting means and variances for burst and steady-state protein distributions. Finally, we validate our general analytical results by considering a specific reaction scheme involving regulation of protein bursts by small RNAs. For a range of parameters, we derive analytical expressions for regulated protein distributions that are validated using stochastic simulations. The analytical results obtained in this work can thus serve as useful inputs for a broad range of studies focusing on stochasticity in gene expression.

  15. Localized expression of mRNA for phagocyte-specific chemotactic cytokines in human periodontal infections.

    PubMed Central

    Tonetti, M S; Imboden, M A; Gerber, L; Lang, N P; Laissue, J; Mueller, C

    1994-01-01

    In bacterial infections, mononuclear and polymorphonuclear phagocytes are key components of host defenses. Recent investigations have indicated that chemokines are able to recruit and activate phagocytes. In particular, interleukin-8 (IL-8) attracts polymorphonuclear leukocytes (PMNs), while monocyte chemoattractant protein-1 (MCP-1) is selective for cells of the monocyte/macrophage lineage. In this investigation, we analyzed the in situ expression of IL-8 and MCP-1 mRNAs in human periodontal infections. Specific mRNA was detected by in situ hybridization using 35S-labeled riboprobes in frozen tissue sections. Phagocytes (PMNs and macrophages) were specifically detected as elastase-positive or CD68+ cells by a three-stage immunoperoxidase technique. Results indicated that expression of phagocyte-specific cytokines was confined to selected tissue locations and, in general, paralleled phagocyte infiltration. In particular, IL-8 expression was maximal in the junctional epithelium adjacent to the infecting microorganisms; PMN infiltration was more prominent in the same area. MCP-1 was expressed in the chronic inflammatory infiltrate and along the basal layer of the oral epithelium. Cells of the monocyte/macrophage lineage were demonstrated to be present in the same areas. The observed expression pattern may be the most economic way to establish a cell-type-selective chemotactic gradient within the tissue that is able to effectively direct polymorphonuclear phagocyte migration toward the infecting microorganisms and modulate mononuclear phagocyte infiltration in the surrounding tissues. This process may optimize host defenses and contribute to containing leukocyte infiltration to the infected and inflamed area, thus limiting tissue damage. Images PMID:8063420

  16. Isolation of an mRNA binding protein homologue that is expressed in nociceptors.

    PubMed

    Eilers, Helge; Trilk, Sharon L; Lee, Sook Young; Xue, Qing; Jong, Beverly E; Moff, Irene; Levine, Jon D; Schumacher, Mark A

    2004-11-01

    The peripheral detection of painful stimuli requires the activation of small-diameter primary afferent neurons known as nociceptors. We have exploited two features of nociceptor biology, expression of the high affinity receptor for nerve growth factor (TrkA) and sensitivity to capsaicin, to isolate novel proteins using a differential display cloning scheme. A resulting approximately 4.3-kb cDNA was isolated and sequence analysis inferred a approximately 157-kDa protein containing a signal/mitochondrial targeting peptide sequence. Due to its molecular weight and significant amino acid identity with 'human leucine-rich protein 130'[leucine-rich pentatricopeptide motif containing (LRPPRC)], we termed the cDNA candidate leucine-rich protein 157 (rLRP157). Western blot analysis of HEK293 cells over-expressing the candidate cDNA showed a single protein product of similar size to that found in rat dorsal root ganglion as well as in other neuronal tissues and cell lines. Although expressed in a wide variety of tissues, in situ hybridization and immunohistochemistry in dorsal root ganglion revealed that rLRP157 expression was restricted to the small-diameter neurons. Sequence identity with previously characterized mRNA binding proteins and its subcellular localization in sensory neurons suggest that rLRP157 is associated with mitochondrial function. Moreover, the genetic basis of French-Canadian Leigh syndrome, which confers a loss of mitochondrial cytochrome c oxidase and is characterized by neurodegeneration, was recently mapped to a mutation in the LRPPRC gene. Taken together with its expression in small-diameter sensory neurons, we hypothesize that rLRP157, the rat orthologue of the human LRPPRC, may play a role in the modulation of peripheral pain transduction and serve as a novel marker for nociceptor subtypes. PMID:15525270

  17. Regulation of NMDA receptor subunit mRNA expression in the guinea pig vestibular nuclei following unilateral labyrinthectomy.

    PubMed

    Sans, N; Sans, A; Raymond, J

    1997-10-01

    The localization of neurons expressing mRNAs for the NR1 and NR2A-D subunits of the glutamatergic NMDA receptor was examined by non-radioactive in situ hybridization throughout the guinea pig vestibular nuclei. After deafferentation of the vestibular nuclei by unilateral labyrinthectomy, modifications of the mRNA distributions were followed for 30 days. A quantitative analysis was performed in the medial vestibular nucleus by comparison of the labelled neurons in the ipsi- and contra-lateral nuclei. In vestibular nuclei, the NR1 subunit mRNA was found in various populations of neurons. The NR2A and NR2C subunit mRNAs were less widely distributed, whereas little NR2D mRNA was detected and only rare cells contained NR2B mRNA. NR1 and NR2A-D mRNAs were colocalized in some but not other neuronal types. Twenty hours after the lesion, there was a transient ipsilateral increase of NR1 mRNA level in the medial vestibular nucleus, followed by a decrease 48 h after the lesion and, at 3 days, by recovery to the control level. An ipsilateral increase in the mRNA level of NR2C subunit was detected 20 h after lesion and maintained at 48 h. No significant changes were apparent in NR2A, NR2B and NR2D mRNA levels. The distributions and the differential signal intensities of NR2A-D mRNAs suggest various subunit organizations of the NMDA receptors in different neurons of the vestibular nuclei. Neuronal plasticity reorganizations in the vestibular nuclei following unilateral labyrinthectomy appear to include only changes in NR1 and NR2C mRNA levels modifying the functional diversity of the NMDA receptor in the ipsilateral medial vestibular nucleus neurons. The transient changes in NR1 and the NR2C subunit mRNA expressions in response to sensory deprivation are consistent with an active role for NMDA receptors in the appearance and development of the vestibular compensatory process. PMID:9421163

  18. Serum KIBRA mRNA and Protein Expression and Cognitive Functions in Depression

    PubMed Central

    Talarowska, Monika; Szemraj, Janusz; Kowalczyk, Małgorzata; Gałecki, Piotr

    2016-01-01

    Background Genes participating in synaptic signalling or plasticity in brain regions such as the prefrontal cortex (PFC) and the hippocampus have been implicated in cognition. Recently, a new gene (KIBRA, WWC1) has been added to this group due to its impact on memory performance. Recurrent depressive disorder (rDD) is a multifactorial disease, that one of the typical features is cognitive impairment. The main objective of this study was to perform an analysis of the KIBRA gene on both mRNA and protein levels in patients suffering from rDD and to investigate the relationship between KIBRA expression and cognitive performance. Material/Methods The study comprised 236 subjects: patients with rDD (n=131) and healthy subjects (n=105, HS). Cognitive function assessment was based on: Trail Making Test, The Stroop Test, Verbal Fluency Test and Auditory Verbal Learning Test. Results Both mRNA and protein expression levels of KIBRA gene were significantly higher in healthy subjects when compared to rDD. The presented relationship is clear even after taking age, education and sex of the examined subjects into consideration. No statistically significant relationship was found in the experiments between any of the conducted tests and KIBRA gene expression on mRNA level for both the rDD and HS groups. The presented study has limitations related to the fact that patients were being treated with antidepressant. This is relevant due to the fact that some antidepressants may affect mRNA expression. Number of patients and healthy subjects may result in the lack of statistical significance in some cases. Conclusions 1. The results of our study show decreased expression of the KIBRA gene on both mRNA and protein levels in depression. 2. We did not find any significant relationship between KIBRA gene expression and cognitive functions in case of both the healthy subjects and the patients affected by rDD. PMID:26768155

  19. Selecting Reliable mRNA Expression Measurements Across Platforms Improves Downstream Analysis

    PubMed Central

    Tong, Pan; Diao, Lixia; Shen, Li; Li, Lerong; Heymach, John Victor; Girard, Luc; Minna, John D.; Coombes, Kevin R.; Byers, Lauren Averett; Wang, Jing

    2016-01-01

    With increasing use of publicly available gene expression data sets, the quality of the expression data is a critical issue for downstream analysis, gene signature development, and cross-validation of data sets. Thus, identifying reliable expression measurements by leveraging multiple mRNA expression platforms is an important analytical task. In this study, we propose a statistical framework for selecting reliable measurements between platforms by modeling the correlations of mRNA expression levels using a beta-mixture model. The model-based selection provides an effective and objective way to separate good probes from probes with low quality, thereby improving the efficiency and accuracy of the analysis. The proposed method can be used to compare two microarray technologies or microarray and RNA sequencing measurements. We tested the approach in two matched profiling data sets, using microarray gene expression measurements from the same samples profiled on both Affymetrix and Illumina platforms. We also applied the algorithm to mRNA expression data to compare Affymetrix microarray data with RNA sequencing measurements. The algorithm successfully identified probes/genes with reliable measurements. Removing the unreliable measurements resulted in significant improvements for gene signature development and functional annotations. PMID:27199546

  20. EXPRESSION OF AHR AND ARNT MRNA IN CULTURED HUMAN ENDOMETRIAL EXPLANTS EXPOSED TO TCDD

    EPA Science Inventory

    Expression of AhR and ARNT mRNA in cultured human endometrial explants exposed to TCDD.

    Pitt JA, Feng L, Abbott BD, Schmid J, Batt RE, Costich TG, Koury ST, Bofinger DP.

    Curriculum in Toxicology, University of North Carolina, Chapel Hill, NC 27599, USA.

    Endom...

  1. Real time imaging of mRNA expression dynamics in live cells using protein complementation methods

    NASA Astrophysics Data System (ADS)

    Meller, Amit

    2009-03-01

    Traditional methods for mRNA quantification in cells, such as northern blots, quantitative PCR or microarrays assays, require cell lysis and therefore do not preserve its dynamics. These methods cannot be used to probe the spatio-temporal localization of mRNA in cells, which provide useful information for a wide range biomolecular process, including RNA metabolizim, expression kinetics and RNA interference. To probe mRNA dynamics in live prokaryotic and eukaryotic cells, we develop a method, which exploit the strong affinity of the eukaryotic initiation factor 4A (eIF4A) to specific RNA aptamers. Two parts of the eIF4A are fused to a split Green Fluorescence Protein (GFP), and are expressed in the cells at high abundance. However, only when the RNA apatmer is also present, the two protein parts complement and become fluorescent. Thus, the fluorescent background remains low, allowing us to directly image the expression of mRNA molecules in live e-coli cells from its early onset, over hours. We find that the expression kinetics can be classified in one out of at least three forms, which also display distinct spatial distributions. I will discuss the possible biological origin for these distributions and their time evolution.

  2. Mutation-dependent effects on mRNA and protein expressions in cultured keratinocytes of Hailey-Hailey disease.

    PubMed

    Matsuda, Mitsuhiro; Hamada, Takahiro; Numata, Sanae; Teye, Kwesi; Okazawa, Hiromi; Imafuku, Shinichi; Ohata, Chika; Furumura, Minao; Hashimoto, Takashi

    2014-07-01

    Hailey-Hailey disease (HHD) is a dominantly inherited skin disease caused by mutations in ATP2C1 gene, which encodes secretory pathway Ca(2+) /Mn(2+) -ATPase protein 1. The precise mechanism remains unclear. In this study, to understand molecular basis of HHD, we examined expression of mRNA and protein in cultured keratinocytes derived from three HHD patients with different mutations. We showed that reduced expression of mRNA and protein in patient with p.Gln504X, but not in patients with p.Pro307His and c.1308+1G>A. RT-PCR analysis for patient with c.1308+1G>A revealed in-frame exon skipping. Reduction of mRNA and protein in p.Gln504X was considered to be caused by nonsense-mediated mRNA decay. p.Pro307His located adjacent to Ca(2+) -binding residue may induced conformational change, which leads to defective Ca(2+) transport. In-frame shorter transcript caused by c.1308+1G>A may have slightly reduced activity, which accounted for mild phenotype of the patient. These results clarified the pathogenic effects of different causative mutations in development of skin lesions. PMID:24698124

  3. hnRNP-U enhances the expression of specific genes by stabilizing mRNA.

    PubMed

    Yugami, Masato; Kabe, Yasuaki; Yamaguchi, Yuki; Wada, Tadashi; Handa, Hiroshi

    2007-01-01

    Heterogeneous nuclear ribonucleoproteins (hnRNPs) are thought to be involved in pre-mRNA processing. hnRNP-U, also termed scaffold attachment factor A (SAF-A), binds to pre-mRNA and nuclear matrix/scaffold attachment region DNA elements. However, its role in the regulation of gene expression is as yet poorly understood. In the present study, we show that hnRNP-U specifically enhances the expression of tumor necrosis factor alpha mRNA by increasing its stability, possibly through binding to the 3' untranslated region. We also show that hnRNP-U enhances the expression of several other genes as well, including GADD45A, HEXIM1, HOXA2, IER3, NHLH2, and ZFY, by binding to and stabilizing these mRNAs. These results suggest that hnRNP-U enhances the expression of specific genes by regulating mRNA stability. PMID:17174306

  4. Expression of BDNF and TH mRNA in the brain following inhaled administration of α-pinene.

    PubMed

    Kasuya, Hikaru; Okada, Narumi; Kubohara, Mika; Satou, Tadaaki; Masuo, Yoshinori; Koike, Kazuo

    2015-01-01

    Essential oils are mainly administered by inhalation. Administration by inhalation is considered to occur through two pathways, neurological transfer and pharmacological transfer. However, the relationship between the two routes is not clear. To clarify this relationship, we administered α-pinene, which has an anxiolytic-like effect, to mice. Emotional behavior and accumulation and expression of relevant mRNAs in the brain (brain-derived neurotrophic factor (BDNF); tyrosine hydroxylase (TH)) were examined following inhaled administration of α-pinene (10 μL/L air for 60 or 90min). To evaluate the anxiolytic-like effect, the elevated plus maze (EPM) test was used. Inhalation of α-pinene for 60 min produced a significant increase in the total distance traveled in the EPM test compared with control (water). The concentration of α-pinene in the brain after 60 min of inhalation was significantly increased compared with that after 90 min of inhalation. The expression of BDNF mRNA in the olfactory bulb and in the hippocampus was almost the same after 60 min of inhalation compared to that after 90 min of inhalation. The expression of TH mRNA in the midbrain after 60 min of inhalation was significantly increased compared with that of the control. Thus, an increase in α-pinene in the brain induces an increase in TH mRNA expression and increases locomotor activity. The anxiolytic-like effect may be related to both neurological transfer and pharmacological transfer. PMID:25230317

  5. UCP2 mRNA expression is dependent on glucose metabolism in pancreatic islets

    SciTech Connect

    Dalgaard, Louise T.

    2012-01-06

    Highlights: Black-Right-Pointing-Pointer UCP2 mRNA levels are decreased in islets of Langerhans from glucokinase deficient mice. Black-Right-Pointing-Pointer UCP2 mRNA up-regulation by glucose is dependent on glucokinase. Black-Right-Pointing-Pointer Absence of UCP2 increases GSIS of glucokinase heterozygous pancreatic islets. Black-Right-Pointing-Pointer This may protect glucokinase deficient mice from hyperglycemic damages. -- Abstract: Uncoupling Protein 2 (UCP2) is expressed in the pancreatic {beta}-cell, where it partially uncouples the mitochondrial proton gradient, decreasing both ATP-production and glucose-stimulated insulin secretion (GSIS). Increased glucose levels up-regulate UCP2 mRNA and protein levels, but the mechanism for UCP2 up-regulation in response to increased glucose is unknown. The aim was to examine the effects of glucokinase (GK) deficiency on UCP2 mRNA levels and to characterize the interaction between UCP2 and GK with regard to glucose-stimulated insulin secretion in pancreatic islets. UCP2 mRNA expression was reduced in GK+/- islets and GK heterozygosity prevented glucose-induced up-regulation of islet UCP2 mRNA. In contrast to UCP2 protein function UCP2 mRNA regulation was not dependent on superoxide generation, but rather on products of glucose metabolism, because MnTBAP, a superoxide dismutase mimetic, did not prevent the glucose-induced up-regulation of UCP2. Glucose-stimulated insulin secretion was increased in UCP2-/- and GK+/- islets compared with GK+/- islets and UCP2 deficiency improved glucose tolerance of GK+/- mice. Accordingly, UCP2 deficiency increased ATP-levels of GK+/- mice. Thus, the compensatory down-regulation of UCP2 is involved in preserving the insulin secretory capacity of GK mutant mice and might also be implicated in limiting disease progression in MODY2 patients.

  6. mRNA expression and protein localization of dentin matrix protein 1 during dental root formation.

    PubMed

    Toyosawa, S; Okabayashi, K; Komori, T; Ijuhin, N

    2004-01-01

    Dentin matrix protein 1 (DMP1) is an acidic phosphoprotein. DMP1 was initially detected in dentin and later in other mineralized tissues including cementum and bone, but the DMP1 expression pattern in tooth is still controversial. To determine the precise localization of DMP1 messenger RNA (mRNA) and the protein in the tooth, we performed in situ hybridization and immunohistochemical analyses using rat molars and incisors during various stages of root formation. During root dentin formation of molars, DMP1 mRNA was detected in root odontoblasts in parallel with mineralization of the dentin. However, the level of DMP1 mRNA expression in root odontoblasts decreased near the coronal part and was absent in coronal odontoblasts. DMP1 protein was localized along dentinal tubules and their branches in mineralized root dentin, and the distribution of DMP1 shifted from the end of dentinal tubules to the base of the tubules as dentin formation progressed. During the formation of the acellular cementum, DMP1 mRNA was detected in cementoblasts lining the acellular cementum where its protein was localized. During the formation of the cellular cementum, DMP1 mRNA was detected in cementocytes embedded in the cellular cementum but not in cementoblasts, and its protein was localized in the pericellular cementum of cementocytes including their processes. During dentin formation of incisors, DMP1 mRNA was detected in odontoblasts on the cementum-related dentin, where its protein was localized along dentinal tubules near the mineralization front. The localization of DMP1 mRNA and protein in dentin and cementum was related to their mineralization, suggesting that one of the functions of DMP1 may be involved in the mineralization of dentin and cementum during root formation. PMID:14751569

  7. Expression and regulation of Icer mRNA in the Syrian hamster pineal gland.

    PubMed

    Diaz, Elena; Garidou, Marie-Laure; Dardente, Hugues; Salingre, Anthony; Pévet, Paul; Simonneaux, Valérie

    2003-04-10

    Inducible-cAMP early repressor (ICER) is a potent inhibitor of CRE (cAMP-related element)-driven gene transcription. In the rat pineal gland, it has been proposed to be part of the mechanisms involved in the shutting down of the transcription of the gene coding for arylalkylamine N-acetyltransferase (AA-NAT, the melatonin rhythm-generating enzyme). In this study, we report that ICER is expressed in the pineal gland of the photoperiodic rodent Syrian hamster although with some difference compared to the rat. In the Syrian hamster pineal, Icer mRNA levels, low at daytime, displayed a 20-fold increase during the night. Nighttime administration of a beta-adrenergic antagonist, propranolol, significantly reduced Icer mRNA levels although daytime administration of a beta-adrenergic agonist, isoproterenol, was unable to raise the low amount of Icer mRNA. These observations indicate that Icer mRNA expression is induced by the clock-driven norepinephrine release and further suggest that this stimulation is restricted to nighttime, as already observed for Aa-nat gene transcription. Furthermore, we found that the daily profile of Icer mRNA displayed photoperiodic variation with a lengthening of the nocturnal peak in short versus long photoperiod. These data indicate that ICER may be involved in both daily and seasonal regulation of melatonin synthesis in the Syrian hamster. PMID:12670714

  8. Decreased drebrin mRNA expression in Alzheimer disease: correlation with tau pathology.

    PubMed

    Julien, Carl; Tremblay, Cyntia; Bendjelloul, Farid; Phivilay, Alix; Coulombe, Marie-Andrée; Emond, Vincent; Calon, Frédéric

    2008-08-01

    To investigate the mRNA expression of the dendritic spine protein drebrin in Alzheimer's disease (AD), we performed post-mortem in situ hybridization studies in brain sections from 20 AD patients and 21 controls. AD diagnosis was confirmed by decreased drebrin protein and increased Abeta(40) (+464%; P < 0.05), Abeta(42) (+369%; P < 0.0001), Abeta(42/40) ratio (+226%; P < 0.01), total tau (+2,725%; P < 0.0001), and paired helical filament tau (PHFtau; +867%; P < 0.001) compared with controls. We found significant decreases in drebrin mRNA in the parietal cortex (-27%; P < 0.01), the temporal cortex (-22%; P < 0.05), and the hippocampus (-25%; P < 0.05) of AD patients compared with controls. Cortical levels of drebrin mRNA correlated positively with soluble total tau (r(2) = +0.244) but negatively with duration of symptoms (r(2) = -0.357) and PHFtau (r(2) = -0.248). Drebrin mRNA levels were correlated to a lesser degree with the drebrin protein content (r(2) = +0.136) and with sim2 (r(2) = +0.176), a potential modulator of drebrin transcription. Our results suggest that the down-regulation of drebrin mRNA expression plays an important role in AD and is closely related to the progression of the disease. PMID:18338803

  9. BAY11 enhances OCT4 synthetic mRNA expression in adult human skin cells

    PubMed Central

    2013-01-01

    Introduction The OCT4 transcription factor is involved in many cellular processes, including development, reprogramming, maintaining pluripotency and differentiation. Synthetic OCT4 mRNA was recently used (in conjunction with other reprogramming factors) to generate human induced pluripotent stem cells. Here, we discovered that BAY 11-7082 (BAY11), at least partially through an NF-κB-inhibition based mechanism, could significantly increase the expression of OCT4 following transfection of synthetic mRNA (synRNA) into adult human skin cells. Methods We tested various chemical and molecular small molecules on their ability to suppress the innate immune response seen upon synthetic mRNA transfection. Three molecules - B18R, BX795, and BAY11 - were used in immunocytochemical and proliferation-based assays. We also utilized global transcriptional meta-analysis coupled with quantitative PCR to identify relative gene expression downstream of OCT4. Results We found that human skin cells cultured in the presence of BAY11 resulted in reproducible increased expression of OCT4 that did not inhibit normal cell proliferation. The increased levels of OCT4 resulted in significantly increased expression of genes downstream of OCT4, including the previously identified SPP1, DUSP4 and GADD45G, suggesting the expressed OCT4 was functional. We also discovered a novel OCT4 putative downstream target gene SLC16A9 which demonstrated significantly increased expression following elevation of OCT4 levels. Conclusions For the first time we have shown that small molecule-based stabilization of synthetic mRNA expression can be achieved with use of BAY11. This small molecule-based inhibition of innate immune responses and subsequent robust expression of transfected synthetic mRNAs may have multiple applications for future cell-based research and therapeutics. PMID:23388106

  10. Beta-integrin of Anopheles gambiae: mRNA cloning and analysis of structure and expression.

    PubMed

    Mahairaki, V; Lycett, G; Blass, C; Louis, C

    2001-06-01

    We have isolated an mRNA encoding a beta integrin subunit of the malaria mosquito Anopheles gambiae. Our analysis predicts a protein that is very similar to betaPS, the fruitfly orthologue. The gene is expressed during all developmental stages and it is found in all body parts, including the midgut. Finally, the expression of the gene does not seem to be modulated during blood meals, except for a substantial increase 48 h posthaematophagy, when digestion is nearly complete. PMID:11437913

  11. Regulation of VEGF and bFGF mRNA expression and other proliferative compounds in skeletal muscle cells.

    PubMed

    Jensen, L; Schjerling, P; Hellsten, Y

    2004-01-01

    The role of muscle contraction, prostanoids, nitric oxide and adenosine in the regulation of vascular endothelial growth factor (VEGF), basic fibroblast growth factor (bFGF) and endothelial cell proliferative compounds in skeletal muscle cell cultures was examined. VEGF and bFGF mRNA, protein release as well as the proliferative effect of extracellular medium was determined in non-stimulated and electro-stimulated rat and human skeletal muscle cells. In rat skeletal muscle cells these aspects were also determined after treatment with inhibitors and/or donors of nitric oxide (NO), prostanoids and adenosine. Electro-stimulation caused an elevation in the VEGF and bFGF mRNA levels of rat muscle cells by 33% and 43% (P < 0.05), respectively, and in human muscle cells VEGF mRNA was elevated by 24%. Medium from electro-stimulated human, but not rat muscle cells induced a 126% higher (P < 0.05) endothelial cell proliferation than medium from non-stimulated cells. Cyclooxygenase inhibition of rat muscle cells induced a 172% increase (P < 0.05) in VEGF mRNA and a 104% increase in the basal VEGF release. Treatment with the NO donor SNAP (0.5 microM) decreased (P < 0.05) VEGF and bFGF mRNA by 42 and 38%, respectively. Medium from SNAP treated muscle cells induced a 45% lower (P < 0.05) proliferation of endothelial cells than control medium. Adenosine enhanced the basal VEGF release from muscle cells by 75% compared to control. The present data demonstrate that contractile activity, NO, adenosine and products of cyclooxygenase regulate the expression of VEGF and bFGF mRNA in skeletal muscle cells and that contractile activity and NO regulate endothelial cell proliferative compounds in muscle extracellular fluid. PMID:15609080

  12. Prognostic values of four Notch receptor mRNA expression in gastric cancer

    PubMed Central

    Wu, Xiaoyu; Liu, Wentao; Tang, Ding; Xiao, Haijuan; Wu, Zhenfeng; Chen, Che; Yao, Xuequan; Liu, Fukun; Li, Gang

    2016-01-01

    Notch ligands and receptors are frequently deregulated in several human malignancies including gastric cancer. The activation of Notch signaling has been reported to contribute to gastric carcinogenesis and progression. However, the prognostic roles of individual Notch receptors in gastric cancer patients remain elusive. In the current study, we accessed the prognostic roles of four Notch receptors, Notch 1–4, in gastric cancer patients through “The Kaplan-Meier plotter” (KM plotter) database, in which updated gene expression data and survival information include a total of 876 gastric cancer patients. All four Notch receptors’ high mRNA expression was found to be correlated to worsen overall survival (OS) for all gastric cancer patients followed for 20 years. We further accessed the prognostic roles of individual Notch receptors in different clinicopathological features using Lauren classification, pathological grades, clinical grades, HER2 status and different choices of treatments of gastric cancer patients. These results indicate that there are critical prognostic values of the four Notch receptors in gastric cancer. This information will be useful for better understanding of the heterogeneity and complexity in the molecular biology of gastric cancer and to develop tools to more accurately predict their prognosis. PMID:27363496

  13. Disruption of subcellular Arc/Arg 3.1 mRNA expression in striatal efferent neurons following partial monoamine loss induced by methamphetamine

    PubMed Central

    Barker-Haliski, Melissa L.; Oldenburger, Katharina; Keefe, Kristen A.

    2012-01-01

    The immediate-early gene Arc (activity-regulated cytoskeleton-associated protein) is provocative in the context of neuroplasticity because of its experience-dependent regulation and mRNA transport to and translation at activated synapses. Normal rats have more preproenkephalin-negative (ppe-neg; presumed striatonigral) neurons with cytoplasmic Arc mRNA than ppe-positive (ppe-pos; striatopallidal) neurons, despite equivalent numbers of these neurons showing novelty-induced transcriptional activation of Arc. Furthermore, rats with partial monoamine loss induced by methamphetamine (METH) show impaired Arc mRNA expression in both ppe-neg and ppe-pos neurons relative to normal animals following response-reversal learning. In this study, Arc expression induced by exposure to a novel environment was used to assess transcriptional activation and cytoplasmic localization of Arc mRNA in striatal efferent neuron subpopulations subsequent to METH-induced neurotoxicity. Partial monoamine depletion significantly altered Arc expression. Specifically, basal Arc expression was elevated, but novelty-induced transcriptional activation was abolished. Without novelty-induced Arc transcription, METH-pretreated rats also had fewer neurons with cytoplasmic Arc mRNA expression, with the effect being greater for ppe-neg neurons. Thus, METH-induced neurotoxicity substantially alters striatal efferent neuron function at the level of Arc transcription, suggesting a long-term shift in basal ganglia neuroplasticity processes subsequent to METH-induced neurotoxicity. Such changes potentially underlie striatally-based learning deficits associated with METH-induced neurotoxicity. PMID:22978492

  14. Expression of tilapia prepro-melanin-concentrating hormone mRNA in hypothalamic and neurohypophysial cells.

    PubMed

    Gröneveld, D; Eckhardt, E R; Coenen, A J; Martens, G J; Balm, P H; Wendelaar Bonga, S E

    1995-04-01

    Melanin-concentrating hormone (MCH) is a neuropeptide involved in background adaptation in teleost fish, and in multiple regulatory functions in mammals and fish. To study the expression of the MCH preprohormone (ppMCH) in teleosts, we first cloned a hypothalamic cDNA encoding the complete ppMCH of tilapia (Oreochromis mossambicus), and a cRNA probe derived from a 270 bp ppMCH cDNA fragment was used for the expression studies. The level of ppMCH mRNA expression in tilapia hypothalamus, measured by dot blot analysis, was significantly higher in fish adapted to a white background than in black-adapted animals, which is in accordance with the reported MCH plasma and tissue concentrations in fish. Northern blot analysis not only revealed a strong ppMCH mRNA signal in the hypothalamus, but also the presence of ppMCH mRNA in the neurointermediate lobe (NIL) of the pituitary. In situ hybridization and immunocytochemistry showed that ppMCH mRNA as well as MCH immunoreactivity are located in perikarya of two hypothalamic regions, namely in the nucleus lateralis tuberis (NLT) and the nucleus recessus lateralis (NRL). Quantitative analysis by dot blot hybridization revealed about eight times more ppMCH mRNA in the NLT than in the NRL and NIL of mature tilapias. ppMCH mRNA in the NIL could be localized to cell bodies of the neurohypophysis, which were also MCH immunoreactive. PMID:7619209

  15. Changes in apoptotic microRNA and mRNA expression profiling in Caenorhabditis elegans during the Shenzhou-8 mission.

    PubMed

    Gao, Ying; Li, Shuai; Xu, Dan; Wang, Junjun; Sun, Yeqing

    2015-11-01

    Radiation and microgravity exposure have been proven to induce abnormal apoptosis in microRNA (miRNA) and mRNA expression, but whether space conditions, including radiation and microgravity, activate miRNAs to regulate the apoptosis is undetermined. For that purpose, we investigated miRNome and mRNA expression in the ced-1 Caenorhabditis elegans mutant vs the wild-type, both of which underwent spaceflight, spaceflight 1g-centrifuge control and ground control conditions during the Shenzhou-8 mission. Results showed that no morphological changes in the worms were detected, but differential miRNA expression increased from 43 (ground control condition) to 57 and 91 in spaceflight and spaceflight control conditions, respectively. Microgravity altered miRNA expression profiling by decreasing the number and significance of differentially expressed miRNA compared with 1 g incubation during spaceflight. Alterations in the miRNAs were involved in alterations in apoptosis, neurogenesis larval development, ATP metabolism and GTPase-mediated signal transduction. Among these, 17 altered miRNAs potentially involved in apoptosis were screened and showed obviously different expression signatures between space conditions. By integrated analysis of miRNA and mRNA, miR-797 and miR-81 may be involved in apoptosis by targeting the genes ced-10 and both drp-1 and hsp-1, respectively. Compared with ground condition, space conditions regulated apoptosis though a different manner on transcription, by altering expression of seven core apoptotic genes in spaceflight condition, and eight in spaceflight control condition. Results indicate that, miRNA of Caenorhabditis elegans probably regulates apoptotic gene expression in response to space environmental stress, and shows different behavior under microgravity condition compared with 1 g condition in the presence of space radiation. PMID:26286471

  16. Changes in apoptotic microRNA and mRNA expression profiling in Caenorhabditis elegans during the Shenzhou-8 mission

    PubMed Central

    Gao, Ying; Li, Shuai; Xu, Dan; Wang, Junjun; Sun, Yeqing

    2015-01-01

    Radiation and microgravity exposure have been proven to induce abnormal apoptosis in microRNA (miRNA) and mRNA expression, but whether space conditions, including radiation and microgravity, activate miRNAs to regulate the apoptosis is undetermined. For that purpose, we investigated miRNome and mRNA expression in the ced-1 Caenorhabditis elegans mutant vs the wild-type, both of which underwent spaceflight, spaceflight 1g-centrifuge control and ground control conditions during the Shenzhou-8 mission. Results showed that no morphological changes in the worms were detected, but differential miRNA expression increased from 43 (ground control condition) to 57 and 91 in spaceflight and spaceflight control conditions, respectively. Microgravity altered miRNA expression profiling by decreasing the number and significance of differentially expressed miRNA compared with 1 g incubation during spaceflight. Alterations in the miRNAs were involved in alterations in apoptosis, neurogenesis larval development, ATP metabolism and GTPase-mediated signal transduction. Among these, 17 altered miRNAs potentially involved in apoptosis were screened and showed obviously different expression signatures between space conditions. By integrated analysis of miRNA and mRNA, miR-797 and miR-81 may be involved in apoptosis by targeting the genes ced-10 and both drp-1 and hsp-1, respectively. Compared with ground condition, space conditions regulated apoptosis though a different manner on transcription, by altering expression of seven core apoptotic genes in spaceflight condition, and eight in spaceflight control condition. Results indicate that, miRNA of Caenorhabditis elegans probably regulates apoptotic gene expression in response to space environmental stress, and shows different behavior under microgravity condition compared with 1 g condition in the presence of space radiation. PMID:26286471

  17. Cadmium Activates Multiple Signaling Pathways That Coordinately Stimulate Akt Activity to Enhance c-Myc mRNA Stability

    PubMed Central

    Tsai, Jia-Shiuan; Chao, Cheng-Han; Lin, Lih-Yuan

    2016-01-01

    Cadmium is a known environmental carcinogen. Exposure of Cd leads to the activation of several proto-oncogenes in cells. We investigated here the mechanism of c-Myc expression in hepatic cells under Cd treatment. The c-Myc protein and mRNA levels increased in dose- and time-dependent manners in HepG2 cells with Cd treatment. This increase was due to an increase in c-Myc mRNA stability. To explore the mechanism involved in enhancing the mRNA stability, several cellular signaling factors that evoked by Cd treatment were analyzed. PI3K, p38, ERK and JNK were activated by Cd. However, ERK did not participate in the Cd-induced c-Myc expression. Further analysis revealed that mTORC2 was a downstream factor of p38. PI3K, JNK and mTORC2 coordinately activated Akt. Akt was phosphorylated at Thr450 in the untreated cells. Cd treatment led to additional phosphorylation at Thr308 and Ser473. Blocking any of the three signaling factors resulted in the reduction of phosphorylation level at all three Akt sites. The activated Akt phosphorylated Foxo1 and allowed the modified protein to translocate into the cytoplasm. We conclude that Cd-induced accumulation of c-Myc requires the activation of several signaling pathways. The signals act coordinately for Akt activation and drive the Foxo1 from the nucleus to the cytoplasm. Reduction of Foxo1 in the nucleus reduces the transcription of its target genes that may affect c-Myc mRNA stability, resulting in a higher accumulation of the c-Myc proteins. PMID:26751215

  18. Alpha1-adrenoreceptor in human hippocampus: binding and receptor subtype mRNA expression.

    PubMed

    Szot, Patricia; White, Sylvia S; Greenup, J Lynne; Leverenz, James B; Peskind, Elaine R; Raskind, Murray A

    2005-10-01

    Alpha1-adrenoreceptors (AR), of which three subtypes exist (alpha1A-, alpha1B- and alpha1D-AR) are G-protein-coupled receptors that mediate the actions of norepinephrine and epinephrine both peripherally and centrally. In the CNS, alpha1-ARs are found in the hippocampus where animal studies have shown the ability of alpha1-AR agents to modulate long-term potentiation and memory; however, the precise distribution of alpha1-AR expression and its subtypes in the human brain is unknown making functional comparisons difficult. In the human hippocampus, 3H-prazosin (alpha1-AR antagonist) labels only the dentate gyrus (molecular, granule and polymorphic layers) and the stratum lucidum of the CA3 homogeneously. Human alpha1A-AR mRNA in the hippocampus is observed only in the dentate gyrus granule cell layer, while alpha1D-AR mRNA expression is observed only in the pyramidal cell layers of CA1, CA2 and CA3, regions where 3H-prazosin did not bind. alpha1B-AR mRNA is not expressed at detectable levels in the human hippocampus. These results confirm a difference in hippocampal alpha1-AR localization between rat and humans and further describe a difference in the localization of the alpha1A- and alpha1D-AR mRNA subtype between rats and humans. PMID:16039007

  19. Selenium Deficiency Influences the mRNA Expression of Selenoproteins and Cytokines in Chicken Erythrocytes.

    PubMed

    Luan, Yilin; Zhao, Jinxin; Yao, Haidong; Zhao, Xia; Fan, Ruifeng; Zhao, Wenchao; Zhang, Ziwei; Xu, Shiwen

    2016-06-01

    Selenium (Se) deficiency induces hemolysis in chickens, but the molecular mechanism for this effect remains unclear. Se primarily elicits its function through the activity of selenoproteins, which contain the unique amino acid selenocysteine (Sec). In this study, we aimed to investigate the effect of Se deficiency on the expression of 24 selenoproteins and 10 cytokines. One hundred eighty chickens were randomly divided into 2 groups (90 chickens per group). During the entire experimental period, chickens were allowed ad libitum consumption of feed and water. The chickens were fed either a Se-deficient diet (0.008 mg Se/kg; produced in the Se-deficient area of Heilongjiang, China) or a Se-supplemented diet (as sodium selenite) at 0.2 mg/kg for 35 days. At the 35th day, the messenger RNA (mRNA) levels of 24 selenoproteins and 10 cytokines were examined in erythrocytes of 5 chickens per group, and the correlation was analyzed. The results showed that the expression of 24 selenoproteins and 7 cytokines (IL-2, IL-4, IL-8, IL-10, IL-12β, TGF-β4, and IFN-γ) decreased (P < 0.05), and the expression of 3 cytokines (IL-1γ, IL-6 and IL-7) was higher in the Se-deficient group. In both groups, glutathione peroxidase (GPX), thioredoxin 1 (Txnrd1), selenoprotein P1 (SELP), and selenoprotein synthetase (SPS2) were highly expressed compared to the other selenoproteins in chicken erythrocytes (P < 0.05). These data suggest that GPXs, Txnrd1, SELP, and SPS2 possibly play a more important role than the other selenoproteins. The increase of pro-inflammatory cytokines (IL-1γ, IL-6, and IL-7) suggested that the immune system of chickens was damaged by the Se deficiency. Correlation analysis suggested that although the expression of 24 selenoproteins and 7 cytokines decreased and that of 3 cytokines increased, there was a close correlation between their expression levels and a Se diet. These results suggested that Se deficiency influenced the expressions of 24 selenoproteins

  20. Dithranol downregulates expression of Id1 mRNA in human keratinocytes in vitro.

    PubMed

    Ronpirin, C; Tencomnao, T

    2012-01-01

    The precise causes of psoriasis, a chronic skin disorder characterized by hyperproliferation of keratinocytes and incomplete keratinization, are unclear. It is known that expression of helix-loop-helix transcription factor Id1, which functions as an inhibitor of differentiation, is upregulated in psoriatic skin. We investigated the effect of the antipsoriatic drug dithranol on mRNA and protein expression levels of Id1 in the HaCaT keratinocyte cell line. Cultured HaCaT cells were treated with 0-0.5 μg/mL dithranol for 30 min. After 2 and 4 h, total cellular RNA and total proteins were isolated from HaCaT cells, and quantitative real-time reverse transcriptase (RT-PCR) and Western blot were used to determine the mRNA and protein levels of Id1, respectively. Changes in normalized Id1 mRNA levels were observed only after 4 h of dithranol treatment. There was reduced expression of Id1 mRNA transcripts in the HaCaT cells treated with 0.1 μg/mL dithranol, but the reduction was not significant. The expression of Id1 mRNA was significantly downregulated (almost 50%) when 0.25 or 0.5 μg/mL dithranol was applied to the HaCaT cells. However, the normalized Id1 protein levels were not significantly affected. The molecular mechanisms underlying this finding should be investigated further to help determine the therapeutic action of this drug. PMID:23079823

  1. c-kit mRNA expression in human and murine hematopoietic cell lines.

    PubMed

    André, C; d'Auriol, L; Lacombe, C; Gisselbrecht, S; Galibert, F

    1989-08-01

    The c-kit proto-oncogene belongs to the tyrosine kinase receptor family. Although its ligand is still unknown, there is increasing evidence to suggest its involvement in hematopoiesis. In order to detect lineage or differentiation related specificity, we have studied c-kit mRNA expression in both human and murine hematopoietic organs and cell lines. We show that c-kit mRNA expression is found at early stages of erythroid and myeloid differentiation. There is however, no evidence of c-kit expression in the lymphoid lineage. Our results suggest a possible role for c-kit as a receptor in the early stages of the erythroid/myeloid differentiation. PMID:2474787

  2. Leishmania amazonensis: Anionic currents expressed in oocytes upon microinjection of mRNA from the parasite.

    PubMed

    Lagos M, Luisa F; Moran, Oscar; Camacho, Marcela

    2007-06-01

    Transport mechanisms involved in pH homeostasis are relevant for the survival of Leishmania parasites. The presence of chloride conductive pathways in Leishmania has been anticipated since anion channel inhibitors limit the proton extrusion mediated by the H+ATPase, which is the major regulator of intracellular pH in amastigotes. In this study, we used Xenopus laevis oocytes as a heterologous expression system in which to study the expression of ion channels upon microinjection of polyA mRNA from Leishmania amazonensis. After injection of polyA mRNA into the oocytes, we measured three different types of currents. We discuss the possible origin of each, and propose that Type 3 currents could be the result of the heterologous expression of proteins from Leishmania since they show different pharmacological and biophysical properties as compared to endogenous oocyte currents. PMID:17328895

  3. Adrenocorticotropin receptors: Functional expression from rat adrenal mRNA in Xenopus laevis oocytes

    SciTech Connect

    Mertz, L.M.; Catt, K.J. )

    1991-10-01

    The adrenocorticotropin (ACTH) receptor, which binds corticotropin and stimulates adenylate cyclase and steroidogenesis in adrenocortical cells, was expressed in Xenopus laevis oocytes microinjected with rat adrenal poly(A){sup +} RNA. Expression of the ACTH receptor in individual stage 5 and 6 oocytes was monitored by radioimmunoassay of ligand-stimulated cAMP production. Injection of 5-40 ng of adrenal mRNA caused dose-dependent increases in ACTH-responsive cAMP production. Size fractionation of rat adrenal poly(A){sup +}RNA by sucrose density-gradient centrifugation revealed that mRNA encoding the ACTH receptor was present in the 1.1-to 2.0-kilobase fraction. These data indicate that ACTH receptors can be expressed from adrenal mRNA in Xenopus oocytes and are fully functional in terms of ligand specificity and signal generation. The extracellular cAMP response to ACTH is a sensitive and convenient index of receptor expression. This system should permit more complete characterization and expression cloning of the ACTH receptor.

  4. Posttranscriptional regulation of sodium-iodide symporter mRNA expression in the rat thyroid gland by acute iodide administration.

    PubMed

    Serrano-Nascimento, Caroline; Calil-Silveira, Jamile; Nunes, Maria Tereza

    2010-04-01

    Iodide is an important regulator of thyroid activity. Its excess elicits the Wolff-Chaikoff effect, characterized by an acute suppression of thyroid hormone synthesis, which has been ascribed to serum TSH reduction or TGF-beta increase and production of iodolipids in the thyroid. These alterations take hours/days to occur, contrasting with the promptness of Wolff-Chaikoff effect. We investigated whether acute iodide administration could trigger events that precede those changes, such as reduction of sodium-iodide symporter (NIS) mRNA abundance and adenylation, and if perchlorate treatment could counteract them. Rats subjected or not to methylmercaptoimidazole treatment (0.03%) received NaI (2,000 microg/0.5 ml saline) or saline intraperitoneally and were killed 30 min up to 24 h later. Another set of animals was treated with iodide and perchlorate, in equimolar doses. NIS mRNA content was evaluated by Northern blotting and real-time PCR, and NIS mRNA poly(A) tail length by rapid amplification of cDNA ends-poly(A) test (RACE-PAT). We observed that NIS mRNA abundance and poly(A) tail length were significantly reduced in all periods of iodide treatment. Perchlorate reversed these effects, indicating that iodide was the agent that triggered the modifications observed. Since the poly(A) tail length of mRNAs is directly associated with their stability and translation efficiency, we can assume that the rapid decay of NIS mRNA abundance observed was due to a reduction of its stability, a condition in which its translation could be impaired. Our data show for the first time that iodide regulates NIS mRNA expression at posttranscriptional level, providing a new mechanism by which iodide exerts its autoregulatory effect on thyroid. PMID:20107044

  5. Altered mRNA expression of hepatic lipogenic enzyme and PPARalpha in rats fed dietary levan from Zymomonas mobilis.

    PubMed

    Kang, Soon Ah; Hong, Kyunghee; Jang, Ki-Hyo; Kim, Yun-Young; Choue, Ryowon; Lim, Yoongho

    2006-06-01

    Levan or high molecular beta-2,6-linked fructose polymer is produced extracellularly from sucrose-based substrates by bacterial levansucrase. In the present study, to investigate the effect of levan feeding on serum leptin, hepatic lipogenic enzyme and peroxisome proliferation-activated receptor (PPAR) alpha expression in high-fat diet-induced obese rats, 4-week-old Sprague-Dawley male rats were fed high-fat diet (beef tallow, 40% of calories as fat), and, 6 weeks later, the rats were fed 0%, 1%, 5% or 10% levan-supplemented diets for 4 weeks. Serum leptin and insulin level were dose dependently reduced in levan-supplemented diet-fed rats. The mRNA expressions of hepatic fatty acid synthase and acetyl CoA carboxylase, which are the key enzymes in fatty acid synthesis, were down-regulated by dietary levan. However, dietary levan did not affect the gene expression of hepatic malic enzyme, phosphatidate phosphohydrolase and HMG CoA reductase. Also, the lipogenic enzyme gene expression in the white adipose tissue (WAT) was not affected by the diet treatments. However, hepatic PPARalpha mRNA expression was dose dependently up-regulated by dietary levan, whereas PPARgamma in the WAT was not changed. The results suggest that the in vivo hypolipidemic effect of dietary levan, including anti-obesity and lipid-lowering, may result from the inhibition of lipogenesis and stimulation of lipolysis, accompanied with regulation of hepatic lipogenic enzyme and PPARalpha gene expression. PMID:16214330

  6. Alpha-synuclein mRNA expression in oligodendrocytes in MSA

    PubMed Central

    Asi, Yasmine T; Simpson, Julie E; Heath, Paul R; Wharton, Stephen B; Lees, Andrew J; Revesz, Tamas; Houlden, Henry; Holton, Janice L

    2014-01-01

    Multiple system atrophy (MSA) is a progressive neurodegenerative disease presenting clinically with parkinsonian, cerebellar, and autonomic features. α-Synuclein (αsyn), encoded by the gene SNCA, is the main constituent of glial cytoplasmic inclusion (GCI) found in oligodendrocytes in MSA, but the methods of its accumulation have not been established. The aim of this study is to investigate alterations in regional and cellular SNCA mRNA expression in MSA as a possible substrate for GCI formation. Quantitative reverse transcription polymerase chain reaction (qPCR) was performed on postmortem brain samples from 15 MSA, 5 IPD, and 5 control cases to investigate regional expression in the frontal and occipital regions, dorsal putamen, pontine base, and cerebellum. For cellular expression analysis, neurons and oligodendrocytes were isolated by laser-capture microdissection from five MSA and five control cases. SNCA mRNA expression was not significantly different between the MSA, IPD and control cases in all regions (multilevel model, P = 0.14). After adjusting for group effect, the highest expression was found in the occipital cortex while the lowest was in the putamen (multilevel model, P < 0.0001). At the cellular level, MSA oligodendrocytes expressed more SNCA than control oligodendrocytes and expression in MSA neurons was slightly lower than that in controls, however, these results did not reach statistical significance. We have demonstrated regional variations in SNCA expression, which is higher in cortical than subcortical regions. This study is the first to demonstrate SNCA mRNA expression by oligodendrocytes in human postmortem tissue using qPCR and, although not statistically significant, could suggest that this may be increased in MSA compared to controls. PMID:24590631

  7. Glucocorticoid hormones downregulate histidine decarboxylase mRNA and enzyme activity in rat lung.

    PubMed

    Zahnow, C A; Panula, P; Yamatodani, A; Millhorn, D E

    1998-08-01

    Histidine decarboxylase (HDC) is the primary enzyme regulating histamine biosynthesis. Histamine contributes to the pathogenesis of chronic inflammatory disorders such as asthma. Because glucocorticoids are effective in the treatment of asthma, we examined the effects of 6 h of exogenously administered dexamethasone (0.5-3,000 microg/kg ip), corticosterone (0.2-200 mg/kg ip), or endogenously elevated corticosterone (via exposure of rats to 10% oxygen) on HDC expression in the rat lung. HDC transcripts were decreased approximately 73% with dexamethasone treatment, 57% with corticosterone treatment, and 50% with exposure to 10% oxygen. Likewise, HDC enzyme activity was decreased 80% by treatment with dexamethasone and corticosterone and 60% by exposure to 10% oxygen. Adrenalectomy prevented the decreases in HDC mRNA and enzyme activity observed in rats exposed to 10% oxygen, suggesting that the adrenal gland is necessary for the mediation of hypoxic effects on HDC gene expression. These results demonstrate that corticosteroids initiate a process that leads to the decrease of HDC mRNA levels and enzyme activity in rat lung. PMID:9700103

  8. Regulation of luteinizing hormone receptor mRNA expression by a specific RNA binding protein in the ovary*

    PubMed Central

    Menon, K.M.J.; Nair, Anil K.; Wang, Lei; Peegel, Helle

    2009-01-01

    Summary The expression of LH receptor mRNA shows significant changes during different physiological states of the ovary. Previous studies from our laboratory have identified a post-transcriptional mechanism by which LH receptor mRNA is regulated following preovulatory LH surge or in response to hCG administration. A specific binding protein, identified as mevalonate kinase, binds to the open reading frame of LH receptor mRNA. The protein binding site is localized to nucleotides 203–220 of the LH receptor mRNA and exhibits a high degree of specificity. The expression levels of the protein show an inverse relationship to the LH receptor mRNA levels. The hCG-induced down-regulation of LH receptor mRNA can be mimicked by increasing the intracellular levels of cyclic AMP by a phosphodiesterase inhibitor. An in vitro mRNA decay assay showed that addition of the binding protein to the decay system caused accelerated LH receptor mRNA decay. Our results therefore show that LH receptor mRNA expression in the ovary is regulated post-transcriptionally by altering the rate of mRNA degradation by a specific mRNA binding protein. PMID:17055149

  9. Unmasking Upstream Gene Expression Regulators with miRNA-corrected mRNA Data

    PubMed Central

    Bollmann, Stephanie; Bu, Dengpan; Wang, Jiaqi; Bionaz, Massimo

    2015-01-01

    Expressed micro-RNA (miRNA) affects messenger RNA (mRNA) abundance, hindering the accuracy of upstream regulator analysis. Our objective was to provide an algorithm to correct such bias. Large mRNA and miRNA analyses were performed on RNA extracted from bovine liver and mammary tissue. Using four levels of target scores from TargetScan (all miRNA:mRNA target gene pairs or only the top 25%, 50%, or 75%). Using four levels of target scores from TargetScan (all miRNA:mRNA target gene pairs or only the top 25%, 50%, or 75%) and four levels of the magnitude of miRNA effect (ME) on mRNA expression (30%, 50%, 75%, and 83% mRNA reduction), we generated 17 different datasets (including the original dataset). For each dataset, we performed upstream regulator analysis using two bioinformatics tools. We detected an increased effect on the upstream regulator analysis with larger miRNA:mRNA pair bins and higher ME. The miRNA correction allowed identification of several upstream regulators not present in the analysis of the original dataset. Thus, the proposed algorithm improved the prediction of upstream regulators. PMID:27279737

  10. Region-Specific Activation of oskar mRNA Translation by Inhibition of Bruno-Mediated Repression

    PubMed Central

    Kim, Goheun; Pai, Chin-I; Sato, Keiji; Person, Maria D.; Nakamura, Akira; Macdonald, Paul M.

    2015-01-01

    A complex program of translational repression, mRNA localization, and translational activation ensures that Oskar (Osk) protein accumulates only at the posterior pole of the Drosophila oocyte. Inappropriate expression of Osk disrupts embryonic axial patterning, and is lethal. A key factor in translational repression is Bruno (Bru), which binds to regulatory elements in the osk mRNA 3′ UTR. After posterior localization of osk mRNA, repression by Bru must be alleviated. Here we describe an in vivo assay system to monitor the spatial pattern of Bru-dependent repression, separate from the full complexity of osk regulation. This assay reveals a form of translational activation—region-specific activation—which acts regionally in the oocyte, is not mechanistically coupled to mRNA localization, and functions by inhibiting repression by Bru. We also show that Bru dimerizes and identify mutations that disrupt this interaction to test its role in vivo. Loss of dimerization does not disrupt repression, as might have been expected from an existing model for the mechanism of repression. However, loss of dimerization does impair regional activation of translation, suggesting that dimerization may constrain, not promote, repression. Our work provides new insight into the question of how localized mRNAs become translationally active, showing that repression of osk mRNA is locally inactivated by a mechanism acting independent of mRNA localization. PMID:25723530

  11. Expression2Kinases: mRNA profiling linked to multiple upstream regulatory layers

    PubMed Central

    Gordonov, Simon; Lim, Maribel P.; Perkins, Matthew H.; Ma'ayan, Avi

    2012-01-01

    Motivation: Genome-wide mRNA profiling provides a snapshot of the global state of cells under different conditions. However, mRNA levels do not provide direct understanding of upstream regulatory mechanisms. Here, we present a new approach called Expression2Kinases (X2K) to identify upstream regulators likely responsible for observed patterns in genome-wide gene expression. By integrating chromatin immuno-precipitation (ChIP)-seq/chip and position weight matrices (PWMs) data, protein–protein interactions and kinase–substrate phosphorylation reactions, we can better identify regulatory mechanisms upstream of genome-wide differences in gene expression. We validated X2K by applying it to recover drug targets of food and drug administration (FDA)-approved drugs from drug perturbations followed by mRNA expression profiling; to map the regulatory landscape of 44 stem cells and their differentiating progeny; to profile upstream regulatory mechanisms of 327 breast cancer tumors; and to detect pathways from profiled hepatic stellate cells and hippocampal neurons. The X2K approach can advance our understanding of cell signaling and unravel drugs mechanisms of action. Availability: The software and source code are freely available at: http://www.maayanlab.net/X2K. Contact: avi.maayan@mssm.edu Supplementary information: Supplementary data are available at Bioinformatics online. PMID:22080467

  12. Elongation factor 1 gamma mRNA expression in oesophageal carcinoma.

    PubMed Central

    Mimori, K; Mori, M; Inoue, H; Ueo, H; Mafune, K; Akiyoshi, T; Sugimachi, K

    1996-01-01

    Elongation factor 1 gamma (EF1 gamma) is known to be a subunit of EF1, one of the G proteins that mediate the transport of aminoacyl tRNA to 80S ribosomes during translation. As little is known regarding the expression of EF1 gamma in human oesophageal carcinoma, this study looked at its expression using a northern blot analysis. Thirty six cases of oesophageal carcinoma and 15 oesophageal carcinoma cell lines were studied. The EF1 gamma mRNA overexpression at a level of twofold or more was seen in five (14%) of 36 carcinomatous tissues compared with the normal counterparts. All five overexpressed cases showed severe lymph node metastases compared with the non-overexpressed cases, and the difference was significant (p = 0.028). The stage of the disease of these five cases was far advanced compared with the nonoverexpressed cases (p = 0.012). All 15 oesophageal carcinoma cells expressed EF1 gamma mRNA relatively lower than the gastric or pancreatic carcinoma cell lines, in which EF1 gamma was originally isolated. As the expression of EF1 gamma mRNA could be detected even in the biopsy specimens, its overexpression in tumour tissue may provide preoperative useful information for predicting the aggressiveness of tumours. Images Figure 1 Figure 2 Figure 3 PMID:8566862

  13. Combining miRNA and mRNA Expression Profiles in Wilms Tumor Subtypes

    PubMed Central

    Ludwig, Nicole; Werner, Tamara V.; Backes, Christina; Trampert, Patrick; Gessler, Manfred; Keller, Andreas; Lenhof, Hans-Peter; Graf, Norbert; Meese, Eckart

    2016-01-01

    Wilms tumor (WT) is the most common childhood renal cancer. Recent findings of mutations in microRNA (miRNA) processing proteins suggest a pivotal role of miRNAs in WT genesis. We performed miRNA expression profiling of 36 WTs of different subtypes and four normal kidney tissues using microarrays. Additionally, we determined the gene expression profile of 28 of these tumors to identify potentially correlated target genes and affected pathways. We identified 85 miRNAs and 2107 messenger RNAs (mRNA) differentially expressed in blastemal WT, and 266 miRNAs and 1267 mRNAs differentially expressed in regressive subtype. The hierarchical clustering of the samples, using either the miRNA or mRNA profile, showed the clear separation of WT from normal kidney samples, but the miRNA pattern yielded better separation of WT subtypes. A correlation analysis of the deregulated miRNA and mRNAs identified 13,026 miRNA/mRNA pairs with inversely correlated expression, of which 2844 are potential interactions of miRNA and their predicted mRNA targets. We found significant upregulation of miRNAs-183, -301a/b and -335 for the blastemal subtype, and miRNAs-181b, -223 and -630 for the regressive subtype. We found marked deregulation of miRNAs regulating epithelial to mesenchymal transition, especially in the blastemal subtype, and miRNAs influencing chemosensitivity, especially in regressive subtypes. Further research is needed to assess the influence of preoperative chemotherapy and tumor infiltrating lymphocytes on the miRNA and mRNA patterns in WT. PMID:27043538

  14. Efficient delivery and functional expression of transfected modified mRNA in human embryonic stem cell-derived retinal pigmented epithelial cells.

    PubMed

    Hansson, Magnus L; Albert, Silvia; González Somermeyer, Louisa; Peco, Rubén; Mejía-Ramírez, Eva; Montserrat, Núria; Izpisua Belmonte, Juan Carlos

    2015-02-27

    Gene- and cell-based therapies are promising strategies for the treatment of degenerative retinal diseases such as age-related macular degeneration, Stargardt disease, and retinitis pigmentosa. Cellular engineering before transplantation may allow the delivery of cellular factors that can promote functional improvements, such as increased engraftment or survival of transplanted cells. A current challenge in traditional DNA-based vector transfection is to find a delivery system that is both safe and efficient, but using mRNA as an alternative to DNA can circumvent these major roadblocks. In this study, we show that both unmodified and modified mRNA can be delivered to retinal pigmented epithelial (RPE) cells with a high efficiency compared with conventional plasmid delivery systems. On the other hand, administration of unmodified mRNA induced a strong innate immune response that was almost absent when using modified mRNA. Importantly, transfection of mRNA encoding a key regulator of RPE gene expression, microphthalmia-associated transcription factor (MITF), confirmed the functionality of the delivered mRNA. Immunostaining showed that transfection with either type of mRNA led to the expression of roughly equal levels of MITF, primarily localized in the nucleus. Despite these findings, quantitative RT-PCR analyses showed that the activation of the expression of MITF target genes was higher following transfection with modified mRNA compared with unmodified mRNA. Our findings, therefore, show that modified mRNA transfection can be applied to human embryonic stem cell-derived RPE cells and that the method is safe, efficient, and functional. PMID:25555917

  15. The effect of exercise on expression of myokine and angiogenesis mRNA in skeletal muscle of high fat diet induced obese rat

    PubMed Central

    Shin, Ki Ok; Bae, Ju Yong; Woo, Jinhee; Jang, Ki Soeng; Kim, Keun Su; Park, Jung Sub; Kim, In Ki; Kang, Sunghwun

    2015-01-01

    [Purpose] The purpose of this study was to investigate the effect of regular treadmill exercise on the mRNA expressions of myokines and angiogenesis factors in the skeletal muscle of obese rats. [Methods] Thirty two male Sprague-Dawley rats (4weeks old) were divided into the CO (control) and HF (high fat diet) groups. Obesity was induced in the HF group by consumption of 45% high-fat diet for 15 weeks. These groups were further subdivided into training groups (COT and HFT); the training groups conducted moderate intensity treadmill training for 8 weeks. Soleus muscles were excised and analyzed by real-time quantitative PCR. [Results] mRNA expression of myokines, such as PGC-1α, IL-6, and IL-15, in the COT and HFT groups (which conducted regular exercise), were higher as compared with the CO and HF groups (p < 0.05). Also, the levels in the HF group were significantly lower when compared with CO group (p < 0.05). Expression of angiogenesis mRNA, namely mTOR, VEGF, and FLT1, were significantly lower in the HF group, as compared to the CO group (p < 0.05). In addition, COT group had a higher expression of mTORC1, mTORC2, VEGF and FLT mRNA, than the CO group (p < 0.05); the HFT group also had higher expressions of mTOR, VEGF and FLT1 mRNA than the HF group (p < 0.05). [Conclusion] These results indicate that mRNA expression of myokines was increased through the activity of muscle contraction, and it also promoted the mRNA expression of angiogenesis due to activation of mTOR. Thus, we conclude that not only under normal health conditions, but in obesity and excess nutritional circumstances also, regular exercise seems to act positively on the glycemic control and insulin sensitivity through the angiogenesis signaling pathway. PMID:26244127

  16. Δ6-fatty acid desaturase and fatty acid elongase mRNA expression, phagocytic activity and weight-to-length relationships in channel catfish (Ictalurus punctatus) fed alternative diets with soy oil and a probiotic.

    PubMed

    Santerre, A; Téllez-Bañuelos, M C; Casas-Solís, J; Castro-Félix, P; Huízar-López, M R; Zaitseva, G P; Horta-Fernández, J L; Trujillo-García, E A; de la Mora-Sherer, D; Palafox-Luna, J A; Juárez-Carrillo, E

    2015-01-01

    A time-course feeding trial was conducted for 120 days on juvenile channel catfish (Ictalurus punctatus) to study the effects of diets differing in oil source (fish oil or soy oil) and supplementation with a commercial probiotic. Relative levels of Δ6-fatty acid desaturase (Δ6-FAD) and fatty acid elongase (FAE) expression were assessed in brain and liver tissues. Both genes showed similar expression levels in all groups studied. Fish weight-to-length relationships were evaluated using polynomial regression analyses, which identified a burst in weight and length in the channel catfish on day 105 of treatment; this increase was related to an increase in gene expression. Mid-intestinal lactic acid bacterium (LAB) count was determined according to morphological and biochemical criteria using API strips. There was no indication that intestinal LAB count was affected by the modified diets. The Cunningham glass adherence method was applied to evaluate phagocytic cell activity in peripheral blood. Reactive oxygen species (ROS) generation was assessed through the respiratory burst activity of spleen macrophages by the NBT reduction test. Probiotic-supplemented diets provided a good substrate for innate immune system function; the phagocytic index was significantly enhanced in fish fed soy oil and the probiotic, and at the end of the experimental period, ROS production increased in fish fed soy oil. The substitution of fish oil by soy oil is recommended for food formulation and will contribute to promoting sustainable aquaculture. Probiotics are also recommended for channel catfish farming as they may act as immunonutrients. PMID:26400353

  17. Characteristics of mRNA dynamic expression related to spinal cord ischemia/reperfusion injury: a transcriptomics study.

    PubMed

    Qi, Zhi-Ping; Xia, Peng; Hou, Ting-Ting; Li, Ding-Yang; Zheng, Chang-Jun; Yang, Xiao-Yu

    2016-03-01

    Following spinal cord ischemia/reperfusion injury, an endogenous damage system is immediately activated and participates in a cascade reaction. It is difficult to interpret dynamic changes in these pathways, but the examination of the transcriptome may provide some information. The transcriptome reflects highly dynamic genomic and genetic information and can be seen as a precursor for the proteome. We used DNA microarrays to measure the expression levels of dynamic evolution-related mRNA after spinal cord ischemia/reperfusion injury in rats. The abdominal aorta was blocked with a vascular clamp for 90 minutes and underwent reperfusion for 24 and 48 hours. The simple ischemia group and sham group served as controls. After rats had regained consciousness, hindlimbs showed varying degrees of functional impairment, and gradually improved with prolonged reperfusion in spinal cord ischemia/reperfusion injury groups. Hematoxylin-eosin staining demonstrated that neuronal injury and tissue edema were most severe in the 24-hour reperfusion group, and mitigated in the 48-hour reperfusion group. There were 8,242 differentially expressed mRNAs obtained by Multi-Class Dif in the simple ischemia group, 24-hour and 48-hour reperfusion groups. Sixteen mRNA dynamic expression patterns were obtained by Serial Test Cluster. Of them, five patterns were significant. In the No. 28 pattern, all differential genes were detected in the 24-hour reperfusion group, and their expressions showed a trend in up-regulation. No. 11 pattern showed a decreasing trend in mRNA whereas No. 40 pattern showed an increasing trend in mRNA from ischemia to 48 hours of reperfusion, and peaked at 48 hours. In the No. 25 and No. 27 patterns, differential expression appeared only in the 24-hour and 48-hour reperfusion groups. Among the five mRNA dynamic expression patterns, No. 11 and No. 40 patterns could distinguish normal spinal cord from pathological tissue. No. 25 and No. 27 patterns could distinguish simple

  18. Characteristics of mRNA dynamic expression related to spinal cord ischemia/reperfusion injury: a transcriptomics study

    PubMed Central

    Qi, Zhi-ping; Xia, Peng; Hou, Ting-ting; Li, Ding-yang; Zheng, Chang-jun; Yang, Xiao-yu

    2016-01-01

    Following spinal cord ischemia/reperfusion injury, an endogenous damage system is immediately activated and participates in a cascade reaction. It is difficult to interpret dynamic changes in these pathways, but the examination of the transcriptome may provide some information. The transcriptome reflects highly dynamic genomic and genetic information and can be seen as a precursor for the proteome. We used DNA microarrays to measure the expression levels of dynamic evolution-related mRNA after spinal cord ischemia/reperfusion injury in rats. The abdominal aorta was blocked with a vascular clamp for 90 minutes and underwent reperfusion for 24 and 48 hours. The simple ischemia group and sham group served as controls. After rats had regained consciousness, hindlimbs showed varying degrees of functional impairment, and gradually improved with prolonged reperfusion in spinal cord ischemia/reperfusion injury groups. Hematoxylin-eosin staining demonstrated that neuronal injury and tissue edema were most severe in the 24-hour reperfusion group, and mitigated in the 48-hour reperfusion group. There were 8,242 differentially expressed mRNAs obtained by Multi-Class Dif in the simple ischemia group, 24-hour and 48-hour reperfusion groups. Sixteen mRNA dynamic expression patterns were obtained by Serial Test Cluster. Of them, five patterns were significant. In the No. 28 pattern, all differential genes were detected in the 24-hour reperfusion group, and their expressions showed a trend in up-regulation. No. 11 pattern showed a decreasing trend in mRNA whereas No. 40 pattern showed an increasing trend in mRNA from ischemia to 48 hours of reperfusion, and peaked at 48 hours. In the No. 25 and No. 27 patterns, differential expression appeared only in the 24-hour and 48-hour reperfusion groups. Among the five mRNA dynamic expression patterns, No. 11 and No. 40 patterns could distinguish normal spinal cord from pathological tissue. No. 25 and No. 27 patterns could distinguish simple

  19. Regional distribution of solute carrier mRNA expression along the human intestinal tract.

    PubMed

    Meier, Yvonne; Eloranta, Jyrki J; Darimont, Jutta; Ismair, Manfred G; Hiller, Christian; Fried, Michael; Kullak-Ublick, Gerd A; Vavricka, Stephan R

    2007-04-01

    Intestinal absorption of drugs, nutrients, and other compounds is mediated by uptake transporters expressed at the apical enterocyte membrane. These compounds are returned to the intestinal lumen or released into portal circulation by intestinal efflux transporters expressed at apical or basolateral membranes, respectively. One important transporter superfamily, multiple members of which are intestinally expressed, are the solute carriers (SLCs). SLC expression levels may determine the pharmacokinetics of drugs that are substrates of these transporters. In this study we characterize the distribution of 15 human SLC transporter mRNAs in histologically normal biopsies from five regions of the intestine of 10 patients. The mRNA expression levels of CNT1, CNT2, apical sodium-dependent bile acid transporter (ABST), serotonin transporter (SERT), PEPT1, and OCTN2 exhibit marked differences between different regions of the intestine: the first five are predominantly expressed in the small intestine, whereas OCTN2 exhibits strongest expression in the colon. Two transporter mRNAs studied (OCTN1, OATP2B1) are expressed at similar levels in all gut sections. In addition, ENT2 mRNA is present at low levels across the colon, but not in the small intestine. The other six SLC mRNAs studied are not expressed in the intestine. Quantitative knowledge of transporter expression levels in different regions of the human gastrointestinal tract could be useful for designing intestinal delivery strategies for orally administered drugs. Furthermore, changes in transporter expression that occur in pathological states, such as inflammatory bowel disease, can now be defined more precisely by comparison with the expression levels measured in healthy individuals. PMID:17220238

  20. Global RT-PCR and RT-qPCR Analysis of the mRNA Expression of the Human PTPome.

    PubMed

    Nunes-Xavier, Caroline E; Pulido, Rafael

    2016-01-01

    Comprehensive comparative gene expression analysis of the tyrosine phosphatase superfamily members (PTPome) under cell- or tissue-specific growth conditions may help to define their individual and specific role in physiology and disease. Semi-quantitative and quantitative PCR are commonly used methods to analyze and measure gene expression. Here, we describe technical aspects of PTPome mRNA expression analysis by semi-quantitative RT-PCR and quantitative RT-PCR (RT-qPCR). We provide a protocol for each method consisting in reverse transcription followed by PCR using a global platform of specific PTP primers. The chapter includes aspects from primer validation to the setup of the PTPome RT-qPCR platform. Examples are given of PTP-profiling gene expression analysis using a human breast cancer cell line upon long-term or short-term treatment with cell signaling-activation agents. PMID:27514798

  1. Interferon-alpha inhibits murine macrophage transforming growth factor-beta mRNA expression.

    PubMed

    Dhanani, S; Huang, M; Wang, J; Dubinett, S M

    1994-06-01

    Transforming growth factor-beta (TGF-beta), a multifunctional polypeptide is produced by a wide variety of cells and regulates a broad array of physiological and pathological functions. TGF-beta appears to play a central role in pulmonary fibrosis and may contribute to tumor-associated immunosuppression. Alveolar macrophages are a rich source of TGF-beta and are intimately involved in lung inflammation. We therefore chose to study TGF-beta regulation in murine alveolar macrophages as well as an immortalized peritoneal macrophage cell line (IC-21). Murine macrophages were incubated with cytokines to evaluate their role in regulating TGF-beta mRNA expression. We conclude that IFN-alpha downregulates TGF-beta mRNA expression in murine macrophages. PMID:8088926

  2. Evaluation of Parkia pendula lectin mRNA differentially expressed in seedlings.

    PubMed

    Rêgo, M J B M; Santos, P B; Carvalho-Junior, L B; Stirling, J; Beltrão, E I C

    2014-05-01

    Parkia pendula (Willd.) Walp. (Fabaceae) is a neotropical species of the genus Parkia more abundantly distributed in Central to South America. From the seeds of P. pendula a glucose/mannose specific lectin (PpeL) was isolated that has been characterised and used as a biotechnological tool but until now this is the first manuscript to analyse P. pendula mRNA expression in seedlings. For this porpoise a Differential display reverse transcription polimerase chain reaction (DDRT-PCR) was used to evaluate the expression of P. pendula lectin mRNAs in non-rooted seedlings. No bands were observed in the agarose gel, indicating the absence of mRNA of PpeL seedlings. our findings confirm that lectins mRNAs are differently regulated among species even if they are grouped in the same class. PMID:25166336

  3. Requirement for nuclear autoantigenic sperm protein mRNA expression in bovine preimplantation development.

    PubMed

    Nagatomo, Hiroaki; Kohri, Nanami; Akizawa, Hiroki; Hoshino, Yumi; Yamauchi, Nobuhiko; Kono, Tomohiro; Takahashi, Masashi; Kawahara, Manabu

    2016-03-01

    Nuclear autoantigenic sperm protein (NASP) is associated with DNA replication, cell proliferation, and cell cycle progression through its specific binding to histones. The aim of this study was to examine the roles of NASP in bovine preimplantation embryonic development. Using NASP gene knockdown (KD), we confirmed the reduction of NASP messenger RNA (mRNA) expression during preimplantation development. NASP KD did not affect cleavage but significantly decreased development of embryos into the blastocyst stage. Furthermore, blastocyst hatching was significantly decreased in NASP KD embryos. Cell numbers in the inner cell mass of NASP KD blastocysts were also decreased compared to those of controls. These results suggest that NASP mRNA expression is required for preimplantation development into the blastocyst stage in cattle. PMID:26690724

  4. Genome-wide analysis of microRNA and mRNA expression signatures in cancer

    PubMed Central

    Li, Ming-hui; Fu, Sheng-bo; Xiao, Hua-sheng

    2015-01-01

    Cancer is an extremely diverse and complex disease that results from various genetic and epigenetic changes such as DNA copy-number variations, mutations, and aberrant mRNA and/or protein expression caused by abnormal transcriptional regulation. The expression profiles of certain microRNAs (miRNAs) and messenger RNAs (mRNAs) are closely related to cancer progression stages. In the past few decades, DNA microarray and next-generation sequencing techniques have been widely applied to identify miRNA and mRNA signatures for cancers on a genome-wide scale and have provided meaningful insights into cancer diagnosis, prognosis and personalized medicine. In this review, we summarize the progress in genome-wide analysis of miRNAs and mRNAs as cancer biomarkers, highlighting their diagnostic and prognostic roles. PMID:26299954

  5. Expression profiling of Drosophila mitochondrial genes via deep mRNA sequencing

    PubMed Central

    Torres, Tatiana Teixeira; Dolezal, Marlies; Schlötterer, Christian; Ottenwälder, Birgit

    2009-01-01

    Mitochondria play an essential role in several cellular processes. Nevertheless, very little is known about patterns of gene expression of genes encoded by the mitochondrial DNA (mtDNA). In this study, we used next-generation sequencing (NGS) for transcription profiling of genes encoded in the mitochondrial genome of Drosophila melanogaster and D. pseudoobscura. The analysis of males and females in both species indicated that the expression pattern was conserved between the two species, but differed significantly between both sexes. Interestingly, mRNA levels were not only different among genes encoded by separate transcription units, but also showed significant differences among genes located in the same transcription unit. Hence, mRNA abundance of genes encoded by mtDNA seems to be heavily modulated by post-transcriptional regulation. Finally, we also identified several transcripts with a noncanonical structure, suggesting that processing of mitochondrial transcripts may be more complex than previously assumed. PMID:19843606

  6. Analysis of myosin heavy chain mRNA expression by RT-PCR

    NASA Technical Reports Server (NTRS)

    Wright, C.; Haddad, F.; Qin, A. X.; Baldwin, K. M.

    1997-01-01

    An assay was developed for rapid and sensitive analysis of myosin heavy chain (MHC) mRNA expression in rodent skeletal muscle. Only 2 microg of total RNA were necessary for the simultaneous analysis of relative mRNA expression of six different MHC genes. We designed synthetic DNA fragments as internal standards, which contained the relevant primer sequences for the adult MHC mRNAs type I, IIa, IIx, IIb as well as the embryonic and neonatal MHC mRNAs. A known amount of the synthetic fragment was added to each polymerase chain reaction (PCR) and yielded a product of different size than the amplified MHC mRNA fragment. The ratio of amplified MHC fragment to synthetic fragment allowed us to calculate percentages of the gene expression of the different MHC genes in a given muscle sample. Comparison with the traditional Northern blot analysis demonstrated that our reverse transcriptase-PCR-based assay was reliable, fast, and quantitative over a wide range of relative MHC mRNA expression in a spectrum of adult and neonatal rat skeletal muscles. Furthermore, the high sensitivity of the assay made it very useful when only small quantities of tissue were available. Statistical analysis of the signals for each MHC isoform across the analyzed samples showed a highly significant correlation between the PCR and the Northern signals as Pearson correlation coefficients ranged between 0.77 and 0.96 (P < 0.005). This assay has potential use in analyzing small muscle samples such as biopsies and samples from pre- and/or neonatal stages of development.

  7. Codon influence on protein expression in E. coli correlates with mRNA levels.

    PubMed

    Boël, Grégory; Letso, Reka; Neely, Helen; Price, W Nicholson; Wong, Kam-Ho; Su, Min; Luff, Jon D; Valecha, Mayank; Everett, John K; Acton, Thomas B; Xiao, Rong; Montelione, Gaetano T; Aalberts, Daniel P; Hunt, John F

    2016-01-21

    Degeneracy in the genetic code, which enables a single protein to be encoded by a multitude of synonymous gene sequences, has an important role in regulating protein expression, but substantial uncertainty exists concerning the details of this phenomenon. Here we analyse the sequence features influencing protein expression levels in 6,348 experiments using bacteriophage T7 polymerase to synthesize messenger RNA in Escherichia coli. Logistic regression yields a new codon-influence metric that correlates only weakly with genomic codon-usage frequency, but strongly with global physiological protein concentrations and also mRNA concentrations and lifetimes in vivo. Overall, the codon content influences protein expression more strongly than mRNA-folding parameters, although the latter dominate in the initial ~16 codons. Genes redesigned based on our analyses are transcribed with unaltered efficiency but translated with higher efficiency in vitro. The less efficiently translated native sequences show greatly reduced mRNA levels in vivo. Our results suggest that codon content modulates a kinetic competition between protein elongation and mRNA degradation that is a central feature of the physiology and also possibly the regulation of translation in E. coli. PMID:26760206

  8. An intronic RNA structure modulates expression of the mRNA biogenesis factor Sus1

    PubMed Central

    AbuQattam, Ali; Gallego, José; Rodríguez-Navarro, Susana

    2016-01-01

    Sus1 is a conserved protein involved in chromatin remodeling and mRNA biogenesis. Unlike most yeast genes, the SUS1 pre-mRNA of Saccharomyces cerevisiae contains two introns and is alternatively spliced, retaining one or both introns in response to changes in environmental conditions. SUS1 splicing may allow the cell to control Sus1 expression, but the mechanisms that regulate this process remain unknown. Using in silico analyses together with NMR spectroscopy, gel electrophoresis, and UV thermal denaturation experiments, we show that the downstream intron (I2) of SUS1 forms a weakly stable, 37-nucleotide stem–loop structure containing the branch site near its apical loop and the 3′ splice site after the stem terminus. A cellular assay revealed that two of four mutants containing altered I2 structures had significantly impaired SUS1 expression. Semiquantitative RT-PCR experiments indicated that all mutants accumulated unspliced SUS1 pre-mRNA and/or induced distorted levels of fully spliced mRNA relative to wild type. Concomitantly, Sus1 cellular functions in histone H2B deubiquitination and mRNA export were affected in I2 hairpin mutants that inhibited splicing. This work demonstrates that I2 structure is relevant for SUS1 expression, and that this effect is likely exerted through modulation of splicing. PMID:26546116

  9. Cytokine mRNA expression in Peromyscus yucatanicus (Rodentia: Cricetidae) infected by Leishmania (Leishmania) mexicana.

    PubMed

    Loria-Cervera, Elsy Nalleli; Sosa-Bibiano, Erika Ivett; Van Wynsberghe, Nicole Raymonde; Saldarriaga, Omar Abdul; Melby, Peter C; Andrade-Narvaez, Fernando Jose

    2016-07-01

    Peromyscus yucatanicus, the main reservoir of Leishmania (Leishmania) mexicana in the Yucatan peninsula of Mexico, reproduces clinical and histological pictures of LCL in human as well as subclinical infection. Thus, we used this rodent as a novel experimental model. In this work, we analyzed cytokine mRNA expression in P. yucatanicus infected with L. (L.) mexicana. Animals were inoculated with either 2.5×10(6) or 1×10(2) promastigotes and cytokine expressions were analyzed by real-time RT-PCR in skin at 4 and 12weeks post-infection (wpi). Independently of the parasite inoculum none of the infected rodents had clinical signs of LCL at 4wpi and all expressed high IFN-γ mRNA. All P. yucatanicus inoculated with 2.5×10(6) promastigotes developed signs of LCL at 12wpi while the mice inoculated with 1×10(2) remained subclinical. At that time, both IFN-γ and IL-10 were expressed in P. yucatanicus with clinical and subclinical infections. Expressions of TNF-α and IL-4 were significantly higher in clinical animals (2.5×10(6)) compared with subclinical ones (1×10(2)). High TGF-β expression was observed in P. yucatanicus with clinical signs when compared with healthy animals. Results suggested that the clinical course of L. (L.) mexicana infection in P. yucatanicus was associated with a specific local pattern of cytokine production at 12wpi. PMID:27155064

  10. Effect of long real space flight on the whole genome mRNA expression properties in medaka Oryzias latipes

    NASA Astrophysics Data System (ADS)

    Kozlova, Olga; Gusev, Oleg; Levinskikh, Margarita; Sychev, Vladimir; Poddubko, Svetlana

    The current study is addressed to the complex analysis of whole genome mRNA expression profile and properties of splicing variants formation in different organs of medaka fish exposed to prolonged space flight in the frame of joint Russia-Japan research program “Aquarium-AQH”. The fish were kept in the AQH joint-aquariums system in October-December 2013, followed by fixation in RNA-preserving buffers and freezing during the space flight. The samples we returned to the Earth frozen in March 2013 and mRNAs from four fish were sequenced in organ-specific manner using HiSeq Illumina sequencing platform. The ground group fish treated in the same way was used as a control. The comparison between the groups revealed space group-specific specific mRNA expression pattern. More than 50 genes (including several types of myosins) were down-regulated in the space group. Moreover, we found an evidence for formation of space group-specific splicing variants of mRNA. Taking together, the data suggest that in spite of aquatic environment, space flight-associated factors have a strong effect on the activity of fish genome. This work was supported in part by subsidy of the Russian Government to support the Program of competitive growth of Kazan Federal University among world class academic centres and universities.

  11. The Csr system regulates genome-wide mRNA stability and transcription and thus gene expression in Escherichia coli.

    PubMed

    Esquerré, Thomas; Bouvier, Marie; Turlan, Catherine; Carpousis, Agamemnon J; Girbal, Laurence; Cocaign-Bousquet, Muriel

    2016-01-01

    Bacterial adaptation requires large-scale regulation of gene expression. We have performed a genome-wide analysis of the Csr system, which regulates many important cellular functions. The Csr system is involved in post-transcriptional regulation, but a role in transcriptional regulation has also been suggested. Two proteins, an RNA-binding protein CsrA and an atypical signaling protein CsrD, participate in the Csr system. Genome-wide transcript stabilities and levels were compared in wildtype E. coli (MG1655) and isogenic mutant strains deficient in CsrA or CsrD activity demonstrating for the first time that CsrA and CsrD are global negative and positive regulators of transcription, respectively. The role of CsrA in transcription regulation may be indirect due to the 4.6-fold increase in csrD mRNA concentration in the CsrA deficient strain. Transcriptional action of CsrA and CsrD on a few genes was validated by transcriptional fusions. In addition to an effect on transcription, CsrA stabilizes thousands of mRNAs. This is the first demonstration that CsrA is a global positive regulator of mRNA stability. For one hundred genes, we predict that direct control of mRNA stability by CsrA might contribute to metabolic adaptation by regulating expression of genes involved in carbon metabolism and transport independently of transcriptional regulation. PMID:27112822

  12. Upregulation of metabotropic glutamate receptor 8 mRNA expression in the rat forebrain after repeated amphetamine administration

    PubMed Central

    Parelkar, Nikhil K; Wang, John Q.

    2008-01-01

    Metabotropic glutamate receptors (mGluRs) are G-protein-coupled receptors and are densely expressed in the forebrain of adult rats. Accumulative evidence suggests a critical role of mGluRs in the regulation of normal physiological activity of neurons and pathogenesis of mental illnesses such as schizophrenia, depression, and substance addiction. In this study, we investigated alterations in mGluR8 subtype mRNA expression in the rat forebrain in response to repeated intraperitoneal administration of amphetamine (twice daily for 12 days, 5 mg/kg per injection) using quantitative in situ hybridization. We found that mGluR8 mRNA levels were profoundly increased in the dorsal (caudate putamen) and ventral (nucleus accumbens) striatum 1 day after the discontinuation of amphetamine treatments. Such increases were sustained up to 21 days of withdrawal. Increases in mGluR8 mRNAs were also found in the cerebral cortex, including the cingulate and sensory cortex but not the piriform cortex, at 1 and 21 days. These data demonstrate a positive response of mGluR8 in mRNA abundance in most forebrain regions to repeated stimulant exposure. PMID:18255232

  13. The Csr system regulates genome-wide mRNA stability and transcription and thus gene expression in Escherichia coli

    PubMed Central

    Esquerré, Thomas; Bouvier, Marie; Turlan, Catherine; Carpousis, Agamemnon J.; Girbal, Laurence; Cocaign-Bousquet, Muriel

    2016-01-01

    Bacterial adaptation requires large-scale regulation of gene expression. We have performed a genome-wide analysis of the Csr system, which regulates many important cellular functions. The Csr system is involved in post-transcriptional regulation, but a role in transcriptional regulation has also been suggested. Two proteins, an RNA-binding protein CsrA and an atypical signaling protein CsrD, participate in the Csr system. Genome-wide transcript stabilities and levels were compared in wildtype E. coli (MG1655) and isogenic mutant strains deficient in CsrA or CsrD activity demonstrating for the first time that CsrA and CsrD are global negative and positive regulators of transcription, respectively. The role of CsrA in transcription regulation may be indirect due to the 4.6-fold increase in csrD mRNA concentration in the CsrA deficient strain. Transcriptional action of CsrA and CsrD on a few genes was validated by transcriptional fusions. In addition to an effect on transcription, CsrA stabilizes thousands of mRNAs. This is the first demonstration that CsrA is a global positive regulator of mRNA stability. For one hundred genes, we predict that direct control of mRNA stability by CsrA might contribute to metabolic adaptation by regulating expression of genes involved in carbon metabolism and transport independently of transcriptional regulation. PMID:27112822

  14. The p38 MAPK Regulates IL-24 Expression by Stabilization of the 3′ UTR of IL-24 mRNA

    PubMed Central

    Otkjaer, Kristian; Holtmann, Helmut; Kragstrup, Tue Wenzel; Paludan, Søren Riis; Johansen, Claus; Gaestel, Matthias; Kragballe, Knud; Iversen, Lars

    2010-01-01

    Background IL-24 (melanoma differentiation-associated gene-7 (mda-7)), a member of the IL-10 cytokine family, possesses the properties of a classical cytokine as well as tumor suppressor effects. The exact role of IL-24 in the immune system has not been defined but studies have indicated a role for IL-24 in inflammatory conditions such as psoriasis. The tumor suppressor effects of IL-24 include inhibition of angiogenesis, sensitization to chemotherapy, and p38 mitogen-activated protein kinase (MAPK)-mediated apoptosis. Current knowledge on the regulation of IL-24 expression is sparse. Previous studies have suggested that mRNA stabilization is of major importance to IL-24 expression. Yet, the mechanisms responsible for the regulation of IL-24 mRNA stability remain unidentified. As p38 MAPK is known to regulate gene expression by interfering with mRNA degradation we examined the role of p38 MAPK in the regulation of IL-24 gene expression in cultured normal human keratinocytes. Methodology/Principal Findings In the present study we show that anisomycin- and IL-1β- induced IL-24 expression is strongly dependent on p38 MAPK activation. Studies of IL-24 mRNA stability in anisomycin-treated keratinocytes reveal that the p38 MAPK inhibitor SB 202190 accelerates IL-24 mRNA decay suggesting p38 MAPK to regulate IL-24 expression by mRNA-stabilizing mechanisms. The insertion of the 3′ untranslated region (UTR) of IL-24 mRNA in a tet-off reporter construct induces degradation of the reporter mRNA. The observed mRNA degradation is markedly reduced when a constitutively active mutant of MAPK kinase 6 (MKK6), which selectively activates p38 MAPK, is co-expressed. Conclusions/Significance Taken together, we here report p38 MAPK as a regulator of IL-24 expression and determine interference with destabilization mediated by the 3′ UTR of IL-24 mRNA as mode of action. As discussed in the present work these findings have important implications for our understanding of IL-24 as a

  15. Association Analysis of Myosin Heavy-chain Genes mRNA Transcription with the Corresponding Proteins Expression of Longissimus Muscle in Growing Pigs.

    PubMed

    Men, X M; Deng, B; Tao, X; Qi, K K; Xu, Z W

    2016-04-01

    The goal of this work was to investigate the correlations between MyHC mRNA transcription and their corresponding protein expressions in porcine longissimus muscle (LM) during postnatal growth of pigs. Five DLY (Duroc×Landrace×Yorkshire) crossbred pigs were selected, slaughtered and sampled at postnatal 7, 30, 60, 120, and 180 days, respectively. Each muscle was subjected to quantity MyHCs protein contents through an indirect enzyme-linked immunosorbent assay (ELISA), to quantity myosin heavy-chains (MyHCs) mRNA abundances using real-time polymerase chain reaction. We calculated the proportion (%) of each MyHC to total of four MyHC for two levels, respectively. Moreover, the activities of several key energy metabolism enzymes were determined in LM. The result showed that mRNA transcription and protein expression of MyHC I, IIa, IIx and IIb in LM all presented some obvious changes with postnatal aging of pigs, especially at the early stage after birth, and their mRNA transcriptions were easy to be influenced than their protein expressions. The relative proportion of each MyHC mRNA was significantly positively related to that of its corresponding protein (p<0.01), and MyHC I mRNA proportion was positively correlated with creatine kinase (CK), succinate dehydrogenase (SDH), malate dehydrogenase (MDH) activities (p<0.05). These data suggested that MyHC mRNA transcription can be used to reflect MyHC expression, metabolism property and adaptive plasticity of porcine skeletal muscles, and MyHC mRNA composition could be a molecular index reflecting muscle fiber type characteristics. PMID:26949945

  16. Association Analysis of Myosin Heavy-chain Genes mRNA Transcription with the Corresponding Proteins Expression of Longissimus Muscle in Growing Pigs

    PubMed Central

    Men, X. M.; Deng, B.; Tao, X.; Qi, K. K.; Xu, Z. W.

    2016-01-01

    The goal of this work was to investigate the correlations between MyHC mRNA transcription and their corresponding protein expressions in porcine longissimus muscle (LM) during postnatal growth of pigs. Five DLY (Duroc×Landrace×Yorkshire) crossbred pigs were selected, slaughtered and sampled at postnatal 7, 30, 60, 120, and 180 days, respectively. Each muscle was subjected to quantity MyHCs protein contents through an indirect enzyme-linked immunosorbent assay (ELISA), to quantity myosin heavy-chains (MyHCs) mRNA abundances using real-time polymerase chain reaction. We calculated the proportion (%) of each MyHC to total of four MyHC for two levels, respectively. Moreover, the activities of several key energy metabolism enzymes were determined in LM. The result showed that mRNA transcription and protein expression of MyHC I, IIa, IIx and IIb in LM all presented some obvious changes with postnatal aging of pigs, especially at the early stage after birth, and their mRNA transcriptions were easy to be influenced than their protein expressions. The relative proportion of each MyHC mRNA was significantly positively related to that of its corresponding protein (p<0.01), and MyHC I mRNA proportion was positively correlated with creatine kinase (CK), succinate dehydrogenase (SDH), malate dehydrogenase (MDH) activities (p<0.05). These data suggested that MyHC mRNA transcription can be used to reflect MyHC expression, metabolism property and adaptive plasticity of porcine skeletal muscles, and MyHC mRNA composition could be a molecular index reflecting muscle fiber type characteristics. PMID:26949945

  17. Humoral immunity to human breast cancer: antigen definition and quantitative analysis of mRNA expression.

    PubMed

    Scanlan, M J; Gout, I; Gordon, C M; Williamson, B; Stockert, E; Gure, A O; Jäger, D; Chen, Y T; Mackay, A; O'Hare, M J; Old, L J

    2001-03-30

    The ability of the immune system to recognize structurally altered, amplified or aberrantly expressed proteins can be used to identify molecules of etiologic relevance to cancer and to define targets for cancer immunotherapy. In the current study, ninety-four distinct antigens reactive with serum IgG from breast cancer patients were identified by immunoscreening breast cancer-derived cDNA expression libraries (SEREX). A serological profile was generated for each antigen on the basis of reactivity with allogeneic sera from normal individuals and cancer patients, and mRNA expression profiles for coding sequences were assembled based upon the tissue distribution of expressed sequence tags, Northern blots and real-time RT-PCR. Forty antigens reacted exclusively with sera from cancer patients. These included well-characterized tumor antigens, e.g. MAGE-3, MAGE-6, NY-ESO-1, Her2neu and p53, as well as newly-defined breast cancer antigens, e.g. kinesin 2, TATA element modulatory factor 1, tumor protein D52 and MAGE D, and novel gene products, e.g. NY-BR-62, NY-BR-75, NY-BR-85, and NY-BR-96. With regard to expression profiles, two of the novel gene products, NY-BR-62 and NY-BR-85, were characterized by a high level of testicular mRNA expression, and were overexpressed in 60% and 90% of breast cancers, respectively. In addition, mRNA encoding tumor protein D52 was overexpressed in 60% of breast cancer specimens, while transcripts encoding SNT-1 signal adaptor protein were downregulated in 70% of these cases. This study adds to the growing list of breast cancer antigens defined by SEREX and to the ultimate objective of identifying the complete repertoire of immunogenic gene products in human cancer (the cancer immunome). PMID:12747765

  18. CART mRNA expression in rat monkey and human brain: relevance to cocaine abuse.

    PubMed

    Fagergren, Pernilla; Hurd, Yasmin

    2007-09-10

    The neuropeptide CART (cocaine and amphetamine regulated transcript) is suggested to be regulated by psychostimulant administration. We review here the localization of CART mRNA expression in the human brain and its possible relevance to human cocaine abuse. Except for strong hypothalamic expression, the CART transcript is predominately expressed in target regions of the mesocorticolimbic dopamine system, such as the nucleus accumbens shell, amygdala complex, extended amygdala and orbitofrontal, enthorhinal and piriform cortices. The discrete limbic localization strongly implies involvement in reward and reinforcement behaviors. We therefore examined CART mRNA expression in both Sprague Dawley rats and Rhesus monkeys that had self-administered cocaine. Cocaine self-administration in the rat (1.5 mg/kg/inj, on a fixed ratio 1 schedule of reinforcement for 1 week) and monkey (0.03 or 0.3 mg/kg/inj on a fixed 3 min interval schedule of reinforcement for 5 or 100 days) did not alter transcript levels in CART expressing nucleus accumbens (monkey not studied), amygdala nuclei or cortical areas. However, in the monkey sublenticular extended amygdala, low dose cocaine self-administration resulted in increased CART transcript levels after both 5 and 100 days of self-administration, whereas no difference was found after high dose self-administration. In conclusion, we found no substantial alterations CART mRNA expression during cocaine self-administration, but this neuropeptide has the anatomical and functional potential to modulate brain areas relevant for cocaine abuse. Further studies are needed to evaluate the involvement of CART in other components of the cocaine abuse cycle. PMID:17631364

  19. Thyroid sialyltransferase mRNA level and activity are increased in Graves' disease.

    PubMed

    Kiljański, Jacek; Ambroziak, Michał; Pachucki, Janusz; Jazdzewski, Krystian; Wiechno, Wieslaw; Stachlewska, Elzbieta; Górnicka, Barbara; Bogdańska, Magdalena; Nauman, Janusz; Bartoszewicz, Zbigniew

    2005-07-01

    Sialylation of cell components is an important immunomodulating mechanism affecting cell response to hormones and adhesion molecules. To study alterations in sialic acid metabolism in Graves' disease (GD) we measured the following parameters in various human thyroid tissues: lipid-bound sialic acid (LBSA) content, ganglioside profile, total sialyltransferase activity, and the two major sialyltransferase mRNAs for sialyltransferase-1 (ST6Gal I) and for sialyltransferase-4A (ST3Gal I). Fragments of toxic thyroid nodules (TN), nontoxic thyroid nodules (NN) and nontumorous tissue from patients with nodular goiter or thyroid cancer were used as a control (C). The LBSA content and sialyltransferase activity were the highest in the GD group (164 +/- 4.44 versus 120 +/- 2.00 nmoL/g, p = 0.005 and 1625 +/- 283.5 versus 324 +/- 54.2 cpm/mg of protein, p < 0.005 compared to control group C). Ganglioside profile in the GD group was similar to that in control tissues. Sialyltransferase- 1 mRNA and sialyltransferase-4A mRNA levels were significantly higher in the GD group than in the control group (12.52 +/- 6.90 versus 2.54 +/- 1.24 arbitrary units, p < 0.005 and 2,49 +/- 1.16 versus 1.23 +/- 0.46 arbitrary units, p < 0.05, respectively). There was a positive correlation between the increased sialyltransferase-1 mRNA level and the TSH-receptor antibody titer determined by the TRAK test. These results indicate that sialyltransferases expression and activity are increased in GD. Exact mechanism of this upregulation remains unknown, though one of possible explanations is the activation of the thyrotropin (TSH) receptor. PMID:16053379

  20. Differential dynamics of the mammalian mRNA and protein expression response to misfolding stress.

    PubMed

    Cheng, Zhe; Teo, Guoshou; Krueger, Sabrina; Rock, Tara M; Koh, Hiromi W L; Choi, Hyungwon; Vogel, Christine

    2016-01-01

    The relative importance of regulation at the mRNA versus protein level is subject to ongoing debate. To address this question in a dynamic system, we mapped proteomic and transcriptomic changes in mammalian cells responding to stress induced by dithiothreitol over 30 h. Specifically, we estimated the kinetic parameters for the synthesis and degradation of RNA and proteins, and deconvoluted the response patterns into common and unique to each regulatory level using a new statistical tool. Overall, the two regulatory levels were equally important, but differed in their impact on molecule concentrations. Both mRNA and protein changes peaked between two and eight hours, but mRNA expression fold changes were much smaller than those of the proteins. mRNA concentrations shifted in a transient, pulse-like pattern and returned to values close to pre-treatment levels by the end of the experiment. In contrast, protein concentrations switched only once and established a new steady state, consistent with the dominant role of protein regulation during misfolding stress. Finally, we generated hypotheses on specific regulatory modes for some genes. PMID:26792871

  1. Hypoxia-induced gene expression results from selective mRNA partitioning to the endoplasmic reticulum

    PubMed Central

    Staudacher, Jonas J.; Naarmann-de Vries, Isabel S.; Ujvari, Stefanie J.; Klinger, Bertram; Kasim, Mumtaz; Benko, Edgar; Ostareck-Lederer, Antje; Ostareck, Dirk H.; Bondke Persson, Anja; Lorenzen, Stephan; Meier, Jochen C.; Blüthgen, Nils; Persson, Pontus B.; Henrion-Caude, Alexandra; Mrowka, Ralf; Fähling, Michael

    2015-01-01

    Protein synthesis is a primary energy-consuming process in the cell. Therefore, under hypoxic conditions, rapid inhibition of global mRNA translation represents a major protective strategy to maintain energy metabolism. How some mRNAs, especially those that encode crucial survival factors, continue to be efficiently translated in hypoxia is not completely understood. By comparing specific transcript levels in ribonucleoprotein complexes, cytoplasmic polysomes and endoplasmic reticulum (ER)-bound ribosomes, we show that the synthesis of proteins encoded by hypoxia marker genes is favoured at the ER in hypoxia. Gene expression profiling revealed that transcripts particularly increased by the HIF-1 transcription factor network show hypoxia-induced enrichment at the ER. We found that mRNAs favourably translated at the ER have higher conservation scores for both the 5′- and 3′-untranslated regions (UTRs) and contain less upstream initiation codons (uAUGs), indicating the significance of these sequence elements for sustained mRNA translation under hypoxic conditions. Furthermore, we found enrichment of specific cis-elements in mRNA 5′- as well as 3′-UTRs that mediate transcript localization to the ER in hypoxia. We conclude that transcriptome partitioning between the cytoplasm and the ER permits selective mRNA translation under conditions of energy shortage. PMID:25753659

  2. MRNA and miRNA expression patterns associated to pathways linked to metal mixture health effects.

    PubMed

    Martínez-Pacheco, M; Hidalgo-Miranda, A; Romero-Córdoba, S; Valverde, M; Rojas, E

    2014-01-10

    Metals are a threat to human health by increasing disease risk. Experimental data have linked altered miRNA expression with exposure to some metals. MiRNAs comprise a large family of non-coding single-stranded molecules that primarily function to negatively regulate gene expression post-transcriptionally. Although several human populations are exposed to low concentrations of As, Cd and Pb as a mixture, most toxicology research focuses on the individual effects that these metals exert. Thus, this study aims to evaluate global miRNA and mRNA expression changes induced by a metal mixture containing NaAsO2, CdCl2, Pb(C2H3O2)2·3H2O and to predict possible metal-associated disease development under these conditions. Our results show that this metal mixture results in a miRNA expression profile that may be responsible for the mRNA expression changes observed under experimental conditions in which coding proteins are involved in cellular processes, including cell death, growth and proliferation related to the metal-associated inflammatory response and cancer. PMID:24080485

  3. mRNA expression profiles of calmodulin and liver receptor homolog-1 genes in chickens.

    PubMed

    Zhang, Z-C; Xiao, L-H; Wang, Y; Chen, S-Y; Yang, Z-Q; Zhao, X-L; Zhu, Q; Liu, Y-P

    2012-01-01

    Calmodulin (CALM), a calcium-binding protein, is expressed in the hypothalamic-pituitary-gonadal axis; it plays a pivotal role in the reproductive system by regulating gonadotropin-releasing hormone signaling. Downstream of hypothalamic-pituitary-gonadal signaling pathways, liver receptor homolog-1 (LRH-1) is involved in female gonadal hormone synthesis. In the chicken, although the two genes are known to be associated with reproductive traits, the interaction between gonadotropins and gonadal steroids remains unclear. We used quantitative real-time PCR to quantify the tissular (hypothalamus, pituitary, ovary, liver, kidney, oviduct, heart) and ontogenetic (12, 18, 32, and 45 weeks) mRNA expression profiles of CALM and LRH-1 in Erlang Mountainous chickens to determine their roles in the endocrine control of fertility, and compared these profiles with expression in Roman chickens. We found that the relative expressions of CALM and LRH-1 genes had the highest levels in the pituitary and ovary at 32 weeks. The expression level of CALM mRNA in the pituitary of Roman chickens was significantly higher than that in Erlang Mountainous chickens at 32 and 45 weeks, while the LRH-1 transcript level in the ovaries of Roman chickens was significantly lower than that of Erlang Mountainous chickens at 32 and 45 weeks. In summary, the transcript levels of CALM and LRH-1 genes are associated with chicken reproductive traits; in addition, we found that the CALM gene is the key regulator in the hypothalamic-pituitary-gonadal signaling network. PMID:23079841

  4. Naproxen sodium decreases prostaglandins secretion from cultured human endometrial stromal cells modulating metabolizing enzymes mRNA expression.

    PubMed

    Carrarelli, Patrizia; Funghi, Lucia; Bruni, Simone; Luisi, Stefano; Arcuri, Felice; Petraglia, Felice

    2016-04-01

    Dysmenorrhea, defined as painful cramps occurring immediately before or during the menstrual period, is a common symptom of different gynecological diseases. An acute uterine inflammatory response driven by prostaglandins (PGs) is responsible for painful symptoms. Progesterone withdrawal is responsible for activation of cyclooxygenase (COX-2) enzyme and decrease of hydroxyprostaglandin dehydrogenase (HPDG) with consequent increased secretion of PGs secretion, inducing uterine contractility and pain. The most widely used drugs for the treatment of pelvic pain associated with menstrual cycle are non steroidal anti-inflammatory drugs (NSAIDs). The uterine site of action of these drugs is still not defined and the present study evaluated the effect of naproxen sodium in cultured human endometrial stromal cells (HESC) collected from healthy women. PGE2 release was measured by ELISA; COX-2 and HPDG mRNA expression were assessed by qRT-PCR. Naproxen sodium did not affect HESC vitality. Naproxen sodium significantly decreased PGE2 secretion (p < 0.01) and COX-2 mRNA expression (p < 0.01). TNF-α induced PGE2 release was reduced in presence of naproxen sodium (p < 0.05), in association with decreased COX-2 and increased HPDG mRNAs expression. Naproxen sodium decreases endometrial PGE2 release induced by inflammatory stimulus acting on endometrial COX-2 and HPDG expression, suggesting endometrial synthesis of prostaglandins as a possible target for reduction of uterine inflammatory mechanism in dysmenorrhea. PMID:26634864

  5. Reduced mRNA expression levels of MBD2 and MBD3 in gastric carcinogenesis.

    PubMed

    Pontes, Thaís Brilhante; Chen, Elizabeth Suchi; Gigek, Carolina Oliveira; Calcagno, Danielle Queiroz; Wisnieski, Fernanda; Leal, Mariana Ferreira; Demachki, Samia; Assumpção, Paulo Pimentel; Artigiani, Ricardo; Lourenço, Laércio Gomes; Burbano, Rommel Rodriguez; Arruda Cardoso Smith, Marília

    2014-04-01

    Aberrant methylation has been reported in several neoplasias, including gastric cancer. The methyl-CpG-binding domain (MBD) family proteins have been implicated in the chromatin remodeling process, leading to the modulation of gene expression. To evaluate the role of MBD2 and MBD3 in gastric carcinogenesis and the possible association with clinicopathological characteristics, we assessed the mRNA levels and promoter methylation patterns in gastric tissues. In this study, MBD2 and MBD3 mRNA levels were determined by RT-qPCR in 28 neoplastic and adjacent nonneoplastic and 27 gastritis and non-gastritis samples. The promoter methylation status was determined by bisulfite sequencing, and we found reduced MBD2 and MBD3 levels in the neoplastic samples compared with the other groups. Moreover, a strong correlation between the MBD2 and MBD3 expression levels was observed in each set of paired samples. Our data also showed that the neoplastic tissues exhibited higher MBD2 promoter methylation than the other groups. Interestingly, the non-gastritis group was the only one with positive methylation in the MBD3 promoter region. Furthermore, a weak correlation between gene expression and methylation was observed. Therefore, our data suggest that DNA methylation plays a minor role in the regulation of MBD2 and MBD3 expression, and the presence of methylation at CpGs that interact with transcription factor complexes might also be involved in the modulation of these genes. Moreover, reduced mRNA expression of MBD2 and MBD3 is implicated in gastric carcinogenesis, and thus, further investigations about these genes should be conducted for a better understanding of the role of abnormal methylation involved in this neoplasia. PMID:24338710

  6. Genomic Analysis and mRNA Expression of Equine Type I Interferon Genes

    PubMed Central

    Detournay, Olivier; Morrison, David A.; Wagner, Bettina; Zarnegar, Behdad

    2013-01-01

    This study aimed at identifying all of the type I interferon (IFN) genes of the horse and at monitoring their expression in equine cells on in vitro induction. We identified 32 putative type I IFN loci on horse chromosome 23 and an unplaced genomic scaffold. A phylogentic analysis characterized these into 8 different type I IFN classes, that is, putative functional genes for 6 IFN-α, 4 IFN-β, 8 IFN-ω (plus 4 pseudogenes), 3 IFN-δ (plus 1 pseudogene), 1 IFN-κ and 1 IFN-ɛ, plus 1 IFN-ν pseudogene, and 3 loci belonging to what has previously been called IFN-αω. Our analyses indicate that the IFN-αω genes are quite distinct from both IFN-α and IFN-ω, and we refer to this type I IFN as IFN-μ. Results from cell cultures showed that leukocytes readily expressed IFN-α, IFN-β, IFN-δ, IFN-μ, and IFN-ω mRNA on induction with, for example, live virus; while fibroblasts only expressed IFN-β mRNA on stimulation. IFN-κ or IFN-ɛ expression was not consistently induced in these cell cultures. Thus, the equine type I IFN family comprised 8 classes, 7 of which had putative functional genes, and mRNA expression of 5 was induced in vitro. Moreover, a relatively low number of IFN-α subtypes was found in the horse compared with other eutherian mammals. PMID:23772953

  7. Glucocorticoid regulation of human pulmonary surfactant protein-B (SP-B) mRNA stability is independent of activated glucocorticoid receptor.

    PubMed

    Tillis, Ceá C; Huang, Helen W; Bi, Weizhen; Pan, Su; Bruce, Shirley R; Alcorn, Joseph L

    2011-06-01

    Adequate expression of surfactant protein-B (SP-B) is critical in the function of pulmonary surfactant to reduce alveolar surface tension. Expression of SP-B mRNA is restricted to specific lung-airway epithelial cells, and human SP-B mRNA stability is increased in the presence of the synthetic glucocorticoid dexamethasone (DEX). Although the mechanism of SP-B mRNA stabilization by DEX is unknown, studies suggest involvement of the glucocorticoid receptor (GR). We developed a dual-cistronic plasmid-based expression assay in which steady-state levels of SP-B mRNA, determined by Northern analysis, reproducibly reflect changes in SP-B mRNA stability. Using this assay, we found that steady-state levels of SP-B mRNA increased greater than twofold in transfected human-airway epithelial cells (A549) incubated with DEX (10(-7) M). DEX-mediated changes in SP-B mRNA levels required the presence of the SP-B mRNA 3'-untranslated region but did not require ongoing protein synthesis. The effect of DEX on SP-B mRNA levels was dose dependent, with maximal effect at 10(-7) M. DEX increased levels of SP-B mRNA in cells lacking GR, and the presence of the GR antagonist RU486 did not interfere with the effect of DEX. Surprisingly, other steroid hormones (progesterone, estradiol, and vitamin D; 10(-7) M) significantly increased SP-B mRNA levels, suggesting a common pathway of steroid hormone action on SP-B mRNA stability. These results indicate that the effect of DEX to increase SP-B mRNA stability is independent of activated GR and suggests that the mechanism is mediated by posttranscriptional or nongenomic effects of glucocorticoids. PMID:21398497

  8. mRNA Decay of Most Arabidopsis miRNA Targets Requires Slicer Activity of AGO11[OPEN

    PubMed Central

    2016-01-01

    MicroRNAs (miRNAs) are key posttranscriptional regulators of gene expression in animals and plants. They guide RNA-induced silencing complexes to complementary target mRNA, thereby mediating mRNA degradation or translational repression. ARGONAUTE (AGO) proteins bind directly to miRNAs and may catalyze cleavage (slicing) of target mRNAs. In animals, miRNA target degradation via slicing occurs only exceptionally, and target mRNA decay is induced via AGO-dependent recruitment of deadenylase complexes. Conversely, plant miRNAs generally direct slicing of their targets, but it is unclear whether slicer-independent mechanisms of target mRNA decay also exist, and, if so, how much they contribute to miRNA-induced mRNA decay. Here, we compare phenotypes and transcript profiles of ago1 null and slicer-deficient mutants in Arabidopsis (Arabidopsis thaliana). We also construct conditional loss-of-function mutants of AGO1 to allow transcript profiling in true leaves. Although phenotypic differences between ago1 null and slicer-deficient mutants can be discerned, the results of both transcript profiling approaches indicate that slicer activity is required for mRNA repression of the vast majority of miRNA targets. A set of genes exhibiting up-regulation specifically in ago1 null, but not in ago1 slicer-deficient mutants was also identified, leaving open the possibility that AGO1 may have functions in gene regulation independent of small RNAs. PMID:27208258

  9. CYP2C9 Promoter Variable Number Tandem Repeat Polymorphism Regulates mRNA Expression in Human Livers

    PubMed Central

    Sun, Xiaochun; Gong, Yan; Gawronski, Brian E.; Langaee, Taimour Y.; Shahin, Mohamed Hossam A.; Khalifa, Sherief I.; Johnson, Julie A.

    2012-01-01

    CYP2C9 is involved in metabolism of nearly 25% of clinically used drugs. Coding region polymorphisms CYP2C9*2 and *3 contribute to interperson variability in drug dosage and clinical outcomes, whereas the role of a regulatory polymorphism remains uncertain. Measuring allelic RNA expression in 87 human liver samples, combined with genotyping, sequencing, and reporter gene assays, we identified a promoter variable number tandem repeat polymorphism (pVNTR) that fully accounted for allelic CYP2C9 mRNA expression differences. Present in three different variant forms [short (pVNTR-S), medium (pVNTR-M), and long (pVNTR-L)], only the pVNTR-S allele reduced the CYP2C9 mRNA level compared with the pVNTR-M (reference) allele. pVNTR-S is in linkage disequilibrium with *3, with linkage disequilibrium r2 of 0.53 to 0.75 in different populations. In patients who were taking a maintenance dose of warfarin, the mean warfarin dose was associated with the copies of pVNTR-S (p = 0.0001). However, in multivariate regression models that included the CYP2C9*3, pVNTR-S was no longer a significant predictor of the warfarin dose (p = 0.60). These results indicate that although pVNTR-S reduced CYP2C9 mRNA expression, the in vivo effects of pVNTR-S on warfarin metabolism cannot be separated from the effects of *3. Therefore, it is not necessary to consider pVNTR-S as an additional biomarker for warfarin dosing. Larger clinical studies are needed to define whether the pVNTR-S has a minimal effect in vivo, or whether the effect attributed to *3 is really a combination of effects on expression by the pVNTR-S along with effects on catalytic activity from the nonsynonymous *3 variant. PMID:22289258

  10. The cell cycle-coupled expression of topoisomerase IIalpha during S phase is regulated by mRNA stability and is disrupted by heat shock or ionizing radiation.

    PubMed Central

    Goswami, P C; Roti Roti, J L; Hunt, C R

    1996-01-01

    Topoisomerase II is a multifunctional protein required during DNA replication, chromosome disjunction at mitosis, and other DNA-related activities by virtue of its ability to alter DNA supercoiling. The enzyme is encoded by two similar but nonidentical genes: the topoisomerase IIalpha and IIbeta genes. In HeLa cells synchronized by mitotic shake-off, topoisomeraseII alpha mRNA levels were found to vary as a function of cell cycle position, being 15-fold higher in late S phase (14 to 18 h postmitosis) than during G1 phase. Also detected was a corresponding increase in topoisomerase IIalpha protein synthesis at 14 to 18 h postmitosis which resulted in significantly higher accumulation of the protein during S and G2 phases. Topoisomerase IIalpha expression was not dependent on DNA synthesis during S phase, which could be inhibited without effect on the timing or level of mRNA expression. Mechanistically, topoisomerase IIalpha expression appears to be coupled to cell cycle position mainly through associated changes in mRNA stability. When cells are in S phase and mRNA levels are maximal, the half-life of topoisomerase IIalpha mRNA was determined to be approximately 30 min. A similar decrease in mRNA stability was also induced by two external factors known to delay cell cycle progression. Treatment of S-phase cells, at the time of maximum topoisomerase IIalpha mRNA stability, with either ionizing radiation (5 Gy) or heat shock (45 degrees C for 15 min) caused the accumulated topoisomerase IIalpha mRNA to decay. This finding suggests a potential relationship between stress-induced decreases in topoisomerase IIalpha expression and cell cycle progression delays in late S/G2. PMID:8657123

  11. Cloning and expression analysis of prohibitin mRNA in canine mammary tumors.

    PubMed

    Matsuyama, Satoshi; Nakano, Yuko; Nakamura, Mieko; Yamamoto, Ryohei; Shimada, Terumasa; Ohashi, Fumihito; Kubo, Kihei

    2015-01-01

    Prohibitin is an antiproliferative protein that is a product of a putative tumor suppressor gene. However, there is little information on prohibitins in companion animals. In this study, we cloned canine prohibitin mRNA using RT-PCR and 3'-RACE (Rapid Amplification of cDNA Ends). The sequence was well conserved compared with those of other mammals, including human. The deduced amino acid sequence translated from the open reading frame completely corresponded to the human sequence. Canine prohibitin mRNA was expressed in all normal mammary and tumor samples examined. These results suggest that this protein plays a vital role in cell growth mechanisms and may be related to the occurrence of canine mammary tumors. PMID:25312047

  12. Effect of running training on uncoupling protein mRNA expression in rat brown adipose tissue

    NASA Astrophysics Data System (ADS)

    Yamashita, Hitoshi; Yamamoto, Mikio; Sato, Yuzo; Izawa, Tetsuya; Komabayashi, Takao; Saito, Daizo; Ohno, Hideki

    1993-03-01

    The effect was investigated of endurance training on the expression of uncoupling protein (UCP) mRNA in brown adipose tissue (BAT) of rats. The exercised rats were trained on a rodent treadmill for 5 days per week and a total of 9 weeks. After the training programme, a marked decrease in BAT mass was found in terms of weight or weight per unit body weight; there was a corresponding decrease in DNA content and a downward trend in RNA and glycogen levels. The UCP mRNA was present at a markedly decreased level in BAT of trained animals. In consideration of the reduced levels of mRNAs for hormone-sensitive lipase and acylCoA synthetase, the brown adipose tissue investigated appeared to be in a relatively atrophied and thermogenically quiescent state.

  13. mRNA expression of dopamine receptors in peripheral blood lymphocytes of computer game addicts.

    PubMed

    Vousooghi, Nasim; Zarei, Seyed Zeinolabedin; Sadat-Shirazi, Mitra-Sadat; Eghbali, Fatemeh; Zarrindast, Mohammad Reza

    2015-10-01

    Excessive playing of computer games like some other behaviors could lead to addiction. Addictive behaviors may induce their reinforcing effects through stimulation of the brain dopaminergic mesolimbic pathway. The status of dopamine receptors in the brain may be parallel to their homologous receptors in peripheral blood lymphocytes (PBLs). Here, we have investigated the mRNA expression of dopamine D3, D4 and D5 receptors in PBLs of computer game addicts (n = 20) in comparison to normal subjects (n = 20), using a real-time PCR method. The results showed that the expression level of D3 and D4 dopamine receptors in computer game addicts were not statistically different from the control group. However, the expression of the mRNA of D5 dopamine receptor was significantly down-regulated in PBLs of computer game addicts and reached 0.42 the amount of the control group. It is concluded that unlike with drug addiction, the expression levels of the D3 and D4 dopamine receptors in computer game addicts are not altered compared to the control group. However, reduced level of the D5 dopamine receptor in computer game addicts may serve as a peripheral marker in studies where the confounding effects of abused drugs are unwanted. PMID:25967984

  14. Expression of cytokine mRNA transcripts in renal cell carcinoma.

    PubMed

    Olive, C; Cheung, C; Nicol, D; Falk, M C

    1998-08-01

    Renal cell carcinoma (RCC) is a solid tumour of the kidney and is the most common renal neoplasm. Despite the presence of tumour infiltrating lymphocytes (TIL) in RCC, these tumours continue to progress in vivo suggesting a poor host immune response to the tumour, and the suppression of TIL effector function. Cytokines are key molecules that modulate the function of T cells. The possibility is investigated that the local production of cytokines in RCC contributes to immunosuppression of TIL. The expression of pro-inflammatory (IFN-gamma/IL-2) and immunosuppressive (IL-10/TGF-beta) cytokine mRNA transcripts was determined in RCC, normal kidney and peripheral blood of RCC patients using a semi-quantitative reverse transcriptase polymerase chain reaction (RT-PCR) with cytokine-specific primers. Following Southern blot hybridization of the PCR products with internal radiolabelled oligonucleotide probes, cytokine transcript levels were measured by densitometry and expressed relative to the glyceraldehyde-3-phosphate dehydrogenase densitometry score. With the exception of IL-10, there were no differences in expression of cytokine mRNA transcripts between the peripheral blood of patients and normal healthy individuals. It was found that TGF-beta transcripts were well represented in normal kidney and RCC. In contrast, the expression of IFN-gamma transcripts, while low in the majority of samples, was significantly increased in RCC when compared to normal kidney (P=0.05). The IL-2 and IL-10 transcripts showed a more variable expression in normal kidney and RCC, with no significant differences in expression between the sample groups. The data demonstrating pro-inflammatory and immunosuppressive cytokine expression in RCC do not support a prominent immunosuppressive cytokine profile in these tumours. PMID:9723777

  15. Isoeugenol destabilizes IL-8 mRNA expression in THP-1 cells through induction of the negative regulator of mRNA stability tristetraprolin.

    PubMed

    Galbiati, Valentina; Carne, Alice; Mitjans, Montserrat; Galli, Corrado Lodovico; Marinovich, Marina; Corsini, Emanuela

    2012-02-01

    We previously demonstrated in the human promyelocytic cell line THP-1 that all allergens tested, with the exception of the prohapten isoeugenol, induced a dose-related release of interleukin-8 (IL-8). In the present study, we investigated whether this abnormal behavior was regulated by the AU-rich element-binding proteins HuR and tristetraprolin (TTP) or by the downstream molecule suppressor of cytokine signaling (SOCS)-3. The contact allergens isoeugenol, diethylmaleate (DEM), and 2,4-dinitrochlorobenzene (DNCB), and the irritant salicylic acid were used as reference compounds. Chemicals were used at concentrations that induced a 20% decrease in cell viability as assessed by propidium iodide staining, namely 100 μg/ml (0.61 mM) for isoeugenol, 100 μg/ml (0.58 mM) for DEM, 3 μg/ml (14.8 μM) for DNCB, and 250 μg/ml (1.81 mM) for salicylic acid. Time course experiments of IL-8 mRNA expression and assessment of IL-8 mRNA half-life, indicated a decreased IL-8 mRNA stability in isoeugenol-treated cells. We could demonstrate that a combination and regulation of HuR and TTP following exposure to contact allergens resulted in a different modulation of IL-8 mRNA half-life and release. The increased expression of TTP in THP-1 cells treated with isoeugenol results in destabilization of the IL-8 mRNA, which can account for the lack of IL-8 release. In contrast, the strong allergen DNCB failing to up-regulate TTP, while inducing HuR, resulted in longer IL-8 mRNA half-life and protein release. SOCS-3 was induced only in isoeugenol-treated cells; however, its modulation did not rescue the lack of IL-8 release, indicating that it is unlikely to be involved in the lack of IL-8 production. Finally, the destabilization effect of isoeugenol on IL-8 mRNA expression together with SOCS-3 expression resulted in an anti-inflammatory effect, as demonstrated by the ability of isoeugenol to modulate LPS or ionomycin-induced cytokine release. PMID:21969073

  16. Effects of glutamine supplementation on splenocyte cytokine mRNA expression in rats with septic peritonitis

    PubMed Central

    Yeh, Sung-Ling; Lai, Yu-Ni; Shang, Huey-Fang; Lin, Ming-Tsan; Chiu, Wan-Chun; Chen, Wei-Jao

    2005-01-01

    AIM: To investigate the effects of glutamine (GLN)-enriched diets before and GLN-containing total parenteral nutrition (TPN) after sepsis or both on the secretion of cytokines and their mRNA expression levels in splenocytes of rats with septic peritonitis. METHODS: Rats were assigned to a control group and 4 experimental groups. The control group and experimental groups 1 and 2 were fed a semipurified diet, while experimental groups 3 and 4 had part of the casein replaced by GLN which provided 25% of the total nitrogen. After rats were fed with these diets for 10 d, sepsis was induced by cecal ligation and puncture (CLP), whereas the control group underwent a sham operation, at the same time, an internal jugular vein was cannulated. All rats were maintained on TPN for 3 d. The control group and experimental groups 1 and 3 were infused with conventional TPN, while the TPN in experimental groups 2 and 4 was supplemented with GLN, providing 25% of the total nitrogen in the TPN solution. All rats were kiued 3 d after sham operation or CLP to examine their splenocyte subpopulation distribution and cytokine expression levels. RESULTS: Most cytokines could not be detected in plasma except for IL-10. No difference in plasma IL-10 was observed among the 5 groups. The IL-2, IL-4, IL-10, and TNF-α mRNA expression levels in splenocytes were significantly higher in experimental groups 2 and 4 than in the control group and group 1. The mRNA expression of IFN-γ was significantly higher in the GLN-supplemented groups than in the control group and experimental group 1. The proportion of CD45Ra+ was increased, while those of CD3+ and CD4+ were decreased in experimental group 1 after CLP was performed. There were no differences in spleen CD3+ lymphocyte distributions between the control and GLN-supplemented groups. CONCLUSION: GLN supplementation can maintain T-lymphocyte populations in the spleen and significantly enhance the mRNA expression levels of Th1 and Th2 cytokines and TNF

  17. Phospholipase C-{delta}{sub 1} regulates interleukin-1{beta} and tumor necrosis factor-{alpha} mRNA expression

    SciTech Connect

    Chung, Eric; Jakinovich, Paul; Bae, Aekyung; Rebecchi, Mario

    2012-10-01

    Phospholipase C-{delta}{sub 1} (PLC{delta}{sub 1}) is a widely expressed highly active PLC isoform, modulated by Ca{sup 2+} that appears to operate downstream from receptor signaling and has been linked to regulation of cytokine production. Here we investigated whether PLC{delta}{sub 1} modulated expression of the pro-inflammatory cytokines interleukin-1{beta} (IL-1{beta}), tumor necrosis factor-{alpha} (TNF-{alpha}) and interleukin-6 (IL-6) in rat C6 glioma cells. Expression of PLC{delta}{sub 1} was specifically suppressed by small interfering RNA (siRNA) and the effects on cytokine mRNA expression, stimulated by the Toll-like receptor (TLR) agonist, lipopolysaccharide (LPS), were examined. Real-time polymerase chain reaction (RT-PCR) results showed that PLC{delta}{sub 1} knockdown enhanced expression IL-1{beta} and tumor necrosis factor-{alpha} (TNF-{alpha}) mRNA by at least 100 fold after 4 h of LPS stimulation compared to control siRNA treatment. PLC{delta}{sub 1} knock down caused persistently high Nf{kappa}b levels at 4 h of LPS stimulation compared to control siRNA-treated cells. PLC{delta}{sub 1} knockdown was also associated with elevated nuclear levels of c-Jun after 30 min of LPS stimulation, but did not affect LPS-stimulated p38 or p42/44 MAPK phosphorylation, normally associated with TLR activation of cytokine gene expression; rather, enhanced protein kinase C (PKC) phosphorylation of cellular proteins was observed in the absence of LPS stimulation. An inhibitor of PKC, bisindolylmaleimide II (BIM), reversed phosphorylation, prevented elevation of nuclear c-Jun levels, and inhibited LPS-induced increases of IL-1{beta} and TNF-{alpha} mRNA's induced by PLC{delta}{sub 1} knockdown. Our results show that loss of PLC{delta}{sub 1} enhances PKC/c-Jun signaling and up-modulates pro-inflammatory cytokine gene transcription in concert with the TLR-stimulated p38MAPK/Nf{kappa}b pathway. Our findings are consistent with the idea that PLC{delta}{sub 1} is a

  18. Effect of insulin on the mRNA expression of procollagen N-proteinases in chondrosarcoma OUMS-27 cells

    PubMed Central

    AKYOL, SUMEYYA; CÖMERTOĞLU, İSMAIL; FIRAT, RIDVAN; ÇAKMAK, ÖZLEM; YUKSELTEN, YUNUS; ERDEN, GÖNÜL; UGURCU, VELI; DEMIRCAN, KADIR

    2015-01-01

    Chondrosarcoma is one of the most common bone tumors, and at present, there is no non-invasive treatment option for this cancer. The chondrosarcoma OUMS-27 cell line produces proteoglycan and type II, IX, and XI collagens, which constitutes cartilage tissue. A disintegrin and metalloproteinase with thrombospondin motifs (ADAMTS) proteases are a group of secreted proteases, which include the procollagen N-proteinases ADAMTS-2, -3 and -14. These procollagen N-proteinases perform a role in the processing of procollagens to collagen and the maturation of type I collagen. The present study aimed to improve the understanding of the causes of metastasis, local invasion and resistance to chemo- and radiotherapy in chondrosarcoma, as well as the effect of insulin on cancer cells. The present study was designed to reveal the effects of insulin on procollagen N-proteinases in chondrosarcoma OUMS-27 cells. The cells were cultured in Dulbecco's modified Eagle's medium (DMEM) alone or in DMEM containing 10 µg/ml insulin. The medium was changed every other day for 11 days. The cells were harvested on days 1, 3, 7 and 11, and total RNA isolation was performed immediately following harvesting. The expression levels of ADAMTS2, ADAMTS3 and ADAMTS14 mRNA were estimated by reverse transcription-quantitative polymerase chain reaction using appropriate primers. ADAMTS2 mRNA expression was found to be decreased on day 7 (P=0.028) and increased at day 11 compared with the control group (P=0.016). The increase in mRNA concentration at day 11 was significantly different compared to the concentrations on days 3 (P=0.047) and 7 (P=0.008). The expression of ADAMTS3 mRNA decreased immediately subsequent to insulin induction on day 1 compared with the control group (P=0.008). The most evident decrease in mRNA concentration was seen at day 7 subsequent to insulin induction (P=0.008). The present results demonstrated that ADAMTS2 and ADAMTS3 may perform a role in the invasion and metastasis of

  19. Oocyte-Specific Expression of Mouse MEX3C652AA in the Ovary and Its Potential Role in Regulating Maternal Fos mRNA.

    PubMed

    Li, Xue; Li, Yan; Liu, Chunlian; Jin, Mulan; Lu, Baisong

    2016-05-01

    Currently, the human MEX3C gene is known to encode an RNA-binding protein of 659 amino acid residues. Here we show that the MEX3C gene has alternative splicing forms giving rise to multiple MEX3C variants, and some cells express MEX3C transcripts coding for short MEX3C isoforms but not transcripts for MEX3C(659AA) MEX3C(659AA) functions as an adaptor protein for Exportin 1 (XPO1)-mediated nuclear export since it increases the cytoplasmic distribution of poly(A)(+) RNA and since addition of the nuclear export signal (NES) sequence to a short MEX3C isoform MEX3C(464AA) confers similar cytoplasmic poly(A)(+) RNA accumulation activity as MEX3C(659AA) FOS mRNA is a potential MEX3C target mRNA. One mechanism by which MEX3C(659AA) could regulate FOS mRNA is by promoting its nuclear export. Overexpressing MEX3C(659AA) significantly increased FOS mRNA expression, whereas mutating the NES of MEX3C(659AA) and treating cells with leptomycin B to inhibit XPO1-mediated nuclear export attenuated FOS upregulation. FOS mRNA is unstable in somatic cells but less so in oocytes; how it is stabilized in the oocytes is unknown. Transcripts for the mouse counterpart of human MEX3C(659AA) (MEX3C(652AA)) are specifically expressed in developing oocytes in the ovary, although total Mex3c transcripts are expressed in both granulosa cells and oocytes. The specific expression of this long MEX3C isoform in oocytes and its ability to enhance FOS mRNA nuclear export and stability all suggest that MEX3C(659AA) is an RNA-binding protein that preserves maternal FOS mRNA in oocytes. PMID:27053362

  20. Expression and Presence of OPG and RANKL mRNA and Protein in Human Periodontal Ligament with Orthodontic Force

    PubMed Central

    Otero, Liliana; García, Dabeiba Adriana; Wilches-Buitrago, Liseth

    2016-01-01

    OBJECTIVE The objective of this study is to investigate the expression and concentration of ligand receptor activator of NFkB (RANKL) and osteoprotegerin (OPG) in human periodontal ligament (hPDL) with orthodontic forces of different magnitudes. METHODS Right premolars in 32 patients were loaded with 4oz or 7oz of orthodontic force for 7 days. Left first premolars were not loaded. After 7 days, premolars were extracted for treatment as indicated. OPG and RANKL mRNA expressions were measured by quantitative reverse transcription polymerase chain reaction (qRT-PCR), and ELISA was used to assess OPG and RANKL protein concentration in compression and tension sides of PDL. Data were subjected to analysis of variance and Tukey tests. RESULTS There was statistically significant difference in RANKL concentration on comparing control teeth with tension and compression sides of the experimental teeth (P < 0.0001). The expression of mRNA RANKL was increased in the tension and compression sides with 4oz (P < 0.0001). OPG did not show statistically significant association with any group. Changes in RANKL/OPG protein ratio in experimental and control groups showed statistically significant difference (P < 0.0001). CONCLUSIONS RANKL protein levels are elevated in hPDL loaded with orthodontic forces, suggesting that RANKL protein contributes to bone modeling in response to the initial placement of orthodontic force. PMID:26823650

  1. Anatomical characterization of bombesin receptor subtype-3 mRNA expression in the rodent central nervous system.

    PubMed

    Zhang, Li; Parks, Gregory S; Wang, Zhiwei; Wang, Lien; Lew, Michelle; Civelli, Olivier

    2013-04-01

    Bombesin receptor subtype-3 (BRS-3) is an orphan G-protein-coupled receptor (GPCR) involved in the regulation of energy homeostasis. Mice deficient in BRS-3 develop late-onset mild obesity with metabolic defects, while synthetic agonists activating BRS-3 show antiobesity profiles by inhibiting food intake and increasing metabolic rate in rodent models. The molecular mechanisms and the neural circuits responsible for these effects, however, remain elusive and demand better characterization. We report here a comprehensive mapping of BRS-3 mRNA in the rat and mouse brain through in situ hybridization. Furthermore, to investigate the neurochemical characteristics of the BRS-3-expressing neurons, double in situ hybridization was performed to determine whether BRS-3 colocalizes with other neurotransmitters or neuropeptides. Many, but not all, of the BRS-3-expressing neurons were found to be glutamatergic, while few were found to be cholinergic or GABAergic. BRS-3-containing neurons do not express some of the well-characterized neuropeptides, such as neuropeptide Y (NPY), proopiomelanocortin (POMC), orexin/hypocretin, melanin-concentrating hormone (MCH), thyrotropin-releasing hormone (TRH), gonadotropin-releasing hormone (GnRH), and kisspeptin. Interestingly, BRS-3 mRNA was found to partially colocalize with corticotropin-releasing factor (CRF) and growth hormone-releasing hormone (GHRH), suggesting novel interactions of BRS-3 with stress- and growth-related endocrine systems. Our study provides important information for evaluating BRS-3 as a potential therapeutic target for the treatment of obesity. PMID:22911445

  2. Thyroid Hormone Regulates the mRNA Expression of Small Heterodimer Partner through Liver Receptor Homolog-1

    PubMed Central

    Ahn, Hwa Young; Kim, Hwan Hee; Kim, Ye An; Kim, Min; Ohn, Jung Hun; Chung, Sung Soo; Lee, Yoon-Kwang; Park, Do Joon; Park, Kyong Soo

    2015-01-01

    Background Expression of hepatic cholesterol 7α-hydroxylase (CYP7A1) is negatively regulated by orphan nuclear receptor small heterodimer partner (SHP). In this study, we aimed to find whether thyroid hormone regulates SHP expression by modulating the transcriptional activities of liver receptor homolog-1 (LRH-1). Methods We injected thyroid hormone (triiodothyronine, T3) to C57BL/6J wild type. RNA was isolated from mouse liver and used for microarray analysis and quantitative real-time polymerase chain reaction (PCR). Human hepatoma cell and primary hepatocytes from mouse liver were used to confirm the effect of T3 in vitro. Promoter assay and electrophoretic mobility-shift assay (EMSA) were also performed using human hepatoma cell line Results Initial microarray results indicated that SHP expression is markedly decreased in livers of T3 treated mice. We confirmed that T3 repressed SHP expression in the liver of mice as well as in mouse primary hepatocytes and human hepatoma cells by real-time PCR analysis. LRH-1 increased the promoter activity of SHP; however, this increased activity was markedly decreased after thyroid hormone receptor β/retinoid X receptor α/T3 administration. EMSA revealed that T3 inhibits specific LRH-1 DNA binding. Conclusion We found that thyroid hormone regulates the expression of SHP mRNA through interference with the transcription factor, LRH-1. PMID:26485468

  3. Biological activity of mRNA immobilized on nitrocellulose in NaI.

    PubMed Central

    Bresser, J; Hubbell, H R; Gillespie, D

    1983-01-01

    In 12.2 molal NaI and at 25 degrees C or below, mRNA bound to nitrocellulose while DNA and rRNA did not. Neither the poly(A) tract nor the cap were required for binding. The immobilized RNA could be translated, reverse transcribed, hybridized with radioactive probes, or released for further manipulation. mRNA was efficiently transferred from polyacrylamide to nitrocellulose in NaI. Baking was not required to fix NaI-immobilized mRNA to nitrocellulose. When cells dissolved in 12.2 molal NaI were filtered through nitrocellulose, mRNA became selectively bound (quickblot). The quick-blot system utilizing protease and detergents to prepare cells for NaI solubilization was especially suitable in quantitative, rapid screening of cells for expression of specific genes. Expression of highly repeated DNA sequences was detected in human leukemia cells. Images PMID:6579539

  4. Cloning, characterization and mRNA expression of interleukin-6 in blunt snout bream (Megalobrama amblycephala).

    PubMed

    Zhang, Chun-Nuan; Zhang, Ji-Liang; Liu, Wen-Bin; Wu, Qiu-Jue; Gao, Xiao-Chan; Ren, Hong-Tao

    2016-07-01

    In the present study, the interleukin-6 gene (IL-6) cDNA in blunt snout bream (Megalobrama amblycephala) was identified and its expression profiles under ammonia stress and bacterial challenge were investigated. The IL-6 sequence consisted of 1045 bp, including a 696 bp ORF which translated into a 232 amino acid (AA) protein. The protein contained a putative signal peptide of 24 AA in length. IL-6 expression analysis showed that the it is differentially expressed in various tissues under normal conditions and the highest IL-6 level was observed in the intestine tissue, followed by the liver, and then in the gills. Under ammonia stress, the IL-6 mRNA level both in spleens and intestine increased significantly (P < 0.05), with the maximum levels attained at 6 h, 12 h (72, 10-fold, respectively). Thereafter, they all significantly decreased (P < 0.01) and returned to the basal value within 48 h. Whereas, in livers it slightly decreased at 3 h firstly (0.5-fold), and then significantly (P < 0.05) increased with the maximum level attained 12 h (3-fold). Further expression analysis showed that the mRNA level of IL-6 in spleens, intestine and livers of blunt snout bream all increased significantly (P < 0.05), with maximum values attained at 6 h, 3 h, 6 h (10, 6, 18-fold, respectively) after Aeromonas hydrophila (A. hydrophila) injection, and then decreased to the basal value within 24 h which suggested that IL-6 was involved in the immune response to A. hydrophila. The cloning and expression analysis of the IL-6 provide theoretical basis to further study the mechanism of anti-adverseness and expression characteristics under stress conditions in blunt snout bream. PMID:26965748

  5. Dysregulation of the Axonal Trafficking of Nuclear-encoded Mitochondrial mRNA alters Neuronal Mitochondrial Activity and Mouse Behavior

    PubMed Central

    Kar, Amar N.; Sun, Ching-Yu; Reichard, Kathryn; Gervasi, Noreen M.; Pickel, James; Nakazawa, Kazu; Gioio, Anthony E.; Kaplan, Barry B.

    2014-01-01

    Local translation of nuclear-encoded mitochondrial mRNAs is essential for mitochondrial activity, yet there is little insight into the role that axonal trafficking of these transcripts play in neuronal function and behavior. Previously, we identified a 38 nucleotide stem-loop structure (zipcode) in the 3′ untranslated region of the Cytochrome C oxidase IV (COXIV) mRNA that directs the transport of a reporter mRNA to the axon of superior cervical ganglion neurons (SCG). Over-expression of a chimeric reporter mRNA with the COXIV zipcode competed with the axonal trafficking of endogenous COXIV mRNA, and led to attenuated axon growth in SCG neurons. Here, we show that exogenous expression of the COXIV zipcode in cultured SCG neurons also results in the reduction of local ATP levels and increases levels of reactive oxygen species (ROS) in the axon. We took advantage of this “competition” phenotype to investigate the in vivo significance of axonal transport of COXIV mRNA. Towards this end, we generated transgenic mice expressing a fluorescent reporter fused to COXIV zipcode under a forebrain-specific promoter. Immunohistological analyses and RT-PCR analyses of RNA from the transgenic mouse brain showed expression of the reporter in the deep layer neurons in the pre-frontal and frontal cortex. Consistent with the in vitro studies, we observed increased ROS levels in neurons of these transgenic animals. A battery of behavioral tests on transgenic mice expressing the COXIV zipcode revealed an “anxiety-like” behavioral phenotype, suggesting an important role for axonal trafficking of nuclear-encoded mitochondrial mRNAs in neuronal physiology and animal behavior. PMID:24151253

  6. Embedding mRNA Stability in Correlation Analysis of Time-Series Gene Expression Data

    PubMed Central

    Farina, Lorenzo; De Santis, Alberto; Salvucci, Samanta; Morelli, Giorgio; Ruberti, Ida

    2008-01-01

    Current methods for the identification of putatively co-regulated genes directly from gene expression time profiles are based on the similarity of the time profile. Such association metrics, despite their central role in gene network inference and machine learning, have largely ignored the impact of dynamics or variation in mRNA stability. Here we introduce a simple, but powerful, new similarity metric called lead-lag R2 that successfully accounts for the properties of gene dynamics, including varying mRNA degradation and delays. Using yeast cell-cycle time-series gene expression data, we demonstrate that the predictive power of lead-lag R2 for the identification of co-regulated genes is significantly higher than that of standard similarity measures, thus allowing the selection of a large number of entirely new putatively co-regulated genes. Furthermore, the lead-lag metric can also be used to uncover the relationship between gene expression time-series and the dynamics of formation of multiple protein complexes. Remarkably, we found a high lead-lag R2 value among genes coding for a transient complex. PMID:18670596

  7. Lesion of the substantia nigra pars compacta downregulates striatal glutamate receptor subunit mRNA expression.

    PubMed

    Fan, X D; Li, X M; Ashe, P C; Juorio, A V

    1999-12-11

    This is a study of the effect of the unilateral administration of dopamine (DA) in the pars compacta of the substantia nigra (SN) of the rat on striatal glutamate receptor subunit (GluR1, GluR2 and NMDAR1) gene expression determined by in situ hybridization. The location of the nigral lesion was determined by tyrosine hydroxylase (TH) immunohistochemistry and its extent by the striatal DA and 3,4-dihydroxyphenylacetic acid (DOPAC) concentrations. The DA-induced lesions produce significant bilateral reductions in the expression of GluR1 and NMDAR1 subunit mRNA in the medio-lateral striatum, whereas the expression of striatal GluR2 receptors was not changed. The reduction in GluR1 and NMDAR1 subunit mRNA may be the consequence of glutamatergic hyperactivity developed in the presence of a damaged nigro-striatal system and these may be associated with the genesis of some neurodegenerative diseases. PMID:10629751

  8. Down-regulated expression of transforming growth factor beta 1 mRNA in endometrial carcinoma.

    PubMed Central

    Perlino, E.; Loverro, G.; Maiorano, E.; Giannini, T.; Cazzolla, A.; Napoli, A.; Fiore, M. G.; Ricco, R.; Marra, E.; Selvaggi, L.

    1998-01-01

    Transforming growth factor beta1 (TGF-beta1) is a potent modulator of cell proliferation in vitro, and recent studies have demonstrated its overexpression in several different tumours; nevertheless, the molecular mechanisms of TGF-beta1 action on cell growth and differentiation have not been fully elucidated. To clarify the role of TGF-beta and its receptor in human endometrial proliferation and differentiation, TGF-beta1 expression at both the mRNA and protein levels has been evaluated by using Northern blotting and immunohistochemistry, in both normal (atrophic, proliferative and secretory) and neoplastic (adenocarcinoma) endometrial samples. This study demonstrates that TGF-beta1 mRNA expression is dramatically reduced in endometrial carcinomas with respect to non-neoplastic tissues, whereas the immunohistochemical expression of TGF-beta1 is enhanced in the epithelial component of endometrial carcinomas compared with non-neoplastic tissues. These data suggest that TGF-beta1 acts as a paracrine regulator of endometrial cell proliferation and that it may contribute to the carcinogenic mechanisms of endometrial carcinoma. Images Figure 1 Figure 5 Figure 6 Figure 8 PMID:9579831

  9. Down-regulated expression of transforming growth factor beta 1 mRNA in endometrial carcinoma.

    PubMed

    Perlino, E; Loverro, G; Maiorano, E; Giannini, T; Cazzolla, A; Napoli, A; Fiore, M G; Ricco, R; Marra, E; Selvaggi, L

    1998-04-01

    Transforming growth factor beta1 (TGF-beta1) is a potent modulator of cell proliferation in vitro, and recent studies have demonstrated its overexpression in several different tumours; nevertheless, the molecular mechanisms of TGF-beta1 action on cell growth and differentiation have not been fully elucidated. To clarify the role of TGF-beta and its receptor in human endometrial proliferation and differentiation, TGF-beta1 expression at both the mRNA and protein levels has been evaluated by using Northern blotting and immunohistochemistry, in both normal (atrophic, proliferative and secretory) and neoplastic (adenocarcinoma) endometrial samples. This study demonstrates that TGF-beta1 mRNA expression is dramatically reduced in endometrial carcinomas with respect to non-neoplastic tissues, whereas the immunohistochemical expression of TGF-beta1 is enhanced in the epithelial component of endometrial carcinomas compared with non-neoplastic tissues. These data suggest that TGF-beta1 acts as a paracrine regulator of endometrial cell proliferation and that it may contribute to the carcinogenic mechanisms of endometrial carcinoma. PMID:9579831

  10. Ustilago maydis natural antisense transcript expression alters mRNA stability and pathogenesis

    PubMed Central

    Donaldson, Michael E; Saville, Barry J

    2013-01-01

    Ustilago maydis infection of Zea mays leads to the production of thick-walled diploid teliospores that are the dispersal agent for this pathogen. Transcriptome analyses of this model biotrophic basidiomycete fungus identified natural antisense transcripts (NATs) complementary to 247 open reading frames. The U. maydis NAT cDNAs were fully sequenced and annotated. Strand-specific RT-PCR screens confirmed expression and identified NATs preferentially expressed in the teliospore. Targeted screens revealed four U. maydis NATs that are conserved in a related fungus. Expression of NATs in haploid cells, where they are not naturally occurring, resulted in increased steady-state levels of some complementary mRNAs. The expression of one NAT, as-um02151, in haploid cells resulted in a twofold increase in complementary mRNA levels, the formation of sense–antisense double-stranded RNAs, and unchanged Um02151 protein levels. This led to a model for NAT function in the maintenance and expression of stored teliospore mRNAs. In testing this model by deletion of the regulatory region, it was determined that alteration in NAT expression resulted in decreased pathogenesis in both cob and seedling infections. This annotation and functional analysis supports multiple roles for U. maydis NATs in controlling gene expression and influencing pathogenesis. PMID:23650872

  11. Time-course of 5-HT(6) receptor mRNA expression during memory consolidation and amnesia.

    PubMed

    Huerta-Rivas, A; Pérez-García, G; González-Espinosa, C; Meneses, A

    2010-01-01

    Growing evidence indicates that antagonists of the 5-hydroxytryptamine (serotonin) receptor(6) (5-HT(6)) improve memory and reverse amnesia although the mechanisms involved are poorly understood. Hence, in this paper RT-PCR was used to evaluate changes in mRNA expression of 5-HT(6) receptor in trained and untrained rats treated with the 5-HT(6) receptor antagonist SB-399885 and amnesic drugs scopolamine or dizocilpine. Changes in mRNA expression of 5-HT(6) receptor were investigated at different times in prefrontal cortex, hippocampus and striatum. Data indicated that memory in the Pavlovian/instrumental autoshaping task was a progressive process associated to reduced mRNA expression of 5-HT(6) receptor in the three structures examined. SB-399885 improved long-term memory at 48h, while the muscarinic receptor antagonist scopolamine or the non-competitive NMDA receptor antagonist dizocilpine impaired it at 24h. Autoshaping training and treatment with SB-399885 increased 5-HT(6) receptor mRNA expression in (maximum increase) prefrontal cortex and striatum, 24 or 48h. The scopolamine-induced amnesia suppressed 5-HT(6) receptor mRNA expression while the dizocilpine-induced amnesia did not modify 5-HT(6) receptor mRNA expression. SB-399885 and scopolamine or dizocilpine were able to reestablish memory and 5-HT(6) receptor mRNA expression. These data confirmed previous memory evidence and of more interest is the observation that training, SB-399885 and amnesic drugs modulated 5-HT(6) receptor mRNA expression in prefrontal cortex, hippocampus and striatum. Further investigation in different memory tasks, times and amnesia models together with more complex control groups might provide further clues. PMID:19733250

  12. Correlation of Apobec Mrna Expression with overall Survival and pd-l1 Expression in Urothelial Carcinoma.

    PubMed

    Mullane, Stephanie A; Werner, Lillian; Rosenberg, Jonathan; Signoretti, Sabina; Callea, Marcella; Choueiri, Toni K; Freeman, Gordon J; Bellmunt, Joaquim

    2016-01-01

    Metastatic urothelial carcinoma (mUC) has a very high mutational rate and is associated with an APOBEC mutation signature. We examined the correlation of APOBEC expression with overall survival (OS) and PD-L1 expression in a cohort of 73 mUC patients. mRNA expression of APOBEC3 family of genes (A3A, A3B, A3C, A3F_a, A3F_b, A3G, A3H) was measured using Nanostring. PD-L1 expression, evaluated by immunohistochemistry, on tumor infiltrating mononuclear cells (TIMCs) and tumor cells was scored from 0 to 4, with 2-4 being positive. Wilcoxon's non-parametric tests assessed the association of APOBEC and PD-L1. The Cox regression model assessed the association of APOBEC with OS. All APOBEC genes were expressed in mUC. Increased A3A, A3D, and A3H expression associates with PD-L1 positive TIMCs (p = 0.0009, 0.009, 0.06). Decreased A3B expression was marginally associated with PD-L1 positive TIMCs expression (p = 0.05). Increased A3F_a and A3F_b expression was associated with increased expression of PD-L1 on tumor cells (p = 0.05). Increased expression of A3D and A3H was associated with longer OS (p = 0.0009). Specific APOBEC genes have different effects on mUC in terms of survival and PD-L1 expression. A3D and A3H may have the most important role in mUC as they are associated with OS and PD-L1 TIMC expression. PMID:27283319

  13. Correlation of Apobec Mrna Expression with overall Survival and pd-l1 Expression in Urothelial Carcinoma

    PubMed Central

    Mullane, Stephanie A.; Werner, Lillian; Rosenberg, Jonathan; Signoretti, Sabina; Callea, Marcella; Choueiri, Toni K.; Freeman, Gordon J.; Bellmunt, Joaquim

    2016-01-01

    Metastatic urothelial carcinoma (mUC) has a very high mutational rate and is associated with an APOBEC mutation signature. We examined the correlation of APOBEC expression with overall survival (OS) and PD-L1 expression in a cohort of 73 mUC patients. mRNA expression of APOBEC3 family of genes (A3A, A3B, A3C, A3F_a, A3F_b, A3G, A3H) was measured using Nanostring. PD-L1 expression, evaluated by immunohistochemistry, on tumor infiltrating mononuclear cells (TIMCs) and tumor cells was scored from 0 to 4, with 2–4 being positive. Wilcoxon’s non-parametric tests assessed the association of APOBEC and PD-L1. The Cox regression model assessed the association of APOBEC with OS. All APOBEC genes were expressed in mUC. Increased A3A, A3D, and A3H expression associates with PD-L1 positive TIMCs (p = 0.0009, 0.009, 0.06). Decreased A3B expression was marginally associated with PD-L1 positive TIMCs expression (p = 0.05). Increased A3F_a and A3F_b expression was associated with increased expression of PD-L1 on tumor cells (p = 0.05). Increased expression of A3D and A3H was associated with longer OS (p = 0.0009). Specific APOBEC genes have different effects on mUC in terms of survival and PD-L1 expression. A3D and A3H may have the most important role in mUC as they are associated with OS and PD-L1 TIMC expression. PMID:27283319

  14. Use of mRNA expression to detect the induction of drug metabolising enzymes in rat and human hepatocytes

    SciTech Connect

    Richert, L. Tuschl, G.; Pekthong, D.; Mantion, G.; Weber, J.-C.; Mueller, S.O.

    2009-02-15

    It is important to investigate the induction of cytochrome P450 (CYP) enzymes by drugs. The most relevant end point is enzyme activity; however, this requires many cells and is low throughput. We have compared the CYP1A, CYP2B and CYP3A induction response to eight inducers in rat and human hepatocytes using enzyme activities (CYP1A2 (ethoxyresorufin), 2B (benzoxyresorufin for rat and bupropion for human) and CYP3A (testosterone)) and Taqman{sup TM} Low Density Array (TLDA) analysis. There was a good correlation between the induction of CYP1A2, CYP2B6 and CYP3A4 enzyme activities and mRNA expression in human hepatocytes. In contrast, BROD activities and mRNA expression in rat hepatocytes correlated poorly. However, bupropion hydroxylation correlated well with Cyp2b1 expression in rat hepatocytes. TLDA analysis of a panel of mRNAs encoding for CYPs, phase 2 enzymes, nuclear receptors and transporters revealed that the main genes induced by the 8 compounds tested were the CYPs. AhR ligands also induced UDP-glucuronosyltransferases and glutathione S-transferases in rat and human hepatocytes. The transporters, MDR1, MDR3 and OATPA were the only transporter genes significantly up-regulated in human hepatocytes. In rat hepatocytes Bsep, Mdr2, Mrp2, Mrp3 and Oatp2 were up-regulated. We could then show a good in vivo:in vitro correlation in the induction response of isolated rat hepatocytes and ex-vivo hepatic microsomes for the drug development candidate, EMD392949. In conclusion, application of TLDA methodology to investigate the potential of compounds to induce enzymes in rat and human hepatocytes increases the throughput and information gained from one assay, without reducing the predictive capacity.

  15. Effects of tris(1,3-dichloro-2-propyl) phosphate and triphenyl phosphate on receptor-associated mRNA expression in zebrafish embryos/larvae.

    PubMed

    Liu, Chunsheng; Wang, Qiangwei; Liang, Kang; Liu, Jingfu; Zhou, Bingsheng; Zhang, Xiaowei; Liu, Hongling; Giesy, John P; Yu, Hongxia

    2013-03-15

    Tris(1,3-dichloro-2-propyl) phosphate (TDCPP) and triphenyl phosphate (TPP) are frequently detected in biota, including fish. However, knowledge of the toxicological and molecular effects of these currently used flame retardants is limited. In the present study, an in vivo screening approach was developed to evaluate effects of TDCPP and TPP on developmental endpoints and receptor-associated expression of mRNA in zebrafish embryos/larvae. Exposure to TDCPP or TPP resulted in significantly smaller rates of hatching and survival, in dose- and time-dependent manners. The median lethal concentration (LC(50)) was 7.0 mg/L for TDCPP and 29.6 mg/L for TPP at 120 hour post-fertilization (hpf). Real-time PCR revealed alterations in expression of mRNAs involved in aryl hydrocarbon receptors (AhRs)-, peroxisome proliferator-activated receptor alpha (PPARα)-, estrogenic receptors (ERs)-, thyroid hormone receptor alpha (TRα)-, glucocorticoid receptor (GR)-, and mineralocorticoid receptor (MR)-centered gene networks. Exposure to positive control chemicals significantly altered abundances of mRNA in corresponding receptor-centered gene networks, a result that suggests that it is feasible to use zebrafish embryos/larvae to evaluate effects of chemicals on mRNA expression in these gene networks. Exposure to TDCPP altered transcriptional profiles in all six receptor-centered gene networks, thus exerting multiple toxic effects. TPP was easily metabolized and its potency to change expression of mRNA involved in receptor-centered gene networks was weaker than that of TDCPP. The PPARα- and TRα-centered gene networks might be the primary pathways affected by TPP. Taken together, these results demonstrated that TDCPP and TPP could alter mRNA expression of genes involved in the six receptor-centered gene networks in zebrafish embryos/larvae, and TDCPP seemed to have higher potency in changing the mRNA expression of these genes. PMID:23306105

  16. Rat long-chain acyl-CoA synthetase mRNA, protein, and activity vary in tissue distribution and in response to diet.

    PubMed

    Mashek, Douglas G; Li, Lei O; Coleman, Rosalind A

    2006-09-01

    Distinct isoforms of long-chain acyl-CoA synthetases (ACSLs) may partition fatty acids toward specific metabolic cellular pathways. For each of the five members of the rat ACSL family, we analyzed tissue mRNA distributions, and we correlated the mRNA, protein, and activity of ACSL1 and ACSL4 after fasting and refeeding a 69% sucrose diet. Not only did quantitative real-time PCR analyses reveal unique tissue expression patterns for each ACSL isoform, but expression varied markedly in different adipose depots. Fasting increased ACSL4 mRNA abundance in liver, muscle, and gonadal and inguinal adipose tissues, and refeeding decreased ACSL4 mRNA. A similar pattern was observed for ACSL1, but both fasting and refeeding decreased ACSL1 mRNA in gonadal adipose. Fasting also decreased ACSL3 and ACSL5 mRNAs in liver and ACSL6 mRNA in muscle. Surprisingly, in nearly every tissue measured, the effects of fasting and refeeding on the mRNA abundance of ACSL1 and ACSL4 were discordant with changes in protein abundance. These data suggest that the individual ACSL isoforms are distinctly regulated across tissues and show that mRNA expression may not provide useful information about isoform function. They further suggest that translational or posttranslational modifications are likely to contribute to the regulation of ACSL isoforms. PMID:16772660

  17. Synthesis and activity of a novel inhibitor of nonsense-mediated mRNA decay.

    PubMed

    Gotham, Victoria J B; Hobbs, Melanie C; Burgin, Ryan; Turton, David; Smythe, Carl; Coldham, Iain

    2016-01-27

    During efforts to prepare the known compound , a new tetracyclic compound, called , was prepared in six steps. This compound was found to have good activity as an inhibitor of nonsense-mediated mRNA decay. PMID:26740124

  18. mRNA Expression Signature of Gleason Grade Predicts Lethal Prostate Cancer

    PubMed Central

    Penney, Kathryn L.; Sinnott, Jennifer A.; Fall, Katja; Pawitan, Yudi; Hoshida, Yujin; Kraft, Peter; Stark, Jennifer R.; Fiorentino, Michelangelo; Perner, Sven; Finn, Stephen; Calza, Stefano; Flavin, Richard; Freedman, Matthew L.; Setlur, Sunita; Sesso, Howard D.; Andersson, Swen-Olof; Martin, Neil; Kantoff, Philip W.; Johansson, Jan-Erik; Adami, Hans-Olov; Rubin, Mark A.; Loda, Massimo; Golub, Todd R.; Andrén, Ove; Stampfer, Meir J.; Mucci, Lorelei A.

    2011-01-01

    Purpose Prostate-specific antigen screening has led to enormous overtreatment of prostate cancer because of the inability to distinguish potentially lethal disease at diagnosis. We reasoned that by identifying an mRNA signature of Gleason grade, the best predictor of prognosis, we could improve prediction of lethal disease among men with moderate Gleason 7 tumors, the most common grade, and the most indeterminate in terms of prognosis. Patients and Methods Using the complementary DNA–mediated annealing, selection, extension, and ligation assay, we measured the mRNA expression of 6,100 genes in prostate tumor tissue in the Swedish Watchful Waiting cohort (n = 358) and Physicians' Health Study (PHS; n = 109). We developed an mRNA signature of Gleason grade comparing individuals with Gleason ≤ 6 to those with Gleason ≥ 8 tumors and applied the model among patients with Gleason 7 to discriminate lethal cases. Results We built a 157-gene signature using the Swedish data that predicted Gleason with low misclassification (area under the curve [AUC] = 0.91); when this signature was tested in the PHS, the discriminatory ability remained high (AUC = 0.94). In men with Gleason 7 tumors, who were excluded from the model building, the signature significantly improved the prediction of lethal disease beyond knowing whether the Gleason score was 4 + 3 or 3 + 4 (P = .006). Conclusion Our expression signature and the genes identified may improve our understanding of the de-differentiation process of prostate tumors. Additionally, the signature may have clinical applications among men with Gleason 7, by further estimating their risk of lethal prostate cancer and thereby guiding therapy decisions to improve outcomes and reduce overtreatment. PMID:21537050

  19. Spatial behavior and seizure-induced changes in c-fos mRNA expression in young and old rats.

    PubMed

    Chawla, Monica K; Penner, Marsha R; Olson, Kathy M; Sutherland, Vicki L; Mittelman-Smith, Melinda A; Barnes, Carol A

    2013-04-01

    The subcellular processes of gene induction and expression in the hippocampus are likely to underlie some of the known age-related impairments in spatial learning and memory. It is well established that immediate-early genes are rapidly and transiently induced in response to neuronal activity and this expression is required for stabilization of durable memories. To examine whether age-related memory impairment might be caused, in part, by differences in the level of cellular activation or subcellular processing, c-fos expression in CA1 pyramidal and dentate gyrus granule cells in the dorsal hippocampus of young and old rats was determined using fluorescence in situ hybridization and reverse transcription polymerase chain reaction. No significant age differences were found in the numbers of pyramidal or granule cells that show c-fos expression; however, c-fos mRNA transcripts were altered in these 2 cell types in aged animals. These findings suggest that though the networks of cells that participate in behavior or seizure-induced activity are largely maintained in aged rats, their RNA transcript levels are altered. This might, in part, contribute to cognitive deficits frequently observed with advancing age. PMID:23158763

  20. Cytochrome P450 mRNA Expression in the Rodent Brain: Species-, Sex-, and Region-Dependent Differences

    PubMed Central

    Stamou, Marianna; Wu, Xianai; Kania-Korwel, Izabela; Lehmler, Hans-Joachim

    2014-01-01

    Cytochrome P450 (P450) enzymes play a critical role in the activation and detoxication of many neurotoxic chemicals. Although research has largely focused on P450-mediated metabolism in the liver, emerging evidence suggests that brain P450s influence neurotoxicity by modulating local metabolite levels. As a first step toward better understanding the relative role of brain P450s in determining neurotoxic outcome, we characterized mRNA expression of specific P450 isoforms in the rodent brain. Adult mice (male and female) and rats (male) were treated with vehicle, phenobarbital, or dexamethasone. Transcripts for CYP2B, CYP3A, CYP1A2, and the orphan CYP4X1 and CYP2S1 were quantified in the liver, hippocampus, cortex, and cerebellum by quantitative (real-time) polymerase chain reaction. These P450s were all detected in the liver with the exception of CYP4X1, which was detected in rat but not mouse liver. P450 expression profiles in the brain varied regionally. With the exception of the hippocampus, there were no sex differences in regional brain P450 expression profiles in mice; however, there were marked species differences. In the liver, phenobarbital induced CYP2B expression in both species. Dexamethasone induced hepatic CYP2B and CYP3A in mice but not rats. In contrast, brain P450s did not respond to these classic hepatic P450 inducers. Our findings demonstrate that P450 mRNA expression in the brain varies by region, regional brain P450 profiles vary between species, and their induction varies from that of hepatic P450s. These novel data will be useful for designing mechanistic studies to examine the relative role of P450-mediated brain metabolism in neurotoxicity. PMID:24255117

  1. Expression of interleukin 6 receptors and interleukin 6 mRNA by bovine leukaemia virus-induced tumour cells.

    PubMed

    Droogmans, L; Cludts, I; Cleuter, Y; Kerkhofs, P; Adam, E; Willems, L; Kettmann, R; Burny, A

    1994-11-01

    Bovine leukaemia virus (BLV) is the aetiologic agent of bovine leucosis. The virus induces malignancies of the B-cell lineage (leukaemia/lymphoma). The role played by interleukin 6 (IL-6) in the BLV-induced leukemogenesis process was evaluated. Six cell lines derived from BLV-induced tumours were tested for the expression of IL-6 receptors. Two cell lines (LB155 and YR2) display 250-300 receptor per cell (kd = 1.7 10(-10) M and 1.4 10(-10) M, respectively) whereas the other four (LB159, LB167, YR1 and M51) do not display detectable amounts of receptors. Very low (if any) expression of IL-6 receptors has been found in the case of the B lymphocytes of animals in persistent lymphocytosis (PL). Despite the presence of IL-6 receptors on the surface of LB155 and YR2 cells, no influence of exogenous IL-6 on their growth has been observed. Northern analyses indicated the presence of IL-6 transcripts only in the case of mRNA isolated from LB155 cells. Since this cell line also expresses receptors for the cytokine, an autocrine loop may exist in these cells. Experiments in which bovine and bovine epithelial cell lines were transfected with a plasmid containing the bovine IL-6 promoter controlling the expression of the reporter cat gene failed to indicate any influence of the viral transactivator p34tax on the activity of this promoter. We conclude that IL-6 receptors and IL-6 mRNA can be found in some BLV-induced tumours, but this does not correlate with viral expression in BLV-induced leukaemia/lymphoma. PMID:7893972

  2. Cytochrome p450 mRNA expression in the rodent brain: species-, sex-, and region-dependent differences.

    PubMed

    Stamou, Marianna; Wu, Xianai; Kania-Korwel, Izabela; Lehmler, Hans-Joachim; Lein, Pamela J

    2014-02-01

    Cytochrome P450 (P450) enzymes play a critical role in the activation and detoxication of many neurotoxic chemicals. Although research has largely focused on P450-mediated metabolism in the liver, emerging evidence suggests that brain P450s influence neurotoxicity by modulating local metabolite levels. As a first step toward better understanding the relative role of brain P450s in determining neurotoxic outcome, we characterized mRNA expression of specific P450 isoforms in the rodent brain. Adult mice (male and female) and rats (male) were treated with vehicle, phenobarbital, or dexamethasone. Transcripts for CYP2B, CYP3A, CYP1A2, and the orphan CYP4X1 and CYP2S1 were quantified in the liver, hippocampus, cortex, and cerebellum by quantitative (real-time) polymerase chain reaction. These P450s were all detected in the liver with the exception of CYP4X1, which was detected in rat but not mouse liver. P450 expression profiles in the brain varied regionally. With the exception of the hippocampus, there were no sex differences in regional brain P450 expression profiles in mice; however, there were marked species differences. In the liver, phenobarbital induced CYP2B expression in both species. Dexamethasone induced hepatic CYP2B and CYP3A in mice but not rats. In contrast, brain P450s did not respond to these classic hepatic P450 inducers. Our findings demonstrate that P450 mRNA expression in the brain varies by region, regional brain P450 profiles vary between species, and their induction varies from that of hepatic P450s. These novel data will be useful for designing mechanistic studies to examine the relative role of P450-mediated brain metabolism in neurotoxicity. PMID:24255117

  3. Effects of benzo(a)pyrene exposure on killifish (Fundulus heteroclitus) aromatase activities and mRNA

    PubMed Central

    Patel, Monali R.; Scheffler, Brian E.; Wang, Lu; Willett, Kristine L.

    2007-01-01

    Cytochrome P450 aromatase (CYP19) plays an important role in steroid homoeostasis by converting androgens to estrogens. To evaluate the effects of benzo(a)pyrene (BaP), a model carcinogenic PAH and AhR ligand, on aromatase mRNA expression and enzyme activity, adult Fundulus were exposed to water-borne BaP (1 and 10 μg/L) for 15 days, and embryos were exposed to 10 μg/L for 10 days. Effects of BaP were examined by tissue, gender, and season in adults. Constitutively, the sexes did not have significantly different CYP19A2 mRNA levels, however females had higher brain aromatase activity. Female control killifish had more than 700-fold more CYP19A1 mRNA in their gonads compared to males. Within brain tissue of both sexes, there was 100-fold more CYP19A2 mRNA compared to CYP19A1. In ovary, CYP19A1 predominated by approximately 30-fold over the CYP19A2, but in testis there was relatively more CYP19A2. In embryos there was ~5-fold higher CYP19A2 expression. Due to high inter-individual variability, a significant effect of BaP treatment by gender, season or age was not observed for either aromatase mRNA. However, ovarian aromatase activity was significantly decreased by 10 μg/L BaP, while female brain activity was increased following winter exposure. These findings suggest that the aromatase enzyme is a potential target for disruption of fish developmental and reproductive physiology by BaP. PMID:16458981

  4. Effect of radiofrequency radiation on MRNA expression in cultured rodent cells

    SciTech Connect

    Parker, J.E.; Kiel, J.L.; Winters, W.D.

    1988-01-01

    Radiofrequency radiation (RFR) has been reported to induce adverse effects in biological systems, such as teratogenic and embryo lethal effects in mammals particularly during exposures producing significant hyperthermia. Other studies have implicated microwave exposure with causing changes in chromosome number and structure, formation of cataracts in humans rabbits and dogs; and promoting malignant tumor formation in rats, as well as increasing tumor production and leukemias. In addition, microwave exposures have been reported to change the structure of purified double-stranded plasmid DNA, causing it to become nicked and increasing the proportion of relaxed to super coiled molecules. In view of these reports of changes at different levels of cellular function and structure of mammalian systems to microwaves, the authors asked themselves if changes at the level of mRNA expression could be detected after microwave exposure of cultured rodent cells. They chose to look at the mRNA expression of certain oncogenes known to show elevated levels during cell replication, at the heat shock proteins known to respond to stresses other than heat, and at the long terminal repeat (LTR) region of mouse mammary tumor virus in four rodent cell lines.

  5. Circadian control of mRNA polyadenylation dynamics regulates rhythmic protein expression

    PubMed Central

    Kojima, Shihoko; Sher-Chen, Elaine L.; Green, Carla B.

    2012-01-01

    Poly(A) tails are 3′ modifications of eukaryotic mRNAs that are important in the control of translation and mRNA stability. We identified hundreds of mouse liver mRNAs that exhibit robust circadian rhythms in the length of their poly(A) tails. Approximately 80% of these are primarily the result of nuclear adenylation coupled with rhythmic transcription. However, unique decay kinetics distinguish these mRNAs from other mRNAs that are transcribed rhythmically but do not exhibit poly(A) tail rhythms. The remaining 20% are uncoupled from transcription and exhibit poly(A) tail rhythms even though the steady-state mRNA levels are not rhythmic. These are under the control of rhythmic cytoplasmic polyadenylation, regulated at least in some cases by cytoplasmic polyadenylation element-binding proteins (CPEBs). Importantly, we found that the rhythmicity in poly(A) tail length is closely correlated with rhythmic protein expression, with a several-hour delay between the time of longest tail and the time of highest protein level. Our study demonstrates that the circadian clock regulates the dynamic polyadenylation status of mRNAs, which can result in rhythmic protein expression independent of the steady-state levels of the message. PMID:23249735

  6. mRNA Expression in Papillary and Anaplastic Thyroid Carcinoma: Molecular Anatomy of a Killing Switch

    PubMed Central

    Hébrant, Aline; Dom, Geneviève; Dewaele, Michael; Andry, Guy; Trésallet, Christophe; Leteurtre, Emmanuelle; Dumont, Jacques E.; Maenhaut, Carine

    2012-01-01

    Anaplastic thyroid carcinoma (ATC) is the most lethal form of thyroid neoplasia and represents the end stage of thyroid tumor progression. No effective treatment exists so far. ATC frequently derive from papillary thyroid carcinomas (PTC), which have a good prognosis. In this study, we analyzed the mRNA expression profiles of 59 thyroid tumors (11 ATC and 48 PTC) by microarrays. ATC and PTC showed largely overlapping mRNA expression profiles with most genes regulated in all ATC being also regulated in several PTC. 43% of the probes regulated in all the PTC are similarly regulated in all ATC. Many genes modulations observed in PTC are amplified in ATC. This illustrates the fact that ATC mostly derived from PTC. A molecular signature of aggressiveness composed of 9 genes clearly separates the two tumors. Moreover, this study demonstrates gene regulations corresponding to the ATC or PTC phenotypes like inflammatory reaction, epithelial to mesenchymal transition (EMT) and invasion, high proliferation rate, dedifferentiation, calcification and fibrosis processes, high glucose metabolism and glycolysis, lactate generation and chemoresistance. The main qualitative differences between the two tumor types bear on the much stronger EMT, dedifferentiation and glycolytic phenotypes showed by the ATC. PMID:23115614

  7. mRNA expression profile of serotonin receptor subtypes and distribution of serotonergic terminations in marmoset brain

    PubMed Central

    Shukla, Rammohan; Watakabe, Akiya; Yamamori, Tetsuo

    2014-01-01

    To better understand serotonin function in the primate brain, we examined the mRNA expression patterns of all the 13 members of the serotonin receptor (5HTR) family, by in situ hybridization (ISH) and the distribution of serotonergic terminations by serotonin transporter (SERT) protein immunohistochemical analysis. Ten of the 13 5HTRs showed significant mRNA expressions in the marmoset brain. Our study shows several new features of the organization of serotonergic systems in the marmoset brain. (1) The thalamus expressed only a limited number of receptor subtypes compared with the cortex, hippocampus, and other subcortical regions. (2) In the cortex, there are layer-selective and area-selective mRNA expressions of 5HTRs. (3) Highly localized mRNA expressions of 5HT1F and 5HT3A were observed. (4) There was a conspicuous overlap of the mRNA expressions of receptor subtypes known to have somatodendritic localization of receptor proteins with dense serotonergic terminations in the visual cortex, the central lateral (CL) nucleus of the thalamus, the presubiculum, and the medial mammillary nucleus of the hypothalamus. This suggests a high correlation between serotonin availability and receptor expression at these locations. (5) The 5HTRs show differences in mRNA expression pattern between the marmoset and mouse cortices whereas the patterns of both the species were much similar in the hippocampus. We discuss the possible roles of 5HTRs in the marmoset brain revealed by the analysis of their overall mRNA expression patterns. PMID:24904298

  8. Overexpression of Nitrate Reductase in Tobacco Delays Drought-Induced Decreases in Nitrate Reductase Activity and mRNA1

    PubMed Central

    Ferrario-Méry, Sylvie; Valadier, Marie-Hélène; Foyer, Christine H.

    1998-01-01

    Transformed (cauliflower mosaic virus 35S promoter [35S]) tobacco (Nicotiana plumbaginifolia L.) plants constitutively expressing nitrate reductase (NR) and untransformed controls were subjected to drought for 5 d. Drought-induced changes in biomass accumulation and photosynthesis were comparable in both lines of plants. After 4 d of water deprivation, a large increase in the ratio of shoot dry weight to fresh weight was observed, together with a decrease in the rate of photosynthetic CO2 assimilation. Foliar sucrose increased in both lines during water stress, but hexoses increased only in leaves from untransformed controls. Foliar NO3− decreased rapidly in both lines and was halved within 2 d of the onset of water deprivation. Total foliar amino acids decreased in leaves of both lines following water deprivation. After 4 d of water deprivation no NR activity could be detected in leaves of untransformed plants, whereas about 50% of the original activity remained in the leaves of the 35S-NR transformants. NR mRNA was much more stable than NR activity. NR mRNA abundance increased in the leaves of the 35S-NR plants and remained constant in controls for the first 3 d of drought. On the 4th d, however, NR mRNA suddenly decreased in both lines. Rehydration at d 3 caused rapid recovery (within 24 h) of 35S-NR transcripts, but no recovery was observed in the controls. The phosphorylation state of the protein was unchanged by long-term drought. There was a strong correlation between maximal extractable NR activity and ambient photosynthesis in both lines. We conclude that drought first causes increased NR protein turnover and then accelerates NR mRNA turnover. Constitutive NR expression temporarily delayed drought-induced losses in NR activity. 35S-NR expression may therefore allow more rapid recovery of N assimilation following short-term water deficit. PMID:9576799

  9. Time course and cellular localization of interleukin-10 mRNA and protein expression in autoimmune inflammation of the rat central nervous system.

    PubMed Central

    Jander, S.; Pohl, J.; D'Urso, D.; Gillen, C.; Stoll, G.

    1998-01-01

    Experimental autoimmune encephalomyelitis of the Lewis rat is a T-cell-mediated autoimmune disease of the central nervous system characterized by a self-limiting monophasic course. In this study, we analyzed the expression of the anti-inflammatory cytokine interleukin (IL)-10 at the mRNA and protein level in experimental autoimmune encephalomyelitis actively induced with the encephalitogenic 68-86 peptide of guinea pig myelin basic protein. Semiquantitative reverse transcriptase-polymerase chain reaction revealed that IL-10 mRNA expression peaked during the acute phase of the disease at days 11 and 13. IL-10 mRNA was synchronously induced with mRNA for the proinflammatory cytokine interferon-gamma. Immunocytochemistry with a monoclonal antibody against rat IL-10 showed that the peak of IL-10 mRNA was accompanied by an abundant expression of IL-10 protein during the acute stage of the disease. Both in situ hybridization and double labeling immunocytochemistry in combination with confocal microscopy identified T cells, macrophages/microglia, and astrocytes as major cellular sources of IL-10 in vivo. The early peak of IL-10 production was unexpected in light of its well-documented anti-inflammatory properties. Additional studies are required to determine whether endogenous IL-10 contributes to rapid clinical remission typical for Lewis rat experimental autoimmune encephalomyelitis or if it plays other, yet undefined, roles in central nervous system autoimmunity. Images Figure 1 Figure 2 Figure 3 Figure 4 PMID:9546358

  10. Effect of Helicobacter pylori on NFKB1, p38α and TNF-α mRNA expression levels in human gastric mucosa

    PubMed Central

    SULZBACH DE OLIVEIRA, HENRIQUE SULZBACH; BIOLCHI, VANDERLEI; RICHARDT MEDEIROS, HELOUISE RICHARDT; BIZERRA GANDOR JANTSCH, DAIANE BIZERRA GANDOR; KNABBEN DE OLIVEIRA BECKER DELVING, LUCIANA KNABBEN; RECKZIEGEL, ROBERTO; GOETTERT, MÁRCIA INÊS; BRUM, ILMA SIMONI; POZZOBON, ADRIANE

    2016-01-01

    Helicobacter pylori infects ~50% of the world population, causing chronic gastritis and other forms of cellular damage. The present study assessed the influence of H. pylori on the mRNA expression levels of nuclear factor-κB1 (NFKB1), p38α and tumor necrosis factor-α (TNF-α) in human gastric mucosa in a southern Brazilian population. Human gastric tissue was collected by upper endoscopy and H. pylori diagnosis was performed using a rapid urease test and histological analysis. Total RNA was extracted and purified for subsequent cDNA synthesis and analysis by quantitative polymerase chain reaction (qPCR). The gastric tissue samples were divided into four groups as follows: Normal, inactive chronic gastritis, active chronic gastritis and intestinal metaplasia. The SDHA gene was classified as the most stable when compared with ACTB, GAPDH, B2M and HPRT1 genes, and was therefore selected as the reference gene for qPCR data normalization. TNF-α mRNA expression was significantly higher in samples that were positive for H. pylori and with active chronic gastritis. However, no difference was detected in the mRNA expression levels of NFKB1 and p38α between the groups. The present study concluded that the presence of H. pylori is associated with TNF-α upregulation in human gastric mucosa, but had no effect on NFKB1 and p38α mRNA expression levels. PMID:27284322

  11. Sodium lauryl sulphate alters the mRNA expression of lipid-metabolizing enzymes and PPAR signalling in normal human skin in vivo.

    PubMed

    Törmä, Hans; Berne, Berit

    2009-12-01

    Detergents irritate skin and affect skin barrier homeostasis. In this study, healthy skin was exposed to 1% sodium lauryl sulphate (SLS) in water for 24 h. Biopsies were taken 6 h to 8 days post exposure. Lipid patterns were stained in situ and real-time polymerase chain reaction (PCR) was used to examine mRNA expression of enzymes synthesizing barrier lipids, peroxisome proliferator-activated receptors (PPAR) and lipoxygenases. The lipid pattern was disorganized from 6 h to 3 days after SLS exposure. Concomitant changes in mRNA expression included: (i) reduction, followed by induction, of ceramide-generating beta-glucocerebrosidase, (ii) increase on day 1 of two other enzymes for ceramide biosynthesis and (iii) persistent reduction of acetyl-CoA carboxylase-B, a key enzyme in fatty acid synthesis. Surprisingly, the rate-limiting enzyme in cholesterol synthesis, HMG-CoA reductase, was unaltered. Among putative regulators of barrier lipids synthesis, PPARalpha and PPARgamma exhibited reduced mRNA expression, while PPARbeta/delta and LXRbeta were unaltered. Epidermal lipoxygenase-3, which may generate PPARalpha agonists, exhibited reduced expression. In conclusion, SLS induces reorganization of lipids in the stratum corneum, which play a role in detergents' destruction of the barrier. The changes in mRNA expression of enzymes involved in synthesizing barrier lipids are probably important for the restoration of the barrier. PMID:19366370

  12. IONOTROPIC GLUTAMATE RECEPTORS mRNA EXPRESSION IN THE HUMAN THALAMUS: ABSENCE OF CHANGE IN SCHIZOPHRENIA

    PubMed Central

    Dracheva, Stella; Byne, William; Chin, Benjamin; Haroutunian, Vahram

    2009-01-01

    Abnormalities in glutamate neurotransmission are thought to be among the major contributing factors to the pathophysiology of schizophrenia. Although schizophrenia has been regarded mostly as a disorder of higher cortical function, the cortex and thalamus work as a functional unit. Existing data regarding alterations of glutamate receptor subunit expression in the thalamus in schizophrenia remain equivocal. This postmortem study examined mRNA expression of ionotropic glutamate receptor (iGluR) subunits and PSD95 in 5 precisely defined and dissected thalamic subdivisions (medial and lateral sectors of the mediodorsal nucleus; and the ventrolateral posterior, ventral posterior, and centromedian nuclei) of persons with schizophrenia and matched controls using quantitative PCR with normalization to multiple endogenous controls. Among 15 genes examined (NR1 and NR2A-D subunits of NMDA receptor; GluR1-4 subunits of AMPA receptor; GluR5-7 and KA1-2 subunits of kainate receptor; PSD95), all but two (GluR4 and KA1) were expressed at quantifiable levels. Differences in iGluR gene expression were seen between different nuclei but not between diagnostic groups. The relative abundance of transcripts was: NR1≫NR2A>NR2B>NR2D>NR2C for NMDA, GluR2>GluR1>GluR3 for AMPA, and KA2>GluR5>GluR7>GluR6 for kainate receptors. The expression of PSD95 correlated with the expression of NR1, NR2A, NR2B, NR2D and GluR6 in all nuclei. These results provide detailed and quantitative information on iGluR subunit expression in multiple nuclei of the human thalamus but suggest that alterations in their expression are not a prominent feature of schizophrenia. PMID:18462708

  13. A distinct ERCC1 haplotype is associated with mRNA expression levels in prostate cancer patients.

    PubMed

    Woelfelschneider, Andreas; Popanda, Odilia; Lilla, Carmen; Linseisen, Jakob; Mayer, Claudia; Celebi, Oktay; Debus, Jürgen; Bartsch, Helmut; Chang-Claude, Jenny; Schmezer, Peter

    2008-09-01

    Both genetic variants and messenger RNA (mRNA) expression of DNA repair and tumor suppressor genes have been investigated as molecular markers for therapy outcome. However, the phenotypic impact of genetic variants often remained unclear, thus the rationale of their use in risk prediction may be limited. We therefore analyzed genetic variants together with anthropometric and lifestyle factors to see how these affect mRNA levels of ERCC1, MDM2 and TP53 in primary blood lymphocytes. mRNA expression was measured in 376 prostate cancer patients by quantitative real-time polymerase chain reaction after reverse transcription, and ERCC1 rs11615 T>C, ERCC1 rs3212986 C>A, MDM2 rs2279744 T>G and TP53 rs17878362 (p53PIN3) polymorphisms were determined. Considerable interindividual differences in mRNA expression were found (coefficients of variation: ERCC1, 45%; MDM2, 43% and TP53, 35%). ERCC1 expression was positively correlated with plasma levels of beta-carotene (P = 0.03) and negatively correlated with canthaxanthin (P = 0.02) and lutein (P = 0.02). Overall, the polymorphisms affected mRNA expression only weakly. Carriers of a distinct ERCC1 haplotype (CC) showed, however, significantly lower expression values than non-carriers (P = 0.001). Applying logistic regression, we found that CC haplotype carriers had a 1.69-fold increased odds ratio (95% confidence interval: 1.06-2.71) for reduced ERCC1 mRNA levels. This low ERCC1 expression might be associated with reduced DNA repair and better therapy response. In summary, the association we have found between ERCC1 genotype and mRNA expression supports recent clinical observations that genetic variation in ERCC1 can affect treatment outcome and prognosis. Our study further revealed a modulating effect by nutritional factors. PMID:18332046

  14. The expression of apoB mRNA editing factors is not the sole determinant for the induction of editing in differentiating Caco-2 cells

    SciTech Connect

    Galloway, Chad A.; Smith, Harold C.

    2010-01-01

    Apolipoprotein B mRNA is edited at cytidine 6666 in the enterocytes lining the small intestine of all mammals; converting a CAA codon to a UAA stop codon. The conversion is {approx}80% efficient in this tissue and leads to the expression of the truncated protein, ApoB48, essential for secretion of dietary lipid as chylomicrons. Caco-2 cell raft cultures have been used as an in vitro model for the induction of editing activity during human small intestinal cell differentiation. This induction of apoB mRNA editing has been ascribed to the expression of APOBEC-1. In agreement our data demonstrated differentiation-dependent induction of expression of the editing enzyme APOBEC-1 and in addition we show alternative splicing of the essential auxiliary factor ACF. However, transfection of these editing factors in undifferentiated proliferating Caco-2 cells was not sufficient to induce robust apoB mRNA editing activity. Only differentiation of Caco-2 cells could induce more physiological like levels of apoB mRNA editing. The data suggested that additional regulatory mechanism(s) were induced by differentiation that controlled the functional activity of editing factors.

  15. Differential regulation of nitric oxide synthase mRNA expression by lipopolysaccharide and pro-inflammatory cytokines in fetal hepatocytes treated with cycloheximide.

    PubMed Central

    Casado, M; Díaz-Guerra, M J; Boscá, L; Martín-Sanz, P

    1997-01-01

    The effect of cycloheximide (CHX) on the mRNA expression of the cytokine-inducible, calcium-independent nitric oxide synthase (iNOS) was investigated in fetal hepatocytes stimulated with lipopolysaccharide (LPS) or pro-inflammatory cytokines. In the presence of CHX the LPS-dependent iNOS mRNA levels were reduced, whereas the response to pro-inflammatory cytokines was enhanced. Because iNOS transcription is highly dependent on the activation of nuclear factor kappaB (NF-kappaB), this factor was evaluated by electrophoretic mobility shift assays, and a close correlation between NF-kappaB activity and iNOS mRNA levels was observed. CHX itself potentiated the degradation of the IkappaB alpha and IkappaB beta inhibitory subunits (IkappaB is inhibitory kappaB) of the NF-kappaB complex, and therefore the loss of LPS-dependent iNOS mRNA expression cannot be attributed to a blockage in the activation of NF-kappaB. These results suggest the existence of a CHX-sensitive pathway in the expression of iNOS mediated by LPS, a mechanism that is not involved in the response to pro-inflammatory cytokines. PMID:9581561

  16. Increased mRNA expression of manganese superoxide dismutase in psoriasis skin lesions and in cultured human keratinocytes exposed to IL-1 beta and TNF-alpha.

    PubMed

    Löntz, W; Sirsjö, A; Liu, W; Lindberg, M; Rollman, O; Törmä, H

    1995-02-01

    Because reactive oxygen species have been implicated in the pathogenesis of various hyperproliferative and inflammatory diseases, the mRNA expression of the antioxidant enzyme superoxide dismutase was studied in psoriatic skin tissue. By using reverse transcription-PCR we found similar expression of copper, zinc superoxide dismutase (CuZnSOD) in the involved vs. uninvolved psoriatic skin. In contrast, the level of the manganese superoxide dismutase (MnSOD) mRNA message was consistently higher in lesional psoriatic skin as compared to adjacent uninvolved skin and healthy control skin. Parallel investigation of those cytokines that are thought to be direct or indirect inducers of the MnSOD activity revealed an increased mRNA expression of IL-1 beta, TNF-alpha, and GM-CSF in lesional psoriatic skin. To study if these cytokines exert a direct effect on dismutase expression in epidermal cells, human keratinocytes in culture were challenged with IL-1 beta, TNF-alpha, and GM-CSF. It was found that IL-1 beta and TNF-alpha, but not GM-CSF, induced the mRNA expression of MnSOD, and an additive effect was demonstrated for the two former cytokines. Further, the expression of both CuZnSOD and MnSOD transcripts was similar in cultured keratinocytes maintained at low differentiation (low Ca2+ medium) and cells forced to terminal differentiation (by high Ca2+ medium). Our results indicate that the abnormal expression of MnSOD mRNA in lesional psoriatic skin is not directly linked to the pathologic state of keratinocyte differentiation in the skin. It seems more likely that the cutaneous overexpression of MnSOD in psoriatic epidermis represents a protective cellular response evoked by cytokines released from inflammatory cells invading the diseased skin. PMID:7744320

  17. Developmental changes in the hypothalamic mRNA expression levels of PACAP and its receptor PAC1 and their sensitivity to fasting in male and female rats.

    PubMed

    Iwasa, Takeshi; Matsuzaki, Toshiya; Tungalagsuvd, Altankhuu; Munkhzaya, Munkhsaikhan; Yiliyasi, Maira; Kato, Takeshi; Kuwahara, Akira; Irahara, Minoru

    2016-08-01

    The actions and responses of hypothalamic appetite regulatory and factors change markedly during the neonatal to pre-pubertal period. Pituitary adenylate cyclase-activating polypeptide (PACAP) has been found to play pivotal roles in the regulation of metabolic and nutritional status through its specific receptor PAC1. PACAP/PAC1 have anorectic roles, and their functions are regulated by leptin in adulthood. In the present study, we showed that hypothalamic PACAP mRNA expression decreases during the neonatal to pre-pubertal period (from postnatal day 10-30) in both male and female rats. During this period, hypothalamic PACAP mRNA expression was not affected by 24h fasting in either sex, while the serum leptin levels (leptin is a positive regulator of hypothalamic PACAP expression in adulthood) of both sexes were decreased by fasting. On the other hand, hypothalamic PAC1 mRNA expression did not change during the neonatal to pre-pubertal period in either sex; however, its levels were consistently higher in males than in females. Hypothalamic PAC1 mRNA expression was decreased by 24h fasting in males, but no such changes were observed in females. These results indicate while hypothalamic PACAP expression is sensitive to a negative energy state and the serum leptin level in adulthood, no such relationships are seen in the pre-pubertal period. In addition, we speculate that differences in the gonadal steroidal milieu might induce sexual dimorphism in the basal hypothalamic PAC1 mRNA level and its response to fasting. The mechanisms responsible for and the physiological effects of such changes in hypothalamic PACAP and PAC1 expression during the developmental period remain to be clarified. PMID:27181029

  18. Membrane-attached Cytokines Expressed by mRNA Electroporation Act as Potent T-Cell Adjuvants.

    PubMed

    Weinstein-Marom, Hadas; Pato, Aviad; Levin, Noam; Susid, Keren; Itzhaki, Orit; Besser, Michal J; Peretz, Tamar; Margalit, Alon; Lotem, Michal; Gross, Gideon

    2016-01-01

    Proinflammatory cytokines are widely explored in different adoptive cell therapy protocols for enhancing survival and function of the transferred T cells, but their systemic administration is often associated with severe toxicity which limits their clinical use. To confine cytokine availability to the therapeutic T cells, we expressed 3 key cytokines, IL-2, IL-12, and IL-15, as integral T-cell membrane proteins. To prevent permanent activation of growth signaling pathways, we delivered these genes to T cells through mRNA electroporation. The engineered cytokines could be detected on the surface of mRNA-transfected cells and binding to their cell-surface receptors mainly occurred in cis. The 3 human cytokines supported the ex vivo growth of activated human CD8 and CD4 T cells for at least 6 days posttransfection, comparably to high-dose soluble IL-2. Similarly, membrane IL-2, membrane IL-12, and, to a lesser extent, membrane IL-15, were comparable with their soluble counterparts in supporting proliferation of splenic mouse CD8 T cells. Following electroporation of human CD8 T cells and antimelanoma tumor-infiltrating lymphocytes, membrane cytokines synergized with constitutively active toll-like receptor 4 in inducing interferon-γ secretion. Efficient cooperation with TLR4 was also evident in the upregulation of the activation molecules CD25, CD69, CD137 (4-1BB), and CD134 (OX40). Taken together, membrane cytokines expressed through mRNA transfection emerge as effective tools for enhancing T-cell proliferation and function and may have potential use in adoptive T-cell therapy. PMID:26849075

  19. Antagonistic regulation of mRNA expression and splicing by CELF and MBNL proteins

    PubMed Central

    Wang, Eric T.; Ward, Amanda J.; Cherone, Jennifer M.; Giudice, Jimena; Wang, Thomas T.; Treacy, Daniel J.; Lambert, Nicole J.; Freese, Peter; Saxena, Tanvi; Cooper, Thomas A.; Burge, Christopher B.

    2015-01-01

    RNA binding proteins of the conserved CUGBP1, Elav-like factor (CELF) family contribute to heart and skeletal muscle development and are implicated in myotonic dystrophy (DM). To understand their genome-wide functions, we analyzed the transcriptome dynamics following induction of CELF1 or CELF2 in adult mouse heart and of CELF1 in muscle by RNA-seq, complemented by crosslinking/immunoprecipitation-sequencing (CLIP-seq) analysis of mouse cells and tissues to distinguish direct from indirect regulatory targets. We identified hundreds of mRNAs bound in their 3′ UTRs by both CELF1 and the developmentally induced MBNL1 protein, a threefold greater overlap in target messages than expected, including messages involved in development and cell differentiation. The extent of 3′ UTR binding by CELF1 and MBNL1 predicted the degree of mRNA repression or stabilization, respectively, following CELF1 induction. However, CELF1's RNA binding specificity in vitro was not detectably altered by coincubation with recombinant MBNL1. These findings support a model in which CELF and MBNL proteins bind independently to mRNAs but functionally compete to specify down-regulation or localization/stabilization, respectively, of hundreds of mRNA targets. Expression of many alternative 3′ UTR isoforms was altered following CELF1 induction, with 3′ UTR binding associated with down-regulation of isoforms and genes. The splicing of hundreds of alternative exons was oppositely regulated by these proteins, confirming an additional layer of regulatory antagonism previously observed in a handful of cases. The regulatory relationships between CELFs and MBNLs in control of both mRNA abundance and splicing appear to have evolved to enhance developmental transitions in major classes of heart and muscle genes. PMID:25883322

  20. KIF14 mRNA expression is a predictor of grade and outcome in breast cancer.

    PubMed

    Corson, Timothy W; Gallie, Brenda L

    2006-09-01

    Gain of chromosome 1q is a hallmark of breast cancer, and likely reflects oncogene amplification. We previously identified mitotic kinesin KIF14 (kinesin family member 14) as an overexpressed candidate oncogene in the 1q31.3-1q32.1 minimal region of genomic gain in breast cancer cell lines. KIF14 also showed high expression in other cancers, notably an association with survival in lung tumors. We now report KIF14 expression in 99 primary breast tumors and 10 normal breast controls. Measured by real-time RT-PCR, KIF14 was overexpressed 10-fold on average in tumors relative to normals (t test p = 0.000054); expression increased with grade (ANOVA p = 0.000006). Infiltrating ductal carcinomas had higher KIF14 levels than lobular (p = 0.017), and estrogen receptor (ER) negative tumors had higher KIF14 levels than ER positive tumors (t test p = 0.030). KIF14 expression correlated positively with Ki-67 mRNA level (Spearman r = 0.692, p = 0.000001), fraction of positive nodes (r = 0.227, p = 0.024) and percent invasive cells (r = 0.360, p = 0.0002), and negatively with percent fatty stroma (r = -0.258, p = 0.010) and percent normal epithelium (r = -0.291, p = 0.003). KIF14 expression is thus tumor-specific and increased in more aggressive tumors. Indeed, KIF14 expression predicted overall survival (univariate Cox p = 0.010), with an odds ratio of 3.60 (1.37-9.48), in 50 tumors with available outcome data. KIF14 overexpression also predicted decreased disease-free survival (log-rank p = 0.049). These findings are the first evidence of association between expression of a mitotic kinesin and prognostic variables in breast cancer. PMID:16570270

  1. mRNA expression levels of hypoxia-induced and stem cell-associated genes in human glioblastoma.

    PubMed

    Bache, Matthias; Rot, Swetlana; Keßler, Jacqueline; Güttler, Antje; Wichmann, Henri; Greither, Thomas; Wach, Sven; Taubert, Helge; Söling, Ariane; Bilkenroth, Udo; Kappler, Matthias; Vordermark, Dirk

    2015-06-01

    The roles of hypoxia-induced and stem cell-associated genes in the development of malignancy and tumour progression are well known. However, there are a limited number of studies analysing the impact of mRNA expression levels of hypoxia-induced and stem cell-associated genes in the tissues of brain tumours and glioblastoma patients. In this study, tumour tissues from patients with glioblastoma multiforme and tumour adjacent tissues were analysed. We investigated mRNA expression levels of hypoxia-inducible factor-1α (HIF-1α), hypoxia-inducible factor-2α (HIF-2α), carbonic anhydrase 9 (CA9), vascular endothelial growth factor (VEGF), glucose transporter-1 (GLUT-1) and osteopontin (OPN), and stem cell-associated genes survivin, epidermal growth factor receptor (EGFR), human telomerase reverse transcriptase (hTERT), Nanog and octamer binding transcription factor 4 (OCT4) using quantitative real-time polymerase chain reaction (qRT-PCR). Our data revealed higher mRNA expression levels of hypoxia-induced and stem cell-associated genes in tumour tissue than levels in the tumour adjacent tissues in patients with glioblastoma multiforme. A strong positive correlation between the mRNA expression levels of HIF-2α, CA9, VEGF, GLUT-1 and OPN suggests a specific hypoxia-associated profile of mRNA expression in glioblastoma multiforme. Additionally, the results indicate the role of stem-cell-related genes in tumour hypoxia. Kaplan-Maier analysis revealed that high mRNA expression levels of hypoxia-induced markers showed a trend towards shorter overall survival in glioblastoma patients (P=0.061). Our data suggest that mRNA expression levels of hypoxia-induced genes are important tumour markers in patients with glioblastoma multiforme. PMID:25963717

  2. Adverse early life experience and social stress during adulthood interact to increase serotonin transporter mRNA expression

    PubMed Central

    Gardner, Katherine L.; Hale, Matthew W.; Lightman, Stafford L.; Plotsky, Paul M.; Lowry, Christopher A.

    2009-01-01

    Anxiety disorders, depression and animal models of vulnerability to a depression-like syndrome have been associated with dysregulation of serotonergic systems in the brain. To evaluate the effects of early life experience, adverse experiences during adulthood, and potential interactions between these factors on serotonin transporter (slc6a4) mRNA expression, we investigated in rats the effects of maternal separation (180 min/day from days 2–14 of life; MS180), neonatal handing (15 min/day from days 2–14 of life; MS15), or normal animal facility rearing control conditions (AFR) with or without subsequent exposure to adult social defeat on slc6a4 mRNA expression in the dorsal raphe nucleus (DR) and caudal linear nucleus. At the level of specific subdivisions of the DR, there were no differences in slc6a4 mRNA expression between MS15 and AFR rats. Among rats exposed to a novel cage control condition, increased slc6a4 mRNA expression was observed in the dorsal part of the DR in MS180 rats, relative to AFR control rats. In contrast, MS180 rats exposed to social defeat as adults had increased slc6a4 mRNA expression throughout the DR compared to both MS15 and AFR controls. Social defeat increased slc6a4 mRNA expression, but only in MS180 rats and only in the “lateral wings” of the DR. Overall these data demonstrate that early life experience and stressful experience during adulthood interact to determine slc6a4 mRNA expression. These data support the hypothesis that early life experience and major stressful life events contribute to dysregulation of serotonergic systems in stress-related neuropsychiatric disorders. PMID:19781533

  3. Parathyroid hormone regulates osterix and Runx2 mRNA expression predominantly through protein kinase A signaling in osteoblast-like cells.

    PubMed

    Wang, B L; Dai, C L; Quan, J X; Zhu, Z F; Zheng, F; Zhang, H X; Guo, S Y; Guo, G; Zhang, J Y; Qiu, M C

    2006-02-01

    Runt-related transcription factor 2 (Runx2) and osterix are osteoblast-specific transcription factors essential for the development of osteoblastic cells and bone formation. PTH given intermittently has anabolic effects on bone; however, the exact role remains to be understood completely. The purpose of this study was both to investigate whether PTH regulates Runx2 as well as osterix expression and to identify the signaling used. Using RT-PCR, we confirmed that PTH (1-34) regulated Runx2 and osterix mRNA expression, in rat osteoblast-like cell line UMR 106, in a dose- and time-dependent manner. PTH in low concentrations stimulated both Runx2 and osterix mRNA expression while that in high concentrations did not. Forskolin, an adenylate cyclase activator, also enhanced Runx2 and osterix transcription, and the stimulatory effects of PTH and forskolin were blocked by the pre-treatment of the cells with H-89, a protein kinase A (PKA) inhibitor. In contrast, the protein kinase C (PKC) activator phorbol 12-myristate 13-acetate (PMA) had no effect on Runx2 transcription, but induced an increase in osterix mRNA level at the concentration of 500 nM at 12 h after treatment. Moreover, pre-treatment of the cells with calphostin C, a PKC-specific inhibitor, reduced the increase in osterix transcripts enhanced by PTH and PMA 12 h after treatment. However, these inhibitory effects were not sustained for longer terms. These observations demonstrate that PTH stimulates Runx2 and osterix expression in vitro, at least in part, at transcriptional level. Induction of Runx2 mRNA is mediated through the activation of cAMP/PKA signal transduction. In the case of osterix, although the increase in mRNA level is predominantly mediated via cAMP/PKA signaling, PKC activation might also be involved in this process. PMID:16610234

  4. Helicobacter pylori cag Pathogenicity Island Is Associated with Reduced Expression of Interleukin-4 (IL-4) mRNA and Modulation of the IL-4δ2 mRNA Isoform in Human Gastric Mucosa

    PubMed Central

    Orsini, Barbara; Ottanelli, Barbara; Amedei, Amedeo; Surrenti, Elisabetta; Capanni, Marco; Del Prete, Gianfranco; Amorosi, Andrea; Milani, Stefano; D'Elios, Mario Milco; Surrenti, Calogero

    2003-01-01

    Interleukin-4 (IL-4) and IL-4δ2 mRNA gastric expression was evaluated in healthy subjects and patients who did not have ulcers but were infected with Helicobacter pylori with or without the cag pathogenicity island (cag PAI). IL-4 mRNA was physiologically expressed by gastric epithelium and negatively influenced by H. pylori. Also, nonepithelial cells in the lamina propria of H. pylori-infected patients expressed IL-4 mRNA, whereas IL-4δ2 mRNA was found only in cag PAI-negative patients. Thus, gastric IL-4 takes part in the local immune response to H. pylori. PMID:14573693

  5. Altered expression of mRNA profiles in blood of early-onset schizophrenia

    PubMed Central

    Xu, Yong; Yao Shugart, Yin; Wang, Guoqiang; Cheng, Zaohuo; Jin, Chunhui; Zhang, Kai; Wang, Jun; Yu, Hao; Yue, Weihua; Zhang, Fuquan; Zhang, Dai

    2016-01-01

    To identify gene expression abnormalities in schizophrenia (SZ), we generated whole-genome gene expression profiles using microarrays on peripheral blood mononuclear cells (PBMCs) from 18 early-onset SZ cases and 12 controls. We detected 84 transcripts differentially expressed by diagnostic status, with 82 genes being upregulated and 2 downregulated. We identified two SZ associated gene coexpression modules (green and red), including 446 genes . The green module is positively correlated with SZ, encompassing predominantly up-regulated genes in SZ; while the red module was negatively correlated with disease status, involving mostly nominally down-regulated genes in SZ. The olfactory transduction pathway was the most enriched pathways for the genes within the two modules. The expression levels of several hub genes, including AKT1, BRCA1, CCDC134, UBD, and ZIC2 were validated using real-time quantitative PCR. Our findings indicate that mRNA coexpression abnormalities may serve as a promising mechanism underlying the development of SZ. PMID:26733343

  6. cDNA cloning and mRNA expression of canine pancreatic and duodenum homeobox 1 (Pdx-1).

    PubMed

    Takemitsu, Hiroshi; Yamamoto, Ichiro; Lee, Peter; Ohta, Taizo; Mori, Nobuko; Arai, Toshiro

    2012-10-01

    Pancreatic and duodenal homeobox 1 (Pdx-1) is a critical insulin transcription factor expressed by pancreatic β-cells, and is crucial in the early stage of pancreas development. Unfortunately, nothing concerning Pdx-1 in canine has been elucidated yet. In this study, full length canine Pdx-1 cDNA was cloned and it was 1498 bp in length, consisting of a 99 bp 5'-untranslated region (UTR), a 849 bp coding region, and a 550 bp 3'-UTR region. A deduced 282 amino acid sequence of canine PDX-1 displayed high overall sequence identity with human, bovine, and mouse PDX-1. qRT-PCR analysis revealed that a high level of Pdx1 mRNA expression is exists in the duodenum and pancreas of canines. In addition, functional canine insulin promoter-luciferase reporter constructs with various canine insulin promoter region fragments revealed that our Pdx-1 isolated cDNA sequence encodes for a functionally active PDX-1 protein. Significant promoter activity was observed within the -583 bp 5'-upstream region of canine insulin gene with Chinese hamster ovary cells. In addition, Pdx-1 appears to have a synergistic effect with beta cell transactivator 2 (BETA2) and V-maf avian musculoaponeurotic fibrosarcoma oncogene homolog A (MafA), which also have important roles in the activation of the insulin gene promoter. Our results confirm that similar to humans, Pdx1 plays an important role in expression of insulin gene in canines. PMID:22172402

  7. Amphetamine-induced c-fos mRNA expression is altered in rats with neonatal ventral hippocampal damage.

    PubMed

    Lillrank, S M; Lipska, B K; Bachus, S E; Wood, G K; Weinberger, D R

    1996-08-01

    To further characterize the mechanisms underlying enhanced dopamine-related behaviors expressed during adulthood in rats with neonatal excitotoxic ventral hippocampal (VH) damage, we studied the expression of c-fos mRNA in these rats after a single saline or amphetamine (AMPH) (10 mg/kg, i.p.) injection using in situ hybridization. The VH of rat pups was lesioned with ibotenic acid on postnatal day 7 (PD7). At the age of 90 days, rats were challenged with AMPH or saline, and the expression of c-fos mRNA using an oligonucleotide probe was assessed 30, 90, and 180 min later. AMPH significantly increased c-fos mRNA expression in medial prefrontal cortex, piriform cortex, cingulate cortex, septal region, and dorsolateral and ventromedial striatum in control and lesioned rats. However, this response to AMPH was attenuated 30 min after AMPH injection in all of these regions in the lesioned as compared to the sham-operated rats. No significant changes were seen at other time points. These results indicate that the neonatal VH lesion alters time-dependent intracellular signal transduction mechanisms measured by AMPH-induced c-fos mRNA expression in cortical and subcortical brain regions. Changes in c-fos mRNA expression in this putative animal model of schizophrenia may have implications for long-term alterations in cellular phenotype because of altered regulation of certain target genes. PMID:8855514

  8. A comparison of PGC-1α mRNA and protein expression in response to 1-week endurance training on alternate days or 4 consecutive days.

    PubMed

    Huang, Li-Ping; Yao, Min; Wang, Ya-Li; Davie, Allan; Zhou, Shi

    2015-11-01

    To understand the molecular mechanisms of adaptation to different training protocols, this study compared the effects of 4 sessions of 90 min treadmill exercise on alternate days or consecutive days in 1 week on messenger RNA (mRNA) and protein expression of proliferator-activated receptor-γ coactivator 1-α in rat gastrocnemius muscle. The mRNA significantly increased by 25.8-fold after alternate-day and 10.1-fold after consecutive-day training, while the protein showed no significant cumulative effect, 1.5-1.7-fold above baseline, in the 2 protocols. PMID:26466083

  9. Expression of preproenkephalin-like mRNA and its peptide products in mammalian testis and ovary.

    PubMed Central

    Kilpatrick, D L; Howells, R D; Noe, M; Bailey, L C; Udenfriend, S

    1985-01-01

    The distribution of preproenkephalin mRNA and proenkephalin-derived peptides have been examined in gonadal tissues from rats, hamsters, and cattle. A preproenkephalin mRNA band was detected in the ovaries of all three species and in hamster testis that is identical in size to the 1450-nucleotide mRNA typically found in tissues that express proenkephalin. Rat testis, on the other hand, expresses at least one preproenkephalin-like mRNA that is substantially greater in size (1900 nucleotides). [Met]enkephalin-containing peptides were also detected in each of the gonadal tissues examined. Although the abundance of preproenkephalin-like mRNA in rat testis was comparable to that in rat brain, the testicular content of proenkephalin-derived [Met]enkephalin sequences was less than 4% of the rat brain content. Together these data suggest that preproenkephalin-like mRNA in rat testis is not efficiently translated, proenkephalin-derived peptides undergo rapid turnover in this tissue, or the mRNA in rat testis has a frameshift resulting in an altered coding sequence. Images PMID:3864164

  10. Analysis of xanthine dehydrogenase mRNA levels in mutants affecting the expression of the rosy locus.

    PubMed Central

    Covington, M; Fleenor, D; Devlin, R B

    1984-01-01

    Xanthine dehydrogenase (XDH) mRNA levels were measured in a number of mutants and natural variants affecting XDH gene expression. Two variants, ry+4 and ry+10, contain cis-acting elements which map to a region flanking the 5' end of the XDH gene. Ry+4, which has 2-3 times more XDH protein than a wild type strain, has 3.2 times more XDH mRNA. Ry+10 has 50% of the wild type XDH level and 54% of the wild type XDH mRNA level. Three rosy mutants which map within the structural gene were also examined. Two of these had little if any XDH mRNA, but the third mutant had 1.3 times more XDH mRNA than wild type flies. Another mutant, ry2 , which contains no XDH protein and has a 9KB transposable element inserted into the XDH gene, has normal levels of XDH mRNA transcripts which are also the same size as those found in the wild type strain. Changes in XDH mRNA levels were measured during Drosophila development and found to parallel changes in the amount of XDH protein. In addition, there were no large changes in the size of XDH mRNA during development. Images PMID:6588363

  11. mRNA Noise Reveals that Activators Induce a Biphasic Response in the Promoter Kinetics of Highly Regulated Genes

    NASA Astrophysics Data System (ADS)

    Quinn, Katie; To, Tsz-Leung; Maheshri, Narendra

    2012-02-01

    A dominant source of fluctuations in gene expression is thought to be the process of transcription. The statistics of these fluctuations arise from the kinetics of transcription. Multiple studies suggest the bulk of fluctuations can be understood by a simple process where genes are inactive for exponentially distributed times punctuated by geometric bursts of mRNA. Yet it's largely unknown how cis and trans factors affect the two lumped kinetic parameters, burst size and burst frequency, that describe this process. Importantly, how these parameters are regulated in a single gene can qualitatively affect the dynamical behavior of the network it is embedded within. Here, we ask whether transcriptional activators increase gene expression by increasing the burst size or burst frequency. We do so by deducing these parameters from steady-state mRNA distributions measured in individual yeast cells using single molecule mRNA FISH. We find that for both a synthetic and natural promoter, activators appear to first increase burst size, then burst frequency. We suggest this biphasic response may be common to all highly regulated genes and was previously unappreciated because of measurement techniques. Furthermore, its origins appear to relate to cis events at the promoter, and may arise from combinations of basal and activator-dependent bursts. Our measurements shed new light on transcriptional mechanisms and should assist in building synthetic promoters with tunable statistics.

  12. Expression kinetics of nucleoside-modified mRNA delivered in lipid nanoparticles to mice by various routes.

    PubMed

    Pardi, Norbert; Tuyishime, Steven; Muramatsu, Hiromi; Kariko, Katalin; Mui, Barbara L; Tam, Ying K; Madden, Thomas D; Hope, Michael J; Weissman, Drew

    2015-11-10

    In recent years, in vitro transcribed messenger RNA (mRNA) has emerged as a potential therapeutic platform. To fulfill its promise, effective delivery of mRNA to specific cell types and tissues needs to be achieved. Lipid nanoparticles (LNPs) are efficient carriers for short-interfering RNAs and have entered clinical trials. However, little is known about the potential of LNPs to deliver mRNA. Here, we generated mRNA-LNPs by incorporating HPLC purified, 1-methylpseudouridine-containing mRNA comprising codon-optimized firefly luciferase into stable LNPs. Mice were injected with 0.005-0.250mg/kg doses of mRNA-LNPs by 6 different routes and high levels of protein translation could be measured using in vivo imaging. Subcutaneous, intramuscular and intradermal injection of the LNP-encapsulated mRNA translated locally at the site of injection for up to 10days. For several days, high levels of protein production could be achieved in the lung from the intratracheal administration of mRNA. Intravenous and intraperitoneal and to a lesser extent intramuscular and intratracheal deliveries led to trafficking of mRNA-LNPs systemically resulting in active translation of the mRNA in the liver for 1-4 days. Our results demonstrate that LNPs are appropriate carriers for mRNA in vivo and have the potential to become valuable tools for delivering mRNA encoding therapeutic proteins. PMID:26264835

  13. Effects of pulsed electromagnetic fields on the mRNA expression of RANK and CAII in ovariectomized rat osteoclast-like cell.

    PubMed

    Chen, Jian; He, Hong-Cheng; Xia, Qing-Jie; Huang, Li-Qun; Hu, Yu-Jun; He, Cheng-qi

    2010-01-01

    This study was designed to determine the effects of pulsed electromagnetic fields (PEMF) on the mRNA expression of the receptor activator of NF-kappa-B (RANK) and carbonic anhydrase II (CA II) in ovariectomized rat osteoclast-like cells. Marrow cells were harvested from femora and tibiae of rats, from which the ovaries had been totally excised, and cultured in 6-well chamber slides. After 1 day of incubation, the marrow cells were exposed to PEMF for 3 days with 3.8 mT, 8 Hz, and 40 min per day. Osteoclast-like cells were confirmed by both tartrate resistant acid phosphatase (TRAP) stain and bone resorption assay. The expression of RANK and CA II mRNA was determined with real-time fluorescent-nested quantitative polymerase chain reaction. Compared with the sham group, the level of serum estradiol in the ovariectomized group was significantly decreased ( p < 0.05). The numbers of multinucleated, TRAP-positive osteoclast-like cells and resorption pits formed were observed. In invitro study, the expression of RANK and CA II were measured in sham, ovariectomized without PEMF, and ovariectomized with PEMF treatment. Compared with the ovariectomized (PEMF) experimental group and sham group, CA II mRNA expression was significantly increased in the ovariectomized control group ( p < 0.05, 0.01, respectively). Compared with the sham group, RANK mRNA expression was significantly increased in the ovariectomized control group ( p < 0.05). These data suggest that PEMF could regulate the expression of RANK and CA II mRNA in the marrow culture system. PMID:20067410

  14. OIL FLY ASH AND VANADIUM DIMINISH NRAMP-2MRNA AND PROTEIN EXPRESSION IN HUMAN BRONCHIAL EPITHELIAL CELLS

    EPA Science Inventory

    The capacity of Nramp2 to transport iron and its ubiquitous expression make it a likely candidate for transferrin-independent uptake of iron in peripheral tissues. Airway epithelial cells increase both mRNA and expression of that isoform of Nramp-2 without an iron response ele...

  15. Cholesterol Side-Chain Cleavage Gene Expression in Theca Cells: Augmented Transcriptional Regulation and mRNA Stability in Polycystic Ovary Syndrome

    PubMed Central

    Nelson-DeGrave, Velen L.; Legro, Richard S.; Strauss, Jerome F.; McAllister, Jan M.

    2012-01-01

    Hyperandrogenism is characteristic of women with polycystic ovary syndrome (PCOS). Ovarian theca cells isolated from PCOS follicles and maintained in long-term culture produce elevated levels of progestins and androgens compared to normal theca cells. Augmented steroid production in PCOS theca cells is associated with changes in the expression of genes for several steroidogenic enzymes, including CYP11A1, which encodes cytochrome P450 cholesterol side-chain cleavage. Here, we further examined CYP11A1 gene expression, at both the transcriptional and post-transcriptional level in normal and PCOS theca cells propagated in long-term culture utilizing quantitative RT-PCR, functional promoter analyses, and mRNA degradation studies. The minimal element(s) that conferred increased basal and cAMP-dependent CYP11A1 promoter function were determined. CYP11A1 mRNA half-life in normal and PCOS theca cells was compared. Results of these cumulative studies showed that basal and forskolin stimulated steady state CYP11A1 mRNA abundance and CYP11A1 promoter activity were increased in PCOS theca cells. Deletion analysis of the CYP11A1 promoter demonstrated that augmented promoter function in PCOS theca cells results from increased basal regulation conferred by a minimal sequence between −160 and −90 bp of the transcriptional start site. The transcription factor, nuclear factor 1C2, was observed to regulate basal activity of this minimal CYP11A1 element. Examination of mRNA stability in normal and PCOS theca cells demonstrated that CYP11A1 mRNA half-life increased >2-fold, from approximately 9.22+/−1.62 h in normal cells, to 22.38+/−0.92 h in PCOS cells. Forskolin treatment did not prolong CYP11A1 mRNA stability in either normal or PCOS theca cells. The 5′-UTR of CYP11A1 mRNA confers increased basal mRNA stability in PCOS cells. In conclusion, these studies show that elevated steady state CYP11A1 mRNA abundance in PCOS cells results from increased transactivation of the CYP

  16. Successful personalized chemotherapy for metastatic gastric cancer based on quantitative BRCA1 mRNA expression level: A case report

    PubMed Central

    HUANG, YING; WU, PUYUAN; LIU, BAORUI; DU, JUAN

    2016-01-01

    Personalized chemotherapy is based on the specific genetic profile of individual patients and is replacing the traditional ‘one size fits all’ medicine. Breast cancer 1 (BRCA1) plays a central role in the chemotherapy-induced DNA damage response. It has been repeatedly demonstrated that BRCA1 mRNA levels were negatively associated with cisplatin sensitivity, but positively associated with docetaxel sensitivity in patients with gastric cancer in experimental and clinical studies. This feature leads to customized chemotherapy based on the BRCA1 mRNA expression level and results in a high efficacy of treatment. The present study describes the case of a 77-year-old patient with metastatic gastric cancer who was treated with personalized chemotherapy based on quantitative BRCA1 mRNA expression level. This study and the available literature data suggest that the expression level of BRCA1 mRNA is dynamic to BRCA1-based chemotherapy. More importantly, de novo assessment of BRCA1 status is a preferable option for ciscisplatin- or docetaxel-resistant patients, since the expression levels of BRCA1 mRNA in certain patients may alter significantly following treatment. Therefore, BRCA1 expression should be assessed for predicting differential chemosensitivity and tailoring chemotherapy in gastric cancer. PMID:27313763

  17. Trichinella spiralis thymidylate synthase: cDNA cloning and sequencing, and developmental pattern of mRNA expression.

    PubMed

    Dabrowska, M; Jagielska, E; Cieśla, J; Płucienniczak, A; Kwiatowski, J; Wranicz, M; Boireau, P; Rode, W

    2004-02-01

    The persistent expression of thymidylate synthase activity has previously been demonstrated not only in adult forms, but also in non-developing muscle larvae of Trichinella spiralis and T. pseudospiralis, pointing to an unusual pattern of cell cycle regulation, and prompting further studies on the developmental pattern of T. spiralis thymidylate synthase gene expression. The enzyme cDNA was cloned and sequenced, allowing the characterization of a single open reading frame of 307 amino acids coding for a putative protein of 35,582 Da molecular weight. The amino acid sequence of the parasite enzyme was analysed, the consensus phylogenetic tree built and its stability assessed. The aa sequence identity with thymidylate synthase was confirmed by the enzymatic activity of the recombinant protein expressed in E. coli. As compared with the enzyme purified from muscle larvae, it showed apparently similar Vmax value, but higher Km(app) values desscribing interactions with dUMP (28.8 microM vs. 3.9 microM) and (6RS,alphaS)-N(5,10)-methylenetetrahydrofolate (383 microM vs. 54.7 microM). With the coding region used as a probe, thymidylate synthase mRNA levels, relative to 18S rRNA, were found to be similar in muscle larvae, adult forms and newborn larvae, in agreement with muscle larvae cells being arrested in the cell cycle. PMID:15030008

  18. Translational control of germ cell-expressed mRNA imposed by alternative splicing: opioid peptide gene expression in rat testis.

    PubMed Central

    Garrett, J E; Collard, M W; Douglass, J O

    1989-01-01

    The three genes encoding the opioid peptide precursors (prodynorphin, proenkephalin, and proopiomelanocortin) are expressed in the rat testis. The sizes of the three opioid mRNAs in the testis differ from the sizes of the corresponding mRNAs in other rat tissues in which these genes are expressed. The smaller testicular proopiomelanocortin mRNA has previously been demonstrated to arise from alternative transcriptional initiation. In the present study, we found that the smaller testicular prodynorphin mRNA, expressed in Sertoli cells, results from alternative mRNA processing. Exon 2, which makes up 5' untranslated sequence, is removed from the mature transcript. Polysome analysis of brain and testis RNA indicates that the alteration of the prodynorphin leader sequence in the testis-specific transcript does not affect the efficiency of translation of this mRNA. The larger testicular proenkephalin transcript, expressed in developing germ cells, also results from alternative mRNA processing. Alternative acceptor site usage in the splicing of intron A results in a germ cell-specific proenkephalin transcript with a 491-nucleotide 5' untranslated leader sequence preceding the preproenkephalin-coding sequence. Polysome analysis indicates that this germ cell-specific proenkephalin mRNA is not efficiently translated. Mechanisms by which alternative mRNA splicing may serve to confer translational regulation upon the testicular proenkephalin transcript are discussed. Images PMID:2573832

  19. Influence of Cardiorespiratory Fitness on PPARG mRNA Expression Using Monozygotic Twin Case Control

    PubMed Central

    Queiroga, Marcos Roberto; Barbieri, Ricardo Augusto; Ferreira, Sandra Aires; Luchessi, André Ducati; Hirata, Rosario Dominguez Crespo; Hirata, Mario Hiroyuki; Kokubun, Eduardo

    2015-01-01

    The influence of cardiorespiratory fitness (VO2max) on anthropometric variables and PPARG mRNA expression was investigated. Monozygotic twin pairs aged 11–18 years were grouped into discordant (D) and concordant (C) high and low VO2max groups. VO2max was determined by progressive maximal exercise test on treadmill with gas exchange analysis. Body mass (BM), BMI, waist circumference (WC), triceps (TR), and subscapular (SB) skinfold thicknesses were measured. Twins from the discordant group had differences in VO2max values (D-high = 45.9 ± 10.0 versus D-low = 32.4 ± 10.6 mL·kg−1·min−1, P = 0.025), while no differences were found in the concordant group (C-high = 42.4 ± 9.2 versus C-low = 38.8 ± 9.8 mL·kg−1·min−1, P = 0.952). In discordant group, VO2max was negatively correlated with TR + SB (r = −0.540, P = 0.021) and positively correlated with PPARG expression in leukocytes (r = 0.952, P = 0.001). Moreover, PPARG expression was directly correlated with BM (r = 0.714, P = 0.047) and height (r = 0.762, P = 0.028). In concordant twins, VO2max was inversely correlated with BM (r = −0.290, P = 0.027), BMI (r = −0.472, P = 0.001), WC (r = −0.426, P = 0.001), and TR + SB (r = −0.739, P = 0.001). Twins D-high had 1.78-fold greater PPARG expression when compared with twins D-low (P = 0.048). In conclusion, the cardiorespiratory fitness may modulate PPARG expression in childhood and adolescence, independently of the genetic background. PMID:25879043

  20. Expression of klotho mRNA and protein in rat brain parenchyma from early postnatal development into adulthood

    PubMed Central

    Clinton, Sarah M.; Glover, Matthew E.; Maltare, Astha; Laszczyk, Ann M.; Mehi, Stephen J.; Simmons, Rebecca K.; King, Gwendalyn D.

    2013-01-01

    Without the age-regulating protein klotho, mouse lifespan is shortened and the rapid onset of age-related disorders occurs. Conversely, overexpression of klotho extends mouse lifespan. Klotho is most abundant in kidney and expressed in a limited number of other organs, including the brain, where klotho levels are highest in choroid plexus. Reports vary on where klotho is expressed within the brain parenchyma, and no data is available as to whether klotho levels change across postnatal development. We used in situ hybridization to map klotho mRNA expression in the developing and adult rat brain and report moderate, widespread expression across grey matter regions. mRNA expression levels in cortex, hippocampus, caudate putamen, and amygdala decreased during the second week of life and then gradually rose to adult levels by postnatal day 21. Immunohistochemistry revealed a protein expression pattern similar to the mRNA results, with klotho protein expressed widely throughout the brain. Klotho protein co-localized with both the neuronal marker NeuN, as well as, oligodendrocyte marker olig2. These results provide the first anatomical localization of klotho mRNA and protein in rat brain parenchyma and demonstrate that klotho levels vary during early postnatal development. PMID:23838326

  1. Transient and persistent expression of NT-3/HDNF mRNA in the rat brain during postnatal development.

    PubMed

    Friedman, W J; Ernfors, P; Persson, H

    1991-06-01

    Neurotrophin-3 (NT-3) is closely related to two known neurotrophic agents, NGF and brain-derived neurotrophic factor (BDNF), and acts upon overlapping, yet distinct, populations of peripheral ganglia. NT-3 mRNA expression in the adult rat brain is largely confined to the hippocampus. In this study, we have used in situ hybridization to examine expression of this novel neurotrophic factor during postnatal development. The striking observation was made that NT-3 mRNA was transiently expressed at high levels in the cingulate cortex during the first 2 weeks of age. In the hippocampus, the adult pattern of expression, in the CA2, medial CA1, and granule layer of the dentate gyrus, was detected at all ages examined. However, there were two major differences in NT-3 mRNA expression in the developing hippocampus: Labeled cells were detected in the hilar region of the dentate gyrus at postnatal day 1 (P1) and 1 week that were absent by 2 weeks of age. Further, the caudal hippocampus, which has a lower intensity of labeling than the rostral region in the adult, was devoid of NT-3-expressing cells in the P1 and 1-week-old rat brain. These data indicate a substantial plasticity in NT-3 mRNA expression and suggest that the spectrum of neurons supported by NT-3 during development is partially different from that in the mature rat brain. PMID:2045877

  2. Specific responses in rat small intestinal epithelial mRNA expression and protein levels during chemotherapeutic damage and regeneration.

    PubMed

    Verburg, Melissa; Renes, Ingrid B; Van Nispen, Danielle J P M; Ferdinandusse, Sacha; Jorritsma, Marieke; Büller, Hans A; Einerhand, Alexandra W C; Dekker, Jan

    2002-11-01

    The rapidly dividing small intestinal epithelium is very sensitive to the cytostatic drug methotrexate. We investigated the regulation of epithelial gene expression in rat jejunum during methotrexate-induced damage and regeneration. Ten differentiation markers were localized on tissue sections and quantified at mRNA and protein levels relative to control levels. We analyzed correlations in temporal expression patterns between markers. mRNA expression of enterocyte and goblet cell markers decreased significantly during damage for a specific period. Of these, sucrase-isomaltase (-62%) and CPS (-82%) were correlated. Correlations were also found between lactase (-76%) and SGLT1 (-77%) and between I-FABP (-52%) and L-FABP (-45%). Decreases in GLUT5 (-53%), MUC2 (-43%), and TFF3 (-54%) mRNAs occurred independently of any of the other markers. In contrast, lysozyme mRNA present in Paneth cells increased (+76%). At the protein level, qualitative and quantitative changes were in agreement with mRNA expression, except for Muc2 (+115%) and TFF3 (+81%), which increased significantly during damage, following independent patterns. During regeneration, expression of each marker returned to control levels. The enhanced expression of cytoprotective molecules (Muc2, TFF3, lysozyme) during damage represents maintenance of goblet cell and Paneth cell functions, most likely to protect the epithelium. Decreased expression of enterocyte-specific markers represents decreased enterocyte function, of which fatty acid transporters were least affected. PMID:12417619

  3. miR-143 decreases COX-2 mRNA stability and expression in pancreatic cancer cells

    SciTech Connect

    Pham, Hung; Ekaterina Rodriguez, C.; Donald, Graham W.; Hertzer, Kathleen M.; Jung, Xiaoman S.; Chang, Hui-Hua; Moro, Aune; Reber, Howard A.; Hines, O. Joe; Eibl, Guido

    2013-09-13

    Highlights: •Pancreatic cancer cells express low miR-143 levels and elevated p-MEK, p-MAPK and RREB1. •MEK inhibitors U0126 and PD98059 increase miR-143 expression. •miR-143 decreases COX-2 mRNA stability and expression and PGE{sub 2}. •miR-143 decreases p-p38MAPK, p-MEK, p-MAPK and RREB1 expression. -- Abstract: Small non-coding RNAs, microRNAs (miRNA), inhibit the translation or accelerate the degradation of message RNA (mRNA) by targeting the 3′-untranslated region (3′-UTR) in regulating growth and survival through gene suppression. Deregulated miRNA expression contributes to disease progression in several cancers types, including pancreatic cancers (PaCa). PaCa tissues and cells exhibit decreased miRNA, elevated cyclooxygenase (COX)-2 and increased prostaglandin E{sub 2} (PGE{sub 2}) resulting in increased cancer growth and metastases. Human PaCa cell lines were used to demonstrate that restoration of miRNA-143 (miR-143) regulates COX-2 and inhibits cell proliferation. miR-143 were detected at fold levels of 0.41 ± 0.06 in AsPC-1, 0.20 ± 0.05 in Capan-2 and 0.10 ± 0.02 in MIA PaCa-2. miR-143 was not detected in BxPC-3, HPAF-II and Panc-1 which correlated with elevated mitogen-activated kinase (MAPK) and MAPK kinase (MEK) activation. Treatment with 10 μM of MEK inhibitor U0126 or PD98059 increased miR-143, respectively, by 187 ± 18 and 152 ± 26-fold in BxPC-3 and 182 ± 7 and 136 ± 9-fold in HPAF-II. miR-143 transfection diminished COX-2 mRNA stability at 60 min by 2.6 ± 0.3-fold in BxPC-3 and 2.5 ± 0.2-fold in HPAF-II. COX-2 expression and cellular proliferation in BxPC-3 and HPAF-II inversely correlated with increasing miR-143. PGE{sub 2} levels decreased by 39.3 ± 5.0% in BxPC-3 and 48.0 ± 3.0% in HPAF-II transfected with miR-143. Restoration of miR-143 in PaCa cells suppressed of COX-2, PGE{sub 2}, cellular proliferation and MEK/MAPK activation, implicating this pathway in regulating miR-143 expression.

  4. FOXA2 mRNA expression is associated with relapse in patients with Triple-Negative/Basal-like breast carcinoma.

    PubMed

    Perez-Balaguer, Ariadna; Ortiz-Martínez, Fernando; García-Martínez, Araceli; Pomares-Navarro, Critina; Lerma, Enrique; Peiró, Gloria

    2015-09-01

    The FOXA family of transcription factors regulates chromatin structure and gene expression especially during embryonic development. In normal breast tissue FOXA1 acts throughout mammary development; whereas in breast carcinoma its expression promotes luminal phenotype and correlates with good prognosis. However, the role of FOXA2 has not been previously studied in breast cancer. Our purpose was to analyze the expression of FOXA2 in breast cancer cells, to explore its role in breast cancer stem cells, and to correlate its mRNA expression with clinicopathological features and outcome in a series of patients diagnosed with breast carcinoma. We analyzed FOXA2 mRNA expression in a retrospective cohort of 230 breast cancer patients and in cell lines. We also knocked down FOXA2 mRNA expression by siRNA to determine the impact on cell proliferation and mammospheres formation using a cancer stem cells culture assay. In vitro studies demonstrated higher FOXA2 mRNA expression in Triple-Negative/Basal-like cells. Further, when it was knocked down, cells decreased proliferation and its capability of forming mammospheres. Similarly, FOXA2 mRNA expression was detected in 10% (23/230) of the tumors, especially in Triple-Negative/Basal-like phenotype (p < 0.001, Fisher's test). Patients whose tumors expressed FOXA2 had increased relapses (59 vs. 79%, p = 0.024, log-rank test) that revealed an independent prognostic value (HR = 3.29, C.I.95% = 1.45-7.45, p = 0.004, Cox regression). Our results suggest that FOXA2 promotes cell proliferation, maintains cancer stem cells, favors the development of Triple-Negative/Basal-like tumors, and is associated with increase relapses. PMID:26298189

  5. The Drosophila Tis11 Protein and Its Effects on mRNA Expression in Flies*

    PubMed Central

    Choi, Youn-Jeong; Lai, Wi S.; Fedic, Robert; Stumpo, Deborah J.; Huang, Weichun; Li, Leping; Perera, Lalith; Brewer, Brandy Y.; Wilson, Gerald M.; Mason, James M.; Blackshear, Perry J.

    2014-01-01

    Members of the mammalian tristetraprolin family of CCCH tandem zinc finger proteins can bind to certain AU-rich elements (AREs) in mRNAs, leading to their deadenylation and destabilization. Mammals express three or four members of this family, but Drosophila melanogaster and other insects appear to contain a single gene, Tis11. We found that recombinant Drosophila Tis11 protein could bind to ARE-containing RNA oligonucleotides with low nanomolar affinity. Remarkably, co-expression in mammalian cells with “target” RNAs demonstrated that Tis11 could promote destabilization of ARE-containing mRNAs and that this was partially dependent on a conserved C-terminal sequence resembling the mammalian NOT1 binding domain. Drosophila Tis11 promoted both deadenylation and decay of a target transcript in this heterologous cell system. We used chromosome deletion/duplication and P element insertion to produce two types of Tis11 deficiency in adult flies, both of which were viable and fertile. To address the hypothesis that Tis11 deficiency would lead to the abnormal accumulation of potential target transcripts, we analyzed gene expression in adult flies by deep mRNA sequencing. We identified 69 transcripts from 56 genes that were significantly up-regulated more than 1.5-fold in both types of Tis11-deficient flies. Ten of the up-regulated transcripts encoded probable proteases, but many other functional classes of proteins were represented. Many of the up-regulated transcripts contained potential binding sites for tristetraprolin family member proteins that were conserved in other Drosophila species. Tis11 is thus an ARE-binding, mRNA-destabilizing protein that may play a role in post-transcriptional gene expression in Drosophila and other insects. PMID:25342740

  6. Altered prefrontal cortical MARCKS and PPP1R9A mRNA expression in schizophrenia and bipolar disorder

    PubMed Central

    Konopaske, Glenn T.; Subburaju, Sivan; Coyle, Joseph T.; Benes, Francine M.

    2015-01-01

    Background We previously observed dendritic spine loss in the dorsolateral prefrontal cortex (DLPFC) from schizophrenia and bipolar disorder subjects. In the current study, we sought to determine if the mRNA expression of genes known to regulate the actin cytoskeleton and spines correlated with spine loss. Methods Five candidate genes were identified using previously obtained microarray data from the DLPFC from schizophrenia and control subjects. The relative mRNA expression of the genes linked to dendritic spine growth and function, i.e. IGF1R, MARCKS, PPP1R9A, PTPRF, and ARHGEF2, were assessed using quantitative real-time PCR (qRT-PCR) in the DLPFC from a second cohort including schizophrenia, bipolar disorder, and control subjects. Functional pathway analysis was conducted to determine which actin cytoskeleton-regulatory pathways the genes of interest interact with. Results MARCKS mRNA expression was increased in both schizophrenia and bipolar disorder subjects. PPP1R9A mRNA expression was increased in bipolar disorder subjects. For IGF1R, mRNA expression did not differ significantly among groups; however, it did show a significant, negative correlation with dendrite length. MARCKS and PPP1R9A mRNA expression did not correlate with spine loss, but interact with NMDA receptor signaling pathways that regulate the actin cytoskeleton and spines. Conclusions MARCKS and PPP1R9A might contribute to spine loss in schizophrenia and bipolar disorder through their interactions, possibly indirect ones, with NMDA signaling pathways that regulate spine structure and function. PMID:25757715

  7. KIF14 and E2F3 mRNA expression in human retinoblastoma and its phenotype association

    PubMed Central

    Mitra, Moutushy; Mallikarjuna, Kandalam; Pranav, Oberoi; Srinivasan, Ramalingam; Nagpal, Amit; Venkatesan, Perumal; Kumaramanickavel, Govindasamy

    2009-01-01

    Purpose We quantified mRNA expression of candidate genes for proliferation (KIF14 and E2F3) in a large retinoblastoma tumor cohort and associated with disease phenotype. Methods KIF14 and E2F3 mRNA expression was quantified by real time PCR in 57 retinoblastoma (RB) tumors, 3 RB cell lines, and control samples that included 4 each fetal, age-matched, adult retinas. Immunohistochemistry was done to confirm KIF14 and E2F3 protein expression in tumor cells. The mRNA expression levels were correlated with disease phenotypes including the significance of chemotherapy on tumors. Results There was statistically significant overexpression of KIF14 and E2F3 mRNA in tumors compared with control retinas (p<0.0001). Further, E2F3 also showed a significant overexpression compared to RB cell lines (p=0.01). Immunohistochemistry confirmed KIF14 and E2F3 protein overexpression in tumor cells. KIF14 had significant mRNA overexpression with older age (p=0.01) in presenting patients and in unilateral RB patients (p=0.04). Chemotherapy-treated tumors showed a significant decrease in KIF14 and E2F3 expression compared to untreated tumors (p<0.01 and 0.001, respectively). Conclusions This report confirms significant mRNA overexpression of KIF14 and E2F3 together in a large cohort of RB tumors. The decreased expression in chemotherapy treated cases needs further validation in a large chemotherapy-treated cohort. PMID:19190782

  8. The Rabies Virus L Protein Catalyzes mRNA Capping with GDP Polyribonucleotidyltransferase Activity.

    PubMed

    Ogino, Minako; Ito, Naoto; Sugiyama, Makoto; Ogino, Tomoaki

    2016-01-01

    The large (L) protein of rabies virus (RABV) plays multiple enzymatic roles in viral RNA synthesis and processing. However, none of its putative enzymatic activities have been directly demonstrated in vitro. In this study, we expressed and purified a recombinant form of the RABV L protein and verified its guanosine 5'-triphosphatase and GDP polyribonucleotidyltransferase (PRNTase) activities, which are essential for viral mRNA cap formation by the unconventional mechanism. The RABV L protein capped 5'-triphosphorylated but not 5'-diphosphorylated RABV mRNA-start sequences, 5'-AACA(C/U), with GDP to generate the 5'-terminal cap structure G(5')ppp(5')A. The 5'-AAC sequence in the substrate RNAs was found to be strictly essential for RNA capping with the RABV L protein. Furthermore, site-directed mutagenesis showed that some conserved amino acid residues (G1112, T1170, W1201, H1241, R1242, F1285, and Q1286) in the PRNTase motifs A to E of the RABV L protein are required for cap formation. These findings suggest that the putative PRNTase domain in the RABV L protein catalyzes the rhabdovirus-specific capping reaction involving covalent catalysis of the pRNA transfer to GDP, thus offering this domain as a target for developing anti-viral agents. PMID:27213429

  9. The Rabies Virus L Protein Catalyzes mRNA Capping with GDP Polyribonucleotidyltransferase Activity

    PubMed Central

    Ogino, Minako; Ito, Naoto; Sugiyama, Makoto; Ogino, Tomoaki

    2016-01-01

    The large (L) protein of rabies virus (RABV) plays multiple enzymatic roles in viral RNA synthesis and processing. However, none of its putative enzymatic activities have been directly demonstrated in vitro. In this study, we expressed and purified a recombinant form of the RABV L protein and verified its guanosine 5′-triphosphatase and GDP polyribonucleotidyltransferase (PRNTase) activities, which are essential for viral mRNA cap formation by the unconventional mechanism. The RABV L protein capped 5′-triphosphorylated but not 5′-diphosphorylated RABV mRNA-start sequences, 5′-AACA(C/U), with GDP to generate the 5′-terminal cap structure G(5′)ppp(5′)A. The 5′-AAC sequence in the substrate RNAs was found to be strictly essential for RNA capping with the RABV L protein. Furthermore, site-directed mutagenesis showed that some conserved amino acid residues (G1112, T1170, W1201, H1241, R1242, F1285, and Q1286) in the PRNTase motifs A to E of the RABV L protein are required for cap formation. These findings suggest that the putative PRNTase domain in the RABV L protein catalyzes the rhabdovirus-specific capping reaction involving covalent catalysis of the pRNA transfer to GDP, thus offering this domain as a target for developing anti-viral agents. PMID:27213429

  10. Contributions of transcription and mRNA decay to gene expression dynamics of fission yeast in response to oxidative stress

    PubMed Central

    Marguerat, Samuel; Lawler, Katherine; Brazma, Alvis; Bähler, Jürg

    2014-01-01

    The cooperation of transcriptional and post-transcriptional levels of control to shape gene regulation is only partially understood. Here we show that a combination of two simple and non-invasive genomic techniques, coupled with kinetic mathematical modeling, affords insight into the intricate dynamics of RNA regulation in response to oxidative stress in the fission yeast Schizosaccharomyces pombe. This study reveals a dominant role of transcriptional regulation in response to stress, but also points to the first minutes after stress induction as a critical time when the coordinated control of mRNA turnover can support the control of transcription for rapid gene regulation. In addition, we uncover specialized gene expression strategies associated with distinct functional gene groups, such as simultaneous transcriptional repression and mRNA destabilization for genes encoding ribosomal proteins, delayed mRNA destabilization with varying contribution of transcription for ribosome biogenesis genes, dominant roles of mRNA stabilization for genes functioning in protein degradation, and adjustment of both transcription and mRNA turnover during the adaptation to stress. We also show that genes regulated independently of the bZIP transcription factor Atf1p are predominantly controlled by mRNA turnover, and identify putative cis-regulatory sequences that are associated with different gene expression strategies during the stress response. This study highlights the intricate and multi-faceted interplay between transcription and RNA turnover during the dynamic regulatory response to stress. PMID:25007214

  11. mRNA expression of DOK1-6 in human breast cancer

    PubMed Central

    Ghanem, Tamara; Bracken, James; Kasem, Abdul; Jiang, Wen G; Mokbel, Kefah

    2014-01-01

    AIM: To examine the expression of downstream of tyrosine kinase (DOK)1-6 genes in normal and breast cancer tissue and correlated this with several clinico-pathological and prognostic factors. METHODS: DOK1-6 mRNA extraction and reverse transcription were performed on fresh frozen breast cancer tissue samples (n = 112) and normal background breast tissue (n = 31). Tissues were collected between 1991 and 1996 at two centres and all patients underwent mastectomy and ipsilateral axillary node dissection. All tissues were randomly numbered and the details were only made known after all analyses were completed. Transcript levels of expression were determined using real-time polymerase chain reaction and analyzed against TNM stage, tumour grade and clinical outcome over a 10-year follow-up period. RESULTS: DOK-2 and DOK-6 expression decreased with increasing TNM stage. DOK-6 expression decreased with increasing Nottingham Prognostic Index (NPI) [NPI-1 vs NPI-3 (mean copy number 15.4 vs 0.22, 95%CI: 2.7-27.6, P = 0.018) and NPI-2 vs NPI-3 (mean copy number 7.6 vs 0.22, 95%CI: 0.1-14.6, P = 0.048)]. After a median follow up period of 10 years, higher levels of DOK-2 expression were found among patients who remained disease-free compared to those who developed local or distant recurrence (mean copy number 3.94 vs 0.0000096, 95%CI: 1.0-6.85, P = 0.0091), and distant recurrence (mean copy number 3.94 vs 0.0025, 95%CI: 1.0-6.84, P = 0.0092). Patients who remained disease-free had higher levels of DOK-6 expression compared to those who died from breast cancer. CONCLUSION: Decreasing expression levels of DOK-2 and DOK-6 with increased breast tumour progression supports the notion that DOK-2 and DOK-6 behave as tumour suppressors in human breast cancer. PMID:24829863

  12. In vivo and in vitro CYP1B mRNA expression in channel catfish.

    PubMed

    Willett, Kristine L; Ganesan, Shobana; Patel, Monali; Metzger, Christine; Quiniou, Sylvie; Waldbieser, Geoff; Scheffler, Brian

    2006-07-01

    Our goal was to study the induction of CYP1B mRNA expression in channel catfish (Ictalurus punctatus). CYP1B belongs to the cytochrome P450 superfamily of genes, is involved in the oxidation of endogenous and exogenous compounds, and could potentially be a useful biomarker in fish for exposure to AhR ligands. The full-length catfish CYP1B cDNA is 2417 nt to the polyA tail and encodes a putative protein of 536 amino acids. It has 67% amino acid similarity to carp and zebrafish CYP1B and 68% similarity to carp CYP1B2. Male channel catfish were collected from three Mississippi Delta sites: Lake Roebuck, Itta Bena; Bee Lake, Thornton; and Sunflower River, Indianola. Total RNA was isolated from wild-caught catfish gill, blood, gonad and liver tissues. Quantitative real-time reverse transcriptase PCR was used to determine relative induction of CYP1B in wild catfish compared to laboratory control and BaP-exposed catfish (20mg/kg i.p. after 4 days). BaP exposure significantly induced CYP1B message in blood, gonad, and liver of laboratory catfish. In these same tissues of wild catfish from sites with relatively low sediment contaminants, CYP1B message was not statistically increased relative to laboratory control catfish. CYP1B transcript abundance was higher in gills compared to other tissues in both laboratory and wild catfish. When primary cultured gill cells were treated with increasing concentrations of BaP, TCDD, and PCBs 77, 126 and 169, CYP1B mRNA was induced more than 10-fold while PCB153 and 4,4'DDT did not cause significant CYP1B induction. Our results suggest that catfish CYP1B is induced by the classic AhR ligands. PMID:16697458

  13. Safety of Herbal Medicinal Products: Echinacea and Selected Alkylamides Do Not Induce CYP3A4 mRNA Expression.

    PubMed

    Modarai, Maryam; Silva, Elisabete; Suter, Andy; Heinrich, Michael; Kortenkamp, Andreas

    2011-01-01

    A major safety concern with the use of herbal medicinal products (HMP) is their interactions with conventional medicines, which are often mediated via the cytochrome P450 (CYP) system. Echinacea is a widely used over-the-counter HMP, with proven immunomodulatory properties. Its increasing use makes research into its safety an urgent concern. Previously, we showed that Echinacea extracts and its alkylamides (thought to be important for Echinacea's immunomodulatory activity) mildly inhibit the enzymatic activity of the main drug metabolising CYP isoforms, but to this date, there is insufficient work on its ability to alter CYP expression levels. We now report for the first time the effect of a commercial Echinacea extract (Echinaforce) and four Echinacea alkylamides on the transcription of the major drug metabolizing enzyme CYP3A4. HepG2 cells were exposed for 96 h to clinically relevant concentrations of Echinaforce (22, 11.6 and 1.16 μg mL(-1)) or the alkylamides (1.62 and 44 nM). CYP3A4 mRNA levels were quantified using real-time reverse transcription polymerase chain reaction (RT-PCR). Neither Echinaforce nor the alkylamides produced any significant changes in the steady-state CYP3A4 mRNA levels, under these conditions. In contrast, treatment with 50 μM rifampicin resulted in a 3.8-fold up-regulation over the vehicle control. We conclude that Echinaforce is unlikely to affect CYP3A4 transcriptional levels, even at concentrations which can inhibit the enzymatic activity of CYP3A4. Overall, our data provides further evidence for the lack of interactions between Echinacea and conventional drugs. PMID:19906827

  14. 5, 8, 11, 14-eicosatetraynoic acid suppresses CCL2/MCP-1 expression in IFN-γ-stimulated astrocytes by increasing MAPK phosphatase-1 mRNA stability

    PubMed Central

    2012-01-01

    Background The peroxisome proliferator-activated receptor (PPAR)-α activator, 5,8,11,14-eicosatetraynoic acid (ETYA), is an arachidonic acid analog. It is reported to inhibit up-regulation of pro-inflammatory genes; however, its underlying mechanism of action is largely unknown. In the present study, we focused on the inhibitory action of ETYA on the expression of the chemokine, CCL2/MCP-1, which plays a key role in the initiation and progression of inflammation. Methods To determine the effect of ETYA, primary cultured rat astrocytes and microglia were stimulated with IFN-γ in the presence of ETYA and then, expression of CCL2/MCP-1 and MAPK phosphatase (MKP-1) were determined using RT-PCR and ELISA. MKP-1 mRNA stability was evaluated by treating actinomycin D. The effect of MKP-1 and human antigen R (HuR) was analyzed by using specific siRNA transfection system. The localization of HuR was analyzed by immunocytochemistry and subcellular fractionation experiment. Results We found that ETYA suppressed CCL2/MCP-1 transcription and secretion of CCL2/MCP-1 protein through up-regulation of MKP-1mRNA levels, resulting in suppression of c-Jun N-terminal kinase (JNK) phosphorylation and activator protein 1 (AP1) activity in IFN-γ-stimulated brain glial cells. Moreover, these effects of ETYA were independent of PPAR-α. Experiments using actinomycin D revealed that the ETYA-induced increase in MKP-1 mRNA levels reflected an increase in transcript stability. Knockdown experiments using small interfering RNA demonstrated that this increase in MKP-1 mRNA stability depended on HuR, an RNA-binding protein known to promote enhanced mRNA stability. Furthermore, ETYA-induced, HuR-mediated mRNA stabilization resulted from HuR-MKP-1 nucleocytoplasmic translocation, which served to protect MKP-1 mRNA from the mRNA degradation machinery. Conclusion ETYA induces MKP-1 through HuR at the post-transcriptional level in a receptor-independent manner. The mechanism revealed here suggests

  15. Inhibition of tristetraprolin expression by dexamethasone in activated macrophages.

    PubMed

    Jalonen, Ulla; Lahti, Aleksi; Korhonen, Riku; Kankaanranta, Hannu; Moilanen, Eeva

    2005-03-01

    Tristetraprolin (TTP) is a factor that regulates mRNA stability and the expression of certain inflammatory genes. In the present study, we found that TTP expression was increased in macrophages exposed to bacterial lipopolysaccharide (LPS). Dexamethasone and dissociated steroid RU24858 inhibited LPS-induced TTP protein and mRNA expression and the inhibitory effect was reversed by a glucocorticoid receptor antagonist mifepristone. Histone deacetylase inhibitors trichostatin A (TSA) and apicidin reduced the inhibitory effect of dexamethasone and RU24858 on TTP expression, but the glucocorticoids did not alter TTP mRNA half-life. These results suggest that anti-inflammatory steroids reduce TTP expression in activated macrophages by a glucocorticoid response element (GRE)-independent mechanism, possibly through histone deacetylation and transcriptional silencing. PMID:15710351

  16. Assessment of potential biomarkers, metallothionein and vitellogenin mRNA expressions in various chemically exposed benthic Chironomus riparius larvae

    NASA Astrophysics Data System (ADS)

    Park, Kiyun; Kwak, Inn-Sil

    2012-12-01

    The objective of this study was conducted to identify the possibility of using Chironomus metallothionein (MT) and vitellogenin (VTG) as biomarkers of stress caused by endocrinedisrupting chemicals (EDCs), heavy metals, herbicides and veterinary antibiotics. We characterized the MT and VTG cDNA in Chironomus riparius and evaluated their mRNA expression profiles following exposure to different environmental pollutants. The gene expression analysis showed that the MT mRNA levels increased significantly after long-term exposure to cadmium (Cd), copper (Cu), Lead (Pb), di(2-ethylhexyl) phthalate (DEHP), and 2,4-dichlorophenoxyacetic acid (2,4-D). Moreover, the VTG mRNA expression increased significantly in C. riparius larvae exposed to BPA, NP, DEHP, Cd, 2,4-D and fenbendazole. Evaluation of the long-term effects of environmental pollutants revealed up regulation of Chironomus MT mRNA in response to DEHP exposure among EDCs, and the level of the VTG mRNA was increased significantly following treatment with Cd and herbicide 2,4-D at all concentrations in a dose-dependent manner. These results indicate that VTG could be used as a potential biomarker of herbicide and Cd as well as EDCs, while MT was a potential biomarker of heavy metals such as Cd, Cu, and Pb in aquatic environments.

  17. Increased mRNA expression of peripheral glial cell markers in bipolar disorder: The effect of long-term lithium treatment.

    PubMed

    Ferensztajn-Rochowiak, Ewa; Tarnowski, Maciej; Samochowiec, Jerzy; Michalak, Michal; Ratajczak, Mariusz Z; Rybakowski, Janusz K

    2016-09-01

    Neuroinflammation, with microglial activation as an important element, plays a role in the pathogenesis of bipolar disorder (BD). Also, in mood disorders, pathological changes have been demonstrated in macroglial cells, such as astrocyctes and oligodendrocytes. Postmortem brain studies of BD patients to assess glial cells, such as astrocytes and oligodendrocytes and their markers such as glial fibrillary acidic protein (GFAP), Olig1 and Olig2, produced controversial results. On the other hand, investigation of these markers in the peripheral blood of such patients has not been performed so far. In this study, we examined the mRNA levels of GFAP, Olig1 and Olig2, in the peripheral blood of three groups: 15 BD subjects with a duration of illness at least 10 years (mean 20±9 years) but never treated with lithium, 15 subjects with BD treated continuously with lithium for 8-40 years (mean 16±8 years), and 15 control subjects. The groups were age-and sex-matched. Expression of mRNA markers was measured by real-time quantitative reverse transcription PCR (RQ-PCR). We observed increased mRNA levels of the Olig1 and Olig 2 glial markers studied in the BD patients not taking lithium, compared with the control subjects and increased mRNA level of GFAP, compared with lithium-treated patients. In the lithium-treated BD patients GFAP and Olig1 expression was at similar levels to that in the control group. However, Olig 2 expression was even higher than in the BD patients not taking lithium. The possible mechanisms concerning the higher expression of peripheral mRNA markers in BD patients may involve ongoing inflammatory process, compensatory mechanisms and regenerative responses. The beneficial effect of lithium may be related to its anti-inflammatory properties. PMID:27474686

  18. Lung Altered Expression of IL-1β mRNA and Its Signaling Pathway Molecules in Obese-asthmatic Male Wistar Rats.

    PubMed

    Aslani, Mohammad Reza; Keyhanmanesh, Rana; Khamaneh, Amir Mehdi; Ebrahimi Saadatlou, Mohammad Ali; Mesgari Abbasi, Mehran; Alipour, Mohammad Reza

    2016-06-01

    Epidemiological and clinical studies indicate a close relationship between obesity and asthma. Here, we determined the impact of diet-induced obesity on the expression levels of IL-1β, IRAK-1 and TRAF-6 mRNA as well as IL-1β protein level and pathological changes in male Wistar rat's lung after sensitization with ovalbumin (OVA). Twenty male Wistar rats divided into four groups, control with normal diet (C+ND), OVA-sensitized with normal diet (S+ND), control with high-fat diet (C+HFD), and OVA-sensitized with high-fat diet (S+HFD). All rats fed for 12 weeks with standard pellets or high-fat diet while sensitization and challenging with OVA or saline were done for groups in the last month. In the end of intervention, lung was isolated and tested for the expression levels of IL-1β, IRAK-1 and TRAF-6 mRNA with real time-PCR method, and pathological changes were determined. Diet-induced obesity groups showed increased weight, obesity indexes and lipid profiles The expression levels of IL-1β mRNA in OVA-sensitization groups (S+ND and S+HFD) showed a significant increase compared with other groups. Also in S+HFD group, expression level of IRAK-1 and TRAF-6 mRNA were markedly higher than other groups (p<0.001). The pathological changes were marked in sensitized groups compared to non-sensitized groups; with marked increase in obese sensitized rat. The results showed that high fat diet caused overexpression of IL-1β, IRAK-1 and TRAF-6 mRNA as well as IL-1β protein in an experimental model of asthma. Our results suggest that obese-asthmatic conditions may lead to the local production and activation of pro-inflammatory agents. PMID:27424133

  19. Uncoupling protein-2 mRNA expression in mice subjected to intermittent hypoxia*

    PubMed Central

    Vieira, Luciana Rodrigues; Martinez, Denis; Forgiarini, Luiz Felipe; da Rosa, Darlan Pase; de Muñoz, Gustavo Alfredo Ochs; Fagundes, Micheli; Martins, Emerson Ferreira; Montanari, Carolina Caruccio; Fiori, Cintia Zappe

    2015-01-01

    Objective: To investigate the effect of intermittent hypoxia-a model of obstructive sleep apnea (OSA)-on pancreatic expression of uncoupling protein-2 (UCP2), as well as on glycemic and lipid profiles, in C57BL mice. Methods: For 8 h/day over a 35-day period, male C57BL mice were exposed to intermittent hypoxia (hypoxia group) or to a sham procedure (normoxia group). The intermittent hypoxia condition involved exposing mice to an atmosphere of 92% N and 8% CO2 for 30 s, progressively reducing the fraction of inspired oxygen to 8 ± 1%, after which they were exposed to room air for 30 s and the cycle was repeated (480 cycles over the 8-h experimental period). Pancreases were dissected to isolate the islets. Real-time PCR was performed with TaqMan assays. Results: Expression of UCP2 mRNA in pancreatic islets was 20% higher in the normoxia group than in the hypoxia group (p = 0.11). Fasting serum insulin was higher in the hypoxia group than in the normoxia group (p = 0.01). The homeostasis model assessment of insulin resistance indicated that, in comparison with the control mice, the mice exposed to intermittent hypoxia showed 15% lower insulin resistance (p = 0.09) and 21% higher pancreatic β-cell function (p = 0.01). Immunohistochemical staining of the islets showed no significant differences between the two groups in terms of the area or intensity of α- and β-cell staining for insulin and glucagon. Conclusions: To our knowledge, this is the first report of the effect of intermittent hypoxia on UCP2 expression. Our findings suggest that UCP2 regulates insulin production in OSA. Further study of the role that UCP2 plays in the glycemic control of OSA patients is warranted. PMID:25909153

  20. Maternal overnutrition enhances mRNA expression of adipogenic markers and collagen deposition in skeletal muscle of beef cattle fetuses.

    PubMed

    Duarte, M S; Gionbelli, M P; Paulino, P V R; Serão, N V L; Nascimento, C S; Botelho, M E; Martins, T S; Filho, S C V; Dodson, M V; Guimarães, S E F; Du, M

    2014-09-01

    Twenty-four pregnant Nellore cows were randomly assigned into 2 feeding level groups (control [CTL]; fed 1.0 times the maintenance requirement; n = 12; and overnourished [ON]; fed at 1.5 times the maintenance requirement; n = 12) to evaluate effects of maternal overnutrition on fetal skeletal muscle development. Cows were slaughtered at 135, 190, and 240 d of gestation and samples of fetal LM were collected for analysis of mRNA expression analysis and for histological evaluation of collagen content and number of muscle cells. There was no interaction between gestational period and maternal nutrition for the variables evaluated (P > 0.05). The mRNA expression of Cadherin-associated protein, β 1 (β-catenin) tended to be greater in fetuses from ON cows (P = 0.08), while myogenic differentiation 1 (MyoD; P = 0.56), myogenin (MyoG; P = 0.70), and the number of muscle cells (P = 0.90) were not affected by maternal overnutrition. Gestational period did not affect the mRNA expression of β-catenin (P = 0.60) and MyoG (P = 0.21). The mRNA expression of MyoD tended to increase with days of gestation (P = 0.06). The mRNA expression of zinc finger protein 423 (Zfp423; P < 0.0001), C/EBPα (P = 0.01), and PPARγ (P < 0.0001) were enhanced in ON fetuses. No effects of days of gestation were observed for mRNA expression of Zfp423 (P = 0.75) and C/EBPα (P = 0.48). The mRNA expression of PPARγ in fetuses at 190 d of gestation tended to be greater than those at 135 and 240 d of gestation (P = 0.06). The mRNA expression of transforming growth factor β (TGF-β; P < 0.0001), collagen type III, α I (COL3A1; P < 0.0001), and collagen content (P = 0.01) were increased in ON fetuses. Gestational period did not affect the mRNA expression of collagen type I, α I (COL1A1; P = 0.65). The mRNA expression of COL3A1 (P = 0.09) in fetuses at 190 d of gestation tended to be greater than fetuses at 135 and 240 d of gestation. The mRNA expression of TGF-β in fetuses at 190 d of gestation was

  1. Ccr4-not complex mRNA deadenylase activity contributes to DNA damage responses in Saccharomyces cerevisiae.

    PubMed

    Traven, Ana; Hammet, Andrew; Tenis, Nora; Denis, Clyde L; Heierhorst, Jörg

    2005-01-01

    DNA damage checkpoints regulate gene expression at the transcriptional and post-transcriptional level. Some components of the yeast Ccr4-Not complex, which regulates transcription as well as transcript turnover, have previously been linked to DNA damage responses, but it is unclear if this involves transcriptional or post-transcriptional functions. Here we show that CCR4 and CAF1, which together encode the major cytoplasmic mRNA deadenylase complex, have complex genetic interactions with the checkpoint genes DUN1, MRC1, RAD9, and RAD17 in response to DNA-damaging agents hydroxyurea (HU) and methylmethane sulfonate (MMS). The exonuclease-inactivating ccr4-1 point mutation mimics ccr4Delta phenotypes, including synthetic HU hypersensitivity with dun1Delta, demonstrating that Ccr4-Not mRNA deadenylase activity is required for DNA damage responses. However, ccr4Delta and caf1Delta DNA damage phenotypes and genetic interactions with checkpoint genes are not identical, and deletions of some Not components that are believed to predominantly function at the transcriptional level rather than mRNA turnover, e.g., not5Delta, also lead to increased DNA damage sensitivity and synthetic HU hypersensitivity with dun1Delta. Taken together, our data thus suggest that both transcriptional and post-transcriptional functions of the Ccr4-Not complex contribute to the DNA damage response affecting gene expression in a complex manner. PMID:15466434

  2. Ccr4-Not Complex mRNA Deadenylase Activity Contributes to DNA Damage Responses in Saccharomyces cerevisiae

    PubMed Central

    Traven, Ana; Hammet, Andrew; Tenis, Nora; Denis, Clyde L.; Heierhorst, Jörg

    2005-01-01

    DNA damage checkpoints regulate gene expression at the transcriptional and post-transcriptional level. Some components of the yeast Ccr4-Not complex, which regulates transcription as well as transcript turnover, have previously been linked to DNA damage responses, but it is unclear if this involves transcriptional or post-transcriptional functions. Here we show that CCR4 and CAF1, which together encode the major cytoplasmic mRNA deadenylase complex, have complex genetic interactions with the checkpoint genes DUN1, MRC1, RAD9, and RAD17 in response to DNA-damaging agents hydroxyurea (HU) and methylmethane sulfonate (MMS). The exonuclease-inactivating ccr4-1 point mutation mimics ccr4Δ phenotypes, including synthetic HU hypersensitivity with dun1Δ, demonstrating that Ccr4-Not mRNA deadenylase activity is required for DNA damage responses. However, ccr4Δ and caf1Δ DNA damage phenotypes and genetic interactions with checkpoint genes are not identical, and deletions of some Not components that are believed to predominantly function at the transcriptional level rather than mRNA turnover, e.g., not5Δ, also lead to increased DNA damage sensitivity and synthetic HU hypersensitivity with dun1Δ. Taken together, our data thus suggest that both transcriptional and post-transcriptional functions of the Ccr4-Not complex contribute to the DNA damage response affecting gene expression in a complex manner. PMID:15466434

  3. Expressions and clinical significances of CD133 protein and CD133 mRNA in primary lesion of gastric adenocacinoma

    PubMed Central

    2010-01-01

    Background To study on expressions and clinical significances of CD133 protein and CD133 mRNA in primary lesion of gastric adenocarcinoma (GC). Methods Expressions of CD133 protein by immunostaining (99 cases) and CD133 mRNA by semi-quantitative RT-PCR (31 cases) were detected in primary lesion and in noncancerous gastric mucosa tissue (NCGT). Correlations of CD133 protein expression with clinicopathological parameters and post-operative survival were analyzed. Relations of CD133 mRNA level with Ki-67 labeling index (LI), and lymphatic metastasis were assessed too. Results Brown particles indicating CD133 protein positivity occurred in some parts of tumor cells and epithelium. Expressive percentage of CD133 protein positivity was significantly higher in subgroups with >5 cm diameter (P = 0.041), later TNM stage (P = 0.044), severer lymph node metastasis (P = 0.017), occurrences of lymphatic invasion (P = 0.000) and vascular invasion (P = 0.000) respectively. Severer invasion depth (P = 0.011), lymph node metastasis occurrence (P = 0.043) and later TNM stage (P = 0.049) were the independent risk factors for CD133 protein expression. Average brightness scale value (BSV) of CD133 mRNA was significantly higher in subgroups with >5 cm diameter (P = 0.041), lymph node metastasis occurrence (P = 0.004) and in lower Ki-67 LI (P = 0.02). Relative analysis revealed that BSV of CD133 mRNA related positively to metastatic lymphatic nodes ratio (P = 0.008) and metastatic lymph node number (P = 0.009), but negatively to Ki-67 LI (P = 0.009). Survival of positive subgroup of CD 133 protein was significantly poorer (P = 0.047). Lymph node metastasis occurrence (P = 0.042), later TNM stage (P = 0.046) and CD 133 protein positive expression (P = 0.046) were respectively the independent risk factors to survival. Conclusion Higher expressive level of CD133 mRNA is associated to lower Ki-67 LI and severer lymphatic metastasis. Therefore, the expressive level of CD133 mRNA can play an

  4. The differential expression of alternatively polyadenylated transcripts is a common stress-induced response mechanism that modulates mammalian mRNA expression in a quantitative and qualitative fashion

    PubMed Central

    Hollerer, Ina; Curk, Tomaz; Haase, Bettina; Benes, Vladimir; Hauer, Christian; Neu-Yilik, Gabriele; Bhuvanagiri, Madhuri; Hentze, Matthias W.; Kulozik, Andreas E.

    2016-01-01

    Stress adaptation plays a pivotal role in biological processes and requires tight regulation of gene expression. In this study, we explored the effect of cellular stress on mRNA polyadenylation and investigated the implications of regulated polyadenylation site usage on mammalian gene expression. High-confidence polyadenylation site mapping combined with global pre-mRNA and mRNA expression profiling revealed that stress induces an accumulation of genes with differentially expressed polyadenylated mRNA isoforms in human cells. Specifically, stress provokes a global trend in polyadenylation site usage toward decreased utilization of promoter-proximal poly(A) sites in introns or ORFs and increased utilization of promoter-distal polyadenylation sites in intergenic regions. This extensively affects gene expression beyond regulating mRNA abundance by changing mRNA length and by altering the configuration of open reading frames. Our study highlights the impact of post-transcriptional mechanisms on stress-dependent gene regulation and reveals the differential expression of alternatively polyadenylated transcripts as a common stress-induced mechanism in mammalian cells. PMID:27407180

  5. The differential expression of alternatively polyadenylated transcripts is a common stress-induced response mechanism that modulates mammalian mRNA expression in a quantitative and qualitative fashion.

    PubMed

    Hollerer, Ina; Curk, Tomaz; Haase, Bettina; Benes, Vladimir; Hauer, Christian; Neu-Yilik, Gabriele; Bhuvanagiri, Madhuri; Hentze, Matthias W; Kulozik, Andreas E

    2016-09-01

    Stress adaptation plays a pivotal role in biological processes and requires tight regulation of gene expression. In this study, we explored the effect of cellular stress on mRNA polyadenylation and investigated the implications of regulated polyadenylation site usage on mammalian gene expression. High-confidence polyadenylation site mapping combined with global pre-mRNA and mRNA expression profiling revealed that stress induces an accumulation of genes with differentially expressed polyadenylated mRNA isoforms in human cells. Specifically, stress provokes a global trend in polyadenylation site usage toward decreased utilization of promoter-proximal poly(A) sites in introns or ORFs and increased utilization of promoter-distal polyadenylation sites in intergenic regions. This extensively affects gene expression beyond regulating mRNA abundance by changing mRNA length and by altering the configuration of open reading frames. Our study highlights the impact of post-transcriptional mechanisms on stress-dependent gene regulation and reveals the differential expression of alternatively polyadenylated transcripts as a common stress-induced mechanism in mammalian cells. PMID:27407180

  6. Associations of MMP-2, BAX, and Bcl-2 mRNA and Protein Expressions with Development of Atrial Fibrillation.

    PubMed

    Diao, Shu-Ling; Xu, Hui-Pu; Zhang, Bei; Ma, Bao-Xin; Liu, Xian-Liang

    2016-01-01

    BACKGROUND To examine changes of mRNA and protein expressions of MMP-2, Bcl-2, and BAX in atrial fibrillation (AF) patients, and investigate the correlations among these 3 biomarkers. MATERIAL AND METHODS Rheumatic heart disease patients (n=158) undergoing cardiac surgical procedures for mitral valve repair or replacement were included as the AF group (n=123), containing paroxysmal AF (n=42), persistent AF (n=36), and permanent AF (n=45). Rheumatic heart disease patients with sinus rhythm (SR) (n=35) were enrolled as the SR group (control group). Immunohistochemistry, Western blot, and real-time polymerase chain reaction (PCR) were applied to detect the protein and mRNA expression levels of MMP-2, Bcl-2, and BAX. Apoptosis was observed with light and electron microscopes and detected by TdT-mediated dUTP nick-end labeling (TUNEL). RESULTS Compared with the SR group, the left atrial diameters (LADs), protein and mRNA expression levels of MMP-2 and BAX, apoptotic index (AI), and Bcl-2/BAX ratio were evidently increased in the 3 AF groups, but protein and mRNA expression levels of Bcl-2 decreased in the AF groups (all P<0.05). Correlation analysis found that MMP-2 protein expression levels was positively correlated with BAX expression, but negatively correlated with Bcl-2 expression levels. CONCLUSIONS Our study results suggest that elevated MMP-2 expression and disturbance balance of Bcl-2/BAX expressions may be associated with the development and maintenance of AF. MMP-2 may be involved in the development of AF through promoting BAX expressions and inhibiting Bcl-2. PMID:27141955

  7. Associations of MMP-2, BAX, and Bcl-2 mRNA and Protein Expressions with Development of Atrial Fibrillation

    PubMed Central

    Diao, Shu-Ling; Xu, Hui-Pu; Zhang, Bei; Ma, Bao-Xin; Liu, Xian-Liang

    2016-01-01

    Background To examine changes of mRNA and protein expressions of MMP-2, Bcl-2, and BAX in atrial fibrillation (AF) patients, and investigate the correlations among these 3 biomarkers. Material/Methods Rheumatic heart disease patients (n=158) undergoing cardiac surgical procedures for mitral valve repair or replacement were included as the AF group (n=123), containing paroxysmal AF (n=42), persistent AF (n=36), and permanent AF (n=45). Rheumatic heart disease patients with sinus rhythm (SR) (n=35) were enrolled as the SR group (control group). Immunohistochemistry, Western blot, and real-time polymerase chain reaction (PCR) were applied to detect the protein and mRNA expression levels of MMP-2, Bcl-2, and BAX. Apoptosis was observed with light and electron microscopes and detected by TdT-mediated dUTP nick-end labeling (TUNEL). Results Compared with the SR group, the left atrial diameters (LADs), protein and mRNA expression levels of MMP-2 and BAX, apoptotic index (AI), and Bcl-2/BAX ratio were evidently increased in the 3 AF groups, but protein and mRNA expression levels of Bcl-2 decreased in the AF groups (all P<0.05). Correlation analysis found that MMP-2 protein expression levels was positively correlated with BAX expression, but negatively correlated with Bcl-2 expression levels. Conclusions Our study results suggest that elevated MMP-2 expression and disturbance balance of Bcl-2/BAX expressions may be associated with the development and maintenance of AF. MMP-2 may be involved in the development of AF through promoting BAX expressions and inhibiting Bcl-2. PMID:27141955

  8. Clinical usefulness of WT1 mRNA expression in bone marrow detected by a new WT1 mRNA assay kit for monitoring acute myeloid leukemia: a comparison with expression of WT1 mRNA in peripheral blood.

    PubMed

    Kitamura, Kunio; Nishiyama, Takahiro; Ishiyama, Ken; Miyawaki, Shuichi; Miyazaki, Kanji; Suzuki, Kenshi; Masaie, Hiroaki; Okada, Masaya; Ogawa, Hiroyasu; Imai, Kiyotoshi; Kiyoi, Hitoshi; Naoe, Tomoki; Yokoyama, Yasuhisa; Chiba, Shigeru; Hata, Tomoko; Miyazaki, Yasushi; Hatta, Yoshihiro; Takeuchi, Jin; Nannya, Yasuhito; Kurokawa, Mineo; Ueda, Yasunori; Koga, Daisuke; Sugiyama, Haruo; Takaku, Fumimaro

    2016-01-01

    We have previously shown the clinical usefulness of Wilms' tumor 1 gene (WT1) mRNA expression in peripheral blood (PB) as a minimal residual disease (MRD) monitoring marker in 191 acute myeloid leukemia (AML) patients using the WT1 mRNA assay kit "Otsuka" (Otsuka Pharmaceutical Co., Ltd.; "former kit"). In contrast, the usefulness of WT1 mRNA expression in bone marrow (BM) has been investigated in only a limited number of subjects using former kit. Following that previous study, a next-generation kit, WT1 mRNA assay kit II "Otsuka" (Otsuka Pharmaceutical Co., Ltd.; "new kit") has been newly developed. In the present study, we aimed to evaluate the performance of the new kit and to investigate the clinical usefulness of WT1 mRNA expression in BM. The PB and BM were collected on the same day from 164 blood disease patients, including 118 AML patients. WT1 mRNA expression was determined using the new and former kits and the values obtained were compared. The performance of new kit was shown to be equivalent to that of former kit. As reported in PB, WT1 mRNA expression in BM was found to be a useful marker for monitoring disease status as well as for a diagnosis of early stage relapse in AML patients. PMID:26520650

  9. The N Terminus of Andes Virus L Protein Suppresses mRNA and Protein Expression in Mammalian Cells

    PubMed Central

    Heinemann, Patrick; Schmidt-Chanasit, Jonas

    2013-01-01

    Little is known about the structure and function of the 250-kDa L protein of hantaviruses, although it plays a central role in virus genome transcription and replication. When attempting to study Andes virus (ANDV) L protein in mammalian cells, we encountered difficulties. Even in a strong overexpression system, ANDV L protein could not be detected by immunoblotting. Deletion analysis revealed that the 534 N-terminal amino acid residues determine the low-expression phenotype. Inhibition of translation due to RNA secondary structures around the start codon, rapid proteasomal degradation, and reduced half-life time were excluded. However, ANDV L protein expression could be rescued upon mutation of the catalytic PD-E-K motif and further conserved residues of the putative endonuclease at the N terminus of the protein. In addition, wild-type ANDV L rather than expressible L mutants suppressed the level of L mRNA, as well as reporter mRNAs. Wild-type L protein also reduced the synthesis of cellular proteins in the high-molecular-weight range. Using expressible ANDV L mutants as a tool for localization studies, we show that L protein colocalizes with ANDV N and NSs but not Gc protein. A fraction of L protein also colocalized with the cellular processing (P) body component DCP1a. Overall, these data suggest that ANDV L protein possesses a highly active endonuclease at the N terminus suppressing the level of its own as well as heterologous mRNAs upon recombinant expression in mammalian cells. PMID:23576516

  10. cDNA sequence, mRNA expression and genomic DNA of trypsinogen from the indianmeal moth, Plodia interpunctella.

    PubMed

    Zhu, Y C; Oppert, B; Kramer, K J; McGaughey, W H; Dowdy, A K

    2000-02-01

    Trypsin-like enzymes are major insect gut enzymes that digest dietary proteins and proteolytically activate insecticidal proteins produced by the bacterium Bacillus thuringiensis (Bt). Resistance to Bt in a strain of the Indianmeal moth, Plodia interpunctella, was linked to the absence of a major trypsin-like proteinase (Oppert et al., 1997). In this study, trypsin-like proteinases, cDNA sequences, mRNA expression levels and genomic DNAs from Bt-susceptible and -resistant strains of the Indianmeal moth were compared. Proteinase activity blots of gut extracts indicated that the susceptible strain had two major trypsin-like proteinases, whereas the resistant strain had only one. Several trypsinogen-like cDNA clones were isolated and sequenced from cDNA libraries of both strains using a probe deduced from a conserved sequence for a serine proteinase active site. cDNAs of 852 nucleotides from the susceptible strain and 848 nucleotides from the resistant strain contained an open reading frame of 783 nucleotides which encoded a 261-amino acid trypsinogen-like protein. There was a single silent nucleotide difference between the two cDNAs in the open reading frame and the predicted amino acid sequence from the cDNA clones was most similar to sequences of trypsin-like proteinases from the spruce budworm, Choristoneura fumiferana, and the tobacco hornworm, Manduca sexta. The encoded protein included amino acid sequence motifs of serine proteinase active sites, conserved cysteine residues, and both zymogen activation and signal peptides. Northern blotting analysis showed no major difference between the two strains in mRNA expression in fourth-instar larvae, indicating that transcription was similar in the strains. Southern blotting analysis revealed that the restriction sites for the trypsinogen genes from the susceptible and resistant strains were different. Based on an enzyme size comparison, the cDNA isolated in this study corresponded to the gene for the smaller of two

  11. Differential regulation of amyloid-. beta. -protein mRNA expression within hippocampal neuronal subpopulations in Alzheimer disease

    SciTech Connect

    Higgins, G.A.; Lewis, D.A.; Bahmanyar, S.; Goldgaber, D.; Gajdusek, D.C.; Young, W.G.; Morrison, J.H.; Wilson, M.C.

    1988-02-01

    The authors have mapped the neuroanatomical distribution of amyloid-..beta..-protein mRNA within neuronal subpopulations of the hippocampal formation in the cynomolgus monkey (Macaca fascicularis), normal aged human, and patients with Alzheimer disease. Amyloid-..beta..-protein mRNA appears to be expressed in all hippocampal neurons, but at different levels of abundance. In the central nervous system of monkey and normal aged human, image analysis shows that neurons of the dentate gyrus and cornu Ammonis fields contain a 2.5-times-greater hybridization signal than is present in neurons of the subiculum and entorhinal cortex. In contrast, in the Alzheimer disease hippocampal formation, the levels of amyloid-..beta..-protein mRNA in the cornu Ammonis field 3 and parasubiculum are equivalent. These findings suggest that within certain neuronal subpopulations cell type-specific regulation of amyloid-..beta..-protein gene expression may be altered in Alzheimer disease.

  12. Effects of oxalate exposure on Madin-Darby canine kidney cells in culture: renal prothrombin fragment-1 mRNA expression.

    PubMed

    Moryama, Manabu T; Domiki, Chizue; Miyazawa, Katsuhito; Tanaka, Tatsuro; Suzuki, Koji

    2005-12-01

    It has been suggested that renal tubular cell damage induced by oxalic acid, one of the components of urinary calculi, may be involved in a variety of ways in the development of urolithiasis. During our study on a calculus related protein, renal prothrombin fragment-1 (RPTF-1), we noted that this is an inflammation related substance that mediates an acute inflammatory reaction, one of the original roles of prothrombin. RPTF-1 is a part of prothrombin that is a coagulation factor known to be expressed in the renal tubule. We examined whether oxalic acid may cause cytotoxic effects on tubular epithelial cells and whether such chemical stimulation may promote the translation of RPTF-1 mRNA into RPTF-1 proteins. We used Madin-Darby canine kidney (MDCK) cells derived from the distal tubule of a dog kidney. In this study, the effects of oxalic acid in culture solution at different concentrations on cytotoxicity were assessed using a MTT assay. The location of active oxygen species was identified using dichlorofluorescein diacetate. After the prothrombin sequence of RPTF-1 was confirmed in MDCK cells, RPTF-1 mRNA expression was determined by RT-PCR. The gene sequence of the same promoter area was ligated, and a luciferase sequence was inserted downstream of the vector. The target sequence was transfected into MDCK cells and the relation between oxalic acid and prothrombin promoter was examined. In addition, the variable expression of RPTF-1 mRNA was quantitatively compared depending on oxalic acid concentrations using real-time PCR. When cytotoxicity was investigated, cells were not damaged but, by contrast, were stimulated and activated under oxalic acid below a certain concentration. The relation between cytotoxicity on the cultured MDCK cell membrane and active oxygen species was confirmed. Luminescence in MDCK cells containing the luciferase gene was detected by the addition of oxalic acid, which activated the prothrombin promoter. A part of the prothrombin gene

  13. Role of RANKL in the regulation of NFATc1 and c‑Src mRNA expression in osteoclast‑like cells.

    PubMed

    Fu, Jifan; Tao, You Di; Chen, Jian; Zhang, Yongsheng; He, Jianquan

    2016-06-01

    This study was designed to determine the effects of receptor activator of nuclear factor κB ligand (RANKL) on the mRNA expression of nuclear factor of activated T-cells, cytoplasmic, calcineurin-dependent 1 (NFATc1) and c‑Src in rat osteoclast‑like cells. The marrow cells were exposed to macrophage colony-stimulating factor (M‑CSF; 25 ng/ml) and different concentrations of RANKL (0, 50, 75 and 100 ng/ml) for 9 days. The mRNA expression of NFATc1 and c‑Src was determined by polymerase chain reaction. Compared with the M‑CSF (25 ng/ml)+RANKL (0 ng/ml) group, the levels of NFATc1 and c‑Src mRNA expression were significantly increased in the M‑CSF (25 ng/ml)+RANKL (75 and 100 ng/ml) groups (P<0.01, P<0.01, P<0.01 and P<0.01, respectively). Compared with the M‑CSF (25 ng/ml)+RANKL (50 ng/ml) group, the levels of NFATc1 and c‑Src mRNA expression was significantly increased in the M‑CSF (25 ng/ml)+RANKL (75 and 100 ng/ml) groups (P<0.05, P<0.01, P<0.01 and P<0.01, respectively). Compared with M‑CSF (25 ng/ml)+RANKL (75 ng/ml) group, the levels of NFATc1 and c‑Src mRNA expression was significantly increased in the M‑CSF (25 ng/ml)+RANKL (100 ng/ml) group, (P<0.01 and P<0.01, respectively). These data suggest that RANKL could regulate the expression of NFATc1 and c‑Src mRNA in the marrow culture system. PMID:27122093

  14. A Simple, Highly Efficient Method for Heterologous Expression in Mammalian Primary Neurons Using Cationic Lipid-mediated mRNA Transfection

    PubMed Central

    Williams, Damian J.; Puhl, Henry L.; Ikeda, Stephen R.

    2010-01-01

    Expression of heterologous proteins in adult mammalian neurons is a valuable technique for the study of neuronal function. The post-mitotic nature of mature neurons prevents effective DNA transfection using simple, cationic lipid-based methods. Adequate heterologous protein expression is often only achievable using complex techniques that, in many cases, are associated with substantial toxicity. Here, a simple method for high efficiency transfection of mammalian primary neurons using in vitro transcribed mRNA and the cationic lipid transfection reagent Lipofectamine™ 2000 is described. Optimal transfection conditions were established in adult mouse dissociated dorsal root ganglion (DRG) neurons using a 96-well based luciferase activity assay. Using these conditions, a transfection efficiency of 25% was achieved in DRG neurons transfected with EGFP mRNA. High transfection efficiencies were also obtained in dissociated rat superior cervical ganglion (SCG) neurons and mouse cortical and hippocampal cultures. Endogenous Ca2+ currents in EGFP mRNA-transfected SCG neurons were not significantly different from untransfected neurons, which suggested that this technique is well suited for heterologous expression in patch clamp recording experiments. Functional expression of a cannabinoid receptor (CB1R), a G protein inwardly rectifying K+ channel (GIRK4) and a dominant-negative G protein α-subunit mutant (GoA G203T) indicate that the levels of heterologous protein expression attainable using mRNA transfection are suitable for most functional protein studies. This study demonstrates that mRNA transfection is a straightforward and effective method for heterologous expression in neurons and is likely to have many applications in neuroscience research. PMID:21267423

  15. A Simple, Highly Efficient Method for Heterologous Expression in Mammalian Primary Neurons Using Cationic Lipid-mediated mRNA Transfection.

    PubMed

    Williams, Damian J; Puhl, Henry L; Ikeda, Stephen R

    2010-01-01

    Expression of heterologous proteins in adult mammalian neurons is a valuable technique for the study of neuronal function. The post-mitotic nature of mature neurons prevents effective DNA transfection using simple, cationic lipid-based methods. Adequate heterologous protein expression is often only achievable using complex techniques that, in many cases, are associated with substantial toxicity. Here, a simple method for high efficiency transfection of mammalian primary neurons using in vitro transcribed mRNA and the cationic lipid transfection reagent Lipofectamine™ 2000 is described. Optimal transfection conditions were established in adult mouse dissociated dorsal root ganglion (DRG) neurons using a 96-well based luciferase activity assay. Using these conditions, a transfection efficiency of 25% was achieved in DRG neurons transfected with EGFP mRNA. High transfection efficiencies were also obtained in dissociated rat superior cervical ganglion (SCG) neurons and mouse cortical and hippocampal cultures. Endogenous Ca(2+) currents in EGFP mRNA-transfected SCG neurons were not significantly different from untransfected neurons, which suggested that this technique is well suited for heterologous expression in patch clamp recording experiments. Functional expression of a cannabinoid receptor (CB1R), a G protein inwardly rectifying K(+) channel (GIRK4) and a dominant-negative G protein α-subunit mutant (G(oA) G203T) indicate that the levels of heterologous protein expression attainable using mRNA transfection are suitable for most functional protein studies. This study demonstrates that mRNA transfection is a straightforward and effective method for heterologous expression in neurons and is likely to have many applications in neuroscience research. PMID:21267423

  16. Regulation of cyclooxygenase-2 expression by cAMP response element and mRNA stability in a human airway epithelial cell line exposed to zinc

    SciTech Connect

    Wu Weidong Silbajoris, Robert A.; Cao Dongsun; Bromberg, Philip A.; Zhang Qiao; Peden, David B.; Samet, James M.

    2008-09-01

    Exposure to zinc-laden particulate matter in ambient and occupational settings has been associated with proinflammatory responses in the lung. Cyclooxygenase 2-derived eicosanoids are important modulators of airway inflammation. In this study, we characterized the transcriptional and posttranscriptional events that regulate COX-2 expression in a human bronchial epithelial cell line BEAS-2B exposed to Zn{sup 2+}. Zn{sup 2+} exposure resulted in pronounced increases in COX-2 mRNA and protein expression, which were prevented by pretreatment with the transcription inhibitor actinomycin D, implying the involvement of transcriptional regulation. This was supported by the observation of increased COX-2 promoter activity in Zn{sup 2+}-treated BEAS-2B cells. Mutation of the cAMP response element (CRE), but not the {kappa}B-binding sites in the COX-2 promoter markedly reduced COX-2 promoter activity induced by Zn{sup 2+}. Inhibition of NF{kappa}B activation did not block Zn{sup 2+}-induced COX-2 expression. Measurement of mRNA stability demonstrated that Zn{sup 2+} exposure impaired the degradation of COX-2 mRNA in BEAS-2B cells. This message stabilization effect of Zn{sup 2+} exposure was shown to be dependent on the integrity of the 3'-untranslated region found in the COX-2 transcript. Taken together, these data demonstrate that the CRE and mRNA stability regulates COX-2 expression induced in BEAS-2B cells exposed to extracellular Zn{sup 2+}.

  17. Cytokine mRNA expression in lung tissue from toxic oil syndrome patients: a TH2 immunological mechanism.

    PubMed

    del Pozo, V; de Andrés, B; Gallardo, S; Cárdaba, B; de Arruda-Chaves, E; Cortegano, M I; Jurado, A; Palomino, P; Oliva, H; Aguilera, B; Posada, M; Lahoz, C

    1997-03-14

    In 1981, an epidemic occurred in Spain, toxic oil syndrome (TOS), in people who consumed rapeseed oil denatured with 2% aniline, and it was one of the largest intoxication epidemics ever recorded. In 1989, a similar disease, eosinophilia-myalgia syndrome (EMS) was reported in the USA and was associated with the ingestion of L-tryptophan. The pathologic findings in TOS showed primary endothelial injury, with cell proliferation and perivascular inflammatory infiltrates. Immunologic mechanisms have presumably been operative in the pathogenesis and perpetuation of TOS. Our previous findings pointed to a T-cell activation during acute phase of the disease. In order to analyze which T-cell subset is involved on TOS, we have developed an mRNA extraction procedure from paraffin-embedded lung tissues in patients with pulmonary involvement. We analyzed mRNA expression from different cytokines (IL-1, IL-2, IL-4, IL-5, IFN-gamma, GM-CSF) and CD25 (interleukin 2 receptor) and CD23 (low affinity IgE receptor), using RT-PCR technique. In lung tissues from these patients a T-cell activation was observed. We found a significant increase in Th1 (P = 0.006) and Th2 (P = 0.003) cytokine profile in TOS patients with respect to controls. The increment in TH2 response with respect to TH1 is significant (P = 0.03) in TOS lung specimens. Non-significant differences were obtained in other cytokines and receptors studied as IL-1, CD25, CD23 and GM-CSF. Data presented in this paper are the first clear evidence that an immunological mechanism is directly implicated in this illness. PMID:9074654

  18. Chronic neonatal nicotine exposure increases mRNA expression of neurotrophic factors in the postnatal rat hippocampus.

    PubMed

    Son, Jong-Hyun; Winzer-Serhan, Ursula H

    2009-06-30

    Nicotine, the psychoactive ingredient in tobacco, can be neuroprotective but the mechanism is unknown. In the adult hippocampus, chronic nicotine can increase expression of growth factors which could contribute to nicotine's neuroprotective effects. During development, nicotine could also increase expression of neurotrophic factors. Therefore, we determined whether chronic neonatal nicotine (CNN) exposure increased mRNA expression levels of brain-derived neurotrophic factor (BDNF), nerve-growth factor (NGF), neurotrophin-3 (NT-3), fibroblast growth factor-2 (FGF-2), and insulin-like growth factor-1 (IGF-1). Nicotine (6 mg/kg/day in milk formula) or milk formula (controls) were delivered in three daily doses via oral gastric intubation to rat pups from postnatal day (P)1 to P8, and then sacrificed. Brains were processed for in situ hybridization using specific (35)S-labeled cRNA probes. At P8, CNN had a significant stimulant treatment effect on the expression of BDNF, FGF-2, NT-3 and IGF-1 [p<0.01], but not NGF. Specifically, BDNF mRNA expression, detected in CA1, CA3 stratum (s.) pyramidal and granule cell layer of the dentate gyrus (DG), was increased by 27.4%, 23.26% and 27.3%, respectively. FGF-2 mRNA expression, detected in neurons and astrocytes in CA1 s. radiatum, CA2 and CA3 s. pyramidale, and molecular layer of the DG, was increased by 34.0%, 8.9%, 31.0% and 23.1%, respectively. NT-3 mRNA expression in CA2 s. pyramidale was increased by 80.0%, and CNN increased the number of IGF-1-expressing cells in CA1 (18.0%), CA3 (20.9%) and DG (17.7%). Thus, nicotine exposure during early postnatal development differentially up-regulated expression of neurotrophic factor mRNAs in the hippocampus, which could increase neurotrophic tone and alter developmental processes. PMID:19410565

  19. Changes in mRNA expression of arcuate nucleus appetite-regulating peptides during lactation in rats

    PubMed Central

    Suzuki, Yoshihiro; Nakahara, Keiko; Maruyama, Keisuke; Okame, Rieko; Ensho, Takuya; Inoue, Yoshiyuki; Murakami, Noboru

    2014-01-01

    The contribution of hypothalamic appetite-regulating peptides to further hyperphagia accompanying the course of lactation in rats was investigated by using PCR array and real-time PCR. Furthermore, changes in the mRNA expression for appetite-regulating peptides in the hypothalamic arcuate nucleus (ARC) were analyzed at all stages of pregnancy and lactation, and also after weaning. Food intake was significantly higher during pregnancy, lactation, and after weaning than during non-lactation periods. During lactation, ARC expression of mRNAs for agouti-related protein (AgRP) and peptide YY was increased, whereas that of mRNAs for proopiomelanocortin (POMC) and cholecystokinin (CCK) was decreased, in comparison with non-lactation periods. The increase in AgRP mRNA expression during lactation was especially marked. The plasma level of leptin was significantly decreased during the course of lactation, whereas that of acyl-ghrelin was unchanged. In addition, food intake was negatively correlated with the plasma leptin level during lactation. This study has clarified synchronous changes in the expression of many appetite-regulating peptides in ARC of rats during lactation. Our results suggest that hyperphagia during lactation in rats is caused by decreases in POMC and CCK expression and increases in AgRP expression in ARC, the latter being most notable. Together with the decrease in the blood leptin level, such changes in mRNA expression may explain the further hyperphagia accompanying the course of lactation. PMID:24299740

  20. Sorting Live Stem Cells Based on Sox2 mRNA Expression

    PubMed Central

    Larsson, Hans M.; Lee, Seung Tae; Roccio, Marta; Velluto, Diana; Lutolf, Matthias P.; Frey, Peter; Hubbell, Jeffrey A.

    2012-01-01

    While cell sorting usually relies on cell-surface protein markers, molecular beacons (MBs) offer the potential to sort cells based on the presence of any expressed mRNA and in principle could be extremely useful to sort rare cell populations from primary isolates. We show here how stem cells can be purified from mixed cell populations by sorting based on MBs. Specifically, we designed molecular beacons targeting Sox2, a well-known stem cell marker for murine embryonic (mES) and neural stem cells (NSC). One of our designed molecular beacons displayed an increase in fluorescence compared to a nonspecific molecular beacon both in vitro and in vivo when tested in mES and NSCs. We sorted Sox2-MB+SSEA1+ cells from a mixed population of 4-day retinoic acid-treated mES cells and effectively isolated live undifferentiated stem cells. Additionally, Sox2-MB+ cells isolated from primary mouse brains were sorted and generated neurospheres with higher efficiency than Sox2-MB− cells. These results demonstrate the utility of MBs for stem cell sorting in an mRNA-specific manner. PMID:23209609

  1. Expression of fluorescent proteins in Branchiostoma lanceolatum by mRNA injection into unfertilized oocytes.

    PubMed

    Hirsinger, Estelle; Carvalho, João Emanuel; Chevalier, Christine; Lutfalla, Georges; Nicolas, Jean-François; Peyriéras, Nadine; Schubert, Michael

    2015-01-01

    We report here a robust and efficient protocol for the expression of fluorescent proteins after mRNA injection into unfertilized oocytes of the cephalochordate amphioxus, Branchiostoma lanceolatum. We use constructs for membrane and nuclear targeted mCherry and eGFP that have been modified to accommodate amphioxus codon usage and Kozak consensus sequences. We describe the type of injection needles to be used, the immobilization protocol for the unfertilized oocytes, and the overall injection set-up. This technique generates fluorescently labeled embryos, in which the dynamics of cell behaviors during early development can be analyzed using the latest in vivo imaging strategies. The development of a microinjection technique in this amphioxus species will allow live imaging analyses of cell behaviors in the embryo as well as gene-specific manipulations, including gene overexpression and knockdown. Altogether, this protocol will further consolidate the basal chordate amphioxus as an animal model for addressing questions related to the mechanisms of embryonic development and, more importantly, to their evolution. PMID:25650764

  2. Molecular cloning and mRNA expression analysis of sheep MYL3 and MYL4 genes.

    PubMed

    Zhang, Chunlan; Wang, Jianmin; Wang, Guizhi; Ji, Zhibin; Hou, Lei; Liu, Zhaohua; Chao, Tianle

    2016-02-15

    Using longissimus dorsi muscles of Dorper sheep as the experimental materials, the complete cDNAs of ovine MYL3 (Myosin light chain 3) and MYL4 (Myosin light chain 4) genes were cloned using RT-PCR, 5' RACE and 3' RACE. We obtained 925-bp and 869-bp full-length cDNAs and submitted their sequences to GenBank as accession numbers of KJ710703 and KJ768855, respectively. The cDNAs contained 600-bp and 582-bp open reading frames (ORFs) and encoded proteins comprising 199 and 193 amino acid residues, respectively. Neither protein was predicted to have a signal peptide, but both were predicted to have several N-glycosylation, O-glycosylation, and phosphorylation sites. The secondary structures of MYL3 and MYL4 were predicted to be 40.70% and 48.70% α- helical, respectively. Sequence alignment showed that the MYL3 and MYL4 proteins of Ovis aries both shared more than 91% amino acid sequence similarity with those of Mus musculus, Homo sapiens, Rattus norvegicus, Bos taurus, and Sus scrofa. The levels of MYL3 and MYL4 mRNA in various sheep tissues were determined using qRT-PCR. The results showed that both mRNAs were highly expressed in the heart. This study has established a foundation for further investigation of the ovine MYL3 and MYL4 genes. PMID:26656596

  3. Genome-Wide Screening of mRNA Expression in Leprosy Patients

    PubMed Central

    Belone, Andrea de Faria F.; Rosa, Patrícia S.; Trombone, Ana P. F.; Fachin, Luciana R. V.; Guidella, Cássio C.; Ura, Somei; Barreto, Jaison A.; Pinilla, Mabel G.; de Carvalho, Alex F.; Carraro, Dirce M.; Soares, Fernando A.; Soares, Cleverson T.

    2015-01-01

    Leprosy, an infectious disease caused by Mycobacterium leprae, affects millions of people worldwide. However, little is known regarding its molecular pathophysiological mechanisms. In this study, a comprehensive assessment of human mRNA was performed on leprosy skin lesions by using DNA chip microarrays, which included the entire spectrum of the disease along with its reactional states. Sixty-six samples from leprotic lesions (10TT, 10BT, 10BB, 10BL, 4LL, 14R1, and 10R2) and nine skin biopsies from healthy individuals were used as controls (CC) (ages ranged from 06 to 83 years, 48 were male and 29 female). The evaluation identified 1580 differentially expressed mRNAs [Fold Change (FC) ≥ 2.0, p ≤ 0.05] in diseased lesions vs. healthy controls. Some of these genes were observed in all forms of the disease (CD2, CD27, chit1, FA2H, FAM26F, GZMB, MMP9, SLAMF7, UBD) and others were exclusive to reactional forms (Type “1” reaction: GPNMB, IL1B, MICAL2, FOXQ1; Type “2” reaction: AKR1B10, FAM180B, FOXQ1, NNMT, NR1D1, PTX3, TNFRSF25). In literature, these mRNAs have been associated with numerous pathophysiological processes and signaling pathways and are present in a large number of diseases. The role of these mRNAs maybe studied in the context of developing new diagnostic markers and therapeutic targets for leprosy. PMID:26635870

  4. REDUCED NITRIC OXIDE PRODUCTION AND INOS MRNA EXPRESSION IN IFN-G STIMULATED CHICKEN MACROPHAGES TRANSFECTED WITH INOS SIRNAS

    Technology Transfer Automated Retrieval System (TEKTRAN)

    Utilizing RNA interference technology with siRNA in the HD-11 macrophage cell line, we determined how the inhibition or knock-down of the iNOS (inducible nitric oxide synthase) gene affected IFN-y' induced macrophage production of nitric oxide (NO) and mRNA expression of genes involved in this biolo...

  5. Regulation of adeno-associated virus gene expression in 293 cells: control of mRNA abundance and translation

    SciTech Connect

    Trempe, J.P.; Carter, B.J.

    1988-01-01

    The authors studied the effects of the adeno-associated virus (AAV) rep gene on the control of gene expression from the AAV p/sub 40/ promoter in 293 cells in the absence of an adenovirus coinfection. AAV vectors containing the chloramphenicol acetyltransferase (cat) gene were used to measure the levels of cat expression and steady-state mRNA from p/sub 40/. When the rep gene was present in cis or in trans, cat expression from p/sub 40/ was decreased 3- to 10-fold, but there was a 2- to 10-fold increase in the level of p/sub 40/ mRNA. Conversely, cat expression increased and the p/sub 40/ mRNA level decreased in the absence of the rep gene. Both wild-type and carboxyl-terminal truncated Rep proteins were capable of eliciting both effects. These data suggest two roles for the pleiotropic AAV rep gene: as a translational inhibitor and as a positive regulator of p/sub 40/ mRNA levels. They also provide additional evidence for a cis-acting negative regulatory region which decreases RNA from the AAV p/sub 5/ promoter in a fashion independent of rep.

  6. Effect of atmospheric fine particles on epidermal growth factor receptor mRNA expression in mouse skin tissue.

    PubMed

    Han, X; Liang, W L; Zhang, Y; Sun, L D; Liang, W Y

    2016-01-01

    We investigated the effect of atmospheric fine particles on epidermal growth factor receptor (Egfr) mRNA expression in mouse skin tissue and explored the effect of atmospheric fine particles on skin aging. Forty female BALB/c mice were randomly divided into four groups (each comprising 10 mice) as follows: a saline control group and low-, medium-, and high-dose atmospheric fine particle groups (1.6, 8.0, and 40.0 mg/kg, respectively) (fine particles were defined as those with a diameter of £2.5 mm, i.e., PM2.5). Each dose group was exposed to intratracheal instillation for 3 days. Twenty-four hours after the last exposure, real-time quantitative polymerase chain reaction was used to detect the expression of Egfr mRNA in the skin tissue of each mouse. The expression levels of Egfr mRNA in the medium- and high-dose PM2.5 groups were significantly higher (P < 0.05) than that in the control group, and were positively correlated with the dose. Medium and high concentrations of PM2.5 can induce the expression of Egfr mRNA and promote skin aging. PMID:27050971

  7. Serum leptin concentrations, leptin mRNA expression, and food intake during the estrous cycle in rats.

    PubMed

    Fungfuang, Wirasak; Nakada, Tomoaki; Nakao, Nobuhiro; Terada, Misao; Yokosuka, Makoto; Gizurarson, Sveinbjorn; Hau, Jann; Moon, Changjong; Saito, Toru R

    2013-03-01

    The aim of this study was to investigate food intake, serum leptin levels, and leptin mRNA expression during the sexual cycle in rats. Female Wistar-Imamichi rats aged 8-10 weeks were used in this experiment. Food intake was measured during the light and dark phases (light on at 07:00 and off at 19:00) of the 4-day estrous cycle in female rats. Serum leptin levels were measured by ELISA, and leptin mRNA expression levels were analyzed using real-time PCR on diestrous- and proestrous-stage rats. Our results revealed that during the sexual cycle, food intake was significantly higher in the dark phase compared with the light phase. Food intake in proestrous females was significantly lower in the light and dark phases compared with the other groups. Serum leptin concentrations were significantly higher in both phases in proestrous rats compared with diestrous rats. There was a significant increase in leptin mRNA expression in adipose tissue during the proestrous period compared with the diestrous period. These findings suggest that increased leptin mRNA expression and serum leptin levels, which are induced by estrogen during the proestrous stage, may play a role in regulating appetitive behavior. PMID:23573101

  8. CTCFL (BORIS) mRNA Expression in a Peripheral Giant Cell Granuloma of the Oral Cavity

    PubMed Central

    Zambrano-Galván, Graciela; Reyes-Romero, Miguel; Bologna-Molina, Ronell; Almeda-Ojeda, Oscar Eduardo; Lemus-Rojero, Obed

    2014-01-01

    Peripheral giant cell granuloma (PGCG) is a relatively common benign reactive lesion of the oral cavity which can occur at any age. CTCFL/BORIS (CTCF like/Brother of the Regulator of Imprinted Sites) and CTCF (CCCTC-binding factor) are paralogous genes with an important role in the regulation of gene expression, genomic imprinting, and nuclear chromatin insulators regulation. BORIS expression promotes cell immortalization and growth while CTCF has tumor suppressor activity; the expression pattern may reflect the reverse transcription silencing of BORIS. The aim of this work was to describe a histopathological and molecular approach of an 8-year-old pediatric male patient with PGCG diagnosis. It was observed that the PGCG under study expressed CTCF as well as BORIS mRNAs alongside with the housekeeping gene GAPDH, which may be related to possible genetic and epigenetic changes in normal cells of oral cavity. PMID:25114808

  9. Expression levels of estrogen receptor α mRNA in peripheral blood cells are an independent biomarker for postmenopausal osteoporosis☆

    PubMed Central

    Chou, Chi-Wen; Chiang, Tsay-I; Chang, I-Chang; Huang, Chung-Hung; Cheng, Ya-Wen

    2016-01-01

    Background The up- and down-regulation of the osteoclastogenesis response depends on the estrogen/estrogen receptor (ER) signaling pathway. Previous reports have shown that the promoter hypermethylation and gene polymorphism of ERα are risks for menopausal osteoporosis. No previous study has evaluated the expression levels of ERα mRNA in menopausal osteoporosis using human subjects. We hypothesized that ERα mRNA expression may show less resistance to postmenopausal osteoporosis. Methods In this study, we enrolled 107 women older than 45 years without menstruation and classified them into control, osteopenia, and osteoporosis groups depending on their T-scores. The ERα mRNA levels in peripheral blood cells (PBCs) were analyzed via quantitative real-time reverse-transcription polymerase chain reaction (QRT-PCR), and estrogen in the serum was detected via ELISA. Results ERα mRNA levels in PBCs had a negative correlation with age and a positive correlation with estrogen and BAP in the osteopenia and osteoporosis groups, but not in the control group. Additionally, multivariate analysis showed that older age (> 55 years), and low ERα mRNA levels in PBLs (≦ 250.39 copies/μg DNA) were associated with an approximately 9.188-, and 31.25-fold risk of osteoporosis. Conclusion We conclude that ERα mRNA levels in PBLs could be used as an independent risk factor for postmenopausal osteoporosis. General significance Our findings suggested that ERα mRNA levels in PBLs may be more important than age and serum estrogen levels. PMID:27051599

  10. Effects of jump training on procollagen alpha(1)(i) mRNA expression and its relationship with muscle collagen concentration.

    PubMed

    Ducomps, Christophe; Larrouy, Dominique; Mairal, Aline; Doutreloux, Jean-Paul; Lebas, Francois; Mauriege, Pascale

    2004-04-01

    The aim of this study was to examine the effects of a prolonged high-intensity exercise, jumping, on procollagen alpha(1)(I) mRNA level and collagen concentration in different muscles of trained (T) and control (C) rabbits. Procollagen alpha(1)(I) mRNA expression was much higher (2.8 to 23.5 times) in semimembranosus proprius (SMP), a slow-twitch oxidative muscle, than in extensor digitorum longus (EDL), rectus femoris (RF), and psoas major (Psoas) muscles, both fast-twitch mixed and glycolytic, whatever group was considered (p < 0.001). Procollagen alpha(1)(I) mRNA level also decreased significantly between 50 and 140 days in all muscles (0.001< p < 0.01). However, mRNA levels were 16 to 97% greater at 140 days in all muscles of T animals compared to C ones (0.01< p <0.05). Collagen concentrations of EDL and RF muscles were also higher (14 to 19%) in T than in C rabbits at 90 and 140 days (0.001 < p < 0.05). In the whole sample, collagen concentration was negatively associated with the procollagen alpha(1)(I) mRNA level in EDL and RF muscles (- 0.49 < r < (- 0.44, p < 0.05), while being positively related to mRNA expression in SMP and Psoas muscles (0.65 < r < 0.85, p < 0.01). It is concluded that jump training clearly restricts the decrease of procollagen (I) mRNA level and probably affects collagen synthesis level. In trained rabbit muscles, the maintenance of a better synthesis level could partly explain the higher collagen concentrations found in EDL and RF at 140 days. Nevertheless, the collagen degradation process seems to play the main role in the increase of total collagen concentration with age in EDL and RF muscles. PMID:15064425

  11. Brain-derived peptides increase blood-brain barrier GLUT1 glucose transporter gene expression via mRNA stabilization.

    PubMed

    Boado, R J

    1998-10-23

    The present investigation studied the effect of the brain-derived peptide preparation Cerebrolysin (CI, EBEWE, Austria) on the turnover rate and gene expression of the blood-brain barrier (BBB) GLUT1 glucose transporter mRNA. Studies were performed in brain endothelial cultured cells transfected with the human (h) GLUT1 transcript. In control cells, the full length 2.8 Kb hGLUT1 mRNA was rapidly degraded following transfection, and the abundance of this transcript at 4 and 6 h was comparable to background mRNA levels seen in cells transfected without hGLUT1 mRNA. On the contrary, the decay of the hGLUT1 mRNA was stabilized in CI-treated cells resulting in a marked reduction in the fractional turnover rate (72.4 and 4.0%/h, control and CI, respectively). In parallel experiments, CI induced a significant increase in the levels of immunoreactive GLUT1 protein measured by enzyme-linked immunosorbent assay (ELISA). In conclusion, data presented here demonstrate that factors in CI increase BBB-GLUT1 transcript stability, and that this is associated with an induction of BBB-GLUT1 gene expression in brain endothelial cultured cells. PMID:9832194

  12. Glucose-6-phosphatase mRNA and activity are increased to the same extent in kidney and liver of diabetic rats.

    PubMed

    Mithieux, G; Vidal, H; Zitoun, C; Bruni, N; Daniele, N; Minassian, C

    1996-07-01

    Using Northern blot with a specific glucose-6-phosphatase (Glc6Pase) cDNA probe and enzymatic activity determination, we studied the effect of streptozotocin-induced diabetes on Glc6Pase in rat gluconeogenic tissues. The Glc6Pase mRNA abundance was increased four to five times in both the liver and kidney of diabetic rats. This was correlated with a concomitant 130% increase in Glc6Pase catalytic subunit in both tissues. The elevated level of Glc6Pase mRNA was significantly corrected in both the liver and kidney of diabetic rats after a 12-h insulin treatment. We also studied Glc6Pase mRNA and activity in gluconeogenic tissues during the fed-fasted and fasted-refed transitions in normal rats. In the liver, the abundance of Glc6Pase mRNA was sharply increased about four times after 24 or 48 h of fasting. In the kidney, the Glc6Pase mRNA level was gradually increased some three and five times after 24 and 48 h of fasting, respectively. The increase of Glc6Pase mRNA in both organs was matched with a doubling of the activity of Glc6Pase catalytic subunit: rapid in the liver and gradual in the kidney. The liver Glc6Pase mRNA abundance in 48-h fasted rats was acutely and importantly decreased upon refeeding. The kidney Glc6Pase mRNA level was also significantly lowered under these conditions, albeit less rapidly. These data demonstrate that efficient control of Glc6Pase takes place in both gluconeogenic organs at the pretranslational level and suggest that insulin might play an important role in this control. In addition, using reverse transcription-polymerase chain reaction and Northern blot, we report that Glc6Pase mRNA is not detectable in several other tissues previously assumed to express the enzyme. PMID:8666139

  13. Prolonged food deprivation increases mRNA expression of deiodinase 1 and 2, and thyroid hormone receptor β-1 in a fasting-adapted mammal.

    PubMed

    Martinez, Bridget; Soñanez-Organis, José G; Vázquez-Medina, José Pablo; Viscarra, Jose A; MacKenzie, Duncan S; Crocker, Daniel E; Ortiz, Rudy M

    2013-12-15

    Food deprivation in mammals is typically associated with reduced thyroid hormone (TH) concentrations and deiodinase content and activity to suppress metabolism. However, in prolonged-fasted, metabolically active elephant seal pups, TH levels are maintained, if not elevated. The functional relevance of this apparent paradox is unknown and demonstrates variability in the regulation of TH levels, metabolism and function in food-deprived mammals. To address our hypothesis that cellular TH-mediated activity is upregulated with fasting duration, we quantified the mRNA expression and protein content of adipose and muscle deiodinase type I (DI1) and type II (DI2), and TH receptor beta-1 (THrβ-1) after 1, 3 and 7 weeks of fasting in northern elephant seal pups (N=5-7 per week). Fasting did not decrease the concentrations of plasma thyroid stimulating hormone, total triiodothyronine (tT3), free T3, total thyroxine (tT4) or free T4, suggesting that the hypothalamic-pituitary-thyroid axis is not suppressed, but rather maintained during fasting. Mean mRNA expression of adipose DI1 and DI2 increased threefold and fourfold, respectively, and 20- and 30-fold, respectively, in muscle. With the exception of adipose DI1, protein expression of adipose DI2 and muscle DI1 and DI2 increased twofold to fourfold. Fasting also increased adipose (fivefold) and muscle (fourfold) THrβ-1 mRNA expression, suggesting that the mechanisms mediating cellular TH activity are upregulated with prolonged fasting. The data demonstrate a unique, atypical mechanism of TH activity and regulation in mammals adapted to prolonged food deprivation in which the potential responsiveness of peripheral tissues and cellular TH activity are increased, which may contribute to their lipid-based metabolism. PMID:24307712

  14. Prolonged food deprivation increases mRNA expression of deiodinase 1 and 2, and thyroid hormone receptor β-1 in a fasting-adapted mammal

    PubMed Central

    Martinez, Bridget; Soñanez-Organis, José G.; Vázquez-Medina, José Pablo; Viscarra, Jose A.; MacKenzie, Duncan S.; Crocker, Daniel E.; Ortiz, Rudy M.

    2013-01-01

    SUMMARY Food deprivation in mammals is typically associated with reduced thyroid hormone (TH) concentrations and deiodinase content and activity to suppress metabolism. However, in prolonged-fasted, metabolically active elephant seal pups, TH levels are maintained, if not elevated. The functional relevance of this apparent paradox is unknown and demonstrates variability in the regulation of TH levels, metabolism and function in food-deprived mammals. To address our hypothesis that cellular TH-mediated activity is upregulated with fasting duration, we quantified the mRNA expression and protein content of adipose and muscle deiodinase type I (DI1) and type II (DI2), and TH receptor beta-1 (THrβ-1) after 1, 3 and 7 weeks of fasting in northern elephant seal pups (N=5–7 per week). Fasting did not decrease the concentrations of plasma thyroid stimulating hormone, total triiodothyronine (tT3), free T3, total thyroxine (tT4) or free T4, suggesting that the hypothalamic–pituitary–thyroid axis is not suppressed, but rather maintained during fasting. Mean mRNA expression of adipose DI1 and DI2 increased threefold and fourfold, respectively, and 20- and 30-fold, respectively, in muscle. With the exception of adipose DI1, protein expression of adipose DI2 and muscle DI1 and DI2 increased twofold to fourfold. Fasting also increased adipose (fivefold) and muscle (fourfold) THrβ-1 mRNA expression, suggesting that the mechanisms mediating cellular TH activity are upregulated with prolonged fasting. The data demonstrate a unique, atypical mechanism of TH activity and regulation in mammals adapted to prolonged food deprivation in which the potential responsiveness of peripheral tissues and cellular TH activity are increased, which may contribute to their lipid-based metabolism. PMID:24307712

  15. The effects of high fat diet and estradiol on hypothalamic prepro-QRFP mRNA expression in female rats.

    PubMed

    Schreiber, Allyson L; Arceneaux, Kenneth P; Malbrue, Raphael A; Mouton, Alan J; Chen, Christina S; Bench, Elias M; Braymer, H Douglas; Primeaux, Stefany D

    2016-08-01

    Estradiol (E2) is a potent regulator of feeding behavior, body weight and adiposity in females. The hypothalamic neuropeptide, QRFP, is an orexigenic peptide that increases the consumption of high fat diet (HFD) in intact female rats. Therefore, the goal of the current series of studies was to elucidate the effects of E2 on the expression of hypothalamic QRFP and its receptors, QRFP-r1 and QRFP-r2, in female rats fed a HFD. Alterations in prepro-QRFP, QRFP-r1, and QRFP-r2 expression across the estrous cycle, following ovariectomy (OVX) and following estradiol benzoate (EB) treatment were assessed in the ventral medial nucleus of the hypothalamus/arcuate nucleus (VMH/ARC) and the lateral hypothalamus. In intact females, consumption of HFD increased prepro-QRFP and QRFP-r1 mRNA levels in the VMH/ARC during diestrus, a phase associated with increased food intake and low levels of E2. To assess the effects of diminished endogenous E2, rats were ovariectomized. HFD consumption and OVX increased prepro-QRFP mRNA in the VMH/ARC. Ovariectomized rats consuming HFD expressed the highest levels of QRFP. In the third experiment, all rats received EB replacement every 4days following OVX to examine the effects of E2 on QRFP expression. Prepro-QRFP, QRFP-r1 and QRFP-r2 mRNA were assessed prior to and following EB administration. EB replacement significantly reduced prepro-QRFP mRNA expression in the VMH/ARC. Overall these studies support a role for E2 in the regulation of prepro-QRFP mRNA in the VMH/ARC and suggest that E2's effects on food intake may be via a direct effect on the orexigenic peptide, QRFP. PMID:26823127

  16. Skeletal muscle myostatin mRNA expression is fiber-type specific and increases during hindlimb unloading

    NASA Technical Reports Server (NTRS)

    Carlson, C. J.; Booth, F. W.; Gordon, S. E.

    1999-01-01

    Transgenic mice lacking a functional myostatin (MSTN) gene demonstrate greater skeletal muscle mass resulting from muscle fiber hypertrophy and hyperplasia (McPherron, A. C., A. M. Lawler, and S. -J. Lee. Nature 387: 83-90, 1997). Therefore, we hypothesized that, in normal mice, MSTN may act as a negative regulator of muscle mass. Specifically, we hypothesized that the predominately slow (type I) soleus muscle, which demonstrates greater atrophy than the fast (type II) gastrocnemius-plantaris complex (Gast/PLT), would show more elevation in MSTN mRNA abundance during hindlimb unloading (HU). Surprisingly, MSTN mRNA was not detectable in weight-bearing or HU soleus muscle, which atrophied 42% by the 7th day of HU in female ICR mice. In contrast, MSTN mRNA was present in weight-bearing Gast/PLT muscle and was significantly elevated (67%) at 1 day but not at 3 or 7 days of HU. However, the Gast/PLT muscle had only atrophied 17% by the 7th day of HU. Because the soleus is composed only of type I and IIa fibers, whereas the Gast/PLT expresses type IId/x and IIb in addition to type I and IIa, it was necessary to perform a more careful analysis of the relationship between MSTN mRNA levels and myosin heavy-chain (MHC) isoform expression (as a marker of fiber type). A significant correlation (r = 0.725, P < 0. 0005) was noted between the percentage of MHC isoform IIb expression and MSTN mRNA abundance in several muscles of the mouse hindlimb. These results indicate that MSTN expression is not strongly associated with muscle atrophy induced by HU; however, it is strongly associated with MHC isoform IIb expression in normal muscle.

  17. Global miRNA expression and correlation with mRNA levels in primary human bone cells

    PubMed Central

    Laxman, Navya; Rubin, Carl-Johan; Mallmin, Hans; Nilsson, Olle; Pastinen, Tomi; Grundberg, Elin; Kindmark, Andreas

    2015-01-01

    MicroRNAs (miRNAs) are important post-transcriptional regulators that have recently introduced an additional level of intricacy to our understanding of gene regulation. The aim of this study was to investigate miRNA–mRNA interactions that may be relevant for bone metabolism by assessing correlations and interindividual variability in miRNA levels as well as global correlations between miRNA and mRNA levels in a large cohort of primary human osteoblasts (HOBs) obtained during orthopedic surgery in otherwise healthy individuals. We identified differential expression (DE) of 24 miRNAs, and found 9 miRNAs exhibiting DE between males and females. We identified hsa-miR-29b, hsa-miR-30c2, and hsa-miR-125b and their target genes as important modulators of bone metabolism. Further, we used an integrated analysis of global miRNA–mRNA correlations, mRNA-expression profiling, DE, bioinformatics analysis, and functional studies to identify novel target genes for miRNAs with the potential to regulate osteoblast differentiation and extracellular matrix production. Functional studies by overexpression and knockdown of miRNAs showed that, the differentially expressed miRNAs hsa-miR-29b, hsa-miR-30c2, and hsa-miR-125b target genes highly relevant to bone metabolism, e.g., collagen, type I, α1 (COL1A1), osteonectin (SPARC), Runt-related transcription factor 2 (RUNX2), osteocalcin (BGLAP), and frizzled-related protein (FRZB). These miRNAs orchestrate the activities of key regulators of osteoblast differentiation and extracellular matrix proteins by their convergent action on target genes and pathways to control the skeletal gene expression. PMID:26078267

  18. Hormonal change and cytokine mRNA expression in peripheral blood mononuclear cells during the development of canine autoimmune thyroiditis.

    PubMed

    Choi, E-W; Shin, I-S; Bhang, D-H; Lee, D-H; Bae, B-K; Kang, M-S; Kim, D-Y; Hwang, C-Y; Lee, C-W; Youn, H-Y

    2006-10-01

    To elucidate the hormonal change and alteration in cytokine expression in peripheral blood mononuclear cells (PBMC) during the early stage of autoimmune thyroiditis, we have developed a canine model of this disease, in which normal dogs were immunized with bovine thyroglobulin (Tg) and/or canine thyroid extract. Serum samples were collected weekly, anti-canine Tg antibody was measured by enzyme-linked immunosorbent assay (ELISA) and thyroid stimulating hormone (TSH) and total T4 levels by radioimmunoassay. We also assayed T lymphocyte proliferation in response to Tg, as well as measuring cytokine mRNA by semiquantitative reverse transcription-polymerase chain reaction (RT-PCR). All six dogs immunized with bovine Tg had both canine Tg autoantibody and anti-T4 antibody. When the sample from the highest TgAA titre time-point was compared with baseline the expression of mRNA encoding the Th1-type cytokine such as interferon (IFN)-gamma, interleukin (IL)-18 and IL-15 was increased during the development of autoimmune thyroiditis. Expression of the Th2-type cytokine, IL-6 showed minimal change and IL-4 expression was not detected in any of the samples. Expression of the T suppressive cytokine, IL-10 and transforming growth factor (TGF)-beta was increased in the presence of antigen stimulation. These findings suggest that, although autoimmune thyroiditis is an organ-specific autoimmune disease, systemic cytokine mRNA expression is also changed. PMID:16968404

  19. [Regulatory effect of thymosin α1 on expression of tlr9/ido mRNA in bone marrow mesenchymal stem cells from children with aplastic anemia].

    PubMed

    Hou, Fang; Huang, Jian-Ming; Li, Ge

    2010-12-01

    The purpose of this study was to explore the regulatory effect of thymosin α1 (Tα1) on expression of TOLL-like receptor 9 (TLR9)/indoleamine2, 3-dioxygenase (ido) mRNA in bone marrow mesenchymal stem cells (MSC) from children with aplastic anemia (AA). Culture system of bone marrow MSC from AA children and normal children in vitro was established, and the effects of Tα1 on expressions of tlr9 mRNA and ido mRNA of MSC from AA children and normal children were determined by RT-PCR. The results showed that the bone marrow MSC from normal children did not express tlr9 and ido mRNA. Bone marrow MSC from children with AA obviously expressed tlr9 mRNA , but did not express ido mRNA; AA children's MSC treated with Tα1 for 18 hours markedly down-regulated tlr9 mRNA expression, but up-regulated ido mRNA expression in the concentration- and time-dependent ways. It is concluded that Tα1 can up-regulate the expression of ido mRNA in bone marrow MSC from children with AA. PMID:21176371

  20. A survey of carbonic anhydrase mRNA expression in enamel cells

    PubMed Central

    LACRUZ, Rodrigo S.; HILVO, Mika; KURTZ, Ira; PAINE, Michael L.

    2010-01-01

    Enamel formation requires rigid control of pH homeostasis during all stages of development to prevent disruptions to crystal growth. The acceleration of the generation of bicarbonate by carbonic anhydrases (CA) has been suggested as one of the pathways used by ameloblasts cells to regulate extracellular pH yet only two isozymes (CA II and CA VI) have been reported to date during enamel formation. The mammalian CA family contains 16 different isoforms of which 13 are enzymatically active. We have conducted a systematic screening by RT-PCR on the expression of all known CA isoforms in mouse enamel organ epithelium (EOE) cells dissected from new born, in secretory ameloblasts derived from 7-day old animals, and in the LS8 ameloblast cell line. Results show that all CA isoforms are expressed by EOE/ameloblast cells in vivo. The most highly expressed are the catalytic isozymes CA II, VI, IX, and XIII, and the acatalytic CA XI isoform. Only minor differences were found in CA expression levels between 1-day EOE cells and 7-day old secretory stage ameloblasts, whereas LS8 cells expressed fewer CA isoforms than both of these. The broad expression of CAs by ameloblasts reported here contributes to our understanding of pH homeostasis during enamel development and demonstrates its complexity. Our results also highlight the critical role that regulation of pH plays during the development of enamel. PMID:20175995

  1. Effect of propionate on mRNA expression of key genes for gluconeogenesis in liver of dairy cattle.

    PubMed

    Zhang, Qian; Koser, Stephanie L; Bequette, Brian J; Donkin, Shawn S

    2015-12-01

    Elevated needs for glucose in lactating dairy cows are met through a combination of increased capacity for gluconeogenesis and increased supply of gluconeogenic precursors, primarily propionate. This study evaluated the effects of propionate on mRNA expression of cytosolic phosphoenolpyruvate carboxykinase (PCK1), mitochondrial phosphoenolpyruvate carboxykinase (PCK2), pyruvate carboxylase (PC), and glucose-6-phosphatase (G6PC), key gluconeogenic enzymes, and capacity for glucose synthesis in liver of dairy cattle. In experiment 1, six multiparous mid-lactation Holstein cows were used in a replicated 3×3 Latin square design consisting of a 6-d acclimation or washout phase followed by 8h of postruminal infusion of either propionate (1.68mol), glucose (0.84mol), or an equal volume (10mL/min) of water. In experiment 2, twelve male Holstein calves [39±4 kg initial body weight (BW)] were blocked by birth date and assigned to receive, at 7d of age, either propionate [2mmol·h(-1)·(BW(0.75))(-1)], acetate [3.5mmol·h(-1)·(BW(.75))(-1)], or an equal volume (4mL/min) of saline. In both experiments, blood samples were collected at 0, 2, 4, 6, and 8h relative to the start of infusion and liver biopsy samples were collected at the end of the infusion for mRNA analysis. Liver explants from experiment 1 were used to measure tricarboxylic acid cycle flux and gluconeogenesis using (13)C mass isotopomer distribution analysis from (13)C3 propionate. Dry matter intake and milk yield were not altered by infusions in cows. Serum insulin concentration in cows receiving propionate was elevated than cows receiving water, but was not different from cows receiving glucose. Hepatic expression of PCK1 and G6PC mRNA and glucose production in cows receiving propionate were not different from cows receiving water, but tended to be higher compared with cows receiving glucose. Hepatic expression of PCK2 and PC mRNA was not altered by propionate infusion in cows. Blood glucose, insulin, and

  2. Distribution of Androgen Receptor mRNA Expression in Vocal, Auditory, and Neuroendocrine Circuits in a Teleost Fish

    PubMed Central

    Forlano, Paul M.; Marchaterre, Margaret; Deitcher, David L.; Bass, Andrew H.

    2010-01-01

    Across all major vertebrate groups, androgen receptors (ARs) have been identified in neural circuits that shape reproductive-related behaviors, including vocalization. The vocal control network of teleost fishes presents an archetypal example of how a vertebrate nervous system produces social, context-dependent sounds. We cloned a partial cDNA of AR that was used to generate specific probes to localize AR expression throughout the central nervous system of the vocal plainfin midshipman fish (Porichthys notatus). In the forebrain, AR mRNA is abundant in proposed homologs of the mammalian striatum and amygdala, and in anterior and posterior parvocellular and magnocellular nuclei of the preoptic area, nucleus preglomerulosus, and posterior, ventral and anterior tuberal nuclei of the hypothalamus. Many of these nuclei are part of the known vocal and auditory circuitry in midshipman. The midbrain periaqueductal gray, an essential link between forebrain and hindbrain vocal circuitry, and the lateral line recipient nucleus medialis in the rostral hindbrain also express abundant AR mRNA. In the caudal hindbrain-spinal vocal circuit, high AR mRNA is found in the vocal prepacemaker nucleus and along the dorsal periphery of the vocal motor nucleus congruent with the known pattern of expression of aromatase-containing glial cells. Additionally, abundant AR mRNA expression is shown for the first time in the inner ear of a vertebrate. The distribution of AR mRNA strongly supports the role of androgens as modulators of behaviorally defined vocal, auditory, and neuroendocrine circuits in teleost fish and vertebrates in general. PMID:20020540

  3. Expression and localization of the cystic fibrosis transmembrane conductance regulator mRNA and its protein in rat brain.

    PubMed Central

    Mulberg, A E; Resta, L P; Wiedner, E B; Altschuler, S M; Jefferson, D M; Broussard, D L

    1995-01-01

    In previous studies we have characterized the expression of the cystic fibrosis transmembrane conductance regulator (CFTR) protein in clathrin-coated vesicles derived from bovine brain and in neurons of rat brain. In this study we have further characterized the expression of the CFTR protein mRNA and protein in rat brain with reverse transcriptase polymerase chain reaction amplification (RT-PCR), in situ hybridization, and immunocytochemistry. The expression of CFTR mRNA and protein in discrete areas of brain, including the hypothalamus, thalamus, and amygdaloid nuclei, which are involved in regulation of appetite and resting energy expenditure, is identical. The presence of CFTR in neurons localized to these regions of brain controlling homeostasis and energy expenditure may elucidate the pathogenesis of other nonpulmonary and gastrointestinal manifestations which commonly are observed in children with cystic fibrosis. Dysregulation of normal neuropeptide vesicle trafficking by mutant CFTR in brain may serve as a pathogenic mechanism for disruption of homeostasis. Images PMID:7542288

  4. The metastatic potential of canine mammary tumours can be assessed by mRNA expression analysis of connective tissue modulators.

    PubMed

    Lamp, O; Honscha, K U; Schweizer, S; Heckmann, A; Blaschzik, S; Einspanier, A

    2013-03-01

    Metastases are the crucial factor for the prognosis of canine mammary tumours (CMTs). In women, the peptide hormone relaxin is linked with metastatic breast cancer. Therefore, the impact of relaxin and its receptors on matrix metalloproteinase (MMP) expression, metastatic disease and survival was analysed using qRT-PCR and immunohistochemistry of CMT samples from 59 bitches. The expression of relaxin and its receptor RXFP1 (relaxin family peptide receptor 1) was discovered on gene and protein levels. Intratumoural relaxin mRNA expression and relaxin plasma levels had no prognostic value. High mRNA levels RXFP1 were an independent marker of metastatic potential, with a more than 15-fold risk increase, and a predictor for shorter survival. Also, MMP-2 expression was associated with early death because of CMT. The mRNA expressions of relaxin, RXFP1 and MMP-2 were positively correlated indicating a common pathogenetic linkage. Thus, RXFP1 is proposed as a new early marker of metastatic potential in CMT and a possible therapeutic target. PMID:22235833

  5. Effects of arginine supplementation on splenocyte cytokine mRNA expression in rats with gut-derived sepsis

    PubMed Central

    Shang, Huey-Fang; Hsu, Chun-Sen; Yeh, Chiu-Li; Pai, Man-Hui; Yeh, Sung-Ling

    2005-01-01

    AIM: To investigate the effects of arginine (Arg)-enriched diets before sepsis and/or Arg-containing total parenteral nutrition (TPN) after sepsis or both on cytokine mRNA expression levels in splenocytes of rats with gut-derived sepsis. METHODS: Rats were assigned to four experimental groups. Groups 1 and 2 were fed with a semipurified diet, while groups 3 and 4 had part of the casein replaced by Arg which provided 2% of the total calories. After the rats were fed with these diets for 10 d, sepsis was induced by cecal ligation and puncture (CLP), at the same time an internal jugular vein was cannulated. All rats were maintained on TPN for 3 d. Groups 1 and 3 were infused with conventional TPN, while groups 2 and 4 were supplemented with Arg which provided 2% of the total calories in the TPN solution. All rats were killed 3 d after CLP to examine their splenocyte subpopulation distribution and cytokine expression levels. RESULTS: Plasma interleukin (IL)-2, IL-4, tumor necrosis factor-α (TNF-α) and interferon (IFN-γ) were not detectable 3 d after CLP. There were no differences in the distributions of CD45Ra+, CD3+, CD4+, and CD8+ cells in whole blood and splenocytes among the four groups. The splenocyte IL-2 mRNA expression in the Arg-supplemented groups was significantly higher than that in group 1. IL-4 mRNA expression in groups 3 and 4 was significantly higher than that in groups 1 and 2. The mRNA expression of IL-10 and IFN-γ was significantly higher in group 4 than in the other three groups. There was no difference in TNF-α mRNA expression among the four groups. CONCLUSION: The influence of Arg on the whole blood and splenic lymphocyte subpopulation distribution is not obvious. However, Arg administration, especially before and after CLP, significantly enhances the mRNA expression levels of Th1 and Th2 cytokines in the spleen of rats with gut-derived sepsis. PMID:16437653

  6. FATHEAD MINNOW VITELLOGENIN: CDNA SEQUENCE AND MRNA AND PROTEIN EXPRESSION AFTER 17 BETA-ESTRADIOL TREATMENT

    EPA Science Inventory

    In the present study, a sensitive ribonuclease protection assay (RPA) for VTG mRNA was developed for the fathead minnow (Pimephales promelas), a species proposed for routine endocrine-disrupting chemical (EDC) screening.

  7. Increased TRPV1 and PAR2 mRNA expression levels are associated only with the esophageal reflux symptoms, but not with the extraesophageal reflux symptoms

    PubMed Central

    Kim, Jin Joo; Kim, Nayoung; Choi, Yoon Jin; Kim, Joo Sung; Jung, Hyun Chae

    2016-01-01

    Abstract Transient receptor potential vanilloid-1 (TRPV1) receptor and proteinase-activated receptor 2 (PAR2) have been implicated in the mechanism of acid-induced inflammation in gastroesophageal reflux disease (GERD). We aimed to evaluate TRPV1 and PAR2 mRNA expression levels in the GERD patients and their relationship with endoscopic findings and reflux symptoms. Sixteen healthy controls, 45 patients with erosive reflux disease (ERD), and 14 nonerosive reflux disease (NERD) patients received endoscopy and completed questionnaires. Quantitative real-time polymerase chain reactions (qPCR) of TRPV1, glial cell line-derived neurotrophic factor (GDNF), nerve growth factor (NGF), PAR2, and interleukin (IL)-8 were performed in the distal esophagus specimen. The levels of TRPV1, GDNF, NGF, PAR2, and IL-8 mRNA expression were highest in the ERD group followed by NERD and control groups and the differences between control and ERD groups were statistically significant. Within the ERD group, patients with grade B in Los Angeles (LA) classification showed significantly higher levels of TRPV1, GDNF, and NGF mRNA expression than those with grade A. Presence of reflux symptoms was associated with significant higher levels of TRPV1, PAR2, and IL-8. Notably not extraesophageal but esophageal reflux symptoms were significantly associated with them. Upregulation of TRPV1 and PAR2 pathways might play a role in the development of distal esophageal inflammation and reflux symptoms. And extraesophageal reflux symptoms might not be associated with these processes. PMID:27512850

  8. The Prognostic Value of BRCA1 mRNA Expression Levels Following Neoadjuvant Chemotherapy in Breast Cancer

    PubMed Central

    Margeli, Mireia; Cirauqui, Beatriz; Castella, Eva; Tapia, Gustavo; Costa, Carlota; Gimenez-Capitan, Ana; Barnadas, Agusti; Ronco, Maria Sanchez; Benlloch, Susana; Taron, Miquel; Rosell, Rafael

    2010-01-01

    Background A fraction of sporadic breast cancers has low BRCA1 expression. BRCA1 mutation carriers are more likely to achieve a pathological complete response with DNA-damage-based chemotherapy compared to non-mutation carriers. Furthermore, sporadic ovarian cancer patients with low levels of BRCA1 mRNA have longer survival following platinum-based chemotherapy than patients with high levels of BRCA1 mRNA. Methodology/Principal Findings Tumor biopsies were obtained from 86 breast cancer patients who were candidates for neoadjuvant chemotherapy, treated with four cycles of neoadjuvant fluorouracil, epirubicin and cyclophosphamide. Estrogen receptor (ER), progesterone receptor (PR), HER2, cytokeratin 5/6 and vimentin were examined by tissue microarray. HER2 were also assessed by chromogenic in situ hybridization, and BRCA1 mRNA was analyzed in a subset of 41 patients for whom sufficient tumor tissue was available by real-time quantitative PCR. Median time to progression was 42 months and overall survival was 55 months. In the multivariate analysis for time to progression and overall survival for 41 patients in whom BRCA1 could be assessed, low levels of BRCA1 mRNA, positive PR and negative lymph node involvement predicted a significantly lower risk of relapse, low levels of BRCA1 mRNA and positive PR were the only variables associated with significantly longer survival. Conclusions/Significance We provide evidence for a major role for BRCA1 mRNA expression as a marker of time to progression and overall survival in sporadic breast cancers treated with anthracycline-based chemotherapy. These findings can be useful for customizing chemotherapy. PMID:20209131

  9. Human oocytes and preimplantation embryos express mRNA for growth hormone receptor.

    PubMed

    Ménézo, Y J; el Mouatassim, S; Chavrier, M; Servy, E J; Nicolet, B

    2003-11-01

    Human genetic expression of growth hormone receptor (GHR) gene was qualitatively analysed using reverse transcription polymerase chain reaction (RT-PCR) in cumulus cells, immature germinal vesicle (GV) and mature metaphase II (MII) stage oocytes and preimplantation human embryos. The transcripts encoding GHR were detected in cumulus cells and also in naked oocytes, either mature or not. In this case, a nested PCR is needed, as for early embryo preimplantation stages, before genomic activation. The GHR gene is highly expressed from the 4-day morula onwards. This suggests that GHR transcription follows a classical scheme associated with genomic activation. It is probable that, in human, growth hormone plays a role in the final stages of oocyte maturation and early embryogenesis as it does for several other mammalian species. PMID:15085728

  10. The Minor Allele of rs7574865 in the STAT4 Gene Is Associated with Increased mRNA and Protein Expression

    PubMed Central

    Lamana, Amalia; López-Santalla, Mercedes; Castillo-González, Raquel; Ortiz, Ana María; Martín, Javier; García-Vicuña, Rosario; González-Álvaro, Isidoro

    2015-01-01

    Objective The T allele of rs7574865 in STAT4 confers risk of developing autoimmune disorders. However, its functional significance remains unclear. Here we analyze how rs7574865 affects the transcription of STAT4 and its protein expression. Methods We studied 201 patients (80% female; median age, 54 years; median disease duration, 5.4 months) from PEARL study. Demographic, clinical, laboratory and therapeutic data were collected at each visit. IL-6 serum levels were measured by enzyme immune assay. The rs7574865 was genotyped using TaqMan probes. The expression levels of STAT4 mRNA were determined at 182 visits from 69 patients using quantitative real-time polymerase chain reaction. STAT4 protein was assessed by western blot in 62 samples from 34 patients. To determine the effect of different variables on the expression of STAT4 mRNA and protein, we performed multivariate longitudinal analyses using generalized linear models. Results After adjustment for age, disease activity and glucocorticoid dose as confounders, the presence of at least one copy of the T allele of rs7574865 was significantly associated with higher levels of STAT4 mRNA. Similarly, TT patients showed significantly higher levels of STAT4 protein than GG patients. IL-6 induced STAT4 and STAT5 phosphorylation in peripheral blood lymphocytes. Patients carrying at least one T allele of rs7574865 displayed lower levels of serum IL-6 compared to GG homozygous; by contrast the production of C-reactive protein was similar in both populations. Conclusion Our data suggest that the presence of the rs7574865 T allele enhances STAT4 mRNA transcription and protein expression. It may enhance the signaling of molecules depending on the STAT4 pathway. PMID:26569609

  11. Large-scale mRNA expression profiling in the common ice plant, Mesembryanthemum crystallinum, performing C3 photosynthesis and Crassulacean acid metabolism (CAM).

    PubMed

    Cushman, John C; Tillett, Richard L; Wood, Joshua A; Branco, Joshua M; Schlauch, Karen A

    2008-01-01

    The common ice plant (Mesembryanthemum crystallinum L.) has emerged as a useful model for molecular genetic studies of Crassulacean acid metabolism (CAM) because CAM can be induced in this species by water deficit or salinity stress. Non-redundant sequence information from expressed sequence tag data was used to fabricate a custom oligonucleotide microarray to compare large-scale mRNA expression patterns in M. crystallinum plants conducting C(3) photosynthesis versus CAM. Samples were collected every 4 h over a 24 h time period at the start of the subjective second day from plants grown under constant light and temperature conditions in order to capture variation in mRNA expression due to salinity stress and circadian clock control. Of 8455 genes, a total of 2343 genes (approximately 28%) showed a significant change as judged by analysis of variance (ANOVA) in steady-state mRNA abundance at one or more time points over the 24 h period. Of these, 858 (10%) and 599 (7%) exhibited a greater than two-fold ratio (TFR) increase or decrease in mRNA abundance, respectively. Functional categorization of these TFR genes revealed that many genes encoding products that function in CAM-related C(4) acid carboxylation/decarboxylation, glycolysis/gluconeogenesis, polysaccharide, polyol, and starch biosynthesis/degradation, protein degradation, transcriptional activation, signalling, stress response, and transport facilitation, and novel, unclassified proteins exhibited stress-induced increases in mRNA abundance. In contrast, salt stress resulted in a significant decrease in transcript abundance for genes encoding photosynthetic functions, protein synthesis, and cellular biogenesis functions. Many genes with CAM-related functions exhibited phase shifts in their putative circadian expression patterns following CAM induction. This report establishes an extensive catalogue of gene expression patterns for future investigations aimed at understanding the complex, transcriptional

  12. Gravitational loading of a simulated launch alters mRNA expression in osteoblasts

    NASA Technical Reports Server (NTRS)

    Fitzgerald, J.; Hughes-Fulford, M.

    1996-01-01

    Serum-deprived mouse osteoblastic cells (MC3T3-E1a) were centrifuged under a regime designed to simulate a space shuttle launch (maximum of 3g). Messenger RNA levels for eight genes involved in bone growth and maintenance were determined using RT-PCR. Following 30 min of centrifugation, mRNA level for early response gene c-fos was significantly increased 89% (P < 0.05). The c-fos induction was transient and returned to control levels after 3 h. The mRNA level for the mineralization marker gene osteocalcin was significantly decreased to 44% of control level (P < 0.005) 3 h after centrifugation. No changes in mRNA levels were detected for c-myc, TGFbeta1, TGFbeta2, cyclophilin A, or actin. No basal mRNA level for TGFbeta3 was detected. In addition, no change in the steady-state synthesis of prostaglandin E2 was detected, possibly due to lack of lipid substrates in serum-deprived cells, suggesting that the increase in c-fos mRNA in response to gravitational loading is a result of mechanical stimulation. These results indicate that a small magnitude mechanical loading, such as that experienced during a shuttle launch, can alter mRNA levels in quiescent osteoblastic cells.

  13. Impact of exogenous lipase supplementation on growth, intestinal function, mucosal immune and physical barrier, and related signaling molecules mRNA expression of young grass carp (Ctenopharyngodon idella).

    PubMed

    Liu, Sen; Feng, Lin; Jiang, Wei-Dan; Liu, Yang; Jiang, Jun; Wu, Pei; Zeng, Yun-Yun; Xu, Shu-De; Kuang, Sheng-Yao; Tang, Ling; Tang, Wu-Neng; Zhang, Yong-An; Zhou, Xiao-Qiu

    2016-08-01

    This study investigated the effects of exogenous lipase supplementation on the growth performance, intestinal growth and function, immune response and physical barrier function, and related signaling molecules mRNA expression of young grass carp (Ctenopharyngodon idella). A total of 450 grass carp (255.02 ± 0.34 g) were fed five diets for 60 days. There were 5 dietary treatments that included a normal protein and lipid diet containing 30% crude protein (CP) with 5% ether extract (EE), and the low-protein and high-lipid diets (28% CP, 6% EE) supplemented with graded levels of exogenous lipase supplementation activity at 0, 1193, 2560 and 3730 U/kg diet. The results indicated that compared with a normal protein and lipid diet (30% CP, 5% EE), a low-protein and high-lipid diet (28% CP, 6% EE) (un-supplemented lipase) improved lysozyme activities and complement component 3 contents in the distal intestine (DI), interleukin 10 mRNA expression in the proximal intestine (PI), and glutathione S-transferases activity and glutathione content in the intestine of young grass carp. In addition, in low-protein and high-lipid diets, optimal exogenous lipase supplementation significantly increased acid phosphatase (ACP) activities and complement component 3 (C3) contents (P < 0.05), up-regulated the relative mRNA levels of antimicrobial peptides (liver expressed antimicrobial peptide 2 and hepcidin) and anti-inflammatory cytokines (interleukin 10 and transforming growth factor β1) and signaling molecules inhibitor protein-κBα (IκBα) and target of rapamycin (TOR) (P < 0.05), down-regulated the mRNA levels of pro-inflammatory cytokines (tumor necrosis factor α, interleukin 8, interferon γ2, and interleukin 1β), and signaling molecules (nuclear factor kappa B p65, IκB kinase β, IκB kinase γ) (P < 0.05) in the intestine of young grass carp. Moreover, optimal exogenous lipase supplementation significantly decreased reactive oxygen species (ROS), malondialdehyde

  14. Infusion of ACTH stimulates expression of adrenal ACTH receptor and steroidogenic acute regulatory protein mRNA in fetal sheep.

    PubMed

    Carey, Luke C; Su, Yixin; Valego, Nancy K; Rose, James C

    2006-08-01

    The late-gestation plasma cortisol surge in the sheep fetus is critical for stimulating organ development and parturition. Increased adrenal responsiveness is one of the key reasons for the surge; however, the underlying mechanisms are not fully understood. Our recent studies suggest that ACTH-mediated increased expression of ACTH receptor (ACTH-R) and steroid acute regulatory protein (StAR) may play a role in enhancing responsiveness. Hence, we examined effects of ACTH infusion in fetal sheep on mRNA expression of these two mediators of adrenal responsiveness and assessed the functional consequences of this treatment in vitro. Fetuses of approximately 118 and 138 days of gestational age (dGA) were infused with ACTH-(1-24) for 24 h. Controls received saline infusion. Arterial blood was sampled throughout the infusion. Adrenals were isolated and analyzed for ACTH-R and StAR mRNA, or cells were cultured for 48 h. Cells were stimulated with ACTH, and medium was collected for cortisol measurement. Fetal plasma ACTH and cortisol concentrations increased over the infusion period in both groups. ACTH-R mRNA levels were significantly higher in ACTH-infused fetuses in both the 118 and 138 dGA groups. StAR mRNA increased significantly in both the 118 and 138 dGA groups. Adrenal cells from ACTH-infused fetuses were significantly more responsive to ACTH stimulation in terms of cortisol secretion than those from saline-infused controls. These findings demonstrate that increases in circulating ACTH levels promote increased expression of ACTH-R and StAR mRNA and are coupled to heightened adrenal responsiveness. PMID:16478774

  15. mRNA expression is a relevant tool to identify developmental neurotoxicants using an in vitro approach.

    PubMed

    Hogberg, Helena T; Kinsner-Ovaskainen, Agnieszka; Coecke, Sandra; Hartung, Thomas; Bal-Price, Anna K

    2010-01-01

    So far, only a few industrial chemicals have been identified as developmental neurotoxicants. Because the current developmental neurotoxicity (DNT) guideline (Organisation for Economic Co-operation and Development TG 426) is based entirely on in vivo studies that are both time consuming and costly, there is a need to develop alternative in vitro methods for initial screening to prioritize chemicals for further DNT testing. In this study, gene expression at the mRNA level was evaluated to determine whether this could be a suitable endpoint to detect potential developmental neurotoxicants. Primary cultures of rat cerebellar granule cells (CGCs) were exposed to well known (developmental) neurotoxicants (methyl mercury chloride, lead chloride, valproic acid, and tri-methyl tin chloride) for different time periods. A significant downregulation of the mRNA level for the neuronal markers (NF-68, NF-200, N-methyl D-aspartate glutamate receptor, and gamma-amino butyric acid receptor) was observed after exposure to methyl mercury chloride, valproic acid, and tri-methyl tin chloride. Moreover, a significant increase of the neural precursor marker nestin mRNA was also observed. The mRNA expression of the astrocytic markers (glial fibrillary acidic protein [GFAP] and S100beta) was unchanged. In contrast, exposure to lead chloride significantly decreased the mRNA level of the astrocytic marker GFAP, whereas the neuronal markers were less affected. These results suggest that gene expression could be used as a sensitive tool for the initial identification of DNT effects induced by different mechanisms of toxicity in both cell types (neuronal and glial) and at various stages of cell development and maturation. PMID:19651682

  16. Oligodendrocyte Morphometry and Expression of Myelin – Related mRNA in Ventral Prefrontal White Matter in Major Depressive Disorder

    PubMed Central

    Rajkowska, Grazyna; Mahajan, Gouri; Maciag, Dorota; Sathyanesan, Monica; Iyo, Abiye H.; Moulana, Mohadetheh; Kyle, Patrick B.; Woolverton, William L.; Miguel-Hidalgo, Jose Javier; Stockmeier, Craig A.; Newton, Samuel S.

    2015-01-01

    White matter disturbance in the ventral prefrontal cortex (vPFC) in major depressive disorder (MDD) has been noted with diffusion tensor imaging (DTI). However, the cellular and molecular pathology of prefrontal white matter in MDD and potential influence of antidepressant medications is not fully understood. Oligodendrocyte morphometry and myelin-related mRNA and protein expression was examined in the white matter of the vPFC in MDD. Sections of deep and gyral white matter from the vPFC were collected from 20 subjects with MDD and 16 control subjects. Density and size of CNPase-immunoreactive (−IR) oligodendrocytes were estimated using 3-dimensional cell counting. While neither density nor soma size of oligodendrocytes was significantly affected in deep white matter, soma size was significantly decreased in the gyral white matter in MDD. In rhesus monkeys treated chronically with fluoxetine there was no significant effect on oligodendrocyte morphometry. Using quantitative RTPCR to measure oligodendrocyte-related mRNA for CNPase, PLP1, MBP, MOG, MOBP, Olig1 and Olig2, in MDD there was a significantly reduced expression of PLP1 mRNA (which positively correlated with smaller sizes) and increased expression of mRNA for CNPase, OLIG1 and MOG. The expression of CNPase protein was significantly decreased in MDD. Altered expression of four myelin genes and CNPase protein suggests a mechanism for the degeneration of cortical axons and dysfunctional maturation of oligodendrocytes in MDD. The change in oligodendrocyte morphology in gyral white matter may parallel altered axonal integrity as revealed by DTI. PMID:25930075

  17. Calcyon mRNA expression in the frontal-striatal circuitry and its relationship to vesicular processes and ADHD

    PubMed Central

    Heijtz, Rochellys Diaz; Alexeyenko, Andrey; Castellanos, F Xavier

    2007-01-01

    Background Calcyon is a single transmembrane protein predominantly expressed in the brain. Very recently, calcyon has been implicated in clathrin mediated endocytosis, a critical component of synaptic plasticity. At the genetic level, preliminary evidence supports an association between attention-deficit/hyperactivity disorder (ADHD) and polymorphisms in the calcyon gene. As little is known about the potential role of calcyon in ADHD, animal models may provide important insights into this issue. Methods We examined calcyon mRNA expression in the frontal-striatal circuitry of three-, five-, and ten-week-old Spontaneously Hypertensive Rats (SHR), the most commonly used animal model of ADHD, and Wistar-Kyoto (WKY; the strain from which SHR were derived). As a complement, we performed a co-expression network analysis using a database of mRNA gene expression profiles of multiple brain regions in order to explore potential functional links of calcyon to other genes. Results In all age groups, SHR expressed significantly more calcyon mRNA in the medial prefrontal and orbital frontal cortices than WKY rats. In contrast, in the motor cortex, dorsal striatum and nucleus accumbens, calcyon mRNA expression was only significantly elevated in SHR in younger animals. In both strains, calcyon mRNA levels decreased significantly with age in all regions studied. In the co-expression network analysis, we found a cluster of genes (many of them poorly studied so far) strongly connected to calcyon, which may help elucidate its role in the brain. The pair-wise relations of calcyon with other genes support its involvement in clathrin mediated endocytosis and, potentially, some other membrane/vesicular processes. Interestingly, no link was found between calcyon and the dopamine D1 receptor, which was previously shown to interact with the C-terminal of calcyon. Conclusion The results indicate an alteration in calcyon expression within the frontal-striatal circuitry of SHR, especially in

  18. Interferon-γ regulates cellular metabolism and mRNA translation to potentiate macrophage activation.

    PubMed

    Su, Xiaodi; Yu, Yingpu; Zhong, Yi; Giannopoulou, Eugenia G; Hu, Xiaoyu; Liu, Hui; Cross, Justin R; Rätsch, Gunnar; Rice, Charles M; Ivashkiv, Lionel B

    2015-08-01

    Interferon-γ (IFN-γ) primes macrophages for enhanced microbial killing and inflammatory activation by Toll-like receptors (TLRs), but little is known about the regulation of cell metabolism or mRNA translation during this priming. We found that IFN-γ regulated the metabolism and mRNA translation of human macrophages by targeting the kinases mTORC1 and MNK, both of which converge on the selective regulator of translation initiation eIF4E. Physiological downregulation of mTORC1 by IFN-γ was associated with autophagy and translational suppression of repressors of inflammation such as HES1. Genome-wide ribosome profiling in TLR2-stimulated macrophages showed that IFN-γ selectively modulated the macrophage translatome to promote inflammation, further reprogram metabolic pathways and modulate protein synthesis. These results show that IFN-γ-mediated metabolic reprogramming and translational regulation are key components of classical inflammatory macrophage activation. PMID:26147685

  19. mRNA 5'-cap binding activity in purified influenza virus detected by simple, rapid assay.

    PubMed Central

    Kroath, H; Shatkin, A J

    1982-01-01

    Reovirus mRNA 5'-terminal caps were 3'-radiolabeled with pCp and as affinity probes for proteins with cap binding activity. A rapid, simple, and sensitive blot assay was devised that could detect cellular cap binding protein in a complex polypeptide mixture. By using this method, cap binding activity was found in detergent-treated influenza virus but not in reovirus or vaccinia virus. Preincubation of capped reovirus mRNA with purified cellular cap binding protein reduced its primer effect on influenza transcriptase, whereas priming by ApG was not affected. The results indicate that influenza transcriptase complexes include cap-recognizing proteins that are involved in the formation of chimeric mRNAs. Images PMID:7097854

  20. Differential effects of binge methamphetamine injections on the mRNA expression of histone deacetylases (HDACs) in the rat striatum

    PubMed Central

    Omonijo, Oluwaseyi; Wongprayoon, Pawaris; Ladenheim, Bruce; McCoy, Michael T.; Govitrapong, Piyarat; Jayanthi, Subramaniam; Cadet, Jean Lud

    2014-01-01

    Methamphetamine use disorder is characterized by recurrent binge episodes. Humans addicted to methamphetamine experience various degrees of cognitive deficits and show evidence of neurodegenerative processes in the brain. Binge injections of METH to rodents also cause significant toxic changes in the brain. In addition, this pattern of METH injections can alter gene expression in the dorsal striatum. Gene expression is regulated, in part, by histone deacetylation. We thus tested the possibility that METH toxic doses might cause changes in the mRNA levels of histone deacetylases (HDACs). We found that METH did produce significant decreases in the mRNA expression of HDAC8, which is a class I HDAC. METH also decreased expression of HDAC6, HDAC9, and HDAC10 that are class II HDACs. The expression of the class IV HDAC, HDAC11, was also suppressed by METH. The expression of Sirt2, Sirt5, and Sirt6 that are members of class III HDACs was also downregulated by METH injections. Our findings implicate changes in HDAC expression may be an early indicator of impending METH-induced neurotoxicity in the striatum. This idea is consistent with the accumulated evidence that some HDACs are involved in neurodegenerative processes in the brain. PMID:25452209

  1. The expression of histamine H4 receptor mRNA in the skin and other tissues of normal dogs.

    PubMed

    Eisenschenk, Melissa N C; Torres, Sheila M F; Oliveira, Simone; Been, Clint S

    2011-10-01

    The histamine 4 (H(4)) receptor was first cloned and characterized in 2000 using the human H(3) receptor DNA sequence. The H(4) receptor has been shown to participate in various aspects of inflammation, such as chemotaxis, upregulation of adhesion molecule expression and modulation of cytokine secretion. The primary goal of this study was to determine whether H(4) receptor mRNA is expressed in normal canine skin by performing an RT-PCR. An additional goal was to determine the expression of this receptor in the colon, liver, spleen and kidney. Tissues were collected from five healthy, young-adult pit bull dogs. Samples were immediately placed in RNAlater(®) solution and stored at -20°C until processed. The amplified products in all skin samples in addition to the colon, liver, spleen and kidney (variable expression) had the expected size of 400-500 bp. The sequenced amplicons matched the National Center for Biotechnology Information published sequence for the canine H(4) receptor. The study results showed that canine normal skin expresses the H(4) receptor mRNA. Further studies using immunohistochemistry should be conducted to demonstrate the expression of the H(4) receptor at the protein level and to localize the expression of this receptor in the skin. PMID:21392139

  2. Proliferation and mRNA expression of absorptive villous cell markers and mineral transporters in prolactin-exposed IEC-6 intestinal crypt cells.

    PubMed

    Teerapornpuntakit, Jarinthorn; Wongdee, Kannikar; Thongbunchoo, Jirawan; Krishnamra, Nateetip; Charoenphandhu, Narattaphol

    2012-06-01

    During pregnancy and lactation, prolactin (PRL) enhances intestinal absorption of calcium and other minerals for fetal development and milk production. Although an enhanced absorptive efficiency is believed to mainly result from the upregulation of mineral transporters in the absorptive villous cells, some other possibilities, such as PRL-enhanced crypt cell proliferation and differentiation to increase the absorptive area, have never been ruled out. Here, we investigated cell proliferation and mRNA expression of mineral absorption-related genes in the PRL-exposed IEC-6 crypt cells. As expected, the cell proliferation was not altered by PRL. Inasmuch as the mRNA expressions of villous cell markers, including dipeptidylpeptidase-4, lactase and glucose transporter-5, were not increased, PRL was not likely to enhance crypt cell differentiation into the absorptive villous cells. In contrast to the previous findings in villous cells, PRL was found to downregulate the expression of calbindin-D(9k), claudin-3 and occludin in IEC-6 crypt cells, while having no effect on transient receptor potential vanilloid family channels-5/6, plasma membrane Ca(2+)-ATPase (PMCA)-1b and Na(+)/Ca(2+) exchanger-1 expression. In conclusion, IEC-6 crypt cells did not respond to PRL by increasing proliferation or differentiation into villous cells. The present results thus supported the previous hypothesis that PRL enhanced mineral absorption predominantly by increasing transporter expression and activity in the absorptive villous cells. PMID:22281785

  3. Post-transcriptional Boolean computation by combining aptazymes controlling mRNA translation initiation and tRNA activation.

    PubMed

    Klauser, Benedikt; Saragliadis, Athanasios; Ausländer, Simon; Wieland, Markus; Berthold, Michael R; Hartig, Jörg S

    2012-09-01

    In cellular systems environmental and metabolic signals are integrated for the conditional control of gene expression. On the other hand, artificial manipulation of gene expression is of high interest for metabolic and genetic engineering. Especially the reprogramming of gene expression patterns to orchestrate cellular responses in a predictable fashion is considered to be of great importance. Here we introduce a highly modular RNA-based system for performing Boolean logic computation at a post-transcriptional level in Escherichia coli. We have previously shown that artificial riboswitches can be constructed by utilizing ligand-dependent Hammerhead ribozymes (aptazymes). Employing RNA self-cleavage as the expression platform-mechanism of an artificial riboswitch has the advantage that it can be applied to control several classes of RNAs such as mRNAs, tRNAs, and rRNAs. Due to the highly modular and orthogonal nature of these switches it is possible to combine aptazyme regulation of activating a suppressor tRNA with the regulation of mRNA translation initiation. The different RNA classes can be controlled individually by using distinct aptamers for individual RNA switches. Boolean logic devices are assembled by combining such switches in order to act on the expression of a single mRNA. In order to demonstrate the high modularity, a series of two-input Boolean logic operators were constructed. For this purpose, we expanded our aptazyme toolbox with switches comprising novel behaviours with respect to the small molecule triggers thiamine pyrophosphate (TPP) and theophylline. Then, individual switches were combined to yield AND, NOR, and ANDNOT gates. This study demonstrates that post-transcriptional aptazyme-based switches represent versatile tools for engineering advanced genetic devices and circuits without the need for regulatory protein cofactors. PMID:22777205

  4. Electroacupuncture-regulated neurotrophic factor mRNA expression in the substantia nigra of Parkinson's disease rats.

    PubMed

    Wang, Shuju; Fang, Jianqiao; Ma, Jun; Wang, Yanchun; Liang, Shaorong; Zhou, Dan; Sun, Guojie

    2013-02-25

    Acupuncture for the treatment of Parkinson's disease has a precise clinical outcome. This study investigated the effect of electroacupuncture at Fengfu (GV16) and Taichong (LR3) acupoints in rat models of Parkinson's disease induced by subcutaneous injection of rotenone into rat neck and back. Reverse transcription-PCR demonstrated that brain-derived neurotrophic factor and glial cell line-derived neurotrophic factor mRNA expression was significantly increased in the substantia nigra of rat models of Parkinson's disease, and that abnormal behavior of rats was significantly improved following electroacupuncture treatment. These results indicated that electroacupuncture treatment upregulated brain-derived neurotrophic factor and glial cell line-derived neurotrophic factor mRNA expression in the substantia nigra of rat models of Parkinson's disease. Thus, electroacupuncture may be useful in the treatment of Parkinson's disease. PMID:25206697

  5. Structure and expression of the human L-myc gene reveal a complex pattern of alternative mRNA processing

    SciTech Connect

    Kaye, F.; Battey, J.; Nau, M.; Brooks, B.; Seifter, E.; De Greve, J.; Birrer, M.; Sausville, E.; Minna, J.

    1988-01-01

    The authors' analyzed in detail the structure of the L-myc gene isolated from human placental DNA and characterized its expression in several small-cell lung cancer cell lines. The gene is composed of three exons and two introns spanning 6.6 kilobases in human DNA. Several distinct mRNA species are produced in all small-cell lung cancer cell lines that express L-myc. These transcripts are generated from a single gene by alternative splicing of introns 1 and 2 and by use of alternative polyadenylation signals. In some mRNAs that is a long open reading frame with a predicted translated protein of 364 residues. Amino acid sequence comparison with c-myc and N-myc demonstrated multiple discrete regions with extensive homology. In contrast, other mRNA transcripts, generated by alternative processing, could encode a truncated protein with a novel carboxy-terminal end.

  6. Higher decidual EBI3 and HLA-G mRNA expression in preeclampsia: Cause or consequence of preeclampsia.

    PubMed

    Prins, J R; van der Hoorn, M L P; Keijser, R; Ris-Stalpers, C; van Beelen, E; Afink, G B; Claas, F H J; van der Post, J A M; Scherjon, S A

    2016-01-01

    The maternal immune system must adapt to tolerate the invasion of the allogeneic feto-placental unit. It is generally accepted that improper adaptation causes pregnancy complications like preeclampsia. The Epstein-Barr virus-induced gene 3 (EBI3) protein is a subunit of immune-modulatory cytokines interleukin 27 (IL-27) and IL-35. EBI3 has been reported to associate with HLA-G. In this small pilot study we find higher decidual EBI3 (p<0.05) and HLA-G (p<0.01) mRNA expression in preeclampsia (n=7) compared to normotensive (n=8) pregnancies. Whether the higher EBI3 and HLA-G mRNA expression is a consequence or cause of preeclampsia remains to be answered. Further research to determine the effects on IL-27 and IL-35 is needed. PMID:26472010

  7. The mRNA expression and histological integrity in rat forebrain motor and sensory regions are minimally affected by acrylamide exposure through drinking water

    SciTech Connect

    Bowyer, John F.; Latendresse, John R.; Delongchamp, Robert R.; Warbritton, Alan R.; Thomas, Monzy; Divine, Becky; Doerge, Daniel R.

    2009-11-01

    A study was undertaken to determine whether alterations in the gene expression or overt histological signs of neurotoxicity in selected regions of the forebrain might occur from acrylamide exposure via drinking water. Gene expression at the mRNA level was evaluated by cDNA array and/or RT-PCR analysis in the striatum, substantia nigra and parietal cortex of rat after a 2-week acrylamide exposure. The highest dose tested (maximally tolerated) of approximately 44 mg/kg/day resulted in a significant decreased body weight, sluggishness, and locomotor activity reduction. These physiological effects were not accompanied by prominent changes in gene expression in the forebrain. All the expression changes seen in the 1200 genes that were evaluated in the three brain regions were <= 1.5-fold, and most not significant. Very few, if any, statistically significant changes were seen in mRNA levels of the more than 50 genes directly related to the cholinergic, noradrenergic, GABAergic or glutamatergic neurotransmitter systems in the striatum, substantia nigra or parietal cortex. All the expression changes observed in genes related to dopaminergic function were less than 1.5-fold and not statistically significant and the 5HT1b receptor was the only serotonin-related gene affected. Therefore, gene expression changes were few and modest in basal ganglia and sensory cortex at a time when the behavioral manifestations of acrylamide toxicity had become prominent. No histological evidence of axonal, dendritic or neuronal cell body damage was found in the forebrain due to the acrylamide exposure. As well, microglial activation was not present. These findings are consistent with the absence of expression changes in genes related to changes in neuroinflammation or neurotoxicity. Over all, these data suggest that oral ingestion of acrylamide in drinking water or food, even at maximally tolerable levels, induced neither marked changes in gene expression nor neurotoxicity in the motor and

  8. Avian Resistance to Campylobacter jejuni Colonization Is Associated with an Intestinal Immunogene Expression Signature Identified by mRNA Sequencing

    PubMed Central

    Connell, Sarah; Meade, Kieran G.; Allan, Brenda; Lloyd, Andrew T.; Kenny, Elaine; Cormican, Paul; Morris, Derek W.; Bradley, Daniel G.; O'Farrelly, Cliona

    2012-01-01

    Campylobacter jejuni is the most common cause of human bacterial gastroenteritis and is associated with several post-infectious manifestations, including onset of the autoimmune neuropathy Guillain-Barré syndrome, causing significant morbidity and mortality. Poorly-cooked chicken meat is the most frequent source of infection as C. jejuni colonizes the avian intestine in a commensal relationship. However, not all chickens are equally colonized and resistance seems to be genetically determined. We hypothesize that differences in immune response may contribute to variation in colonization levels between susceptible and resistant birds. Using high-throughput sequencing in an avian infection model, we investigate gene expression associated with resistance or susceptibility to colonization of the gastrointestinal tract with C. jejuni and find that gut related immune mechanisms are critical for regulating colonization. Amongst a single population of 300 4-week old chickens, there was clear segregation in levels of C. jejuni colonization 48 hours post-exposure. RNAseq analysis of caecal tissue from 14 C. jejuni-susceptible and 14 C. jejuni-resistant birds generated over 363 million short mRNA sequences which were investigated to identify 219 differentially expressed genes. Significantly higher expression of genes involved in the innate immune response, cytokine signaling, B cell and T cell activation and immunoglobulin production, as well as the renin-angiotensin system was observed in resistant birds, suggesting an early active immune response to C. jejuni. Lower expression of these genes in colonized birds suggests suppression or inhibition of a clearing immune response thus facilitating commensal colonization and generating vectors for zoonotic transmission. This study describes biological processes regulating C. jejuni colonization of the avian intestine and gives insight into the differential immune mechanisms incited in response to commensal bacteria in general

  9. Expression of insulin-like growth factors at mRNA levels during the metamorphic development of turbot (Scophthalmus maximus).

    PubMed

    Meng, Zhen; Hu, Peng; Lei, Jilin; Jia, Yudong

    2016-09-01

    Insulin-like growth factors I and II (IGF-I and IGF-II) are important regulators of vertebrate growth and development. This study characterized the mRNA expressions of igf-i and igf-ii during turbot (Scophthalmus maximus) metamorphosis to elucidate the possible regulatory role of the IGF system in flatfish metamorphosis. Results showed that the mRNA levels of igf-i significantly increased at the early-metamorphosis stage and then gradually decreased until metamorphosis was completed. By contrast, mRNA levels of igf-ii significantly increased at the pre-metamorphosis stage and then substantially decreased during metamorphosis. Meanwhile, the whole-body thyroxine (T4) levels varied during larval metamorphosis, and the highest value was observed in the climax-metamorphosis. The mRNA levels of igf-i significantly increased and decreased by T4 and thiourea (TU, inhibitor of endogenous thyroid hormone) during metamorphosis, respectively. Conversely, the mRNA levels of igf-ii remained unchanged. Furthermore, TU significantly inhibited the T4-induced mRNA up-regulation of igf-i during metamorphosis. The whole-body thyroxine (T4) levels were significantly increased and decreased by T4 and TU during metamorphosis, respectively. These results suggested that igf-i and igf-ii may play different functional roles in larval development stages, and igf-i may have a crucial function in regulating the early metamorphic development of turbot. These findings may enhance our understanding of the potential roles of the IGF system to control flatfish metamorphosis and contribute to the improvement of broodstock management for larvae. PMID:27255364

  10. Increased interleukin-1beta mRNA expression in skin biopsies of horses with Culicoides hypersensitivity following challenge with Culicoides nubeculosus extract.

    PubMed

    Kolm, Gabriela; Knapp, Elzbieta; Wagner, Regina; Klein, Dieter

    2006-09-15

    Interleukin-1beta (IL-1beta) is a primary cytokine of the skin that has a pivotal role in keratinocyte differentiation, epidermal wound healing and host defense. Pathological increase of cutaneous IL-1beta is associated with edema formation, epidermal hyperproliferation and atopic dermatitis in humans. However, in horses the role of cutaneous IL-1beta in edema formation and allergic skin disease has not been characterised so far. Particularly in Culicoides hypersensitivity (CHS), intradermal injection of Culicoides extract may be associated with enhanced transcription of local IL-1beta. To examine the mRNA expression of IL-1beta and its receptor antagonist IL-1RA in the skin of horses, biopsy specimens of horses affected and non-affected by CHS prior and following intradermal challenge with a commercial C. nubeculosus extract were examined. Our hypothesis was that cutaneous IL-1beta mRNA was significantly upregulated in horses with CHS in response to Culicoides allergen. Biopsies were taken from sites prior to and 4 h following intradermal challenge with C. nubeculosus extract. In order to obtain reliable data, real time PCR was performed and genes of interest were normalized using three different housekeeping genes, beta-actin, GAPDH, beta-2-microglobulin. No significant difference was detected in non-challenged cutaneous IL-1beta mRNA and IL-1RA mRNA levels between CHS affected and non-affected horses. Intradermal injection of C. nubeculosus extract resulted in local upregulation of IL-1beta mRNA both in horses with typical history, characteristic clinical signs for CHS and a positive intradermal skin test (IDT), and non-affected horses with a negative IDT. However, the difference in prior and post challenged site IL-1beta mRNA levels only reached statistical significance in the affected horses (p=0.01 versus 0.7). In contrast, IL-1RA mRNA levels did not demonstrate any modification following intradermal injection with C. nubeculosus in either group. In contrast

  11. 3'-untranslated region of SP-B mRNA mediates inhibitory effects of TPA and TNF-alpha on SP-B expression.

    PubMed

    Pryhuber, G S; Church, S L; Kroft, T; Panchal, A; Whitsett, J A

    1994-07-01

    Surfactant protein-B (SP-B) is a small hydrophobic polypeptide that enhances spreading and stability of surfactant phospholipids in the alveolus of the lung. Decreased expression of SP-B is associated with respiratory failure in premature infants and in adult patients with acute respiratory distress syndrome (ARDS). Tumor necrosis factor-alpha (TNF-alpha) and 12-O-tetradecanoylphorbol-13 acetate (TPA) cause ARDS-like lung injury in vivo. Inhibitory effects of TPA and TNF-alpha on SP-B mRNA expression in vitro were mediated by decreased SP-B mRNA stability rather than by decreased rate of SP-B gene transcription. In the present study, a human pulmonary adenocarcinoma cell line, NCI H441-4, was stably transfected with expression vectors consisting of the thymidine kinase (TK) promotor and human growth hormone (hGH) gene, in which the hGH 3'-untranslated region (3'-UTR) was replaced by the 2.0-kb human SP-B cDNA [pTKGH(SP-B2.0)] or the 837-bp human SP-B 3'-UTR [pTKGH(SP-B.837)]. The mRNAs and cellular growth hormone protein generated from the chimeric TKGH(SP-B2.0) and TKGH(SP-B.837) genes were each inhibited by approximately 50% by TPA and TNF-alpha. Dexamethasone decreased the inhibitory effects of TPA and TNF-alpha. The inhibition of steady-state hGH-SP-B mRNA by TPA and TNF-alpha was mediated by a cis-active element located in the 3-UTR region of SP-B mRNA. PMID:8048538

  12. Amylase mRNA transcripts in normal tissues and neoplasms: the implication of different expressions of amylase isogenes.

    PubMed

    Seyama, K; Nukiwa, T; Takahashi, K; Takahashi, H; Kira, S

    1994-01-01

    To understand the cellular origin and mechanism of gene expression in amylase-producing cancers, the phenotyping of amylase isogenes by the polymerase chain reaction and restriction-fragment-length polymorphism using restriction endonucleases TaqI, DdeI, HinfI, and AfaI were performed for 3 amylase-producing lung adenocarcinomas, 16 lung cancers without hyperamylasemia, other human malignant neoplasms, cultured cell lines, and normal tissues. In addition, amylase mRNA transcripts were semi-quantified by the limited polymerase chain reaction. Amylase mRNA transcripts were detected in all of the tissues examined. The AMY1 gene (salivary type) was exclusively and highly expressed in the salivary glands and the amylase-producing lung adenocarcinomas. Coexpression of the AMY1 gene and AMY2 gene (pancreatic type) was observed in most of the lung cancers without hyperamylasemia, lung tissue, and cells scraped from the tracheal epithelium, thyroid, and female genital tract (ovary, fallopian tube, and uterus cervix), while minimal levels of mRNA transcripts of the AMY2 gene were detected in other malignant neoplasms, various normal tissues, and the cultured cell lines. All mRNA transcripts identified as being those of the AMY2 gene were further identified as being from the AMY2B gene except for the transcripts from the pancreas, in which the AMY2A gene and AMY2B gene were coexpressed. On the basis of these results, the clinical occurrence of amylase-producing cancer likely relates to the tissues expressing the AMY1 gene, while the AMY2B gene, which evolutionarily is the oldest gene among human amylase isogenes, is constitutively expressed in various tissues. PMID:7507116

  13. Lung squamous cell carcinoma mRNA expression subtypes are reproducible, clinically important and correspond to different normal cell types

    PubMed Central

    Wilkerson, Matthew D.; Yin, Xiaoying; Hoadley, Katherine A.; Liu, Yufeng; Hayward, Michele C.; Cabanski, Christopher R.; Muldrew, Kenneth; Miller, C. Ryan; Randell, Scott H.; Socinski, Mark A.; Parsons, Alden M.; Funkhouser, William K.; Lee, Carrie B.; Roberts, Patrick J.; Thorne, Leigh; Bernard, Philip S.; Perou, Charles M.; Hayes, D. Neil

    2010-01-01

    Purpose Lung squamous cell carcinoma (SCC) is clinically and genetically heterogeneous and current diagnostic practices do not adequately substratify this heterogeneity. A robust, biologically-based SCC subclassification may describe this variability and lead to more precise patient prognosis and management. We sought to determine if SCC mRNA expression subtypes exist, are reproducible across multiple patient cohorts, and are clinically relevant. Experimental Design Subtypes were detected by unsupervised consensus clustering in five published discovery cohorts of mRNA microarrays, totaling 382 SCC patients. An independent validation cohort of 56 SCC patients was collected and assayed by microarrays. A nearest-centroid subtype predictor was built using discovery cohorts. Validation cohort subtypes were predicted and evaluated for confirmation. Subtype survival outcome, clinical covariates, and biological processes were compared by statistical and bioinformatic methods. Results Four lung SCC mRNA expression subtypes, named primitive, classical, secretory, and basal, were detected and independently validated (P < 0.001). The primitive subtype had the worst survival outcome (P < 0.05) and is an independent predictor of survival (P < 0.05). Tumor differentiation and patient sex were associated with subtype. The subtypes’ expression profiles contained distinct biological processes (primitive – proliferation, classical – xeniobiotics metabolism, secretory – immune response, basal – cell adhesion) and suggested distinct pharmacologic interventions. Comparison to lung model systems revealed distinct subtype to cell type correspondence. Conclusions Lung SCC consists of four mRNA expression subtypes that have different survival outcomes, patient populations, and biological processes. The subtypes stratify patients for more precise prognosis and targeted research. PMID:20643781

  14. Estrogen-dependent activation of the avian very low density apolipoprotein II and vitellogenin genes. Transient alterations in mRNA polyadenylation and stability early during induction.

    PubMed

    Cochrane, A W; Deeley, R G

    1988-10-01

    Administration of estrogen to egg-laying vertebrates activates unscheduled, hepatic expression of major, egg-yolk protein genes in immature animals and mature males. Two avian yolk protein genes, encoding very low density apolipoprotein II (apoVLDLII) and vitellogenin II, are dormant prior to stimulation with estrogen, but within three days their cognate mRNAs accumulate to become two of the most abundant species in the liver. Accumulation of these mRNAs has been attributed to both induction of transcription and selective, estrogen-dependent mRNA stabilization. We have detected alterations in the size of apoVLDLII mRNA that occur during the first 24 hours that are attributable to a shift in the extent of polyadenylation as steady-state is approached. In vitro transcription assays indicate that primary activation of both genes takes place relatively slowly and that maximal rates of mRNA accumulation occur when the apoVLDLII and vitellogenin II genes are expressed at only 30% and 10% of their fully induced levels, respectively. Transcription data combined with the structural alteration of apoVLDLII mRNA suggest that stability of the two mRNAs may change as steady-state is approached. We have assessed the compatibility of this suggestion with earlier estimates of the kinetics of accumulation of both mRNAs by developing a generally useful algorithm that predicts approach to steady-state kinetics under conditions where both the rate of synthesis and mRNA stability change throughout the accumulation phase of the response. The results predict that the stability of both mRNAs decreases by at least two- to threefold during the approach to steady-state and that, although an additional destabilization of apoVLDLII mRNA may occur following withdrawal of estrogen, the steady-state stability of vitellogenin mRNA is not significantly decreased upon removal of hormone. PMID:3210227

  15. Effects of simulated microgravity on microRNA and mRNA expression profile of rat soleus

    NASA Astrophysics Data System (ADS)

    Xu, Hongjie; Wu, Feng; Cao, Hongqing; Kan, Guanghan; Zhang, Hongyu; Yeung, Ella W.; Shang, Peng; Dai, Zhongquan; Li, Yinghui

    2015-02-01

    Spaceflight induces muscle atrophy but mechanism is not well understood. Here, we quantified microRNAs (miRNAs) and mRNA shifts of rat soleus in response to microgravity. MiRNAs and mRNA microarray of soleus after tail suspension (TS) for 7 and 14 days were performed followed by target gene and function annotation analysis and qRT-PCR. Relative muscle mass lost by 37.0% in TS-7 but less than 10% in the following three weeks. TS altered 23 miRNAs and 1313 mRNAs with at least 2-fold. QRT-PCR confirmed some of these changes. MiR-214, miR-486-5p and miR-221 continuously decreased. MiR-674 and Let-7e decreased only in TS-7, while miR-320b and miR-187 decreased only in TS-14. But there was no alteration of miR-320 and miR-206 in both time point. For mRNA detection, actn3 (5.1-fold and 13.8-fold) and myh4 (38-fold and 51.6-fold) increased abundantly and a3galt2 decreased. Predicted targeted genes (whyz, ywhaz and SFRP2) of altered miRNAs decreased. GO terms and cellular pathway of these alteration showed enrichment in regulation of muscle metabolism. Integration analysis of the miRNA and mRNA expression profiles confirmed that eleven genes were differently regulated by four miRNAs. This is the first study that showed expression pattern and synergistical regulation of miRNA and mRNA in rat soleus of TS for up to 14 days.

  16. Effects of ketamine exposure on dopamine concentrations and dopamine type 2 receptor mRNA expression in rat brain tissue

    PubMed Central

    Li, Bing; Liu, Mei-Li; Wu, Xiu-Ping; Jia, Juan; Cao, Jie; Wei, Zhi-Wen; Wang, Yu-Jin

    2015-01-01

    Objective: To explore the effects of ketamine abuse on the concentration of dopamine (DA), a monoamine neurotransmitter, and the mRNA expression of dopamine type 2 (D2) receptors in brain tissue, we used male Wistar rats to model ketamine abuse through chronic intraperitoneal infusion of ketamine across different doses. Methods: The rats were sacrificed 45 minutes and 1, 2, and 3 weeks after initiating the administration of ketamine or normal saline, as well as 3 days following discontinuation. Brain tissue was harvested to examine the concentration of 2,5-dihydroxyphenylacetic acid and homovanillic acid, the primary metabolites of DA, as well as the expression of D2 receptor mRNA. In addition, behavioral changes were observed within 30 minutes of administration, and withdrawal symptoms were also documented. A factorial experimental design was used to investigate variations and correlations in the primary outcome measures across the four doses and five time points. Brain DA concentrations were significantly higher in the ketamine-treated groups compared with the saline-treated group, with 30 mg/kg > 10 mg/kg > 60 mg/kg > saline (P < 0.05). The D2 receptor mRNA expression exhibited an inverse downregulation pattern, with 30 mg/kg < 10 mg/kg < 60 mg/kg < saline (P < 0.05). In the 10 mg/kg and 30 mg/kg ketamine-treated groups, the DA concentration and D2 receptor mRNA level in the brain tissue correlated with the dose of ketamine (r = 0.752, r = -0.806), but no significant correlation was found in the 60 mg/kg group. Result: These findings indicated that chronic dosing with ketamine increased the concentration of DA in rat brain tissue by increasing DA release or interrupting DA degradation. D2 receptor mRNA expression likely decreased because of stimulation with excessive DA. Conclusion: High-dose (60 mg/kg) ketamine had potent paralyzing effects on the central nervous system of rats and weakened the excitatory effects of the limbic system. Brain DA and D2 receptor mRNA

  17. Efficient translation of distal cistrons of a polycistronic mRNA of a plant pararetrovirus requires a compatible interaction between the mRNA 3' end and the proteinaceous trans-activator.

    PubMed

    Edskes, H K; Kiernan, J M; Shepherd, R J

    1996-10-15

    Caulimoviruses, a type of plant pararetrovirus, employ a highly unusual mechanism to express the multiple cistrons of their pregenomic RNA. It involves translation of a polycistronic mRNA utilizing cis-acting viral RNA sequences and a transacting virus-encoded protein (P6). In addition to its role in polycistronic translation, the translational trans-activator protein P6 also activates its own expression from a monocistronic subgenomic RNA. Using Nicotiana Edwardsonii cell suspension protoplasts, we analyzed the ability of P6 proteins from three different caulimoviruses to activate viral RNA-based reporter constructs. Cis-acting elements present in figwort mosaic caulimovirus (FMV) are functional not only in the presence of the cognate P6 activator protein, but also in the presence of the heterologous activators from cauliflower mosaic caulimovirus (CaMV) and peanut chlorotic streak caulimovirus (PCISV). However, when 3' cis-acting elements essential for efficient polycistronic expression of FMV are replaced by their counterparts from PCISV, reporter gene expression is only observed in the presence of PCISV P6. Derepression of monocistronic reporter constructs tailed with FMV or CaMV 3' proximal sequences is less efficient in the presence of PCISV P6 than with either FMV or CaMV P6, but more efficient when the constructs contain a cognate PCISV 3' cis-element. Efficient expression of polycistronic and monocistronic caulimovirus mRNAs in plant cells thus requires compatible interactions between P6, a translational trans-activator, and its cognate cis-element at the 3' end of the mRNA. PMID:8874519

  18. Chronic stress alters glucocorticoid receptor and mineralocorticoid receptor mRNA expression in the European starling (Sturnus vulgaris) brain.

    PubMed

    Dickens, M; Romero, L M; Cyr, N E; Dunn, I C; Meddle, S L

    2009-10-01

    Although the glucocorticoid response to acute short-term stress is an adaptive physiological mechanism that aids in the response to and survival of noxious stimuli, chronic stress is associated with a negative impact on health. In wild-caught European starlings (Sturnus vulgaris), chronic stress alters the responsiveness of hypothalamic-pituitary-adrenal (HPA) axis as measured by the acute corticosterone response. In the present study, we investigated potential underlying neuroendocrine mechanisms by comparing glucocorticoid receptor and mineralocorticoid receptor mRNA expression in the brains of chronically and nonchronically-stressed starlings. Hypothalamic paraventricular nucleus, but not hippocampal, glucocorticoid receptor mRNA expression in chronically-stressed birds was significantly lower compared to controls, suggesting changes in the efficacy of corticosterone negative feedback. In addition, chronically-stressed birds showed a significant decrease in hippocampal MR mRNA expression. Together, these results suggest that chronic stress changes the brain physiology of wild birds and provides important information for the understanding of the underlying mechanisms that result in dysregulation of the HPA axis in wild animals by chronic stress. PMID:19686439

  19. An mRNA expression signature for prognostication in de novo acute myeloid leukemia patients with normal karyotype

    PubMed Central

    Chou, Wen-Chien; Hou, Hsin-An; Tseng, Mei-Hsuan; Kuo, Yi-Yi; Chen, Yidong; Chuang, Eric Y.; Tien, Hwei-Fang

    2015-01-01

    Although clinical features, cytogenetics, and mutations are widely used to predict prognosis in patients with acute myeloid leukemia (AML), further refinement of risk stratification is necessary for optimal treatment, especially in cytogenetically normal (CN) patients. We sought to generate a simple gene expression signature as a predictor of clinical outcome through analyzing the mRNA arrays of 158 de novo CN AML patients. We compared the gene expression profiles of patients with poor response to induction chemotherapy with those who responded well. Forty-six genes expressed differentially between the two groups. Among them, expression of 11 genes was significantly associated with overall survival (OS) in univariate Cox regression analysis in 104 patients who received standard intensive chemotherapy. We integrated the z-transformed expression levels of these 11 genes to generate a risk scoring system. Higher risk scores were significantly associated with shorter OS (median 17.0 months vs. not reached, P < 0.001) in ours and another 3 validation cohorts. In addition, it was an independent unfavorable prognostic factor by multivariate analysis (HR 1.116, 95% CI 1.035~1.204, P = 0.004). In conclusion, we developed a simple mRNA expression signature for prognostication in CN-AML patients. This prognostic biomarker will help refine the treatment strategies for this group of patients. PMID:26517675

  20. Resveratrol induces antioxidant and heat shock protein mRNA expression in response to heat stress in black-boned chickens.

    PubMed

    Liu, L L; He, J H; Xie, H B; Yang, Y S; Li, J C; Zou, Y

    2014-01-01

    This study investigated the effects of dietary resveratrol at 0, 200, 400, or 600 mg/kg of diet on the performance, immune organ growth index, serum parameters, and expression levels of heat shock protein (Hsp) 27, Hsp70, and Hsp90 mRNA in the bursa of Fabricius, thymus, and spleen of 42-d-old female black-boned chickens exposed to heat stress at 37 ± 2°C for 15 d. The results showed that heat stress reduced daily feed intake and BW gain; decreased serum glutathione (GSH), growth hormone, and insulin-like growth factor-1 levels; and inhibited GSH peroxidase (GSH-Px), superoxide dismutase (SOD), and catalase (CAT) activities compared with birds subjected to thermo-neutral circumstances. Chickens that were fed diets supplemented with resveratrol exhibited a linear increase in feed intake and BW gain (P < 0.001); serum GSH, growth hormone, and insulin-like growth factor-1 levels (P ≤ 0.01); and GSH-Px, SOD, and CAT activities (P < 0.001) compared with chickens that were fed diets without resveratrol during heat stress. In contrast, serum malonaldehyde concentrations were decreased (P < 0.001) in the chickens fed a resveratrol-supplemented diet. Heat stress also reduced (P < 0.05) the growth index of the bursa of Fabricus and spleen; however, it had no effect on the growth index of the thymus. The growth index of the bursa of Fabricius and spleen increased (P < 0.05) upon heat stress and coincided with an increase in supplemental resveratrol levels. The expression of Hsp27, Hsp70, and Hsp90 mRNA in the bursa of Fabricius and spleen were increased (P < 0.01), but those of Hsp27 and Hsp90 mRNA in thymus were decreased (P < 0.01) under heat stress compared with no heat stress. Resveratrol attenuated the heat stress-induced overexpression of Hsp27, Hsp70, and Hsp90 mRNA in the bursa of Fabricius and spleen and increased the low expression of Hsp27 and Hsp90 mRNA in thymus upon heat stress. The results suggest that supplemental resveratrol improves growth performance

  1. Comparative analyses of gene copy number and mRNA expression in GBM tumors and GBM xenografts

    SciTech Connect

    Hodgson, J. Graeme; Yeh, Ru-Fang; Ray, Amrita; Wang, Nicholas J.; Smirnov, Ivan; Yu, Mamie; Hariono, Sujatmi; Silber, Joachim; Feiler, Heidi S.; Gray, Joe W.; Spellman, Paul T.; Vandenberg, Scott R.; Berger, Mitchel S.; James, C. David

    2009-04-03

    Development of model systems that recapitulate the molecular heterogeneity observed among glioblastoma multiforme (GBM) tumors will expedite the testing of targeted molecular therapeutic strategies for GBM treatment. In this study, we profiled DNA copy number and mRNA expression in 21 independent GBM tumor lines maintained as subcutaneous xenografts (GBMX), and compared GBMX molecular signatures to those observed in GBM clinical specimens derived from the Cancer Genome Atlas (TCGA). The predominant copy number signature in both tumor groups was defined by chromosome-7 gain/chromosome-10 loss, a poor-prognosis genetic signature. We also observed, at frequencies similar to that detected in TCGA GBM tumors, genomic amplification and overexpression of known GBM oncogenes, such as EGFR, MDM2, CDK6, and MYCN, and novel genes, including NUP107, SLC35E3, MMP1, MMP13, and DDX1. The transcriptional signature of GBMX tumors, which was stable over multiple subcutaneous passages, was defined by overexpression of genes involved in M phase, DNA replication, and chromosome organization (MRC) and was highly similar to the poor-prognosis mitosis and cell-cycle module (MCM) in GBM. Assessment of gene expression in TCGA-derived GBMs revealed overexpression of MRC cancer genes AURKB, BIRC5, CCNB1, CCNB2, CDC2, CDK2, and FOXM1, which form a transcriptional network important for G2/M progression and/or checkpoint activation. Our study supports propagation of GBM tumors as subcutaneous xenografts as a useful approach for sustaining key molecular characteristics of patient tumors, and highlights therapeutic opportunities conferred by this GBMX tumor panel for testing targeted therapeutic strategies for GBM treatment.

  2. Apoptotic cell-derived sphingosine-1-phosphate promotes HuR-dependent cyclooxygenase-2 mRNA stabilization and protein expression.

    PubMed

    Johann, Axel M; Weigert, Andreas; Eberhardt, Wolfgang; Kuhn, Anne-Marie; Barra, Vera; von Knethen, Andreas; Pfeilschifter, Josef M; Brüne, Bernhard

    2008-01-15

    Removal of apoptotic cells by phagocytes is considered a pivotal immune regulatory process. Although considerable knowledge has been obtained on the postphagocytic macrophage phenotype, there is little information on molecular mechanisms, which provoke macrophage polarization. In this study, we show that human apoptotic Jurkat cells (AC) or AC-conditioned medium (CM) rapidly induces cyclooxygenase-2 (COX-2) expression in mouse RAW264.7 macrophages via sphingosine-1-phosphate (S1P). Pharmacological inhibition of S1P release from AC or using CM from cells with a knockdown of sphingosine kinase 2 in human MCF-7 cells abrogates this effect. Expression of COX-2 resulted from an increase in mRNA stability via its 3'-untranslated region (UTR), shown by COX-2-3'-UTR and AU-rich element-driven reporter assays. Western analysis corroborated increased nucleocytoplasmic shuttling of the RNA-binding protein HuR after CM treatment. RNA EMSA analysis revealed an S1P- and CM-mediated increase in HuR-RNA binding to a COX-2-specific UTR, whereas HuR knockdown pointed to its importance for S1P in CM-induced COX-2 expression. Immunofluorescence microscopy of phospholipase A2 (PLA2) and ELISA analysis of PGE2 revealed activation of PLA2 and production of PGE2 in response to CM but not S1P. S1P, released from AC, uses HuR to stabilize COX-2 mRNA and thus to increase COX-2 protein expression. However, only CM also activates PLA2 to provide the substrate for COX-2. Our data underscore the importance of S1P in AC-mediated immune regulation, by stabilizing COX-2 mRNA in macrophages, a prerequisite for PGE2 formation. PMID:18178864

  3. Activity-dependent mRNA splicing controls ER export and synaptic delivery of NMDA receptors.

    PubMed

    Mu, Yuanyue; Otsuka, Takeshi; Horton, April C; Scott, Derek B; Ehlers, Michael D

    2003-10-30

    Activity-dependent targeting of NMDA receptors (NMDARs) is a key feature of synapse formation and plasticity. Although mechanisms for rapid trafficking of glutamate receptors have been identified, the molecular events underlying chronic accumulation or loss of synaptic NMDARs have remained unclear. Here we demonstrate that activity controls NMDAR synaptic accumulation by regulating forward trafficking at the endoplasmic reticulum (ER). ER export is accelerated by the alternatively spliced C2' domain of the NR1 subunit and slowed by the C2 splice cassette. This mRNA splicing event at the C2/C2' site is activity dependent, with C2' variants predominating upon activity blockade and C2 variants abundant with increased activity. The switch to C2' accelerates NMDAR forward trafficking by enhancing recruitment of nascent NMDARs to ER exit sites via binding of a divaline motif within C2' to COPII coats. These results define a novel pathway underlying activity-dependent targeting of glutamate receptors, providing an unexpected mechanistic link between activity, mRNA splicing, and membrane trafficking during excitatory synapse modification. PMID:14642281

  4. Osmoregulation of Na(+)-inositol cotransporter activity and mRNA levels in brain glial cells.

    PubMed

    Paredes, A; McManus, M; Kwon, H M; Strange, K

    1992-12-01

    During plasma hypertonicity brain volume is regulated acutely by electrolyte uptake and chronically by accumulation of organic solutes such as inositol. Cultured rat C6 glioma cells, an astrocyte-like cell line, show a similar pattern of volume control. Volume regulatory accumulation of inositol requires external inositol, indicating that membrane transport plays a central role in this process. The inositol uptake pathway is Na+ dependent and exhibits Michaelis-Menten kinetics. Chronic hypertonic acclimation results in a twofold increase in the maximum velocity of the transporter without changing the Km. Hypertonic stress also results in a 17-fold increase in transporter mRNA. Elevation of mRNA levels precedes activation of the transporter by 4-6 h, suggesting that increased inositol uptake is mediated by synthesis and membrane insertion of new transport proteins. Reacclimation of hypertonic cells to isotonicity causes a rapid reduction of transporter mRNA levels to control levels within 4 h. In contrast, downregulation of transport activity does not begin until between 10 and 24 h after reexposure to isotonicity. PMID:1476169

  5. The Promoter Methylation Status and mRNA Expression Levels of CTCF and SIRT6 in Sporadic Breast Cancer

    PubMed Central

    Wang, Da; Zhang, Xuemei

    2014-01-01

    Promoter hypermethylation causes gene silencing and is thought to be an early event in carcinogenesis. This study was to detect promoter methylation status and mRNA expression levels of CCCTC-binding factor (CTCF) and sirtuin 6 (SIRT6), and to explore the relationship between methylation and mRNA expression in breast cancer patient samples. Promoter methylation analysis and expression profile analysis of two genes were performed by methylation-specific PCR, bisulfite sequencing PCR, and quantitative real-time PCR in cancer lesions and matched normal tissues. The promoter region of CTCF has not been hypermethylated in all patient samples. In contrast, methylation of SIRT6 gene was present in invasive cancers (93.5%) and matched normal tissues (96.8%) from 62 patients. Promoter hypermethylation of SIRT6 was also observed in ductal carcinoma in situ (three of three) and matched normal tissues (two of three). mRNA expression of CTCF and SIRT6 in invasive tumors showed a lower level than that in paired normal tissues (p=0.008 and p=0.030, respectively). The fold change values of CTCF expression were significantly lower in invasive ductal cancer lesions with Ki-67-positive status (p=0.042). In conclusion, our data showed that the methylation status of CTCF and SIRT6 promoter regions was not statistically different in cancer lesions compared with matched normal tissues. No significant association between promoter methylation status and expression profiles of CTCF and SIRT6 was found in invasive breast cancers. PMID:24842653

  6. Molecular cloning, mRNA expression, and characterization of HSP90 gene from Chinese mitten crab Eriocheir japonica sinensis.

    PubMed

    Li, Peng; Zha, Jie; Zhang, Zhenhua; Huang, Hua; Sun, Hongying; Song, Daxiang; Zhou, Kaiya

    2009-07-01

    HSP90 is a highly conserved molecular chaperone important in the maturation of a broad spectrum of proteins. Using expressed sequence tag (EST) and rapid amplification of cDNA ends (RACE) techniques, an HSP90 gene designated as EjsHSP90 was cloned and characterized from the Chinese mitten crab Eriocheir japonica sinensis. The full-length cDNA of EjsHSP90 is 2,517 bp and contains an open reading frame of 2157 bp which encodes a 718 amino acid polypeptide (82.8 kDa) bearing characteristics of the HSP90 family and an ATP binding domain. Sequence alignment shows that EjsHSP90 shared 79%-96% identity with HSP90 sequences reported in other animals, and it shares identical structural features. Fluorescent real-time quantitative RT-PCR approach was performed to examine the expression profiles of EjsHSP90 mRNA by testing its relative level in three types of tissues at three different developmental stages, respectively. We found that EjsHSP90 is expressed throughout the three developmental stages but expression levels varied among different body parts of crabs. EjsHSP90 mRNA expression in the abdomen of the first crab stage is consistently higher than that of the other two stages, suggesting that EjsHSP90 gene is involved in the crabs' early developmental process, especially in the crab brachyurization process. Results from quantitative RT-PCR excluded the possibility that the expression of EjsHSP90 mRNA is induced primarily by osmotic stress. Phylogenetic analyses reveal that HSP90 gene is informative and complementary for reconstruction of arthropod phylogenetic relationships. PMID:19166961

  7. Effects of starter feeding and early weaning on GHR mRNA expression in liver and rumen of lambs from birth to 84 days of age.

    PubMed

    Wang, Fangbin; Li, Chong; Li, Fadi; Wang, Weimin; Wang, Xiaojuan; Liu, Ting; Ma, Zhiyuan; Li, Baosheng

    2016-06-01

    The growth hormone receptor (GHR) is associated with animal growth and development. To investigate such effects on GHR gene expression, a total of 102 Hu lambs were randomly allocated to one of three groups (Group 1: starter diet from 7 d of age, weaning at 56 d of age; Group 2: starter diet from 42 d of age, weaning at 56 d of age; Group 3: starter diet from 7 d of age; weaning at 28 d of age). Six lambs from each group were sacrificed every 14 d to investigate the effects of starter feeding and weaning age on GHR mRNA expression in the liver and rumen. The results revealed that GHR mRNA expression was significantly higher in the liver and rumen (p < 0.05) than in other tissues. Early starter feeding up-regulated hepatic GHR mRNA expression on days 14, 28, 42 and 56 and ruminal GHR mRNA expression on days 28, 42, 70, and 84 (p < 0.05). Early weaning up-regulated hepatic GHR mRNA expression on days 56, 70 and 84 and ruminal GHR mRNA expression on days 42, 56, 70 and 84 (p < 0.05). Dietary and weaning regimes and age affected the hepatic and ruminal GHR mRNA expression. PMID:27032032

  8. A peptide fraction from germinated soybean protein down-regulates PTTG1 and TOP2A mRNA expression, inducing apoptosis in cervical cancer cells.

    PubMed

    Robles-Ramírez, María del Carmen; Ramón-Gallegos, Eva; Mora-Escobedo, Rosalva; Torres-Torres, Nimbe

    2012-01-01

    The aim of this study was to evaluate the effect of a peptide fraction, obtained from a germinated soybean protein hydrolysate, on the viability, apoptosis and cancer related gene expression in HeLa cells. Soybean was germinated for 0-6 days and proteins were isolated from the seeds. Protein isolates, without ethanol-soluble phytochemicals, were hydrolyzed with digestive enzymes and their effect on growth in HeLa cells was evaluated. The most active hydrolysate was separated by ultrafiltration into five peptide fractions. A >10 kDa fraction was the most active against cancer cells. This fraction down-regulated PTTG1 and TOP2A mRNA expression (two genes considered as therapeutic targets) and induced apoptosis in cancer cells activating the caspase cascade and causing DNA fragmentation. Germinated soy protein isolates could be a bioactive ingredient of functional food. PMID:22545419

  9. Expression of beta 3-adrenoceptor mRNA in rat brain.

    PubMed Central

    Summers, R. J.; Papaioannou, M.; Harris, S.; Evans, B. A.

    1995-01-01

    The reverse transcription/polymerase chain reaction was used to demonstrate beta 3-adrenoceptor mRNA in rat brain regions. Levels were highest in hippocampus, cerebral cortex and striatum and lower in hypothalamus, brainstem and cerebellum. Images Figure 1 PMID:8590968

  10. Genome-wide identification and analysis of mRNA expression in fibroblasts, ES cells, and iPS cells.

    PubMed

    Hirai, Hiroyuki; Kikyo, Nobuaki

    2016-03-01

    Genome-wide expression patterns of mRNA were compared between mouse embryonic fibroblasts (MEFs), embryonic stem cells (ESCs), and various types of induced pluripotent stem cells (iPSCs). iPSCs were established and maintained using modified Oct4 with or without exogenous leukemia inhibitory factor (LIF) and used to identify mRNAs that were potentially involved in the LIF-independence. The data have been deposited in the NCBI's Gene Expression Omnibus (GEO) database with the accession number GSE65563. PMID:26981399

  11. Genome-wide identification and analysis of mRNA expression in fibroblasts, ES cells, and iPS cells

    PubMed Central

    Hirai, Hiroyuki; Kikyo, Nobuaki

    2015-01-01

    Genome-wide expression patterns of mRNA were compared between mouse embryonic fibroblasts (MEFs), embryonic stem cells (ESCs), and various types of induced pluripotent stem cells (iPSCs). iPSCs were established and maintained using modified Oct4 with or without exogenous leukemia inhibitory factor (LIF) and used to identify mRNAs that were potentially involved in the LIF-independence. The data have been deposited in the NCBI's Gene Expression Omnibus (GEO) database with the accession number GSE65563. PMID:26981399

  12. Stearoylethanolamide exerts anorexic effects in mice via down-regulation of liver stearoyl-coenzyme A desaturase-1 mRNA expression.

    PubMed

    Terrazzino, Salvatore; Berto, Fiorenzo; Dalle Carbonare, Maurizio; Fabris, Michele; Guiotto, Adriano; Bernardini, Daniele; Leon, Alberta

    2004-10-01

    Given the recent demonstration that oleoylethanolamide (OEA), a cannabinoid receptor-inactive N-acylethanolamine, decreases food intake by activating the nuclear receptor PPARalpha (peroxisome proliferator-activated receptor alpha) in the periphery, we here evaluated the effects of both saturated and unsaturated C18 N-acylethanolamides (C18:0; C18:1; C18:2) in mice feeding behavior after overnight starvation. Our results show stearoylethanolamide (SEA, C18:0) exerts, unlike other unsaturated C18 homologs, a marked dose-dependent anorexic effect evident already at 2 h after its intraperitoneal administration. In addition, oral administration of SEA (25 mg/kg) was also effective in reducing food consumption, an effect ascribed to the molecule itself and not to its catabolites. Moreover, although the anorexic response to oral administered SEA was not associated with changes in the levels of various hematochemical parameters (e.g., glucose, cholesterol, triglycerides, leptin) nor in liver mRNA expression of peroxisome proliferator-activated receptors (PPARs) including PPARalpha, the anorexic effect of SEA was interestingly accompanied by a reduction in liver stearoyl-CoA desaturase-1 (SCD-1) mRNA expression. As SCD-1 has been recently proposed as a molecular target for the treatment of obesity, the novel observation provided here that SEA reduces food intake in mice in a structurally selective manner, in turn, correlated with downregulation of liver SCD-1 mRNA expression, has the potential of providing new insights on a class of lipid mediators with suitable properties for the pharmacological treatment of over-eating dysfunctions. PMID:15289450

  13. Changes in neurotransmitter levels and proinflammatory cytokine mRNA expressions in the mice olfactory bulb following nanoparticle exposure

    SciTech Connect

    Tin-Tin-Win-Shwe Mitsushima, Dai; Yamamoto, Shoji; Fukushima, Atsushi; Funabashi, Toshiya; Kobayashi, Takahiro; Fujimaki, Hidekazu

    2008-01-15

    Recently, there have been increasing reports that nano-sized component of particulate matter can reach the brain and may be associated with neurodegenerative diseases. Previously, our laboratory has studied the effect of intranasal instillation of nano-sized carbon black (CB) (14 nm and 95 nm) on brain cytokine and chemokine mRNA expressions and found that 14-nm CB increased IL-1{beta}, TNF-{alpha}, CCL2 and CCL3 mRNA expressions in the olfactory bulb, not in the hippocampus of mice. To investigate the effect of a single administration of nanoparticles on neurotransmitters and proinflammatory cytokines in a mouse olfactory bulb, we performed in vivo microdialysis and real-time PCR methods. Ten-week-old male BALB/c mice were implanted with guide cannula in the right olfactory bulb and, 1 week later, were instilled vehicle or CB (14 nm, 250 {mu}g) intranasally. Six hours after the nanoparticle instillation, the mice were intraperitoneally injected with normal saline or 50 {mu}g of bacteria cell wall component lipoteichoic acid (LTA), which may potentiate CB-induced neurologic effect. Extracellular glutamate and glycine levels were significantly increased in the olfactory bulb of CB-instilled mice when compared with vehicle-instilled control mice. Moreover, we found that LTA further increased glutamate and glycine levels. However, no alteration of taurine and GABA levels was observed in the olfactory bulb of the same mice. We also detected immunological changes in the olfactory bulb 11 h after vehicle or CB instillation and found that IL-1{beta} mRNA expression was significantly increased in CB- and LTA-treated mice when compared with control group. However, TNF-{alpha} mRNA expression was increased significantly in CB- and saline-treated mice when compared with control group. These findings suggest that nanoparticle CB may modulate the extracellular amino acid neurotransmitter levels and proinflammatory cytokine IL-1 {beta} mRNA expressions synergistically with LTA

  14. [Effects of PTK787 on cell proliferation and expression of fak mRNA in K562].

    PubMed

    Di, Xiao-Hua; Chen, Ri-Ling; Liu, Xiao-Li; Tian, Chuan; Guo, Ya-Nan

    2010-06-01

    The aim of this study was to investigate the effects of tyrosine kinase inhibitor PTK787 on cell proliferation, cell cycle and the expression of fak mRNA of human chronic myeloid leukemia (CML) cell line K562, and to explore the mechanism of PTK787 against acute myeloid leukemia. The MTT method was used to detect the effects of PTK787 in various concentrations and at different time points on proliferation of K562 cells; the flow cytometry was used to determine the effects of PTK787 in different concentrations on cell cycle of K562 cells; the RT-PCR was used to assay the expression of fak mRNA in K562 cells treated with PTK787 for 48 hours. The results showed that along with increasing of the concentration and prolonging of time, the inhibitory rate of PTK787 on K562 proliferation was gradually enhanced. The comparison between various concentration groups at same time or comparison between various time groups in same concentration showed significant differences (p < 0.05), in which the effect of 320 micromol/L PTK787 on cells was strongest, while the continuous increase of PTK787 concentration or prolong of action time did not enhance the inhibitory rate on K562 proliferation. With increasing of drug concentration, the cell proportion in G(1) phase gradually increased, the cell proportion in S phase gradually decreased, the comparison between various groups revealed significant differences (p < 0.05), however the continuous increase of drug concentration from 160 micromol/L did not obviously change the cell proportion in phases of cell cycle. With increasing of drug concentration, the expression of fak mRNA in K562 cells gradually reduced with significant differences between various groups (p < 0.05), but with continuous increase of drug concentration from 160 micromol/L, the effect of PTK787 on the expression of fak mRNA in K562 cells also did not obviously change. It is concluded that the PTK787 shows effect of anti-leukemia cells through inhibiting transformation

  15. Changes in neurotransmitter levels and proinflammatory cytokine mRNA expressions in the mice olfactory bulb following nanoparticle exposure.

    PubMed

    Tin-Tin-Win-Shwe; Mitsushima, Dai; Yamamoto, Shoji; Fukushima, Atsushi; Funabashi, Toshiya; Kobayashi, Takahiro; Fujimaki, Hidekazu

    2008-01-15

    Recently, there have been increasing reports that nano-sized component of particulate matter can reach the brain and may be associated with neurodegenerative diseases. Previously, our laboratory has studied the effect of intranasal instillation of nano-sized carbon black (CB) (14 nm and 95 nm) on brain cytokine and chemokine mRNA expressions and found that 14-nm CB increased IL-1 beta, TNF-alpha, CCL2 and CCL3 mRNA expressions in the olfactory bulb, not in the hippocampus of mice. To investigate the effect of a single administration of nanoparticles on neurotransmitters and proinflammatory cytokines in a mouse olfactory bulb, we performed in vivo microdialysis and real-time PCR methods. Ten-week-old male BALB/c mice were implanted with guide cannula in the right olfactory bulb and, 1 week later, were instilled vehicle or CB (14 nm, 250 microg) intranasally. Six hours after the nanoparticle instillation, the mice were intraperitoneally injected with normal saline or 50 mug of bacteria cell wall component lipoteichoic acid (LTA), which may potentiate CB-induced neurologic effect. Extracellular glutamate and glycine levels were significantly increased in the olfactory bulb of CB-instilled mice when compared with vehicle-instilled control mice. Moreover, we found that LTA further increased glutamate and glycine levels. However, no alteration of taurine and GABA levels was observed in the olfactory bulb of the same mice. We also detected immunological changes in the olfactory bulb 11 h after vehicle or CB instillation and found that IL-1 beta mRNA expression was significantly increased in CB- and LTA-treated mice when compared with control group. However, TNF-alpha mRNA expression was increased significantly in CB- and saline-treated mice when compared with control group. These findings suggest that nanoparticle CB may modulate the extracellular amino acid neurotransmitter levels and proinflammatory cytokine IL-1 beta mRNA expressions synergistically with LTA in the

  16. Versican gene expression in human articular cartilage and comparison of mRNA splicing variation with aggrecan.

    PubMed Central

    Grover, J; Roughley, P J

    1993-01-01

    The chondrocytes in human articular cartilage from subjects of all ages express mRNAs for both of the aggregating proteoglycans aggrecan and versican, although the level of expression of versican mRNA is much lower than that of aggrecan mRNA. Aggrecan shows alternative splicing of the epidermal growth factor (EGF)-like domain within its C-terminal globular region, but there is no evidence for a major difference in situ in the relative expression of this domain with age. At all ages studied from birth to the mature adult, a greater proportion of transcripts lacked the EGF domain. The relative proportions of the two transcripts did not change upon culture and passage of isolated chondrocytes. In contrast, the neighbouring complement regulatory protein (CRP)-like domain was predominantly expressed irrespective of age, but cell culture did result in variation of the splicing of this domain. Versican possesses two EGF-like domains and one CRP-like domain, but at all ages the three domains were predominantly present in all transcripts. This situation persisted upon culture and passage of the chondrocytes. Thus, unlike aggrecan, the versican expressed by human articular cartilage does not appear to undergo alternative splicing of its C-terminal globular region, either in cartilage in situ or in chondrocytes in culture. Images Figure 1 Figure 2 Figure 3 Figure 4 Figure 5 Figure 6 Figure 7 PMID:8484718

  17. Runx3 Expression Inhibits Proliferation and Distinctly Alters mRNA Expression of Bax in AGS and A549 Cancer Cells

    PubMed Central

    Torshabi, Maryam; Faramarzi, Mohammad Ali; Tabatabaei Yazdi, Mojtaba; Ostad, Seyyed Naser; Gharemani, Mohammad Hosein

    2011-01-01

    Runx3, a member of Runt-related transcription factor (Runx) proteins with tumor suppressor effect, is a tissue–restricted and cancer related transcription factor that regulate cell proliferation and growth, as well as differentiation. In the present study, exogenous Run3 was transiently expressed in AGS (human gastric adenocarcinoma), with undetectable Runx3 protein and in A549 (human lung carcinoma) with low levels of endogenous Runx3 protein. The GFP tagged Runx3 was transfected into AGS and A549 cells using fugene6 and PolyFect and Runx3 expression was confirmed by fluorescent microscopy and RT-PCR. The effect of Runx3 transfection on cell proliferation was determined by MTT assay and the results were confirmed by the trypan blue dye exclusion method. The effect of Runx3 expression on mRNA expression of BCL2-associated X protein (Bax) was evaluated using RT-PCR. In AGS and A549 cells, Runx3 expression inhibited cell proliferation (p < 0.01). The growth inhibition was less in A549 cells. We show that Runx3 expression increases Bax mRNA expression in AGS cells when compared with control (p < 0.05), but no significant differences in mRNA expression was observed in both examined cells. Runx3 expression has antiproliferative effect in AGS cell perhaps via increase in expression of Bax. The effect of Runx3 on A549 cells’ viability which has endogenous level of Runx3 is not related to Bax. These findings implicate a complex regulation by Runx3 in inhibition of cell proliferation utilizing Bax. PMID:24250365

  18. Striatal mRNA expression patterns underlying peak dose l-DOPA-induced dyskinesia in the 6-OHDA hemiparkinsonian rat.

    PubMed

    Smith, L M; Parr-Brownlie, L C; Duncan, E J; Black, M A; Gemmell, N J; Dearden, P K; Reynolds, J N J

    2016-06-01

    l-DOPA is the primary pharmacological treatment for relief of the motor symptoms of Parkinson's disease (PD). With prolonged treatment (⩾5years) the majority of patients will develop abnormal involuntary movements as a result of l-DOPA treatment, known as l-DOPA-induced dyskinesia. Understanding the underlying mechanisms of dyskinesia is a crucial step toward developing treatments for this debilitating side effect. We used the 6-hydroxydopamine (6-OHDA) rat model of PD treated with a three-week dosing regimen of l-DOPA plus the dopa decarboxylase inhibitor benserazide (4mg/kg and 7.5mg/kgs.c., respectively) to induce dyskinesia in 50% of individuals. We then used RNA-seq to investigate the differences in mRNA expression in the striatum of dyskinetic animals, non-dyskinetic animals, and untreated parkinsonian controls at the peak of dyskinesia expression, 60min after l-DOPA administration. Overall, 255 genes were differentially expressed; with significant differences in mRNA expression observed between all three groups. In dyskinetic animals 129 genes were more highly expressed and 14 less highly expressed when compared with non-dyskinetic and untreated parkinsonian controls. In l-DOPA treated animals 42 genes were more highly expressed and 95 less highly expressed when compared with untreated parkinsonian controls. Gene set cluster analysis revealed an increase in expression of genes associated with the cytoskeleton and phosphoproteins in dyskinetic animals compared with non-dyskinetic animals, which is consistent with recent studies documenting an increase in synapses in dyskinetic animals. These genes may be potential targets for drugs to ameliorate l-DOPA-induced dyskinesia or as an adjunct treatment to prevent their occurrence. PMID:26968766

  19. Enh