Science.gov

Sample records for activity mrna level

  1. Calpain expression in lymphoid cells. Increased mRNA and protein levels after cell activation.

    PubMed

    Deshpande, R V; Goust, J M; Chakrabarti, A K; Barbosa, E; Hogan, E L; Banik, N L

    1995-02-10

    Although calpain is ubiquitously present in human tissues and is thought to play a role in demyelination, its activity is very low in resting normal lymphocytes. To determine the nature of calpain expression at the mRNA and protein levels in human lymphoid cells, we studied human T lymphocytic, B lymphocytic, and monocytic lines as well as peripheral blood mononuclear cells. Stimulation of cells with the phorbol ester phorbol myristate acetate and the calcium ionophore A23187 resulted in increased calpain mRNA and protein expression. Calpain mRNA expression is also increased in human T cells stimulated with anti-CD3. A dissociation between the increases of RNA and protein suggested that calpain could be released from the cells; the subsequent experiments showed its presence in the extracellular environment. 5,6-Dichloro-1b-D-ribofuranosylbenzimidazole, a reversible inhibitor of mRNA synthesis, reduced calpain mRNA levels by 50-67% and protein levels by 72-91%. Its removal resulted in resumption of both calpain mRNA and protein synthesis. Cycloheximide, a translational inhibitor, reduced calpain protein levels by 77-81% and calpain mRNA levels by 96% in activated THP-1 cells. Interferon-gamma induced calpain mRNA and protein in U-937 and THP-1 cells. Dexamethasone increased mRNA expression in THP-1 cells. Our results indicate that activation of lymphoid cells results in de novo synthesis and secretion of calpain.

  2. Digestive enzyme activity and mRNA level of trypsin in embryonic redclaw crayfish, Cherax quadricarnatus

    NASA Astrophysics Data System (ADS)

    Luo, Wen; Zhao, Yunlong; Zhou, Zhongliang; An, Chuanguang; Ma, Qiang

    2008-02-01

    The digestive enzyme activity and mRNA level of trypsin during the embryonic development of Cherax quadricarinatus were analyzed using biochemical and Fluorogenic Quantitative PCR (FQ—PCR) methods. The results show that the activities of trypsin and chymotrypsin had two different change patterns. Trypsin specific activity increased rapidly in the early stages of development and still remained high in preparation for the hatch stage. However, chymotrypsin activity peaked in stage 4 of embryonic development and decreased significantly in the last stage. The mRNA level of trypsin was elevated in all stages and two peak values were observed in stages 2 and 5 respectively. The results indicate that trypsin is very important for the utilization of the yolk during embryonic development and for the assimilation of dietary protein for larvae. The gene of trypsin is probably regulated at transcriptional level. The mRNA levels of trypsin can reflect not only trypsin activity, but also the regulatory mechanism for expression of trypsin gene to a certain degree.

  3. The nonlinear dynamics and fluctuations of mRNA levels in cross-talking pathway activated transcription.

    PubMed

    Yu, Jianshe; Sun, Qiwen; Tang, Moxun

    2014-12-21

    Gene transcription is a stochastic process, and is often activated by multiple signal transduction pathways. In this work, we study gene transcription activated randomly by two cross-talking pathways, with the messenger RNA (mRNA) molecules being produced in a simple birth and death process. We derive the analytical formulas for the mean and the second moment of mRNA copy numbers and characterize the nature of transcription noise. We find that the stationary noise strength Φ is close to its baseline limit 1 when the mRNA level is high due to strong activation or stable transcription, or the mRNA level is low due to unstable transcription or ineffective mRNA production. If Φ stays well above 1, then the gene is infrequently active but mRNAs are accumulated rapidly once it is active. In this case, the system generates a transcriptional bursting, and the mean mRNA level peaks at a finite time. By examining the nonlinear dependance of Φ on transcriptional efficiency, we show that the maximum noise strength is attained only when the gene is silent in the majority of cells as observed in recent experiments. By comparing the current findings with our previous results in sequential pathway model, we come up with a profound conclusion that parallel, cross-talking pathways tend to increase transcription noise, whereas sequential pathways tend to reduce transcription noise. A further study on gene transcription activated by entangling pathways may help us reveal the subtle connection between the characteristics of transcription noise and the topology of genetic network.

  4. Activity and mRNA Levels of Enzymes Involved in Hepatic Fatty Acid Synthesis in Rats Fed Naringenin.

    PubMed

    Hashimoto, Toru; Ide, Takashi

    2015-11-04

    We investigated the physiological activity of naringenin in affecting hepatic lipogenesis and serum and liver lipid levels in rats. Rats were fed diets containing 0, 1, or 2.5 g/kg naringenin for 15 d. Naringenin at a dietary level of 2.5 g/kg significantly decreased the activities and the mRNA levels of various lipogenic enzymes and sterol regulatory element binding protein-1c (SREBP-1c) mRNA level. The activities and the mRNA levels were also 9-22% and 12-38% lower, respectively, in rats fed a 1 g/kg naringenin diet than in the animals fed a naringenin-free diet, although the differences were not significant in many cases. Naringenin at 2.5 g/kg significantly lowered serum triacylglycerol, cholesterol, and phospholipid and hepatic triacylglycerol and cholesterol. This flavonoid at 1.0 g/kg also significantly lowered these parameters except for serum triacylglycerol. Naringenin levels in serum and liver dose-dependently increased, and hepatic concentrations reached levels that can affect various signaling pathways.

  5. Activity regulates the levels of acetylcholine receptor alpha-subunit mRNA in cultured chicken myotubes.

    PubMed Central

    Klarsfeld, A; Changeux, J P

    1985-01-01

    In vitro blocking the spontaneous activity of primary cultures of chicken embryo myotubes with tetrodotoxin increases approximately equal to 2-fold their content in surface acetylcholine receptor. To investigate this effect at the level of gene expression, chicken genomic DNA sequences coding for the acetylcholine receptor alpha subunit were isolated and characterized. They were shown to belong to a single-copy, polymorphic gene with at least two alleles in the chicken strain utilized. Probes derived from these genomic clones were used to quantitate levels of alpha-subunit mRNA. In culture, a 2-day exposure to tetrodotoxin increased these mRNA levels up to 13-fold, a value similar to that observed after denervation of chick leg muscle (approximately equal to 17-fold). Actin mRNA levels varied little in any of these experiments. These results support the notion that membrane electrical activity affects acetylcholine receptor expression by regulating the accumulation of the corresponding mRNAs. Images PMID:2989833

  6. NOX4 activity is determined by mRNA levels and reveals a unique pattern of ROS generation

    PubMed Central

    Serrander, Lena; Cartier, Laetitia; Bedard, Karen; Banfi, Botond; Lardy, Bernard; Plastre, Olivier; Sienkiewicz, Andrzej; Fórró, Lászlo; Schlegel, Werner; Krause, Karl-Heinz

    2007-01-01

    NOX4 is an enigmatic member of the NOX (NADPH oxidase) family of ROS (reactive oxygen species)-generating NADPH oxidases. NOX4 has a wide tissue distribution, but the physiological function and activation mechanisms are largely unknown, and its pharmacology is poorly understood. We have generated cell lines expressing NOX4 upon tetracycline induction. Tetracycline induced a rapid increase in NOX4 mRNA (1 h) followed closely (2 h) by a release of ROS. Upon tetracycline withdrawal, NOX4 mRNA levels and ROS release decreased rapidly (<24 h). In membrane preparations, NOX4 activity was selective for NADPH over NADH and did not require the addition of cytosol. The pharmacological profile of NOX4 was distinct from other NOX isoforms: DPI (diphenyleneiodonium chloride) and thioridazine inhibited the enzyme efficiently, whereas apocynin and gliotoxin did not (IC50>100 μM). The pattern of NOX4-dependent ROS generation was unique: (i) ROS release upon NOX4 induction was spontaneous without need for a stimulus, and (ii) the type of ROS released from NOX4-expressing cells was H2O2, whereas superoxide (O2−) was almost undetectable. Probes that allow detection of intracellular O2− generation yielded differential results: DHE (dihydroethidium) fluorescence and ACP (1-acetoxy-3-carboxy-2,2,5,5-tetramethylpyrrolidine) ESR measurements did not detect any NOX4 signal, whereas a robust signal was observed with NBT. Thus NOX4 probably generates O2− within an intracellular compartment that is accessible to NBT (Nitro Blue Tetrazolium), but not to DHE or ACP. In conclusion, NOX4 has a distinct pharmacology and pattern of ROS generation. The close correlation between NOX4 mRNA and ROS generation might hint towards a function as an inducible NOX isoform. PMID:17501721

  7. Gibberellin (GA3) enhances cell wall invertase activity and mRNA levels in elongating dwarf pea (Pisum sativum) shoots

    NASA Technical Reports Server (NTRS)

    Wu, L. L.; Mitchell, J. P.; Cohn, N. S.; Kaufman, P. B.

    1993-01-01

    The invertase (EC 3.2.1.26) purified from cell walls of dwarf pea stems to homogeneity has a molecular mass of 64 kilodaltons (kD). Poly(A)+RNA was isolated from shoots of dwarf pea plants, and a cDNA library was constructed using lambda gt11 as an expression vector. The expression cDNA library was screened with polyclonal antibodies against pea cell wall invertase. One invertase cDNA clone was characterized as a full-length cDNA with 1,863 base pairs. Compared with other known invertases, one homologous region in the amino acid sequence was found. The conserved motif, Asn-Asp-Pro-Asn-Gly, is located near the N-terminal end of invertase. Northern blot analysis showed that the amount of invertase mRNA (1.86 kb) was rapidly induced to a maximal level 4 h after GA3 treatment, then gradually decreased to the control level. The mRNA level at 4 h in GA3-treated peas was fivefold higher than that of the control group. The maximal increase in activity of pea cell wall invertase elicited by GA3 occcured at 8 h after GA3 treatment. This invertase isoform was shown immunocytochemically to be localized in the cell walls, where a 10-fold higher accumulation occurred in GA3-treated tissue compared with control tissue. This study indicates that the expression of the pea shoot cell-wall invertase gene could be regulated by GA3 at transcriptional and/or translational levels.

  8. Serum IL8 and mRNA level of CD11b in circulating neutrophils are increased in clinically amyopathic dermatomyositis with active interstitial lung disease.

    PubMed

    Zou, Jing; Chen, Jie; Yan, Qingran; Guo, Qiang; Bao, Chunde

    2016-01-01

    The objective of this study is to assess serum IL8 and the potential activity of circulating neutrophils on relative messenger RNA (mRNA) levels and their relationship with disease activity in clinically amyopathic dermatomyositis (CADM) associated with interstitial lung disease (ILD). We studied 18 CADM patients and compared them with 18 classic dermatomyositis (DM) patients and 18 healthy control subjects. Serum IL8 level and mRNA expressions of neutrophils (chemokine (C-X-C motif) receptor 1 (CXCR1), cluster of differentiation molecule 11b (CD11b), cluster of differentiation 64 (CD64), myeloid cell leukemia 1 (MCL1), interleukin-18 (IL18)) were detected. The overproduction of serum IL8 level was most significant in the CADM group with active period. The mRNA expressions of CD11b, IL18, and MCL1 were greatly increased in the neutrophils in patients with CADM compared with DM or healthy controls. Up-expressions of CD11b, IL18, and MCL1 were detected in the neutrophils in CADM patients of active period compared with remission period. A positive correlation was found between CD11b mRNA level and high-resolution computed tomography (HRCT) score, in CADM associated with ILD. Serum IL8 level and mRNA levels of CD11b, MCL1, and IL18 in circulating neutrophils are related with the disease activity of CADM-ILD. The mRNA level of CD11b is positively correlated with HRCT score in CADM-ILD.

  9. Vanadate and selenium inhibit the triiodothyronine induced enzyme activity and mRNA level for both fatty acid synthase and malic enzyme

    SciTech Connect

    Zhu, Y.; Mirmiran, R.; Goodridge, A.G.; Stapleton, S.R. Western Michigan Univ., Kalamazoo )

    1991-03-15

    In chick-embryo hepatocytes in culture, triiodothyronine stimulates enzyme activity, mRNA level and transcription rate for both fatty acid synthase (FAS) and malic enzyme (ME). Insulin alone has no effect but amplifies the induction by T3. Recent evidence has demonstrated the insulin-mimicking action of vanadate and selenium on various physiological processes. Little information, however, is available on the affects of vanadate and selenium on the expression of genes that are regulated by insulin. These studies were initiated to test the potential of vanadate and selenium to mimic the amplification affect of insulin on the T3 induction of FAS and ME. In chick-embryo hepatocytes incubated in a chemically defined medium, addition of T3 for 48h causes an increase in the enzyme activity and mRNA level for both FAS and ME. Addition of sodium vanadate or sodium selenate (20 {mu}M) coincident with the T3 almost completely inhibited the stimulation of FAS and ME activity and accumulation of their respective mRNA's. Fifty percent maximal inhibition occurred at about 3-40{mu}M vanadate or 5-10{mu}M selenium. Vanadate and selenium similarity inhibited FAS and ME enzyme activity and mRNA level when the cells were incubated in the presence of insulin and T3. The effect of these metals was selective; isocitrate dehydrogenase activity as well as the level of glyceraldehyde 3-phosphate mRNA were not affected by any of the additions made to the cells in culture. This effect by vanadate and selenium also does not appear to be a generalized effect of metals on lipogenic enzymes as molydate under similar experimental conditions has no effect on either the enzyme activity or mRNA level of FAS or ME. Studies are continuing to determine the mechanism of action of these agents on the regulation of lipogenic enzymes.

  10. Activation of gene expression by herpes simplex virus type 1 ICP0 occurs at the level of mRNA synthesis.

    PubMed Central

    Jordan, R; Schaffer, P A

    1997-01-01

    ICP0 is a nuclear phosphoprotein involved in the activation of herpes simplex virus type 1 (HSV-1) gene expression during lytic infection and reactivation from viral latency. Although available evidence suggests that ICP0 acts at the level of transcription, definitive studies specifically addressing this issue have not been reported. In the present study we measured the ability of ICP0 to activate gene expression (i) from promoters representing the major kinetic classes of viral genes in transient expression assays and (ii) from the same promoters during viral infection at multiplicities of infection ranging from 0.1 to 5.0 PFU/cell. The levels of synthesis and steady-state accumulation of mRNA, mRNA stability, and levels of protein synthesis were compared in cells transfected with a reporter plasmid in the presence and absence of ICP0 and in cells infected with wild-type HSV-1 or an ICP0 null mutant, n212. In transient expression assays and during viral infection at all multiplicities tested, the levels of steady-state mRNA and protein were significantly lower in the absence of ICP0, indicating that ICP0 activates gene expression at the level of mRNA accumulation. In transient expression assays and during infection at low multiplicities (< 1 PFU/cell) in the presence or absence of ICP0, marked increases in the levels of viral mRNAs accompanied by proportional increases in the levels of protein synthesis were observed with increasing multiplicity. At a high multiplicity (5 PFU/cell) in the presence or absence of ICP0, mRNA levels did not increase as a function of multiplicity and changes in the levels of protein were no longer related to changes in the levels of mRNA. Collectively, these tests indicate that transcription of viral genes is rate limiting at low multiplicities and that translation is rate limiting at high multiplicities, independent of ICP0. Consistent with the lower levels of mRNA detected in the absence of ICP0, the rates of transcription initiation

  11. Dietary soya protein intake and exercise training have an additive effect on skeletal muscle fatty acid oxidation enzyme activities and mRNA levels in rats.

    PubMed

    Morifuji, Masashi; Sanbongi, Chiaki; Sugiura, Katsumi

    2006-09-01

    Exercise training and regular physical activity increase oxidation of fat. Enhanced oxidation of fat is important for preventing lifestyle diseases such as hypertension and obesity. The aim of the present study in rats was to determine whether intake of dietary soya protein and exercise training have an additive effect on the activity and mRNA expression of enzymes involved in skeletal muscle fatty acid oxidation. Male Sprague-Dawley rats (n 32) were assigned randomly into four groups (eight rats per group) and then divided further into sedentary or exercise-trained groups fed either casein or soya protein diets. Rats in the exercise groups were trained for 2 weeks by swimming for 120 min/d, 6 d/week. Exercise training decreased hepatic triacylglycerol levels and retroperitoneal adipose tissue weight and increased skeletal muscle carnitine palmitoyltransferase 1 (CPT1) activity and mRNA expression of CPT1, beta-hydroxyacyl-CoA dehydrogenase (HAD), acyl-CoA oxidase, PPARgamma coactivator 1alpha (PGC1alpha) and PPARalpha. Soya protein significantly decreased hepatic triacylglycerol levels and epididymal adipose tissue weight and increased skeletal muscle CPT1 activity and CPT1, HAD, acyl-CoA oxidase, medium-chain acyl-CoA dehydrogenase, PGC1alpha and PPARalpha mRNA levels. Furthermore, skeletal muscle HAD activity was the highest in exercise-trained rats fed soya protein. We conclude that exercise training and soya protein intake have an important additive role on induction of PPAR pathways, leading to increased activity and mRNA expression of enzymes involved in fatty acid oxidation in skeletal muscle and reduced accumulation of body fat.

  12. Contraction-induced increases in Na+-K+-ATPase mRNA levels in human skeletal muscle are not amplified by activation of additional muscle mass.

    PubMed

    Nordsborg, Nikolai; Thomassen, Martin; Lundby, Carsten; Pilegaard, Henriette; Bangsbo, Jens

    2005-07-01

    The present study tested the hypothesis that exercise with a large compared with a small active muscle mass results in a higher contraction-induced increase in Na(+)-K(+)-ATPase mRNA expression due to greater hormonal responses. Furthermore, the relative abundance of Na(+)-K(+)-ATPase subunit alpha(1), alpha(2), alpha(3), alpha(4), beta(1), beta(2), and beta(3) mRNA in human skeletal muscle was investigated. On two occasions, eight subjects performed one-legged knee extension exercise (L) or combined one-legged knee extension and bilateral arm cranking (AL) for 5.00, 4.25, 3.50, 2.75, and 2.00 min separated by 3 min of rest. Leg exercise power output was the same in AL and L, but heart rate at the end of each exercise interval was higher in AL compared with L. One minute after exercise, arm venous blood lactate was higher in AL than in L. A higher level of blood epinephrine and norepinephrine was evident 3 min after exercise in AL compared with L. Nevertheless, none of the exercise-induced increases in alpha(1), alpha(2), beta(1), and beta(3) mRNA expression levels were higher in AL compared with L. The most abundant Na(+)-K(+)-ATPase subunit at the mRNA level was beta(1), which was expressed 3.4 times than alpha(2). Expression of alpha(1), beta(2), and beta(3) was less than 5% of the alpha(2) expression, and no reliable detection of alpha(3) and alpha(4) was possible. In conclusion, activation of additional muscle mass does not result in a higher exercise-induced increase in Na(+)-K(+)-ATPase subunit-specific mRNA.

  13. Alpha1-chimaerin, a Rac1 GTPase-activating protein, is expressed at reduced mRNA levels in the brain of Alzheimer's disease patients

    PubMed Central

    Kato, Tomoko; Konishi, Yoshihiro; Shimohama, Shun; Beach, Thomas G.; Akatsu, Hiroyasu; Tooyama, Ikuo

    2015-01-01

    Alpha1-chimaerin is a GTPase-activating protein (GAP) for Rac1, a member of the Rho small GTPase family, whose action leads to the inactivation of Rac1. Rac1 activity is upregulated in Alzheimer's disease, but little is known about the role of α1-chimaerin. In this study, we investigated the expression and localization of α1-chimaerin mRNA in postmortem human brains from patients with Alzheimer's disease and control subjects. In situ hybridization studies demonstrated that α1-chimaerin was expressed by neurons in the neo-cortex of the temporal lobe and the hippocampus of both controls and Alzheimer's disease cases, with the signal intensity dramatically decreased in patients with Alzheimer's disease. Real-time PCR analysis confirmed a significant reduction of α1-chimaerin mRNA expression in the temporal cortex of Alzheimer's disease cases. In contrast, α2-chimaerin mRNA levels showed no significant difference between the groups. The present study showed reduced α1-chimaerin expression in the brain of Alzheimer's disease cases, suggesting a role in the upregulation of Rac1 activity during the disease process. PMID:25676811

  14. In vitro Effects of Four Native Brazilian Medicinal Plants in CYP3A4 mRNA Gene Expression, Glutathione Levels, and P-Glycoprotein Activity

    PubMed Central

    Mazzari, Andre L. D. A.; Milton, Flora; Frangos, Samantha; Carvalho, Ana C. B.; Silveira, Dâmaris; de Assis Rocha Neves, Francisco; Prieto, Jose M.

    2016-01-01

    Erythrina mulungu Benth. (Fabaceae), Cordia verbenacea A. DC. (Boraginaceae), Solanum paniculatum L. (Solanaceae) and Lippia sidoides Cham. (Verbenaceae) are medicinal plant species native to Brazil shortlisted by the Brazilian National Health System for future clinical use. However, nothing is known about their effects in metabolic and transporter proteins, which could potentially lead to herb-drug interactions (HDI). In this work, we assess non-toxic concentrations (100 μg/mL) of the plant infusions for their in vitro ability to modulate CYP3A4 mRNA gene expression and intracellular glutathione levels in HepG2 cells, as well as P-glycoprotein (P-gp) activity in vincristine-resistant Caco-2 cells (Caco-2 VCR). Their mechanisms of action were further studied by measuring the activation of human pregnane X receptor (hPXR) in transiently co-transfected HeLa cells and the inhibition of γ-glutamyl transferase (GGT) in HepG2 cells. Our results show that P-gp activity was not affected in any case and that only Solanum paniculatum was able to significantly change CYP3A4 mRNA gene expression (twofold decrease, p < 0.05), this being correlated with an antagonist effect upon hPXR (EC50 = 0.38 mg/mL). Total intracellular glutathione levels were significantly depleted by exposure to Solanum paniculatum (-44%, p < 0.001), Lippia sidoides (-12%, p < 0.05) and Cordia verbenacea (-47%, p < 0.001). The latter plant extract was able to decrease GGT activity (-48%, p < 0.01). In conclusion, this preclinical study shows that the administration of some of these herbal medicines may be able to cause disturbances to metabolic mechanisms in vitro. Although Erythrina mulungu appears safe in our tests, active pharmacovigilance is recommended for the other three species, especially in the case of Solanum paniculatum. PMID:27594838

  15. Manganese peroxidase mRNA and enzyme activity levels during bioremediation of polycyclic aromatic hydrocarbon-contaminated soil with Phanerochaete chrysosporium.

    PubMed Central

    Bogan, B W; Schoenike, B; Lamar, R T; Cullen, D

    1996-01-01

    mRNA extraction from soil and quantitation by competitive reverse transcription-PCR were combined to study the expression of three manganese peroxidase (MnP) genes during removal of polycyclic aromatic hydrocarbons from cultures of Phanerochaete chrysosporium grown in presterilized soil. Periods of high mnp transcript levels and extractable MnP enzyme activity were temporally correlated, although separated by a short (1- to 2-day) lag period. This time frame also coincided with maximal rates of fluorene oxidation and chrysene disappearance in soil cultures, supporting the hypothesis that high ionization potential polycyclic aromatic hydrocarbons are oxidized in soil via MnP-dependent mechanisms. The patterns of transcript abundance over time in soil-grown P. chrysosporium were similar for all three of the mnp mRNAs studied, indicating that transcription of this gene family may be coordinately regulated under these growth conditions. PMID:8779576

  16. Stearoyl coenzyme A desaturase enzyme activity and mRNA levels are not different in subcutaneous adipose tissue from Angus and American Wagyu steers.

    PubMed

    Cameron, P J; Rogers, M; Oman, J; May, S G; Lunt, D K; Smith, S B

    1994-10-01

    We proposed that greater stearoyl coenzyme A (CoA) desaturase enzyme activity caused the elevated monounsaturated fatty acids observed in American Wagyu adipose tissue. Stearoyl CoA desaturase mRNA concentrations and enzyme activities were measured in subcutaneous adipose samples from Angus (n = 5) and American Wagyu (n = 5), fed to the Japanese market end point. A rat liver stearoyl CoA desaturase cDNA clone was used to measure the relative amounts of stearoyl CoA desaturase mRNA. Enzyme activities and mRNA concentrations, as measured by laser densitometry of slot-blot autoradiograms, were not significantly different between the two breeds at this stage of growth. This investigation has demonstrated that, at this stage of maturity, differences in fatty acid composition between Angus and American Wagyu steers cannot be attributed to differences in stearoyl CoA desaturase enzyme activity.

  17. Expression of retinoblastoma gene product (pRb) in mantle cell lymphomas. Correlation with cyclin D1 (PRAD1/CCND1) mRNA levels and proliferative activity.

    PubMed Central

    Jares, P.; Campo, E.; Pinyol, M.; Bosch, F.; Miquel, R.; Fernandez, P. L.; Sanchez-Beato, M.; Soler, F.; Perez-Losada, A.; Nayach, I.; Mallofré, C.; Piris, M. A.; Montserrat, E.; Cardesa, A.

    1996-01-01

    Mantle cell lymphomas (MCLs) are molecularly characterized by bcl-1 rearrangement and constant cyclin D1 (PRAD-1/CCND1) gene overexpression. Cyclin D1 is a G1 cyclin that participates in the control of the cell cycle progression by interacting with the retinoblastoma gene product (pRb). Inactivation of the Rb tumor suppressor gene has been implicated in the development of different types of human tumors including some high grade non-Hodgkin's lymphomas. To determine the role of the retinoblastoma gene in the pathogenesis of MCLs and its possible interaction with cyclin D1, pRb expression was examined in 23 MCLs including 17 typical and 6 blastic variants by immunohistochemistry and Western blot. Rb gene structure was studied in 13 cases by Southern blot. Cytogenetic analysis was performed in 5 cases. The results were compared with the cyclin D1 mRNA levels examined by Northern analysis, and the proliferative activity of the tumors was measured by Ki-67 growth fraction and flow cytometry. pRb was expressed in all MCLs. The expression varied from case to case (mean, 14.1% of positive cells; range, 1.3 to 42%) with a significant correlation with the proliferative activity of the tumors (mitotic index r = 0.85; Ki-67 r = 0.7; S phase = 0.73). Blastic variants showed higher numbers of pRb-positive cells (mean, 29%) than the typical cases (10%; P < 0.005) by immunohistochemistry and, concordantly, higher levels of expression by Western blot. In addition, the blastic cases also had an increased expression of the phosphorylated protein. No alterations in Rb gene structure were observed by Southern blot analysis. Cyclin D1 mRNA levels were independent of pRb expression and the proliferative activity of the tumors. These findings suggest that pRb in MCLs is normally regulated in relation to the proliferative activity of the tumors. Cyclin D1 overexpression may play a role in the maintenance of cell proliferation by overcoming the suppressive growth control of pRb. Images

  18. Peroxisome proliferator-activated receptor alpha (PPARalpha) activators, bezafibrate and Wy-14,643, increase uncoupling protein-3 mRNA levels without modifying the mitochondrial membrane potential in primary culture of rat preadipocytes.

    PubMed

    Cabrero, A; Alegret, M; Sánchez, R; Adzet, T; Laguna, J C; Vázquez, M

    2000-08-15

    Uncoupling proteins (UCPs) are inner mitochondrial membrane transporters which act as pores for H(+) ions, dissipating the electrochemical gradient that develops during mitochondrial respiration at the expense of ATP synthesis. We have studied the effects of two fibrates, bezafibrate and Wy-14,643, on UCP-3 and UCP-2 mRNA levels in primary monolayer cultures of rat adipocytes and undifferentiated preadipocytes. Treatment with both PPARalpha activators for 24 h up-regulated UCP-3 mRNA levels. Thus, bezafibrate treatment resulted in an 8-fold induction in UCP-3 mRNA levels in preadipocytes compared with the 3.5-fold induction observed in adipocytes. Differences in the induction of UCP-3 between these cells correlated well with the higher expression of PPARalpha and RXRalpha mRNA values in preadipocytes compared to adipocytes. Wy-14,643 caused similar effects on UCP-3 mRNA expression. In contrast to UCP-3, UCP-2 mRNA levels were only slightly modified by bezafibrate in adipocytes. The induction in UCP-3 expression was not accompanied by changes in the mitochondrial membrane potential of rat primary preadipocytes after bezafibrate or Wy-14,643 treatment. Since it has been proposed that UCP-3 could be involved in the regulation of the use of fatty acids as fuel substrates, the UCP-3 induction achieved after bezafibrate and Wy-14, 643 treatment may indicate a higher oxidation of fatty acids, limiting their availability to be stored as triglycerides. This change may result in a reduced rate of conversion of preadipocytes to adipocytes, which directly affects fat depots.

  19. Effect of Salvia miltiorrhiza root extract on brain acetylcholinesterase and butyrylcholinesterase activities, their mRNA levels and memory evaluation in rats.

    PubMed

    Ozarowski, Marcin; Mikolajczak, Przemyslaw L; Piasecka, Anna; Kujawski, Radoslaw; Bartkowiak-Wieczorek, Joanna; Bogacz, Anna; Szulc, Michal; Kaminska, Ewa; Kujawska, Malgorzata; Gryszczynska, Agnieszka; Kachlicki, Piotr; Buchwald, Waldemar; Klejewski, Andrzej; Seremak-Mrozikiewicz, Agnieszka

    2017-05-01

    Salvia miltiorrhiza (Lamiaceae), one of the most important and popular plants of traditional medicine of Asia, is used for the prevention and treatment of cardiovascular diseases and in central nervous system disturbances. The main aim of this study was to assess the influence of subchronic (28-fold) administration of Salvia miltiorrhiza root extract (SE, 200mg/kg, p.o.) on behavioural activity and memory of rats and to evaluate the activities of cholinesterases (AChE and BuChE) and gene expression levels of AChE and BuChE as well as of beta-secretase (BACE1) in the hippocampus and frontal cortex in vivo. Huperzine A (HU, 0.5mg/kg b.w., p.o.) served as a positive control substance, whereas scopolamine (0.5mg/kg, i.p.) injection was used as a well-known model of memory impairment. The results showed that subchronic administration of SE led to an improvement of long-term memory of rats. Strong inhibition of AChE and BuChE mRNA transcription in the frontal cortex of rats treated with SE or HU was observed. The BACE1 transcript level was significantly decreased. AChE activity was statistically significantly inhibited in the frontal cortex and the hippocampus by SE (47% and 55%, respectively). Similar effects were observed in the case of HU. In summary, activity of SE provides evidence that the plant can be a source of drugs used in the treatment of Alzheimer disease.

  20. Requirements for intercistronic distance and level of eukaryotic initiation factor 2 activity in reinitiation on GCN4 mRNA vary with the downstream cistron.

    PubMed Central

    Grant, C M; Miller, P F; Hinnebusch, A G

    1994-01-01

    Translational control of the GCN4 gene in response to amino acid availability is mediated by four short open reading frames in the GCN4 mRNA leader (uORFs) and by phosphorylation of eukaryotic initiation factor 2 (eIF-2). We have proposed that reducing eIF-2 activity by phosphorylation of its alpha subunit or by a mutation in the eIF-2 recycling factor eIF-2B allows ribosomes which have translated the 5'-proximal uORF1 to bypass uORF2 to uORF4 and reinitiate at GCN4 instead. In this report, we present two lines of evidence that all ribosomes which synthesize GCN4 have previously translated uORF1, resumed scanning, and reinitiated at the GCN4 start site. First, GCN4 expression was abolished when uORF1 was elongated to make it overlap the beginning of the GCN4 coding region. Second, GCN4 expression was reduced as uORF1 was moved progressively closer to GCN4, decreasing to only 5% of the level seen in the absence of all uORFs when only 32 nucleotides separated uORF1 from GCN4. We additionally found that inserting small synthetic uORFs between uORF4 and GCN4 inhibited GCN4 expression under derepressing conditions, confirming the idea that reinitiation at GCN4 under conditions of diminished eIF-2 activity is proportional to the distance of the reinitiation site downstream from uORF1. While uORF4 and GCN4 appear to be equally effective at capturing ribosomes scanning downstream from the 5' cap of mRNA, these two ORFs differ greatly in their ability to capture reinitiating ribosomes scanning from uORF1. When the active form of eIF-2 is present at high levels, reinitiation appears to be much more efficient at uORF4 than at GCN4 when each is located very close to uORF1. Under conditions of reduced recycling of eIF-2, reinitiation at uORF4 is substantially suppressed, which allows ribosomes to reach the GCN4 start site; in contrast, reinitiation at GCN4 in constructs lacking uORF4 is unaffected by decreasing the level of eIF-2 activity. This last finding raises the

  1. Unique regulation of glyoxalase I activity during osmotic stress response in the fission yeast Schizosaccharomyces pombe: neither the mRNA nor the protein level of glyoxalase I increase under conditions that enhance its activity.

    PubMed

    Takatsume, Yoshifumi; Izawa, Shingo; Inoue, Yoshiharu

    2005-03-01

    Glyoxalase I is a ubiquitous enzyme that catalyzes the conversion of methylglyoxal, a toxic 2-oxoaldehyde derived from glycolysis, to S-D-lactoylglutathione. The activity of glyoxalase I in the fission yeast Schizosaccharomyces pombe was increased by osmotic stress induced by sorbitol. However, neither the mRNA levels of its structural gene nor its protein levels increased under the same conditions. Cycloheximide blocked the induction of glyoxalase I activity in cells exposed to osmotic stress. In addition, glyoxalase I activity was increased in stress-activated protein kinase-deficient mutants (wis1 and spc1). We present evidence for the post-translational regulation of glyoxalase I by osmotic stress in the fission yeast.

  2. 1,25-Dihydroxyvitamin D3 and its analogues increase catalase at the mRNA, protein and activity level in a canine transitional carcinoma cell line.

    PubMed

    Middleton, R P; Nelson, R; Li, Q; Blanton, A; Labuda, J A; Vitt, J; Inpanbutr, N

    2015-12-01

    Antioxidant enzymes, such as catalase, superoxide dismutases (SOD), MnSOD and Cu/ZnSOD, protect cells by scavenging reactive oxygen species (ROS). Numerous studies have reported the anti-cancer effects of 1,25-dihydroxyvitamin D3 (calcitriol) and its related analogues, seocalcitol and analogue V. In this study, canine bladder transitional cell carcinoma (cbTCC) cells were used to determine effects of calcitriol and its related analogues on antioxidant enzyme gene expression, protein expression and activity. Catalase mRNA was increased in response to calcitriol (10(-7) M), and seocalcitol (10(-7) and 10(-9) M). MnSOD mRNA was decreased in response to calcitriol at 10(-7) M. Catalase was significantly increased in response to calcitriol (10(-7) and 10(-9) M), and seocalcitol (10(-9) M). Catalase enzymatic activity increased in response to calcitriol, seocalcitol and analogue V (10(-9) M). In addition, global gene expression analysis identified the involvement of mitogen-activated protein kinase (MAPK) signalling in cbTCC's response to calcitriol and seocalcitol treatment.

  3. Gastrointestinal stromal tumors - quantitative detection of the Ki-67, TPX2, TOP2A, and hTERT telomerase subunit mRNA levels to determine proliferation activity and a potential for aggressive biological behavior.

    PubMed

    Kalfusova, A; Hilska, I; Krskova, L; Kalinova, M; Linke, Z; Kodet, R

    2016-01-01

    Gastrointestinal stromal tumors (GISTs) have an unpredictable biological potential ranging from benign to malignant. Molecular markers involved in the mechanisms of proliferation and cellular senescence may provide additional information about biological behavior of the tumor. The aim of the present study was to investigate Ki-67, TPX2, TOP2A and hTERT mRNA expression levels in specimens from patients with GISTs to define relationships between proliferation activity and biological potential and progression of the disease. We measured Ki-67, TPX2, TOP2A and hTERT mRNA levels using quantitative real-time reverse transcription PCR (RQ RT PCR). The highest Ki-67, TPX2, TOP2A and hTERT mRNA expression levels were found in the highly proliferative BLs (18 specimens), in comparison with GISTs (137 specimens) and LMSs (9 specimens). Patients with GISTs and adequate information about mitotic activity, tumor size and anatomical site (84 specimens) were divided into two groups - GISTs with benign (29 patients) and with malignant (55 patients) potential. We observed association between higher Ki-67, TPX2 and hTERT mRNA levels and the GISTs with malignant potential. Univariate analysis (57 patients with available follow-up information) of survival (Kaplan Meier curves method) revealed a correlation between higher levels of TPX2, Ki-67 and hTERT markers and shorter event-free survival (EFS) or poorer overall survival (OS). The results demonstrate the importance of quantitative assessment of the proliferation activity in GISTs. Proliferation markers of Ki-67, TPX2, TOP2A and hTERT are suitable markers for detection the proliferation activity and telomerase activity of these tumors. Furthermore, the assessment of TPX2, Ki-67 and hTERT expression levels is appropriate for determination of malignant potential of GISTs.

  4. Biomarkers of endocrine disruption at the mRNA level

    SciTech Connect

    Denslow, N.D.; Bowman, C.J.; Robinson, G.; Lee, H.S.; Ferguson, R.J.; Hemmmer, M.J.; Folmar, L.C.

    1999-07-01

    A large number of estrogen-mimicking, anthropogenic chemicals capable of disrupting normal reproductive function have been identified. The ubiquitous distribution of these compounds, many as components of complex industrial or municipal waste, has spurred an effort to develop methods to screen for chemicals which disrupt normal endocrine regulation of reproduction. The authors have developed assays that both allow exposure of animals in vivo and measure the response at the level of gene activation. The authors have developed a probe for measuring the induction of vitellogenin mRNA by Northern Blot in livers of sheepshead minnows treated with 17-{beta}-estradiol. The authors have also developed a strategy for using Differential Display Polymerase Chain Reaction for determining gene induction profiles following exposure to estradiol. These methods should be adaptable to a variety of structurally diverse estrogen mimics.

  5. Evaluation of Alpha 1-Antitrypsin and the Levels of mRNA Expression of Matrix Metalloproteinase 7, Urokinase Type Plasminogen Activator Receptor and COX-2 for the Diagnosis of Colorectal Cancer

    PubMed Central

    Bujanda, Luis; Sarasqueta, Cristina; Cosme, Angel; Hijona, Elizabeth; Enríquez-Navascués, José M.; Placer, Carlos; Villarreal, Eloisa; Herreros-Villanueva, Marta; Giraldez, María D.; Gironella, Meritxell; Balaguer, Francesc; Castells, Antoni

    2013-01-01

    Background Colorectal cancer (CRC) is the second most common cause of death from cancer in both men and women in the majority of developed countries. Molecular tests of blood could potentially provide this ideal screening tool. Aim Our objective was to assess the usefulness of serum markers and mRNA expression levels in the diagnosis of CRC. Methods In a prospective study, we measured mRNA expression levels of 13 markers (carbonic anhydrase, guanylyl cyclase C, plasminogen activator inhibitor, matrix metalloproteinase 7 (MMP7), urokinase-type plasminogen activator receptor (uPAR), urokinase-type plasminogen activator, survivin, tetranectin, vascular endothelial growth factor (VEGF), cytokeratin 20, thymidylate synthase, cyclooxygenase 2 (COX-2), and CD44) and three proteins in serum (alpha 1 antitrypsin, carcinoembryonic antigen (CEA) and activated C3 in 42 patients with CRC and 33 with normal colonoscopy results. Results Alpha 1-antitrypsin was the serum marker that was most useful for CRC diagnosis (1.79±0.25 in the CRC group vs 1.27±0.25 in the control group, P<0.0005). The area under the ROC curve for alpha 1-antitrypsin was 0.88 (0.79–0.96). The mRNA expression levels of five markers were statistically different between CRC cases and controls: those for which the ROC area was over 75% were MMP7 (0.81) and tetranectin (0.80), COX-2 (0.78), uPAR (0.78) and carbonic anhydrase (0.77). The markers which identified early stage CRC (Stages I and II) were alpha 1-antitrypsin, uPAR, COX-2 and MMP7. Conclusions Serum alpha 1-antitrypsin and the levels of mRNA expression of MMP7, COX-2 and uPAR have good diagnostic accuracy for CRC, even in the early stages. PMID:23300952

  6. BIOMARKERS OF ENDOCRINE DISRUPTION AT THE MRNA LEVEL

    EPA Science Inventory

    Denslow, Nancy D., Christopher J. Bowman, Gillian Robinson, H. Stephen Lee, Ronald J. Ferguson, Michael J. Hemmer and Leroy C. Folmar. 1999. Biomarkers of Endocrine Disruption at the mRNA Level. In: Environmental Toxicology and Risk Assessment: Standardization of Biomarkers for ...

  7. Are we missing a mineralocorticoid in teleost fish? Effects of cortisol, deoxycorticosterone and aldosterone on osmoregulation, gill Na+,K+-ATPase activity and isoform mRNA levels in Atlantic salmon

    USGS Publications Warehouse

    McCormick, S.D.; Regish, A.; O'Dea, M. F.; Shrimpton, J.M.

    2008-01-01

    It has long been held that cortisol, acting through a single receptor, carries out both glucocorticoid and mineralocorticoid actions in teleost fish. The recent finding that fish express a gene with high sequence similarity to the mammalian mineralocorticoid receptor (MR) suggests the possibility that a hormone other than cortisol carries out some mineralocorticoid functions in fish. To test for this possibility, we examined the effect of in vivo cortisol, 11-deoxycorticosterone (DOC) and aldosterone on salinity tolerance, gill Na+,K+-ATPase (NKA) activity and mRNA levels of NKA α1a and α1b in Atlantic salmon. Cortisol treatment for 6–14 days resulted in increased, physiological levels of cortisol, increased gill NKA activity and improved salinity tolerance (lower plasma chloride after a 24 h seawater challenge), whereas DOC and aldosterone had no effect on either NKA activity or salinity tolerance. NKA α1a and α1b mRNA levels, which increase in response to fresh water and seawater acclimation, respectively, were both upregulated by cortisol, whereas DOC and aldosterone were without effect. Cortisol, DOC and aldosterone had no effect on gill glucocorticoid receptor GR1, GR2 and MR mRNA levels, although there was some indication of possible upregulation of GR1 by cortisol (p = 0.07). The putative GR blocker RU486 inhibited cortisol-induced increases in salinity tolerance, NKA activity and NKA α1a and α1b transcription, whereas the putative MR blocker spironolactone had no effect. The results provide support that cortisol, and not DOC or aldosterone, is involved in regulating the mineralocorticoid functions of ion uptake and salt secretion in teleost fish.

  8. Increased apolipoprotein E and c-fms gene expression without elevated interleukin 1 or 6 mRNA levels indicates selective activation of macrophage functions in advanced human atheroma.

    PubMed Central

    Salomon, R N; Underwood, R; Doyle, M V; Wang, A; Libby, P

    1992-01-01

    Cells found within atherosclerotic lesions can produce in culture protein mediators that may participate in atherogenesis. To test whether human atheromata actually contain transcripts for certain of these genes, we compared levels of mRNAs in carotid or coronary atheromata and in nonatherosclerotic human vessels by polymerase chain reaction (PCR) amplification of cDNAs reverse-transcribed from RNA. We measured PCR products (generated during exponential amplification) by incorporation of 32P-labeled primers. Levels of interleukin 1 alpha, 1 beta, or 6 mRNAs in plaques and controls did not differ. Compared to uninvolved vessels, plaques did contain higher levels of mRNA encoding platelet-derived growth factor A chain (42 +/- 24 vs. 12 +/- 10 fmol of product; mean +/- SD; n = 8 and 8, respectively; P = 0.007) and B chain (41 +/- 36 vs. 4 +/- 3 fmol of product, n = 14 and 6, respectively; P = 0.024). Atherosclerotic lesions consistently had much higher levels of apolipoprotein E (apoE) mRNA than did control vessels (131 +/- 71 vs. 5 +/- 3 fmol of product; n = 12 and 10, respectively; P less than 0.001). Direct RNA blot analyses confirmed elevated levels of apoE mRNA in plaque extracts. To test whether mononuclear phagocytes might be a source of the apoE mRNA, we studied a selective marker for cells of the monocytic lineage, the c-fms protooncogene, which encodes the receptor for macrophage colony-stimulating factor. Plaques also contained elevated levels of c-fms mRNA (30 +/- 17 vs. 5 +/- 3 fmol of product; n = 10 and 7, respectively; P = 0.002). Immunohistochemical colocalization demonstrated apoE protein in association with macrophages in plaques, whereas nonatherosclerotic vessels showed no immunoreactive apoE. ApoE produced locally in atheroma might modulate the functions of lesional T cells or promote "reverse cholesterol transport" by associating with high density lipoprotein particles, thus targeting them for peripheral uptake. Macrophages within the advanced

  9. Effect of polysaccharides extract of rhizoma atractylodis macrocephalae on thymus, spleen and cardiac indexes, caspase-3 activity ratio, Smac/DIABLO and HtrA2/Omi protein and mRNA expression levels in aged rats.

    PubMed

    Guo, Ling; Sun, Yong Le; Wang, Ai Hong; Xu, Chong En; Zhang, Meng Yuan

    2012-10-01

    This study was designed to determine the possible protective effect of polysaccharides extract of rhizoma atractylodis macrocephalae on heart function in aged rats. Polysaccharides extract of rhizoma atractylodis macrocephalae was administered to aged rats. Results showed that thymus, spleen and cardiac indexs were significantly increased, whereas caspase-3 activity ratio, Smac/DIABLO and HtrA2/Omi protein expression, Smac/DIABLO and HtrA2/Omi mRNA expression levels were markedly reduced. It can be concluded that polysaccharides extract of rhizoma atractylodis macrocephalae may enhance immunity and improve heart function in aged rats.

  10. Immunosuppression during active tuberculosis is characterized by decreased interferon- gamma production and CD25 expression with elevated forkhead box P3, transforming growth factor- beta , and interleukin-4 mRNA levels.

    PubMed

    Roberts, Teri; Beyers, Nulda; Aguirre, Ana; Walzl, Gerhard

    2007-03-15

    The balance between effector and regulatory responses after Mycobacterium tuberculosis infection may dictate outcome and progression to active disease. We investigated effector and regulatory T cell responses in bacille Calmette-Guerin (BCG)-stimulated peripheral blood mononuclear cells and whole blood cultures from persons with active tuberculosis (TB), persons with TB at the end of 6 months of treatment, and healthy control subjects with latent TB infection. All 3 groups displayed BCG-induced increases in effector and regulatory T cell phenotypes as defined by CD4(+)CD25(lo) and CD4(+)CD25(hi) T cells, respectively. In case patients with active disease, BCG stimulation induced the lowest increase of CD25, CD4(+)CD25(hi), CTLA-4, and interferon- gamma . However, these case patients expressed the highest mRNA levels of forkhead box P3, transforming growth factor (TGF)- beta , and interleukin (IL)-4 and a lower T-bet : GATA-3 ratio. There were no significant differences in IL-4 delta 2, IL-10, or TGF- beta receptor-II mRNA expression between groups. Together, these results suggest that immunosuppression seen after mycobacterial stimulation in case patients with active TB is associated with naturally occurring regulatory T cells.

  11. Effect of Alpha-Hederin, the active constituent of Nigella sativa, on miRNA-126, IL-13 mRNA levels and inflammation of lungs in ovalbumin-sensitized male rats

    PubMed Central

    Fallahi, Maryam; Keyhanmanesh, Rana; Khamaneh, Amir Mahdi; Ebrahimi Saadatlou, Mohammad Ali; Saadat, Saeideh; Ebrahimi, Hadi

    2016-01-01

    Objective: In previous studies the therapeutic effects of Nigella sativa have been demonstrated on asthmatic animals. In the present study, the preventive effect of single dose of alpha-hederin, its active constituent, has been evaluated on lung inflammation and some inflammatory mediators in lungs of ovalbumin sensitized rat in order to elicit its mechanism. Materials and Methods: Forty rats were randomly grouped in 4 groups; control (C), sensitized (S), sensitized pretreated groups with thymoquinone (3 mg/kg i.p., S+TQ) and alpha-hederin (0.02 mg/kg i.p., S+AH). Levels of IL-13 mRNA and miRNA-126 in lung tissue and its pathological changes in each group were assessed. Results: Elevated levels of miRNA-126, IL-13 mRNA and pathological changes were observed in the sensitized group compared to the control group (p<0.001 to p<0.05). All of these factors were significantly reduced in S+TQ and S+AH groups in comparison to S group (p<0.001 to p<0.05). Although alpha-hederin decreased the levels of miRNA-126, IL-13 mRNA and pathological changes in comparison with thymoquinone, the results were statistically not significant. Conclusion: The results suggested that alpha-hederin had preventive effect on sensitized rats like thymoquinone. It may intervene in miRNA-126 expression, which consequently could interfere with IL-13 secretion pathway leading to a reduction in inflammatory responses. PMID:27247924

  12. Circulating RANKL is inversely related to RANKL mRNA levels in bone in osteoarthritic males

    PubMed Central

    Findlay, David; Chehade, Mellick; Tsangari, Helen; Neale, Susan; Hay, Shelley; Hopwood, Blair; Pannach, Susan; O'Loughlin, Peter; Fazzalari, Nicola

    2008-01-01

    Introduction The relationship of circulating levels of receptor activator of nuclear factor-κB ligand (RANKL) and osteoprotegerin (OPG) with the expression of these molecules in bone has not been established. The objective of this study was to measure, in humans, the serum levels of RANKL and OPG, and the corresponding levels in bone of mRNA encoding these proteins. Methods Fasting blood samples were obtained on the day of surgery from patients presenting for hip replacement surgery for primary osteoarthritis (OA). Intraoperatively, samples of intertrochanteric trabecular bone were collected for analysis of OPG and RANKL mRNA, using real time RT-PCR. Samples were obtained from 40 patients (15 men with age range 50 to 79 years, and 25 women with age range 47 to 87 years). Serum total RANKL and free OPG levels were measured using ELISA. Results Serum OPG levels increased over the age range of this cohort. In the men RANKL mRNA levels were positively related to age, whereas serum RANKL levels were negatively related to age. Again, in the men serum RANKL levels were inversely related (r = -0.70, P = 0.007) to RANKL mRNA levels. Also in the male group, RANKL mRNA levels were associated with a number of indices of bone structure (bone volume fraction relative to bone tissue volume, specific surface of bone relative to bone tissue volume, and trabecular thickness), bone remodelling (eroded surface and osteoid surface), and biochemical markers of bone turnover (serum alkaline phosphatase and osteocalcin, and urinary deoxypyridinoline). Conclusion This is the first report to show a relationship between serum RANKL and the expression of RANKL mRNA in bone. PMID:18182105

  13. Humoral responses in Rhodnius prolixus: bacterial feeding induces differential patterns of antibacterial activity and enhances mRNA levels of antimicrobial peptides in the midgut

    PubMed Central

    2014-01-01

    Background The triatomine, Rhodnius prolixus, is a major vector of Trypanosoma cruzi, the causative agent of Chagas disease in Latin America. It has a strictly blood-sucking habit in all life stages, ingesting large amounts of blood from vertebrate hosts from which it can acquire pathogenic microorganisms. In this context, the production of antimicrobial peptides (AMPs) in the midgut of the insect is vital to control possible infection, and to maintain the microbiota already present in the digestive tract. Methods In the present work, we studied the antimicrobial activity of the Rhodnius prolixus midgut in vitro against the Gram-negative and Gram-positive bacteria Escherichia coli and Staphylococcus aureus, respectively. We also analysed the abundance of mRNAs encoding for defensins, prolixicin and lysozymes in the midgut of insects orally infected by these bacteria at 1 and 7 days after feeding. Results Our results showed that the anterior midgut contents contain a higher inducible antibacterial activity than those of the posterior midgut. We observed that the main AMP encoding mRNAs in the anterior midgut, 7 days after a blood meal, were for lysozyme A, B, defensin C and prolixicin while in the posterior midgut lysozyme B and prolixicin transcripts predominated. Conclusion Our findings suggest that R. prolixus modulates AMP gene expression upon ingestion of bacteria with patterns that are distinct and dependent upon the species of bacteria responsible for infection. PMID:24885969

  14. Issues about the physiological functions of prolyl oligopeptidase based on its discordant spatial association with substrates and inconsistencies among mRNA, protein levels, and enzymatic activity.

    PubMed

    Myöhänen, Timo T; García-Horsman, J Arturo; Tenorio-Laranga, Jofre; Männistö, Pekka T

    2009-09-01

    Prolyl oligopeptidase (POP) is a serine endopeptidase that hydrolyses proline-containing peptides shorter than 30 amino acids. POP may be associated with cognitive functions, possibly via the cleavage of neuropeptides. Recent studies have also suggested novel non-hydrolytic and non-catalytic functions for POP. Moreover, POP has also been proposed as a regulator of inositol 1,4,5-triphosphate signaling and several other functions such as cell proliferation and differentiation, as well as signal transduction in the central nervous system, and it is suspected to be involved in pathological conditions such as Parkinson's and Alzheimer's diseases and cancer. POP inhibitors have been developed to restore the depleted neuropeptide levels encountered in aging or in neurodegenerative disorders. These compounds have shown some antiamnesic effects in animal models. However, the mechanisms of these hypothesized actions are still far from clear. Moreover, the physiological role of POP has remained unknown, and a lack of basic studies, including its distribution, is obvious. The aim of this review is to gather information about POP and to propose some novel roles for this enzyme based on its distribution and its discordant spatial association with its best known substrates.

  15. Effects of pectin pentaoligosaccharide from Hawthorn ( Crataegus pinnatifida Bunge. var. Major) on the activity and mRNA levels of enzymes involved in fatty acid oxidation in the liver of mice fed a high-fat diet.

    PubMed

    Li, Tuo-Ping; Zhu, Ru-Gang; Dong, Yin-Ping; Liu, Yong-Hui; Li, Su-Hong; Chen, Gang

    2013-08-07

    The regulatory effects of haw pectin pentaoligosaccharide (HPPS) on fatty acid oxidation-related enzyme activities and mRNA levels were investigated in the liver of high fat diet induced hyperlipidemic mice. Results showed that HPPS (150 mg/kg for 10 weeks) significantly suppresses weight gain (32.3 ± 0.26 and 21.1 ± 0.14 g for high-fat diet and HPPS groups, respectively), decreases serum triacylglycerol levels (1.64 ± 0.09 and 0.91 ± 0.02 mmol/L, respectively), and increases lipid excretion in feces (55.7 ± 0.38 and 106.4 ± 0.57 mg/g for total lipid, respectively), compared to high-fat diet as control. HPPS significantly increased the hepatic fatty acid oxidation-related enzyme activities of acyl-CoA oxidase, carnitine palmitoyltransferase I, 3-ketoacyl-CoA thiolase, and 2,4-dienoyl-CoA reductase by 53.8, 74.2, 47.1, and 24.2%, respectively. Meanwhile, the corresponding mRNAs were up-regulated by 89.6, 85.8, 82.9, and 30.9%, respectively. Moreover, HPPS was able to up-regulate the gene and protein expressions of peroxisome proliferator-activated receptor α. Results suggest that continuous HPPS ingestion may be used as dietary therapy to prevent obesity and cardiovascular diseases.

  16. Amyloid precursor protein mRNA levels in Alzheimer's disease brain.

    PubMed

    Preece, Paul; Virley, David J; Costandi, Moheb; Coombes, Robert; Moss, Stephen J; Mudge, Anne W; Jazin, Elena; Cairns, Nigel J

    2004-03-17

    Insoluble beta-amyloid deposits in Alzheimer's disease (AD) brain are proteolytically derived from the membrane bound amyloid precursor protein (APP). The APP gene is differentially spliced to produce isoforms that can be classified into those containing a Kunitz-type serine protease inhibitor domain (K(+), APP(751), APP(770), APRP(365) and APRP(563)), and those without (K(-), APP(695) and APP(714)). Given the hypothesis that Abeta is a result of aberrant catabolism of APP, differential expression of mRNA isoforms containing protease inhibitors might play an active role in the pathology of AD. We took 513 cerebral cortex samples from 90 AD and 81 control brains and quantified the mRNA isoforms of APP with TaqMan real-time RT-PCR. After adjustment for age at death, brain pH and gender we found a change in the ratio of KPI(+) to KPI(-) mRNA isoforms of APP. Three separate probes, designed to recognise only KPI(+) mRNA species, gave increases of between 28% and 50% in AD brains relative to controls (p=0.002). There was no change in the mRNA levels of KPI-(APP 695) (p=0.898). Therefore, whilst KPI-mRNA levels remained stable the KPI(+) species increased specifically in the AD brains.

  17. Transcriptional bursting explains the noise–versus–mean relationship in mRNA and protein levels

    SciTech Connect

    Dar, Roy; Shaffer, Sydney M.; Singh, Abhyudai; Razooky, Brandon S.; Simpson, Michael L.; Raj, Arjun; Weinberger, Leor S.

    2016-07-28

    Recent analysis demonstrates that the HIV-1 Long Terminal Repeat (HIV LTR) promoter exhibits a range of possible transcriptional burst sizes and frequencies for any mean-expression level. However, these results have also been interpreted as demonstrating that cell-tocell expression variability (noise) and mean are uncorrelated, a significant deviation from previous results. Here, we re-examine the available mRNA and protein abundance data for the HIV LTR and find that noise in mRNA and protein expression scales inversely with the mean along analytically predicted transcriptional burst-size manifolds. We then experimentally perturb transcriptional activity to test a prediction of the multiple burst-size model: that increasing burst frequency will cause mRNA noise to decrease along given burst-size lines as mRNA levels increase. In conclusion, the data show that mRNA and protein noise decrease as mean expression increases, supporting the canonical inverse correlation between noise and mean.

  18. Transcriptional bursting explains the noise–versus–mean relationship in mRNA and protein levels

    DOE PAGES

    Dar, Roy; Shaffer, Sydney M.; Singh, Abhyudai; ...

    2016-07-28

    Recent analysis demonstrates that the HIV-1 Long Terminal Repeat (HIV LTR) promoter exhibits a range of possible transcriptional burst sizes and frequencies for any mean-expression level. However, these results have also been interpreted as demonstrating that cell-tocell expression variability (noise) and mean are uncorrelated, a significant deviation from previous results. Here, we re-examine the available mRNA and protein abundance data for the HIV LTR and find that noise in mRNA and protein expression scales inversely with the mean along analytically predicted transcriptional burst-size manifolds. We then experimentally perturb transcriptional activity to test a prediction of the multiple burst-size model: thatmore » increasing burst frequency will cause mRNA noise to decrease along given burst-size lines as mRNA levels increase. In conclusion, the data show that mRNA and protein noise decrease as mean expression increases, supporting the canonical inverse correlation between noise and mean.« less

  19. Ammonium Chloride Ingestion Attenuates Exercise-Induced mRNA Levels in Human Muscle

    PubMed Central

    Mündel, Toby; Pilegaard, Henriette; Hawke, Emma; Leikis, Murray; Lopez-Villalobos, Nicolas; Oliveira, Rodrigo S. F.; Bishop, David J.

    2015-01-01

    Minimizing the decrease in intracellular pH during high-intensity exercise training promotes greater improvements in mitochondrial respiration. This raises the intriguing hypothesis that pH may affect the exercise-induced transcription of genes that regulate mitochondrial biogenesis. Eight males performed 10x2-min cycle intervals at 80% V˙O2peak intensity on two occasions separated by ~2 weeks. Participants ingested either ammonium chloride (ACID) or calcium carbonate (PLA) the day before and on the day of the exercise trial in a randomized, counterbalanced order, using a crossover design. Biopsies were taken from the vastus lateralis muscle before and after exercise. The mRNA level of peroxisome proliferator-activated receptor co-activator 1α (PGC-1α), citrate synthase, cytochome c and FOXO1 was elevated at rest following ACID (P<0.05). During the PLA condition, the mRNA content of mitochondrial- and glucose-regulating proteins was elevated immediately following exercise (P<0.05). In the early phase (0–2 h) of post-exercise recovery during ACID, PGC-1α, citrate synthase, cytochome C, FOXO1, GLUT4, and HKII mRNA levels were not different from resting levels (P>0.05); the difference in PGC-1α mRNA content 2 h post-exercise between ACID and PLA was not significant (P = 0.08). Thus, metabolic acidosis abolished the early post-exercise increase of PGC-1α mRNA and the mRNA of downstream mitochondrial and glucose-regulating proteins. These findings indicate that metabolic acidosis may affect mitochondrial biogenesis, with divergent responses in resting and post-exercise skeletal muscle. PMID:26656911

  20. Low-level lasers and mRNA levels of reference genes used in Escherichia coli

    NASA Astrophysics Data System (ADS)

    Teixeira, A. F.; Machado, Y. L. R. C.; Fonseca, A. S.; Mencalha, A. L.

    2016-11-01

    Low-level lasers are widely used for the treatment of diseases and antimicrobial photodynamic therapy. Reverse transcriptase quantitative polymerase chain reaction (RT-qPCR) is widely used to evaluate mRNA levels and output data from a target gene are commonly relative to a reference mRNA that cannot vary according to treatment. In this study, the level of reference genes from Escherichia coli exposed to red or infrared lasers at different fluences was evaluated. E. coli AB1157 cultures were exposed to red (660 nm) and infrared (808 nm) lasers, incubated (20 min, 37 °C), the total RNA was extracted, and cDNA synthesis was performed to evaluate mRNA levels from arcA, gyrA and rpoA genes by RT-qPCR. Melting curves and agarose gel electrophoresis were carried out to evaluate specific amplification. Data were analyzed by geNorm, NormFinder and BestKeeper. The melting curve and agarose gel electrophoresis showed specific amplification. Although mRNA levels from arcA, gyrA or rpoA genes presented no significant variations trough a traditional statistical analysis, Excel-based tools revealed that these reference genes are not suitable for E. coli cultures exposed to lasers. Our data showed that exposure to low-level red and infrared lasers at different fluences alter the mRNA levels from arcA, gyrA and rpoA in E. coli cells.

  1. Induction of human spermine oxidase SMO(PAOh1) is regulated at the levels of new mRNA synthesis, mRNA stabilization and newly synthesized protein.

    PubMed

    Wang, Yanlin; Hacker, Amy; Murray-Stewart, Tracy; Fleischer, Jennifer G; Woster, Patrick M; Casero, Robert A

    2005-03-15

    The oxidation of polyamines induced by antitumour polyamine analogues has been associated with tumour response to specific agents. The human spermine oxidase, SMO(PAOh1), is one enzyme that may play a direct role in the cellular response to the antitumour polyamine analogues. In the present study, the induction of SMO(PAOh1) enzyme activity by CPENSpm [N1-ethyl-N11-(cyclopropyl)methyl-4,8,diazaundecane] is demonstrated to be a result of newly synthesized mRNA and protein. Inhibition of new RNA synthesis by actinomycin D inhibits both the appearance of SMO(PAOh1) mRNA and enzyme activity. Similarly, inhibition of newly synthesized protein with cycloheximide prevents analogue-induced enzyme activity. Half-life determinations indicate that stabilization of SMO(PAOh1) protein does not play a significant role in analogue-induced activity. However, half-life experiments using actinomycin D indicate that CPENSpm treatment not only increases mRNA expression, but also leads to a significant increase in mRNA half-life (17.1 and 8.8 h for CPENSpm-treated cells and control respectively). Using reporter constructs encompassing the SMO(PAOh1) promoter region, a 30-90% increase in transcription is observed after exposure to CPENSpm. The present results are consistent with the hypothesis that analogue-induced expression of SMO(PAOh1) is a result of increased transcription and stabilization of SMO(PAOh1) mRNA, leading to increased protein production and enzyme activity. These data indicate that the major level of control of SMO(PAOh1) expression in response to polyamine analogues exposure is at the level of mRNA.

  2. Differential responses of intestinal glucose transporter mRNA transcripts to levels of dietary sugars.

    PubMed

    Miyamoto, K; Hase, K; Takagi, T; Fujii, T; Taketani, Y; Minami, H; Oka, T; Nakabou, Y

    1993-10-01

    Dietary sugars are known to stimulate intestinal glucose transport activity, but the specific signals involved are unknown. The Na(+)-dependent glucose co-transporter (SGLT1), the liver-type facilitative glucose transporter (GLUT2) and the intestinal-type facilitative glucose transporter (GLUT5) are all expressed in rat jejunum [Miyamoto, Hase, Taketani, Minami, Oka, Nakabou and Hagihira (1991) Biochem. Biophys. Res. Commun. 181, 1110-1117]. In the present study we have investigated the effects of dietary sugars on these glucose transporter genes. A high-glucose diet stimulated glucose transport activity and increased the levels of SGLT1 and GLUT2 mRNAs in rat jejunum. 3-O-Methylglucose, D-galactose, D-fructose, D-mannose and D-xylose can mimic the regulatory effect of glucose on the SGLT1 mRNA level in rat jejunum. However, only D-galactose and D-fructose increased the levels of GLUT2 mRNA. The GLUT5 mRNA level was increased significantly only by D-fructose. Our results suggest that the increase in intestinal transport activity in rats caused by dietary glucose is due to an increase in the levels of SGLT1 and GLUT2 mRNAs, and that these increases in mRNA may be caused by an enhancement of the transcriptional rate. Furthermore, for expression of the SGLT1 gene, the signal need not be a metabolizable or transportable substrate whereas, for expression of the GLUT2 gene, metabolism of the substrate in the liver may be necessary for signalling. Only D-fructose is an effective signal for expression of the GLUT5 gene.

  3. Light-dark condition regulates sirtuin mRNA levels in the retina.

    PubMed

    Ban, Norimitsu; Ozawa, Yoko; Inaba, Takaaki; Miyake, Seiji; Watanabe, Mitsuhiro; Shinmura, Ken; Tsubota, Kazuo

    2013-11-01

    Sirtuins (Sirt1-7) are nicotinamide adenine dinucleotide (NAD)-dependent protein deacetylases/ADP-ribosyltransferases that modulate many metabolic responses affecting aging. Sirtuins expressed in tissues and organs involved in systemic metabolism have been extensively studied. However, the characteristics of sirtuins in the retina, where local energy expenditure changes dynamically in response to light stimuli, are largely unknown. Here we analyzed sirtuin mRNA levels by real-time PCR, and found that all seven sirtuins are highly expressed in the retina compared with other tissues, such as liver. We then analyzed the sirtuin mRNA profiles in the retina over time, under a 12-h light/12-h dark cycle (LD condition) and in constant darkness (DD condition). All seven sirtuins showed significant daily variation under the LD condition, with all except Sirt6 being increased in the dark phase. The expression patterns were different under the DD condition, suggesting that sirtuin mRNA levels except Sirt6 are affected by light-dark condition. These findings were not obtained in the brain and liver. In addition, the mRNA expression patterns of Nicotinamide phosphoribosyltransferase (Nampt), peroxisome proliferator-activated receptor gamma coactivator (PGC1α), and transcription factor A, mitochondrial (Tfam) in the retina, were similar to those of the sirtuins except Sirt6. Our observations provide new insights into the metabolic mechanisms of the retina and the sirtuins' regulatory systems.

  4. Polyamines cause elevation of steroid 5α-reductase mRNA levels by suppressing mRNA degradation in C6 glioma cells.

    PubMed

    Morita, Kyoji; Lee, Mi-Sook; Her, Song; Nishibori, Naoyoshi

    2014-10-01

    Polyamines are widely distributed in living organisms, and considered to play a potential role in various cellular processes. The effects of polyamines on gene expression as well as cell proliferation have been suggested to be closely associated with the physiological and pathological functions. However, it seems necessary to investigate their potential roles in the regulation of cellular metabolism and functions. Previously, glial cells have been suggested to be involved in the protection and preservation of neuronal functions, probably through the production of neurotrophic factors in the brain. On the other hand, neuroactive 5α-reduced steroids promote glial cell differentiation, resulting in enhancement of their ability to produce brain-derived neurotrophic factor (BDNF). Based on these findings, polyamines are assumed to stimulate the expression of the gene encoding steroid 5α-reductase (5α-R), which can induce the production of neuroactive 5α-reduced steroids in glial cells. The effects of polyamines on 5α-R mRNA levels in C6 glioma cells were examined as a model experiment. In consequence, spermine (SPM) and spermidine (SPD), but not putrescine (PUT), have been shown to elevate 5α-R mRNA levels without activating the 5α-R promoter. Furthermore, SPM increased 5α-R mRNA levels under the conditions in which the mRNA biosynthesis was inhibited. Therefore, it can be speculated that polyamines increase 5α-R mRNA levels as a consequence of suppressing the degradation of mRNA.

  5. BCL6 mRNA Expression Level in Invasive Duct Carcinoma not otherwise Specified

    PubMed Central

    Badr, Eman; Masoud, Eman; Eldien, Marwa Serag

    2016-01-01

    Introduction B-Cell Lymphoma 6 (BCL6) has an oncogenic role in tumourigenesis of various malignancies. It represses genes involved in terminal differentiation and plays complementary role with Signal Transducer and Activator of Transcription 3 (STAT3) in triple-negative breast cancer cellular function. Aim To evaluate the expression of BCL6 in cancer breast and determine its correlation with the clinico-pathological features including the molecular subtype of breast carcinoma. Materials and Methods This prospective case control study was carried out on 150 patients, divided into 100 cases of invasive duct carcinoma not otherwise specified and 50 benign breast lesions including fibroadenoma and fibrocystic disease. Fresh tissues were excised, which were then subjected to RNA extraction. The BCL6 mRNA level was assessed using real-time reverse transcription Polymerase Chain Reaction (PCR). Results There was a significant higher levels of BCL6 mRNA in malignant cases compared to benign ones (p<0.001). The level of BCL6 mRNA was higher in cases showing advanced tumor stage (p<0.04), triple negative subtype and associated in situ component (p<0.001) compared to cases with an early stage, luminal or Her 2-neu positive subtypes and those lacking in situ component. Conclusion BCL6 is up-regulated in breast cancer and is associated with poor prognostic features such as advanced stage and triple negative molecular subtype. BCL6 inhibitors might be considered as targeted therapy for breast cancer. PMID:28208987

  6. Regulation of type I (epidermal) transglutaminase mRNA levels during squamous differentiation: down regulation by retinoids.

    PubMed Central

    Floyd, E E; Jetten, A M

    1989-01-01

    Squamous differentiation of rabbit tracheal epithelial cells is accompanied by an approximately 50-fold increase in the activity of type I (epidermal) transglutaminase, while the levels of type II (tissue) transglutaminase remain almost undetectable. To identify a cDNA encoding type I transglutaminase, we screened a library of cDNA clones prepared from poly(A)+ RNA isolated from squamous-differentiated rabbit tracheal epithelial cells. Four overlapping clones (represented by clone pTG-7) which span a range of 2.8 kilobases were identified; partial sequencing of pTG-7 indicated that it encodes a transglutaminaselike protein. pTG-7 hybridized to a 3.6-kilobase mRNA which is distinct from that for type II transglutaminase. pTG-7 mRNA levels were low in proliferative cells, increased dramatically in squamous-differentiated cells, and could be further enhanced by growth of the cells in high concentrations (2 mM) of calcium ions. Retinoic acid, which blocks the expression of the squamous phenotype, prevented this increase in pTG-7 mRNA levels. These changes in levels of pTG-7 mRNA parallel the changes in type I transglutaminase activity observed under similar culture conditions. These data indicate that pTG-7 encodes the mRNA for transglutaminase type I and that expression of this mRNA is negatively regulated by retinoic acid. Images PMID:2574824

  7. Regulation of hyaluronidase activity by alternative mRNA splicing.

    PubMed

    Lokeshwar, Vinata B; Schroeder, Grethchen L; Carey, Robert I; Soloway, Mark S; Iida, Naoko

    2002-09-13

    Hyaluronidase is a hyaluronic acid-degrading endoglycosidase that is present in many toxins and the levels of which are elevated in cancer. Increased concentration of HYAL1-type hyaluronidase correlates with tumor progression and is a marker for grade (G) 2 or 3 bladder cancer. Using bladder tissues and cells, prostate cancer cells, and kidney tissues and performing reverse transcription-PCR, cDNA cloning, DNA sequencing, and in vitro translation, we identified splice variants of HYAL1 and HYAL3. HYAL1v1 variant lacks a 30-amino acid (aa) sequence (301-330) present in HYAL1 protein. HYAL1v1, HYAL1v2 (aa 183-435 present in HYAL1 wild type), HYAL1v3 (aa 1-207), HYAL1v4 (aa 260-435), and HYAL1v5 (aa 340-435) are enzymatically inactive and are expressed in normal tissues/cells and G1 bladder tumor tissues. However, HYAL1 wild type is expressed in G2/G3 tumors and in invasive tumor cells. Stable transfection and HYAL1v1-specific antibody confirmed that the HYAL1 sequence from aa 301 to 330 is critical for hyaluronidase activity. All tumor cells and tissues mainly express HYAL3 variants. HYAL3v1 lacks a 30-aa sequence (299-328) present in HYAL3 protein, that is homologous to the 30-aa HYAL1 sequence. HYAL3v1, HYAL3v2 (aa 251-417 present in HYAL3 wild type), and HYAL3v3 (aa 251-417, but lacking aa 299-328), are enzymatically inactive. Although splicing of a single independent exon generates HYAL1v1 and HYAL3v1, internal exon splicing generates the other HYAL1/HYAL3 variants. These results demonstrate that alternative mRNA splicing controls cellular expression of enzymatically active hyaluronidase and may explain the elevated hyaluronidase levels in bladder/prostate cancer.

  8. Radiation-induced reductions in transporter mRNA levels parallel reductions in intestinal sugar transport

    PubMed Central

    Roche, Marjolaine; Neti, Prasad V. S. V.; Kemp, Francis W.; Agrawal, Amit; Attanasio, Alicia; Douard, Véronique; Muduli, Anjali; Azzam, Edouard I.; Norkus, Edward; Brimacombe, Michael; Howell, Roger W.

    2010-01-01

    More than a century ago, ionizing radiation was observed to damage the radiosensitive small intestine. Although a large number of studies has since shown that radiation reduces rates of intestinal digestion and absorption of nutrients, no study has determined whether radiation affects mRNA expression and dietary regulation of nutrient transporters. Since radiation generates free radicals and disrupts DNA replication, we tested the hypotheses that at doses known to reduce sugar absorption, radiation decreases the mRNA abundance of sugar transporters SGLT1 and GLUT5, prevents substrate regulation of sugar transporter expression, and causes reductions in sugar absorption that can be prevented by consumption of the antioxidant vitamin A, previously shown by us to radioprotect the testes. Mice were acutely irradiated with 137Cs gamma rays at doses of 0, 7, 8.5, or 10 Gy over the whole body. Mice were fed with vitamin A-supplemented diet (100× the control diet) for 5 days prior to irradiation after which the diet was continued until death. Intestinal sugar transport was studied at days 2, 5, 8, and 14 postirradiation. By day 8, d-glucose uptake decreased by ∼10–20% and d-fructose uptake by 25–85%. With increasing radiation dose, the quantity of heterogeneous nuclear RNA increased for both transporters, whereas mRNA levels decreased, paralleling reductions in transport. Enterocytes of mice fed the vitamin A supplement had ≥ 6-fold retinol concentrations than those of mice fed control diets, confirming considerable intestinal vitamin A uptake. However, vitamin A supplementation had no effect on clinical or transport parameters and afforded no protection against radiation-induced changes in intestinal sugar transport. Radiation markedly reduced GLUT5 activity and mRNA abundance, but high-d-fructose diets enhanced GLUT5 activity and mRNA expression in both unirradiated and irradiated mice. In conclusion, the effect of radiation may be posttranscriptional, and

  9. Increased ceramide synthase 2 and 6 mRNA levels in breast cancer tissues and correlation with sphingosine kinase expression.

    PubMed

    Erez-Roman, Racheli; Pienik, Reut; Futerman, Anthony H

    2010-01-01

    Intervention in the ceramide metabolic pathway is emerging as a novel means to regulate cancer and to modify the activity of chemotherapeutic drugs. We now study mRNA expression levels of the six ceramide synthase (CerS) genes in breast cancer tissue. CerS2 and CerS6 mRNA was significantly elevated in breast cancer tissue compared to paired normal tissue, with approximately half of the individuals showing elevated CerS2 and CerS6 mRNA. A significant correlation was found between CerS2 and CerS6 expression, and between CerS4 and CerS2/CerS6 expression. Moreover, patients that expressed higher CerS2 or 4 mRNA levels tended to show no changes in sphingosine kinase 1 levels, and likewise patients that expressed no change in CerS2 or CerS4 mRNA levels tended to express higher levels of sphingosine kinase 1. Together these results suggest an important role for the CerS genes in breast cancer etiology or diagnosis.

  10. Comparing mRNA levels using in situ hybridization of a target gene and co-stain.

    PubMed

    Wunderlich, Zeba; Bragdon, Meghan D; DePace, Angela H

    2014-06-15

    In situ hybridization is an important technique for measuring the spatial expression patterns of mRNA in cells, tissues, and whole animals. However, mRNA levels cannot be compared across experiments using typical protocols. Here we present a semi-quantitative method to compare mRNA levels of a gene across multiple samples. This method yields an estimate of the error in the measurement to allow statistical comparison. Our method uses a typical in situ hybridization protocol to stain for a target gene and an internal standard, which we refer to as a co-stain. As a proof of concept, we apply this method to multiple lines of transgenic Drosophila embryos, harboring constructs that express reporter genes to different levels. We generated this test set by mutating enhancer sequences to contain different numbers of binding sites for Zelda, a transcriptional activator. We demonstrate that using a co-stain with in situ hybridization is an effective method to compare mRNA levels across samples. This method requires only minor modifications to existing in situ hybridization protocols and uses straightforward analysis techniques. This strategy can be broadly applied to detect quantitative, spatially resolved changes in mRNA levels.

  11. Comparing mRNA levels using in situ hybridization of a target gene and co-stain

    PubMed Central

    Wunderlich, Zeba; Bragdon, Meghan D; DePace, Angela H

    2014-01-01

    In situ hybridization is an important technique for measuring the spatial expression patterns of mRNA in cells, tissues, and whole animals. However, mRNA levels cannot be compared across experiments using typical protocols. Here we present a semi-quantitative method to compare mRNA levels of a gene across multiple samples. This method yields an estimate of the error in the measurement to allow statistical comparison. Our method uses a typical in situ hybridization protocol to stain for a target gene and an internal standard, which we refer to as a co-stain. As a proof of concept, we apply this method to multiple lines of transgenic Drosophila embryos, harboring constructs that express reporter genes to different levels. We generated this test set by mutating enhancer sequences to contain different numbers of binding sites for Zelda, a transcriptional activator. We demonstrate that using a co-stain with in situ hybridization is an effective method to compare mRNA levels across samples. This method requires only minor modifications to existing in situ hybridization protocols and uses straightforward analysis techniques. This strategy can be broadly applied to detect quantitative, spatially resolved changes in mRNA levels. PMID:24434507

  12. Dexamethasone increases growth hormone (GH)-releasing hormone (GRH) receptor mRNA levels in cultured rat anterior pituitary cells.

    PubMed

    Tamaki, M; Sato, M; Matsubara, S; Wada, Y; Takahara, J

    1996-06-01

    To examine the effects of glucocorticoid (GC) on growth hormone (GH)-releasing hormone (GRH) receptor gene expression, a highly-sensitive and quantitative reverse-transcribed polymerase chain reaction (RT-PCR) method was used in this study. Rat anterior pituitary cells were isolated and cultured for 4 days. The cultured cells were treated with dexamethasone for 2, 6, and 24 h. GRH receptor mRNA levels were determined by competitive RT-PCR using a recombinant RNA as the competitor. Dexamethasone significantly increased GRH receptor mRNA levels at 5 nM after 6- and 24 h-incubations, and the maximal effect was found at 25 nM. The GC receptor-specific antagonist, RU 38486 completely eliminated the dexamethasone-induced enhancement of GRH receptor mRNA levels. Dexamethasone did not alter the mRNA levels of beta-actin and prolactin at 5 nM for 24 h, whereas GH mRNA levels were significantly increased by the same treatment. The GH response to GRH was significantly enhanced by the 24-h incubation with 5 nM dexamethasone. These findings suggest that GC stimulates GRH receptor gene expression through the ligand-activated GC receptors in the rat somatotrophs. The direct effects of GC on the GRH receptor gene could explain the enhancement of GRH-induced GH secretion.

  13. Reduced beta 2-microglobulin mRNA levels in transgenic mice expressing a designed hammerhead ribozyme.

    PubMed Central

    Larsson, S; Hotchkiss, G; Andäng, M; Nyholm, T; Inzunza, J; Jansson, I; Ahrlund-Richter, L

    1994-01-01

    We have generated three artificial hammerhead ribozymes, denoted 'Rz-b', 'Rz-c' and 'Rz-d', with different specificities for exon II of the mouse beta-2-microglobulin (beta 2M) mRNA. In this study we tested for ribozyme mediated reduction of beta 2M mRNA in a cell line and in transgenic mice. Transfections of either of the Rz-b, Rz-c or Rz-d plasmids into a mouse cell-line (NIH/3T3) revealed reductions of beta 2M mRNA substrate in each case. Ribozyme expression in individual transfected clones was accompanied with an up to 80% reduction of beta 2M mRNA levels. Rz-c was selected for a transgenic study. Seven Rz-c transgenic founder animals were identified from which three ribozyme expressing families were established and analysed. Expression of the ribozyme transgene was tested for and detected in lung, kidney and spleen. Expression was accompanied with reduction of the beta 2M mRNA levels of heterozygous (Rz+/-) animals compared to non-transgenic litter mates. The effect was most pronounced in lung with more than 90% beta 2M mRNA reduction in individual mice. In summary, expression of our ribozymes in a cell free system, in a cell-line and in transgenic mice were all accompanied with reductions of beta 2M mRNA levels. Images PMID:8036151

  14. Neuropeptide Y mRNA expression levels following chronic olanzapine, clozapine and haloperidol administration in rats.

    PubMed

    Huang, X-F; Deng, Chao; Zavitsanou, Katerina

    2006-06-01

    Using quantitative in situ hybridization, this study examined regional changes in rat brain mRNA levels encoding neuropeptide Y (NPY) following olanzapine, clozapine and haloperidol administration (1.2, 1.5 and 2.0 mg/kg, oral) for 36 days. The NPY mRNA expression levels and patterns were examined after the last drug administration at both time points enabling the measurement of immediate effect at 2h and the effects after 48 h of drug administration. It was found that all these drugs had an immediate effect on NPY mRNA expression, while virtually all these changes normalized 48 h after the drug treatments. A similarity in altered NPY mRNA expression patterns was seen between the olanzapine and clozapine groups; however, haloperidol was very different. Olanzapine and clozapine administration decreased NPY mRNA levels in the nucleus accumbens, striatum and anterior cingulate cortex (from -60% to -77%, p<0.05). Haloperidol decreased NPY mRNA expression in the amygdala and hippocampus (-69%, -64%, p<0.05). In the lateral septal nucleus, NPY mRNA levels significantly decreased in the olanzapine group (-66%, p<0.05), a trend toward a decrease was observed in the clozapine group, and no change was found in the haloperidol treated group. These results suggest that the different effects of atypical and typical antipsychotics on NPY systems may reflect the neural chemical mechanisms responsible for the differences between these drugs in their effects in treating positive and negative symptoms of schizophrenia. The immediate decrease of NPY mRNA levels suggests an immediate reduction of NPY biosynthesis in response to these drugs.

  15. Increased myogenic repressor Id mRNA and protein levels in hindlimb muscles of aged rats.

    PubMed

    Alway, Stephen E; Degens, Hans; Lowe, Dawn A; Krishnamurthy, Gururaj

    2002-02-01

    The objective of this study was to determine if levels of repressors to myogenic regulatory factors (MRFs) differ between muscles from young adult and aged animals. Total RNA from plantaris, gastrocnemius, and soleus muscles of Fischer 344 x Brown Norway rats aged 9 mo (young adult, n = 10) and 37 mo (aged, n = 10) was reverse transcribed and then amplified by PCR. To obtain a semiquantitative measure of the mRNA levels, PCR signals were normalized to cyclophilin or 18S signals from the corresponding reverse transcription product. Normalization to cyclophilin and 18S gave similar results. The mRNA levels of MyoD and myogenin were approximately 275-650% (P < 0.001) and approximately 500-1,100% (P < 0.001) greater, respectively, in muscles from aged compared with young adults. In contrast, the protein levels were lower in plantaris and gastrocnemius muscles and similar in the soleus muscle of aged vs. young adult rats. Id repressor mRNA levels were approximately 300-900% greater in fast and slow muscles of aged animals (P < or = 0.02), and Mist 1 mRNA was approximately 50% greater in the plantaris and gastrocnemius muscles (P < 0.01). The mRNA level of Twist mRNA was not significantly affected by aging. Id-1, Id-2, and Id-3 protein levels were approximately 17-740% greater (P < 0.05) in hindlimb muscles of aged rats compared with young adult rats. The elevated levels of Id mRNA and protein suggest that MRF repressors may play a role in gene regulation of fast and slow muscles in aged rats.

  16. Thyroid hormone regulates Ca(2+)-ATPase mRNA levels of sarcoplasmic reticulum during neonatal development of fast skeletal muscle.

    PubMed

    van der Linden, G C; Simonides, W S; van Hardeveld, C

    1992-12-01

    In gastrocnemius muscle from newborn rats the mRNA for the fast sarcoplasmic reticulum (SR) Ca(2+)-ATPase isoform (SERCA1) comprised over 90% of total SR Ca(2+)-ATPase mRNA content and increased 5-fold between day 5 and 20 after birth, whereas in hypothyroid muscle the SERCA1 message level remained constant. Triiodothyronine (T3) treatment of 2-day-old euthyroid rats induced a precocious stimulation of SERCA1 mRNA levels, indicating that T3 is the determining factor in the stimulation of SERCA1 message levels and that this stimulation underlies the previously reported effect of the thyroid status on the neonatal development of SR Ca(2+)-ATPase activity. The low mRNA level for the slow SR Ca(2+)-ATPase isoform (SERCA2) was constant in both euthyroid and hypothyroid muscle development. Nevertheless, T3 treatment of hypothyroid neonates induced a transient stimulation of SERCA2 message levels, indicating that SERCA2 is responsive to higher levels of T3.

  17. Gallium nitrate regulates rat osteoblast expression of osteocalcin protein and mRNA levels.

    PubMed

    Guidon, P T; Salvatori, R; Bockman, R S

    1993-01-01

    Gallium nitrate, a group IIIa metal salt, has been found to be clinically effective for the treatment of accelerated bone resorption in cancer-related hypercalcemia and Paget's disease. Here we report the effects of gallium nitrate on osteocalcin mRNA and protein levels on the rat osteoblast-like cell line ROS 17/2.8. Gallium nitrate reduced both constitutive and vitamin D3-stimulated osteocalcin protein levels in culture medium by one-half and osteocalcin mRNA levels to one-third to one-tenth of control. Gallium nitrate also inhibited vitamin D3 stimulation of osteocalcin and osteopontin mRNA levels but did not affect constitutive osteopontin mRNA levels. Among several different metals examined, gallium was unique in its ability to reduce osteocalcin mRNA levels without decreasing levels of other mRNAs synthesized by ROS 17/2.8 cells. The effects of gallium nitrate on osteocalcin mRNA and protein synthesis mimic those seen when ROS 17/2.8 cells are exposed to transforming growth factor beta 1 (TGF beta 1); however, TGF-beta 1 was not detected in gallium nitrate-treated ROS 17/2.8 cell media. Use of the RNA polymerase II inhibitor 5,6-dichloro-1-beta-D-ribofuranosylbenzimidazole demonstrated that gallium nitrate did not alter the stability of osteocalcin mRNA. Transient transfection assays using the rat osteocalcin promoter linked to the bacterial reporter gene chloramphenicol acetyltransferase indicated that gallium nitrate blocked reporter gene expression stimulated by the osteocalcin promoter. This is the first reported effect of gallium nitrate on isolated osteoblast cells.

  18. Effects of selenium-enriched probiotics on heat shock protein mRNA levels in piglet under heat stress conditions.

    PubMed

    Gan, Fang; Ren, Fei; Chen, Xingxiang; Lv, Chenhui; Pan, Cuiling; Ye, Gengping; Shi, Jun; Shi, Xiuli; Zhou, Hong; Shituleni, Shituleni Andreas; Huang, Kehe

    2013-03-13

    The effects of selenium-enriched probiotics (SP) on tissue selenium (Se) deposition, glutathione peroxidase-1 (GPx1) activity and mRNA level, and heat shock protein (Hsp) mRNA levels of piglets under heat stress conditions were investigated. A total of 48 crossbred ([Landrace × Yorkshire] × Duroc) piglets were randomly divided into 4 groups and fed a basal diet (Con, 0.16 mg Se/kg) or basal diets with added probiotics (P, 0.16 mg Se/kg), sodium selenite (SS, 0.46 mg Se/kg), or SP (0.46 mg Se/kg), respectively, for 42 days. Three piglets were randomly selected from each group for blood sample collection at days 0, 14, 28, and 42 and for liver, kidney, and spleen sample collection at day 42. The results showed that P, SS, and SP could significantly down-regulate the average mRNA levels of Hsp70 (17.3, 23.7, and 40.1%) and Hsp27 (22.4, 24.4, and 44.7%) of the tissues, respectively (P < 0.05), whereas SS and SP could significantly elevate Se concentration, GPx1 activity and mRNA level (P < 0.05). The maximal effects of these parameters were observed in SP. It was concluded that SP is a feasible dietary supplementation of piglets under heat stress conditions during the summer season.

  19. Effect of the increased stability of the penicillin amidase mRNA on the protein expression levels.

    PubMed

    Viegas, Sandra C; Schmidt, Dorothea; Kasche, Volker; Arraiano, Cecília M; Ignatova, Zoya

    2005-09-12

    Several factors at transcriptional, post-transcriptional or post-translational level determine the fate of a target protein and can severely restrict its yield. Here, we focus on the post-transcriptional regulation of the biosynthesis of the periplasmic protein, penicillin amidase (PA). The PA mRNA stability was determined under depleted RNase conditions in strains carrying single or multiple RNase deletions. Single deletion of the endonuclease RNase E yielded, as the highest, a fourfold stabilization of the PA mRNA. This effect, however, was reduced twice at post-translational level. The RNase II, generating secondary exonucleolytic cleavages in the mRNA, although not significantly influencing the PA mRNA decay, led also to an increase of the amount of mature PA. The non-proportional correlation between increased mRNA longevity and amount of active enzyme propose that the rational strategies for yield improvement must be based on a simultaneous tuning of more than one yield restricting factor.

  20. Cistanches Herba aqueous extract affecting serum BGP and TRAP and bone marrow Smad1 mRNA, Smad5 mRNA, TGF-β1 mRNA and TIEG1 mRNA expression levels in osteoporosis disease.

    PubMed

    Liang, Hai-Dong; Yu, Fang; Tong, Zhi-Hong; Zhang, Hong-Quan; Liang, Wu

    2013-02-01

    We studied molecular mechanism of Cistanches Herba aqueous extract (CHAE) in ovariectomized (OVX) rats, as an experimental model of postmenopausal osteoporosis. Female rats were either sham-operated or bilaterally OVX; and at 60 days postoperatively. The OVX group (n = 8) received an ovariectomy and treatment with normal saline for 90 days commencing from 20th post ovariectomy day. The ovariectomized +CHAE (OVX + CHAE) group (n = 8) received an ovariectomy and were treated with Cistanches Herba aqueous extract of 100 mg/kg body weight daily for 90 days commencing from 22nd post ovariectomy day. The ovariectomy +CHAE (OVX + CHAE) group (n = 8) received an ovariectomy, and were treated with the of 200 mg/kg body weight daily for 90 days commencing from 20th post ovariectomy day. Serum BGP and TRAP, E2, FSH and LH level, bone marrow Smad1, Smad5, TGF-β1 and TIEG1 mRNA expression levels were examined. Results showed that serum BGP and TRAP, FSH and LH levels were significantly increased, whereas E2, Smad1, Smad5, TGF-β1 and TIEG1 mRNA and proteins expression levels were significantly decreased in OVX rats compared to sham rats. 90 days of CHAE treatment could significantly decrease serum BGP and TRAP, FSH and LH levels, and increase E2, Smad1, Smad5, TGF-β1 and TIEG1 mRNA and proteins expression levels in OVX rats. It can be concluded that CHAE play its protective effect against OVX-induced bone degeneration partly by regulating some bone metabolism related genes, e.g. Smad1, Smad5, TGF-β1 and TIEG1.

  1. Circulating irisin levels and muscle FNDC5 mRNA expression are independent of IL-15 levels in mice.

    PubMed

    Quinn, LeBris S; Anderson, Barbara G; Conner, Jennifer D; Wolden-Hanson, Tami

    2015-11-01

    Interleukin-15 (IL-15) and irisin are exercise-induced myokines that exert favorable effects on energy expenditure and metabolism. IL-15 can induce PGC-1α expression, which in turn induces expression of irisin and its precursor, FNDC5. Therefore, the present study tested the hypothesis that increases in circulating irisin levels and muscle FNDC5 mRNA expression are dependent on IL-15. Circulating irisin levels and gastrocnemius muscle FNDC5 mRNA expression were examined following acute exercise in control and IL-15-deleted (IL-15 KO) mice, following injection of IL-15 into IL-15 KO mice, and in transgenic mice with elevated circulating IL-15 levels (IL-15 Tg mice). Circulating IL-15 levels and muscle PGC-1α and PPARδ mRNA expressions were determined as positive controls. No effect of IL-15 deletion on post-exercise serum irisin levels or muscle FNDC5 mRNA expression was detected. While serum IL-15 levels and muscle PGC-1α expression were elevated post-exercise in control mice, both serum irisin levels and muscle FNDC5 expression decreased shortly after exercise in both control and IL-15 KO mice. A single injection of recombinant IL-15 into IL-15 KO mice that significantly increased muscle PPARδ and PGC-1α mRNA expressions had no effect on circulating irisin release, but modestly induced muscle FNDC5 expression. Additionally, serum irisin and gastrocnemius muscle FNDC5 expression in IL-15 Tg mice were similar to those of control mice. Muscle FNDC5 mRNA expression and irisin release are not IL-15-dependent in mice.

  2. ErbB3 mRNA leukocyte levels as a biomarker for major depressive disorder

    PubMed Central

    2012-01-01

    Background In recent years, the identification of peripheral biomarkers that are associated with psychiatric diseases, such as Major Depressive Disorder (MDD), has become relevant because these biomarkers may improve the efficiency of the differential diagnosis process and indicate targets for new antidepressant drugs. Two recent candidate genes, ErbB3 and Fgfr1, are growth factors whose mRNA levels have been found to be altered in the leukocytes of patients that are affected by bipolar disorder in a depressive state. On this basis, the aim of the study was to determine if ErbB3 and Fgfr1 mRNA levels could be a biomarkers of MDD. Methods We measured by Real Time PCR ErbB3 and Fgfr1 mRNA expression levels in leukocytes of MDD patients compared with controls. Successively, to assess whether ErbB3 mRNA levels were influenced by previous antidepressant treatment we stratified our patients sample in two cohorts, comparing drug-naive versus drug-free patients. Moreover, we evaluated the levels of the transcript in MDD patients after 12 weeks of antidepressant treatment, and in prefrontal cortex of rats stressed and treated with an antidepressant drug of the same class. Results These results showed that ErbB3 but not Fgfr1 mRNA levels were reduced in leukocytes of MDD patients compared to healthy subjects. Furthermore, ErbB3 levels were not affected by antidepressant treatment in either human or animal models Conclusions Our data suggest that ErbB3 might be considered as a biomarker for MDD and that its deficit may underlie the pathopsysiology of the disease and is not a consequence of treatment. Moreover the study supports the usefulness of leukocytes as a peripheral system for identifying biomarkers in psychiatric diseases. PMID:22989054

  3. Induction of the SHARP-2 mRNA level by insulin is mediated by multiple signaling pathways.

    PubMed

    Kanai, Yukiko; Asano, Kosuke; Komatsu, Yoshiko; Takagi, Katsuhiro; Ono, Moe; Tanaka, Takashi; Tomita, Koji; Haneishi, Ayumi; Tsukada, Akiko; Yamada, Kazuya

    2017-02-01

    The rat enhancer of split- and hairy-related protein-2 (SHARP-2) is an insulin-inducible transcription factor which represses transcription of the rat phosphoenolpyruvate carboxykinase gene. In this study, a regulatory mechanism of the SHARP-2 mRNA level by insulin was analyzed. Insulin rapidly induced the level of SHARP-2 mRNA. This induction was blocked by inhibitors for phosphoinositide 3-kinase (PI 3-K), protein kinase C (PKC), and mammalian target of rapamycin (mTOR), actinomycin D, and cycloheximide. Whereas an adenovirus infection expressing a dominant negative form of atypical PKC lambda (aPKCλ) blocked the insulin-induction of the SHARP-2 mRNA level, insulin rapidly activated the mTOR. Insulin did not enhance transcriptional activity from a 3.7 kb upstream region of the rat SHARP-2 gene. Thus, we conclude that insulin induces the expression of the rat SHARP-2 gene at the transcription level via both a PI 3-K/aPKCλ- and a PI 3-K/mTOR- pathways and that protein synthesis is required for this induction.

  4. Upregulation of specific mRNA levels in rat brain after cell phone exposure.

    PubMed

    Yan, Ji-Geng; Agresti, Michael; Zhang, Lin-Ling; Yan, Yuhui; Matloub, Hani S

    2008-01-01

    Adult Sprague-Dawley rats were exposed to regular cell phones for 6 h per day for 126 days (18 weeks). RT-PCR was used to investigate the changes in levels of mRNA synthesis of several injury-associated proteins. Calcium ATPase, Neural Cell Adhesion Molecule, Neural Growth Factor, and Vascular Endothelial Growth Factor were evaluated. The results showed statistically significant mRNA up-regulation of these proteins in the brains of rats exposed to cell phone radiation. These results indicate that relative chronic exposure to cell phone microwave radiation may result in cumulative injuries that could eventually lead to clinically significant neurological damage.

  5. Selenium requirements are higher for glutathione peroxidase-1 mRNA than gpx1 activity in rat testis.

    PubMed

    Schriever, Sonja C; Barnes, Kimberly M; Evenson, Jacqueline K; Raines, Anna M; Sunde, Roger A

    2009-05-01

    Selenium (Se) plays a critical role in testis, sperm, and reproduction, and testis Se levels are remarkably maintained in Se deficiency. In most other tissues, Se levels decrease dramatically as do levels of most selenoproteins and levels of a subset of Se-regulated selenoprotein mRNAs. Because of the recent identification of key molecules in the targeted trafficking of Se to the testis, we examined the hierarchy of Se regulation in testis by determining the dietary Se regulation of the full testis selenoproteome in rats fed graded levels of Se (0 to 0.8 microg Se/g) as Na2SeO3 for 28 d. Se status did not significantly affect testis weight or glutathione peroxidase 4 (Gpx4) activity (P>0.05). qRT-PCR analysis of selenoprotein mRNA expression revealed that 21 of the 24 selenoprotein mRNAs and ApoER2 mRNA (the selenoprotein P [Sepp1] receptor) were also not regulated significantly by dietary Se status. In contrast, Gpx1 activity decreased to 28% of Se-adequate levels, and mRNA levels for Gpx1, Sepp1, and Sepw1 (selenoprotein W) decreased significantly in Se-deficient rats to 45, 46, and 55%, respectively, of Se-adequate plateau levels. Overlap of hyperbolic Gpx4 activity and Sepw1 mRNA response curves with testis Se concentration, all with minimum dietary Se requirements<0.016 microg Se/g, showed the priority for synthesis of Gpx4. Higher minimum dietary Se requirements of 0.04 microg Se/g for Gpx1 activity and Sepp1 mRNA, and the even higher minimum dietary Se requirement of 0.08 microg Se/g for Gpx1 mRNA, suggest that the hierarchy of these biomarkers reflects distinct, lower priority pools, cell types, and roles for Se within the testis.

  6. TDP-43 regulates its mRNA levels through a negative feedback loop

    PubMed Central

    Ayala, Youhna M; De Conti, Laura; Avendaño-Vázquez, S Eréndira; Dhir, Ashish; Romano, Maurizio; D'Ambrogio, Andrea; Tollervey, James; Ule, Jernej; Baralle, Marco; Buratti, Emanuele; Baralle, Francisco E

    2011-01-01

    TAR DNA-binding protein (TDP-43) is an evolutionarily conserved heterogeneous nuclear ribonucleoprotein (hnRNP) involved in RNA processing, whose abnormal cellular distribution and post-translational modification are key markers of certain neurodegenerative diseases, such as amyotrophic lateral sclerosis and frontotemporal lobar degeneration. We generated human cell lines expressing tagged forms of wild-type and mutant TDP-43 and observed that TDP-43 controls its own expression through a negative feedback loop. The RNA-binding properties of TDP-43 are essential for the autoregulatory activity through binding to 3′ UTR sequences in its own mRNA. Our analysis indicated that the C-terminal region of TDP-43, which mediates TDP-43–hnRNP interactions, is also required for self-regulation. TDP-43 binding to its 3′ UTR does not significantly change the pre-mRNA splicing pattern but promotes RNA instability. Moreover, blocking exosome-mediated degradation partially recovers TDP-43 levels. Our findings demonstrate that cellular TDP-43 levels are under tight control and it is likely that disease-associated TDP-43 aggregates disrupt TDP-43 self-regulation, thus contributing to pathogenesis. PMID:21131904

  7. Regulation of elastin synthesis in developing sheep nuchal ligament by elastin mRNA levels

    SciTech Connect

    Davidson, J.M.; Smith, K.; Shibahara, S.; Tolstoshev, P.; Crystal, R.G.

    1982-01-01

    Levels of elastin production in explant culture of fetal sheep nuchal ligament and corresponding levels of translatable elastin mRNA were determined in parallel studies during a period of rapid growth of the embryo. The identity of the explant culture and cell-free proucts was confirmed by peptide mapping, immunoprecipitation, and the characteristic lack of histidine and methionine. Elastin production was quantitated by sodium dodecyl sulfate-polyacrylamide gel electrophoresis and radioimmune precipitation. The translation products could be labeled with methionine only when NH/sub 2/-terminally donated as f-Met-tRNA/sup Met//sub f/. Explant cultures showed a large rise in elastin production from 70 days after conception to 150 days after conception. Cell free translation of RNA demonstrated a parallel in elastin mRNA levels and in elastin mRNA per cell. It appears, therefore, that the marked emphasis the differentiating muchal ligament places on elastin production is modulated, at least in part, by the quantities of available elastin in mRNA.

  8. Molecular cloning of tomato fruit polygalacturonase: Analysis of polygalacturonase mRNA levels during ripening.

    PubMed

    Dellapenna, D; Alexander, D C; Bennett, A B

    1986-09-01

    The expression of a gene encoding the cell wall-degrading enzyme polygalacturonase [poly(1,4-alpha-D-galacturonide) glucanohydrolase, EC 3.2.1.15] was characterized during tomato fruit ripening. Polygalacturonase was purified from ripe tomato fruit and used to produce highly specific antiserum. Immunoblot analyses detected a 45- and a 46-kDa protein in ripe fruit but immunoprecipitation of in vitro translation products of mRNA from ripe tomato fruit yielded a single 54-kDa polypeptide, suggesting post-translational processing. A plasmid cDNA library was prepared from poly(A)(+) RNA isolated from ripe tomato fruit. The cDNA library was inserted into a lambda-based expression vector, and polygalacturonase cDNA clones were identified by immunological screening. Hybrid-select translation experiments indicated that the cDNAs encode a 54-kDa in vitro translation product that is specifically immunoprecipitated with polygalacturonase antiserum. RNA-blot analysis indicated that the 1.9-kilobase polygalacturonase mRNA was virtually absent from immature-green fruit, accumulated steadily during the ripening process, and was at its highest level in red-ripe fruit. There was at least a 2000-fold increase in the level of polygalacturonase mRNA between immature-green and red-ripe tomato fruit. These studies show that the levels of polygalacturonase mRNA are developmentally regulated during tomato fruit ripening.

  9. Molecular cloning of tomato fruit polygalacturonase: Analysis of polygalacturonase mRNA levels during ripening

    PubMed Central

    DellaPenna, Dean; Alexander, Danny C.; Bennett, Alan B.

    1986-01-01

    The expression of a gene encoding the cell wall-degrading enzyme polygalacturonase [poly(1,4-α-D-galacturonide) glucanohydrolase, EC 3.2.1.15] was characterized during tomato fruit ripening. Polygalacturonase was purified from ripe tomato fruit and used to produce highly specific antiserum. Immunoblot analyses detected a 45- and a 46-kDa protein in ripe fruit but immunoprecipitation of in vitro translation products of mRNA from ripe tomato fruit yielded a single 54-kDa polypeptide, suggesting post-translational processing. A plasmid cDNA library was prepared from poly(A)+ RNA isolated from ripe tomato fruit. The cDNA library was inserted into a λ-based expression vector, and polygalacturonase cDNA clones were identified by immunological screening. Hybrid-select translation experiments indicated that the cDNAs encode a 54-kDa in vitro translation product that is specifically immunoprecipitated with polygalacturonase antiserum. RNA-blot analysis indicated that the 1.9-kilobase polygalacturonase mRNA was virtually absent from immature-green fruit, accumulated steadily during the ripening process, and was at its highest level in red-ripe fruit. There was at least a 2000-fold increase in the level of polygalacturonase mRNA between immature-green and red-ripe tomato fruit. These studies show that the levels of polygalacturonase mRNA are developmentally regulated during tomato fruit ripening. Images PMID:16593752

  10. Effects of seawater acclimation on mRNA levels of corticosteroid receptor genes in osmoregulatory and immune systems in trout

    USGS Publications Warehouse

    Yada, T.; Hyodo, S.; Schreck, C.B.

    2008-01-01

    Influence of environmental salinity on expression of distinct corticosteroid receptor (CR) genes, glucocorticoid receptor (GR)-1 and -2, and mineralcorticoid receptor (MR), was examined in osmoregulatory and hemopoietic organs and leucocytes of steelhead trout (Oncorhynchus mykiss). There was no significant difference in plasma cortisol levels between freshwater (FW)- or seawater (SW)-acclimated trout, whereas Na+, K+-ATPase was activated in gill of SW fish. Plasma lysozyme levels also showed a significant increase after acclimation to SW. In SW-acclimated fish, mRNA levels of GR-1, GR-2, and MR were significantly higher in gill and body kidney than those in FW. Head kidney and spleen showed no significant change in these CR mRNA levels after SW-acclimation. On the other hand, leucocytes isolated from head kidney and peripheral blood showed significant decreases in mRNA levels of CR in SW-acclimated fish. These results showed differential regulation of gene expression of CR between osmoregulatory and immune systems. ?? 2008 Elsevier Inc. All rights reserved.

  11. Increased glutamate decarboxylase mRNA levels in the striatum and pallidum of MPTP-treated primates.

    PubMed

    Soghomonian, J J; Pedneault, S; Audet, G; Parent, A

    1994-10-01

    GABAergic transmission in the expression of the motor deficits elicited after MPTP. In addition, increased GAD67 mRNA levels in the internal segment of the pallidum support the hypothesis of an increased activity of GABAergic neurons in the output structures of the basal ganglia in parkinsonism.

  12. Gonadal mRNA expression levels of TGFbeta superfamily signaling factors correspond with post-hatching morphological development in American alligators.

    PubMed

    Moore, B C; Hamlin, H J; Botteri, N L; Guillette, L J

    2010-01-01

    Paracrine factor signaling regulates many aspects of vertebrate gonadal development. We investigated key ovarian and testicular morphological markers of the American alligator (Alligator mississippiensis) during the first 5 months post-hatching and correlated gonadal development with mRNA expression levels of a suite of regulatory factors. In both sexes, we observed significant morphology changes, including ovarian follicle assembly and meiotic progression of testicular germ cells. Concomitant with these changes were sexually dimorphic and ontogenetically variable mRNA expressions. In ovaries, FOXL2, aromatase, and follistatin mRNA expression was greater than in testes at all ages. At one week after hatching, we observed ovarian medullary remodeling in association with elevated activin/inhibin beta A subunit, follistatin, and aromatase mRNA expressions. Three and 5 months following hatching and concomitant with follicle assembly, ovaries showed increased mRNA expression levels of GDF9 and the mitotic factor PCNA. In testes, the activin/inhibin alpha and beta B subunit transcript levels were greater than in ovaries at all ages. Elevated testicular expression of GDF9 mRNA levels at 5 months after hatching aligned with increased spermatogenic activity. We propose that the mRNA expression levels and concomitant morphological changes observed here affect the establishment of alligator reproductive health and later fertility.

  13. Rapid monitoring of mRNA levels with a molecular beacon during microbial fermentation.

    PubMed

    Dong, Dexian; Pang, Yanping; Gao, Qian; Huang, Xianqing; Xu, Yuquan; Li, Rongxiu

    2010-02-01

    In the microbial fermentation bioreactor, the processes of mRNA transcription, protein translation, and enzyme-catalyzed biosynthesis remain as "black boxes" of industrial monitoring and process control. Monitoring the kinetics of these "black boxes" is very helpful for optimizing and controlling the microbial fermentation process. This study first applied a molecular beacon (MB) to monitor the changes in the mRNA level of the phzC gene during antibiotic phenazine-1-carboxylic acid fermentation. Seven typical MB hybridization buffers were compared, and the effect of formamide on MBs was also studied. The results showed that rapid monitoring of the mRNA level using MBs was feasible. The optimal hybridization buffer for phzC MB was 100 mM Tris, 1 mM MgCl(2), pH 8.0. The optimal hybridization temperature was 35 degrees C, and formamide proved unsuitable for MB hybridization. The limit of detection of phzC MB was 1.67 nM and MB hybridization was complete by 7 min. Given that the time for RNA extraction is 12 min, it is possible that monitoring of phzC mRNA can be completed in less than 20 min. Since production of most amine acids, organic acids, wines, antibiotics, and proteins relies on microbial fermentation, our method may have some potential for application in these other microbial industries.

  14. Mucin gene mRNA levels in broilers challenged with eimeria and/or Clostridium perfringens.

    PubMed

    Kitessa, Soressa M; Nattrass, Gregory S; Forder, Rebecca E A; McGrice, Hayley A; Wu, Shu-Biao; Hughes, Robert J

    2014-09-01

    The effects of Eimeria (EM) and Clostridium perfringens (CP) challenges on the mRNA levels of genes involved in mucin (Muc) synthesis (Muc2, Muc5ac, Muc13, and trefoil family factor-2 [TFF2]), inflammation (tumor necrosis factor alpha [TNF-alpha] and interleukin-18 [IL-18]), and metabolic processes (cluster of differentiation [CD]36) in the jejunum of broilers were investigated. Two parallel experiments involving 1) EM challenge and 2) EM and CP challenges were conducted. The first experiment was a 2 X 2 study with 12 birds per treatment (N = 48) involving fishmeal substitution (25%) in the diet (FM) and EM challenge. The treatments were: Control (FM-, EM-), Fishmeal (FM+, EM-), EM challenge (FM-, EM+), and fishmeal substitution and EM challenge (FM+, EM+). The second experiment was a 2 X 2 X 2 experiment with six birds per treatment (N = 48) involving fishmeal (FM-, FM+), Eimeria (EM-, EM+), and C perfringens (CP-, CP+). In both arms of the study, male broilers were given a starter diet for the whole period of 16 days, except those assigned to FM+, where 25% of the starter ration was replaced with fishmeal from days 8 to 14. EM inoculation was performed on day 9 and CP inoculation on days 14 and 15. The EM challenge birds were euthanatized for sampling on day 13; postmortem examination and sampling for the Eimeria plus C perfringens challenge arm of the study were on day 16. In the Eimeria challenge arm of the study, fishmeal supplementation significantly suppressed the mRNA levels of TNF-alpha, TFF2, and IL-18 pre-CP inoculation but simultaneously increased the levels of Muc13 and CD36 mRNAs. Birds challenged with Eimeria exhibited increased mRNA levels of Muc13, Muc5ac, TNF-alpha, and IL-18. In the Eimeria and C. perfringens challenge arm, birds exposed to EM challenge exhibited significantly lower mRNA levels of Muc2 and CD36. The mRNA levels of CD36 were also significantly suppressed by CP challenge. Our results showed that the transcription of mucin synthesis

  15. Enhanced levels of scrapie responsive gene mRNA in BSE-infected mouse brain.

    PubMed

    Dandoy-Dron, F; Benboudjema, L; Guillo, F; Jaegly, A; Jasmin, C; Dormont, D; Tovey, M G; Dron, M

    2000-03-10

    The expression of the mRNA of nine scrapie responsive genes was analyzed in the brains of FVB/N mice infected with bovine spongiform encephalopathy (BSE). The RNA transcripts of eight genes were overexpressed to a comparable extent in both BSE-infected and scrapie-infected mice, indicating a common series of pathogenic events in the two transmissible spongiform encephalopathies (TSEs). In contrast, the serine proteinase inhibitor spi 2, an analogue of the human alpha-1 antichymotrypsin gene, was overexpressed to a greater extent in the brains of scrapie-infected animals than in animals infected with BSE, reflecting either an agent specific or a mouse strain specific response. The levels of spi 2 mRNA were increased during the course of scrapie prior to the onset of clinical signs of the disease and the increase reached 11 to 45 fold relative to uninfected controls in terminally ill mice. Spi 2, in common with four of the other scrapie responsive genes studied, is known to be associated with pro-inflammatory processes. These observations underline the importance of cell reactivity in TSE. In addition, scrg2 mRNA the level of which is enhanced in TSE-infected mouse brain, was identified as a previously unrecognized long transcript of the murine aldolase C gene. However, the level of the principal aldolase C mRNA is unaffected in TSE. The increased representation of the longer transcript in the late stage of the disease may reflect changes in mRNA processing and/or stability in reactive astrocytes or in damaged Purkinje cells.

  16. Voluntary exercise and clomipramine treatment elevate prepro-galanin mRNA levels in the locus coeruleus in rats.

    PubMed

    Holmes, Philip V; Yoo, Ho Sang; Dishman, Rod K

    2006-11-06

    Exercise exerts antidepressant effects in humans and rodent models of affective disorders. These effects may be mediated by the upregulation of endogenous factors that exert antidepressant actions. The physiological functions and behavioral actions of the neuropeptide galanin (GAL) suggest antidepressant activity. Previous studies have shown that various modes of exercise elevate GAL gene expression in the locus coeruleus (LC) in rats. The present experiments examined the interaction between voluntary exercise and antidepressant pharmacotherapy. Male Sprague-Dawley rats were provided access to activity wheels (exercise condition) or inoperative wheels (sedentary condition) for 28 days. Rats in each group were injected with clomipramine (10mg/kg/day) or vehicle throughout this period (for 3 weeks). Prepro-GAL mRNA in the LC was measured by in situ hybridization histochemistry. Exercise and clomipramine treatment significantly elevated GAL gene expression, though prepro-GAL mRNA levels in rats receiving both interventions did not differ from sedentary controls that received vehicle. Prepro-GAL mRNA levels were significantly correlated with running distance. The results further implicate a role for GAL in the antidepressant effects of exercise and pharmacotherapy, though the mechanisms through which these treatments influence GAL gene expression appear to differ significantly.

  17. Acetylcholine receptor-inducing factor from chicken brain increases the level of mRNA encoding the receptor. alpha. subunit

    SciTech Connect

    Harris, D.A.; Falls, D.L.; Dill-Devor, R.M.; Fischbach, G.D. )

    1988-03-01

    A 42-kDa glycoprotein isolated from chicken brain, referred to as acetylcholine receptor-inducing activity (ARIA), that stimulates the rate of incorporation of acetylcholine receptors into the surface of chicken myotubes may play a role in the nerve-induced accumulation of receptors at developing neuromuscular synapses. Using nuclease-protection assays, the authors have found that ARIA causes a 2- to 16-fold increase in the level of mRNA encoding the {alpha} subunit of the receptor, with little or no change in the levels of {gamma}- and {delta}-subunit messengers. ARIA also increases the amount of a putative nuclear precursor of {alpha}-subunit mRNA, consistent with an activation of gene transcription. These results suggest that the concentration of {alpha} subunit may limit the rate of biosynthesis of the acetylcholine receptors in chicken myotubes. They also indicate that neuronal factors can regulate the expression of receptor subunit genes in a selective manner. Tetrodotoxin, 8-bromo-cAMP, and forskolin also increase the amount of {alpha}-subunit mRNA, with little change in the amount of {gamma}- and {delta}-subunit mRNAs. Unlike ARIA, however, these agents have little effect on the concentration of the {alpha}-subunit nuclear precursor.

  18. C3a Increases VEGF and Decreases PEDF mRNA Levels in Human Retinal Pigment Epithelial Cells.

    PubMed

    Long, Qin; Cao, Xiaoguang; Bian, Ailing; Li, Ying

    2016-01-01

    Complement activation, specifically complement 3 (C3) activation and C3a generation, contributes to an imbalance between angiogenic stimulation by vascular endothelial growth factor (VEGF) and angiogenic inhibition by pigment epithelial derived factor (PEDF), leading to pathological angiogenesis. This study aimed to investigate the effects of C3a and small interfering RNA (siRNA) targeting C3 on the levels of VEGF and PEDF mRNAs in human retinal pigment epithelial (RPE) cells. ARPE-19 cells were cultured in the presence of exogenous C3a at 0.1 μM and 0.3 μM C3a for 24, 48, and 72 hours. 0.1 pmol/μL duplexes of siRNA targeting C3 were applied for C3a inhibition by transfecting ARPE-19 cells for 48 hours. RT-PCR was performed to examine the level of VEGF and PEDF mRNA. A random siRNA duplex was set for control siRNA. Results demonstrated that exogenous C3a significantly upregulated VEGF and downregulated PEDF mRNA levels in cultured ARPE-19 cells, and siRNA targeting C3 transfection reversed the above changes, significantly reducing VEGF and enhancing PEDF mRNAs level in ARPE-19 cells compared to the control. The present data provided evidence that reducing C3 activation can decreases VEGF and increase PEDF mRNA level in RPE and may serve as a potential therapy in pathological angiogenesis.

  19. C3a Increases VEGF and Decreases PEDF mRNA Levels in Human Retinal Pigment Epithelial Cells

    PubMed Central

    Long, Qin; Cao, Xiaoguang; Bian, Ailing

    2016-01-01

    Complement activation, specifically complement 3 (C3) activation and C3a generation, contributes to an imbalance between angiogenic stimulation by vascular endothelial growth factor (VEGF) and angiogenic inhibition by pigment epithelial derived factor (PEDF), leading to pathological angiogenesis. This study aimed to investigate the effects of C3a and small interfering RNA (siRNA) targeting C3 on the levels of VEGF and PEDF mRNAs in human retinal pigment epithelial (RPE) cells. ARPE-19 cells were cultured in the presence of exogenous C3a at 0.1 μM and 0.3 μM C3a for 24, 48, and 72 hours. 0.1 pmol/μL duplexes of siRNA targeting C3 were applied for C3a inhibition by transfecting ARPE-19 cells for 48 hours. RT-PCR was performed to examine the level of VEGF and PEDF mRNA. A random siRNA duplex was set for control siRNA. Results demonstrated that exogenous C3a significantly upregulated VEGF and downregulated PEDF mRNA levels in cultured ARPE-19 cells, and siRNA targeting C3 transfection reversed the above changes, significantly reducing VEGF and enhancing PEDF mRNAs level in ARPE-19 cells compared to the control. The present data provided evidence that reducing C3 activation can decreases VEGF and increase PEDF mRNA level in RPE and may serve as a potential therapy in pathological angiogenesis. PMID:27747237

  20. Anabolic androgenic steroid nandrolone decanoate reduces hypothalamic proopiomelanocortin mRNA levels.

    PubMed

    Lindblom, Jonas; Kindlundh, Anna M S; Nyberg, Fred; Bergström, Lena; Wikberg, Jarl E S

    2003-10-03

    Supratherapeutical doses of anabolic androgenic steroids (AASs) have dramatic effects on metabolism in humans, and also inhibit feeding and reduce the rate of body weight gain in rats. In order to test the hypothesis that the AAS metabolic syndrome is accompanied by alterations in the central melanocortin system, we evaluated body weight, food intake and hypothalamic agouti-related protein (AgRP) and proopiomelanocortin (POMC) mRNA levels following administration of different doses of the anabolic androgenic steroid nandrolone decanoate. In order to distinguish changes induced by the steroid treatment per se from those resulting from the reduced food intake and growth rate, we also compared the effect of nandrolone decanoate on AgRP and POMC mRNA expression with both normally fed, and food restricted control groups. We here report that administration of nandrolone specifically reduces arcuate nucleus POMC mRNA levels while not affecting the expression level of AgRP. The effect on POMC expression was not observed in the food restricted controls, excluding the possibility that the observed effect was a mere response to the reduced food intake and body weight. These results raise the possibility that some of the metabolic and behavioural consequences of AAS abuse may be the result of alterations in the melanocortin system.

  1. Enteral glutamine stimulates protein synthesis and decreases ubiquitin mRNA level in human gut mucosa.

    PubMed

    Coëffier, Moïse; Claeyssens, Sophie; Hecketsweiler, Bernadette; Lavoinne, Alain; Ducrotté, Philippe; Déchelotte, Pierre

    2003-08-01

    Effects of glutamine on whole body and intestinal protein synthesis and on intestinal proteolysis were assessed in humans. Two groups of healthy volunteers received in a random order enteral glutamine (0.8 mmol.kg body wt(-1)x h(-1)) compared either to saline or isonitrogenous amino acids. Intravenous [2H5]phenylalanine and [13C]leucine were simultaneously infused. After gas chromatography-mass spectrometry analysis, whole body protein turnover was estimated from traced plasma amino acid fluxes and the fractional synthesis rate (FSR) of gut mucosal protein was calculated from protein and intracellular phenylalanine and leucine enrichments in duodenal biopsies. mRNA levels for ubiquitin, cathepsin D, and m-calpain were analyzed in biopsies by RT-PCR. Glutamine significantly increased mucosal protein FSR compared with saline. Glutamine and amino acids had similar effects on FSR. The mRNA level for ubiquitin was significantly decreased after glutamine infusion compared with saline and amino acids, whereas cathepsin D and m-calpain mRNA levels were not affected. Enteral glutamine stimulates mucosal protein synthesis and may attenuate ubiquitin-dependent proteolysis and thus improve protein balance in human gut.

  2. The decapping activator Edc3 and the Q/N-rich domain of Lsm4 function together to enhance mRNA stability and alter mRNA decay pathway dependence in Saccharomyces cerevisiae

    PubMed Central

    Huch, Susanne; Müller, Maren; Muppavarapu, Mridula; Gommlich, Jessie; Balagopal, Vidya; Nissan, Tracy

    2016-01-01

    ABSTRACT The rate and regulation of mRNA decay are major elements in the proper control of gene expression. Edc3 and Lsm4 are two decapping activator proteins that have previously been shown to function in the assembly of RNA granules termed P bodies. Here, we show that deletion of edc3, when combined with a removal of the glutamine/asparagine rich region of Lsm4 (edc3Δ lsm4ΔC) reduces mRNA stability and alters pathways of mRNA degradation. Multiple tested mRNAs exhibited reduced stability in the edc3Δ lsm4ΔC mutant. The destabilization was linked to an increased dependence on Ccr4-mediated deadenylation and mRNA decapping. Unlike characterized mutations in decapping factors that either are neutral or are able to stabilize mRNA, the combined edc3Δ lsm4ΔC mutant reduced mRNA stability. We characterized the growth and activity of the major mRNA decay systems and translation in double mutant and wild-type yeast. In the edc3Δ lsm4ΔC mutant, we observed alterations in the levels of specific mRNA decay factors as well as nuclear accumulation of the catalytic subunit of the decapping enzyme Dcp2. Hence, we suggest that the effects on mRNA stability in the edc3Δ lsm4ΔC mutant may originate from mRNA decay protein abundance or changes in mRNPs, or alternatively may imply a role for P bodies in mRNA stabilization. PMID:27543059

  3. Wastewater treatment plant effluent alters pituitary gland gonadotropin mRNA levels in juvenile coho salmon (Oncorhynchus kisutch).

    PubMed

    Harding, Louisa B; Schultz, Irvin R; da Silva, Denis A M; Ylitalo, Gina M; Ragsdale, Dave; Harris, Stephanie I; Bailey, Stephanie; Pepich, Barry V; Swanson, Penny

    2016-09-01

    It is well known that endocrine disrupting compounds (EDCs) present in wastewater treatment plant (WWTP) effluents interfere with reproduction in fish, including altered gonad development and induction of vitellogenin (Vtg), a female-specific egg yolk protein precursor produced in the liver. As a result, studies have focused on the effects of EDC exposure on the gonad and liver. However, impacts of environmental EDC exposure at higher levels of the hypothalamic-pituitary-gonad axis are less well understood. The pituitary gonadotropins, follicle-stimulating hormone (Fsh) and luteinizing hormone (Lh) are involved in all aspects of gonad development and are subject to feedback from gonadal steroids making them a likely target of endocrine disruption. In this study, the effects of WWTP effluent exposure on pituitary gonadotropin mRNA expression were investigated to assess the utility of Lh beta-subunit (lhb) as a biomarker of estrogen exposure in juvenile coho salmon (Oncorhynchus kisutch). First, a controlled 72-h exposure to 17α-ethynylestradiol (EE2) and 17β-trenbolone (TREN) was performed to evaluate the response of juvenile coho salmon to EDC exposure. Second, juvenile coho salmon were exposed to 0, 20 or 100% effluent from eight WWTPs from the Puget Sound, WA region for 72h. Juvenile coho salmon exposed to 2 and 10ng EE2L(-1) had 17-fold and 215-fold higher lhb mRNA levels relative to control fish. Hepatic vtg mRNA levels were dramatically increased 6670-fold, but only in response to 10ng EE2L(-1) and Fsh beta-subunit (fshb) mRNA levels were not altered by any of the treatments. In the WWTP effluent exposures, lhb mRNA levels were significantly elevated in fish exposed to five of the WWTP effluents. In contrast, transcript levels of vtg were not affected by any of the WWTP effluent exposures. Mean levels of natural and synthetic estrogens in fish bile were consistent with pituitary lhb expression, suggesting that the observed lhb induction may be due to

  4. Antioxidant enzyme activity and mRNA expression in reproductive tract of adult male European Bison (Bison bonasus, Linnaeus 1758).

    PubMed

    Koziorowska-Gilun, M; Gilun, P; Fraser, L; Koziorowski, M; Kordan, W; Stefanczyk-Krzymowska, S

    2013-02-01

    Antioxidants in the male reproductive tract are the main defence factors against oxidative stress caused by reactive oxygen species production, which compromises sperm function and male fertility. This study was designed to determine the activity of antioxidant enzymes, such as superoxide dismutase (SOD), catalase (CAT) and glutathione peroxidase (GPx), in the testicular and epididymidal tissues of adult male European bison (Bison bonasus). The reproductive tract tissues were subjected to real-time reverse transcriptase-polymerase chain reaction (RT-PCR) analysis to quantify mRNA expression levels of five antioxidant enzymes: copper/zinc SOD (Cu/Zn SOD), secretory extracellular SOD (Ec-SOD), CAT, phospholipid hydroperoxide glutathione peroxidase (PHGPx) and GPx5. The corpus and cauda epididymidal tissues displayed greater (p < 0.05) SOD activity compared with the testicular tissue. It was found that CAT activity was lowest (p < 0.05) in the cauda epididymidis, whereas negligible GPx activity was detected in the reproductive tract tissues. There were no detectable differences in the mRNA expression level of Cu/Zn SOD among the different reproductive tract tissues. Small amounts of Ec-SOD mRNA were found in the reproductive tract, particularly in the epididymides. The caput and cauda epididymides exhibited greater (p < 0.05) level of CAT mRNA expression, whereas PHGPx mRNA was more (p < 0.05) expressed in the testis. Furthermore, extremely large amounts of GPx5 mRNA were detected in the caput epididymidal tissue compared with other tissues of the reproductive tract. It can be suggested that the activity of the antioxidant enzymes and the relative gene expression of the enzymes confirm the presence of tissue-specific antioxidant defence systems in the bison reproductive tract, which are required for spermatogenesis, epididymal maturation and storage of spermatozoa.

  5. A hairpin within YAP mRNA 3′UTR functions in regulation at post-transcription level

    SciTech Connect

    Gao, Yuen; Wang, Yuan; Feng, Jinyan; Feng, Guoxing; Zheng, Minying; Yang, Zhe; Xiao, Zelin; Lu, Zhanping; Ye, Lihong; Zhang, Xiaodong

    2015-04-03

    The central dogma of gene expression is that DNA is transcribed into messenger RNAs, which in turn serve as the template for protein synthesis. Recently, it has been reported that mRNAs display regulatory roles that rely on their ability to compete for microRNA binding, independent of their protein-coding function. However, the regulatory mechanism of mRNAs remains poorly understood. Here, we report that a hairpin within YAP mRNA 3′untranslated region (3′UTR) functions in regulation at post-transcription level through generating endogenous siRNAs (esiRNAs). Bioinformatics analysis for secondary structure showed that YAP mRNA displayed a hairpin structure (termed standard hairpin, S-hairpin) within its 3′UTR. Surprisingly, we observed that the overexpression of S-hairpin derived from YAP 3′UTR (YAP-sh) increased the luciferase reporter activities of transcriptional factor NF-κB and AP-1 in 293T cells. Moreover, we identified that a fragment from YAP-sh, an esiRNA, was able to target mRNA 3′UTR of NF2 (a member of Hippo-signaling pathway) and YAP mRNA 3′UTR itself in hepatoma cells. Thus, we conclude that the YAP-sh within YAP mRNA 3′UTR may serve as a novel regulatory element, which functions in regulation at post-transcription level. Our finding provides new insights into the mechanism of mRNAs in regulatory function. - Highlights: • An S-hairpin within YAP mRNA 3′UTR possesses regulatory function. • YAP-sh acts as a regulatory element for YAP at post-transcription level. • YAP-sh-3p20, an esiRNA derived from YAP-sh, targets mRNAs of YAP and NF2. • YAP-sh-3p20 depresses the proliferation of HepG2 cells in vitro.

  6. Tetrodotoxin administration in the suprachiasmatic nucleus prevents NMDA-induced reductions in pineal melatonin without influencing Per1 and Per2 mRNA levels.

    PubMed

    Paul, Ketema N; Gamble, Karen L; Fukuhara, Chiaki; Novak, Colleen M; Tosini, Gianluca; Albers, H Elliott

    2004-05-01

    The suprachiasmatic nucleus (SCN) of the anterior hypothalamus contains a light-entrainable circadian pacemaker. Neurons in the SCN are part of a circuit that conveys light information from retinal efferents to the pineal gland. Light presented during the night acutely increases mRNA levels of the circadian clock genes Per1 and Per2 in the SCN, and acutely suppresses melatonin levels in the pineal gland. The present study investigated whether the ability of light to increase Per1 and Per2 mRNA levels and suppress pineal melatonin levels requires sodium-dependent action potentials in the SCN. Per1 and Per2 mRNA levels in the SCN and pineal melatonin levels were measured in Syrian hamsters injected with tetrodotoxin (TTX) prior to light exposure or injection of N-methyl-D-aspartate (NMDA). TTX inhibited the ability of light to increase Per1 and Per2 mRNA levels and suppress pineal melatonin levels. TTX did not, however, influence the ability of NMDA to increase Per1 and Per2 mRNA levels, though it did inhibit the ability of NMDA to suppress pineal melatonin levels. These results demonstrate that action potentials in the SCN are not necessary for NMDA receptor activation to increase Per1 and Per2 mRNA levels, but are necessary for NMDA receptor activation to decrease pineal melatonin levels. Taken together, these data support the hypothesis that the mechanism through which light information is conveyed to the pacemaker in the SCN is separate from and independent of the mechanism through which light information is conveyed to the SCN cells whose efferents suppress pineal melatonin levels.

  7. Elevated level of HSPA1L mRNA correlates with graft-versus-host disease.

    PubMed

    Atarod, Sadaf; Turner, Brie; Pearce, Kim Frances; Ahmed, Shaheda S; Norden, Jean; Bogunia-Kubik, Katarzyna; Wang, Xiao-nong; Collin, Matthew; Dickinson, Anne Mary

    2015-06-01

    Graft-versus-host disease (GVHD) can be a fatal complication of allogeneic stem cell transplantation (allo-HSCT). GVHD can be classified as acute (aGVHD: up to 100 days) or chronic (cGVHD: after 100 days) based on the time-point of disease occurrence. At present there are a limited number of biomarkers available for use in the clinic. Thus, the aim of this research was to evaluate the biomarker potential of the extensively studied Heat Shock Protein 70 family members (HSPA1A/HSPA1B and HSPA1L) at the messenger RNA (mRNA) level in acute and cGVHD patient cohorts. In the skin biopsies, HSPA1L mRNA expression was lower in patients with severe aGVHD (grades II-III) when compared to those with none or low grade aGVHD (grades 0-I) and normal controls. In whole blood, HSPA1L mRNA expression level was significantly (p = 0.008) up-regulated at 28 days post-transplant in cGVHD patients with a significant area under the curve (AUC = 0.773). In addition, HSPA1B expression in whole blood was significantly higher at 3 months post-transplant in both the aGVHD grade II-III (p = 0.012) and cGVHD (p = 0.027) patients. Our initial results in this small cohort show that quantifying HSPA1L mRNA expression in the whole blood of allo-HSCT patients at day 28 post-allo-HSCT may be a useful predictive biomarker for cGVHD.

  8. Prolonged fasting and cortisol reduce myostatin mRNA levels in tilapia larvae; short-term fasting elevates.

    PubMed

    Rodgers, Buel D; Weber, Gregory M; Kelley, Kevin M; Levine, Michael A

    2003-05-01

    Myostatin negatively regulates muscle growth and development and has recently been characterized in several fishes. We measured fasting myostatin mRNA levels in adult tilapia skeletal muscle and in whole larvae. Although fasting reduced some growth indexes in adults, skeletal muscle myostatin mRNA levels were unaffected. By contrast, larval myostatin mRNA levels were sometimes elevated after a short-term fast and were consistently reduced with prolonged fasting. These effects were specific for myostatin, as mRNA levels of glyceraldehyde-3-phosphate dehydrogenase and glucose-6-phosphatase were unchanged. Cortisol levels were elevated in fasted larvae with reduced myostatin mRNA, whereas in addition immersion of larvae in 1 ppm (2.8 microM) cortisol reduced myostatin mRNA in a time-dependent fashion. These results suggest that larval myostatin mRNA levels may initially rise but ultimately fall during a prolonged fast. The reduction is likely mediated by fasting-induced hypercortisolemia, indicating divergent evolutionary mechanisms of glucocorticoid regulation of myostatin mRNA, since these steroids upregulate myostatin gene expression in mammals.

  9. Analysis of xanthine dehydrogenase mRNA levels in mutants affecting the expression of the rosy locus.

    PubMed Central

    Covington, M; Fleenor, D; Devlin, R B

    1984-01-01

    Xanthine dehydrogenase (XDH) mRNA levels were measured in a number of mutants and natural variants affecting XDH gene expression. Two variants, ry+4 and ry+10, contain cis-acting elements which map to a region flanking the 5' end of the XDH gene. Ry+4, which has 2-3 times more XDH protein than a wild type strain, has 3.2 times more XDH mRNA. Ry+10 has 50% of the wild type XDH level and 54% of the wild type XDH mRNA level. Three rosy mutants which map within the structural gene were also examined. Two of these had little if any XDH mRNA, but the third mutant had 1.3 times more XDH mRNA than wild type flies. Another mutant, ry2 , which contains no XDH protein and has a 9KB transposable element inserted into the XDH gene, has normal levels of XDH mRNA transcripts which are also the same size as those found in the wild type strain. Changes in XDH mRNA levels were measured during Drosophila development and found to parallel changes in the amount of XDH protein. In addition, there were no large changes in the size of XDH mRNA during development. Images PMID:6588363

  10. The Role of Neuropeptide Y mRNA Expression Level in Distinguishing Different Types of Depression

    PubMed Central

    Yue, Yingying; Jiang, Haitang; Yin, Yingying; Zhang, Yuqun; Liang, Jinfeng; Li, Shenghua; Wang, Jun; Lu, Jianxin; Geng, Deqin; Wu, Aiqin; Yuan, Yonggui

    2016-01-01

    Previous studies demonstrate that the protein of neuropeptide Y (NPY) is abnormal in depression patients, but the changes of NPY in different types of depression are unclear. This study was aimed to examine protein and mRNA expression levels of NPY in 159 cases with four groups including post-stroke depression (PSD) group, stroke without depression (Non-PSD) group, major depressive disorder (MDD) group and normal control (NC) group. The protein and gene expression analysis were performed by enzyme-linked immunosorbent assay (ELISA) and quantitative polymerase chain reaction-based methods. One way analysis of variance (ANOVA), chi-square tests and nonparametric test were used to evaluate general characteristics, clinical and biological materials. In order to explore the role of NPY in different types of depression, the partial correlations, binary logistic regression analysis and receiver operating characteristic (ROC) curve were calculated for PSD and MDD groups. There are significant differences of NPY protein (Fdf(3) = 5.167, P = 0.002) and mRNA expression levels (χKruskal2-Wallis, df(3) = 20.541, P < 0.001) among four groups. Bonferroni multiple comparisons found that the NPY protein was significantly decreased in PSD (FBonferroni = −7.133, P = 0.002) and Non-PSD group (FBonferroni = −5.612, P = 0.018) compared with NC group. However, contrasted with MDD group, the mRNA expression was increased in PSD and Non-PSD group by nonparametric test (all P < 0.05). In binary logistic analyses, NPY mRNA expression was independent predictors of PSD (odds ratio: 1.452, 95% CI, 1.081–1.951, P = 0.013). The ROC curve showed NPY mRNA had a general prognostic accuracy (area under the curve: 0.766, 95% CI, 0.656–0.876, P < 0.001). This is the first study to explore the distinguishing function of NPY in different types of depression. It will provide help in the identification of different subtypes of depression. PMID:28082897

  11. The Role of Neuropeptide Y mRNA Expression Level in Distinguishing Different Types of Depression.

    PubMed

    Yue, Yingying; Jiang, Haitang; Yin, Yingying; Zhang, Yuqun; Liang, Jinfeng; Li, Shenghua; Wang, Jun; Lu, Jianxin; Geng, Deqin; Wu, Aiqin; Yuan, Yonggui

    2016-01-01

    Previous studies demonstrate that the protein of neuropeptide Y (NPY) is abnormal in depression patients, but the changes of NPY in different types of depression are unclear. This study was aimed to examine protein and mRNA expression levels of NPY in 159 cases with four groups including post-stroke depression (PSD) group, stroke without depression (Non-PSD) group, major depressive disorder (MDD) group and normal control (NC) group. The protein and gene expression analysis were performed by enzyme-linked immunosorbent assay (ELISA) and quantitative polymerase chain reaction-based methods. One way analysis of variance (ANOVA), chi-square tests and nonparametric test were used to evaluate general characteristics, clinical and biological materials. In order to explore the role of NPY in different types of depression, the partial correlations, binary logistic regression analysis and receiver operating characteristic (ROC) curve were calculated for PSD and MDD groups. There are significant differences of NPY protein (Fdf(3) = 5.167, P = 0.002) and mRNA expression levels ([Formula: see text] = 20.541, P < 0.001) among four groups. Bonferroni multiple comparisons found that the NPY protein was significantly decreased in PSD (FBonferroni = -7.133, P = 0.002) and Non-PSD group (FBonferroni = -5.612, P = 0.018) compared with NC group. However, contrasted with MDD group, the mRNA expression was increased in PSD and Non-PSD group by nonparametric test (all P < 0.05). In binary logistic analyses, NPY mRNA expression was independent predictors of PSD (odds ratio: 1.452, 95% CI, 1.081-1.951, P = 0.013). The ROC curve showed NPY mRNA had a general prognostic accuracy (area under the curve: 0.766, 95% CI, 0.656-0.876, P < 0.001). This is the first study to explore the distinguishing function of NPY in different types of depression. It will provide help in the identification of different subtypes of depression.

  12. Blood glutathione peroxidase-1 mRNA levels can be used as molecular biomarkers to determine dietary selenium requirements in rats.

    PubMed

    Sunde, Roger A; Thompson, Kevin M; Evenson, Jacqueline K; Thompson, Britta M

    2009-11-01

    Transcript (mRNA) levels are increasingly being used in medicine as molecular biomarkers for disease and disease risk, including use of whole blood as a target tissue for analysis. Development of blood molecular biomarkers for nutritional status, too, has potential application that parallels opportunities in medicine, including providing solid data for individualized nutrition. We previously reported that blood glutathione peroxidase-1 (Gpx1) mRNA was expressed at levels comparable to major tissues in rats and humans. To determine the efficacy of using blood Gpx1 mRNA to assess selenium (Se) status and requirements, we fed graded levels of Se (0-0.3 microg Se/g as selenite) to weanling male rats. Se status was determined by liver Se concentration and selenoenzyme activity, and selenoprotein mRNA abundance in liver and blood was determined by ribonuclease protection analysis. Liver Se and plasma glutathione peroxidase-3 and liver Gpx1 activities indicated that minimal Se requirements were at 0.08 microg Se/g diet. When total RNA was isolated from whole blood, Gpx1 mRNA in Se-deficient rats decreased to 10% of levels in Se-adequate (0.2 microg Se/g diet) rats. With Se supplementation, blood Gpx1 mRNA levels increased sigmoidally to a plateau with a minimum Se requirement of 0.08 microg Se/g diet, whereas glutathione peroxidase-4 mRNA levels were unaffected. Similarly, Gpx1 mRNA in RNA isolated from fractionated red blood cells decreased in Se-deficient rats to 23% of Se-adequate levels, with a minimum Se requirement of 0.09 microg Se/g diet. Additional studies showed that the preponderance of whole blood Gpx1 mRNA arises from erythroid cells, most likely reticulocytes and young erythrocytes. In summary, whole blood selenoprotein mRNA levels can be used as molecular biomarkers for assessing Se requirements, illustrating that whole blood has potential as a target tissue in development of molecular biomarkers for use in nutrition as well as in medicine.

  13. Clinical Usefulness of Monitoring Expression Levels of CCL24 (Eotaxin-2) mRNA on the Ocular Surface in Patients with Vernal Keratoconjunctivitis and Atopic Keratoconjunctivitis

    PubMed Central

    2016-01-01

    Purpose. This study aimed to evaluate the clinical efficacy of using expression levels of CCL24 (eotaxin-2) mRNA on the ocular surface as a biomarker in patients with vernal keratoconjunctivitis (VKC) and atopic keratoconjunctivitis (AKC). Methods. Eighteen patients with VKC or AKC (VKC/AKC group) and 12 control subjects (control group) were enrolled in this study. The VKC/AKC clinical score was determined by objective findings in patients by using the 5-5-5 exacerbation grading scale. All subjects underwent modified impression cytology and specimens were obtained from the upper tarsal conjunctiva. Expression levels of CCL24 (eotaxin-2) mRNA on the ocular surface were determined using real-time reverse transcription polymerase chain reaction. Results. The VKC group was divided into two subgroups, depending on the clinical score: the active stage subgroup with 100 points or more of clinical scores and the stable stage subgroup with 100 points or less. CCL24 (eotaxin-2) mRNA expression levels in the active VKC/AKC stage subgroup were significantly higher than those in the stable VKC/AKC subgroup and the control group. Clinical scores correlated significantly with CCL24 (eotaxin-2) mRNA expression levels in the VKC group. Conclusions. CCL24 (eotaxin-2) mRNA expression levels on the ocular surface are a useful biomarker for clinical severity of VKC/AKC. PMID:27721987

  14. FGF15/19 protein levels in the portal blood do not reflect changes in the ileal FGF15/19 or hepatic CYP7A1 mRNA levels.

    PubMed

    Shang, Quan; Guo, Grace L; Honda, Akira; Saumoy, Monica; Salen, Gerald; Xu, Guorong

    2013-10-01

    It has been proposed that bile acid suppression of CYP7A1 gene expression is mediated through a gut-liver signaling pathway fibroblast growth factor (FGF)15/19-fibroblast growth factor receptor 4 which is initiated by activation of farnesoid X receptor in the ileum but not in the liver. This study evaluated whether FGF15/19 protein levels in the portal blood reflected changes in FGF15/19 mRNA in the ileum. Studies were conducted in Sprague Dawley rats and New Zealand white rabbits fed regular chow (controls), supplemented with cholesterol (Ch) or cholic acid (CA). After feeding CA, ileal FGF15 mRNA increased 8.5-fold in rats and FGF19 rose 16-fold in rabbits associated with 62 and 75% reduction of CYP7A1 mRNA, respectively. Neither FGF15 nor FGF19 protein levels changed in the portal blood to correspond with the marked increase of FGF15/19 mRNA levels in the ileum or inhibited CYP7A1 expression in the liver. Further, in Ch-fed rats, CYP7A1 mRNA increased 1.9-fold (P < 0.001) although FGF15 mRNA levels in the ileum and portal blood FGF15 protein levels were not decreased. In Ch-fed rabbits, although FGF19 mRNA levels in the ileum and liver did not increase significantly, CYP7A1 mRNA declined 49% (P < 0.05). We were unable to find corresponding changes of FGF15/19 protein levels in the portal blood in rats and rabbits where the mRNA levels of FGF15/19 in the ileum and CYP7A1 in the liver change significantly.

  15. Miconia sp. Increases mRNA Levels of PPAR Gamma and Inhibits Alpha Amylase and Alpha Glucosidase.

    PubMed

    Ortíz-Martinez, David Mizael; Rivas-Morales, Catalina; de la Garza-Ramos, Myriam Angelica; Verde-Star, Maria Julia; Nuñez-Gonzalez, Maria Adriana; Leos-Rivas, Catalina

    2016-01-01

    Diabetes mellitus is a public health problem worldwide. For this reason, ethanolic extract of Miconia sp. from Oaxaca, Mexico, was selected in search of an alternative against this disease. The effect of Miconia sp. on mRNA expression of PPARγ on cell line 3T3-L1, its effect on alpha amylase and alpha glucosidase, lipid accumulation during adipogenesis, and cell viability on VERO cells were evaluated. The mRNA levels of PPARγ increased on 1.393 ± 0.008 folds, lipid accumulation was increased by 29.55% with Miconia sp. extract and 34.57% with rosiglitazone, and α-amylase and α-glycosidase were inhibited with IC50 values from 28.23 ± 2.15 μg/mL and 1.95 ± 0.15 μg/mL, respectively; the IC50 on antiproliferative activity on VERO cells was 314.54 ± 45.40 μg/mL. In case of α-amylase and α-glycosidase assays, IC50 (inhibitory concentration 50) refers to necessary extract amounts to inhibit 50% of enzymatic activity. On the other hand, on antiproliferative activity, IC50 (inhibitory concentration 50) refers to necessary extract amounts to inhibit 50% of cell proliferation. It was concluded that the compounds present in Miconia sp. ethanolic extract increase mRNA expression of PPARγ, inhibit α-amylase and α-glucosidase, and increase lipid accumulation. It constitutes an alternative as adjuvant in diabetes mellitus treatment; therefore, we recommend continuing identifying the compounds responsible for its promising in vivo antidiabetic activity.

  16. Miconia sp. Increases mRNA Levels of PPAR Gamma and Inhibits Alpha Amylase and Alpha Glucosidase

    PubMed Central

    Ortíz-Martinez, David Mizael; Rivas-Morales, Catalina; de la Garza-Ramos, Myriam Angelica; Verde-Star, Maria Julia; Nuñez-Gonzalez, Maria Adriana

    2016-01-01

    Diabetes mellitus is a public health problem worldwide. For this reason, ethanolic extract of Miconia sp. from Oaxaca, Mexico, was selected in search of an alternative against this disease. The effect of Miconia sp. on mRNA expression of PPARγ on cell line 3T3-L1, its effect on alpha amylase and alpha glucosidase, lipid accumulation during adipogenesis, and cell viability on VERO cells were evaluated. The mRNA levels of PPARγ increased on 1.393 ± 0.008 folds, lipid accumulation was increased by 29.55% with Miconia sp. extract and 34.57% with rosiglitazone, and α-amylase and α-glycosidase were inhibited with IC50 values from 28.23 ± 2.15 μg/mL and 1.95 ± 0.15 μg/mL, respectively; the IC50 on antiproliferative activity on VERO cells was 314.54 ± 45.40 μg/mL. In case of α-amylase and α-glycosidase assays, IC50 (inhibitory concentration 50) refers to necessary extract amounts to inhibit 50% of enzymatic activity. On the other hand, on antiproliferative activity, IC50 (inhibitory concentration 50) refers to necessary extract amounts to inhibit 50% of cell proliferation. It was concluded that the compounds present in Miconia sp. ethanolic extract increase mRNA expression of PPARγ, inhibit α-amylase and α-glucosidase, and increase lipid accumulation. It constitutes an alternative as adjuvant in diabetes mellitus treatment; therefore, we recommend continuing identifying the compounds responsible for its promising in vivo antidiabetic activity. PMID:27478477

  17. Changes in mRNA levels for brain-derived neurotrophic factor after wheel running in rats selectively bred for high- and low-aerobic capacity

    PubMed Central

    Groves-Chapman, Jessica L.; Murray, Patrick S.; Stevens, Kristin L.; Monroe, Derek; Koch, Lauren G.; Britton, Steven L.; Holmes, Philip V.

    2012-01-01

    We evaluated levels of exercise-induced brain-derived neurotrophic factor (BDNF) messenger RNA (mRNA) within the hippocampal formation in rats selectively bred for 1) high intrinsic (i.e., untrained) aerobic capacity (High Capacity Runners, HCR), 2) low intrinsic aerobic capacity (Low Capacity Runners, LCR), and 3) unselected Sprague-Dawley (SD) rats with or without free access to running wheels for three weeks. The specific aim of the study was to determine whether a dose-response relationship exists between cumulative running distance and levels of BDNF mRNA. No additional treatments or behavioral manipulations were used. HCR, LCR, and SD rats were grouped by strain and randomly assigned to sedentary or activity (voluntary access to activity wheel) conditions. Animals were killed after 21 days of exposure to the assigned conditions. Daily running distances (mean ± standard deviation meters/d) during week three were: HCR (4726 ± 3220), SD (2293 ± 3461), LCR (672 ± 323). Regardless of strain, levels of BDNF mRNA in CA1 were elevated in wheel runners compared to sedentary rats and this difference persisted after adjustment for age (p=0.040). BDNF mRNA was not affected by intrinsic aerobic capacity and was not related to total running distance. The results support that BDNF mRNA expression is increased by unlimited access to activity wheel running for 3 weeks but is not dependent upon accumulated running distance. PMID:22024546

  18. Changes in mRNA levels for brain-derived neurotrophic factor after wheel running in rats selectively bred for high- and low-aerobic capacity.

    PubMed

    Groves-Chapman, Jessica L; Murray, Patrick S; Stevens, Kristin L; Monroe, Derek C; Koch, Lauren G; Britton, Steven L; Holmes, Philip V; Dishman, Rod K

    2011-11-24

    We evaluated levels of exercise-induced brain-derived neurotrophic factor (BDNF) messenger RNA (mRNA) within the hippocampal formation in rats selectively bred for 1) high intrinsic (i.e., untrained) aerobic capacity (High Capacity Runners, HCR), 2) low intrinsic aerobic capacity (Low Capacity Runners, LCR), and 3) unselected Sprague-Dawley (SD) rats with or without free access to running wheels for 3 weeks. The specific aim of the study was to determine whether a dose-response relationship exists between cumulative running distance and levels of BDNF mRNA. No additional treatments or behavioral manipulations were used. HCR, LCR, and SD rats were grouped by strain and randomly assigned to sedentary or activity (voluntary access to activity wheel) conditions. Animals were killed after 21 days of exposure to the assigned conditions. Daily running distances (mean ± standard deviation meters/day) during week three were: HCR (4726 ± 3220), SD (2293 ± 3461), LCR (672 ± 323). Regardless of strain, levels of BDNF mRNA in CA1 were elevated in wheel runners compared to sedentary rats and this difference persisted after adjustment for age (p=0.040). BDNF mRNA was not affected by intrinsic aerobic capacity and was not related to total running distance. The results support that BDNF mRNA expression is increased by unlimited access to activity wheel running for 3 weeks but is not dependent upon accumulated running distance.

  19. Exercise increases hexokinase II mRNA, but not activity in obesity and type 2 diabetes.

    PubMed

    Cusi, K J; Pratipanawatr, T; Koval, J; Printz, R; Ardehali, H; Granner, D K; Defronzo, R A; Mandarino, L J

    2001-05-01

    Glucose phosphorylation, catalyzed by hexokinase, is the first committed step in glucose uptake in skeletal muscle. Hexokinase II (HKII) is the isoform that is present in muscle and is regulated by insulin and muscle contraction. Glucose phosphorylation and HKII expression are both reduced in obese and type 2 diabetic subjects. A single bout of exercise increases HKII mRNA and activity in muscle from healthy subjects. The present study was performed to determine if a moderate exercise increases HKII mRNA expression and activity in patients with type 2 diabetes. Muscle biopsies were performed before and 3 hours after a single bout of cycle ergometer exercise in obese and type 2 diabetic patients. HKII mRNA and activity and glycogen synthase activity were determined in the muscle biopsies. Exercise increased HKII mRNA in obese and diabetic subjects by 1.67 +/- 0.34 and 1.87 +/- 0.26-fold, respectively (P <.05 for both). Exercise did not significantly increase HKI mRNA. When HKII mRNA increases were compared with the 2.26 +/- 0.36-fold increase in HKII mRNA previously reported for healthy lean subjects, no statistically significant differences were found. In contrast to the increase in HKII activity observed after exercise by lean healthy controls, exercise did not increase HKII activity in obese nondiabetic or diabetic subjects. Exercise increased glycogen synthase activity (GS(0.1) and GS(FV)) significantly in both obese nondiabetic and type 2 diabetic patients. The present results indicate that there is a posttranscriptional defect in the response of HKII expression to exercise in obese and type 2 diabetic subjects. This defect may contribute to reduced HKII activity and glucose uptake in these patients.

  20. The effects of running exercise on oxidative capacity and PGC-1α mRNA levels in the soleus muscle of rats with metabolic syndrome.

    PubMed

    Nagatomo, Fumiko; Fujino, Hidemi; Kondo, Hiroyo; Kouzaki, Motoki; Gu, Ning; Takeda, Isao; Tsuda, Kinsuke; Ishihara, Akihiko

    2012-03-01

    Skeletal muscles in animals with metabolic syndrome exhibit reduced oxidative capacity. We investigated the effects of running exercise on fiber characteristics, oxidative capacity, and mRNA levels in the soleus muscles of rats with metabolic syndrome [SHR/NDmcr-cp (cp/cp); CP]. We divided 5-week-old CP rats into non-exercise (CP) and exercise (CP-Ex) groups. Wistar-Kyoto rats (WKY) were used as the control group. CP-Ex rats were permitted voluntary exercise on running wheels for 10 weeks. Triglyceride levels were higher and adiponectin levels lower in the CP and CP-Ex groups than in the WKY group. However, triglyceride levels were lower and adiponectin levels higher in the CP-Ex group than in the CP group. The soleus muscles in CP-Ex rats contained only high-oxidative type I fibers, whereas those in WKY and CP rats contained type I, IIA, and IIC fibers. Muscle succinate dehydrogenase (SDH) activity was higher in the CP-Ex group than in the CP group; there was no difference in SDH activity between the WKY and CP-Ex groups. Muscle proliferator-activated receptor γ coactivator-1α (PGC-1α) mRNA levels were higher in the CP-Ex group than in the CP group; there was no difference in PGC-1α mRNA levels between the WKY and CP-Ex groups. In CP-Ex rats, longer running distance was associated with increased muscle SDH activity and PGC-1α mRNA levels. We concluded that running exercise restored decreased muscle oxidative capacity and PGC-1α mRNA levels and improved hypertriglyceridemia in rats with metabolic syndrome.

  1. Nonsense-mediated mRNA decay modulates immune receptor levels to regulate plant antibacterial defense.

    PubMed

    Gloggnitzer, Jiradet; Akimcheva, Svetlana; Srinivasan, Arunkumar; Kusenda, Branislav; Riehs, Nina; Stampfl, Hansjörg; Bautor, Jaqueline; Dekrout, Bettina; Jonak, Claudia; Jiménez-Gómez, José M; Parker, Jane E; Riha, Karel

    2014-09-10

    Nonsense-mediated mRNA decay (NMD) is a conserved eukaryotic RNA surveillance mechanism that degrades aberrant mRNAs. NMD impairment in Arabidopsis is linked to constitutive immune response activation and enhanced antibacterial resistance, but the underlying mechanisms are unknown. Here we show that NMD contributes to innate immunity in Arabidopsis by controlling the turnover of numerous TIR domain-containing, nucleotide-binding, leucine-rich repeat (TNL) immune receptor-encoding mRNAs. Autoimmunity resulting from NMD impairment depends on TNL signaling pathway components and can be triggered through deregulation of a single TNL gene, RPS6. Bacterial infection of plants causes host-programmed inhibition of NMD, leading to stabilization of NMD-regulated TNL transcripts. Conversely, constitutive NMD activity prevents TNL stabilization and impairs plant defense, demonstrating that host-regulated NMD contributes to disease resistance. Thus, NMD shapes plant innate immunity by controlling the threshold for activation of TNL resistance pathways.

  2. Changes in surfactant protein A mRNA levels in a rat model of insulin-treated diabetic pregnancy.

    PubMed

    Moglia, B B; Phelps, D S

    1996-02-01

    Maternal diabetes during pregnancy is associated with increased risk of neonatal respiratory distress syndrome (RDS). Previous studies using rat models for the diabetic pregnancy have documented decreased amounts of surfactant protein mRNA in the lungs of fetuses. In this study, we measured fetal lung surfactant-associated protein A (SP-A) mRNA from diabetic rats treated with insulin by daily injection or osmotic pump. Lungs were taken from fetuses on gestational d 20, and RNA was isolated and subjected to Northern blotting and densitometry to quantify SP-A mRNA. Fetal lung SP-A mRNA from untreated diabetic pregnancies was 34 +/- 2.9% of control. Insulin treatment increased levels to 55 +/- 4.2% of control values. Fetal lung SP-A mRNA levels were affected by the timing, length, and effectiveness of insulin treatment. Although levels from all treatment groups were still less than control values, insulin treatment during the last 5 or 10 d of pregnancy resulted in a substantial increase in SP-A mRNA levels over those of from untreated diabetic pregnancies. However, fetuses from the group with insulin treatment for the entire pregnancy showed decreases in fetal SP-A mRNA levels. Although the mechanism(s) responsible for the effects of diabetes and its treatment on fetal SP-A expression remain unclear, it appears unlikely that hyperglycemia is the principal cause.

  3. Changes in rRNA levels during stress invalidates results from mRNA blotting: fluorescence in situ rRNA hybridization permits renormalization for estimation of cellular mRNA levels.

    PubMed

    Hansen, M C; Nielsen, A K; Molin, S; Hammer, K; Kilstrup, M

    2001-08-01

    Regulation of gene expression can be analyzed by a number of different techniques. Some techniques monitor the level of specific mRNA directly, and others monitor indirectly by determining the level of enzymes encoded by the mRNA. Each method has its own inherent way of normalization. When results obtained by these techniques are compared between experiments in which differences in growth rates, strains, or stress treatments occur, the normalization procedure may have a significant impact on the results. In this report we present a solution to the normalization problem in RNA slot blotting experiments, in which mRNA levels routinely are normalized to a fixed amount of extracted total RNA. The cellular levels of specific mRNA species were estimated using a renormalization with the total RNA content per cell. By a combination of fluorescence in situ rRNA hybridization, which estimates the relative level of rRNA per cell, and slot blotting to rRNA probes, which estimates the level of rRNA per extracted total RNA, the amount of RNA per cell was calculated in a series of heat shock experiments with the gram-positive bacterium Lactococcus lactis. It was found that the level of rRNA per cell decreased to 30% in the course of the heat shock. This lowered ribosome level led to a decrease in the total RNA content, resulting in a gradually increasing overestimation of the mRNA levels throughout the experiment. Using renormalized cellular mRNA levels, the HrcA-mediated regulation of the genes in the hrcA-grpE-dnaK operon was analyzed. The hybridization data suggested a complex heat shock regulation indicating that the mRNA levels continued to rise after 30 min, but after renormalization the calculated average cellular levels exhibited a much simpler induction pattern, eventually attaining a moderately increased value.

  4. Variations in mRNA and protein levels of Ikaros family members in pediatric T cell acute lymphoblastic leukemia

    PubMed Central

    Mitchell, Julie L.

    2016-01-01

    Background Pediatric T cell acute lymphoblastic leukemia (T-ALL) is a highly heterogeneous disease in which the cells share phenotypic characteristics with normal human thymocytes. The Ikaros family of transcription factors includes five members that are required for normal T cell development and are implicated in leukemogenesis. The goal of this work was to correlate the pattern of expression of Ikaros family members with the phenotype of the T-ALL cells. Methods We obtained twenty-four samples from pediatric T-ALL patients and used multi-parameter flow cytometry to characterize each sample, comparing the phenotype of the leukemic cells with normal human thymocytes. Then, we defined the expression levels of each Ikaros family member to determine whether the mRNA levels or splicing or protein levels were similar to the normal patterns seen during human T cell development. Results Multi-parameter analysis of the phenotype of T-ALL cells revealed that each patient’s cells were unique and could not be readily correlated with stages of T cell development. Similarly, the pattern of Ikaros expression varied among patients. In most patients, Ikaros mRNA was the dominant family member expressed, but some patients’ cells contained mostly Helios, Aiolos, or Eos mRNA. Despite that most patients had elevated mRNA levels of Ikaros family members and unique patterns of mRNA splicing, most patients had significantly reduced protein levels of Ikaros and Aiolos. Conclusions Our analysis of the cell phenotype and Ikaros expression levels in T-ALL cells revealed the extent of heterogeneity among patients. While it is rarely possible to trace leukemic cells to their developmental origin, we found distinct patterns of Ikaros family mRNA levels in groups of patients. Further, mRNA and protein levels of Ikaros and Aiolos did not correlate, indicating that mRNA and protein levels are regulated via distinct mechanisms. PMID:27826566

  5. Catabolite control of the elevation of PGK mRNA levels by heat shock in Saccharomyces cerevisiae.

    PubMed

    Piper, P W; Curran, B; Davies, M W; Hirst, K; Lockheart, A; Seward, K

    1988-05-01

    Heat shock enhances the very high level of transcription of the phosphoglycerate kinase (PGK) gene in fermentative cultures of Saccharomyces cerevisiae. This response of PGK mRNA levels was not found on gluconeogenic carbon sources, and could be switched on or off subject to availability of fermentable carbon source. The addition of glucose to yeast growing on glycerol resulted in acquisition, within 30-60 min, of the ability to elevate PGK mRNA levels after heat shock. In addition, in aerobic cultures growing on glucose the exhaustion of the medium glucose coincided with a loss of the heat-shock effect on PGK mRNA and a switch-over to slower growth by aerobic respiration. Levels of hsp26 mRNA were analysed during these experiments. Contrasting with this requirement for fermentable catabolite for manifestation of a heat-shock response of PGK mRNA levels, the PGK enzyme was not synthesized at a greater level in heat-shocked fermentative than in gluconeogenic cultures. PGK is one of only a few proteins made efficiently after mild heat shock of yeast. Thus, heat-stress-induced elevation of PGK mRNA levels does not appreciably increase PGK synthesis during exposure to high temperatures and so its role may be to assist cells repressed in mitochondrial function during recovery following a heat shock.

  6. Time Course of Behavioral Alteration and mRNA Levels of Neurotrophic Factor Following Stress Exposure in Mouse.

    PubMed

    Hashikawa, Naoya; Ogawa, Takumi; Sakamoto, Yusuke; Ogawa, Mami; Matsuo, Yumi; Zamami, Yoshito; Hashikawa-Hobara, Narumi

    2015-08-01

    Stress is known to affect neurotrophic factor expression, which induces depression-like behavior. However, whether there are time-dependent changes in neurotrophic factor mRNA expression following stress remains unclear. In the present study, we tested whether chronic stress exposure induces long-term changes in depression-related behavior, serum corticosterone, and hippocampal proliferation as well as neurotrophic factor family mRNA levels, such as brain-derived neurotrophic factor (BDNF), nerve growth factor (NGF), neurotrophin-3 (NT-3), and ciliary neurotrophic factor (CNTF), in the mouse hippocampus. The mRNA level of neurotrophic factors (BDNF, NGF, NT-3, and CNTF) was measured using the real-time PCR. The serum corticosterone level was evaluated by enzyme-linked immunosorbent assay, and, for each subject, the hippocampal proliferation was examined by 5-bromo-2-deoxyuridine immunostaining. Mice exhibited depression-like behavior in the forced-swim test (FST) and decreased BDNF mRNA and hippocampal proliferation in the middle of the stress exposure. After 15 days of stress exposure, we observed increased immobility in the FST, serum corticosterone levels, and BDNF mRNA levels and degenerated hippocampal proliferation, maintained for at least 2 weeks. Anhedonia-like behavior in the sucrose preference test and NGF mRNA levels were decreased following 15 days of stress. NGF mRNA levels were significantly higher 1 week after stress exposure. The current data demonstrate that chronic stress exposure induces prolonged BDNF and NGF mRNA changes and increases corticosterone levels and depression-like behavior in the FST, but does not alter other neurotrophic factors or performance in the sucrose preference test.

  7. Strain differences in cytochrome P450 mRNA and protein expression, and enzymatic activity among Sprague Dawley, Wistar, Brown Norway and Dark Agouti rats.

    PubMed

    Nishiyama, Yoshihiro; Nakayama, Shouta M M; Watanabe, Kensuke P; Kawai, Yusuke K; Ohno, Marumi; Ikenaka, Yoshinori; Ishizuka, Mayumi

    2016-05-03

    Rat cytochrome P450 (CYP) exhibits inter-strain differences, but their analysis has been scattered across studies under different conditions. To identify these strain differences in CYP more comprehensively, mRNA expression, protein expression and metabolic activity among Wistar (WI), Sprague Dawley (SD), Dark Agouti (DA) and Brown Norway (BN) rats were compared. The mRNA level and enzymatic activity of CYP1A1 were highest in SD rats. The rank order of Cyp3a2 mRNA expression mirrored its protein expression, i.e., DA>BN>SD>WI, and was similar to the CYP3A2-dependent warfarin metabolic activity, i.e., DA>SD>BN>WI. These results suggest that the strain differences in CYP3A2 enzymatic activity are caused by differences in mRNA expression. Cyp2b1 mRNA levels, which were higher in DA rats, did not correlate with its protein expression or enzymatic activity. This suggests that the strain differences in enzymatic activity are not related to Cyp2b1 mRNA expression. In conclusion, WI rats tended to have the lowest CYP1A1, 2B1 and 3A2 mRNA expression, protein expression and enzymatic activity among the strains. In addition, SD rats had the highest CYP1A1 mRNA expression and activity, while DA rats had higher CYP2B1 and CYP3A2 mRNA and protein expression. These inter-strain differences in CYP could influence pharmacokinetic considerations in preclinical toxicological studies.

  8. Dietary copper can regulate the level of mRNA for dopamine B-hydroxylase in rat adrenal gland

    SciTech Connect

    Sabban, E.L.; Failla, M.L.; McMahon, A.; Seidel, K.E. Dept. of Agriculture, Beltsville, MD )

    1991-03-15

    Recent studies have shown that Cu deficiency markedly alters the levels of dopamine (DA) and norepinephrine (NE) in several peripheral tissues of rodents. Conversion of DA to NE is mediated by dopamine B-hydroxylase (DBM). Here the authors examined the effect of dietary Cu deficiency on the levels of DA, NE and DBM mRNA in rat adrenal gland. Severe Cu deficiency was induced by feeding low Cu diet to dams beginning at 17d gestation and weaning pups to the same diet. At 7 wks of age rats fed {minus}Cu diet were characterized by depressed growth, low tissue Cu, enlarged hearts and moderate anemia. Concentrations of DA were higher in adrenals and hearts of {minus}Cu rats compared to +Cu controls. While cardiac level of NE in {minus}Cu rats were reduced to 17% that of controls, adrenal NE was unchanged by Cu deficiency. To investigate possible mechanisms responsible for the response of adrenal gland to Cu deficiency, RNA was isolated and the levels of DBH mRNA and tyrosine hydroxylase (TH) mRNA were analyzed by Northern blots. Steady state levels of adrenal DBH mRNA was increased 2-3 fold in {minus}Cu rats, whereas TH mRNA were unchanged by dietary Cu status. Upon feeding the {minus}Cu rats the Cu adequate diet overnight, there was a further increase in DBH mRNA and a slight elevation of TH mRNA levels. The results indicate that dietary copper can markedly affect the level of DBH mRNA in rat adrenal gland.

  9. Semiquantitation of human chemokine mRNA levels with a newly constructed multispecific competitor fragment.

    PubMed

    Dumoulin, F L; Altfeld, M; Rockstroh, J K; Leifeld, L; Sauerbruch, T; Spengler, U

    1999-04-22

    Chemokines are a group of inducible, locally acting proinflammatory cytokines which have been implicated in the pathogenesis of a variety of diseases. Important members of the group include monocyte chemoattractant protein (MCP)-1, -2, -3, macrophage inhibitory protein (MIP)-1alpha, -1beta and RANTES (regulated upon activation, normal T expressed and secreted). To facilitate further investigation of the human chemokines, we have constructed a novel multispecific competitor fragment containing primer binding sites for the CC-chemokines MCP-1, MCP-2, MCP-3, MIP-1alpha, MIP-1beta and RANTES, the CXC-chemokines MIP-2alpha, MIP-2beta as well as for the housekeeping gene beta-actin. Using this competitor fragment we can demonstrate reliable semiquantitation of reverse transcribed chemokine mRNAs. The assay should be useful for further studies, in particular for the semiquantitation of chemokine mRNA species from small cell or tissue specimens.

  10. Evaluation of diagnostic relevance of mRNA levels in peripheral blood: predictive value for mortality in hemodialysis patients.

    PubMed

    Füth, Reiner; Herder, Christian; Förster, Stefan; Müller-Scholze, Sylvia; Kruse, Niels; Rieckmann, Peter; Heinig, Antonia; Koenig, Wolfgang; Scherbaum, Werner A; Kolb, Hubert; Martin, Stephan

    2004-09-21

    In clinical practice, diagnosis and risk prediction are usually based on the analysis of serum or plasma proteins whereas gene expression analysis is not used on a routine basis. In order to compare the diagnostic and predictive relevance of serum protein and peripheral blood mRNA levels, we determined cytokine levels of end-stage renal failure patients undergoing hemodialysis. These patients face a high mortality mainly due to acceleration of atherosclerosis and subsequent severe vascular events. mRNA expression of the pro-inflammatory cytokine TNF alpha was significantly elevated in hemodialysis patients and further increased after 2 h of dialysis treatment. In contrast, gene expression of the anti-inflammatory cytokine TGF beta was significantly decreased. Patients who died during the observation period of 36 months had significantly increased mRNA levels of TNF alpha and decreased TGF beta mRNA expression at baseline. Survival analysis indicated that increased TNF alpha mRNA levels (P < 0.02) and TNF alpha/TGF beta mRNA ratios (P < 0.001) predict mortality. The corresponding cytokines in serum showed some association with disease, but serum concentrations neither changed during hemodialysis nor predicted mortality. This study shows that gene expression patterns of circulating leukocytes may present an important new diagnostic tool to predict clinical outcome in patients with inflammatory vascular diseases.

  11. TP53 and ATM mRNA expression in skin and skeletal muscle after low-level laser exposure.

    PubMed

    Guedes de Almeida, Luciana; Silva Sergio, Luiz Philippe da; de Paoli, Flavia; Mencalha, Andre Luiz; da Fonseca, Adenilson de Souza

    2017-02-16

    Low-level lasers are widespread in regenerative medicine, but the molecular mechanisms involved in their biological effects are not fully understood, particularly those on DNA stability. Therefore, this study aimed to investigate mRNA expression of genes related to DNA genomic stability in skin and skeletal muscle tissue from Wistar rats exposed to low-level red and infrared lasers. For this, TP53 (Tumor Protein 53) and ATM (Ataxia Telangiectasia Mutated gene) mRNA expressions were evaluated by real-time quantitative PCR (RT-qPCR) technique 24 hours after low-level red and infrared laser exposure. Our data showed that relative TP53 mRNA expression was not significantly altered in both tissues exposed to lasers. For ATM, relative mRNA expression in skin tissue was not significantly altered, but in muscle tissue, laser exposure increased relative ATM mRNA expression. Low-level red and infrared laser radiations alter ATM mRNA expression related to DNA stability in skeletal muscle tissue.

  12. Evidence for tissue-specific activation of renal angiotensinogen mRNA expression in chronic stable experimental heart failure.

    PubMed Central

    Schunkert, H; Ingelfinger, J R; Hirsch, A T; Tang, S S; Litwin, S E; Talsness, C E; Dzau, V J

    1992-01-01

    The intrarenal renin-angiotensin system (RAS) may contribute to the pathophysiology of heart failure by the generation of angiotensin II at local sites within the kidneys. Angiotensin II may directly influence renal hemodynamics, glomerular contractility, and tubular sodium reabsorption, thereby promoting sodium and fluid retention in this syndrome. In the present study, we examined components of the circulating RAS as well as the intrarenal expressions of renin and angiotensinogen mRNA in rats with stable compensated heart failure (HF) 12 wk after experimental myocardial infarction. Renal angiotensinogen mRNA level in vehicle-treated HF rats increased 47%, as compared with sham control rats (P = 0.001). The increase in angiotensinogen mRNA levels was more pronounced in animals with medium (46%, P < 0.05) and large (66%, P < 0.05) infarcts than in those with small infarcts (31%, P = NS). There were no differences in liver angiotensinogen mRNA, circulating angiotensinogen, angiotensin II, plasma renin concentration (PRC), kidney renin content (KRC), and renal renin mRNA level between sham and HFv. In addition, in a separate group of rats with heart failure, we demonstrated that renal angiotensin II concentration increased twofold (P < 0.05) as compared with that of age-matched sham operated controls. A parallel group of heart failure rats (HFe, n = 11) was treated with enalapril (25 mg/kg per d) in drinking water for 6 wk before these measurements. Blood pressure decreased significantly during treatment (91 vs. 103 mm Hg, P < 0.05). Enalapril treatment in HF rats increased renin mRNA level (2.5-fold, P < 0.005), KRC (5.6-fold, P = 0.005), and PRC (15.5-fold, P < 0.005). The increase in renal angiotensinogen mRNA level observed in HFv rats was markedly attenuated in enalapril treated HF rats (P < 0.001), suggesting a positive feedback of angiotensin II on renal angiotensinogen synthesis. These findings demonstrate an activation of intrarenal RAS, but no changes in

  13. Thyroid hormone deiodinase type 2 mRNA levels in sea lamprey (Petromyzon marinus) are regulated during metamorphosis and in response to a thyroid challenge.

    PubMed

    Stilborn, S Salina M; Manzon, Lori A; Schauenberg, Jennifer D; Manzon, Richard G

    2013-03-01

    Thyroid hormones (THs) are crucial for normal vertebrate development and are the one obligate morphogen that drives amphibian metamorphosis. However, contrary to other metamorphosing vertebrates, lampreys exhibit a sharp drop in serum TH early in metamorphosis, and anti-thyroid agents such as potassium perchlorate (KClO(4)) induce metamorphosis. The type 2 deiodinase (D2) enzyme is a key regulator of TH availability during amphibian metamorphosis. We set out to determine how D2 may be involved in the regulation of lamprey metamorphosis and thyroid homeostasis. We cloned a 1.8Kb Petromyzon marinus D2 cDNA that includes the entire protein coding region and a selenocysteine (Sec) codon. Northern blotting indicated that the lamprey D2 mRNA is the longest reported to date (>9Kb). Using real-time PCR, we showed that intestinal and hepatic D2 mRNA levels were elevated prior to and during the early stages of metamorphosis and then declined dramatically to low levels that were sustained for the remainder of metamorphosis. These data are consistent with previously reported changes in serum TH levels and deiodinase activity. Treatment of larvae with either TH or KClO(4) significantly affected D2 mRNA levels in the intestine and liver. These D2 mRNA levels during metamorphosis and in response to thyroid challenges suggest that D2 may function in the regulation of TH levels during lamprey metamorphosis and the maintenance of TH homeostasis.

  14. Dysregulation of the Axonal Trafficking of Nuclear-encoded Mitochondrial mRNA alters Neuronal Mitochondrial Activity and Mouse Behavior

    PubMed Central

    Kar, Amar N.; Sun, Ching-Yu; Reichard, Kathryn; Gervasi, Noreen M.; Pickel, James; Nakazawa, Kazu; Gioio, Anthony E.; Kaplan, Barry B.

    2014-01-01

    Local translation of nuclear-encoded mitochondrial mRNAs is essential for mitochondrial activity, yet there is little insight into the role that axonal trafficking of these transcripts play in neuronal function and behavior. Previously, we identified a 38 nucleotide stem-loop structure (zipcode) in the 3′ untranslated region of the Cytochrome C oxidase IV (COXIV) mRNA that directs the transport of a reporter mRNA to the axon of superior cervical ganglion neurons (SCG). Over-expression of a chimeric reporter mRNA with the COXIV zipcode competed with the axonal trafficking of endogenous COXIV mRNA, and led to attenuated axon growth in SCG neurons. Here, we show that exogenous expression of the COXIV zipcode in cultured SCG neurons also results in the reduction of local ATP levels and increases levels of reactive oxygen species (ROS) in the axon. We took advantage of this “competition” phenotype to investigate the in vivo significance of axonal transport of COXIV mRNA. Towards this end, we generated transgenic mice expressing a fluorescent reporter fused to COXIV zipcode under a forebrain-specific promoter. Immunohistological analyses and RT-PCR analyses of RNA from the transgenic mouse brain showed expression of the reporter in the deep layer neurons in the pre-frontal and frontal cortex. Consistent with the in vitro studies, we observed increased ROS levels in neurons of these transgenic animals. A battery of behavioral tests on transgenic mice expressing the COXIV zipcode revealed an “anxiety-like” behavioral phenotype, suggesting an important role for axonal trafficking of nuclear-encoded mitochondrial mRNAs in neuronal physiology and animal behavior. PMID:24151253

  15. Local anesthetics inhibit tissue factor expression in activated monocytes via inhibition of tissue factor mRNA synthesis.

    PubMed

    Kim, Ji-Eun; Kim, Ki Jun; Ahn, Wonsik; Han, Kyou-Sup; Kim, Hyun Kyung

    2011-01-01

    Local anesthetics have been reported to have anticoagulant properties, but the mechanisms responsible for this action are poorly understood. Here, we evaluated the in vitro effects of 3 local anesthetics--lidocaine, ropivacaine, and bupivacaine--on the tissue factor expression by monocytes. Monocytes from peripheral blood were stimulated with lipopolysaccharide (LPS) in the presence or absence of local anesthetics. All 3 local anesthetics inhibited the expression of tissue factor antigen and tissue factor activity in LPS-stimulated monocytes in a dose- and time-dependent manner and reduced tissue factor messenger RNA (mRNA) expression in endothelial cells and a monocytic cell line. None of the 3 drugs induced apoptosis or affected the viability of monocytes. Our findings that local anesthetics inhibited the tissue factor induction in activated monocytes by inhibiting tissue factor mRNA level may demonstrate the feasibility of using local anesthetics in hypercoagulable and inflammatory conditions.

  16. Quantitation of the mRNA levels of Epo and EpoR in various tissues in the ovine fetus.

    PubMed

    David, R Bruce; Lim, Gaik Bee; Moritz, Karen M; Koukoulas, Irene; Wintour, E Marelyn

    2002-02-25

    A partial cDNA of the sheep erythropoietin receptor (EpoR) was obtained and used in real-time PCR to quantitate mRNA levels in placenta, liver and kidney throughout development (term=150 days). This was compared with Epo mRNA levels in the same tissues. Both Epo and EpoR mRNA were present in the placenta throughout gestation at low levels from 66 days onwards and these did not vary throughout gestation. Compared with the expression levels in the placenta, the levels of EpoR gene expression in the liver at 66, 99 and 140 days were, median (range)-288 (120-343), 278 (63-541) and 7 (3-15), respectively, reflecting the disappearance of erythropoiesis after 130 days. Low levels of EpoR gene expression were seen in the kidney at 3 (2-5), 5 (2-7), and 7 (2-10) times that in the placenta at 66, 99, and 140 days, respectively. By hybridization histochemistry the EpoR mRNA was located in the proximal tubular cells of the mesonephros and metanephros at 42 days. Epo mRNA levels in the kidney were 215 (116-867), 528 (113-765) and 46 (15-204) times those in the placenta at 69, 99, and 140 days, respectively. In the liver at the same ages the concentrations of mRNA were lower than in the kidney, the liver/placenta ratios being 50 (11-90), 17 (3-39), 9 (5-14). At 130 days Epo/EpoR levels in the hippocampus were 6+/-3 and 8+/-3 times that in the term placenta, respectively. These studies demonstrate that the ovine placenta expresses the Epo gene from at least 66 days of gestation. However, gene expression levels are very low compared with those in the liver and kidney, and even the hippocampus.

  17. Chitinase mRNA levels by quantitative PCR using the single standard DNA: acidic mammalian chitinase is a major transcript in the mouse stomach.

    PubMed

    Ohno, Misa; Tsuda, Kyoko; Sakaguchi, Masayoshi; Sugahara, Yasusato; Oyama, Fumitaka

    2012-01-01

    Chitinases hydrolyze the β-1-4 glycosidic bonds of chitin, a major structural component of fungi, crustaceans and insects. Although mammals do not produce chitin or its synthase, they express two active chitinases, chitotriosidase (Chit1) and acidic mammalian chitinase (AMCase). These mammalian chitinases have attracted considerable attention due to their increased expression in individuals with a number of pathological conditions, including Gaucher disease, Alzheimer's disease and asthma. However, the contribution of these enzymes to the pathophysiology of these diseases remains to be determined. The quantification of the Chit1 and AMCase mRNA levels and the comparison of those levels with the levels of well-known reference genes can generate useful and biomedically relevant information. In the beginning, we established a quantitative real-time PCR system that uses standard DNA produced by ligating the cDNA fragments of the target genes. This system enabled us to quantify and compare the expression levels of the chitinases and the reference genes on the same scale. We found that AMCase mRNA is synthesized at extraordinarily high levels in the mouse stomach. The level of this mRNA in the mouse stomach was 7- to 10-fold higher than the levels of the housekeeping genes and was comparable to that the level of the mRNA for pepsinogen C (progastricsin), a major component of the gastric mucosa. Thus, AMCase mRNA is a major transcript in mouse stomach, suggesting that AMCase functions as a digestive enzyme that breaks down polymeric chitin and as part of the host defense against chitin-containing pathogens in the gastric contents. Our methodology is applicable to the quantification of mRNAs for multiple genes across multiple specimens using the same scale.

  18. High STAT1 mRNA levels but not its tyrosine phosphorylation are associated with macrophage infiltration and bad prognosis in breast cancer

    PubMed Central

    2014-01-01

    Background STAT1 has been attributed a function as tumor suppressor. However, in breast cancer data from microarray analysis indicated a predictive value of high mRNA expression levels of STAT1 and STAT1 target genes belonging to the interferon-related signature for a poor response to therapy. To clarify this issue we have determined STAT1 expression levels and activation by different methods, and investigated their association with tumor infiltration by immune cells. Additionally, we evaluated the interrelationship of these parameters and their significance for predicting disease outcome. Methods Expression of STAT1, its target genes SOCS1, IRF1, CXCL9, CXCL10, CXCL11, IFIT1, IFITM1, MX1 and genes characteristic for immune cell infiltration (CD68, CD163, PD-L1, PD-L2, PD-1, CD45, IFN-γ, FOXP3) was determined by RT-PCR in two independent cohorts comprising 132 breast cancer patients. For a subset of patients, protein levels of total as well as serine and tyrosine-phosphorylated STAT1 were ascertained by immunohistochemistry or immunoblotting and protein levels of CXCL10 by ELISA. Results mRNA expression levels of STAT1 and STAT1 target genes, as well as protein levels of total and serine-phosphorylated STAT1 correlated with each other in neoplastic tissue. However, there was no association between tumor levels of STAT1 mRNA and tyrosine-phosphorylated STAT1 and between CXCL10 serum levels and CXCL10 expression in the tumor. Tumors with increased STAT1 mRNA amounts exhibited elevated expression of genes characteristic for tumor-associated macrophages and immunosuppressive T lymphocytes. Survival analysis revealed an association of high STAT1 mRNA levels and bad prognosis in both cohorts. A similar prognostically relevant correlation with unfavorable outcome was evident for CXCL10, MX1, CD68, CD163, IFN-γ, and PD-L2 expression in at least one collective. By contrast, activation of STAT1 as assessed by the level of STAT1-Y701 phosphorylation was linked to positive

  19. The MYC mRNA 3'-UTR couples RNA polymerase II function to glutamine and ribonucleotide levels.

    PubMed

    Dejure, Francesca R; Royla, Nadine; Herold, Steffi; Kalb, Jacqueline; Walz, Susanne; Ade, Carsten P; Mastrobuoni, Guido; Vanselow, Jens T; Schlosser, Andreas; Wolf, Elmar; Kempa, Stefan; Eilers, Martin

    2017-04-13

    Deregulated expression of MYC enhances glutamine utilization and renders cell survival dependent on glutamine, inducing "glutamine addiction". Surprisingly, colon cancer cells that express high levels of MYC due to WNT pathway mutations are not glutamine-addicted but undergo a reversible cell cycle arrest upon glutamine deprivation. We show here that glutamine deprivation suppresses translation of endogenous MYC via the 3'-UTR of the MYC mRNA, enabling escape from apoptosis. This regulation is mediated by glutamine-dependent changes in adenosine-nucleotide levels. Glutamine deprivation causes a global reduction in promoter association of RNA polymerase II (RNAPII) and slows transcriptional elongation. While activation of MYC restores binding of MYC and RNAPII function on most promoters, restoration of elongation is imperfect and activation of MYC in the absence of glutamine causes stalling of RNAPII on multiple genes, correlating with R-loop formation. Stalling of RNAPII and R-loop formation can cause DNA damage, arguing that the MYC 3'-UTR is critical for maintaining genome stability when ribonucleotide levels are low.

  20. Transduction of light in the suprachiasmatic nucleus: evidence for two different neurochemical cascades regulating the levels of Per1 mRNA and pineal melatonin.

    PubMed

    Paul, K N; Fukuhara, C; Tosini, G; Albers, H E

    2003-01-01

    The suprachiasmatic nucleus (SCN) contains a circadian clock and regulates melatonin synthesis in the pineal gland. Light exposure during the subjective night acutely increases the mRNA levels of the Period (Per)1 gene in the SCN and acutely suppresses melatonin levels in the pineal gland. Activation of N-methyl-D-aspartate (NMDA) receptors in the SCN has been demonstrated to phase-shift the circadian clock in a manner similar to light. We tested the hypothesis that activation of excitatory amino acid (EAA) receptors in the SCN mediates the acute effects of light on Per1 mRNA levels and pineal melatonin. NMDA, injected into the SCN of Syrian hamsters during the night, acutely suppressed melatonin levels in the pineal gland. Both the NMDA receptor antagonist 2-amino-5-phosphonopentanoic acid (AP5) and the alpha-amino-3-hydroxy-5-methylisoxazoleproprionic acid (AMPA)/kainate receptor antagonist 6,7-dinitroquinoxaline-2,3-dione (DNQX) inhibited the light-induced increase of Per1 mRNA levels in the SCN. In the same animals, however, these antagonists had no effect on the ability of light to suppress pineal melatonin. These results support the hypothesis that EAA receptor activation in the SCN is necessary for the acute effects of light on Per1 mRNA levels. They also indicate that NMDA receptor activation in the SCN is sufficient but may not be necessary for the acute effects of light on pineal melatonin. These data suggest that there may be at least two different neurochemical cascades that transduce the effects of light in the SCN

  1. Arginase-1 mRNA expression correlates with myeloid-derived suppressor cell levels in peripheral blood of NSCLC patients.

    PubMed

    Heuvers, Marlies E; Muskens, Femke; Bezemer, Koen; Lambers, Margaretha; Dingemans, Anne-Marie C; Groen, Harry J M; Smit, Egbert F; Hoogsteden, Henk C; Hegmans, Joost P J J; Aerts, Joachim G J V

    2013-09-01

    Myeloid-derived suppressor cells (MDSC) are a heterogeneous population of immature and progenitor myeloid cells with immunosuppressive activity that are increased in cancer patients. Until now, the characterization of MDSC in humans was very challenging. The aim of this study was to determine the characterization and optimal assessment of MDSC and to investigate their presence and function in blood of advanced-stage NSCLC patients. We determined MDSC and lymphocyte populations in peripheral blood mononuclear cells (PBMC) samples of 185 treatment-naïve NSCLC patients and 20 healthy controls (HC). NSCLC patients had an increased population of PMN-MDSC compared to HC (p < 0.0001). Frequencies of CD4(+) and CD8(+) T-cells were significantly decreased in NSCLC patients (p < 0.0001 and p = 0.05). We found that PMN-MDSC were able to suppress T-cell proliferation in vitro. qRT-PCR showed that arginase-1 (Arg-1) mRNA is mainly expressed by MDSC and that the level of Arg-1 in PBMC correlates with the frequency of MDSC in PBMC (Spearman's rho: 0.797). There were significant differences in MDSC and lymphocyte populations between NSCLC patients and HC. We found that MDSC frequencies are stable up to six hours at room temperature after blood was drawn and that cryopreservation leads to a strong decrease of MDSC in PBMC. We show that Arg-1 mRNA expression is a valuable method to determine the levels of MDSC in peripheral blood of cancer patients. This method is therefore a useful alternative for the complex flowcytometric analysis in large multicenter patient studies.

  2. Lack of effect of antipsychotic and antidepressant drugs on glutamate receptor mRNA levels in rat brains.

    PubMed

    Oretti, R G; Spurlock, G; Buckland, P R; McGuffin, P

    1994-08-15

    By employing multiprobe oligonucleotide solution hybridisation (MOSH) we have measured the levels of mRNA encoding the NMDA receptor subtypes (R1, R2A, R2B and R2C) and the non-NMDA glutamate receptor subtypes (GluR1, 2, 3, and 4) within rat brain following, 1-32 days of antipsychotic or antidepressant drug administration. The results suggest that the drugs studied do not significantly alter rat glutamatergic system mRNA levels when compared to controls.

  3. Changes in levels of argininosuccinate lyase mRNA during induction by glucagon and cyclic AMP in cultured foetal-rat hepatocytes.

    PubMed Central

    Renouf, S; Buquet, C; Fairand, A; Benamar, M; Husson, A

    1993-01-01

    During the perinatal period, the activity of the urea-cycle enzyme argininosuccinate lyase (ASL) is regulated by glucocorticoids, glucagon and insulin. In this study, the effects of glucagon and cyclic AMP (cAMP) analogues were examined on the synthesis of ASL and on the level of its corresponding mRNA in cultured foetal hepatocytes. Northern-blot analysis revealed that these agents only gave a transient induction of ASL mRNA amount, which reached a peak at 6 h and declined thereafter. This induction preceded the increase in enzyme activity and amount which could be observed for 2 or 3 days of culture. Stimulation of ASL mRNA accumulation by a combination of cAMP analogues and dexamethasone was additive, indicating that glucocorticoids and cAMP are both necessary to promote hepatocyte differentiation and that inductions could occur via independent pathways. Induction by cAMP analogues could be abolished by actinomycin D, suggesting a control mechanism at the transcriptional level. Puromycin was without effect on ASL mRNA induction by cAMP, indicating that no ongoing protein synthesis was required in the stimulation process. Images Figure 1 Figure 2 Figure 3 Figure 4 Figure 5 PMID:8387274

  4. Higher LPA2 and LPA6 mRNA Levels in Hepatocellular Carcinoma Are Associated with Poorer Differentiation, Microvascular Invasion and Earlier Recurrence with Higher Serum Autotaxin Levels

    PubMed Central

    Ikeda, Hitoshi; Kurano, Makoto; Sato, Masaya; Kudo, Hiroki; Maki, Harufumi; Koike, Kazuhiko; Hasegawa, Kiyoshi; Kokudo, Norihiro; Yatomi, Yutaka

    2016-01-01

    Hepatocellular carcinoma (HCC) commonly develops in patients with liver fibrosis; in these patients, the blood levels of lysophosphatidic acid (LPA) and its generating enzyme autotaxin (ATX) increase with the liver fibrosis stage. We aimed to examine the potential relevance of ATX and LPA in HCC. Fifty-eight HCC patients who underwent surgical treatment were consecutively enrolled in the study. Among the LPA receptors in HCC, higher LPA2 mRNA levels correlated with poorer differentiation, and higher LPA6 mRNA levels correlated with microvascular invasion, which suggested a higher malignant potential of HCC with increased LPA2 and LPA6 expression. In patients with primary HCC, neither LPA2 nor LPA6 mRNA levels were associated with recurrence. However, when serum ATX levels were combined for analysis as a surrogate for plasma LPA levels, the cumulative intra-hepatic recurrence rate was higher in patients in whom both serum ATX levels and LPA2 or LPA6 mRNA levels were higher than the median. However, the mRNA level of phosphatidic acid-selective phospholipase A1ɑ, another LPA-generating enzyme, in HCC patients was not associated with pathological findings or recurrence, even in combination with the expression of LPA receptors. Higher LPA2 mRNA levels were associated with poorer differentiation, and higher LPA6 levels were associated with microvascular invasion in HCC; both became a risk factor for recurrence after surgical treatment when combined with increased serum ATX levels. ATX and LPA receptors merit consideration as therapeutic targets of HCC. PMID:27583415

  5. Creatine kinase and alpha-actin mRNA levels decrease in diabetic rat hearts

    SciTech Connect

    Popovich, B.; Barrieux, A.; Dillmann, W.H.

    1987-05-01

    Diabetic cardiomyopathy is associated with cardiac atrophy and isoenzyme redistribution. To determine if tissue specific changes occur in mRNAs coding for ..cap alpha..-actin and creatine kinase (CK), they performed RNA blot analysis. Total ventricular RNA from control (C) and 4 wk old diabetic (D) rats were hybridized with /sup 32/P cDNA probes for ..cap alpha..-actin and CK. A tissue independent cDNA probe, CHOA was also used. Signal intensity was quantified by photodensitometry. D CK mRNA was 47 +/- 16% lower in D vs C. Insulin increases CK mRNA by 20% at 1.5 hs, and completely reverses the deficit after 4 wks. D ..cap alpha..-actin mRNA is 66 +/- 18% lower in D vs C. Insulin normalized ..cap alpha..-actin mRNA by 5 hs. CHOA mRNA is unchanged in D vs C, but D + insulin CHOA mRNA is 30 +/- 2% lower than C. In rats with diabetic cardiomyopathy, muscle specific CK and ..cap alpha..-actin mRNAs are decreased. Insulin treatment reverses these changes.

  6. Tryptophan hydroxylase mRNA levels are elevated by repeated immobilization stress in rat raphe nuclei but not in pineal gland.

    PubMed

    Chamas, F; Serova, L; Sabban, E L

    1999-06-04

    Repeated stress triggers a wide range of adaptive changes in the central nervous system including the elevation of serotonin (5-HT) metabolism and an increased susceptibility to affective disorders. To begin to examine whether these changes are mediated by alterations in gene expression for tryptophan hydroxylase (TPH), the rate-limiting enzyme in 5-HT biosynthesis, we quantitated its mRNA levels by competitive reverse transcription-polymerase chain reaction (RT-PCR). Repeated immobilization stress (2 h, 7 days) elicited a six- or ten-fold rise in TPH mRNA in median raphe nucleus (MRN) and dorsal raphe nucleus (DRN), respectively, without significantly altering TPH mRNA levels in the pineal gland. In contrast, there was little change in mRNA levels for GTP cyclohydrolase I (GTPCH), the rate limiting enzyme in synthesis of the tetrahydrobiopterin (BH4), the obligate cofactor for TPH. This is the first study to reveal stress-elicited activation of TPH gene expression.

  7. Editing of the Sendai virus P/C mRNA by G insertion occurs during mRNA synthesis via a virus-encoded activity.

    PubMed Central

    Vidal, S; Curran, J; Kolakofsky, D

    1990-01-01

    Two forms of the Sendai virus P/C mRNA have been predicted: one an exact copy of the viral genome, and the other with a single G insertion within a run of three G's. We directly cloned the mRNA or portions of it containing the insertion site and screened the resulting colonies with oligonucleotides that could distinguish the presence of three or four G's at this position. We found that 31% of the mRNAs did in fact contain the predicted insertion, whereas the viral genomes contained no heterogeneity at this position. A smaller fraction (7%) of the mRNA contained two to eight G's inserted at this position. The insertions also took place during RNA synthesis in vitro with purified virions but were not detected when the mRNA was expressed in vivo via a vaccinia virus recombinant. When the Sendai virus- and vaccinia virus-derived P/C mRNAs were coexpressed in the same cells under conditions in which each could be distinguished, those from the Sendai genome were altered as before, but those from the vaccinia virus genome remained unaltered. The activity that alters the mRNA is therefore likely to be coded for by the virus and cannot function in trans. Images PMID:1688384

  8. Comprehensive expression analysis of FSHD candidate genes at the mRNA and protein level.

    PubMed

    Klooster, Rinse; Straasheijm, Kirsten; Shah, Bharati; Sowden, Janet; Frants, Rune; Thornton, Charles; Tawil, Rabi; van der Maarel, Silvère

    2009-12-01

    In facioscapulohumeral muscular dystrophy (FSHD) the majority of patients carry a D4Z4 macrosatellite repeat contraction in the subtelomere of chromosome 4q. Several disease mechanisms have been proposed to explain how repeat contraction causes muscular dystrophy. All proposed mechanisms foresee a change from a closed to a more open chromatin structure followed by loss of control over expression of genes in or proximal to D4Z4. Initially, a distance and residual repeat size-dependent upregulation of the candidate genes FRG2, FRG1 and ANT1 was observed, but most successive expression studies failed to support transcriptional upregulation of 4qter genes. Moreover, chromatin studies do not provide evidence for a cis-spreading mechanism operating at 4qter in FSHD. In part, this inconsistency may be explained by differences in the techniques used, and the use of RNA samples obtained from different muscle groups. The aim of this study is to comprehensively and uniformly study the expression of the FSHD candidate genes FRG1, FRG2, CRYM, ANT1, ALP, PITX1 and LRP2BP at the RNA and protein level in identically processed primary myoblasts, myotubes and quadriceps muscle. Expression was compared between samples obtained from FSHD patients and normal controls with samples from myotonic dystrophy type 1 patients as disease controls. No consistent changes in RNA or protein expression levels were observed between the samples. The one exception was a selective increase in FRG2 mRNA expression in FSHD myotubes. This study provides further evidence that there is no demonstrable consistent, large magnitude, overexpression of any of the FSHD candidate genes.

  9. Recombinant interleukin 2 regulates levels of c-myc mRNA in a cloned murine T lymphocyte.

    PubMed Central

    Reed, J C; Sabath, D E; Hoover, R G; Prystowsky, M B

    1985-01-01

    The cellular oncogene c-myc has been implicated in the regulation of growth of normal and neoplastic cells. Recently, it was suggested that c-myc gene expression may control the G0----G1-phase transition in normal lymphocytes that were stimulated to enter the cell cycle by the lectin concanavalin A (ConA). Here we describe the effects of purified recombinant interleukin 2 (rIL2) and of ConA on levels of c-myc mRNA in the noncytolytic murine T-cell clone L2. In contrast to resting (G0) primary cultures of lymphocytes, quiescent L2 cells have a higher RNA content than resting splenocytes and express receptors for interleukin 2 (IL2). Resting L2 cells are therefore best regarded as early G1-phase cells. Purified rIL2 was found to stimulate the rapid accumulation of c-myc mRNA in L2 cells. Levels of c-myc mRNA became maximal within 1 h and declined gradually thereafter. In contrast, ConA induced slower accumulation of c-myc mRNA in L2 cells, with increased levels of c-myc mRNA becoming detectable 4 to 8 h after stimulation. Experiments with the protein synthesis inhibitor cycloheximide demonstrated that the increase in levels of c-myc mRNA that were induced by ConA was a direct effect of this lectin and not secondary to IL2 production. Cyclosporin A, an immunosuppressive agent, markedly reduced the accumulation of c-myc mRNA that was induced by ConA but only slightly diminished the accumulation of c-myc mRNA that was induced by rIL2. Taken together, these data provide evidence that (i) c-myc gene expression can be regulated by at least two distinct pathways in T lymphocytes, only one of which is sensitive to cyclosporine A, and (ii) the accumulation of c-myc mRNA can be induced in T cells by IL2 during the G1 phase of the cell cycle. Images PMID:3879814

  10. Differential changes in vascular mRNA levels between rat iliac and renal arteries produced by cessation of voluntary running.

    PubMed

    Padilla, Jaume; Jenkins, Nathan T; Roberts, Michael D; Arce-Esquivel, Arturo A; Martin, Jeffrey S; Laughlin, M Harold; Booth, Frank W

    2013-01-01

    Early vascular changes at the molecular level caused by adoption of a sedentary lifestyle are incompletely characterized. Herein, we employed the rodent wheel-lock model to identify mRNAs in the arterial wall that are responsive to the acute transition from higher to lower levels of daily physical activity. Specifically, we evaluated whether short-term cessation of voluntary wheel running alters vascular mRNA levels in rat conduit arteries previously reported to have marked increases (i.e. iliac artery) versus marked decreases (i.e. renal artery) in blood flow during running. We used young female Wistar rats with free access to voluntary running wheels. Following 23 days of voluntary running (average distance of ∼15 km per night; ∼4.4 h per night), rats in one group were rapidly transitioned to a sedentary state by locking the wheels for 7 days (n = 9; wheel-lock 7 day rats) or remained active in a second group for an additional 7 days (n = 9; wheel-lock 0 day rats). Real-time PCR was conducted on total RNA isolated from iliac and renal arteries to evaluate expression of 25 pro-atherogenic and anti-atherogenic genes. Compared with the iliac arteries of wheel-lock 0 day rats, iliac arteries of wheel-lock 7 day rats exhibited increased expression of TNFR1 (+19%), ET1 (+59%) and LOX-1 (+31%; all P < 0.05). Moreover, compared with renal arteries of wheel-lock 0 day rats, renal arteries of wheel-lock 7 day rats exhibited decreased expression of ETb (-23%), p47phox (-32%) and p67phox (-19%; all P < 0.05). These data demonstrate that cessation of voluntary wheel running for 7 days produces modest, but differential changes in mRNA levels between the iliac and renal arteries of healthy rats. This heterogeneous influence of short-term physical inactivity could be attributed to the distinct alteration in haemodynamic forces between arteries.

  11. Spaceflight has compartment- and gene-specific effects on mRNA levels for bone matrix proteins in rat femur

    NASA Technical Reports Server (NTRS)

    Evans, G. L.; Morey-Holton, E.; Turner, R. T.

    1998-01-01

    In the present study, we evaluated the possibility that the abnormal bone matrix produced during spaceflight may be associated with reduced expression of bone matrix protein genes. To test this possibility, we investigated the effects of a 14-day spaceflight (SLS-2 experiment) on steady-state mRNA levels for glyceraldehyde-3-phosphate dehydrogenase (GAPDH), osteocalcin, osteonectin, and prepro-alpha(1) subunit of type I collagen in the major bone compartments of rat femur. There were pronounced site-specific differences in the steady-state levels of expression of the mRNAs for the three bone matrix proteins and GAPDH in normal weight-bearing rats, and these relationships were altered after spaceflight. Specifically, spaceflight resulted in decreases in mRNA levels for GAPDH (decreased in proximal metaphysis), osteocalcin (decreased in proximal metaphysis), osteonectin (decreased in proximal and distal metaphysis), and collagen (decreased in proximal and distal metaphysis) compared with ground controls. There were no changes in mRNA levels for matrix proteins or GAPDH in the shaft and distal epiphysis. These results demonstrate that spaceflight leads to site- and gene-specific decreases in mRNA levels for bone matrix proteins. These findings are consistent with the hypothesis that spaceflight-induced decreases in bone formation are caused by concomitant decreases in expression of genes for bone matrix proteins.

  12. Assessment of cathepsin mRNA expression and enzymatic activity during early embryonic development in the yellowtail kingfish Seriola lalandi.

    PubMed

    Palomino, Jaime; Herrera, Giannina; Torres-Fuentes, Jorge; Dettleff, Phillip; Patel, Alok; Martínez, Víctor

    2017-02-21

    In pelagic species such as Seriola lalandi, survival of both the eggs and embryos depends on yolk processing during oocyte maturation and embryo development. The main enzymes involved in these processes are the cathepsins, which are essential for the hydration process, acquiring buoyancy and nutrition of the embryo before hatching. This study aimed to investigate the mRNA expression profiles of cathepsins B, D and L (catb, catd and catl) and the activity of these enzymes during early development in S. lalandi. We included previtellogenic oocytes (PO). All three enzymes were highly expressed in PO, but the expression was reduced throughout development. Between PO and recently spawned eggs (E1) the transcript to catb and catd decreased, unlike catl. Cathepsin B activity, showed stable levels between PO until blastula stage (E4). High activities levels of cathepsins D and L were observed in E1 in comparison with later developmental stages. Cathepsin L activity remained constant until E1, consistent with observations in other pelagic spawners, where its participation in a second protolithic cleavage of the yolk proteins, has been proposed for this enzyme. Their profiles of both mRNA expression and enzymatic activity indicate the importance of these enzymes during early development and suggest different roles in egg yolk processing for the hydration process and nutrition in early embryos in this species.

  13. Hypoxia may increase rat insulin mRNA levels by promoting binding of the polypyrimidine tract-binding protein (PTB) to the pyrimidine-rich insulin mRNA 3'-untranslated region.

    PubMed Central

    Tillmar, Linda; Welsh, Nils

    2002-01-01

    BACKGROUND: Recent reports identify the 3'-UTR of insulin mRNA as crucial for control of insulin messenger stability. This region contains a pyrimidine-rich sequence, which is similar to the hypoxia-responsive mRNA-stabilizing element of tyrosine hydroxylase. This study aimed to determine whether hypoxia affects insulin mRNA levels. MATERIALS AND METHODS: Rat islets were incubated at normoxic or hypoxic conditions and with or without hydrogen peroxide and a nitric oxide donor. Insulin mRNA was determined by Northern hybridization. Islet homogenates were used for electrophoretic mobility shift assay with an RNA-oligonucleotide, corresponding to the pyrimidine-rich sequence of the 3'-UTR of rat insulin I mRNA. The expression of reporter gene mRNA, in islets transfected with reporter gene constructs containing the wild-type or mutated insulin mRNA pyrimidine-rich sequences, was measured by semiquantitive RT-PCR. RESULTS: Insulin mRNA was increased in response to hypoxia. This was paralleled by increased binding of the polypyrimidine tract-binding protein (PTB) to the pyrimidine-rich sequence of the 3'-UTR of insulin mRNA, which was counteracted by hydrogen peroxide. The reporter gene mRNA level containing the wild-type binding site was not increased in response to hypoxia, but mutation of the site resulted in a destabilization of the mRNA. CONCLUSIONS: The complete understanding of different diabetic conditions requires the elucidation of mechanisms that control insulin gene expression. Our data show that hypoxia may increase insulin mRNA levels by promoting the binding of PTB to the insulin mRNA 3'-UTR. Hydrogen peroxide abolishes the hypoxic effect indicating involvement of reactive oxygen species and/or the redox potential in the oxygen-signaling pathway. PMID:12359957

  14. PAI-1 mRNA expression and plasma level in rheumatoid arthritis: relationship with 4G/5G PAI-1 polymorphism.

    PubMed

    Muñoz-Valle, José Francisco; Ruiz-Quezada, Sandra Luz; Oregón-Romero, Edith; Navarro-Hernández, Rosa Elena; Castañeda-Saucedo, Eduardo; De la Cruz-Mosso, Ulises; Illades-Aguiar, Berenice; Leyva-Vázquez, Marco Antonio; Castro-Alarcón, Natividad; Parra-Rojas, Isela

    2012-12-01

    Rheumatoid arthritis (RA) is a chronic inflammatory disease affecting the synovial membrane, cartilage and bone. PAI-1 is a key regulator of the fibrinolytic system through which plasminogen is converted to plasmin. The plasmin activates the matrix metalloproteinase system, which is closely related with the joint damage and bone destruction in RA. The aim of this study was to investigate the relationship between 4G/5G PAI-1 polymorphism with mRNA expression and PAI-1 plasma protein levels in RA patients. 113 RA patients and 123 healthy subjects (HS) were included in the study. The 4G/5G PAI-1 polymorphism was determined by polymerase chain reaction-restriction fragment length polymorphism method; the PAI-1 mRNA expression was determined by real-time PCR; and the soluble PAI-1 (sPAI-1) levels were quantified using an ELISA kit. No significant differences in the genotype and allele frequencies of 4G/5G PAI-1 polymorphism were found between RA patients and HS. However, the 5G/5G genotype was the most frequent in both studied groups: RA (42%) and HS (44%). PAI-1 mRNA expression was slightly increased (0.67 fold) in RA patients with respect to HS (P = 0.0001). In addition, in RA patients, the 4G/4G genotype carriers showed increased PAI-1 mRNA expression (3.82 fold) versus 4G/5G and 5G/5G genotypes (P = 0.0001), whereas the sPAI-1 plasma levels did not show significant differences. Our results indicate that the 4G/5G PAI-1 polymorphism is not a marker of susceptibility in the Western Mexico. However, the 4G/4G genotype is associated with high PAI-1 mRNA expression but not with the sPAI-1 levels in RA patients.

  15. Specific responses in rat small intestinal epithelial mRNA expression and protein levels during chemotherapeutic damage and regeneration.

    PubMed

    Verburg, Melissa; Renes, Ingrid B; Van Nispen, Danielle J P M; Ferdinandusse, Sacha; Jorritsma, Marieke; Büller, Hans A; Einerhand, Alexandra W C; Dekker, Jan

    2002-11-01

    The rapidly dividing small intestinal epithelium is very sensitive to the cytostatic drug methotrexate. We investigated the regulation of epithelial gene expression in rat jejunum during methotrexate-induced damage and regeneration. Ten differentiation markers were localized on tissue sections and quantified at mRNA and protein levels relative to control levels. We analyzed correlations in temporal expression patterns between markers. mRNA expression of enterocyte and goblet cell markers decreased significantly during damage for a specific period. Of these, sucrase-isomaltase (-62%) and CPS (-82%) were correlated. Correlations were also found between lactase (-76%) and SGLT1 (-77%) and between I-FABP (-52%) and L-FABP (-45%). Decreases in GLUT5 (-53%), MUC2 (-43%), and TFF3 (-54%) mRNAs occurred independently of any of the other markers. In contrast, lysozyme mRNA present in Paneth cells increased (+76%). At the protein level, qualitative and quantitative changes were in agreement with mRNA expression, except for Muc2 (+115%) and TFF3 (+81%), which increased significantly during damage, following independent patterns. During regeneration, expression of each marker returned to control levels. The enhanced expression of cytoprotective molecules (Muc2, TFF3, lysozyme) during damage represents maintenance of goblet cell and Paneth cell functions, most likely to protect the epithelium. Decreased expression of enterocyte-specific markers represents decreased enterocyte function, of which fatty acid transporters were least affected.

  16. Regulation of mRNA abundance in activated T lymphocytes: identification of mRNA species affected by the inhibition of protein synthesis.

    PubMed Central

    Coleclough, C; Kuhn, L; Lefkovits, I

    1990-01-01

    Inhibition of protein synthesis has often been observed to increase the concentration of mRNAs that encode proteins associated with the regulation of cell division. As two-dimensional gel electrophoresis permits the simultaneous monitoring of individual elements in large populations of gene products, we have used this technique to assess the effect of cycloheximide treatment on the mRNA complement of activated mouse T cells in an objective fashion. Two-dimensional gels of proteins generated by cell-free translation of mRNA from T-cell blasts display about 400 spots; only 5 of these are reproducibly enhanced by cycloheximide treatment and about 4 are diminished. The cDNA cloning vector lambda jac allows analysis of large arrays of molecular clones by cell-free expression, and we have used it in a sibling selection scheme to isolate a clone of one of the prominently induced mRNA species, which we refer to as chx1. chx1 mRNA concentration is increased by cycloheximide treatment of activated B cells, as well as T cells, and it is rapidly and transiently induced, in a cycloheximide-enhanced manner, upon serum stimulation of resting 3T3 fibroblastoid cells. The chx1 protein is hydrophilic, is slightly basic, and has patches of homology with the Jun-D gene product. The chx1 gene is remarkable in its lack of detectable introns and of strong bias against CpG dinucleotides. Images PMID:2308934

  17. Dendritic transport element of human arc mRNA confers RNA degradation activity in a translation-dependent manner.

    PubMed

    Ninomiya, Kensuke; Ohno, Mutsuhito; Kataoka, Naoyuki

    2016-11-01

    Localization of mRNA in neuronal cells is a critical process for spatiotemporal regulation of gene expression. Cytoplasmic localization of mRNA is often conferred by transport elements in 3' untranslated region (UTR). Activity-regulated cytoskeleton-associated protein (arc) mRNA is one of the localizing mRNAs in neuronal cells, and its localization is mediated by dendritic targeting element (DTE). As arc mRNA has introns in its 3' UTR, it was thought that arc mRNA is a natural target of nonsense-mediated mRNA decay (NMD). Here, we show that DTE in human arc 3' UTR has destabilizing activity of RNA independent of NMD pathway. DTE alone was able to cause instability of the reporter mRNA and this degradation was dependent on translation. Our results indicate that DTE has dual activity in mRNA transport and degradation, which suggests the novel spatiotemporal regulation mechanism of activity-dependent degradation of the mRNA.

  18. Gene expression in scrapie. Cloning of a new scrapie-responsive gene and the identification of increased levels of seven other mRNA transcripts.

    PubMed

    Dandoy-Dron, F; Guillo, F; Benboudjema, L; Deslys, J P; Lasmézas, C; Dormont, D; Tovey, M G; Dron, M

    1998-03-27

    To define genes associated with or responsible for the neurodegenerative changes observed in transmissible spongiform encephalopathies, we analyzed gene expression in scrapie-infected mouse brain using "mRNA differential display." The RNA transcripts of eight genes were increased 3-8-fold in the brains of scrapie-infected animals. Five of these genes have not previously been reported to exhibit increased expression in this disease: cathepsin S, the C1q B-chain of complement, apolipoprotein D, and two previously unidentified genes denominated scrapie-responsive gene (ScRG)-1 and ScRG-2, which are preferentially expressed in brain tissue. Increased expression of the three remaining genes, beta2 microglobulin, F4/80, and metallothionein II, has previously been reported to occur in experimental scrapie. Kinetic analysis revealed a concomitant increase in the levels of ScRG-1, cathepsin S, the C1q B-chain of complement, and beta2 microglobulin mRNA as well as glial fibrillary acidic protein and F4/80 transcripts, markers of astrocytosis and microglial activation, respectively. In contrast, the level of ScRG-2, apolipoprotein D, and metallothionein II mRNA was only increased at the terminal stage of the disease. ScRG-1 mRNA was found to be preferentially expressed in glial cells and to code for a short protein of 47 amino acids with a strong hydrophobic N-terminal region.

  19. Ionizing radiation induces O6-alkylguanine-DNA-alkyltransferase mRNA and activity in mouse tissues.

    PubMed

    Wilson, R E; Hoey, B; Margison, G P

    1993-04-01

    The effect of exposure to whole-body gamma-irradiation or fast electrons on O6-alkylguanine-DNA-alkyltransferase (ATase) activity and mRNA abundance has been examined in mice. In response to gamma-radiation, hepatic ATase activity was significantly raised in BDF1 mice 24 h post-irradiation, reaching a maximum of 2- to 3-fold at 36 h and beginning to decrease by 48-60 h. A small but consistently higher level of induction was achieved when mice were exposed using a low dose rate (0.015 Gy/min) compared to a high dose rate (0.5 Gy/min). ATase activity was also induced approximately 2-fold 48 h post-irradiation in brain, kidney, lung and spleen, with a greater induction again observed in response to the lower dose rate. In response to fast electrons from a linear accelerator hepatic ATase activity was also induced 2- to 3-fold 48 h post-irradiation in BDF1, BALB/c, C57Bl and DBA2 strains. Induction of ATase activity in livers of BDF1 mice was observed 48 h after a total single dose of 5 Gy gamma-radiation (2-fold), increasing to a slightly higher level at 15 Gy, but no induction was observed at doses of 2 Gy and below. Although a maximum 2- to 3-fold induction of ATase activity was observed, mRNA levels were induced 3- to 4-fold by 48 h after a dose of 15 Gy. Furthermore, significant increases in mRNA levels were detected at low doses (1-2 Gy) at which there was no apparent increase in ATase activity. This suggests that ionizing radiation increases ATase levels by a process involving transcriptional upregulation but that strong post-transcriptional and/or translational controls operate to limit induction of enzyme activity to 2- to 3-fold. This is the first report of an in vivo induction of ATase by ionizing radiation in a species other than the rat.

  20. Involvement of the Ras/extracellular signal-regulated kinase signalling pathway in the regulation of ERCC-1 mRNA levels by insulin.

    PubMed Central

    Lee-Kwon, W; Park, D; Bernier, M

    1998-01-01

    Expression of DNA repair enzymes, which includes ERCC-1, might be under the control of hormonal and growth factor stimulation. In the present study it was observed that insulin increased ERCC-1 mRNA levels both in Chinese hamster ovary cells overexpressing human insulin receptors (HIRc cells) and in fully differentiated 3T3-L1 adipocytes. To investigate the mechanisms underlying the increase in ERCC-1 gene expression in HIRc cells, we used a variety of pharmacological tools known to inhibit distinct signalling pathways. None of these inhibitors affected the amount of ERCC-1 mRNA in unstimulated cells. The pretreatment of cells with two chemically unrelated phosphatidylinositol 3'-kinase inhibitors, wortmannin and LY294002, failed to block the doubling of ERCC-1 mRNA content by insulin. Similarly, inhibition of pp70 S6 kinase by rapamycin had no apparent effects on this insulin response. In contrast, altering the p21(ras)-dependent pathway with either manumycin, an inhibitor of Ras farnesylation, or PD98059, an inhibitor of the mitogen-activated protein kinase/extracellular signal-regulated protein kinase (ERK) kinase, suppressed the induction of ERCC-1 mRNA by insulin (P<0.001). Furthermore inhibition of RNA and protein synthesis negatively regulated the expression of this insulin-regulated gene (P<0.005). These results suggest that insulin enhances ERCC-1 mRNA levels by the activation of the Ras-ERK-dependent pathway without the involvement of the phosphatidylinositol 3'-kinase/pp70 S6 kinase. PMID:9531502

  1. Ghrelin modulates fatty acid synthase and related transcription factor mRNA levels in a tissue-specific manner in neonatal broiler chicks.

    PubMed

    Buyse, Johan; Janssen, Sara; Geelissen, Sofie; Swennen, Quirine; Kaiya, Hiroyuki; Darras, Veerle M; Dridi, Sami

    2009-07-01

    The endogenous ligand for the growth hormone (GH) secretagogue receptor ghrelin is a peptide secreted by the stomach of mammals and stimulates food intake and enhances adiposity. In avian species, ghrelin is mainly produced by the proventriculus but reduces food intake whereas its effect on lipogenesis in different tissues is unknown. We therefore investigated the effects of a single intravenous injection of 2.8 microg (1 nmol per chick) recombinant chicken ghrelin in neonatal broiler chicks. Besides food intake and plasma corticosterone levels, mRNA levels of the key lipogenic enzyme fatty acid synthase (FAS) and its related transcription factors sterol regulatory element binding protein-1 (SREBP-1) and peroxisome proliferator-activated receptor-gamma (PPARgamma) were determined in diencephalon, liver and quadriceps femoris muscle before, and 15, 30, and 60 min after injection. Chicken ghrelin administration induced a significant short-term (<30 min) reduction in food intake and markedly elevated plasma corticosterone levels. In diencephalon, FAS, SREBP-1 and PPARgamma mRNA levels were significantly increased within 15 min after ghrelin injection. These observations suggest that central fatty acid metabolism is involved in the anorectic effects of ghrelin. In contrast, hepatic mRNA levels of FAS and both transcription factors were significantly reduced within 30 min after ghrelin injection. In muscle, FAS and transcription factor gene expression was very low and not affected by ghrelin. Overall, our results indicate that ghrelin has opposite effects on FAS and transcription factor mRNA amounts with increased levels in diencephalon (central anorectic effect) and decreased levels in liver (peripheral anti-lipogenic effect) in chickens.

  2. The Co-Induced Effects of Molybdenum and Cadmium on the Trace Elements and the mRNA Expression Levels of CP and MT in Duck Testicles.

    PubMed

    Xia, Bing; Chen, Hua; Hu, Guoliang; Wang, Liqi; Cao, Huabin; Zhang, Caiying

    2016-02-01

    To investigate the chronic toxicity of molybdenum (Mo) and cadmium (Cd) on the trace elements and the mRNA expression levels of ceruloplasmin (CP) and metallothionein (MT) in duck testicles, 120 healthy 11-day-old male ducks were randomly divided into six groups with 20 ducks in each group. Ducks were treated with the diet containing different dosages of Mo or Cd. The source of Mo and Cd was hexaammonium molybdate ([(NH4)6Mo7O24·4H2O]) and cadmium sulfate (3CdSO4·8H2O), respectively, in this study. After being treated for 60 and 120 days, ten male birds in each group were randomly selected and euthanized and then testicles were aseptically collected for determining the mRNA expression levels of MT and CP, antioxidant indexes, and contents of trace elements in the testicle. In addition, testicle tissues at 120 days were subjected to histopathological analysis with the optical microscope. The results showed that co-exposure to Mo and Cd resulted in an increase in malondialdehyde (MDA) level while decrease in xanthine oxidase (XOD) and catalase (CAT) activities. The mRNA expression level of MT gene was upregulated while CP was decreased in combination groups. Contents of Mo, copper (Cu), iron (Fe), and zinc (Zn) decreased in combined groups while Cd increased in Cd and combined groups at 120 days. Furthermore, severe congestion, low sperm count, and malformation were observed in low dietary of Mo combined with Cd group and high dietary of Mo combined with Cd group. Our results suggested that Mo and Cd might aggravate testicular degeneration synergistically through altering the mRNA expression levels of MT and CP, increasing lipid peroxidation through inhibiting related enzyme activities and disturbing homeostasis of trace elements in testicles. Interaction of Mo and Cd may have a synergistic effect on the testicular toxicity.

  3. Transforming Growth Factor β1 (TGF-β1) Activates Hepcidin mRNA Expression in Hepatocytes.

    PubMed

    Chen, Simeng; Feng, Teng; Vujić Spasić, Maja; Altamura, Sandro; Breitkopf-Heinlein, Katja; Altenöder, Jutta; Weiss, Thomas S; Dooley, Steven; Muckenthaler, Martina U

    2016-06-17

    The hepatic hormone hepcidin is the master regulator of systemic iron homeostasis. Its expression level is adjusted to alterations in iron levels, inflammatory cues, and iron requirements for erythropoiesis. Bone morphogenetic protein 6 (BMP6) contributes to the iron-dependent control of hepcidin. In addition, TGF-β1 may stimulate hepcidin mRNA expression in murine hepatocytes and human leukocytes. However, receptors and downstream signaling proteins involved in TGF-β1-induced hepcidin expression are still unclear. Here we show that TGF-β1 treatment of mouse and human hepatocytes, as well as ectopic expression of TGF-β1 in mice, increases hepcidin mRNA levels. The hepcidin response to TGF-β1 depends on functional TGF-β1 type I receptor (ALK5) and TGF-β1 type II receptor (TβRII) and is mediated by a noncanonical mechanism that involves Smad1/5/8 phosphorylation. Interestingly, increasing availability of canonical Smad2/3 decreases TGF-β1-induced hepcidin regulation, whereas the BMP6-hepcidin signal was enhanced, indicating a signaling component stoichiometry-dependent cross-talk between the two pathways. Although ALK2/3-dependent hepcidin activation by BMP6 can be modulated by each of the three hemochromatosis-associated proteins: HJV (hemojuvelin), HFE (hemochromatosis protein), and TfR2 (transferrin receptor 2), these proteins do not control the ALK5-mediated hepcidin response to TGF-β1. TGF-β1 mRNA levels are increased in mouse models of iron overload, indicating that TGF-β1 may contribute to hepcidin synthesis under these conditions. In conclusion, these data demonstrate that a complex regulatory network involving TGF-β1 and BMP6 may control the sensing of systemic and/or hepatic iron levels.

  4. Platelet-derived growth factor activity and mRNA expression in healing vascular grafts in baboons. Association in vivo of platelet-derived growth factor mRNA and protein with cellular proliferation.

    PubMed Central

    Golden, M A; Au, Y P; Kirkman, T R; Wilcox, J N; Raines, E W; Ross, R; Clowes, A W

    1991-01-01

    In a baboon graft model of arterial intimal thickening, smooth muscle cells (SMC) have been observed to proliferate underneath an intact monolayer of endothelium and in the absence of platelet adherence. Because platelets are not present and therefore cannot be a major source of growth stimulus, we have proposed that the vascular wall cells in the graft intima express mitogens and regulate SMC proliferation. To test this hypothesis, we assayed the grafts for mitogenic activity and expression of growth factor genes. Segments of healing graft and of normal artery, when perfused ex vivo, released mitogenic activity into the perfusate. The graft released more mitogen than the normal arterial segment, and some of the activity was inhibitable with an antibody to human platelet-derived growth factor (PDGF). In addition, Northern analysis of total RNA demonstrated higher expression of PDGF-A chain mRNA in the graft intima compared to normal artery. PDGF-B chain mRNA was barely detectable in both tissues. PDGF mRNA levels within the graft interstices were not measured. In situ hybridization of 7.5- or 12-wk grafts indicated that some luminal endothelial cells and adjacent intimal SMC contained PDGF-A chain mRNA. By thymidine autoradiography, intimal SMC were observed to be proliferating in the inner third of the intima. These data demonstrate a difference in the pattern of PDGF transcript expression and luminal perfusate activity in graft as compared with control arteries. The association of intimal smooth muscle cell proliferation with intimal PDGF mRNA expression and release of PDGF-like protein supports the hypothesis that factors from cells that have grown into the graft or populated its surface rather than platelets may regulate intimal smooth muscle cell proliferation in this model. Images PMID:1825089

  5. Effect of gsp oncogene on somatostatin receptor subtype 1 and 2 mRNA levels in GHRH-responsive GH3 cells.

    PubMed

    Kim, Eunhee; Sohn, Sookjin; Lee, Mina; Park, Cheolyoung; Jung, Jeechang; Park, Seungjoon

    2005-01-01

    Growth hormone releasing hormone (GHRH) signals via G protein-coupled receptors (GHRH-R) to enhance intracellular Galphas/adenylyl cyclase/cAMP signaling, which in turn has positive effects on GH synthesis and release, as well as proliferation of the GH-producing cells of the anterior pituitary gland. Some GH-producing pituitary tumors express a constitutively active mutant form of Galphas (gsp oncogene). It has been reported that these tumors are more responsive to octreotide therapy. In this study we used a rat GH-producing cell line (GH3) stably transfected with the human GHRH-R cDNA (GH3-GHRHR cells) as a model to study the effects of gsp oncogene on somatostatin (SRIH) receptor subtype 1 and 2 (sst1 and sst2) mRNA levels. Transient transfection of gsp oncogene in GH3-GHRHR cells for 48 h increased intracellular cAMP levels and GH release. Phosphodiesterase (PDE) 4, sst1 and sst2 mRNA levels were increased by G protein mutation as assessed by real-time RT-PCR. Increased PDE mRNA levels in gsp-transfected cells may be a compensatory mechanism to the constitutive activation of cAMP-dependent pathway by G protein mutation and is consistent with reports of higher PDE expression in human pituitary tumor that express gsp. Our data suggest that higher expression of sst1 and sst2 mRNA induced by the gsp oncogene may be a mechanism by which gsp-positive tumors show a greater response to SRIH. GH3 cells permanently transfected with GHRH-R can be used for in vitro studies of actions of GHRH.

  6. Influence of dietary lipids on hepatic mRNA levels of proteins regulating plasma lipoproteins in baboons with high and low levels of large high density lipoproteins.

    PubMed

    Kushwaha, R S; McMahan, C A; Mott, G E; Carey, K D; Reardon, C A; Getz, G S; McGill, H C

    1991-12-01

    Selective breeding of baboons has produced families with increased plasma levels of large high density lipoproteins (HDL1) and very low (VLDL) and low (LDL) density lipoproteins when the animals consume a diet enriched in cholesterol and saturated fat. High HDL1 baboons have a slower cholesteryl ester transfer, which may account for the accumulation of HDL1, but not of VLDL and LDL. To investigate the mechanism of accumulation of VLDL + LDL in plasma of the high HDL1 phenotype, we selected eight half-sib pairs of baboons, one member of each pair with high HDL1, the other member with little or no HDL1 on the same high cholesterol, saturated fat diet. Baboons were fed a chow diet and four experimental diets consisting of high and low cholesterol with corn oil, and high and low cholesterol with lard, each for 6 weeks, in a crossover design. Plasma lipids and lipoproteins and hepatic mRNA levels were measured on each diet. HDL1 phenotype, type of dietary fat, and dietary cholesterol affected plasma cholesterol and apolipoprotein (apo) B concentrations, whereas dietary fat alone affected plasma triglyceride and apoA-I concentrations. HDL1 phenotype and dietary cholesterol alone did not influence hepatic mRNA levels, whereas dietary lard, compared to corn oil, significantly increased hepatic apoE mRNA levels and decreased hepatic LDL receptor and HMG-CoA synthase mRNA levels. Hepatic apoA-I message was associated with cholesterol concentration in HDL fractions as well as with apoA-I concentrations in the plasma or HDL. However, hepatic apoB message level was not associated with plasma or LDL apoB levels. Total plasma cholesterol, including HDL, was negatively associated with hepatic LDL receptor and HMG-CoA synthase mRNA levels. However, compared with low HDL1 baboons, high HDL1 baboons had higher concentrations of LDL and HDL cholesterol at the same hepatic mRNA levels. These studies suggest that neither overproduction of apoB from the liver nor decreased hepatic LDL

  7. Increased TRPV1 and PAR2 mRNA expression levels are associated only with the esophageal reflux symptoms, but not with the extraesophageal reflux symptoms

    PubMed Central

    Kim, Jin Joo; Kim, Nayoung; Choi, Yoon Jin; Kim, Joo Sung; Jung, Hyun Chae

    2016-01-01

    Abstract Transient receptor potential vanilloid-1 (TRPV1) receptor and proteinase-activated receptor 2 (PAR2) have been implicated in the mechanism of acid-induced inflammation in gastroesophageal reflux disease (GERD). We aimed to evaluate TRPV1 and PAR2 mRNA expression levels in the GERD patients and their relationship with endoscopic findings and reflux symptoms. Sixteen healthy controls, 45 patients with erosive reflux disease (ERD), and 14 nonerosive reflux disease (NERD) patients received endoscopy and completed questionnaires. Quantitative real-time polymerase chain reactions (qPCR) of TRPV1, glial cell line-derived neurotrophic factor (GDNF), nerve growth factor (NGF), PAR2, and interleukin (IL)-8 were performed in the distal esophagus specimen. The levels of TRPV1, GDNF, NGF, PAR2, and IL-8 mRNA expression were highest in the ERD group followed by NERD and control groups and the differences between control and ERD groups were statistically significant. Within the ERD group, patients with grade B in Los Angeles (LA) classification showed significantly higher levels of TRPV1, GDNF, and NGF mRNA expression than those with grade A. Presence of reflux symptoms was associated with significant higher levels of TRPV1, PAR2, and IL-8. Notably not extraesophageal but esophageal reflux symptoms were significantly associated with them. Upregulation of TRPV1 and PAR2 pathways might play a role in the development of distal esophageal inflammation and reflux symptoms. And extraesophageal reflux symptoms might not be associated with these processes. PMID:27512850

  8. Increased TRPV1 and PAR2 mRNA expression levels are associated only with the esophageal reflux symptoms, but not with the extraesophageal reflux symptoms.

    PubMed

    Kim, Jin Joo; Kim, Nayoung; Choi, Yoon Jin; Kim, Joo Sung; Jung, Hyun Chae

    2016-08-01

    Transient receptor potential vanilloid-1 (TRPV1) receptor and proteinase-activated receptor 2 (PAR2) have been implicated in the mechanism of acid-induced inflammation in gastroesophageal reflux disease (GERD). We aimed to evaluate TRPV1 and PAR2 mRNA expression levels in the GERD patients and their relationship with endoscopic findings and reflux symptoms.Sixteen healthy controls, 45 patients with erosive reflux disease (ERD), and 14 nonerosive reflux disease (NERD) patients received endoscopy and completed questionnaires. Quantitative real-time polymerase chain reactions (qPCR) of TRPV1, glial cell line-derived neurotrophic factor (GDNF), nerve growth factor (NGF), PAR2, and interleukin (IL)-8 were performed in the distal esophagus specimen.The levels of TRPV1, GDNF, NGF, PAR2, and IL-8 mRNA expression were highest in the ERD group followed by NERD and control groups and the differences between control and ERD groups were statistically significant. Within the ERD group, patients with grade B in Los Angeles (LA) classification showed significantly higher levels of TRPV1, GDNF, and NGF mRNA expression than those with grade A. Presence of reflux symptoms was associated with significant higher levels of TRPV1, PAR2, and IL-8. Notably not extraesophageal but esophageal reflux symptoms were significantly associated with them.Upregulation of TRPV1 and PAR2 pathways might play a role in the development of distal esophageal inflammation and reflux symptoms. And extraesophageal reflux symptoms might not be associated with these processes.

  9. MHC2TA mRNA levels and human herpesvirus 6 in multiple sclerosis patients treated with interferon beta along two-year follow-up

    PubMed Central

    2012-01-01

    Background In previous studies we found that MHC2TA +1614 genotype frequency was very different when MS patients with and without human herpesvirus 6 (HHV-6) in serum samples were compared; a different clinical behavior was also described. The purpose of the study was: 1. To evaluate if MHC2TA expression in MS patients was influenced by interferon beta (IFN-beta) treatment. 2. To study MHC2TA expression in MS patients with and without minor allele C. 3. To analyze the relation between MHC2TA mRNA levels and HHV-6 active infection in MS patients. Methods Blood and serum samples of 154 MS patients were collected in five programmed visits: basal (prior to beginning IFN-beta treatment), six, twelve, eighteen and twenty-four months later. HHV-6 in serum and MHC2TA mRNA levels were evaluated by PCR and RT-PCR, respectively. Neutralizing antibodies (NAbs) against IFN-beta were analyzed by the cytopathic effect assay. Results We found that MHC2TA mRNA levels were significantly lower among MS patients with HHV-6 active infection at the basal visit (without treatment) than in those MS patients without HHV-6 active infection at the basal visit (p = 0.012); in all the positive samples we only found variant A. Furthermore, 58/99 (58.6%) MS patients without HHV-6 along the five programmed visits and an increase of MHC2TA expression after two-years of IFN-beta treatment were clinical responders vs. 5/21 (23.8%) among those MS patients with HHV-6 and a decrease of MHC2TA mRNA levels along the two-years with IFN-beta treatment (p = 0.004); no differences were found between patients with and without NAbs. Conclusions MHC2TA mRNA levels could be decreased by the active replication of HHV-6; the absence of HHV-6 in serum and the increase of MHC2TA expression could be further studied as markers of good clinical response to IFN-beta treatment. PMID:23009575

  10. ∆(9)-Tetrahydrocannabinol decreases NOP receptor density and mRNA levels in human SH-SY5Y cells.

    PubMed

    Cannarsa, Rosalia; Carretta, Donatella; Lattanzio, Francesca; Candeletti, Sanzio; Romualdi, Patrizia

    2012-02-01

    Several studies demonstrated a cross-talk between the opioid and cannabinoid system. The NOP receptor and its endogenous ligand nociceptin/orphanin FQ represent an opioid-related functional entity that mediates some non-classical opioid effects. The relationship between cannabinoid and nociceptin/NOP system is yet poorly explored. In this study, we used the neuroblastoma SH-SY5Y cell line to investigate the effect of delta-9-tetrahydrocannabinol (∆(9)-THC) on nociceptin/NOP system. Results revealed that the exposure to ∆(9)-THC (100, 150, and 200 nM) for 24 h produces a dose-dependent NOP receptor B (max) down-regulation. Moreover, ∆(9)-THC caused a dose-dependent decrease in NOP mRNA levels. The selective cannabinoid receptor CB1 antagonist AM251 (1-(2,4-dichlorophenyl)-5-(4-iodophenyl)-4-methyl-N-1-piperidinyl-1H-pyrazole-3-carboxamide) reduces both effects, suggesting that ∆(9)-THC activation of CB1 receptor is involved in the observed effects. These data show evidence of a cross-talk between NOP and CB1 receptors, thus suggesting a possible interplay between cannabinoid and nociceptin/NOP system.

  11. The Integrative Analysis of microRNA and mRNA Expression in Mouse Uterus under Delayed Implantation and Activation

    PubMed Central

    Liu, Ji-Long; Zhang, Zhi-Rong; Jia, Bo; Feng, Xu-Hui; Ren, Gang; Hu, Shi-Jun; Yang, Zeng-Ming

    2010-01-01

    Background Delayed implantation is a developmental arrest at the blastocyst stage and a good model for embryo implantation. MicroRNAs (miRNAs) have been shown to be involved in mouse embryo implantation through regulating uterine gene expression. This study was to have an integrative analysis on global miRNA and mRNA expression in mouse uterus under delayed implantation and activation through Illumina sequencing. Methodology/Principal Findings By deep sequencing and analysis, we found that there are 20 miRNAs up-regulated and 42 miRNAs down-regulated at least 1.2 folds, and 268 genes up-regulated and 295 genes down-regulated at least 2 folds under activation compared to delayed implantation, respectively. Many different forms of editing in mature miRNAs are detected. The percentage of editing at positions 4 and 5 of mature miRNAs is significantly higher under delayed implantation than under activation. Although the number of miR-21 reference sequence under activation is slightly lower than that under delayed implantation, the total level of miR-21 under activation is higher than that under delayed implantation. Six novel miRNAs are predicted and confirmed. The target genes of significantly up-regulated miRNAs under activation are significantly enriched. Conclusions miRNA and mRNA expression patterns are closely related. The target genes of up-regulated miRNAs are significantly enriched. A high level of editing at positions 4 and 5 of mature miRNAs is detected under delayed implantation than under activation. Our data should be valuable for future study on delayed implantation. PMID:21124741

  12. Rapid upregulation of the hippocampal connexins 36 and 45 mRNA levels during memory consolidation.

    PubMed

    Beheshti, Siamak; Zeinali, Reyhaneh; Esmaeili, Abolghasem

    2017-03-01

    Gap junction channels are implicated in learning and memory process. However, their role on each of the particular stages of memory formation has been studied less. In this study, the time profile of the expression levels of hippocampal connexins 36 and 45 (Cx36 and Cx45) mRNAs was measured during memory consolidation, in a passive avoidance paradigm. Totally 30 adult male rats were distributed into 5 groups of each 6. At different times profiles (30min, 3, 6 and 24h) following training, rats were decapitated and their hippocampi were immediately removed and frozen in liquid nitrogen. Total RNA was extracted and cDNA was synthesized, using oligo-dt primers. A quantitative real-time PCR was used to measure the levels of each of Cx36 and Cx45 mRNAs. Both connexins showed a rapid upregulation (30min) at the transcriptional level, which declined in later times and reached to the control level at 24h. The rapid up-regulation of Cx36 and Cx45 mRNAs might be accompanied with increasing intercellular coupling via gap junction channels and neuronal oscillatory activities required for memory consolidation. The results highlight the role of gap junctional coupling between hippocampal neurons during memory consolidation in the physiological conditions.

  13. Determination of the Absolute Number of Cytokine mRNA Molecules within Individual Activated Human T Cells

    NASA Technical Reports Server (NTRS)

    Karr, Laurel J.; Marshall, Gwen; Hockett, Richard D.; Bucy, R. Pat; Curreri, Peter A. (Technical Monitor)

    2002-01-01

    A primary function of activated T cells is the expression and subsequent secretion of cytokines, which orchestrate the differentiation of other lymphocytes, modulate antigen presenting cell activity, and alter vascular endothelium to mediate an immune response. Since many features of immune regulation probably result from modest alterations of endogenous rates of multiple interacting processes, quantitative analysis of the frequency and specific activity of individual T cells is critically important. Using a coordinated set of quantitative methods, the absolute number of molecules of several key cytokine mRNA species in individual T cells has been determined. The frequency of human blood T cells activated in vitro by mitogens and recall protein antigens was determined by intracellular cytokine protein staining, in situ hybridization for cytokine mRNA, and by limiting dilution analysis for cytokine mRNA+ cells. The absolute number of mRNA molecules was simultaneously determined in both homogenates of the entire population of cells and in individual cells obtained by limiting dilution, using a quantitative, competitive RT-PCR assay. The absolute numbers of mRNA molecules in a population of cells divided by the frequency of individual positive cells, yielded essentially the same number of mRNA molecules per cell as direct analysis of individual cells by limiting dilution analysis. Mean numbers of mRNA per positive cell from both mitogen and antigen activated T cells, using these stimulation conditions, were 6000 for IL-2, 6300 for IFN-gamma, and 1600 for IL-4.

  14. Sodium arsenite-induced inhibition of cell proliferation is related to inhibition of IL-2 mRNA expression in mouse activated T cells.

    PubMed

    Conde, Patricia; Acosta-Saavedra, Leonor C; Goytia-Acevedo, Raquel C; Calderon-Aranda, Emma S

    2007-04-01

    A proposed mechanism for the As-induced inhibition of cell proliferation is the inhibition of IL-2 secretion. However, the effects of arsenite on IL-2 mRNA expression or on the ERK pathway in activated-T cells have not yet been described. We examined the effect of arsenite on IL-2 mRNA expression, cell activation and proliferation in PHA-stimulated murine lymphocytes. Arsenite (1 and 10 microM) decreased IL-2 mRNA expression, IL-2 secretion and cell proliferation. Arsenite (10 microM) strongly inhibited ERK-phosphorylation. However, the partial inhibition (50%) of IL-2 mRNA produced by 1 microM, consistent with the effects on IL-2 secretion and cell proliferation, could not be explained by the inhibition of ERK-phosphorylation, which was not affected at this concentration. The inhibition of IL-2 mRNA expression caused by 1 microM could be associated to effects on pathways located downstream or parallel to ERK. Arsenite also decreased early activation (surface CD69+ expression) in both CD4+ and CD8+, and decreased total CD8+ count without significantly affecting CD4+, supporting that the cellular immune response mediated by cytotoxic T cells is an arsenic target. Thus, our results suggest that arsenite decreases IL-2 mRNA levels and T-cell activation and proliferation. However, further studies on the effects of arsenite on IL-2 gene transcription and IL-2 mRNA stability are needed.

  15. Regulation of progastricsin mRNA levels in sea bass (Dicentrarchus labrax) in response to fluctuations in food availability.

    PubMed

    Terova, Genciana; Rimoldi, Simona; Larghi, Stefano; Bernardini, Giovanni; Gornati, Rosalba; Saroglia, Marco

    2007-11-23

    In this study the sea bass (Dicentrarchus labrax) pepsinogen C gene was isolated. The nucleotide sequences of all exons are presented. The organization of the gene is compatible with that of other aspartic proteinases. The predicted 388-residue amino acid (aa) sequence of sea bass pepsinogen C consists of a signal sequence of 16 amino acid residues, an activation peptide of 43 residues, and the mature pepsin of 329 residues containing the two characteristic active-site aspartic acids. We also analyzed fasting-induced changes in the expression of progastricsin mRNA, using real-time RT-PCR absolute quantification. Progastricsin mRNA copy number was downregulated under conditions of negative energy balance, such as starvation, and upregulated during positive energy balance, such as refeeding. These findings offer new information about the sea bass progastricsin gene and support a role of this gastric digestive enzyme in the regulation of food intake in sea bass.

  16. Developmental Expression of CYP2B6: A Comprehensive Analysis of mRNA Expression, Protein Content and Bupropion Hydroxylase Activity and the Impact of Genetic Variation.

    PubMed

    Pearce, Robin E; Gaedigk, Roger; Twist, Greyson P; Dai, Hongying; Riffel, Amanda K; Leeder, J Steven; Gaedigk, Andrea

    2016-07-01

    Although CYP2B6 catalyzes the biotransformation of many drugs used clinically for children and adults, information regarding the effects of development on CYP2B6 expression and activity are scarce. Utilizing a large panel of human liver samples (201 donors: 24 fetal, 141 pediatric, and 36 adult), we quantified CYP2B6 mRNA and protein expression levels, characterized CYP2B6 (bupropion hydroxylase) activity in human liver microsomes (HLMs), and performed an extensive genotype analysis to differentiate CYP2B6 haplotypes such that the impact of genetic variation on these parameters could be assessed. Fetal livers contained extremely low levels of CYP2B6 mRNA relative to postnatal samples and fetal HLMs did not appear to catalyze bupropion hydroxylation; however, fetal CYP2B6 protein levels were not significantly different from postnatal levels. Considerable interindividual variation in CYP2B6 mRNA expression, protein levels, and activity was observed in postnatal HLMs (mRNA, ∼40,000-fold; protein, ∼300-fold; activity, ∼600-fold). The extremely wide range of interindividual variability in CYP2B6 expression and activity was significantly associated with age (P < 0.01) following log transformation of the data. Our data suggest that CYP2B6 activity appears as early as the first day of life, increases through infancy, and by 1 year of age, CYP2B6 levels and activity may approach those of adults. Surprisingly, CYP2B6 interindividual variability was not significantly associated with genetic variation in CYP2B6, nor was it associated with differences in gender or ethnicity, suggesting that factors other than these are largely responsible for the wide range of variability in CYP2B6 expression and activity observed among a large group of individuals/samples.

  17. Inverse relationship between estrogen receptor and epidermal growth factor receptor mRNA levels in human breast cancer cell lines.

    PubMed

    Lee, C S; Hall, R E; Alexander, I E; Koga, M; Shine, J; Sutherland, R L

    1990-01-01

    Epidermal growth factor receptors (EGF-R) are present in a number of human breast cancer cell lines and tumor biopsies. Furthermore, it has been suggested that EGF-R levels are higher in estrogen receptor negative (ER-) than in ER+ human breast tumors and that EGF-R status may be a prognostic indicator in breast cancer. The present study was undertaken to establish whether there is a quantitative relationship between EGF-R and ER mRNA concentrations in a series of 10 well-characterized human breast cancer cell lines. All cell lines expressed detectable quantities of EGF-R mRNA by Northern analysis but the relative abundance of EGF-R mRNA varied more than 50-fold. Two transcripts corresponding to the 10.5- and 5.8-kb mRNAs described in other cell types were present but in different relative proportions in different cell lines. When these lines were divided into an ER+ and an ER- group based on their ability to bind estradiol, ER- cell lines were shown to express significantly higher concentrations of EGF-R mRNA than did ER+ cell lines (p less than 0.005). Furthermore, linear-regression analysis revealed a significant inverse relationship between ER and EGF-R mRNA concentrations both within the group of 10 human breast cancer cell lines as a whole (r = 0.66) and within the 6 functionally ER + lines (r = 0.77). This demonstration of a significant (p less than 0.005) inverse relationship between the concentrations of ER and EGF-R mRNAs in ER + cell lines raises the possibility of reciprocal regulation of the expression of these genes in human breast cancer.

  18. Rat uterine oxytocin receptor and estrogen receptor α and β mRNA levels are regulated by estrogen through multiple estrogen receptors.

    PubMed

    Murata, Takuya; Narita, Kazumi; Ichimaru, Toru

    2014-03-07

    Estrogen action is mediated through several types of receptors (ERs), such as ERα, ERβ and putative membrane ERs. Oxytocin receptor (OTR) and ER expression levels in the rat uterus are regulated by estrogen; however, which types of ERs are involved has not been elucidated. This study examined OTR, ERα and ERβ levels in ovariectomized rats treated with 17β-estradiol (E2), an ERα agonist (PPT), an ERβ agonist (DPN) or estren (Es). E2 and PPT increased OTR mRNA levels and decreased ERα and ERβ mRNA levels 3 and 6 h posttreatment. DPN decreased ERα and ERβ mRNA levels at 3 and 6 h, while OTR mRNA levels increased at 3 h and decreased at 6 h. OTR mRNA levels increased 3 h after the Es treatment and then declined until 6 h. ERα and ERβ mRNA levels decreased by 3 h and remained low until 6 h posttreatment with Es. The ER antagonist ICI182,780 (ICI) suppressed the increases in OTR mRNA levels induced 3 h after the Es treatment. However, ICI and tamoxifen (Tam) had no significant effect on ERα and ERβ mRNA levels in the Es-treated or vehicle-treated group. In intact rats, proestrus-associated increases in OTR mRNA levels were antagonized by both ICI and Tam. However, decreases in ERα and ERβ mRNA levels were not antagonized by Tam and ICI, respectively. Therefore, uterine OTR gene expression is upregulated by estrogen through the classical nuclear (or non-nuclear) ERs, ERα and ERβ, while the levels of these ERs are downregulated by estrogen through multiple pathways including Es-sensitive nonclassical ERs.

  19. Frameshift mutations in the v-src gene of avian sarcoma virus act in cis to specifically reduce v-src mRNA levels.

    PubMed Central

    Simpson, S B; Stoltzfus, C M

    1994-01-01

    A portion of the avian sarcoma virus (ASV) primary RNA transcripts is alternatively spliced in chicken embryo fibroblast cells to two different messages, the src and env mRNAs. Frameshift mutations of the viral genome causing premature translation termination within the src gene result in a decreased steady-state level of the src mRNA. In marked contrast, frameshift mutations at various positions of the env gene do not decrease the level of the env mRNA. We show that the src gene product is not required in trans for splicing and accumulation of src mRNA. Conversely, the truncated Src proteins do not act negatively in trans to decrease specifically the levels of src mRNA. Taken together, these results indicate that the frameshift mutations act in cis to reduce src mRNA levels. A double mutant with a lesion in the src initiator AUG and a frameshift within the src gene demonstrated wild-type RNA levels, indicating that the src mRNA must be recognized as a translatable mRNA for the effect on src mRNA levels to occur. Our results indicate that the reduced levels do not result from decreased cytoplasmic stability of the mature src mRNA. We also show that the src gene frameshift mutations affect src mRNA levels when expressed from intronless src cDNA clones. We conclude that the reduction of src mRNA levels triggered by the presence of frameshift mutations within the src gene occurs while it is associated with the nucleus. Our data also strongly suggest that this occurs at a step of RNA processing or transport independent of RNA splicing. Images PMID:8114716

  20. Comparison of mRNA levels of three ethylene receptors in senescing flowers of carnation (Dianthus caryophyllus L.).

    PubMed

    Shibuya, Kenichi; Nagata, Masayasu; Tanikawa, Natsu; Yoshioka, Toshihito; Hashiba, Teruyoshi; Satoh, Shigeru

    2002-03-01

    Three ethylene receptor genes, DC-ERS1, DC-ERS2 and DC-ETR1, were previously identified in carnation (Dianthus caryophyllus L.). Here, the presence of mRNAs for respective genes in flower tissues and their changes during flower senescence are investigated by Northern blot analysis. DC-ERS2 and DC-ETR1 mRNAs were present in considerable amounts in petals, ovaries and styles of the flower at the full-opening stage. In the petals the level of DC-ERS2 mRNA showed a decreasing trend toward the late stage of flower senescence, whereas it increased slightly in ovaries and was unchanged in styles throughout the senescence period. However, DC-ETR1 mRNA showed no or little changes in any of the tissues during senescence. Exogenously applied ethylene did not affect the levels of DC-ERS2 and DC-ETR1 mRNAs in petals. Ethylene production in the flowers was blocked by treatment with 1,1-dimethyl-4-(phenylsulphonyl)semicarbazide (DPSS), but the mRNA levels for DC-ERS2 and DC-ETR1 decreased in the petals. DC-ERS1 mRNA was not detected in any cases. These results indicate that DC-ERS2 and DC-ETR1 are ethylene receptor genes responsible for ethylene perception and that their expression is regulated in a tissue-specific manner and independently of ethylene in carnation flowers during senescence.

  1. Drug conjugated nanoparticles activated by cancer cell specific mRNA

    PubMed Central

    Li, Nan-Sheng; Zamora, Edward A.; Gordon, David J.; Piccirilli, Joseph A.; Gordon, Peter M.

    2016-01-01

    We describe a customizable approach to cancer therapy in which a gold nanoparticle (Au-NP) delivers a drug that is selectively activated within the cancer cell by the presence of an mRNA unique to the cancer cell. Fundamental to this approach is the observation that the amount of drug released from the Au-NP is proportional to both the presence and abundance of the cancer cell specific mRNA in a cell. As proof-of-principle, we demonstrate both the efficient delivery and selective release of the multi-kinase inhibitor dasatinib from Au-NPs in leukemia cells with resulting efficacy in vitro and in vivo. Furthermore, these Au-NPs reduce toxicity against hematopoietic stem cells and T-cells. This approach has the potential to improve the therapeutic efficacy of a drug and minimize toxicity while being highly customizable with respect to both the cancer cell specific mRNAs targeted and drugs activated. PMID:27203672

  2. A Nascent Peptide Signal Responsive to Endogenous Levels of Polyamines Acts to Stimulate Regulatory Frameshifting on Antizyme mRNA.

    PubMed

    Yordanova, Martina M; Wu, Cheng; Andreev, Dmitry E; Sachs, Matthew S; Atkins, John F

    2015-07-17

    The protein antizyme is a negative regulator of cellular polyamine concentrations from yeast to mammals. Synthesis of functional antizyme requires programmed +1 ribosomal frameshifting at the 3' end of the first of two partially overlapping ORFs. The frameshift is the sensor and effector in an autoregulatory circuit. Except for Saccharomyces cerevisiae antizyme mRNA, the frameshift site alone only supports low levels of frameshifting. The high levels usually observed depend on the presence of cis-acting stimulatory elements located 5' and 3' of the frameshift site. Antizyme genes from different evolutionary branches have evolved different stimulatory elements. Prior and new multiple alignments of fungal antizyme mRNA sequences from the Agaricomycetes class of Basidiomycota show a distinct pattern of conservation 5' of the frameshift site consistent with a function at the amino acid level. As shown here when tested in Schizosaccharomyces pombe and mammalian HEK293T cells, the 5' part of this conserved sequence acts at the nascent peptide level to stimulate the frameshifting, without involving stalling detectable by toe-printing. However, the peptide is only part of the signal. The 3' part of the stimulator functions largely independently and acts at least mostly at the nucleotide level. When polyamine levels were varied, the stimulatory effect was seen to be especially responsive in the endogenous polyamine concentration range, and this effect may be more general. A conserved RNA secondary structure 3' of the frameshift site has weaker stimulatory and polyamine sensitizing effects on frameshifting.

  3. Changes in neurotransmitter levels and proinflammatory cytokine mRNA expressions in the mice olfactory bulb following nanoparticle exposure

    SciTech Connect

    Tin-Tin-Win-Shwe Mitsushima, Dai; Yamamoto, Shoji; Fukushima, Atsushi; Funabashi, Toshiya; Kobayashi, Takahiro; Fujimaki, Hidekazu

    2008-01-15

    Recently, there have been increasing reports that nano-sized component of particulate matter can reach the brain and may be associated with neurodegenerative diseases. Previously, our laboratory has studied the effect of intranasal instillation of nano-sized carbon black (CB) (14 nm and 95 nm) on brain cytokine and chemokine mRNA expressions and found that 14-nm CB increased IL-1{beta}, TNF-{alpha}, CCL2 and CCL3 mRNA expressions in the olfactory bulb, not in the hippocampus of mice. To investigate the effect of a single administration of nanoparticles on neurotransmitters and proinflammatory cytokines in a mouse olfactory bulb, we performed in vivo microdialysis and real-time PCR methods. Ten-week-old male BALB/c mice were implanted with guide cannula in the right olfactory bulb and, 1 week later, were instilled vehicle or CB (14 nm, 250 {mu}g) intranasally. Six hours after the nanoparticle instillation, the mice were intraperitoneally injected with normal saline or 50 {mu}g of bacteria cell wall component lipoteichoic acid (LTA), which may potentiate CB-induced neurologic effect. Extracellular glutamate and glycine levels were significantly increased in the olfactory bulb of CB-instilled mice when compared with vehicle-instilled control mice. Moreover, we found that LTA further increased glutamate and glycine levels. However, no alteration of taurine and GABA levels was observed in the olfactory bulb of the same mice. We also detected immunological changes in the olfactory bulb 11 h after vehicle or CB instillation and found that IL-1{beta} mRNA expression was significantly increased in CB- and LTA-treated mice when compared with control group. However, TNF-{alpha} mRNA expression was increased significantly in CB- and saline-treated mice when compared with control group. These findings suggest that nanoparticle CB may modulate the extracellular amino acid neurotransmitter levels and proinflammatory cytokine IL-1 {beta} mRNA expressions synergistically with LTA

  4. TCF4 sequence variants and mRNA levels are associated with neurodevelopmental characteristics in psychotic disorders.

    PubMed

    Wirgenes, K V; Sønderby, I E; Haukvik, U K; Mattingsdal, M; Tesli, M; Athanasiu, L; Sundet, K; Røssberg, J I; Dale, A M; Brown, A A; Agartz, I; Melle, I; Djurovic, S; Andreassen, O A

    2012-05-08

    TCF4 is involved in neurodevelopment, and intergenic and intronic variants in or close to the TCF4 gene have been associated with susceptibility to schizophrenia. However, the functional role of TCF4 at the level of gene expression and relationship to severity of core psychotic phenotypes are not known. TCF4 mRNA expression level in peripheral blood was determined in a large sample of patients with psychosis spectrum disorders (n = 596) and healthy controls (n = 385). The previously identified TCF4 risk variants (rs12966547 (G), rs9960767 (C), rs4309482 (A), rs2958182 (T) and rs17512836 (C)) were tested for association with characteristic psychosis phenotypes, including neurocognitive traits, psychotic symptoms and structural magnetic resonance imaging brain morphometric measures, using a linear regression model. Further, we explored the association of additional 59 single nucleotide polymorphisms (SNPs) covering the TCF4 gene to these phenotypes. The rs12966547 and rs4309482 risk variants were associated with poorer verbal fluency in the total sample. There were significant associations of other TCF4 SNPs with negative symptoms, verbal learning, executive functioning and age at onset in psychotic patients and brain abnormalities in total sample. The TCF4 mRNA expression level was significantly increased in psychosis patients compared with controls and positively correlated with positive- and negative-symptom levels. The increase in TCF4 mRNA expression level in psychosis patients and the association of TCF4 SNPs with core psychotic phenotypes across clinical, cognitive and brain morphological domains support that common TCF4 variants are involved in psychosis pathology, probably related to abnormal neurodevelopment.

  5. Amyloid precursor protein mRNA levels in the mononuclear blood cells of Alzheimer's and Down's patients.

    PubMed

    Buckland, P; Tidmarsh, S; Spurlock, G; Kaiser, F; Yates, M; O'Mahony, G; McGuffin, P

    1993-06-01

    Amyloid precursor protein (APP) is expressed by many non-neural tissues and it is possible that over-expression of the APP gene in non-neural tissue is responsible for the deposition of amyloid beta-protein in the brain and elsewhere. One possible source of beta-protein is circulating mononuclear blood cells which have previously been shown to express APP. To test this hypothesis, RNA was isolated from the mononuclear blood cells of patients suffering from Alzheimer's disease (n = 27), Down's syndrome (n = 13), senile dementia non-Alzheimer type (n = 14) and from normal individuals (n = 48). The relative abundance of mRNA coding for different splicing variants of the amyloid precursor protein (APP) mRNA was measured using multiprobe oligonucleotide solution hybridisation (MOSH). There was no significant difference in APP mRNA levels between any of the groups. This indicates that Alzheimer's disease is not characterised by an increase in production of APP in circulating mononuclear blood cells.

  6. Persisting PET-CT lesion activity and M. tuberculosis mRNA after pulmonary tuberculosis cure

    PubMed Central

    Malherbe, Stephanus T.; Shenai, Shubhada; Ronacher, Katharina; Loxton, Andre G.; Dolganov, Gregory; Kriel, Magdalena; Van, Tran; Chen, Ray Y.; Warwick, James; Via, Laura E.; Song, Taeksun; Lee, Myungsun; Schoolnik, Gary; Tromp, Gerard; Alland, David; Barry, Clifton E.; Winter, Jill; Walzl, Gerhard

    2016-01-01

    The absence of a gold standard to determine when antibiotics have induced sterilizing cure confounds the development of new approaches to treat pulmonary tuberculosis (PTB). We detected PET-CT imaging response patterns consistent with active disease along with the presence of Mycobacterium tuberculosis mRNA in sputum and bronchoalveolar lavage samples in a substantial proportion of adult, HIV-negative PTB patients after standard 6-month treatment plus one year follow-up, including patients with a durable cure and others who later developed recurrent disease. The presence of MTB mRNA in the context of non-resolving and intensifying lesions on PET-CT might indicate ongoing transcription, suggesting that even apparently curative PTB treatment may not eradicate all organisms in most patients. This suggests an important complementary role for the immune response in maintaining a disease-free state. Sterilizing drugs or host-directed therapies and better treatment response markers are likely needed for the successful development of improved and shortened PTB treatment strategies. PMID:27595324

  7. Overexpression of tau downregulated the mRNA levels of Kv channels and improved proliferation in N2A cells.

    PubMed

    Li, Xiantao; Hu, Ximu; Li, Xiaoqing; Hao, Xuran

    2015-01-01

    Microtubule binding protein tau has a crucial function in promoting the assembly and stabilization of microtubule. Besides tuning the action potentials, voltage-gated K+ channels (Kv) are important for cell proliferation and appear to play a role in the development of cancer. However, little is known about the possible interaction of tau with Kv channels in various tissues. In the present study, tau plasmids were transiently transfected into mouse neuroblastoma N2A cells to explore the possible linkages between tau and Kv channels. This treatment led to a downregulation of mRNA levels of several Kv channels, including Kv2.1, Kv3.1, Kv4.1, Kv9.2, and KCNH4, but no significant alteration was observed for Kv5.1 and KCNQ4. Furthermore, the macroscopic currents through Kv channels were reduced by 36.5% at +60 mV in tau-transfected N2A cells. The proliferation rates of N2A cells were also improved by the induction of tau expression and the incubation of TEA (tetraethylammonium) for 48 h by 120.9% and 149.3%, respectively. Following the cotransfection with tau in HEK293 cells, the mRNA levels and corresponding currents of Kv2.1 were significantly declined compared with single Kv2.1 transfection. Our data indicated that overexpression of tau declined the mRNA levels of Kv channels and related currents. The effects of tau overexpression on Kv channels provided an alternative explanation for low sensitivity to anti-cancer chemicals in some specific cancer tissues.

  8. Overexpression of Tau Downregulated the mRNA Levels of Kv Channels and Improved Proliferation in N2A Cells

    PubMed Central

    Li, Xiantao; Hu, Ximu; Li, Xiaoqing; Hao, Xuran

    2015-01-01

    Microtubule binding protein tau has a crucial function in promoting the assembly and stabilization of microtubule. Besides tuning the action potentials, voltage-gated K+ channels (Kv) are important for cell proliferation and appear to play a role in the development of cancer. However, little is known about the possible interaction of tau with Kv channels in various tissues. In the present study, tau plasmids were transiently transfected into mouse neuroblastoma N2A cells to explore the possible linkages between tau and Kv channels. This treatment led to a downregulation of mRNA levels of several Kv channels, including Kv2.1, Kv3.1, Kv4.1, Kv9.2, and KCNH4, but no significant alteration was observed for Kv5.1 and KCNQ4. Furthermore, the macroscopic currents through Kv channels were reduced by 36.5% at +60 mV in tau-tranfected N2A cells. The proliferation rates of N2A cells were also improved by the induction of tau expression and the incubation of TEA (tetraethylammonium) for 48 h by 120.9% and 149.3%, respectively. Following the cotransfection with tau in HEK293 cells, the mRNA levels and corresponding currents of Kv2.1 were significantly declined compared with single Kv2.1 transfection. Our data indicated that overexpression of tau declined the mRNA levels of Kv channels and related currents. The effects of tau overexpression on Kv channels provided an alternative explanation for low sensitivity to anti-cancer chemicals in some specific cancer tissues. PMID:25590133

  9. Impact of estrogen receptor gene polymorphisms and mRNA levels on obesity and lipolysis – a cohort study

    PubMed Central

    Nilsson, Maria; Dahlman, Ingrid; Jiao, Hong; Gustafsson, Jan-Åke; Arner, Peter; Dahlman-Wright, Karin

    2007-01-01

    Background The estrogen receptors α and β (ESR1, ESR2) have been implicated in adiposity, lipid metabolism and feeding behaviour. In this report we analyse ESR1 and ESR2 gene single nucleotide polymorphisms (SNPs) for association with obesity. We also relate adipose tissue ESR1 mRNA levels and ESR1 SNPs to adipocyte lipolysis and lipogenesis phenotypes. Methods 23 ESR1 and 11 ESR2 tag-SNPs, covering most of the common haplotype variation in each gene according to HAPMAP data, were analysed by Chi2 for association with obesity in a cohort comprising 705 adults with severe obesity and 402 lean individuals. Results were replicated in a cohort comprising 837 obese and 613 lean subjects. About 80% of both cohorts comprised women and 20% men. Adipose tissue ESR1 mRNA was quantified in 122 women and related to lipolysis and lipogenesis by multiple regression. ESR1 SNPs were analysed for association with adipocyte lipolysis and lipogenesis phenotypes in 204 obese women by simple regression. Results No ESR1 SNP was associated with obesity. Five ESR2 SNPs displayed nominal significant allelic association with obesity in women and one in men. The two ESR2 SNPs associated with obesity with nominal P value < 0.01 were genotyped in a second cohort where no association with obesity was observed. There was an inverse correlation between ESR1 mRNA levels in abdominal subcutaneous (sc) adipose tissue and basal lipolysis, as well as responsiveness to adrenoceptor agonists independent of age and BMI (P value 0.009–0.045). ESR1 rs532010 was associated with lipolytic sensitivity to noradrenaline (nominal P value 0.012), and ESR1 rs1884051 with responsiveness to the non-selective beta-adrenoceptor agonist isoprenaline (nominal P value 0.05). These associations became non-significant after Bonferroni correction. Conclusion ESR1 gene alleles are unlikely to be a major cause of obesity in women. A minor importance of ESR2 on severe obesity cannot be excluded. The inverse correlation

  10. Changes in serum hyaluronic acid levels and expression of CD44 and CD44 mRNA in hepatic sinusoidal endothelial cells after major hepatectomy in cirrhotic rats.

    PubMed

    Saegusa, Shotaro; Isaji, Shuji; Kawarada, Yoshifumi

    2002-06-01

    Serum hyaluronic acid (HA) is widely distributed in connective tissues, and the majority of circulating HA is degraded by hepatic sinusoidal endothelial cells (SECs) via a receptor recycling pathway. Our previous clinical study revealed that monitoring serum HA levels after hepatectomy is useful in predicting the development of liver failure. In the present study, to determine the mechanism of the high HA levels after hepatectomy, especially in patients with liver cirrhosis, expression of the major HA receptor, CD44, and its mRNA was investigated in SECs isolated from rats with thioacetamide-induced liver cirrhosis subjected to 70% hepatectomy (group I) and from rats with a normal liver that were subjected to 70% hepatectomy (group II). The 48-hour postoperative survival rate in group I (13.3%) was significantly lower than in group II (100%). In group II, the expression of CD44 mRNA had increased significantly at 6 hours after hepatectomy, and this was followed by progressive increases in expression of CD44, indicating activation of SEC function. The increased serum HA levels after hepatectomy in group II became normal as CD44 expression increased. By contrast, the expression of CD44 and CD44 mRNA in group I was markedly attenuated after hepatectomy. The very low CD44 expression was followed by a significant and sustained increase in serum HA levels, indicating functional failure of the SECs. These results suggest that the significantly impaired functional reserve of SECs in liver cirrhosis is associated with increased mortality after 70% hepatectomy.

  11. Regional brain-derived neurotrophic factor mRNA and protein levels following transient forebrain ischemia in the rat.

    PubMed

    Kokaia, Z; Nawa, H; Uchino, H; Elmér, E; Kokaia, M; Carnahan, J; Smith, M L; Siesjö, B K; Lindvall, O

    1996-05-01

    Levels of BDNF mRNA and protein were measured in the rat brain using in situ hybridization and a two-site enzyme immunoassay. Under basal conditions, the highest BDNF concentration was found in the dentate gyrus (88 ng/g), while the levels in CA3 (50 ng/g), CA1 (18 ng/g) and parietal cortex (8 ng/g) were markedly lower. Following 10 min of forebrain ischemia, BDNF protein increased transiently in the dentate gyrus (to 124% of control at 6 h after the insult) and CA3 region (to 131% of control, at 1 week after the insult). In CA1 and parietal cortex, BDNF protein decreased to 73-75% of control at 24 h. In contrast, BDNF mRNA expression in dentate granule cells and CA3 pyramidal layer was transiently elevated to 287 and 293% of control, respectively, at 2 h, whereas no change was detected in CA1 or neocortex. The regional BDNF protein levels shown here correlate at least partly with regional differences in cellular resistance to ischemic damage, which is consistent with the hypothesis of a neuroprotective role of BDNF.

  12. Dietary sodium deprivation evokes activation of brain regional neurons and down-regulation of angiotensin II type 1 receptor and angiotensin-convertion enzyme mRNA expression.

    PubMed

    Lu, B; Yang, X J; Chen, K; Yang, D J; Yan, J Q

    2009-12-15

    Previous studies have indicated that the renin-angiotensin-aldosterone system (RAAS) is implicated in the induction of sodium appetite in rats and that different dietary sodium intakes influence the mRNA expression of central and peripheral RAAS components. To determine whether dietary sodium deprivation activates regional brain neurons related to sodium appetite, and changes their gene expression of RAAS components of rats, the present study examined the c-Fos expression after chronic exposure to low sodium diet, and determined the relationship between plasma and brain angiotensin I (ANG I), angiotensin II (ANG II) and aldosterone (ALD) levels and the sodium ingestive behavior variations, as well as the effects of prolonged dietary sodium deprivation on ANG II type 1 (AT1) and ANG II type 2 (AT2) receptors and angiotensin-convertion enzyme (ACE) mRNA levels in the involved brain regions using the method of real-time polymerase chain reaction (PCR). Results showed that the Fos immunoreactivity (Fos-ir) expression in forebrain areas such as subfornical organ (SFO), paraventricular hypothalamic nuclei (PVN), supraoptic nucleus (SON) and organum vasculosum laminae terminalis (OVLT) all increased significantly and that the levels of ANG I, ANG II and ALD also increased in plasma and forebrain in rats fed with low sodium diet. In contrast, AT1, ACE mRNA in PVN, SON and OVLT decreased significantly in dietary sodium depleted rats, while AT2 mRNA expression did not change in the examined areas. These results suggest that many brain areas are activated by increased levels of plasma and/or brain ANG II and ALD, which underlies the elevated preference for hypertonic salt solution after prolonged exposure to low sodium diet, and that the regional AT1 and ACE mRNA are down-regulated after dietary sodium deprivation, which may be mediated by increased ANG II in plasma and/or brain tissue.

  13. Methylation of bone SOST, its mRNA, and serum sclerostin levels correlate strongly with fracture risk in postmenopausal women.

    PubMed

    Reppe, Sjur; Noer, Agate; Grimholt, Runa M; Halldórsson, Bjarni V; Medina-Gomez, Carolina; Gautvik, Vigdis T; Olstad, Ole Kristoffer; Berg, Jens Petter; Datta, Harish; Estrada, Karol; Hofman, Albert; Uitterlinden, André G; Rivadeneira, Fernando; Lyle, Robert; Collas, Philippe; Gautvik, Kaare M

    2015-02-01

    Inhibition of sclerostin, a glycoprotein secreted by osteocytes, offers a new therapeutic paradigm for treatment of osteoporosis (OP) through its critical role as Wnt/catenin signaling regulator. This study describes the epigenetic regulation of SOST expression in bone biopsies of postmenopausal women. We correlated serum sclerostin to bone mineral density (BMD), fractures, and bone remodeling parameters, and related these findings to epigenetic and genetic disease mechanisms. Serum sclerostin and bone remodeling biomarkers were measured in two postmenopausal groups: healthy (BMD T-score > -1) and established OP (BMD T-score < -2.5, with at least one low-energy fracture). Bone specimens were used to analyze SOST mRNAs, single nucleotide polymorphisms (SNPs), and DNA methylation changes. The SOST gene promoter region showed increased CpG methylation in OP patients (n = 4) compared to age and body mass index (BMI) balanced controls (n = 4) (80.5% versus 63.2%, p = 0.0001) with replication in independent cohorts (n = 27 and n = 36, respectively). Serum sclerostin and bone SOST mRNA expression correlated positively with age-adjusted and BMI-adjusted total hip BMD (r = 0.47 and r = 0.43, respectively; both p < 0.0005), and inversely to serum bone turnover markers. Five SNPs, one of which replicates in an independent population-based genomewide association study (GWAS), showed association with serum sclerostin or SOST mRNA levels under an additive model (p = 0.0016 to 0.0079). Genetic and epigenetic changes in SOST influence its bone mRNA expression and serum sclerostin levels in postmenopausal women. The observations suggest that increased SOST promoter methylation seen in OP is a compensatory counteracting mechanism, which lowers serum sclerostin concentrations and reduces inhibition of Wnt signaling in an attempt to promote bone formation.

  14. Hedgehog Signaling Pathway Is Active in GBM with GLI1 mRNA Expression Showing a Single Continuous Distribution Rather than Discrete High/Low Clusters

    PubMed Central

    Biswas, Nidhan K.; Rote, Sarang; Chatterjee, Uttara; Ghosh, Samarendra N.; Deb, Sumit; Saha, Suniti K.; Chowdhury, Anup K.; Ghosh, Subhashish; Rudin, Charles M.; Mukherjee, Ankur; Basu, Analabha; Dhara, Surajit

    2015-01-01

    Hedgehog (Hh) signaling pathway is a valid therapeutic target in a wide range of malignancies. We focus here on glioblastoma multiforme (GBM), a lethal malignancy of the central nervous system (CNS). By analyzing RNA-sequencing based transcriptomics data on 149 clinical cases of TCGA-GBM database we show here a strong correlation (r = 0.7) between GLI1 and PTCH1 mRNA expression—as a hallmark of the canonical Hh-pathway activity in this malignancy. GLI1 mRNA expression varied in 3 orders of magnitude among the GBM patients of the same cohort showing a single continuous distribution—unlike the discrete high/low-GLI1 mRNA expressing clusters of medulloblastoma (MB). When compared with MB as a reference, the median GLI1 mRNA expression in GBM appeared 14.8 fold lower than that of the “high-Hh” cluster of MB but 5.6 fold higher than that of the “low-Hh” cluster of MB. Next, we demonstrated statistically significant up- and down-regulation of GLI1 mRNA expressions in GBM patient-derived low-passage neurospheres in vitro by sonic hedgehog ligand-enriched conditioned media (shh-CM) and by Hh-inhibitor drug vismodegib respectively. We also showed clinically achievable dose (50 μM) of vismodegib alone to be sufficient to induce apoptosis and cell cycle arrest in these low-passage GBM neurospheres in vitro. Vismodegib showed an effect on the neurospheres, both by down-regulating GLI1 mRNA expression and by inducing apoptosis/cell cycle arrest, irrespective of their relative endogenous levels of GLI1 mRNA expression. We conclude from our study that this single continuous distribution pattern of GLI1 mRNA expression technically puts almost all GBM patients in a single group rather than discrete high- or low-clusters in terms of Hh-pathway activity. That is suggestive of therapies with Hh-pathway inhibitor drugs in this malignancy without a need for further stratification of patients on the basis of relative levels of Hh-pathway activity among them. PMID:25775002

  15. A Nascent Peptide Signal Responsive to Endogenous Levels of Polyamines Acts to Stimulate Regulatory Frameshifting on Antizyme mRNA*

    PubMed Central

    Yordanova, Martina M.; Wu, Cheng; Andreev, Dmitry E.; Sachs, Matthew S.; Atkins, John F.

    2015-01-01

    The protein antizyme is a negative regulator of cellular polyamine concentrations from yeast to mammals. Synthesis of functional antizyme requires programmed +1 ribosomal frameshifting at the 3′ end of the first of two partially overlapping ORFs. The frameshift is the sensor and effector in an autoregulatory circuit. Except for Saccharomyces cerevisiae antizyme mRNA, the frameshift site alone only supports low levels of frameshifting. The high levels usually observed depend on the presence of cis-acting stimulatory elements located 5′ and 3′ of the frameshift site. Antizyme genes from different evolutionary branches have evolved different stimulatory elements. Prior and new multiple alignments of fungal antizyme mRNA sequences from the Agaricomycetes class of Basidiomycota show a distinct pattern of conservation 5′ of the frameshift site consistent with a function at the amino acid level. As shown here when tested in Schizosaccharomyces pombe and mammalian HEK293T cells, the 5′ part of this conserved sequence acts at the nascent peptide level to stimulate the frameshifting, without involving stalling detectable by toe-printing. However, the peptide is only part of the signal. The 3′ part of the stimulator functions largely independently and acts at least mostly at the nucleotide level. When polyamine levels were varied, the stimulatory effect was seen to be especially responsive in the endogenous polyamine concentration range, and this effect may be more general. A conserved RNA secondary structure 3′ of the frameshift site has weaker stimulatory and polyamine sensitizing effects on frameshifting. PMID:25998126

  16. Acute hypoxia up-regulates HIF-1α and VEGF mRNA levels in Amazon hypoxia-tolerant Oscar (Astronotus ocellatus).

    PubMed

    Baptista, R B; Souza-Castro, N; Almeida-Val, V M F

    2016-10-01

    Amazon fish maintain oxygen uptake through a variety of strategies considered evolutionary and adaptive responses to the low water oxygen saturation, commonly found in Amazon waters. Oscar (Astronotus ocellatus) is among the most hypoxia-tolerant fish in Amazon, considering its intriguing anaerobic capacity and ability to depress oxidative metabolism. Previous studies in hypoxia-tolerant and non-tolerant fish have shown that hypoxia-inducible factor-1α (HIF-1α) gene expression is positively regulated during low oxygen exposure, affecting vascular endothelial growth factor (VEGF) transcription and fish development or tolerance in different manners. However, whether similar isoforms exists in tolerant Amazon fish and whether they are affected similarly to others physiological responses to improve hypoxia tolerance remain unknown. Here we evaluate the hepatic HIF-1α and VEGF mRNA levels after 3 h of acute hypoxia exposure (0.5 mgO2/l) and 3 h of post-hypoxia recovery. Additionally, hematological parameters and oxidative enzyme activities of citrate synthase (CS) and malate dehydrogenase (MDH) were analyzed in muscle and liver tissues. Overall, three sets of responses were detected: (1) as expected, hematocrit, hemoglobin concentration, red blood cells, and blood glucose increased, improving oxygen carrying capacity and glycolysis potential; (2) oxidative enzymes from liver decreased, corroborating the tendency to a widespread metabolic suppression; and (3) HIF-1α and VEGF increased mRNA levels in liver, revealing their role in the oxygen homeostasis through, respectively, activation of target genes and vascularization. This is the first study to investigate a hypoxia-related transcription factor in a representative Amazon hypoxia-tolerant fish and suggests that HIF-1α and VEGF mRNA regulation have an important role in enhancing hypoxia tolerance in extreme tolerant species.

  17. The effect of mechanical force on mRNA levels of collagenase, collagen type I, and tissue inhibitors of metalloproteinases in gingivae of dogs.

    PubMed

    Redlich, M; Reichenberg, E; Harari, D; Zaks, B; Shoshan, S; Palmon, A

    2001-12-01

    Orthodontic force causes an injury to and subsequent degradation of the attachment apparatus, thus leading to the transposition of the tooth. The gingiva, however, is compressed and sometimes becomes hypertrophic with tooth movement and often shrinks after treatment. To study the effect of force on the gingiva, we applied orthodontic force in dogs and analyzed gingival tissues 1, 2, 3, 7, 14, and 28 days later as well as after removing the force. The effect of force on mRNA levels of collagen type I (col-I), matrix metalloproteinase-1 (MMP- 1), and tissue inhibitors 1 and 2 (TIMPs) genes was analyzed by RT-PCR, and MMP-1 activity was determined by zymography. The results showed that force significantly increased both the mRNA levels of MMP-1 and its interstitial activity. After the removal of force, MMP-1 gene expression was significantly decreased. The results could partly explain the clinically observed shrinkage and adaptation of the gingiva during tooth movement.

  18. Effects of dietary medium-chain triacylglycerol on mRNA level of gluconeogenic enzymes in malnourished rats.

    PubMed

    Kojima, Keiichi; Kasai, Michio

    2008-12-01

    We have reported previously that dietary medium-chain triacylglycerol (MCT) improved serum albumin concentration and protein balance in malnourished rats. To clarify the mechanisms for this effect of MCT, hepatic messenger RNA levels of gluconeogenic enzymes, pyruvate dehydrogenase (PDH) and alanine aminotransferase (ALT) were measured in rats fed low-protein diets containing either MCT or isocaloric long-chain triacylglycerol (LCT) for 2 wk. The serum albumin concentration in rats fed the MCT diet was significantly higher compared with those fed the LCT diet. Serum free fatty acids and ketone body fraction were higher in rats fed MCT compared with those fed the LCT diet. The hepatic mRNA level of PDH was significantly lower in rats fed MCT than those fed LCT. But, there was no significant difference between the two groups in mRNA of gluconeogenic enzymes or ALT. These results suggest that ketone bodies, which are an alternative energy source and might spare blood glucose, increase by MCT feeding, and the reason for the PEM (protein-energy malnutrition)-improving effect of MCT is not caused by suppression of gluconeogenesis.

  19. Effects of first exogenous nutrients on the mRNA levels of atrogin-1/MAFbx and GLUT1 in the skeletal muscles of newly hatched chicks.

    PubMed

    Ijiri, Daichi; Shimamoto, Saki; Kawaguchi, Mana; Furukawa, Airi; Nakashima, Kazuki; Tada, Osamu; Ohtsuka, Akira

    2017-03-01

    The aim of this study was to examine the effects of first exogenous nutrients on the mRNA levels of muscle atrophy F-box (atrogin-1/MAFbx) and glucose transporters (GLUTs) in the skeletal muscles of newly hatched chicks with no feed experience. In experiment 1, newly hatched chicks had free access to feed or were fasted for the first 24h. The chicks having free access to feed for the first 24h increased their body weight and had decreased atrogin-1/MAFbx mRNA levels in their sartorius and pectoralis major muscles compared with the fasted chicks. In experiment 2, newly hatched chicks received a single feed via intubation into the crop. Three hours after intubation, levels of atrogin-1/MAFbx mRNA in the sartorius muscle were decreased whereas the plasma insulin concentration and phosphorylated AKT levels in the sartorius muscle were increased. In addition, the mRNA levels of GLUT1 and GLUT8 were increased in the sartorius muscle after the intubation. However, in the pectoralis major muscle, AKT phosphorylation and levels of atrogin-1/MAFbx, GLUT1 and GLUT8 mRNA were not affected 3h after intubation. The first exogenous nutrients increased the level of phosphorylated AKT in the sartorius muscle of newly hatched chicks, possibly because of the decrease in atrogin-1/MAFbx mRNA levels. Furthermore, the sartorius muscle in newly hatched chicks appeared to be more susceptible to the first feed compared with the pectoralis major muscle.

  20. Time-course of SKF-81297-induced increase in glutamic acid decarboxylase 65 and 67 mRNA levels in striatonigral neurons and decrease in GABA(A) receptor alpha1 subunit mRNA levels in the substantia nigra, pars reticulata, in adult rats with a unilateral 6-hydroxydopamine lesion.

    PubMed

    Yamamoto, N; Soghomonian, J-J

    2008-06-26

    Striatal projection neurons use GABA as their neurotransmitter and express the rate-limiting synthesizing enzyme glutamic acid decarboxylase (GAD) and the vesicular GABA transporter vGAT. The chronic systemic administration of an agonist of dopamine D1/D5-preferring receptors is known to alter GAD mRNA levels in striatonigral neurons in intact and dopamine-depleted rats. In the present study, the effects of a single or subchronic systemic administration of the dopamine D1/D5-preferring receptor agonist SKF-81297 on GAD65, GAD67, PPD and vGAT mRNA levels in the striatum and GABA(A) receptor alpha1 subunit mRNA levels in the substantia nigra, pars reticulata, were measured in rats with a unilateral 6-hydroxydopamine (6-OHDA) lesion. After a single injection of SKF-81297, striatal GAD65 mRNA levels were significantly increased at 3 but not 72 h. In contrast, striatal GAD67 mRNA levels were increased and nigral alpha1 mRNA levels were decreased at 72 but not 3 h. Single cell analysis on double-labeled sections indicated that increased GAD or vGAT mRNA levels after acute SKF-81297 occurred in striatonigral neurons identified by their lack of preproenkephalin expression. Subchronic SKF-81297 induced significant increases in striatal GAD67, GAD65, preprodynorphin and vGAT mRNA levels and decreases in nigral alpha1 mRNA levels. In the striatum contralateral to the 6-OHDA lesion, subchronic but not acute SKF-81297 induced a significant increase in GAD65 mRNA levels. The other mRNA levels were not significantly altered. Finally, striatal GAD67 mRNA levels were negatively correlated with nigral alpha1 mRNA levels in the dopamine-depleted but not dopamine-intact side. The results suggest that different signaling pathways are involved in the modulation by dopamine D1/D5 receptors of GAD65 and GAD67 mRNA levels in striatonigral neurons. They also suggest that the down-regulation of nigral GABA(A) receptors is linked to the increase in striatal GAD67 mRNA levels in the dopamine

  1. Effect of ozone on degradation and mRNA levels of Rubisco in relation to potato leaf age

    SciTech Connect

    Eckardt, N.A.; Pell, E.J. )

    1993-05-01

    Leaf senescence is characterized by loss of the major photosynthetic enzyme, Ribulose bisphosphate carboxylase (Rubisco). Exposure to ozone (O[sub 3]) is often associated with a premature decline in the quantity of this enzyme. Declines in Rubisco quantity could arise through inhibition of synthesis or enhancement of degradation. Several experiments were conducted to investigate the effect of O[sub 3] on these events in immature and mature leaves of potato. The effect of O[sub 3] on Rubisco synthesis was investigated indirectly by measuring the relative quantities of mRNA for the rubisco large (rbcL) and small (rbcS) subunits following a 5 hour exposure to 0.309 [mu]L L[sup [minus]1] O[sup 3] or charcoal-filtered air. O[sup 3] treatment was associated with a significant loss in rbcS mRNA in immature and mature potato leaves sampled immediately following the exposure. After the O[sup 3] exposure, a set of plants was placed in the dark at 30 C for two days. Levels of rbcS mRNA declined rapidly during the first twelve hours of dark incubation, thus declines in Rubisco quantity following two days of dark incubation were ascribed to degradation. Enhanced degradation due to O[sub 3] during the dark incubation was observed in the mature leaves, but not in the immature leaves. We conclude that O[sub 3] can cause both inhibited synthesis and enhanced degradation of Rubisco, and the response in dependent on leaf age.

  2. Uncoupling protein-3 mRNA levels are increased in white adipose tissue and skeletal muscle of bezafibrate-treated rats.

    PubMed

    Cabrero, A; Llaverías, G; Roglans, N; Alegret, M; Sánchez, R; Adzet, T; Laguna, J C; Vázquez, M

    1999-07-05

    Fibrates are hypolipidemic drugs that are also able to improve glucose tolerance in animals and diabetic patients through an unknown mechanism. Since uncoupling proteins (UCP) seem to play an important role in the pathogenesis of non-insulin-dependent diabetes mellitus (NIDDM), we examined whether treatment of rats with bezafibrate for 3, 7, or 15 days modified UCP mRNA levels. Using RT-PCR, we observed a weak ectopic expression of UCP-1 and a 2-fold increase in UCP-3 mRNA levels in white adipose tissue after 7 and 15 days of treatment. Moreover, bezafibrate administration caused a 1. 7-fold induction in UCP-3 mRNA levels in skeletal muscle on day 7. Since UCP-3 mRNA levels are reduced in skeletal muscle of diabetic patients, this effect may be involved in the improvement of insulin sensitivity caused by bezafibrate in NIDDM.

  3. mRNA Decay of Most Arabidopsis miRNA Targets Requires Slicer Activity of AGO11[OPEN

    PubMed Central

    2016-01-01

    MicroRNAs (miRNAs) are key posttranscriptional regulators of gene expression in animals and plants. They guide RNA-induced silencing complexes to complementary target mRNA, thereby mediating mRNA degradation or translational repression. ARGONAUTE (AGO) proteins bind directly to miRNAs and may catalyze cleavage (slicing) of target mRNAs. In animals, miRNA target degradation via slicing occurs only exceptionally, and target mRNA decay is induced via AGO-dependent recruitment of deadenylase complexes. Conversely, plant miRNAs generally direct slicing of their targets, but it is unclear whether slicer-independent mechanisms of target mRNA decay also exist, and, if so, how much they contribute to miRNA-induced mRNA decay. Here, we compare phenotypes and transcript profiles of ago1 null and slicer-deficient mutants in Arabidopsis (Arabidopsis thaliana). We also construct conditional loss-of-function mutants of AGO1 to allow transcript profiling in true leaves. Although phenotypic differences between ago1 null and slicer-deficient mutants can be discerned, the results of both transcript profiling approaches indicate that slicer activity is required for mRNA repression of the vast majority of miRNA targets. A set of genes exhibiting up-regulation specifically in ago1 null, but not in ago1 slicer-deficient mutants was also identified, leaving open the possibility that AGO1 may have functions in gene regulation independent of small RNAs. PMID:27208258

  4. Toxaphene affects the levels of mRNA transcripts that encode antioxidant enzymes in Hydra.

    PubMed

    Woo, Seonock; Lee, Aekyung; Won, Hyokyoung; Ryu, Jae-Chun; Yum, Seungshic

    2012-06-01

    We evaluated toxaphene-induced acute toxicity in Hydra magnipapillata. The median lethal concentrations of the animals (LC(50)) were determined to be 34.5 mg/L, 25.0 mg/L and 12.0 mg/L after exposure to toxaphene for 24 h, 48 h and 72 h, respectively. Morphological responses of hydra polyps to a range of toxaphene concentrations suggested that toxaphene negatively affects the nervous system of H. magnipapillata. We used real-time quantitative PCR of RNA extracted from polyps exposed to two concentrations of toxaphene (0.3 mg/L and 3 mg/L) for 24 h to evaluate the differential regulation of levels of transcripts that encode six antioxidant enzymes (CAT, G6PD, GPx, GR, GST and SOD), two proteins involved in detoxification and molecular stress responses (CYP1A and UB), and two proteins involved in neurotransmission and nerve cell differentiation (AChE and Hym-355). Of the genes involved in antioxidant responses, the most striking changes were observed for transcripts that encode GPx, G6PD, SOD, CAT and GST, with no evident change in levels of transcripts encoding GR. Levels of UB and CYP1A transcripts increased in a dose-dependent manner following exposure to toxaphene. Given that toxaphene-induced neurotoxicity was not reflected in the level of AChE transcripts and only slight accumulation of Hym-355 transcript was observed only at the higher of the two doses of toxaphene tested, there remains a need to identify transcriptional biomarkers for toxaphene-mediated neurotoxicity in H. magnipapillata. Transcripts that respond to toxaphene exposure could be valuable biomarkers for stress levels in H. magnipapillata and may be useful for monitoring the pollution of aquatic environments.

  5. The Rabies Virus L Protein Catalyzes mRNA Capping with GDP Polyribonucleotidyltransferase Activity.

    PubMed

    Ogino, Minako; Ito, Naoto; Sugiyama, Makoto; Ogino, Tomoaki

    2016-05-21

    The large (L) protein of rabies virus (RABV) plays multiple enzymatic roles in viral RNA synthesis and processing. However, none of its putative enzymatic activities have been directly demonstrated in vitro. In this study, we expressed and purified a recombinant form of the RABV L protein and verified its guanosine 5'-triphosphatase and GDP polyribonucleotidyltransferase (PRNTase) activities, which are essential for viral mRNA cap formation by the unconventional mechanism. The RABV L protein capped 5'-triphosphorylated but not 5'-diphosphorylated RABV mRNA-start sequences, 5'-AACA(C/U), with GDP to generate the 5'-terminal cap structure G(5')ppp(5')A. The 5'-AAC sequence in the substrate RNAs was found to be strictly essential for RNA capping with the RABV L protein. Furthermore, site-directed mutagenesis showed that some conserved amino acid residues (G1112, T1170, W1201, H1241, R1242, F1285, and Q1286) in the PRNTase motifs A to E of the RABV L protein are required for cap formation. These findings suggest that the putative PRNTase domain in the RABV L protein catalyzes the rhabdovirus-specific capping reaction involving covalent catalysis of the pRNA transfer to GDP, thus offering this domain as a target for developing anti-viral agents.

  6. The Rabies Virus L Protein Catalyzes mRNA Capping with GDP Polyribonucleotidyltransferase Activity

    PubMed Central

    Ogino, Minako; Ito, Naoto; Sugiyama, Makoto; Ogino, Tomoaki

    2016-01-01

    The large (L) protein of rabies virus (RABV) plays multiple enzymatic roles in viral RNA synthesis and processing. However, none of its putative enzymatic activities have been directly demonstrated in vitro. In this study, we expressed and purified a recombinant form of the RABV L protein and verified its guanosine 5′-triphosphatase and GDP polyribonucleotidyltransferase (PRNTase) activities, which are essential for viral mRNA cap formation by the unconventional mechanism. The RABV L protein capped 5′-triphosphorylated but not 5′-diphosphorylated RABV mRNA-start sequences, 5′-AACA(C/U), with GDP to generate the 5′-terminal cap structure G(5′)ppp(5′)A. The 5′-AAC sequence in the substrate RNAs was found to be strictly essential for RNA capping with the RABV L protein. Furthermore, site-directed mutagenesis showed that some conserved amino acid residues (G1112, T1170, W1201, H1241, R1242, F1285, and Q1286) in the PRNTase motifs A to E of the RABV L protein are required for cap formation. These findings suggest that the putative PRNTase domain in the RABV L protein catalyzes the rhabdovirus-specific capping reaction involving covalent catalysis of the pRNA transfer to GDP, thus offering this domain as a target for developing anti-viral agents. PMID:27213429

  7. Aly/ REF, a factor for mRNA transport, activates RH gene promoter function.

    PubMed

    Suganuma, Hiroshi; Kumada, Maki; Omi, Toshinori; Gotoh, Takaya; Lkhagvasuren, Munkhtulga; Okuda, Hiroshi; Kamesaki, Toyomi; Kajii, Eiji; Iwamoto, Sadahiko

    2005-06-01

    The rhesus (Rh) blood group antigens are of considerable importance in transfusion medicine as well as in newborn or autoimmune hemolytic diseases due to their high antigenicity. We identified a major DNaseI hypersensitive site at the 5' flanking regions of both RHD and RHCE exon 1. A 34 bp fragment located at -191 to -158 from a translation start position, and containing the TCCCCTCCC sequence, was involved in enhancing promoter activity, which was assessed by luciferase reporter gene assay. A biotin-labelled 34 bp probe isolated an mRNA transporter protein, Aly/REF. The specific binding of Aly/REF to RH promoter in erythroid was confirmed by chromatin immunoprecipitation assay. The silencing of Aly/REF by siRNA reduced not only the RH promoter activity of the reporter gene but also transcription from the native genome. These facts provide second proof of Aly/REF as a transcription coactivator, initially identified as a coactivator for the TCRalpha enhancer function. Aly/REF might be a novel transcription cofactor for erythroid-specific genes.

  8. A clone screening method using mRNA levels to determine specific productivity and product quality for monoclonal antibodies.

    PubMed

    Lee, Christina J; Seth, Gargi; Tsukuda, Joni; Hamilton, Robert W

    2009-03-01

    To meet increasing demands for efficient and streamlined production processes of therapeutic antibodies, improved methods of screening clones are required. In this article, we examined the potential of using antibody transcript levels as criteria for clone screening. We evaluated the QuantiGene Plex, a commercially available, high-throughput assay for simultaneously measuring multiple transcripts from cell lysate. Using the development of stable Chinese hamster ovary cell lines as examples, we investigated the relationship between transcript and antibody levels through several rounds of screening. First, we observed that measured heavy chain transcript levels are generally correlated with specific productivity, enabling the identification of high-producing clones from mRNA. Second, we observed that low ratios (< 1.5) of light to heavy chain transcript levels may be indicative of high antibody aggregation levels, allowing for the rapid identification and elimination of clones of questionable product quality. Therefore, an efficient process of identifying high-producing clones of desirable product quality is possible by using QuantiGene Plex assay to measure antibody transcript levels.

  9. Cyp1B1 mRNA expression in correlation to cotinine levels with respect to the Cyp1B1 L432V gene polymorphism.

    PubMed

    Helmig, Simone; Seelinger, Jens Udo; Philipp-Gehlhaar, Monika; Döhrel, Juliane; Schneider, Joachim

    2010-12-01

    Cytochrome P450 1B1 (CYP1B1) is involved in the activation of a broad spectrum of procarcinogens. An association of the Cyp1B1 Leu432Val polymorphism with cancer as well as an impact on the enzyme activity has been described. To study gene-environmental interactions we investigated the quantitative Cyp1B1 mRNA expression in smokers (N = 102) and non-smokers (N = 192) with regards to the Cyp1B1 L432V gene polymorphism. Tobacco smoke exposure was assessed by serum cotinine levels. Genotypes were analysed by melting curve analysis and quantification of Cyp1B1 mRNA by real-time PCR. In comparing Cyp1B1 expression, significant differences between the two homozygote genotypes *1/*1 and *3/*3 (0.105 ± 0.019; n = 26 vs. 0.051 ± 0.017; n = 14; P = 0.039) and between the heterozygote genotype *1/*3 and *3/*3 (0.121 ± 0.029; n = 55 vs. 0.051 ± 0.017; n = 14; P = 0.039) of smokers were revealed. According to the serum cotinine levels, three subgroups (low; medium; high) were build. The group "high" (0.248 ± 0.089; n = 32) showed proportionally high Cyp1B1 mRNA expression compared to "medium" (0.101 ± 0.024; n = 33), "low" (0.086 ± 0.015; n = 32) and non-smokers (0.084 ± 0.007; n = 176). This result was reflected in the homozygote *1/*1 and the heterozygote *1/*3 genotypes. In contrast the homozygote *3/*3 genotype was missing the high Cyp1B1 mRNA expression in the cotinine subgroup "high". Our results suggest that genotypes carrying the C-allele (*1/*1 and *1/*3) at Cyp1B1 Leu432Val polymorphism show a higher response to environmental factors, such as tobacco smoke than homozygote *3/*3 genotypes.

  10. Cinnamaldehyde up-regulates the mRNA expression level of TRPV1 receptor potential ion channel protein and its function in primary rat DRG neurons in vitro.

    PubMed

    Sui, Feng; Lin, Na; Guo, Jian-You; Zhang, Chang-Bin; Du, Xin-Liang; Zhao, Bao-Sheng; Liu, Hong-Bin; Yang, Na; Li, Lan-Fang; Guo, Shu-Ying; Huo, Hai-Ru; Jiang, Ting-Liang

    2010-01-01

    Cinnamaldehyde (1) is a pharmacologically active ingredient isolated from cassia twig (Ramulus Cinnamomi), which is commonly used in herbal remedies to treat fever-related diseases. Both TRPV1 and TRPM8 ion channel proteins are abundantly expressed in sensory neurons, and are assumed to act as a thermosensor, with the former mediating the feeling of warmth and the latter the feeling of cold in the body. Both of them have recently been reported to be involved in thermoregulation. The purpose of this paper is to further uncover the antipyretic mechanisms of 1 by investigating its effects on the mRNA expression levels and functions of both TRPV1 and TRPM8. The results showed that 1 could up-regulate the mRNA expression levels of TRPV1 at both 37 and 39 degrees C, and its calcium-mediating function was significantly increased at 39 degrees C, all of which could not be blocked by pretreatment of the neuronal cells with ruthenium red, a general transient receptor potential (TRP) blocker, indicating that the action of 1 was achieved through a non-TRPA1 channel pathway. In conclusion, the findings in our in vitro studies might account for part of the peripheral molecular mechanisms for the antipyretic action of 1.

  11. Nerve Growth Factor Increases mRNA Levels for the Prion Protein and the β -amyloid Protein Precursor in Developing Hamster Brain

    NASA Astrophysics Data System (ADS)

    Mobley, William C.; Neve, Rachael L.; Prusiner, Stanley B.; McKinley, Michael P.

    1988-12-01

    Deposition of amyloid filaments serves as a pathologic hallmark for some neurodegenerative disorders. The prion protein (PrP) is found in amyloid of animals with scrapie and humans with Creutzfeldt-Jakob disease; the β protein is present in amyloid deposits in Alzheimer disease and Down syndrome patients. These two proteins are derived from precursors that in the brain are expressed primarily in neurons and are membrane bound. We found that gene expression for PrP and the β -protein precursor (β -PP) is regulated in developing hamster brain. Specific brain regions showed distinct patterns of ontogenesis for PrP and β -PP mRNAs. The increases in PrP and β -PP mRNAs in developing basal forebrain coincided with an increase in choline acetyltransferase activity, raising the possibility that these markers might be coordinately controlled in cholinergic neurons and regulated by nerve growth factor (NGF). Injections of NGF into the brains of neonatal hamsters increased both PrP and β -PP mRNA levels. Increased PrP and β -PP mRNA levels induced by NGF were confined to regions that contain NGF-responsive cholinergic neurons and were accompanied by elevations in choline acetyltransferase. It remains to be established whether or not exogenous NGF acts to increase PrP and β -PP gene expression selectively in forebrain cholinergic neurons in the developing hamster and endogenous NGF regulates expression of these genes.

  12. Ultra-fast alterations in mRNA levels uncover multiple players in light stress acclimation in plants.

    PubMed

    Suzuki, Nobuhiro; Devireddy, Amith R; Inupakutika, Madhuri A; Baxter, Aaron; Miller, Gad; Song, Luhua; Shulaev, Elena; Azad, Rajeev K; Shulaev, Vladimir; Mittler, Ron

    2015-11-01

    The acclimation of plants to changes in light intensity requires rapid responses at several different levels. These include biochemical and biophysical responses as well as alterations in the steady-state level of different transcripts and proteins. Recent studies utilizing promoter::reporter constructs suggested that transcriptional responses to changes in light intensity could occur within seconds, rates for which changes in mRNA expression are not routinely measured or functionally studied. To identify and characterize rapid changes in the steady-state level of different transcripts in response to light stress we performed RNA sequencing analysis of Arabidopsis thaliana plants subjected to light stress. Here we report that mRNA accumulation of 731 transcripts occurs as early as 20-60 sec following light stress application, and that at least five of these early response transcripts play an important biological role in the acclimation of plants to light stress. More than 20% of transcripts accumulating in plants within 20-60 sec of initiation of light stress are H2 O2 - and ABA-response transcripts, and the accumulation of several of these transcripts is inhibited by transcriptional inhibitors. In accordance with the association of rapid response transcripts with H2 O2 and ABA signaling, a mutant impaired in ABA sensing (abi-1) was found to be more tolerant to light stress, and the response of several of the rapid response transcripts was altered in mutants impaired in reactive oxygen metabolism. Our findings reveal that transcriptome reprogramming in plants could occur within seconds of initiation of abiotic stress and that this response could invoke known as well as unknown proteins and pathways.

  13. Appetite regulating peptides in red-bellied piranha, Pygocentrus nattereri: cloning, tissue distribution and effect of fasting on mRNA expression levels.

    PubMed

    Volkoff, Hélène

    2014-06-01

    cDNAs encoding the appetite regulating peptides apelin, cocaine and amphetamine regulated transcript (CART), cholecystokinin (CCK), peptide YY (PYY) and orexin were isolated in red-bellied piranha and their mRNA tissue and brain distributions examined. When compared to other fish, the sequences obtained for all peptides were most similar to that of other Characiforme fish, as well as to Cypriniformes. All peptides were widely expressed within the brain and in several peripheral tissues, including gastrointestinal tract. In order to assess the role of these peptides in the regulation of feeding of red-bellied piranha, we compared the brain mRNA expression levels of these peptides, as well as the gut mRNA expression of CCK and PYY, between fed and 7-day fasted fish. Within the brain, fasting induced a significant increase in both apelin and orexin mRNA expressions and a decrease in CART mRNA expression, but there where were no significant differences for either PYY or CCK brain mRNA expressions between fed and fasted fish. Within the intestine, PYY mRNA expression was lower in fasted fish compared to fed fish but there was no significant difference for CCK intestine mRNA expression between fed and fasted fish. Our results suggest that these peptides, perhaps with the exception of CCK, play a major role in the regulation of feeding of red-bellied piranha.

  14. Changes in liver PPARalpha mRNA expression in response to two levels of high-safflower-oil diets correlate with changes in adiposity and serum leptin in rats and mice.

    PubMed

    Hsu, Shan-Ching; Huang, Ching-jang

    2007-02-01

    The ligand-dependent transcription factor peroxisome proliferator-activated receptor alpha (PPARalpha) is known to be activated by common fatty acids and to regulate the expression of genes of various lipid oxidation pathways and transport. High-fat diets provide more fatty acids, which presumably could enhance lipid catabolism through up-regulation of PPARalpha signaling. However, high intake of fat could also lead to obesity. To examine PPARalpha signaling in high-fat feeding and obesity, this study examined the hepatic mRNA expression of PPARalpha and some of its target genes in Wistar rats and C57BL/6J mice fed two levels (20% or 30% wt/wt) of high-safflower-oil (SFO; oleic-acid-rich) diets until animals showed significantly higher body weight (13 weeks for rats and 22 weeks for mice) than those of control groups fed a 5% SFO diet. At the end of these respective feeding periods, only the rats fed 30% SFO and the mice fed 20% SFO among the two groups fed high-fat diets showed significantly higher body weight, white adipose tissue weight, serum leptin and mRNA expression of PPARalpha (P<.05) compared to the respective control groups. Despite elevated acyl-CoA (a PPARalpha target gene) protein and activity in both groups fed high-fat diets, the mRNA expression level of most PPARalpha target genes examined correlated mainly to PPARalpha mRNA levels and not to fat intake or liver lipid levels. The observation that the liver PPARalpha mRNA expression in groups fed high-fat diets was significantly higher only in obese animals with elevated serum leptin implied that obesity and associated hyperleptinemia might have a stronger impact than dietary SFO intake per se on PPARalpha-regulated mRNA expression in the liver.

  15. Effects of acute diuresis stress on egr-1 (zif268) mRNA levels in brain regions associated with motivated behavior.

    PubMed

    Aher, Chetan V; Duwaerts, Caroline C; Akama, Keith T; Lucas, Louis R

    2010-01-15

    Stressors evoke a well-studied physiological stress-response, namely, an immediate systemic release of catecholamines from the adrenals followed shortly afterwards by the release of adrenal steroids. The intensity of that response can often be inferred by the amount of adrenal steroids released into the circulatory system. It is still unclear however how the intensity and duration of the stressor affect a number of brain regions, including those in the motivational system. The present study sought to determine whether a brief stressor, such as an isotonic saline injection, activated the brain's motivational system in mesolimbic regions compared with a more intense stressor exemplified by pharmacological challenges caused by the administration of a diuretic. Adult male Sprague-Dawley rats were either injected (s.c.) with isotonic saline or 5mg of the diuretic, furosemide. Controls did not receive any injections. Animals were sacrificed at 30, 60, 120, and 240 min after injection and trunk blood and brains were collected. Serum corticosterone and aldosterone levels were assessed through radioimmunoassay and mesolimbic brain activity was determined through in situ hybridization of mRNA expression of the immediate-early gene egr-1 in the caudate-putamen and nucleus accumbens. While both adrenal steroids demonstrated an initial peak in both stress groups, levels were higher and longer lasting in rats treated with furosemide. Interestingly, egr-1 mRNA levels were significantly higher only in the furosemide-treated group compared with controls. These findings suggest that a selective activation of motivational circuits occurs under thirst and salt-appetite-induced conditions such as those caused by diuresis.

  16. Changes of expression of stretch-activated potassium channel TREK-1 mRNA and protein in hypertrophic myocardium.

    PubMed

    Cheng, Longxian; Su, Fengcheng; Ripen, Nsenga; Fan, Hong; Huang, Kai; Wang, Min; Peng, Hongyu; Mei, Chunli; Zhao, Fang; Liao, Yuhua

    2006-01-01

    The expression of stretch-activated potassium channel TREK-1 mRNA and protein of hypertrophic myocardium was measured. Using a model of hypertrophy induced by coarctation of abdominal aorta in male Wistar rats, the expression of TREK-1 mRNA and protein was detected by using semi-quantitative RT PCR and Western blot respectively. At 4th and 8th week after constriction of the abdominal aorta, rats developed significant left ventricular hypertrophy. As compared to sham-operated group, stretch-activated potassium channel TREK-1 mRNA was strongly expressed and protein was up-regulated in operation groups (P < 0.05). It was concluded that the expression of TREK-1 was up-regulated in hypertrophic myocardium induced by chronic pressure overload in Wistar rats.

  17. Effect of copy number and mRNA processing and stabilization on transcript and protein levels from an engineered dual-gene operon.

    PubMed

    Smolke, Christina D; Keasling, Jay D

    2002-05-20

    To study the effect of mRNA stability and DNA copy number on protein production from a dual-gene operon, a synthetic operon containing the reporter genes gfp and lacZ under the control of the araBAD promoter was placed in pMB1-based (approximately 100 copies/cell) and F plasmid-based (approximately 1 copy/cell) vectors. DNA cassettes encoding secondary structures were placed at the 5' and 3' ends of the genes and a putative RNase E site was placed between the two genes. Although the copy number of the pMB1-based vectors was approximately 100-fold greater than the copy number of the F plasmid-based vectors, transcript and protein levels from the pMB1-based vector were not 100-fold greater than from the F plasmid-based vectors. In identical plasmid backbones, different combinations of mRNA control elements were used to alter steady-state levels of transcripts. Control elements that amplified the stability of one coding region relative to another amplified the ratio of protein produced from those transcripts. The effects of mRNA stability control elements were greater at low inducer concentrations, where mRNA levels limit protein production, than at high inducer concentrations. Although we can alter mRNA and protein levels through copy number, induction level, and mRNA stability control elements, some aspect of gene expression remains dependent on inherent characteristics of the coding region.

  18. Predictors of Variation in CYP2A6 mRNA, Protein, and Enzyme Activity in a Human Liver Bank: Influence of Genetic and Nongenetic Factors.

    PubMed

    Tanner, Julie-Anne; Prasad, Bhagwat; Claw, Katrina G; Stapleton, Patricia; Chaudhry, Amarjit; Schuetz, Erin G; Thummel, Kenneth E; Tyndale, Rachel F

    2017-01-01

    Cytochrome P450 2A6 CYP2A6: metabolizes several clinically relevant substrates, including nicotine, the primary psychoactive component in cigarette smoke. Smokers vary widely in their rate of inactivation and clearance of nicotine, altering numerous smoking phenotypes. We aimed to characterize independent and shared impact of genetic and nongenetic sources of variation in CYP2A6 mRNA, protein, and enzyme activity in a human liver bank (n = 360). For the assessment of genetic factors, we quantified levels of CYP2A6, cytochrome P450 oxidoreductase (POR), and aldo-keto reductase 1D1 (AKR1D1) mRNA, and CYP2A6 and POR proteins. CYP2A6 enzyme activity was determined through measurement of cotinine formation from nicotine and 7-hydroxycoumarin formation from coumarin. Donor DNA was genotyped for CYP2A6, POR, and AKR1D1 genetic variants. Nongenetic factors assessed included gender, age, and liver disease. CYP2A6 phenotype measures were positively correlated to each other (r values ranging from 0.47-0.88, P < 0.001). Female donors exhibited higher CYP2A6 mRNA expression relative to males (P < 0.05). Donor age was weakly positively correlated with CYP2A6 protein (r = 0.12, P < 0.05) and activity (r = 0.20, P < 0.001). CYP2A6 reduced-function genotypes, but not POR or AKR1D1 genotypes, were associated with lower CYP2A6 protein (P < 0.001) and activity (P < 0.01). AKR1D1 mRNA was correlated with CYP2A6 mRNA (r = 0.57, P < 0.001), protein (r = 0.30, P < 0.001), and activity (r = 0.34, P < 0.001). POR protein was correlated with CYP2A6 activity (r = 0.45, P < 0.001). Through regression analyses, we accounted for 17% (P < 0.001), 37% (P < 0.001), and 77% (P < 0.001) of the variation in CYP2A6 mRNA, protein, and activity, respectively. Overall, several independent and shared sources of variation in CYP2A6 activity in vitro have been identified, which could translate to variable hepatic clearance of nicotine.

  19. Manganese exposure alters extracellular GABA, GABA receptor and transporter protein and mRNA levels in the developing rat brain.

    PubMed

    Anderson, Joel G; Fordahl, Steve C; Cooney, Paula T; Weaver, Tara L; Colyer, Christa L; Erikson, Keith M

    2008-11-01

    Unlike other essential trace elements (e.g., zinc and iron) it is the toxicity of manganese (Mn) that is more common in human populations than its deficiency. Data suggest alterations in dopamine biology may drive the effects associated with Mn neurotoxicity, though recently gamma-aminobutyric acid (GABA) has been implicated. In addition, iron deficiency (ID), a common nutritional problem, may cause disturbances in neurochemistry by facilitating accumulation of Mn in the brain. Previous data from our lab have shown decreased brain tissue levels of GABA as well as decreased (3)H-GABA uptake in synaptosomes as a result of Mn exposure and ID. These results indicate a possible increase in the concentration of extracellular GABA due to alterations in expression of GABA transport and receptor proteins. In this study weanling-male Sprague-Dawley rats were randomly placed into one of four dietary treatment groups: control (CN; 35mg Fe/kg diet), iron-deficient (ID; 6mg Fe/kg diet), CN with Mn supplementation (via the drinking water; 1g Mn/l) (CNMn), and ID with Mn supplementation (IDMn). Using in vivo microdialysis, an increase in extracellular GABA concentrations in the striatum was observed in response to Mn exposure and ID although correlational analysis reveals that extracellular GABA is related more to extracellular iron levels and not Mn. A diverse effect of Mn exposure and ID was observed in the regions examined via Western blot and RT-PCR analysis, with effects on mRNA and protein expression of GAT-1, GABA(A), and GABA(B) differing between and within the regions examined. For example, Mn exposure reduced GAT-1 protein expression by approximately 50% in the substantia nigra, while increasing mRNA expression approximately four-fold, while in the caudate putamen mRNA expression was decreased with no effect on protein expression. These data suggest that Mn exposure results in an increase in extracellular GABA concentrations via altered expression of transport and

  20. Chtop (Chromatin target of Prmt1) auto-regulates its expression level via intron retention and nonsense-mediated decay of its own mRNA

    PubMed Central

    Izumikawa, Keiichi; Yoshikawa, Harunori; Ishikawa, Hideaki; Nobe, Yuko; Yamauchi, Yoshio; Philipsen, Sjaak; Simpson, Richard J; Isobe, Toshiaki; Takahashi, Nobuhiro

    2016-01-01

    Chtop (chromatin target of Prmt1) regulates various aspects of gene expression including transcription and mRNA export. Despite these important functions, the regulatory mechanism underlying Chtop expression remains undetermined. Using Chtop-expressing human cell lines, we demonstrate that Chtop expression is controlled via an autoregulatory negative feedback loop whereby Chtop binds its own mRNA to retain intron 2 during splicing; a premature termination codon present at the 5′ end of intron 2 leads to nonsense-mediated decay of the mRNA. We also show that Chtop interacts with exon 2 of Chtop mRNA via its arginine-glycine-rich (RG) domain, and with intron 2 via its N-terminal (N1) domain; both are required for retention of intron 2. In addition, we show that hnRNP H accelerates intron 2 splicing of Chtop mRNA in a manner dependent on Chtop expression level, suggesting that Chtop and hnRNP H regulate intron 2 retention of Chtop mRNA antagonistically. Thus, the present study provides a novel molecular mechanism by which mRNA and protein levels are constitutively regulated by intron retention. PMID:27683223

  1. Biological implications of estrogen and androgen effects on androgen receptor and its mRNA levels in human uterine endometrium.

    PubMed

    Fujimoto, J; Nishigaki, M; Hori, M; Ichigo, S; Itoh, T; Tamaya, T

    1995-06-01

    It has been shown that some effects of testosterone are different from those of its 5 alpha-reduced metabolite, dihydrotestosterone. Briefly, activities of testosterone might be related to cellular differentiation, whereas dihydrotestosterone acts on cellular proliferation. The number of testosterone binding sites in the uterine endometrium was increased by estradiol dipropionate, and this increase was down-regulated by testosterone cypionate. Dihydrotestosterone-specific binding sites in the endometrium were not modulated by estradiol dipropionate and testosterone cypionate. The dissociation constants of the binding sites for testosterone and dihydrotestosterone were not altered by these steroids. Estradiol dipropionate with or without testosterone cypionate induced androgen receptor mRNA expression in the endometrium. In conclusion, testosterone might predominantly affect cellular differentiation in the endometrium.

  2. Changes in dihydrofolate reductase (DHFR) mRNA levels can account fully for changes in DHFR synthesis rates during terminal differentiation in a highly amplified myogenic cell line.

    PubMed Central

    Schmidt, E E; Merrill, G F

    1991-01-01

    Dihydrofolate reductase (DHFR) enzyme is preferentially synthesized in proliferative cells. A mouse muscle cell line resistant to 300 microM methotrexate was developed to investigate the molecular levels at which DHFR is down-regulated during myogenic withdrawal from the cell cycle. H- alpha R300T cells contained 540 copies of the endogenous DHFR gene and overexpressed DHFR mRNA and DHFR protein. Despite DHFR gene amplification, the cells remained diploid. As H- alpha R300T myoblasts withdrew from the cell cycle and committed to terminal differentiation, DHFR mRNA levels and DHFR synthesis rates decreased with closely matched kinetics. After 15 to 24 h, committed cells contained 5% the proliferative level of DHFR mRNA (80 molecules per committed cell) and synthesized DHFR protein at 6% the proliferative rate. At no point during the commitment process did the decrease in DHFR synthesis rate exceed the decrease in DHFR message. The decrease in DHFR mRNA levels during commitment was sufficient to account fully for the decrease in rates of DHFR synthesis. Furthermore, DHFR mRNA remained polysomal, and the average number of ribosomes per message remained constant (five to six ribosomes per DHFR mRNA). The constancy of polysome size, along with the uniform rate of DHFR synthesis per message, indicated that DHFR mRNA was efficiently translated in postreplicative cells. The results support a model wherein replication-dependent changes in DHFR synthesis rates are determined exclusively by changes in DHFR mRNA levels. Images PMID:2046674

  3. β-glucuronidase mRNA levels are correlated with gait and working memory in premutation females: understanding the role of FMR1 premutation alleles

    PubMed Central

    Kraan, C. M.; Cornish, K. M.; Bui, Q. M.; Li, X.; Slater, H. R.; Godler, D. E.

    2016-01-01

    Fragile X tremor ataxia syndrome (FXTAS) is a late-onset disorder manifesting in a proportion of FMR1 premutation individuals (PM: 55-199 CGG triplet expansions). FXTAS is associated with elevated levels of FMR1 mRNA which are toxic. In this study, relationships between neurocognitive and intra-step gait variability measures with mRNA levels, measured in blood samples, were examined in 35 PM and 35 matched control females. The real-time PCR assays measured FMR1 mRNA, and previously used internal control genes: β-Glucuronidase (GUS), Succinate Dehydrogenase 1 (SDHA) and Eukaryotic Translation Initiation Factor 4A (EI4A2). Although there was significant correlation of gait variability with FMR1 mRNA levels (p = 0.004) when normalized to GUS (FMR1/GUS), this was lost when FMR1 was normalized to SDHA and EI4A2 (2IC). In contrast, GUS mRNA level normalized to 2IC showed a strong correlation with gait variability measures (p < 0.007), working memory (p = 0.001) and verbal intelligence scores (p = 0.008). PM specific changes in GUS mRNA were not mediated by FMR1 mRNA. These results raise interest in the role of GUS in PM related disorders and emphasise the importance of using appropriate internal control genes, which have no significant association with PM phenotype, to normalize FMR1 mRNA levels. PMID:27387142

  4. Age, sex, and lactating status regulate ghrelin secretion and GOAT mRNA levels from isolated rat stomach.

    PubMed

    Al-Massadi, O; Crujeiras, A B; González, R C; Pardo, M; Diéguez, C; Casanueva, F F; Seoane, L M

    2010-09-01

    Ghrelin is a stomach derivate peptide involved in energy homeostasis regulation, and ghrelin O-acyltransferase (GOAT) is the enzyme responsible for ghrelin acylation. Puberty is a period characterized by profound changes in the metabolic requirements and notable variations of sexual hormone levels. On the other hand, the weaning process is a fundamental modification of the diet, which implicates several adaptations of the gastrointestinal tract physiology. Until now the direct secretion of ghrelin by the stomach in these conditions, without interferences from other organs, has never been studied. The main objective of this article was to investigate how the stomach modulates ghrelin production and secretion as well as GOAT expression on these periods of life. Gastric ghrelin secretion is regulated through postnatal life in an independent way of gastric expression and circulating levels of this hormone. The present work shows a strong regulation of gastric ghrelin secretion by estrogens. The weaning strongly regulates gastric ghrelin secretion. Animals subjected to delayed weaning present a lower body weight than the corresponding controls. For the first time, it is shown that a noticeable decrease in circulating levels of testosterone and estrogens is associated with delay of weaning. GOAT mRNA levels in the stomach are strongly regulated by age, breastfeeding, and testosterone. In conclusion, the stomach itself regulates ghrelin and GOAT production to adapt the organism to the metabolic requirements demanded through each stage of life.

  5. The mRNA level of MLH1 in peripheral blood is a biomarker for the diagnosis of hereditary nonpolyposis colorectal cancer

    PubMed Central

    Yu, Hong; Li, Hui; Cui, Yongan; Xiao, Wei; Dai, Guihong; Huang, Junxing; Wang, Chaofu

    2016-01-01

    Hereditary nonpolyposis colorectal cancer (HNPCC) is caused by functional defects in mismatch repair (MMR) genes, including mutL homolog 1 (MLH1) and mutS homolog 2 (MSH2). This study aimed to assess whether the mRNA expression of MLH1 in peripheral blood could be used as a biomarkers for the diagnosis of HNPCC. The mRNA level of MLH1 was determined in 19 HNPCC families (46 members) using real-time quantitative polymerase chain reaction (qPCR). The mRNA levels of MLH1 in HNPCC were significantly lower than controls (P < 0.001). Receiver operating characteristic (ROC) curve showed a high diagnostic value of the mRNA level of MLH1 for the diagnosis of HNPCC with the area under curve of 0.858. At an optimal cut-off value (0.511), the mRNA level of MLH1 had a sensitivity of 81.3% and a specificity of 86.7% for distinguishing HNPCC from controls. In conclusion, the mRNA expression of MLH1 in peripheral blood may serve as a biomarker for the diagnosis of HNPCC. PMID:27294005

  6. Effects of ischemic preconditioning on myocardium Caspase-3, SOCS-1, SOCS-3, TNF-α and IL-6 mRNA expression levels in myocardium IR rats.

    PubMed

    Ma, Jiangwei; Qiao, Zengyong; Xu, Biao

    2013-10-01

    The aim of this study was to characterise the effects of ischemic preconditioning (IP) on heart function parameters (ΔST and ΔT), activities of serum creatine kinase (CK), lactate dehydrogenase (LDH), and levels of serum nitric oxide (NO), malondialdehyde (MDA), and myocardium Caspase-3 mRNA, SOCS-1, SOCS-3, tumor necrosis factor-alpha (TNF-α) and interleukin-6 (IL-6) expression levels and Apoptosis index in myocardium IR rats. Results showed that ΔST and ΔST values in IP group were markedly lower than those in IR group. Compared with IR group, IP significantly (p < 0.01) decreased serum CK (0.83 ± 0.09 vs 1.36 ± 0.15), LDH (5613 ± 462 vs 7106 ± 492) activities and MDA (11.32 ± 1.05 vs 15.49 ± 1.26) level, increased the serum NO (86.39 ± 7.03 vs 53.77 ± 4.27) level in IR group. The IP induced a significant decreased in myocardium Caspase-3 mRNA (0.303 ± 0.021 vs 0.515 ± 0.022) gene expression (p < 0.01) compared to IR model group. The IP induced a significant decreased in myocardium SOCS-1 (0.241 ± 0.031 vs 0.596 ± 0.036), SOCS-3 (0.258 ± 0.031 vs 0.713 ± 0.057), TNF-α (0.137 ± 0.011 vs 0.427 ± 0.035) and IL-6 (0.314 ± 0.021 vs 0.719 ± 0.064) mRNA gene expression (p < 0.01) compared to IR model group. We conclude that IP is effective in the therapy of heart disease. These findings may have implications for the clinical development of preconditioning-based therapies for ischemic heart disease.

  7. Structure of the C-terminus of the mRNA export factor Dbp5 reveals the interaction surface for the ATPase activator Gle1

    PubMed Central

    Dossani, Zain Y.; Weirich, Christine S.; Erzberger, Jan P.; Berger, James M.; Weis, Karsten

    2009-01-01

    The DExD/H-box RNA-dependent ATPase Dbp5 plays an essential role in the nuclear export of mRNA. Dbp5 localizes to the nuclear pore complex, where its ATPase activity is stimulated by Gle1 and its coactivator inositol hexakisphosphate. Here, we present the crystal structure of the C-terminal domain of Dbp5, refined to 1.8 Å. The structure reveals a RecA-like fold that contains two defining characteristics not present in other structurally characterized DExD/H-box proteins: a C-terminal α-helix and a loop connecting β5 and α4, both of which are composed of conserved and unique elements in the Dbp5 primary sequence. Using structure-guided mutagenesis, we have identified several charged surface residues that, when mutated, weaken the binding of Gle1 and inhibit the ability of Gle1 to stimulate Dbp5's ATPase activity. In vivo analysis of the same mutations reveals that those mutants displaying the weakest ATPase stimulation in vitro are also unable to support yeast growth. Analysis of the correlation between the in vitro and in vivo data indicates that a threshold level of Dbp5 ATPase activity is required for cellular mRNA export that is not met by the unstimulated enzyme, suggesting a possible mechanism by which Dbp5's activity can be modulated to regulate mRNA export. PMID:19805289

  8. Efficacy of CDK4 inhibition against sarcomas depends on their levels of CDK4 and p16ink4 mRNA

    PubMed Central

    Perez, Marco; Muñoz-Galván, Sandra; Jiménez-García, Manuel P.; Marín, Juan J.; Carnero, Amancio

    2015-01-01

    Sarcomas are malignant tumors accounting for a high percentage of cancer morbidity and mortality in children and young adults. Surgery and radiation therapy are the accepted treatments for most sarcomas; however, patients with metastatic disease are treated with systemic chemotherapy. Many tumors display marginal levels of chemoresponsiveness and new treatment approaches are needed. Deregulation of the G1 checkpoint is crucial for various oncogenic transformation processes, suggesting that many cancer cell types depend on CDK4/6 activity. Thus, CDK4/6 activity appears to represent a promising therapeutic target for cancer treatment. In the present work, we explore the efficacy of CDK4 inhibition using palbociclib (PD0332991), a highly selective inhibitor of CDK4/6, in a panel of sarcoma cell lines and sarcoma tumor xenografts (PDXs). Palbociclib induces senescence in these cell lines and the responsiveness of these cell lines correlated with their levels of CDK4 mRNA. Palbociclib is also active in vivo against sarcomas displaying high levels of CDK4 but not against sarcomas displaying low levels of CDK4 and high levels of p16ink4a. The analysis of tumors growing after palbociclib showed a clear decrease in the CDK4 levels, indicating that clonal selection occurred in these treated tumors. In summary, our data support the efficacy of CDK4 inhibitors against sarcomas displaying increased CDK4 levels, particularly fibrosarcomas and MPNST. Our results also suggest that high levels of p16ink4a may indicate poor efficacy of CDK4 inhibitors. PMID:26528855

  9. Effects of thyroid hormone (thyroxine) and testosterone on hepatic 11beta-hydroxysteroid dehydrogenase mRNA and activity in pubertal hypothyroid male rats.

    PubMed

    Liu, Y J; Nakagawa, Y; Toya, K; Saegusa, H; Nasuda, K; Endoh, A; Ohzeki, T

    1998-04-01

    To investigate the effects of thyroid hormone and testosterone on 11beta-hydroxysteroid dehydrogenase type 1 (11beta-HSD1), we measured changes in hepatic 11beta-dehydrogenase activity and its mRNA levels in pubertal methimazole (MMI)-induced hypothyroid male rats following treatment with thyroxine ([T4] 50 microg/kg/d) or testosterone (250 microg/d) for 14 days. Hypothyroidism in male rats markedly reduced hepatic 11beta-HSD1 mRNA levels and serum testosterone concentrations (P < .01). Subcutaneous injection of T4 in the hypothyroid rats significantly (P < .01) increased hepatic 11beta-HSD1 mRNA to approximately normal levels and simultaneously increased serum testosterone levels. However, the same daily dose of T4 administered to castrated male hypothyroid rats for 14 days did not elevate hepatic 11beta-HSD1 activity. Treatment with testosterone for 14 days in castrated hypothyroid male rats and rats without gonadectomy significantly (P < .01) increased the enzyme activity without administration of T4. Variations in hepatic 11beta-HSD1 activity were demonstrated to be accompanied by changes in serum testosterone levels in the rats following alteration of the thyroid hormone state. These results suggest that the effect of T4 in increasing the subnormal 11beta-HSD1 gene expression in hypothyroid male rats is mediated by its ability to increase testosterone production in these rats, because in castrated hypothyroid rats, T4 does not elevate 11beta-HSD1 gene expression.

  10. 17Beta-hydroxysteroid dehydrogenase Type 1 and Type 2: association between mRNA expression and activity in cell lines.

    PubMed

    Day, Joanna M; Tutill, Helena J; Newman, Simon P; Purohit, Atul; Lawrence, Harshani R; Vicker, Nigel; Potter, Barry V L; Reed, Michael J

    2006-03-27

    17Beta-hydroxysteroid dehydrogenases (17beta-HSDs) are a family of enzymes that regulate steroid availability within a tissue by catalysing the interconversion of active and inactive forms. Type 1 is up-regulated in many breast tumours, and is responsible for the reduction of oestrone to active oestradiol which stimulates cell proliferation within the tumour. Type 2 oxidises many active steroids to their inactive forms, including oestradiol to oestrone. In this study, we have compared the mRNA expression and enzyme activities of Type 1 and Type 2 in MCF-7, MDA-MB-231, T47D, JEG3 and 293-EBNA cell lines. Also studied were two cell lines stably expressing transfected Type 1 cDNA. RT-PCR indicated that little Type 1 mRNA is expressed in two of the breast cancer cell lines, MCF-7 and MDA-MB-231, and in 293-EBNA cells, but that expression is much higher in the T47D breast cancer cell line, and in the choriocarcinoma cell line, JEG3. However, a higher level of expression of Type 1 is seen in the transfected cell lines MCF-7.8H and 293-EBNA[His617beta-HSD1]. Activity assays show that there is high association between mRNA expression and enzyme activity. Assays indicate that, with the exception of MDA-MB-231 cells, Type 2 activity is low in these lines. The study of the basal activities of these enzymes will be used in future studies investigating the regulation of the enzymes by endogenous and exogenous factors. An understanding of their regulation in both healthy and malignant tissues may lead to future therapeutic intervention at the regulatory level.

  11. The Drosophila tricellular junction protein Gliotactin regulates its own mRNA levels through BMP-mediated induction of miR-184

    PubMed Central

    Sharifkhodaei, Zohreh; Padash-Barmchi, Mojgan; Gilbert, Mary M.; Samarasekera, Gayathri; Fulga, Tudor A.; Van Vactor, David; Auld, Vanessa J.

    2016-01-01

    ABSTRACT Epithelial bicellular and tricellular junctions are essential for establishing and maintaining permeability barriers. Tricellular junctions are formed by the convergence of three bicellular junctions at the corners of neighbouring epithelia. Gliotactin, a member of the Neuroligin family, is located at the Drosophila tricellular junction, and is crucial for the formation of tricellular and septate junctions, as well as permeability barrier function. Gliotactin protein levels are tightly controlled by phosphorylation at tyrosine residues and endocytosis. Blocking endocytosis or overexpressing Gliotactin results in the spread of Gliotactin from the tricellular junction, resulting in apoptosis, delamination and migration of epithelial cells. We show that Gliotactin levels are also regulated at the mRNA level by micro (mi)RNA-mediated degradation and that miRNAs are targeted to a short region in the 3′UTR that includes a conserved miR-184 target site. miR-184 also targets a suite of septate junction proteins, including NrxIV, coracle and Mcr. miR-184 expression is triggered when Gliotactin is overexpressed, leading to activation of the BMP signalling pathway. Gliotactin specifically interferes with Dad, an inhibitory SMAD, leading to activation of the Tkv type-I receptor and activation of Mad to elevate the biogenesis and expression of miR-184. PMID:26906422

  12. Prognostic significance of preoperative and postoperative CK19 and CEA mRNA levels in peripheral blood of patients with gastric cardia cancer

    PubMed Central

    Qiao, Yu-Feng; Chen, Chuan-Gui; Yue, Jie; Ma, Ming-Quan; Ma, Zhao; Yu, Zhen-Tao

    2017-01-01

    AIM To evaluate the clinical and prognostic significance of preoperative and postoperative cytokeratin 19 (CK19) and carcinoembryonic antigen (CEA) mRNA levels in peripheral blood of patients with gastric cardia cancer (GCC). METHODS We detected the preoperative and postoperative mRNA levels of CK19 and CEA in peripheral blood of 129 GCC patients by using reverse transcription-polymerase chain reaction and evaluated their clinical and prognostic significance by univariate Kaplan-Meier survival analysis and multivariate Cox proportional hazard analysis. A new prognostic model which stratified patients into three different risk groups was established based on the independent prognostic factors. RESULTS Elevated preoperative and postoperative CK19 and CEA mRNA levels in peripheral blood of GCC patients were associated with lymph node metastasis. Univariate analysis showed that tumor size, histological grade, depth of tumor invasion, lymph node metastasis, preoperative CK19 mRNA, and preoperative and postoperative CEA mRNA levels were correlated with the prognosis of GCC patients. The multivariate analysis showed that lymph node status (P = 0.018), preoperative CK19 (P = 0.035) and CEA (P = 0.011) mRNA levels were independent prognostic factors for overall survival (OS). The 5-year OS rates for the low-, intermediate-, and high-risk groups were 48.3%, 22.6%, and 4.6%, respectively (P < 0.001). CONCLUSION Elevated preoperative CK19 and CEA mRNA levels may be regarded as promising biomarkers for predicting lymph node metastasis and poor prognosis in patients with GCC. This new prognostic model may help us identify the subpopulations of GCC patients with the highest risk. PMID:28293089

  13. Relationship of high CH50 level and interruption of cascade reaction of complement mRNA expression in acute venous thromboembolism patients

    PubMed Central

    Wen, Siwan; Yang, Fan; Wang, Lemin; Duan, Qianglin; Gong, Zhu; Lv, Wei

    2014-01-01

    In patients with pulmonary embolism (PE), forepart components of complements were activated. However there are interruption/decrease of cascade reaction and cytolytic effects in complement system. This study detected CRP, CH50, C3 and C4 levels in patients with venous thromboembolism (VTE) and compare with the imbalance of complement associated gene mRNA expression in PE patients. There was significant increase of CH50 in acute VTE patients. Even though CH50 increased significantly in acute VTE patients and had a relatively high sensitivity, cytolytic effects of complements might decrease, based on the genomics results of complement cascade reactions imbalance/interruption and increased total complements in VTE patients. PMID:25232435

  14. Amphotericin B severely affects expression and activity of the endothelial constitutive nitric oxide synthase involving altered mRNA stability

    PubMed Central

    Suschek, Christoph Viktor; Bonmann, Eckhard; Kleinert, Hartmut; Wenzel, Michael; Mahotka, Csaba; Kolb, Hubert; Förstermann, Ulrich; Gerharz, Claus-Dieter; Kolb-Bachofen, Victoria

    2000-01-01

    The therapeutic use of the antifungal drug amphotericin B (AmB) is limited due to severe side effects like glomerular vasoconstriction and risk of renal failure during AmB administration. As nitric oxide (NO) has substantial functions in renal autoregulation, we have determined the effects of AmB on endothelial constitutive NO synthase (ecNOS) expression and activity in human and rat endothelial cell cultures.AmB used at concentrations of 0.6 to 1.25 μg ml−1 led to increases in ecNOS mRNA and protein expression as well as NO production. This was the result of an increased ecNOS mRNA half-life. In contrast, incubation of cells with higher albeit subtoxic concentrations of AmB (2.5–5.0 μg ml−1) resulted in a decrease or respectively in completely abolished ecNOS mRNA and protein expression with a strongly reduced or inhibited ecNOS activity, due to a decrease of ecNOS mRNA half-life. None of the AmB concentrations affected promoter activity as found with a reporter gene construct stably transfected into ECV304 cells.Thus, our experiments show a concentration-dependent biphasic effect of AmB on expression and activity of ecNOS, an effect best explained by AmB influencing ecNOS mRNA stability. In view of the known renal accumulation of this drug the results reported here could help to elucidate its renal toxicity. PMID:11015297

  15. Changes of Antioxidant Function and the mRNA Expression Levels of Apoptosis Genes in Duck Ovaries Caused by Molybdenum or/and Cadmium.

    PubMed

    Cao, Huabin; Xia, Bing; Zhang, Mengmeng; Liao, Yilin; Yang, Zhi; Hu, Guoliang; Zhang, Caiying

    2016-06-01

    To investigate the effects of molybdenum (Mo) combined with cadmium (Cd) on the antioxidant function and the mRNA expression levels of apoptosis-related genes in duck ovaries, 60 healthy 11-old-day female ducks were treated with hexaammonium molybdate ([(NH4)6Mo7O24·4H2O]) or/and cadmium sulfate (3CdSO4·8H2O) at different doses on a daily basis for 120 days. On the 120th day, ten female birds in each group were euthanized, and the ovaries and blood were collected to determine the antioxidant indexes and the mRNA expression levels of Bak-1, Bcl-2, and caspase-3 in ovaries. In addition, ovary tissues were subjected to histopathological analysis with optical microscope. The total antioxidant capacity (T-AOC) and superoxide dismutase (SOD) activity decreased significantly (P < 0.01) in treated groups comparing with control while the nitric oxide synthase (NOS) activity increased (P < 0.01) both in ovary tissue and serum. The Bak-1 and caspase-3 expressions were upregulated while the Bcl-2 was downgraded by Mo or/and Cd. Biomolecules were affected in all metal-treated groups, whereas combined-treated animals showed greater effects. What is more, pathological damage in Mo and Cd combination treated groups was more severe. The results from the present study indicated that Mo or/and Cd caused oxidative stress and apoptosis in duck ovaries. Combination of Mo and Cd showed additive or synergistic effect leading to apoptosis and oxidative stress, and the pathway might be the mitochondrial pathway.

  16. Expression of NK1 receptor at the protein and mRNA level in the porcine female reproductive system.

    PubMed

    Bukowski, R

    2014-01-01

    The presence and distribution of substance P (SP) receptor NK1 was studied in the ovary, the oviduct and the uterus (uterine horn and cervix) of the domestic pig using the methods of molecular biology (RT-PCR and immunoblot) and immunohistochemistry. The expression of NK1 receptor at mRNA level was confirmed with RT-PCR in all the studied parts of the porcine female reproductive system by the presence of 525 bp PCR product and at the protein level by the detection of 46 kDa protein band in immunoblot. Immunohistochemical staining revealed the cellular distribution of NK1 receptor protein. In the ovary NKI receptor was present in the wall of arterial blood vessels, as well as in ovarian follicles of different stages of development. In the tubular organs the NK1 receptor immunohistochemical stainings were observed in the wall of the arterial blood vessels, in the muscular membrane, as well as in the mucosal epithelium. The study confirmed the presence of NK1 receptor in the tissues of the porcine female reproductive tract which clearly points to the possibility that SP can influence porcine ovary, oviduct and uterus.

  17. Importance of cis determinants and nitrogenase activity in regulated stability of the Klebsiella pneumoniae nitrogenase structural gene mRNA.

    PubMed

    Simon, H M; Gosink, M M; Roberts, G P

    1999-06-01

    The Klebsiella pneumoniae nitrogen fixation (nif) mRNAs are unusually stable, with half-lives of 20 to 30 min under conditions favorable to nitrogen fixation (limiting nitrogen, anaerobiosis, temperatures of 30 degrees C). Addition of O2 or fixed nitrogen or temperature increases to 37 degrees C or more result in the dramatic destabilization of the nif mRNAs, decreasing the half-lives by a factor of 3 to 5. A plasmid expression system, independent of nif transcriptional regulation, was used to define cis determinants required for the regulated stability of the 5.2-kb nifHDKTY mRNA and to test the model suggested by earlier work that NifA is required in trans to stabilize nif mRNA under nif-derepressing conditions. O2 regulation of nifHDKTY mRNA stability is impaired in a plasmid containing a deletion of a 499-bp region of nifH, indicating that a site(s) required for the O2-regulated stability of the mRNA is located within this region. The simple model suggested from earlier work that NifA is required for stabilizing nif mRNA under conditions favorable for nitrogen fixation was disproved, and in its place, a more complicated model involving the sensing of nitrogenase activity as a component of the system regulating mRNA stability is proposed. Analysis of nifY mutants and overexpression suggests a possible involvement of the protein in this sensing process.

  18. Effects of Acupuncture on mRNA Levels of Apoptotic Factors in Perihematomal Brain Tissue During the Acute Phase of Cerebral Hemorrhage.

    PubMed

    Li, Zuowei; Zheng, Xiaonan; Li, Ping; Itoua, Eudes Saturnin Régis; Moukassa, Donatien; Ndinga Andely, Françoise

    2017-03-30

    BACKGROUND To explore the time-dependent effects of acupuncture on mRNA levels of the apoptotic factors BCL-2 and BAX in a rat cerebral hemorrhage model, slow injection of autologous blood to the caudate nucleus was used to generate the cerebral hemorrhage model. MATERIAL AND METHODS A sham surgery control group, groups with acupuncture applied 3, 9, 24, and 48 hours after model induction, and time-matched model-only control groups were used. In situ hybridization was used to detect BCL-2 and BAX mRNA expression, and semi-quantitative RT-PCR was used to measure the expression. RESULTS The number of BCL-2 and BAX mRNA-positive cells significantly increased during the acute phase of cerebral hemorrhage. BCL-2 mRNA was significantly upregulated in acupuncture groups compared to other groups, whereas BAX mRNA levels in the acupuncture groups were lower in the other groups, except for the sham surgery group. Additionally, earlier acupuncture intervention was associated with a lower ratio of expression between the two genes. Changes in BCL-2 and BAX mRNA expression were consistent with changes in the number of cells positive for BCL-2 and BAX mRNA; however, the change in the expression ratio was consistent with the change in the number of cells positive for BCL-2 mRNA, but opposite to the change in the number of cells positive for BAX mRNA. CONCLUSIONS Acupuncture ameliorated changes in expression of apoptotic factors in the brain induced by acute cerebral hemorrhage and may thus protect the brain, with greater efficacy when the delay before acupuncture was minimized.

  19. Effects of Acupuncture on mRNA Levels of Apoptotic Factors in Perihematomal Brain Tissue During the Acute Phase of Cerebral Hemorrhage

    PubMed Central

    Li, Zuowei; Zheng, Xiaonan; Li, Ping; Itoua, Eudes Saturnin Régis; Moukassa, Donatien; Andely, Françoise Ndinga

    2017-01-01

    Background To explore the time-dependent effects of acupuncture on mRNA levels of the apoptotic factors BCL-2 and BAX in a rat cerebral hemorrhage model, slow injection of autologous blood to the caudate nucleus was used to generate the cerebral hemorrhage model. Material/Methods A sham surgery control group, groups with acupuncture applied 3, 9, 24, and 48 hours after model induction, and time-matched model-only control groups were used. In situ hybridization was used to detect BCL-2 and BAX mRNA expression, and semi-quantitative RT-PCR was used to measure the expression. Results The number of BCL-2 and BAX mRNA-positive cells significantly increased during the acute phase of cerebral hemorrhage. BCL-2 mRNA was significantly upregulated in acupuncture groups compared to other groups, whereas BAX mRNA levels in the acupuncture groups were lower in the other groups, except for the sham surgery group. Additionally, earlier acupuncture intervention was associated with a lower ratio of expression between the two genes. Changes in BCL-2 and BAX mRNA expression were consistent with changes in the number of cells positive for BCL-2 and BAX mRNA; however, the change in the expression ratio was consistent with the change in the number of cells positive for BCL-2 mRNA, but opposite to the change in the number of cells positive for BAX mRNA. Conclusions Acupuncture ameliorated changes in expression of apoptotic factors in the brain induced by acute cerebral hemorrhage and may thus protect the brain, with greater efficacy when the delay before acupuncture was minimized. PMID:28357997

  20. Galanin-like peptide (GALP) neurone-specific phosphoinositide 3-kinase signalling regulates GALP mRNA levels in the hypothalamus of males and luteinising hormone levels in both sexes.

    PubMed

    Aziz, R; Beymer, M; Negrón, A L; Newshan, A; Yu, G; Rosati, B; McKinnon, D; Fukuda, M; Lin, R Z; Mayer, C; Boehm, U; Acosta-Martínez, M

    2014-07-01

    Galanin-like peptide (GALP) neurones participate in the metabolic control of reproduction and are targets of insulin and leptin regulation. Phosphoinositide 3-kinase (PI3K) is common to the signalling pathways utilised by both insulin and leptin. Therefore, we investigated whether PI3K signalling in neurones expressing GALP plays a role in the transcriptional regulation of the GALP gene and in the metabolic control of luteinising hormone (LH) release. Accordingly, we deleted PI3K catalytic subunits p110α and p110β via conditional gene targeting (cKO) in mice (GALP-p110α/β cKO). To monitor PI3K signalling in GALP neurones, these animals were also crossed with Cre-dependent FoxO1GFP reporter mice. Compared to insulin-infused control animals, the PI3K-Akt-dependent FoxO1GFP nuclear exclusion in GALP neurones was abolished in GALP-p110α/β cKO mice. We next used food deprivation to investigate whether the GALP-neurone specific ablation of PI3K activity affected the susceptibility of the gonadotrophic axis to negative energy balance. Treatment did not affect LH levels in either sex. However, a significant genotype effect on LH levels was observed in females. By contrast, no genotype effect on LH levels was observed in males. A sex-specific genotype effect on hypothalamic GALP mRNA was observed, with fed and fasted GALP-p110α/β cKO males having lower GALP mRNA expression compared to wild-type fed males. Finally, the effects of gonadectomy and steroid hormone replacement on GALP mRNA levels were investigated. Compared to vehicle-treated mice, steroid hormone replacement reduced mediobasal hypothalamus GALP expression in wild-type and GALP-p110α/β cKO animals. In addition, within the castrated and vehicle-treated group and compared to wild-type mice, LH levels were lower in GALP-p110α/β cKO males. Double immunofluorescence using GALP-Cre/R26-YFP mice showed androgen and oestrogen receptor co-localisation within GALP neurones. Our data demonstrate that GALP

  1. Biosynthesis of catalytically active rat testosterone 5. alpha. -reductase in microinjected Xenopus oocytes: Evidence for tissue-specific differences in translatable mRNA

    SciTech Connect

    Farkash, Y.; Soreq, H.; Orly, J. )

    1988-08-01

    The enzyme 4-ene-3-ketosteroid-5{alpha}-oxidoreductase plays a key role in androgen-dependent target tissues, where it catalyzes the conversion of testosterone to the biologically active dihydrotestosterone. The regulation of 5{alpha}-reductase expression has not been studied at the molecular level as the enzyme is a membrane protein that is labile in cell-free homogenates. The authors developed a sensitive bioassay of the enzyme activity expressed in Xenopus oocytes microinjected with rat liver and prostate mRNA. After microinjection, incubation of intact oocytes in the presence of ({sup 3}H)testosterone revealed the in ovo appearance of active 5{alpha}-reductase. Polyandenylylated RNA was fractionated by sucrose gradient centrifugation, and the enzymatic activity was shown to be encoded by a 1,600- to 2,000-base-pair fraction of hepatic poly(A){sup +} RNA. 5{alpha}-Reductase mRNA was most efficiently translated when up to 80 ng of RNA was injected per oocyte. In the injected oocytes, 5{alpha}-reductase mRNA was found to be a short-lived molecule whereas its in ovo translatable 5{alpha}-reductase protein exhibited stable enzymatic activity for over 40 hr. Moreover, the levels of translatable tissue-specific 5{alpha}-reductase mRNAs as monitored in the Xenopus oocytes correlated with the variable 5{alpha}-reductase activities in female rat liver, male rat liver, and prostate homogenates. Altogether, these results provide supporting evidence in favor of the transcriptional control of 5{alpha}-reductase expression in rat tissues.

  2. Increased mRNA Levels of TCF7L2 and MYC of the Wnt Pathway in Tg-ArcSwe Mice and Alzheimer's Disease Brain

    PubMed Central

    Blom, Elin S.; Wang, Yijing; Skoglund, Lena; Hansson, Anita C.; Ubaldi, Massimo; Lourdusamy, Anbarasu; Sommer, Wolfgang H.; Mielke, Matthew; Hyman, Bradley T.; Heilig, Markus; Lannfelt, Lars; Nilsson, Lars N. G.; Ingelsson, Martin

    2011-01-01

    Several components in the Wnt pathway, including β-catenin and glycogen synthase kinase 3 beta, have been implied in AD pathogenesis. Here, mRNA brain levels from five-month-old tg-ArcSwe and nontransgenic mice were compared using Affymetrix microarray analysis. With surprisingly small overall changes, Wnt signaling was the most affected pathway with altered expression of nine genes in tg-ArcSwe mice. When analyzing mRNA levels of these genes in human brain, transcription factor 7-like 2 (TCF7L2) and v-myc myelocytomatosis viral oncogene homolog (MYC), were increased in Alzheimer's disease (AD) (P < .05). Furthermore, no clear differences in TCF7L2 and MYC mRNA were found in brains with frontotemporal lobar degeneration, suggesting that altered regulation of these Wnt-related genes could be specific to AD. Finally, mRNA levels of three neurogenesis markers were analyzed. Increased mRNA levels of dihydropyrimidinase-like 3 were observed in AD brain, suggesting that altered Wnt pathway regulation may signify synaptic rearrangement or neurogenesis. PMID:21234373

  3. Green tea polyphenols improve cardiac muscle mRNA, and protein levels of signal pathways related to insulin and lipid metabolism and inflammation in insulin-resistant rats

    Technology Transfer Automated Retrieval System (TEKTRAN)

    Epidemiologic studies indicate that the consumption of green tea polyphenols (GTP) may reduce the risk of coronary artery disease. To explore the underlying mechanisms of action at the molecular level, we examined the effects of GTP on cardiac mRNA and protein levels of genes involved in insulin an...

  4. Electrical activation and c-fos mRNA expression in rat neurosecretory neurones after systemic administration of cholecystokinin.

    PubMed Central

    Hamamura, M; Leng, G; Emson, P C; Kiyama, H

    1991-01-01

    1. The expression of c-fos mRNA in the rat hypothalamus was examined by in situ hybridization following systemic administration of cholecystokinin (CCK), a procedure known to activate magnocellular oxytocin neurons but not magnocellular vasopressin neurones. 2. Conscious male rats were given a single I.P. injection of 50 micrograms/kg CCK, c-fos mRNA signal was apparent in the supraoptic and paraventricular nuclei in rats killed 10 min after injection but not in uninjected or saline-(vehicle) injected rats. The density of c-fos mRNA at both sites was further elevated in rats killed 30 min or 60 min following injection, and was absent in rats killed 4 h after injection. 3. In the paraventricular nucleus the most dense expression of c-fos mRNA following CCK administration was in the medial, mainly parvocellular portion of the nucleus, in an area corresponding to the distribution of corticotrophin-releasing factor mRNA determined by in situ hybridization in adjacent sections. 4. The I.P. injection of CCK increased plasma oxytocin concentrations, measured by specific radioimmunoassay from 13 +/- 5 pg/ml in control rats to 107 +/- 9 pg/ml in the rats killed 10 min after injection, a similar response to that observed previously in urethane-anaesthetized rats. 5. In each of six urethane-anaesthetized rats, recordings were made from single neurones in the supraoptic nucleus, identified antidronomically as projecting to the posterior pituitary and identified electrophysiologically as putative oxytocin neurones. Following I.P. injection of 50 micrograms/kg CCK, the neurones increased their firing rate by a mean of 1.3 +/- 0.2 spikes/s averaged over the 10 min following injection. 6. From the appearance of c-fos mRNA in supraoptic neurones following CCK administration we conclude that this message is expressed in magnocellular oxytocin neurones, since vasopressin neuronal activity and vasopressin release is known to be unaffected by this stimulus, and since the supraoptic

  5. Active Fe-containing superoxide dismutase and abundant sodF mRNA in Nostoc commune (Cyanobacteria) after years of desiccation.

    PubMed

    Shirkey, B; Kovarcik, D P; Wright, D J; Wilmoth, G; Prickett, T F; Helm, R F; Gregory, E M; Potts, M

    2000-01-01

    Active Fe-superoxide dismutase (SodF) was the third most abundant soluble protein in cells of Nostoc commune CHEN/1986 after prolonged (13 years) storage in the desiccated state. Upon rehydration, Fe-containing superoxide disumutase (Fe-SOD) was released and the activity was distributed between rehydrating cells and the extracellular fluid. The 21-kDa Fe-SOD polypeptide was purified, the N terminus was sequenced, and the data were used to isolate sodF from the clonal isolate N. commune DRH1. sodF encodes an open reading frame of 200 codons and is expressed as a monocistronic transcript (of approximately 750 bases) from a region of the genome which includes genes involved in nucleic acid synthesis and repair, including dipyrimidine photolyase (phr) and cytidylate monophosphate kinase (panC). sodF mRNA was abundant and stable in cells after long-term desiccation. Upon rehydration of desiccated cells, there was a turnover of sodF mRNA within 15 min and then a rise in the mRNA pool to control levels (quantity of sodF mRNA in cells in late logarithmic phase of growth) over approximately 24 h. The extensive extracellular polysaccharide (glycan) of N. commune DRH1 generated superoxide radicals upon exposure to UV-A or -B irradiation, and these were scavenged by SOD. Despite demonstrated roles for the glycan in the desiccation tolerance of N. commune, it may in fact be a significant source of damaging free radicals in vivo. It is proposed that the high levels of SodF in N. commune, and release of the enzyme from dried cells upon rehydration, counter the effects of oxidative stress imposed by multiple cycles of desiccation and rehydration during UV-A or -B irradiation in situ.

  6. Positive correlation between patency and mRNA levels for cyclooxygenase-2 and prostaglandin E synthase in the uterine cervix of bitches with pyometra

    PubMed Central

    TAMADA, Hiromichi; ADACHI, Nahoko; KAWATE, Noritoshi; INABA, Toshio; HATOYA, Shingo; SAWADA, Tsutomu

    2015-01-01

    Factors involved in patency of uterine cervices in the bitch with pyometra remain to be clarified. This study examined relationship between patency and mRNA levels for inducible nitric oxide synthase (iNOS), cyclooxygenase (COX)-1, COX-2 and prostaglandin E synthase (PGES) in the uterine cervix of bitches with pyometra. Cervical patency was measured by inserting the stainless steel rods with different diameter into cervical canals. Levels of mRNA expression were determined by semi-quantitative reverse transcription-polymerase chain reaction. The cervical patency was positively correlated with mRNA levels for COX-2 and PGES, but not those for iNOS and COX-1. The results suggest that gene expression of COX-2 and PGES may be involved in the regulation of patency in the uterine cervix of bitches with pyometra. PMID:26596635

  7. Positive correlation between patency and mRNA levels for cyclooxygenase-2 and prostaglandin E synthase in the uterine cervix of bitches with pyometra.

    PubMed

    Tamada, Hiromichi; Adachi, Nahoko; Kawate, Noritoshi; Inaba, Toshio; Hatoya, Shingo; Sawada, Tsutomu

    2016-03-01

    Factors involved in patency of uterine cervices in the bitch with pyometra remain to be clarified. This study examined relationship between patency and mRNA levels for inducible nitric oxide synthase (iNOS), cyclooxygenase (COX)-1, COX-2 and prostaglandin E synthase (PGES) in the uterine cervix of bitches with pyometra. Cervical patency was measured by inserting the stainless steel rods with different diameter into cervical canals. Levels of mRNA expression were determined by semi-quantitative reverse transcription-polymerase chain reaction. The cervical patency was positively correlated with mRNA levels for COX-2 and PGES, but not those for iNOS and COX-1. The results suggest that gene expression of COX-2 and PGES may be involved in the regulation of patency in the uterine cervix of bitches with pyometra.

  8. Rice Stripe Virus Infection Alters mRNA Levels of Sphingolipid-Metabolizing Enzymes and Sphingolipids Content in Laodelphax striatellus

    PubMed Central

    Li, Fei-Qiang; Bai, Yue-Liang; Shi, Xiao-Xiao; Zhu, Mu-Fei; Zhang, Min-Jing; Mao, Cun-Gui; Zhu, Zeng-Rong

    2017-01-01

    Sphingolipids and their metabolites have been implicated in viral infection and replication in mammal cells but how their metabolizing enzymes in the host are regulated by viruses remains largely unknown. Here we report the identification of 12 sphingolipid genes and their regulation by Rice stripe virus in the small brown planthopper (Laodelphax striatellus Fallén), a serious pest of rice throughout eastern Asia. According to protein sequence similarity, we identified 12 sphingolipid enzyme genes in L. striatellus. By comparing their mRNA levels in viruliferous versus nonviruliferous L. striatellus at different life stages by qPCR, we found that RSV infection upregulated six genes (LsCGT1, LsNAGA1, LsSGPP, LsSMPD4, LsSMS, and LsSPT) in most stages of L. striatellus. Especially, four genes (LsCGT1, LsSMPD2, LsNAGA1, and LsSMS) and another three genes (LsNAGA1, LsSGPP, and LsSMS) were significantly upregulated in viruliferous third-instar and fourth-instar nymphs, respectively. HPLC-MS/MS results showed that RSV infection increased the levels of various ceramides, such as Cer18:0, Cer20:0, and Cer22:0 species, in third and fourth instar L. striatellus nymphs. Together, these results demonstrate that RSV infection alters the transcript levels of various sphingolipid enzymes and the contents of sphingolipids in L. striatellus, indicating that sphingolipids may be important for RSV infection or replication in L. striatellus. PMID:28130458

  9. Ribosomal Protein S12 and Aminoglycoside Antibiotics Modulate A-site mRNA Cleavage and Transfer-Messenger RNA Activity in Escherichia coli*

    PubMed Central

    Holberger, Laura E.; Hayes, Christopher S.

    2009-01-01

    Translational pausing in Escherichia coli can lead to mRNA cleavage within the ribosomal A-site. A-site mRNA cleavage is thought to facilitate transfer-messenger RNA (tmRNA)·SmpB- mediated recycling of stalled ribosome complexes. Here, we demonstrate that the aminoglycosides paromomycin and streptomycin inhibit A-site cleavage of stop codons during inefficient translation termination. Aminoglycosides also induced stop codon read-through, suggesting that these antibiotics alleviate ribosome pausing during termination. Streptomycin did not inhibit A-site cleavage in rpsL mutants, which express streptomycin-resistant variants of ribosomal protein S12. However, rpsL strains exhibited reduced A-site mRNA cleavage compared with rpsL+ cells. Additionally, tmRNA·SmpB-mediated SsrA peptide tagging was significantly reduced in several rpsL strains but could be fully restored in a subset of mutants when treated with streptomycin. The streptomycin-dependent rpsL(P90K) mutant also showed significantly lower levels of A-site cleavage and tmRNA·SmpB activity. Mutations in rpsD (encoding ribosomal protein S4), which suppressed streptomycin dependence, were able to partially restore A-site cleavage to rpsL(P90K) cells but failed to increase tmRNA·SmpB activity. Taken together, these results show that perturbations to A-site structure and function modulate A-site mRNA cleavage and tmRNA·SmpB activity. We propose that tmRNA·SmpB binds to streptomycin-resistant rpsL ribosomes less efficiently, leading to a partial loss of ribosome rescue function in these mutants. PMID:19776006

  10. Effects of epidermal growth factor and platelet-derived growth factor on c-fos and c-myc mRNA levels in normal human fibroblasts

    SciTech Connect

    Paulsson, Y.; Bywater, M.; Westermark, B. ); Heldin, C.H. )

    1987-07-01

    The mRNA levels of two proto-oncogenes, c-fos and c-myc, were determined in human foreskin fibroblasts exposed to epidermal growth factor (EGF) or platelet-derived growth factor (PDGF) in a serum-free, defined medium (MCDB 104). Untreated, quiescent cells were found to have low or undetectable levels of c-fos and c-myc mRNA. Within 10 min after the addition of EGF or PDGF the c-fos mRNA level increased, reached a peak at 30 min, and then declined to the control level after 60 min. The level of c-myc mRNA increased somewhat later and peaked after 8 h in cultures treated with either of the growth factors. The c-myc mRNA level remained elevated throughout the 24 h of investigation. The concentrations of EGF and PDGF required for a maximal effect on c-fos or c-myc expression were found to be similar to those that give maximal effect on cell proliferation. Both c-fos and c-myc mRNA expression were superinduced by the addition of cycloheximide. The present results conform to the view that the c-fos and c-myc proto-oncogenes may be important (or necessary) but not sufficient for the initiation of DNA synthesis. Moreover, the finding that both EGF and PDGF increase c-fos and c-myc expression supports the previous suggestion that these two growth factors may in part act via a common intracellular pathway in the prereplicative phase of human fibroblasts.

  11. p38 Mitogen-Activated Protein Kinase-Dependent and -Independent Signaling of mRNA Stability of AU-Rich Element-Containing Transcripts

    PubMed Central

    Frevel, Mathias A. E.; Bakheet, Tala; Silva, Aristobolo M.; Hissong, John G.; Khabar, Khalid S. A.; Williams, Bryan R. G.

    2003-01-01

    Adenylate/uridylate-rich element (ARE)-mediated mRNA turnover is an important regulatory component of gene expression for innate and specific immunity, in the hematopoietic system, in cellular growth regulation, and for many other cellular processes. This diversity is reflected in the distribution of AREs in the human genome, which we have established as a database of more than 900 ARE-containing genes that may utilize AREs as a means of controlling cellular mRNA levels. The p38 mitogen-activated protein kinase (MAP kinase) pathway has been implicated in regulating the stability of nine ARE-containing transcripts. Here we explored the entire spectrum of ARE-containing genes for p38-dependent regulation of ARE-mediated mRNA turnover with a custom cDNA array containing probes for 950 ARE mRNAs. The human monocytic cell line THP-1 treated with lipopolysaccharide (LPS) was used as a reproducible cellular model system that allowed us to precisely control the conditions of mRNA induction and decay in the absence and presence of the p38 inhibitor SB203580. This approach allowed us to establish an LPS-induced ARE mRNA expression profile in human monocytes and determine the half-lives of 470 AU-rich mRNAs. Most importantly, we identified 42 AU-rich genes, previously unrecognized, that show p38-dependent mRNA stabilization. In addition to a number of cytokines, several interesting novel AU-rich transcripts likely to play a role in macrophage activation by LPS exhibited p38-dependent transcript stabilization, including macrophage-specific colony-stimulating factor 1, carbonic anhydrase 2, Bcl2, Bcl2-like 2, and nuclear factor erythroid 2-like 2. Finally, the identification of the p38-dependent upstream activator MAP kinase kinase 6 as a member of this group identifies a positive feedback loop regulating macrophage signaling via p38 MAP kinase-dependent transcript stabilization. PMID:12509443

  12. A Kampo (traditional Japanese herbal) medicine, Hochuekkito, pretreatment in mice prevented influenza virus replication accompanied with GM-CSF expression and increase in several defensin mRNA levels.

    PubMed

    Dan, Katsuaki; Akiyoshi, Hiroko; Munakata, Kaori; Hasegawa, Hideki; Watanabe, Kenji

    2013-01-01

    A Kampo medicine, Hochuekkito (TJ-41), with an influenza virus-preventing effect had life-extending effectiveness, and immunological responses other than interferon (IFN)-α release were examined. TJ-41 (1 g/kg) was given to C57BL/6 male mice orally once a day for 2 weeks. Mice were then intranasally infected with influenza virus. After infection, virus titers and various parameters, mRNA levels and protein expression, for immunoresponses in the bronchoalveolar lavage fluid or removed lung homogenate, were measured by plaque assay, quantitative RT-PCR and ELISA. IFN-α and -β levels of TJ-41-treated mice were higher than those of the control. Toll-like receptor TLR7 and TLR9 mRNAs were elevated after infection, but retinoic acid-inducible gene (RIG-1) family mRNA levels, RIG-1, melanoma differentiation-associated gene 5 and Leishmania G protein 2 showed no response in either TJ-41 or control groups. Interferon regulatory transcription factor (IRF)-3 mRNA levels to stimulate type I (α/β) IFN were increased, but IRF-7 did not change. Only granulocyte-macrophage colony-stimulating factor (GM-CSF) after Hochuekkito treatment was significantly elevated 2 and 3 days after infection. The mRNA levels of 7 defensins after infection increased compared to preinfection values. The key roles of TJ-41 were not only stimulation of type I IFN release but also GM-CSF-derived anti-inflammation activity. Furthermore, defensin (antimicrobial peptide) mRNA levels increased by infection and were further enhanced by TJ-41 treatment. Defensin might prevent influenza virus replication.

  13. Gallium nitrate increases type I collagen and fibronectin mRNA and collagen protein levels in bone and fibroblast cells.

    PubMed

    Bockman, R S; Guidon, P T; Pan, L C; Salvatori, R; Kawaguchi, A

    1993-08-01

    Gallium is a Group IIIa transitional element with therapeutic efficacy in the treatment of metabolic bone disorders. Previously described antiresorptive effects of gallium on osteoclasts are not sufficient to account for the full range of effects of gallium on bone structure and metabolism. We have recently shown that gallium nitrate inhibits osteocalcin gene expression and the synthesis of osteocalcin protein, an osteoblast-specific bone matrix protein that is thought to serve as a signal to trigger osteoclastic resorption. Here we present evidence for an additional mechanism by which gallium may function to augment bone mass by altering matrix protein synthesis by osteoblastic and fibroblastic cells. Rat calvarial explants exposed to gallium nitrate for 48 h showed increased incorporation of 3H-proline into hydroxyproline and collagenase digestible protein. In addition, gallium treatment increased steady-state mRNA levels for fibronectin and type I procollagen chains in primary rat calvarial osteoblast-enriched cultures, the ROS 17/2.8 osteoblastic osteosarcoma line, and nontransformed human dermal fibroblasts. These findings suggest that the exposure of mesenchymally-derived cells to gallium results in an altered pattern of matrix protein synthesis that would favor increased bone formation.

  14. mRNA and Protein levels of rat pancreas specific protein disulphide isomerase are downregulated during Hyperglycemia.

    PubMed

    Gupta, Rajani; Bhar, Kaushik; Sen, Nandini; Bhowmick, Debajit; Mukhopadhyay, Satinath; Panda, Koustubh; Siddhanta, Anirban

    2016-02-01

    Diabetes (Type I and Type II) which affects nearly every organ in the body is a multi-factorial non-communicable disorder. Hyperglycemia is the most characteristic feature of this disease. Loss of beta cells is common in both types of diabetes whose detailed cellular and molecular mechanisms are yet to be elucidated. As this disease is complex, identification of specific biomarkers for its early detection, management and devising new therapies is challenging. Based on the fact that functionally defective proteins provide the biochemical basis for many diseases, in this study, we tried to identify differentially expressed proteins during hyperglycemia. For that, hyperglycemia was induced in overnight fasted rats by intra-peritoneal injection of streptozotocin (STZ). The pancreas was isolated from control and treated rats for subsequent analyses. The 2D-gel electrophoresis followed by MALDI-TOF-MS-MS analyses revealed several up- and down-regulated proteins in hyperglycemic rat pancreas including the downregulation of a pancreas specific isoform of protein disulphide isomerase a2 (Pdia2).This observation was validated by western blot. Quantitative PCR experiments showed that the level of Pdia2 mRNA is also proportionally reduced in hyperglycemic pancreas.

  15. Genome level analysis of rice mRNA 3′-end processing signals and alternative polyadenylation

    PubMed Central

    Shen, Yingjia; Ji, Guoli; Haas, Brian J.; Wu, Xiaohui; Zheng, Jianti; Reese, Greg J.; Li, Qingshun Quinn

    2008-01-01

    The position of a poly(A) site of eukaryotic mRNA is determined by sequence signals in pre-mRNA and a group of polyadenylation factors. To reveal rice poly(A) signals at a genome level, we constructed a dataset of 55 742 authenticated poly(A) sites and characterized the poly(A) signals. This resulted in identifying the typical tripartite cis-elements, including FUE, NUE and CE, as previously observed in Arabidopsis. The average size of the 3′-UTR was 289 nucleotides. When mapped to the genome, however, 15% of these poly(A) sites were found to be located in the currently annotated intergenic regions. Moreover, an extensive alternative polyadenylation profile was evident where 50% of the genes analyzed had more than one unique poly(A) site (excluding microheterogeneity sites), and 13% had four or more poly(A) sites. About 4% of the analyzed genes possessed alternative poly(A) sites at their introns, 5′-UTRs, or protein coding regions. The authenticity of these alternative poly(A) sites was partially confirmed using MPSS data. Analysis of nucleotide profile and signal patterns indicated that there may be a different set of poly(A) signals for those poly(A) sites found in the coding regions. Based on the features of rice poly(A) signals, an updated algorithm termed PASS-Rice was designed to predict poly(A) sites. PMID:18411206

  16. AFP mRNA level in enriched circulating tumor cells from hepatocellular carcinoma patient blood samples is a pivotal predictive marker for metastasis.

    PubMed

    Jin, Junhua; Niu, Xiaojuan; Zou, Lihui; Li, Lin; Li, Shugang; Han, Jingli; Zhang, Peiying; Song, Jinghai; Xiao, Fei

    2016-08-01

    Circulating tumor cells (CTCs) quantification may be helpful for evaluating cancer dissemination, predicting prognosis and assessing therapeutic effectiveness and safety. In the present study, CTCs from blood samples of 72 patients with hepatocellular carcinoma (HCC) were enriched with anti-EpCAM nanoparticles. AFP mRNA level was detected by nested polymerase chain reaction (PCR) after enrichment of CTCs from HCC blood samples at 0, 3, 6, 9 and 12 months after hepatectomy, respectively. AFP mRNA expression in CTCs was positive in 43 patients (59.7%) and negative in 29 patients (40.3%) before hepatectomy. Among 43 patients with positive AFP mRNA expression in CTCs before hepatectomy, 10 and 11 were diagnosed as intrahepatic/extrahepatic metastasis before and after hepatectomy, respectively. In addition, these 21 patients with metastasis had persisting positive AFP mRNA of CTCs during the whole tested year. Specifically, 3 patients with AFP mRNA negative in CTCs before hepatectomy changed to be positive at 6 and 9 months, and 2 of them were diagnosed as metastasis 12 months after hepatectomy. We conclude that the positive AFP mRNA of CTCs can be a pivotal predictor for HCC metastasis before and after hepatectomy. The release of AFP expression from hepatocellular carcinoma cells into circulation must be a major source of HCC metastasis.

  17. Chronic central infusion of ghrelin increases hypothalamic neuropeptide Y and Agouti-related protein mRNA levels and body weight in rats.

    PubMed

    Kamegai, J; Tamura, H; Shimizu, T; Ishii, S; Sugihara, H; Wakabayashi, I

    2001-11-01

    Ghrelin, an endogenous ligand for the growth hormone secretagogue receptor (GHS-R), was originally purified from the rat stomach. Like the synthetic growth hormone secretagogues (GHSs), ghrelin specifically releases growth hormone (GH) after intravenous administration. Also consistent with the central actions of GHSs, ghrelin-immunoreactive cells were shown to be located in the hypothalamic arcuate nucleus as well as the stomach. Recently, we showed that a single central administration of ghrelin increased food intake and hypothalamic agouti-related protein (AGRP) gene expression in rodents, and the orexigenic effect of this peptide seems to be independent of its GH-releasing activity. However, the effect of chronic infusion of ghrelin on food consumption and body weight and their possible mechanisms have not been elucidated. In this study, we determined the effects of chronic intracerebroventricular treatment with ghrelin on metabolic factors and on neuropeptide genes that are expressed in hypothalamic neurons that have been previously shown to express the GHS-R and to regulate food consumption. Chronic central administration of rat ghrelin (1 microg/rat every 12 h for 72 h) significantly increased food intake and body weight. However, it did not affect plasma insulin, glucose, leptin, or GH concentrations. We also found that chronic central administration of ghrelin increased both neuropeptide Y (NPY) mRNA levels (151.0 +/- 10.1% of saline-treated controls; P < 0.05) and AGRP mRNA levels (160.0 +/- 22.5% of saline-treated controls; P < 0.05) in the arcuate nucleus. Thus, the primary hypothalamic targets of ghrelin are NPY/AGRP-containing neurons, and ghrelin is a newly discovered orexigenic peptide in the brain and stomach.

  18. Developmental changes in the hypothalamic mRNA levels of prepro-orexin and orexin receptors and their sensitivity to fasting in male and female rats.

    PubMed

    Iwasa, Takeshi; Matsuzaki, Toshiya; Munkhzaya, Munkhsaikhan; Tungalagsuvd, Altankhuu; Kuwahara, Akira; Yasui, Toshiyuki; Irahara, Minoru

    2015-11-01

    Orexin, which is also called as hypocretin (Hcrt), a product of the prepro-orexin (pp-orexin//Hcrt) gene, affects various physiological and behavioral functions, such as the sleep-wake cycle and appetite. The developmental changes in the hypothalamic mRNA levels of pp-prexin and the orexin receptors OX1R and OX2R and their sensitivity to fasting were evaluated in both male and female rats. During development, hypothalamic pp-orexin/Hcrt mRNA expression increased in both male and female rats, whereas hypothalamic OX1R mRNA expression decreased in both sexes. In addition, hypothalamic OX2R mRNA expression increased in male rats, but did not change in female rats. Fasting did not affect hypothalamic pp-orexin/Hcrt mRNA expression in either sex. Hypothalamic OX1R mRNA expression was increased by fasting in the prepubertal period (postnatal days 20 and 30) in female rats, but was not affected by fasting in males. In male rats, hypothalamic OX2R mRNA expression was decreased by fasting during the neonatal period (postnatal day 10), but not the prepubertal period (postnatal days 20 and 30). In females, hypothalamic OX2R mRNA expression was also decreased by fasting; however, the fasting-induced downregulation of hypothalamic OX2R expression persisted until postnatal day 20. These results indicate that the developmental patterns of components of the orexin system and their sensitivity to fasting during the neonatal and prepubertal periods only differ slightly between the sexes. These differences might be involved in the development of some physiological and behavioral functions.

  19. Nerve growth factor affects Ca2+ currents via the p75 receptor to enhance prolactin mRNA levels in GH3 rat pituitary cells

    PubMed Central

    López-Domínguez, Adriana M; Espinosa, Juan Luis; Navarrete, Araceli; Avila, Guillermo; Cota, Gabriel

    2006-01-01

    In clonal pituitary GH3 cells, spontaneous action potentials drive the opening of Cav1 (L-type) channels, leading to Ca2+ transients that are coupled to prolactin gene transcription. Nerve growth factor (NGF) has been shown to stimulate prolactin synthesis by GH3 cells, but the underlying mechanisms are unknown. Here we studied whether NGF influences prolactin gene expression and Ca2+ currents. By using RT-PCR, NGF (50 ng ml−1) was found to augment prolactin mRNA levels by ∼80% when applied to GH3 cells for 3 days. A parallel change in the prolactin content was detected by Western blotting. Both NGF-induced responses were mimicked by an agonist (Bay K 8644) and prevented by a blocker (nimodipine) of L-type channels. In whole-cell patch-clamp experiments, NGF enhanced the L-type Ca2+ current by ∼2-fold within 60 min. This effect reversed quickly upon growth factor withdrawal, but was maintained for days in the continued presence of NGF. In addition, chronic treatment (≥ 24 h) with NGF amplified the T-type current, which flows through Cav3 channels and is thought to support pacemaking activity. Thus, NGF probably increases the amount of Ca2+ that enters per action potential and may also induce a late increase in spike frequency. MC192, a specific antibody for the p75 neurotrophin receptor, but not tyrosine kinase inhibitors (K252a and lavendustin A), blocked the effects of NGF on Ca2+ currents. Overall, the results indicate that NGF activates the p75 receptor to cause a prolonged increase in Ca2+ influx through L-type channels, which in turn up-regulates the prolactin mRNA. PMID:16690703

  20. Effect of water accommodated fraction of 0# diesel oil and crude oil on EROD activity of liver of Sparus macrocephlus and its mRNA expression.

    PubMed

    Lei, Li; Shen, Xinqiang; Jiang, Mei

    2016-12-01

    We studied the effect of water accommodated fractions (WAF) of 0# diesel and crude oil on ethoxy resorufin o-deethylase (EROD) activity and CYP1A1 mRNA expression quantity in the liver of Sparus macrocephlus. We found that there were some differences in the EROD activity and CYP1A1 mRNA induction between these two petroleum hydrocarbons. Both the EROD activity and CYP1A1 mRNA expression of fish exposed to 0# diesel WAF were higher than those of crude oil WAF fish. The EROD activities and CYP1A1 mRNA expressions in the livers 0# diesel WAF exposed group declined faster than those of crude oil WAF and the recovery of EROD activity and CYP1A1 mRNA expression in the crude oil group was higher than that of 0# diesel group.

  1. Starvation and diet composition affect mRNA levels of the high density-lipoprotein-beta glucan binding protein in the shrimp Litopenaeus vannamei.

    PubMed

    Muhlia-Almazán, Adriana; Sánchez-Paz, Arturo; García-Carreño, Fernando; Peregrino-Uriarte, Alma Beatriz; Yepiz-Plascencia, Gloria

    2005-10-01

    A high density lipoprotein-beta glucan binding protein (HDL-BGBP) is synthesized in the hepatopancreas of the white shrimp Litopenaeus vannamei and secreted to the hemolymph. Recently, we reported the HDL-BGBP full length cDNA sequence and found that the predicted polypeptide is larger than the mature protein and also, that it contains a long 5'- and 3'-UTRs that may be involved in transcript level regulation. To test whether starvation and feeding may play a role in regulating HDL-BGBP mRNA levels, two different stimuli were evaluated: starvation and composition of diets. After 24 h, the steady state HDL-BGBP mRNA levels of starved shrimp decreased, suggesting that synthesis of the lipoprotein is less required in the absence of food. When shrimp were fed with diets containing different concentrations of protein and lipids, changes in HDL-BGBP mRNA levels were also detected. Shrimp fed the lower concentration of protein and lipid feed accumulated higher levels of HDL-BGBP mRNA. These results indicate that feeding influences HDL-BGBP transcript levels in the hepatopancreas.

  2. Salt-induction of betaine aldehyde dehydrogenase mRNA, protein, and enzymatic activity in sugar beet. [Beta vulgaris L

    SciTech Connect

    McCue, K.F.; Hanson, A.D. )

    1991-05-01

    In Chenopodiaceae such as sugar beet (Beta vulgaris L.), glycine betaine (betaine) accumulates in response to drought or salinity stress and functions in the cytoplasm as a compatible osmolyte. The last enzyme in the biosynthetic pathway, betaine aldehyde dehydrogenase (BADH), increases as much as 4-fold in response to rising salinity in the external medium. This increase is accompanied by an increase in both protein and mRNA levels. The steady state increases in BADH were examined at a series of NaCl concentrations from 100 to 500 mM NaCl. BADH protein levels were examined by native PAGE, and by western blot analysis using antibodies raised against BADH purified from spinach. mRNA levels were examined by northern plot analysis of total RNA isolated from the leaves and hybridized with a sugar beet BADH cDNA clone. The time course for BADH mRNA induction was determined in a salt shock experiment utilizing 400 mM NaCl added to the external growth medium. Disappearance of BADH was examined in a salt relief experiment using plants step-wise salinized to 500 mM NaCl and then returned to 0 mM NaCl.

  3. Estrogen secreting adrenal adenocarcinoma in an 18-month-old boy: aromatase activity, protein expression, mRNA and utilization of gonadal type promoter.

    PubMed

    Watanabe, T; Yasuda, T; Noda, H; Wada, K; Kazukawa, I; Someya, T; Minamitani, K; Minagawa, M; Wataki, K; Matsunaga, T; Ohnuma, N; Kohno, Y; Harada, N

    2000-12-01

    We examined clinical, endocrinological and molecular biological aspects of an estrogen-secreting adrenal carcinoma in an 18-month-old male to clarify the pathogenesis of this condition. An 18-month-old boy was referred for evaluation of progressive bilateral gynecomastia and appearance of pubic hair. The patient had elevated plasma estradiol (349 pg/ml) and testosterone (260 ng/dl) levels that completely suppressed FSH and LH levels, and was subsequently diagnosed with an adrenal tumor on the right side. After removal of a 300-g adenocarcinoma, gynecomastia regressed and essentially normal hormone levels were restored. Aromatase activity in the tumor tissue determined by the 3H-water method was 71.0-104.4 pmol/min/mg protein. High levels of aromatase protein and mRNA in the tumor tissue were also demonstrated, while neither aromatase activity nor protein was detected in normal adrenal glands. To investigate the regulation of aromatase expression in the adrenal carcinoma, we examined the usage of alternate promoters responsible for aromatase gene transcription. In the present case, the amounts of aromatase mRNA utilizing gonadal types of exon 1c (1.3) and 1d (II) were significantly higher than those that using other exon 1s. This result suggested that the utilization of a gonadal-type exon 1 might be involved in the over-production of aromatase in estrogen-secreting adrenal carcinoma.

  4. Aggressive Encounters Alter the Activation of Serotonergic Neurons and the Expression of 5-HT1A mRNA in the Hamster Dorsal Raphe Nucleus

    PubMed Central

    Cooper, Matthew A.; Grober, Matthew S.; Nicholas, Christopher; Huhman, Kim L.

    2009-01-01

    Serotonergic (5-HT) neurons in the dorsal raphe nucleus (DRN) have been implicated in stress-induced changes in behavior. Previous research indicates that stressful stimuli activate 5-HT neurons in select subregions of the DRN. Uncontrollable stress is thought to sensitize 5-HT neurons in the DRN and allow for an exaggerated 5-HT response to future stimuli. In the current study, we tested the hypothesis that following aggressive encounters, losing male Syrian hamsters would exhibit increased c-Fos immunoreactivity in 5-HT DRN neurons compared to winners or controls. In addition, we tested the hypothesis that losers would have decreased 5-HT1A mRNA levels in the DRN compared to winners or controls. We found that a single 15-min aggressive encounter increased c-Fos expression in 5-HT and non-5-HT neurons in losers compared to winners and controls. The increased c-Fos expression in losers was restricted to ventral regions of the rostral DRN. We also found that four 5-min aggressive encounters reduced total 5-HT1A mRNA levels in the DRN in losers compared to winners and controls, and that differences in mRNA levels were not restricted to specific DRN subregions. These results suggest that social defeat activates neurons in select subregions of the DRN and reduces message for DRN 5-HT1A autoreceptors. Our results support the hypothesis that social stress can activate 5-HT neurons in the DRN, reduce 5-HT1A autoreceptor-mediated inhibition, and lead to hyperactivity of 5-HT neurons. PMID:19362123

  5. mRNA Noise Reveals that Activators Induce a Biphasic Response in the Promoter Kinetics of Highly Regulated Genes

    NASA Astrophysics Data System (ADS)

    Quinn, Katie; To, Tsz-Leung; Maheshri, Narendra

    2012-02-01

    A dominant source of fluctuations in gene expression is thought to be the process of transcription. The statistics of these fluctuations arise from the kinetics of transcription. Multiple studies suggest the bulk of fluctuations can be understood by a simple process where genes are inactive for exponentially distributed times punctuated by geometric bursts of mRNA. Yet it's largely unknown how cis and trans factors affect the two lumped kinetic parameters, burst size and burst frequency, that describe this process. Importantly, how these parameters are regulated in a single gene can qualitatively affect the dynamical behavior of the network it is embedded within. Here, we ask whether transcriptional activators increase gene expression by increasing the burst size or burst frequency. We do so by deducing these parameters from steady-state mRNA distributions measured in individual yeast cells using single molecule mRNA FISH. We find that for both a synthetic and natural promoter, activators appear to first increase burst size, then burst frequency. We suggest this biphasic response may be common to all highly regulated genes and was previously unappreciated because of measurement techniques. Furthermore, its origins appear to relate to cis events at the promoter, and may arise from combinations of basal and activator-dependent bursts. Our measurements shed new light on transcriptional mechanisms and should assist in building synthetic promoters with tunable statistics.

  6. Functional Analysis of Genetic Variation in Catechol-O-Methyltransferase (COMT): Effects on mRNA, Protein, and Enzyme Activity in Postmortem Human Brain

    PubMed Central

    Chen, Jingshan; Lipska, Barbara K.; Halim, Nader; Ma, Quang D.; Matsumoto, Mitsuyuki; Melhem, Samer; Kolachana, Bhaskar S.; Hyde, Thomas M.; Herman, Mary M.; Apud, Jose; Egan, Michael F.; Kleinman, Joel E.; Weinberger, Daniel R.

    2004-01-01

    Catechol-O-methyltransferase (COMT) is a key enzyme in the elimination of dopamine in the prefrontal cortex of the human brain. Genetic variation in the COMT gene (MIM 116790) has been associated with altered prefrontal cortex function and higher risk for schizophrenia, but the specific alleles and their functional implications have been controversial. We analyzed the effects of several single-nucleotide polymorphisms (SNPs) within COMT on mRNA expression levels (using reverse-transcriptase polymerase chain reaction analysis), protein levels (using Western blot analysis), and enzyme activity (using catechol methylation) in a large sample (n = 108) of postmortem human prefrontal cortex tissue, which predominantly expresses the -membrane-bound isoform. A common coding SNP, Val158Met (rs4680), significantly affected protein abundance and enzyme activity but not mRNA expression levels, suggesting that differences in protein integrity account for the difference in enzyme activity between alleles. A SNP in intron 1 (rs737865) and a SNP in the 3′ flanking region (rs165599)—both of which have been reported to contribute to allelic expression differences and to be associated with schizophrenia as part of a haplotype with Val—had no effect on mRNA expression levels, protein immunoreactivity, or enzyme activity. In lymphocytes from 47 subjects, we confirmed a similar effect on enzyme activity in samples with the Val/Met genotype but no effect in samples with the intron 1 or 3′ SNPs. Separate analyses revealed that the subject's sex, as well as the presence of a SNP in the P2 promoter region (rs2097603), had small effects on COMT enzyme activity. Using site-directed mutagenesis of mouse COMT cDNA, followed by in vitro translation, we found that the conversion of Leu at the homologous position into Met or Val progressively and significantly diminished enzyme activity. Thus, although we cannot exclude a more complex genetic basis for functional effects of COMT, Val is a

  7. p53 missense but not truncation mutations are associated with low levels of p21CIP1/WAF1 mRNA expression in primary human sarcomas

    PubMed Central

    Mousses, S; Gokgoz, N; Wunder, J S; Ozcelik, H; Bull, S; Bell, R S; Andrulis, I L

    2001-01-01

    Many growth-suppressing signals converge to control the levels of the CDK inhibitor p21CIP1/WAF1. Some human cancers exhibit low levels of expression of p21CIP1/WAF1and mutations in p53 have been implicated in this down-regulation. To evaluate whether the presence of p53 mutations was related to the in vivo expression of p21CIP1/WAF1 mRNA in sarcomas we measured the p21CIP1/WAF1 mRNA levels for a group of 71 primary bone and soft tissue tumours with known p53 status. As expected, most tumours with p53 mutations expressed low levels of p21CIP1/WAF1 mRNA. However, we identified a group of tumours with p53 gene mutations that exhibited normal or higher levels of p21CIP1/WAF1 mRNA. The p53 mutations in the latter group were not the common missense mutations in exons 4–9, but were predominantly nonsense mutations predicted to result in truncation of the p53 protein. The results of this study suggest that different types of p53 mutations can have different effects on the expression of downstream genes such as p21CIP1/WAF1 in human sarcomas. © 2001 Cancer Research Campaign http://www.bjcancer.com PMID:11401317

  8. IMPACT OF GESTATIONAL COCAINE TREATMENT OR PRENATAL COCAINE EXPOSURE ON EARLY POSTPARTUM OXYTOCIN mRNA LEVELS AND RECEPTOR BINDING IN THE RAT

    PubMed Central

    McMurray, M.S.; Cox, E.T.; Jarrett, T.M.; Williams, S.K.; Walker, C.H.; Johns, J.M.

    2008-01-01

    Prior research reported decreased oxytocin levels in specific brain regions correlated with disruptions in maternal care following gestational cocaine treatment in rats. Similarly, prenatal exposure to cocaine impaired subsequent maternal behavior in adulthood, but behavioral alterations were not associated with decreases in oxytocin levels in the same brain regions as were found in their cocaine-treated rat dams. To determine if other aspects of the oxytocin system are disrupted by cocaine treatment or prenatal exposure to cocaine during critical time points associated with maternal care, oxytocin mRNA transcription and receptor binding were examined on postpartum day two in relevant brain regions following gestational treatment with, or prenatal exposure to, either cocaine or saline. We hypothesized that oxytocin mRNA levels and receptor binding would be differentially affected by cocaine in the early postpartum period of dams and their offspring. Our findings indicate that gestational cocaine treatment resulted in significant increases in oxytocin mRNA levels in only the paraventricular nucleus of cocaine-treated dams, with almost significant increases in both generations in the supraoptic nucleus, but no significant effects of cocaine on receptor binding in either generation of dams. These findings indicate that in addition to oxytocin levels, cocaine treatment or prenatal exposure primarily affects oxytocin mRNA synthesis, with little effect on receptor binding in specific brain regions associated with maternal behavior in the early postpartum period of the rat. PMID:18579201

  9. Evaluation of immune and stress status in harbour porpoises (Phocoena phocoena): can hormones and mRNA expression levels serve as indicators to assess stress?

    PubMed Central

    2013-01-01

    Background The harbour porpoise is exposed to increasing pressure caused by anthropogenic activities in its marine environment. Numerous offshore wind farms are planned or under construction in the North and Baltic Seas, which will increase underwater noise during both construction and operation. A better understanding of how anthropogenic impacts affect the behaviour, health, endocrinology, immunology and physiology of the animals is thus needed. The present study compares levels of stress hormones and mRNA expression of cytokines and acute-phase proteins in blood samples of harbour porpoises exposed to different levels of stress during handling, in rehabilitation or permanent human care. Free-ranging harbour porpoises, incidentally caught in pound nets in Denmark, were compared to harbour porpoises in rehabilitation at SOS Dolfijn in Harderwijk, the Netherlands, and individuals permanently kept in human care in the Dolfinarium Harderwijk and Fjord & Belt Kerteminde, Denmark. Blood samples were investigated for catecholamines, adrenaline, noradrenaline and dopamine, as well as for adrenocorticotropic hormone (ACTH), cortisol, metanephrine and normetanephrine. mRNA expression levels of relevant cell mediators (cytokines IL-10 and TNFα, acute-phase proteins haptoglobin and C-reactive protein and the heat shock protein HSP70) were measured using real-time PCR. Results Biomarker expression levels varied between free-ranging animals and porpoises in human care. Hormone and cytokine ranges showed correlations to each other and to the health status of investigated harbour porpoises. Hormone concentrations were higher in free-ranging harbour porpoises than in animals in human care. Adrenaline can be used as a parameter for the initial reaction to acute stress situations; noradrenaline, dopamine, ACTH and cortisol are more likely indicators for the following minutes of acute stress. There is evidence for different correlations between production of normetanephrine

  10. Levels of BMP-6 mRNA in goat ovarian follicles and in vitro effects of BMP-6 on secondary follicle development.

    PubMed

    Frota, Isana M A; Leitão, Cintia C F; Costa, José J N; van den Hurk, Robert; Saraiva, Márcia V A; Figueiredo, José R; Silva, José R V

    2013-08-01

    Expression of BMP-6 mRNA was quantified by real-time polymerase chain reaction (PCR) and the BMP-6 protein was demonstrated by immunohistochemistry in the primordial, primary, secondary, small and large antral follicles of goat. Furthermore, the influence of BMP-6 on increase in diameter, antrum formation and expression of BMP-6 and FSH-R in in vitro cultured secondary follicles was studied. Therefore, goat primordial, primary and secondary follicles, as well as small and large antral follicles were obtained and the mRNA levels of BMP-6 were quantified by PCR in real time. Expression of BMP-6 protein in goat follicles was demonstrated by immunohistochemistry. The influence of BMP-6 in the presence or absence of follicle-stimulating hormone (FSH) on both the development of secondary follicles and the expression of mRNA for BMP-6 and FSH-R was evaluated after 6 days of culture. Furthermore, the follicular diameter and the formation of the antrum were evaluated before and after 6 days of culture and compared by Kruskal-Wallis and chi-squared tests (P < 0.05), respectively. The results show that the level of mRNA for BMP-6 in primary and secondary follicles was significantly higher than in the primordial follicles (P < 0.05). Similar levels of BMP-6 mRNA were observed in cumulus-oocyte complexes and mural granulosa/theca cells from small and large antral follicles, respectively. BMP-6 protein was expressed in oocytes of all categories of follicles and in granulosa cells from secondary follicles onwards. Addition of BMP-6 to the culture medium increased the diameter of secondary follicles mainly by antrum formation after 6 days' culture, in the presence or absence of FSH (P < 0.05). Furthermore, addition of FSH resulted in increased levels of BMP-6 mRNA in these follicles (P < 0.05). Simultaneous administration of FSH and BMP-6 enhanced the levels of FSH receptor (FSH-R) mRNA (P < 0.05). It is concluded that BMP-6 mRNA is increased during transition from primordial to

  11. MEIS1 intronic risk haplotype associated with restless legs syndrome affects its mRNA and protein expression levels

    PubMed Central

    Xiong, Lan; Catoire, Hélène; Dion, Patrick; Gaspar, Claudia; Lafrenière, Ronald G.; Girard, Simon L.; Levchenko, Anastasia; Rivière, Jean-Baptiste; Fiori, Laura; St-Onge, Judith; Bachand, Isabelle; Thibodeau, Pascale; Allen, Richard; Earley, Christopher; Turecki, Gustavo; Montplaisir, Jacques; Rouleau, Guy A.

    2009-01-01

    Restless legs syndrome (RLS) is a common neurological disorder characterized by an irresistible urge to move the legs at night, which is often accompanied by unpleasant sensations. A recent genomewide association study identified an association between RLS and intronic markers from the MEIS1 gene. Comparative genomic analysis indicates that MEIS1 is the only gene encompassed in this evolutionarily conserved chromosomal segment, i.e. a conservation synteny block, from mammals to fish. We carried out a series of experiments to delineate the role of MEIS1 in RLS pathogenesis and the underlying genetic mechanism. We sequenced all 13 MEIS1 exons and their splice junctions in 285 RLS probands with confirmed clinical diagnosis and did not identify any causative coding or exon–intron junction mutations. We found no evidence of structural variation or disease-associated haplotype differential splicing. However, sequencing of conserved regions of MEIS1 introns 8 and 9 identified a novel single nucleotide polymorphism (C13B_2) significantly associated with RLS (allelic association, P = 1.81E−07). We detected a significant decrease in MEIS1 mRNA expression by quantitative real-time polymerase chain reaction in lymphoblastoid cell lines (LCLs) and brain tissues from RLS patients homozygous for the intronic RLS risk haplotype, compared with those homozygous for the non-risk haplotype. Finally, we found significantly decreased MEIS1 protein levels in the same batch of LCLs and brain tissues from the homozygous carriers of the risk haplotype, compared with the homozygous non-carriers. Therefore, these data suggest that reduced expression of the MEIS1 gene, possibly through intronic cis-regulatory element(s), predisposes to RLS. PMID:19126776

  12. Effect of Danshen aqueous extract on serum hs-CRP, IL-8, IL-10, TNF-α levels, and IL-10 mRNA, TNF-α mRNA expression levels, cerebral TGF-β1 positive expression level and its neuroprotective mechanisms in CIR rats.

    PubMed

    Liang, Xue-Yun; Li, Hai-Ning; Yang, Xiao-Yan; Zhou, Wen-Yan; Niu, Jian-Guo; Chen, Ben-Dong

    2013-04-01

    To observe the effects of Danshen aqueous extract (DSAE) on the cerebral tissue and nerve stem cells in cerebral ischemia reperfusion (CIR) rats. The model rats were prepared by occlusion of the middle cerebral artery for 2 h and then by reperfusion. They were randomly divided into five groups: a control group, an CIR group and three DSAE-treated groups. As compared with the sham control group, there was significant increase (P < 0.05, P < 0.01) in the serum high-sensitivity C-reactive protein (hs-CRP) and interleukin-8 (IL-8) levels, interleukin-10 (IL-10), tumor necrosis factor-alpha (TNF-α) levels, and IL-10 mRNA, TNF-α mRNA expression levels, function score, Infarct size, TUNEL + cell counts, cerebral transforming growth factor beta 1 (TGF-β1) positive expression and cerebral neuron specific enolase (NSE) levels, and decrease in fas-associated protein with death domain (FADD) and death-associated protein (Daxx) positive expression levels in the CIR group. Compared with CIR group, DSAE treatment dose-dependently significantly decreased serum hs-CRP, IL-8, IL-10, TNF-α levels, and IL-10 mRNA, TNF-α mRNA expression levels, function score, Infarct size, TUNEL + cell counts, cerebral TGF-β1 positive expression and cerebral NSE levels, and increase FADD and Daxx positive expression levels in the CIR + DSAE groups. Taken together, these results suggest that DSAE has a neuroprotective role in the CIR rats, which may be related to improvement of immunity function, proteins and genes expression.

  13. The Expression Level of mRNA, Protein, and DNA Methylation Status of FOSL2 of Uyghur in XinJiang in Type 2 Diabetes

    PubMed Central

    Cao, Guolei; Wang, Xiaoli

    2016-01-01

    Objective. We investigated the expression levels of both FOSL2 mRNA and protein as well as evaluating DNA methylation in the blood of type 2 diabetes mellitus (T2DM) Uyghur patients from Xinjiang. This study also evaluated whether FOSL2 gene expression had demonstrated any associations with clinical and biochemical indicators of T2DM. Methods. One hundred Uyghur subjects where divided into two groups, T2DM and nonimpaired glucose tolerance (NGT) groups. DNA methylation of FOSL2 was also analyzed by MassARRAY Spectrometry and methylation data of individual units were generated by the EpiTyper v1.0.5 software. The expression levels of FOS-like antigen 2 (FOSL2) and the protein expression levels were analyzed. Results. Significant differences were observed in mRNA and protein levels when compared with the NGT group, while methylation rates of eight CpG units within the FOSL2 gene were higher in the T2DM group. Methylation of CpG sites was found to inversely correlate with expression of other markers. Conclusions. Results show that a correlation between mRNA, protein, and DNA methylation of FOSL2 gene exists among T2DM patients from Uyghur. FOSL2 protein and mRNA were downregulated and the DNA became hypermethylated, all of which may be involved in T2DM pathogenesis in this population. PMID:28050569

  14. Effect of sulfide, osmotic, and thermal stresses on taurine transporter mRNA levels in the gills of the hydrothermal vent-specific mussel Bathymodiolus septemdierum.

    PubMed

    Nakamura-Kusakabe, Ikumi; Nagasaki, Toshihiro; Kinjo, Azusa; Sassa, Mieko; Koito, Tomoko; Okamura, Kei; Yamagami, Shosei; Yamanaka, Toshiro; Tsuchida, Shinji; Inoue, Koji

    2016-01-01

    Hydrothermal vent environmental conditions are characterized by high sulfide concentrations, fluctuating osmolality, and irregular temperature elevations caused by vent effluents. These parameters represent potential stressors for organisms that inhabit the area around hydrothermal vents. Here, we aimed to obtain a better understanding of the adaptation mechanisms of marine species to hydrothermal vent environments. Specifically, we examined the effect of sulfide, osmolality, and thermal stress on the expression of taurine transporter (TAUT) mRNA in the gill of the deep-sea mussel Bathymodiolus septemdierum, which is a dominant species around hydrothermal vent sites. We analyzed TAUT mRNA levels by quantitative real-time polymerase chain reaction (PCR) in the gill of mussels exposed to sulfide (0.1 or 1mg/L Na2S·9H2O), hyper- (115% seawater) and hypo- (97.5%, 95.5%, and 85% seawater) osmotic conditions, and thermal stresses (12°C and 20°C) for 24 and 48h. The results showed that mussels exposed to relatively low levels of sulfide (0.1mg/L) and moderate heat stress (12°C) exhibited higher TAUT mRNA levels than the control. Although hyper- and hypo-osmotic stress did not significantly change TAUT mRNA levels, slight induction was observed in mussels exposed to low osmolality. Our results indicate that TAUT is involved in the coping mechanism of mussels to various hydrothermal vent stresses.

  15. Schistocephalus solidus infections increase gonadotropins and gonadotropin releasing hormone (GnRH3) mRNA levels in the three-spined stickleback, Gasterosteus aculeatus.

    PubMed

    Shao, Yi Ta; Tseng, Yung Che; Trombley, Susanne; Hwang, Pung Pung; Schmitz, Monika; Borg, Bertil

    2012-09-01

    Parasites often impair the reproduction of their hosts, one well known case being the cestode Schistocephalus solidus which is a common parasite in three-spined sticklebacks, Gasterosteus aculeatus. One of the possible ways that this could be exerted is by suppression on the brain-pituitary-gonadal (BPG) axis. In this study, mRNA levels of FSH-β and LH-β and of GnRH2 (cGnRH II) and GnRH3 (sGnRH) were measured via Q-PCR in infected and uninfected fish sampled from the field a few weeks before the onset of breeding. The pituitary mRNA levels of both FSH-β and LH-β were higher in infected males than in uninfected males. Also in females, FSH-β mRNA levels were higher in infected individuals than in others, whereas there was no significant difference found in LH-β expression. Brain mRNA levels of GnRH3 were higher in infected fish than in uninfected fish in both sexes, but no difference was found in GnRH2 mRNA levels. Thus, infection by S. solidus was able to alter the expressions not only of gonadotropins (GtHs), but also of GnRH which has not been observed previously. However, the effects are opposite to what should be expected if the parasite suppressed reproduction via actions on the brain-pituitary level. The gonads are perhaps more likely to be impaired by the parasites in other ways, and changed feedbacks on the BPG axis could then lead to the increases in GtHs and GnRH.

  16. Zip1, Zip2, and Zip8 mRNA expressions were associated with growth hormone level during the growth hormone provocation test in children with short stature.

    PubMed

    Sun, Ping; Wang, Shifu; Jiang, Yali; Tao, Yanting; Tian, Yuanyuan; Zhu, Kai; Wan, Haiyan; Zhang, Lehai; Zhang, Lianying

    2013-10-01

    Short stature of children is affected by multiple factors. One of them is growth hormone (GH) deficiency. Growth hormone therapy can increase the final height of children with growth hormone deficiency. Zinc is found to induce dimerization and to enhance the bioactivity of human GH. Two gene families have been identified involved in zinc homeostasis. Previous studies in our laboratory have shown that Zip1, Zip2, Zip6, and ZnT1 mRNA were associated with zinc level in established human breast cancer in nude mice model; Zip8 was significantly lower in zinc-deficient Wistar rats in kidney. In this study, five zinc transporters: Zip1, Zip2, Zip6, Zip8, and ZnT1 were chosen. We aimed to investigate the mRNA expression of zinc transporters and to explore the relationship between zinc transporters and growth hormone in short stature children. Growth hormone provocation test is used to confirm the diagnosis of growth hormone deficiency. Six short children for the test were enrolled. At the same time, 15 sex- and age-matched normal children were enrolled as control. The expression levels of zinc transporters in peripheral blood mononuclear cells were determined by quantitative real-time PCR. Zip1 and Zip2 mRNA expression positively correlated with growth hormone level (r = 0.5133, P = 0.0371; r = 0.6719, P = 0.0032); Zip8 mRNA expression negatively correlated with growth hormone level (r = -0.5264, P = 0.0285) during the test in short stature children. The average expression level of Zip2 was significantly higher and Zip6, Zip8 mRNA levels were significantly lower in short stature children than in health controls at 0 min (P < 0.05, P < 0.05).

  17. Urinary Hepcidin Levels in Iron-Deficient and Iron-Supplemented Piglets Correlate with Hepcidin Hepatic mRNA and Serum Levels and with Body Iron Status

    PubMed Central

    Staroń, Robert; Van Swelm, Rachel P. L.; Lipiński, Paweł; Gajowiak, Anna; Lenartowicz, Małgorzata; Bednarz, Aleksandra; Gajewska, Małgorzata; Pieszka, Marek; Laarakkers, Coby M. M.; Swinkels, Dorine W.; Starzyński, Rafał R.

    2015-01-01

    Among livestock, domestic pig (Sus scrofa) is a species, in which iron metabolism has been most intensively examined during last decade. The obvious reason for studying the regulation of iron homeostasis especially in young pigs is neonatal iron deficiency anemia commonly occurring in these animals. Moreover, supplementation of essentially all commercially reared piglets with iron entails a need for monitoring the efficacy of this routine practice followed in the swine industry for several decades. Since the discovery of hepcidin many studies confirmed its role as key regulator of iron metabolism and pointed out the assessment of its concentrations in biological fluids as diagnostic tool for iron-related disorder. Here we demonstrate that urine hepcidin-25 levels measured by a combination of weak cation exchange chromatography and time-of-flight mass spectrometry (WCX-TOF MS) are highly correlated with mRNA hepcidin expression in the liver and plasma hepcidin-25 concentrations in anemic and iron-supplemented 28-day old piglets. We also found a high correlation between urine hepcidin level and hepatic non-heme iron content. Our results show that similarly to previously described transgenic mouse models of iron disorders, young pigs constitute a convenient animal model to explore accuracy and relationship between indicators for assessing systemic iron status. PMID:26323096

  18. Urinary Hepcidin Levels in Iron-Deficient and Iron-Supplemented Piglets Correlate with Hepcidin Hepatic mRNA and Serum Levels and with Body Iron Status.

    PubMed

    Staroń, Robert; Van Swelm, Rachel P L; Lipiński, Paweł; Gajowiak, Anna; Lenartowicz, Małgorzata; Bednarz, Aleksandra; Gajewska, Małgorzata; Pieszka, Marek; Laarakkers, Coby M M; Swinkels, Dorine W; Starzyński, Rafał R

    2015-01-01

    Among livestock, domestic pig (Sus scrofa) is a species, in which iron metabolism has been most intensively examined during last decade. The obvious reason for studying the regulation of iron homeostasis especially in young pigs is neonatal iron deficiency anemia commonly occurring in these animals. Moreover, supplementation of essentially all commercially reared piglets with iron entails a need for monitoring the efficacy of this routine practice followed in the swine industry for several decades. Since the discovery of hepcidin many studies confirmed its role as key regulator of iron metabolism and pointed out the assessment of its concentrations in biological fluids as diagnostic tool for iron-related disorder. Here we demonstrate that urine hepcidin-25 levels measured by a combination of weak cation exchange chromatography and time-of-flight mass spectrometry (WCX-TOF MS) are highly correlated with mRNA hepcidin expression in the liver and plasma hepcidin-25 concentrations in anemic and iron-supplemented 28-day old piglets. We also found a high correlation between urine hepcidin level and hepatic non-heme iron content. Our results show that similarly to previously described transgenic mouse models of iron disorders, young pigs constitute a convenient animal model to explore accuracy and relationship between indicators for assessing systemic iron status.

  19. Augmented motor activity and reduced striatal preprodynorphin mRNA induction in response to acute amphetamine administration in metabotropic glutamate receptor 1 knockout mice.

    PubMed

    Mao, L; Conquet, F; Wang, J Q

    2001-01-01

    Metabotropic glutamate receptor 1 (mGluR1) is a G-protein-coupled receptor and is expressed in the medium spiny projection neurons of mouse striatum. To define the role of mGluR1 in actions of psychostimulant, we compared both motor behavior and striatal neuropeptide mRNA expression between mGluR1 mutant and wild-type control mice after a single injection of amphetamine. We found that acute amphetamine injection increased motor activity in both mutant and control mice in a dose-dependent manner (1, 4, and 12 mg/kg, i.p.). However, the overall motor responses of mGluR1 -/- mice to all three doses of amphetamine were significantly greater than those of wild-type +/+ mice. Amphetamine also induced a dose-dependent elevation of preprodynorphin mRNA in the dorsal and ventral striatum of mutant and wild-type mice as revealed by quantitative in situ hybridization. In contrast to behavioral responses, the induction of dynorphin mRNA in both the dorsal and ventral striatum of mutant mice was significantly less than that of wild-type mice in response to the two higher doses of amphetamine. In addition, amphetamine elevated basal levels of substance P mRNA in the dorsal and ventral striatum of mGluR1 mutant mice to a similar level as that of wild-type mice. There were no differences in basal levels and distribution patterns of the two mRNAs between the two genotypes of mice treated with saline. These results demonstrate a clear augmented behavioral response of mGluR1 knockout mice to acute amphetamine exposure that is closely correlated with reduced dynorphin mRNA induction in the same mice. It appears that an intact mGluR1 is specifically critical for full dynorphin induction, and impaired mobilization of inhibitory dynorphin system as a result of lacking mGluR1 may contribute to an augmentation of motor stimulation in response to acute administration of psychostimulant.

  20. Characterizing dose-responses of catalase to nitrofurazone exposure in model ciliated protozoan Euplotes vannus for ecotoxicity assessment: enzyme activity and mRNA expression.

    PubMed

    Li, Jiqiu; Zhou, Liang; Lin, Xiaofeng; Yi, Zhenzhen; Al-Rasheid, Khaled A S

    2014-02-01

    In environmental studies, some biological responses, known as biomarkers, have been used as a powerful bioassay tool for more than four decades. Disparity between enzyme activity and mRNA abundance leads to correlation equivocality, which makes the application of biomarkers for environmental risk assessment more complicated. This study investigates this disparity in the case of catalase when used as a biomarker for detecting ecotoxicity induced by antibiotics in aquatic ecosystems. In particular, dose-responses for catalase activity and mRNA expression abundance were investigated in Euplotes vannus which were exposed to graded doses of nitrofurazone for several discrete durations, and dose-response models were developed to characterize the dose-response dynamics. Significant differences were found in both catalase activity and mRNA expression abundance among the E. vannus treated with nitrofurazone. Catalase activity showed a hormetic-like effect in terms of dose-response, characterized by a biphasic relationship which was more clearly evident after a longer exposure period, while mRNA expression abundance increased linearly with the exposure duration. Additionally, the correlation between catalase activity and mRNA expression abundance reversed along with the duration of exposure to nitrofurazone. Taken together, our results demonstrate that catalase mRNA expression offers a more straightforward dose-response model than enzyme activity. Our findings suggest that both catalase enzyme activity and mRNA expression abundance can be used jointly as bioassay tools for detecting ecotoxicity induced by nitrofurazone in aquatic ecosystems.

  1. Peroxisome proliferator-activated receptor gamma (PPARγ) in yellow catfish Pelteobagrus fulvidraco: molecular characterization, mRNA expression and transcriptional regulation by insulin in vivo and in vitro.

    PubMed

    Zheng, Jia-Lang; Zhuo, Mei-Qin; Luo, Zhi; Pan, Ya-Xiong; Song, Yu-Feng; Huang, Chao; Zhu, Qing-Ling; Hu, Wei; Chen, Qi-Liang

    2015-02-01

    Peroxisome proliferator-activated receptor gamma (PPARγ) is ligand-inducible transcription factor and has important roles in lipid metabolism, cell proliferation and inflammation. In the present study, yellow catfish Pelteobagrus fulvidraco PPARγ cDNA was isolated from liver by RT-PCR and RACE, and its molecular characterization and transcriptional regulation by insulin in vivo and in vitro were determined. The generation of PPARγ1 and PPARγ2 was due to alternative promoter of PPARγ gene. PPARγ1 and PPARγ2 mRNA covered 2426 bp and 2537 bp, respectively, with an open reading frame (ORF) of 1584 bp encoding 527 amino acid residues. Yellow catfish PPARγ gene was organized in a manner similar to that of their mammalian homologs, implying a modular organization of the protein's domains. A comparison between the yellow catfish PPARγ amino acid sequence and the correspondent sequences of several other species revealed the identity of 55-76.2%. Two PPARγ transcripts (PPARγ1 and PPARγ2) mRNAs were expressed in a wide range of tissues, but the abundance of each PPARγ mRNA showed the tissue- and developmental stage-dependent expression patterns. Intraperitoneal injection of insulin in vivo significantly stimulated the mRNA expression of total PPARγ and PPARγ1, but not PPARγ2 in the liver of yellow catfish. In contrast, incubation of hepatocytes with insulin in vitro increased the mRNA levels of PPARγ1, PPARγ2 and total PPARγ. To our knowledge, for the first time, the present study provides evidence that PPARγ1 and PPARγ2 are differentially expressed with and among tissues during different developmental stages and also regulated by insulin both in vivo and in vitro, which serves to increase our understanding on PPARγ physiological function in fish.

  2. Etomoxir, sodium 2-[6-(4-chlorophenoxy)hexyl]oxirane-2-carboxylate, up-regulates uncoupling protein-3 mRNA levels in primary culture of rat preadipocytes.

    PubMed

    Cabrero, A; Alegret, M; Sánchez, R; Adzet, T; Laguna, J C; Vázquez, M

    1999-09-16

    Uncoupling proteins (UCPs) are mitochondrial membrane proton transporters that uncouple respiration from oxidative phosphorylation by dissipating the proton gradient across the membrane. Treatment of primary culture of rat preadipocytes for 24 h with 40 microM etomoxir, an irreversible inhibitor of carnitine palmitoyltransferase I (CPT-I), up-regulated UCP-3 mRNA levels (3. 6-fold induction), whereas changes in UCP-2 mRNA levels were not significant. As a consequence of increased UCP-3 expression, a fall in the mitochondrial membrane potential was detected by flow cytometry. Etomoxir treatment modified neither L-CPT-I (liver-type) nor PPARalpha mRNA levels in preadipocytes. In contrast, mRNA expression of acyl-CoA oxidase (ACO), the rate-limiting enzyme of peroxisomal fatty acid beta-oxidation, whose transcription is controlled by PPARalpha, was significantly induced (1.3-fold induction, P = 0.015). These findings suggest that the effects of etomoxir were mediated by PPARalpha. Since it has been reported that the intracellular accumulation of lipids following the inhibition of CPT-I by etomoxir leads to a PPARalpha-mediated metabolic response that increases the expression of genes involved in alternate fatty acid oxidation pathways, these results seem to implicate UCP-3 in this protective metabolic response. It remains to be studied whether reductions in the expression of UCP-3 could compromise this response, giving rise to lipotoxic effects on cells.

  3. Lower levels of cannabinoid 1 receptor mRNA in female eating disorder patients: association with wrist cutting as impulsive self-injurious behavior.

    PubMed

    Schroeder, Marc; Eberlein, Christian; de Zwaan, Martina; Kornhuber, Johannes; Bleich, Stefan; Frieling, Helge

    2012-12-01

    The cannabinoid 1 (CB 1) receptor as the primary mediator of the endocannabinoid (EC) system was found to play a role in eating disorders (EDs), depression, anxiety, and suicidal behavior. The CB 1 receptor is assumed to play a crucial role in the central reward circuitry with impact on body weight and personality traits like novelty-seeking behavior. In a previous study we found higher levels of CB 1 receptor mRNA in patients with anorexia nervosa (AN) and bulimia nervosa (BN) compared to healthy control women (HCW). The aim of the present study was to investigate the possible influence of the EC and the CB 1 receptor system on wrist cutting as self-injurious behavior (SIB) in women with EDs (n=43; AN: n=20; BN: n=23). Nine ED patients with repetitive wrist cutting (AN, n=4; BN, n=5) were compared to 34 ED patients without wrist cutting and 26 HCW. Levels of CB 1 receptor mRNA were determined in peripheral blood samples using quantitative real-time PCR. ED patients with self-injurious wrist cutting exhibited significantly lower CB 1 receptor mRNA levels compared with ED patients without wrist cutting and HCW. No significant differences were found between ED patients without a history of wrist cutting and HCW. Furthermore, a negative association was detected between CB 1 receptor mRNA levels and Beck Depression Inventory (BDI) scores. To our knowledge, this is the first study reporting a down-regulation of CB 1 receptor mRNA in patients with EDs and wrist cutting as SIB. Due to the small sample size, our results should be regarded as preliminary and further studies are warranted to reveal the underlying mechanisms.

  4. Metabolic hormones regulate basal and growth hormone-dependent igf2 mRNA level in primary cultured coho salmon hepatocytes: effects of insulin, glucagon, dexamethasone, and triiodothyronine.

    PubMed

    Pierce, A L; Dickey, J T; Felli, L; Swanson, P; Dickhoff, W W

    2010-03-01

    Igf1 and Igf2 stimulate growth and development of vertebrates. Circulating Igfs are produced by the liver. In mammals, Igf1 mediates the postnatal growth-promoting effects of growth hormone (Gh), whereas Igf2 stimulates fetal and placental growth. Hepatic Igf2 production is not regulated by Gh in mammals. Little is known about the regulation of hepatic Igf2 production in nonmammalian vertebrates. We examined the regulation of igf2 mRNA level by metabolic hormones in primary cultured coho salmon hepatocytes. Gh, insulin, the glucocorticoid agonist dexamethasone (Dex), and glucagon increased igf2 mRNA levels, whereas triiodothyronine (T(3)) decreased igf2 mRNA levels. Gh stimulated igf2 mRNA at physiological concentrations (0.25x10(-9) M and above). Insulin strongly enhanced Gh stimulation of igf2 at low physiological concentrations (10(-11) M and above), and increased basal igf2 (10(-8) M and above). Dex stimulated basal igf2 at concentrations comparable to those of stressed circulating cortisol (10(-8) M and above). Glucagon stimulated basal and Gh-stimulated igf2 at supraphysiological concentrations (10(-7) M and above), whereas T(3) suppressed basal and Gh-stimulated igf2 at the single concentration tested (10(-7) M). These results show that igf2 mRNA level is highly regulated in salmon hepatocytes, suggesting that liver-derived Igf2 plays a significant role in salmon growth physiology. The synergistic regulation of igf2 by insulin and Gh in salmon hepatocytes is similar to the regulation of hepatic Igf1 production in mammals.

  5. Preserved Expression of mRNA Coding von Willebrand Factor–Cleaving Protease ADAMTS13 by Selenite and Activated Protein C

    PubMed Central

    Ekaney, Michael L; Bockmeyer, Clemens L; Sossdorf, Maik; Reuken, Philipp A; Conradi, Florian; Schuerholz, Tobias; Blaess, Markus F; Friedman, Scott L; Lösche, Wolfgang; Bauer, Michael; Claus, Ralf A

    2015-01-01

    In sepsis, the severity-dependent decrease of von Willebrand factor (VWF)–inactivating protease, a disintegrin and metalloproteinase with thrombospondin motifs 13 (ADAMTS13), results in platelet aggregation and consumption, leading to sepsis-associated thrombotic microangiopathy (TMA) and organ failure. Previous reports assessing its functional deficiency have pinpointed involvement of autoantibodies or mutations to propagate thrombotic thrombocytopenic purpura (TTP). However, mechanisms of acquired ADAMTS13 deficiency during host response remain unclear. To enhance understanding of ADAMTS13 deficiency in sepsis, we evaluated changes in expression of mRNA coding ADAMTS13 during septic conditions using primary cellular sources of the protease. We hypothesized that proinflammatory cytokines and constituents of serum from septic patients affect the transcriptional level of ADAMTS13 in vitro, and previously recommended therapeutic agents as adjunctive therapy for sepsis interact therewith. Cultured hepatic stellate cells (HSCs), endothelial cells (HMEC) and human precision-cut liver slices as an ex vivo model were stimulated with sepsis prototypic cytokines, bacterial endotoxin and pooled serum obtained from septic patients. Stimulation resulted in a significant decrease in ADAMTS13 mRNA between 10% and 80% of basal transcriptional rates. Costimulation of selenite or recombinant activated protein C (APC) with serum prevented ADAMTS13 decrease in HSCs and increased ADAMTS13 transcripts in HMEC. In archived clinical samples, the activity of ADAMTS13 in septic patients treated with APC (n = 5) increased with an accompanying decrease in VWF propeptide as surrogate for improved endothelial function. In conclusion, proinflammatory conditions of sepsis repress mRNA coding ADAMTS13 and the ameliorating effect by selenite and APC may support the concept for identification of beneficial mechanisms triggered by these drugs at a molecular level. PMID:25860876

  6. Preserved Expression of mRNA Coding von Willebrand Factor-Cleaving Protease ADAMTS13 by Selenite and Activated Protein C.

    PubMed

    Ekaney, Michael L; Bockmeyer, Clemens L; Sossdorf, Maik; Reuken, Philipp A; Conradi, Florian; Schuerholz, Tobias; Blaess, Markus F; Friedman, Scott L; Lösche, Wolfgang; Bauer, Michael; Claus, Ralf A

    2015-04-03

    In sepsis, the severity-dependent decrease of von Willebrand factor (VWF)-inactivating protease, a disintegrin and metalloproteinase with thrombospondin motifs 13 (ADAMTS13), results in platelet aggregation and consumption, leading to sepsis-associated thrombotic microangiopathy (TMA) and organ failure. Previous reports assessing its functional deficiency have pinpointed involvement of autoantibodies or mutations to propagate thrombotic thrombocytopenic purpura (TTP). However, mechanisms of acquired ADAMTS13 deficiency during host response remain unclear. To enhance understanding of ADAMTS13 deficiency in sepsis, we evaluated changes in expression of mRNA coding ADAMTS13 during septic conditions using primary cellular sources of the protease. We hypothesized that proinflammatory cytokines and constituents of serum from septic patients affect the transcriptional level of ADAMTS13 in vitro, and previously recommended therapeutic agents as adjunctive therapy for sepsis interact therewith. Cultured hepatic stellate cells (HSCs), endothelial cells (HMEC) and human precision-cut liver slices as an ex vivo model were stimulated with sepsis prototypic cytokines, bacterial endotoxin and pooled serum obtained from septic patients. Stimulation resulted in a significant decrease in ADAMTS13 mRNA between 10% and 80% of basal transcriptional rates. Costimulation of selenite or recombinant activated protein C (APC) with serum prevented ADAMTS13 decrease in HSCs and increased ADAMTS13 transcripts in HMEC. In archived clinical samples, the activity of ADAMTS13 in septic patients treated with APC (n = 5) increased with an accompanying decrease in VWF propeptide as surrogate for improved endothelial function. In conclusion, proinflammatory conditions of sepsis repress mRNA coding ADAMTS13 and the ameliorating effect by selenite and APC may support the concept for identification of beneficial mechanisms triggered by these drugs at a molecular level.

  7. Regulation of interleukin 3 mRNA expression in mast cells occurs at the posttranscriptional level and is mediated by calcium ions

    SciTech Connect

    Wodnar-Filipowicz, A.; Moroni, C. )

    1990-01-01

    Interleukin 3 (IL-3) is transiently produced by murine bone marrow-derived mast cells in response to antigen stimulation of the high-affinity immunoglobulin E receptors. The authors have studied the postreceptor signaling pathways involved in regulating expression of the IL-3 gene in the murine mass cell PB-3c. Large amounts of IL-3 mRNA accumulated after exposure of cells to calcium ionophore A23187, a reagent that increases intracellular Ca{sup 2+}. Phorbol 12-myristate 13-acetate, which stimulates protein kinase C, did not induce IL-3 mRNA accumulation, although it did potentiate the effect of A23187. Nuclear run-on analysis showed that the IL-3 gene is constitutively transcribed in unstimulated cells and that treatment with A23187 and/or phorbol ester has no influence on its transcription rate. The effect of A23187 was found to be due to stabilization of the IL-3 mRNA. In cells maintained in the presence of A23187 the IL-3 mRNA was stable during 3 hr of incubation with actinomycin D, whereas removal of A23187 under the same conditions resulted in rapid degradation of the mRNA. These results indicate that control of expression of the IL-3 gene in mast cells is primarily at the posttranscriptional level and that the Ca{sup 2+}-dependent signal-transduction pathway plays an important role in this process. Synthesis of granulocyte/macrophage colony-stimulating factor mRNA in response to A23187 and phorbol ester was found to be subject to both transcriptional and posttranscriptional regulation.

  8. Bixin regulates mRNA expression involved in adipogenesis and enhances insulin sensitivity in 3T3-L1 adipocytes through PPAR{gamma} activation

    SciTech Connect

    Takahashi, Nobuyuki; Goto, Tsuyoshi; Taimatsu, Aki; Egawa, Kahori; Katoh, Sota; Kusudo, Tatsuya; Sakamoto, Tomoya; Ohyane, Chie; Lee, Joo-Young; Kim, Young-il; Uemura, Taku; Hirai, Shizuka; Kawada, Teruo

    2009-12-25

    Insulin resistance is partly due to suppression of insulin-induced glucose uptake into adipocytes. The uptake is dependent on adipocyte differentiation, which is controlled at mRNA transcription level. The peroxisome proliferator-activated receptor (PPAR), a ligand-regulated nuclear receptor, is involved in the differentiation. Many food-derived compounds serve as ligands to activate or inactivate PPAR. In this study, we demonstrated that bixin and norbixin (annatto extracts) activate PPAR{gamma} by luciferase reporter assay using GAL4-PPAR chimera proteins. To examine the effects of bixin on adipocytes, 3T3-L1 adipocytes were treated with bixin or norbixin. The treatment induced mRNA expression of PPAR{gamma} target genes such as adipocyte-specific fatty acid-binding protein (aP2), lipoprotein lipase (LPL), and adiponectin in differentiated 3T3-L1 adipocytes and enhanced insulin-dependent glucose uptake. The observations indicate that bixin acts as an agonist of PPAR{gamma} and enhances insulin sensitivity in 3T3-L1 adipocytes, suggesting that bixin is a valuable food-derived compound as a PPAR ligand to regulate lipid metabolism and to ameliorate metabolic syndrome.

  9. Effects of long-term smoking on the activity and mRNA expression of CYP isozymes in rats

    PubMed Central

    He, Xiao-Meng; Zhou, Ying; Xu, Ming-Zhen; Li, Yang; Li, Hu-Qun

    2015-01-01

    Background To investigate the effect of long-term smoking on the activity and mRNA expression of cytochrome P450 (CYP) enzymes. Methods Sprague-Dawley rats were exposed to passive smoking 6 cigarettes per day for 180 days. A cocktail solution which contained phenacetin (20 mg/kg), tolbutamide (5 mg/kg), chlorzoxazone (20 mg/kg) and midazolam (10 mg/kg) was given orally to rats. Blood samples were collected at pre-specified time points and the concentrations of probe drugs in plasma were determined by HPLC-MS/MS. The corresponding pharmacokinetic parameters were calculated by DAS 3.0. In addition, real-time RT-PCR was used to analyze the mRNA expression of CYP1A2, CYP2C11, CYP2E1 and CYP3A1 in rat liver. Results There were no significant influences of pharmacokinetic profiles of chlorzoxazone in long-term smoking pretreated rats. But many pharmacokinetic profiles of phenacetin, tolbutamide, and midazolam in long-term smoking pretreated rats were affected significantly (P<0.05). The results suggested that long-term smoking had significant inhibition effects on CYP2C11 and CYP3A1 while CYP1A2 enzyme activity was induced. Furthermore, Long-term smoking had no effects on rat CYP2E1. The mRNA expression results were consistent with the pharmacokinetic results. Conclusions Alterations of CYP450 enzyme activities may fasten or slow down excretion with corresponding influence on drug efficacy or toxicity in smokers compared to nonsmokers, which may lead to clinical failures of lung cancer therapy or toxicity in smokers. PMID:26623094

  10. [Effects of arsenic trioxide or retinoic acid on mRNA and protein expression of tissue factor and thrombomodulin and procoagulant activity in NB4 cells].

    PubMed

    Zhang, Xiao-Hui; Hu, Yu; Hong, Mei; Xia, Ling-Hui; Guo, Tao; Shen, Guan-Xin; Wei, Wen-Ning; Song, Shan-Jun

    2007-04-01

    To investigate the effect of arsenic trioxide (As(2)O(3)) or all-trans retinoic acid (ATRA) on the mRNA and protein expression of tissue factor (TF) and thrombomodulin (TM) and procoagulant activity (PCA) in NB4 cells. The NB4 cells were cultured in vitro and treated with As(2)O(3) or ATRA, expression of TF and TM antigen, and PCA change of treated NB4 cells were detected with ELISA, TF and TM mRNA transcription on the NB4 cells was assayed with reversed transcription polymerase chain reaction (RT-PCR). The results showed that 1 micromol/L As(2)O(3) and 1 micromol/L ATRA both gradually downregulated the expression of TF antigen and mRNA on NB4 cells, a human promyelocytic leukemia cell line, in time-dependent manner, as compared with control. The levels of TF antigen expression in AS(2)O(3) group were 13.3 +/- 1.8, 8.6 +/- 1.9, 10.8 +/- 1.5, 2.0 +/- 0.6 and 2.6 +/- 0.9 ng/10(7) respectively; while the levels of TF antigen expression in ATRA group were 12.4 +/- 1.1, 11.3 +/- 1.8, 5.7 +/- 1.7, 2.8 +/- 0.8 and 2.0 +/- 0.6 ng/10(7) at 24, 48, 72, 96 and 120 hours respectively (P<0.05). The procoagulant activity (PCA) of NB4 cells was decreased, blood coagulation times were 123.5 +/- 10.5, 156.3 +/- 11.6, 179.3 +/- 15.3, 248.9 +/- 20.1, 312.0 +/- 29.8 seconds in As(2)O(3) groups, respectively; 76.4 +/- 5.6, 146.8 +/- 10.9, 198.2 +/- 15.6, 265.8 +/- 20.6 and 363.8 +/- 31.9 seconds in ATRA groups respectively at 24, 48, 72, 96 and 120 hours (P<0.05). ATRA upregulated TM antigen expression on NB4 cells. It is concluded that the As(2)O(3) and ATRA decrease mRNA transcription of TF, downregulate expression of TF and reduce procoagulant activity in NB4 cells. The TM transcription and expression upregulated by ATRA may alleviate dysfunction of coagulation in APL.

  11. Simulated microgravity reduces mRNA levels of multidrug resistance genes 4 and 5 in non-metastatic human melanoma cells

    NASA Astrophysics Data System (ADS)

    Eiermann, Peter; Tsiockas, Wasiliki; Hauslage, Jens; Hemmersbach, Ruth; Gerzer, Rupert; Ivanova, Krassimira

    Multidrug resistance proteins (MRP) are members of the ATP-binding cassette transporter superfamily that are able to export a large variety of substances into the extracellular space in-cluding nucleoside and nucleotide base analogs used in antiviral and anticancer therapy. MRP4 and 5 (MRP4/5) particularly transport cyclic nucleotides, e.g. guanosine 3',5'-cyclic monophos-phate (cGMP). The second messenger cGMP, which is synthesized by the catalytic activity of the guanylyl cyclase (GC), plays an import role in vasodilatation, smooth muscle relaxation, and nitric oxide (NO)-induced perturbation of melanocyte-extracellular matrix interactions. In previous studies we have reported that different GC isoforms are responsible for cGMP synthe-sis in melanocytic cells. Normal human melanocytes and non-metastatic melanoma cell lines predominantly express the NO-sensitive soluble GC isoform (sGC), a heterodimeric protein consisting of α and β subunits. Metastatic melanoma cells lack the expression of the β sub-unit and show up-regulated activities of the particulate isoforms. We have further found that long-term exposure to hypergravity (5 g for 24 h) induced an increased cGMP export in normal human melanocytes, and non-metastatic, but not in metastatic human melanoma cells as a re-sult of up-regulated MRP4/5 expression. The aim of the present study is to investigate whether simulated microgravity may also alter the expression of MRP4/5 in non-metastatic melanoma cells. Experiments were performed using a fast-rotating clinostat (60 rpm) with one rotation axis. The non-metastatic 1F6 melanoma cells were exposed to simulated microgravity (up to 1.21x10-2 g) for 24 h. The mRNA analyses were performed by a relative calibrator-normalized and efficiency corrected quantitative polymerase chain reaction (Light Cycler R , Roche). Our data show a reduced expression of approximately 35% for MRP4 and of 50% for MRP5 in simulated microgravity in comparison to 1 g controls. Also, the

  12. Translation of viral mRNA without active eIF2: the case of picornaviruses.

    PubMed

    Welnowska, Ewelina; Sanz, Miguel Angel; Redondo, Natalia; Carrasco, Luis

    2011-01-01

    Previous work by several laboratories has established that translation of picornavirus RNA requires active eIF2α for translation in cell free systems or after transfection in culture cells. Strikingly, we have found that encephalomyocarditis virus protein synthesis at late infection times is resistant to inhibitors that induce the phosphorylation of eIF2α whereas translation of encephalomyocarditis virus early during infection is blocked upon inactivation of eIF2α by phosphorylation induced by arsenite. The presence of this compound during the first hour of infection leads to a delay in the appearance of late protein synthesis in encephalomyocarditis virus-infected cells. Depletion of eIF2α also provokes a delay in the kinetics of encephalomyocarditis virus protein synthesis, whereas at late times the levels of viral translation are similar in control or eIF2α-depleted HeLa cells. Immunofluorescence analysis reveals that eIF2α, contrary to eIF4GI, does not colocalize with ribosomes or with encephalomyocarditis virus 3D polymerase. Taken together, these findings support the novel idea that eIF2 is not involved in the translation of encephalomyocarditis virus RNA during late infection. Moreover, other picornaviruses such as foot-and-mouth disease virus, mengovirus and poliovirus do not require active eIF2α when maximal viral translation is taking place. Therefore, translation of picornavirus RNA may exhibit a dual mechanism as regards the participation of eIF2. This factor would be necessary to translate the input genomic RNA, but after viral RNA replication, the mechanism of viral RNA translation switches to one independent of eIF2.

  13. CDK1-Cyclin B1 Activates RNMT, Coordinating mRNA Cap Methylation with G1 Phase Transcription

    PubMed Central

    Aregger, Michael; Kaskar, Aneesa; Varshney, Dhaval; Fernandez-Sanchez, Maria Elena; Inesta-Vaquera, Francisco A.; Weidlich, Simone; Cowling, Victoria H.

    2016-01-01

    Summary The creation of translation-competent mRNA is dependent on RNA polymerase II transcripts being modified by addition of the 7-methylguanosine (m7G) cap. The factors that mediate splicing, nuclear export, and translation initiation are recruited to the transcript via the cap. The cap structure is formed by several activities and completed by RNMT (RNA guanine-7 methyltransferase), which catalyzes N7 methylation of the cap guanosine. We report that CDK1-cyclin B1 phosphorylates the RNMT regulatory domain on T77 during G2/M phase of the cell cycle. RNMT T77 phosphorylation activates the enzyme both directly and indirectly by inhibiting interaction with KPNA2, an RNMT inhibitor. RNMT T77 phosphorylation results in elevated m7G cap methyltransferase activity at the beginning of G1 phase, coordinating mRNA capping with the burst of transcription that occurs following nuclear envelope reformation. RNMT T77 phosphorylation is required for the production of cohort of proteins, and inhibiting T77 phosphorylation reduces the cell proliferation rate. PMID:26942677

  14. Effects of nefiracetam on the levels of brain-derived neurotrophic factor and synapsin I mRNA and protein in the hippocampus of microsphere-embolized rats.

    PubMed

    Ando, Tsuyoshi; Takagi, Norio; Takagi, Keiko; Kago, Tomoyuki; Takeo, Satoshi

    2005-01-10

    Our recent study demonstrated that nefiracetam, N-(2,6-dimethylphenyl)-2-(2-oxo-1-pyrrolidinyl) acetamide, prevented impairment of the cyclic AMP (cAMP)/cAMP-responsive element binding (CREB) protein signaling pathway in sustained cerebral ischemia. The purpose of the present study was to determine whether nefiracetam has an effect on the expression of brain-derived neurotrophic factor (BDNF) and synapsin I mRNAs that are believed to be produced via CREB, and the alteration in their protein contents in the hippocampus after cerebral ischemia. Sustained cerebral ischemia was induced by injection of 700 microspheres into the right hemisphere of each rat. The rats were treated once daily with 10 mg/kg nefiracetam, p.o., from 15 h after the operation. Treatment with nefiracetam reduced the prolongation of the escape latency in the water maze test on days 7-9 after microsphere embolism-induced sustained cerebral ischemia, suggesting an improvement in the spatial learning function. Microsphere-embolized rats on day 5 showed decreases in BDNF and synapsin I mRNA levels and their protein contents in the ipsilateral hippocampus. Treatment with nefiracetam partially attenuated the decreases. These results suggest that enhancement of BDNF and synapsin I expression by nefiracetam treatment may be, at least in part, due to the improvement in the CREB binding activity, contributing to the prevention of learning and memory dysfunction after sustained cerebral ischemia.

  15. Different Relationship between hsp70 mRNA and hsp70 Levels in the Heat Shock Response of Two Salmonids with Dissimilar Temperature Preference

    PubMed Central

    Lewis, Mario; Götting, Miriam; Anttila, Katja; Kanerva, Mirella; Prokkola, Jenni M.; Seppänen, Eila; Kolari, Irma; Nikinmaa, Mikko

    2016-01-01

    The heat shock response (HSR) refers to the rapid production of heat shock proteins (hsps) in response to a sudden increase in temperature. Its regulation by heat shock factors is a good example of how gene expression is transcriptionally regulated by environmental stresses. In contrast, little is known about post-transcriptional regulation of the response. The heat shock response is often used to characterize the temperature tolerance of species with the rationale that whenever the response sets on, a species is approaching its lethal temperature. It has commonly been considered that an increase in hsp mRNA gives an accurate indication that the same happens to the protein level, but this need not be the case. With climate change, understanding the effects of temperature on gene expression of especially polar organisms has become imperative to evaluate how both biodiversity and commercially important species respond, since temperature increases are expected to be largest in polar areas. Here we studied the HSR of two phylogenetically related Arctic species, which differ in their temperature tolerance with Arctic charr having lower maximally tolerated temperature than Atlantic salmon. Arctic charr acclimated to 15°C and exposed to 7°C temperature increase for 30 min showed both an increase in hsp70 mRNA and hsp70 whereas in salmon only hsp70 mRNA increased. Our results indicate that the temperature for transcriptional induction of hsp can be different from the one required for a measurable change in inducible hsp level. The species with lower temperature tolerance, Arctic charr, are experiencing temperature stress already at the higher acclimation temperature, 15°C, as their hsp70 mRNA and hsp70 levels were higher, and they grow less than fish at 8°C (whereas for salmon the opposite is true). Consequently, charr experience more drastic heat shock than salmon. Although further studies are needed to establish the temperature range and length of exposure where hsp

  16. Different Relationship between hsp70 mRNA and hsp70 Levels in the Heat Shock Response of Two Salmonids with Dissimilar Temperature Preference.

    PubMed

    Lewis, Mario; Götting, Miriam; Anttila, Katja; Kanerva, Mirella; Prokkola, Jenni M; Seppänen, Eila; Kolari, Irma; Nikinmaa, Mikko

    2016-01-01

    The heat shock response (HSR) refers to the rapid production of heat shock proteins (hsps) in response to a sudden increase in temperature. Its regulation by heat shock factors is a good example of how gene expression is transcriptionally regulated by environmental stresses. In contrast, little is known about post-transcriptional regulation of the response. The heat shock response is often used to characterize the temperature tolerance of species with the rationale that whenever the response sets on, a species is approaching its lethal temperature. It has commonly been considered that an increase in hsp mRNA gives an accurate indication that the same happens to the protein level, but this need not be the case. With climate change, understanding the effects of temperature on gene expression of especially polar organisms has become imperative to evaluate how both biodiversity and commercially important species respond, since temperature increases are expected to be largest in polar areas. Here we studied the HSR of two phylogenetically related Arctic species, which differ in their temperature tolerance with Arctic charr having lower maximally tolerated temperature than Atlantic salmon. Arctic charr acclimated to 15°C and exposed to 7°C temperature increase for 30 min showed both an increase in hsp70 mRNA and hsp70 whereas in salmon only hsp70 mRNA increased. Our results indicate that the temperature for transcriptional induction of hsp can be different from the one required for a measurable change in inducible hsp level. The species with lower temperature tolerance, Arctic charr, are experiencing temperature stress already at the higher acclimation temperature, 15°C, as their hsp70 mRNA and hsp70 levels were higher, and they grow less than fish at 8°C (whereas for salmon the opposite is true). Consequently, charr experience more drastic heat shock than salmon. Although further studies are needed to establish the temperature range and length of exposure where hsp

  17. RNA/DNA ratio and LPL and MyoD mRNA expressions in muscle of Oreochromis niloticus fed with elevated levels of palm oil

    NASA Astrophysics Data System (ADS)

    Ayisi, Christian Larbi; Zhao, Jinliang

    2016-02-01

    Palm oil is of great potential as one of the sustainable alternatives to fish oil (FO) in aquafeeds. In this present study, five isonitrogenous diets (32% crude protein) with elevated palm oil levels of 0%, 2%, 4%, 6% and 8% were used during an 8-week feeding trial to evaluate its effects on RNA/DNA ratio and lipoprotein lipase (LPL) and MyoD mRNA expressions in muscle of Oreochromis niloticus. The results showed that RNA, DNA content as well as ratio of RNA to DNA were significantly affected ( P < 0.05), in each case the highest was recorded in fish group subjected to 6% palm oil level. There was a strong positive correlation between nucleic acid concentration (RNA concentration and RNA: DNA ratio) and specific growth rate (SGR), protein efficiency ratio (PER), while a negative correlation existed between nucleic acid concentration (RNA concentration and RNA: DNA ratio) and feed conversion ratio (FCR). The mRNA expressions of LPL and MyoD in muscle were not significantly affected by the different palm oil levels, although the highest expression was observed in fish fed with 6% palm oil level. There also existed a strong positive correlation between the mRNA expression of LPL, MyoD and SGR, PER, while their correlation with FCR was negative. In conclusion, elevated palm oil affected the RNA, DNA concentration as well as RNA/DNA ratio significantly, although the mRNA expression of LPL and MyoD were not affected significantly by elevated palm oil levels.

  18. Increased mRNA Levels of Sphingosine Kinases and S1P Lyase and Reduced Levels of S1P Were Observed in Hepatocellular Carcinoma in Association with Poorer Differentiation and Earlier Recurrence.

    PubMed

    Uranbileg, Baasanjav; Ikeda, Hitoshi; Kurano, Makoto; Enooku, Kenichiro; Sato, Masaya; Saigusa, Daisuke; Aoki, Junken; Ishizawa, Takeaki; Hasegawa, Kiyoshi; Kokudo, Norihiro; Yatomi, Yutaka

    2016-01-01

    Although sphingosine 1-phosphate (S1P) has been reported to play an important role in cancer pathophysiology, little is known about S1P and hepatocellular carcinoma (HCC). To clarify the relationship between S1P and HCC, 77 patients with HCC who underwent surgical treatment were consecutively enrolled in this study. In addition, S1P and its metabolites were quantitated by LC-MS/MS. The mRNA levels of sphingosine kinases (SKs), which phosphorylate sphingosine to generate S1P, were increased in HCC tissues compared with adjacent non-HCC tissues. Higher mRNA levels of SKs in HCC were associated with poorer differentiation and microvascular invasion, whereas a higher level of SK2 mRNA was a risk factor for intra- and extra-hepatic recurrence. S1P levels, however, were unexpectedly reduced in HCC compared with non-HCC tissues, and increased mRNA levels of S1P lyase (SPL), which degrades S1P, were observed in HCC compared with non-HCC tissues. Higher SPL mRNA levels in HCC were associated with poorer differentiation. Finally, in HCC cell lines, inhibition of the expression of SKs or SPL by siRNA led to reduced proliferation, invasion and migration, whereas overexpression of SKs or SPL enhanced proliferation. In conclusion, increased SK and SPL mRNA expression along with reduced S1P levels were more commonly observed in HCC tissues compared with adjacent non-HCC tissues and were associated with poor differentiation and early recurrence. SPL as well as SKs may be therapeutic targets for HCC treatment.

  19. Birth Order and Activity Level in Children.

    ERIC Educational Resources Information Center

    Eaton, Warren O.; And Others

    1989-01-01

    Studied 7,018 children between birth and 7 years and 81 children of 5-8 years to test the hypothesis that birth order is negatively related to motor activity level. Activity level declined linearly across birth position, so that early-borns were rated as more active than later-borns. (RJC)

  20. Differential in vitro phenotype pattern, transforming growth factor-beta(1) activity and mRNA expression of transforming growth factor-beta(1) in Apert osteoblasts.

    PubMed

    Locci, P; Baroni, T; Pezzetti, F; Lilli, C; Marinucci, L; Martinese, D; Becchetti, E; Calvitti, M; Carinci, F

    1999-09-01

    The phenotype of Apert osteoblasts differs from that of normal osteoblasts in the accumulation of macromolecules in the extracellular matrix. Apert osteoblasts increase type I collagen, fibronectin and glycosaminoglycans secretion compared with normal osteoblasts. Because the extracellular matrix macromolecule accumulation is greatly modulated by transforming growth factor-beta(1), we examined the ability of normal and Apert osteoblasts to secrete transforming growth factor-beta(1) by CCL-64 assay and to produce transforming growth factor-beta(1 )by analysis of the mRNA expression of transforming growth factor-beta(1). Northern blot analysis revealed an increased amount of transforming growth factor-beta(1) mRNA expression in Apert osteoblasts compared with normal ones. Moreover, the level of the active transforming growth factor-beta(1) isoform was higher in Apert than in normal media. In pathologic cells, the increase in transforming growth factor-beta(1) gene expression was associated with a parallel increase in the factor secreted into the medium. The level of transforming growth factor-beta(1) was decreased by the addition of basic fibroblast growth factor. Transforming growth factor-beta(1) is controlled temporally and spatially during skeletal tissue development and produces complex stimulatory and inhibitory changes in osteoblast functions. We hypothesise that in vitro differences between normal and Apert osteoblasts may be correlated to different transforming growth factor-beta(1) cascade patterns, probably due to an altered balance between transforming growth factor-beta(1) and basic fibroblast growth factor.

  1. Temperature-sensitive polymer-conjugated IFN-gamma induces the expression of IDO mRNA and activity by fibroblasts populated in collagen gel (FPCG).

    PubMed

    Sarkhosh, Kourosh; Tredget, Edward E; Uludag, Hasan; Kilani, Ruhangiz T; Karami, Ali; Li, Yunyuan; Iwashina, Takashi; Ghahary, Aziz

    2004-10-01

    Indoleamine 2,3-dioxygenase (IDO) is an intracellular tryptophan-catabolizing enzyme possessing various immunosuppressive properties. Here, we report the use of this enzyme to suppress the proliferation of peripheral blood mononuclear cells (PBMC) co-cultured with IDO-expressing fibroblasts of an allogeneic skin substitute in vitro. Fetal foreskin fibroblasts populated within collagen gel (FPCG) were treated with interferon-gamma (IFN-gamma) conjugated with a temperature-sensitive polymer to induce the expression of IDO mRNA and protein. SDS-PAGE showed successful conjugation of IFN-gamma with the temperature-sensitive polymer. Expression of IDO mRNA was evaluated by Northern analysis. IDO enzyme activity was evaluated by the measurement of kynurenine levels. The results of Northern blot analysis showed an induction of IDO mRNA expression when treated with polymer-conjugated IFN-gamma. Kynurenine levels, as a measure of IDO bioactivity, were significantly higher in IFN-gamma-treated fibroblasts than in controls (P < 0.001). In a lasting effect experiment, the expression of IDO mRNA in FPCG treated with polymer-conjugated IFN-gamma was significantly longer than in those treated with free (non-conjugated) IFN-gamma (P < 0.001). IFN-gamma radiolabeling showed a prolonged retention of IFN-gamma within collagen gel in its polymer-conjugated form, compared to its free form. Presence of IDO protein in FPCG was demonstrated by Western analysis even 16 days after removal of the conditioned medium (containing released IFN-gamma). To demonstrate the immunosuppressive effects of IDO on the proliferation of PBMC, IDO-expressing FPCG treated with polymer-conjugated IFN-gamma were co-cultured with PBMC for a period of 5 days. The results showed a significant reduction in proliferation of PBMC co-cultured with IFN-gamma-treated IDO-expressing fibroblasts, compared to those co-cultured with non-IDO-expressing fibroblasts (P < 0.001). The addition of an IDO inhibitor (1-methyl

  2. Rat long-chain acyl-CoA synthetase mRNA, protein, and activity vary in tissue distribution and in response to diet.

    PubMed

    Mashek, Douglas G; Li, Lei O; Coleman, Rosalind A

    2006-09-01

    Distinct isoforms of long-chain acyl-CoA synthetases (ACSLs) may partition fatty acids toward specific metabolic cellular pathways. For each of the five members of the rat ACSL family, we analyzed tissue mRNA distributions, and we correlated the mRNA, protein, and activity of ACSL1 and ACSL4 after fasting and refeeding a 69% sucrose diet. Not only did quantitative real-time PCR analyses reveal unique tissue expression patterns for each ACSL isoform, but expression varied markedly in different adipose depots. Fasting increased ACSL4 mRNA abundance in liver, muscle, and gonadal and inguinal adipose tissues, and refeeding decreased ACSL4 mRNA. A similar pattern was observed for ACSL1, but both fasting and refeeding decreased ACSL1 mRNA in gonadal adipose. Fasting also decreased ACSL3 and ACSL5 mRNAs in liver and ACSL6 mRNA in muscle. Surprisingly, in nearly every tissue measured, the effects of fasting and refeeding on the mRNA abundance of ACSL1 and ACSL4 were discordant with changes in protein abundance. These data suggest that the individual ACSL isoforms are distinctly regulated across tissues and show that mRNA expression may not provide useful information about isoform function. They further suggest that translational or posttranslational modifications are likely to contribute to the regulation of ACSL isoforms.

  3. Human peroxisome proliferator-activated receptor mRNA and protein expression during development

    EPA Science Inventory

    The peroxisome proliferator-activated receptors (PPAR) are nuclear hormone receptors that regulate lipid and glucose homeostasis and are important in reproduction and development. PPARs are targets ofpharmaceuticals and are also activated by environmental contaminants, including ...

  4. High level of full-length cereblon mRNA in lower risk myelodysplastic syndrome with isolated 5q deletion is implicated in the efficacy of lenalidomide.

    PubMed

    Jonasova, Anna; Bokorova, Radka; Polak, Jaroslav; Vostry, Martin; Kostecka, Arnost; Hajkova, Hana; Neuwirtova, Radana; Siskova, Magda; Sponerova, Dana; Cermak, Jaroslav; Mikulenkova, Dana; Cervinek, Libor; Brezinova, Jana; Michalova, Kyra; Fuchs, Ota

    2015-07-01

    Downregulation of cereblon (CRBN) gene expression is associated with resistance to the immunomodulatory drug lenalidomide and poor survival outcomes in multiple myeloma (MM) patients. However, the importance of CRBN gene expression in patients with myelodysplastic syndrome (MDS) and its impact on lenalidomide therapy are not clear. In this study, we evaluate cereblon expression in mononuclear cells isolated from bone marrow [23 lower risk MDS patients with isolated 5q deletion (5q-), 37 lower risk MDS patients with chromosome 5 without the deletion of long arms (non-5q-), and 24 healthy controls] and from peripheral blood (38 patients with 5q-, 52 non-5q- patients and 25 healthy controls) to gain insight into, firstly, the role of cereblon in lower risk MDS patients with or without 5q deletion and, secondly, into the mechanisms of lenalidomide action. Patients with 5q- lower risk MDS have the highest levels of CRBN mRNA in comparison with both lower risk MDS without the deletion of long arms of chromosome 5 and healthy controls. CRBN gene expression was measured using the quantitative TaqMan real-time PCR. High levels of CRBN mRNA were detected in all lenalidomide responders during the course of therapy. A significant decrease of the CRBN mRNA level during lenalidomide treatment is associated with loss of response to treatment and disease progression. These results suggest that, similar to the treatment of MM, high levels of full-length CRBN mRNA in lower risk 5q- patients are necessary for the efficacy of lenalidomide.

  5. Tris(2-butoxyethyl)phosphate and triethyl phosphate alter embryonic development, hepatic mRNA expression, thyroid hormone levels, and circulating bile acid concentrations in chicken embryos

    SciTech Connect

    Egloff, Caroline; Crump, Doug; Porter, Emily; Williams, Kim L.; Letcher, Robert J.; Gauthier, Lewis T.; Kennedy, Sean W.

    2014-09-15

    The organophosphate flame retardants tris(2-butoxyethyl) phosphate (TBOEP) and triethyl phosphate (TEP) are used in a wide range of applications to suppress or delay the ignition and spread of fire. Both compounds have been detected in the environment and TBOEP was recently measured in free-living avian species. In this study, TBOEP and TEP were injected into the air cell of chicken embryos at concentrations ranging from 0 to 45,400 ng/g and 0 to 241,500 ng/g egg, respectively. Pipping success, development, hepatic mRNA expression of 9 target genes, thyroid hormone levels, and circulating bile acid concentrations were determined. Exposure to the highest doses of TBOEP and TEP resulted in negligible detection of the parent compounds in embryonic contents at pipping indicating their complete metabolic degradation. TBOEP exposure had limited effects on chicken embryos, with the exception of hepatic CYP3A37 mRNA induction. TEP exposure decreased pipping success to 68%, altered growth, increased liver somatic index (LSI) and plasma bile acids, and modulated genes associated with xenobiotic and lipid metabolism and the thyroid hormone pathway. Plasma thyroxine levels were decreased at all TEP doses, including an environmentally-relevant concentration (8 ng/g), and gallbladder hypotrophy was evident at ≥ 43,200 ng/g. Tarsus length and circulating thyroxine concentration emerged as potential phenotypic anchors for the modulation of transthyretin mRNA. The increase in plasma bile acids and LSI, gallbladder hypotrophy, and discoloration of liver tissue represented potential phenotypic outcomes associated with modulation of hepatic genes involved with xenobiotic and lipid metabolism. - Highlights: • TBOEP is not embryolethal to chicken embryos. • TEP affected embryonic viability, morphometric endpoints, and thyroid hormone levels. • TEP altered mRNA levels of xenobiotic and lipid metabolism genes. • TEP increased plasma bile acids and caused gallbladder hypotrophy

  6. Correlation of Cyfra 21-1 levels in saliva and serum with CK19 mRNA expression in oral squamous cell carcinoma.

    PubMed

    Malhotra, Rewa; Urs, Aadithya B; Chakravarti, Anita; Kumar, Suman; Gupta, V K; Mahajan, Bhawna

    2016-07-01

    Oral squamous cell carcinoma (OSCC) accounts for 90 % of malignant lesions of oral cavity. The study assessed the potential of Cyfra 21-1 as a tumor marker in OSCC. The study included 50 patients of OSCC to evaluate levels of Cyfra 21-1 in serum and saliva by electrochemiluminescent immunoassay (ECLIA) and CK19 messenger RNA (mRNA) expression in tissue by florescent quantitative real-time reverse transcriptase polymerase chain reaction (RT-PCR) along with healthy individuals as control. The salivary and serum Cyfra 21-1 levels in patients of OSCC were significantly higher compared to controls (p value < 0.01). There was a 2.75-fold increase in CK19 mRNA expression in OSCC cases compared to controls. A significant positive correlation was found between serum and salivary Cyfra 21-1, serum Cyfra 21-1, and CK19 mRNA expression and between salivary Cyfra 21-1 and CK19 mRNA expression. Among these, correlation between serum and salivary Cyfra 21-1 was highly significant. Salivary and serum Cyfra 21-1 showed significantly elevated levels in grade II OSCC compared to grade I histopathologically. Elevated levels of salivary Cyfra 21-1 were associated with recurrence in OSCC patients. Reverse operating curve constructed using 3 ng/ml as a cutoff for serum Cyfra 21-1 revealed the sensitivity and specificity to be 88 and 78.2 %, respectively. Using a cutoff value of 8.5 ng/ml for salivary Cyfra 21-1, the sensitivity was found to be 93.8 % and specificity 84.3 %. We advocate salivary Cyfra 21-1 as a better diagnostic marker over serum Cyfra 21-1 as well as a potential marker in the prognosis of OSCC.

  7. Modulation of DNA repair capacity and mRNA expression levels of XRCC1, hOGG1 and XPC genes in styrene-exposed workers

    SciTech Connect

    Hanova, Monika; Stetina, Rudolf; Vodickova, Ludmila; Vaclavikova, Radka; Hlavac, Pavel; Smerhovsky, Zdenek; Naccarati, Alessio; Polakova, Veronika; Soucek, Pavel; Kuricova, Miroslava; Manini, Paola; Kumar, Rajiv; Hemminki, Kari; Vodicka, Pavel

    2010-11-01

    Decreased levels of single-strand breaks in DNA (SSBs), reflecting DNA damage, have previously been observed with increased styrene exposure in contrast to a dose-dependent increase in the base-excision repair capacity. To clarify further the above aspects, we have investigated the associations between SSBs, micronuclei, DNA repair capacity and mRNA expression in XRCC1, hOGG1 and XPC genes on 71 styrene-exposed and 51 control individuals. Styrene concentrations at workplace and in blood characterized occupational exposure. The workers were divided into low (below 50 mg/m{sup 3}) and high (above 50 mg/m{sup 3}) styrene exposure groups. DNA damage and DNA repair capacity were analyzed in peripheral blood lymphocytes by Comet assay. The mRNA expression levels were determined by qPCR. A significant negative correlation was observed between SSBs and styrene concentration at workplace (R = - 0.38, p = 0.001); SSBs were also significantly higher in men (p = 0.001). The capacity to repair irradiation-induced DNA damage was the highest in the low exposure group (1.34 {+-} 1.00 SSB/10{sup 9} Da), followed by high exposure group (0.72 {+-} 0.81 SSB/10{sup 9} Da) and controls (0.65 {+-} 0.82 SSB/10{sup 9} Da). The mRNA expression levels of XRCC1, hOGG1 and XPC negatively correlated with styrene concentrations in blood and at workplace (p < 0.001) and positively with SSBs (p < 0.001). Micronuclei were not affected by styrene exposure, but were higher in older persons and in women (p < 0.001). In this study, we did not confirm previous findings on an increased DNA repair response to styrene-induced genotoxicity. However, negative correlations of SSBs and mRNA expression levels of XRCC1, hOGG1 and XPC with styrene exposure warrant further highly-targeted study.

  8. Noise Stress-Induced Changes in mRNA Levels of Corticotropin-Releasing Hormone Family Molecules and Glucocorticoid Receptors in the Rat Brain.

    PubMed

    Eraslan, E; Akyazi, İ; Ergül-Ekiz, E; Matur, E

    2015-01-01

    Noise is a widespread stress resource that may lead to detrimental effects on the health. However, the molecular basis of the stress response caused by noise remains elusive. We have studied the effects of acute and chronic noise stress on stress-related molecules in the hypothalamus and hippocampus and also corticosterone responses. Sprague Dawley rats were randomized into control, acute and chronic noise stress groups. While the chronic noise stress group animals were exposed to 100 dB white noise for 4 h/a day during 30 days, the acute noise stress group of animals was exposed to the same level of stress once for 4 h. The expression profiles of corticotropin releasing hormone (CRH), CRH1, CRH2 receptors and glucocorticoid receptor (GR) mRNAs were analysed by RT-PCR. Chronic noise stress upregulated CRH mRNA levels in the hypothalamus. Both acute and chronic noise increased CRH-R1 mRNA in the hypothalamus but decreased it in the hippocampus. GR mRNA levels were decreased by chronic noise stress in the hippocampus. The present results suggest that while corticosterone responses have habituated to continuous noise stress, the involvement of CRH family molecules and glucocorticoid receptors in the noise stress responses are different and structure specific.

  9. Developmental changes in the hypothalamic mRNA expression levels of brain-derived neurotrophic factor and serum leptin levels: Their responses to fasting in male and female rats.

    PubMed

    Iwasa, Takeshi; Matsuzaki, Toshiya; Yano, Kiyohito; Munkhzaya, Munkhsaikhan; Tungalagsuvd, Altankhuu; Yiliyasi, Maira; Kuwahara, Akira; Irahara, Minoru

    2016-11-01

    The actions and responses of hypothalamic appetite regulatory factors change markedly during the neonatal to pre-pubertal period in order to maintain appropriate metabolic and nutritional conditions. In this study, we examined the developmental changes in the hypothalamic mRNA levels of brain-derived neurotrophic factor (BDNF), which is a potent anorectic factor and the changes in the sensitivity of the hypothalamic expression of this factor to fasting during the neonatal to pre-pubertal period. Under fed conditions, hypothalamic BDNF mRNA expression decreased during development in both male and female rats. Similarly, the serum levels of leptin, which is a positive regulator of hypothalamic BDNF expression, also tended to fall during the developmental period. The serum leptin level and the hypothalamic BDNF mRNA level were found to be positively correlated in both sexes under the fed conditions. Hypothalamic BDNF mRNA expression was decreased by 24h fasting (separating the rats from their mothers) in the early neonatal period (postnatal day 10) in both males and females, but no such changes were seen at postnatal day 20. Twenty-four hours' fasting (food deprivation) did not affect hypothalamic BDNF mRNA expression in the pre-pubertal period (postnatal day 30). On the other hand, the rats' serum leptin levels were decreased by 24h fasting (separating the rats from their mothers at postnatal day 10 and 20, and food deprivation at postnatal day 30) throughout the early neonatal to pre-pubertal period. The correlation between serum leptin and hypothalamic BDNF mRNA levels was not significant under the fasted conditions. It can be speculated that leptin partially regulates hypothalamic BDNF mRNA levels, but only in fed conditions. Such changes in hypothalamic BDNF expression might play a role in maintaining appropriate metabolic and nutritional conditions and promoting normal physical development. In addition, because maternal separation induces a negative energy

  10. Probiotics Differently Affect Gut-Associated Lymphoid Tissue Indolamine-2,3-Dioxygenase mRNA and Cerebrospinal Fluid Neopterin Levels in Antiretroviral-Treated HIV-1 Infected Patients: A Pilot Study

    PubMed Central

    Scagnolari, Carolina; Corano Scheri, Giuseppe; Selvaggi, Carla; Schietroma, Ivan; Najafi Fard, Saeid; Mastrangelo, Andrea; Giustini, Noemi; Serafino, Sara; Pinacchio, Claudia; Pavone, Paolo; Fanello, Gianfranco; Ceccarelli, Giancarlo; Vullo, Vincenzo; d’Ettorre, Gabriella

    2016-01-01

    Recently the tryptophan pathway has been considered an important determinant of HIV-1 infected patients’ quality of life, due to the toxic effects of its metabolites on the central nervous system (CNS). Since the dysbiosis described in HIV-1 patients might be responsible for the microbial translocation, the chronic immune activation, and the altered utilization of tryptophan observed in these individuals, we speculated a correlation between high levels of immune activation markers in the cerebrospinal fluid (CSF) of HIV-1 infected patients and the over-expression of indolamine-2,3-dioxygenase (IDO) at the gut mucosal surface. In order to evaluate this issue, we measured the levels of neopterin in CSF, and the expression of IDO mRNA in gut-associated lymphoid tissue (GALT), in HIV-1-infected patients on effective combined antiretroviral therapy (cART), at baseline and after six months of probiotic dietary management. We found a significant reduction of neopterin and IDO mRNA levels after the supplementation with probiotic. Since the results for the use of adjunctive therapies to reduce the levels of immune activation markers in CSF have been disappointing so far, our pilot study showing the efficacy of this specific probiotic product should be followed by a larger confirmatory trial. PMID:27689995

  11. Dietary gamma-linolenic acid in the form of borage oil causes less body fat accumulation accompanying an increase in uncoupling protein 1 mRNA level in brown adipose tissue.

    PubMed

    Takahashi, Y; Ide, T; Fujita, H

    2000-10-01

    Rats were fed a low-fat diet containing 2% safflower oil or 20% fat diets containing either safflower oil rich in linoleic acid, borage oil containing 25% gamma (gamma)-linolenic acid or enzymatically prepared gamma-linolenic acid enriched borage oil containing 47% gamma-linolenic acid for 14 days. Energy intake and growth of animals were the same among groups. A high safflower oil diet compared with a low-fat diet caused significant increases in both epididymal and perirenal white adipose tissue weights. However, high-fat diets rich in gamma-linolenic acid failed to do so. Compared with a low-fat diet, all the high-fat diets increased mRNA levels of uncoupling protein 1 and lipoprotein lipase in brown adipose tissue. The extents of the increase were greater with high-fat diets rich in gamma-linolenic acid. Various high-fat diets, compared with a low-fat diet, decreased glucose transporter 4 mRNA in white adipose tissue to the same levels. The amount and types of dietary fat did not affect the leptin mRNA level in epididymal white adipose tissue. However, a high safflower oil diet, but not high-fat diets rich in gamma-linolenic acid relative to a low-fat diet, increased perirenal white adipose tissue leptin mRNA levels. All high-fat diets, relative to a low-fat diet, increased the hepatic mitochondrial fatty acid oxidation rate and fatty acid oxidation enzyme mRNA abundances to the same levels. High-fat diets also increased these parameters in the peroxisomal pathway, and the increases were greater with high-fat diets rich in gamma-linolenic acid. The physiological activity in increasing brown adipose tissue gene expression and peroxisomal fatty acid oxidation was similar between the two types of borage oil differing in gamma-linolenic acid content. It was suggested that dietary gamma-linolenic acid attenuates body fat accumulation through the increase in gene expressions of uncoupling protein 1 in brown adipose tissue. An increase in hepatic peroxisomal fatty acid

  12. Hindbrain lactostasis regulates hypothalamic AMPK activity and metabolic neurotransmitter mRNA and protein responses to hypoglycemia.

    PubMed

    Gujar, Amit D; Ibrahim, Baher A; Tamrakar, Pratistha; Cherian, Ajeesh Koshy; Briski, Karen P

    2014-04-01

    Nerve cell metabolic activity is monitored in multiple brain regions, including the hypothalamus and hindbrain dorsal vagal complex (DVC), but it is unclear if individual metabolosensory loci operate autonomously or interact to coordinate central nervous system (CNS) reactivity to energy imbalance. This research addressed the hypothesis that hypoglycemia-associated DVC lactoprivation stimulates hypothalamic AMPK activity and metabolic neurotransmitter expression. As DVC catecholaminergic neurons express biomarkers for metabolic monitoring, we investigated whether these cells are a source of lactate deficit signaling to the hypothalamus. Caudal fourth ventricle (CV4) infusion of the glucose metabolite l-lactate during insulin-induced hypoglycemia reversed changes in DVC A2 noradrenergic, arcuate neuropeptide Y (NPY) and pro-opiomelanocortin (POMC), and lateral hypothalamic orexin-A (ORX) neuronal AMPK activity, coincident with exacerbation of hypoglycemia. Hindbrain lactate repletion also blunted hypoglycemic upregulation of arcuate NPY mRNA and protein. This treatment did not alter hypoglycemic paraventricular oxytocin (OT) and lateral hypothalamic ORX mRNA profiles, but exacerbated or reversed adjustments in OT and ORX neuropeptide synthesis, respectively. CV4 delivery of the monocarboxylate transporter inhibitor, 4-CIN, increased A2 phosphoAMPK (pAMPK), elevated circulating glucose, and stimulated feeding, responses that were attenuated by 6-hydroxydopamine pretreatment. 4-CIN-infused rats exhibited increased (NPY, ORX neurons) or decreased (POMC neurons) pAMPK concurrent with hyperglycemia. These data show that hindbrain lactoprivic signaling regulates hypothalamic AMPK and key effector neurotransmitter responses to hypoglycemia. Evidence that A2 AMPK activity is lactate-dependent, and that DVC catecholamine cells are critical for lactoprivic control of glucose, feeding, and hypothalamic AMPK, implies A2 derivation of this metabolic regulatory stimulus.

  13. Effect of hyperosmotic conditions on flavin-containing monooxygenase activity, protein and mRNA expression in rat kidney

    PubMed Central

    Rodríguez-Fuentes, Gabriela; Coburn, Cary; Currás-Collazo, Margarita; Guillén, Gabriel; Schlenk, Daniel

    2010-01-01

    Flavin-containing monooxigenases (FMOs) are a polymorphic family of drug and pesticide metabolizing enzymes, found in the smooth endoplasmatic reticulum that catalyze the oxidation of soft nucleophilic heteroatom substances to their respective oxides. Previous studies in euryhaline fishes have indicated induction of FMO expression and activity in vivo under hyperosmotic conditions. In this study we evaluated the effect of hypersaline conditions in rat kidney. Male Sprague–Dawley rats were injected intraperitoneal with 3.5 M NaCl at a doses ranging from 0.3 cm3/100 g to 0.6 cm3/100 g in two separate treatments. Three hours after injection, FMO activities and FMO1 protein was examined in the first experiment, and the expression of FMO1 mRNA was measured in the second experiment from kidneys after treatment with NaCl. A positive significant correlation was found between FMO1 protein expression and plasma osmolarity (p < 0.05, r = 0.6193). Methyl-p-tolyl sulfide oxidase showed a statistically significant increase in FMO activity, and a positive correlation was observed between plasma osmolarity and production of FMO1-derived (R)-methyl-p-tolyl sulfoxide (p < 0.05, r = 0.6736). Expression of FMO1 mRNA was also positively correlated with plasma osmolality (p < 0.05, r = 0.8428). Similar to studies in fish, these results suggest that expression and activities of FMOs may be influenced by hyperosmotic conditions in the kidney of rats. PMID:19429252

  14. Brain region specific alterations in the protein and mRNA levels of protein kinase A subunits in the post-mortem brain of teenage suicide victims.

    PubMed

    Pandey, Ghanshyam N; Dwivedi, Yogesh; Ren, Xinguo; Rizavi, Hooriyah S; Mondal, Amal C; Shukla, Pradeep K; Conley, Robert R

    2005-08-01

    Protein kinase A (PKA), a critical component of the adenylyl cyclase signaling system, phosphorylates crucial proteins and has been implicated in the pathophysiology of depression and suicide. The objective of the study was to examine if changes in PKA activity or in the protein and messenger RNA (mRNA) expression of any of its subunits are related to the pathophysiology of teenage suicide. We determined PKA activity and the protein and mRNA expression of different subunits of PKA in cytosol and membrane fractions obtained from the prefrontal cortex, (PFC) hippocampus, and nucleus accumbens (NA) of post-mortem brain from 17 teenage suicide victims and 17 nonpsychiatric control subjects. PKA activity was significantly decreased in the PFC but not the hippocampus of teenage suicide victims as compared with controls. However, the protein and mRNA expression of only two PKA subunits, that is, PKA RIalpha and PKA RIbeta, but not any other subunits were significantly decreased in both membrane and cytosol fractions of the PFC and protein expression of RIalpha and RIbeta in the NA of teenage suicide victims as compared to controls. A decrease in protein and mRNA expression of two specific PKA subunits may be associated with the pathogenesis of teenage suicide, and this decrease may be brain region specific, which may be related to the specific behavioral functions associated with these brain areas. Whether these changes in PKA subunits are related to suicidal behavior or are a result of suicide or are specific to suicide is not clear at this point.

  15. Changes in growth, carbon and nitrogen enzyme activity and mRNA accumulation in the halophilic microalga Dunaliella viridis in response to NaCl stress

    NASA Astrophysics Data System (ADS)

    Wang, Dongmei; Wang, Weiwei; Xu, Nianjun; Sun, Xue

    2016-12-01

    Many species of microalga Dunaliella exhibit a remarkable tolerance to salinity and are therefore ideal for probing the effects of salinity. In this work, we assessed the effects of NaCl stress on the growth, activity and mRNA level of carbon and nitrogen metabolism enzymes of D. viridis. The alga could grow over a salinity range of 0.44 mol L-1 to 3.00 mol L-1 NaCl, but the most rapid growth was observed at 1.00 mol L-1 NaCl, followed by 2.00 mol L-1 NaCl. Paralleling these growth patterns, the highest initial and total Rubisco activities were detected in the presence of 1.00 mol L-1 NaCl, decreasing to 37.33% and 26.39% of those values, respectively, in the presence of 3.00 mol L-1 NaCl, respectively. However, the highest extracellular carbonic anhydrase (CA) activity was measured in the presence of 2.00 mol L-1 NaCl, followed by 1.00 mol L-1 NaCl. Different from the two carbon enzymes, nitrate reductase (NR) activity showed a slight change under different NaCl concentrations. At the transcriptional level, the mRNAs of Rubisco large subunit ( rbcL), and small subunit ( rbcS), attained their highest abundances in the presence of 1.00 and 2.00 mol L-1 NaCl, respectively. The CA mRNA accumulation was induced from 0.44 mol L-1 to 3.00 mol L-1 NaCl, but the NR mRNA showed the decreasing tendency with the increasing salinity. In conclusion, the growth and carbon fixation enzyme of Rubisco displayed similar tendency in response to NaCl stress, CA was proved be salt-inducible within a certain salinity range and NR showed the least effect by NaCl in D. viridis.

  16. Modified mRNA for BMP-2 in Combination with Biomaterials Serves as a Transcript-Activated Matrix for Effectively Inducing Osteogenic Pathways in Stem Cells.

    PubMed

    Balmayor, Elizabeth R; Geiger, Johannes P; Koch, Christian; Aneja, Manish K; van Griensven, Martijn; Rudolph, Carsten; Plank, Christian

    2017-01-01

    Bone regeneration using stem cells and growth factors has disadvantages while needing to use supraphysiological growth factors concentrations. Gene therapy has been proposed as alternative, but also has limitation. Messenger RNA (mRNA)-based transcript therapy is a novel approach that may solve plasmid DNA-based gene therapy limitations. Although much more efficient in delivering genes into the cell, mRNA is unfortunately unstable and immunogenic. However, recent reports indicated that chemical modifications of the mRNA molecule can improve stability and toxicity. In this study, we have combined biomaterials and chemically modified mRNA (cmRNA) encoding Metridia luciferase, eGFP, and bone morphogenetic protein (BMP)-2 to develop transcript-activated matrices (TAMs) for gene transfer to stem cells. BMP-2 cmRNA was produced to evaluate its feasibility in stimulating osteogenic differentiation. Fibrin gel and micro-macro biphasic calcium phosphate (MBCP) granules were used as biomaterials. A sustained release of hBMP-2 cmRNA from both biomaterials was observed during 7 days. This occurred significantly faster from the MBCP granules compared to fibrin gels (92% from MBCP and 43% from fibrin after 7 days). Stem cells cultured in hBMP-2 cmRNA/fibrin or on hBMP-2 cmRNA/MBCP were transfected and able to secrete significant amounts of hBMP-2. Furthermore, transfected cells expressed osteogenic markers in vitro. Interestingly, although both TAMs promoted gene expression at the same level, hBMP-2 cmRNA/MBCP granules induced significantly higher collagen I and osteocalcin gene expression. This matrix also induced more mineral deposition. Overall, our results demonstrated the feasibility of developing efficient TAMs for bone regeneration by combining biomaterials and cmRNAs. MBCP synergistically enhances the hBMP-2 cmRNA-induced osteogenic pathway.

  17. Simultaneous exposure of excess fluoride and calcium deficiency alters VDR, CaR, and calbindin D 9 k mRNA levels in rat duodenal mucosa.

    PubMed

    Tiwari, S; Gupta, S K; Kumar, K; Trivedi, R; Godbole, M M

    2004-10-01

    Fluoride ingestion reduces intestinal calcium absorption; its molecular basis has not been studied. We studied the mRNA expression of calcium-sensing receptor (CaR), vitamin D receptor (VDR) and calbindin D 9 k (D 9 k) by northern blot analysis in the duodenal mucosa of rats. Weanling pups fed with chow diet containing adequate calcium (0.5% w/w) and drinking water (NaF < 1 ppm) served as controls (Group I) and were studied at 9 and 15 weeks. The pups, born to rats fed with a calcium-deficient diet (0.03%) and excess fluoride water (NaF 50 ppm), were continued on the same diet and water (Group II) until 9 weeks of age. Subsequently, Group II rats were divided into 4 subgroups; 3 subgroups with fluoride free water [II-A adequate calcium, II-B excess calcium (Ca 2%) and II-D calcium deficient], whereas II-C received fluorinated water and adequate calcium diet until 15 weeks. At 9 weeks, as compared to group-I, group-II had decreased VDR (P < 0.001) and D 9 k mRNA (P < 0.001), whereas CaR mRNA levels increased (P < 0.05). At 15 weeks, as compared to group-I, VDR mRNA further reduced in group II-D (P < 0.001) and II-C (P < 0.001), whereas it increased in group II-A. Removal of fluoride ingestion and calcium replenishment increased D 9 k mRNA expression, maximally in adequate calcium group (P < 0.001), while it was further reduced in group II-C (P < 0.001). CaR expression decreased significantly in all the groups. We conclude that excess fluoride reduces the mRNA levels of VDR and D 9 k in the duodenal mucosa of rats, thereby possibly reducing calcium absorption. Calcium supplementation with simultaneous fluoride removal improves their expression.

  18. P2X7 receptors in body temperature, locomotor activity, and brain mRNA and lncRNA responses to sleep deprivation.

    PubMed

    Davis, Christopher J; Taishi, Ping; Honn, Kimberly A; Koberstein, John N; Krueger, James M

    2016-12-01

    The ionotropic purine type 2X7 receptor (P2X7R) is a nonspecific cation channel implicated in sleep regulation and brain cytokine release. Many endogenous rhythms covary with sleep, including locomotor activity and core body temperature. Furthermore, brain-hypothalamic cytokines and purines play a role in the regulation of these physiological parameters as well as sleep. We hypothesized that these parameters are also affected by the absence of the P2X7 receptor. Herein, we determine spontaneous expression of body temperature and locomotor activity in wild-type (WT) and P2X7R knockout (KO) mice and how they are affected by sleep deprivation (SD). We also compare hypothalamic, hippocampal, and cortical cytokine- and purine-related receptor and enzyme mRNA expressions before and after SD in WT and P2X7RKO mice. Next, in a hypothesis-generating survey of hypothalamic long noncoding (lnc) RNAs, we compare lncRNA expression levels between strains and after SD. During baseline conditions, P2X7RKO mice had attenuated temperature rhythms compared with WT mice, although locomotor activity patterns were similar in both strains. After 6 h of SD, body temperature and locomotion were enhanced to a greater extent in P2X7RKO mice than in WT mice during the initial 2-3 h after SD. Baseline mRNA levels of cortical TNF-α and P2X4R were higher in the KO mice than WT mice. In response to SD, the KO mice failed to increase hypothalamic adenosine deaminase and P2X4R mRNAs. Further, hypothalamic lncRNA expressions varied by strain, and with SD. Current data are consistent with a role for the P2X7R in thermoregulation and lncRNA involvement in purinergic signaling.

  19. Effects of high environmental ammonia on branchial ammonia excretion rates and tissue Rh-protein mRNA expression levels in seawater acclimated Dungeness crab Metacarcinus magister.

    PubMed

    Martin, Michael; Fehsenfeld, Sandra; Sourial, Mary M; Weihrauch, Dirk

    2011-10-01

    In the present study of the marine Dungeness crabs Metacarcinus magister, the long term effects of high environmental ammonia (HEA) on hemolymph ammonia and urea concentrations, branchial ammonia excretion rates and mRNA expression levels of the crustacean Rh-like ammonia transporter (RhMM), H(+)-ATPase (subunit B), Na(+)/K(+)-ATPase (α-subunit) and Na(+)/H(+)-exchanger (NHE) were investigated. Under control conditions, the crabs' hemolymph exhibited a total ammonia concentration of 179.3±14.5μmol L(-1), while urea accounted for 467.2±33.5μmol L(-1), respectively. Both anterior and posterior gills were capable of excreting ammonia against a 16-fold inwardly directed gradient. Under control conditions, mRNA expression levels of RhMM were high in the gills in contrast to very low expression levels in all other tissues investigated, including the antennal gland, hepatopancreas, and skeletal muscle. After exposure to 1mmol L(-1) NH(4)Cl, hemolymph ammonia increased within the first 12h to ca. 500µmol L(-1) and crabs were able the keep this hemolymph ammonia level for at least 4 days. During this initial period, branchial RhMM and H(+)-ATPase (subunit B) mRNA expression levels roughly doubled. After 14 days of HEA exposure, hemolymph ammonia raised up to environmental levels, whereas urea levels increased by ca. 30%. At the same time, whole animal ammonia and urea excretion vanished. Additionally, branchial RhMM, H(+)-ATPase, Na(+)/K(+)-ATPase and NHE mRNA levels decreased significantly after long term HEA exposure, whereas expression levels of RhMM in the internal tissues increased substantially. Interestingly, crabs acclimated to HEA showed no mortality even after 4 weeks of HEA exposure. This suggests that M. magister possesses a highly adaptive mechanism to cope with elevated ammonia concentrations in its body fluids, including an up-regulation of an Rh-like ammonia transporter in the internal tissues and excretion or storage of waste nitrogen in a so far

  20. Effects of estrogen on food intake, serum leptin levels and leptin mRNA expression in adipose tissue of female rats.

    PubMed

    Fungfuang, Wirasak; Terada, Misao; Komatsu, Noriyuki; Moon, Changjong; Saito, Toru R

    2013-09-01

    The integration of metabolism and reproduction involves complex interactions of hypothalamic neuropeptides with metabolic hormones, fuels, and sex steroids. Of these, estrogen influences food intake, body weight, and the accumulation and distribution of adipose tissue. In this study, the effects of estrogen on food intake, serum leptin levels, and leptin mRNA expression were evaluated in ovariectomized rats. Seven-week-old female Wistar-Imamichi rats were ovariectomized and divided into three treatment groups: group 1 (the control group) received sesame oil, group 2 was given 17β-estradiol benzoate, and group 3 received 17β-estradiol benzoate plus progesterone. The body weight and food consumption of each rat were determined daily. Serum leptin levels and leptin mRNA expression were measured by ELISA and quantitative RT-PCR, respectively. Food consumption in the control group was significantly higher (P<0.05) than that in groups 2 and 3, although body weight did not significantly differ among the three groups. The serum leptin concentration and leptin mRNA expression were significantly higher (P<0.05) in groups 2 and 3 than in group 1, but no significant difference existed between groups 2 and 3. In conclusion, estrogen influenced food intake via the modulation of leptin signaling pathway in ovariectomized rats.

  1. Effects of antiepileptic drugs on mRNA levels of BDNF and NT-3 and cell neogenesis in the developing rat brain.

    PubMed

    Shi, Xiu-Yu; Wang, Ji-Wen; Cui, Hong; Li, Bao-Min; Lei, Ge-Fei; Sun, Ruo-Peng

    2010-03-01

    Epilepsy is a common neurological disorder that occurs more frequently in childhood than in adulthood. Antiepileptic drugs (AEDs) which are used to treat seizures in pregnant women, infants, and young children may cause cognitive impairment or other uncertain injury. However, the exact mechanisms responsible for adverse effects of AEDs in the developing brain are still not clear. In the present study, we investigate the effects of AEDs on mRNA levels of brain-derived neurotrophic factor (BDNF) and neurotrophin-3 (NT-3), cell neogenesis and mossy fiber sprouting (MFS) in the developing rat brain. Long-term treatment with Phenobarbital (40mg/kg), valproate (100mg/kg) and topiramate (40mg/kg) reduces BDNF and NT-3 mRNA expression in the developing brain, while lamotrigine reduces mRNA expression only at high dose level (80mg/kg). Cell neogenesis only increases in the rats treated with valproate and lamotrigine. And no differences are observed between the control group and the AEDs-treated groups in the Timm scores of the CA3 region and supragranular region. Our findings present some possible mechanisms to explain why different AEDs cause different cognitive impairment.

  2. Alterations in trace element levels and mRNA expression of Hsps and inflammatory cytokines in livers of duck exposed to molybdenum or/and cadmium.

    PubMed

    Cao, Huabin; Gao, Feiyan; Xia, Bing; Zhang, Mengmeng; Liao, Yilin; Yang, Zhi; Hu, Guoliang; Zhang, Caiying

    2016-03-01

    To evaluate the effects of dietary Molybdenum (Mo) or/and Cadmium (Cd) on trace elements and the mRNA expression levels of heat shock proteins (Hsps) and inflammatory cytokines in duck livers. 240 healthy 11-day-old ducks were randomly divided into six groups with 40 ducks in each group, which were treated with Mo or/and Cd at different doses on the basal diet for 120 days. On days 30, 60, 90 and 120, 10 birds in each group were randomly selected and euthanized and then the livers were collected to determine the contents of Mo, Cd, copper (Cu), iron (Fe), zine (Zn), Selenium (Se) and the mRNA expression levels of Hsps, inflammatory cytokines. In addition, liver tissues at 120 days were subjected to histopathological analysis with the optical microscope. The results showed that the mRNA expression of Hsp60, Hsp70, Hsp90, tumor necrosis factor-α (TNF-α), nuclear factor-kappa B (NF-κB), and cyclooxygenase-2 (COX-2) were significantly (P<0.01) upregulated in combination groups; Contents of Cu, Fe, Zn, and Se decreased in combined groups (P<0.05) in the later period of the test while contents of Mo and Cd significantly increased (P<0.01); Furthermore severe hepatocyte diffuse fatty, hepatic cords swelling, hepatic sinusoid disappeared, and inflammatory cells infiltrated around the hepatic central vein were observed in Mo combined with Cd groups. The results indicated that dietary Mo or/and Cd might lead to stress, inflammatory response, tissue damage and disturb homeostasis of trace elements in duck livers. Moreover the two elements showed a possible synergistic relationship. And the high mRNA expression of HSPs and inflammatory cytokines may play a role in the resistance of liver toxicity induced by Mo and Cd.

  3. Integration of mRNA expression profile, copy number alterations, and microRNA expression levels in breast cancer to improve grade definition.

    PubMed

    Cava, Claudia; Bertoli, Gloria; Ripamonti, Marilena; Mauri, Giancarlo; Zoppis, Italo; Della Rosa, Pasquale Anthony; Gilardi, Maria Carla; Castiglioni, Isabella

    2014-01-01

    Defining the aggressiveness and growth rate of a malignant cell population is a key step in the clinical approach to treating tumor disease. The correct grading of breast cancer (BC) is a fundamental part in determining the appropriate treatment. Biological variables can make it difficult to elucidate the mechanisms underlying BC development. To identify potential markers that can be used for BC classification, we analyzed mRNAs expression profiles, gene copy numbers, microRNAs expression and their association with tumor grade in BC microarray-derived datasets. From mRNA expression results, we found that grade 2 BC is most likely a mixture of grade 1 and grade 3 that have been misclassified, being described by the gene signature of either grade 1 or grade 3. We assessed the potential of the new approach of integrating mRNA expression profile, copy number alterations, and microRNA expression levels to select a limited number of genomic BC biomarkers. The combination of mRNA profile analysis and copy number data with microRNA expression levels led to the identification of two gene signatures of 42 and 4 altered genes (FOXM1, KPNA4, H2AFV and DDX19A) respectively, the latter obtained through a meta-analytical procedure. The 42-based gene signature identifies 4 classes of up- or down-regulated microRNAs (17 microRNAs) and of their 17 target mRNA, and the 4-based genes signature identified 4 microRNAs (Hsa-miR-320d, Hsa-miR-139-5p, Hsa-miR-567 and Hsa-let-7c). These results are discussed from a biological point of view with respect to pathological features of BC. Our identified mRNAs and microRNAs were validated as prognostic factors of BC disease progression, and could potentially facilitate the implementation of assays for laboratory validation, due to their reduced number.

  4. Failure of MK-801 to suppress D1 receptor-mediated induction of locomotor activity and striatal preprotachykinin mRNA expression in the dopamine-depleted rat.

    PubMed

    Campbell, B M; Kreipke, C W; Walker, P D

    2006-01-01

    N-methyl-D-aspartate receptor antagonism exerts suppressive influences over dopamine D1 receptor-mediated striatal gene expression and locomotor behavior in the intact rat. The present study examined the effects of the N-methyl-D-aspartate receptor antagonist MK-801 on locomotor activity and striatal preprotachykinin mRNA expression stimulated by the D1 agonist (+/-)6-chloro-7, 8-dihydroxy-3-allyl-1-phenyl-2,3,4,5-tetrahydro-1H-3-benzazepine hydrobromide in rats with bilateral dopamine lesions. Two months after neonatal dopamine lesions with 6-hydroxydopamine, rats were challenged with (+/-)6-chloro-7, 8-dihydroxy-3-allyl-1-phenyl-2,3,4,5-tetrahydro-1H-3-benzazepine hydrobromide (1.0 mg/kg) 15 min after administration of the N-methyl-D-aspartate receptor antagonist MK-801 (0.1 mg/kg). In the intact rat, MK-801 prevented the induction of striatal preprotachykinin mRNA by D1 agonism. Similarly, direct infusion of (+/-)6-chloro-7, 8-dihydroxy-3-allyl-1-phenyl-2,3,4,5-tetrahydro-1H-3-benzazepine hydrobromide (3.0 microg) into the intact striatum produced an increase in locomotor activity that was suppressed by MK-801 (1.0 microg) co-infusion. In the dopamine-depleted rat, MK-801 (0.1 mg/kg) administered prior to (+/-)6-chloro-7, 8-dihydroxy-3-allyl-1-phenyl-2,3,4,5-tetrahydro-1H-3-benzazepine hydrobromide (1.0 mg/kg) increased, rather than suppressed, striatal preprotachykinin mRNA levels. Intrastriatal infusion of MK-801 (1.0 microg) failed to inhibit D1-mediated induction of motor activity in dopamine-depleted animals. Together, these data provide further support that N-methyl-D-aspartate receptor antagonists lose their ability to block D1-mediated behavioral activation following dopamine depletion. The activation, rather than suppression, of tachykinin neurons of the direct striatonigral pathway may play a facilitatory role in this mechanism.

  5. Expression of active human blood clotting factor IX in transgenic mice: use of a cDNA with complete mRNA sequence.

    PubMed Central

    Choo, K H; Raphael, K; McAdam, W; Peterson, M G

    1987-01-01

    Haemophilia B is a bleeding disorder caused by a functional deficiency of the clotting factor IX. A full length human factor IX complementary DNA clone containing all the natural mRNA sequences plus some flanking intron sequences was constructed with a metallothionein promoter and introduced into transgenic mice by microinjection into the pronuclei of fertilised eggs. The transgenic mice expressed high levels of messenger RNA, gamma-carboxylated and glycosylated protein, and biological clotting activity that are indistinguishable from normal human plasma factor IX. This study demonstrates the feasibility of expressing highly complex heterologous proteins in transgenic mice. It also provides the groundwork for the production of large amounts of human factor IX in larger transgenic livestock for therapeutic use, and the investigation of alternative genetic therapies for haemophilia B. Images PMID:3029708

  6. VEGF-A immunohistochemical and mRNA expression in tissues and its serum levels in potentially malignant oral lesions and oral squamous cell carcinomas.

    PubMed

    Nayak, Seema; Goel, Madhu Mati; Chandra, Saumya; Bhatia, Vikram; Mehrotra, Divya; Kumar, Sandeep; Makker, Annu; Rath, S K; Agarwal, S P

    2012-03-01

    The aim of the study was to investigate whether the estimation of circulating Vascular endothelial growth factor-A (VEGF-A) levels by ELISA could be used as surrogate of VEGF-A expression in tissues of pre-malignant oral lesions (PMOLs) and oral squamous cell carcinoma (OSCC) as compared to that in healthy controls. The study samples comprised of tissue and blood samples from 60 PMOLs, 60 OSCC, and 20 healthy controls. Serum VEGF-A levels were determined by an ELISA based assay (Quantikine human VEGF; R & D System, Minneapolis USA). Tissue VEGF-A expression and microvessel density (MVD) were assessed by immunohistochemistry (IHC) using antibodies against VEGF-A and CD-34 on formalin fixed paraffin embedded (FFPE) tissue sections. VEGF-A mRNA expression was analyzed by real-time PCR in snap frozen tissues. Serum VEGF-A levels and immunohistochemical VEGF-A expression were significantly high in PMOLs and OSCC in comparison with controls. VEGF mRNA gene expression showed more than 50-fold increase in PMOLs and OSCC. VEGF-A levels in serum correlated in a linear fashion with the tissue expression in oral pre-malignant and malignant lesions, suggesting that the serum levels may serve as surrogate material for tissue expression of VEGF-A.

  7. Factors Influencing Cypriot Children's Physical Activity Levels

    ERIC Educational Resources Information Center

    Loucaides, Constantinos A.; Chedzoy, Sue M.

    2005-01-01

    The purpose of this paper is to present selected findings from a larger study, which set out to examine the physical activity levels of Cypriot primary school children and determinants of their activity. Twenty parents of children who obtained high and low activity scores based on pedometer counts and self-reports scores were interviewed. By…

  8. The BAX gene as a candidate for negative autophagy-related genes regulator on mRNA levels in colorectal cancer.

    PubMed

    Gil, Justyna; Ramsey, David; Szmida, Elzbieta; Leszczynski, Przemyslaw; Pawlowski, Pawel; Bebenek, Marek; Sasiadek, Maria M

    2017-02-01

    Autophagy is a catabolic process, which is involved in the maintenance of intracellular homeostasis by degrading redundant molecules and organelles. Autophagy begins with the formation of a double-membrane phagophore, followed by its enclosure, thus leading to the appearance of an autophagosome which fuses with lysosome. This process is highly conserved, precisely orchestrated and regulated by autophagy-related genes. Recently, autophagy has been widely studied in different types of cancers, including colorectal cancer. As it has been revealed, autophagy plays two opposite roles in tumorigenesis, as a tumor suppressor and a tumor enhancer/activator, and therefore is called a double-edge sword. Recently, interaction between autophagy and apoptosis has been found. Therefore, we aimed to study the mRNA levels of genes engaged in autophagy and apoptosis in colorectal cancer tissues. Colorectal cancer and adjacent healthy tissues were obtained from 73 patients diagnosed with primary colorectal cancer. Real-time PCR analysis employing Universal Probe Library was used to assess the expression of the seven following selected genes: BECN1, UVRAG, ULK1, ATG13, Bif-1, BCL2 and BAX. For all but one of the tested genes, a decrease in expression was observed. An increase in expression was observed for BAX. BAX expression decreases consistently from early to more advanced stages. High expression of BAX was strongly associated with negative UVRAG expression. The high expression of the BAX gene seems to be a negative regulator of autophagy in colorectal cancer cells. The relative downregulation of autophagy-related genes was observed in colorectal cancer samples.

  9. Altered sex hormone concentrations and gonadal mRNA expression levels of activin signaling factors in hatchling alligators from a contaminated Florida lake.

    PubMed

    Moore, Brandon C; Kohno, Satomi; Cook, Robert W; Alvers, Ashley L; Hamlin, Heather J; Woodruff, Teresa K; Guillette, Louis J

    2010-04-01

    Activins and estrogens participate in regulating the breakdown of ovarian germ cell nests and follicle assembly in mammals. In 1994, our group reported elevated frequencies of abnormal, multioocytic ovarian follicles in 6 month old, environmental contaminant-exposed female alligators after gonadotropin challenge. Here, we investigated if maternal contribution of endocrine disrupting contaminants to the egg subsequently alters estrogen/inhibin/activin signaling in hatchling female offspring, putatively predisposing an increased frequency of multioocytic follicle formation. We quantified basal and exogenous gonadotropin-stimulated concentrations of circulating plasma steroid hormones and ovarian activin signaling factor mRNA abundance in hatchling alligators from the same contaminated (Lake Apopka) and reference (Lake Woodruff) Florida lakes, as examined in 1994. Basal circulating plasma estradiol and testosterone concentrations were greater in alligators from the contaminated environment, whereas activin/inhibin betaA subunit and follistatin mRNA abundances were lower than values measured in ovaries from reference lake animals. Challenged, contaminant-exposed animals showed a more robust increase in plasma estradiol concentration following an acute follicle stimulating hormone (FSH) challenge compared with reference site alligators. Aromatase and follistatin mRNA levels increased in response to an extended FSH challenge in the reference site animals, but not in the contaminant-exposed animals. In hatchling alligators, ovarian follicles have not yet formed; therefore, these endocrine differences are likely to affect subsequent ovarian development, including ovarian follicle assembly.

  10. Quantitation of mRNA levels of steroid 5alpha-reductase isozymes: a novel method that combines quantitative RT-PCR and capillary electrophoresis.

    PubMed

    Torres, Jesús M; Ortega, Esperanza

    2004-01-01

    A novel, accurate, rapid and modestly labor-intensive method has been developed to quantitate specific mRNA species by reverse transcription-polymerase chain reaction (RT-PCR). This strategy combines the high degree of specificity of competitive PCR with the sensitivity of laser-induced fluorescence capillary electrophoresis (LIF-CE). The specific target mRNA and a mimic DNA fragment, used as an internal standard (IS), were co-amplified in a single reaction in which the same primers are used. The amount of mRNA was then quantitated by extrapolation from the standard curve generated with the internal standard. PCR primers were designed to amplify both a 185 bp fragment of the target cDNA for steroid 5alpha-reductase 1 (5alpha-R1) and a 192 bp fragment of the target cDNA for steroid 5alpha-reductase type 2 (5alpha-R2). The 5' forward primers were end-labeled with 6-carboxy-fluorescein (6-FAM). Two synthetic internal standard DNAs of 300 bp were synthesized from the sequence of plasmid pEGFP-C1. The ratio of fluorescence intensity between amplified products of the target cDNA (185 or 192 bp fragments) and the competitive DNA (300 bp fragment) was determined quantitatively after separation by capillary electrophoresis and fluorescence analysis. The accurate quantitation of low-abundance mRNAs by the present method allows low-level gene expression to be characterized.

  11. High throughput detection of miRNAs and gene-specific mRNA at the single-cell level by flow cytometry

    PubMed Central

    Porichis, Filippos; Hart, Meghan G.; Griesbeck, Morgane; Everett, Holly L.; Hassan, Muska; Baxter, Amy E.; Lindqvist, Madelene; Miller, Sara M.; Soghoian, Damien Z.; Kavanagh, Daniel G.; Reynolds, Susan; Norris, Brett; Mordecai, Scott K.; Nguyen, Quan; Lai, Chunfai; Kaufmann, Daniel E.

    2014-01-01

    Fluorescent in situ hybridization (FISH) is a method that uses fluorescent probes to detect specific nucleic acid sequences at the single cell level. Here we describe optimized protocols that exploit a highly sensitive FISH method based on branched DNA technology to detect mRNA and miRNA in human leukocytes. This technique can be multiplexed and combined with fluorescent antibody protein staining to addressa variety of questions in heterogeneous cell populations. We demonstrate antigen-specific upregulation of IFNγ and IL-2 mRNAs in HIV- and CMV-specific T cells. We show simultaneous detection of cytokine mRNA and corresponding protein in single cells. We apply this method to detect mRNAs for which flow antibodies against the corresponding proteins are poor or are not available. We use this technique to show modulation of a microRNA critical for T cell function, miR-155. We adapt this assay for simultaneous detection of mRNA and proteins by Image Stream technology. PMID:25472703

  12. Tudor-SN, a component of stress granules, regulates growth under salt stress by modulating GA20ox3 mRNA levels in Arabidopsis.

    PubMed

    Yan, Chunxia; Yan, Zongyun; Wang, Yizheng; Yan, Xiaoyuan; Han, Yuzhen

    2014-11-01

    The Tudor-SN protein (TSN) is universally expressed and highly conserved in eukaryotes. In Arabidopsis, TSN is reportedly involved in stress adaptation, but the mechanism involved in this adaptation is not understood. Here, we provide evidence that TSN regulates the mRNA levels of GA20ox3, a key enzyme for gibberellin (GA) biosynthesis. The levels of GA20ox3 transcripts decreased in TSN1/TSN2 RNA interference (RNAi) transgenic lines and increased in TSN1 over-expression (OE) transgenic lines. The TSN1 OE lines displayed phenotypes that may be attributed to the overproduction of GA. No obvious defects were observed in the RNAi transgenic lines under normal conditions, but under salt stress conditions these lines displayed slower growth than wild-type (WT) plants. Two mutants of GA20ox3, ga20ox3-1 and -2, also showed slower growth under stress than WT plants. Moreover, a higher accumulation of GA20ox3 transcripts was observed under salt stress. The results of a western blot analysis indicated that higher levels of TSN1 accumulated after salt treatment than under normal conditions. Subcellular localization studies showed that TSN1 was uniformly distributed in the cytoplasm under normal conditions but accumulated in small granules and co-localized with RBP47, a marker protein for stress granules (SGs), in response to salt stress. The results of RNA immunoprecipitation experiments indicated that TSN1 bound GA20ox3 mRNA in vivo. On the basis of these findings, we conclude that TSN is a novel component of plant SGs that regulates growth under salt stress by modulating levels of GA20ox3 mRNA.

  13. The relative expression levels of insulin-like growth factor 1 and myostatin mRNA in the asynchronous development of skeletal muscle in ducks during early development.

    PubMed

    Hu, Yan; Liu, Hongxiang; Shan, Yanju; Ji, Gaige; Xu, Wenjuan; Shu, Jingting; Li, Huifang

    2015-08-10

    Genetic selection is a powerful tool for modifying poultry muscle yield. Insulin-like growth factor I (IGF-I) and myostatin (MSTN) are important regulators of muscle growth, especially in the myogenesis stage. This study compared the developmental pattern of the pectoralis major (PM) and lateral gastrocnemius (LM) muscles, mRNA expression characterization of IGF-I and MSTN-A and their correlation between 14 days in ovo and 1 week post-hatch in two Chinese local duck breeds. During early development, the growth of duck PM and LM followed an asynchronous pattern. Variations in PM growth rate observed with development followed the relative variations of MSTN and IGF-I expression; however, the same behavior was not observed in LM. Moreover, the profile of IGF-I expression in duck skeletal muscles indicated that genetic selection for high meat-yield poultry has altered the temporal expression of IGF-I and affected cellular characteristics and mass by hatch in a PM-specific manner. The MSTN-A expression profile showed synchronization with the growth of skeletal muscle and peaks of myofiber proliferation. The expression patterns of IGF-I and MSTN suggest that duck pectoralis fibers are prioritized for proliferation in embryogenesis. The IGF-1/MSTN-A mRNA ratios in PM and LM presented very similar trends in the changes of myofiber characteristics, and differences in the IGF-1/MSTN-A mRNA ratio in PM between the two breeds corresponded to the timing of differences in PM mass between the varieties. Our results support the hypothesis that relative levels of IGF-I and MSTN mRNA may participate in ordering muscle growth rates with selected development.

  14. Low-level light-emitting diode therapy increases mRNA expressions of IL-10 and type I and III collagens on Achilles tendinitis in rats.

    PubMed

    Xavier, Murilo; de Souza, Renato Aparecido; Pires, Viviane Araújo; Santos, Ana Paula; Aimbire, Flávio; Silva, José Antônio; Albertini, Regiane; Villaverde, Antonio Balbin

    2014-01-01

    The present study investigated the effects of low-level light-emitting diode (LED) therapy (880 ± 10 nm) on interleukin (IL)-10 and type I and III collagen in an experimental model of Achilles tendinitis. Thirty male Wistar rats were separated into six groups (n = 5), three groups in the experimental period of 7 days, control group, tendinitis-induced group, and LED therapy group, and three groups in the experimental period of 14 days, tendinitis group, LED therapy group, and LED group with the therapy starting at the 7th day after tendinitis induction (LEDT delay). Tendinitis was induced in the right Achilles tendon using an intratendinous injection of 100 μL of collagenase. The LED parameters were: optical power of 22 mW, spot area size of 0.5 cm(2), and irradiation time of 170 s, corresponding to 7.5 J/cm(2) of energy density. The therapy was initiated 12 h after the tendinitis induction, with a 48-h interval between irradiations. The IL-10 and type I and III collagen mRNA expression were evaluated by real-time polymerase chain reaction at the 7th and 14th days after tendinitis induction. The results showed that LED irradiation increased IL-10 (p < 0.001) in treated group on 7-day experimental period and increased type I and III collagen mRNA expression in both treated groups of 7- and 14-day experimental periods (p < 0.05), except by type I collagen mRNA expression in LEDT delay group. LED (880 nm) was effective in increasing mRNA expression of IL-10 and type I and III collagen. Therefore, LED therapy may have potentially therapeutic effects on Achilles tendon injuries.

  15. Absolute Measurements of Macrophage Migration Inhibitory Factor and Interleukin-1-β mRNA Levels Accurately Predict Treatment Response in Depressed Patients

    PubMed Central

    Ferrari, Clarissa; Uher, Rudolf; Bocchio-Chiavetto, Luisella; Riva, Marco Andrea; Pariante, Carmine M.

    2016-01-01

    Background: Increased levels of inflammation have been associated with a poorer response to antidepressants in several clinical samples, but these findings have had been limited by low reproducibility of biomarker assays across laboratories, difficulty in predicting response probability on an individual basis, and unclear molecular mechanisms. Methods: Here we measured absolute mRNA values (a reliable quantitation of number of molecules) of Macrophage Migration Inhibitory Factor and interleukin-1β in a previously published sample from a randomized controlled trial comparing escitalopram vs nortriptyline (GENDEP) as well as in an independent, naturalistic replication sample. We then used linear discriminant analysis to calculate mRNA values cutoffs that best discriminated between responders and nonresponders after 12 weeks of antidepressants. As Macrophage Migration Inhibitory Factor and interleukin-1β might be involved in different pathways, we constructed a protein-protein interaction network by the Search Tool for the Retrieval of Interacting Genes/Proteins. Results: We identified cutoff values for the absolute mRNA measures that accurately predicted response probability on an individual basis, with positive predictive values and specificity for nonresponders of 100% in both samples (negative predictive value=82% to 85%, sensitivity=52% to 61%). Using network analysis, we identified different clusters of targets for these 2 cytokines, with Macrophage Migration Inhibitory Factor interacting predominantly with pathways involved in neurogenesis, neuroplasticity, and cell proliferation, and interleukin-1β interacting predominantly with pathways involved in the inflammasome complex, oxidative stress, and neurodegeneration. Conclusion: We believe that these data provide a clinically suitable approach to the personalization of antidepressant therapy: patients who have absolute mRNA values above the suggested cutoffs could be directed toward earlier access to more

  16. Early base-pair fluctuations and the activation of mRNA splicing

    NASA Astrophysics Data System (ADS)

    Fernández, Ariel

    1991-05-01

    By means of multiprocessed Monte Carlo simulations we study the amplification in time structural fluctuations in sequential RNA folding concomitant with transcription. The simulations allow for an exploration of configuration space subject to the realistic time-constraints of RNA synthesis. The treatment focuses on the splicing YC4 intron as a study case. We show how an early disruption in the folding may result in a terminal structure which is active for splicing, bringing together the two cleavage sites at both ends of the intron.

  17. Anguillicola crassus Infection Significantly Affects the Silvering Related Modifications in Steady State mRNA Levels in Gas Gland Tissue of the European Eel

    PubMed Central

    Pelster, Bernd; Schneebauer, Gabriel; Dirks, Ron P.

    2016-01-01

    Using Illumina sequencing, transcriptional changes occurring during silvering in swimbladder tissue of the European eel have been analyzed by comparison of yellow and silver eel tissue samples. Functional annotation analysis based on GO terms revealed significant expression changes in a number of genes related to the extracellular matrix, important for the control of gas permeability of the swimbladder, and to reactive oxygen species (ROS) defense, important to cope with ROS generated under hyperbaric oxygen partial pressures. Focusing on swimbladder tissue metabolism, levels of several mRNA species encoding glucose transport proteins were several-fold higher in silver eels, while enzymes of the glycolytic pathway were not affected. The significantly higher steady state level of a transcript encoding for membrane bound carbonic anhydrase, however, suggested that CO2 production in the pentose phosphate shunt and diffusion of CO2 was of particular importance in silver eel swimbladder. In addition, the mRNA level of a large number of genes related to immune response and to sexual maturation was significantly modified in the silver eel swimbladder. The modification of several processes related to protein metabolism and transport, cell cycle, and apoptosis suggested that these changes in swimbladder metabolism and permeability were achieved by increasing cell turn-over. The impact of an infection of the swimbladder with the nematode Anguillicola crassus has been assessed by comparing these expression changes with expression changes observed between uninfected yellow eel swimbladder tissue and infected silver eel swimbladder tissue. In contrast to uninfected silver eel swimbladder tissue, in infected tissue the mRNA level of several glycolytic enzymes was significantly elevated, and with respect to extracellular matrix, several mucin genes were many-fold higher in their mRNA level. Modification of many immune related genes and of the functional categories “response to

  18. Anguillicola crassus Infection Significantly Affects the Silvering Related Modifications in Steady State mRNA Levels in Gas Gland Tissue of the European Eel.

    PubMed

    Pelster, Bernd; Schneebauer, Gabriel; Dirks, Ron P

    2016-01-01

    Using Illumina sequencing, transcriptional changes occurring during silvering in swimbladder tissue of the European eel have been analyzed by comparison of yellow and silver eel tissue samples. Functional annotation analysis based on GO terms revealed significant expression changes in a number of genes related to the extracellular matrix, important for the control of gas permeability of the swimbladder, and to reactive oxygen species (ROS) defense, important to cope with ROS generated under hyperbaric oxygen partial pressures. Focusing on swimbladder tissue metabolism, levels of several mRNA species encoding glucose transport proteins were several-fold higher in silver eels, while enzymes of the glycolytic pathway were not affected. The significantly higher steady state level of a transcript encoding for membrane bound carbonic anhydrase, however, suggested that CO2 production in the pentose phosphate shunt and diffusion of CO2 was of particular importance in silver eel swimbladder. In addition, the mRNA level of a large number of genes related to immune response and to sexual maturation was significantly modified in the silver eel swimbladder. The modification of several processes related to protein metabolism and transport, cell cycle, and apoptosis suggested that these changes in swimbladder metabolism and permeability were achieved by increasing cell turn-over. The impact of an infection of the swimbladder with the nematode Anguillicola crassus has been assessed by comparing these expression changes with expression changes observed between uninfected yellow eel swimbladder tissue and infected silver eel swimbladder tissue. In contrast to uninfected silver eel swimbladder tissue, in infected tissue the mRNA level of several glycolytic enzymes was significantly elevated, and with respect to extracellular matrix, several mucin genes were many-fold higher in their mRNA level. Modification of many immune related genes and of the functional categories "response to

  19. HER2 and ESR1 mRNA expression levels and response to neoadjuvant trastuzumab plus chemotherapy in patients with primary breast cancer

    PubMed Central

    2013-01-01

    Introduction Recent data suggest that benefit from trastuzumab and chemotherapy might be related to expression of HER2 and estrogen receptor (ESR1). Therefore, we investigated HER2 and ESR1 mRNA levels in core biopsies of HER2-positive breast carcinomas from patients treated within the neoadjuvant GeparQuattro trial. Methods HER2 levels were centrally analyzed by immunohistochemistry (IHC), silver in situ hybridization (SISH) and qRT-PCR in 217 pretherapeutic formalin-fixed, paraffin-embedded (FFPE) core biopsies. All tumors had been HER2-positive by local pathology and had been treated with neoadjuvant trastuzumab/ chemotherapy in GeparQuattro. Results Only 73% of the tumors (158 of 217) were centrally HER2-positive (cHER2-positive) by IHC/SISH, with cHER2-positive tumors showing a significantly higher pCR rate (46.8% vs. 20.3%, P <0.0005). HER2 status by qRT-PCR showed a concordance of 88.5% with the central IHC/SISH status, with a low pCR rate in those tumors that were HER2-negative by mRNA analysis (21.1% vs. 49.6%, P <0.0005). The level of HER2 mRNA expression was linked to response rate in ESR1-positive tumors, but not in ESR1-negative tumors. HER2 mRNA expression was significantly associated with pCR in the HER2-positive/ESR1-positive tumors (P = 0.004), but not in HER2-positive/ESR1-negative tumors. Conclusions Only patients with cHER2-positive tumors - irrespective of the method used - have an increased pCR rate with trastuzumab plus chemotherapy. In patients with cHER2-negative tumors the pCR rate is comparable to the pCR rate in the non-trastuzumab treated HER-negative population. Response to trastuzumab is correlated to HER2 mRNA levels only in ESR1-positive tumors. This study adds further evidence to the different biology of both subsets within the HER2-positive group. Introduction The human epidermal growth factor receptor 2 (HER2) is the prototype of a predictive biomarker for targeted treatment [1-8]. International initiatives have established the

  20. Increased duodenal DMT-1 expression and unchanged HFE mRNA levels in HFE-associated hereditary hemochromatosis and iron deficiency.

    PubMed

    Byrnes, V; Barrett, S; Ryan, E; Kelleher, T; O'Keane, C; Coughlan, B; Crowe, J

    2002-01-01

    HFE-associated hereditary hemochromatosis is characterized by imbalances of iron homeostasis and alterations in intestinal iron absorption. The identification of the HFE gene and the apical iron transporter divalent metal transporter-1, DMT-1, provide a direct method to address the mechanisms of iron overload in this disease. The aim of this study was to evaluate the regulation of duodenal HFE and DMT-1 gene expression in HFE-associated hereditary hemochromatosis. Small bowel biopsies and serum iron indices were obtained from a total of 33 patients. The study population comprised 13 patients with hereditary hemochromatosis (C282Y homozygous), 10 patients with iron deficiency anemia, and 10 apparently healthy controls, all of whom were genotyped for the two common mutations in the HFE gene (C282Y and H63D). Total RNA was isolated from tissue and amplified via RT-PCR for HFE, DMT-1, and the internal control GAPDH. DMT-1 protein expression was additionally assessed by immunohistochemistry. Levels of HFE mRNA did not differ significantly between patient groups (P = 0.09), specifically between C282Y homozygotes and iron deficiency anemic patients, when compared to controls (P = 0.09, P = 0.9, respectively). In contrast, DMT-1 mRNA levels were at least twofold greater in patients with hereditary hemochromatosis and iron deficiency anemia when compared to controls (P = 0.02, P = 0.01, respectively). Heightened DMT-1 protein expression correlated with mRNA levels in all patients. Loss of HFE function in hereditary hemochromatosis is not derived from inhibition of its gene expression. DMT-1 expression in C282Y homozygote subjects is consistent with the hypothesis of a "paradoxical" duodenal iron deficiency in hereditary hemochromatosis. The observed twofold upregulation of the DMT-1 is consistent with the slow but steady increase in body iron stores observed in those presenting with clinical features of hereditary hemochromatosis.

  1. Effects of 11-ketotestosterone and temperature on inhibin subunit mRNA levels in the ovary of the shortfinned eel, Anguilla australis.

    PubMed

    Zadmajid, Vahid; Falahatimarvast, Ali; Damsteegt, Erin L; Setiawan, Alvin N; Ozaki, Yuichi; Shoae, Alireza; Lokman, P Mark

    2015-09-01

    Members of the transforming growth factor-b (TGFb) superfamily are important during early oogenesis in mammals. In this study, we tested whether documented effects of 11-ketotestosterone (11KT) on previtellogenic eel ovaries are mediated through affecting the expression of key ovarian TGFb genes. Furthermore, we investigated whether 11KT effects interacted with temperature. Accordingly, three thermal regimes were compared and their interaction with 11KT-mediated actions on expression of TGFb superfamily genes (chiefly inhibin subunits) evaluated in the eel (Anguilla australis). Inhibin subunit mRNA levels were also measured in ovarian explants cultured in vitro with 11KT and in ovaries from eels collected from the wild. In wild eels, inhibin-bA mRNA levels were higher in early than in previtellogenic eels; inhibin-a expression did not differ between stages, whereas that of inhibin-bB first decreased, then recovered with advanced developmental stage. Temperature was ineffective in modulating any of the end points, at least as long as a Q10 adjustment was made to correct for 'metabolic dose'. However, 11KT affected the expression of inhibin-a compared to control fish, while those of inhibin-b subunit genes remained unaffected. In contrast, 11KT dramatically reduced mRNA levels of inhibin-b subunits in vitro, but had inconsistent effects on inhibin-a transcript abundance. We conclude that 11KT affects ovarian inhibin subunit gene expression, but effects are not in keeping with the changes seen during early oogenesis in eels from the wild. We further contend that in vivo temperature experiments are easily biased and that Q10 corrections may be required to identify 'true' temperature effects.

  2. Effects of Molybdenum or/and Cadmium on mRNA Expression Levels of Inflammatory Cytokines and HSPs in Duck Spleens.

    PubMed

    Cao, Huabin; Zhang, Mengmeng; Xia, Bing; Xiong, Jin; Zong, Yibo; Hu, Guoliang; Zhang, Caiying

    2016-03-01

    Cadmium (Cd) and high dietary intake of molybdenum (Mo) can cause multiple-organ injury in animals, but the co-induced toxicity of Mo and Cd to spleen in ducks is not well understood. The aim of this study was to investigate the co-induced effects of Mo and Cd on the mRNA expression levels of inflammatory cytokines and heat shock proteins (HSPs) in duck spleens. Two hundred forty healthy 11-day-old ducks were randomly divided into six groups and treated with a commercial diet containing Mo or/and Cd. After being treated with Mo or/and Cd for 30, 60, 90, and 120 days, the mRNA expression levels of nuclear factor-kappa B (NF-κB), tumor necrosis factor-α (TNF-α), cyclooxygenase-2 (COX-2), HSP60, HSP70, and HSP90 were examined in duck spleens. Histopathology was examined in duck spleens at 120 days. The results indicated that the mRNA expression levels of HSPs were significantly upregulated in the co-induced groups (P < 0.01), while these decreased in the high dietary intake of Mo combined with Cd group at 120 days. Exposure to Mo or/and Cd upregulated the mRNA expression levels of NF-κB, COX-2, and TNF-α in the combination groups (P < 0.01). Furthermore, severe congestion, bleeding, splenic corpuscle structure fuzzy, wall thickness of sheath artery thickening, and oxyhematin were observed in the spleens of combination groups. Meanwhile, the organizational structure damage of the combined groups was more severe than that of the other groups. These results suggested that exposure to Mo or/and Cd might lead to tissue damage, and high expression of HSPs and inflammatory cytokines may play a role in the resistance of spleen toxicity induced by Mo or/and Cd. Interaction of Mo and Cd may have a synergistic effect on spleen toxicity.

  3. The Allergic Airway Inflammation Repository--a user-friendly, curated resource of mRNA expression levels in studies of allergic airways.

    PubMed

    Gawel, D R; Rani James, A; Benson, M; Liljenström, R; Muraro, A; Nestor, C E; Zhang, H; Gustafsson, M

    2014-08-01

    Public microarray databases allow analysis of expression levels of candidate genes in different contexts. However, finding relevant microarray data is complicated by the large number of available studies. We have compiled a user-friendly, open-access database of mRNA microarray experiments relevant to allergic airway inflammation, the Allergic Airway Inflammation Repository (AAIR, http://aair.cimed.ike.liu.se/). The aim is to allow allergy researchers to determine the expression profile of their genes of interest in multiple clinical data sets and several experimental systems quickly and intuitively. AAIR also provides quick links to other relevant information such as experimental protocols, related literature and raw data files.

  4. Effects of cysteamine on mRNA levels of growth hormone and its receptors and growth in orange-spotted grouper (Epinephelus coioides).

    PubMed

    Li, Yun; Liu, Xiaochun; Zhang, Yong; Ma, Xilan; Lin, Haoran

    2013-06-01

    Effects of cysteamine (CS) on growth hormone (GH) mRNA, two types of growth hormone receptor (GHR) mRNAs and growth rate in orange-spotted grouper (Epinephelus coioides) were investigated. CS could cause a modification in the structure of somatostatin, which is the most important neuroendocrine inhibitor of basal and stimulated growth hormone synthesis and release, and renders it nonimmunoreactive probably through interaction with the disulfide bonds. In the present study, cysteamine hydrochloride (CSH) enhanced the level of pituitary GH mRNA in a dose-dependent manner through attenuating or deleting the inhibiting action of somatostatin on GH mRNA expression. CSH at relatively low doses (from 1 to 3 mg/g diet) enhanced the levels of two types of GHR mRNAs in dose-dependent manner, whereas the stimulation induced by CSH declined from the peak at higher dose of CSH (4 mg/g diet). It might be attributed to the variation in GH-induced up-regulation of GHRs at different doses of GH. Feeding of CSH could induce remarkable enhancement of growth rate in orange-spotted grouper. In addition, the stimulatory effect of CSH could be potentiated by the additive effect of luteinizing hormone-releasing hormone analog (LHRH-A). Compared with individual treatments, combined feeding of CSH and LHRH-A caused more efficient elevation of growth rate after 8 weeks of feeding. CSH and LHRH-A individually and in combination remarkably increased the levels of GH and GHR mRNAs compared with the control. The combined administration of CSH and LHRH-A in diet was most effective to enhance the level of GH and GHR1 mRNA. The morphological characteristics of the experimental fish were evaluated. Compared with control, the ratios of muscle RNA/DNA, condition factors (CF) and feed conversion efficiency (FCE) were significantly enhanced in the treated groups, while the highest values were observed in the combined treatment. All the results suggested that CSH (1-3 mg/g diet) is an effective

  5. Transcript-activated collagen matrix as sustained mRNA delivery system for bone regeneration.

    PubMed

    Badieyan, Zohreh Sadat; Berezhanskyy, Taras; Utzinger, Maximilian; Aneja, Manish Kumar; Emrich, Daniela; Erben, Reinhold; Schüler, Christiane; Altpeter, Philipp; Ferizi, Mehrije; Hasenpusch, Günther; Rudolph, Carsten; Plank, Christian

    2016-10-10

    Transcript therapies using chemically modified messenger RNAs (cmRNAs) are emerging as safe and promising alternatives for gene and recombinant protein therapies. However, their applications have been limited due to transient translation and relatively low stability of cmRNAs compared to DNA. Here we show that vacuum-dried cmRNA-loaded collagen sponges, termed transcript activated matrices (TAMs), can serve as depots for sustained delivery of cmRNA. TAMs provide steady state protein production for up to six days, and substantial residual expression until 11days post transfection. Another advantage of this technology was nearly 100% transfection efficiency as well as low toxicity in vitro. TAMs were stable for at least 6months at room temperature. Human BMP-2-encoding TAMs induced osteogenic differentiation of MC3T3-E1 cells in vitro and bone regeneration in a non-critical rat femoral bone defect model in vivo. In summary, TAMs are a promising tool for bone regeneration and potentially also for other applications in regenerative medicine and tissue engineering.

  6. Hyperphosphorylation amplifies UPF1 activity to resolve stalls in nonsense-mediated mRNA decay

    PubMed Central

    Durand, Sébastien; Franks, Tobias M.; Lykke-Andersen, Jens

    2016-01-01

    Many gene expression factors contain repetitive phosphorylation sites for single kinases, but the functional significance is poorly understood. Here we present evidence for hyperphosphorylation as a mechanism allowing UPF1, the central factor in nonsense-mediated decay (NMD), to increasingly attract downstream machinery with time of residence on target mRNAs. Indeed, slowing NMD by inhibiting late-acting factors triggers UPF1 hyperphosphorylation, which in turn enhances affinity for factors linking UPF1 to decay machinery. Mutational analyses reveal multiple phosphorylation sites contributing to different extents to UPF1 activity with no single site being essential. Moreover, the ability of UPF1 to undergo hyperphosphorylation becomes increasingly important for NMD when downstream factors are depleted. This hyperphosphorylation-dependent feedback mechanism may serve as a molecular clock ensuring timely degradation of target mRNAs while preventing degradation of non-targets, which, given the prevalence of repetitive phosphorylation among central gene regulatory factors, may represent an important general principle in gene expression. PMID:27511142

  7. RELATIONSHIP BETWEEN BRAIN AND OVARY AROMATASE ACTIVITY AND ISOFORM-SPECIFIC AROMATASE MRNA EXPRESSION IN THE FATHEAD MINNOW (PIMEPHALES PROMELAS) - JOURNAL ARTICLE

    EPA Science Inventory

    There is growing evidence that some chemicals present in the environment have the capacity to inhibit, or potentially induce, aromatase activity. This study compared aromatase activities and isoform-specific mRNA expression in brain and ovary tissue from non-exposed fathead minn...

  8. Chromium improves glucose uptake and metabolism through upregulating the mRNA levels of IR, GLUT4, GS, and UCP3 in skeletal muscle cells.

    PubMed

    Qiao, Wei; Peng, Zhongli; Wang, Zhisheng; Wei, Jing; Zhou, Anguo

    2009-11-01

    The aim of this study was to evaluate the impact of three different chromium forms as chromic chloride (CrCl), chromium picolinate (CrPic), and a newly synthesized complex of chromium chelated with small peptides (CrSP) on glucose uptake and metabolism in vitro. In cultured skeletal muscle cells, chromium augmented insulin-stimulated glucose uptake and metabolism as assessed by a reduced glucose concentration of culture medium. At the molecular level, insulin significantly increased the mRNA levels of insulin receptor (IR), glucose transporter 4 (GLUT4), glycogen synthase (GS), and uncoupling protein-3 (UCP3), and these impacts can be enhanced by the addition of chromium, especially in the form of CrSP. Collectively, results of this study demonstrate that chromium improves glucose uptake and metabolism through upregulating the mRNA levels of IR, GLUT4, GS, and UCP3 in skeletal muscle cells, and CrSP has higher efficacy on glucose uptake and metabolism compared to the forms of CrCl and CrPic.

  9. Zearalenone activates pregnane X receptor, constitutive androstane receptor and aryl hydrocarbon receptor and corresponding phase I target genes mRNA in primary cultures of human hepatocytes.

    PubMed

    Ayed-Boussema, Imen; Pascussi, Jean Marc; Maurel, Patrick; Bacha, Hassen; Hassen, Wafa

    2011-01-01

    The mycotoxin zearalenone (ZEN) is found worldwide as a contaminant in cereals and grains. ZEN subchronic and chronic toxicities are dominated by reproductive disorders in different mammalian species which have made ZEN established mammalian endocrine disrupter. Over the last 30 years of ZEN biotransformation study, the toxin was thought to undergo reductive metabolism only, with the generation in several species of α- and β-isomers of zearalenol. However, recent investigations have noticed that the mycoestrogen is prone to oxidative metabolism leading to hydroxylation of ZEN though the involvement of different cytochromes P450 (CYPs) isoforms. The aim of the present study was to further explore the effect of ZEN on regulation of some CYPs using primary cultures of human hepatocytes. For this aim, using real time RT-PCR, we monitored in a first time, the effect of ZEN on mRNA levels of pregnane X receptor (PXR), constitutive androstane receptor (CAR) and aryl hydrocarbon receptor (AhR), nuclear receptors known to be involved in the regulation of some CYPs. In a second time, we looked for ZEN effect on expression of PXR, CAR and AhR corresponding phase I target genes (CYP3A4, CYP3A5, CYP2B6, CYP2C9, CYP1A1 and CYP1A2). Finally, we realised the luciferase assay in HepG2 treated with the toxin and transiently transfected with p-CYP3A4-Luc in the presence of a hPXR vector or transfected with p-CYPA1-Luc.Our results clearly showed that ZEN activated human PXR, CAR and AhR mRNA levels in addition to some of their phase I target genes mainly CYP3A4, CYP2B6 and CYP1A1 and at lesser extent CYP3A5 and CYP2C9 at ZEN concentrations as low as 0.1 μM.

  10. Effect of Potato Virus Y on the NADP-Malic Enzyme from Nicotiana tabacum L.: mRNA, Expressed Protein and Activity

    PubMed Central

    Doubnerová, Veronika; Müller, Karel; Čeřovská, Noemi; Synková, Helena; Spoustová, Petra; Ryšlavá, Helena

    2009-01-01

    The effect of biotic stress induced by viral infection (Potato virus Y, strain NTN and O) on NADP-malic enzyme (EC 1.1.1.40) in tobacco plants (Nicotiana tabacum L., cv. Petit Havana, SR1) was tested at the transcriptional, translational and activity level. The increase of enzyme activity in infected leaves was correlated with the increased amount of expressed protein and with mRNA of cytosolic NADP-ME isoform. Transcription of the chloroplastic enzyme was not influenced by viral infection. The increase of the enzyme activity was also detected in stems and roots of infected plants. The effect of viral infection induced by Potato virus Y, NTN strain, causing more severe symptoms, was compared with the effect induced by milder strain PVYO. The observed increase in NADP-malic enzyme activity in all parts of the studied plants was higher in the case of PVYNTN strain than in the case of strain PVYO. The relevance of NADP-malic enzyme in plants under stress conditions was discussed. PMID:20111689

  11. Ontogenetic effects of diet during early development on growth performance, myosin mRNA expression and metabolic enzyme activity in Atlantic cod juveniles reared at different salinities.

    PubMed

    Koedijk, Roland M; Le François, Nathalie R; Blier, Pierre U; Foss, Atle; Folkvord, Arild; Ditlecadet, Delphine; Lamarre, Simon G; Stefansson, Sigurd O; Imsland, Albert K

    2010-05-01

    This study investigates the effect of diet during early development on growth and metabolic capacity in the juvenile stage of Atlantic cod. Growth in three groups of Atlantic cod juveniles (10-70 g) was measured at two salinities (15 per thousand or 32 per thousand) in combination with two temperatures (10 degrees C or 14 degrees C). Groups of cod from a single egg batch differed by having been fed with rotifers (R) or natural zooplankton (Z) during the first 36 days post hatch. A third group was fed zooplankton from 1 to 22 dph, after which diet changed to rotifers from 22 to 36 dph (ZRZ). All fish were weaned at 36 dph. Juveniles from the Z and ZRZ groups performed equally well under all experimental conditions, but fish that had received rotifers as a larval diet showed overall significantly lower growth rates. Growth was significantly enhanced by reduced salinity. Metabolic enzyme activity and relative myosin mRNA expression levels were not affected by larval diet. Muscle AAT and MDH were affected by salinity while these enzymes in liver tissue were affected by the interaction between salinity and temperature. Metabolic enzymes were stronger correlated with fish size than growth rates. Our results indicate that larval diet has a pronounced effect on juvenile growth rates under varying environmental conditions as optimal larval diet (zooplankton) increased juvenile growth rates significantly. Metabolic enzyme activity and relative myosin mRNA expression were not affected by larval history, which suggests that the persisting juvenile growth difference is not a result of differing metabolic capacity.

  12. Disorders in barrier protein mRNA expression and placenta secretory activity under the influence of polychlorinated biphenyls in vitro.

    PubMed

    Wojciechowska, A; Mlynarczuk, J; Kotwica, J

    2017-02-01

    Pregnancy disorders are often correlated with the presence of organic pollutants in the tissues of living bodies. The aim of this study was to investigate the effects (over 24 and 48 hours) of polychlorinated biphenyls (PCBs) 153, 126, and 77 at doses of 1, 10, and 100 ng/mL on barrier function and secretory activity in cow placentome sections collected during the second trimester of pregnancy. None of the PCBs affected the viability of the sections (P > 0.05). Polychlorinated biphenyl 153 decreased (P < 0.05) connexin 26 (Cx 26) mRNA expression, and all three PCBs reduced (P < 0.05) Cx 43 mRNA expression. Cx 32 mRNA expression showed a downward trend (P > 0.05) under the influence of PCBs 126 and 77. Moreover, PCBs 153 and 126 increased keratin 8 (KRT8) mRNA expression, whereas all PCBs decreased (P < 0.05) placenta specific protein 1 (PLAC-1) mRNA expression without changing (P > 0.05) hypoxia inducible factor 1α (HIF1α) mRNA expression. Concomitantly, PCBs 153 and 126 stimulated (P < 0.05) cyclooxygenase 2 (COX-2) mRNA expression, all PCBs increased (P < 0.05) prostaglandin E2 synthase (PGES) mRNA expression, and PCBs 126 and 77 increased prostaglandin E2 (PGE2) secretion. All three PCBs decreased (P < 0.05) prostaglandin F2α synthase (PGFS) mRNA expression and prostaglandin F2α (PGF2α) secretion. In addition, all three PCBs increased (P < 0.05) neurophysin I/oxytocin (NP-I/OT) mRNA expression and OT secretion but did not affect peptidyl-glycine-α-amidating monooxygenase (PGA) mRNA expression (P > 0.05). Moreover, the PCBs increased (P < 0.05) estradiol (E2) secretion, whereas progesterone (P4) secretion remained unchanged (P > 0.05). These changes could affect trophoblast invasion and uterine contractility and thus impact the course of gestation and/or fetal development in the cow.

  13. Swimming training down-regulates plasma leptin levels, but not adipose tissue ob mRNA expression.

    PubMed

    Benatti, F B; Polacow, V O; Ribeiro, S M L; Gualano, B; Coelho, D F; Rogeri, P S; Costa, A S; Lancha Junior, A H

    2008-10-01

    The aim of the present study was to assess the effects of endurance training on leptin levels and adipose tissue gene expression and their association with insulin, body composition and energy intake. Male Wistar rats were randomly divided into two groups: trained (N = 18) and sedentary controls (N = 20). The trained group underwent swimming training for 9 weeks. Leptin and insulin levels, adiposity and leptin gene expression in epididymal and inguinal adipose tissue were determined after training. There were no differences in energy intake between groups. Trained rats had a decreased final body weight (-10%), relative and total body fat (-36 and -55%, respectively) and insulin levels (-55%) compared with controls (P < 0.05). Although trained animals showed 56% lower leptin levels (2.58 +/- 1.05 vs 5.89 +/- 2.89 ng/mL in control; P < 0.05), no difference in leptin gene expression in either fat depot was demonstrable between groups. Stepwise multiple regression analysis showed that lower leptin levels in trained rats were due primarily to their lower body fat mass. After adjustment for total body fat, leptin levels were still 20% (P < 0.05) lower in exercised rats. In conclusion, nine weeks of swimming training did not affect leptin gene expression, but did lead to a decrease in leptin levels that was independent of changes in body fat.

  14. DIFFERENTIAL REGULATION OF POLYSOME mRNA LEVELS IN MOUSE HEPA-1C1C7 CELLS EXPOSED TO DIOXIN

    PubMed Central

    Thornley, Jessica A.; Trask, Heidi W.; Ridley, Christian J. A.; Korc, Murray; Gui, Jiang; Ringelberg, Carol S.; Wang, Sinny; Tomlinson, Craig R.

    2011-01-01

    The environmental agent 2,3,7,8-tetrachlorodibenzo-p-dioxin (TCDD or dioxin) causes a multitude of human illnesses. In order to more fully understand the underlying biology of TCDD toxicity, we tested the hypothesis that new candidate genes could be identified using polysome RNA from TCDD-treated mouse Hepa-1c1c7 cells. We found that (i) differentially expressed whole cell and cytoplasm RNA levels are both poor predictors of polysome RNA levels; (ii) for a majority of RNAs, differential RNA levels are regulated independently in the nucleus, cytoplasm, and polysomes; (iii) for the remaining polysome RNAs, levels are regulated via several different mechanisms, including a “tagging” of mRNAs in the nucleus for immediate polysome entry; and (iv) most importantly, a gene list derived from differentially expressed polysome RNA generated new genes and cell pathways potentially related to TCDD biology. PMID:21570461

  15. Physical activity level, waist circumference, and mortality

    PubMed Central

    Staiano, Amanda E.; Reeder, Bruce A.; Elliott, Susan; Joffres, Michel R.; Pahwa, Punam; Kirkland, Susan A.; Paradis, Gilles; Katzmarzyk, Peter T.

    2014-01-01

    This study predicted all-cause mortality based on physical activity level (active or inactive) and waist circumference (WC) in 8208 Canadian adults in Alberta, Manitoba, Nova Scotia, and Saskatchewan, surveyed between 1986–1995 and followed through 2004. Physically inactive adults had higher mortality risk than active adults overall (hazard ratio, 95% confidence interval = 1.20, 1.05–1.37) and within the low WC category (1.51, 1.19–1.92). Detrimental effects of physical inactivity and high WC demonstrate the need for physical activity promotion. PMID:22703160

  16. Low Incidence along with Low mRNA Levels of EGFRvIII in Prostate and Colorectal Cancers Compared to Glioblastoma

    PubMed Central

    Peciak, Joanna; Stec, Wojciech J; Treda, Cezary; Ksiazkiewicz, Magdalena; Janik, Karolina; Popeda, Marta; Smolarz, Maciej; Rosiak, Kamila; Hulas-Bigoszewska, Krystyna; Och, Waldemar; Rieske, Piotr; Stoczynska-Fidelus, Ewelina

    2017-01-01

    Background: The presence as well as the potential role of EGFRvIII in tumors other than glioblastoma still remains a controversial subject with many contradictory data published. Previous analyses, however, did not consider the level of EGFRvIII mRNA expression in different tumor types. Methods: Appropriately designed protocol for Real-time quantitative reverse-transcription PCR (Real-time qRT-PCR) was applied to analyze EGFRvIII and EGFRWT mRNA expression in 155 tumor specimens. Additionally, Western Blot (WB) analysis was performed for selected samples. Stable cell lines showing EGFRvIII expression (CAS-1 and DK-MG) were analyzed by means of WB, immunocytochemistry (ICC) and fluorescence in situ hybridization (FISH). Results: Our analyses revealed EGFRvIII expression in 27.59% of glioblastomas (8/29), 8.11% of colorectal cancers (3/37), 6.52% of prostate cancers (3/46) and none of breast cancers (0/43). Despite the average relative expression of EGFRvIII varying greatly among tumors of different tissues (approximately 800-fold) or even within the same tissue group (up to 8000-fold for GB), even the marginal expression of EGFRvIII mRNA can be detrimental to cancer progression, as determined by the analysis of stable cell lines endogenously expressing the oncogene. Conclusion: EGFRvIII plays an unquestionable role in glioblastomas with high expression of this oncogene. Our data suggests that EGFRvIII importance should not be underestimated even in tumors with relatively low expression of this oncogene. PMID:28123609

  17. Low Incidence along with Low mRNA Levels of EGFR(vIII) in Prostate and Colorectal Cancers Compared to Glioblastoma.

    PubMed

    Peciak, Joanna; Stec, Wojciech J; Treda, Cezary; Ksiazkiewicz, Magdalena; Janik, Karolina; Popeda, Marta; Smolarz, Maciej; Rosiak, Kamila; Hulas-Bigoszewska, Krystyna; Och, Waldemar; Rieske, Piotr; Stoczynska-Fidelus, Ewelina

    2017-01-01

    Background: The presence as well as the potential role of EGFR(vIII) in tumors other than glioblastoma still remains a controversial subject with many contradictory data published. Previous analyses, however, did not consider the level of EGFR(vIII) mRNA expression in different tumor types. Methods: Appropriately designed protocol for Real-time quantitative reverse-transcription PCR (Real-time qRT-PCR) was applied to analyze EGFR(vIII) and EGFR(WT) mRNA expression in 155 tumor specimens. Additionally, Western Blot (WB) analysis was performed for selected samples. Stable cell lines showing EGFR(vIII) expression (CAS-1 and DK-MG) were analyzed by means of WB, immunocytochemistry (ICC) and fluorescence in situ hybridization (FISH). Results: Our analyses revealed EGFR(vIII) expression in 27.59% of glioblastomas (8/29), 8.11% of colorectal cancers (3/37), 6.52% of prostate cancers (3/46) and none of breast cancers (0/43). Despite the average relative expression of EGFR(vIII) varying greatly among tumors of different tissues (approximately 800-fold) or even within the same tissue group (up to 8000-fold for GB), even the marginal expression of EGFR(vIII) mRNA can be detrimental to cancer progression, as determined by the analysis of stable cell lines endogenously expressing the oncogene. Conclusion: EGFR(vIII) plays an unquestionable role in glioblastomas with high expression of this oncogene. Our data suggests that EGFR(vIII) importance should not be underestimated even in tumors with relatively low expression of this oncogene.

  18. Influence of functional polymorphisms in TNF-α, IL-8, and IL-10 cytokine genes on mRNA expression levels and risk of gastric cancer.

    PubMed

    de Oliveira, Juliana Garcia; Rossi, Ana Flávia Teixeira; Nizato, Daniela Manchini; Cadamuro, Aline Cristina Targa; Jorge, Yvana Cristina; Valsechi, Marina Curado; Venâncio, Larissa Paola Rodrigues; Rahal, Paula; Pavarino, Érika Cristina; Goloni-Bertollo, Eny Maria; Silva, Ana Elizabete

    2015-12-01

    Functional polymorphisms in promoter regions can produce changes in the affinity of transcription factors, thus altering the messenger ribonucleic acid (mRNA) expression levels of inflammatory cytokines associated with the risk of cancer development. The goal of this study was to evaluate the influence that polymorphisms in the cytokine genes known as TNF-α-308 G/A (rs1800629), TNF-α-857 C/T (rs1799724), IL-8-251 T/A (rs4073), IL-8-845 T/C (rs2227532), and IL-10-592 C/A (rs1800872) have on changes to mRNA expression levels and on the risks of chronic gastritis (CG) and gastric cancer (GC). A sample of 723 individuals was genotyped using the polymerase chain reaction-restriction fragment length polymorphism (PCR-RFLP) technique. Relative mRNA expression levels were measured using quantitative real-time PCR (qPCR). Polymorphisms TNF-α-308 G/A and IL-8-251 A/T were not associated with risks of these gastric lesions. However, TNF-α-857 C/T, IL-8-845 T/C, and IL-10-592 C/A were found to be associated with a higher risk of GC, and IL-10-592 C/A was found to be associated with a higher risk of CG. The relative mRNA expression levels (RQ) of TNF-α, IL-8, and IL-10 were markedly downregulated in the CG group (median RQs = 0.128, 0.247, and 0.614, respectively), while the RQ levels of TNF-α in the GC group were upregulated (RQ = 2.749), but were basal for IL-8 (RQ = 1.053) and downregulated for IL-10 (RQ = 0.179). When the groups were stratified according to wild-type and polymorphic alleles, only for IL-8-845 T/C the polymorphic allele was found to influence the expression levels of this cytokine. IL-8-845 C allele carriers were significantly upregulated in both groups (GC and CG; RQ = 3.138 and 2.181, respectively) when compared to TT homozygotes (RQ = -0.407 and 0.165, respectively). In silico analysis in the IL-8 promoter region revealed that the presence of the variant C allele in position -845 is responsible for the presence of the binding

  19. The beneficial effects of betaine on dysfunctional adipose tissue and N6-methyladenosine mRNA methylation requires the AMP-activated protein kinase α1 subunit.

    PubMed

    Zhou, Xihong; Chen, Jingqing; Chen, Jin; Wu, Weiche; Wang, Xinxia; Wang, Yizhen

    2015-12-01

    The current study was conducted to determine whether betaine could improve fatty acid oxidation, mitochondrial function and N6-methyladenosine (m(6)A) mRNA methylation in adipose tissue in high-fat-induced mice and how AMP-activated protein kinase α1 subunit (AMPKα1) was involved. AMPKα1 knockout mice and wild-type mice were fed either a low-fat diet, high-fat diet or high-fat diet supplemented with betaine in the drinking water for 8weeks. Our results showed that mitochondrial genes (PGC1α) and β-oxidation-related genes (CPT1a) at protein level were increased in wild-type mice supplemented with betaine when compared with those in mice with high-fat diet. Betaine also decreased FTO expression and improved m(6)A methylation in adipose tissue of wild-type mice with high-fat diet. However, betaine failed to exert the abovementioned effects in AMPKα1 knockout mice. In adipocytes isolated from mice with high-fat diet, betaine treatment increased lipolysis and lipid oxidation. Moreover, betaine decreased FTO expression and increased m(6)A methylation. However, while AMPKα1 was knockdown, no remarkable changes in adipocytes were observed under betaine treatment. Our results indicated that betaine supplementation rectified mRNA hypomethylation and high FTO expression induced by high-fat diet, which may contribute to its beneficial effects on impaired adipose tissue function. Our results suggested that the AMPKα1 subunit is required for the beneficial effects of betaine on dysfunctional adipose tissue and m(6)A methylation. These results may provide the foundation for a mechanism that links m(6)A methylation status in RNA, AMPKα1 phosphorylation and dysfunctional adipose tissue induced by high-fat diet.

  20. Selective cognitive deficits and reduced hippocampal brain-derived neurotrophic factor mRNA expression in small-conductance calcium-activated K+ channel deficient mice.

    PubMed

    Jacobsen, J P R; Redrobe, J P; Hansen, H H; Petersen, S; Bond, C T; Adelman, J P; Mikkelsen, J D; Mirza, N R

    2009-09-29

    Small-conductance calcium-activated K(+) channels 1-3 (SK1-3) are important for neuronal firing regulation and are considered putative CNS drug targets. For instance non-selective SK blockers improve performance in animal models of cognition. The SK subtype(s) involved herein awaits identification and the question is difficult to address pharmacologically due to the lack of subtype-selective SK-channel modulators. In this study, we used doxycycline-induced conditional SK3-deficient (T/T) mice to address the cognitive consequences of selective SK3 deficiency. In T/T mice SK3 protein is near-eliminated from the brain following doxycycline treatment. We tested T/T and wild type (WT) littermate mice in five distinct learning and memory paradigms. In Y-maze spontaneous alternations and five-trial inhibitory avoidance the performance of T/T mice was markedly inferior to WT mice. In contrast, T/T and WT mice performed equally well in passive avoidance, object recognition and the Morris water maze. Thus, some aspects of working/short-term memory are disrupted in T/T mice. Using in situ hybridization, we further found the cognitive deficits in T/T mice to be paralleled by reduced brain-derived neurotrophic factor (BDNF) mRNA expression in the dentate gyrus and CA3 of the hippocampus. BDNF mRNA levels in the frontal cortex were not affected. BDNF has been crucially implicated in many cognitive processes. Hence, the biological substrate for the cognitive impairments in T/T mice could conceivably entail reduced trophic support of the hippocampus.

  1. [Subliminal perception and the levels of activation].

    PubMed

    Borgeat, F; Chabot, R; Chaloult, L

    1981-06-01

    The influence of the auditory subliminal messages on the level of activation has been evaluated through a double-blind study. Twenty consenting subjects were alternately submitted to activating and deactivating subliminal messages. Activation changes were estimated through the variations in the scores at the Mood Adjective Check List. Five out of this test's six factors concerned by the content of the subliminal messages responded differently according to the nature of these messages; four factors did so to a statistically significant degree. These results tend to indicate that auditory subliminal perceptions can influence the level of activation. The authors raise several questions, especially stressing that the parameters regulating subliminal response and susceptibility remain largely undefined and in need of systematic investigation.

  2. Relationship of antral follicle counts to fertility and ovarian AMH mRNA levels in beef cows

    Technology Transfer Automated Retrieval System (TEKTRAN)

    In mammalian females, reproductive senescence is associated with decreased numbers of follicles in the ovary. Anti-Mullerian Hormone (AMH) of ovarian origin has been proposed to be a biomarker of the number of follicles in the ovary and of fertility in women, as well as to control activation of pri...

  3. Efficient translation of distal cistrons of a polycistronic mRNA of a plant pararetrovirus requires a compatible interaction between the mRNA 3' end and the proteinaceous trans-activator.

    PubMed

    Edskes, H K; Kiernan, J M; Shepherd, R J

    1996-10-15

    Caulimoviruses, a type of plant pararetrovirus, employ a highly unusual mechanism to express the multiple cistrons of their pregenomic RNA. It involves translation of a polycistronic mRNA utilizing cis-acting viral RNA sequences and a transacting virus-encoded protein (P6). In addition to its role in polycistronic translation, the translational trans-activator protein P6 also activates its own expression from a monocistronic subgenomic RNA. Using Nicotiana Edwardsonii cell suspension protoplasts, we analyzed the ability of P6 proteins from three different caulimoviruses to activate viral RNA-based reporter constructs. Cis-acting elements present in figwort mosaic caulimovirus (FMV) are functional not only in the presence of the cognate P6 activator protein, but also in the presence of the heterologous activators from cauliflower mosaic caulimovirus (CaMV) and peanut chlorotic streak caulimovirus (PCISV). However, when 3' cis-acting elements essential for efficient polycistronic expression of FMV are replaced by their counterparts from PCISV, reporter gene expression is only observed in the presence of PCISV P6. Derepression of monocistronic reporter constructs tailed with FMV or CaMV 3' proximal sequences is less efficient in the presence of PCISV P6 than with either FMV or CaMV P6, but more efficient when the constructs contain a cognate PCISV 3' cis-element. Efficient expression of polycistronic and monocistronic caulimovirus mRNAs in plant cells thus requires compatible interactions between P6, a translational trans-activator, and its cognate cis-element at the 3' end of the mRNA.

  4. Effects of Dietary Selenium Against Lead Toxicity on mRNA Levels of 25 Selenoprotein Genes in the Cartilage Tissue of Broiler Chicken.

    PubMed

    Gao, H; Liu, C P; Song, S Q; Fu, J

    2016-07-01

    The interactions between the essential element selenium (Se) and the toxic element lead (Pb) have been reported extensively; however, little is known about the effect of Se on Pb toxicity and the expression pattern of selenoproteins in the cartilage of chicken. To investigate the effects of Se on Pb toxicity and the messenger RNA (mRNA) expressions of selenoproteins in cartilage tissue, an in vitro study was performed on 1-day-old broiler chickens (randomly allocated into four groups) with diet of different concentration of Se and Pb. After 90 days, the meniscus cartilage and sword cartilage tissue were examined for the mRNA levels of 25 selenoprotein genes. The results showed that Se and Pb influenced the expression of selenoprotein genes in the chicken cartilage tissue. In detail, Se could alleviate the downtrend of the expression of Gpx1, Gpx2, Gpx4, Txnrd2, Txnrd3, Dio1, Dio2, Seli, Selu, Sepx1, Selk, Selw, Selo, Selm, Sep15, Sepnn1, Sels, and Selt induced by Pb exposure in the meniscus cartilage. In the sword cartilage, Se alleviated the downtrend of the expression of Gpx2, Gpx3, Gpx4, Txnrd1, Txnrd2, Dio2, Dio3, Seli, Selh, SPS2, Sepx1, Selk, Selw, Selo, Selm, Sep15, Selpb, Sepn1, and Selt induced by Pb exposure. The present study provided some compensated data about the roles of Se against Pb toxicity in the regulation of selenoprotein expression.

  5. Changes in plasma gonadotropins, inhibin and testosterone concentrations and testicular gonadotropin receptor mRNA expression during testicular active, regressive and recrudescent phase in the captive Japanese black bear (Ursus thibetanus japonicus).

    PubMed

    Iibuchi, Ruriko; Kamine, Akari; Shimozuru, Michito; Nio-Kobayashi, Junko; Watanabe, Gen; Taya, Kazuyoshi; Tsubota, Toshio

    2010-02-01

    Male Japanese black bears (Ursus thibetanus japonicus) have an explicit reproductive cycle. The objective of this study was to clarify the variation of plasma testosterone, FSH, inhibin, LH levels and testicular gonadotropin receptor mRNA expression of male bears associated with their testicular activity. Notably, this study investigated peripheral FSH concentration and localization of gonadotropin receptor mRNAs for the first time in male bears. Blood and testicular tissue samples were taken from captive, mature, male Japanese black bears during testicular active, regressive and recrudescent phases. Plasma hormone concentrations were measured by immunoassays, and gonadotropin receptor mRNA expression in the testis was investigated by in situ hybridization technique and also by real-time PCR. There were significant variations in plasma testosterone and inhibin concentrations. Changes in FSH concentration preceded these hormones with a similar tendency. Hormones started to increase during denning, and achieved the highest values at the end of the recrudescent phase for FSH and in the active phase for testosterone and inhibin. These changes in hormone concentrations were accompanied by testicular growth. In situ hybridization analysis revealed that FSH and LH receptor mRNA was possibly expressed in Sertoli cells and Leydig cells, respectively, as they are in other mammals. However, neither plasma LH concentration nor testicular gonadotropin receptor mRNA expression level varied significantly among the sampling months. These results suggest that FSH, inhibin and testosterone have roles in testicular activity in male bears. This study provides important endocrine information for comprehending seasonal reproductivity in male Japanese black bears.

  6. Massive bowel resection upregulates the intestinal mRNA expression levels of cellular retinol-binding protein II and apolipoprotein A-IV and alters the intestinal vitamin A status in rats.

    PubMed

    Hebiguchi, Taku; Mezaki, Yoshihiro; Morii, Mayako; Watanabe, Ryo; Yoshikawa, Kiwamu; Miura, Mitsutaka; Imai, Katsuyuki; Senoo, Haruki; Yoshino, Hiroaki

    2015-03-01

    Short bowel (SB) syndrome causes the malabsorption of various nutrients. Among these, vitamin A is important for a number of physiological activities. Vitamin A is absorbed by epithelial cells of the small intestine and is discharged into the lymphatic vessels as a component of chylomicrons and is delivered to the liver. In the present study, we used a rat model of SB syndrome in order to assess its effects on the expression of genes associated with the absorption, transport and metabolism of vitamin A. In the rats with SB, the intestinal mRNA expression levels of cellular retinol-binding protein II (CRBP II, gene symbol Rbp2) and apolipoprotein A-IV (gene symbol Apoa4) were higher than those in the sham-operated rats, as shown by RT-qPCR. Immunohistochemical analysis revealed that absorptive epithelial cells stained positive for both CRBP II and lecithin retinol acyltransferase, which are both required for the effective esterification of vitamin A. In the rats with SB, the retinol content in the ileum and the retinyl ester content in the jejunum were lower than those in the sham-operated rats, as shown by quantitative analysis of retinol and retinyl esters by high performance liquid chromatography. These results suggest that the elevated mRNA expression levels of Rbp2 and Apoa4 in the rats with SB contribute to the effective esterification and transport of vitamin A.

  7. Resistance to antidepressant treatment is associated with polymorphisms in the leptin gene, decreased leptin mRNA expression, and decreased leptin serum levels.

    PubMed

    Kloiber, Stefan; Ripke, Stephan; Kohli, Martin A; Reppermund, Simone; Salyakina, Daria; Uher, Rudolf; McGuffin, Peter; Perlis, Roy H; Hamilton, Steven P; Pütz, Benno; Hennings, Johannes; Brückl, Tanja; Klengel, Torsten; Bettecken, Thomas; Ising, Marcus; Uhr, Manfred; Dose, Tatjana; Unschuld, Paul G; Zihl, Josef; Binder, Elisabeth; Müller-Myhsok, Bertram; Holsboer, Florian; Lucae, Susanne

    2013-07-01

    Leptin, a peptide hormone from adipose tissue and key player in weight regulation, has been suggested to be involved in sleep and cognition and to exert antidepressant-like effects, presumably via its action on the HPA-axis and hippocampal function. This led us to investigate whether genetic variants in the leptin gene, the level of leptin mRNA-expression and leptin serum concentrations are associated with response to antidepressant treatment. Our sample consisted of inpatients from the Munich Antidepressant Response Signature (MARS) project with weekly Hamilton Depression ratings, divided into two subsamples. In the exploratory sample (n=251) 17 single nucleotide polymorphisms (SNPs) covering the leptin gene region were genotyped. We found significant associations of several SNPs with impaired antidepressant treatment outcome and impaired cognitive performance after correction for multiple testing. The SNP (rs10487506) showing the highest association with treatment response (p=3.9×10(-5)) was analyzed in the replication sample (n=358) and the association could be verified (p=0.021) with response to tricyclic antidepressants. In an additional meta-analysis combining results from the MARS study with data from the Genome-based Therapeutic Drugs for Depression (GENDEP) and the Sequenced Treatment Alternatives to Relieve Depression (STAR(⁎)D) studies, nominal associations of several polymorphisms in the upstream vicinity of rs10487506 with treatment outcome were detected (p=0.001). In addition, we determined leptin mRNA expression in lymphocytes and leptin serum levels in subsamples of the MARS study. Unfavorable treatment outcome was accompanied with decreased leptin mRNA and leptin serum levels. Our results suggest an involvement of leptin in antidepressant action and cognitive function in depression with genetic polymorphisms in the leptin gene, decreased leptin gene expression and leptin deficiency in serum being risk factors for resistance to antidepressant

  8. Identification of condition-specific regulatory modules through multi-level motif and mRNA expression analysis

    PubMed Central

    Chen, Li; Wang, Yue; Hoffman, Eric P.; Riggins, Rebecca B.; Clarke, Robert

    2013-01-01

    Many computational methods for identification of transcription regulatory modules often result in many false positives in practice due to noise sources of binding information and gene expression profiling data. In this paper, we propose a multi-level strategy for condition-specific gene regulatory module identification by integrating motif binding information and gene expression data through support vector regression and significant analysis. We have demonstrated the feasibility of the proposed method on a yeast cell cycle data set. The study on a breast cancer microarray data set shows that it can successfully identify the significant and reliable regulatory modules associated with breast cancer. PMID:20054984

  9. The effect of moderate-intensity exercise on the expression of HO-1 mRNA and activity of HO in cardiac and vascular smooth muscle of spontaneously hypertensive rats.

    PubMed

    Ren, Cailing; Qi, Jie; Li, Wanwei; Zhang, Jun

    2016-04-01

    The objective of this study was to observe the effects of moderate-intensity training on the activity of heme oxygenase (HO) and expression of HO-1 mRNA in the aorta and the cardiac muscle of spontaneously hypertensive rats (SHRs). After 9 weeks of swimming exercise, the activity of HO and expression of HO-1 mRNA in the SHRs were measured. The resting blood pressure in the exercise group was increased by 1.7% (P > 0.05), whereas it was significantly elevated by 10.3% (P < 0.01) in the SHR rats. Compared with animals in the control and sedentary groups, the expression level of HO-1 mRNA of aorta and cardiac muscle in the exercise group was significantly enhanced (P < 0.01). The HO activity and the content of plasma carbon monoxide (CO) in the sedentary group were dramatically decreased (P < 0.05 and P < 0.01, respectively) compared with the control group. HO activity and content of plasma CO in the exercise group were significantly higher compared with those in the sedentary group (P < 0.05 and P < 0.01, respectively). The HO/CO metabolic pathway might be involved in the regulation of blood pressure of the SHR models.

  10. Locomotor activity and tissue levels following acute ...

    EPA Pesticide Factsheets

    Pyrethroids produce neurotoxicity that depends, in part, on the chemical structure. Common behavioral effects include locomotor activity changes and specific toxic syndromes (types I and II). In general these neurobehavioral effects correlate well with peak internal dose metrics. Products of cyhalothrin, a type II pyrethroid, include mixtures of isomers (e.g., λ-cyhalothrin) as well as enriched active isomers (e.g., γ-cyhalothrin). We measured acute changes in locomotor activity in adult male rats and directly correlated these changes to peak brain and plasma concentrations of λ- and γ-cyhalothrin using a within-subject design. One-hour locomotor activity studies were conducted 1.5 h after oral gavage dosing, and immediately thereafter plasma and brains were collected for analyzing tissue levels using LC/MS/MS methods. Both isomers produced dose-related decreases in activity counts, and the effective dose range for γ-cyhalothrin was lower than for λ-cyhalothrin. Doses calculated to decrease activity by 50% were 2-fold lower for the γ-isomer (1.29 mg/kg) compared to λ-cyhalothrin (2.65 mg/kg). Salivation, typical of type II pyrethroids, was also observed at lower doses of γ-cyhalothrin. Administered dose correlated well with brain and plasma concentrations, which furthermore showed good correlations with activity changes. Brain and plasma levels were tightly correlated across doses. While γ-cyhalothrin was 2-fold more potent based on administ

  11. Neck Muscle Activation Levels During Frontal Impacts

    DTIC Science & Technology

    2004-09-01

    right and left upper trapezius and sternocleidomastoid . Amplitude and frequency components of the signals were evaluated to determine the amount of...Gx acceleration levels. The trapezius produced more force than the sternocleidomastoid . Activity of both muscle groups was synchronized, by their...dynamic environment. The role of upper trapezius and sternocleidomastoid (SCM) during long-duration head and neck loading situations has been

  12. Expression of IroN, the salmochelin siderophore receptor, requires mRNA activation by RyhB small RNA homologues.

    PubMed

    Balbontín, Roberto; Villagra, Nicolás; Pardos de la Gándara, Maria; Mora, Guido; Figueroa-Bossi, Nara; Bossi, Lionello

    2016-04-01

    The iroN gene of Salmonella enterica and uropathogenic Escherichia coli encodes the outer membrane receptor of Fe(3+) -bound salmochelin, a siderophore tailored to evade capture by the host's immune system. The iroN gene is under negative control of the Fur repressor and transcribed under iron limiting conditions. We show here that transcriptional de-repression is not sufficient to allow iroN expression, as this also requires activation by either of two partially homologous small RNAs (sRNAs), RyhB1 and RyhB2. The two sRNAs target the same sequence segment approximately in the middle of the 94-nucleotide 5' untranslated region (UTR) of iroN mRNA. Several lines of evidence suggest that base pair interaction stimulates iroN mRNA translation. Activation does not result from the disruption of a secondary structure masking the ribosome binding site; rather it involves sequences at the 5' end of iroN 5' UTR. In vitro 'toeprint' assays revealed that this upstream site binds the 30S ribosomal subunit provided that RyhB1 is paired with the mRNA. Altogether, our data suggest that RyhB1, and to lesser extent RyhB2, activate iroN mRNA translation by promoting entry of the ribosome at an upstream 'standby' site. These findings add yet an additional nuance to the polychromatic landscape of sRNA-mediated regulation.

  13. [Effect of Siwu decoction and its combined administration on hepatic P450 enzymatic activity and mRNA expression in rats].

    PubMed

    Liang, Miao; Ma, Zeng-Chun; Yi, Jian-Feng; Wang, Yu-Guang; Tan, Hong-Ling; Xiao, Cheng-Rong; Liang, Qian-De; Tang, Xiang-Lin; Li, Hua; Shen, Guo-Lin; Gao, Yue

    2013-11-01

    To study the effect of Siwu decoction (SWD) compound and its combined administration on hepatic P450 enzymatic activity and mRNA expression in rats. Rats were orally administered with SWD and water decoction combined with other medicines for two weeks, and then sacrificed. Their livers were perfused with normal saline to prepare liver micrisomes. Mixed probe and liver microsome in vitro incubation method were adopted to detect the effect of SWD on hepatic cytochrome P450. The real-time quantitative polymerase chain reaction (Q-PCR) was used to detect the effect of SWD on the expression of hepatic cytochrome P450. Compared with the control group, the SWD compound group showed higher CYP1A2 enzymatic activity (P < 0.05); Rehmanniae-paeoniae, angelicae-paeoniae, angelicae-rhizome, paeoniae-rhizome groups had lower CYP1A2 and CYP2C19 enzymatic activities (P < 0.05); And the compound group, the single component group and the combination group showed lower CYP2B6 enzymatic activities (P < 0.05). The compound could up-regulated the mRNA expression of CYP2B1 (P < 0.05); And the four single components could down-regulated the mRNA expression of CYP2B1 (P < 0.05). SWD compound had the effect in inducing CYP1A2 enzymatic activity. The rehmanniae-paeoniae group and the angelicae-paeoniae group had identical enzymatic activity with the control group, but significant down-regulation in CYP1A2 enzymatic activity after being combined with paeoniae. The compound and its combined administration showed the inhibitory effect on CYP2B6 enzymatic activity, particularly being combined with angelicae. The compound showed identical effect with the four single components in terms of CYP1A2 mRNA expression and enzymatic activity.

  14. The Influence of Spirulina platensis Filtrates on Caco-2 Proliferative Activity and Expression of Apoptosis-Related microRNAs and mRNA

    PubMed Central

    Śmieszek, Agnieszka; Giezek, Ewa; Chrapiec, Martyna; Murat, Martyna; Mucha, Aleksandra; Michalak, Izabela; Marycz, Krzysztof

    2017-01-01

    Spirulina platensis (SP) is a blue-green microalga that has recently raised attention not only as a nutritional component, but also as a source of bioactivities that have therapeutic effects and may find application in medicine, including cancer treatment. In the present study we determined the cytotoxic effect of S. platensis filtrates (SPF) on human colon cancer cell line Caco-2. Three concentrations of SPF were tested—1.25%, 2.5%, and 5% (v/v). We have found that the highest concentration of SPF exerts the strongest anti-proliferative and pro-apoptotic effect on Caco-2 cultures. The SPF negatively affected the morphology of Caco-2 causing colony shrinking and significant inhibition of metabolic and proliferative activity of cells. The wound-healing assay showed that the SPF impaired migratory capabilities of Caco-2. This observation was consistent with lowered mRNA levels for metalloproteinases. Furthermore, SPF decreased the transcript level of pro-survival genes (cyclin D1, surviving, and c-Myc) and reduced the autocrine secretion of Wnt-10b. The cytotoxic effect of SPF involved the modulation of the Bax and Bcl-2 ratio and a decrease of mitochondrial activity, and was related with increased levels of intracellular reactive oxygen species (ROS) and nitric oxide (NO). Moreover, the SPF also caused an increased number of cells in the apoptotic sub-G0 phase and up-regulated expression of mir-145, simultaneously decreasing expression of mir-17 and 146. Obtained results indicate that SPF can be considered as an agent with anti-cancer properties that may be used for colon cancer prevention and treatment. PMID:28272349

  15. Diversity of the active methanotrophic community in acidic peatlands as assessed by mRNA and SIP-PLFA analyses.

    PubMed

    Chen, Yin; Dumont, Marc G; McNamara, Niall P; Chamberlain, Paul M; Bodrossy, Levente; Stralis-Pavese, Nancy; Murrell, J Colin

    2008-02-01

    The active methanotroph community was investigated for the first time in heather (Calluna)-covered moorlands and Sphagnum/Eriophorum-covered UK peatlands. Direct extraction of mRNA from these soils facilitated detection of expression of methane monooxygenase genes, which revealed that particulate methane monooxygenase and not soluble methane monooxygenase was probably responsible for CH(4) oxidation in situ, because only pmoA transcripts (encoding a subunit of particulate methane monooxygenase) were readily detectable. Differences in methanotroph community structures were observed between the Calluna-covered moorland and Sphagnum/Eriophorum-covered gully habitats. As with many other Sphagnum-covered peatlands, the Sphagnum/Eriophorum-covered gullies were dominated by Methylocystis. Methylocella and Methylocapsa-related species were also present. Methylobacter-related species were found as demonstrated by the use of a pmoA-based diagnostic microarray. In Calluna-covered moorlands, in addition to Methylocella and Methylocystis, a unique group of peat-associated type I methanotrophs (Gammaproteobacteria) and a group of uncultivated type II methanotrophs (Alphaproteobacteria) were also found. The pmoA sequences of the latter were only distantly related to Methylocapsa and also to the RA-14 group of methanotrophs, which are believed to be involved in oxidation of atmospheric concentrations of CH(4). Soil samples were also labelled with (13)CH(4), and subsequent analysis of the (13)C-labelled phospholipid fatty acids (PLFAs) showed that 16:1 omega 7, 18:1 omega 7 and 18:1 omega 9 were the major labelled PLFAs. The presence of (13)C-labelled 18:1 omega 9, which was not a major PLFA of any extant methanotrophs, indicated the presence of novel methanotrophs in this peatland.

  16. Effect of fluoride and low versus high levels of dietary calcium on mRNA expression of osteoprotegerin and osteoprotegerin ligand in the bone of rats.

    PubMed

    Yu, Jun; Gao, Yanhui; Sun, Dianjun

    2013-06-01

    The ratio of osteoprotegerin ligand (OPGL) to osteoprotegerin (OPG) determines the delicate balance between bone resorption and synthesis. The main objective of the present study is to investigate the possible role of OPGL and OPG in the bone metabolism of rats exposed to fluoride and the protective or aggravating effect of calcium (Ca). In a 6-month study, 270 weanling male Sprague-Dawley rats weighing between 70 and 90 g were divided randomly into six groups of 45 rats in each group. Three groups (groups I, III, and V)served as controls and drank deionized water and were fed purified rodent diets containing either 1,000 mg Ca/kg (low Ca), 5,000 mg Ca/kg (normal Ca), or 20,000 mg Ca/kg (high Ca). The three experimental groups (groups II, IV, and VI) were given the same diets but they drank water containing 100 mg F ion/L (from NaF). Every 2 months 15 rats were randomly selected from each group and sacrificed for the study. The ratio of OPGL mRNA to OPG mRNA was significantly increased by the sixth month in the distal femur joints of the F-exposed rats. Serum tartrate-resistant acid phosphatase activity and serum calcitonin activity in the F-exposed groups was increased, although changes were not apparent in the serum alkaline phosphatase or Gla-containing proteins, especially in the low calcium and high calcium diet F-exposed groups. The results indicated that OPG and OPGL may play important roles in skeletal fluorosis, and that fluoride may enhance osteoclast formation and induce osteoclastic bone destruction. A high Ca diet did not play a protective role, but rather may aggravate the damage of fluoride.

  17. Increased CRE-binding activity and tryptophan hydroxylase mRNA expression induced by 3,4-methylenedioxymethamphetamine (MDMA, "ecstasy") in the rat frontal cortex but not in the hippocampus.

    PubMed

    García-Osta, Ana; Del Río, Joaquín; Frechilla, Diana

    2004-07-26

    A single administration of either 3,4-methylenedioxymethamphetamine (MDMA, "ecstasy") or p-chloroamphetamine (PCA) produced a rapid and marked reduction of serotonin (5-HT) content in rat frontal cortex and hippocampus. In the cortex of MDMA-treated rats, 5-HT levels returned to control values 48 h after drug administration. This recovery was correlated with an induction of CRE-binding activity and an enhanced expression of tryptophan hydroxylase (TPH) mRNA, the rate-limiting enzyme in 5-HT biosynthesis, suggesting that MDMA may up-regulate the TPH gene through a CREB-dependent mechanism. In the cortex of PCA-treated rats, neither a recovery of 5-HT levels nor changes in DNA-binding or TPH mRNA were found at the same time point. In the hippocampus of rats receiving either PCA or MDMA a decrease in TPH mRNA levels was found at all times, along with a reduced CRE-binding at the 8-h time point. The results show region-specific effects of MDMA. In the frontal cortex, the increased TPH expression suggests a compensatory response to MDMA-induced loss of serotonergic function.

  18. Low-level laser irradiation alters mRNA expression from genes involved in DNA repair and genomic stabilization in myoblasts

    NASA Astrophysics Data System (ADS)

    Trajano, L. A. S. N.; Sergio, L. P. S.; Silva, C. L.; Carvalho, L.; Mencalha, A. L.; Stumbo, A. C.; Fonseca, A. S.

    2016-07-01

    Low-level lasers are used for the treatment of diseases in soft and bone tissues, but few data are available regarding their effects on genomic stability. In this study, we investigated mRNA expression from genes involved in DNA repair and genomic stabilization in myoblasts exposed to low-level infrared laser. C2C12 myoblast cultures in different fetal bovine serum concentrations were exposed to low-level infrared laser (10, 35 and 70 J cm-2), and collected for the evaluation of DNA repair gene expression. Laser exposure increased gene expression related to base excision repair (8-oxoguanine DNA glycosylase and apurinic/apyrimidinic endonuclease 1), nucleotide excision repair (excision repair cross-complementation group 1 and xeroderma pigmentosum C protein) and genomic stabilization (ATM serine/threonine kinase and tumor protein p53) in normal and low fetal bovine serum concentrations. Results suggest that genomic stability could be part of a biostimulation effect of low-level laser therapy in injured muscles.

  19. The effects of recombinant bovine somatotropin (rbST) on tissue IGF-I, IGF-I receptor, and GH mRNA levels in rainbow trout, Oncorhynchus mykiss.

    PubMed

    Biga, Peggy R; Schelling, Gerald T; Hardy, Ronald W; Cain, Kenneth D; Overturf, Kenneth; Ott, Troy L

    2004-02-01

    Numerous studies demonstrated that rbST increased growth rates in several fish species, and several species exhibit GH production in tissues other than the pituitary. The role of tissue GH and IGF-I in regulating fish growth is poorly understood. Therefore an experiment was conducted to examine the effects of rbST treatment on tissue GH, IGF-I, and IGF-I receptor-A (rA) expression in rainbow trout. Rainbow trout (550 +/- 10 g) received either intra-peritoneal injections of rbST (120 microg/g body weight) or vehicle on days 0 and 21, and tissue samples were collected on days 0, 0.5, 1, 3, 7, and 28 (n = 6/day/trt). Total RNA was isolated and assayed for steady-state levels of IGF-I, IGF-IrA, and GH mRNA using quantitative RT-PCR. Insulin-like growth factor-I mRNA levels increased in liver, gill, gonad, muscle, brain, and intestine in response to rbST treatment (P < 0.10). Liver IGF-I mRNA increased (P < 0.01) 0.5 day after treatment and remained elevated throughout the trial. Intestine IGF-I mRNA increased (P < 0.05) in treated fish from day 1 to day 3, then decreased to day 7 and increased again at day 28, and remained elevated above control levels throughout the trial. Gill IGF-I mRNA levels increased (P < 0.05) 1 day after treatment and remained elevated throughout the trial. Heart IGF-IrA mRNA levels decreased (P < 0.05) while gonad GH mRNA levels increased (P < 0.10) following rbST treatment. These results demonstrate that rbST treatment increased IGF-I mRNA levels in extra-hepatic tissues, and decreased heart IGF-IrA and increased gonad GH mRNA levels. Because the primary source for endocrine IGF-I is liver, the increased IGF-I mRNA reported in extra-hepatic tissues may indicate local paracrine/autocrine actions for IGF-I for local physiological functions.

  20. Effect of low levels of dietary available phosphorus on phosphorus utilization, bone mineralization, phosphorus transporter mRNA expression and performance in growing pigs.

    PubMed

    Pokharel, Bishwo B; Regassa, Alemu; Nyachoti, Charles M; Kim, Woo K

    2017-03-03

    A study was conducted to examine the effects of different dietary levels of available phosphorus (aP) on P excretion, bone mineralization, performance and the mRNA expression of sodium-dependent P transporters in growing pigs. Sixty-day old growing pigs (n = 54) with an average initial BW of 19.50 ± 1.11 kg were randomly allocated to a control diet (C) containing 0.23% available phosphorus (aP), T1 containing 0.17% aP and T2 containing 0.11% aP. There were 6 pens per treatment with 3 pigs per pen. Body weight and feed intake were measured weekly. At the end of each week, one pig from each pen was housed in a metabolic crate for 24 h to collect fecal and urine samples and then sacrificed to obtain third metacarpal (MC3) bones and jejunal and kidney samples. Bones were scanned by Dual Energy X-ray Absorptiometry (DEXA). Fecal and urine samples were sub-sampled and analyzed for P content. The expression of P transporter mRNA in jejunum and kidney samples was measured using quantitative real-time polymerase chain reaction (qRT-PCR). Data were analyzed using GLM procedure of the Statistical Analysis System (SAS Institute version 9.2). Pigs fed the T2 diet had reduced (P < 0.05) average daily gain (ADG) and gain to feed (G:F) compared to those fed the C diet during week 2. Overall, ADG and G:F were also reduced (P < 0.05) in pigs fed the T2 diet compared to those fed the C and T1 diets. Bone mineral density (BMD) and bone mineral content (BMC) were reduced (P < 0.05) in pigs fed the T2 diet compared to those fed the C diet throughout the experiment. At week 1, jejunal mRNA expression of Na (+)-dependent phosphate transporter 2 (SLC34A2) was increased (P < 0.01) in pigs fed the T2 diet compared to C diet. Renal mRNA expression of Na(+)-dependent phosphate transporter 1 (SLC34A1) and SLC34A3 were increased (P < 0.05) in pigs fed the T2 diet compared to those fed the C diet at week 2 and was accompanied by lower (P < 0.05) urinary P in pigs fed the T2 diet during week 2

  1. Decreased Npas4 and Arc mRNA Levels in the Hippocampus of Aged Memory-Impaired Wild-Type But Not Memory Preserved 11β-HSD1 Deficient Mice.

    PubMed

    Qiu, J; Dunbar, D R; Noble, J; Cairns, C; Carter, R; Kelly, V; Chapman, K E; Seckl, J R; Yau, J L W

    2016-01-01

    Mice deficient in the glucocorticoid-regenerating enzyme 11β-HSD1 resist age-related spatial memory impairment. To investigate the mechanisms and pathways involved, we used microarrays to identify differentially expressed hippocampal genes that associate with cognitive ageing and 11β-HSD1. Aged wild-type mice were separated into memory-impaired and unimpaired relative to young controls according to their performance in the Y-maze. All individual aged 11β-HSD1-deficient mice showed intact spatial memory. The majority of differentially expressed hippocampal genes were increased with ageing (e.g. immune/inflammatory response genes) with no genotype differences. However, the neuronal-specific transcription factor, Npas4, and immediate early gene, Arc, were reduced (relative to young) in the hippocampus of memory-impaired but not unimpaired aged wild-type or aged 11β-HSD1-deficient mice. A quantitative reverse transcriptase-polymerase chain reaction and in situ hybridisation confirmed reduced Npas4 and Arc mRNA expression in memory-impaired aged wild-type mice. These findings suggest that 11β-HSD1 may contribute to the decline in Npas4 and Arc mRNA levels associated with memory impairment during ageing, and that decreased activity of synaptic plasticity pathways involving Npas4 and Arc may, in part, underlie the memory deficits seen in cognitively-impaired aged wild-type mice.

  2. Effects of waterborne copper exposure on carnitine composition, kinetics of carnitine palmitoyltransferases I (CPT I) and mRNA levels of CPT I isoforms in yellow catfish Pelteobagrus fulvidraco.

    PubMed

    Chen, Qi-Liang; Luo, Zhi; Liu, Cai-Xia; Zheng, Jia-Lang; Zhu, Qing-Ling; Hu, Wei; Zhuo, Mei-Qin

    2015-11-01

    The present study was conducted to determine the effect of waterborne copper (Cu) exposure on carnitine concentration, carnitine palmitoyltransferases I (CPT I) kinetics, and expression levels of four CPT I isoforms in the liver, muscle and heart of yellow catfish Pelteobagrus fulvidraco. Yellow catfish were exposed to four waterborne copper (Cu) concentrations (2 (control), 24 (low), 71 (medium), 198 (high) μg Cu/l, respectively) for 6weeks. Waterborne Cu exposure increased maximal reaction rates (Vmax) in the liver and muscle, but not in the heart. Michaelis-Menten constants (Km) tended to increase in the liver, but decreased in the heart after Cu exposure. The contents of total carnitine (TC) and acylcarnitine (AC) in the liver, and free carnitine (FC) in the muscle increased with increasing waterborne Cu concentrations, while FC content in the muscle declined with the increase of Cu levels. Waterborne Cu exposure also significantly influenced carnitine composition and profiles in heart. The mRNA expression of CPT Iα1a, CPT Iα1b and CPT Iα2a in the liver, and CPT Iα1a, CPT Iα1b and CPT Iβ in the muscle as well as CPT Iα1a in the heart were up-regulated by Cu exposure. Additionally, correlations were observed in the expression levels of CPT I isoforms and Km for carnitine, and between CPT I isoform expression and CPT I activity. To our knowledge, for the first time, the present study provided evidence that waterborne Cu exposure could influence carnitine composition, CPT I kinetics and mRNA levels of four CPT I isoforms in yellow catfish, which served to increase our understanding of the mechanisms underlying lipid catabolism during Cu exposure.

  3. Associations of Haplotypes Upstream of IRS1 with Insulin Resistance, Type 2 Diabetes, Dyslipidemia, Preclinical Atherosclerosis, and Skeletal Muscle LOC646736 mRNA Levels

    PubMed Central

    Soyal, Selma M.; Felder, Thomas; Auer, Simon; Oberkofler, Hannes; Iglseder, Bernhard; Paulweber, Bernhard; Dossena, Silvia; Nofziger, Charity; Paulmichl, Markus; Esterbauer, Harald; Krempler, Franz; Patsch, Wolfgang

    2015-01-01

    The genomic region ~500 kb upstream of IRS1 has been implicated in insulin resistance, type 2 diabetes, adverse lipid profile, and cardiovascular risk. To gain further insight into this chromosomal region, we typed four SNPs in a cross-sectional cohort and subjects with type 2 diabetes recruited from the same geographic region. From 16 possible haplotypes, 6 haplotypes with frequencies >0.01 were observed. We identified one haplotype that was protective against insulin resistance (determined by HOMA-IR and fasting plasma insulin levels), type 2 diabetes, an adverse lipid profile, increased C-reactive protein, and asymptomatic atherosclerotic disease (assessed by intima media thickness of the common carotid arteries). BMI and total adipose tissue mass as well as visceral and subcutaneous adipose tissue mass did not differ between the reference and protective haplotypes. In 92 subjects, we observed an association of the protective haplotype with higher skeletal muscle mRNA levels of LOC646736, which is located in the same haplotype block as the informative SNPs and is mainly expressed in skeletal muscle, but only at very low levels in liver or adipose tissues. These data suggest a role for LOC646736 in human insulin resistance and warrant further studies on the functional effects of this locus. PMID:26090471

  4. Transplantable rat glucagonomas cause acute onset of severe anorexia and adipsia despite highly elevated NPY mRNA levels in the hypothalamic arcuate nucleus.

    PubMed Central

    Jensen, P B; Blume, N; Mikkelsen, J D; Larsen, P J; Jensen, H I; Holst, J J; Madsen, O D

    1998-01-01

    We have isolated a stable, transplantable, and small glucagonoma (MSL-G-AN) associated with abrupt onset of severe anorexia occurring 2-3 wk after subcutaneous transplantation. Before onset of anorexia, food consumption is comparable to untreated controls. Anorexia is followed by adipsia and weight loss, and progresses rapidly in severity, eventually resulting in reduction of food and water intake of 100 and 80%, respectively. During the anorectic phase, the rats eventually become hypoglycemic and hypothermic. The tumor-associated anorexia shows no sex difference, and is not affected by bilateral abdominal vagotomy, indicating a direct central effect. The adipose satiety factor leptin, known to suppress food intake by reducing hypothalamic neuropeptide Y (NPY) levels, was not found to be expressed by the tumor, and circulating leptin levels were reduced twofold in the anorectic phase. A highly significant increase in hypothalamic (arcuate nucleus) NPY mRNA levels was found in anorectic rats compared with control animals. Since elevated hypothalamic NPY is among the most potent stimulators of feeding and a characteristic of most animal models of hyperphagia, we conclude that the MSL-G-AN glucagonoma releases circulating factor(s) that overrides the hypothalamic NPY-ergic system, thereby eliminating the orexigenic effect of NPY. We hypothesize a possible central role of proglucagon-derived peptides in the observed anorexia. PMID:9435324

  5. Exposure to bis(maltolato)oxovanadium(IV) increases levels of hepcidin mRNA and impairs the homeostasis of iron but not that of manganese.

    PubMed

    Sánchez-González, Cristina; Rivas-García, Lorenzo; López-Chaves, Carlos; Rodríguez-Nogales, Alba; Algieri, Francesca; Gálvez, Julio; Gómez-Aracena, Jorge; Vera-Ramírez, Laura; Montes-Bayon, Maria; Sanz-Medel, Alfredo; Llopis, Juan

    2014-11-01

    The aim of this study was to examine whether alterations in iron homeostasis, caused by exposure to vanadium, are related to changes in the gene expression of hepatic hepcidin. Two groups of rats were examined: control and vanadium-exposed. Vanadium, as bis(maltolato)oxovanadium(IV) was supplied in the drinking water. The experiment had a duration of five weeks. Iron and manganese were measured in excreta, serum and tissues. Leptin, ferritin, IL-1β, IL-6, TNF-α, red blood cells, haemoglobin and haematocrit were determined. Protein carbonyl group levels and hepcidin gene expression were determined in the liver. In the vanadium-exposed rats, iron absorption, serum iron and leptin and all haematological parameters decreased. Levels of IL-6, TNF-α and ferritin in serum and of iron in the liver, spleen and heart increased. In the liver, levels of protein carbonyl groups and hepcidin mRNA were also higher in the vanadium-exposed group. Exposure to vanadium did not modify manganese homeostasis. The results obtained from this study provide the first evidence that bis(maltolato)oxovanadium(IV) produces an increase in the gene expression of the hepcidin, possibly caused by an inflammatory process. Both factors could be the cause of alterations in Fe homeostasis and the appearance of anaemia. However, Mn homeostasis was not affected.

  6. Enhanced surfactant protein and defensin mRNA levels and reduced viral replication during parainfluenza virus type 3 pneumonia in neonatal lambs.

    PubMed

    Grubor, Branka; Gallup, Jack M; Meyerholz, David K; Crouch, Erika C; Evans, Richard B; Brogden, Kim A; Lehmkuhl, Howard D; Ackermann, Mark R

    2004-05-01

    Defensins and surfactant protein A (SP-A) and SP-D are antimicrobial components of the pulmonary innate immune system. The purpose of this study was to determine the extent to which parainfluenza type 3 virus infection in neonatal lambs alters expression of sheep beta-defensin 1 (SBD-1), SP-A, and SP-D, all of which are constitutively transcribed by respiratory epithelia. Parainfluenza type 3 viral antigen was detected by immunohistochemistry (IHC) in the bronchioles of all infected lambs 3 days postinoculation and at diminished levels 6 days postinoculation, but it was absent 17 days postinoculation. At all times postinoculation, lung homogenates from parainfluenza type 3 virus-inoculated animals had increased SBD-1, SP-A, and SP-D mRNA levels as detected by fluorogenic real-time reverse transcriptase PCR. Protein levels of SP-A in lung homogenates detected by quantitative-competitive enzyme-linked immunosorbent assay and protein antigen of SP-A detected by IHC were not altered. These studies demonstrate that parainfluenza type 3 virus infection results in enhanced expression of constitutively transcribed innate immune factors expressed by respiratory epithelia and that this increased expression occurs concurrently with decreased viral replication.

  7. Expression of insulin-like growth factor I receptors at mRNA and protein levels during metamorphosis of Japanese flounder (Paralichthys olivaceus).

    PubMed

    Zhang, Junling; Shi, Zhiyi; Cheng, Qi; Chen, Xiaowu

    2011-08-01

    Insulin-like growth factor I (IGF-I) is an important regulator of fish growth and development, and its biological actions are initiated by binding to IGF-I receptor (IGF-IR). Our previous study has revealed that IGF-I could play an important role during metamorphosis of Japanese flounder, Paralichthys olivaceus. The analysis of IGF-IR expression thus helps further elucidate the IGF-I regulation of metamorphic processes. In this study, the spatial-temporal expression of two distinct IGF-IR mRNAs was investigated by real-time RT-PCR. The spatial distribution of two IGF-IR mRNAs in adult tissues is largely overlapped, but they exhibit distinct temporal expression patterns during larval development. A remarkable decrease in IGF-IR-2 mRNA was detected during metamorphosis. In contrast, a significant increase in IGF-IR-1 mRNA was determined from pre-metamorphosis to metamorphic completion. These indicate that they may play different function roles during the flounder metamorphosis. The levels and localization of IGF-IR proteins during larval development were further studied by Western blotting and immunohistochemistry. Immunoreactive IGF-IRs were detected throughout larval development, and the IGF-IR proteins displayed a relatively abundant expression during metamorphosis. Moreover, the IGF-IR proteins appeared in key tissues, such as thickened skin beneath the migrating eye, developing intestine, gills and kidney during metamorphosis. These results further suggest that the IGF-I system may be involved in metamorphic development of Japanese flounder.

  8. Aestivation Induces Changes in the mRNA Expression Levels and Protein Abundance of Two Isoforms of Urea Transporters in the Gills of the African Lungfish, Protopterus annectens.

    PubMed

    Chng, You R; Ong, Jasmine L Y; Ching, Biyun; Chen, Xiu L; Hiong, Kum C; Wong, Wai P; Chew, Shit F; Lam, Siew H; Ip, Yuen K

    2017-01-01

    The African lungfish, Protopterus annectens, is ammonotelic in water despite being ureogenic. When it aestivates in mucus cocoon on land, ammonia is detoxified to urea. During the maintenance phase of aestivation, urea accumulates in the body, which is subsequently excreted upon arousal. Urea excretion involves urea transporters (UT/Ut). This study aimed to clone and sequence the ut isoforms from the gills of P. annectens, and to test the hypothesis that the mRNA and/or protein expression levels of ut/Ut isoforms could vary in the gills of P. annectens during the induction, maintenance, and arousal phases of aestivation. Two isoforms of ut, ut-a2a and ut-a2b, were obtained from the gills of P. annectens. ut-a2a consisted of 1227 bp and coded for 408 amino acids with an estimated molecular mass of 44.7 kDa, while ut-a2b consisted of 1392 bp and coded for 464 amino acids with an estimated molecular mass of 51.2 kDa. Ut-a2a and Ut-a2b of P. annectens had a closer phylogenetic relationship with Ut/UT of tetrapods than Ut of fishes. While the mRNA expression pattern of ut-a2a and ut-a2b across various tissues of P. annectens differed, the transcript levels of ut-a2a and ut-a2b in the gills were comparable, indicating that they might be equally important for branchial urea excretion during the initial arousal phase of aestivation. During the maintenance phase of aestivation, the transcript level of ut-a2a increased significantly, but the protein abundance of Ut-a2a remained unchanged in the gills of P. annectens. This could be an adaptive feature to prepare for an increase in the production of Ut-a2a upon arousal. Indeed, arousal led to a significant increase in the branchial Ut-a2a protein abundance. Although the transcript level of ut-a2b remained unchanged, there were significant increases in the protein abundance of Ut-a2b in the gills of P. annectens throughout the three phases of aestivation. The increase in the protein abundance of Ut-a2b during the maintenance

  9. Aestivation Induces Changes in the mRNA Expression Levels and Protein Abundance of Two Isoforms of Urea Transporters in the Gills of the African Lungfish, Protopterus annectens

    PubMed Central

    Chng, You R.; Ong, Jasmine L. Y.; Ching, Biyun; Chen, Xiu L.; Hiong, Kum C.; Wong, Wai P.; Chew, Shit F.; Lam, Siew H.; Ip, Yuen K.

    2017-01-01

    The African lungfish, Protopterus annectens, is ammonotelic in water despite being ureogenic. When it aestivates in mucus cocoon on land, ammonia is detoxified to urea. During the maintenance phase of aestivation, urea accumulates in the body, which is subsequently excreted upon arousal. Urea excretion involves urea transporters (UT/Ut). This study aimed to clone and sequence the ut isoforms from the gills of P. annectens, and to test the hypothesis that the mRNA and/or protein expression levels of ut/Ut isoforms could vary in the gills of P. annectens during the induction, maintenance, and arousal phases of aestivation. Two isoforms of ut, ut-a2a and ut-a2b, were obtained from the gills of P. annectens. ut-a2a consisted of 1227 bp and coded for 408 amino acids with an estimated molecular mass of 44.7 kDa, while ut-a2b consisted of 1392 bp and coded for 464 amino acids with an estimated molecular mass of 51.2 kDa. Ut-a2a and Ut-a2b of P. annectens had a closer phylogenetic relationship with Ut/UT of tetrapods than Ut of fishes. While the mRNA expression pattern of ut-a2a and ut-a2b across various tissues of P. annectens differed, the transcript levels of ut-a2a and ut-a2b in the gills were comparable, indicating that they might be equally important for branchial urea excretion during the initial arousal phase of aestivation. During the maintenance phase of aestivation, the transcript level of ut-a2a increased significantly, but the protein abundance of Ut-a2a remained unchanged in the gills of P. annectens. This could be an adaptive feature to prepare for an increase in the production of Ut-a2a upon arousal. Indeed, arousal led to a significant increase in the branchial Ut-a2a protein abundance. Although the transcript level of ut-a2b remained unchanged, there were significant increases in the protein abundance of Ut-a2b in the gills of P. annectens throughout the three phases of aestivation. The increase in the protein abundance of Ut-a2b during the maintenance

  10. 1,4-Dihydropyridine derivatives without Ca2+-antagonist activity up-regulate Psma6 mRNA expression in kidneys of intact and diabetic rats.

    PubMed

    Ošiņa, Kristīne; Rostoka, Evita; Sokolovska, Jelizaveta; Paramonova, Natalia; Bisenieks, Egils; Duburs, Gunars; Sjakste, Nikolajs; Sjakste, Tatjana

    2016-01-01

    Impaired degradation of proteins by the ubiquitin-proteasome system (UPS) is observed in numerous pathologies including diabetes mellitus (DM) and its complications. Dysregulation of proteasomal degradation might be because of altered expression of genes and proteins involved in the UPS. The search for novel compounds able to normalize expression of the UPS appears to be a topical problem. A novel group of 1,4-dihydropyridine (1,4-DHP) derivatives lacking Ca2+-antagonists activities, but capable to produce antidiabetic, antioxidant and DNA repair enhancing effects, were tested for ability to modify Psma6 mRNA expression levels in rat kidneys and blood in healthy animals and in rats with streptozotocin (STZ) induced DM. Psma6 gene was chosen for the study, as polymorphisms of its human analogue are associated with DM and cardiovascular diseases. 1,4-DHP derivatives (metcarbatone, etcarbatone, glutapyrone, J-9-125 and AV-153-Na) were administered per os for three days (0.05 mg/kg and/or 0.5 mg/kg). Psma6 gene expression levels were evaluated by quantitative PCR. Psma6 expression was higher in kidneys compared to blood. Induction of diabetes caused increase of Psma6 expression in kidneys, although it was not changed in blood. Several 1,4-DHP derivatives increased expression of the gene both in kidneys and blood of control and model animals, but greater impact was observed in kidneys. The observed effect might reflect coupling of antioxidant and proteolysis-promoting activities of the compounds.

  11. The pro-apoptotic activity of Drosophila Rbf1 involves dE2F2-dependent downregulation of diap1 and buffy mRNA

    PubMed Central

    Clavier, A; Baillet, A; Rincheval-Arnold, A; Coléno-Costes, A; Lasbleiz, C; Mignotte, B; Guénal, I

    2014-01-01

    The retinoblastoma gene, rb, ensures at least its tumor suppressor function by inhibiting cell proliferation. Its role in apoptosis is more complex and less described than its role in cell cycle regulation. Rbf1, the Drosophila homolog of Rb, has been found to be pro-apoptotic in proliferative tissue. However, the way it induces apoptosis at the molecular level is still unknown. To decipher this mechanism, we induced rbf1 expression in wing proliferative tissue. We found that Rbf1-induced apoptosis depends on dE2F2/dDP heterodimer, whereas dE2F1 transcriptional activity is not required. Furthermore, we highlight that Rbf1 and dE2F2 downregulate two major anti-apoptotic genes in Drosophila: buffy, an anti-apoptotic member of Bcl-2 family and diap1, a gene encoding a caspase inhibitor. On the one hand, Rbf1/dE2F2 repress buffy at the transcriptional level, which contributes to cell death. On the other hand, Rbf1 and dE2F2 upregulate how expression. How is a RNA binding protein involved in diap1 mRNA degradation. By this way, Rbf1 downregulates diap1 at a post-transcriptional level. Moreover, we show that the dREAM complex has a part in these transcriptional regulations. Taken together, these data show that Rbf1, in cooperation with dE2F2 and some members of the dREAM complex, can downregulate the anti-apoptotic genes buffy and diap1, and thus promote cell death in a proliferative tissue. PMID:25188515

  12. Formation of Tap/NXT1 Heterodimers Activates Tap-Dependent Nuclear mRNA Export by Enhancing Recruitment to Nuclear Pore Complexes

    PubMed Central

    Wiegand, Heather L.; Coburn, Glen A.; Zeng, Yan; Kang, Yibin; Bogerd, Hal P.; Cullen, Bryan R.

    2002-01-01

    The Tap protein has been shown to activate the nuclear export of mRNA species bearing retroviral constitutive transport elements and is also believed to play an essential role in the sequence nonspecific export of cellular mRNAs. However, it has remained unclear how Tap activity is regulated in vivo. Here, we report that the small NXT1/p15-1 protein functions as a critical cofactor for Tap-mediated mRNA export in both human and invertebrate cells. In the absence of NXT1 binding, the Tap protein is unable to effectively interact with components of the nuclear pore complex and both Tap nucleocytoplasmic shuttling and the nuclear export of mRNA molecules tethered to Tap are therefore severely attenuated. Formation of a Tap/NXT1 heterodimer enhances nucleoporin binding both in vitro and in vivo and induces the formation of a Tap/NXT1/nucleoporin ternary complex that is likely to be a key intermediate in the process of nuclear mRNA export. The critical importance of NXT1 for the nuclear export of poly(A)+ RNA is emphasized by the finding that specific inhibition of the expression of the Drosophila homolog of human NXT1, by using RNA interference, results in the nuclear accumulation of poly(A)+ RNA in cultured insect cells. These data suggest that NXT1 may act as a molecular switch that regulates the ability of Tap to mediate nuclear mRNA export by controlling the interaction of Tap with components of the nuclear pore. PMID:11739738

  13. Altered mRNA Levels of Glucocorticoid Receptor, Mineralocorticoid Receptor, and Co-Chaperones (FKBP5 and PTGES3) in the Middle Frontal Gyrus of Autism Spectrum Disorder Subjects.

    PubMed

    Patel, Neil; Crider, Amanda; Pandya, Chirayu D; Ahmed, Anthony O; Pillai, Anilkumar

    2016-05-01

    Although stress has been implicated in the pathophysiology of autistic spectrum disorder (ASD), it is not known whether glucocorticoid receptor (GR) levels are altered in the brain of subjects with ASD. The messenger RNA (mRNA) levels of GR isoforms (GRα, GRβ, GRγ, and GRP), mineralocorticoid receptor (MR), GR co-chaperones (FKBP5, PTGES3, and BAG1), and inflammatory cytokines (IL-6, IL-1β, and IFN-γ) were examined in the postmortem middle frontal gyrus tissues of 13 ASD and 13 age-matched controls by qRT-PCR. The protein levels were examined by Western blotting. We found significant decreases in GRα (64%), GRγ (48%), GRP (20%) and MR (46%) mRNA levels in ASD subjects as compared to controls. However, significant increases in FKBP5 (42%) and PTGES3 (35%) mRNA levels were observed in ASD subjects. There were no differences in the mRNA levels of GRβ and BAG1 in ASD subjects as compared to controls. MR mRNA was found to be negatively correlated with the diagnostic score for abnormality of development. On the protein level, significant reductions in GR and MR, but no change in FKBP5 and PTGES3 were found in ASD subjects as compared to controls. Moreover, we observed significant increases in IL-1β and IFN-γ mRNA levels in ASD subjects, and these cytokines were negatively associated with GR levels. Our data, for the first time, reports dysregulation of GR, MR, FKBP5, and PTGES3 in ASD and suggest a possible role of inflammation in altered GR function in ASD.

  14. Ontogeny of mRNA expression and activity of long-chain acyl-CoA synthetase (ACSL) isoforms in Mus musculus heart.

    PubMed

    de Jong, Hendrik; Neal, Andrea C; Coleman, Rosalind A; Lewin, Tal M

    2007-01-01

    Long-chain acyl-CoA synthetases (ACSL) activate fatty acids (FA) and provide substrates for virtually every metabolic pathway that catabolizes FA or synthesizes complex lipids. We have hypothesized that each of the five cloned ACSL isoforms partitions FA towards specific downstream pathways. Adult heart expresses all five cloned ACSL isoforms, but their independent functional roles have not been elucidated. Studies implicate ACSL1 in both oxidative and lipid synthetic pathways. To clarify the functional role of ACSL1 and the other ACSL isoforms (3-6), we examined ACS specific activity and Acsl mRNA expression in the developing mouse heart which increases FA oxidative pathways for energy production after birth. Compared to the embryonic heart, ACS specific activity was 14-fold higher on post-natal day 1 (P1). On P1, as compared to the fetus, only Acsl1 mRNA increased, whereas transcripts for the other Acsl isoforms remained the same, suggesting that ACSL1 is the major isoform responsible for activating long-chain FA for myocardial oxidation after birth. In contrast, the mRNA abundance of Acsl3 was highest on E16, and decreased dramatically by P7, suggesting that ACSL3 may play a critical role during the development of the fetal heart. Our data support the hypothesis that each ACSL has a specific role in the channeling of FA towards distinct metabolic fates.

  15. Regulation of c-myc and c-fos mRNA levels by polyomavirus: distinct roles for the capsid protein VP/sub 1/ and the viral early proteins

    SciTech Connect

    Zullo, J.; Stiles, C.D.; Garcea, R.L.

    1987-03-01

    The levels of c-myc, c-fos, and JE mRNAs accumulate in a biphasic pattern following infection of quiescent BALB/c 3T3 mouse cells with polyomavirus. Maximal levels of c-myc and c-fos mRNAs were seen within 1 hr and were nearly undetectable at 6 hr after infection. At 12 hr after infection mRNA levels were again maximal and remained elevated thereafter. Empty virions (capsids) and recombinant VP/sub 1/ protein, purified from Escherichia coli, induced the early but not the late phase of mRNA accumulation. Virions, capsids, and recombinant VP/sub 1/ protein stimulated (/sup 3/H)thymidine nuclear labeling and c-myc mRNA accumulation in a dose-responsive manner paralleling their affinity for the cell receptor for polyoma. The second phase of mRNA accumulation is regulated by the viral early gene products, as shown by polyomavirus early gene mutants and by a transfected cell line (336a) expressing middle tumor antigen upon glucocorticoid addition. These results suggest that polyomavirus interacts with the cell membrane at the onset of infection to increase the levels of mRNA for the cellular genes associated with cell competence for DNA replication, and subsequently these levels are maintained by the action of the early viral proteins.

  16. Linking gene regulation to mRNA production and export.

    PubMed

    Rodríguez-Navarro, Susana; Hurt, Ed

    2011-06-01

    Regulation of gene expression can occur at many different levels. One important step in the gene expression process is the transport of mRNA from the nucleus to the cytoplasm. In recent years, studies have described how nuclear mRNA export depends on the steps preceding and following transport through nuclear pore complexes. These include gene activation, transcription, mRNA processing and mRNP assembly and disassembly. In this review, we summarise recent insights into the links between these steps in the gene expression cascade.

  17. mRNA levels of kisspeptins, kisspeptin receptors, and GnRH1 in the brain of chub mackerel during puberty.

    PubMed

    Ohga, Hirofumi; Adachi, Hayato; Matsumori, Kojiro; Kodama, Ryoko; Nyuji, Mitsuo; Selvaraj, Sethu; Kato, Keitaro; Yamamoto, Shinji; Yamaguchi, Akihiko; Matsuyama, Michiya

    2015-01-01

    Kisspeptin (Kiss) and its cognate receptor (Kiss1R), implicated in the neuroendocrine control of GnRH secretion in mammals, have been proposed to be the key factors in regulating puberty. However, the mechanisms underlying the initiation of puberty in fish are poorly understood. The chub mackerel Scomber japonicus expresses two forms of Kiss (kiss1 and kiss2) and two Kiss receptor (kissr1 and kissr2) genes in the brain, which exhibit sexually dimorphic changes during the seasonal reproductive cycle. This indicates that the kisspeptin system plays an important role in gonadal recrudescence of chub mackerel; however, the involvement of the kisspeptin system in the pubertal process has not been identified. In the present study, we examined the mRNA expression of kiss1, kiss2, kissr1, kissr2, and gnrh1 (hypophysiotropic form) in the brain of a chub mackerel during puberty. In male fish, kiss2, kissr1 and kissr2 levels increased significantly at 14weeks post-hatch (wph), synchronously with an increase in type A spermatogonial populations in the testis; kiss2 and gnrh1 levels significantly increased at 22wph, just before the onset of meiosis in the testes. In female fish, kiss2 increased significantly at 14wph, synchronously with an increase in the number of perinucleolar oocytes in the ovary; kiss1 and kiss2 levels significantly increased concomitantly with an increase in the kissr1, kissr2, and gnrh1 levels at 24wph, just before the onset of vitellogenesis in oocytes. The present results suggest positive involvement of the kisspeptin-GnRH system in the pubertal process in the captive reared chub mackerel.

  18. Production of a Locus- and Allele-Specific Monoclonal Antibody for the Characterization of SLA-1*0401 mRNA and Protein Expression Levels in MHC-Defined Microminipigs

    PubMed Central

    Kametani, Yoshie; Ohshima, Shino; Miyamoto, Asuka; Shigenari, Atsuko; Takasu, Masaki; Imaeda, Noriaki; Matsubara, Tatsuya; Tanaka, Masafumi; Shiina, Takashi; Kamiguchi, Hiroshi; Suzuki, Ryuji; Kitagawa, Hitoshi; Kulski, Jerzy K.; Hirayama, Noriaki; Inoko, Hidetoshi; Ando, Asako

    2016-01-01

    The class I major histocompatibility complex (MHC) presents self-developed peptides to specific T cells to induce cytotoxity against infection. The MHC proteins are encoded by multiple loci that express numerous alleles to preserve the variability of the antigen-presenting ability in each species. The mechanism regulating MHC mRNA and protein expression at each locus is difficult to analyze because of the structural and sequence similarities between alleles. In this study, we examined the correlation between the mRNA and surface protein expression of swine leukocyte antigen (SLA)-1*0401 after the stimulation of peripheral blood mononuclear cells (PBMCs) by Staphylococcus aureus superantigen toxic shock syndrome toxin-1 (TSST-1). We prepared a monoclonal antibody (mAb) against a domain composed of Y102, L103 and L109 in the α2 domain. The Hp-16.0 haplotype swine possess only SLA-1*0401, which has the mAb epitope, while other haplotypes possess 0 to 3 SLA classical class I loci with the mAb epitopes. When PBMCs from SLA-1*0401 homozygous pigs were stimulated, the SLA-1*0401 mRNA expression level increased until 24 hrs and decreased at 48 hrs. The kinetics of the interferon regulatory transcription factor-1 (IRF-1) mRNA level were similar to those of the SLA-1*0401 mRNA. However, the surface protein expression level continued to increase until 72 hrs. Similar results were observed in the Hp-10.0 pigs with three mAb epitopes. These results suggest that TSST-1 stimulation induced both mRNA and surface protein expression of class I SLA in the swine PBMCs differentially and that the surface protein level was sustained independently of mRNA regulation. PMID:27760184

  19. Effect of dark exposure in the middle of the day on Period1, Period2, and arylalkylamine N-acetyltransferase mRNA levels in the rat suprachiasmatic nucleus and pineal gland.

    PubMed

    Fukuhara, Chiaki

    2004-11-04

    The suprachiasmatic nucleus (SCN) of the mammalian hypothalamus contains a central circadian pacemaker, which adjusts circadian rhythms within the body to environmental light-dark cycles. It has been shown that dark exposure in the day causes phase shifts in circadian rhythms, but it does not induce changes in the melatonin levels in the pineal gland. In this study, we examined the effect of dark exposure on two "circadian clock" genes Period1 and Period2 mRNA levels in the rat SCN, and on Period1, Period2, and arylalkylamine N-acetyltransferase (Aa-Nat, the rate-limiting enzyme in melatonin synthesis) gene expression in the pineal gland. Period1 and Period2 mRNA levels were significantly decreased in the SCN after 0.5 and 2 h, respectively, therefore suggesting that changes in those mRNA levels may be the part of the mechanisms of dark-induced phase shifts. Period1 and Aa-Nat mRNA levels in the pineal gland were not affected by darkness, but Period2 was moderately affected. Since Period1 and Aa-Nat mRNA levels in the pineal gland did not respond to dark stimulation, we further examined whether the pineal gland itself is capable of responding to adrenergic stimulation at this time of the day. Isoproterenol significantly induced Period1 and Aa-Nat mRNA levels; however, it did not affect Period2. Although previous studies have reported that during the day the SCN "gates" the dark information reaching the pineal, our data demonstrate that dark information may reach the pineal during the daytime.

  20. A 9-nt segment of a cellular mRNA can function as an internal ribosome entry site (IRES) and when present in linked multiple copies greatly enhances IRES activity

    PubMed Central

    Chappell, Stephen A.; Edelman, Gerald M.; Mauro, Vincent P.

    2000-01-01

    This study addresses the properties of a newly identified internal ribosome entry site (IRES) contained within the mRNA of the homeodomain protein Gtx. Sequential deletions of the 5′ untranslated region (UTR) from either end did not define distinct IRES boundaries; when five nonoverlapping UTR fragments were tested, four had IRES activity. These observations are consistent with other cellular IRES analyses suggesting that some cellular IRESes are composed of segments (IRES modules) that independently and combinatorially contribute to overall IRES activity. We characterize a 9-nt IRES module from the Gtx 5′ UTR that is 100% complementary to the 18S rRNA at nucleotides 1132–1124. In previous work, we demonstrated that this mRNA segment could be crosslinked to its complement within intact 40S subunits. Here we show that increasing the number of copies of this IRES module in the intercistronic region of a dicistronic mRNA strongly enhances IRES activity in various cell lines. Ten linked copies increased IRES activity up to 570-fold in Neuro 2a cells. This level of IRES activity is up to 63-fold greater than that obtained by using the well characterized encephalomyocarditis virus IRES when tested in the same assay system. When the number of nucleotides between two of the 9-nt Gtx IRES modules was increased, the synergy between them decreased. In light of these findings, we discuss possible mechanisms of ribosome recruitment by cellular mRNAs, address the proposed role of higher order RNA structures on cellular IRES activity, and suggest parallels between IRES modules and transcriptional enhancer elements. PMID:10677496

  1. Tocotrienol Attenuates Stress-Induced Gastric Lesions via Activation of Prostaglandin and Upregulation of COX-1 mRNA

    PubMed Central

    Kamisah, Yusof; Chua, Kien Hui; Qodriyah, Hj Mohd Saad

    2013-01-01

    The present study aims to distinguish the effect of tocotrienol on an important gastric protective factor, prostaglandin E2 (PGE2), in stress-induced gastric injury. Twenty-eight Wistar rats were divided into four groups of seven rats each. Two control groups were fed commercial rat diet, and two treatment groups were fed the same diet but with additional dose of omeprazole (20 mg/kg) or tocotrienol (60 mg/kg). After 28 days, rats from one control group and both treated groups were subjected to water-immersion restraint stress for 3.5 hours once. The rats were then sacrificed, their stomach isolated and gastric juice collected, lesions examined, and gastric PGE2 content and cyclooxygenase (COX) mRNA expression were determined. Both the regimes significantly attenuated the total lesion area in the stomach compared to the control. Gastric acidity, which was increased in stress, was significantly reduced in rats supplemented with omeprazole and tocotrienol. The PGE2 content was also significantly higher in the rats given tocotrienol supplementation compared to the control followed by an increase in COX-1 mRNA expression. We conclude that tocotrienol supplementation protected rat gastric mucosa against stress-induced lesions possibly by reducing gastric acidity and preserving gastric PGE2 by increasing COX-1 mRNA. PMID:23970937

  2. RNAIII of the Staphylococcus aureus agr system activates global regulator MgrA by stabilizing mRNA

    PubMed Central

    Gupta, Ravi Kr.; Luong, Thanh T.; Lee, Chia Y.

    2015-01-01

    RNAIII, the effector of the agr quorum-sensing system, plays a key role in virulence gene regulation in Staphylococcus aureus, but how RNAIII transcriptionally regulates its downstream genes is not completely understood. Here, we show that RNAIII stabilizes mgrA mRNA, thereby increasing the production of MgrA, a global transcriptional regulator that affects the expression of many genes. The mgrA gene is transcribed from two promoters, P1 and P2, to produce two mRNA transcripts with long 5′ UTR. Two adjacent regions of the mgrA mRNA UTR transcribed from the upstream P2 promoter, but not the P1 promoter, form a stable complex with two regions of RNAIII near the 5′ and 3′ ends. We further demonstrate that the interaction has several biological effects. We propose that MgrA can serve as an intermediary regulator through which agr exerts its regulatory function. PMID:26504242

  3. Effects of different dietary intake on mRNA levels of MSTN, IGF-I, and IGF-II in the skeletal muscle of Dorper and Hu sheep hybrid F1 rams.

    PubMed

    Xing, H J; Wang, Z Y; Zhong, B S; Ying, S J; Nie, H T; Zhou, Z R; Fan, Y X; Wang, F

    2014-07-24

    MSTN, IGF-І(insulin-like growth factor-І) and IGF-II (insulin-like growth factor-II) regulate skeletal muscle growth. This study investigated the effects of different dietary intake levels on skeletal muscles. Sheep was randomly assigned to 3 feeding groups: 1) the maintenance diet (M), 2) 1.4 x the maintenance diet (1.4M), and 3) 2.15 x the maintenance diet (2.15M). Before slaughtering the animals, blood samples were collected to measure plasma urea, growth hormone, and insulin concentrations. After slaughtering, the longissimus dorsi, semitendinosus, semimembranosus, gastrocnemius, soleus, and chest muscle were removed to record various parameters, including the mRNA expression levels of MSTN and IGFs, in addition to skeletal muscle fiber diameter and cross-sectional area. The result showed that as dietary intake improved, the mRNA expression levels of MSTN and IGF-II decreased, whereas IGF-Іexpression increased. The mRNA expression levels of MSTN and IGFs were significantly different in the same skeletal muscle under different dietary intake. The skeletal muscle fiber diameter and cross-sectional area increased with greater dietary intake, as observed for the mRNA expression of IGF-І; however, it contrasted to that observed for the mRNA expression of MSTN and IGF-II. In conclusion, dietary intake levels have a certain influence on MSTN and IGFs mRNA expression levels, in addition to skeletal muscle fiber diameter and cross-sectional area. This study contributes valuable information for enhancing the molecular-based breeding of sheep.

  4. Immunolabelling, histochemistry and in situ hybridisation in human skeletal muscle fibres to detect myosin heavy chain expression at the protein and mRNA level

    PubMed Central

    SERRANO, A. L.; PÉREZ, MARGARITA; LUCÍA, A.; CHICHARRO, J. L.; QUIROZ-ROTHE, E.; RIVERO, J. L. L.

    2001-01-01

    The distribution of muscle fibres classified on the basis of their content of different myosin heavy chain (MHC) isoforms was analysed in vastus lateralis muscle biopsies of 15 young men (with an average age of 22 y) by correlating immunohistochemistry with specific anti-MHC monoclonal antibodies, myofibrillar ATPase (mATPase) histochemistry and in situ hybridisation with probes specific for MHC β-slow, MHC-IIA and MHC-IIX. The characterisation of a large number of individual fibres was compared and correlated on a fibre-to-fibre basis. The panel of monoclonal antibodies used in the study allowed classification of human skeletal muscle fibres into 5 categories according to the MHC isoform they express at the protein level, types I, I+IIA, IIA, IIAX and IIX. Hybrid fibres coexpressing two isoforms represented a considerable proportion of the fibre composition (about 14%) and were clearly underestimated by mATPase histochemistry. For a very high percentage of fibres there was a precise correspondence between the MHC protein isoforms and mRNA transcripts. The integrated methods used demonstrate a high degree of precision of the immunohistochemical procedure used for the identification and quantification of human skeletal muscle fibre types. The monoclonal antibody S5-8H2 is particularly useful for identifying hybrid IIAX fibres. This protocol offers new prospects for muscle fibre classification in human experimental studies. PMID:11554510

  5. Fas-activated Ser/Thr phosphoprotein (FAST) is a eukaryotic initiation factor 4E-binding protein that regulates mRNA stability and cell survival

    PubMed Central

    Li, Wei; Ivanov, Pavel; Anderson, Paul

    2013-01-01

    The recognition of T cell intracellular antigen-1 (TIA-1) by Fas-activated Ser/Thr phosphoprotein (FAST) results in prolonged cell survival by inducing the expression of inhibitors of apoptosis. Here we show that the functional effects of FAST are dependent on its interactions with eukaryotic translation initiation factor 4E (eIF4E) which is the major cytosolic cap binding protein in cells. FAST binds to eIF4E via a consensus motif (428YXXXXLL433) that is also found in eIF4G, 4E-BP1/2/3, 4E-T, and cup. A point mutation within this motif at Y428 dampens the ability of FAST to recognize eIF4E. Wild-type (WT) FAST, but not its Y428G mutant, increases the expression of co-transfected cellular inhibitor of apoptosis-1 (cIAP-1) and β-gal mRNA and protein, but inhibits the Fas-induced activation of caspase-3. Increased expression of the co-transfected proteins results, in part, from stabilization of mRNA, suggesting that FAST:eIF4E interactions can inhibit mRNA decay. We propose that eIF4E:FAST:TIA-1 complexes regulate the translation and stability of specific mRNAs that encode proteins important for cell survival. PMID:26824015

  6. Effect of α-Hederin on IL-2 and IL-17 mRNA and miRNA-133a Levels in Lungs of Ovalbumin-Sensitized Male Rats.

    PubMed

    Ebrahimi, Hadi; Fallahi, Maryam; Khamaneh, Amir Mahdi; Ebrahimi Saadatlou, Mohammad Ali; Saadat, Saeideh; Keyhanmanesh, Rana

    2016-03-01

    α-hederin, a saponin that is a major constituent of English Ivy (Hedera helix) is effective in the treatment of asthma. In the present study, the effect of α-hederin on lung tissue pathology and the levels of the inflammatory mediators; IL-2 mRNA, IL-17 mRNA, and MicroRNAs (miRNA)-133a was evaluated in a rat ovalbumin (OVA)-sensitized model of asthma. Rats were divided randomly into control (C), OVA-sensitized (S), OVA-sensitized pretreated with the antioxidant, thymoquinone (3 mg/kg, S + TQ) or OVA-sensitized pretreated with α-hederin (0.02 mg/kg, S + AH) groups. Levels of IL-2 and IL-17 mRNA were higher in the OVA-sensitized group than controls while the level of miRNA-133a gene expression was lower. IL-2 mRNA and miRNA-133a gene expression in the S + TQ group was higher than in the control and OVA-sensitized groups while the level of IL-17 mRNA in the S + TQ group was lower than in the OVA-sensitized group. Pretreatment with α-hederin decreased IL-17 mRNA levels and increased miRNA-133a gene expression compared with OVA-sensitized animals. All pathological changes in pretreated groups were lower than the OVA-sensitized group. These results showed a beneficial effect of α-hederin in OVA-sensitized rats, suggesting that α-hederin affects the IL-2 and IL-17 secretion pathways, altering miRNA-133a expression.

  7. In neurons, activity-dependent association of dendritically transported mRNA transcripts with the transacting factor CBF-A is mediated by A2RE/RTS elements.

    PubMed

    Raju, Chandrasekhar S; Fukuda, Nanaho; López-Iglesias, Carmen; Göritz, Christian; Visa, Neus; Percipalle, Piergiorgio

    2011-06-01

    In neurons certain mRNA transcripts are transported to synapses through mechanisms that are not fully understood. Here we report that the heterogeneous nuclear ribonucleoprotein CBF-A (CArG Box binding Factor A) facilitates dendritic transport and localization of activity-regulated cytoskeleton-associated protein (Arc), brain-derived neurotrophic factor (BDNF), and calmodulin-dependent protein kinase II (CaMKIIα) mRNAs. We discovered that, in the adult mouse brain, CBF-A has a broad distribution. In the nucleus, CBF-A was found at active transcription sites and interchromosomal spaces and close to nuclear pores. In the cytoplasm, CBF-A localized to dendrites as well as pre- and postsynaptic sites. CBF-A was found in synaptosomal fractions, associated with Arc, BDNF, and CaMKIIα mRNAs. Electrophoretic mobility shift assays demonstrated a direct interaction mediated via their hnRNP A2 response element (A2RE)/RNA trafficking sequence (RTS) elements located in the 3' untranslated regions. In situ hybridization and microscopy on live hippocampal neurons showed that CBF-A is in dynamic granules containing Arc, BDNF, and CaMKIIα mRNAs. N-methyl-D-aspartate (NMDA) and α-amino-3-hydroxyl-5-methyl-4-isoxazole-propionate (AMPA) postsynaptic receptor stimulation led to CBF-A accumulation in dendrites; increased Arc, BDNF, and CaMKIIα mRNA levels; and increased amounts of transcripts coprecipitating with CBF-A. Finally, CBF-A gene knockdown led to decreased mRNA levels. We propose that CBF-A cotranscriptionally binds RTSs in Arc, BDNF, and CaMKIIα mRNAs and follows the transcripts from genes to dendrites, promoting activity-dependent nuclear sorting of transport-competent mRNAs.

  8. Behaviorally activated mRNA expression profiles produce signatures of learning and enhanced inhibition in aged rats with preserved memory.

    PubMed

    Haberman, Rebecca P; Colantuoni, Carlo; Koh, Ming Teng; Gallagher, Michela

    2013-01-01

    Aging is often associated with cognitive decline, but many elderly individuals maintain a high level of function throughout life. Here we studied outbred rats, which also exhibit individual differences across a spectrum of outcomes that includes both preserved and impaired spatial memory. Previous work in this model identified the CA3 subfield of the hippocampus as a region critically affected by age and integral to differing cognitive outcomes. Earlier microarray profiling revealed distinct gene expression profiles in the CA3 region, under basal conditions, for aged rats with intact memory and those with impairment. Because prominent age-related deficits within the CA3 occur during neural encoding of new information, here we used microarray analysis to gain a broad perspective of the aged CA3 transcriptome under activated conditions. Behaviorally-induced CA3 expression profiles differentiated aged rats with intact memory from those with impaired memory. In the activated profile, we observed substantial numbers of genes (greater than 1000) exhibiting increased expression in aged unimpaired rats relative to aged impaired, including many involved in synaptic plasticity and memory mechanisms. This unimpaired aged profile also overlapped significantly with a learning induced gene profile previously acquired in young adults. Alongside the increased transcripts common to both young learning and aged rats with preserved memory, many transcripts behaviorally-activated in the current study had previously been identified as repressed in the aged unimpaired phenotype in basal expression. A further distinct feature of the activated profile of aged rats with intact memory is the increased expression of an ensemble of genes involved in inhibitory synapse function, which could control the phenotype of neural hyperexcitability found in the CA3 region of aged impaired rats. These data support the conclusion that aged subjects with preserved memory recruit adaptive mechanisms to

  9. Macrophage Migration Inhibitory Factor Promoter Polymorphisms (−794 CATT5–8 and −173 G>C): Relationship with mRNA Expression and Soluble MIF Levels in Young Obese Subjects

    PubMed Central

    Matia-García, Inés; Salgado-Goytia, Lorenzo; Muñoz-Valle, José F.; García-Arellano, Samuel; Hernández-Bello, Jorge; Salgado-Bernabé, Aralia B.; Parra-Rojas, Isela

    2015-01-01

    We analyzed the relationship of −794 CATT5–8 and −173 G>C MIF polymorphisms with mRNA and soluble MIF in young obese subjects. A total of 250 young subjects, 150 normal-weight and 100 obese subjects, were recruited in the study. Genotyping of −794 CATT5–8 and −173 G>C MIF polymorphisms was performed by PCR and PCR-RFLP, respectively. MIF mRNA expression was determined by real-time PCR and serum MIF levels were measured using an ELISA kit. For both MIF promoter polymorphisms, no significant differences in the genotype and allele frequencies between groups were observed. MIF mRNA expression was slightly higher in obese subjects than in normal-weight subjects (1.38-fold), while soluble MIF levels did not show differences between groups. In addition, we found an increase in MIF mRNA expression in carriers of the 6,6 and C/C genotypes and the 6G haplotype of the −794 CATT5–8 and −173 G>C MIF polymorphisms, although it was not significant. In conclusion, this study found no relationship between obesity and MIF gene promoter polymorphisms with MIF mRNA expression in young obese subjects. PMID:25972622

  10. Expression at mRNA level of cytokines and A238L gene in porcine blood-derived macrophages infected in vitro with African swine fever virus (ASFV) isolates of different virulence.

    PubMed

    Gil, S; Spagnuolo-Weaver, M; Canals, A; Sepúlveda, N; Oliveira, J; Aleixo, A; Allan, G; Leitão, A; Martins, C L V

    2003-11-01

    Porcine macrophage cultures were infected with two ASFV isolates of variable virulence and mRNA levels of several relevant macrophage-derived cytokines were quantified by real time PCR. At six hours post infection, a clear enhancement of mRNA expression of TNFalpha, IL6, IL12 and IL15 was observed in macrophages infected with the low virulent ASFV/NH/P68 (NHV) when compared to those infected with the highly virulent ASFV/L60 (L60). The sequence of the A238L gene homologue to the cellular IkappaB was found identical in both viral isolates and its expression at mRNA level was higher in macrophages infected with NHV when compared to macrophages infected with L60. Furthermore our results suggest a negative correlation between the mRNA expression of A238L gene and the mRNA expression of the above mentioned cytokines (with the exception of IL10) in L60 infected macrophages in opposition to the positive correlation (with exception of the IL1) suggested in NHV infection. Overall, our data strongly emphasize that virulence of ASFV isolates may depend on their capacity to regulate the expression of macrophage-derived cytokines relevant for the development of host protective responses by yet unknown mechanisms triggered by the virus at early stages of the cellular infection.

  11. Macrophage migration inhibitory factor promoter polymorphisms (-794 CATT 5-8 and -173 G>C): relationship with mRNA expression and soluble MIF levels in young obese subjects.

    PubMed

    Matia-García, Inés; Salgado-Goytia, Lorenzo; Muñoz-Valle, José F; García-Arellano, Samuel; Hernández-Bello, Jorge; Salgado-Bernabé, Aralia B; Parra-Rojas, Isela

    2015-01-01

    We analyzed the relationship of -794 CATT5-8 and -173 G>C MIF polymorphisms with mRNA and soluble MIF in young obese subjects. A total of 250 young subjects, 150 normal-weight and 100 obese subjects, were recruited in the study. Genotyping of -794 CATT5-8 and -173 G>C MIF polymorphisms was performed by PCR and PCR-RFLP, respectively. MIF mRNA expression was determined by real-time PCR and serum MIF levels were measured using an ELISA kit. For both MIF promoter polymorphisms, no significant differences in the genotype and allele frequencies between groups were observed. MIF mRNA expression was slightly higher in obese subjects than in normal-weight subjects (1.38-fold), while soluble MIF levels did not show differences between groups. In addition, we found an increase in MIF mRNA expression in carriers of the 6,6 and C/C genotypes and the 6G haplotype of the -794 CATT5-8 and -173 G>C MIF polymorphisms, although it was not significant. In conclusion, this study found no relationship between obesity and MIF gene promoter polymorphisms with MIF mRNA expression in young obese subjects.

  12. Glial inhibitors influence the mRNA and protein levels of mGlu2/3, 5 and 7 receptors and potentiate the analgesic effects of their ligands in a mouse model of neuropathic pain.

    PubMed

    Osikowicz, Maria; Skup, Malgorzata; Mika, Joanna; Makuch, Wioletta; Czarkowska-Bauch, Julita; Przewlocka, Barbara

    2009-12-15

    Metabotropic glutamate (mGlu) receptors, which are present on neurons and glial cells, have been shown to play a role in neuropathic pain. The present study sought to investigate how the glial inhibitors minocycline and pentoxifylline alter the effect that chronic constriction injury (CCI) has on the expression of mGlu receptors and on their associated ligands. RT-PCR analysis revealed that seven days after CCI, the mRNA levels of glial markers C1q and GFAP, as well as those of mGlu5 and mGlu3, but not mGlu7, were elevated in the lumbar spinal cord - ipsilateral to the injury. The protein levels of the microglial marker OX42, the astroglial marker GFAP, and mGlu5 receptor protein were increased, whereas the levels of mGlu2/3 and mGlu7 receptor proteins were reduced. Preemptive and repeated intraperitoneal (i.p.) administration (16 and 1h before nerve injury and then twice daily for seven days) of minocycline (30mg/kg) and pentoxifylline (20mg/kg) prevented the injury-induced changes in the levels of mGlu3 and mGlu5 receptor mRNAs and the injury-induced changes in the protein levels of all the receptors. Repeated administration of minocycline and pentoxifylline significantly attenuated CCI-induced allodynia (von Frey test) and hyperalgesia (cold plate test) measured on day seven after injury and potentiated the antiallodynic and antihyperalgesic effects of single i.p. and intrathecal (i.t.) injections of mGlu receptor ligands: MPEP, LY379268 or AMN082. We conclude that attenuation of injury-induced glial activation can reduce glutamatergic activity, thereby contributing to regulation of pain sensation.

  13. CDH1 (E-cadherin) in testicular germ cell neoplasia: suppressed translation of mRNA in pre-invasive carcinoma in situ but increased protein levels in advanced tumours.

    PubMed

    Sonne, Si B; Hoei-Hansen, Christina E; Nielsen, John E; Herlihy, Amy S; Andersson, Anna-Maria; Almstrup, Kristian; Daugaard, Gedske; Skakkebaek, Niels E; Leffers, Henrik; Rajpert-De Meyts, Ewa

    2006-01-01

    E-cadherin (CDH1) is a transmembrane glycoprotein involved in cellular adhesion. In our recent microarray studies of testicular germ cell tumours (TGCTs) and the common precursor carcinoma in situ (CIS), CDH1 mRNA was highly expressed in CIS and embryonal carcinoma. It has previously been reported that the CDH1 protein is not expressed in CIS. To resolve the discrepancy, we performed a detailed analysis of the expression of CDH1 mRNA and protein in a series of normal and neoplastic testes. High expression of CDH1 mRNA in CIS was confirmed by real-time PCR and in situ hybridisation. At the protein level, however, CDH1 was only detected with one of three tested antibodies, but Western blotting analysis with this antibody showed additional bands, suggesting unspecific staining. The levels of a CDH1 protein fragment in serum samples from 58 patients with TGCTs were analysed by ELISA; we found significantly higher levels in patients with advanced disease (stage II/III) when compared to healthy individuals and patients with stage I TGCT. In conclusion, despite high mRNA levels, the CDH1 protein is not expressed in CIS, suggesting translational suppression of CDH1 protein expression. CDH1 serum levels may be a serological marker for staging of TGCT patients.

  14. Allopregnanolone prevents memory impairment: effect on mRNA expression and enzymatic activity of hippocampal 3-α hydroxysteroid oxide-reductase.

    PubMed

    Escudero, Carla; Casas, Sebastián; Giuliani, Fernando; Bazzocchini, Vanesa; García, Sebastián; Yunes, Roberto; Cabrera, Ricardo

    2012-02-10

    In this work we investigated how the neurosteroid allopregnanolone can modulate learning and memory processes. For this purpose, we used ovariectomized (OVX) rats subcutaneously injected with oestradiol benzoate (E) alone or E and progesterone (P). Then, rats were injected in dorsal hippocampus with allopregnanolone or vehicle. Animals were tested in inhibitory avoidance task (IA task). After behavioural test hippocampal mRNA expression and enzymatic activity of 3α-HOR, the enzyme responsible of allopregnanolone synthesis, were analysed. In IA task OVX-EP rats spent less time on platform, compared to those OVX or OVX-E. Regression analyses revealed that there was a significant negative relationship between E-P infusion and performance in this task. Pre-training allopregnanolone administration to OVX-EP rats increased the time spent on the platform. Interestingly, when enzymatic activity of 3α-HOR was tested, OVX-EP rats showed a significant decrease in the enzymatic activity, compared with OVX and OVX-E rats. In addition, OVX-EP group showed a significant increase in the enzymatic activity after intrahippocampal infusion of allopregnanolone. On the other hand, when mRNA expression of 3α-HOR was analysed no differences were observed when the hippocampal allopregnanolone injection was done. These results suggest that E and P have amnesic effects on female rats, being reversed by allopregnanolone through its modulation on hippocampal 3α-HOR activity.

  15. The full-length transcript of a caulimovirus is a polycistronic mRNA whose genes are trans activated by the product of gene VI.

    PubMed

    Scholthof, H B; Gowda, S; Wu, F C; Shepherd, R J

    1992-05-01

    Gene expression of figwort mosaic virus (FMV), a caulimovirus, was investigated by electroporation of Nicotiana edwardsonii cell suspension protoplasts with cloned viral constructs in which a reporter gene was inserted at various positions on the genome. The results showed that the genome of FMV contains two promoters; one is used for the production of a full-length RNA and another initiates synthesis of a separate monocistronic RNA for gene VI. Evidence is provided that the full-length transcript, the probable template for reverse transcription, can serve as a polycistronic mRNA for translation of genes I through V and perhaps also gene VI. Expression of all the genes on the polycistronic mRNA is trans activated by the gene VI protein. Reporter gene expression appears most efficient when its start codon is in close proximity to the stop codon of the preceding gene, as for the native genes of caulimoviruses. We propose that the gene VI product enables expression of the polycistronic mRNA by promoting reinitiation of ribosomes to give translational coupling of individual genes.

  16. Activated platelets can deliver mRNA regulatory Ago2•microRNA complexes to endothelial cells via microparticles.

    PubMed

    Laffont, Benoit; Corduan, Aurélie; Plé, Hélène; Duchez, Anne-Claire; Cloutier, Nathalie; Boilard, Eric; Provost, Patrick

    2013-07-11

    Platelets play a crucial role in the maintenance of hemostasis, as well as in thrombosis. Upon activation, platelets release small membrane-bound microparticles (MPs) containing bioactive proteins and genetic materials from their parental cells that may be transferred to, and exert potent biological effects in, recipient cells of the circulatory system. Platelets have been shown to contain an abundant and diverse array of microRNAs, and platelet-derived MPs are the most abundant microvesicles in the circulation. Here we demonstrate that human platelets activated with thrombin preferentially release their miR-223 content in MPs. These MPs can be internalized by human umbilical vein endothelial cells (HUVEC), leading to the accumulation of platelet-derived miR-223. Platelet MPs contain functional Argonaute 2 (Ago2)•miR-223 complexes that are capable of regulating expression of a reporter gene in recipient HUVEC. Moreover, we demonstrate a role for platelet MP-derived miR-223 in the regulation of 2 endogenous endothelial genes, both at the messenger RNA and protein levels. Our results support a scenario by which platelet MPs may act as intercellular carriers of functional Ago2•microRNA complexes that may exert heterotypic regulation of gene expression in endothelial cells, and possibly other recipient cells of the circulatory system.

  17. Diversities in hepatic HIF-1, IGF-I/IGFBP-1, LDH/ICD, and their mRNA expressions induced by CoCl(2) in Qinghai-Tibetan plateau mammals and sea level mice.

    PubMed

    Chen, Xue-Qun; Wang, Shi-Jun; Du, Ji-Zeng; Chen, Xiao-Cheng

    2007-01-01

    Ochotona curzoniae and Microtus oeconomus are the native mammals living on the Qinghai-Tibetan-Plateau of China. The molecular mechanisms of their acclimatization to the Plateau-hypoxia remain unclear. Expressions of hepatic hypoxia-inducible factor (HIF)-1alpha, insulin-like growth factor-I (IGF-I)/IGF binding protein (BP)-1(IGFBP-1; including genes), and key metabolic enzymatic genes [lactate dehydrogenase (LDH)-A/isocitrate dehydrogenase (ICD)] are compared in Qinghai-Tibetan-Plateau mammals and sea-level mice after injection of CoCl(2) (20, 40, or 60 mg/kg) and normobaric hypoxia (16.0% O(2), 10.8% O(2), and 8.0% O(2)) for 6 h, tested by histochemistry, Western blot analysis, ELISA, and RT-PCR. Major results are CoCl(2) markedly increased 1) HIF-1alpha only in mice, 2) hepatic and circulatory IGF-I in M. oeconomus, 3) hepatic IGFBP-1 in mice and O. curzoniae, and 4) LDH-A but reduced ICD mRNA in mice (CoCl(2) 20 mg/kg) but were unchanged in the Tibetan mammals. Normobaric hypoxia markedly 1) increased HIF-1alpha and LDH-A mRNA in mice and M. oeconomus (8.0% O(2)) not in O. curzoniae, and 2) reduced ICD mRNA in mice and M. oeconomus (8.0% O(2)) not in O. curzoniae. Results suggest that 1) HIF-1alpha responsiveness to hypoxia is distinct in lowland mice and plateau mammals, reflecting a diverse tolerance of the three species to hypoxia; 2) CoCl(2) induces diversities in HIF-1, IGF-I/IGFBP-1 protein or genes in mice, M. oeconomus, and O. curzoniae. In contrast, HIF-1 mediates IGFBP-1 transcription only in mice and in M. oeconomus (subjected to severe hypoxia); 3) differences in IGF-I/IGFBP-1 expressions induced by CoCl(2) reflect significant diversities in hormone regulation and cell protection from damage; and 4) activation of anaerobic glycolysis and reduction of Krebs cycle represents strategies of lowland-animals vs. the stable metabolic homeostasis of plateau-acclimatized mammals.

  18. Preparation of anti-mouse caspase-12 mRNA hammerhead ribozyme and identification of its activity in vitro

    PubMed Central

    Jiang, Shan; Xie, Qing; Zhang, Wei; Zhou, Xia-Qiu; Jin, You-Xin

    2005-01-01

    AIM: To prepare and identify specific anti-mouse caspase-12 hammerhead ribozymes in vitro, in order to select a more effective ribozyme against mouse caspase-12 as a potential tool to rescue cells from endoplasmic reticulum stress induced apoptosis. METHODS: Two hammerhead ribozymes directed separately against 138 and 218 site of nucleotide of mouse caspase-12 mRNA were designed by computer software, and their DNA sequences were synthesized. The synthesized ribozymes were cloned into an eukaryotic expression vector-neorpBSKU6 and embedded in U6 SnRNA context for further study. Mouse caspase-12 gene segment was cloned into PGEM-T vector under the control of T7 RNA polymerase promoter (containing gene sequence from positions nt 41 to nt 894) as target. In vitro transcription both the ribozymes and target utilize T7 promoter. The target was labeled with [α-32P]UTP, while ribozymes were not labeled. After gel purification the RNAs were dissolved in RNase free water. Ribozyme and target were incubated for 90 min at 37°C in reaction buffer (40 mmol/L Tris-HCL, pH 7.5, 10 mmol/L Mg2+). Molar ratio of ribozyme vs target was 30:1. Samples were analyzed on 6% PAGE (containing 8 mol/L urea). RESULTS: Both caspase-12 and ribozyme gene sequences were successfully cloned into expression vector confirmed by sequencing. Ribozymes and caspase-12 mRNA were obtained by in vitro transcription. Cleavage experiment showed that in a physiological similar condition (37°C, pH 7.5), Rz138 and Rz218 both cleaved targets at predicted sites, for Rz138 the cleavage efficiency was about 100%, for Rz218 the value was 36.66%. CONCLUSION: Rz138 prepared in vitro can site specific cleave mouse caspase-12 mRNA with an excellent efficiency. It shows a potential to suppress the expression of caspase-12 in vivo, thus provided a new way to protect cells from ER stress induced apoptosis. PMID:15996037

  19. Reduction of polyhedrin mRNA and protein expression levels in Sf9 and Hi5 cell lines, but not in Sf21 cells, infected with Autographa californica multiple nucleopolyhedrovirus fp25k mutants.

    PubMed

    Cheng, Xin-Hua; Hillman, Christopher C; Zhang, Chuan-Xi; Cheng, Xiao-Wen

    2013-01-01

    During cell infection, the fp25k gene of baculoviruses frequently mutates, producing the few polyhedra (FP) per cell phenotype with reduced polyhedrin (polh) expression levels compared with wild-type baculoviruses. Here we report that the fp25k gene of the model baculovirus, Autographa californica multiple nucleopolyhedrovirus (AcMNPV), contains two hypermutable seven-adenine (A7) mononucleotide repeats (MNRs) that were mutated to A8 MNRs and a TTAA site that had host DNA insertions, producing fp25k mutants during Sf21 cell infection. The FP phenotype in Sf9 and Hi5 cells was more pronounced than in Sf21 cells. AcMNPV fp25k mutants produced similar levels of polyhedra or enhanced GFP, which were both under the control of the AcMNPV polh promoter for expression, in Sf21 cells but lower levels in Sf9 and Hi5 cells compared with AcMNPV with an intact fp25k gene. This correlated with the polh mRNA levels detected in each cell line. The majority of Sf21 cells infected with fp25 mutants showed high polh promoter-mediated GFP expression levels. Two cell lines subcloned from Sf21 cells that were infected with fp25k mutants showed different GFP expression levels. Furthermore, a small proportion of Hi5 cells infected with fp25k mutants showed higher production of polyhedra and GFP expression than the rest, and the latter was not correlated with increased m.o.i. Therefore, these data suggest that AcMNPV polh promoter-mediated gene expression activities differ in the three cell lines and are influenced by different cells within the cell line.

  20. Comparative effects of low-level laser therapy pre- and post-injury on mRNA expression of MyoD, myogenin, and IL-6 during the skeletal muscle repair.

    PubMed

    Alves, Agnelo Neves; Ribeiro, Beatriz Guimarães; Fernandes, Kristianne Porta Santos; Souza, Nadhia Helena Costa; Rocha, Lília Alves; Nunes, Fabio Daumas; Bussadori, Sandra Kalil; Mesquita-Ferrari, Raquel Agnelli

    2016-05-01

    This study analyzed the effect of pre-injury and post-injury irradiation with low-level laser therapy (LLLT) on the mRNA expression of myogenic regulatory factors and interleukin 6 (IL-6) during the skeletal muscle repair. Male rats were divided into six groups: control group, sham group, LLLT group, injury group; pre-injury LLLT group, and post-injury LLLT group. LLLT was performed with a diode laser (wavelength 780 nm; output power 40 mW' and total energy 3.2 J). Cryoinjury was induced by two applications of a metal probe cooled in liquid nitrogen directly onto the belly of the tibialis anterior (TA) muscle. After euthanasia, the TA muscle was removed for the isolation of total RNA and analysis of MyoD, myogenin, and IL-6 using real-time quantitative PCR. Significant increases were found in the expression of MyoD mRNA at 3 and 7 days as well as the expression of myogenin mRNA at 14 days in the post-injury LLLT group in comparison to injury group. A significant reduction was found in the expression of IL-6 mRNA at 3 and 7 days in the pre-injury LLLT and post-injury LLLT groups. A significant increase in IL-6 mRNA was found at 14 days in the post-injury LLLT group in comparison to the injury group. LLLT administered following muscle injury modulates the mRNA expression of MyoD and myogenin. Moreover, the both forms of LLLT administration were able to modulate the mRNA expression of IL-6 during the muscle repair process.

  1. The number of preproghrelin mRNA expressing cells is increased in mice with activity-based anorexia.

    PubMed

    François, Marie; Barde, Swapnali; Achamrah, Najate; Breton, Jonathan; do Rego, Jean-Claude; Coëffier, Moïse; Hökfelt, Tomas; Déchelotte, Pierre; Fetissov, Sergueï O

    2015-06-01

    Plasma levels of ghrelin, an orexigenic peptide, are increased during conditions of chronic starvation, such as in patients with anorexia nervosa. However, it is not known whether such increase can be related to the number of preproghrelin mRNA-expressing cells in the stomach, and if chronic starvation may activate a tentative central ghrelin production. In this work, in situ hybridization technique was used to analyze the presence and number of preproghrelin mRNA-expressing cells in the stomach and the hypothalamus of mice with activity-based anorexia (ABA) induced by the combination of running wheel activity with progressive, during 10 days, feeding-time restriction (FTR) and compared with sedentary FTR, ABA pair-fed (PF) and ad libitum-fed control mice. All food-restricted mice lost more than 20% of body weight. Body weight loss was similar in ABA and PF mice, but it was more pronounced than in FTR mice. Food intake was also lower in ABA than in FTR mice. Preproghrelin mRNA-expressing cells in the stomach were increased proportionally to the body weight loss in all food-restricted groups with the highest number in ABA mice. No preproghrelin mRNA-producing cells were detectable in the hypothalamus of either control or food-restricted mice. Thus, the increased number of gastric preproghrelin mRNA-producing cells during chronic starvation proportionally to the body weight loss and reduced food intake may underlie increased plasma ghrelin. Hyperactivity-induced anorexia appears to further increase the number of preproghrelin mRNA-producing cells in the stomach. No evidence was found for ghrelin expression in the hypothalamus, not even in any of the present experimental models.

  2. Nestling activity levels during begging behaviour predicts activity level and body mass in adulthood

    PubMed Central

    Griffith, Simon C.

    2014-01-01

    Across a range of species including humans, personality traits, or differences in behaviour between individuals that are consistent over time, have been demonstrated. However, few studies have measured whether these consistent differences are evident in very young animals, and whether they persist over an individual’s entire lifespan. Here we investigated the begging behaviour of very young cross-fostered zebra finch nestlings and the relationship between that and adult activity levels. We found a link between the nestling activity behaviour head movements during begging, measured at just five and seven days after hatching, and adult activity levels, measured when individuals were between three and three and a half years old. Moreover, body mass was found to be negatively correlated with both nestling and adult activity levels, suggesting that individuals which carry less body fat as adults are less active both as adults and during begging as nestlings. Our work suggests that the personality traits identified here in both very young nestlings and adults may be linked to physiological factors such as metabolism or environmental sources of variation. Moreover, our work suggests it may be possible to predict an individual’s future adult personality at a very young age, opening up new avenues for future work to explore the relationship between personality and a number of aspects of individual life history and survival. PMID:25279258

  3. Recognizing the importance of exposure-dose-response dynamics for ecotoxicity assessment: nitrofurazone-induced antioxidase activity and mRNA expression in model protozoan Euplotes vannus.

    PubMed

    Hong, Yazhen; Liu, Shuxing; Lin, Xiaofeng; Li, Jiqiu; Yi, Zhenzhen; Al-Rasheid, Khaled A S

    2015-06-01

    The equivocality of dose-response relationships has, in practice, hampered the application of biomarkers as a means to evaluate environmental risk, yet this important issue has not yet been fully recognized or explored. This paper evaluates the potential of antioxidant enzymes in the ciliated protozoan Euplotes vannus for use as biomarkers. Dose-response dynamics, together with both the enzyme activity and the gene expression of the antioxidant enzymes, superoxide dismutase, and glutathione peroxidase, were investigated when E. vannus were exposed to graded doses of nitrofurazone for several discrete durations. Mathematical models were explored to characterize the dose-response profiles and, specifically, to identify any equivocality in terms of endpoint. Significant differences were found in both enzyme activity and messenger RNA (mRNA) expression in the E. vannus treated with nitrofurazone, and the interactions between exposure dosage and duration were significant. Correlations between enzyme activity, mRNA expression, and nitrofurazone dose varied with exposure duration. Particularly, the dose-responses showed different dynamics depending on either endpoint or exposure duration. Our findings suggest that both the enzyme activity and the gene expression of the tested antioxidant enzymes can be used as biomarkers for ecotoxicological assessment on the premise of ascertaining appropriate dosage scope, exposure duration, endpoint, etc., which can be achieved by using dose-response dynamics.

  4. Robust changes in expression of brain-derived neurotrophic factor (BDNF) mRNA and protein across the brain do not translate to detectable changes in BDNF levels in CSF or plasma.

    PubMed

    Lanz, Thomas A; Bove, Susan E; Pilsmaker, Catherine D; Mariga, Abigail; Drummond, Elena M; Cadelina, Gregory W; Adamowicz, Wendy O; Swetter, Brentt J; Carmel, Sharon; Dumin, Jo Ann; Kleiman, Robin J

    2012-09-01

    Adult rats were treated acutely with peripheral kainic acid (KA), and changes in brain-derived neurotrophic factor (BDNF) mRNA and protein were tracked over time across multiple brain regions. Despite robust elevation in both mRNA and protein in multiple brain regions, plasma BDNF was unchanged and cerebrospinal fluid (CSF) BDNF levels remained undetectable. Primary neurons were then treated with KA. BDNF was similarly elevated within neurons, but was undetectable in neuronal media. Thus, while deficits in BDNF signaling have been implicated in a number of diseases, these data suggest that extracellular concentrations of BDNF may not be a facile biomarker for changes in neurons.

  5. Analysis of adeno-associated virus (AAV) wild-type and mutant Rep proteins for their abilities to negatively regulate AAV p5 and p19 mRNA levels.

    PubMed Central

    Kyöstiö, S R; Owens, R A; Weitzman, M D; Antoni, B A; Chejanovsky, N; Carter, B J

    1994-01-01

    The rep gene of adeno-associated virus type 2 (AAV) encodes four overlapping Rep proteins that are involved in gene regulation and replication of the virus. We studied here the regulation of mRNA transcribed from the AAV p5 and p19 promoters, using transient expression in human 293 cells followed by Northern (RNA) blot analysis of the mRNA. The p5 transcript encodes the larger Rep proteins, Rep78 and Rep68, while the p19 transcript encodes the smaller proteins, Rep52 and Rep40. A plasmid (pNTC3) containing the entire AAV genome with an amber mutation in the rep gene accumulated higher levels of p5 and p19 mRNA than a plasmid containing the wild-type AAV genome. Addition of increasing amounts of the wild-type rep gene in trans from a heterologous promoter inhibited p5 and p19 mRNA accumulation from pNTC3, indicating that the levels of both transcripts were decreased by the Rep proteins. Cotransfections with plasmids producing individual wild-type Rep proteins in trans showed that p5 and p19 mRNA accumulation was inhibited 5- to 10-fold by Rep78 and Rep68 and 2- to 3-fold by Rep52 and Rep40. Analysis of carboxyl-terminal truncation mutants of Rep78 showed that the ability of Rep78 to decrease p5 and p19 mRNA levels was lost when 159 or more amino acids were deleted. Rep78 and Rep68 mutants deleted for the methionine at residue 225 showed decreased abilities to down-regulate both p5 and p19 transcript levels, while mutants containing a substitution of glycine for the methionine resembled the wild-type Rep78. A Rep78 protein with a mutation in the putative nucleoside triphosphate binding site inhibited expression from p5 but not from p19, suggesting that the regulation of p5 transcript levels by Rep78 and Rep68 differs from that of p19. A deletion analysis of AAV cis sequences revealed that an intact terminal repeat was not required for negative regulation of p5 and p19 transcript levels and that the regulation of p19 mRNA levels by Rep78 did not require the presence

  6. Benzo[a]pyrene effects on glycine N-methyltransferase mRNA expression and enzyme activity in Fundulus heteroclitus embryos

    PubMed Central

    Fang, Xiefan; Dong, Wu; Thornton, Cammi; Willett, Kristine L.

    2010-01-01

    Benzo[a]pyrene (BaP) is a ubiquitous environmental polycyclic aromatic hydrocarbon (PAH) contaminant that is both a carcinogen and a developmental toxicant. We hypothesize that some of BaP’s developmental toxicity may be mediated by effects on glycine N-methyltransferase (GNMT). GNMT is a mediator in the methionine and folate cycles, and the homotetrameric form enzymatically transfers a methyl group from S-adenosylmethionine (SAM) to glycine forming S-adenosylhomocysteine (SAH) and sarcosine. SAM homeostasis, as regulated by GNMT, is critically involved in regulation of DNA methylation, and altered GNMT expression is associated with liver pathologies. The homodimeric form of GNMT has been suggested as the 4S PAH-binding protein. To further study BaP-GNMT interactions, Fundulus heteroclitus embryos were exposed to waterborne BaP at 10 and 100 μg/L and both GNMT mRNA expression and enzyme activity were determined. Whole mount in situ hybridization showed GNMT mRNA expression was increased by BaP in the liver region of 7, 10 and 14 dpf F. heteroclitus embryos. In contrast to mRNA induction, in vivo BaP exposure decreased GNMT enzyme activity in 4, 10 and 14 dpf embryos. However, in vitro incubations of adult F. heteroclitus liver cytosol with BaP did not cause decreased enzyme activity. In conclusion, BaP exposure altered GNMT expression, which may represent a new target pathway for BaP-mediated embryonic toxicities and DNA methylation changes. PMID:20185185

  7. Cloning of a long HIV-1 readthrough transcript and detection of an increased level of early growth response protein-1 (Egr-1) mRNA in chronically infected U937 cells.

    PubMed

    Dron, M; Hameau, L; Benboudjema, L; Guymarho, J; Cajean-Feroldi, C; Rizza, P; Godard, C; Jasmin, C; Tovey, M G; Lang, M C

    1999-01-01

    To identify the pathways involved in HIV-1 modification of cellular gene expression, chronically infected U937 cells were screened by mRNA differential display. A chimeric transcript consisting of the 3' end of the LTR of a HIV-1 provirus, followed by 3.7 kb of cellular RNA was identified suggesting that long readthrough transcription might be one of the mechanisms by which gene expression could be modified in individual infected cells. Such a phenomenon may also be the first step towards the potential transduction of cellular sequences. Furthermore, the mRNA encoding for the transcription factor Egr-1 was detected as an over-represented transcript in infected cells. Northern blot analysis confirmed the increase of Egr-1 mRNA content in both HIV-1 infected promonocytic U937 cells and T cell lines such as Jurkat and CEM. Interestingly a similar increase of Egr-1 mRNA has previously been reported to occur in HTLV-1 and HTLV-2 infected T cell lines. Despite the consistent increase in the level of Egr-1 mRNA, the amount of the encoded protein did not appear to be modified in HIV-1 infected cells, suggesting an increased turn over of the protein in chronically infected cells.

  8. Increased levels of cell-free human placental lactogen mRNA at 28-32 gestational weeks in plasma of pregnant women with placenta previa and invasive placenta.

    PubMed

    Kawashima, Akihiro; Sekizawa, Akihiko; Ventura, Walter; Koide, Keiko; Hori, Kyouko; Okai, Takashi; Masashi, Yoshida; Furuya, Kenichi; Mizumoto, Yoshifumi

    2014-02-01

    We compared the levels of cell-free human placental lactogen (hPL) messenger RNA (mRNA) in maternal plasma at 28 to 32 weeks of gestation between women with diagnosis of placenta previa or invasive placenta and women with an uneventful pregnancy. Sensitivity and specificity of hPL mRNA for the prediction of invasive placenta were further explored. Plasma hPL mRNA were quantified by real-time reverse-transcriptase polymerase chain reaction in women with placenta previa (n = 13), invasive placenta (n = 5), and normal pregnancies (n = 92). Median (range) hPL mRNA was significantly higher in women with placenta previa, 782 (10-2301) copies/mL of plasma, and in those with invasive placenta, 615 (522-2102) copies/mL of plasma, when compared to nor