Science.gov

Sample records for activity mutational analysis

  1. Alanine-Scanning Mutational Analysis of Durancin GL Reveals Residues Important for Its Antimicrobial Activity.

    PubMed

    Ju, Xingrong; Chen, Xinquan; Du, Lihui; Wu, Xueyou; Liu, Fang; Yuan, Jian

    2015-07-22

    Durancin GL is a novel class IIa bacteriocin with 43 residues produced by Enterococcus durans 41D. This bacteriocin demonstrates narrow inhibition spectrum and potent antimicrobial activity against several Listeria monocytogenes strains, including nisin-resistant L. monocytogenes NR30. A systematic alanine-scanning mutational analysis with site-directed mutagenesis was performed to analyze durancin GL residues important for antimicrobial activity and specificity. Results showed that three mutations lost their antimicrobial activity, ten mutations demonstrated a decreased effect on the activity, and seven mutations exhibited relatively high activity. With regard to inhibitory spectrum, four mutants demonstrated a narrower antimicrobial spectrum than wild-type durancin GL. Another four mutants displayed a broader target cell spectrum and increased potency relative to wild-type durancin GL. These findings broaden our understanding of durancin GL residues important for its antimicrobial activity and contribute to future rational design of variants with increased potency.

  2. Mutational analysis of amino acid residues involved in catalytic activity of a family 18 chitinase from tulip bulbs.

    PubMed

    Suzukawa, Keisuke; Yamagami, Takeshi; Ohnuma, Takayuki; Hirakawa, Hideki; Kuhara, Satoru; Aso, Yoichi; Ishiguro, Masatsune

    2003-02-01

    We expressed chitinase-1 (TBC-1) from tulip bulbs (Tulipa bakeri) in E. coli cells and used site-directed mutagenesis to identify amino acid residues essential for catalytic activity. Mutations at Glu-125 and Trp-251 completely abolished enzyme activity, and activity decreased with mutations at Asp-123 and Trp-172 when glycolchitin was the substrate. Activity changed with the mutations of Trp-251 to one of several amino acids with side-chains of little hydrophobicity, suggesting that hydrophobic interaction of Trp-251 is important for the activity. Molecular dynamics (MD) simulation analysis with hevamine as the model compound showed that the distance between Asp-123 and Glu-125 was extended by mutation of Trp-251. Kinetic studies of Trp-251-mutated chitinases confirmed these various phenomena. The results suggested that Glu-125 and Trp-251 are essential for enzyme activity and that Trp-251 had a direct role in ligand binding.

  3. Clonal analysis of NRAS activating mutations in KIT-D816V systemic mastocytosis

    PubMed Central

    Wilson, Todd M.; Maric, Irina; Simakova, Olga; Bai, Yun; Ching Chan, Eunice; Olivares, Nicolas; Carter, Melody; Maric, Dragan; Robyn, Jamie; Metcalfe, Dean D.

    2011-01-01

    Cooperating genetic events are likely to contribute to the phenotypic diversity of KIT-D816V systemic mastocytosis. In this study, 44 patients with KIT-D816V systemic mastocytosis were evaluated for coexisting NRAS, KRAS, HRAS or MRAS mutations. Activating NRAS mutations were identified in 2 of 8 patients with advanced disease. NRAS mutations were not found in patients with indolent systemic mastocytosis. To better understand the clonal evolution of mastocytosis, we evaluated the cell compartments impacted by the NRAS and KIT mutations. Clonal mast cells harbored both mutations. KIT-D816V was not detected in bone marrow CD34+ progenitors, whereas the NRAS mutation was present. These findings suggest that NRAS mutations may have the potential to precede KIT-D816V in clonal development. Unlike other mature lineages, mast cell survival is dependent on KIT and the presence of these two activating mutations may have a greater impact on the expansion of this cell compartment and in resultant disease severity. (Clinicaltrials.gov identifier: NCT00044122, NCT00001756) PMID:21134978

  4. A comparison of ARMS and mutation specific IHC for common activating EGFR mutations analysis in small biopsy and cytology specimens of advanced non small cell lung cancer.

    PubMed

    Wang, Xueqing; Wang, Guoqing; Hao, Yueyue; Xu, Yinhong; Zhang, Lihua

    2014-01-01

    We have compared mutation analysis by Amplification Refractory Mutation System (ARMS) and epidermal growth factor receptor (EGFR) mutant-specific antibodies for their ability to detect two common activating EGFR mutations in a cohort of 115 advanced non-small cell lung cancer (NSCLC), including cytology material, core biopsy, and bronchoscopic biopsies. Assessment of EGFR mutation status was performed by using antibodies and ARMS assay specific to the two major forms of mutant EGFR, exon 19 deletion E746-A750 (c.2235_2249del15 or c.2236_2250del15, p. Glu746_Ala750 del) and exon 21 L858R point mutation (c.2573T>G, p.Leu858Arg). In this study the optimal buffer for antigen retrieval was sodium citrate (pH 6.0). Q score was used to evaluate the specific mutant EGFR proteins expression. Validation using clinical material showed deletions in exon 19 were detected in 19.1% and L858R mutation in 20% of all cases by ARMS assay. A cutoff value of score 1 was used as positive by IHC. No wild type cases were immuno-reactive. The antibodies performed well in cytology, core biopsies and bronchoscopic biopsies. There were only one false positive case using L858R IHC (sensitivity 100%, specificity 98.5%, positive predictive value 96%, negative predictive value 100%). All 23 E746-A750 exon 19 deletions identified by mutation analysis were positive by IHC. The sensitivity of exon 19 IHC for E746-A750 was 100%, specificity 100%, positive predictive value 100% and negative predictive value 100%. The result of the IHC stains was finely correlated with mutations status determined by ARMS assay. Although inferior to molecular genetic analysis of the EGFR gene, IHC is highly specific and sensitive for the targeted EGFR mutations. The antibodies are likely to be of clinical value in cases especially where limited tumor material is available, or in situations where molecular genetic analysis is not readily available.

  5. A mutational analysis of the active site of human type II inosine 5'-monophosphate dehydrogenase.

    PubMed

    Futer, Olga; Sintchak, Michael D; Caron, Paul R; Nimmesgern, Elmar; DeCenzo, Maureen T; Livingston, David J; Raybuck, Scott A

    2002-01-31

    The oxidation of IMP to XMP is the rate-limiting step in the de novo synthesis of guanine ribonucleotides. This NAD-dependent reaction is catalyzed by the enzyme inosine monophosphate dehydrogenase (IMPDH). Based upon the recent structural determination of IMPDH complexed to oxidized IMP (XMP*) and the potent uncompetitive inhibitor mycophenolic acid (MPA), we have selected active site residues and prepared mutants of human type II IMPDH. The catalytic parameters of these mutants were determined. Mutations G326A, D364A, and the active site nucleophile C331A all abolish enzyme activity to less than 0.1% of wild type. These residues line the IMP binding pocket and are necessary for correct positioning of the substrate, Asp364 serving to anchor the ribose ring of the nucleotide. In the MPA/NAD binding site, significant loss of activity was seen by mutation of any residue of the triad Arg322, Asn303, Asp274 which form a hydrogen bonding network lining one side of this pocket. From a model of NAD bound to the active site consistent with the mutational data, we propose that these resides are important in binding the ribose ring of the nicotinamide substrate. Additionally, mutations in the pair Thr333, Gln441, which lies close to the xanthine ring, cause a significant drop in the catalytic activity of IMPDH. It is proposed that these residues serve to deliver the catalytic water molecule required for hydrolysis of the cysteine-bound XMP* intermediate formed after oxidation by NAD.

  6. Mutational analysis of the active site residues of a D: -psicose 3-epimerase from Agrobacterium tumefaciens.

    PubMed

    Kim, Hye-Jung; Yeom, Soo-Jin; Kim, Kwangsoo; Rhee, Sangkee; Kim, Dooil; Oh, Deok-Kun

    2010-02-01

    D-Psicose 3-epimerase from Agrobacterium tumefacience catalyzes the conversion of D: -fructose to D-psicose. According to mutational analysis, the ring at position 112, the negative charge at position 156, and the positive charge at position 215 were essential components for enzyme activity and for binding fructose and psicose. The surface contact area and distance to the bound substrate by molecular modeling suggest that the positive charge of Arg215 was involved in stabilization of cis-endiol intermediate. The distances between the catalytic residues (Glu150 and Glu244) and Mn(2+) are critical to the catalysis, and the negative charges of the metal-binding residues are important for interaction with metal ion. The kinetic parameters of the D183E and H209A mutants for metal-binding residues with substrate and the near-UV circular dichroism spectra indicate that the metal ion bound to Asp183 and His209 is involved not only in catalysis but also in substrate binding.

  7. Mutations affecting enzymatic activity in liver arginase

    SciTech Connect

    Vockley, J.G.; Tabor, D.E.; Goodman, B.K.

    1994-09-01

    The hydrolysis of arginine to ornithine and urea is catalyzed by arginase in the last step of the urea cycle. We examined a group of arginase deficient patients by PCR-SSCP analysis to characterize the molecular basis of this disorder. A heterogeneous population of nonsense mutations, microdeletions, and missense mutations has been identified in our cohort. Microdeletions which introduce premature stop codons downstream of the deletion and nonsense mutations result in no arginase activity. These mutations occur randomly along the gene. The majority of missense mutations identified appear to occur in regions of high cross-species homology. To test the effect of these missense mutations on arginase activity, site-directed mutagenesis was used to re-create the patient mutations for in vivo expression studies in a prokaryotic fusion-protein expression system. Of 4 different missense mutations identified in 6 individuals, only one was located outside of a conserved region. The three substitution mutations within the conserved regions had a significant effect on enzymatic activity (0-3.1 nmole/30min, normal is 1300-1400 nmoles/30min, as determined by in vitro arginase assay), while the fourth mutation, a T to S substitution, did not. In addition, site-directed mutagenesis was utilized to create mutations not in residues postulated to play a significant role in the enzymatic function or active site formation in manganese-binding proteins such as arginase. We have determined that the substitution of glycine for a histidine residue, located in a very highly conserved region of exon 3, and the substitution of a histidine and an aspartic acid residue within a similarly conserved region in exon 4, totally abolishes enzymatic activity. Mutations substituting glycine for an additional histidine and aspartic acid residue in exon 4 and two aspartic acid residues in exon 7 have also been created. We are currently in the process of characterizing these mutations.

  8. A Mutational Analysis of the Active Site Loop Residues in cis-3-Chloroacrylic Acid Dehalogenase

    PubMed Central

    Schroeder, Gottfried K.; Huddleston, Jamison P.; Johnson, William H.; Whitman, Christian P.

    2013-01-01

    cis -3-Chloroacrylic acid dehalogenase (cis-CaaD) from Pseudomonas pavonaceae 170 and a homologue from Corynebacterium glutamicum designated Cg10062 share 34% sequence identity (54% similarity). The former catalyzes a key step in a bacterial catabolic pathway for the nematocide 1,3-dichloropropene, whereas the latter has no known biological activity. Although Cg10062 has the six active site residues (Pro-1, His-28, Arg-70, Arg-73, Tyr-103, Glu-114) that are critical for cis-CaaD activity, it shows only a low level cis-CaaD activity and lacks the specificity of cis-CaaD: Cg10062 processes both isomers of 3-chloroacrylate with a preference for the cis-isomer. Although the basis for these differences is unknown, a comparison of the crystal structures of the enzymes covalently modified by an adduct resulting from their incubation with the same inhibitor offers a possible explanation. A 6-residue active site loop in cis-CaaD shows a strikingly different conformation from that observed in Cg10062: the loop closes down on the active site of cis-CaaD, but not on that of Cg10062. In order to examine what this loop might contribute to cis-CaaD catalysis and specificity, the residues were changed individually to those found in Cg10062. Subsequent kinetic and mechanistic analysis suggests that the T34A mutant of cis-CaaD is more Cg10062-like. The mutant enzyme shows a 4-fold increase in Km (using cis-3-bromoacrylate), but not to the degree observed for Cg10062 (687-fold). The mutation also causes a 4-fold decrease in the burst rate (compared to the wild type cis-CaaD), whereas Cg10062 shows no burst rate. More telling is the reaction of the T34A mutant of cis-CaaD with the alternate substrate, 2,3-butadienoate. In the presence of NaBH4 and the allene, cis-CaaD is completely inactivated after one turnover due to the covalent modification of Pro-1. The same experiment with Cg10062 does not result in the covalent modification of Pro-1. The different outcomes are attributed to

  9. Mutational analysis of the lac regulatory region: second-site changes that activate mutant promoters.

    PubMed Central

    Rothmel, R K; LeClerc, J E

    1989-01-01

    Second-site mutations that restored activity to severe lacP1 down-promoter mutants were isolated. This was accomplished by using a bacteriophage f1 vector containing a fusion of the mutant E. coli lac promoters with the structural gene for chloramphenicol acetyltransferase (CAT), so that a system was provided for selecting phage revertants (or pseudorevertants) that conferred resistance of phage-infected cells to chloramphenicol. Among the second-site changes that relieved defects in mutant lac promoters, the only one that restored lacP1 activity was a T----G substitution at position -14, a weakly conserved site in E. coli promoters. Three other sequence changes, G----A at -2, A----T at +1, and C----A at +10, activated nascent promoters in the lac regulatory region. The nascent promoters conformed to the consensus rule, that activity is gained by sequence changes toward homology with consensus sequences at the -35 and -10 regions of the promoter. However, the relative activities of some promoters cannot be explained solely by consideration of their conserved sequence elements. Images PMID:2660105

  10. Mutational Analysis of Rab3 Function for Controlling Active Zone Protein Composition at the Drosophila Neuromuscular Junction.

    PubMed

    Chen, Shirui; Gendelman, Hannah K; Roche, John P; Alsharif, Peter; Graf, Ethan R

    2015-01-01

    At synapses, the release of neurotransmitter is regulated by molecular machinery that aggregates at specialized presynaptic release sites termed active zones. The complement of active zone proteins at each site is a determinant of release efficacy and can be remodeled to alter synapse function. The small GTPase Rab3 was previously identified as playing a novel role that controls the distribution of active zone proteins to individual release sites at the Drosophila neuromuscular junction. Rab3 has been extensively studied for its role in the synaptic vesicle cycle; however, the mechanism by which Rab3 controls active zone development remains unknown. To explore this mechanism, we conducted a mutational analysis to determine the molecular and structural requirements of Rab3 function at Drosophila synapses. We find that GTP-binding is required for Rab3 to traffick to synapses and distribute active zone components across release sites. Conversely, the hydrolytic activity of Rab3 is unnecessary for this function. Through a structure-function analysis we identify specific residues within the effector-binding switch regions that are required for Rab3 function and determine that membrane attachment is essential. Our findings suggest that Rab3 controls the distribution of active zone components via a vesicle docking mechanism that is consistent with standard Rab protein function.

  11. Mutational analysis of the active site flap (20s loop) of mandelate racemase.

    PubMed

    Bourque, Jennifer R; Bearne, Stephen L

    2008-01-15

    Mandelate racemase from Pseudomonas putida catalyzes the Mg2+-dependent 1,1-proton transfer that interconverts the enantiomers of mandelate. Residues of the 20s and 50s loops determine, in part, the topology and polarity of the active site and hence the substrate specificity. Previously, we proposed that, during racemization, the phenyl ring of mandelate moves between an S-pocket comprised of residues from the 50s loop and an R-pocket comprised of residues from the 20s loop [Siddiqi, F., Bourque, J. R., Jiang, H., Gardner, M., St. Maurice, M., Blouin, C., and Bearne, S. L. (2005) Biochemistry 44, 9013-9021]. The 20s loop constitutes a mobile beta-meander flap that covers the active site cavity shielding it from solvent and controlling entry and egress of ligands. To understand the role of the 20s loop in catalysis and substrate specificity, we constructed a series of mutants (V22A, V22I, V22F, T24S, A25V, V26A, V26L, V26F, V29A, V29L, V29F, V26A/V29L, and V22I/V29L) in which the sizes of hydrophobic side chains of the loop residues were varied. Catalytic efficiencies (kcat/Km) for all mutants were reduced between 6- and 40-fold with the exception of those of V22I, V26A, V29L, and V22I/V29L which had near wild-type efficiencies with mandelate. Thr 24 and Ala 25, located at the tip of the 20s loop, were particularly sensitive to minor alterations in the size of their hydrophobic side chains; however, most mutations were tolerated quite well, suggesting that flap mobility could compensate for increases in the steric bulk of hydrophobic side chains. With the exception of V29L, with mandelate as the substrate, and V22F and V26A/V29L, with 2-naphthylglycolate (2-NG) as the substrate, the values of kcat and Km were not altered in a manner consistent with steric obstruction of the R-pocket, perhaps due to flap mobility compensating for the increased size of the hydrophobic side chains. Surprisingly, V22I and V29L catalyzed the racemization of the bulkier substrate 2-NG

  12. Systematic mutational analysis of the active-site threonine of HIV-1 proteinase: rethinking the "fireman's grip" hypothesis.

    PubMed Central

    Strisovsky, K.; Tessmer, U.; Langner, J.; Konvalinka, J.; Kräusslich, H. G.

    2000-01-01

    Aspartic proteinases share a conserved network of hydrogen bonds (termed "fireman's grip"), which involves the hydroxyl groups of two threonine residues in the active site Asp-Thr-Gly triplets (Thr26 in the case of human immunodeficiency virus type 1 (HIV-1) PR). In the case of retroviral proteinases (PRs), which are active as symmetrical homodimers, these interactions occur at the dimer interface. For a systematic analysis of the "fireman's grip," Thr26 of HIV-1 PR was changed to either Ser, Cys, or Ala. The variant enzymes were tested for cleavage of HIV-1 derived peptide and polyprotein substrates. PR(T26S) and PR(T26C) showed similar or slightly reduced activity compared to wild-type HIV-1 PR, indicating that the sulfhydryl group of cysteine can substitute for the hydroxyl of the conserved threonine in this position. PR(T26A), which lacks the "fireman's grip" interaction, was virtually inactive and was monomeric in solution at conditions where wild-type PR exhibited a monomer-dimer equilibrium. All three mutations had little effect when introduced into only one chain of a linked dimer of HIV-1 PR. In this case, even changing both Thr residues to Ala yielded residual activity suggesting that the "fireman's grip" is not essential for activity but contributes significantly to dimer formation. Taken together, these results indicate that the "fireman's grip" is crucial for stabilization of the retroviral PR dimer and for overall stability of the enzyme. PMID:11045610

  13. Analysis of Somatic Mutations in Cancer: Molecular Mechanisms of Activation in the ErbB Family of Receptor Tyrosine Kinases

    PubMed Central

    Shih, Andrew J.; Telesco, Shannon E.; Radhakrishnan, Ravi

    2011-01-01

    The ErbB/EGFR/HER family of kinases consists of four homologous receptor tyrosine kinases which are important regulatory elements in many cellular processes, including cell proliferation, differentiation, and migration. Somatic mutations in, or over-expression of, the ErbB family is found in many cancers and is correlated with a poor prognosis; particularly, clinically identified mutations found in non-small-cell lung cancer (NSCLC) of ErbB1 have been shown to increase its basal kinase activity and patients carrying these mutations respond remarkably to the small tyrosine kinase inhibitor gefitinib. Here, we analyze the potential effects of the currently catalogued clinically identified mutations in the ErbB family kinase domains on the molecular mechanisms of kinase activation. Recently, we identified conserved networks of hydrophilic and hydrophobic interactions characteristic to the active and inactive conformation, respectively. Here, we show that the clinically identified mutants influence the kinase activity in distinctive fashion by affecting the characteristic interaction networks. PMID:21701703

  14. Exon capture analysis of G protein-coupled receptors identifies activating mutations in GRM3 in melanoma.

    PubMed

    Prickett, Todd D; Wei, Xiaomu; Cardenas-Navia, Isabel; Teer, Jamie K; Lin, Jimmy C; Walia, Vijay; Gartner, Jared; Jiang, Jiji; Cherukuri, Praveen F; Molinolo, Alfredo; Davies, Michael A; Gershenwald, Jeffrey E; Stemke-Hale, Katherine; Rosenberg, Steven A; Margulies, Elliott H; Samuels, Yardena

    2011-09-25

    G protein-coupled receptors (GPCRs), the largest human gene family, are important regulators of signaling pathways. However, knowledge of their genetic alterations is limited. In this study, we used exon capture and massively parallel sequencing methods to analyze the mutational status of 734 GPCRs in melanoma. This investigation revealed that one family member, GRM3, was frequently mutated and that one of its mutations clustered within one position. Biochemical analysis of GRM3 alterations revealed that mutant GRM3 selectively regulated the phosphorylation of MEK, leading to increased anchorage-independent growth and migration. Melanoma cells expressing mutant GRM3 had reduced cell growth and cellular migration after short hairpin RNA-mediated knockdown of GRM3 or treatment with a selective MEK inhibitor, AZD-6244, which is currently being used in phase 2 clinical trials. Our study yields the most comprehensive map of genetic alterations in the GPCR gene family.

  15. Structure-Activity Relationship in TLR4 Mutations: Atomistic Molecular Dynamics Simulations and Residue Interaction Network Analysis.

    PubMed

    Anwar, Muhammad Ayaz; Choi, Sangdun

    2017-03-08

    Toll-like receptor 4 (TLR4), a vital innate immune receptor present on cell surfaces, initiates a signaling cascade during danger and bacterial intrusion. TLR4 needs to form a stable hexamer complex, which is necessary to dimerize the cytoplasmic domain. However, D299G and T399I polymorphism may abrogate the stability of the complex, leading to compromised TLR4 signaling. Crystallography provides valuable insights into the structural aspects of the TLR4 ectodomain; however, the dynamic behavior of polymorphic TLR4 is still unclear. Here, we employed molecular dynamics simulations (MDS), as well as principal component and residue network analyses, to decipher the structural aspects and signaling propagation associated with mutations in TLR4. The mutated complexes were less cohesive, displayed local and global variation in the secondary structure, and anomalous decay in rotational correlation function. Principal component analysis indicated that the mutated complexes also exhibited distinct low-frequency motions, which may be correlated to the differential behaviors of these TLR4 variants. Moreover, residue interaction networks (RIN) revealed that the mutated TLR4/myeloid differentiation factor (MD) 2 complex may perpetuate abnormal signaling pathways. Cumulatively, the MDS and RIN analyses elucidated the mutant-specific conformational alterations, which may help in deciphering the mechanism of loss-of-function mutations.

  16. Structure-Activity Relationship in TLR4 Mutations: Atomistic Molecular Dynamics Simulations and Residue Interaction Network Analysis

    PubMed Central

    Anwar, Muhammad Ayaz; Choi, Sangdun

    2017-01-01

    Toll-like receptor 4 (TLR4), a vital innate immune receptor present on cell surfaces, initiates a signaling cascade during danger and bacterial intrusion. TLR4 needs to form a stable hexamer complex, which is necessary to dimerize the cytoplasmic domain. However, D299G and T399I polymorphism may abrogate the stability of the complex, leading to compromised TLR4 signaling. Crystallography provides valuable insights into the structural aspects of the TLR4 ectodomain; however, the dynamic behavior of polymorphic TLR4 is still unclear. Here, we employed molecular dynamics simulations (MDS), as well as principal component and residue network analyses, to decipher the structural aspects and signaling propagation associated with mutations in TLR4. The mutated complexes were less cohesive, displayed local and global variation in the secondary structure, and anomalous decay in rotational correlation function. Principal component analysis indicated that the mutated complexes also exhibited distinct low-frequency motions, which may be correlated to the differential behaviors of these TLR4 variants. Moreover, residue interaction networks (RIN) revealed that the mutated TLR4/myeloid differentiation factor (MD) 2 complex may perpetuate abnormal signaling pathways. Cumulatively, the MDS and RIN analyses elucidated the mutant-specific conformational alterations, which may help in deciphering the mechanism of loss-of-function mutations. PMID:28272553

  17. Structure-Activity Relationship in TLR4 Mutations: Atomistic Molecular Dynamics Simulations and Residue Interaction Network Analysis

    NASA Astrophysics Data System (ADS)

    Anwar, Muhammad Ayaz; Choi, Sangdun

    2017-03-01

    Toll-like receptor 4 (TLR4), a vital innate immune receptor present on cell surfaces, initiates a signaling cascade during danger and bacterial intrusion. TLR4 needs to form a stable hexamer complex, which is necessary to dimerize the cytoplasmic domain. However, D299G and T399I polymorphism may abrogate the stability of the complex, leading to compromised TLR4 signaling. Crystallography provides valuable insights into the structural aspects of the TLR4 ectodomain; however, the dynamic behavior of polymorphic TLR4 is still unclear. Here, we employed molecular dynamics simulations (MDS), as well as principal component and residue network analyses, to decipher the structural aspects and signaling propagation associated with mutations in TLR4. The mutated complexes were less cohesive, displayed local and global variation in the secondary structure, and anomalous decay in rotational correlation function. Principal component analysis indicated that the mutated complexes also exhibited distinct low-frequency motions, which may be correlated to the differential behaviors of these TLR4 variants. Moreover, residue interaction networks (RIN) revealed that the mutated TLR4/myeloid differentiation factor (MD) 2 complex may perpetuate abnormal signaling pathways. Cumulatively, the MDS and RIN analyses elucidated the mutant-specific conformational alterations, which may help in deciphering the mechanism of loss-of-function mutations.

  18. Mutational analysis using oligonucleotide microarrays

    PubMed Central

    Hacia, J.; Collins, F.

    1999-01-01

    The development of inexpensive high throughput methods to identify individual DNA sequence differences is important to the future growth of medical genetics. This has become increasingly apparent as epidemiologists, pathologists, and clinical geneticists focus more attention on the molecular basis of complex multifactorial diseases. Such undertakings will rely upon genetic maps based upon newly discovered, common, single nucleotide polymorphisms. Furthermore, candidate gene approaches used in identifying disease associated genes necessitate screening large sequence blocks for changes tracking with the disease state. Even after such genes are isolated, large scale mutational analyses will often be needed for risk assessment studies to define the likely medical consequences of carrying a mutated gene.
This review concentrates on the use of oligonucleotide arrays for hybridisation based comparative sequence analysis. Technological advances within the past decade have made it possible to apply this technology to many different aspects of medical genetics. These applications range from the detection and scoring of single nucleotide polymorphisms to mutational analysis of large genes. Although we discuss published scientific reports, unpublished work from the private sector12 could also significantly affect the future of this technology.


Keywords: mutational analysis; oligonucleotide microarrays; DNA chips PMID:10528850

  19. Mutational specificity analysis: assay for mutations in the yeast SUP4-o gene.

    PubMed

    Kunz, Bernard A

    2014-01-01

    Mutational specificity analysis can yield valuable insights into processes that generate genetic change or maintain genetic stability. Powerful diagnostic tools for such analysis have been created by combining genetic assays for mutation with DNA sequencing. Here, steps for isolating spontaneous mutations in the yeast (Saccharomyces cerevisiae) suppressor tRNA gene SUP4-o as a prelude to sequence characterization are described (modifications of this protocol can be used to study induction of mutations by various physical or chemical agents). Mutations in SUP4-o are selected on drug-containing medium by virtue of their inactivation of suppressor activity. The small size, detailed knowledge of detectably mutable sites, and other features of the target gene facilitate subsequent analysis of these mutations.

  20. Activating GNAS mutations in parosteal osteosarcoma.

    PubMed

    Carter, Jodi M; Inwards, Carrie Y; Jin, Long; Evers, Barbara; Wenger, Doris E; Oliveira, Andre M; Fritchie, Karen J

    2014-03-01

    Parosteal osteosarcoma is a surface-based osteosarcoma that often exhibits deceptively bland cytologic features, hindering diagnosis in small biopsies or when correlative radiologic imaging is not readily available. A number of benign and malignant fibro-osseous lesions, including fibrous dysplasia (FD) and low-grade central osteosarcoma, fall within the morphologic differential diagnosis of parosteal osteosarcoma. Somatic mutations in GNAS, encoding the α-subunit of the heterotrimeric G protein complex (Gsα), occur in FD and McCune-Albright syndrome but have not been reported in parosteal osteosarcoma. We evaluated GNAS mutational status in parosteal osteosarcoma and several of its histologic mimics to determine its utility in differentiating these entities. Eleven of 14 (79%) FD cases had GNAS mutations within codon 201 (5 R201C and 6 R201H mutations). GNAS mutations were not detected in any cases of adamantinoma or osteofibrous dysplasia. Direct sequencing of 9 parosteal osteosarcomas, including 3 of low grade and 6 with dedifferentiation, revealed activating GNAS mutations in 5 cases (55%), distributed as 4 R201C-mutated tumors and 1 tumor with an R201H mutation. GNAS codon 227 mutations were not detected in any of the cases. There was no association between GNAS mutational status and patient demographics, histologic dedifferentiation, or clinical outcome. To our knowledge, we report the first series of parosteal osteosarcomas harboring activating GNAS mutations. Our data suggest that GNAS mutational status may have limited utility as an ancillary technique in differentiating benign and malignant fibro-osseous lesions of the bone.

  1. Genome-Wide Single-Cell Analysis of Recombination Activity and de novo Mutation Rates in Human Sperm

    PubMed Central

    Wang, Jianbin; Fan, H. Christina; Behr, Barry; Quake, Stephen R.

    2012-01-01

    SUMMARY Meiotic recombination and de novo mutation are the two main contributions towards gamete genome diversity, and many questions remain about how an individual human’s genome is edited by these two processes. Here, we describe a high-throughput method for single-cell whole-genome analysis which was used to measure the genomic diversity in one individual’s gamete genomes. A microfluidic system was used for highly parallel sample processing and to minimize non-specific amplification. High-density genotyping results from 91 single cells were used to create a personal recombination map, which was consistent with population-wide data at low resolution but revealed significant differences from pedigree data at higher resolution. We used the data to test for meiotic drive and found evidence for gene conversion. High throughput sequencing on 31 single cells was used to measure the frequency of large-scale genome instability, and deeper sequencing of eight single cells revealed de novo mutation rates with distinct characteristics. PMID:22817899

  2. Extreme Outlier Analysis Identifies Occult Mitogen-Activated Protein Kinase Pathway Mutations in Patients With Low-Grade Serous Ovarian Cancer

    PubMed Central

    Grisham, Rachel N.; Sylvester, Brooke E.; Won, Helen; McDermott, Gregory; DeLair, Deborah; Ramirez, Ricardo; Yao, Zhan; Shen, Ronglai; Dao, Fanny; Bogomolniy, Faina; Makker, Vicky; Sala, Evis; Soumerai, Tara E.; Hyman, David M.; Socci, Nicholas D.; Viale, Agnes; Gershenson, David M.; Farley, John; Levine, Douglas A.; Rosen, Neal; Berger, Michael F.; Spriggs, David R.; Aghajanian, Carol A.; Solit, David B.; Iyer, Gopa

    2015-01-01

    Purpose No effective systemic therapy exists for patients with metastatic low-grade serous (LGS) ovarian cancers. BRAF and KRAS mutations are common in serous borderline (SB) and LGS ovarian cancers, and MEK inhibition has been shown to induce tumor regression in a minority of patients; however, no correlation has been observed between mutation status and clinical response. With the goal of identifying biomarkers of sensitivity to MEK inhibitor treatment, we performed an outlier analysis of a patient who experienced a complete, durable, and ongoing (> 5 years) response to selumetinib, a non-ATP competitive MEK inhibitor. Patients and Methods Next-generation sequencing was used to analyze this patient's tumor as well as an additional 28 SB/LGS tumors. Functional characterization of an identified novel alteration of interest was performed. Results Analysis of the extraordinary responder's tumor identified a 15-nucleotide deletion in the negative regulatory helix of the MAP2K1 gene encoding for MEK1. Functional characterization demonstrated that this mutant induced extracellular signal-regulated kinase pathway activation, promoted anchorage-independent growth and tumor formation in mice, and retained sensitivity to selumetinib. Analysis of additional LGS/SB tumors identified mutations predicted to induce extracellular signal-regulated kinase pathway activation in 82% (23 of 28), including two patients with BRAF fusions, one of whom achieved an ongoing complete response to MEK inhibitor–based combination therapy. Conclusion Alterations affecting the mitogen-activated protein kinase pathway are present in the majority of patients with LGS ovarian cancer. Next-generation sequencing analysis revealed deletions and fusions that are not detected by older sequencing approaches. These findings, coupled with the observation that a subset of patients with recurrent LGS ovarian cancer experienced dramatic and durable responses to MEK inhibitor therapy, support additional

  3. Phosphorylation of the VP16 transcriptional activator protein during herpes simplex virus infection and mutational analysis of putative phosphorylation sites

    PubMed Central

    Ottosen, Søren; Herrera, Francisco J.; Doroghazi, James R.; Hull, Angela; Mittal, Sheenu; Lane, William S.; Triezenberg, Steven J.

    2006-01-01

    VP16 is a virion phosphoprotein of herpes simplex virus and a transcriptional activator of the viral immediate-early (IE) genes. We identified four novel VP16 phosphorylation sites (Ser18, Ser353, Ser411, and Ser452) at late times in infection, but found no evidence of phosphorylation of Ser375, a residue reportedly phosphorylated when VP16 is expressed from a transfected plasmid. A virus carrying a S375A mutation of VP16 was viable in cell culture but with a slow growth rate. The association of the mutant VP16 protein with IE gene promoters and subsequent IE gene expression was markedly reduced during infection, consistent with prior transfection and in vitro results. Surprisingly, the association of Oct-1 with IE promoters was also diminished during infection by the mutant strain. We propose that Ser375 is important for the interaction of VP16 with Oct-1, and that the interaction is required to enable both proteins to bind to IE promoters. PMID:16297954

  4. Mutational analysis of metacaspase CaMca1 and decapping activator Edc3 in the pathogenicity of Candida albicans.

    PubMed

    Jeong, Jeong-Hoon; Lee, Seok-Eui; Kim, Jinmi

    2016-12-01

    Candida albicans, an opportunistic fungal pathogen, displays apoptotic cell death in response to various stresses and a wide range of antifungal treatments. CaMca1, which is the only metacaspase in C. albicans, has been described as a key player in apoptotic cell death. Edc3 is an mRNA decapping activator and a scaffold protein of processing bodies. Edc3 was previously shown to regulate CaMCA1 expression and oxidative stress-induced apoptosis. In this study, we analyzed the contribution of the catalytic residues of the CaMca1 to the oxidative stress-induced apoptosis and pathogenicity of C. albicans. The CaMCA1(C292A) mutation decreased caspase activity to a level similar to that observed in the Camca1/Camca1 deletion strain and over-expression of CaMCA1(C292A) failed to suppress the oxidative-stress phenotypes of the edc3/edc3 mutant strain. The edc3/edc3, Camca1/Camca1, and CaMCA1(C292A) mutant strains were not virulent in a murine candidiasis model. Filamentation defects were observed in the Camca1/Camca1 mutant cells, whereas this defect was only partial in CaMCA1(C292A) mutant cells. These results suggest that CaMca1 and Edc3 play essential roles in the oxidative stress-induced apoptosis and virulence of C. albicans, and also support the notion that Edc3 is a key regulator of CaMca1 expression.

  5. Activating Somatic FGFR2 Mutations in Breast Cancer

    PubMed Central

    Reintjes, Nadine; Li, Yun; Becker, Alexandra; Rohmann, Edyta; Schmutzler, Rita; Wollnik, Bernd

    2013-01-01

    It is known that FGFR2 gene variations confer a risk for breast cancer. FGFR2 and FGF10, the main ligand of FGFR2, are both overexpressed in 5–10% of breast tumors. In our study, we sequenced the most important coding regions of FGFR2 in somatic tumor tissue of 140 sporadic breast cancer patients and performed MLPA analysis to detect copy number variations in FGFR2 and FGF10. We identified one somatic heterozygous missense mutation, p.K660N (c.1980G>C), within the tyrosine kinase domain of FGFR2 in tumor tissue of a sporadic breast cancer patient, which is likely mediated by the FGFR2-IIIb isoform. The presence of wild type and mutated alleles in equal quantities suggests that the mutation has driven clonal amplification of mutant cells. We have analyzed the tyrosine kinase activity of p.K660N and another recently described somatic breast cancer mutation in FGFR2, p.R203C, after expression in HEK293 cells and demonstrated that the intrinsic tyrosine kinase activity of both mutant proteins is strongly increased resulting in elevated phosphorylation and activity of downstream effectors. To our knowledge, this is the first report of functional analysis of somatic breast cancer mutations in FGFR2 providing evidence for the activating nature of FGFR2-mediated signalling in the pathogenesis of breast cancer. PMID:23527311

  6. Structure-based mutational analysis of ICAT residues mediating negative regulation of β-catenin co-transcriptional activity

    PubMed Central

    Domingues, Mélanie J.; Martinez-Sanz, Juan; Papon, Laura; Larue, Lionel; Mouawad, Liliane

    2017-01-01

    ICAT (Inhibitor of β-CAtenin and TCF) is a small acidic protein that negatively regulates β-catenin co-transcriptional activity by competing with TCF/LEF factors in their binding to β-catenin superhelical core. In melanoma cells, ICAT competes with LEF1 to negatively regulate the M-MITF and NEDD9 target genes. The structure of ICAT consists of two domains: the 3-helix bundle N-terminal domain binds to β-catenin Armadillo (Arm) repeats 10–12 and the C-terminal tail binds to Arm repeats 5–9. To elucidate the structural mechanisms governing ICAT/β-catenin interactions in melanoma cells, three ICAT residues Y15, K19 and V22 in the N-terminal domain, contacting hydrophobic β-catenin residue F660, were mutated and interaction was assessed by immunoprecipitation. Despite the moderate hydrophobicity of the contact, its removal completely abolished the interaction. In the ICAT C-terminal tail consensus sequence, neutralization of the electrostatic interactions between residues D66, E75 and β-catenin residues K435, K312, coupled to deletion of the hydrophobic contact between F71 and β-catenin R386, markedly reduced, but failed to abolish the ICAT-mediated negative regulation of M-MITF and NEDD9 promoters. We conclude that in melanoma cells, anchoring of ICAT N-terminal domain to β-catenin through the hook made by residue F660, trapped in the pincers formed by ICAT residues Y15 and V22, is crucial for stabilizing the ICAT/β-catenin complex. This is a prerequisite for binding of the consensus peptide to Arm repeats 5–9 and competition with LEF1. Differences between ICAT and LEF1 in their affinity for β-catenin may rely on the absence in ICAT of hydrophilic residues between D66 and F71. PMID:28273108

  7. Mutational analysis of active site contact residues in anti-fluorescein monoclonal antibody 4-4-20.

    PubMed

    Denzin, L K; Gulliver, G A; Voss, E W

    1993-10-01

    The contribution to high affinity Fl binding by each crystallographically defined Mab 4-4-20 (Ka = 1.7 x 10(10) M-1; Qmax = 90%) ligand contact residue (L27dHis, L32Tyr, L34Arg, L91Ser, L96Trp and H33Trp) has been determined by site-specific mutagenesis studies. All six antigen contact residues were changed to Ala in the single-chain derivative of Mab 4-4-20 and following expression in E. coli, denaturation, refolding and purification, each SCA mutant was characterized in terms of Fl binding affinity, Qmax, lambda max and idiotype. Results demonstrated that Ala substitutions at each ligand contact residue reduced the binding affinities and quenching maxima for all residues except L27d which retained wild type characteristics. The SCA TyrL32Ala, SerL91Ala and TrpH33Ala mutants exhibited binding affinities that were approximately 1000-fold lower than the wild type value and greatly reduced Qmax values. Additionally, other amino acid substitutions were performed at three of the six antigen contact residues (L91Ser, L96Trp and H33Trp) to further evaluate the role of each in Fl binding. Therefore, the following mutations were constructed and characterized: SerL91Asn, TrpL96Tyr, TrpL96Phe, TrpL96Leu, TrpH33Tyr and TrpH33Phe. Results of site-specific mutagenesis studies are discussed in terms of Mab active site structure and suggest that L32Tyr, L91Ser and H33Trp are important for high affinity Fl binding and efficient Fl quenching.

  8. Mutational analysis of yeast profilin.

    PubMed

    Haarer, B K; Petzold, A S; Brown, S S

    1993-12-01

    We have mutated two regions within the yeast profilin gene in an effort to functionally dissect the roles of actin and phosphatidylinositol 4,5-bisphosphate (PIP2) binding in profilin function. A series of truncations was carried out at the C terminus of profilin, a region that has been implicated in actin binding. Removal of the last three amino acids nearly eliminated the ability of profilin to bind polyproline in vitro but had no dramatic in vivo effects. Thus, the extreme C terminus is implicated in polyproline binding, but the physiological relevance of this interaction is called into question. More extensive truncation, of up to eight amino acids, had in vivo effects of increasing severity and resulted in changes in conformation and expression level of the mutant profilins. However, the ability of these mutants to bind actin in vitro was not eliminated, suggesting that this region cannot be solely responsible for actin binding. We also mutagenized a region of profilin that we hypothesized might be involved in PIP2 binding. Alteration of basic amino acids in this region produced mutant profilins that functioned well in vivo. Many of these mutants, however, were unable to suppress the loss of adenylate cyclase-associated protein (Cap/Srv2p [A. Vojtek, B. Haarer, J. Field, J. Gerst, T. D. Pollard, S. S. Brown, and M. Wigler, Cell 66:497-505, 1991]), indicating that a defect could be demonstrated in vivo. In vitro assays demonstrated that the inability to suppress loss of Cap/Srv2p correlated with a defect in the interaction with actin, independently of whether PIP2 binding was reduced. Since our earlier studies of Acanthamoeba profilins suggested the importance of PIP2 binding for suppression, we conclude that both activities are implicated and that an interplay between PIP2 binding and actin binding may be important for profilin function.

  9. Molecular analysis of heritable mouse mutations.

    PubMed

    Rinchik, E M

    1987-10-01

    Germ-line mutations of the mouse have for years comprised one class of biological markers for mammalian reproductive and developmental toxicology. Understanding the molecular nature of mutations and the mechanisms by which mutations are translated into specific (and often complex) phenotypes, however, still looms as a major goal of mammalian biology. Molecular genetic analysis of heritable mouse mutations constitutes a significant, experimentally malleable strategy for relating genomic DNA structure to genic expression and function in mammals. The integrated use of recombinant DNA technology, which allows both the identification and analysis of expression of single genes, and classical genetic and cytogenetic analysis, which allow the important correlation between basic DNA defects and the organismic consequences of such defects, has been crucial to this strategy. Some of the approaches (e.g., specific-gene cloning, random-clone analysis of genomic regions, insertional mutagenesis) for studying the nature and effect of both mutations and their wild-type counterparts that have resulted from this integration of genetic analysis and molecular biology have been applied to many loci within the murine genome. Studies of the nature and effects of a complex set of radiation-induced mutations at the dilute-short ear (d-se) region of chromosome 9, a specific example of this type of integrated analysis, are discussed.

  10. Molecular analysis of SUMF1 mutations: stability and residual activity of mutant formylglycine-generating enzyme determine disease severity in multiple sulfatase deficiency.

    PubMed

    Schlotawa, Lars; Steinfeld, Robert; von Figura, Kurt; Dierks, Thomas; Gärtner, Jutta

    2008-01-01

    Multiple Sulfatase Deficiency (MSD) is a rare inborn autosomal-recessive disorder, which mainly combines clinical features of metachromatic leukodystrophy, mucopolysaccharidosis and X-linked ichthyosis. The clinical course ranges from neonatal severe to mild juvenile cases. MSD is caused by mutations in the SUMF1 gene encoding the formylglycine-generating enzyme (FGE). FGE posttranslationally activates sulfatases by generating formylglycine in their catalytic sites. We analyzed the functional consequences of missense mutations p.A177P, p.W179S, p.A279V and p.R349W with regard to FGE's subcellular localization, enzymatic activity, protein stability, intracellular retention and resulting sulfatase activities. All four mutations did not affect localization of FGE in the endoplasmic reticulum of MSD fibroblasts. However, they decreased its specific enzymatic activity to less than 1% (p.A177P and p.R349W), 3% (p.W179S) or 23% (p.A279V). Protein stability was severely decreased for p.A279V and p.R349W, and almost comparable to wild type for p.A177P and p.W179S. The patient with the mildest clinical phenotype carries the mutation p.A279V leading to decreased FGE protein stability, but high residual enzymatic activity and only slightly reduced sulfatase activities. In contrast, the most severely affected patient carries the mutation p.R349W leading to drastically decreased protein stability, very low residual enzymatic activity and considerably reduced sulfatase activities. Our functional studies provide novel insight into the molecular defect underlying MSD and reveal that both residual enzyme activity and protein stability of FGE contribute to the clinical phenotype. The application of improved functional assays to determine these two molecular parameters of FGE mutants may enable the prediction of the clinical outcome in the future.

  11. Probing the Role of N-Linked Glycans in the Stability and Activity of Fungal Cellobiohydrolases by Mutational Analysis

    SciTech Connect

    Adney, W. S.; Jeoh, T.; Beckham, G. T.; Chou,Y. C.; Baker, J. O.; Michener, W.; Brunecky, R.; Himmel, M. E.

    2009-01-01

    The filamentous fungi Trichoderma reesei and Penicillium funiculosum produce highly effective enzyme mixtures that degrade the cellulose and hemicellulose components of plant cell walls. Many fungal species produce a glycoside hydrolase family 7 (Cel7A) cellobiohydrolase, a class of enzymes that catalytically process from the reducing end of cellulose. A direct amino acid comparison of these two enzymes shows that they not only have high amino acid homology, but also contain analogous N-linked glycosylation sites on the catalytic domain. We have previously shown (Jeoh et al. in Biotechnol Biofuels, 1:10, 2008) that expression of T. reesei cellobiohydrolase I in a commonly used industrial expression host, Aspergillus niger var. awamori, results in an increase in the amount of N-linked glycosylation of the enzyme, which negatively affects crystalline cellulose degradation activity as well as thermal stability. This complementary study examines the significance of individual N-linked glycans on the surface of the catalytic domain of Cel7A cellobiohydrolases from T. reesei and P. funiculosum by genetically adding or removing N-linked glycosylation motifs using site directed mutagenesis. Modified enzymes, expressed in A. niger var. awamori, were tested for activity and thermal stability. It was concluded that N-linked glycans in peptide loops that form part of the active site tunnel have the greatest impact on both thermal stability and enzymatic activity on crystalline cellulose for both the T. reesei and P. funiculosum Cel7A enzymes. Specifically, for the Cel7A T. reesei enzyme expressed in A. niger var. awamori, removal of the N384 glycosylation site yields a mutant with 70% greater activity after 120 h compared to the heterologously expressed wild type T. reesei enzyme. In addition, similar activity improvements were found to be associated with the addition of a new glycosylation motif at N194 in P. funiculosum. This mutant also exhibits 70% greater activity after

  12. Mutational load analysis of unrelated individuals

    PubMed Central

    2011-01-01

    Evolutionary genetic models predict that the cumulative effect of rare deleterious mutations across the genome—known as mutational load burden—increases the susceptibility to complex disease. To test the mutational load burden hypothesis, we adopted a two-tiered approach: assessing the impact of whole-exome minor allele load burden and then conducting individual-gene screening. For our primary analysis, we examined various minor allele frequency (MAF) thresholds and weighting schemes to examine the overall effect of minor allele load on affection status. We found a consistent association between minor allele load and affection status, but this effect did not markedly increase within rare and/or functional single-nucleotide polymorphisms (SNPs). Our follow-up analysis considered minor allele load in individual genes to see whether only one or a few genes were driving the overall effect. Examining our most significant result—minor allele load of nonsynonymous SNPs with MAF < 2.4%—we detected no significantly associated genes after Bonferroni correction for multiple testing. After moderately significant genes (p < 0.05) were removed, the overall effect of rare nonsynonymous allele load remained significant. Overall, we did not find clear support for mutational load burden on affection status; however, these results are ultimately dependent on and limited by the nature of the Genetic Analysis Workshop 17 simulation. PMID:22373138

  13. Mutation analysis and carrier detection of Hunter syndrome

    SciTech Connect

    Li, P.; Thompson, J.N.; Hug, G.; Chuck, G.

    1994-09-01

    Hunter syndrome, mucopolysaccharidosis type II (MPS II, MIM 309900), is an X-linked lysosomal storage disorder due to a deficiency of iduronate-2-sulfatase (IDS, EC 3.1.6.13) activity. The IDS cDNA sequence and genomic exon/intron sequences have been characterized. In the present investigation, 8 patients with IDS deficiency enzymatically diagnosed by us were used for molecular analysis. Total cellular RNA was isolated from cultured skin fibroblasts and DNA was isolated from cultured skin fibroblasts or leukocytes of the patients and controls. A RT-PCR sequencing method and an exon-by exon PCR amplification of the IDS gene were used for mutation analysis. Six new mutations, from the 8 patients, have been identified: A346V (GCC to GTC) in exon VIII coexistent with T146T silent mutation and a two-nucleotide insertion at codon 423 (CCC to CCCCC) in exon IX coexistent with T146T were found in two patients with a mild Hunter phenotype; S71R (AGC to AGA) in exon II, L279X (TTA to TGA) in exon VI, 406delCT (CTT to --T) in exon IX, and 407delTT (TTT to T--) in exon IX were found in 4 unrelated cases. All mutations detected by RT-PCR sequencing were confirmed by restriction enzyme assay and PCR analysis of the genomic DNA sequence. The mutation L279X eliminated an Mse I site from the mutant allele. Carrier detection for this mutation revealed that the mother of the proband was a carrier; however, neither her mother nor any of her sisters were carriers and none of her brothers were affected. We postulate that the mutation probably originated from a germline mutation. Our studies support previous findings that a large proportion of MPS II families result from new mutations. The RT-PCR sequencing and exon-by-exon PCR method has proven to be a practical approach for mutation analysis and carrier detection in families with an affected MPS II.

  14. Prosaposin Deficiency and Saposin B Deficiency (Activator-Deficient Metachromatic Leukodystrophy): Report on Two Patients Detected by Analysis of Urinary Sphingolipids and Carrying Novel PSAP Gene Mutations

    PubMed Central

    Kuchař, Ladislav; Ledvinová, Jana; Hřebíček, Martin; Myšková, Helena; Dvořáková, Lenka; Berná, Linda; Chrastina, Petr; Asfaw, Befekadu; Elleder, Milan; Petermöller, Margret; Mayrhofer, Heidi; Staudt, Martin; Krägeloh-Mann, Ingeborg; Paton, Barbara C; Harzer, Klaus

    2009-01-01

    Prosaposin deficiency (pSap-d) and saposin B deficiency (SapB-d) are both lipid storage disorders caused by mutations in the PSAP gene that codes for the 65–70 kDa prosaposin protein, which is the precursor for four sphingolipid activator proteins, saposins A–D. We report on two new patients with PSAP gene defects; one, with pSap-d, who had a severe neurovisceral dystrophy and died as a neonate, and the other with SapB-d, who presented with a metachromatic leukodystrophy-like disorder but had normal arylsulfatase activity. Screening for urinary sphingolipids was crucial to the diagnosis of both patients, with electrospray ionization tandem mass spectrometry also providing quantification. The pSap-d patient is the first case with this condition where urinary sphingolipids have been investigated. Multiple sphingolipids were elevated, with globotriaosylceramide showing the greatest increase. Both patients had novel mutations in the PSAP gene. The pSap-d patient was homozygous for a splice-acceptor site mutation two bases upstream of exon 10. This mutation led to a premature stop codon and yielded low levels of transcript. The SapB-d patient was a compound heterozygote with a splice-acceptor site variant exclusively affecting the SapB domain on one allele, and a 2 bp deletion leading to a null, that is, pSap-d mutation, on the other allele. Phenotypically, pSap-d is a relatively uniform disease of the neonate, whereas SapB-d is heterogeneous with a spectrum similar to that in metachromatic leukodystrophy. The possible existence of genotypes and phenotypes intermediate between those of pSap-d and the single saposin deficiencies is speculated. © 2009 Wiley-Liss, Inc. PMID:19267410

  15. Novel FOXC2 Mutation in Hereditary Distichiasis Impairs DNA-Binding Activity and Transcriptional Activation

    PubMed Central

    Zhang, Leilei; He, Jie; Han, Bing; Lu, Linna; Fan, Jiayan; Zhang, He; Ge, Shengfang; Zhou, Yixiong; Jia, Renbing; Fan, Xianqun

    2016-01-01

    Distichiasis presents as double rows of eyelashes arising from aberrant differentiation of the meibomian glands of the eyelids, and it may be sporadic or hereditary. FOXC2 gene mutations in hereditary distichiasis are rarely reported. Here, we examined two generations of a Chinese family with hereditary distichiasis but without lymphedema or other features of LD syndrome. The FOXC2 gene was amplified and sequenced in all family members. Subcellular localization and luciferase assays were performed to assess the activity of the mutant FOXC2 protein. Clinical examinations showed distichiasis, lower eyelid ectropion, congenital ptosis and photophobia in all affected individuals. Sequence analysis revealed a novel frameshift mutation, c.964_965insG, in the coding region of the FOXC2 gene. This mutation caused protein truncation due to the presence of a premature stop codon. A fluorescence assay showed that this mutation did not change the nuclear localization of the protein. However, it impaired DNA-binding activity and decreased transcriptional activation. This is the first report of a FOXC2 mutation in hereditary distichiasis in the Chinese population. The findings of our study expand the FOXC2 mutation spectrum and contribute to the understanding of the genotype-phenotype correlation of this disease. PMID:27570485

  16. Domain structure of the Moloney murine leukemia virus reverse transcriptase: mutational analysis and separate expression of the DNA polymerase and RNase H activities.

    PubMed Central

    Tanese, N; Goff, S P

    1988-01-01

    The reverse transcriptase of Moloney murine leukemia virus, like that of all retroviruses, exhibits a DNA polymerase activity capable of synthesis on RNA or DNA templates and an RNase H activity with specificity for RNA in the form of an RNA.DNA hybrid. We have generated a library of linker insertion mutants of the Moloney murine leukemia virus enzyme expressed in bacteria and assayed these mutants for both enzymatic activities. Those mutations affecting the DNA polymerase activity were clustered in the 5'-proximal two-thirds of the gene, and those affecting RNase H were in the remaining 3' one-third. Based on these maps, plasmids were made that expressed each one of the domains separately; assays of the proteins encoded by these plasmids showed that each domain exhibited only the expected activity. Images PMID:2450347

  17. Altered intrinsic brain activity in patients with paroxysmal kinesigenic dyskinesia by PRRT2 mutation: altered brain activity by PRRT2 mutation.

    PubMed

    Luo, ChunYan; Chen, Yongping; Song, Wei; Chen, Qin; Gong, QiYong; Shang, Hui-Fang

    2013-11-01

    The proline-rich transmembrane protein 2 (PRRT2) gene has been recently identified as a causative gene of paroxysmal kinesigenic dyskinesia (PKD), with an insertion mutation c.649_650insC (p.P217fsX7) reported as the most common mutation. However, the pathogenic mechanism of the mutation of PRRT2 remains largely unknown. Resting-state functional magnetic resonance imaging is a promising approach to assess cerebral function and reveals underlying functional changes. Resting-state functional magnetic resonance imaging was performed in 4 Chinese PKD patients with p.P217fsX7 mutation, 6 Chinese PKD patients without the mutation, and 10 healthy control subjects. Voxel-based analysis was used to characterize alterations in the amplitude of low-frequency fluctuation (ALFF). When compared with the healthy control subjects, both groups of PKD patients showed alterations in spontaneous brain activities within cortical-basal ganglia circuitry. Besides, the group of patients with p.P217fsX7 mutation also exhibited increased ALFF in the right postcenral gyrus and right rolandic operculum area, while the alteration of ALFF in group of patients without the mutation additionally involved the middle orbitofrontal cortex. Direct comparative analysis between these two patient groups revealed significantly increased ALFF in the right postcentral gyrus in the group with p.P217fsX7 mutation. Increased spontaneous brain activity in the cortical-basal ganglia circuitry, especially in the motor preparation areas, is a common pathophysiology in PKD. Differences in the spatial patterns of increased ALFF between patients with and those without the mutation might reflect the distinct pathological mechanism resulting from PRRT2 mutation.

  18. FK506-binding protein mutational analysis: defining the active-site residue contributions to catalysis and the stability of ligand complexes.

    PubMed

    DeCenzo, M T; Park, S T; Jarrett, B P; Aldape, R A; Futer, O; Murcko, M A; Livingston, D J

    1996-02-01

    The 12 kDa FK506-binding protein FKBP12 is a cis-trans peptidyl-prolyl isomerase that binds the macrolides FK506 and rapamycin. We have examined the role of the binding pocket residues of FKBP12 in protein-ligand interactions by making conservative substitutions of 12 of these residues by site-directed mutagenesis. For each mutant FKBP12, we measured the affinity for FK506 and rapamycin and the catalytic efficiency in the cis-frans peptidyl-prolyl isomerase reaction. The mutation of Trp59 or Phe99 generates an FKBP12 with a significantly lower affinity for FK506 than wild-type protein. Tyr26 and Tyr82 mutants are enzymatically active, demonstrating that hydrogen bonding by these residues is not required for catalysis of the cis-trans peptidyl-prolyl isomerase reaction, although these mutations alter the substrate specificity of the enzyme. We conclude that hydrophobic interactions in the active site dominate in the stabilization of FKBP12 binding to macrolide ligands and to the twisted-amide peptidyl-prolyl substrate intermediate.

  19. Activating HER2 mutations in HER2 gene amplification negative breast cancer

    PubMed Central

    Bose, Ron; Kavuri, Shyam M.; Searleman, Adam C.; Shen, Wei; Shen, Dong; Koboldt, Daniel C.; Monsey, John; Goel, Nicholas; Aronson, Adam B.; Li, Shunqiang; Ma, Cynthia X.; Ding, Li; Mardis, Elaine R.; Ellis, Matthew J.

    2012-01-01

    Data from eight breast cancer genome sequencing projects identified 25 patients with HER2 somatic mutations in cancers lacking HER2 gene amplification. To determine the phenotype of these mutations, we functionally characterized thirteen HER2 mutations using in vitro kinase assays, protein structure analysis, cell culture and xenograft experiments. Seven of these mutations are activating mutations, including G309A, D769H, D769Y, V777L, P780ins, V842I, and R896C. HER2 in-frame deletion 755-759, which is homologous to EGFR exon 19 in-frame deletions, had a neomorphic phenotype with increased phosphorylation of EGFR or HER3. L755S produced lapatinib resistance, but was not an activating mutation in our experimental systems. All of these mutations were sensitive to the irreversible kinase inhibitor, neratinib. These findings demonstrate that HER2 somatic mutation is an alternative mechanism to activate HER2 in breast cancer and they validate HER2 somatic mutations as drug targets for breast cancer treatment. PMID:23220880

  20. High‐Throughput Mutational Analysis of a Twister Ribozyme

    PubMed Central

    Kobori, Shungo

    2016-01-01

    Abstract Recent discoveries of new classes of self‐cleaving ribozymes in diverse organisms have triggered renewed interest in the chemistry and biology of ribozymes. Functional analysis and engineering of ribozymes often involve performing biochemical assays on multiple ribozyme mutants. However, because each ribozyme mutant must be individually prepared and assayed, the number and variety of mutants that can be studied are severely limited. All of the single and double mutants of a twister ribozyme (a total of 10 296 mutants) were generated and assayed for their self‐cleaving activity by exploiting deep sequencing to count the numbers of cleaved and uncleaved sequences for every mutant. Interestingly, we found that the ribozyme is highly robust against mutations such that 71 % and 30 % of all single and double mutants, respectively, retain detectable activity under the assay conditions. It was also observed that the structural elements that comprise the ribozyme exhibit distinct sensitivity to mutations. PMID:27461281

  1. Mutation analysis in Turkish phenylketonuria patients.

    PubMed Central

    Ozgüç, M; Ozalp, I; Coşkun, T; Yilmaz, E; Erdem, H; Ayter, S

    1993-01-01

    Forty-four classical PKU patients have been screened for various mutations. The newly identified IVS 10 splicing mutation was found in 32% of the mutant alleles and comprises 74.5% of the mutations that could be typed: 261arg-gln (6.8%), 158arg-gly (2.3%), 252arg-trp (1.1%), 280glu-lys (-), and 272gly-stop (-) were the other mutations that were screened. Images PMID:8445616

  2. A mutational analysis of the structural basis for transcriptional activation and monomer-monomer interaction in the TyrR system of Escherichia coli K-12.

    PubMed Central

    Cui, J; Somerville, R L

    1993-01-01

    In response to the binding of tyrosine or phenylalanine, the TyrR protein (513 amino acids) activates certain promoters and represses others. In a previous study (J. Cui and R. L. Somerville, J. Bacteriol. 175:303-306, 1993), it was shown that promoter activation was selectively abolished in mutant proteins lacking amino acid residues 2 to 9. An additional series of constructs that encoded mutant TyrR proteins having deletions or point mutations near the N terminus were analyzed. Residues Arg-2 and Leu-3 were shown to be critical for the activation of the mtr promoter. In confirmation of previous findings, none of the activation-defective mutant TyrR proteins had lost significant repression function. The TyrR protein was shown by chemical cross-linking to be dimeric. The polypeptide segments critical for dimer formation in vivo were identified by evaluating the negative dominance phenotypes of a series of mutant proteins, all defective in DNA binding, lacking progressively greater numbers of amino acid residues from either the N terminus or the C terminus. Amino acid residues 194 to 438 were found to contain all of the essential dimerization determinants. Images PMID:8449884

  3. Activating mutations in CTNNB1 in aldosterone producing adenomas

    PubMed Central

    Åkerström, Tobias; Maharjan, Rajani; Sven Willenberg, Holger; Cupisti, Kenko; Ip, Julian; Moser, Ana; Stålberg, Peter; Robinson, Bruce; Alexander Iwen, K.; Dralle, Henning; Walz, Martin K.; Lehnert, Hendrik; Sidhu, Stan; Gomez-Sanchez, Celso; Hellman, Per; Björklund, Peyman

    2016-01-01

    Primary aldosteronism (PA) is the most common cause of secondary hypertension with a prevalence of 5–10% in unreferred hypertensive patients. Aldosterone producing adenomas (APAs) constitute a large proportion of PA cases and represent a surgically correctable form of the disease. The WNT signaling pathway is activated in APAs. In other tumors, a frequent cause of aberrant WNT signaling is mutation in the CTNNB1 gene coding for β-catenin. Our objective was to screen for CTNNB1 mutations in a well-characterized cohort of 198 APAs. Somatic CTNNB1 mutations were detected in 5.1% of the tumors, occurring mutually exclusive from mutations in KCNJ5, ATP1A1, ATP2B3 and CACNA1D. All of the observed mutations altered serine/threonine residues in the GSK3β binding domain in exon 3. The mutations were associated with stabilized β-catenin and increased AXIN2 expression, suggesting activation of WNT signaling. By CYP11B2 mRNA expression, CYP11B2 protein expression, and direct measurement of aldosterone in tumor tissue, we confirmed the ability for aldosterone production. This report provides compelling evidence that aberrant WNT signaling caused by mutations in CTNNB1 occur in APAs. This also suggests that other mechanisms that constitutively activate the WNT pathway may be important in APA formation. PMID:26815163

  4. Japanese sisters with Pfeiffer syndrome and achondroplasia: a mutation analysis.

    PubMed

    Nagase, T; Nagase, M; Hirose, S; Ohmori, K

    1998-09-01

    The authors report the rare existence of a family that includes an older sister with Pfeiffer syndrome and a younger sister with achondroplasia. Gene analysis of these patients showed a T341P mutation in the FGFR2 gene in the patient with Pfeiffer syndrome, and a G380R mutation in the FGFR3 gene in the patient with achondroplasia. Both mutations have been reported previously. Their parents had no mutation in either locus. This result suggests the possibility that there may be predisposing factors for different FGFR mutations.

  5. EGFR-activating mutations, DNA copy number abundance of ErbB family, and prognosis in lung adenocarcinoma.

    PubMed

    Chen, Hsuan-Yu; Liu, Chia-Hsin; Chang, Ya-Hsuan; Yu, Sung-Liang; Ho, Bing-Ching; Hsu, Chung-Ping; Yang, Tsung-Ying; Chen, Kun-Chieh; Hsu, Kuo-Hsuan; Tseng, Jeng-Sen; Hsia, Jiun-Yi; Chuang, Cheng-Yen; Chang, Chi-Sheng; Li, Yu-Cheng; Li, Ker-Chau; Chang, Gee-Chen; Yang, Pan-Chyr

    2016-02-23

    In this study, EGFR-activating mutation status and DNA copy number abundances of members of ErbB family were measured in 261 lung adenocarcinomas. The associations between DNA copy number abundances of ErbB family, EGFR-activating mutation status, and prognosis were explored. Results showed that DNA copy number abundances of EGFR, ERBB2, ERBB3, and ERBB4 had associations with overall survival in lung adenocarcinoma with EGFR-activating mutations. In the stratification analysis, only ERBB2 showed significant discrepancy in patients carrying wild type EGFR and other members of ErbB family in patients carrying EGFR-activating mutation. This indicated that CNAs of ErbB family had effect modifications of EGFR-activating mutation status. Findings of this study demonstrate potential molecular guidance of patient management of lung adenocarcinoma with or without EGFR-activating mutations.

  6. TERT promoter mutations and monoallelic activation of TERT in cancer

    PubMed Central

    Huang, F W; Bielski, C M; Rinne, M L; Hahn, W C; Sellers, W R; Stegmeier, F; Garraway, L A; Kryukov, G V

    2015-01-01

    Here we report that promoter mutations in telomerase (TERT), the most common noncoding mutations in cancer, give rise to monoallelic expression of TERT. Through deep RNA sequencing, we find that TERT activation in human cancer cell lines can occur in either mono- or biallelic manner. Without exception, hotspot TERT promoter mutations lead to the re-expression of only one allele, accounting for approximately half of the observed cases of monoallelic TERT expression. Furthermore, we show that monoallelic TERT expression is highly prevalent in certain tumor types and widespread across a broad spectrum of cancers. Taken together, these observations provide insights into the mechanisms of TERT activation and the ramifications of noncoding mutations in cancer. PMID:26657580

  7. Mutational dichotomy in desmoplastic malignant melanoma corroborated by multigene panel analysis.

    PubMed

    Jahn, Stephan W; Kashofer, Karl; Halbwedl, Iris; Winter, Gerlinde; El-Shabrawi-Caelen, Laila; Mentzel, Thomas; Hoefler, Gerald; Liegl-Atzwanger, Bernadette

    2015-07-01

    Desmoplastic malignant melanoma is a distinct melanoma entity histologically subtyped into mixed and pure forms due to significantly reduced lymph node metastases in the pure form. Recent reports investigating common actionable driver mutations have demonstrated a lack of BRAF, NRAS, and KIT mutation in pure desmoplastic melanoma. In search for alternative driver mutations next generation amplicon sequencing for hotspot mutations in 50 genes cardinal to tumorigenesis was performed and in addition the RET G691S polymorphism was investigated. Data from 21 desmoplastic melanomas (12 pure and 9 mixed) were retrieved. Pure desmoplastic melanomas were either devoid of mutations (50%) or displayed mutations in tumor suppressor genes (TP53, CDKN2A, and SMAD4) singularly or in combination with the exception of a PIK3CA double-mutation lacking established biological relevance. Mixed desmoplastic melanomas on the contrary were frequently mutated (89%), and 67% exhibited activating mutations similar to common-type cutaneous malignant melanomas (BRAF, NRAS, FGFR2, and ERBB2). Separate analysis of morphologically heterogeneous tumor areas in four mixed desmoplastic malignant melanomas displayed no difference in mutation status and RET G691 status. GNAQ and GNA11, two oncogenes in BRAF and NRAS wild-type uveal melanomas, were not mutated in our cohort. The RET G691S polymorphism was found in 25% of pure and 38% of mixed desmoplastic melanomas. Apart from RET G691S our findings demonstrate absence of activating driver mutations in pure desmoplastic melanoma beyond previously investigated oncogenes (BRAF, NRAS, and KIT). The findings underline the therapeutic dichotomy of mixed versus pure desmoplastic melanoma with regard to activating mutations primarily of the mitogen-activated protein kinase pathway.

  8. Gain-Of-Function Mutational Activation of Human TRNA Synthetase Procytokine

    SciTech Connect

    Yang, X.L.; Kapoor, M.; Otero, F.J.; Slike, B.M.; Tsuruta, H.; Frausto, R.; Bates, A.; Ewalt, K.L.; Cheresh, D.A.; Schimmel, P.; /Scripps Res. Inst. /SLAC, SSRL

    2009-04-30

    Disease-causing mutations occur in genes for aminoacyl tRNA synthetases. That some mutations are dominant suggests a gain of function. Native tRNA synthetases, such as tyrosyl-tRNA synthetase (TyrRS) and tryptophanyl-tRNA synthetase, catalyze aminoacylation and are also procytokines that are activated by natural fragmentation. In principle, however, gain-of-function phenotypes could arise from mutational activation of synthetase procytokines. From crystal structure analysis, we hypothesized that a steric block of a critical Glu-Leu-Arg (ELR) motif in full-length TyrRS suppresses the cytokine activity of a natural fragment. To test this hypothesis, we attempted to uncover ELR in the procytokine by mutating a conserved tyrosine (Y341) that tethers ELR. Site-specific proteolytic cleavage and small-angle X-ray scattering established subtle opening of the structure by the mutation. Strikingly, four different assays demonstrated mutational activation of cytokine functions. The results prove the possibilities for constitutive gain-of-function mutations in tRNA synthetases.

  9. Mutational analysis of the three cysteines and active-site aspartic acid 103 of ketosteroid isomerase from Pseudomonas putida biotype B.

    PubMed Central

    Kim, S W; Joo, S; Choi, G; Cho, H S; Oh, B H; Choi, K Y

    1997-01-01

    In order to clarify the roles of three cysteines in ketosteroid isomerase (KSI) from Pseudomonas putida biotype B, each of the cysteine residues has been changed to a serine residue (C69S, C81S, and C97S) by site-directed mutagenesis. All cysteine mutations caused only a slight decrease in the k(cat) value, with no significant change of Km for the substrate. Even modification of the sulfhydryl group with 5,5'-dithiobis(2-nitrobenzoic acid) has almost no effect on enzyme activity. These results demonstrate that none of the cysteines in the KSI from P. putida is critical for catalytic activity, contrary to the previous identification of a cysteine in an active-site-directed photoinactivation study of KSI. Based on the three-dimensional structures of KSIs with and without dienolate intermediate analog equilenin, as determined by X-ray crystallography at high resolution, Asp-103 was found to be located within the range of the hydrogen bond to the equilenin. To assess the role of Asp-103 in catalysis, Asp-103 has been replaced with either asparagine (D103N) or alanine (D103A) by site-directed mutagenesis. For D103A mutant KSI there was a significant decrease in the k(cat) value: the k(cat) of the mutant was 85-fold lower than that of the wild-type enzyme; however, for the D103N mutant, which retained some hydrogen bonding capability, there was a minor decrease in the k(cat) value. These findings support the idea that aspartic acid 103 in the active site is an essential catalytic residue involved in catalysis by hydrogen bonding to the dienolate intermediate. PMID:9401033

  10. Mutational analysis of the human MAOA gene

    SciTech Connect

    Tivol, E.A.; Shalish, C.; Schuback, D.E.; Breakefield, X.O.; Hsu, Yun-Pung

    1996-02-16

    The monoamine oxidases (MAO-A and MAO-B) are the enzymes primarily responsible for the degradation of amine neurotransmitters, such as dopamine, norepinephrine, and serotonin. Wide variations in activity of these isozymes have been reported in control humans. The MAOA and MAOB genes are located next to each other in the p11.3-11.4 region of the human X chromosome. Our recent documentation of an MAO-A-deficiency state, apparently associated with impulsive aggressive behavior in males, has focused attention on genetic variations in the MAOA gene. In the present study, variations in the coding sequence of the MAOA gene were evaluated by RT-PCR, SSCP, and sequencing of mRNA or genomic DNA in 40 control males with >100-fold variations in MAOA activity, as measured in cultured skin fibroblasts. Remarkable conservation of the coding sequence was found, with only 5 polymorphisms observed. All but one of these were in the third codon position and thus did not alter the deduced amino acid sequence. The one amino acid alteration observed, lys{r_arrow}arg, was neutral and should not affect the structure of the protein. This study demonstrates high conservation of coding sequence in the human MAOA gene in control males, and provides primer sets which can be used to search genomic DNA for mutations in this gene in males with neuropsychiatric conditions. 47 refs., 1 fig., 2 tabs.

  11. Mutational analysis of patients with neurofibromatosis 2

    SciTech Connect

    MacCollin, M.; Ramesh, V.; Pulaski, K.; Trofatter, J.A.; Short, M.P.; Bove, C.; Jacoby, L.B.; Louis, D.N.; Rubio, M.P.; Eldridge, R.

    1994-08-01

    Neurofibromatosis 2 (NF2) is a genetic disorder characterized by the development of multiple nervous-system tumors in young adulthood. The NF2 gene has recently been isolated and found to encode a new member, merlin, of the protein 4.1 family of cytoskeleton-associated proteins. To define the molecular basis of NF2 in affected individuals, the authors have used SSCP analysis to scan the exons of the NF2 gene from 33 unrelated patients with NF2. Twenty unique SSCP variants were seen in 21 patients; 10 of these individuals were known to be the only affected person in their kindred, while 7 had at least one other known affected relative. In all cases in which family members were available, the SSCP variant segregated with the disease; comparison of sporadic cases with their parents confirmed the de novo variants. DNA sequence analysis revealed that 19 of the 20 variants observed are predicted to lead to a truncated protein due to frameshift, creation of a stop codon, or interference with normal RNA splicing. A single patient carried a 3-bp deletion removing a phenylalanine residue. The authors conclude that the majority of NF2 patients carry an inactivating mutation of the NF2 gene and that neutral polymorphism in the gene is rare. 18 refs., 3 figs., 2 tabs.

  12. Glucocerebrosidase activity in Parkinson's disease with and without GBA mutations.

    PubMed

    Alcalay, Roy N; Levy, Oren A; Waters, Cheryl C; Fahn, Stanley; Ford, Blair; Kuo, Sheng-Han; Mazzoni, Pietro; Pauciulo, Michael W; Nichols, William C; Gan-Or, Ziv; Rouleau, Guy A; Chung, Wendy K; Wolf, Pavlina; Oliva, Petra; Keutzer, Joan; Marder, Karen; Zhang, Xiaokui

    2015-09-01

    Glucocerebrosidase (GBA) mutations have been associated with Parkinson's disease in numerous studies. However, it is unknown whether the increased risk of Parkinson's disease in GBA carriers is due to a loss of glucocerebrosidase enzymatic activity. We measured glucocerebrosidase enzymatic activity in dried blood spots in patients with Parkinson's disease (n = 517) and controls (n = 252) with and without GBA mutations. Participants were recruited from Columbia University, New York, and fully sequenced for GBA mutations and genotyped for the LRRK2 G2019S mutation, the most common autosomal dominant mutation in the Ashkenazi Jewish population. Glucocerebrosidase enzymatic activity in dried blood spots was measured by a mass spectrometry-based assay and compared among participants categorized by GBA mutation status and Parkinson's disease diagnosis. Parkinson's disease patients were more likely than controls to carry the LRRK2 G2019S mutation (n = 39, 7.5% versus n = 2, 0.8%, P < 0.001) and GBA mutations or variants (seven homozygotes and compound heterozygotes and 81 heterozygotes, 17.0% versus 17 heterozygotes, 6.7%, P < 0.001). GBA homozygotes/compound heterozygotes had lower enzymatic activity than GBA heterozygotes (0.85 µmol/l/h versus 7.88 µmol/l/h, P < 0.001), and GBA heterozygotes had lower enzymatic activity than GBA and LRRK2 non-carriers (7.88 µmol/l/h versus 11.93 µmol/l/h, P < 0.001). Glucocerebrosidase activity was reduced in heterozygotes compared to non-carriers when each mutation was compared independently (N370S, P < 0.001; L444P, P < 0.001; 84GG, P = 0.003; R496H, P = 0.018) and also reduced in GBA variants associated with Parkinson's risk but not with Gaucher disease (E326K, P = 0.009; T369M, P < 0.001). When all patients with Parkinson's disease were considered, they had lower mean glucocerebrosidase enzymatic activity than controls (11.14 µmol/l/h versus 11.85 µmol/l/h, P = 0.011). Difference compared to controls persisted in patients with

  13. Crystal structure, mutational analysis and RNA-dependent ATPase activity of the yeast DEAD-box pre-mRNA splicing factor Prp28

    SciTech Connect

    Jacewicz, Agata; Schwer, Beate; Smith, Paul; Shuman, Stewart

    2014-10-10

    Yeast Prp28 is a DEAD-box pre-mRNA splicing factor implicated in displacing U1 snRNP from the 5' splice site. Here we report that the 588-aa Prp28 protein consists of a trypsin-sensitive 126-aa N-terminal segment (of which aa 1–89 are dispensable for Prp28 function in vivo) fused to a trypsin-resistant C-terminal catalytic domain. Purified recombinant Prp28 and Prp28-(127–588) have an intrinsic RNA-dependent ATPase activity, albeit with a low turnover number. The crystal structure of Prp28-(127–588) comprises two RecA-like domains splayed widely apart. AMPPNP•Mg2+ is engaged by the proximal domain, with proper and specific contacts from Phe194 and Gln201 (Q motif) to the adenine nucleobase. The triphosphate moiety of AMPPNP•Mg2+ is not poised for catalysis in the open domain conformation. Guided by the Prp28•AMPPNP structure, and that of the Drosophila Vasa•AMPPNP•Mg2+•RNA complex, we targeted 20 positions in Prp28 for alanine scanning. ATP-site components Asp341 and Glu342 (motif II) and Arg527 and Arg530 (motif VI) and RNA-site constituent Arg476 (motif Va) are essential for Prp28 activity in vivo. Synthetic lethality of double-alanine mutations highlighted functionally redundant contacts in the ATP-binding (Phe194-Gln201, Gln201-Asp502) and RNA-binding (Arg264-Arg320) sites. As a result, overexpression of defective ATP-site mutants, but not defective RNA-site mutants, elicited severe dominant-negative growth defects.

  14. Crystal structure, mutational analysis and RNA-dependent ATPase activity of the yeast DEAD-box pre-mRNA splicing factor Prp28

    DOE PAGES

    Jacewicz, Agata; Schwer, Beate; Smith, Paul; ...

    2014-10-10

    Yeast Prp28 is a DEAD-box pre-mRNA splicing factor implicated in displacing U1 snRNP from the 5' splice site. Here we report that the 588-aa Prp28 protein consists of a trypsin-sensitive 126-aa N-terminal segment (of which aa 1–89 are dispensable for Prp28 function in vivo) fused to a trypsin-resistant C-terminal catalytic domain. Purified recombinant Prp28 and Prp28-(127–588) have an intrinsic RNA-dependent ATPase activity, albeit with a low turnover number. The crystal structure of Prp28-(127–588) comprises two RecA-like domains splayed widely apart. AMPPNP•Mg2+ is engaged by the proximal domain, with proper and specific contacts from Phe194 and Gln201 (Q motif) to themore » adenine nucleobase. The triphosphate moiety of AMPPNP•Mg2+ is not poised for catalysis in the open domain conformation. Guided by the Prp28•AMPPNP structure, and that of the Drosophila Vasa•AMPPNP•Mg2+•RNA complex, we targeted 20 positions in Prp28 for alanine scanning. ATP-site components Asp341 and Glu342 (motif II) and Arg527 and Arg530 (motif VI) and RNA-site constituent Arg476 (motif Va) are essential for Prp28 activity in vivo. Synthetic lethality of double-alanine mutations highlighted functionally redundant contacts in the ATP-binding (Phe194-Gln201, Gln201-Asp502) and RNA-binding (Arg264-Arg320) sites. As a result, overexpression of defective ATP-site mutants, but not defective RNA-site mutants, elicited severe dominant-negative growth defects.« less

  15. Germ-line mutational analysis of the TSC2 gene in 90 tuberous-sclerosis patients.

    PubMed Central

    Au, K S; Rodriguez, J A; Finch, J L; Volcik, K A; Roach, E S; Delgado, M R; Rodriguez, E; Northrup, H

    1998-01-01

    Ninety patients with tuberous-sclerosis complex (TSC) were tested for subtle mutations in the TSC2 gene, by means of single-strand conformational analysis (SSCA) of genomic DNA. Patients included 56 sporadic cases and 34 familial probands. For all patients, SSCA was performed for each of the 41 exons of the TSC2 gene. We identified 32 SSCA changes, 22 disease-causing mutations, and 10 polymorphic variants. Interestingly, we detected mutations at a much higher frequency in the sporadic cases (32%) than in the multiplex families (9%). Among the eight families for which linkage to the TSC2 region had been determined, only one mutation was found. Mutations were distributed equally across the gene; they included 5 deletions, 3 insertions, 10 missense mutations, 2 nonsense mutations, and 2 tandem duplications. We did not detect an increase in mutations either in the GTPase-activating protein (GAP)-related domains of TSC2 or in the activating domains that have been identified in rat tuberin. We did not detect any mutations in the exons (25 and 31) that are spliced out in the isoforms. There was no evidence for correspondence between variability of phenotype and type of mutation (missense versus early termination). Diagnostic testing will be difficult because of the genetic heterogeneity of TSC (which has at least two causative genes: TSC1 and TSC2), the large size of the TSC2 gene, and the variety of mutations. More than half of the mutations that we identified (missense, small in-frame deletion, and tandem duplication) are not amenable to the mutation-detection methods, such as protein-truncation testing, that are commonly employed for genes that encode proteins with tumor-suppressor function. PMID:9463313

  16. Mutational Analysis of Cell Types in TSC

    DTIC Science & Technology

    2008-01-01

    disability, and autism . TSC1/TSC2 gene mutations lead to developmental alterations in brain structure known as tubers in over 80% of TSC patients. Loss of...that is associated with epilepsy, cognitive disability, and autism . TSC1/TSC2 gene mutations lead to developmental alterations in brain structure...2000). Comorbid neuropsychological disorders such as autism , mental retardation (MR), pervasive developmental disorder, attention deficit disorder (ADD

  17. Mutation analysis in Turkish patients with hereditary fructose intolerance.

    PubMed

    Dursun, A; Kalkanoğlu, H S; Coşkun, T; Tokatli, A; Bittner, R; Koçak, N; Yüce, A; Ozalp, I; Boehme, H J

    2001-10-01

    Thirteen Turkish patients with hereditary fructose intolerance (HFI) were screened for the three common mutations, A149P, A174D and N334K, in the aldolase B gene that have been detected frequently in European population. We found that nine of the patients carry the A149P mutation in both alleles, which corresponds to a frequency of about 55%. Single-strand conformation analysis of all coding exons of the gene was also performed to detect unknown mutations in four patients not carrying the three common mutations. No aberrant migration patterns were observed in these patients.

  18. DMD mutation spectrum analysis in 613 Chinese patients with dystrophinopathy.

    PubMed

    Guo, Ruolan; Zhu, Guosheng; Zhu, Huimin; Ma, Ruiyu; Peng, Ying; Liang, Desheng; Wu, Lingqian

    2015-08-01

    Dystrophinopathy is a group of inherited diseases caused by mutations in the DMD gene. Within the dystrophinopathy spectrum, Duchenne and Becker muscular dystrophies are common X-linked recessive disorders that mainly feature striated muscle necrosis. We combined multiplex ligation-dependent probe amplification with Sanger sequencing to detect large deletions/duplications and point mutations in the DMD gene in 613 Chinese patients. A total of 571 (93.1%) patients were diagnosed, including 428 (69.8%) with large deletions/duplications and 143 (23.3%) with point mutations. Deletion/duplication breakpoints gathered mostly in introns 44-55. Reading frame rules could explain 88.6% of deletion mutations. We identified seventy novel point mutations that had not been previously reported. Spectrum expansion and genotype-phenotype analysis of DMD mutations on such a large sample size in Han Chinese population would provide new insights into the pathogenic mechanism underlying dystrophinopathies.

  19. Identification and functional analysis of novel FZD4 mutations in Han Chinese with familial exudative vitreoretinopathy.

    PubMed

    Fei, Ping; Zhu, Xiong; Jiang, Zhilin; Ma, Shi; Li, Jing; Zhang, Qi; Zhou, Yu; Xu, Yu; Tai, Zhengfu; Zhang, Lin; Huang, Lulin; Yang, Zhenglin; Zhao, Peiquan; Zhu, Xianjun

    2015-11-04

    Familial exudative vitreoretinopathy (FEVR) is a hereditary eye disease characterized by defects in the development of retinal vessels. However, known genetic mutations can only explain approximately 50% of FEVR patients. To assess the mutation frequency of Frizzled 4 (FZD4) in Chinese patients, we analysed patients with FEVR from 61 families from China to identify mutations in FZD4 and to study the effects of identified mutations on FZD4 function. All coding exons and adjacent intronic regions of FZD4 were amplified by polymerase chain reaction and subjected to Sanger sequencing analysis. Three mutations in the FZD4 gene were identified in these families. Of these, two were novel mutations: p.E134* and p.T503fs. Both mutations involve highly conserved residues and were not present in 800 normal individuals. Each of these two novel FZD4 mutations was introduced into wild-type FZD4 cDNA by site-directed mutagenesis. Wild-type and mutant FZD4 DNAs were introduced into HEK293 cells to analyse the function of FZD4 in Norrin-dependent activation of the Norrin/β-catenin pathway using luciferase reporter assays. Both the p.E134* and p.T503fs mutants failed to induce luciferase reporter activity in response to Norrin. Our study identified two novel FZD4 mutations in Chinese patients with FEVR.

  20. PAH Mutation Analysis Consortium Database: 1997. Prototype for relational locus-specific mutation databases.

    PubMed Central

    Nowacki, P M; Byck, S; Prevost, L; Scriver, C R

    1998-01-01

    PAHdb (http://www.mcgill.ca/pahdb ) is a curated relational database (Fig. 1) of nucleotide variation in the human PAH cDNA (GenBank U49897). Among 328 different mutations by state (Fig. 2) the majority are rare mutations causing hyperphenylalaninemia (HPA) (OMIM 261600), the remainder are polymorphic variants without apparent effect on phenotype. PAHdb modules contain mutations, polymorphic haplotypes, genotype-phenotype correlations, expression analysis, sources of information and the reference sequence; the database also contains pages of clinical information and data on three ENU mouse orthologues of human HPA. Only six different mutations account for 60% of human HPA chromosomes worldwide, mutations stratify by population and geographic region, and the Oriental and Caucasian mutation sets are different (Fig. 3). PAHdb provides curated electronic publication and one third of its incoming reports are direct submissions. Each different mutation receives a systematic (nucleotide) name and a unique identifier (UID). Data are accessed both by a Newsletter and a search engine on the website; integrity of the database is ensured by keeping the curated template offline. There have been >6500 online interrogations of the website. PMID:9399840

  1. Use of human tissue to assess the oncogenic activity of melanoma-associated mutations.

    PubMed

    Chudnovsky, Yakov; Adams, Amy E; Robbins, Paul B; Lin, Qun; Khavari, Paul A

    2005-07-01

    Multiple genetic alterations occur in melanoma, a lethal skin malignancy of increasing incidence. These include mutations that activate Ras and two of its effector cascades, Raf and phosphoinositide 3-kinase (PI3K). Induction of Ras and Raf can be caused by active N-Ras and B-Raf mutants as well as by gene amplification. Activation of PI3K pathway components occurs by PTEN loss and by AKT3 amplification. Melanomas also commonly show impairment of the p16(INK4A)-CDK4-Rb and ARF-HDM2-p53 tumor suppressor pathways. CDKN2A mutations can produce p16(INK4A) and ARF protein loss. Rb bypass can also occur through activating CDK4 mutations as well as by CDK4 amplification. In addition to ARF deletion, p53 pathway disruption can result from dominant negative TP53 mutations. TERT amplification also occurs in melanoma. The extent to which these mutations can induce human melanocytic neoplasia is unknown. Here we characterize pathways sufficient to generate human melanocytic neoplasia and show that genetically altered human tissue facilitates functional analysis of mutations observed in human tumors.

  2. Molecular analysis of mucopolysaccharidosis IVA: Common mutations and racial difference

    SciTech Connect

    Tomatsu, S.; Hori, T.; Nakashima, Y.

    1994-09-01

    Mucopolysaccharidosis IVA (MPS IVA) is an autosomal recessive disorder caused by a deficiency in N-acetylgalactosamine -6-sulfate sulfatase (GALNS). Studies on the molecular basis of MPS IVA have been facilitated following cloning of the full-length cDNA and genomic DNA. In this study we detected mutations from 20 Caucasian and 19 Japanese MPS IVA patients using SSCP system and compared mutations of Caucasian origin with those of Japanese origin. The results showed the presence of 16 various mutations (3 small, deletions, 2 nonsense and 11 missense mutations) for Caucasian patients and 15 (1 deletion, 1 large alteration and 13 missense mutations) for Japanese. Moreover, two common mutations existed; one is double gene deletion characteristic for Japanese (6 alleles; 15%) and the other is a point mutation (1113F A{yields}T transition) characteristic for Caucasian (9 alleles; 22.5%). And the clear genotype/phenotype relationship among 1342delCA, IVS1(-2), P151S, Q148X, R386C, I113F, Q473X, W220G, P151L, A291T, R90W, and P77R, for a severe type, G96B N204K and V138A for a milder type, was observed. Only R386 mutation was seen in both of the populations. Further, the precise DNA analysis for double gene deletion of a common double gene deletion has been performed by defining the breakpoints and the results showed that one deletion was caused by homologous recombination due to Alu repetitive sequences and the other was due to nonhomologous recombination of short direct repeat. Haplotype analysis for six alleles with double deletion were different, indicating the different origin of this mutation or the frequent recombination events before a mutational event. Thus the mutations in GALNS gene are very heterogeneous and the racial difference is characteristic.

  3. Afatinib versus cisplatin plus pemetrexed in Japanese patients with advanced non-small cell lung cancer harboring activating EGFR mutations: Subgroup analysis of LUX-Lung 3

    PubMed Central

    Kato, Terufumi; Yoshioka, Hiroshige; Okamoto, Isamu; Yokoyama, Akira; Hida, Toyoaki; Seto, Takashi; Kiura, Katsuyuki; Massey, Dan; Seki, Yoko; Yamamoto, Nobuyuki

    2015-01-01

    In LUX-Lung 3, afatinib significantly improved progression-free survival (PFS) versus cisplatin/pemetrexed in EGFR mutation-positive lung adenocarcinoma patients and overall survival (OS) in Del19 patients. Preplanned analyses in Japanese patients from LUX-Lung 3 were performed. Patients were randomized 2:1 to afatinib or cisplatin/pemetrexed, stratified by mutation type (Del19/L858R/Other). Primary endpoint was PFS (independent review). Secondary endpoints included OS, objective response, and safety. Median PFS (data cut-off: February 2012) for afatinib versus cisplatin/pemetrexed was 13.8 vs 6.9 months (hazard ratio [HR], 0.38; 95% confidence interval [CI], 0.20–0.70; P = 0.0014) in all Japanese patients (N = 83), with more pronounced improvements in those with common mutations (Del19/L858R; HR, 0.28; 95% CI, 0.15–0.52; P < 0.0001) and Del19 mutations (HR, 0.16; 95% CI, 0.06–0.39; P < 0.0001). PFS was also improved in L858R patients (HR, 0.50; 95% CI, 0.20–1.25; P = 0.1309). Median OS (data cut-off: November 2013) with afatinib versus cisplatin/pemetrexed was 46.9 vs 35.8 months (HR, 0.75; 95% CI, 0.40–1.43; P = 0.3791) in all Japanese patients, with greater benefit in patients with common mutations (HR, 0.57; 95% CI, 0.29–1.12; P = 0.0966) and Del19 mutations (HR, 0.34; 95% CI, 0.13–0.87; P = 0.0181); OS was not significantly different in L858R patients (HR, 1.13; 95% CI, 0.40–3.21; P = 0.8212). Following study treatment discontinuation, most patients (93.5%) received subsequent anticancer therapy. The most common treatment-related adverse events were diarrhea, rash/acne, nail effects and stomatitis with afatinib and nausea, decreased appetite, neutropenia, and leukopenia with cisplatin/pemetrexed. Afatinib significantly improved PFS versus cisplatin/pemetrexed in Japanese EGFR mutation-positive lung adenocarcinoma patients and OS in Del19 but not L858R patients (www.clinicaltrials.gov; NCT00949650). PMID:26094656

  4. Activation of Antibiotic Production in Bacillus spp. by Cumulative Drug Resistance Mutations.

    PubMed

    Tojo, Shigeo; Tanaka, Yukinori; Ochi, Kozo

    2015-12-01

    Bacillus subtilis strains produce a wide range of antibiotics, including ribosomal and nonribosomal peptide antibiotics, as well as bacilysocin and neotrehalosadiamine. Mutations in B. subtilis strain 168 that conferred resistance to drugs such as streptomycin and rifampin resulted in overproduction of the dipeptide antibiotic bacilysin. Cumulative drug resistance mutations, such as mutations in the mthA and rpsL genes, which confer low- and high-level resistance, respectively, to streptomycin, and mutations in rpoB, which confer resistance to rifampin, resulted in cells that overproduced bacilysin. Transcriptional analysis demonstrated that the enhanced transcription of biosynthesis genes was responsible for the overproduction of bacilysin. This approach was effective also in activating the cryptic genes of Bacillus amyloliquefaciens, leading to actual production of antibiotic(s).

  5. Activation of Antibiotic Production in Bacillus spp. by Cumulative Drug Resistance Mutations

    PubMed Central

    Tojo, Shigeo; Tanaka, Yukinori

    2015-01-01

    Bacillus subtilis strains produce a wide range of antibiotics, including ribosomal and nonribosomal peptide antibiotics, as well as bacilysocin and neotrehalosadiamine. Mutations in B. subtilis strain 168 that conferred resistance to drugs such as streptomycin and rifampin resulted in overproduction of the dipeptide antibiotic bacilysin. Cumulative drug resistance mutations, such as mutations in the mthA and rpsL genes, which confer low- and high-level resistance, respectively, to streptomycin, and mutations in rpoB, which confer resistance to rifampin, resulted in cells that overproduced bacilysin. Transcriptional analysis demonstrated that the enhanced transcription of biosynthesis genes was responsible for the overproduction of bacilysin. This approach was effective also in activating the cryptic genes of Bacillus amyloliquefaciens, leading to actual production of antibiotic(s). PMID:26369962

  6. The prognostic IDH1( R132 ) mutation is associated with reduced NADP+-dependent IDH activity in glioblastoma.

    PubMed

    Bleeker, Fonnet E; Atai, Nadia A; Lamba, Simona; Jonker, Ard; Rijkeboer, Denise; Bosch, Klazien S; Tigchelaar, Wikky; Troost, Dirk; Vandertop, W Peter; Bardelli, Alberto; Van Noorden, Cornelis J F

    2010-04-01

    Somatic mutations in the isocitrate dehydrogenase 1 gene (IDH1) occur at high frequency in gliomas and seem to be a prognostic factor for survival in glioblastoma patients. In our set of 98 glioblastoma patients, IDH1 ( R132 ) mutations were associated with improved survival of 1 year on average, after correcting for age and other variables with Cox proportional hazards models. Patients with IDH1 mutations were on average 17 years younger than patients without mutation. Mutated IDH1 has a gain of function to produce 2-hydroxyglutarate by NADPH-dependent reduction of alpha-ketoglutarate, but it is unknown whether NADPH production in gliomas is affected by IDH1 mutations. We assessed the effect of IDH1 (R132 ) mutations on IDH-mediated NADPH production in glioblastomas in situ. Metabolic mapping and image analysis was applied to 51 glioblastoma samples of which 16 carried an IDH1 (R132 ) mutation. NADP+-dependent IDH activity was determined in comparison with activity of NAD+-dependent IDH and all other NADPH-producing dehydrogenases, glucose-6-phosphate dehydrogenase, 6-phosphogluconate dehydrogenase, malate dehydrogenase, and hexose-6-phosphate dehydrogenase. The occurrence of IDH1 mutations correlated with approx. twofold diminished NADP+-dependent IDH activity, whereas activity of NAD+-dependent IDH and the other NADP+-dependent dehydrogenases was not affected in situ in glioblastoma. The total NADPH production capacity in glioblastoma was provided for 65% by IDH activity and the occurrence of IDH1 (R132 ) mutation reduced this capacity by 38%. It is concluded that NADPH production is hampered in glioblastoma with IDH1 (R132 ) mutation. Moreover, mutated IDH1 consumes rather than produces NADPH, thus likely lowering NADPH levels even further. The low NADPH levels may sensitize glioblastoma to irradiation and chemotherapy, thus explaining the prolonged survival of patients with mutated glioblastoma.

  7. Mutational Spectrum Analysis of Neurodegenerative Diseases and Its Pathogenic Implication.

    PubMed

    Shen, Liang; Ji, Hong-Fang

    2015-10-14

    One of the most conspicuous features of neurodegenerative diseases (NDs) is the occurrence of dramatic conformation change of individual proteins. We performed a mutational spectrum analysis of disease-causing missense mutations in seven types of NDs at nucleotide and amino acid levels, and compared the results with those of non-NDs. The main findings included: (i) The higher mutation ratio of G:C→T:A transversion to G:C→A:T transition was observed in NDs than in non-NDs, interpreting the excessive guanine-specific oxidative DNA damage in NDs; (ii) glycine and proline had highest mutability in NDs than in non-NDs, which favor the protein conformation change in NDs; (iii) surprisingly low mutation frequency of arginine was observed in NDs. These findings help to understand how mutations may cause NDs.

  8. The Thrombopoietin Receptor: Structural Basis of Traffic and Activation by Ligand, Mutations, Agonists, and Mutated Calreticulin

    PubMed Central

    Varghese, Leila N.; Defour, Jean-Philippe; Pecquet, Christian; Constantinescu, Stefan N.

    2017-01-01

    A well-functioning hematopoietic system requires a certain robustness and flexibility to maintain appropriate quantities of functional mature blood cells, such as red blood cells and platelets. This review focuses on the cytokine receptor that plays a significant role in thrombopoiesis: the receptor for thrombopoietin (TPO-R; also known as MPL). Here, we survey the work to date to understand how this receptor functions at a molecular level throughout its lifecycle, from traffic to the cell surface, dimerization and binding cognate cytokine via its extracellular domain, through to its subsequent activation of associated Janus kinases and initiation of downstream signaling pathways, as well as the regulation of these processes. Atomic level resolution structures of TPO-R have remained elusive. The identification of disease-causing mutations in the receptor has, however, offered some insight into structure and function relationships, as has artificial means of receptor activation, through TPO mimetics, transmembrane-targeting receptor agonists, and engineering in dimerization domains. More recently, a novel activation mechanism was identified whereby mutated forms of calreticulin form complexes with TPO-R via its extracellular N-glycosylated domain. Such complexes traffic pathologically in the cell and persistently activate JAK2, downstream signal transducers and activators of transcription (STATs), and other pathways. This pathologic TPO-R activation is associated with a large fraction of human myeloproliferative neoplasms.

  9. Promoter-dependent activity on androgen receptor N-terminal domain mutations in androgen insensitivity syndrome.

    PubMed

    Tadokoro-Cuccaro, Rieko; Davies, John; Mongan, Nigel P; Bunch, Trevor; Brown, Rosalind S; Audi, Laura; Watt, Kate; McEwan, Iain J; Hughes, Ieuan A

    2014-01-01

    Androgen receptor (AR) mutations are associated with androgen insensitivity syndrome (AIS). Missense mutations identified in the AR-N-terminal domain (AR-NTD) are rare, and clinical phenotypes are typically mild. We investigated 7 missense mutations and 2 insertion/deletions located in the AR-NTD. This study aimed to elucidate the pathogenic role of AR-NTD mutants in AIS and to use this knowledge to further define AR-NTD function. AR-NTD mutations (Q120E, A159T, G216R, N235K, G248V, L272F, and P380R) were introduced into AR-expression plasmids. Stably expressing cell lines were established for del57L and ins58L. Transactivation was measured using luciferase reporter constructs under the control of GRE and Pem promoters. Intrinsic fluorescence spectroscopy and partial proteolysis studies were performed for mutations which showed reduced activities by using a purified AR-AF1 protein. Pem-luciferase reporter activation was reduced for A159T, N235K, and G248V but not the GRE-luciferase reporter. Protein structure analysis detected no significant change in the AR-AF1 region for these mutations. Reduced cellular expression and transactivation activity were observed for ins58L. The mutations Q120E, G216R, L272F, P380R, and del57L showed small or no detectable changes in function. Thus, clinical and experimental analyses have identified novel AR-signalling defects associated with mutations in the structurally disordered AR-NTD domain in patients with AIS.

  10. HRAS mutation analysis in Costello syndrome: genotype and phenotype correlation.

    PubMed

    Gripp, Karen W; Lin, Angela E; Stabley, Deborah L; Nicholson, Linda; Scott, Charles I; Doyle, Daniel; Aoki, Yoko; Matsubara, Yoichi; Zackai, Elaine H; Lapunzina, Pablo; Gonzalez-Meneses, Antonio; Holbrook, Jennifer; Agresta, Cynthia A; Gonzalez, Iris L; Sol-Church, Katia

    2006-01-01

    Costello syndrome is a rare condition comprising mental retardation, distinctive facial appearance, cardiovascular abnormalities (typically pulmonic stenosis, hypertrophic cardiomyopathy, and/or atrial tachycardia), tumor predisposition, and skin and musculoskeletal abnormalities. Recently mutations in HRAS were identified in 12 Japanese and Italian patients with clinical information available on 7 of the Japanese patients. To expand the molecular delineation of Costello syndrome, we performed mutation analysis in 34 North American and 6 European (total 40) patients with Costello syndrome, and detected missense mutations in HRAS in 33 (82.5%) patients. All mutations affected either codon 12 or 13 of the protein product, with G12S occurring in 30 (90.9%) patients of the mutation-positive cases. In two patients, we found a mutation resulting in an alanine substitution in position 12 (G12A), and in one patient, we detected a novel mutation (G13C). Five different HRAS mutations have now been reported in Costello syndrome, however genotype-phenotype correlation remains incomplete.

  11. Polymorphism analysis and new JAG1 gene mutations of Alagille syndrome in Mexican population☆

    PubMed Central

    Vázquez-Martínez, Edgar Ricardo; Varela-Fascinetto, Gustavo; García-Delgado, Constanza; Rodríguez-Espino, Benjamín Antonio; Sánchez-Boiso, Adriana; Valencia-Mayoral, Pedro; Heller-Rosseau, Solange; Pelcastre-Luna, Erika Lisselly; Zenteno, Juan C.; Cerbón, Marco; Morán-Barroso, Verónica Fabiola

    2013-01-01

    Alagille syndrome is a multisystem disorder with an autosomic dominant pattern of inheritance that affects the liver, heart, eyes, kidneys, skeletal system and presents characteristic facial features. Mutations of the JAG1 gene have been identified in 20–89% of the patients with Alagille syndrome, this gene encodes for a ligand that activates the Notch signaling pathway. In the present study we analyzed 9 Mexican patients with Alagille syndrome who presented the clinical criteria for the classical presentation of the disease. By using the denaturing high performance liquid chromatography mutation analysis we were able to identify different mutations in 7 of the patients (77.77%), importantly, we found 5 novel mutations in JAG1 gene. The allelic frequency distribution of 13 polymorphisms in Mexican population is also reported. The overall results demonstrated an expanding mutational spectrum of JAG1 gene in the Mexican population. PMID:25606387

  12. Recurrent activating ACVR1 mutations in diffuse intrinsic pontine glioma.

    PubMed

    Taylor, Kathryn R; Mackay, Alan; Truffaux, Nathalène; Butterfield, Yaron S; Morozova, Olena; Philippe, Cathy; Castel, David; Grasso, Catherine S; Vinci, Maria; Carvalho, Diana; Carcaboso, Angel M; de Torres, Carmen; Cruz, Ofelia; Mora, Jaume; Entz-Werle, Natacha; Ingram, Wendy J; Monje, Michelle; Hargrave, Darren; Bullock, Alex N; Puget, Stéphanie; Yip, Stephen; Jones, Chris; Grill, Jacques

    2014-05-01

    Diffuse intrinsic pontine gliomas (DIPGs) are highly infiltrative malignant glial neoplasms of the ventral pons that, due to their location within the brain, are unsuitable for surgical resection and consequently have a universally dismal clinical outcome. The median survival time is 9-12 months, with neither chemotherapeutic nor targeted agents showing substantial survival benefit in clinical trials in children with these tumors. We report the identification of recurrent activating mutations in the ACVR1 gene, which encodes a type I activin receptor serine/threonine kinase, in 21% of DIPG samples. Strikingly, these somatic mutations (encoding p.Arg206His, p.Arg258Gly, p.Gly328Glu, p.Gly328Val, p.Gly328Trp and p.Gly356Asp substitutions) have not been reported previously in cancer but are identical to mutations found in the germ line of individuals with the congenital childhood developmental disorder fibrodysplasia ossificans progressiva (FOP) and have been shown to constitutively activate the BMP-TGF-β signaling pathway. These mutations represent new targets for therapeutic intervention in this otherwise incurable disease.

  13. Genetic organization of the hrp genes cluster in Erwinia pyrifoliae and characterization of HR active domains in HrpNEp protein by mutational analysis.

    PubMed

    Shrestha, Rosemary; Park, Duck Hwan; Cho, Jun Mo; Cho, Saeyoull; Wilson, Calum; Hwang, Ingyu; Hur, Jang Hyun; Lim, Chun Keun

    2008-02-29

    amino acids insertion region. But, substitution of amino acids at L103R, L106K and L110R showed reduction in HR activity on tobacco suggesting their importance in activation of HR faster in the HrpN(Ep) although it requires further detailed analysis.

  14. Polygenic mutation in Droosophila melanogaster: Genetic analysis of selection lines

    SciTech Connect

    Fry, J.D.; deRonde, K.A.; Mackay, T.F.C.

    1995-03-01

    The authors have conducted genetic analyses of 12 long-term selection lines of Drosophila melanogaster derived from a highly inbred base population, containing new mutations affecting abdominal and sternopleural bristle number. Biometric analysis of the number of effective factors differentiating the selected lines from the base inbred indicated that with the exception of the three lines selected for increased number of abdominal bristles, three or more mutations contributed to the responses of the selection lines. Analysis of the chromosomal distribution of effects revealed that mutations affecting abdominal bristle number occurred on all three major chromosomes. In addition, Y-linked mutations with effects ranging from one to three bristles occurred in all three lines selected for decreased number of abdominal bristles, as well as in one line selected for increased abdominal bristle number. Mutations affecting sternopleural bristle number were mainly on the X and third chromosomes. One abdominal and one sternopleural selection line showed evidence of a segregating lethal with large effects on bristle number. As an indirect test for allelism of mutations occurring in different selection lines, the three lines selected in the same direction for the same trait were crossed in all possible combinations, and selection continued from the F{sub 2} hybrides. Responses of the hybrid lines usually did not exceed those of the most extreme parental lines, indicating that the responses of the parental lines may have been partly due to mutations at the same loci, although other interpretations are possible.

  15. The roles of active-site residues in the catalytic mechanism of trans-3-chloroacrylic acid dehalogenase: a kinetic, NMR, and mutational analysis.

    PubMed

    Azurmendi, Hugo F; Wang, Susan C; Massiah, Michael A; Poelarends, Gerrit J; Whitman, Christian P; Mildvan, Albert S

    2004-04-13

    trans-3-Chloroacrylic acid dehalogenase (CaaD) converts trans-3-chloroacrylic acid to malonate semialdehyde by the addition of H(2)O to the C-2, C-3 double bond, followed by the loss of HCl from the C-3 position. Sequence similarity between CaaD, an (alphabeta)(3) heterohexamer (molecular weight 47,547), and 4-oxalocrotonate tautomerase (4-OT), an (alpha)(6) homohexamer, distinguishes CaaD from those hydrolytic dehalogenases that form alkyl-enzyme intermediates. The recently solved X-ray structure of CaaD demonstrates that betaPro-1 (i.e., Pro-1 of the beta subunit), alphaArg-8, alphaArg-11, and alphaGlu-52 are at or near the active site, and the >or=10(3.4)-fold decreases in k(cat) on mutating these residues implicate them as mechanistically important. The effect of pH on k(cat)/K(m) indicates a catalytic base with a pK(a) of 7.6 and an acid with a pK(a) of 9.2. NMR titration of (15)N-labeled wild-type CaaD yielded pK(a) values of 9.3 and 11.1 for the N-terminal prolines, while the fully active but unstable alphaP1A mutant showed a pK(a) of 9.7 (for the betaPro-1), implicating betaPro-1 as the acid catalyst, which may protonate C-2 of the substrate. These results provide the first evidence for an amino-terminal proline, conserved in all known tautomerase superfamily members, functioning as a general acid, rather than as a general base as in 4-OT. Hence, a reasonable candidate for the general base in CaaD is the active site residue alphaGlu-52. CaaD has 10 arginine residues, six in the alpha-subunit (Arg-8, Arg-11, Arg-17, Arg-25, Arg-35, and Arg-43), and four in the beta-subunit (Arg-15, Arg-21, Arg-55, and Arg-65). (1)H-(15)N-heteronuclear single quantum coherence (HSQC) spectra of CaaD showed seven to nine Arg-NepsilonH resonances (denoted R(A) to R(I)) depending on the protein concentration and pH. One of these signals (R(D)) disappeared in the spectrum of the largely inactive alphaR11A mutant (deltaH = 7.11 ppm, deltaN = 89.5 ppm), and another one (R

  16. Mutational and Functional Analysis of the Tumor-Suppressor PTPRD in Human Melanoma

    PubMed Central

    Walia, Vijay; Prickett, Todd D.; Kim, Jung-Sik; Gartner, Jared J.; Lin, Jimmy C.; Zhou, Ming; Rosenberg, Steven A.; Elble, Randolph C.; Solomon, David A.; Waldman, Todd; Samuels, Yardena

    2015-01-01

    Protein tyrosine phosphatases (PTPs) tightly regulate tyrosine phosphorylation essential for cell growth, adhesion, migration, and survival. We performed a mutational analysis of the PTP gene family in cutaneous metastatic melanoma and identified 23 phosphatase genes harboring somatic mutations. Among these, receptor-type tyrosine–protein phosphatase delta (PTPRD) was one of the most highly mutated genes, harboring 17 somatic mutations in 79 samples, a prevalence of 21.5%. Functional evaluation of six PTPRD mutations revealed enhanced anchorage-dependent and anchorage-independent growth. Interestingly, melanoma cells expressing mutant PTPRD were significantly more migratory than cells expressing wild-type PTPRD or vector alone, indicating a novel gain-of-function associated with mutant PTPRD. To understand the molecular mechanisms of PTPRD mutations, we searched for its binding partners by converting the active PTPRD enzyme into a “substrate trap” form. Using mass spectrometry and coimmunoprecipitation, we report desmoplakin, a desmosomal protein that is implicated in cell–cell adhesion, as a novel PTPRD substrate. Further analysis showed reduced phosphatase activity of mutant PTPRD against desmoplakin. Our findings identify an essential signaling cascade that is disrupted in melanoma. Moreover, because PTPRD is also mutated in glioblastomas and adenocarcinoma of the colon and lung, our data might be applicable to a large number of human cancers. PMID:25113440

  17. Bioinformatic Analysis of GJB2 Gene Missense Mutations.

    PubMed

    Yilmaz, Akin

    2015-04-01

    Gap junction beta 2 (GJB2) gene is the most commonly mutated connexin gene in patients with autosomal recessive and dominant hearing loss. According to Ensembl (release 74) database, 1347 sequence variations are reported in the GJB2 gene and about 13.5% of them are categorized as missense SNPs or nonsynonymous variant. Because of the high incidence of GJB2 mutations in hearing loss patients, revealing the molecular effect of GJB2 mutations on protein structure may also provide clear point of view regarding the molecular etiology of deafness. Hence, the aim of this study is to analyze structural and functional consequences of all known GJB2 missense variations to the Cx26 protein by applying multiple bioinformatics methods. Two-hundred and eleven nonsynonymous variants were collected from Ensembl release 74, Leiden Open Variation Database (LOVD) and The Human Gene Mutation Database (HGMD). A number of bioinformatic tools were utilized for predicting the effect of GJB2 missense mutations at the sequence, structural, and functional levels. Some of the mutations were found to locate highly conserved regions and have structural and functional properties. Moreover, GJB2 mutations were also found to affect Cx26 protein at the molecular level via loss or gain of disorder, catalytic site, and post-translational modifications, including methylation, glycosylation, and ubiquitination. Findings, presented here, demonstrated the application of bioinformatic algorithms to predict the effects of mutations causing hearing impairment. I expect, this type of analysis will serve as a start point for future experimental evaluation of the GJB2 gene mutations and it will also be helpful in evaluating other deafness-related gene mutations.

  18. Predictive and Prognostic Analysis of PIK3CA Mutation in Stage III Colon Cancer Intergroup Trial

    PubMed Central

    Liao, Xiaoyun; Imamura, Yu; Yamauchi, Mai; McCleary, Nadine J.; Ng, Kimmie; Niedzwiecki, Donna; Saltz, Leonard B.; Mayer, Robert J.; Whittom, Renaud; Hantel, Alexander; Benson, Al B.; Mowat, Rex B.; Spiegelman, Donna; Goldberg, Richard M.; Bertagnolli, Monica M.; Meyerhardt, Jeffrey A.; Fuchs, Charles S.

    2013-01-01

    Background Somatic mutations in PIK3CA (phosphatidylinositol-4,5-bisphosphonate 3-kinase [PI3K], catalytic subunit alpha gene) activate the PI3K-AKT signaling pathway and contribute to pathogenesis of various malignancies, including colorectal cancer. Methods We examined associations of PIK3CA oncogene mutation with relapse, survival, and treatment efficacy in 627 stage III colon carcinoma case subjects within a randomized adjuvant chemotherapy trial (5-fluorouracil and leucovorin [FU/LV] vs irinotecan [CPT11], fluorouracil and leucovorin [IFL]; Cancer and Leukemia Group B 89803 [Alliance]). We detected PIK3CA mutation in exons 9 and 20 by polymerase chain reaction and pyrosequencing. Cox proportional hazards model was used to assess prognostic and predictive role of PIK3CA mutation, adjusting for clinical features and status of routine standard molecular pathology features, including KRAS and BRAF mutations and microsatellite instability (mismatch repair deficiency). All statistical tests were two-sided. Results Compared with PIK3CA wild-type cases, overall status of PIK3CA mutation positivity or the presence of PIK3CA mutation in either exon 9 or 20 alone was not statistically significantly associated with recurrence-free, disease-free, or overall survival (log-rank P > .70; P > .40 in multivariable regression models). There was no statistically significant interaction between PIK3CA and KRAS (or BRAF) mutation status in survival analysis (P interaction > .18). PIK3CA mutation status did not appear to predict better or worse response to IFL therapy compared with FU/LV therapy (P interaction > .16). Conclusions Overall tumor PIK3CA mutation status is not associated with stage III colon cancer prognosis. PIK3CA mutation does not appear to serve as a predictive tumor molecular biomarker for response to irinotecan-based adjuvant chemotherapy. PMID:24231454

  19. Mosaic Activating Mutations in FGFR1 Cause Encephalocraniocutaneous Lipomatosis

    PubMed Central

    Bennett, James T.; Tan, Tiong Yang; Alcantara, Diana; Tétrault, Martine; Timms, Andrew E.; Jensen, Dana; Collins, Sarah; Nowaczyk, Malgorzata J.M.; Lindhurst, Marjorie J.; Christensen, Katherine M.; Braddock, Stephen R.; Brandling-Bennett, Heather; Hennekam, Raoul C.M.; Chung, Brian; Lehman, Anna; Su, John; Ng, SuYuen; Amor, David J.; Majewski, Jacek; Biesecker, Les G.; Boycott, Kym M.; Dobyns, William B.; O’Driscoll, Mark; Moog, Ute; McDonell, Laura M.

    2016-01-01

    Encephalocraniocutaneous lipomatosis (ECCL) is a sporadic condition characterized by ocular, cutaneous, and central nervous system anomalies. Key clinical features include a well-demarcated hairless fatty nevus on the scalp, benign ocular tumors, and central nervous system lipomas. Seizures, spasticity, and intellectual disability can be present, although affected individuals without seizures and with normal intellect have also been reported. Given the patchy and asymmetric nature of the malformations, ECCL has been hypothesized to be due to a post-zygotic, mosaic mutation. Despite phenotypic overlap with several other disorders associated with mutations in the RAS-MAPK and PI3K-AKT pathways, the molecular etiology of ECCL remains unknown. Using exome sequencing of DNA from multiple affected tissues from five unrelated individuals with ECCL, we identified two mosaic mutations, c.1638C>A (p.Asn546Lys) and c.1966A>G (p.Lys656Glu) within the tyrosine kinase domain of FGFR1, in two affected individuals each. These two residues are the most commonly mutated residues in FGFR1 in human cancers and are associated primarily with CNS tumors. Targeted resequencing of FGFR1 in multiple tissues from an independent cohort of individuals with ECCL identified one additional individual with a c.1638C>A (p.Asn546Lys) mutation in FGFR1. Functional studies of ECCL fibroblast cell lines show increased levels of phosphorylated FGFRs and phosphorylated FRS2, a direct substrate of FGFR1, as well as constitutive activation of RAS-MAPK signaling. In addition to identifying the molecular etiology of ECCL, our results support the emerging overlap between mosaic developmental disorders and tumorigenesis. PMID:26942290

  20. Molecular analysis of mutations in the human HPRT gene.

    PubMed

    Keohavong, Phouthone; Xi, Liqiang; Grant, Stephen G

    2014-01-01

    The HPRT assay uses incorporation of toxic nucleotide analogues to select for cells lacking the purine scavenger enzyme hypoxanthine-guanine phosphoribosyl transferase. A major advantage of this assay is the ability to isolate mutant cells and determine the molecular basis for their functional deficiency. Many types of analyses have been performed at this locus: the current protocol involves generation of a cDNA and multiplex PCR of each exon, including the intron/exon junctions, followed by direct sequencing of the products. This analysis detects point mutations, small deletions and insertions within the gene, mutations affecting RNA splicing, and products of illegitimate V(D)J recombination within the gene. Establishment of and comparisons with mutational spectra hold the promise of identifying exposures to mutation-inducing genotoxicants from their distinctive pattern of gene-specific DNA damage at this easily analyzed reporter gene.

  1. Analysis of 16 cystic fibrosis mutations in Mexican patients

    SciTech Connect

    Villalobos-Torres, C.; Rojas-Martinez, A.; Barrera-Saldana, H.A.

    1997-04-14

    We carried out molecular analysis of 80 chromosomes from 40 unrelated Mexican patients with a diagnosis of cystic fibrosis. The study was performed in two PCR steps: a preliminary one to identify mutation AF508, the most frequent cause of cystic fibrosis worldwide, and the second a reverse dot-blot with allele-specific oligonucleotide probes to detect 15 additional common mutations in the Caucasian population. A frequency of 45% for AF508 was found, making it the most common in our sample of Mexican patients. Another five mutations (G542X, 3849 + 10 kb C{r_arrow}T, N1303K, S549N, and 621 + 1 G{r_arrow}T) were detected, and these accounted for 11.25%. The remaining mutations (43.75%) were undetectable with the methodology used. 20 refs., 2 tabs.

  2. Three faces of recombination activating gene 1 (RAG1) mutations.

    PubMed

    Patiroglu, Turkan; Akar, Himmet Haluk; Van Der Burg, Mirjam

    2015-12-01

    Severe combined immune deficiency (SCID) is a group of genetic disorder associated with development of T- and/or B-lymphocytes. Recombination-activating genes (RAG1/2) play a critical role on VDJ recombination process that leads to the production of a broad T-cell receptor (TCR) and B-cell receptor (BCR) repertoire in the development of T and B cells. RAG1/2 genes mutations result in various forms of primary immunodeficiency, ranging from classic SCID to Omenn syndrome (OS) to atypical SCID with such as granuloma formation and autoimmunity. Herein, we reported 4 patients with RAG1 deficiency: classic SCID was seen in two patients who presented with recurrent pneumonia and chronic diarrhoea, and failure to thrive. OS was observed in one patient who presented with chronic diarrhoea, skin rash, recurrent lower respiratory infections, and atypical SCID was seen in one patient who presented with Pyoderma gangrenosum (PG) and had novel RAG1 mutation.

  3. High-Resolution Melt Curve Analysis in Cancer Mutation Screen.

    PubMed

    Mehrotra, Meenakshi; Patel, Keyur P

    2016-01-01

    High-resolution melt (HRM) curve analysis is a PCR-based assay that identifies sequence alterations based on subtle variations in the melting curves of mutated versus wild-type DNA sequences. HRM analysis is a high-throughput, sensitive, and efficient alternative to Sanger sequencing and is used to assess for mutations in clinically important genes involved in cancer diagnosis. The technique involves PCR amplification of a target sequence in the presence of a fluorescent double-stranded DNA (dsDNA) binding dye, melting of the fluorescent amplicons, and subsequent interpretation of melt curve profiles.

  4. MMAPPR: Mutation Mapping Analysis Pipeline for Pooled RNA-seq

    PubMed Central

    Hill, Jonathon T.; Demarest, Bradley L.; Bisgrove, Brent W.; Gorsi, Bushra; Su, Yi-Chu; Yost, H. Joseph

    2013-01-01

    Forward genetic screens in model organisms are vital for identifying novel genes essential for developmental or disease processes. One drawback of these screens is the labor-intensive and sometimes inconclusive process of mapping the causative mutation. To leverage high-throughput techniques to improve this mapping process, we have developed a Mutation Mapping Analysis Pipeline for Pooled RNA-seq (MMAPPR) that works without parental strain information or requiring a preexisting SNP map of the organism, and adapts to differential recombination frequencies across the genome. MMAPPR accommodates the considerable amount of noise in RNA-seq data sets, calculates allelic frequency by Euclidean distance followed by Loess regression analysis, identifies the region where the mutation lies, and generates a list of putative coding region mutations in the linked genomic segment. MMAPPR can exploit RNA-seq data sets from isolated tissues or whole organisms that are used for gene expression and transcriptome analysis in novel mutants. We tested MMAPPR on two known mutant lines in zebrafish, nkx2.5 and tbx1, and used it to map two novel ENU-induced cardiovascular mutants, with mutations found in the ctr9 and cds2 genes. MMAPPR can be directly applied to other model organisms, such as Drosophila and Caenorhabditis elegans, that are amenable to both forward genetic screens and pooled RNA-seq experiments. Thus, MMAPPR is a rapid, cost-efficient, and highly automated pipeline, available to perform mutant mapping in any organism with a well-assembled genome. PMID:23299975

  5. Unequal prognostic potentials of p53 gain-of-function mutations in human cancers associate with drug-metabolizing activity.

    PubMed

    Xu, J; Wang, J; Hu, Y; Qian, J; Xu, B; Chen, H; Zou, W; Fang, J-Y

    2014-03-06

    Mutation of p53 is the most common genetic change in human cancer, causing complex effects including not only loss of wild-type function but also gain of novel oncogenic functions (GOF). It is increasingly likely that p53-hotspot mutations may confer different types and magnitudes of GOF, but the evidences are mainly supported by cellular and transgenic animal models. Here we combine large-scale cancer genomic data to characterize the prognostic significance of different p53 mutations in human cancers. Unexpectedly, only mutations on the Arg248 and Arg282 positions displayed significant association with shorter patient survival, but such association was not evident for other hotspot GOF mutations. Gene set enrichment analysis on these mutations revealed higher activity of drug-metabolizing enzymes, including the CYP3A4 cytochrome P450. Ectopic expression of p53 mutant R282W in H1299 and SaOS2 cells significantly upregulated CYP3A4 mRNA and protein levels, and cancer cell lines bearing mortality-associated p53 mutations display higher CYP3A4 expression and resistance to several CYP3A4-metabolized chemotherapeutic drugs. Our results suggest that p53 mutations have unequal GOF activities in human cancers, and future evaluation of p53 as a cancer biomarker should consider which mutation is present in the tumor, rather than having comparison between wild-type and mutant genotypes.

  6. Analysis of any point mutation in DNA. The amplification refractory mutation system (ARMS).

    PubMed Central

    Newton, C R; Graham, A; Heptinstall, L E; Powell, S J; Summers, C; Kalsheker, N; Smith, J C; Markham, A F

    1989-01-01

    We have improved the "polymerase chain reaction" (PCR) to permit rapid analysis of any known mutation in genomic DNA. We demonstrate a system, ARMS (Amplification Refractory Mutation System), that allows genotyping solely by inspection of reaction mixtures after agarose gel electrophoresis. The system is simple, reliable and non-isotopic. It will clearly distinguish heterozygotes at a locus from homozygotes for either allele. The system requires neither restriction enzyme digestion, allele-specific oligonucleotides as conventionally applied, nor the sequence analysis of PCR products. The basis of the invention is that unexpectedly, oligonucleotides with a mismatched 3'-residue will not function as primers in the PCR under appropriate conditions. We have analysed DNA from patients with alpha 1-antitrypsin (AAT) deficiency, from carriers of the disease and from normal individuals. Our findings are in complete agreement with allele assignments derived by direct sequencing of PCR products. Images PMID:2785681

  7. Analysis of mutation in exon 17 of PTCH in patients with nevoid basal cell carcinoma syndrome.

    PubMed

    Li, Jichen; Wang, Jinhui; Liu, Yingqun; Wang, Wei

    2010-01-01

    Abnormalities in sonic hedgehog (SHH) signaling pathway components are major contributing factors in the development of nevoid basal cell carcinoma syndromes (NBCCS) that include SHH, PTCH, SMO and GLI. The novel patched homologue (PTCH) mutation and clinical manifestations with NBCCS links PTCH haplosufficiency and aberrant activation of the sonic hedgehog/Patched/smoothened pathway. To investigate further the molecular genetics of NBCCS, we performed mutation analysis of PTCH gene in a family case with five affected members. These clinical manifestations might be associated with a novel constitutional mutation of the PTCH gene, 3146A-->T (1049N-->I), in exon 17. The analyzed results of tumor tissue show a high expression of GLI. Our findings suggested that the mutation of 3146A-->T may be the cause of high expression of GLI and permit SMO to transmit signal to the nucleus through SHH/PTCH/SMO pathway.

  8. Structural and functional analysis of APOA5 mutations identified in patients with severe hypertriglyceridemia[S

    PubMed Central

    Mendoza-Barberá, Elena; Julve, Josep; Nilsson, Stefan K.; Lookene, Aivar; Martín-Campos, Jesús M.; Roig, Rosa; Lechuga-Sancho, Alfonso M.; Sloan, John H.; Fuentes-Prior, Pablo; Blanco-Vaca, Francisco

    2013-01-01

    During the diagnosis of three unrelated patients with severe hypertriglyceridemia, three APOA5 mutations [p.(Ser232_Leu235)del, p.Leu253Pro, and p.Asp332ValfsX4] were found without evidence of concomitant LPL, APOC2, or GPIHBP1 mutations. The molecular mechanisms by which APOA5 mutations result in severe hypertriglyceridemia remain poorly understood, and the functional impairment/s induced by these specific mutations was not obvious. Therefore, we performed a thorough structural and functional analysis that included follow-up of patients and their closest relatives, measurement of apoA-V serum concentrations, and sequencing of the APOA5 gene in 200 nonhyperlipidemic controls. Further, we cloned, overexpressed, and purified both wild-type and mutant apoA-V variants and characterized their capacity to activate LPL. The interactions of recombinant wild-type and mutated apoA-V variants with liposomes of different composition, heparin, LRP1, sortilin, and SorLA/LR11 were also analyzed. Finally, to explore the possible structural consequences of these mutations, we developed a three-dimensional model of full-length, lipid-free human apoA-V. A complex, wide array of impairments was found in each of the three mutants, suggesting that the specific residues affected are critical structural determinants for apoA-V function in lipoprotein metabolism and, therefore, that these APOA5 mutations are a direct cause of hypertriglyceridemia. PMID:23307945

  9. Mutational activation of ErbB2 reveals a new protein kinase autoinhibition mechanism.

    PubMed

    Fan, Ying-Xin; Wong, Lily; Ding, Jinhui; Spiridonov, Nikolay A; Johnson, Richard C; Johnson, Gibbes R

    2008-01-18

    Autoinhibition plays a key role in the control of protein kinase activity. ErbB2 is a unique receptor-tyrosine kinase that does not bind ligand but possesses an extracellular domain poised to engage other ErbBs. Little is known about the molecular mechanism for ErbB2 catalytic regulation. Here we show that ErbB2 kinase is strongly autoinhibited, and a loop connecting the alphaC helix and beta4 sheet within the kinase domain plays a major role in the control of kinase activity. Mutations of two Gly residues at positions 776 and 778 in this loop dramatically increase ErbB2 catalytic activity. Kinetic analysis demonstrates that mutational activation is due to approximately 10- and approximately 7-fold increases in ATP binding affinity and turnover number, respectively. Expression of the activated ErbB2 mutants in cells resulted in elevated ligand-independent ErbB2 autophosphorylation, ErbB3 phosphorylation, and stimulation of mitogen-activated protein kinase. Molecular modeling suggests that the ErbB2 kinase domain is stabilized in an inactive state via a hydrophobic interaction between the alphaC-beta4 and activation loops. Importantly, many ErbB2 human cancer mutations have been identified in the alphaC-beta4 loop, including the activating G776S mutation studied here. Our findings reveal a new kinase regulatory mechanism in which the alphaC-beta4 loop functions as an intramolecular switch that controls ErbB2 activity and suggests that loss of alphaC-beta4 loop-mediated autoinhibition is involved in oncogenic activation of ErbB2.

  10. Kinetic, Mutational, and Structural Analysis of Malonate Semialdehyde Decarboxylase from Coryneform bacterium strain FG41: Mechanistic Implications for the Decarboxylase and Hydratase Activities

    PubMed Central

    Guo, Youzhong; Serrano, Hector; Poelarends, Gerrit J.; Johnson, William H.; Hackert, Marvin L.; Whitman, Christian P.

    2013-01-01

    Malonate semialdehyde decarboxylase from Pseudomonas pavonaceae 170 (designated Pp MSAD) is in a bacterial catabolic pathway for the nematicide 1,3-dichloropropene. MSAD has two known activities: it catalyzes the metal-ion independent decarboxylation of malonate semialdehyde to produce acetaldehyde and carbon dioxide, as well as a low-level hydration of 2-oxo-3-pentynoate to yield acetopyruvate. The latter activity is not known to be biologically relevant. Previous studies identified Pro-1, Asp-37, and a pair of arginines (Arg-73 and Arg-75) as critical residues in these activities. MSAD from Coryneform bacterium strain FG41 (designated FG41 MSAD) shares 38% pairwise sequence identity with the Pseudomonas enzyme including Pro-1 and Asp-37. However, Gln-73 replaces Arg-73, and the second arginine is shifted to Arg-76 by the insertion of a glycine. In order to determine how these changes relate to the activities of FG41 MSAD, the gene was cloned and the enzyme expressed and characterized. The enzyme has a comparable decarboxylase activity, but a significantly reduced hydratase activity. Mutagenesis along with crystal structures of the native enzyme (2.0 Å resolution) and the enzyme modified by a 3-oxopropanoate moiety (resulting from the incubation of enzyme and 3-bromopropiolate) (2.2 Å resolution) provided a structural basis. The roles of Pro-1 and Asp-37 are likely the same as those proposed for MSAD. However, the side chains of Thr-72, Gln-73, and Tyr-123 replace those of Arg-73 and Arg-75 in the mechanism and play a role in binding and catalysis. The structures also show that Arg-76 is likely too distant to play a direct role in the mechanism. FG41 MSAD is the second functionally annotated homologue in the MSAD family of the tautomerase superfamily and could represent a new subfamily. PMID:23781927

  11. Mutational analysis of human T-cell leukemia virus type 2 Tax.

    PubMed

    Ross, T M; Minella, A C; Fang, Z Y; Pettiford, S M; Green, P L

    1997-11-01

    A mutational analysis of human T-cell leukemia virus type 2 (HTLV-2) Tax (Tax-2) was performed to identify regions within Tax-2 important for activation of promoters through the CREB/ATF or NF-kappaB/Rel signaling pathway. Tax-2 mutations within the putative zinc-binding region as well as mutations at the carboxy terminus disrupted CREB/ATF transactivation. A single mutation within the central proline-rich region of Tax-2 disrupted the transactivation of the NF-kappaB/Rel pathway. Surprisingly, this mutation, which is thought to be in a separate activation domain, was suppressed by mutations within or around the putative zinc-binding region, suggesting an interaction between these two regions. These analyses indicate that the functional regions or domains important for transactivation through the CREB/ATF or NF-kappaB/Rel signaling pathway are similar, but not identical, in Tax-1 and Tax-2. Identification of these distinct Tax-2 mutants should facilitate comparative biological studies of HTLV-1 and HTLV-2 and ultimately lead to the determination of the functional importance of Tax trans-acting capacities in T-lymphocyte transformation by HTLV.

  12. Metabolomic Analysis of Exercise Effects in the POLG Mitochondrial DNA Mutator Mouse Brain

    PubMed Central

    Clark-Matott, Joanne; Saleem, Ayesha; Dai, Ying; Shurubor, Yevgeniya; Ma, Xiaoxing; Safdar, Adeel; Beal, M. Flint; Tarnopolsky, Mark; Simon, David K.

    2015-01-01

    Mitochondrial DNA (mtDNA) mutator mice express a mutated form of mtDNA polymerase gamma (PolgA) that results an accelerated accumulation of somatic mtDNA mutations in association with a premature aging phenotype. An exploratory metabolomic analysis of cortical metabolites in sedentary and exercised mtDNA mutator mice and wild-type (WT) littermate controls at 9–10 months of age was performed. Pathway analysis revealed deficits in the neurotransmitters acetylcholine, glutamate and aspartate that were ameliorated by exercise. Nicotinamide adenine dinucleotide (NAD+) depletion and evidence of increased Poly [ADP-ribose] polymerase 1 (PARP-1) activity were apparent in sedentary mtDNA mutator mouse cortex, along with deficits in carnitine metabolites and an upregulated antioxidant response that largely normalized with exercise. These data highlight specific pathways that are altered in the brain in association with an accelerated age-related accumulation of somatic mtDNA mutations. These results may have relevance to age-related neurodegenerative diseases associated with mitochondrial dysfunction, such as Alzheimer’s disease and Parkinson’s disease, and provide insights into potential mechanisms of beneficial effects of exercise on brain function. PMID:26294258

  13. Promiscuous Mutations Activate the Non-Canonical NF-kB Pathway in Multiple Myeloma

    PubMed Central

    Keats, Jonathan J.; Fonseca, Rafael; Chesi, Marta; Schop, Roelandt; Baker, Angela; Chng, Wee-Joo; Van Wier, Scott; Tiedemann, Rodger; Shi, Chang-Xin; Sebag, Michael; Braggio, Esteban; Henry, Travis; Zhu, Yuan-Xiao; Fogle, Homer; Price-Troska, Tammy; Ahmann, Gregory; Mancini, Catherine; Brents, Leslie A.; Kumar, Shaji; Greipp, Philip; Dispenzieri, Angela; Bryant, Barb; Mulligan, George; Bruhn, Laurakay; Barrett, Michael; Valdez, Riccardo; Trent, Jeff; Stewart, A. Keith; Carpten, John; Bergsagel, P. Leif

    2007-01-01

    Summary Activation of NF-kB has been noted in many tumor types, however only rarely has this been linked to an underlying genetic mutation. An integrated analysis of high-density oligonucleotide array CGH and gene expression profiling data from 155 multiple myeloma samples identified a promiscuous array of abnormalities contributing to the dysregulation of NF-kB in approximately 20% of patients. We report mutations in ten genes causing the inactivation of TRAF2, TRAF3, CYLD, cIAP1/cIAP2, and activation of NFKB1, NFKB2, CD40, LTBR, TACI, and NIK that result primarily in constitutive activation of the non-canonical NF-kB pathway, with the single most common abnormality being inactivation of TRAF3. These results highlight the critical importance of the NF-kB pathway in the pathogenesis of multiple myeloma. PMID:17692805

  14. Mutational analysis of the quorum-sensing receptor LasR reveals interactions that govern activation and inhibition by non-lactone ligands

    PubMed Central

    Gerdt, Joseph P.; McInnis, Christine E.; Schell, Trevor L.; Rossi, Francis M.; Blackwell, Helen E.

    2014-01-01

    SUMMARY Gram-negative bacteria use N-acyl L-homoserine lactone (AHL) quorum sensing (QS) signals to regulate the expression of myriad phenotypes. Non-native AHL analogs can strongly attenuate QS receptor activity and thereby QS signaling; however, we currently lack a molecular understanding of the mechanisms by which most of these compounds elicit their agonistic or antagonistic profiles. In this study, we investigated the origins of striking activity profile switches (i.e., receptor activator to inhibitor, and vice versa) observed upon alteration of the lactone head group in certain AHL analogs. Reporter gene assays of mutant versions of the Pseudomonas aeruginosa QS receptor LasR revealed that interactions between the ligands and Trp60, Tyr56, and Ser129 govern whether these ligands behave as LasR activators or inhibitors. Using this knowledge, we propose a model for the modulation of LasR by AHL analogs—encompassing a subtly different interaction with the binding pocket to a global change in LasR conformation. PMID:25242287

  15. Analysis of KRAS and BRAF genes mutation in the central nervous system metastases of non-small cell lung cancer.

    PubMed

    Nicoś, Marcin; Krawczyk, Paweł; Jarosz, Bożena; Sawicki, Marek; Szumiłło, Justyna; Trojanowski, Tomasz; Milanowski, Janusz

    2016-05-01

    KRAS mutations are associated with tumor resistance to EGFR TKIs (erlotinib, gefitinib) and to monoclonal antibody against EGFR (cetuximab). Targeted treatment of mutated RAS patients is still considered as a challenge. Inhibitors of c-Met (onartuzumab or tiwantinib) and MEK (selumetinib-a dual inhibitor of MEK1 and MEK2) signaling pathways showed activity in patients with mutations in KRAS that can became an effective approach in carriers of such disorders. BRAF mutation is very rare in patients with NSCLC, and its presence is associated with sensitivity of tumor cells to BRAF inhibitors (vemurafenib, dabrafenib). In the present study, the frequency and type of KRAS and BRAF mutation were assessed in 145 FFPE tissue samples from CNS metastases of NSCLC. In 30 patients, material from the primary tumor was simultaneously available. Real-time PCR technique with allele-specific molecular probe (KRAS/BRAF Mutation Analysis Kit, Entrogen, USA) was used for molecular tests. KRAS mutations were detected in 21.4 % of CNS metastatic lesions and in 23.3 % of corresponding primary tumors. Five mutations were identified both in primary and in metastatic lesions, while one mutation only in primary tumor and one mutation only in the metastatic tumor. Most of mutations were observed in codon 12 of KRAS; however, an individual patient had diagnosed a rare G13D and Q61R substitutions. KRAS mutations were significantly more frequent in adenocarcinoma patients and smokers. Additional analysis indicated one patient with rare coexistence of KRAS and DDR2 mutations. BRAF mutation was not detected in the examined materials. KRAS frequency appears to be similar in primary and CNS.

  16. Mutational analysis of NF2 by in vitro expression assay

    SciTech Connect

    Pulaski, K.; Pettingell, W.; MacCollin, M.; Gusella, J.F.

    1994-09-01

    Neurofibromatosis 2 (NF2) is an autosomal dominant disorder characterized by the development of multiple nervous system tumors. The recently cloned NF2 tumor suppressor gene encodes a novel member of a family of cytoskeleton associated proteins. Because the majority of germline mutational events of the NF2 gene cause gross truncation of the protein product, we investigated the feasibility of a single step protein-based screen for mutation. Total cellular RNA extracted from blood or cell lines was used to synthesize cDNA from mRNA using reverse transcriptase. Two rounds of PCR amplification were carried out. The 5{prime} primer contained an in-frame T7 promoter followed by an initiation methionine within a Kozak consensus sequence. The antisense 3{prime} primer contained the native stop codon followed by a poly (A) tail. The resulting product was used in a cell-free coupled transcription/translation reaction which was visualized on a standard protein separating gel. We were able to amplify 95% of the coding sequence of the NF2 gene with a single set of primers which produced a 1724 basepair product. Normal transcripts produced an approximately 66 KDa protein product while transcripts which contained known nonsense or splice site mutations produced truncated protein products in addition to the normal sized product. Estimation of the location of the mutation could be determined by the extent of the protein shift. This system may improve both efficiency and sensitivity of mutational analysis of the NF2 gene.

  17. Linkage and mutation analysis of Thomsen and Becker myotonia families

    SciTech Connect

    Koty, P.P.; Pegoraro, E.; Hoffman, E.P.

    1994-09-01

    Thomsen (autosomal dominant) and Becker (autosomal recessive) myotonias are characterized by the inability for muscle relaxation after voluntary, mechanical, or electrical stimulation. Families with both diseases have been linked to the skeletal muscle chloride channel (CLC1) on chromosome 7q35; however, only 2 gene mutations have been identified, and the reasons underlying the alternative dominant or recessive inheritance are not clear. We used linkage analysis and SSCP of 23 exons to screen 8 families (56 individuals) and 7 isolated cases with the diagnosis of Thomsen/Becker myotonia. A novel mutation (1290M) in exon 8 was detected in a family with Thomsen disease. Three additional families showed the previously described G230E change. Thus, chloride channel mutations could be identified in 4/5 families showing dominant inheritance. We were able to exclude linkage to the CLC1 gene in the fifth family. In patients with recessive Becker disease, an isolated case had two unique conformers, one causing a novel A437T change in exon 12. We also identified the previously reported F413C change in a second family. We found significant differences in the clinical picture between families with different mutations but also in families with the same mutation. Our data indicates that DNA studies are critical for correct diagnosis of the myotonias.

  18. A transforming mutation enhances the activity of the c-Kit soluble tyrosine kinase domain.

    PubMed Central

    Lam, L P; Chow, R Y; Berger, S A

    1999-01-01

    An activating mutation (DY814) located in the catalytic domain of the c-Kit receptor has been found in mastocytomas from human, mouse and rat. We evaluated the enzymic properties of purified wild-type (WT) and DY814 tyrosine kinase domains expressed in Pichia pastoris. A linker encoding the Flag epitope was fused to c-Kit cDNA species, enabling affinity purification of the proteins with anti-Flag antibodies. Yeast lysates expressing DY814 contained multiple tyrosine-phosphorylated proteins, whereas WT lysates had no detectable tyrosine phosphorylation. Purification of the WT and mutant kinases in the presence of vanadate demonstrated that both enzymes undergo autophosphorylation. Kinetic analyses of WT and DY814 kinases indicated that at 20 nM enzyme concentration the mutation increases the specific activity 10-fold and decreases the apparent Km for ATP 9-fold. WT activity displayed a hyperbolic dependence on enzyme concentration, consistent with a requirement for dimerization or aggregation for activity. This activity was also enhanced by anti-Flag antibodies. In contrast, the dependence of DY814 activity on enzyme concentration was primarily linear and only marginally enhanced by anti-Flag antibodies. Gel-filtration analysis showed that the WT kinase migrated as a monomer, whereas the DY814 mutant migrated as a dimer. These results indicate that this point mutation promotes dimerization of the c-Kit kinase, potentially contributing to its transforming potential in mast cells. PMID:9931308

  19. Mutational analysis of genes coding for cell surface proteins in colorectal cancer cell lines reveal novel altered pathways, druggable mutations and mutated epitopes for targeted therapy

    PubMed Central

    Correa, Bruna R.; Bettoni, Fabiana; Koyama, Fernanda C.; Navarro, Fabio C.P.; Perez, Rodrigo O.; Mariadason, John; Sieber, Oliver M.; Strausberg, Robert L.; Simpson, Andrew J.G.; Jardim, Denis L.F.; Reis, Luiz Fernando L.; Parmigiani, Raphael B.; Galante, Pedro A.F.; Camargo, Anamaria A.

    2014-01-01

    We carried out a mutational analysis of 3,594 genes coding for cell surface proteins (Surfaceome) in 23 colorectal cancer cell lines, searching for new altered pathways, druggable mutations and mutated epitopes for targeted therapy in colorectal cancer. A total of 3,944 somatic non-synonymous substitutions and 595 InDels, occurring in 2,061 (57%) Surfaceome genes were catalogued. We identified 48 genes not previously described as mutated in colorectal tumors in the TCGA database, including genes that are mutated and expressed in >10% of the cell lines (SEMA4C, FGFRL1, PKD1, FAM38A, WDR81, TMEM136, SLC36A1, SLC26A6, IGFLR1). Analysis of these genes uncovered important roles for FGF and SEMA4 signaling in colorectal cancer with possible therapeutic implications. We also found that cell lines express on average 11 druggable mutations, including frequent mutations (>20%) in the receptor tyrosine kinases AXL and EPHA2, which have not been previously considered as potential targets for colorectal cancer. Finally, we identified 82 cell surface mutated epitopes, however expression of only 30% of these epitopes was detected in our cell lines. Notwithstanding, 92% of these epitopes were expressed in cell lines with the mutator phenotype, opening new venues for the use of “general” immune checkpoint drugs in this subset of patients. PMID:25193853

  20. Mutational Profile of Metastatic Breast Cancers: A Retrospective Analysis

    PubMed Central

    Pedrero, Marion; Campone, Mario; Soria, Jean-Charles; Massard, Christophe; Lévy, Christelle; Arnedos, Monica; Lacroix-Triki, Magali; Garrabey, Julie; Boursin, Yannick; Deloger, Marc; Commo, Frédéric; Scott, Véronique; Kamal, Maud; Diéras, Véronique; Gonçalves, Anthony; Romieu, Gilles; Vanlemmens, Laurence; Mouret Reynier, Marie-Ange; Théry, Jean-Christophe; Le Du, Fanny; Guiu, Séverine; Dalenc, Florence; Bonnefoi, Hervé; Jimenez, Marta; Le Tourneau, Christophe; André, Fabrice

    2016-01-01

    Background Major advances have been achieved in the characterization of early breast cancer (eBC) genomic profiles. Metastatic breast cancer (mBC) is associated with poor outcomes, yet limited information is available on the genomic profile of this disease. This study aims to decipher mutational profiles of mBC using next-generation sequencing. Methods and Findings Whole-exome sequencing was performed on 216 tumor–blood pairs from mBC patients who underwent a biopsy in the context of the SAFIR01, SAFIR02, SHIVA, or Molecular Screening for Cancer Treatment Optimization (MOSCATO) prospective trials. Mutational profiles from 772 primary breast tumors from The Cancer Genome Atlas (TCGA) were used as a reference for comparing primary and mBC mutational profiles. Twelve genes (TP53, PIK3CA, GATA3, ESR1, MAP3K1, CDH1, AKT1, MAP2K4, RB1, PTEN, CBFB, and CDKN2A) were identified as significantly mutated in mBC (false discovery rate [FDR] < 0.1). Eight genes (ESR1, FSIP2, FRAS1, OSBPL3, EDC4, PALB2, IGFN1, and AGRN) were more frequently mutated in mBC as compared to eBC (FDR < 0.01). ESR1 was identified both as a driver and as a metastatic gene (n = 22, odds ratio = 29, 95% CI [9–155], p = 1.2e-12) and also presented with focal amplification (n = 9) for a total of 31 mBCs with either ESR1 mutation or amplification, including 27 hormone receptor positive (HR+) and HER2 negative (HER2−) mBCs (19%). HR+/HER2− mBC presented a high prevalence of mutations on genes located on the mechanistic target of rapamycin (mTOR) pathway (TSC1 and TSC2) as compared to HR+/HER2− eBC (respectively 6% and 0.7%, p = 0.0004). Other actionable genes were more frequently mutated in HR+ mBC, including ERBB4 (n = 8), NOTCH3 (n = 7), and ALK (n = 7). Analysis of mutational signatures revealed a significant increase in APOBEC-mediated mutagenesis in HR+/HER2− metastatic tumors as compared to primary TCGA samples (p < 2e-16). The main limitations of this study include the absence of bone

  1. Mutational analysis of adrenoleukodystrophy (ALD) gene in Japanese ALD patients

    SciTech Connect

    Koike, R.; Onodera, O.; Tabe, H.

    1994-09-01

    Recently a putative ALD gene containing a striking homology with peroxisomal membrane protein (PMP70) has been identified. Besides childhood ALD, various clinical phenotypes have been identified with the onset in adolescence or adulthood (adrenomyeloneuropathy (AMN), adult cerebral ALD or cerebello-brainstem dominant type). The different clinical phenotypes occasionally coexist even in the same family. To investigate if there is a correlation between the clinical phenotypes and genotypes of the mutations in the ALD gene, we have analyzed 43 Japanese ALD patients. By Southern blot analysis, we identified non-overlapping deletions of 0.5 kb to 10.4 kb involving the ALD gene in 3 patients with adult onset cerebello-brainstem dominant type. By detailed direct sequence analysis, we found 4 patients who had point mutations in the coding region. An AMN patient had a point mutation leading to {sup 266}Gly{r_arrow}Arg change, and another patient with adult cerebral ALD had a 3 bp deletion resulting in the loss of glutamic acid at codon 291, which is a conserved amino acid both in ALD protein and PMP70. Two patients with childhood ALD had point mutations leading to {sup 507}Gly{r_arrow}Val, and {sup 518}Arg{r_arrow}Gln, respectively. Since amino acids from 507 to 520 are highly conserved as ATP-binding cassette transporter proteins, mutations in this region are expected to result in dramatic changes of the function of this protein. Although there is a tendancy for mutation in childhood ALD to be present within the ATP-binding site motif, we found two adult patients who had large deletions involving the region. Taken together, strong correlation between genotypes and clinical phenotypes is unlikely to exist, and some other modifying factors might well play an important role for the clinical manifestations of ALD.

  2. CDKN2A and CDK4 mutation analysis in Italian melanoma-prone families: functional characterization of a novel CDKN2A germ line mutation.

    PubMed

    Della Torre, G; Pasini, B; Frigerio, S; Donghi, R; Rovini, D; Delia, D; Peters, G; Huot, T J; Bianchi-Scarra, G; Lantieri, F; Rodolfo, M; Parmiani, G; Pierotti, M A

    2001-09-14

    Physical interaction between CDKN2A/p16 and CDK4 proteins regulates the cell cycle progression through the G1 phase and dysfunction of these proteins by gene mutation is implicated in genetic predisposition to melanoma. We analysed 15 Italian melanoma families for germ line mutations in the coding region of the CDKN2A gene and exon 2 of the CDK4 gene. One novel disease-associated mutation (P48T), 3 known pathological mutations (R24P, G101W and N71S) and 2 common polymorphisms (A148T and Nt500 G>C) were identified in the CDKN2A gene. In a family harbouring the R24P mutation, an intronic variant (IVS1, +37 G>C) of uncertain significance was detected in a non-carrier melanoma case. The overall incidence of CDKN2A mutations was 33.3%, but this percentage was higher in families with 3 or more melanoma cases (50%) than in those with only 2 affected relatives (25%). Noteworthy, functional analysis established that the novel mutated protein, while being impaired in cell growth and inhibition assays, retains some in vitro binding to CDK4/6. No variant in the p16-binding region of CDK4 was identified in our families. Our results, obtained in a heterogeneous group of families, support the view that inactivating mutations of CDKN2A contribute to melanoma susceptibility more than activating mutations of CDK4 and that other genetic factors must be responsible for melanoma clustering in a high proportion of families. In addition, they indicate the need for a combination of functional assays to determine the pathogenetic nature of new CDKN2A mutations.

  3. Matriptase-2 mutations in iron-refractory iron deficiency anemia patients provide new insights into protease activation mechanisms.

    PubMed

    Ramsay, Andrew J; Quesada, Victor; Sanchez, Mayka; Garabaya, Cecilia; Sardà, María P; Baiget, Montserrat; Remacha, Angel; Velasco, Gloria; López-Otín, Carlos

    2009-10-01

    Mutations leading to abrogation of matriptase-2 proteolytic activity in humans are associated with an iron-refractory iron deficiency anemia (IRIDA) due to elevated hepcidin levels. Here we describe two novel heterozygous mutations within the matriptase-2 (TMPRSS6) gene of monozygotic twin girls exhibiting an IRIDA phenotype. The first is the frameshift mutation (P686fs) caused by the insertion of the four nucleotides CCCC in exon 16 (2172_2173insCCCC) that is predicted to terminate translation before the catalytic serine. The second mutation is the di-nucleotide substitution c.467C>A and c.468C>T in exon 3 that causes the missense mutation A118D in the SEA domain of the extracellular stem region of matriptase-2. Functional analysis of both variant matriptase-2 proteases has revealed that they lead to ineffective suppression of hepcidin transcription. We also demonstrate that the A118D SEA domain mutation causes an intra-molecular structural imbalance that impairs matriptase-2 activation. Collectively, these results extend the pattern of TMPRSS6 mutations associated with IRIDA and functionally demonstrate that mutations affecting protease regions other than the catalytic domain may have a profound impact in the regulatory role of matriptase-2 during iron deficiency.

  4. Activation and products of the cryptic secondary metabolite biosynthetic gene clusters by rifampin resistance (rpoB) mutations in actinomycetes.

    PubMed

    Tanaka, Yukinori; Kasahara, Ken; Hirose, Yutaka; Murakami, Kiriko; Kugimiya, Rie; Ochi, Kozo

    2013-07-01

    A subset of rifampin resistance (rpoB) mutations result in the overproduction of antibiotics in various actinomycetes, including Streptomyces, Saccharopolyspora, and Amycolatopsis, with H437Y and H437R rpoB mutations effective most frequently. Moreover, the rpoB mutations markedly activate (up to 70-fold at the transcriptional level) the cryptic/silent secondary metabolite biosynthetic gene clusters of these actinomycetes, which are not activated under general stressful conditions, with the exception of treatment with rare earth elements. Analysis of the metabolite profile demonstrated that the rpoB mutants produced many metabolites, which were not detected in the wild-type strains. This approach utilizing rifampin resistance mutations is characterized by its feasibility and potential scalability to high-throughput studies and would be useful to activate and to enhance the yields of metabolites for discovery and biochemical characterization.

  5. Comparative analysis of ras proto-oncogene mutations in selected mammalian tumors.

    PubMed

    Watzinger, F; Mayr, B; Gamerith, R; Vetter, C; Lion, T

    2001-04-01

    Point mutations within ras proto-oncogenes are frequently detected in human malignancies and in different types of experimentally induced tumors in animals. In contrast to findings in experimental animal models of carcinogenesis, little is known about the incidence of ras mutations in naturally occurring animal tumors. In the present study, we investigated whether point mutations, particularly within the mutational hot-spot codons 12, 13, and 61, occur at comparable frequencies in human malignancies and spontaneously occurring tumors in other mammalian species. Two hundred seventy-nine of the most frequent canine and feline neoplasms were analyzed for changes in mutational hot-spot regions of the N-, Ki-, and Ha-ras genes. DNA fragments from exons 1 and 2 of all three ras genes were amplified by polymerase chain reaction, and the presence of point mutations was assessed by single-strand conformation polymorphism analysis and direct sequencing of amplified products. Only one sample, a case of canine melanoma, exhibited an Ha-ras mutation. Thus, our data strongly suggested that ras mutations at the hot-spot loci are apparently very rare and do not play a major role in the pathogenesis of the spontaneously occurring canine and feline tumors investigated. These observations were in marked contrast to those in experimental rodent models of carcinogen-induced mammary and skin tumors that described a consistent association with Ha- or Ki-ras activation. The role of ras oncogene activation in related human malignancies therefore cannot be readily inferred from studies of experimental carcinogenesis in animal models.

  6. Biomedical Mutation Analysis (BMA): A software tool for analyzing mutations associated with antiviral resistance

    PubMed Central

    Salvatierra, Karina; Florez, Hector

    2016-01-01

    Introduction: Hepatitis C virus (HCV) is considered a major public health problem, with 200 million people infected worldwide. The treatment for HCV chronic infection with pegylated interferon alpha plus ribavirin inhibitors is unspecific; consequently, the treatment is effective in only 50% of patients infected. This has prompted the development of direct-acting antivirals (DAA) that target virus proteins. These DAA have demonstrated a potent effect in vitro and in vivo; however, virus mutations associated with the development of resistance have been described. Objective: To design and develop an online information system for detecting mutations in amino acids known to be implicated in resistance to DAA. Materials and methods:    We have used computer applications, technological tools, standard languages, infrastructure systems and algorithms, to analyze positions associated with resistance to DAA for the NS3, NS5A, and NS5B genes of HCV. Results: We have designed and developed an online information system named Biomedical Mutation Analysis (BMA), which allows users to calculate changes in nucleotide and amino acid sequences for each selected sequence from conventional Sanger and cloning sequencing using a graphical interface. Conclusion: BMA quickly, easily and effectively analyzes mutations, including complete documentation and examples. Furthermore, the development of different visualization techniques allows proper interpretation and understanding of the results. The data obtained using BMA will be useful for the assessment and surveillance of HCV resistance to new antivirals, and for the treatment regimens by selecting those DAA to which the virus is not resistant, avoiding unnecessary treatment failures. The software is available at: http://bma.itiud.org. PMID:27547378

  7. The Saccharomyces cerevisiae start mutant carrying the cdc25 mutation is defective in activation of plasma membrane ATPase by glucose.

    PubMed Central

    Portillo, F; Mazón, M J

    1986-01-01

    Activation of plasma membrane ATPase by the addition of glucose was examined in several cell division cycle mutants of Saccharomyces cerevisiae. The start mutant carrying the cdc25 mutation was shown to be defective in ATPase activation at the restrictive temperature. Genetic analysis showed that lack of growth and defective activation of ATPase at the restrictive temperature were caused by the same mutation. It was also found that CDC25 does not map at the same locus as the structural gene of plasma membrane ATPase (PMA1). We conclude that the product of CDC25 controls the activation of ATPase. PMID:2877973

  8. Analysis of gene mutations among South Indian patients with maple syrup urine disease: identification of four novel mutations.

    PubMed

    Narayanan, M P; Menon, Krishnakumar N; Vasudevan, D M

    2013-10-01

    Maple syrup urine disease (MSUD) is predominantly caused by mutations in the BCKDHA, BCKDHB and DBT genes, which encode for the E1alpha, E1beta and E2 subunits of the branched-chain alpha-keto acid dehydrogenase complex, respectively. Because disease causing mutations play a major role in the development of the disease, prenatal diagnosis at gestational level may have significance in making decisions by parents. Thus, this study was aimed to screen South Indian MSUD patients for mutations and assess the genotype-phenotype correlation. Thirteen patients diagnosed with MSUD by conventional biochemical screening such as urine analysis by DNPH test, thin layer chromatography for amino acids and blood amino acid quantification by HPLC were selected for mutation analysis. The entire coding regions of the BCKDHA, BCKDHB and DBT genes were analyzed for mutations by PCR-based direct DNA sequencing. BCKDHA and BCKDHB mutations were seen in 43% of the total ten patients, while disease-causing DBT gene mutation was observed only in 14%. Three patients displayed no mutations. Novel mutations were c.130C>T in BCKDHA gene, c. 599C>T and c.121_122delAC in BCKDHB gene and c.190G>A in DBT gene. Notably, patients harbouring these mutations were non-responsive to thiamine supplementation and other treatment regimens and might have a worse prognosis as compared to the patients not having such mutations. Thus, identification of these mutations may have a crucial role in the treatment as well as understanding the molecular mechanisms in MSUD.

  9. Molecular and functional analysis of SUMF1 mutations in multiple sulfatase deficiency.

    PubMed

    Cosma, Maria Pia; Pepe, Stefano; Parenti, Giancarlo; Settembre, Carmine; Annunziata, Ida; Wade-Martins, Richard; Di Domenico, Carmela; Di Natale, Paola; Mankad, Anuj; Cox, Barbara; Uziel, Graziella; Mancini, Grazia M S; Zammarchi, Enrico; Donati, Maria Alice; Kleijer, Wim J; Filocamo, Mirella; Carrozzo, Romeo; Carella, Massimo; Ballabio, Andrea

    2004-06-01

    Multiple sulfatase deficiency (MSD) is a rare disorder characterized by impaired activity of all known sulfatases. The gene mutated in this disease is SUMF1, which encodes a protein involved in a post-translational modification at the catalytic site of all sulfatases that is necessary for their function. SUMF1 strongly enhances the activity of sulfatases when coexpressed with sulfatase in Cos-7 cells. We performed a mutational analysis of SUMF1 in 20 MSD patients of different ethnic origin. The clinical presentation of these patients was variable, ranging from severe neonatal forms to mild phenotypes showing mild neurological involvement. A total of 22 SUMF1 mutations were identified, including missense, nonsense, microdeletion, and splicing mutations. We expressed all missense mutations in culture to study their ability to enhance the activity of sulfatases. Of the predicted amino acid changes, 11 (p.R349W, p.R224W, p.L20F, p.A348P, p.S155P, p.C218Y, p.N259I, p.A279V, p.R349Q, p.C336R, p.A177P) resulted in severely impaired sulfatase-enhancing activity. Two (p.R345C and p.P266L) showed a high residual activity on some, but not all, of the nine sulfatases tested, suggesting that some SUMF1 mutations may have variable effects on the activity of each sulfatase. This study compares, for the first time, clinical, biochemical, and molecular data in MSD patients. Our results show lack of a direct correlation between the type of molecular defect and the severity of phenotype.

  10. A case of colorectal cancer with double-activating epidermal growth factor receptor mutations.

    PubMed

    Rai, Kammei; Fujiwara, Keiichi; Tsushima, Mizuho; Kudo, Kenichiro; Mizuta, Makoto; Matsuo, Kiyoshi; Yonei, Toshiro; Yamadori, Ichiro; Kiura, Katsuyuki; Sato, Toshio

    2011-09-01

    We describe the case of a 72-year-old woman with locally advanced lung tumor mimicking primary lung cancer. She was diagnosed with rectal cancer at the age of 65 years and was initially treated with platinum-based chemotherapy and thoracic irradiation as a treatment for primary lung cancer. One year later, a thyroid tumor was detected in her right thyroid lobe and was confirmed to have metastasized from rectal cancer based on pathological findings. Therefore, we suspected that she had metachronous double cancers and treated her with conventional chemotherapy for colorectal cancer. However, new life-threatening multiple lung metastases appeared. We treated her with the drug erlotinib because additional genetic analysis against primary lung tumor revealed typical double-activating epidermal growth factor receptor mutations. Histological review by immunostaining concluded that the primary lung tumor was composed of metastatic tumors from rectal cancer. In addition, genetic analysis revealed that the primary rectal cancer contained nearly the same types of double-activating epidermal growth factor receptor mutations as were present in the lung tumor. This is the first report of a case of rectal adenocarcinoma with double-activating epidermal growth factor receptor mutations.

  11. Disease Mutations in Rab7 Result in Unregulated Nucleotide Exchange and Inappropriate Activation

    SciTech Connect

    B McCray; E Skordalakes; J Taylor

    2011-12-31

    Rab GTPases are molecular switches that orchestrate vesicular trafficking, maturation and fusion by cycling between an active, GTP-bound form, and an inactive, GDP-bound form. The activity cycle is coupled to GTP hydrolysis and is tightly controlled by regulatory proteins. Missense mutations of the GTPase Rab7 cause a dominantly inherited axonal degeneration known as Charcot-Marie-Tooth type 2B through an unknown mechanism. We present the 2.8 A crystal structure of GTP-bound L129F mutant Rab7 which reveals normal conformations of the effector binding regions and catalytic site, but an alteration to the nucleotide binding pocket that is predicted to alter GTP binding. Through extensive biochemical analysis, we demonstrate that disease-associated mutations in Rab7 do not lead to an intrinsic GTPase defect, but permit unregulated nucleotide exchange leading to both excessive activation and hydrolysis-independent inactivation. Consistent with augmented activity, mutant Rab7 shows significantly enhanced interaction with a subset of effector proteins. In addition, dynamic imaging demonstrates that mutant Rab7 is abnormally retained on target membranes. However, we show that the increased activation of mutant Rab7 is counterbalanced by unregulated, GTP hydrolysis-independent membrane cycling. Notably, disease mutations are able to rescue the membrane cycling of a GTPase-deficient mutant. Thus, we demonstrate that disease mutations uncouple Rab7 from the spatial and temporal control normally imposed by regulatory proteins and cause disease not by a gain of novel toxic function, but by misregulation of native Rab7 activity.

  12. Structural Characterization of Human 8-Oxoguanine DNA Glycosylase Variants Bearing Active Site Mutations

    SciTech Connect

    Radom,C.; Banerjee, A.; Verdine, G.

    2007-01-01

    The human 8-oxoguanine DNA glycosylase (hOGG1) protein is responsible for initiating base excision DNA repair of the endogenous mutagen 8-oxoguanine. Like nearly all DNA glycosylases, hOGG1 extrudes its substrate from the DNA helix and inserts it into an extrahelical enzyme active site pocket lined with residues that participate in lesion recognition and catalysis. Structural analysis has been performed on mutant versions of hOGG1 having changes in catalytic residues but not on variants having altered 7,8-dihydro-8-oxoguanine (oxoG) contact residues. Here we report high resolution structural analysis of such recognition variants. We found that Ala substitution at residues that contact the phosphate 5 to the lesion (H270A mutation) and its Watson-Crick face (Q315A mutation) simply removed key functionality from the contact interface but otherwise had no effect on structure. Ala substitution at the only residue making an oxoG-specific contact (G42A mutation) introduced torsional stress into the DNA contact surface of hOGG1, but this was overcome by local interactions within the folded protein, indicating that this oxoG recognition motif is 'hardwired'. Introduction of a side chain intended to sterically obstruct the active site pocket (Q315F mutation) led to two different structures, one of which (Q315F{sup *149}) has the oxoG lesion in an exosite flanking the active site and the other of which (Q315F{sup *292}) has the oxoG inserted nearly completely into the lesion recognition pocket. The latter structure offers a view of the latest stage in the base extrusion pathway yet observed, and its lack of catalytic activity demonstrates that the transition state for displacement of the lesion base is geometrically demanding.

  13. Sequence analysis of mutations and translocations across breast cancer subtypes

    PubMed Central

    Banerji, Shantanu; Cibulskis, Kristian; Rangel-Escareno, Claudia; Brown, Kristin K.; Carter, Scott L.; Frederick, Abbie M.; Lawrence, Michael S.; Sivachenko, Andrey Y.; Sougnez, Carrie; Zou, Lihua; Cortes, Maria L.; Fernandez-Lopez, Juan C.; Peng, Shouyong; Ardlie, Kristin G.; Auclair, Daniel; Bautista-Piña, Veronica; Duke, Fujiko; Francis, Joshua; Jung, Joonil; Maffuz-Aziz, Antonio; Onofrio, Robert C.; Parkin, Melissa; Pho, Nam H.; Quintanar-Jurado, Valeria; Ramos, Alex H.; Rebollar-Vega, Rosa; Rodriguez-Cuevas, Sergio; Romero-Cordoba, Sandra L.; Schumacher, Steven E.; Stransky, Nicolas; Thompson, Kristin M.; Uribe-Figueroa, Laura; Baselga, Jose; Beroukhim, Rameen; Polyak, Kornelia; Sgroi, Dennis C.; Richardson, Andrea L.; Jimenez-Sanchez, Gerardo; Lander, Eric S.; Gabriel, Stacey B.; Garraway, Levi A.; Golub, Todd R.; Melendez-Zajgla, Jorge; Toker, Alex; Getz, Gad; Hidalgo-Miranda, Alfredo; Meyerson, Matthew

    2014-01-01

    Breast carcinoma is the leading cause of cancer-related mortality in women worldwide with an estimated 1.38 million new cases and 458,000 deaths in 2008 alone1. This malignancy represents a heterogeneous group of tumours with characteristic molecular features, prognosis, and responses to available therapy2–4. Recurrent somatic alterations in breast cancer have been described including mutations and copy number alterations, notably ERBB2 amplifications, the first successful therapy target defined by a genomic aberration5. Prior DNA sequencing studies of breast cancer genomes have revealed additional candidate mutations and gene rearrangements 6–10. Here we report the whole-exome sequences of DNA from 103 human breast cancers of diverse subtypes from patients in Mexico and Vietnam compared to matched-normal DNA, together with whole-genome sequences of 22 breast cancer/normal pairs. Beyond confirming recurrent somatic mutations in PIK3CA11, TP536, AKT112, GATA313, and MAP3K110, we discovered recurrent mutations in the CBFB transcription factor gene and deletions of its partner RUNX1. Furthermore, we have identified a recurrent MAGI3-AKT3 fusion enriched in triple-negative breast cancer lacking estrogen and progesterone receptors and ERBB2 expression. The Magi3-Akt3 fusion leads to constitutive activation of Akt kinase, which is abolished by treatment with an ATP-competitive Akt small-molecule inhibitor. PMID:22722202

  14. Identification and functional analysis of mutations in the hypocretin (orexin) genes of narcoleptic canines.

    PubMed

    Hungs, M; Fan, J; Lin, L; Lin, X; Maki, R A; Mignot, E

    2001-04-01

    Narcolepsy is a sleep disorder affecting animals and humans. Exon skipping mutations of the Hypocretin/Orexin-receptor-2 (Hcrtr2) gene were identified as the cause of narcolepsy in Dobermans and Labradors. Preprohypocretin (Hcrt) knockout mice have symptoms similar to human and canine narcolepsy. In this study, 11 sporadic cases of canine narcolepsy and two additional multiplex families were investigated for possible Hcrt and Hcrtr2 mutations. Sporadic cases have been shown to have more variable disease onset, increased disease severity, and undetectable Hypocretin-1 levels in cerebrospinal fluid. The canine Hcrt locus was isolated and characterized for this project. Only one novel mutation was identified in these two loci. This alteration results in a single amino acid substitution (E54K) in the N-terminal region of the Hcrtr2 receptor and autosomal recessive transmission in a Dachshund family. Functional analysis of previously-described exon-skipping mutations and of the E54K substitution were also performed using HEK-293 cell lines transfected with wild-type and mutated constructs. Results indicate a truncated Hcrtr2 protein, an absence of proper membrane localization, and undetectable binding and signal transduction for exon-skipping mutated constructs. In contrast, the E54K abnormality was associated with proper membrane localization, loss of ligand binding, and dramatically diminished calcium mobilization on activation of the receptor. These results are consistent with a loss of function for all three mutations. The absence of mutation in sporadic cases also indicates genetic heterogeneity in canine narcolepsy, as reported previously in humans.

  15. Genetic and Molecular Analysis of Suppressors of Ras Mutations

    DTIC Science & Technology

    1999-10-01

    mediated signal transduction pathway during C. elegans vulval development. Mutations in sur-8 were identified as suppressors of an activated let-60...positively regulates an RTK-Ras-MAP kinase signaling cascade during Caenorhabditis elegans vulval induction. Although reduction of sur-6 PP2A-B function...Protein Phosphatase 2A (PP2A) and also positively regulates an RTK-Ras-MAP kinase signaling cascade during Caenorhabditis elegans vulval induction

  16. Targeting Mitogen-Activated Protein Kinase Signaling in Mouse Models of Cardiomyopathy Caused by Lamin A/C Gene Mutations

    PubMed Central

    Muchir, Antoine; Worman, Howard J.

    2016-01-01

    The most frequently occurring mutations in the gene encoding nuclear lamin A and nuclear lamin C cause striated muscle diseases virtually always involving the heart. In this review, we describe the approaches and methods used to discover that cardiomyopathy-causing lamin A/C gene mutations increase MAP kinase signaling in the heart and that this plays a role in disease pathogenesis. We review different mouse models of cardiomyopathy caused by lamin A/C gene mutations and how transcriptomic analysis of one model identified increased cardiac activity of the ERK1/2, JNK, and p38α MAP kinases. We describe methods used to measure the activity of these MAP kinases in mouse hearts and then discuss preclinical treatment protocols using pharmacological inhibitors to demonstrate their role in pathogenesis. Several of these kinase inhibitors are in clinical development and could potentially be used to treat human subjects with cardiomyopathy caused by lamin A/C gene mutations. PMID:26795484

  17. Functional Analysis Helps to Define KCNC3 Mutational Spectrum in Dutch Ataxia Cases

    PubMed Central

    Fokkens, Michiel R.; Meijer, Michel; Boerrigter, Melissa; Verschuuren-Bemelmans, Corien C.; Kremer, Berry P. H.; van de Warrenburg, Bart P.; Dooijes, Dennis; Boddeke, Erik; Sinke, Richard J.; Verbeek, Dineke S.

    2015-01-01

    Spinocerebellar ataxia type 13 (SCA13) is an autosomal dominantly inherited neurodegenerative disorder of the cerebellum caused by mutations in the voltage gated potassium channel KCNC3. To identify novel pathogenic SCA13 mutations in KCNC3 and to gain insights into the disease prevalence in the Netherlands, we sequenced the entire coding region of KCNC3 in 848 Dutch cerebellar ataxia patients with familial or sporadic origin. We evaluated the pathogenicity of the identified variants by co-segregation analysis and in silico prediction followed by biochemical and electrophysiological studies. We identified 19 variants in KCNC3 including 2 non-coding, 11 missense and 6 synonymous variants. Two missense variants did not co-segregate with the disease and were excluded as potentially disease-causing mutations. We also identified the previously reported p.R420H and p.R423H mutations in our cohort. Of the remaining 7 missense variants, functional analysis revealed that 2 missense variants shifted Kv3.3 channel activation to more negative voltages. These variations were associated with early disease onset and mild intellectual disability. Additionally, one other missense variant shifted channel activation to more positive voltages and was associated with spastic ataxic gait. Whereas, the remaining missense variants did not change any of the channel characteristics. Of these three functional variants, only one variant was in silico predicted to be damaging and segregated with disease. The other two variants were in silico predicted to be benign and co-segregation analysis was not optimal or could only be partially confirmed. Therefore, we conclude that we have identified at least one novel pathogenic mutation in KCNC3 that cause SCA13 and two additionally potential SCA13 mutations. This leads to an estimate of SCA13 prevalence in the Netherlands to be between 0.6% and 1.3%. PMID:25756792

  18. The effects of expression of an activated rasG mutation on the differentiation of Dictyostelium.

    PubMed

    Thiery, R; Robbins, S; Khosla, M; Spiegelman, G B; Weeks, G

    1992-01-01

    Dictyostelium discoideum contains two ras genes, rasG and rasD, that are expressed during growth and differentiation, respectively. It was shown previously that Dictyostelium transformants expressing an activated rasD gene (a mutation producing a change in amino acid 12 from glycine to threonine) developed abnormally. When developed on filters these transformants formed multitipped aggregates, which did not go on to produce final fruiting bodies, but in a submerged culture assay on a plastic surface they either formed small aggregates or did not aggregate. In this study we transformed cells with the rasG gene, mutated to change amino acid 12 from glycine to threonine. The resulting transformants developed normally on filters, but aggregation under other conditions was impaired. In particular, in submerged culture on a plastic surface they either produced very small aggregates or did not aggregate, one of the phenotypes exhibited by the activated rasD transformants. Molecular analysis of the transformants revealed the presence of high copy numbers of the mutated rasG gene, but the level of expression of the mutant gene never exceeded the level of expression of the endogenous gene. These results indicate a powerful dominant effect of a relatively small amount of the activated RasG protein in Dictyostelium.

  19. Activating JAK1 mutation may predict the sensitivity of JAK-STAT inhibition in hepatocellular carcinoma.

    PubMed

    Yang, Shuqun; Luo, Chonglin; Gu, Qingyang; Xu, Qiang; Wang, Guan; Sun, Hongye; Qian, Ziliang; Tan, Yexiong; Qin, Yuxin; Shen, Yuhong; Xu, Xiaowei; Chen, Shu-Hui; Chan, Chi-Chung; Wang, Hongyang; Mao, Mao; Fang, Douglas D

    2016-02-02

    Hepatocellular carcinoma (HCC) is the fifth most common type of cancers worldwide. However, current therapeutic approaches for this epidemic disease are limited, and its 5-year survival rate hasn't been improved in the past decades. Patient-derived xenograft (PDX) tumor models have become an excellent in vivo system for understanding of disease biology and drug discovery. In order to identify new therapeutic targets for HCC, whole-exome sequencing (WES) was performed on more than 60 HCC PDX models. Among them, four models exhibited protein-altering mutations in JAK1 (Janus Kinase 1) gene. To explore the transforming capability, these mutations were then introduced into HEK293FT and Ba/F3 cells. The results demonstrated that JAK1S703I mutation was able to activate JAK-STAT (Signal Transducer and Activator of Transcription) signaling pathway and drive cell proliferation in the absence of cytokine stimulation in vitro. Furthermore,the sensitivity to the treatment of a JAK1/2 inhibitor, ruxolitinib, was observed in JAK1S703I mutant PDX model, but not in other non-activating mutant or wild type models. Pharmacodynamic analysis showed that phosphorylation of STAT3 in the Ruxolitinib-treated tumor tissues was significantly suppressed. Collectively, our results suggested that JAK1S703I is an activating mutation for JAK-STAT signaling pathway in vitro and in vivo, and JAK-STAT pathway might represent a new therapeutic approach for HCC treatment. Monotherapy using a more potent and specific JAK1 inhibitor and combinatory therapy should be further explored in JAK1 mutant PDX models.

  20. Novel Mass Spectrometry Mutation Screening for Contaminant Impact Analysis

    SciTech Connect

    Chen, Winston Chung-Hsuan; Lee, Kai-Lin

    2000-09-30

    Due to the limited budget of waste clean-up for all DOE contamination sites, it is critical to have a sound risk analysis with strong scientific basis to set priority for waste clean-up. In the past, the priority was often determined mostly by the type and quantity of pollutants and the observation of cancer rate increase. Since human cancers can be caused by various reasons in addition to environmental contamination, a rigorous study to find the relationship between specific contaminants and cancer is critically important for setting up the priority for waste clean-up. In addition, a contaminated site usually contain many different pollutants. However, it can be only a few specific pollutants are carcinogenic chemicals which are responsible for most cancers. Clean-up of small quantity of critical pollutants instead of the entire pollutant site can save significant decontamination cost. Since a few anti-tumor genes such as p53 and ras genes are highly conserved among various animals and mutation of these genes have been associated with many human cancers, it is very valuable to find the relationship between specific contaminant and specific cancer. Since it is not possible to pursue any human on the relationship of cancer and specific pollutant under well defined experimental conditions, it is desirable to pursue experiments on animals such as fish and mice to find out the relationship of mutation of p53 gene and specific contaminant. It is also required that the sequence of the region of p53 gene in animal is same as human being. Mutations due to pollutant can happen at various sites and only occur at a small percentage. In order to confirm the relationship between specific pollutant and mutation, a very large number of DNA samples need to be carefully analyzed. In the past, nearly all DNA analyses were pursued by gel electrophoresis. It is relatively slow and expensive. It is not feasible to obtain the relationship of mutations with specific contaminant with

  1. GATA2 germline mutations impair GATA2 transcription, causing haploinsufficiency: functional analysis of the p.Arg396Gln mutation.

    PubMed

    Cortés-Lavaud, Xabier; Landecho, Manuel F; Maicas, Miren; Urquiza, Leire; Merino, Juana; Moreno-Miralles, Isabel; Odero, María D

    2015-03-01

    Germline GATA2 mutations have been identified as the cause of familial syndromes with immunodeficiency and predisposition to myeloid malignancies. GATA2 mutations appear to cause loss of function of the mutated allele leading to haploinsufficiency; however, this postulate has not been experimentally validated as the basis of these syndromes. We hypothesized that mutations that are translated into abnormal proteins could affect the transcription of GATA2, triggering GATA2 deficiency. Chromatin immunoprecipitation and luciferase assays showed that the human GATA2 protein activates its own transcription through a specific region located at -2.4 kb, whereas the p.Thr354Met, p.Thr355del, and p.Arg396Gln germline mutations impair GATA2 promoter activation. Accordingly, GATA2 expression was decreased to ∼58% in a patient with p.Arg396Gln, compared with controls. p.Arg396Gln is the second most common mutation in these syndromes, and no previous functional analyses have been performed. We therefore analyzed p.Arg396Gln. Our data show that p.Arg396Gln is a loss-of-function mutation affecting DNA-binding ability and, as a consequence, it fails to maintain the immature characteristics of hematopoietic stem and progenitor cells, which could result in defects in this cell compartment. In conclusion, we show that human GATA2 binds to its own promoter, activating its transcription, and that the aforementioned mutations impair the transcription of GATA2. Our results indicate that they can affect other GATA2 target genes, which could partially explain the variability of symptoms in these diseases. Moreover, we show that p.Arg396Gln is a loss-of-function mutation, which is unable to retain the progenitor phenotype in cells where it is expressed.

  2. Constitutive activation of NF-κB signaling by NOTCH1 mutations in chronic lymphocytic leukemia.

    PubMed

    Xu, Zhen-Shu; Zhang, Ju-Shun; Zhang, Jing-Yan; Wu, Shun-Quan; Xiong, Dong-Lian; Chen, Hui-Jun; Chen, Zhi-Zhe; Zhan, Rong

    2015-04-01

    NOTCH1 mutations occur in approximately 10% of patients with chronic lymphocytic leukemia (CLL). However, the relationship between the genetic aberrations and tumor cell drug resistance or disease progression remains unclear. Frameshift deletions were detected by gene sequencing in the NOTCH1 PEST domain in three naive CLL patients. These mutations were associated with chromosomal abnormalities including trisomy 12 or 13q deletion. Of note, one of the patients developed Richter's transformation during FCR treatment. Immunofluorescent and western blot analyses revealed a markedly higher intracellular domain of NOTCH (ICN) expression in the mutated cells compared with their unmutated counterparts and normal CD19+ B lymphocytes (P<0.01 and P<0.001, respectively). In addition, strong DNA-κB binding activities were observed in the mutant cells by gel shift assays. RT-PCR analysis revealed elevated RelA mRNA expression in the mutant cells, while RelB levels were variable. Reduced levels of RelA and RelB mRNA were observed in unmutated CLL and normal B cells. Compared to unmutated CLL and normal B cells, increased apoptosis occurred in the mutant cells in the presence of GSI (ICN inhibitor) and PDTC (NF-κB inhibitor), particularly under the synergistic effects of the two drugs (P=0.03). Moreover, IKKα and IKKβ, the active components in the NF-κB pathway, were markedly inhibited following prolonged treatment with GSI and PDTC. These results suggested that NOTCH1 mutations constitutively activate the NF-κB signaling pathway in CLL, which is likely related to ICN overexpression, indicating NOTCH1 and NF-κB as potential therapeutic targets in the treatment of CLL.

  3. Functional Analysis of Mouse G6pc1 Mutations Using a Novel In Situ Assay for Glucose-6-Phosphatase Activity and the Effect of Mutations in Conserved Human G6PC1/G6PC2 Amino Acids on G6PC2 Protein Expression

    PubMed Central

    Boortz, Kayla A.; Syring, Kristen E.; Pound, Lynley D.; Wang, Yingda; Oeser, James K.; O’Brien, Richard M.

    2016-01-01

    Elevated fasting blood glucose (FBG) has been associated with increased risk for development of type 2 diabetes. Single nucleotide polymorphisms (SNPs) in G6PC2 are the most important common determinants of variations in FBG in humans. Studies using G6pc2 knockout mice suggest that G6pc2 regulates the glucose sensitivity of insulin secretion. G6PC2 and the related G6PC1 and G6PC3 genes encode glucose-6-phosphatase catalytic subunits. This study describes a functional analysis of 22 non-synonymous G6PC2 SNPs, that alter amino acids that are conserved in human G6PC1, mouse G6pc1 and mouse G6pc2, with the goal of identifying variants that potentially affect G6PC2 activity/expression. Published data suggest strong conservation of catalytically important amino acids between all four proteins and the related G6PC3 isoform. Because human G6PC2 has very low glucose-6-phosphatase activity we used an indirect approach, examining the effect of these SNPs on mouse G6pc1 activity. Using a novel in situ functional assay for glucose-6-phosphatase activity we demonstrate that the amino acid changes associated with the human G6PC2 rs144254880 (Arg79Gln), rs149663725 (Gly114Arg) and rs2232326 (Ser324Pro) SNPs reduce mouse G6pc1 enzyme activity without affecting protein expression. The Arg79Gln variant alters an amino acid mutation of which, in G6PC1, has previously been shown to cause glycogen storage disease type 1a. We also demonstrate that the rs368382511 (Gly8Glu), rs138726309 (His177Tyr), rs2232323 (Tyr207Ser) rs374055555 (Arg293Trp), rs2232326 (Ser324Pro), rs137857125 (Pro313Leu) and rs2232327 (Pro340Leu) SNPs confer decreased G6PC2 protein expression. In summary, these studies identify multiple G6PC2 variants that have the potential to be associated with altered FBG in humans. PMID:27611587

  4. Functional Analysis of Mouse G6pc1 Mutations Using a Novel In Situ Assay for Glucose-6-Phosphatase Activity and the Effect of Mutations in Conserved Human G6PC1/G6PC2 Amino Acids on G6PC2 Protein Expression.

    PubMed

    Boortz, Kayla A; Syring, Kristen E; Pound, Lynley D; Wang, Yingda; Oeser, James K; O'Brien, Richard M

    2016-01-01

    Elevated fasting blood glucose (FBG) has been associated with increased risk for development of type 2 diabetes. Single nucleotide polymorphisms (SNPs) in G6PC2 are the most important common determinants of variations in FBG in humans. Studies using G6pc2 knockout mice suggest that G6pc2 regulates the glucose sensitivity of insulin secretion. G6PC2 and the related G6PC1 and G6PC3 genes encode glucose-6-phosphatase catalytic subunits. This study describes a functional analysis of 22 non-synonymous G6PC2 SNPs, that alter amino acids that are conserved in human G6PC1, mouse G6pc1 and mouse G6pc2, with the goal of identifying variants that potentially affect G6PC2 activity/expression. Published data suggest strong conservation of catalytically important amino acids between all four proteins and the related G6PC3 isoform. Because human G6PC2 has very low glucose-6-phosphatase activity we used an indirect approach, examining the effect of these SNPs on mouse G6pc1 activity. Using a novel in situ functional assay for glucose-6-phosphatase activity we demonstrate that the amino acid changes associated with the human G6PC2 rs144254880 (Arg79Gln), rs149663725 (Gly114Arg) and rs2232326 (Ser324Pro) SNPs reduce mouse G6pc1 enzyme activity without affecting protein expression. The Arg79Gln variant alters an amino acid mutation of which, in G6PC1, has previously been shown to cause glycogen storage disease type 1a. We also demonstrate that the rs368382511 (Gly8Glu), rs138726309 (His177Tyr), rs2232323 (Tyr207Ser) rs374055555 (Arg293Trp), rs2232326 (Ser324Pro), rs137857125 (Pro313Leu) and rs2232327 (Pro340Leu) SNPs confer decreased G6PC2 protein expression. In summary, these studies identify multiple G6PC2 variants that have the potential to be associated with altered FBG in humans.

  5. Overexpression of the yeast transcriptional activator ADR1 induces mutation of the mitochondrial genome.

    PubMed

    Cherry, J R; Denis, C L

    1989-05-01

    It was previously observed that increased dosages of the ADR1 gene, which encodes a yeast transcriptional activator required for alcohol dehydrogenase II (ADH II) expression, cause a decreased rate of growth in medium containing ethanol as the carbon source. Here we show that observed reduction in growth rate is mediated by the ADR1 protein which, when overexpressed, increases the frequency of cytoplasmic petites. Unlike previously characterized mutations known to potentiate petite formation, the ADR1 effect is dominant, with the petite frequency rising concomitantly with increasing ADR1 dosage. The ability of ADR1 to increase the frequency of mitochondrial mutation is correlated with its ability to activate ADH II transcription but is independent of the level of ADH II being expressed. Based on restoration tests using characterized mit- strains, ADR1 appears to cause non-specific deletions within the mitochondrial genome to produce rho- petites. Pedigree analysis of ADR1-overproducing strains indicates that only daughter cells become petite. This pattern is analogous to that observed for petite induction by growth at elevated temperature and by treatment with the acridine dye euflavine. One strain resistant to ADR1-induced petite formation displayed cross-resistance to petite mutation by growth at elevated temperature and euflavine treatment, yet was susceptible to petite induction by ethidium bromide. These results suggest that ADR1 overexpression disrupts the fidelity of mitochondrial DNA replication or repair.

  6. Activation of diverse signaling pathways by oncogenic PIK3CA mutations

    PubMed Central

    Wu, Xinyan; Renuse, Santosh; Sahasrabuddhe, Nandini A.; Zahari, Muhammad Saddiq; Chaerkady, Raghothama; Kim, Min-Sik; Nirujogi, Raja S.; Mohseni, Morassa; Kumar, Praveen; Raju, Rajesh; Zhong, Jun; Yang, Jian; Neiswinger, Johnathan; Jeong, Jun-Seop; Newman, Robert; Powers, Maureen A.; Somani, Babu Lal; Gabrielson, Edward; Sukumar, Saraswati; Stearns, Vered; Qian, Jiang; Zhu, Heng; Vogelstein, Bert; Park, Ben Ho; Pandey, Akhilesh

    2014-01-01

    The PIK3CA gene is frequently mutated in human cancers. Here we carry out a SILAC-based quantitative phosphoproteomic analysis using isogenic knockin cell lines containing ‘driver’ oncogenic mutations of PIK3CA to dissect the signaling mechanisms responsible for oncogenic phenotypes induced by mutant PIK3CA. From 8,075 unique phosphopeptides identified, we observe that aberrant activation of PI3K pathway leads to increased phosphorylation of a surprisingly wide variety of kinases and downstream signaling networks. Here, by integrating phosphoproteomic data with human protein microarray-based AKT1 kinase assays, we discover and validate six novel AKT1 substrates, including cortactin. Through mutagenesis studies, we demonstrate that phosphorylation of cortactin by AKT1 is important for mutant PI3K enhanced cell migration and invasion. Our study describes a quantitative and global approach for identifying mutation-specific signaling events and for discovering novel signaling molecules as readouts of pathway activation or potential therapeutic targets. PMID:25247763

  7. Generation of rodent malaria parasites with a high mutation rate by destructing proofreading activity of DNA polymerase δ.

    PubMed

    Honma, Hajime; Hirai, Makoto; Nakamura, Shota; Hakimi, Hassan; Kawazu, Shin-Ichiro; Palacpac, Nirianne M Q; Hisaeda, Hajime; Matsuoka, Hiroyuki; Kawai, Satoru; Endo, Hiroyoshi; Yasunaga, Teruo; Ohashi, Jun; Mita, Toshihiro; Horii, Toshihiro; Furusawa, Mitsuru; Tanabe, Kazuyuki

    2014-08-01

    Plasmodium falciparum malaria imposes a serious public health concern throughout the tropics. Although genetic tools are principally important to fully investigate malaria parasites, currently available forward and reverse tools are fairly limited. It is expected that parasites with a high mutation rate can readily acquire novel phenotypes/traits; however, they remain an untapped tool for malaria biology. Here, we generated a mutator malaria parasite (hereinafter called a 'malaria mutator'), using site-directed mutagenesis and gene transfection techniques. A mutator Plasmodium berghei line with a defective proofreading 3' → 5' exonuclease activity in DNA polymerase δ (referred to as PbMut) and a control P. berghei line with wild-type DNA polymerase δ (referred to as PbCtl) were maintained by weekly passage in ddY mice for 122 weeks. High-throughput genome sequencing analysis revealed that two PbMut lines had 175-178 mutations and a 86- to 90-fold higher mutation rate than that of a PbCtl line. PbMut, PbCtl, and their parent strain, PbWT, showed similar course of infection. Interestingly, PbMut lost the ability to form gametocytes during serial passages. We believe that the malaria mutator system could provide a novel and useful tool to investigate malaria biology.

  8. New Hyperekplexia Mutations Provide Insight into Glycine Receptor Assembly, Trafficking, and Activation Mechanisms*

    PubMed Central

    Bode, Anna; Wood, Sian-Elin; Mullins, Jonathan G. L.; Keramidas, Angelo; Cushion, Thomas D.; Thomas, Rhys H.; Pickrell, William O.; Drew, Cheney J. G.; Masri, Amira; Jones, Elizabeth A.; Vassallo, Grace; Born, Alfred P.; Alehan, Fusun; Aharoni, Sharon; Bannasch, Gerald; Bartsch, Marius; Kara, Bulent; Krause, Amanda; Karam, Elie G.; Matta, Stephanie; Jain, Vivek; Mandel, Hanna; Freilinger, Michael; Graham, Gail E.; Hobson, Emma; Chatfield, Sue; Vincent-Delorme, Catherine; Rahme, Jubran E.; Afawi, Zaid; Berkovic, Samuel F.; Howell, Owain W.; Vanbellinghen, Jean-François; Rees, Mark I.; Chung, Seo-Kyung; Lynch, Joseph W.

    2013-01-01

    Hyperekplexia is a syndrome of readily provoked startle responses, alongside episodic and generalized hypertonia, that presents within the first month of life. Inhibitory glycine receptors are pentameric ligand-gated ion channels with a definitive and clinically well stratified linkage to hyperekplexia. Most hyperekplexia cases are caused by mutations in the α1 subunit of the human glycine receptor (hGlyR) gene (GLRA1). Here we analyzed 68 new unrelated hyperekplexia probands for GLRA1 mutations and identified 19 mutations, of which 9 were novel. Electrophysiological analysis demonstrated that the dominant mutations p.Q226E, p.V280M, and p.R414H induced spontaneous channel activity, indicating that this is a recurring mechanism in hGlyR pathophysiology. p.Q226E, at the top of TM1, most likely induced tonic activation via an enhanced electrostatic attraction to p.R271 at the top of TM2, suggesting a structural mechanism for channel activation. Receptors incorporating p.P230S (which is heterozygous with p.R65W) desensitized much faster than wild type receptors and represent a new TM1 site capable of modulating desensitization. The recessive mutations p.R72C, p.R218W, p.L291P, p.D388A, and p.E375X precluded cell surface expression unless co-expressed with α1 wild type subunits. The recessive p.E375X mutation resulted in subunit truncation upstream of the TM4 domain. Surprisingly, on the basis of three independent assays, we were able to infer that p.E375X truncated subunits are incorporated into functional hGlyRs together with unmutated α1 or α1 plus β subunits. These aberrant receptors exhibit significantly reduced glycine sensitivity. To our knowledge, this is the first suggestion that subunits lacking TM4 domains might be incorporated into functional pentameric ligand-gated ion channel receptors. PMID:24108130

  9. Enhancing human spermine synthase activity by engineered mutations.

    PubMed

    Zhang, Zhe; Zheng, Yueli; Petukh, Margo; Pegg, Anthony; Ikeguchi, Yoshihiko; Alexov, Emil

    2013-01-01

    Spermine synthase (SMS) is an enzyme which function is to convert spermidine into spermine. It was shown that gene defects resulting in amino acid changes of the wild type SMS cause Snyder-Robinson syndrome, which is a mild-to-moderate mental disability associated with osteoporosis, facial asymmetry, thin habitus, hypotonia, and a nonspecific movement disorder. These disease-causing missense mutations were demonstrated, both in silico and in vitro, to affect the wild type function of SMS by either destabilizing the SMS dimer/monomer or directly affecting the hydrogen bond network of the active site of SMS. In contrast to these studies, here we report an artificial engineering of a more efficient SMS variant by transferring sequence information from another organism. It is confirmed experimentally that the variant, bearing four amino acid substitutions, is catalytically more active than the wild type. The increased functionality is attributed to enhanced monomer stability, lowering the pKa of proton donor catalytic residue, optimized spatial distribution of the electrostatic potential around the SMS with respect to substrates, and increase of the frequency of mechanical vibration of the clefts presumed to be the gates toward the active sites. The study demonstrates that wild type SMS is not particularly evolutionarily optimized with respect to the reaction spermidine → spermine. Having in mind that currently there are no variations (non-synonymous single nucleotide polymorphism, nsSNP) detected in healthy individuals, it can be speculated that the human SMS function is precisely tuned toward its wild type and any deviation is unwanted and disease-causing.

  10. Thermally denatured state determines refolding in lipase: mutational analysis.

    PubMed

    Ahmad, Shoeb; Rao, Nalam Madhusudhana

    2009-06-01

    Irreversibility of thermally denatured proteins due to aggregation limits thermodynamic characterization of proteins and also confounds the identification of thermostable mutants in protein populations. Identification of mutations that prevent the aggregation of unfolded proteins provides insights into folding pathways. In a lipase from Bacillus subtilis, evolved by directed evolution procedures, the irreversibility due to temperature-mediated aggregation was completely prevented by a single mutation, M137P. Though the parent and the mutants unfold completely on heating, mutants having substitutions M137P, along with M134E and S163P, completely or partially prevent the formation of aggregation-prone intermediate(s) at 75 degrees C. The three mutants show only a marginal increase in free energy of unfolding (DeltaG(H(2)O)), however, the profiles of the residual activity with temperature shows remarkable shift to higher temperature compared to parent. The intermediate(s) were characterized by enhanced binding of bis-ANS, a probe to titrate surface hydrophobicity, aggregation profiles and by estimation of soluble protein. Inclusion of salt in the refolding conditions prevents the reversibility of mutant having charge substitution, while the reversibility of mutant with the introduction of proline was unaffected, indicating the role of charge mediated interaction in M134E in preventing aggregation. Partial prevention of thermal aggregation in wild-type lipase with single substitution, M137P, incorporated by site-directed mutagenesis, suggests that the affect of M137P is independent of the intrinsic thermostability of lipase. Various effects of the mutations suggest their role is in prevention of the formation of aggregation prone intermediate(s). These mutations, describe yet another strategy to enhance the thermotolerance of proteins, where their influence is observed only on the denatured ensemble.

  11. Mutation analysis of the Fanconi Anemia Gene FACC

    SciTech Connect

    Verlander, P.C.; Lin, J.D.; Udono, M.U.; Zhang, Q.; Auerbach, A.D. ); Gibson, R.A.; Mathew, C.G. )

    1994-04-01

    Fanconi anemia (FA) is a genetically heterogeneous autosomal recessive disorder characterized by a unique hypersensitivity of cells to DNA cross-linking agents; a gene for complementation group C (FACC) has recently been cloned. The authors have amplified FACC exons with their flanking intron sequences from genomic DNA from 174 racially and ethnically diverse families in the International Fanconi Anemia Registry and have screened for mutations by using SSCP analysis. They have identified eight different variants in 32 families; three were detected in exon 1, one in exon 4, one in intron 4, two in exon 6, and one in exon 14. Two of the eight variants, in seven families, did not segregate with the disease allele in multiplex families, suggesting that these variants represented benign polymorphisms. Disease-associated mutations in FACC were detected in a total of 25 (14.4%) of 174 families screened. The most frequent mutations were IVS4 + 4 A [yields] T (intron 4; 12 families) and 322delG (exon 1; 9 families). Other, less common mutations include Q13X in exon 1, R185X and D195V in exon 6, and L554P in exon 14. The polymorphisms were S26F in exon 1 and G139E in exon 4. All patients in the study with 322delG, Q13X, R185X, and D195V are of northern or eastern European or southern Italian ancestry, and 18 of 19 have a mild form of the disease, while the 2 patients with L554P, both from the same family, have a severe phenotype. All 19 patients with IVS4 + 4 A [yields] T have Jewish ancestry and have a severe phenotype. 19 refs., 1 fig., 3 tabs.

  12. Activating mutations and senescence secretome: new insights into HER2 activation, drug sensitivity and metastatic progression.

    PubMed

    Acharyya, Swarnali

    2013-04-23

    HER2 amplification and overexpression is observed in approximately 20% of breast cancers and is strongly associated with poor prognosis and therapeutic responsiveness to HER2 targeted agents. A recent study by Bose and colleagues suggests that another subset of breast cancer patients without HER2 amplification but with activating HER2 mutation might also benefit from existing HER2-targeted agents and the authors functionally characterize these somatic mutations in experimental models. In a second study on HER2-driven breast cancer, Angelini and colleagues investigate how the constitutively active, truncated carboxy-terminal fragment of HER2, p95HER2, promotes metastatic progression through non-cellautonomous secretion of factors from senescent cells. These new findings advance our understanding of HER2 biology in the context of HER2 activation as well as offer new insights into our understanding of drug sensitivity and metastatic progression.

  13. Methods in molecular cardiology: DHPLC mutation detection analysis

    PubMed Central

    Jongbloed, R.J.E.; Smeets, H.; Doevendans, P.A.; van den Wijngaard, A.

    2005-01-01

    An increasing number of mutations have been identified in genes involved in cardiac disorders which has led to novel insights in the pathophysiology of inherited cardiac diseases. As a result of these findings, techniques specialised in automated high-throughput analysis are implemented to handle the increasing number of diagnostic genetic requests. Denaturing high-performance liquid chromatography (DHPLC) is one such novel technique that fulfils the criteria of speed, sensitivity and accuracy. This issue focuses on the basic principle of the technique and illustrates how genetic alterations can be identified. ImagesFigure 1AFigure 2Figure 4 PMID:25696406

  14. Myopathic Lamin Mutations Cause Reductive Stress and Activate the Nrf2/Keap-1 Pathway

    PubMed Central

    Dialynas, George; Shrestha, Om K.; Ponce, Jessica M.; Zwerger, Monika; Thiemann, Dylan A.; Young, Grant H.; Moore, Steven A.; Yu, Liping; Lammerding, Jan; Wallrath, Lori L.

    2015-01-01

    Mutations in the human LMNA gene cause muscular dystrophy by mechanisms that are incompletely understood. The LMNA gene encodes A-type lamins, intermediate filaments that form a network underlying the inner nuclear membrane, providing structural support for the nucleus and organizing the genome. To better understand the pathogenesis caused by mutant lamins, we performed a structural and functional analysis on LMNA missense mutations identified in muscular dystrophy patients. These mutations perturb the tertiary structure of the conserved A-type lamin Ig-fold domain. To identify the effects of these structural perturbations on lamin function, we modeled these mutations in Drosophila Lamin C and expressed the mutant lamins in muscle. We found that the structural perturbations had minimal dominant effects on nuclear stiffness, suggesting that the muscle pathology was not accompanied by major structural disruption of the peripheral nuclear lamina. However, subtle alterations in the lamina network and subnuclear reorganization of lamins remain possible. Affected muscles had cytoplasmic aggregation of lamins and additional nuclear envelope proteins. Transcription profiling revealed upregulation of many Nrf2 target genes. Nrf2 is normally sequestered in the cytoplasm by Keap-1. Under oxidative stress Nrf2 dissociates from Keap-1, translocates into the nucleus, and activates gene expression. Unexpectedly, biochemical analyses revealed high levels of reducing agents, indicative of reductive stress. The accumulation of cytoplasmic lamin aggregates correlated with elevated levels of the autophagy adaptor p62/SQSTM1, which also binds Keap-1, abrogating Nrf2 cytoplasmic sequestration, allowing Nrf2 nuclear translocation and target gene activation. Elevated p62/SQSTM1 and nuclear enrichment of Nrf2 were identified in muscle biopsies from the corresponding muscular dystrophy patients, validating the disease relevance of our Drosophila model. Thus, novel connections were made

  15. Passenger mutations and aberrant gene expression in congenic tissue plasminogen activator-deficient mouse strains

    PubMed Central

    Szabo, R.; Samson, A. L.; Lawrence, D. A.; Medcalf, R. L.; Bugge, T. H.

    2017-01-01

    Summary Background The ability to generate defined null mutations in mice revolutionized the analysis of gene function in mammals. However, gene-deficient mice generated by using 129-derived embryonic stem cells may carry large segments of 129 DNA, even when extensively backcrossed to reference strains, such as C57BL/6J, and this may confound interpretation of experiments performed in these mice. Tissue plasminogen activator (tPA), encoded by the PLAT gene, is a fibrinolytic serine protease that is widely expressed in the brain. A number of neurological abnormalities have been reported in tPA-deficient mice. Objectives To study genetic contamination of tPA-deficient mice. Materials and methods Whole genome expression array analysis, RNAseq expression profiling, low- and high-density SNP analysis, bioinformatics, and genome editing was used to analyze gene expression in tPA-deficient mouse brains. Results and conclusions Genes differentially expressed in the brain of Plat−/− mice from two independent colonies highly backcrossed onto the C57BL/6J strain clustered near Plat on chromosome 8. SNP analysis attributed this anomaly to about 20 Mbp of DNA flanking Plat being of 129 origin in both strains. Bioinformatic analysis of these 129-derived chromosomal segments identified a significant number of mutations in genes co-segregating with the targeted Plat allele, including several potential null mutations. Using zinc finger nuclease technology, we generated novel “passenger mutation”-free isogenic C57BL/6J-Plat−/− and FVB/NJ-Plat−/− mouse strains by introducing an 11 bp deletion in the exon encoding the signal peptide. These novel mouse strains will be a useful community resource for further exploration of tPA function in physiological and pathological processes. PMID:27079292

  16. Molecular and functional analysis of two new MTTP gene mutations in an atypical case of abetalipoproteinemia.

    PubMed

    Di Filippo, Mathilde; Créhalet, Hervé; Samson-Bouma, Marie Elisabeth; Bonnet, Véronique; Aggerbeck, Lawrence P; Rabès, Jean-Pierre; Gottrand, Frederic; Luc, Gérald; Bozon, Dominique; Sassolas, Agnès

    2012-03-01

    Abetalipoproteinemia (ABL) is an inherited disease characterized by the defective assembly and secretion of apolipoprotein B-containing lipoproteins caused by mutations in the microsomal triglyceride transfer protein large subunit (MTP) gene (MTTP). We report here a female patient with an unusual clinical and biochemical ABL phenotype. She presented with severe liver injury, low levels of LDL-cholesterol, and subnormal levels of vitamin E, but only mild fat malabsorption and no retinitis pigmentosa or acanthocytosis. Our objective was to search for MTTP mutations and to determine the relationship between the genotype and this particular phenotype. The subject exhibited compound heterozygosity for two novel MTTP mutations: one missense mutation (p.Leu435His) and an intronic deletion (c.619-5_619-2del). COS-1 cells expressing the missense mutant protein exhibited negligible levels of MTP activity. In contrast, the minigene splicing reporter assay showed an incomplete splicing defect of the intronic deletion, with 26% of the normal splicing being maintained in the transfected HeLa cells. The small amount of MTP activity resulting from the residual normal splicing in the patient explains the atypical phenotype observed. Our investigation provides an example of a functional analysis of unclassified variations, which is an absolute necessity for the molecular diagnosis of atypical ABL cases.

  17. Dominance and interloci interactions in transcriptional activation cascades: models explaining compensatory mutations and inheritance patterns.

    PubMed

    Bost, Bruno; Veitia, Reiner A

    2014-01-01

    Mutations in human genes encoding transcription factors are often dominant because one active allele cannot ensure a normal phenotype (haploinsufficiency). In other instances, heterozygous mutations of two genes are required for a phenotype to appear (combined haploinsufficiency). Here, we explore with models (i) the basis of haploinsufficiency and combined haploinsufficiency owing to mutations in transcription activators, and (ii) how the effects of such mutations can be amplified or buffered by subsequent steps in a transcription cascade. We propose that the non-linear (sigmoidal) response of transcription to the concentration of activators can explain haploinsufficiency. We further show that the sigmoidal character of the output of a cascade increases with the number of steps involved, the settings of which will determine the buffering or enhancement of the effects of a decreased concentration of an upstream activator. This exploration provides insights into the bases of compensatory mutations and on interloci interactions underlying oligogenic inheritance patterns.

  18. Comparative analysis and functional mapping of SACS mutations reveal novel insights into sacsin repeated architecture.

    PubMed

    Romano, Alessandro; Tessa, Alessandra; Barca, Amilcare; Fattori, Fabiana; de Leva, Maria Fulvia; Terracciano, Alessandra; Storelli, Carlo; Santorelli, Filippo Maria; Verri, Tiziano

    2013-03-01

    Autosomal recessive spastic ataxia of Charlevoix-Saguenay (ARSACS) is a neurological disease with mutations in SACS, encoding sacsin, a multidomain protein of 4,579 amino acids. The large size of SACS and its translated protein has hindered biochemical analysis of ARSACS, and how mutant sacsins lead to disease remains largely unknown. Three repeated sequences, called sacsin repeating region (SRR) supradomains, have been recognized, which contribute to sacsin chaperone-like activity. We found that the three SRRs are much larger (≥1,100 residues) than previously described, and organized in discrete subrepeats. We named the large repeated regions Sacsin Internal RePeaTs (SIRPT1, SIRPT2, and SIRPT3) and the subrepeats sr1, sr2, sr3, and srX. Comparative analysis of vertebrate sacsins in combination with fine positional mapping of a set of human mutations revealed that sr1, sr2, sr3, and srX are functional. Notably, the position of the pathogenic mutations in sr1, sr2, sr3, and srX appeared to be related to the severity of the clinical phenotype, as assessed by defining a severity scoring system. Our results suggest that the relative position of mutations in subrepeats will variably influence sacsin dysfunction. The characterization of the specific role of each repeated region will help in developing a comprehensive and integrated pathophysiological model of function for sacsin.

  19. Integrative analysis of mutational and transcriptional profiles reveals driver mutations of metastatic breast cancers

    PubMed Central

    Lee, Ji-Hyun; Zhao, Xing-Ming; Yoon, Ina; Lee, Jin Young; Kwon, Nam Hoon; Wang, Yin-Ying; Lee, Kyung-Min; Lee, Min-Joo; Kim, Jisun; Moon, Hyeong-Gon; In, Yongho; Hao, Jin-Kao; Park, Kyung-Mii; Noh, Dong-Young; Han, Wonshik; Kim, Sunghoon

    2016-01-01

    Despite the explosion in the numbers of cancer genomic studies, metastasis is still the major cause of cancer mortality. In breast cancer, approximately one-fifth of metastatic patients survive 5 years. Therefore, detecting the patients at a high risk of developing distant metastasis at first diagnosis is critical for effective treatment strategy. We hereby present a novel systems biology approach to identify driver mutations escalating the risk of metastasis based on both exome and RNA sequencing of our collected 78 normal-paired breast cancers. Unlike driver mutations occurring commonly in cancers as reported in the literature, the mutations detected here are relatively rare mutations occurring in less than half metastatic samples. By supposing that the driver mutations should affect the metastasis gene signatures, we develop a novel computational pipeline to identify the driver mutations that affect transcription factors regulating metastasis gene signatures. We identify driver mutations in ADPGK, NUP93, PCGF6, PKP2 and SLC22A5, which are verified to enhance cancer cell migration and prompt metastasis with in vitro experiments. The discovered somatic mutations may be helpful for identifying patients who are likely to develop distant metastasis. PMID:27625789

  20. Integrative analysis of mutational and transcriptional profiles reveals driver mutations of metastatic breast cancers.

    PubMed

    Lee, Ji-Hyun; Zhao, Xing-Ming; Yoon, Ina; Lee, Jin Young; Kwon, Nam Hoon; Wang, Yin-Ying; Lee, Kyung-Min; Lee, Min-Joo; Kim, Jisun; Moon, Hyeong-Gon; In, Yongho; Hao, Jin-Kao; Park, Kyung-Mii; Noh, Dong-Young; Han, Wonshik; Kim, Sunghoon

    2016-01-01

    Despite the explosion in the numbers of cancer genomic studies, metastasis is still the major cause of cancer mortality. In breast cancer, approximately one-fifth of metastatic patients survive 5 years. Therefore, detecting the patients at a high risk of developing distant metastasis at first diagnosis is critical for effective treatment strategy. We hereby present a novel systems biology approach to identify driver mutations escalating the risk of metastasis based on both exome and RNA sequencing of our collected 78 normal-paired breast cancers. Unlike driver mutations occurring commonly in cancers as reported in the literature, the mutations detected here are relatively rare mutations occurring in less than half metastatic samples. By supposing that the driver mutations should affect the metastasis gene signatures, we develop a novel computational pipeline to identify the driver mutations that affect transcription factors regulating metastasis gene signatures. We identify driver mutations in ADPGK, NUP93, PCGF6, PKP2 and SLC22A5, which are verified to enhance cancer cell migration and prompt metastasis with in vitro experiments. The discovered somatic mutations may be helpful for identifying patients who are likely to develop distant metastasis.

  1. Suppressor Mutations for Presenilin 1 Familial Alzheimer Disease Mutants Modulate γ-Secretase Activities.

    PubMed

    Futai, Eugene; Osawa, Satoko; Cai, Tetsuo; Fujisawa, Tomoya; Ishiura, Shoichi; Tomita, Taisuke

    2016-01-01

    γ-Secretase is a multisubunit membrane protein complex containing presenilin (PS1) as a catalytic subunit. Familial Alzheimer disease (FAD) mutations within PS1 were analyzed in yeast cells artificially expressing membrane-bound substrate, amyloid precursor protein, or Notch fused to Gal4 transcriptional activator. The FAD mutations, L166P and G384A (Leu-166 to Pro and Gly-384 to Ala substitution, respectively), were loss-of-function in yeast. We identified five amino acid substitutions that suppress the FAD mutations. The cleavage of amyloid precursor protein or Notch was recovered by the secondary mutations. We also found that secondary mutations alone activated the γ-secretase activity. FAD mutants with suppressor mutations, L432M or S438P within TMD9 together with a missense mutation in the second or sixth loops, regained γ-secretase activity when introduced into presenilin null mouse fibroblasts. Notably, the cells with suppressor mutants produced a decreased amount of Aβ42, which is responsible for Alzheimer disease. These results indicate that the yeast system is useful to screen for mutations and chemicals that modulate γ-secretase activity.

  2. Cancer Signature Investigation: ERBB2 (HER2)-Activating Mutation and Amplification-Positive Breast Carcinoma Mimicking Lung Primary.

    PubMed

    Shih, Jennifer; Bashir, Babar; Gustafson, Karen S; Andrake, Mark; Dunbrack, Roland L; Goldstein, Lori J; Boumber, Yanis

    2015-08-01

    Next-generation sequencing of primary and metachronous metastatic cancer lesions may impact patient care. We present a case of relapsed metastatic breast cancer with a dominant pulmonary lesion originally identified as lung adenocarcinoma. A 72-year-old, never-smoker woman with a protracted cough was found to have a large lung mass and regional lymphadenopathy on a chest CT. Lung mass biopsy showed adenocarcinoma with focal TTF-1 (thyroid transcription factor 1) positivity, favoring a lung primary. In addition to stereotactic brain radiation for cerebral metastases, she was started on carboplatin/pemetrexed. As part of the workup, the tumor was analyzed by a 50-gene targeted mutation panel, which detected 3 somatic mutations: ERBB2 (HER2) D769H activating missense mutation, TP53 Y126 inactivating truncating mutation, and SMARCB1 R374Q missense mutation. Of note, the patient had a history of stage IIA triple-negative grade 3 invasive ductal carcinoma of the left breast 1.5 years ago and received neoadjuvant chemotherapy and adjuvant radiation, and underwent a lumpectomy. Further analysis of her primary breast tumor showed a mutational profile identical to that of the lung tumor. Fluorescence in situ hybridization revealed HER2 amplification in the lung tumor, with a HER2/CEP17 ratio of 3.9. The patient was diagnosed with recurrent HER2-positive metastatic breast carcinoma with a coexisting ERBB2 (HER2) activating mutation. Chemotherapy was adjusted to include dual HER2-targeted therapy containing trastuzumab and pertuzumab, resulting in an ongoing partial response. This case demonstrates that a unique genetic mutational profile can clarify whether a tumor represents a metastatic lesion or new malignancy when conventional morphological and immunohistochemical methods are indeterminate, and can directly impact treatment decisions.

  3. An active site mutation increases the polymerase activity of the guinea pig-lethal Marburg virus.

    PubMed

    Koehler, Alexander; Kolesnikova, Larissa; Becker, Stephan

    2016-10-01

    Marburg virus (MARV) causes severe, often fatal, disease in humans and transient illness in rodents. Sequential passaging of MARV in guinea pigs resulted in selection of a lethal virus containing 4 aa changes. A D184N mutation in VP40 (VP40D184N), which leads to a species-specific gain of viral fitness, and three mutations in the active site of viral RNA-dependent RNA polymerase L, which were investigated in the present study for functional significance in human and guinea pig cells. The transcription/replication activity of L mutants was strongly enhanced by a substitution at position 741 (S741C), and inhibited by other substitutions (D758A and A759D) in both species. The polymerase activity of L carrying the S741C substitution was eightfold higher in guinea pig cells than in human cells upon co-expression with VP40D184N, suggesting that the additive effect of the two mutations provides MARV a replicative advantage in the new host.

  4. Functional and splicing defect analysis of 23 ACVRL1 mutations in a cohort of patients affected by Hereditary Hemorrhagic Telangiectasia

    PubMed Central

    Alaa el Din, Ferdos; Patri, Sylvie; Thoreau, Vincent; Rodriguez-Ballesteros, Montserrat; Hamade, Eva; Bailly, Sabine; Gilbert-Dussardier, Brigitte; Abou Merhi, Raghida; Kitzis, Alain

    2015-01-01

    Hereditary Hemorrhagic Telangiectasia syndrome (HHT) or Rendu-Osler-Weber (ROW) syndrome is an autosomal dominant vascular disorder. Two most common forms of HHT, HHT1 and HHT2, have been linked to mutations in the endoglin (ENG) and activin receptor-like kinase 1 (ACVRL1or ALK1) genes respectively. This work was designed to examine the pathogenicity of 23 nucleotide variations in ACVRL1 gene detected in more than 400 patients. Among them, 14 missense mutations and one intronic variant were novels, and 8 missense mutations were previously identified with questionable implication in HHT2. The functionality of missense mutations was analyzed in response to BMP9 (specific ligand of ALK1), the maturation of the protein products and their localization were analyzed by western blot and fluorescence microscopy. The splicing impairment of the intronic and of two missense mutations was examined by minigene assay. Functional analysis showed that 18 out of 22 missense mutations were defective. Splicing analysis revealed that one missense mutation (c.733A>G, p.Ile245Val) affects the splicing of the harboring exon 6. Similarly, the intronic mutation outside the consensus splicing sites (c.1048+5G>A in intron 7) was seen pathogenic by splicing study. Both mutations induce a frame shift creating a premature stop codon likely resulting in mRNA degradation by NMD surveillance mechanism. Our results confirm the haploinsufficiency model proposed for HHT2. The affected allele of ACVRL1 induces mRNA degradation or the synthesis of a protein lacking the receptor activity. Furthermore, our data demonstrate that functional and splicing analyses together, represent two robust diagnostic tools to be used by geneticists confronted with novel or conflicted ACVRL1 mutations. PMID:26176610

  5. DNA mutation detection and analysis using miniaturized microfluidic systems.

    PubMed

    Handal, Maria I; Ugaz, Victor M

    2006-01-01

    Identification of genetic sequence variations occurring on a population-wide scale is key to unraveling the complex interactions that are the underlying cause of many medical disorders and diseases. A critical need exists, however, for advanced technology to enable DNA mutation analysis to be performed with significantly higher throughput and at significantly lower cost than is currently attainable. Microfluidic systems offer an attractive platform to address these needs by combining the ability to perform rapid analysis with a simplified device format that can be inexpensively mass-produced. This paper will review recent progress toward developing these next-generation systems and discuss challenges associated with adapting these technologies for routine laboratory use.

  6. Clinical activity of regorafenib in PDGFRA-mutated gastrointestinal stromal tumor.

    PubMed

    Grellety, Thomas; Kind, Michèle; Coindre, Jean-Michel; Italiano, Antoine

    2015-11-01

    Gastrointestinal stromal tumor (GIST) is the most frequent mesenchymal tumor of the gastrointestinal tract and one of the most frequent sarcoma. Mutually exclusive KIT and PDGFRA mutations are central events in GIST pathogenesis, and their understanding is crucial because specific treatment targeting oncogenic KIT and PDGFRA activation (especially imatinib) has become available. The most frequent PDGFRA mutation (D842V) is associated with primary resistance to imatinib. Data related to regorafenib efficacy in PDGFRA-mutated GIST are lacking. We report here a case report of a prolonged response with regorafenib in a patient with a PDGFRA-mutated GIST.

  7. The effect of novel mutations on the structure and enzymatic activity of unconventional myosins associated with autosomal dominant non-syndromic hearing loss

    PubMed Central

    Kwon, Tae-Jun; Oh, Se-Kyung; Park, Hong-Joon; Sato, Osamu; Venselaar, Hanka; Choi, Soo Young; Kim, SungHee; Lee, Kyu-Yup; Bok, Jinwoong; Lee, Sang-Heun; Vriend, Gert; Ikebe, Mitsuo; Kim, Un-Kyung; Choi, Jae Young

    2014-01-01

    Mutations in five unconventional myosin genes have been associated with genetic hearing loss (HL). These genes encode the motor proteins myosin IA, IIIA, VI, VIIA and XVA. To date, most mutations in myosin genes have been found in the Caucasian population. In addition, only a few functional studies have been performed on the previously reported myosin mutations. We performed screening and functional studies for mutations in the MYO1A and MYO6 genes in Korean cases of autosomal dominant non-syndromic HL. We identified four novel heterozygous mutations in MYO6. Three mutations (p.R825X, p.R991X and Q918fsX941) produce a premature truncation of the myosin VI protein. Another mutation, p.R205Q, was associated with diminished actin-activated ATPase activity and actin gliding velocity of myosin VI in an in vitro analysis. This finding is consistent with the results of protein modelling studies and corroborates the pathogenicity of this mutation in the MYO6 gene. One missense variant, p.R544W, was found in the MYO1A gene, and in silico analysis suggested that this variant has deleterious effects on protein function. This finding is consistent with the results of protein modelling studies and corroborates the pathogenic effect of this mutation in the MYO6 gene. PMID:25080041

  8. The effect of novel mutations on the structure and enzymatic activity of unconventional myosins associated with autosomal dominant non-syndromic hearing loss.

    PubMed

    Kwon, Tae-Jun; Oh, Se-Kyung; Park, Hong-Joon; Sato, Osamu; Venselaar, Hanka; Choi, Soo Young; Kim, SungHee; Lee, Kyu-Yup; Bok, Jinwoong; Lee, Sang-Heun; Vriend, Gert; Ikebe, Mitsuo; Kim, Un-Kyung; Choi, Jae Young

    2014-07-01

    Mutations in five unconventional myosin genes have been associated with genetic hearing loss (HL). These genes encode the motor proteins myosin IA, IIIA, VI, VIIA and XVA. To date, most mutations in myosin genes have been found in the Caucasian population. In addition, only a few functional studies have been performed on the previously reported myosin mutations. We performed screening and functional studies for mutations in the MYO1A and MYO6 genes in Korean cases of autosomal dominant non-syndromic HL. We identified four novel heterozygous mutations in MYO6. Three mutations (p.R825X, p.R991X and Q918fsX941) produce a premature truncation of the myosin VI protein. Another mutation, p.R205Q, was associated with diminished actin-activated ATPase activity and actin gliding velocity of myosin VI in an in vitro analysis. This finding is consistent with the results of protein modelling studies and corroborates the pathogenicity of this mutation in the MYO6 gene. One missense variant, p.R544W, was found in the MYO1A gene, and in silico analysis suggested that this variant has deleterious effects on protein function. This finding is consistent with the results of protein modelling studies and corroborates the pathogenic effect of this mutation in the MYO6 gene.

  9. Prognostic significance of IDH mutation in adult low-grade gliomas: a meta-analysis.

    PubMed

    Sun, Hairui; Yin, Lianhu; Li, Showwei; Han, Song; Song, Guangrong; Liu, Ning; Yan, Changxiang

    2013-06-01

    Mutations in the gene encoding isocitrate dehydrogenase (IDH) have been identified in approximately 65-90 % of low-grade gliomas (LGGs). Various studies examining the relationship between IDH mutation with the clinical outcome in patients with LGGs have yielded inconclusive results. The purpose of the present meta-analysis of literature is to determine this effect. We conducted a meta-analysis of 10 studies (937 patients) that evaluated the correlation between IDH mutation and overall survival (OS). For the quantitative aggregation of the survival results, the IDH mutation effect was measured by hazard ratio (HR). Overall, the pooled HR was 0.585 (95 % CI, 0.376-0.911, p = 0.025, random effect model) for patients with IDH mutation vs patients without IDH mutation. IDH mutation was associated with better overall survival of LGGs. At least this trend was observed in our analysis.

  10. A highly conserved interaction involving the middle residue of the SXN active-site motif is crucial for function of class B penicillin-binding proteins: mutational and computational analysis of PBP 2 from N. gonorrhoeae.

    PubMed

    Tomberg, Joshua; Temple, Brenda; Fedarovich, Alena; Davies, Christopher; Nicholas, Robert A

    2012-04-03

    Insertion of an aspartate residue at position 345a in penicillin-binding protein 2 (PBP 2), which lowers the rate of penicillin acylation by ~6-fold, is commonly observed in penicillin-resistant strains of Neisseria gonorrhoeae. Here, we show that insertions of other amino acids also lower the penicillin acylation rate of PBP 2, but none supported growth of N. gonorrhoeae, indicating loss of essential transpeptidase activity. The Asp345a mutation likely acts by altering the interaction between its adjacent residue, Asp346, in the β2a-β2d hairpin loop and Ser363, the middle residue of the SXN active site motif. Because the adjacent aspartate creates ambiguity in the position of the insertion, we also examined if insertions at position 346a could confer decreased susceptibility to penicillin. However, only aspartate insertions were identified, indicating that only an Asp-Asp couple can confer resistance and retain transpeptidase function. The importance of the Asp346-Ser363 interaction was assessed by mutation of each residue to Ala. Although both mutants lowered the acylation rate of penicillin G by 5-fold, neither could support growth of N. gonorrhoeae, again indicating loss of transpeptidase function. Interaction between a residue in the equivalent of the β2a-β2d hairpin loop and the middle residue of the SXN motif is observed in crystal structures of other Class B PBPs, and its importance is also supported by multisequence alignments. Overall, these results suggest that this conserved interaction can be manipulated (e.g., by insertion) to lower the acylation rate by β-lactam antibiotics and increase resistance, but only if essential transpeptidase activity is preserved.

  11. CAPN5 mutation in hereditary uveitis: the R243L mutation increases calpain catalytic activity and triggers intraocular inflammation in a mouse model

    PubMed Central

    Wert, Katherine J.; Bassuk, Alexander G.; Wu, Wen-Hsuan; Gakhar, Lokesh; Coglan, Diana; Mahajan, MaryAnn; Wu, Shu; Yang, Jing; Lin, Chyuan-Sheng; Tsang, Stephen H.; Mahajan, Vinit B.

    2015-01-01

    A single amino acid mutation near the active site of the CAPN5 protease was linked to the inherited blinding disorder, autosomal dominant neovascular inflammatory vitreoretinopathy (ADNIV, OMIM #193235). In homology modeling with other calpains, this R243L CAPN5 mutation was situated in a mobile loop that gates substrate access to the calcium-regulated active site. In in vitro activity assays, the mutation increased calpain protease activity and made it far more active at low concentrations of calcium. To test whether the disease allele could yield an animal model of ADNIV, we created transgenic mice expressing human (h) CAPN5R243L only in the retina. The resulting hCAPN5R243L transgenic mice developed a phenotype consistent with human uveitis and ADNIV, at the clinical, histological and molecular levels. The fundus of hCAPN5R243L mice showed enhanced autofluorescence (AF) and pigment changes indicative of reactive retinal pigment epithelial cells and photoreceptor degeneration. Electroretinography showed mutant mouse eyes had a selective loss of the b-wave indicating an inner-retina signaling defect. Histological analysis of mutant mouse eyes showed protein extravasation from dilated vessels into the anterior chamber and vitreous, vitreous inflammation, vitreous and retinal fibrosis and retinal degeneration. Analysis of gene expression changes in the hCAPN5R243L mouse retina showed upregulation of several markers, including members of the Toll-like receptor pathway, chemokines and cytokines, indicative of both an innate and adaptive immune response. Since many forms of uveitis share phenotypic characteristics of ADNIV, this mouse offers a model with therapeutic testing utility for ADNIV and uveitis patients. PMID:25994508

  12. Characterization of fhlA mutations resulting in ligand-independent transcriptional activation and ATP hydrolysis.

    PubMed Central

    Korsa, I; Böck, A

    1997-01-01

    The FhlA protein belongs to the NtrC family of transcriptional regulators. It induces transcription from the -12/-24 promoters of the genes of the formate regulon by sigma54 RNA polymerase. FhlA is activated by binding of the ligand formate and does not require phosphorylation. A mutational analysis of the fhLA gene portion coding for the A and C domains was conducted with the aim of gaining information on the interaction between formate binding and ATP hydrolysis plus transcription activation. Four mutations were identified, all located in the A domain; one of them rendered transcription completely independent from the presence of formate, and the others conferred a semiconstitutive phenotype. The FhlA protein of one of the semiconstitutive variants was purified. Catalytic efficiency of ATP hydrolysis of the mutant FhlA was increased in the absence of formate in the same manner as formate influences the activity of wild-type FhlA. Moreover, in vitro transcription occurred at much lower threshold concentrations of the mutant protein and of nucleoside triphosphates than with the wild-type FhlA. PMID:8981978

  13. Genetic analysis of suppressors of the PF10 mutation in Chlamydomonas reinhardtii

    SciTech Connect

    Dutcher, S.K.; Gibbons, W.; Inwood, W.B.

    1988-12-01

    A mutation at the PF10 locus of the unicellular green alga Chlamydomonas reinhardtii leads to abnormal cell motility. The asymmetric form of the ciliary beat stroke characteristic of wild-type flagella is modified by this mutation to a nearly symmetric beat. We report here that this abnormal motility is a conditional phenotype that depends on light intensity. In the absence of light or under low light intensities, the motility is more severely impaired than at higher light intensities. By UV mutagenesis we obtained 11 intragenic and 70 extragenic strains that show reversion of the pf10 motility phenotype observed in low light. The intragenic events reverted the motility phenotype of the pf10 mutation completely. The extragenic events define at least seven suppressor loci; these map to linkage groups IV, VII, IX, XI, XII and XVII. Suppressor mutations at two of the seven loci (LIS1 and LIS2) require light for their suppressor activity. Forty-eight of the 70 extragenic suppressors were examined in heterozygous diploid cells; 47 of these mutants were recessive to the wild-type allele and one mutant (bop5-1) was dominant to the wild-type allele. Complementation analysis of the 47 recessive mutants showed unusual patterns. Most mutants within a recombinationally defined group failed to complement one another, although there were pairs that showed intra-allelic complementation. Additionally, some of the mutants at each recombinationally defined locus failed to complement mutants at other loci. They define dominant enhancers of one another.

  14. Sensitive cytometry based system for enumeration, capture and analysis of gene mutations of circulating tumor cells.

    PubMed

    Sawada, Takeshi; Watanabe, Masaru; Fujimura, Yuu; Yagishita, Shigehiro; Shimoyama, Tatsu; Maeda, Yoshiharu; Kanda, Shintaro; Yunokawa, Mayu; Tamura, Kenji; Tamura, Tomohide; Minami, Hironobu; Koh, Yasuhiro; Koizumi, Fumiaki

    2016-03-01

    Methods for the enumeration and molecular characterization of circulating tumor cells (CTC) have been actively investigated. However, such methods are still technically challenging. We have developed a novel epithelial cell adhesion molecule independent CTC enumeration system integrated with a sorting system using a microfluidics chip. We compared the number of CTC detected using our system with those detected using the CellSearch system in 46 patients with various cancers. We also evaluated epidermal growth factor receptor (EGFR) and PIK3CA mutations of captured CTC in a study of 4 lung cancer and 4 breast cancer patients. The percentage of samples with detected CTC was significantly higher with our system (65.2%) than with CellSearch (28.3%). The number of detected CTC per patient using our system was statistically higher than that using CellSearch (median 5, 0; P = 0.000172, Wilcoxon test). In the mutation analysis study, the number of detected CTC per patient was low (median for lung, 4.5; median for breast, 5.5); however, it was easy to detect EGFR and PIK3CA mutations in the CTC of 2 lung and 1 breast cancer patient, respectively, using a commercially available kit. Our system is more sensitive than CellSearch in CTC enumeration of various cancers and is also capable of detecting EGFR and PIK3CA mutations in the CTC of lung and breast cancer patients, respectively.

  15. A population-based analysis of germline BAP1 mutations in melanoma.

    PubMed

    O'Shea, Sally J; Robles-Espinoza, Carla Daniela; McLellan, Lauren; Harrigan, Jeanine; Jacq, Xavier; Hewinson, James; Iyer, Vivek; Merchant, Will; Elliott, Faye; Harland, Mark; Timothy Bishop, D; Newton-Bishop, Julia; Adams, David J

    2017-01-05

    Germline mutation of the BRCA1 associated protein-1 (BAP1) gene has been linked to uveal melanoma, mesothelioma, meningioma, renal cell carcinoma and basal cell carcinoma. Germline variants have also been found in familial cutaneous melanoma pedigrees, but their contribution to sporadic melanoma has not been fully assessed. We sequenced BAP1 in 1,977 melanoma cases and 754 controls and used deubiquitinase assays, a pedigree analysis, and a histopathological review to assess the consequences of the mutations found. Sequencing revealed 30 BAP1 variants in total, of which 27 were rare (ExAc allele frequency <0.002). Of the 27 rare variants, 22 were present in cases (18 missense, one splice acceptor, one frameshift and two near splice regions) and 5 in controls (all missense). A missense change (S98R) in a case that completely abolished BAP1 deubiquitinase activity was identified. Analysis of cancers in the pedigree of the proband carrying the S98R variant and in two other pedigrees carrying clear loss-of-function alleles showed the presence of BAP1-associated cancers such as renal cell carcinoma, mesothelioma and meningioma, but not uveal melanoma. Two of these three probands carrying BAP1 loss-of-function variants also had melanomas with histopathological features suggestive of a germline BAP1 mutation. The remaining cases with germline mutations, which were predominantly missense mutations, were associated with less typical pedigrees and tumours lacking a characteristic BAP1-associated histopathological appearances, but may still represent less penetrant variants. Germline BAP1 alleles defined as loss-of-function or predicted to be deleterious/damaging are rare in melanoma.

  16. Mutations inducing an active-site aperture in Rhizobium sp. sucrose isomerase confer hydrolytic activity.

    PubMed

    Lipski, Alexandra; Watzlawick, Hildegard; Ravaud, Stéphanie; Robert, Xavier; Rhimi, Moez; Haser, Richard; Mattes, Ralf; Aghajari, Nushin

    2013-02-01

    Sucrose isomerase is an enzyme that catalyzes the production of sucrose isomers of high biotechnological and pharmaceutical interest. Owing to the complexity of the chemical synthesis of these isomers, isomaltulose and trehalulose, enzymatic conversion remains the preferred method for obtaining these products. Depending on the microbial source, the ratio of the sucrose-isomer products varies significantly. In studies aimed at understanding and explaining the underlying molecular mechanisms of these reactions, mutations obtained using a random-mutagenesis approach displayed a major hydrolytic activity. Two of these variants, R284C and F164L, of sucrose isomerase from Rhizobium sp. were therefore crystallized and their crystal structures were determined. The three-dimensional structures of these mutants allowed the identification of the molecular determinants that favour hydrolytic activity compared with transferase activity. Substantial conformational changes resulting in an active-site opening were observed, as were changes in the pattern of water molecules bordering the active-site region.

  17. Mutation analysis of the FRAS1 gene demonstrates new mutations in a propositus with Fraser syndrome.

    PubMed

    Slavotinek, A; Li, C; Sherr, E H; Chudley, A E

    2006-09-15

    Fraser syndrome (OMIM 219000) is a rare, autosomal recessive condition with classical features of cryptophthalmos, syndactyly, ambiguous genitalia, laryngeal, and genitourinary malformations, oral clefting and mental retardation. Mutations causing loss of function of the FRAS1 gene have been demonstrated in five patients with Fraser syndrome. However, no phenotype-genotype correlation was established and there was evidence for genetic heterogeneity. Fraser syndrome is rare and the FRAS1 gene has 75 exons, complicating mutation screening in affected patients. We have screened two patients who fulfilled the diagnostic criteria for Fraser syndrome and three patients with related phenotypes (two patients with Manitoba oculotrichoanal syndrome and one patient with unilateral cryptophthalmos and labial fusion) for mutations in FRAS1 to increase the molecular genetic data in patients with Fraser syndrome and related conditions. We report two new mutations in a patient with Fraser syndrome, a frameshift mutation and a deletion of two amino acids that we consider pathogenic as both alter the NG2-like domain of the protein. Although we are still unable to clarify a phenotype-genotype relationship in Fraser syndrome, our data add to the list of mutations associated with this syndrome.

  18. Functional analysis reveals that RBM10 mutations contribute to lung adenocarcinoma pathogenesis by deregulating splicing

    PubMed Central

    Zhao, Jiawei; Sun, Yue; Huang, Yin; Song, Fan; Huang, Zengshu; Bao, Yufang; Zuo, Ji; Saffen, David; Shao, Zhen; Liu, Wen; Wang, Yongbo

    2017-01-01

    RBM10 is an RNA splicing regulator that is frequently mutated in lung adenocarcinoma (LUAD) and has recently been proposed to be a cancer gene. How RBM10 mutations observed in LUAD affect its normal functions, however, remains largely unknown. Here integrative analysis of RBM10 mutation and RNA expression data revealed that LUAD-associated RBM10 mutations exhibit a mutational spectrum similar to that of tumor suppressor genes. In addition, this analysis showed that RBM10 mutations identified in LUAD patients lacking canonical oncogenes are associated with significantly reduced RBM10 expression. To systematically investigate RBM10 mutations, we developed an experimental pipeline for elucidating their functional effects. Among six representative LUAD-associated RBM10 mutations, one nonsense and one frameshift mutation caused loss-of-function as expected, whereas four missense mutations differentially affected RBM10-mediated splicing. Importantly, changes in proliferation rates of LUAD-derived cells caused by these RBM10 missense mutants correlated with alterations in RNA splicing of RBM10 target genes. Together, our data implies that RBM10 mutations contribute to LUAD pathogenesis, at least in large part, by deregulating splicing. The methods described in this study should be useful for analyzing mutations in additional cancer-associated RNA splicing regulators. PMID:28091594

  19. Direct mutation analysis by high-throughput sequencing: from germline to low-abundant, somatic variants

    PubMed Central

    Gundry, Michael; Vijg, Jan

    2011-01-01

    DNA mutations are the source of genetic variation within populations. The majority of mutations with observable effects are deleterious. In humans mutations in the germ line can cause genetic disease. In somatic cells multiple rounds of mutations and selection lead to cancer. The study of genetic variation has progressed rapidly since the completion of the draft sequence of the human genome. Recent advances in sequencing technology, most importantly the introduction of massively parallel sequencing (MPS), have resulted in more than a hundred-fold reduction in the time and cost required for sequencing nucleic acids. These improvements have greatly expanded the use of sequencing as a practical tool for mutation analysis. While in the past the high cost of sequencing limited mutation analysis to selectable markers or small forward mutation targets assumed to be representative for the genome overall, current platforms allow whole genome sequencing for less than $5,000. This has already given rise to direct estimates of germline mutation rates in multiple organisms including humans by comparing whole genome sequences between parents and offspring. Here we present a brief history of the field of mutation research, with a focus on classical tools for the measurement of mutation rates. We then review MPS, how it is currently applied and the new insight into human and animal mutation frequencies and spectra that has been obtained from whole genome sequencing. While great progress has been made, we note that the single most important limitation of current MPS approaches for mutation analysis is the inability to address low-abundance mutations that turn somatic tissues into mosaics of cells. Such mutations are at the basis of intra-tumor heterogeneity, with important implications for clinical diagnosis, and could also contribute to somatic diseases other than cancer, including aging. Some possible approaches to gain access to low-abundance mutations are discussed, with a

  20. Direct mutation analysis by high-throughput sequencing: from germline to low-abundant, somatic variants.

    PubMed

    Gundry, Michael; Vijg, Jan

    2012-01-03

    DNA mutations are the source of genetic variation within populations. The majority of mutations with observable effects are deleterious. In humans mutations in the germ line can cause genetic disease. In somatic cells multiple rounds of mutations and selection lead to cancer. The study of genetic variation has progressed rapidly since the completion of the draft sequence of the human genome. Recent advances in sequencing technology, most importantly the introduction of massively parallel sequencing (MPS), have resulted in more than a hundred-fold reduction in the time and cost required for sequencing nucleic acids. These improvements have greatly expanded the use of sequencing as a practical tool for mutation analysis. While in the past the high cost of sequencing limited mutation analysis to selectable markers or small forward mutation targets assumed to be representative for the genome overall, current platforms allow whole genome sequencing for less than $5000. This has already given rise to direct estimates of germline mutation rates in multiple organisms including humans by comparing whole genome sequences between parents and offspring. Here we present a brief history of the field of mutation research, with a focus on classical tools for the measurement of mutation rates. We then review MPS, how it is currently applied and the new insight into human and animal mutation frequencies and spectra that has been obtained from whole genome sequencing. While great progress has been made, we note that the single most important limitation of current MPS approaches for mutation analysis is the inability to address low-abundance mutations that turn somatic tissues into mosaics of cells. Such mutations are at the basis of intra-tumor heterogeneity, with important implications for clinical diagnosis, and could also contribute to somatic diseases other than cancer, including aging. Some possible approaches to gain access to low-abundance mutations are discussed, with a brief

  1. Dehydrated hereditary stomatocytosis linked to gain-of-function mutations in mechanically activated PIEZO1 ion channels.

    PubMed

    Albuisson, Juliette; Murthy, Swetha E; Bandell, Michael; Coste, Bertrand; Louis-Dit-Picard, Hélène; Mathur, Jayanti; Fénéant-Thibault, Madeleine; Tertian, Gérard; de Jaureguiberry, Jean-Pierre; Syfuss, Pierre-Yves; Cahalan, Stuart; Garçon, Loic; Toutain, Fabienne; Simon Rohrlich, Pierre; Delaunay, Jean; Picard, Véronique; Jeunemaitre, Xavier; Patapoutian, Ardem

    2013-01-01

    Dehydrated hereditary stomatocytosis is a genetic condition with defective red blood cell membrane properties that causes an imbalance in intracellular cation concentrations. Recently, two missense mutations in the mechanically activated PIEZO1 (FAM38A) ion channel were associated with dehydrated hereditary stomatocytosis. However, it is not known how these mutations affect PIEZO1 function. Here, by combining linkage analysis and whole-exome sequencing in a large pedigree and Sanger sequencing in two additional kindreds and 11 unrelated dehydrated hereditary stomatocytosis cases, we identify three novel missense mutations and one recurrent duplication in PIEZO1, demonstrating that it is the major gene for dehydrated hereditary stomatocytosis. All the dehydrated hereditary stomatocytosis-associated mutations locate at C-terminal half of PIEZO1. Remarkably, we find that all PIEZO1 mutations give rise to mechanically activated currents that inactivate more slowly than wild-type currents. This gain-of-function PIEZO1 phenotype provides insight that helps to explain the increased permeability of cations in red blood cells of dehydrated hereditary stomatocytosis patients. Our findings also suggest a new role for mechanotransduction in red blood cell biology and pathophysiology.

  2. Divergent Activity Profiles of Type 1 Ryanodine Receptor Channels Carrying Malignant Hyperthermia and Central Core Disease Mutations in the Amino-Terminal Region.

    PubMed

    Murayama, Takashi; Kurebayashi, Nagomi; Yamazawa, Toshiko; Oyamada, Hideto; Suzuki, Junji; Kanemaru, Kazunori; Oguchi, Katsuji; Iino, Masamitsu; Sakurai, Takashi

    2015-01-01

    The type 1 ryanodine receptor (RyR1) is a Ca2+ release channel in the sarcoplasmic reticulum of skeletal muscle and is mutated in several diseases, including malignant hyperthermia (MH) and central core disease (CCD). Most MH and CCD mutations cause accelerated Ca2+ release, resulting in abnormal Ca2+ homeostasis in skeletal muscle. However, how specific mutations affect the channel to produce different phenotypes is not well understood. In this study, we have investigated 11 mutations at 7 different positions in the amino (N)-terminal region of RyR1 (9 MH and 2 MH/CCD mutations) using a heterologous expression system in HEK293 cells. In live-cell Ca2+ imaging at room temperature (~25 °C), cells expressing mutant channels exhibited alterations in Ca2+ homeostasis, i.e., an enhanced sensitivity to caffeine, a depletion of Ca2+ in the ER and an increase in resting cytoplasmic Ca2+. RyR1 channel activity was quantitatively evaluated by [3H]ryanodine binding and three parameters (sensitivity to activating Ca2+, sensitivity to inactivating Ca2+ and attainable maximum activity, i.e., gain) were obtained by fitting analysis. The mutations increased the gain and the sensitivity to activating Ca2+ in a site-specific manner. The gain was consistently higher in both MH and MH/CCD mutations. Sensitivity to activating Ca2+ was markedly enhanced in MH/CCD mutations. The channel activity estimated from the three parameters provides a reasonable explanation to the pathological phenotype assessed by Ca2+ homeostasis. These properties were also observed at higher temperatures (~37 °C). Our data suggest that divergent activity profiles may cause varied disease phenotypes by specific mutations. This approach should be useful for diagnosis and treatment of diseases with mutations in RyR1.

  3. DNA analysis of an uncommon missense mutation in a Gaucher disease patient of Jewish-Polish-Russian descent

    SciTech Connect

    Choy, F.Y.M.; Wei, C.; Applegarth, D.A.; McGillivray, B.C.

    1994-06-01

    Gaucher disease is the most frequent lysosomal lipid storage disease. It results from deficient glucocerebrosidase activity and is transmitted as an autosomal recessive trait. Three clinical forms of Gaucher disease have been described: type 1, non-neuronopathic; type 2, acute neuronopathic; and type 3, subacute neuronopathic. We have sequenced the full length cDNA of the glucocerebrosidase gene and identified an uncommon mutation in nucleotide position 1604 (genoma DNA nucleotide position 6683) from a Gaucher disease patient of Jewish-Polish-Russian descent with type 1 Gaucher disease. It is a G{yields}A transition in exon 11 that results in {sup 496}Arg{yields}{sup 496}His of glucocerebrosidase. This missense mutation is present in the heterozygous form and creates a new cleavage site for the endonuclease HphI. We have developed a simple method to detect the presence of this mutation by using HphI restriction fragment length polymorphism analysis of glucocerebrosidase genomic DNA or cDNA. The mutation in the other Gaucher allele of this patient is an A{yields}G transition at cDNA nucleotide position 1226 which creates an XhoI cleavage site after PCR mismatch amplification. The presence of this mutation was also confirmed by sequence analysis. Based on previous reports that mutation 1226 is present only in type 1 Gaucher disease and the observation that there is no neurological involvement in this patient, we conclude that our patient with the 1226/1604 genotype is diagnosed as having type 1 Gaucher disease. Since it was also postulated that mutation 1226 in the homozygous form will usually result in a good prognosis, we speculate that the orthopedic complications and the unusual presence of glomerulosclerosis in this patient may be attributable to the mutation at nucleotide 1604. This speculation will require a description of more patients with this mutation for confirmation. 32 refs., 5 figs.

  4. Novel pathogenic mutations and skin biopsy analysis in Knobloch syndrome

    PubMed Central

    Suzuki, Oscar; Kague, Erika; Bagatini, Kelly; Tu, Hongmin; Heljasvaara, Ritva; Carvalhaes, Lorenza; Gava, Elisandra; de Oliveira, Gisele; Godoi, Paulo; Oliva, Glaucius; Kitten, Gregory; Pihlajaniemi, Taina; Passos-Bueno, Maria-Rita

    2009-01-01

    Purpose To facilitate future diagnosis of Knobloch syndrome (KS) and better understand its etiology, we sought to identify not yet described COL18A1 mutations in KS patients. In addition, we tested whether mutations in this gene lead to absence of the COL18A1 gene product and attempted to better characterize the functional effect of a previously reported missense mutation. Methods Direct sequencing of COL18A1 exons was performed in KS patients from four unrelated pedigrees. We used immunofluorescent histochemistry in skin biopsies to evaluate the presence of type XVIII collagen in four KS patients carrying two already described mutations: c.3277C>T, a nonsense mutation, and c.3601G>A, a missense mutation. Furthermore, we determined the binding properties of the mutated endostatin domain p.A1381T (c.3601G>A) to extracellular matrix proteins using ELISA and surface plasmon resonance assays. Results We identified four novel mutations in COL18A1, including a large deletion involving exon 41. Skin biopsies from KS patients revealed lack of type XVIII collagen in epithelial basement membranes and blood vessels. We also found a reduced affinity of p.A1381T endostatin to some extracellular matrix components. Conclusions COL18A1 mutations involved in Knobloch syndrome have a distribution bias toward the coding exons of the C-terminal end. Large deletions must also be considered when point mutations are not identified in patients with characteristic KS phenotype. We report, for the first time, lack of type XVIII collagen in KS patients by immunofluorescent histochemistry in skin biopsy samples. As a final point, we suggest the employment of this technique as a preliminary and complementary test for diagnosis of KS in cases when mutation screening either does not detect mutations or reveals mutations of uncertain effect, such as the p.A1381T change. PMID:19390655

  5. Balancing protein stability and activity in cancer: a new approach for identifying driver mutations affecting CBL ubiquitin ligase activation

    PubMed Central

    Li, Minghui; Kales, Stephen C.; Ma, Ke; Shoemaker, Benjamin A.; Crespo-Barreto, Juan; Cangelosi, Andrew L.; Lipkowitz, Stanley; Panchenko, Anna R.

    2015-01-01

    Oncogenic mutations in the monomeric Casitas B-lineage lymphoma (Cbl) gene have been found in many tumors, but their significance remains largely unknown. Several human c-Cbl (CBL) structures have recently been solved depicting the protein at different stages of its activation cycle and thus provide mechanistic insight underlying how stability-activity tradeoffs in cancer-related proteins may influence disease onset and progression. In this study, we computationally modeled the effects of missense cancer mutations on structures representing four stages of the CBL activation cycle to identify driver mutations that affect CBL stability, binding, and activity. We found that recurrent, homozygous, and leukemia-specific mutations had greater destabilizing effects on CBL states than did random non-cancer mutations. We further tested the ability of these computational models assessing the changes in CBL stability and its binding to ubiquitin conjugating enzyme E2, by performing blind CBL-mediated EGFR ubiquitination assays in cells. Experimental CBL ubiquitin ligase activity was in agreement with the predicted changes in CBL stability and, to a lesser extent, with CBL-E2 binding affinity. Two-thirds of all experimentally tested mutations affected the ubiquitin ligase activity by either destabilizing CBL or disrupting CBL-E2 binding, whereas about one-third of tested mutations were found to be neutral. Collectively, our findings demonstrate that computational methods incorporating multiple protein conformations and stability and binding affinity evaluations can successfully predict the functional consequences of cancer mutations on protein activity, and provide a proof of concept for mutations in CBL. PMID:26676746

  6. Exome and genome sequencing of nasopharynx cancer identifies NF-κB pathway activating mutations

    PubMed Central

    Li, Yvonne Y; Chung, Grace T. Y.; Lui, Vivian W. Y.; To, Ka-Fai; Ma, Brigette B. Y.; Chow, Chit; Woo, John K, S.; Yip, Kevin Y.; Seo, Jeongsun; Hui, Edwin P.; Mak, Michael K. F.; Rusan, Maria; Chau, Nicole G.; Or, Yvonne Y. Y.; Law, Marcus H. N.; Law, Peggy P. Y.; Liu, Zoey W. Y.; Ngan, Hoi-Lam; Hau, Pok-Man; Verhoeft, Krista R.; Poon, Peony H. Y.; Yoo, Seong-Keun; Shin, Jong-Yeon; Lee, Sau-Dan; Lun, Samantha W. M.; Jia, Lin; Chan, Anthony W. H.; Chan, Jason Y. K.; Lai, Paul B. S.; Fung, Choi-Yi; Hung, Suet-Ting; Wang, Lin; Chang, Ann Margaret V.; Chiosea, Simion I.; Hedberg, Matthew L.; Tsao, Sai-Wah; van Hasselt, Andrew C.; Chan, Anthony T. C.; Grandis, Jennifer R.; Hammerman, Peter S.; Lo, Kwok-Wai

    2017-01-01

    Nasopharyngeal carcinoma (NPC) is an aggressive head and neck cancer characterized by Epstein-Barr virus (EBV) infection and dense lymphocyte infiltration. The scarcity of NPC genomic data hinders the understanding of NPC biology, disease progression and rational therapy design. Here we performed whole-exome sequencing (WES) on 111 micro-dissected EBV-positive NPCs, with 15 cases subjected to further whole-genome sequencing (WGS), to determine its mutational landscape. We identified enrichment for genomic aberrations of multiple negative regulators of the NF-κB pathway, including CYLD, TRAF3, NFKBIA and NLRC5, in a total of 41% of cases. Functional analysis confirmed inactivating CYLD mutations as drivers for NPC cell growth. The EBV oncoprotein latent membrane protein 1 (LMP1) functions to constitutively activate NF-κB signalling, and we observed mutual exclusivity among tumours with somatic NF-κB pathway aberrations and LMP1-overexpression, suggesting that NF-κB activation is selected for by both somatic and viral events during NPC pathogenesis. PMID:28098136

  7. A new mutation of the androgen receptor, P817A, causing partial androgen insensitivity syndrome: in vitro and structural analysis.

    PubMed

    Lumbroso, S; Wagschal, A; Bourguet, W; Georget, V; Mazen, I; Servant, N; Audran, F; Sultan, C; Auzou, G

    2004-06-01

    Androgen insensitivity syndrome (AIS) is an X-linked disease caused by mutations in the androgen receptor (AR) resulting in various degrees of defective masculinization in 46,XY individuals. In the present study, we describe a novel mutation in exon 7 of the AR gene in an Egyptian patient with partial AIS (PAIS). Sequencing analysis of the AR gene revealed a novel missense mutation, P817A, within the ligand-binding domain (LBD). This is the first report of a mutation within the short amino acid motif (codons 815-817) of the beta-strand lying between helices H8 and H9 of the AR LBD. The functional defects of the mutated protein were characterized by in vitro study and included significantly decreased ligand-binding affinity and impaired transactivation potential. Limited proteolysis assays performed with the wild-type and mutant AR receptors incubated with the synthetic agonist R1881 revealed that the P817A mutation resulted in a reduced stabilization of the AR active conformation. Structural analyses showed that this mutation is likely to perturb the beta-sheet interaction between residues 815-817 and 911-913. This structural alteration destabilizes the position of the C-terminal extension, which contains residues critical for androgen function.

  8. PCR-sequencing is a complementary method to amplification refractory mutation system for EGFR gene mutation analysis in FFPE samples.

    PubMed

    Jiang, Junchang; Wang, Chunhua; Yu, Xiaoli; Sheng, Danli; Zuo, Chen; Ren, Minpu; Wu, Yaqin; Shen, Jie; Jin, Mei; Xu, Songxiao

    2015-12-01

    Amplification Refractory Mutation System (ARMS) is the most popular technology for EGFR gene mutation analysis in China. Cutoff Ct or ΔCt values were used to differentiate low mutation abundance cases from no mutation cases. In this study, all of 359 NSCLC samples were tested by ARMS. Seventeen samples with larger Ct or ΔCt than cutoff values were retested by PCR-sequencing. TKI treatment responses were monitored on the cases with ARMS negative and PCR-sequencing positive results. One exon 18 G719X case, 67 exon 19 deletion cases, 2 exon 20 insertion cases, 1 exon 20 T790M case, 60 exon 21 L858R cases, 5 exon 21 L861Q cases and 201 wild type cases were identified by ARMS. Another 22 cases were evaluated as wild type but had later amplification fluorescent curves. Seventeen out of these 22 cases were retested by PCR-sequencing. It turns out that 3 out of 3 cases with exon 19 deletion later amplifications, 2 out of 2 cases with L858R later amplifications and 4 out of 12 cases with T790M later amplifications were identified as mutation positive. Two cases with exon 19 deletion and L858R respectively were treated by TKI and got responses. Our study indicated that PCR-sequencing might be a complementary way to confirm ARMS results with later amplifications.

  9. Mutational analysis of the HGSNAT gene in Italian patients with mucopolysaccharidosis IIIC (Sanfilippo C syndrome). Mutation in brief #959. Online.

    PubMed

    Fedele, Anthony Olind; Filocamo, Mirella; Di Rocco, Maja; Sersale, Giovanna; Lübke, Torben; di Natale, Paola; Cosma, Maria Pia; Ballabio, Andrea

    2007-05-01

    Mucopolysaccharidosis (MPS) describes any inherited lysosomal storage disorder resulting from an inability to catabolize glycosaminoglycans. MPS III (or Sanfilippo syndrome) is an autosomal recessive disease caused by a failure to degrade heparan sulphate. There are four subtypes of MPS III, each categorized by a deficiency in a specific enzyme involved in the heparan sulphate degradation pathway. The genes mutated in three of these (MPS IIIA, MPS IIIB, and MPS IIID) have been cloned for some time. However, only very recently has the gene for MPS IIIC (heparin acetyl CoA: alpha-glucosaminide N-acetyltransferase, or HGSNAT) been identified. Its product (previously termed transmembrane protein 76, or TMEM76) has little sequence similarity to other proteins of known function, although it is well conserved among all species. In this study, a group of MPS IIIC patients, who are mainly of Italian origin, have been clinically characterized. Furthermore, mutational analysis of the HGSNAT gene in these patients resulted in the identification of nine alleles, of which eight are novel. Three splice-site mutations, three frameshift deletions resulting in premature stop codons, one nonsense mutation, and two missense mutations were identified. The latter are of particular interest as they are located in regions which are predicted to be of functional significance. This research will aid in determining the molecular basis of HGSNAT protein function, and the mechanisms underlying MPS IIIC.

  10. Mutation rate analysis via parent–progeny sequencing of the perennial peach. II. No evidence for recombination-associated mutation

    PubMed Central

    Zhang, Yanchun; Qin, Chao

    2016-01-01

    Mutation rates and recombination rates vary between species and between regions within a genome. What are the determinants of these forms of variation? Prior evidence has suggested that the recombination might be mutagenic with an excess of new mutations in the vicinity of recombination break points. As it is conjectured that domesticated taxa have higher recombination rates than wild ones, we expect domesticated taxa to have raised mutation rates. Here, we use parent–offspring sequencing in domesticated and wild peach to ask (i) whether recombination is mutagenic, and (ii) whether domesticated peach has a higher recombination rate than wild peach. We find no evidence that domesticated peach has an increased recombination rate, nor an increased mutation rate near recombination events. If recombination is mutagenic in this taxa, the effect is too weak to be detected by our analysis. While an absence of recombination-associated mutation might explain an absence of a recombination–heterozygozity correlation in peach, we caution against such an interpretation. PMID:27798307

  11. Mutational analysis of DBD*--a unique antileukemic gene sequence.

    PubMed

    Ji, Yan-shan; Johnson, Betty H; Webb, M Scott; Thompson, E Brad

    2002-01-01

    DBD* is a novel gene encoding an 89 amino acid peptide that is constitutively lethal to leukemic cells. DBD* was derived from the DNA binding domain of the human glucocorticoid receptor by a frameshift that replaces the final 21 C-terminal amino acids of the domain. Previous studies suggested that DBD* no longer acted as the natural DNA binding domain. To confirm and extend these results, we mutated DBD* in 29 single amino acid positions, critical for the function in the native domain or of possible functional significance in the novel 21 amino acid C-terminal sequence. Steroid-resistant leukemic ICR-27-4 cells were transiently transfected by electroporation with each of the 29 mutants. Cell kill was evaluated by trypan blue dye exclusion, a WST-1 tetrazolium-based assay for cell respiration, propidium iodide exclusion, and Hoechst 33258 staining of chromatin. Eleven of the 29 point mutants increased, whereas four decreased antileukemic activity. The remainder had no effect on activity. The nonconcordances between these effects and native DNA binding domain function strongly suggest that the lethality of DBD* is distinct from that of the glucocorticoid receptor. Transfections of fragments of DBD* showed that optimal activity localized to the sequence for its C-terminal 32 amino acids.

  12. Dissecting the signaling pathways associated with the oncogenic activity of MLK3 P252H mutation

    PubMed Central

    2014-01-01

    Background MLK3 gene mutations were described to occur in about 20% of microsatellite unstable gastrointestinal cancers and to harbor oncogenic activity. In particular, mutation P252H, located in the kinase domain, was found to have a strong transforming potential, and to promote the growth of highly invasive tumors when subcutaneously injected in nude mice. Nevertheless, the molecular mechanism underlying the oncogenic activity of P252H mutant remained elusive. Methods In this work, we performed Illumina Whole Genome arrays on three biological replicas of human HEK293 cells stably transfected with the wild-type MLK3, the P252H mutation and with the empty vector (Mock) in order to identify the putative signaling pathways associated with P252H mutation. Results Our microarray results showed that mutant MLK3 deregulates several important colorectal cancer- associated signaling pathways such as WNT, MAPK, NOTCH, TGF-beta and p53, helping to narrow down the number of potential MLK3 targets responsible for its oncogenic effects. A more detailed analysis of the alterations affecting the WNT signaling pathway revealed a down-regulation of molecules involved in the canonical pathway, such as DVL2, LEF1, CCND1 and c-Myc, and an up-regulation of DKK, a well-known negative regulator of canonical WNT signaling, in MLK3 mutant cells. Additionally, FZD6 and FZD10 genes, known to act as negative regulators of the canonical WNT signaling cascade and as positive regulators of the planar cell polarity (PCP) pathway, a non-canonic WNT pathway, were found to be up-regulated in P252H cells. Conclusion The results provide an overall view of the expression profile associated with mutant MLK3, and they support the functional role of mutant MLK3 by showing a deregulation of several signaling pathways known to play important roles in the development and progression of colorectal cancer. The results also suggest that mutant MLK3 may be a novel modulator of WNT signaling, and pinpoint the

  13. Mutational Analysis of Cell Types in Tuberous Sclerosis Complex (TSC)

    DTIC Science & Technology

    2007-01-01

    disorder resulting from mutations in the TSC1 or TSC2 genes that is associated with epilepsy, cognitive disability, and autism . TSC1/TSC2 gene mutations...cognitive disability, and autism . TSC1/TSC2 gene mutations lead to developmental alterations in brain structure known as tubers in over 80% of TSC...TSC (Sparagana and Roach, 2000). Comorbid neuropsychological disorders such as autism , mental retardation (MR), pervasive developmental disorder

  14. Multiple-site mutations of phage Bp7 endolysin improves its activities against target bacteria.

    PubMed

    Zhang, Can; Wang, Yuanchao; Sun, Huzhi; Ren, Huiying

    2015-10-01

    The widespread use of antibiotics has caused serious drug resistance. Bacteria that were once easily treatable are now extremely difficult to treat. Endolysin can be used as an alternative to antibiotics for the treatment of drug-resistant bacteria. To analyze the antibacterial activity of the endolysin of phage Bp7 (Bp7e), a 489-bp DNA fragment of endolysin Bp7e was PCR-amplified from a phage Bp7 genome and cloned, and then a pET28a-Bp7e prokaryotic expression vector was constructed. Two amino acids were mutated (L99A, M102E) to construct pET28a-Bp7Δe, with pET28a-Bp7e as a template. Phylogenetic analysis suggested that BP7e belongs to a T4-like phage endolysin group. Bp7e and its mutant Bp7Δe were expressed in Escherichia coli BL21(DE3) as soluble proteins. They were purified by affinity chromatography, and then their antibacterial activities were analyzed. The results demonstrated that the recombinant proteins Bp7e and Bp7Δe showed obvious antibacterial activity against Micrococcus lysodeikticus but no activity against Staphylococcus aureus. In the presence of malic acid, Bp7e and Bp7Δe exhibited an effect on most E. coli strains which could be lysed by phage Bp7, but no effect on Salmonella paratyphi or Pseudomonas aeruginosa. Moreover, Bp7Δe with double-site mutations showed stronger antibacterial activity and a broader lysis range than Bp7e.

  15. Analysis of somatic mutation in five B cell subsets of human tonsil.

    PubMed

    Pascual, V; Liu, Y J; Magalski, A; de Bouteiller, O; Banchereau, J; Capra, J D

    1994-07-01

    Using a series of phenotypic markers that include immunoglobulin (Ig)D, IgM, IgG, CD23, CD44, Bcl-2, CD38, CD10, CD77, and Ki67, human tonsillar B cells were separated into five fractions representing different stages of B cell differentiation that included sIgD+ (Bm1 and Bm2), germinal center (Bm3 and Bm4), and memory (Bm5) B cells. To establish whether the initiation of somatic mutation correlated with this phenotypic characterization, we performed polymerase chain reaction and subsequent sequence analysis of the Ig heavy chain variable region genes from each of the B cell subsets. We studied the genes from the smallest VH families (VH4, VH5, and VH6) in order to facilitate the mutational analysis. In agreement with previous reports, we found that the somatic mutation machinery is activated only after B cells reach the germinal center and become centroblasts (Bm3). Whereas 47 independently rearranged IgM transcripts from the Bm1 and Bm2 subsets were nearly germline encoded, 57 Bm3-, and Bm4-, and Bm5-derived IgM transcripts had accumulated an average of 5.7 point mutations within the VH gene segment. gamma transcripts corresponding to the same VH gene families were isolated from subsets Bm3, Bm4, and Bm5, and had accumulated an average of 9.5 somatic mutations. We conclude that the molecular events underlying the process of somatic mutation takes place during the transition from IgD+, CD23+ B cells (Bm2) to the IgD-, CD23-, germinal center centroblast (Bm3). Furthermore, the analysis of Ig variable region transcripts from the different subpopulations confirms that the pathway of B cell differentiation from virgin B cell throughout the germinal center up to the memory compartment can be traced with phenotypic markers. The availability of these subpopulations should permit the identification of the functional molecules relevant to each stage of B cell differentiation.

  16. OGG1 Mutations and Risk of Female Breast Cancer: Meta-Analysis and Experimental Data

    PubMed Central

    Ali, Kashif; Mahjabeen, Ishrat; Sabir, Maimoona; Mehmood, Humera; Kayani, Mahmood Akhtar

    2015-01-01

    In first part of this study association between OGG1 polymorphisms and breast cancer susceptibility was explored by meta-analysis. Second part of the study involved 925 subjects, used for mutational analysis of OGG1 gene using PCR-SSCP and sequencing. Fifteen mutations were observed, which included five intronic mutations, four splice site mutations, two 3′UTR mutations, three missense mutations, and a nonsense mutation. Significantly (p < 0.001) increased (~29 fold) breast cancer risk was associated with a splice site variant g.9800972T>G and 3′UTR variant g.9798848G>A. Among intronic mutations, highest (~15 fold) increase in breast cancer risk was associated with g.9793680G>A (p < 0.009). Similarly ~14-fold increased risk was associated with Val159Gly (p < 0.01), ~17-fold with Gly221Arg (p < 0.005), and ~18-fold with Ser326Cys (p < 0.004) in breast cancer patients compared with controls, whereas analysis of nonsense mutation showed that ~13-fold (p < 0.01) increased breast cancer risk was associated with Trp375STOP in patients compared to controls. In conclusion, a significant association was observed between OGG1 germ line mutations and breast cancer risk. These findings provide evidence that OGG1 may prove to be a good candidate of better diagnosis, treatment, and prevention of breast cancer. PMID:26089588

  17. A multiplexed fragment analysis-based assay for detection of JAK2 exon 12 mutations.

    PubMed

    Furtado, Larissa V; Weigelin, Helmut C; Elenitoba-Johnson, Kojo S J; Betz, Bryan L

    2013-09-01

    Mutations within exon 12 of the JAK2 gene occur in most cases of JAK2 V617F-mutation negative polycythemia vera. Several methods have been developed to identify exon 12 mutations, with both Sanger sequencing and high resolution melting (HRM) being widely used. However, mutations can occur at allelic levels lower than 15%, which may hamper detection by these methods. We developed a novel fragment analysis-based assay capable of detecting nearly all JAK2 exon 12 mutations associated with polycythemia vera down to a sensitivity of 2% mutant allele. Test results were reviewed from a set of 20 reference cases and 1731 consecutive specimens that were referred to our laboratory for testing. Assay performance was compared to sequencing and HRM across a series of 27 specimens with JAK2 exon 12 mutations. Positive cases consisted of 22 with deletion mutations, four with duplications, and one with K539L. Nine cases had mutation levels between 6% and 15% that may not be reliably detected by sequencing or HRM. All cases were easily interpreted in the fragment analysis assay. Sequencing, HRM, and fragment analysis each represent viable platforms for detection of JAK2 exon 12 mutations. Our method performed favorably by providing a simple, robust, and highly sensitive solution for JAK2 exon 12 mutation testing.

  18. The application of a linear algebra to the analysis of mutation rates.

    PubMed

    Jones, M E; Thomas, S M; Clarke, K

    1999-07-07

    Cells and bacteria growing in culture are subject to mutation, and as this mutation is the ultimate substrate for selection and evolution, the factors controlling the mutation rate are of some interest. The mutational event is not observed directly, but is inferred from the phenotype of the original mutant or of its descendants; the rate of mutation is inferred from the number of such mutant phenotypes. Such inference presumes a knowledge of the probability distribution for the size of a clone arising from a single mutation. We develop a mathematical formulation that assists in the design and analysis of experiments which investigate mutation rates and mutant clone size distribution, and we use it to analyse data for which the classical Luria-Delbrück clone-size distribution must be rejected.

  19. Effect of the G375C and G346E achondroplasia mutations on FGFR3 activation.

    PubMed

    He, Lijuan; Serrano, Christopher; Niphadkar, Nitish; Shobnam, Nadia; Hristova, Kalina

    2012-01-01

    Two mutations in FGFR3, G380R and G375C are known to cause achondroplasia, the most common form of human dwarfism. The G380R mutation accounts for 98% of the achondroplasia cases, and thus has been studied extensively. Here we study the effect of the G375C mutation on the phosphorylation and the cross-linking propensity of full-length FGFR3 in HEK 293 cells, and we compare the results to previously published results for the G380R mutant. We observe identical behavior of the two achondroplasia mutants in these experiments, a finding which supports a direct link between the severity of dwarfism phenotypes and the level and mechanism of FGFR3 over-activation. The mutations do not increase the cross-linking propensity of FGFR3, contrary to previous expectations that the achondroplasia mutations stabilize the FGFR3 dimers. Instead, the phosphorylation efficiency within un-liganded FGFR3 dimers is increased, and this increase is likely the underlying cause for pathogenesis in achondroplasia. We further investigate the G346E mutation, which has been reported to cause achondroplasia in one case. We find that this mutation does not increase FGFR3 phosphorylation and decreases FGFR3 cross-linking propensity, a finding which raises questions whether this mutation is indeed a genetic cause for human dwarfism.

  20. Effects of point mutation on enzymatic activity: correlation between protein electronic structure and motion in chorismate mutase reaction.

    PubMed

    Ishida, Toyokazu

    2010-05-26

    Assignment of particular roles to catalytic residues is an important requirement in clearly understanding enzyme functions. Therefore, predicting the catalytic activities of mutant variants is a fundamental challenge in computational biochemistry. Although site-directed mutagenesis is widely used for studying enzymatic activities and other important classes of protein function, interpreting mutation experiments is usually difficult mainly due to side effects induced by point mutations. Because steric and, in many cases, electrostatic effects may affect the local, fine geometries conserved in wild-type proteins that are usually believed to be thermodynamically stable, simply reducing a loss in catalytic activity into clear elements is difficult. To address these important but difficult issues, we performed a systematic ab initio QM/MM computational analysis combined with MD-FEP simulations and all-electron QM calculations for the entire protein matrix. We selected chorismate mutase, one of the simplest and well-known enzymes, to discuss the details of mutational effects on the enzymatic reaction process. On the basis of the reliable free energy profiles of the wild-type enzyme and several mutant variants, we analyzed the effects of point mutations relative to electronic structure and protein dynamics. In general, changes in geometrical parameters introduced by a mutation were usually limited to the local mutational site. However, this local structural modification could affect the global protein dynamics through correlated motions of particular amino acid residues even far from the mutation site. Even for mutant reactions with low catalytic activity, transition state stabilization was observed as a result of conformational modifications and reorganization around the active site. As for the electrostatic effect created by the polar protein environment, the wild-type enzyme was most effectively designed to stabilize the transition state of the reactive substrate, and

  1. Molecular Analysis of Glucose-6-Phosphate Dehydrogenase Gene Mutations in Bangladeshi Individuals

    PubMed Central

    Sarker, Suprovath Kumar; Hossain, Mohammad Amir; Qadri, Syeda Kashfi; Muraduzzaman, A. K. M.; Bhuyan, Golam Sarower; Shahidullah, Mohammod; Mannan, Mohammad Abdul; Tahura, Sarabon; Hussain, Manzoor; Akhter, Shahida; Nahar, Nazmun; Shirin, Tahmina; Qadri, Firdausi; Mannoor, Kaiissar

    2016-01-01

    Glucose-6-phosphate dehydrogenase (G6PD) deficiency is a common X-linked human enzyme defect of red blood cells (RBCs). Individuals with this gene defect appear normal until exposed to oxidative stress which induces hemolysis. Consumption of certain foods such as fava beans, legumes; infection with bacteria or virus; and use of certain drugs such as primaquine, sulfa drugs etc. may result in lysis of RBCs in G6PD deficient individuals. The genetic defect that causes G6PD deficiency has been identified mostly as single base missense mutations. One hundred and sixty G6PD gene mutations, which lead to amino acid substitutions, have been described worldwide. The purpose of this study was to detect G6PD gene mutations in hospital-based settings in the local population of Dhaka city, Bangladesh. Qualitative fluorescent spot test and quantitative enzyme activity measurement using RANDOX G6PDH kit were performed for analysis of blood specimens and detection of G6PD-deficient participants. For G6PD-deficient samples, PCR was done with six sets of primers specific for G6PD gene. Automated Sanger sequencing of the PCR products was performed to identify the mutations in the gene. Based on fluorescence spot test and quantitative enzyme assay followed by G6PD gene sequencing, 12 specimens (11 males and one female) among 121 clinically suspected patient-specimens were found to be deficient, suggesting a frequency of 9.9% G6PD deficiency. Sequencing of the G6PD-deficient samples revealed c.C131G substitution (exon-3: Ala44Gly) in six samples, c.G487A substitution (exon-6:Gly163Ser) in five samples and c.G949A substitution (exon-9: Glu317Lys) of coding sequence in one sample. These mutations either affect NADP binding or disrupt protein structure. From the study it appears that Ala44Gly and Gly163Ser are the most common G6PD mutations in Dhaka, Bangladesh. This is the first study of G6PD mutations in Bangladesh. PMID:27880809

  2. Molecular Analysis of Glucose-6-Phosphate Dehydrogenase Gene Mutations in Bangladeshi Individuals.

    PubMed

    Sarker, Suprovath Kumar; Islam, Md Tarikul; Eckhoff, Grace; Hossain, Mohammad Amir; Qadri, Syeda Kashfi; Muraduzzaman, A K M; Bhuyan, Golam Sarower; Shahidullah, Mohammod; Mannan, Mohammad Abdul; Tahura, Sarabon; Hussain, Manzoor; Akhter, Shahida; Nahar, Nazmun; Shirin, Tahmina; Qadri, Firdausi; Mannoor, Kaiissar

    2016-01-01

    Glucose-6-phosphate dehydrogenase (G6PD) deficiency is a common X-linked human enzyme defect of red blood cells (RBCs). Individuals with this gene defect appear normal until exposed to oxidative stress which induces hemolysis. Consumption of certain foods such as fava beans, legumes; infection with bacteria or virus; and use of certain drugs such as primaquine, sulfa drugs etc. may result in lysis of RBCs in G6PD deficient individuals. The genetic defect that causes G6PD deficiency has been identified mostly as single base missense mutations. One hundred and sixty G6PD gene mutations, which lead to amino acid substitutions, have been described worldwide. The purpose of this study was to detect G6PD gene mutations in hospital-based settings in the local population of Dhaka city, Bangladesh. Qualitative fluorescent spot test and quantitative enzyme activity measurement using RANDOX G6PDH kit were performed for analysis of blood specimens and detection of G6PD-deficient participants. For G6PD-deficient samples, PCR was done with six sets of primers specific for G6PD gene. Automated Sanger sequencing of the PCR products was performed to identify the mutations in the gene. Based on fluorescence spot test and quantitative enzyme assay followed by G6PD gene sequencing, 12 specimens (11 males and one female) among 121 clinically suspected patient-specimens were found to be deficient, suggesting a frequency of 9.9% G6PD deficiency. Sequencing of the G6PD-deficient samples revealed c.C131G substitution (exon-3: Ala44Gly) in six samples, c.G487A substitution (exon-6:Gly163Ser) in five samples and c.G949A substitution (exon-9: Glu317Lys) of coding sequence in one sample. These mutations either affect NADP binding or disrupt protein structure. From the study it appears that Ala44Gly and Gly163Ser are the most common G6PD mutations in Dhaka, Bangladesh. This is the first study of G6PD mutations in Bangladesh.

  3. A Comprehensive Functional Analysis of NTRK1 Missense Mutations Causing Hereditary Sensory and Autonomic Neuropathy Type IV (HSAN IV)

    PubMed Central

    Shaikh, Samiha S.; Chen, Ya‐Chun; Halsall, Sally‐Anne; Nahorski, Michael S.; Omoto, Kiyoyuki; Young, Gareth T.

    2016-01-01

    ABSTRACT Hereditary sensory and autonomic neuropathy type IV (HSAN IV) is an autosomal recessive disorder characterized by a complete lack of pain perception and anhidrosis. Here, we studied a cohort of seven patients with HSAN IV and describe a comprehensive functional analysis of seven novel NTRK1 missense mutations, c.1550G >A, c.1565G >A, c.1970T >C, c.2096T >C, c.2254T >A, c.2288G >C, and c.2311C >T, corresponding to p.G517E, p.G522E, p.L657P, p.I699T, p.C752S, p.C763S, and p.R771C, all of which were predicted pathogenic by in silico analysis. The results allowed us to assess the pathogenicity of each mutation and to gain novel insights into tropomyosin receptor kinase A (TRKA) downstream signaling. Each mutation was systematically analyzed for TRKA glycosylation states, intracellular and cell membrane expression patterns, nerve growth factor stimulated TRKA autophosphorylation, TRKA‐Y496 phosphorylation, PLCγ activity, and neurite outgrowth. We showed a diverse range of functional effects: one mutation appeared fully functional, another had partial activity in all assays, one mutation affected only the PLCγ pathway and four mutations were proved null in all assays. Thus, we conclude that complete abolition of TRKA kinase activity is not the only pathogenic mechanism underlying HSAN IV. By corollary, the assessment of the clinical pathogenicity of HSAN IV mutations is more complex than initially predicted and requires a multifaceted approach. PMID:27676246

  4. A Comprehensive Functional Analysis of NTRK1 Missense Mutations Causing Hereditary Sensory and Autonomic Neuropathy Type IV (HSAN IV).

    PubMed

    Shaikh, Samiha S; Chen, Ya-Chun; Halsall, Sally-Anne; Nahorski, Michael S; Omoto, Kiyoyuki; Young, Gareth T; Phelan, Anne; Woods, Christopher Geoffrey

    2017-01-01

    Hereditary sensory and autonomic neuropathy type IV (HSAN IV) is an autosomal recessive disorder characterized by a complete lack of pain perception and anhidrosis. Here, we studied a cohort of seven patients with HSAN IV and describe a comprehensive functional analysis of seven novel NTRK1 missense mutations, c.1550G >A, c.1565G >A, c.1970T >C, c.2096T >C, c.2254T >A, c.2288G >C, and c.2311C >T, corresponding to p.G517E, p.G522E, p.L657P, p.I699T, p.C752S, p.C763S, and p.R771C, all of which were predicted pathogenic by in silico analysis. The results allowed us to assess the pathogenicity of each mutation and to gain novel insights into tropomyosin receptor kinase A (TRKA) downstream signaling. Each mutation was systematically analyzed for TRKA glycosylation states, intracellular and cell membrane expression patterns, nerve growth factor stimulated TRKA autophosphorylation, TRKA-Y496 phosphorylation, PLCγ activity, and neurite outgrowth. We showed a diverse range of functional effects: one mutation appeared fully functional, another had partial activity in all assays, one mutation affected only the PLCγ pathway and four mutations were proved null in all assays. Thus, we conclude that complete abolition of TRKA kinase activity is not the only pathogenic mechanism underlying HSAN IV. By corollary, the assessment of the clinical pathogenicity of HSAN IV mutations is more complex than initially predicted and requires a multifaceted approach.

  5. Determining mutation density using Restriction Enzyme Sequence Comparative Analysis (RESCAN)

    Technology Transfer Automated Retrieval System (TEKTRAN)

    The average mutation density of a mutant population is a major consideration when developing resources for the efficient, cost-effective implementation of reverse genetics methods such as Targeting of Induced Local Lesions in Genomes (TILLING). Reliable estimates of mutation density can be achieved ...

  6. Recurrent mTORC1-activating RRAGC mutations in follicular lymphoma

    PubMed Central

    Wang, Jun; Araf, Shamzah; Wilkins, Lucy; Castellano, Brian M.; Escudero-Ibarz, Leire; Al Seraihi, Ahad Fahad; Richter, Julia; Bernhart, Stephan H.; Efeyan, Alejo; Iqbal, Sameena; Matthews, Janet; Clear, Andrew; Guerra-Assunção, José Afonso; Bödör, Csaba; Quentmeier, Hilmar; Mansbridge, Christopher; Johnson, Peter; Davies, Andrew; Strefford, Jonathan C.; Packham, Graham; Barrans, Sharon; Jack, Andrew; Du, Ming-Qing; Calaminici, Maria; Lister, T. Andrew; Auer, Rebecca; Montoto, Silvia; Gribben, John G.; Siebert, Reiner; Chelala, Claude; Zoncu, Roberto; Sabatini, David M.; Fitzgibbon, Jude

    2015-01-01

    Follicular lymphoma is an incurable B-cell malignancy1 characterized by the t(14;18) and mutations in one or more components of the epigenome2,3. Whilst frequent gene mutations in signaling pathways, including JAK-STAT, NOTCH and NF-κB, have also been defined2-7, the spectrum of these mutations typically overlap with the closely-related diffuse large B cell lymphoma (DLBCL)6-13. A combination of discovery exome and extended targeted sequencing revealed recurrent somatic mutations in RRAGC uniquely enriched in FL patients (17%). More than half of the mutations preferentially co-occurred with ATP6V1B2 and ATP6AP1 mutations, components of the vacuolar H+-adenosine triphosphate ATPase (v-ATPase) known to be necessary for amino acid-induced mTORC1 activation. The RagC mutants increased raptor binding whilst rendering mTORC1 signaling resistant to amino acid deprivation. Collectively, the activating nature of the RRAGC mutations, their existence within the dominant clone and stability during disease progression supports their potential as an excellent candidate to be therapeutically exploited. PMID:26691987

  7. Perturbed Length–Dependent Activation in Human Hypertrophic Cardiomyopathy With Missense Sarcomeric Gene Mutations

    PubMed Central

    Sequeira, Vasco; Wijnker, Paul J.M.; Nijenkamp, Louise L.A.M.; Kuster, Diederik W.D.; Najafi, Aref; Witjas-Paalberends, E. Rosalie; Regan, Jessica A.; Boontje, Nicky; ten Cate, Folkert J.; Germans, Tjeerd; Carrier, Lucie; Sadayappan, Sakthivel; van Slegtenhorst, Marjon A.; Zaremba, Ruud; Foster, D. Brian; Murphy, Anne M.; Poggesi, Corrado; dos Remedios, Cris; Stienen, Ger J.M.; Ho, Carolyn Y.; Michels, Michelle; van der Velden, Jolanda

    2013-01-01

    Rationale High-myofilament Ca2+-sensitivity has been proposed as trigger of disease pathogenesis in familial hypertrophic cardiomyopathy (HCM) based on in vitro and transgenic mice studies. However, myofilament Ca2+-sensitivity depends on protein phosphorylation and muscle length, and at present, data in human are scarce. Objective To investigate whether high-myofilament Ca2+-sensitivity and perturbed length-dependent activation are characteristics for human HCM with mutations in thick- and thin-filament proteins. Methods and Results Cardiac samples from patients with HCM harboring mutations in genes encoding thick (MYH7, MYBPC3) and thin (TNNT2, TNNI3, TPM1) filament proteins were compared with sarcomere mutation-negative HCM and nonfailing donors. Cardiomyocyte force measurements showed higher myofilament Ca2+-sensitivity in all HCM samples and low phosphorylation of protein kinase A (PKA)-targets compared with donors. After exogenous PKA treatment, myofilament Ca2+-sensitivity was either similar (MYBPC3mut, TPM1mut, sarcomere mutation-negative HCM), higher (MYH7mut, TNNT2mut), or even significantly lower (TNNI3mut) compared with donors. Length-dependent activation was significantly smaller in all HCM than in donor samples. PKA treatment increased phosphorylation of PKA-targets in HCM myocardium and normalized length-dependent activation to donor values in sarcomere mutation-negative HCM and HCM with truncating MYBPC3 mutations, but not in HCM with missense mutations. Replacement of mutant by wild-type troponin in TNNT2mut and TNNI3mut corrected length-dependent activation to donor values. Conclusions High-myofilament Ca2+-sensitivity is a common characteristic of human HCM and partly reflects hypophosphorylation of PKA-targets compared with donors. Length-dependent sarcomere activation is perturbed by missense mutations, possibly via post-translational modifications other than PKA-hypophosphorylation or altered protein–protein interactions, and represents a

  8. Drosophila type IV collagen mutation associates with immune system activation and intestinal dysfunction.

    PubMed

    Kiss, Márton; Kiss, András A; Radics, Monika; Popovics, Nikoletta; Hermesz, Edit; Csiszár, Katalin; Mink, Mátyás

    2016-01-01

    The basal lamina (BM) contains numerous components with a predominance of type IV collagens. Clinical manifestations associated with mutations of the human COL4A1 gene include perinatal cerebral hemorrhage and porencephaly, hereditary angiopathy, nephropathy, aneurysms and muscle cramps (HANAC), ocular dysgenesis, myopathy, Walker–Warburg syndrome and systemic tissue degeneration. In Drosophila, the phenotype associated with dominant temperature sensitive mutations of col4a1 include severe myopathy resulting from massive degradation of striated muscle fibers, and in the gut, degeneration of circular visceral muscle cells and epithelial cells following detachment from the BM. In order to determine the consequences of altered BMfunctions due to aberrant COL4A1 protein, we have carried out a series of tests using Drosophila DTS-L3 mutants from our allelic series of col4a1 mutations with confirmed degeneration of various cell types and lowest survival rate among the col4a1 mutant lines at restrictive temperature. Results demonstrated epithelial cell degeneration in the gut, shortened gut, enlarged midgut with multiple diverticulae, intestinal dysfunction and shortened life span. Midgut immunohistochemistry analyses confirmed altered expression and distribution of BM components integrin PSI and PSII alpha subunits, laminin gamma 1, and COL4A1 both in larvae and adults. Global gene expression analysis revealed activation of the effector AMP genes of the primary innate immune system including Metchnikowin, Diptericin, Diptericin B, and edin that preceded morphological changes. Attacin::GFP midgut expression pattern further supported these changes. An increase in ROS production and changes in gut bacterial flora were also noted and may have further enhanced an immune response. The phenotypic features of Drosophila col4a1 mutants confirmed an essential role for type IV collagen in maintaining epithelial integrity, gut morphology and intestinal function and suggest that

  9. An Activating Mutation in STAT3 Results in Neonatal Diabetes Through Reduced Insulin Synthesis.

    PubMed

    Velayos, Teresa; Martínez, Rosa; Alonso, Milagros; Garcia-Etxebarria, Koldo; Aguayo, Anibal; Camarero, Cristina; Urrutia, Inés; Martínez de LaPiscina, Idoia; Barrio, Raquel; Santin, Izortze; Castaño, Luis

    2017-04-01

    Neonatal diabetes mellitus (NDM) is a rare form of diabetes diagnosed within the first 6 months of life. Genetic studies have allowed the identification of several genes linked to the development of NDM; however, genetic causes for ∼20% of the cases remain to be clarified. Most cases of NDM involve isolated diabetes, but sometimes NDM appears in association with other pathological conditions, including autoimmune diseases. Recent reports have linked activating mutations in STAT3 with early-onset autoimmune disorders that include diabetes of autoimmune origin, but the functional impact of STAT3-activating mutations have not been characterized at the pancreatic β-cell level. By using whole-exome sequencing, we identified a novel missense mutation in the binding domain of the STAT3 protein in a patient with NDM. The functional analyses showed that the mutation results in an aberrant activation of STAT3, leading to deleterious downstream effects in pancreatic β-cells. The identified mutation leads to hyperinhibition of the transcription factor Isl-1 and, consequently, to a decrease in insulin expression. These findings represent the first functional indication of a direct link between an NDM-linked activating mutation in STAT3 and pancreatic β-cell dysfunction.

  10. Mutational analysis of the LDL receptor and APOB genes in Mexican individuals with autosomal dominant hypercholesterolemia.

    PubMed

    Vaca, Gerardo; Vàzquez, Alejandra; Magaña, Marìa Teresa; Ramìrez, Marìa Lourdes; Dàvalos, Ingrid P; Martìnez, Esperanza; Marìn, Bertha; Carrillo, Gabriela

    2011-10-01

    The goal of this project was to identify families with autosomal dominant hypercholesterolemia (ADH) to facilitate early detection and treatment and to provide genetic counselling as well as to approximate the mutational diversity of ADH in Mexico. Mutational analysis of the LDLR and APOB genes in 62 index cases with a clinical and/or biochemical diagnosis of ADH was performed. Twenty-five mutations (24 LDLR, 1 APOB) were identified in 38 index cases. A total of 162 individuals with ADH were identified using familial segregation analysis performed in 269 relatives of the index cases. In addition, a novel PCSK9 mutation, c.1850 C>A (p.Ala617Asp), was detected. The LDLR mutations showed the following characteristics: (1) four mutations are novel: c.695 -1G>T, c.1034_1035insA, c.1586 G>A, c.2264_2273del; (2) the most common mutations were c.682 G>A (FH-Mexico), c.1055 G>A (FH-Mexico 2), and c.1090 T>C (FH-Mexico 3); (3) five mutations were identified in 3 or more apparently unrelated probands; (4) three mutations were observed in a true homozygous state; and (5) four index cases were compound heterozygous, and one was a carrier of two mutations in the same allele. These results suggest that, in Mexico, ADH exhibits allelic heterogeneity with 5 relatively common LDLR mutations and that mutations in the APOB gene are not a common cause of ADH. This knowledge is important for the genotype-phenotype correlation and for optimising both cholesterol lowering therapies and mutational analysis protocols. In addition, these data contribute to the understanding of the molecular basis of ADH in Mexico.

  11. Heteroduplex analysis of the dystrophin gene: application to point mutation and carrier detection.

    PubMed

    Prior, T W; Papp, A C; Snyder, P J; Sedra, M S; Western, L M; Bartolo, C; Moxley, R T; Mendell, J R

    1994-03-01

    Approximately one-third of the Duchenne muscular dystrophy patients have undefined mutations in the dystrophin gene. For carrier and prenatal studies in families without detectable mutations, the indirect restriction fragment length polymorphism linkage approach is used. Using a multiplex amplification and heteroduplex analysis of dystrophin exons, we identified nonsense mutations in two DMD patients. Although the nonsense mutations are predicted to severely truncate the dystrophin protein, both patients presented with mild clinical courses of the disease. As a result of identifying the mutation in the affected boys, direct carrier studies by heteroduplex analysis were extended to other relatives. We conclude that the technique is not only ideal for mutation detection but is also useful for diagnostic testing.

  12. Heteroduplex analysis of the dystrophin gene: Application to point mutation and carrier detection

    SciTech Connect

    Prior, T.W.; Papp, A.C.; Snyder, P.J.; Sedra, M.S.; Western, L.M.; Bartolo, C.; Mendell, J.R.; Moxley, R.T.

    1994-03-01

    Approximately one-third of Duchenne muscular dystrophy patients have undefined mutations in the dystrophin gene. For carrier and prenatal studies in families without detectable mutations, the indirect restriction fragment length polymorphism linkage approach is used. Using a multiplex amplification and heteroduplex analysis of dystrophin exons, the authors identified nonsense mutations in two DMD patients. Although the nonsense mutations are predicted to severely truncate the dystrophin protein, both patients presented with mild clinical courses of the disease. As a result of identifying the mutation in the affected boys, direct carrier studies by heteroduplex analysis were extended to other relatives. The authors conclude that the technique is not only ideal for mutation detection but is also useful for diagnostic testing. 29 refs., 4 figs.

  13. Genetic diagnosis of familial hypercholesterolaemia: the importance of functional analysis of potential splice-site mutations.

    PubMed

    Bourbon, M; Duarte, M A; Alves, A C; Medeiros, A M; Marques, L; Soutar, A K

    2009-05-01

    Familial hypercholesterolemia (FH) results from defective low-density lipoprotein receptor (LDLR) activity, mainly due to LDLR gene defects. Of the many different LDLR mutations found in patients with FH, about 6% of single base substitutions are located near or within introns, and are predicted to result in exon skipping, retention of an intron, or activation of cryptic sites during mRNA splicing. This paper reports on the Portuguese FH Study, which found 10 such mutations, 6 of them novel. For the mutations that have not been described before or those whose effect on function have not been analysed, their effect on splicing was investigated, using reverse transcriptase PCR analysis of LDLR mRNA from freshly isolated blood mononuclear cells. Two of these variants (c.313+6 T-->C, c.2389G-->T (p.V776L)) caused exon skipping, and one caused retention of an intron (c.1359-5C-->G), whereas two others (c.2140+5 G-->A and c.1061-8T-->C) had no apparent effect. Any effect of c.1185G-->C (p.V374V) on splicing could not be determined because it was on an allele with a promoter mutation (-42C-->G) that was probably not transcribed. Variants in four patients lost to follow-up could not be tested experimentally, but they almost certainly affect splicing because they disrupt the invariant AG or GT in acceptor (c.818-2A-->G) or donor (c.1060+1G-->A, c.1845+1delG and c.2547+1G-->A) spice sites. These findings emphasise that care must be taken before reporting the presence or absence of a splice-site mutation in the LDLR gene for diagnostic purposes. The study also shows that relatively simple, quick and inexpensive RNA assays can evaluate putative splicing mutations that are not always predictable by available software, thereby reducing genetic misdiagnosis of patients with FH.

  14. Sensitive KIT D816V mutation analysis of blood as a diagnostic test in mastocytosis.

    PubMed

    Kristensen, Thomas; Vestergaard, Hanne; Bindslev-Jensen, Carsten; Møller, Michael Boe; Broesby-Olsen, Sigurd

    2014-05-01

    The recent progress in sensitive KIT D816V mutation analysis suggests that mutation analysis of peripheral blood (PB) represents a promising diagnostic test in mastocytosis. However, there is a need for systematic assessment of the analytical sensitivity and specificity of the approach in order to establish its value in clinical use. We therefore evaluated sensitive KIT D816V mutation analysis of PB as a diagnostic test in an entire case-series of adults with mastocytosis. We demonstrate for the first time that by using a sufficiently sensitive KIT D816V mutation analysis, it is possible to detect the mutation in PB in nearly all adult mastocytosis patients. The mutation was detected in PB in 78 of 83 systemic mastocytosis (94%) and 3 of 4 cutaneous mastocytosis patients (75%). The test was 100% specific as determined by analysis of clinically relevant control patients who all tested negative. Mutation analysis of PB was significantly more sensitive than serum tryptase >20 ng/mL. Of 27 patients with low tryptase, 26 tested mutation positive (96%). The test is furthermore readily available and we consider the results to serve as a foundation of experimental evidence to support the inclusion of the test in diagnostic algorithms and clinical practice in mastocytosis.

  15. Developmental Genetic Analysis of Contrabithorax Mutations in Drosophila Melanogaster

    PubMed Central

    Gonzalez-Gaitan, M. A.; Micol, J. L.; Garcia-Bellido, A.

    1990-01-01

    A developmental analysis of the Contrabithorax (Cbx) alleles offers the opportunity to examine the role of the Ultrabithorax (Ubx) gene in controlling haltere, as alternative to wing, morphogenesis in Drosophila. Several Cbx alleles are known with different spatial specificity in their wing toward haltere homeotic transformation. The molecular data on these mutations, however, does not readily explain differences among mutant phenotypes. In this work, we have analyzed the ``apogenetic'' mosaic spots of transformation in their adult phenotype, in mitotic recombination clones and in the spatial distribution of Ubx proteins in imaginal discs. The results suggest that the phenotypes emerge from early clonality in some Cbx alleles, and from cell-cell interactions leading to recruitment of cells to Ubx gene expression in others. We have found, in addition, mutual interactions between haltere and wing territories in pattern and dorsoventral symmetries, suggesting short distance influences, ``accommodation,'' during cell proliferation of the anlage. These findings are considered in an attempt to explain allele specificity in molecular and developmental terms. PMID:1977655

  16. Analysis of in vivo somatic mutations in normal human cells

    SciTech Connect

    Gupta, P.K.; Sahota, A.; Boyadjiev, S.A.

    1994-09-01

    We have used the APRT locus located at 16q24.3 to study the nature of loss of heterozygosity (LOH) in human T lymphocytes in vivo. T lymphocytes were isolated from blood from APRT (+/{minus}) obligated heterozygotes with known germline mutations. The cells were immediatley placed in culture medium containing 100 {mu}M 2,6-diaminopurine (DAP) to select for drug-resistant clones ({minus}/{minus}) already present. These clones were first examined using polymorphic CA microsatellite repeat markers D16S303 and D16S305 that are distal and proximal to APRT, respectively. The retention of heterozygosity of these markers is suggestive of minor changes in the APRT gene, the exact nature of which were determined by DNA sequencing. Nineteen out of 70 DAP-resistant clones from one heterozygote showed APRT sequence changes. The loss of heterozygosity of markers D16S303 and D16S305 in the remaining clones suggests LOH involving multilocus chromosomal events. These clones were then sequentially typed using additional CA repeat markers proximal and distal to APRT. The extent of LOH in these clones was found to vary from <5 cM to almost the entire 16q arm. Preliminary results suggest that there are multiple sites along the chromosome from which LOH proceeds distally in these clones. Cytogenetic analysis of 10 clones suggested mitotic recombination in 9 and deletion in one. Studies are in progress to further characterize the molecular mechanisms of LOH.

  17. Mutation in E1, the ubiquitin activating enzyme, reduces Drosophila lifespan and results in motor impairment.

    PubMed

    Liu, Hsiu-Yu; Pfleger, Cathie M

    2013-01-01

    Neurodegenerative diseases cause tremendous suffering for those afflicted and their families. Many of these diseases involve accumulation of mis-folded or aggregated proteins thought to play a causal role in disease pathology. Ubiquitinated proteins are often found in these protein aggregates, and the aggregates themselves have been shown to inhibit the activity of the proteasome. These and other alterations in the Ubiquitin Pathway observed in neurodegenerative diseases have led to the question of whether impairment of the Ubiquitin Pathway on its own can increase mortality or if ongoing neurodegeneration alters Ubiquitin Pathway function as a side-effect. To address the role of the Ubiquitin Pathway in vivo, we studied loss-of-function mutations in the Drosophila Ubiquitin Activating Enzyme, Uba1 or E1, the most upstream enzyme in the Ubiquitin Pathway. Loss of only one functional copy of E1 caused a significant reduction in adult lifespan. Rare homozygous hypomorphic E1 mutants reached adulthood. These mutants exhibited further reduced lifespan and showed inappropriate Ras activation in the brain. Removing just one functional copy of Ras restored the lifespan of heterozygous E1 mutants to that of wild-type flies and increased the survival of homozygous E1 mutants. E1 homozygous mutants also showed severe motor impairment. Our findings suggest that processes that impair the Ubiquitin Pathway are sufficient to cause early mortality. Reduced lifespan and motor impairment are seen in the human disease X-linked Infantile Spinal Muscular Atrophy, which is associated with mutation in human E1 warranting further analysis of these mutants as a potential animal model for study of this disease.

  18. Activating mutations of the G[sub s] [alpha]-gene in nonfucntioning pituitary tumors

    SciTech Connect

    Tordjman, K.; Stern, N.; Friedman, E.; Ouaknine, G.; Razon, N.; Yossiphov, Y. ); Nordenskjoeld, M.; Friedman, E. )

    1993-09-01

    The majority of pituitary tumors are of monoclonal origin; however, the molecular basis for their formation is poorly understood. Somatic mutations in the [alpha]-subunit of the GTP-binding protein, G[sub s][alpha] (gsp oncogene) have been found in about one third of GH-secreting tumors. Mutations in another [alpha]-subunit of a GTP-binding protein, G[sub i2][alpha] (gip mutations) have been described in other endocrine tumors. In this study, the authors examined 21 nonfunctioning pituitary tumors and 4 macro-prolactinomas for gsp mutations and 27 nonfunctioning tumors and 4 macroprolactinomas for gip mutations. Using the polymerase chain reaction and denaturing gradient gel electrophoresis, 2 nonfunctioning pituitary tumors displayed migration abnormalities when the G[sub s] [alpha]-gene was analyzed. Sequence analysis of these abnormally migrating polymerase chain reaction products revealed two previously known gsp mutations: arginine at codon 201 altered to cysteine, and glutamine at codon 227 changed to leucine. No gip mutations could be demonstrated. These findings emphasize the monoclonal origin of nonfunctioning pituitary tumors and suggest that cAMP may play a role in tumorigenesis of nonfunctioning pituitary tumors. 27 refs., 3 figs., 1 tab.

  19. Mutation of the TERT promoter, switch to active chromatin, and monoallelic TERT expression in multiple cancers

    PubMed Central

    Stern, Josh Lewis; Theodorescu, Dan; Vogelstein, Bert; Papadopoulos, Nickolas; Cech, Thomas R.

    2015-01-01

    Somatic mutations in the promoter of the gene for telomerase reverse transcriptase (TERT) are the most common noncoding mutations in cancer. They are thought to activate telomerase, contributing to proliferative immortality, but the molecular events driving TERT activation are largely unknown. We observed in multiple cancer cell lines that mutant TERT promoters exhibit the H3K4me2/3 mark of active chromatin and recruit the GABPA/B1 transcription factor, while the wild-type allele retains the H3K27me3 mark of epigenetic silencing; only the mutant promoters are transcriptionally active. These results suggest how a single-base-pair mutation can cause a dramatic epigenetic switch and monoallelic expression. PMID:26515115

  20. A novel activation-induced cytidine deaminase (AID) mutation in Brazilian patients with hyper-IgM type 2 syndrome.

    PubMed

    Caratão, Nadine; Cortesão, Catarina S; Reis, Pedro H; Freitas, Raquel F; Jacob, Cristina M A; Pastorino, Antonio C; Carneiro-Sampaio, Magda; Barreto, Vasco M

    2013-08-01

    Activation-induced cytidine deaminase (AID) is a DNA editing protein that plays an essential role in three major events of immunoglobulin (Ig) diversification: somatic hypermutation, class switch recombination and Ig gene conversion. Mutations in the AID gene (AICDA) have been found in patients with autosomal recessive Hyper-IgM (HIGM) syndrome type 2. Here, two 9- and 14-year-old Brazilian sisters, from a consanguineous family, were diagnosed with HIGM2 syndrome. Sequencing analysis of the exons from AICDA revealed that both patients are homozygous for a single C to G transversion in the third position of codon 15, which replaces a conserved Phenylalanine with a Leucine. To our knowledge, this is a new AICDA mutation found in HIGM2 patients. Functional studies confirm that the homologous murine mutation leads to a dysfunctional protein with diminished intrinsic cytidine deaminase activity and is unable to rescue CSR when introduced in Aicda(-/-)stimulated murine B cells. We briefly discuss the relevance of AICDA mutations found in patients for the biology of this molecule.

  1. Identification of a Mutation Causing Deficient BMP1/mTLD Proteolytic Activity in Autosomal Recessive Osteogenesis Imperfecta

    PubMed Central

    Martínez-Glez, Víctor; Valencia, Maria; Caparrós-Martín, José A.; Aglan, Mona; Temtamy, Samia; Tenorio, Jair; Pulido, Veronica; Lindert, Uschi; Rohrbach, Marianne; Eyre, David; Giunta, Cecilia; Lapunzina, Pablo; Ruiz-Perez, Victor L.

    2013-01-01

    Herein, we have studied a consanguineous Egyptian family with two children diagnosed with severe autosomal recessive osteogenesis imperfecta (AR-OI) and a large umbilical hernia. Homozygosity mapping in this family showed lack of linkage to any of the previously known AR-OI genes, but revealed a 10.27 MB homozygous region on chromosome 8p in the two affected sibs, which comprised the procollagen I C-terminal propeptide (PICP) endopeptidase gene BMP1. Mutation analysis identified both patients with a Phe249Leu homozygous missense change within the BMP1 protease domain involving a residue, which is conserved in all members of the astacin group of metalloproteases. Type I procollagen analysis in supernatants from cultured fibroblasts demonstrated abnormal PICP processing in patient-derived cells consistent with the mutation causing decreased BMP1 function. This was further confirmed by overexpressing wild type and mutant BMP1 longer isoform (mammalian Tolloid protein [mTLD]) in NIH3T3 fibroblasts and human primary fibroblasts. While overproduction of normal mTLD resulted in a large proportion of proα1(I) in the culture media being C-terminally processed, proα1(I) cleavage was not enhanced by an excess of the mutant protein, proving that the Phe249Leu mutation leads to a BMP1/mTLD protein with deficient PICP proteolytic activity. We conclude that BMP1 is an additional gene mutated in AR-OI. PMID:22052668

  2. Complete androgen insensitivity syndrome caused by a deep intronic pseudoexon-activating mutation in the androgen receptor gene

    PubMed Central

    Känsäkoski, Johanna; Jääskeläinen, Jarmo; Jääskeläinen, Tiina; Tommiska, Johanna; Saarinen, Lilli; Lehtonen, Rainer; Hautaniemi, Sampsa; Frilander, Mikko J.; Palvimo, Jorma J.; Toppari, Jorma; Raivio, Taneli

    2016-01-01

    Mutations in the X-linked androgen receptor (AR) gene underlie complete androgen insensitivity syndrome (CAIS), the most common cause of 46,XY sex reversal. Molecular genetic diagnosis of CAIS, however, remains uncertain in patients who show normal coding region of AR. Here, we describe a novel mechanism of AR disruption leading to CAIS in two 46,XY sisters. We analyzed whole-genome sequencing data of the patients for pathogenic variants outside the AR coding region. Patient fibroblasts from the genital area were used for AR cDNA analysis and protein quantification. Analysis of the cDNA revealed aberrant splicing of the mRNA caused by a deep intronic mutation (c.2450-118A>G) in the intron 6 of AR. The mutation creates a de novo 5′ splice site and a putative exonic splicing enhancer motif, which leads to the preferential formation of two aberrantly spliced mRNAs (predicted to include a premature stop codon). Patient fibroblasts contained no detectable AR protein. Our results show that patients with CAIS and normal AR coding region need to be examined for deep intronic mutations that can lead to pseudoexon activation. PMID:27609317

  3. Lethal Factor Active-Site Mutations Affect Catalytic Activity In Vitro

    PubMed Central

    Hammond, S. E.; Hanna, P. C.

    1998-01-01

    The lethal factor (LF) protein of Bacillus anthracis lethal toxin contains the thermolysin-like active-site and zinc-binding consensus motif HEXXH (K. R. Klimpel, N. Arora, and S. H. Leppla, Mol. Microbiol. 13:1093–1100, 1994). LF is hypothesized to act as a Zn2+ metalloprotease in the cytoplasm of macrophages, but no proteolytic activities have been previously shown on any target substrate. Here, synthetic peptides are hydrolyzed by LF in vitro. Mass spectroscopy and peptide sequencing of isolated cleavage products separated by reverse-phase high-pressure liquid chromatography indicate that LF seems to prefer proline-containing substrates. Substitution mutations within the consensus active-site residues completely abolish all in vitro catalytic functions, as does addition of 1,10-phenanthroline, EDTA, and certain amino acid hydroxamates, including the novel zinc metalloprotease inhibitor ZINCOV. In contrast, the protease inhibitors bestatin and lysine CMK, previously shown to block LF activity on macrophages, did not block LF activity in vitro. These data provide the first direct evidence that LF may act as an endopeptidase. PMID:9573135

  4. Activating mutations for the Met tyrosine kinase receptor in human cancer

    PubMed Central

    Jeffers, Michael; Schmidt, Laura; Nakaigawa, Noboru; Webb, Craig P.; Weirich, Gregor; Kishida, Takeshi; Zbar, Berton; Vande Woude, George F.

    1997-01-01

    Recently, mutations in the Met tyrosine kinase receptor have been identified in both hereditary and sporadic forms of papillary renal carcinoma. We have introduced the corresponding mutations into the met cDNA and examined the effect of each mutation in biochemical and biological assays. We find that the Met mutants exhibit increased levels of tyrosine phosphorylation and enhanced kinase activity toward an exogenous substrate when compared with wild-type Met. Moreover, NIH 3T3 cells expressing mutant Met molecules form foci in vitro and are tumorigenic in nude mice. Enzymatic and biological differences were evident among the various mutants examined, and the somatic mutations were generally more active than those of germ-line origin. A strong correlation between the enzymatic and biological activity of the mutants was observed, indicating that tumorigenesis by Met is quantitatively related to its level of activation. These results demonstrate that the Met mutants originally identified in human papillary renal carcinoma are oncogenic and thus are likely to play a determinant role in this disease, and these results raise the possibility that activating Met mutations also may contribute to other human malignancies. PMID:9326629

  5. Familial Mediterranean fever mutations lift the obligatory requirement for microtubules in Pyrin inflammasome activation

    PubMed Central

    Van Gorp, Hanne; Saavedra, Pedro H. V.; de Vasconcelos, Nathalia M.; Van Opdenbosch, Nina; Vande Walle, Lieselotte; Matusiak, Magdalena; Prencipe, Giusi; Insalaco, Antonella; Van Hauwermeiren, Filip; Demon, Dieter; Bogaert, Delfien J.; Dullaers, Melissa; De Baere, Elfride; Hochepied, Tino; Dehoorne, Joke; Vermaelen, Karim Y.; Haerynck, Filomeen; De Benedetti, Fabrizio; Lamkanfi, Mohamed

    2016-01-01

    Familial Mediterranean fever (FMF) is the most common monogenic autoinflammatory disease worldwide. It is caused by mutations in the inflammasome adaptor Pyrin, but how FMF mutations alter signaling in FMF patients is unknown. Herein, we establish Clostridium difficile and its enterotoxin A (TcdA) as Pyrin-activating agents and show that wild-type and FMF Pyrin are differentially controlled by microtubules. Diverse microtubule assembly inhibitors prevented Pyrin-mediated caspase-1 activation and secretion of IL-1β and IL-18 from mouse macrophages and human peripheral blood mononuclear cells (PBMCs). Remarkably, Pyrin inflammasome activation persisted upon microtubule disassembly in PBMCs of FMF patients but not in cells of patients afflicted with other autoinflammatory diseases. We further demonstrate that microtubules control Pyrin activation downstream of Pyrin dephosphorylation and that FMF mutations enable microtubule-independent assembly of apoptosis-associated speck-like protein containing a caspase recruitment domain (ASC) micrometer-sized perinuclear structures (specks). The discovery that Pyrin mutations remove the obligatory requirement for microtubules in inflammasome activation provides a conceptual framework for understanding FMF and enables immunological screening of FMF mutations. PMID:27911804

  6. Landscape of activating cancer mutations in FGFR kinases and their differential responses to inhibitors in clinical use

    PubMed Central

    Thiyagarajan, Nethaji; Norman, Richard A.; Ogg, Derek; Breed, Jason; Ashford, Paul; Potterton, Andrew; Edwards, Mina; Williams, Sarah V.; Thomson, Gary S.; Pang, Camilla S.M.; Knowles, Margaret A.; Breeze, Alexander L.; Orengo, Christine; Phillips, Chris; Katan, Matilda

    2016-01-01

    Frequent genetic alterations discovered in FGFRs and evidence implicating some as drivers in diverse tumors has been accompanied by rapid progress in targeting FGFRs for anticancer treatments. Wider assessment of the impact of genetic changes on the activation state and drug responses is needed to better link the genomic data and treatment options. We here apply a direct comparative and comprehensive analysis of FGFR3 kinase domain variants representing the diversity of point-mutations reported in this domain. We reinforce the importance of N540K and K650E and establish that not all highly activating mutations (for example R669G) occur at high-frequency and conversely, that some “hotspots” may not be linked to activation. Further structural characterization consolidates a mechanistic view of FGFR kinase activation and extends insights into drug binding. Importantly, using several inhibitors of particular clinical interest (AZD4547, BGJ-398, TKI258, JNJ42756493 and AP24534), we find that some activating mutations (including different replacements of the same residue) result in distinct changes in their efficacy. Considering that there is no approved inhibitor for anticancer treatments based on FGFR-targeting, this information will be immediately translatable to ongoing clinical trials. PMID:26992226

  7. Somatic mutational analysis of MED12 exon 2 in uterine leiomyomas of Iranian women

    PubMed Central

    Shahbazi, Shirin; Fatahi, Neda; Amini-Moghaddam, Soheila

    2015-01-01

    Uterine leiomyomas are steroid-hormone dependent tumors of myometrial smooth muscle cells that affect numerous women throughout the world. Based on previous studies, we evaluated the mutations of MED12 gene which encodes a co-activator protein involved in transcription regulation of the vast majority of RNA polymerase II-dependent genes. Exon 2 of MED12 gene was genotyped by PCR-sequencing method. To determine the proportion of mutation-containing transcripts, RNA was extracted from the tissue samples and the corresponding amplified cDNA was sequenced. We observed 11 mutation positive lesions, 7 of them were located in codon 44. The c.131G>A was found to be the most common somatic mutation in this study. Our investigation also demonstrated two unreported mutations , one large deletion and one insertion. cDNA analyzing revealed that the mutated transcripts were predominantly expressed in almost all changes including the new insertion mutation c.122-123ins15. Our study provides further evidence that the MED12 somatic mutations occur in a heterozygous manner and are mostly missense mutations in codon 44. The results displayed 47.8% mutation positive lesions in Iranian patients confirming the diversity between the populations. PMID:26396919

  8. Multi-center analysis of glucocerebrosidase mutations in Parkinson disease

    PubMed Central

    Sidransky, Ellen; Nalls, Michael A.; Aasly, Jan O.; Aharon-Peretz, Judith; Annesi, Grazia; Barbosa, Egberto Reis; Bar-Shira, Anat; Berg, Daniela; Bras, Jose; Brice, Alexis; Chen, Chiung-Mei; Clark, Lorraine N.; Condroyer, Christel; De Marco, Elvira Valeria; Dürr, Alexandra; Eblan, Michael J.; Fahn, Stanley; Farrer, Matthew; Fung, Hon-Chung; Gan-Or, Ziv; Gasser, Thomas; Gershoni-Baruch, Ruth; Giladi, Nir; Griffith, Alida; Gurevich, Tanya; Januario, Cristina; Kropp, Peter; Lang, Anthony E.; Lee-Chen, Guey-Jen; Lesage, Suzanne; Marder, Karen; Mata, Ignacio F.; Mirelman, Anat; Mitsui, Jun; Mizuta, Ikuko; Nicoletti, Giuseppe; Oliveira, Catarina; Ottman, Ruth; Orr-Urtreger, Avi; Pereira, Lygia V.; Quattrone, Aldo; Rogaeva, Ekaterina; Rolfs, Arndt; Rosenbaum, Hanna; Rozenberg, Roberto; Samii, Ali; Samaddar, Ted; Schulte, Claudia; Sharma, Manu; Singleton, Andrew; Spitz, Mariana; Tan, Eng-King; Tayebi, Nahid; Toda, Tatsushi; Troiano, André; Tsuji, Shoji; Wittstock, Matthias; Wolfsberg, Tyra G.; Wu, Yih-Ru; Zabetian, Cyrus P.; Zhao, Yi; Ziegler, Shira G.

    2010-01-01

    Background Recent studies indicate an increased frequency of mutations in the gene for Gaucher disease, glucocerebrosidase (GBA), among patients with Parkinson disease. An international collaborative study was conducted to ascertain the frequency of GBA mutations in ethnically diverse patients with Parkinson disease. Methods Sixteen centers participated, including five from the Americas, six from Europe, two from Israel and three from Asia. Each received a standard DNA panel to compare genotyping results. Genotypes and phenotypic data from patients and controls were analyzed using multivariate logistic regression models and the Mantel Haenszel procedure to estimate odds ratios (ORs) across studies. The sample included 5691 patients (780 Ashkenazi Jews) and 4898 controls (387 Ashkenazi Jews). Results All 16 centers could detect GBA mutations, L444P and N370S, and the two were found in 15.3% of Ashkenazi patients with Parkinson disease (ORs = 4.95 for L444P and 5.62 for N370S), and in 3.2% of non-Ashkenazi patients (ORs = 9.68 for L444P and 3.30 for N370S). GBA was sequenced in 1642 non-Ashkenazi subjects, yielding a frequency of 6.9% for all mutations, demonstrate that limited mutation screens miss half the mutant alleles. The presence of any GBA mutation was associated with an OR of 5.43 across studies. Clinically, although phenotypes varied, subjects with a GBA mutation presented earlier, and were more likely to have affected relatives and atypical manifestations. Conclusion Data collected from sixteen centers demonstrate that there is a strong association between GBA mutations and Parkinson disease. PMID:19846850

  9. Software and database for the analysis of mutations in the human FBN1 gene.

    PubMed Central

    Collod, G; Béroud, C; Soussi, T; Junien, C; Boileau, C

    1996-01-01

    Fibrillin is the major component of extracellular microfibrils. Mutations in the fibrillin gene on chromosome 15 (FBN1) were described at first in the heritable connective tissue disorder, Marfan syndrome (MFS). More recently, FBN1 has also been shown to harbor mutations related to a spectrum of conditions phenotypically related to MFS and many mutations will have to be accumulated before genotype/phenotype relationships emerge. To facilitate mutational analysis of the FBN1 gene, a software package along with a computerized database (currently listing 63 entries) have been created. PMID:8594563

  10. Analysis of mutations and bone marrow micronuclei in Big Blue rats fed leucomalachite green.

    PubMed

    Manjanatha, M G; Shelton, S D; Bishop, M; Shaddock, J G; Dobrovolsky, V N; Heflich, R H; Webb, P J; Blankenship, L R; Beland, F A; Greenlees, K J; Culp, S J

    2004-03-22

    Leucomalachite green (LMG) is the major metabolite of malachite green (MG), a triphenylmethane dye that has been used widely as an antifungal agent in the fish industry. Concern over MG and LMG is due to the potential for consumer exposure, suggestive evidence of tumor promotion in rodent liver, and suspicion of carcinogenicity based on structure-activity relationships. In order to evaluate the risks associated with exposure to LMG, female Big Blue rats were fed up to 543 ppm LMG; groups of these rats were killed after 4, 16, or 32 weeks of exposure and evaluated for genotoxicity. We previously reported that this treatment resulted in a dose-dependent induction of liver DNA adducts, and that the liver lacI mutant frequency (MF) was increased, but only in rats fed 543 ppm LMG for 16 weeks. In the present study, we report the results from lymphocyte Hprt mutant assays and bone marrow micronucleus assays performed on these same rats. In addition, we have determined the types of lacI mutations induced in the rats fed 543 ppm LMG for 16 weeks and the rats fed control diet. No significant increases in the frequency of micronuclei or Hprt mutants were observed for any of the doses or time points assayed. Molecular analysis of 80 liver lacI mutants from rats fed 543 ppm LMG for 16 weeks revealed that 21% (17/80) were clonal in origin and that most (55/63) of the independent mutations were base pair substitutions. The predominant type of mutation was G:C --> A:T transition (31/63) and the majority (68%) of these involved CpG sites. When corrected for clonality, the 16-week lacI mutation frequency (36 +/- 10) x 10(-6) in treated rats was not significantly different from the clonally corrected control frequency (17 +/- 9 x 10(-6); P = 0.06). Furthermore, the lacI mutational spectrum in treated rats was not significantly different from that found for control rats (P = 0.09). Taken together, these data indicate that the DNA adducts produced by LMG in female rats do not result

  11. CFTR mutation analysis and haplotype associations in CF patients.

    PubMed

    Cordovado, S K; Hendrix, M; Greene, C N; Mochal, S; Earley, M C; Farrell, P M; Kharrazi, M; Hannon, W H; Mueller, P W

    2012-02-01

    Most newborn screening (NBS) laboratories use second-tier molecular tests for cystic fibrosis (CF) using dried blood spots (DBS). The Centers for Disease Control and Prevention's NBS Quality Assurance Program offers proficiency testing (PT) in DBS for CF transmembrane conductance regulator (CFTR) gene mutation detection. Extensive molecular characterization on 76 CF patients, family members or screen positive newborns was performed for quality assurance. The coding, regulatory regions and portions of all introns were sequenced and large insertions/deletions were characterized as well as two intronic di-nucleotide microsatellites. For CF patient samples, at least two mutations were identified/verified and four specimens contained three likely CF-associated mutations. Thirty-four sequence variations in 152 chromosomes were identified, five of which were not previously reported. Twenty-seven of these variants were used to predict haplotypes from the major haplotype block defined by HapMap data that spans the promoter through intron 19. Chromosomes containing the F508del (p.Phe508del), G542X (p.Gly542X) and N1303K (p.Asn1303Lys) mutations shared a common haplotype subgroup, consistent with a common ancient European founder. Understanding the haplotype background of CF-associated mutations in the U.S. population provides a framework for future phenotype/genotype studies and will assist in determining a likely cis/trans phase of the mutations without need for parent studies.

  12. Mutation analysis of the Smad3 gene in human osteoarthritis.

    PubMed

    Yao, Jun-Yan; Wang, Yan; An, Jing; Mao, Chun-Ming; Hou, Ning; Lv, Ya-Xin; Wang, You-Liang; Cui, Fang; Huang, Min; Yang, Xiao

    2003-09-01

    Osteoarthritis (OA) is the most common joint disease worldwide. Recent studies have shown that targeted disruption of Smad3 in mouse results in OA. To reveal the possible association between the Smad3 gene mutation and human OA, we employed polymerase chain reaction-single strand conformation polymorphism and sequencing to screen mutations in all nine exons of the Smad3 gene in 32 patients with knee OA and 50 patients with only bone fracture. A missense mutation of the Smad3 gene was found in one patient. The single base mutation located in the linker region of the SMAD3 protein was A --> T change in the position 2 of codon 197 and resulted in an asparagine to isoleucine amino-acid substitution. The expressions of matrix metalloproteinase 2 (MMP-2) and MMP-9 in sera of the patient carrying the mutation were higher than other OA patients and controls. This is the first report showing that the Smad3 gene mutations could be associated with the pathogenesis of human OA.

  13. Analysis of GATA1 mutations and leukemogenesis in newborns with Down syndrome.

    PubMed

    Queiroz, L B; Lima, B D; Mazzeu, J F; Camargo, R; Córdoba, M S; Q Magalhães, I; Martins-de-Sá, C; Ferrari, I

    2013-10-18

    It has been reported that patients with Down syndrome (DS) frequently develop transient myeloproliferative disorder (TMD) and less commonly myeloid leukemia in DS (ML-DS). We examined the pathogenetic relationship of these conditions with somatic mutations of the GATA1 gene in children with both TMD and ML-DS. To determine the incidence of GATA1 mutations in a cohort of DS patients and the applicability of these mutations as a clonal marker to detect minimal residual disease, we screened 198 samples of 169 patients with DS for mutations in GATA1 exon 2 by direct sequencing. Novel mutations were detected in four of the 169 DS patients (2 with TMD and 2 with ML-DS). We examined spontaneous remission and response to therapy in TMD and ML-DS patients and concluded that these mutations can be used as stable markers in PCR analysis to monitor these events.

  14. Frequencies, Laboratory Features, and Granulocyte Activation in Chinese Patients with CALR-Mutated Myeloproliferative Neoplasms

    PubMed Central

    Tian, Ruiyuan; Chang, Jianmei; Li, Jianlan; Tan, Yanhong; Xu, Zhifang; Ren, Fanggang; Zhao, Junxia; Pan, Jie; Zhang, Na; Wang, Xiaojuan; He, Jianxia; Yang, Wanfang; Wang, Hongwei

    2015-01-01

    Somatic mutations in the CALR gene have been recently identified as acquired alterations in myeloproliferative neoplasms (MPNs). In this study, we evaluated mutation frequencies, laboratory features, and granulocyte activation in Chinese patients with MPNs. A combination of qualitative allele-specific polymerase chain reaction and Sanger sequencing was used to detect three driver mutations (i.e., CALR, JAK2V617F, and MPL). CALR mutations were identified in 8.4% of cases with essential thrombocythemia (ET) and 5.3% of cases with primary myelofibrosis (PMF). Moreover, 25% of polycythemia vera, 29.5% of ET, and 48.1% of PMF were negative for all three mutations (JAK2V617F, MPL, and CALR). Compared with those patients with JAK2V617F mutation, CALR-mutated ET patients displayed unique hematological phenotypes, including higher platelet counts, and lower leukocyte counts and hemoglobin levels. Significant differences were not found between Chinese PMF patients with mutants CALR and JAK2V617F in terms of laboratory features. Interestingly, patients with CALR mutations showed markedly decreased levels of leukocyte alkaline phosphatase (LAP) expression, whereas those with JAK2V617F mutation presented with elevated levels. Overall, a lower mutant rate of CALR gene and a higher triple-negative rate were identified in the cohort of Chinese patients with MPNs. This result indicates that an undiscovered mutant gene may have a significant role in these patients. Moreover, these pathological features further imply that the disease biology varies considerably between mutants CALR and JAK2V617F. PMID:26375990

  15. Aceruloplasminemia in an asymptomatic patient with a new mutation. Diagnosis and family genetic analysis.

    PubMed

    Pérez-Aguilar, Fernando; Burguera, Juan A; Benlloch, Salvador; Berenguer, Marina; Rayón, Jose M

    2005-06-01

    A 39-year-old asymptomatic man showed elevated serum ferritin levels, mild hypertransaminasemia and serum ceruloplasmin almost undetectable. There was histological iron accumulation within the hepatocytes and also in the central nervous system (MRI). A genetic analysis revealed a new missense mutation in the ceruloplasmin gene. Two of the other four siblings were also affected by this mutation.

  16. Asymptomatic Congenital Hyperinsulinism due to a Glucokinase-Activating Mutation, Treated as Adrenal Insufficiency for Twelve Years

    PubMed Central

    Morishita, Kae; Kyo, Chika; Kosugi, Rieko; Ogawa, Tatsuo; Inoue, Tatsuhide

    2017-01-01

    Congenital hyperinsulinism (CHI) caused by a glucokinase- (GCK-) activating mutation shows autosomal dominant inheritance, and its severity ranges from mild to severe. A 43-year-old female with asymptomatic hypoglycemia (47 mg/dL) was diagnosed as partial adrenal insufficiency and the administration of hydrocortisone (10 mg/day) was initiated. Twelve years later, her 8-month-old grandchild was diagnosed with CHI. Heterozygosity of exon 6 c.590T>C (p.M197T) was identified in a gene analysis of GCK, which was also detected in her son and herself. The identification of GCK-activating mutations in hyperinsulinemic hypoglycemia patients may be useful for a deeper understanding of the pathophysiology involved and preventing unnecessary glucocorticoid therapy. PMID:28163940

  17. Antitumor effects and molecular mechanisms of ponatinib on endometrial cancer cells harboring activating FGFR2 mutations

    PubMed Central

    Kim, Do-Hee; Kwak, Yeonui; Kim, Nam Doo; Sim, Taebo

    2016-01-01

    ABSTRACT Aberrant mutational activation of FGFR2 is associated with endometrial cancers (ECs). AP24534 (ponatinib) currently undergoing clinical trials has been known to be an orally available multi-targeted tyrosine kinase inhibitor. Our biochemical kinase assay showed that AP24534 is potent against wild-type FGFR1-4 and 5 mutant FGFRs (V561M-FGFR1, N549H-FGFR2, K650E-FGFR3, G697C-FGFR3, N535K-FGFR4) and possesses the strongest kinase-inhibitory activity on N549H-FGFR2 (IC50 of 0.5 nM) among all FGFRs tested. We therefore investigated the effects of AP24534 on endometrial cancer cells harboring activating FGFR2 mutations and explored the underlying molecular mechanisms. AP24534 significantly inhibited the proliferation of endometrial cancer cells bearing activating FGFR2 mutations (N549K, K310R/N549K, S252W) and mainly induced G1/S cell cycle arrest leading to apoptosis. AP24534 also diminished the kinase activity of immunoprecipitated FGFR2 derived from MFE-296 and MFE-280 cells and reduced the phosphorylation of FGFR2 and FRS2 on MFE-296 and AN3CA cells. AP24534 caused substantial reductions in ERK phosphorylation, PLCγ signaling and STAT5 signal transduction on ECs bearing FGFR2 activating mutations. Akt signaling pathway was also deactivated by AP24534. AP24534 causes the chemotherapeutic effect through mainly the blockade of ERK, PLCγ and STAT5 signal transduction on ECs. Moreover, AP24534 inhibited migration and invasion of endometrial cancer cells with FGFR2 mutations. In addition, AP24534 significantly blocked anchorage-independent growth of endometrial cancer cells. We, for the first time, report the molecular mechanisms by which AP24534 exerts antitumor effects on ECs with FGFR2 activating mutations, which would provide mechanistic insight into ongoing clinical investigations of AP24534 for ECs. PMID:26574622

  18. Impact of active smoking on survival of patients with metastatic lung adenocarcinoma harboring an epidermal growth factor receptor (EGFR) mutation.

    PubMed

    Erdogan, Bulent; Kodaz, Hilmi; Karabulut, Senem; Cinkaya, Ahmet; Tozkir, Hilmi; Tanriverdi, Ozgur; Cabuk, Devrim; Hacioglu, Muhammed Bekir; Turkmen, Esma; Hacibekiroglu, Ilhan; Uzunoglu, Sernaz; Cicin, Irfan

    2016-11-10

    Lung cancer in smokers and non-smokers demonstrates distinct genetic profiles, and cigarette smoking affects epidermal growth factor receptor (EGFR) function and causes secondary EGFR tyrosine kinase resistance. We evaluated the effect of active smoking in patients with metastatic lung adenocarcinoma. A total of 132 metastatic lung adenocarcinoma patients, diagnosed between 2008 and 2013, with known EGFR mutation status, were evaluated retrospectively. Among these patients, 40 had an activating EGFR mutation. Patients who continued smoking during the treatment were defined as active smokers. Former smokers and never smokers were together defined as non-smokers. The outcomes of the treatment in relation to the EGFR mutation and smoking status were evaluated. The median follow-up time was 10.5 months. The overall response rate for the first-line therapy was significantly higher among the EGFR-mutant patients (p = 0.01), however, smoking status had no impact on the response rate (p = 0.1). The EGFR-mutant active smokers progressed earlier than the non-smokers (p < 0.01). The overall survival (OS) of the non-smokers and patients treated with erlotinib was significantly longer (p = 0.02 and p = 0.01, respectively). Smoking status did not affect the OS in EGFR wild type tumors (p = 0.49) but EGFR-mutant non-smokers had a longer OS than the active smokers (p = 0.01).The active smokers treated with erlotinib had poorer survival than the non-smokers (p = 0.03). Multivariate analysis of EGFR-mutant patients showed that erlotinib treatment at any line and non-smoking were independent prognostic factors for the OS (p = 0.04 and p = 0.01, respectively). Smoking during treatment is a negative prognostic factor in metastatic lung adenocarcinoma with an EGFR mutation.

  19. Digital PCR Improves Mutation Analysis in Pancreas Fine Needle Aspiration Biopsy Specimens

    PubMed Central

    Court, Colin M.; Kim, Stephen; Braxton, David R.; Hou, Shuang; Muthusamy, V. Raman; Watson, Rabindra R.; Sedarat, Alireza; Tseng, Hsian-Rong; Tomlinson, James S.

    2017-01-01

    Applications of precision oncology strategies rely on accurate tumor genotyping from clinically available specimens. Fine needle aspirations (FNA) are frequently obtained in cancer management and often represent the only source of tumor tissues for patients with metastatic or locally advanced diseases. However, FNAs obtained from pancreas ductal adenocarcinoma (PDAC) are often limited in cellularity and/or tumor cell purity, precluding accurate tumor genotyping in many cases. Digital PCR (dPCR) is a technology with exceptional sensitivity and low DNA template requirement, characteristics that are necessary for analyzing PDAC FNA samples. In the current study, we sought to evaluate dPCR as a mutation analysis tool for pancreas FNA specimens. To this end, we analyzed alterations in the KRAS gene in pancreas FNAs using dPCR. The sensitivity of dPCR mutation analysis was first determined using serial dilution cell spiking studies. Single-cell laser-microdissection (LMD) was then utilized to identify the minimal number of tumor cells needed for mutation detection. Lastly, dPCR mutation analysis was performed on 44 pancreas FNAs (34 formalin-fixed paraffin-embedded (FFPE) and 10 fresh (non-fixed)), including samples highly limited in cellularity (100 cells) and tumor cell purity (1%). We found dPCR to detect mutations with allele frequencies as low as 0.17%. Additionally, a single tumor cell could be detected within an abundance of normal cells. Using clinical FNA samples, dPCR mutation analysis was successful in all preoperative FNA biopsies tested, and its accuracy was confirmed via comparison with resected tumor specimens. Moreover, dPCR revealed additional KRAS mutations representing minor subclones within a tumor that were not detected by the current clinical gold standard method of Sanger sequencing. In conclusion, dPCR performs sensitive and accurate mutation analysis in pancreas FNAs, detecting not only the dominant mutation subtype, but also the additional rare

  20. Quantitative analysis of somatic mitochondrial DNA mutations by single-cell single-molecule PCR.

    PubMed

    Kraytsberg, Yevgenya; Bodyak, Natalya; Myerow, Susan; Nicholas, Alexander; Ebralidze, Konstantin; Khrapko, Konstantin

    2009-01-01

    Mitochondrial genome integrity is an important issue in somatic mitochondrial genetics. Development of quantitative methods is indispensable to somatic mitochondrial genetics as quantitative studies are required to characterize heteroplasmy and mutation processes, as well as their effects on phenotypic developments. Quantitative studies include the identification and measurement of the load of pathogenic and non-pathogenic clonal mutations, screening mitochondrial genomes for mutations in order to determine the mutation spectra and characterize an ongoing mutation process. Single-molecule PCR (smPCR) has been shown to be an effective method that can be applied to all areas of quantitative studies. It has distinct advantages over conventional vector-based cloning techniques avoiding the well-known PCR-related artifacts such as the introduction of artificial mutations, preferential allelic amplifications, and "jumping" PCR. smPCR is a straightforward and robust method, which can be effectively used for molecule-by-molecule mutational analysis, even when mitochondrial whole genome (mtWG) analysis is involved. This chapter describes the key features of the smPCR method and provides three examples of its applications in single-cell analysis: di-plex smPCR for deletion quantification, smPCR cloning for clonal point mutation quantification, and smPCR cloning for whole genome sequencing (mtWGS).

  1. Mutational analysis of oculocutaneous albinism: a compact review.

    PubMed

    Kamaraj, Balu; Purohit, Rituraj

    2014-01-01

    Oculocutaneous albinism (OCA) is an autosomal recessive disorder caused by either complete lack of or a reduction of melanin biosynthesis in the melanocytes. The OCA1A is the most severe type with a complete lack of melanin production throughout life, while the milder forms OCA1B, OCA2, OCA3, and OCA4 show some pigment accumulation over time. Mutations in TYR, OCA2, TYRP1, and SLC45A2 are mainly responsible for causing oculocutaneous albinism. Recently, two new genes SLC24A5 and C10orf11 are identified that are responsible to cause OCA6 and OCA7, respectively. Also a locus has been mapped to the human chromosome 4q24 region which is responsible for genetic cause of OCA5. In this paper, we summarized the clinical and molecular features of OCA genes. Further, we reviewed the screening of pathological mutations of OCA genes and its molecular mechanism of the protein upon mutation by in silico approach. We also reviewed TYR (T373K, N371Y, M370T, and P313R), OCA2 (R305W), TYRP1 (R326H and R356Q) mutations and their structural consequences at molecular level. It is observed that the pathological genetic mutations and their structural and functional significance of OCA genes will aid in development of personalized medicine for albinism patients.

  2. Mutational Analysis of Oculocutaneous Albinism: A Compact Review

    PubMed Central

    Kamaraj, Balu

    2014-01-01

    Oculocutaneous albinism (OCA) is an autosomal recessive disorder caused by either complete lack of or a reduction of melanin biosynthesis in the melanocytes. The OCA1A is the most severe type with a complete lack of melanin production throughout life, while the milder forms OCA1B, OCA2, OCA3, and OCA4 show some pigment accumulation over time. Mutations in TYR, OCA2, TYRP1, and SLC45A2 are mainly responsible for causing oculocutaneous albinism. Recently, two new genes SLC24A5 and C10orf11 are identified that are responsible to cause OCA6 and OCA7, respectively. Also a locus has been mapped to the human chromosome 4q24 region which is responsible for genetic cause of OCA5. In this paper, we summarized the clinical and molecular features of OCA genes. Further, we reviewed the screening of pathological mutations of OCA genes and its molecular mechanism of the protein upon mutation by in silico approach. We also reviewed TYR (T373K, N371Y, M370T, and P313R), OCA2 (R305W), TYRP1 (R326H and R356Q) mutations and their structural consequences at molecular level. It is observed that the pathological genetic mutations and their structural and functional significance of OCA genes will aid in development of personalized medicine for albinism patients. PMID:25093188

  3. Ras-related TC21 is activated by mutation in a breast cancer cell line, but infrequently in breast carcinomas in vivo.

    PubMed Central

    Barker, K. T.; Crompton, M. R.

    1998-01-01

    Activating ras mutations are found in many types of human tumour. Mutations in Harvey (H-), Kirsten (K-) and neuronal (N-) ras are, however, rarely found in breast carcinomas. TC21 is a ras family member that shares close homology to H-, K- and N-ras, and activating mutations have been found in ovarian carcinoma and leiomyosarcoma cell lines. We have examined panels of cDNAs from breast, ovarian and cervical cell lines, and primary and metastatic breast tumours for mutations in TC21 using a single-strand conformational polymorphism (SSCP)-based assay. One breast cancer cell line, CAL51, exhibited an altered SSCP pattern, compared with normal tissue, which was due to an A-T base change in codon 72, causing a predicted Gln-Leu activating mutation. Of nine primary and 15 metastatic breast tumour cDNAs analysed, none exhibited an altered pattern by SSCP. The apparently wild-type pattern by SSCP analysis was confirmed by sequence analysis of some of the cDNAs assayed. Thus, we conclude that mutations in TC21 are uncommon in breast carcinomas. Images Figure 1 Figure 2 Figure 3 PMID:9703274

  4. System analysis of gene mutations and clinical phenotype in Chinese patients with autosomal-dominant polycystic kidney disease

    PubMed Central

    Jin, Meiling; Xie, Yuansheng; Chen, Zhiqiang; Liao, Yujie; Li, Zuoxiang; Hu, Panpan; Qi, Yan; Yin, Zhiwei; Li, Qinggang; Fu, Ping; Chen, Xiangmei

    2016-01-01

    Autosomal dominant polycystic kidney disease (ADPKD) is the most common inherited kidney disorder mainly caused by mutation in PKD1/PKD2. However, ethnic differences in mutations, the association between mutation genotype/clinical phenotype, and the clinical applicable value of mutation detection are poorly understood. We made systematically analysis of Chinese ADPKD patients based on a next-generation sequencing platform. Among 148 ADPKD patients enrolled, 108 mutations were detected in 127 patients (85.8%). Compared with mutations in Caucasian published previously, the PKD2 mutation detection rate was lower, and patients carrying the PKD2 mutation invariably carried the PKD1 mutation. The definite pathogenic mutation detection rate was lower, whereas the multiple mutations detection rate was higher in Chinese patients. Then, we correlated PKD1/PKD2 mutation data and clinical data: patients with mutation exhibited a more severe phenotype; patients with >1 mutations exhibited a more severe phenotype; patients with pathogenic mutations exhibited a more severe phenotype. Thus, the PKD1/PKD2 mutation status differed by ethnicity, and the PKD1/PKD2 genotype may affect the clinical phenotype of ADPKD. Furthermore, it makes sense to detect PKD1/PKD2 mutation status for early diagnosis and prognosis, perhaps as early as the embryo/zygote stage, to facilitate early clinical intervention and family planning. PMID:27782177

  5. Analysis of HBV genotype, drug resistant mutations, and pre-core/basal core promoter mutations in Korean patients with acute hepatitis B.

    PubMed

    Lee, Jong Ho; Hong, Sun Pyo; Jang, Eun Sun; Park, Sang Jong; Hwang, Seong Gyu; Kang, Sook-Kyoung; Jeong, Sook-Hyang

    2015-06-01

    Acute hepatitis B, caused by hepatitis B virus (HBV) strains with drug resistant mutations or pre-core/basal core promoter (PC/BCP) mutations, is a public health concern, because this infection is often associated with poor disease outcome or difficulty in therapeutic choice. The HBV genotype, the prevalence of drug resistant mutations, and PC/BCP mutations in Korean patients with acute hepatitis B were studied. From 2006 to 2008, 36 patients with acute hepatitis B were enrolled prospectively in four general hospitals. Among them, 20 showed detectable HBV DNA (median value was 4.8 log copies/mL). HBV genotyping and analysis of HBV mutations that conferred resistance against lamivudine, adefovir, or entecavir and of PC/BCP mutations were performed using highly sensitive restriction fragment mass polymorphism (RFMP) analysis. All 20 patients were infected with HBV genotype C, which causes almost all cases of chronic hepatitis B in Korea. No patient showed mutations that conferred resistance against lamivudine (L180M, M204V/I), adefovir (A181T, N236S), or entecavir (I169M, A184T/V, S202I/G, M250V/I/L). However, four patients had BCP mutations, and two had PC mutations. Platelet counts were significantly lower in the four patients with PC/BCP mutations compared to those with wild type. In this study, all acute hepatitis B patients had genotype C HBV strains with no drug resistant mutations. However, 20% showed PC/BCP mutations. This highlights the need for further study on the significance of PC/BCP mutations.

  6. Platelet-activating factor acetylhydrolase deficiency. A missense mutation near the active site of an anti-inflammatory phospholipase.

    PubMed Central

    Stafforini, D M; Satoh, K; Atkinson, D L; Tjoelker, L W; Eberhardt, C; Yoshida, H; Imaizumi, T; Takamatsu, S; Zimmerman, G A; McIntyre, T M; Gray, P W; Prescott, S M

    1996-01-01

    Deficiency of plasma platelet-activating factor (PAF) acetylhydrolase is an autosomal recessive syndrome that has been associated with severe asthma in Japanese children. Acquired deficiency has been described in several human diseases usually associated with severe inflammation. PAF acetylhydrolase catalyzes the degradation of PAF and related phospholipids, which have proinflammatory, allergic, and prothrombotic properties. Thus, a deficiency in the degradation of these lipids should increase the susceptibility to inflammatory and allergic disorders. Miwa et al. reported that PAF acetylhydrolase activity is absent in 4% of the Japanese population, which suggests that it could be a common factor in such disorders, but the molecular basis of the defect is unknown. We show that inherited deficiency of PAF acetylhydrolase is the result of a point mutation in exon 9 and that this mutation completely abolishes enzymatic activity. This mutation is the cause of the lack of enzymatic activity as expression in E. coli of a construct harboring the mutation results in an inactive protein. This mutation as a heterozygous trait is present in 27% in the Japanese population. This finding will allow rapid identification of subjects predisposed to severe asthma and other PAF-mediated disorders. PMID:8675689

  7. Activation of Antibiotic Biosynthesis by Specified Mutations in the rpoB Gene (Encoding the RNA Polymerase β Subunit) of Streptomyces lividans

    PubMed Central

    Hu, Haifeng; Zhang, Qin; Ochi, Kozo

    2002-01-01

    We found that the biosynthesis of actinorhodin (Act), undecylprodigiosin (Red), and calcium-dependent antibiotic (CDA) are dramatically activated by introducing certain mutations into the rpoB gene that confer resistance to rifampin to Streptomyces lividans 66, which produces less or no antibiotics under normal growth conditions. Activation of Act and/or Red biosynthesis by inducing mutations in the rpoB gene was shown to be dependent on the mutation's position and the amino acid species substituted in the β-subunit of the RNA polymerase. Mutation analysis identified 15 different kinds of point mutations, which are located in region I, II, or III of the rpoB gene and, in addition, two novel mutations (deletion of nucleotides 1287 to 1289 and a double substitution at nucleotides 1309 and 1310) were also found. Western blot analyses and S1 mapping analyses demonstrated that the expression of actII-ORF4 and redD, which are pathway-specific regulatory genes for Act and Red, respectively, was activated in the mutants able to produce Act and Red. The ActIV-ORF1 protein (an enzyme for Act biosynthesis) and the RedD protein were produced just after the upregulation of ActII-ORF4 and RedZ, respectively. These results indicate that the mutation in the rpoB gene of S. lividans, resulting in the activation of Act and/or Red biosynthesis, functions at the transcription level by activating directly or indirectly the key regulatory genes, actII-ORF4 and redD. We propose that the mutated RNA polymerase may function by mimicking the ppGpp-bound form in activating the onset of secondary metabolism in Streptomyces. PMID:12081971

  8. Recurrent activating mutation in PRKACA in cortisol-producing adrenal tumors

    PubMed Central

    Goh, Gerald; Scholl, Ute I.; Healy, James M.; Choi, Murim; Prasad, Manju L.; Nelson-Williams, Carol; Kuntsman, John W.; Korah, Reju; Suttorp, Anna-Carinna; Dietrich, Dimo; Haase, Matthias; Willenberg, Holger S.; Stålberg, Peter; Hellman, Per; Åkerström, Göran; Björklund, Peyman; Carling, Tobias; Lifton, Richard P.

    2014-01-01

    Adrenal tumors autonomously producing cortisol cause Cushing syndrome1–4. Exome sequencing of 25 tumor-normal pairs revealed two groups. Eight tumors (including 3 carcinomas) had many somatic copy number variants (CNV+) with frequent deletion of CDC42 and CDKN2A, amplification of 5q31.2, and protein-altering mutations in TP53 and RB1. Seventeen (all adenomas) had no CNVs (CNV-), TP53 or RB1 mutations. Six of these had known gain of function mutations in CTNNB15,6 (beta-catenin) or GNAS7,8 (Gαs), Six others had somatic p.Leu206Arg mutations in PRKACA (protein kinase A (PKA) catalytic subunit). Further sequencing identified this mutation in 13 of 63 tumors (35% of adenomas with overt CS). PRKACA, GNAS and CTNNB1 mutations were mutually exclusive. Leu206 directly interacts with PKA’s regulatory subunit, PRKAR1A9,10. PRKACAL206R loses PRKAR1A binding, increasing phosphorylation of downstream targets. PKA activity induces cortisol production and cell proliferation11–15, providing a mechanism for tumor development. These findings define distinct mechanisms underlying adrenal cortisol-producing tumors. PMID:24747643

  9. SCN10A Mutation in a Patient with Erythromelalgia Enhances C-Fiber Activity Dependent Slowing

    PubMed Central

    Neacsu, Cristian; Eberhardt, Esther; Schmidt, Roland; Lunden, Lars Kristian; Ørstavik, Kristin; Kaluza, Luisa; Meents, Jannis; Zhang, Zhiping; Carr, Thomas Hedley; Salter, Hugh; Malinowsky, David; Wollberg, Patrik; Krupp, Johannes; Kleggetveit, Inge Petter; Schmelz, Martin; Jørum, Ellen; Namer, Barbara

    2016-01-01

    Gain-of-function mutations in the tetrodotoxin (TTX) sensitive voltage-gated sodium channel (Nav) Nav1.7 have been identified as a key mechanism underlying chronic pain in inherited erythromelalgia. Mutations in TTX resistant channels, such as Nav1.8 or Nav1.9, were recently connected with inherited chronic pain syndromes. Here, we investigated the effects of the p.M650K mutation in Nav1.8 in a 53 year old patient with erythromelalgia by microneurography and patch-clamp techniques. Recordings of the patient’s peripheral nerve fibers showed increased activity dependent slowing (ADS) in CMi and less spontaneous firing compared to a control group of erythromelalgia patients without Nav mutations. To evaluate the impact of the p.M650K mutation on neuronal firing and channel gating, we performed current and voltage-clamp recordings on transfected sensory neurons (DRGs) and neuroblastoma cells. The p.M650K mutation shifted steady-state fast inactivation of Nav1.8 to more hyperpolarized potentials and did not significantly alter any other tested gating behaviors. The AP half-width was significantly broader and the stimulated action potential firing rate was reduced for M650K transfected DRGs compared to WT. We discuss the potential link between enhanced steady state fast inactivation, broader action potential width and the potential physiological consequences. PMID:27598514

  10. Comprehensive analysis of desmosomal gene mutations in Han Chinese patients with arrhythmogenic right ventricular cardiomyopathy.

    PubMed

    Zhou, Xiujuan; Chen, Minglong; Song, Hualian; Wang, Benqi; Chen, Hongwu; Wang, Jing; Wang, Wei; Feng, Shangpeng; Zhang, Fengxiang; Ju, Weizhu; Li, Mingfang; Gu, Kai; Cao, Kejiang; Wang, Dao W; Yang, Bing

    2015-04-01

    Arrhythmogenic right ventricular cardiomyopathy (ARVC) is a cardiomyopathy that primarily involves the right ventricle. Mutations in desmosomal genes have been associated with ARVC. But its prevalence and spectrum are much less defined in the Chinese population, especially Han Chinese, a majority ethnic group in China; also the genotype-phenotype correlation regarding left ventricular involvement is still poorly understood. The aim of this study was to elucidate the genotype in Han Chinese patients with ARVC and the phenotype regarding cardiac left ventricle involvement in mutation carriers of ARVC. 48 Han Chinese patients were recruited into the present study based on the Original International Task Force Criteria of ARVC. Clinical data were reassessed according to the modified criteria published in 2010. A total of 36 subjects were diagnosed with ARVC; 12 patients were diagnosed with suspected ARVC. Five desmosomal genes (PKP2, DSG2, DSP, DSC2 and JUP) were sequenced directly from genomic DNA. Among the 36 patients, 21 mutations, 12 of which novel, were discovered in 19 individuals (19 of 36, 53%). The distribution of the mutations was 25% in PKP2, 14% in DSP, 11% in DSG2, 6% in JUP, and 3% in DSC2. Multiple mutations were identified in 2 subjects (2 of 36, 6%); both had digenic heterozygosity. Eight mutations, of which six were novel, were located in highly conserved regions. Seven mutations introduced a stop codon prematurely, which would result in premature termination of the protein synthesis. Two-dimensional echocardiography showed that LDVd and LDVs parameters were significantly larger in nonsense mutation carriers than in carriers of other mutations. In this comprehensive desmosome genetic analysis, 21 mutations were identified in five desmosomal genes in a group of 48 local Han Chinese subjects with ARVC, 12 of which were novel. PKP2 mutations were the most common variants. Left ventricular involvement could be a sign that the patient is a carrier of a

  11. Haplotype analysis of the 185delAG BRCA1 mutation in ethnically diverse populations

    PubMed Central

    Laitman, Yael; Feng, Bing-Jian; Zamir, Itay M; Weitzel, Jeffrey N; Duncan, Paul; Port, Danielle; Thirthagiri, Eswary; Teo, Soo-Hwang; Evans, Gareth; Latif, Ayse; Newman, William G; Gershoni-Baruch, Ruth; Zidan, Jamal; Shimon-Paluch, Shani; Goldgar, David; Friedman, Eitan

    2013-01-01

    The 185delAG* BRCA1 mutation is encountered primarily in Jewish Ashkenazi and Iraqi individuals, and sporadically in non-Jews. Previous studies estimated that this is a founder mutation in Jewish mutation carriers that arose before the dispersion of Jews in the Diaspora ∼2500 years ago. The aim of this study was to assess the haplotype in ethnically diverse 185delAG* BRCA1 mutation carriers, and to estimate the age at which the mutation arose. Ethnically diverse Jewish and non-Jewish 185delAG*BRCA1 mutation carriers and their relatives were genotyped using 15 microsatellite markers and three SNPs spanning 12.5 MB, encompassing the BRCA1 gene locus. Estimation of mutation age was based on a subset of 11 markers spanning a region of ∼5 MB, using a previously developed algorithm applying the maximum likelihood method. Overall, 188 participants (154 carriers and 34 noncarriers) from 115 families were included: Ashkenazi, Iraq, Kuchin-Indians, Syria, Turkey, Iran, Tunisia, Bulgaria, non-Jewish English, non-Jewish Malaysian, and Hispanics. Haplotype analysis indicated that the 185delAG mutation arose 750–1500 years ago. In Ashkenazim, it is a founder mutation that arose 61 generations ago, and with a small group of founder mutations was introduced into the Hispanic population (conversos) ∼650 years ago, and into the Iraqi–Jewish community ∼450 years ago. The 185delAG mutation in the non-Jewish populations in Malaysia and the UK arose at least twice independently. We conclude that the 185delAG* BRCA1 mutation resides on a common haplotype among Ashkenazi Jews, and arose about 61 generations ago and arose independently at least twice in non-Jews. PMID:22763381

  12. Mutational analysis of the androgen receptor gene in two Indian families with partial androgen insensitivity syndrome.

    PubMed

    Nagaraja, M R; Rastogi, Amit; Raman, Rajiva; Gupta, Dinesh K; Singh, S K

    2009-12-01

    Mutation in the androgen receptor gene (AR) is known to cause androgen insensitivity syndrome (AIS). In an X-linked recessive manner, an AR mutation gets transmitted to the offspring through carrier mothers in 70% of cases, the other 30% arising de novo. However, reports on AR mutations amongst Indian patients with AIS are scarce in the literature. This study reports mutations in AR from two Indian families, each having a proband with partial androgen insensitivity syndrome (PAIS) phenotype. Clinical, endocrine and cytogenetic evaluation of these affected children was performed. Mutational analysis was carried out by polymerase chain reaction-single strand conformational polymorphism (PCR-SSCP) analysis followed by sequencing. The two point mutations were in exon 5: p.M742I, familial in patient 1 and p.V746M de novo in patient 2. These are hitherto unrecognized mutations in our population. Similar mutational studies are suggested in patients with AIS, in order to identify their frequency and clinical severity in our population.

  13. TP53 Mutations and Survival in Osteosarcoma Patients: A Meta-Analysis of Published Data

    PubMed Central

    Chen, Zhe; Guo, Jiayi; Zhang, Kun; Guo, Yanxing

    2016-01-01

    Several research groups have examined the association between TP53 mutations and prognosis in human osteosarcoma. However, the results were controversial. The purpose of this study was to evaluate the prognostic value of TP53 mutations in osteosarcoma patients. A meta-analysis was conducted with all eligible studies which quantitatively evaluated the relationship between TP53 mutations and clinical outcome of osteosarcoma patients. Eight studies with a total of 210 patients with osteosarcoma were included in this meta-analysis. The risk ratio (RR) with a 95% confidence interval (95% CI) was calculated to assess the effect of TP53 mutations on 2-year overall survival. The quantitative synthesis of 8 published studies showed that TP53 mutations were associated with 2-year overall survival in osteosarcoma patients. These data suggested that TP53 mutations had an unfavorable impact on 2-year overall survival when compared to the counterparts with wild type (WT) TP53 (RR: 1.79; 95% CI: 1.12 to 2.84; P = 0.01; I2 = 0%). There was no between-study heterogeneity. TP53 mutations are an effective prognostic marker for survival of patients with osteosarcoma. However, further large-scale prospective trials should be performed to clarify the prognostic value of TP53 mutations on 3- or 5-year survival in osteosarcoma patients. PMID:27239089

  14. TP53 Mutations and Survival in Osteosarcoma Patients: A Meta-Analysis of Published Data.

    PubMed

    Chen, Zhe; Guo, Jiayi; Zhang, Kun; Guo, Yanxing

    2016-01-01

    Several research groups have examined the association between TP53 mutations and prognosis in human osteosarcoma. However, the results were controversial. The purpose of this study was to evaluate the prognostic value of TP53 mutations in osteosarcoma patients. A meta-analysis was conducted with all eligible studies which quantitatively evaluated the relationship between TP53 mutations and clinical outcome of osteosarcoma patients. Eight studies with a total of 210 patients with osteosarcoma were included in this meta-analysis. The risk ratio (RR) with a 95% confidence interval (95% CI) was calculated to assess the effect of TP53 mutations on 2-year overall survival. The quantitative synthesis of 8 published studies showed that TP53 mutations were associated with 2-year overall survival in osteosarcoma patients. These data suggested that TP53 mutations had an unfavorable impact on 2-year overall survival when compared to the counterparts with wild type (WT) TP53 (RR: 1.79; 95% CI: 1.12 to 2.84; P = 0.01; I (2) = 0%). There was no between-study heterogeneity. TP53 mutations are an effective prognostic marker for survival of patients with osteosarcoma. However, further large-scale prospective trials should be performed to clarify the prognostic value of TP53 mutations on 3- or 5-year survival in osteosarcoma patients.

  15. Novel JAK3-Activating Mutations in Extranodal NK/T-cell Lymphoma, Nasal Type.

    PubMed

    Sim, Sung H; Kim, Soyeon; Kim, Tae M; Jeon, Yoon K; Nam, Soo J; Ahn, Yong-Oon; Keam, Bhumsuk; Park, Hyun H; Kim, Dong-Wan; Kim, Chul W; Heo, Dae S

    2017-03-08

    Inhibition of the Janus kinase (JAK)-STAT pathway has been implicated as a treatment option for extranodal natural killer/T-cell lymphoma, nasal type (NTCL). However, JAK-STAT pathway alterations in NTCL are variable, and the efficacy of JAK-STAT pathway inhibition has been poorly evaluated. JAK3 mutation and STAT3 genetic alterations were investigated by direct sequencing and immunohistochemistry in 84 patients with newly diagnosed NTCL. Five of 71 patients with NTCL (7.0%) had JAK3 mutations in the pseudokinase domain: two JAK3(A573V), two JAK3(H583Y), and one JAK3(G589D) mutation. Proliferation of Ba/F3 cells transduced with novel JAK3 mutations (JAK3(H583Y) and JAK3(G589D)) was independent of IL-3 and was inhibited by the JAK3 inhibitor tofacitinib (means ± SD drug concentration causing a 50% inhibition of the desired activity, 85 ± 10 nmol/L and 54 ± 9 nmol/L). Ribbon diagrams revealed that these JAK3 pseudokinase domain mutations were located at the pseudokinase-kinase domain interface. Although phosphorylated STAT3 was overexpressed in 35 of 68 patients with NTCL (51.4%), a STAT3 mutation (p.Tyr640Phe; STAT3(Y640F)) at the SRC homology 2 domain was detected in 1 of the 63 patients (1.5%). A STAT3 inhibitor was active against STAT3-mutant SNK-6 and YT cells. Novel JAK3 mutations are oncogenic and druggable in NTCL. The JAK3 or STAT3 signal was altered in NTCL, and pathway inhibition might be a therapeutic option for patients with JAK3- or STAT3-mutant NTCL.

  16. Germ-line mutation analysis in patients with multiple endocrine neoplasia type 1 and related disorders.

    PubMed Central

    Giraud, S; Zhang, C X; Serova-Sinilnikova, O; Wautot, V; Salandre, J; Buisson, N; Waterlot, C; Bauters, C; Porchet, N; Aubert, J P; Emy, P; Cadiot, G; Delemer, B; Chabre, O; Niccoli, P; Leprat, F; Duron, F; Emperauger, B; Cougard, P; Goudet, P; Sarfati, E; Riou, J P; Guichard, S; Rodier, M; Meyrier, A; Caron, P; Vantyghem, M C; Assayag, M; Peix, J L; Pugeat, M; Rohmer, V; Vallotton, M; Lenoir, G; Gaudray, P; Proye, C; Conte-Devolx, B; Chanson, P; Shugart, Y Y; Goldgar, D; Murat, A; Calender, A

    1998-01-01

    Multiple endocrine neoplasia type 1 (MEN1) is an autosomal dominant syndrome predisposing to tumors of the parathyroid, endocrine pancreas, anterior pituitary, adrenal glands, and diffuse neuroendocrine tissues. The MEN1 gene has been assigned, by linkage analysis and loss of heterozygosity, to chromosome 11q13 and recently has been identified by positional cloning. In this study, a total of 84 families and/or isolated patients with either MEN1 or MEN1-related inherited endocrine tumors were screened for MEN1 germ-line mutations, by heteroduplex and sequence analysis of the MEN1 gene-coding region and untranslated exon 1. Germ-line MEN1 alterations were identified in 47/54 (87%) MEN1 families, in 9/11 (82%) isolated MEN1 patients, and in only 6/19 (31.5%) atypical MEN1-related inherited cases. We characterized 52 distinct mutations in a total of 62 MEN1 germ-line alterations. Thirty-five of the 52 mutations were frameshifts and nonsense mutations predicted to encode for a truncated MEN1 protein. We identified eight missense mutations and five in-frame deletions over the entire coding sequence. Six mutations were observed more than once in familial MEN1. Haplotype analysis in families with identical mutations indicate that these occurrences reflected mainly independent mutational events. No MEN1 germ-line mutations were found in 7/54 (13%) MEN1 families, in 2/11 (18%) isolated MEN1 cases, in 13/19 (68. 5%) MEN1-related cases, and in a kindred with familial isolated hyperparathyroidism. Two hundred twenty gene carriers (167 affected and 53 unaffected) were identified. No evidence of genotype-phenotype correlation was found. Age-related penetrance was estimated to be >95% at age >30 years. Our results add to the diversity of MEN1 germ-line mutations and provide new tools in genetic screening of MEN1 and clinically related cases. PMID:9683585

  17. Recurrent activating mutations of G-protein-coupled receptor CYSLTR2 in uveal melanoma

    PubMed Central

    Moore, Amanda R; Ceraudo, Emilie; Sher, Jessica J; Guan, Youxin; Shoushtari, Alexander N; Chang, Matthew T; Zhang, Jenny Q; Walczak, Edward G; Kazmi, Manija A; Taylor, Barry S; Huber, Thomas; Chi, Ping; Sakmar, Thomas P; Chen, Yu

    2016-01-01

    Uveal melanomas are molecularly distinct from cutaneous melanomas and lack mutations in BRAF, NRAS, KIT, and NF1. Instead, they are characterized by activating mutations in GNAQ and GNA11, two highly homologous α subunits of Gαq/11 heterotrimeric G proteins, and in PLCB4 (phospholipase C β4), the downstream effector of Gαq signaling 1–3. We analyzed genomics data from 136 uveal melanoma samples and found a recurrent mutation in CYSLTR2 (cysteinyl leukotriene receptor 2) encoding a p.Leu129Gln substitution in 4 of 9 samples that lacked mutations in GNAQ, GNA11, and PLCB4 but in 0 of 127 samples that harbored mutations in these genes. The Leu129Gln CysLT2R mutant protein constitutively activates endogenous Gαq and is unresponsive to stimulation by leukotriene. Expression of Leu129Gln CysLT2R in melanocytes enforces expression of a melanocyte-lineage signature, drives phorbol ester–independent growth in vitro, and promotes tumorigenesis in vivo. Our findings implicate CYSLTR2 as a uveal melanoma oncogene and highlight the critical role of Gαq signaling in uveal melanoma pathogenesis. PMID:27089179

  18. Analysis of the mutations inducedd by conazole fungicides in vivo

    EPA Science Inventory

    The mouse liver tumorigenic conazo1e fungicides triadimefon and propiconazo1e have previously been shown to be in vivo mouse liver mutagens in the Big Blue" transgenic mutation assay when administered in feed at tumorigenic doses, whereas the nontumorigenic conazo1e myc1obutani1 ...

  19. DETECTION OF K-RAS AND P53 MUTATIONS IN SPUTUM SAMPLES OF LUNG CANCER PATIENTS USING LASER CAPTURE MICRODISSECTION MICROSCOPE AND MUTATION ANALYSIS

    EPA Science Inventory

    Detection of K-ras and p53 Mutations in Sputum Samples of Lung Cancer Patients Using Laser Capture Microdissection Microscope and Mutation Analysis

    Phouthone Keohavong a,*, Wei-Min Gao a, Kui-Cheng Zheng a, Hussam Mady b, Qing Lan c, Mona Melhem b, and Judy Mumford d.
    <...

  20. Mutational analysis of muscle nicotinic acetylcholine receptor subunit assembly

    PubMed Central

    1990-01-01

    The structural elements required for normal maturation and assembly of the nicotinic acetylcholine receptor alpha subunit were investigated by expression of mutated subunits in transfected fibroblasts. Normally, the wild-type alpha subunit acquires high affinity alpha bungarotoxin binding in a time-dependent manner; however, mutation of the 128 and/or 142 cysteines to either serine or alanine, as well as deletion of the entire 14 amino acids in this region abolished all detectable high affinity binding. Nonglycosylated subunits that had a serine to glycine mutation in the consensus sequence also did not efficiently attain high affinity binding to toxin. In contrast, mutation of the proline at position 136 to glycine or alanine, or a double mutation of the cysteines at position 192 and 193 to serines had no effect on the acquisition of high affinity toxin binding. These data suggest that a disulfide bridge between cysteines 128 and 142 and oligosaccharide addition at asparagine 141 are required for the normal maturation of alpha subunit as assayed by high affinity toxin binding. The unassembled wild-type alpha subunit expressed in fibroblasts is normally degraded with a t1/2 of 2 h; upon assembly with the delta subunit, the degradation rate slows significantly (t1/2 greater than 13 h). All mutated alpha subunits retained the capacity to assemble with a delta subunit coexpressed in fibroblasts; however, mutated alpha subunits that were not glycosylated or did not acquire high affinity toxin binding were rapidly degraded (t1/2 = 20 min to 2 h) regardless of whether or not they assembled with the delta subunit. Assembly and rapid degradation of nonglycosylated acetylcholine receptor (AChR) subunits and subunit complexes were also observed in tunicamycin- treated BC3H-1 cells, a mouse musclelike cell line that normally expresses functional AChR. Hence, rapid degradation may be one form of regulation assuring that only correctly processed and assembled subunits

  1. XPD Helicase Structures And Activities: Insights Into the Cancer And Aging Phenotypes From XPD Mutations

    SciTech Connect

    Fan, L.; Fuss, J.O.; Cheng, Q.J.; Arvai, A.S.; Hammel, M.; Roberts, V.A.; Cooper, P.K.; Tainer, J.A.

    2009-05-18

    Mutations in XPD helicase, required for nucleotide excision repair (NER) as part of the transcription/repair complex TFIIH, cause three distinct phenotypes: cancer-prone xeroderma pigmentosum (XP), or aging disorders Cockayne syndrome (CS), and trichothiodystrophy (TTD). To clarify molecular differences underlying these diseases, we determined crystal structures of the XPD catalytic core from Sulfolobus acidocaldarius and measured mutant enzyme activities. Substrate-binding grooves separate adjacent Rad51/RecA-like helicase domains (HD1, HD2) and an arch formed by 4FeS and Arch domains. XP mutations map along the HD1 ATP-binding edge and HD2 DNA-binding channel and impair helicase activity essential for NER. XP/CS mutations both impair helicase activity and likely affect HD2 functional movement. TTD mutants lose or retain helicase activity but map to sites in all four domains expected to cause framework defects impacting TFIIH integrity. These results provide a foundation for understanding disease consequences of mutations in XPD and related 4Fe-4S helicases including FancJ.

  2. XPD Helicase Structures and Activities: Insights into the Cancer and Aging Phenotypes from XPD Mutations

    SciTech Connect

    Tainer, John; Fan, Li; Fuss, Jill O.; Cheng, Quen J.; Arvai, Andrew S.; Hammel, Michal; Roberts, Victoria A.; Cooper, Priscilla K.; Tainer, John A.

    2008-06-02

    Mutations in XPD helicase, required for nucleotide excision repair (NER) as part of the transcription/repair complex TFIIH, cause three distinct phenotypes: cancer-prone xeroderma pigmentosum (XP), or aging disorders Cockayne syndrome (CS), and trichothiodystrophy (TTD). To clarify molecular differences underlying these diseases, we determined crystal structures of the XPD catalytic core from Sulfolobus acidocaldarius and measured mutant enzyme activities. Substrate-binding grooves separate adjacent Rad51/RecA-like helicase domains (HD1, HD2) and an arch formed by 4FeS and Arch domains. XP mutations map along the HD1 ATP-binding edge and HD2 DNA-binding channel and impair helicase activity essential for NER. XP/CS mutations both impair helicase activity and likely affect HD2 functional movement. TTD mutants lose or retain helicase activity but map to sites in all four domains expected to cause framework defects impacting TFIIH integrity. These results provide a foundation for understanding disease consequences of mutations in XPD and related 4Fe-4S helicases including FancJ.

  3. Functional analysis of 'a' determinant mutations associated with occult HBV in HIV-positive South Africans.

    PubMed

    Powell, Eleanor A; Boyce, Ceejay L; Gededzha, Maemu P; Selabe, Selokela G; Mphahlele, M Jeffrey; Blackard, Jason T

    2016-07-01

    Occult hepatitis B is defined by the presence of hepatitis B virus (HBV) DNA in the absence of hepatitis B surface antigen (HBsAg). Occult HBV is associated with the development of hepatocellular carcinoma, reactivation during immune suppression, and virus transmission. Viral mutations contribute significantly to the occult HBV phenotype. Mutations in the 'a' determinant of HBsAg are of particular interest, as these mutations are associated with immune escape, vaccine escape and diagnostic failure. We examined the effects of selected occult HBV-associated mutations identified in a population of HIV-positive South Africans on HBsAg production in vitro. Mutations were inserted into two different chronic HBV backbones and transfected into a hepatocyte-derived cell line. HBsAg levels were quantified by enzyme-linked immunosorbent assay (ELISA), while the detectability of mutant HBsAg was determined using an HA-tagged HBsAg expression system. Of the seven mutations analysed, four (S132P, C138Y, N146D and C147Y) resulted in decreased HBsAg expression in one viral background but not in the second viral background. One mutation (N146D) led to a decrease in HBsAg detected as compared to HA-tag, indicating that this mutation compromises the ability of the ELISA to detect HBsAg. The contribution of occult-associated mutations to the HBsAg-negative phenotype of occult HBV cannot be determined adequately by testing the effect of the mutation in a single viral background, and rigorous analysis of these mutations is required.

  4. PTT analysis of polyps from FAP patients reveals a great majority of APC truncating mutations

    SciTech Connect

    Luijt, R.B. van der; Khan, P.M.; Tops, C.M.J.

    1994-09-01

    The adenomatous polyposis coli (APC) gene plays an important role in colorectal carcinogenesis. Germline APC mutations are associated with familial adenomatous polyposis (FAP), an autosomal dominantly inherited predisposition to colorectal cancer, characterized by the development of numerous adenomatous polyps in the large intestine. In order to investigate whether somatic inactivation of the remaining APC allele is necessary for adenoma formation, we collected multiple adenomatous polyps from individual FAP patients and investigated the presence of somatic mutations in the APC gene. The analysis of somatic APC mutations in these tumor samples was performed using a rapid and sensitive assay, called the protein truncation test (PTT). Chain-terminating somatic APC mutations were detected in the great majority of the tumor samples investigated. As expected, these mutations were mainly located in the mutation cluster region (MCR) in exon 15. Our results confirm that somatic mutation of the second APC allele is required for adenoma formation in FAP. Interestingly, in the polyps investigated in our study, the second APC allele is somatically inactivated through point mutation leading to a stop codon rather than by loss of heterozygosity. The observation that somatic second hits in APC are required for tumor development in FAP is in apparent accordance with the Knudson hypothesis for classical tumor suppressor genes. However, it is yet unknown whether chain-terminating APC mutations lead to a truncated protein exerting a dominant-negative effect or whether these mutations result in a null allele. Further investigation of this important issue will hopefully provide a better understanding of the mechanism of action of the mutated APC alleles in colorectal carcinogenesis.

  5. Pooled analysis of clinical outcome for EGFR TKI-treated patients with EGFR mutation-positive NSCLC.

    PubMed

    Paz-Ares, Luis; Soulières, Denis; Moecks, Joachim; Bara, Ilze; Mok, Tony; Klughammer, Barbara

    2014-08-01

    Patients with non-small-cell lung cancer (NSCLC) appear to gain particular benefit from treatment with epidermal growth factor receptor (EGFR) tyrosine-kinase inhibitors (TKI) if their disease tests positive for EGFR activating mutations. Recently, several large, controlled, phase III studies have been published in NSCLC patients with EGFR mutation-positive tumours. Given the increased patient dataset now available, a comprehensive literature search for EGFR TKIs or chemotherapy in EGFR mutation-positive NSCLC was undertaken to update the results of a previously published pooled analysis. Pooling eligible progression-free survival (PFS) data from 27 erlotinib studies (n = 731), 54 gefitinib studies (n = 1802) and 20 chemotherapy studies (n = 984) provided median PFS values for each treatment. The pooled median PFS was: 12.4 months (95% accuracy intervals [AI] 11.6-13.4) for erlotinib-treated patients; 9.4 months (95% AI 9.0-9.8) for gefitinib-treated patients; and 5.6 months (95% AI 5.3-6.0) for chemotherapy. Both erlotinib and gefitinib resulted in significantly longer PFS than chemotherapy (permutation testing; P = 0.000 and P = 0.000, respectively). Data on more recent TKIs (afatinib, dacomitinib and icotinib) were insufficient at this time-point to carry out a pooled PFS analysis on these compounds. The results of this updated pooled analysis suggest a substantial clear PFS benefit of treating patients with EGFR mutation-positive NSCLC with erlotinib or gefitinib compared with chemotherapy.

  6. Analysis of in vivo mutation data can inform cancer risk assessment.

    PubMed

    Moore, Martha M; Heflich, Robert H; Haber, Lynne T; Allen, Bruce C; Shipp, Annette M; Kodell, Ralph L

    2008-07-01

    Under the new U.S. Environmental Protection Agency (EPA) Cancer Risk Assessment Guidelines [U.S. EPA, 2005. Guidelines for Carcinogen Risk Assessment. EPA/630/P-03/001B, March 2005], the quantitative model chosen for cancer risk assessment is based on the mode-of-action (MOA) of the chemical under consideration. In particular, the risk assessment model depends on whether or not the chemical causes tumors through a direct DNA-reactive mechanism. It is assumed that direct DNA-reactive carcinogens initiate carcinogenesis by inducing mutations and have low-dose linear dose-response curves, whereas carcinogens that operate through a nonmutagenic MOA may have nonlinear dose-responses. We are currently evaluating whether the analysis of in vivo gene mutation data can inform the risk assessment process by better defining the MOA for cancer and thus influencing the choice of the low-dose extrapolation model. This assessment includes both a temporal analysis of mutation induction and a dose-response concordance analysis of mutation with tumor incidence. Our analysis of published data on riddelliine in rats and dichloroacetic acid in mice indicates that our approach has merit. We propose an experimental design and graphical analysis that allow for assessing time-to-mutation and dose-response concordance, thereby optimizing the potential for in vivo mutation data to inform the choice of the quantitative model used in cancer risk assessment.

  7. Mutational analysis of the androgen receptor gene in two Chinese families with complete androgen insensitivity syndrome.

    PubMed

    Wang, Song; Xu, Haikun; An, Wei; Zhu, Dechun; Li, Dejun

    2016-06-01

    Androgens are essential for normal male sex differentiation and are responsible for the normal development of male secondary sexual characteristics at puberty. The physiological effects of androgens are mediated by the androgen receptor (AR). Mutations in the AR gene are the most common cause of androgen insensitivity syndrome. The present study undertook a genetic analysis of the AR gene in two unrelated families affected by complete androgen insensitivity syndrome (CAIS) in China. In family 1, a previously reported nonsense mutation (G-to-A; p.W751X) was identified in exon 5 of the AR gene. In addition, a novel missense mutation was detected in exon 6 of the AR gene from family 2; this mutation resulted in a predicted amino acid change from phenylalanine to serine at codon 804 (T-to-C; p.F804S) in the ligand-binding domain (LBD) of AR. Computer simulation of the structural changes generated by the p.F804S substitution revealed marked conformational alterations in the hydrophobic core responsible for the stability and function of the AR-LBD. In conclusion, the present study identified two mutations from two unrelated Chinese families affected by CAIS. The novel mutation (p.F804S) may provide insights into the molecular mechanism underlying CAIS. Furthermore, it expands on the number of mutational hot spots in the international AR mutation database, which may be useful in the future for prenatal diagnosis and genetic counseling.

  8. Functional analysis of JAK3 mutations in transient myeloproliferative disorder and acute megakaryoblastic leukaemia accompanying Down syndrome.

    PubMed

    Sato, Tomohiko; Toki, Tsutomu; Kanezaki, Rika; Xu, Gang; Terui, Kiminori; Kanegane, Hirokazu; Miura, Masayoshi; Adachi, Souichi; Migita, Masahiro; Morinaga, Shingo; Nakano, Takahide; Endo, Mikiya; Kojima, Seiji; Kiyoi, Hitoshi; Mano, Hiroyuki; Ito, Etsuro

    2008-05-01

    JAK3 mutations have been reported in transient myeloproliferative disorder (TMD) as well as in acute megakaryoblastic leukaemia of Down syndrome (DS-AMKL). However, functional consequences of the JAK3 mutations in TMD patients remain undetermined. To further understand how JAK3 mutations are involved in the development and/or progression of leukaemia in Down syndrome, additional TMD patients and the DS-AMKL cell line MGS were screened for JAK3 mutations, and we examined whether each JAK3 mutation is an activating mutation. JAK3 mutations were not detected in 10 TMD samples that had not previously been studied. Together with our previous report we detected JAK3 mutations in one in 11 TMD patients. Furthermore, this study showed for the first time that a TMD patient-derived JAK3 mutation (JAK3(I87T)), as well as two novel JAK3 mutations (JAK3(Q501H) and JAK3(R657Q)) identified in an MGS cell line, were activating mutations. Treatment of MGS cells and Ba/F3 cells expressing the JAK3 mutants with JAK3 inhibitors significantly decreased their growth and viability. These results suggest that the JAK3 activating mutation is an early event during leukaemogenesis in Down syndrome, and they provide proof-of-principle evidence that JAK3 inhibitors would have therapeutic effects on TMD and DS-AMKL patients carrying activating JAK3 mutations.

  9. Subunit-selective mutational analysis and tissue culture evaluations of the interactions of the E138K and M184I mutations in HIV-1 reverse transcriptase.

    PubMed

    Xu, Hong-Tao; Oliveira, Maureen; Quashie, Peter K; McCallum, Matthew; Han, Yingshan; Quan, Yudong; Brenner, Bluma G; Wainberg, Mark A

    2012-08-01

    The emergence of HIV-1 drug resistance remains a major obstacle in antiviral therapy. M184I/V and E138K are signature mutations of clinical relevance in HIV-1 reverse transcriptase (RT) for the nucleoside reverse transcriptase inhibitors (NRTIs) lamivudine (3TC) and emtricitabine (FTC) and the second-generation (new) nonnucleoside reverse transcriptase inhibitor (NNRTI) rilpivirine (RPV), respectively, and the E138K mutation has also been shown to be selected by etravirine in cell culture. The E138K mutation was recently shown to compensate for the low enzyme processivity and viral fitness associated with the M184I/V mutations through enhanced deoxynucleoside triphosphate (dNTP) usage, while the M184I/V mutations compensated for defects in polymerization rates associated with the E138K mutations under conditions of high dNTP concentrations. The M184I mutation was also shown to enhance resistance to RPV and ETR when present together with the E138K mutation. These mutual compensatory effects might also enhance transmission rates of viruses containing these two mutations. Therefore, we performed tissue culture studies to investigate the evolutionary dynamics of these viruses. Through experiments in which E138K-containing viruses were selected with 3TC-FTC and in which M184I/V viruses were selected with ETR, we demonstrated that ETR was able to select for the E138K mutation in viruses containing the M184I/V mutations and that the M184I/V mutations consistently emerged when E138K viruses were selected with 3TC-FTC. We also performed biochemical subunit-selective mutational analyses to investigate the impact of the E138K mutation on RT function and interactions with the M184I mutation. We now show that the E138K mutation decreased rates of polymerization, impaired RNase H activity, and conferred ETR resistance through the p51 subunit of RT, while an enhancement of dNTP usage as a result of the simultaneous presence of both mutations E138K and M184I occurred via both

  10. Missense mutations in SLC26A8, encoding a sperm-specific activator of CFTR, are associated with human asthenozoospermia.

    PubMed

    Dirami, Thassadite; Rode, Baptiste; Jollivet, Mathilde; Da Silva, Nathalie; Escalier, Denise; Gaitch, Natacha; Norez, Caroline; Tuffery, Pierre; Wolf, Jean-Philippe; Becq, Frédéric; Ray, Pierre F; Dulioust, Emmanuel; Gacon, Gérard; Bienvenu, Thierry; Touré, Aminata

    2013-05-02

    The cystic fibrosis transmembrane conductance regulator (CFTR) is present in mature sperm and is required for sperm motility and capacitation. Both these processes are controlled by ions fluxes and are essential for fertilization. We have shown that SLC26A8, a sperm-specific member of the SLC26 family of anion exchangers, associates with the CFTR channel and strongly stimulates its activity. This suggests that the two proteins cooperate to regulate the anion fluxes required for correct sperm motility and capacitation. Here, we report on three heterozygous SLC26A8 missense mutations identified in a cohort of 146 men presenting with asthenozoospermia: c.260G>A (p.Arg87Gln), c.2434G>A (p.Glu812Lys), and c.2860C>T (p.Arg954Cys). These mutations were not present in 121 controls matched for ethnicity, and statistical analysis on a control population of 8,600 individuals (from dbSNP and 1000 Genomes) showed them to be associated with asthenozoospermia with a power > 95%. By cotransfecting Chinese hamster ovary (CHO)-K1 cells with SLC26A8 variants and CFTR, we showed that the physical interaction between the two proteins was partly conserved but that the capacity to activate CFTR-dependent anion transport was completely abolished for all mutants. Biochemical studies revealed the presence of much smaller amounts of protein for all variants, but these amounts were restored to wild-type levels upon treatment with the proteasome inhibitor MG132. Immunocytochemistry also showed the amounts of SLC26A8 in sperm to be abnormally small in individuals carrying the mutations. These mutations might therefore impair formation of the SLC26A8-CFTR complex, principally by affecting SLC26A8 stability, consistent with an impairment of CFTR-dependent sperm-activation events in affected individuals.

  11. Missense Mutations in SLC26A8, Encoding a Sperm-Specific Activator of CFTR, Are Associated with Human Asthenozoospermia

    PubMed Central

    Dirami, Thassadite; Rode, Baptiste; Jollivet, Mathilde; Da Silva, Nathalie; Escalier, Denise; Gaitch, Natacha; Norez, Caroline; Tuffery, Pierre; Wolf, Jean-Philippe; Becq, Frédéric; Ray, Pierre F.; Dulioust, Emmanuel; Gacon, Gérard; Bienvenu, Thierry; Touré, Aminata

    2013-01-01

    The cystic fibrosis transmembrane conductance regulator (CFTR) is present in mature sperm and is required for sperm motility and capacitation. Both these processes are controlled by ions fluxes and are essential for fertilization. We have shown that SLC26A8, a sperm-specific member of the SLC26 family of anion exchangers, associates with the CFTR channel and strongly stimulates its activity. This suggests that the two proteins cooperate to regulate the anion fluxes required for correct sperm motility and capacitation. Here, we report on three heterozygous SLC26A8 missense mutations identified in a cohort of 146 men presenting with asthenozoospermia: c.260G>A (p.Arg87Gln), c.2434G>A (p.Glu812Lys), and c.2860C>T (p.Arg954Cys). These mutations were not present in 121 controls matched for ethnicity, and statistical analysis on a control population of 8,600 individuals (from dbSNP and 1000 Genomes) showed them to be associated with asthenozoospermia with a power > 95%. By cotransfecting Chinese hamster ovary (CHO)-K1 cells with SLC26A8 variants and CFTR, we showed that the physical interaction between the two proteins was partly conserved but that the capacity to activate CFTR-dependent anion transport was completely abolished for all mutants. Biochemical studies revealed the presence of much smaller amounts of protein for all variants, but these amounts were restored to wild-type levels upon treatment with the proteasome inhibitor MG132. Immunocytochemistry also showed the amounts of SLC26A8 in sperm to be abnormally small in individuals carrying the mutations. These mutations might therefore impair formation of the SLC26A8-CFTR complex, principally by affecting SLC26A8 stability, consistent with an impairment of CFTR-dependent sperm-activation events in affected individuals. PMID:23582645

  12. DNA transposon activity is associated with increased mutation rates in genes of rice and other grasses.

    PubMed

    Wicker, Thomas; Yu, Yeisoo; Haberer, Georg; Mayer, Klaus F X; Marri, Pradeep Reddy; Rounsley, Steve; Chen, Mingsheng; Zuccolo, Andrea; Panaud, Olivier; Wing, Rod A; Roffler, Stefan

    2016-09-07

    DNA (class 2) transposons are mobile genetic elements which move within their 'host' genome through excising and re-inserting elsewhere. Although the rice genome contains tens of thousands of such elements, their actual role in evolution is still unclear. Analysing over 650 transposon polymorphisms in the rice species Oryza sativa and Oryza glaberrima, we find that DNA repair following transposon excisions is associated with an increased number of mutations in the sequences neighbouring the transposon. Indeed, the 3,000 bp flanking the excised transposons can contain over 10 times more mutations than the genome-wide average. Since DNA transposons preferably insert near genes, this is correlated with increases in mutation rates in coding sequences and regulatory regions. Most importantly, we find this phenomenon also in maize, wheat and barley. Thus, these findings suggest that DNA transposon activity is a major evolutionary force in grasses which provide the basis of most food consumed by humankind.

  13. DNA transposon activity is associated with increased mutation rates in genes of rice and other grasses

    PubMed Central

    Wicker, Thomas; Yu, Yeisoo; Haberer, Georg; Mayer, Klaus F. X.; Marri, Pradeep Reddy; Rounsley, Steve; Chen, Mingsheng; Zuccolo, Andrea; Panaud, Olivier; Wing, Rod A.; Roffler, Stefan

    2016-01-01

    DNA (class 2) transposons are mobile genetic elements which move within their ‘host' genome through excising and re-inserting elsewhere. Although the rice genome contains tens of thousands of such elements, their actual role in evolution is still unclear. Analysing over 650 transposon polymorphisms in the rice species Oryza sativa and Oryza glaberrima, we find that DNA repair following transposon excisions is associated with an increased number of mutations in the sequences neighbouring the transposon. Indeed, the 3,000 bp flanking the excised transposons can contain over 10 times more mutations than the genome-wide average. Since DNA transposons preferably insert near genes, this is correlated with increases in mutation rates in coding sequences and regulatory regions. Most importantly, we find this phenomenon also in maize, wheat and barley. Thus, these findings suggest that DNA transposon activity is a major evolutionary force in grasses which provide the basis of most food consumed by humankind. PMID:27599761

  14. Functional Analysis of Somatic Mutations in Lung Cancer

    DTIC Science & Technology

    2015-10-01

    growth suppression, we prepared RNA-sequencing libraries and sequenced biological triplicates of both control BFP and RBM10-expressing samples on...in one or more patient samples , as reported in the COSMIC database. The majority of ERBB2 mutations found in cancer cell lines have proven to be...oncogenic in NIH-3T3 cells ( sample data: Figure 6, left panel). We have completed testing of these mutants in batches, and will re- test all 18

  15. Five novel mutations of the protein S active gene (PROS 1) in 8 Norman families.

    PubMed

    Duchemin, J; Borg, J Y; Borgel, D; Vasse, M; Lévèque, H; Aiach, M; Gandrille, S

    1996-03-01

    To further elucidate the molecular basis for hereditary thrombophilia, we screened the protein S active gene in 11 families with type I deficiency, using a strategy based on denaturing gradient gel electrophoresis (DGGE) of all the coding sequences. Fragments with an abnormal DGGE pattern were sequenced, and 5 novel mutations were identified in 8 families. The mutations were a 7-nucleotide deletion in exon II, a 4-nucleotide deletion in exon III, a T insertion in exon VII, a C to T transition transforming Leu 259 into Pro and a T to C transition transforming Cys 625 into Arg in 4 families. These mutations were the only sequence variations found in the propositus' gene exons and co-segregated with the plasma phenotype. A total of 28 members of these 8 families were heterozygous for one of the 5 mutations. Twenty-four (58,5%) of the 41 deficient subjects over 18 years of age had clinical thrombophilia, whereas the 13 subjects under 18 were asymptomatic. Of the 28 subjects, 6 (21,5%) were also found to bear the factor V Arg 506 Gln mutation.

  16. Molecular analysis of rice plant mutated after space flight

    NASA Astrophysics Data System (ADS)

    Cheng, Z.; Li, C.; Wei, L.; Xu, D.; Gu, D.; Guan, S.; Zhao, H.; Xin, P.; Sun, Y.

    We have obtained several rice mutants planted from seeds flown on recoverable satellites. Some new traits, such as good yields, diseases resistances and higher nutrient values, have been identified, putatively as consequences of the space environment. Radiation inside the Chinese recoverable satellite was composed of low flux of high energy particles (>40 Mev/u). To study the mechanisms of plant mutations induced by the space environment, we used dry rice seeds as a model to identify the phenotype of mutations, and used the wealth of the rice genome to identify the mutated genes in the mutants. The research included collecting rice plant mutants in the seeds flown on the satellites, identifying the nature of genomic and proteomic alterations, modifications and identifying the functional changes of the specific genes. The study showed that the rice seeds are a good model for exploring biological effect of space environment since 1) it is easy fly the seeds without specific hardware and crew work, 2) it is easy to obtain pure mutant breed lines for cloning DNA sequence in order to compare with the sequence in the wild type, and 3) it is easy to quantitatively analyze genetics using advanced molecular techniques.

  17. An active hAT transposable element causing bud mutation of carnation by insertion into the flavonoid 3'-hydroxylase gene.

    PubMed

    Momose, Masaki; Nakayama, Masayoshi; Itoh, Yoshio; Umemoto, Naoyuki; Toguri, Toshihiro; Ozeki, Yoshihiro

    2013-04-01

    The molecular mechanisms underlying spontaneous bud mutations, which provide an important breeding tool in carnation, are poorly understood. Here we describe a new active hAT type transposable element, designated Tdic101, the movement of which caused a bud mutation in carnation that led to a change of flower color from purple to deep pink. The color change was attributed to Tdic101 insertion into the second intron of F3'H, the gene for flavonoid 3'-hydroxylase responsible for purple pigment production. Regions on the deep pink flowers of the mutant can revert to purple, a visible phenotype of, as we show, excision of the transposable element. Sequence analysis revealed that Tdic101 has the characteristics of an autonomous element encoding a transposase. A related, but non-autonomous element dTdic102 was found to move in the genome of the bud mutant as well. Its mobilization might be the result of transposase activities provided by other elements such as Tdic101. In carnation, therefore, the movement of transposable elements plays an important role in the emergence of a bud mutation.

  18. An examination of the regulatory mechanism of Pxdn mutation-induced eye disorders using microarray analysis

    PubMed Central

    YANG, YANG; XING, YIQIAO; LIANG, CHAOQUN; HU, LIYA; XU, FEI; MEI, QI

    2016-01-01

    The present study aimed to identify biomarkers for peroxidasin (Pxdn) mutation-induced eye disorders and study the underlying mechanisms involved in this process. The microarray dataset GSE49704 was used, which encompasses 4 mouse samples from embryos with Pxdn mutation and 4 samples from normal tissues. After data preprocessing, the differentially expressed genes (DEGs) between Pxdn mutation and normal tissues were identified using the t-test in the limma package, followed by functional enrichment analysis. The protein-protein interaction (PPI) network was constructed based on the STRING database, and the transcriptional regulatory (TR) network was established using the GeneCodis database. Subsequently, the overlapping DEGs with high degrees in two networks were identified, as well as the sub-network extracted from the TR network. In total, 121 (75 upregulated and 46 downregulated) DEGs were identified, and these DEGs play important roles in biological processes (BPs), including neuron development and differentiation. A PPI network containing 25 nodes such as actin, alpha 1, skeletal muscle (Acta1) and troponin C type 2 (fast) (Tnnc2), and a TR network including 120 nodes were built. By comparing the two networks, seven crucial genes which overlapped were identified, including cyclin-dependent kinase inhibitor 1B (Cdkn1b), Acta1 and troponin T type 3 (Tnnt3). In the sub-network, Cdkn1b was predicted as the target of miRNAs such as mmu-miR-24 and transcription factors (TFs) including forkhead box O4 (FOXO4) and activating enhancer binding protein 4 (AP4). Thus, we suggest that seven crucial genes, including Cdkn1b, Acta1 and Tnnt3, play important roles in the progression of eye disorders such as glaucoma. We suggest that Cdkn1b exert its effects via the inhibition of proliferation and is mediated by mmu-miR-24 and targeted by the TFs FOXO4 and AP4. PMID:27121343

  19. Somatic activating mutations in Pik3ca cause sporadic venous malformations in mice and humans.

    PubMed

    Castillo, Sandra D; Tzouanacou, Elena; Zaw-Thin, May; Berenjeno, Inma M; Parker, Victoria E R; Chivite, Iñigo; Milà-Guasch, Maria; Pearce, Wayne; Solomon, Isabelle; Angulo-Urarte, Ana; Figueiredo, Ana M; Dewhurst, Robert E; Knox, Rachel G; Clark, Graeme R; Scudamore, Cheryl L; Badar, Adam; Kalber, Tammy L; Foster, Julie; Stuckey, Daniel J; David, Anna L; Phillips, Wayne A; Lythgoe, Mark F; Wilson, Valerie; Semple, Robert K; Sebire, Neil J; Kinsler, Veronica A; Graupera, Mariona; Vanhaesebroeck, Bart

    2016-03-30

    Venous malformations (VMs) are painful and deforming vascular lesions composed of dilated vascular channels, which are present from birth. Mutations in the TEK gene, encoding the tyrosine kinase receptor TIE2, are found in about half of sporadic (nonfamilial) VMs, and the causes of the remaining cases are unknown. Sclerotherapy, widely accepted as first-line treatment, is not fully efficient, and targeted therapy for this disease remains underexplored. We have generated a mouse model that faithfully mirrors human VM through mosaic expression of Pik3ca(H1047R), a constitutively active mutant of the p110α isoform of phosphatidylinositol 3-kinase (PI3K), in the embryonic mesoderm. Endothelial expression of Pik3ca(H1047R)resulted in endothelial cell (EC) hyperproliferation, reduction in pericyte coverage of blood vessels, and decreased expression of arteriovenous specification markers. PI3K pathway inhibition with rapamycin normalized EC hyperproliferation and pericyte coverage in postnatal retinas and stimulated VM regression in vivo. In line with the mouse data, we also report the presence of activating PIK3CA mutations in human VMs, mutually exclusive with TEK mutations. Our data demonstrate a causal relationship between activating Pik3ca mutations and the genesis of VMs, provide a genetic model that faithfully mirrors the normal etiology and development of this human disease, and establish the basis for the use of PI3K-targeted therapies in VMs.

  20. Identification of a Novel Lincomycin Resistance Mutation Associated with Activation of Antibiotic Production in Streptomyces coelicolor A3(2).

    PubMed

    Wang, Guojun; Izawa, Masumi; Yang, Xiaoge; Xu, Dongbo; Tanaka, Yukinori; Ochi, Kozo

    2017-02-01

    Comparative genome sequencing analysis of a lincomycin-resistant strain of Streptomyces coelicolor A3(2) and the wild-type strain identified a novel mutation conferring a high level of lincomycin resistance. Surprisingly, the new mutation was an in-frame DNA deletion in the genes SCO4597 and SCO4598, resulting in formation of the hybrid gene linR. SCO4597 and SCO4598 encode two histidine kinases, which together with SCO4596, encoding a response regulator, constitute a unique two-component system. Sequence analysis indicated that these three genes and their arrangement patterns are ubiquitous among all Streptomyces genomes sequenced to date, suggesting these genes play important regulatory roles. Gene replacement showed that this mutation was responsible for the high level of lincomycin resistance, the overproduction of the antibiotic actinorhodin, and the enhanced morphological differentiation of this strain. Moreover, heterologous expression of the hybrid gene linR in Escherichia coli conferred resistance to lincomycin in this organism. Introduction of the hybrid gene linR in various Streptomyces strains by gene engineering technology may widely activate and/or enhance antibiotic production.

  1. Genetic and molecular analysis of chlorambucil-induced germ-line mutations in the mouse.

    PubMed

    Rinchik, E M; Bangham, J W; Hunsicker, P R; Cacheiro, N L; Kwon, B S; Jackson, I J; Russell, L B

    1990-02-01

    Eighteen variants recovered from specific locus mutation rate experiments involving the mutagen chlorambucil were subjected to several genetic and molecular analyses. Most mutations were found to be homozygous lethal. Because lethality is often presumptive evidence for multilocus-deletion events, 10 mutations were analyzed by Southern blot analysis with probes at, or closely linked to, several of the specific locus test markers, namely, albino (c), brown (b), and dilute (d). All eight mutations (two c; three b; two d; and one dilute-short ear [Df(d se)]) that arose in post-spermatogonial germ cells were deleted for DNA sequences. No evidence for deletion of two d-se region probes was obtained for the remaining two d mutations that arose in stem-cell spermatogonia. Six of the primary mutants also produced low litter sizes ("semisterility"). Karyotypic analysis has, to date, confirmed the presence of reciprocal translocations in four of the six. The high frequency of deletions and translocations among the mutations induced in post-spermatogonial stages by chlorambucil, combined with its overall high efficiency in inducing mutations in these stages, should make chlorambucil mutagenesis useful for generating experimentally valuable germ-line deletions throughout the mouse genome.

  2. Molecular Analysis of Cystic Fibrosis Patients in Hungary – An Update to the Mutational Spectrum

    PubMed Central

    Ivády, Gergely; Koczok, Katalin; Madar, Laszlo; Gombos, Eva; Toth, Izabella; Gyori, Klaudia; Balogh, István

    2015-01-01

    Summary Background In this study the authors present an update to the CFTR mutation profile in Hungary, utilizing data from a selected cohort of 45 cystic fibrosis (CF) patients from different regions of the country. Methods Depending on the preceding analysis, four different mutation detection methods were used. A commercial assay targeting the most common CF-causing mutations was performed as the first test followed by an allele specific PCR for CFTRdele2,3(21kb), Sanger sequencing and MLPA analysis of the coding region of the CFTR gene. Results In our recent study 27 different mutations were detected, including 2 novel ones (c.1037_1038insA and c.1394C>T). Besides F508del (c.1521_1523delCTT), the following mutations were found at a frequency of ≥ 4.0%: W1282X (c.3846G>A), N1303K (c.3909C>G), CFTRdele2,3(21kb) (c.54-5940_273+10250del21kb) and 2184insA (c.2052_2053insA). In addition, four mutations (G542X, Y1092X, 621+1G>T, and 2143delT) were found in more than one allele. Conclusions The updated database of Hungarian mutations not only enables to increase the efficiency of the existing diagnostic approach, but also provides a further refined basis for the introduction of the molecular newborn screening (NBS) program in Hungary.

  3. Effect of point mutations on Herbaspirillum seropedicae NifA activity.

    PubMed

    Aquino, B; Stefanello, A A; Oliveira, M A S; Pedrosa, F O; Souza, E M; Monteiro, R A; Chubatsu, L S

    2015-08-01

    NifA is the transcriptional activator of the nif genes in Proteobacteria. It is usually regulated by nitrogen and oxygen, allowing biological nitrogen fixation to occur under appropriate conditions. NifA proteins have a typical three-domain structure, including a regulatory N-terminal GAF domain, which is involved in control by fixed nitrogen and not strictly required for activity, a catalytic AAA+ central domain, which catalyzes open complex formation, and a C-terminal domain involved in DNA-binding. In Herbaspirillum seropedicae, a β-proteobacterium capable of colonizing Graminae of agricultural importance, NifA regulation by ammonium involves its N-terminal GAF domain and the signal transduction protein GlnK. When the GAF domain is removed, the protein can still activate nif genes transcription; however, ammonium regulation is lost. In this work, we generated eight constructs resulting in point mutations in H. seropedicae NifA and analyzed their effect on nifH transcription in Escherichia coli and H. seropedicae. Mutations K22V, T160E, M161V, L172R, and A215D resulted in inactive proteins. Mutations Q216I and S220I produced partially active proteins with activity control similar to wild-type NifA. However, mutation G25E, located in the GAF domain, resulted in an active protein that did not require GlnK for activity and was partially sensitive to ammonium. This suggested that G25E may affect the negative interaction between the N-terminal GAF domain and the catalytic central domain under high ammonium concentrations, thus rendering the protein constitutively active, or that G25E could lead to a conformational change comparable with that when GlnK interacts with the GAF domain.

  4. Activities of multiple cancer-related pathways are associated with BRAF mutation and predict the resistance to BRAF/MEK inhibitors in melanoma cells

    PubMed Central

    Liu, Dingxie; Liu, Xuan; Xing, Mingzhao

    2014-01-01

    Drug resistance is a major obstacle in the targeted therapy of melanoma using BRAF/MEK inhibitors. This study was to identify BRAF V600E-associated oncogenic pathways that predict resistance of BRAF-mutated melanoma to BRAF/MEK inhibitors. We took in silico approaches to analyze the activities of 24 cancer-related pathways in melanoma cells and identify those whose activation was associated with BRAF V600E and used the support vector machine (SVM) algorithm to predict the resistance of BRAF-mutated melanoma cells to BRAF/MEK inhibitors. We then experimentally confirmed the in silico findings. In a microarray gene expression dataset of 63 melanoma cell lines, we found that activation of multiple oncogenic pathways preferentially occurred in BRAF-mutated melanoma cells. This finding was reproduced in 5 additional independent melanoma datasets. Further analysis of 46 melanoma cell lines that harbored BRAF mutation showed that 7 pathways, including TNFα, EGFR, IFNα, hypoxia, IFNγ, STAT3, and MYC, were significantly differently expressed in AZD6244-resistant compared with responsive melanoma cells. A SVM classifier built on this 7-pathway activation pattern correctly predicted the response of 10 BRAF-mutated melanoma cell lines to the MEK inhibitor AZD6244 in our experiments. We experimentally showed that TNFα, EGFR, IFNα, and IFNγ pathway activities were also upregulated in melanoma cell A375 compared with its sub-line DRO, while DRO was much more sensitive to AZD6244 than A375. In conclusion, we have identified specific oncogenic pathways preferentially activated in BRAF-mutated melanoma cells and a pathway pattern that predicts resistance of BRAF-mutated melanoma to BRAF/MEK inhibitors, providing novel clinical implications for melanoma therapy. PMID:24200969

  5. Cumulative BRCA mutation analysis in the Greek population confirms that homogenous ethnic background facilitates genetic testing.

    PubMed

    Tsigginou, Alexandra; Vlachopoulos, Fotios; Arzimanoglou, Iordanis; Zagouri, Flora; Dimitrakakis, Constantine

    2015-01-01

    Screening for BRCA 1 and BRCA 2 mutations has long moved from the research lab to the clinic as a routine clinical genetic testing. BRCA molecular alteration pattern varies among ethnic groups which makes it already a less straightforward process to select the appropriate mutations for routine genetic testing on the basis of known clinical significance. The present report comprises an in depth literature review of the so far reported BRCA 1 and BRCA 2 molecular alterations in Greek families. Our analysis of Greek cumulative BRCA 1 and 2 molecular data, produced by several independent groups, confirmed that six recurrent deleterious mutations account for almost 60 % and 70 % of all BRCA 1 and 2 and BRCA 1 mutations, respectively. As a result, it makes more sense to perform BRCA mutation analysis in the clinic in two sequential steps, first conventional analysis for the six most prevalent pathogenic mutations and if none identified, a second step of New Generation Sequencing-based whole genome or whole exome sequencing would follow. Our suggested approach would enable more clinically meaningful, considerably easier and less expensive BRCA analysis in the Greek population which is considered homogenous.

  6. The TREAT-NMD DMD Global Database: Analysis of More than 7,000 Duchenne Muscular Dystrophy Mutations

    PubMed Central

    Bladen, Catherine L; Salgado, David; Monges, Soledad; Foncuberta, Maria E; Kekou, Kyriaki; Kosma, Konstantina; Dawkins, Hugh; Lamont, Leanne; Roy, Anna J; Chamova, Teodora; Guergueltcheva, Velina; Chan, Sophelia; Korngut, Lawrence; Campbell, Craig; Dai, Yi; Wang, Jen; Barišić, Nina; Brabec, Petr; Lahdetie, Jaana; Walter, Maggie C; Schreiber-Katz, Olivia; Karcagi, Veronika; Garami, Marta; Viswanathan, Venkatarman; Bayat, Farhad; Buccella, Filippo; Kimura, En; Koeks, Zaïda; van den Bergen, Janneke C; Rodrigues, Miriam; Roxburgh, Richard; Lusakowska, Anna; Kostera-Pruszczyk, Anna; Zimowski, Janusz; Santos, Rosário; Neagu, Elena; Artemieva, Svetlana; Rasic, Vedrana Milic; Vojinovic, Dina; Posada, Manuel; Bloetzer, Clemens; Jeannet, Pierre-Yves; Joncourt, Franziska; Díaz-Manera, Jordi; Gallardo, Eduard; Karaduman, A Ayşe; Topaloğlu, Haluk; El Sherif, Rasha; Stringer, Angela; Shatillo, Andriy V; Martin, Ann S; Peay, Holly L; Bellgard, Matthew I; Kirschner, Jan; Flanigan, Kevin M; Straub, Volker; Bushby, Kate; Verschuuren, Jan; Aartsma-Rus, Annemieke; Béroud, Christophe; Lochmüller, Hanns

    2015-01-01

    Analyzing the type and frequency of patient-specific mutations that give rise to Duchenne muscular dystrophy (DMD) is an invaluable tool for diagnostics, basic scientific research, trial planning, and improved clinical care. Locus-specific databases allow for the collection, organization, storage, and analysis of genetic variants of disease. Here, we describe the development and analysis of the TREAT-NMD DMD Global database (http://umd.be/TREAT_DMD/). We analyzed genetic data for 7,149 DMD mutations held within the database. A total of 5,682 large mutations were observed (80% of total mutations), of which 4,894 (86%) were deletions (1 exon or larger) and 784 (14%) were duplications (1 exon or larger). There were 1,445 small mutations (smaller than 1 exon, 20% of all mutations), of which 358 (25%) were small deletions and 132 (9%) small insertions and 199 (14%) affected the splice sites. Point mutations totalled 756 (52% of small mutations) with 726 (50%) nonsense mutations and 30 (2%) missense mutations. Finally, 22 (0.3%) mid-intronic mutations were observed. In addition, mutations were identified within the database that would potentially benefit from novel genetic therapies for DMD including stop codon read-through therapies (10% of total mutations) and exon skipping therapy (80% of deletions and 55% of total mutations). PMID:25604253

  7. Novel mass spectrometry mutation screening for contaminant impact analysis. 1998 annual progress report

    SciTech Connect

    Chen, C.H.

    1998-06-01

    'The objective is to develop innovative mass spectrometry technology to achieve fast mutation screening from contaminated area and to reveal the linkage between gene mutation and contaminants. In this program, the author will try innovative approaches to improve mass resolution and detection efficiency for large DNA ions. Allel specific polymerase chain reaction will be coupled with mass spectrometry for rapid DNA mutation detection. The ultimate goal is to lead to the risk analysis of hazardous wastes to be routinely assessed at DNA level at an affordable cost. This report is for the work after 7 months of a 3-year project.'

  8. Severe fluoropyrimidine toxicity due to novel and rare DPYD missense mutations, deletion and genomic amplification affecting DPD activity and mRNA splicing.

    PubMed

    van Kuilenburg, André B P; Meijer, Judith; Maurer, Dirk; Dobritzsch, Doreen; Meinsma, Rutger; Los, Maartje; Knegt, Lia C; Zoetekouw, Lida; Jansen, Rob L H; Dezentjé, Vincent; van Huis-Tanja, Lieke H; van Kampen, Roel J W; Hertz, Jens Michael; Hennekam, Raoul C M

    2017-03-01

    Dihydropyrimidine dehydrogenase (DPD) is the initial and rate-limiting enzyme in the catabolism of 5-fluorouracil (5FU). Genetic variations in DPD have emerged as predictive risk factors for severe fluoropyrimidine toxicity. Here, we report novel and rare genetic variants underlying DPD deficiency in 9 cancer patients presenting with severe fluoropyrimidine-associated toxicity. All patients possessed a strongly reduced DPD activity, ranging from 9 to 53% of controls. Analysis of the DPD gene (DPYD) showed the presence of 21 variable sites including 4 novel and 4 very rare aberrations: 3 missense mutations, 2 splice-site mutations, 1 intronic mutation, a deletion of 21 nucleotides and a genomic amplification of exons 9-12. Two novel/rare variants (c.2843T>C, c.321+1G>A) were present in multiple, unrelated patients. Functional analysis of recombinantly-expressed DPD mutants carrying the p.I948T and p.G284V mutation showed residual DPD activities of 30% and 0.5%, respectively. Analysis of a DPD homology model indicated that the p.I948T and p.G284V mutations may affect electron transfer and the binding of FAD, respectively. cDNA analysis showed that the c.321+1G>A mutation in DPYD leads to skipping of exon 4 immediately upstream of the mutated splice-donor site in the process of DPD pre-mRNA splicing. A lethal toxicity in two DPD patients suggests that fluoropyrimidines combined with other therapies such as radiotherapy might be particularly toxic for DPD deficient patients. Our study advocates a more comprehensive genotyping approach combined with phenotyping strategies for upfront screening for DPD deficiency to ensure the safe administration of fluoropyrimidines.

  9. Direct mutation analysis of 495 patients for fragile X carrier status/proband diagnosis

    SciTech Connect

    Kaplan, G.; Kung, M.; McClure, M.; Cronister, A.

    1994-07-15

    With the cloning of the FMR-1 gene, direct mutation analysis is possible for fragile X syndrome. We have analyzed 495 patients using the StB12.3 probe/EcoRI/EagI system of Rousseau et al. and 167 of these also with PCR analysis according to Brown et al. For 28 patients requesting carrier status due to a family history of fragile X, 10 were shown to have either premutations or full mutations; for the remainder with varied backgrounds, 1 in 182 was shown to carry a premutation. For proband diagnosis, 7 of 14 with a fragile X family history carried a full mutation; 11 of 271 with other family histories carried the full mutation. 13 refs., 1 tab.

  10. Mutation analysis of 13 driver genes of colorectal cancer-related pathways in Taiwanese patients

    PubMed Central

    Chang, Yuli Christine; Chang, Jan-Gowth; Liu, Ta-Chih; Lin, Chien-Yu; Yang, Shu-Fen; Ho, Cheng-Mao; Chen, William Tzu-Liang; Chang, Ya-Sian

    2016-01-01

    AIM: To investigate the driver gene mutations associated with colorectal cancer (CRC) in the Taiwanese population. METHODS: In this study, 103 patients with CRC were evaluated. The samples consisted of 66 men and 37 women with a median age of 59 years and an age range of 26-86 years. We used high-resolution melting analysis (HRM) and direct DNA sequencing to characterize the mutations in 13 driver genes of CRC-related pathways. The HRM assays were conducted using the LightCycler® 480 Instrument provided with the software LightCycler® 480 Gene Scanning Software Version 1.5. We also compared the clinicopathological data of CRC patients with the driver gene mutation status. RESULTS: Of the 103 patients evaluated, 73.79% had mutations in one of the 13 driver genes. We discovered 18 novel mutations in APC, MLH1, MSH2, PMS2, SMAD4 and TP53 that have not been previously reported. Additionally, we found 16 de novo mutations in APC, BMPR1A, MLH1, MSH2, MSH6, MUTYH and PMS2 in cancerous tissues previously reported in the dbSNP database; however, these mutations could not be detected in peripheral blood cells. The APC mutation correlates with lymph node metastasis (34.69% vs 12.96%, P = 0.009) and cancer stage (34.78% vs 14.04%, P = 0.013). No association was observed between other driver gene mutations and clinicopathological features. Furthermore, having two or more driver gene mutations correlates with the degree of lymph node metastasis (42.86% vs 24.07%, P = 0.043). CONCLUSION: Our findings confirm the importance of 13 CRC-related pathway driver genes in the development of CRC in Taiwanese patients. PMID:26900293

  11. Structure-Based Analysis Reveals Cancer Missense Mutations Target Protein Interaction Interfaces

    PubMed Central

    Engin, H. Billur; Kreisberg, Jason F.; Carter, Hannah

    2016-01-01

    Recently it has been shown that cancer mutations selectively target protein-protein interactions. We hypothesized that mutations affecting distinct protein interactions involving established cancer genes could contribute to tumor heterogeneity, and that novel mechanistic insights might be gained into tumorigenesis by investigating protein interactions under positive selection in cancer. To identify protein interactions under positive selection in cancer, we mapped over 1.2 million nonsynonymous somatic cancer mutations onto 4,896 experimentally determined protein structures and analyzed their spatial distribution. In total, 20% of mutations on the surface of known cancer genes perturbed protein-protein interactions (PPIs), and this enrichment for PPI interfaces was observed for both tumor suppressors (Odds Ratio 1.28, P-value < 10−4) and oncogenes (Odds Ratio 1.17, P-value < 10−3). To study this further, we constructed a bipartite network representing structurally resolved PPIs from all available human complexes in the Protein Data Bank (2,864 proteins, 3,072 PPIs). Analysis of frequently mutated cancer genes within this network revealed that tumor-suppressors, but not oncogenes, are significantly enriched with functional mutations in homo-oligomerization regions (Odds Ratio 3.68, P-Value < 10−8). We present two important examples, TP53 and beta-2-microglobulin, for which the patterns of somatic mutations at interfaces provide insights into specifically perturbed biological circuits. In patients with TP53 mutations, patient survival correlated with the specific interactions that were perturbed. Moreover, we investigated mutations at the interface of protein-nucleotide interactions and observed an unexpected number of missense mutations but not silent mutations occurring within DNA and RNA binding sites. Finally, we provide a resource of 3,072 PPI interfaces ranked according to their mutation rates. Analysis of this list highlights 282 novel candidate cancer

  12. Structure-Based Analysis Reveals Cancer Missense Mutations Target Protein Interaction Interfaces.

    PubMed

    Engin, H Billur; Kreisberg, Jason F; Carter, Hannah

    2016-01-01

    Recently it has been shown that cancer mutations selectively target protein-protein interactions. We hypothesized that mutations affecting distinct protein interactions involving established cancer genes could contribute to tumor heterogeneity, and that novel mechanistic insights might be gained into tumorigenesis by investigating protein interactions under positive selection in cancer. To identify protein interactions under positive selection in cancer, we mapped over 1.2 million nonsynonymous somatic cancer mutations onto 4,896 experimentally determined protein structures and analyzed their spatial distribution. In total, 20% of mutations on the surface of known cancer genes perturbed protein-protein interactions (PPIs), and this enrichment for PPI interfaces was observed for both tumor suppressors (Odds Ratio 1.28, P-value < 10(-4)) and oncogenes (Odds Ratio 1.17, P-value < 10(-3)). To study this further, we constructed a bipartite network representing structurally resolved PPIs from all available human complexes in the Protein Data Bank (2,864 proteins, 3,072 PPIs). Analysis of frequently mutated cancer genes within this network revealed that tumor-suppressors, but not oncogenes, are significantly enriched with functional mutations in homo-oligomerization regions (Odds Ratio 3.68, P-Value < 10(-8)). We present two important examples, TP53 and beta-2-microglobulin, for which the patterns of somatic mutations at interfaces provide insights into specifically perturbed biological circuits. In patients with TP53 mutations, patient survival correlated with the specific interactions that were perturbed. Moreover, we investigated mutations at the interface of protein-nucleotide interactions and observed an unexpected number of missense mutations but not silent mutations occurring within DNA and RNA binding sites. Finally, we provide a resource of 3,072 PPI interfaces ranked according to their mutation rates. Analysis of this list highlights 282 novel candidate cancer

  13. Investigating Molecular Mechanisms of Activation and Mutation of the HER2 Receptor Tyrosine Kinase through Computational Modeling and Simulation.

    PubMed

    Telesco, Shannon E; Shih, Andrew; Liu, Yingting; Radhakrishnan, Ravi

    2011-01-01

    Human epidermal growth factor receptor 2 (HER2)/ErbB2 is a receptor tyrosine kinase belonging to the EGFR/ErbB family and is overexpressed in 20-30% of human breast cancers. Since there is a growing effort to develop pharmacological inhibitors of the HER2 kinase for the treatment of breast cancer, it is clinically valuable to rationalize how specific mutations impact the molecular mechanism of receptor activation. Although several crystal structures of the ErbB kinases have been solved, the precise mechanism of HER2 activation remains unknown, and it has been suggested that HER2 is unique in its requirement for phosphorylation of Y877, a key tyrosine residue located in the activation loop (A-loop). In our studies, discussed here, we have investigated the mechanisms that are important in HER2 kinase domain regulation and compared them with the other ErbB family members, namely EGFR and ErbB4, to determine the molecular basis for HER2's unique mode of activation. We apply computational simulation techniques at the atomic level and at the electronic structure (quantum mechanical) level to elucidate details of the mechanisms governing the kinase domains of these ErbB members. Through analysis of our simulation results, we have discovered potential regulatory mechanisms common to EGFR, HER2, and ErbB4, including a tight coupling between the A-loop and catalytic loop that may contribute to alignment of residues required for catalysis in the active kinase. We further postulate an autoinhibitory mechanism whereby the inactive kinase is stabilized through sequestration of catalytic residues. In HER2, we also predict a role for phosphorylated Y877 in bridging a network of hydrogen bonds that fasten the A-loop in its active conformation, suggesting that HER2 may be unique among the ErbB members in requiring A-loop tyrosine phosphorylation for functionality. In EGFR, HER2, and ErbB4, we discuss the possible effects of activating mutations. Delineation of the activation

  14. Molecular and functional analysis of two new MTTP gene mutations in an atypical case of abetalipoproteinemia[S

    PubMed Central

    Di Filippo, Mathilde; Créhalet, Hervé; Samson-Bouma, Marie Elisabeth; Bonnet, Véronique; Aggerbeck, Lawrence P.; Rabès, Jean-Pierre; Gottrand, Frederic; Luc, Gérald; Bozon, Dominique; Sassolas, Agnès

    2012-01-01

    Abetalipoproteinemia (ABL) is an inherited disease characterized by the defective assembly and secretion of apolipoprotein B–containing lipoproteins caused by mutations in the microsomal triglyceride transfer protein large subunit (MTP) gene (MTTP). We report here a female patient with an unusual clinical and biochemical ABL phenotype. She presented with severe liver injury, low levels of LDL-cholesterol, and subnormal levels of vitamin E, but only mild fat malabsorption and no retinitis pigmentosa or acanthocytosis. Our objective was to search for MTTP mutations and to determine the relationship between the genotype and this particular phenotype. The subject exhibited compound heterozygosity for two novel MTTP mutations: one missense mutation (p.Leu435His) and an intronic deletion (c.619-5_619-2del). COS-1 cells expressing the missense mutant protein exhibited negligible levels of MTP activity. In contrast, the minigene splicing reporter assay showed an incomplete splicing defect of the intronic deletion, with 26% of the normal splicing being maintained in the transfected HeLa cells. The small amount of MTP activity resulting from the residual normal splicing in the patient explains the atypical phenotype observed. Our investigation provides an example of a functional analysis of unclassified variations, which is an absolute necessity for the molecular diagnosis of atypical ABL cases. PMID:22236406

  15. Direct resequencing of the complete ERBB2 coding sequence reveals an absence of activating mutations in ERBB2 amplified breast cancer.

    PubMed

    Zito, Christina I; Riches, David; Kolmakova, Julia; Simons, Jan; Egholm, Michael; Stern, David F

    2008-07-01

    Gene amplification is among the most common genetic abnormalities that cause cancer. One of the most clinically important gene amplifications in human cancer causes extensive reduplication of ERBB2. A variety of cancers also occasionally harbor somatic mutations in ERBB2. Gene amplification and activating mutations both have predictive value for clinical response to targeted inhibitors. Since the number of gene copies in an amplicon may exceed 100, and since amplicons may encompass multiple genes, high-resolution analysis of gene amplifications poses considerable technical challenges. We have overcome this obstacle by using emulsion-based resequencing to determine the sequence of many independently-amplified individual DNA molecules in parallel. We used this high throughput sequencing technology to analyze ERBB2 mutational status in five ERBB2 amplified cell lines (four breast, one ovarian) and two breast tumors. Genomic DNA was isolated and the 28 exons of ERBB2 were independently amplified. Amplicons were then pooled at equimolar ratios, subjected to emulsion PCR (emPCR) and finally to picotiter plate pyrosequencing. High-quality sequence data were obtained for all amplicons analyzed and no activating mutations within ERBB2 were identified. Although we did not find activating mutations within the multiple copies of ERBB2 in these samples, the results establish the utility of this technology as a feasible and cost-effective approach for high resolution analysis of amplified genes.

  16. A novel TMPRSS6 mutation that prevents protease auto-activation causes IRIDA

    PubMed Central

    Altamura, Sandro; D'Alessio, Flavia; Selle, Barbara; Muckenthaler, Martina U.

    2010-01-01

    IRIDA (iron-refractory iron-deficiency anaemia) is a rare autosomal-recessive disorder hallmarked by hypochromic microcytic anaemia, low transferrin saturation and high levels of the iron-regulated hormone hepcidin. The disease is caused by mutations in the transmembrane serine protease TMPRSS6 (transmembrane protease serine 6) that prevent inactivation of HJV (haemojuvelin), an activator of hepcidin transcription. In the present paper, we describe a patient with IRIDA who carries a novel mutation (Y141C) in the SEA domain of the TMPRSS6 gene. Functional characterization of the TMPRSS6(Y141C) mutant protein in cultured cells showed that it localizes to similar subcellular compartments as wild-type TMPRSS6 and binds HJV, but fails to auto-catalytically activate itself. As a consequence, hepcidin mRNA expression is increased, causing the clinical symptoms observed in this IRIDA patient. The present study provides important mechanistic insight into how TMPRSS6 is activated. PMID:20704562

  17. An activating Pik3ca mutation coupled with Pten loss is sufficient to initiate ovarian tumorigenesis in mice.

    PubMed

    Kinross, Kathryn M; Montgomery, Karen G; Kleinschmidt, Margarete; Waring, Paul; Ivetac, Ivan; Tikoo, Anjali; Saad, Mirette; Hare, Lauren; Roh, Vincent; Mantamadiotis, Theo; Sheppard, Karen E; Ryland, Georgina L; Campbell, Ian G; Gorringe, Kylie L; Christensen, James G; Cullinane, Carleen; Hicks, Rodney J; Pearson, Richard B; Johnstone, Ricky W; McArthur, Grant A; Phillips, Wayne A

    2012-02-01

    Mutations in the gene encoding the p110α subunit of PI3K (PIK3CA) that result in enhanced PI3K activity are frequently observed in human cancers. To better understand the role of mutant PIK3CA in the initiation or progression of tumorigenesis, we generated mice in which a PIK3CA mutation commonly detected in human cancers (the H1047R mutation) could be conditionally knocked into the endogenous Pik3ca locus. Activation of this mutation in the mouse ovary revealed that alone, Pik3caH1047R induced premalignant hyperplasia of the ovarian surface epithelium but no tumors. Concomitantly, we analyzed several human ovarian cancers and found PIK3CA mutations coexistent with KRAS and/or PTEN mutations, raising the possibility that a secondary defect in a co-regulator of PI3K activity may be required for mutant PIK3CA to promote transformation. Consistent with this notion, we found that Pik3caH1047R mutation plus Pten deletion in the mouse ovary led to the development of ovarian serous adenocarcinomas and granulosa cell tumors. Both mutational events were required for early, robust Akt activation. Pharmacological inhibition of PI3K/mTOR in these mice delayed tumor growth and prolonged survival. These results demonstrate that the Pik3caH1047R mutation with loss of Pten is enough to promote ovarian cell transformation and that we have developed a model system for studying possible therapies.

  18. Parkinson's disease-associated mutations in leucine-rich repeat kinase 2 augment kinase activity

    PubMed Central

    West, Andrew B.; Moore, Darren J.; Biskup, Saskia; Bugayenko, Artem; Smith, Wanli W.; Ross, Christopher A.; Dawson, Valina L.; Dawson, Ted M.

    2005-01-01

    Mutations in the leucine-rich repeat kinase 2 gene (LRRK2) cause late-onset Parkinson's disease (PD) with a clinical appearance indistinguishable from idiopathic PD. Initial studies suggest that LRRK2 mutations are the most common yet identified determinant of PD susceptibility, transmitted in an autosomal-dominant mode of inheritance. Herein, we characterize the LRRK2 gene and transcript in human brain and subclone the predominant ORF. Exogenously expressed LRRK2 protein migrates at ≈280 kDa and is present largely in the cytoplasm but also associates with the mitochondrial outer membrane. Familial-linked mutations G2019S or R1441C do not have an obvious effect on protein steady-state levels, turnover, or localization. However, in vitro kinase assays using full-length recombinant LRRK2 reveal an increase in activity caused by familial-linked mutations in both autophosphorylation and the phosphorylation of a generic substrate. These results suggest a gain-of-function mechanism for LRRK2-linked disease with a central role for kinase activity in the development of PD. PMID:16269541

  19. Activity-dependent neuroprotective protein (ADNP): a case study for highly conserved chordata-specific genes shaping the brain and mutated in cancer.

    PubMed

    Gozes, Illana; Yeheskel, Adva; Pasmanik-Chor, Metsada

    2015-01-01

    The recent finding of activity-dependent neuroprotective protein (ADNP) as a protein decreased in serum of patients with Alzheimer's disease (AD) compared to controls, alongside with the discovery of ADNP mutations in autism and coupled with the original description of cancer mutations, ignited an interest for a comparative analysis of ADNP with other AD/autism/cancer-associated genes. We strive toward a better understanding of the molecular structure of key players in psychiatric/neurodegenerative diseases including autism, schizophrenia, and AD. This article includes data mining and bioinformatics analysis on the ADNP gene and protein, in addition to other related genes, with emphasis on recent literature. ADNP is discovered here as unique to chordata with specific autism mutations different from cancer-associated mutation. Furthermore, ADNP exhibits similarities to other cancer/autism-associated genes. We suggest that key genes, which shape and maintain our brain and are prone to mutations, are by in large unique to chordata. Furthermore, these brain-controlling genes, like ADNP, are linked to cell growth and differentiation, and under different stress conditions may mutate or exhibit expression changes leading to cancer propagation. Better understanding of these genes could lead to better therapeutics.

  20. Erythromelalgia mutation Q875E Stabilizes the activated state of sodium channel Nav1.7.

    PubMed

    Stadler, Theresa; O'Reilly, Andrias O; Lampert, Angelika

    2015-03-06

    The human voltage-gated sodium channel Nav1.7 plays a crucial role in transmission of noxious stimuli. The inherited pain disorder erythromelalgia (IEM) has been linked to Nav1.7 gain-of-function mutations. Here we show that the IEM-associated Q875E mutation located on the pore module of Nav1.7 produces a large hyperpolarizing shift (-18 mV) in the voltage dependence of activation. Three-dimensional homology modeling indicates that the side chains of Gln-875 and the gating charge Arg-214 of the domain I voltage sensor are spatially close in the activated conformation of the channel. We verified this proximity by using an engineered disulfide bridge approach. The Q875E mutation introduces a negative charge that may modify the local electrical field experienced by the voltage sensor and, upon activation, interact directly via a salt bridge with the Arg-214 gating charge residue. Together these processes could promote transition to, and stabilization of, the domain I voltage sensor in the activated conformation and thus produce the observed gain of function. In support of this hypothesis, an increase in the extracellular concentration of Ca(2+) or Mg(2+) reverted the voltage dependence of activation of the IEM mutant to near WT values, suggesting a cation-mediated electrostatic screening of the proposed interaction between Q875E and Arg-214.

  1. Activation of initiation factor 2 by ligands and mutations for rapid docking of ribosomal subunits

    PubMed Central

    Pavlov, Michael Y; Zorzet, Anna; Andersson, Dan I; Ehrenberg, Måns

    2011-01-01

    We previously identified mutations in the GTPase initiation factor 2 (IF2), located outside its tRNA-binding domain, compensating strongly (A-type) or weakly (B-type) for initiator tRNA formylation deficiency. We show here that rapid docking of 30S with 50S subunits in initiation of translation depends on switching 30S subunit-bound IF2 from its inactive to active form. Activation of wild-type IF2 requires GTP and formylated initiator tRNA (fMet-tRNAi). In contrast, extensive activation of A-type IF2 occurs with only GTP or with GDP and fMet-tRNAi, implying a passive role for initiator tRNA as activator of IF2 in subunit docking. The theory of conditional switching of GTPases quantitatively accounts for all our experimental data. We find that GTP, GDP, fMet-tRNAi and A-type mutations multiplicatively increase the equilibrium ratio, K, between active and inactive forms of IF2 from a value of 4 × 10−4 for wild-type apo-IF2 by factors of 300, 8, 80 and 20, respectively. Functional characterization of the A-type mutations provides keys to structural interpretation of conditional switching of IF2 and other multidomain GTPases. PMID:21151095

  2. Improving Polymerase Activity with Unnatural Substrates by Sampling Mutations in Homologous Protein Architectures.

    PubMed

    Dunn, Matthew R; Otto, Carine; Fenton, Kathryn E; Chaput, John C

    2016-05-20

    The ability to synthesize and propagate genetic information encoded in the framework of xeno-nucleic acid (XNA) polymers would inform a wide range of topics from the origins of life to synthetic biology. While directed evolution has produced examples of engineered polymerases that can accept XNA substrates, these enzymes function with reduced activity relative to their natural counterparts. Here, we describe a biochemical strategy that enables the discovery of engineered polymerases with improved activity for a given unnatural polymerase function. Our approach involves identifying specificity determining residues (SDRs) that control polymerase activity, screening mutations at SDR positions in a model polymerase scaffold, and assaying key gain-of-function mutations in orthologous protein architectures. By transferring beneficial mutations between homologous protein structures, we show that new polymerases can be identified that function with superior activity relative to their starting donor scaffold. This concept, which we call scaffold sampling, was used to generate engineered DNA polymerases that can faithfully synthesize RNA and TNA (threose nucleic acid), respectively, on a DNA template with high primer-extension efficiency and low template sequence bias. We suggest that the ability to combine phenotypes from different donor and recipient scaffolds provides a new paradigm in polymerase engineering where natural structural diversity can be used to refine the catalytic activity of synthetic enzymes.

  3. A homozygous missense mutation in TGM5 abolishes epidermal transglutaminase 5 activity and causes acral peeling skin syndrome.

    PubMed

    Cassidy, Andrew J; van Steensel, Maurice A M; Steijlen, Peter M; van Geel, Michel; van der Velden, Jaap; Morley, Susan M; Terrinoni, Alessandro; Melino, Gerry; Candi, Eleonora; McLean, W H Irwin

    2005-12-01

    Peeling skin syndrome is an autosomal recessive genodermatosis characterized by the shedding of the outer epidermis. In the acral form, the dorsa of the hands and feet are predominantly affected. Ultrastructural analysis has revealed tissue separation at the junction between the granular cells and the stratum corneum in the outer epidermis. Genomewide linkage analysis in a consanguineous Dutch kindred mapped the gene to 15q15.2 in the interval between markers D15S1040 and D15S1016. Two homozygous missense mutations, T109M and G113C, were found in TGM5, which encodes transglutaminase 5 (TG5), in all affected persons in two unrelated families. The mutation was present on the same haplotype in both kindreds, indicating a probable ancestral mutation. TG5 is strongly expressed in the epidermal granular cells, where it cross-links a variety of structural proteins in the terminal differentiation of the epidermis to form the cornified cell envelope. An established, in vitro, biochemical cross-linking assay revealed that, although T109M is not pathogenic, G113C completely abolishes TG5 activity. Three-dimensional modeling of TG5 showed that G113C lies close to the catalytic domain, and, furthermore, that this glycine residue is conserved in all known transglutaminases, which is consistent with pathogenicity. Other families with more-widespread peeling skin phenotypes lacked TGM5 mutations. This study identifies the first causative gene in this heterogeneous group of skin disorders and demonstrates that the protein cross-linking function performed by TG5 is vital for maintaining cell-cell adhesion between the outermost layers of the epidermis.

  4. Effects of tobacco ethylene receptor mutations on receptor kinase activity, plant growth and stress responses.

    PubMed

    Chen, Tao; Liu, Jun; Lei, Gang; Liu, Yun-Feng; Li, Zhi-Gang; Tao, Jian-Jun; Hao, Yu-Jun; Cao, Yang-Rong; Lin, Qing; Zhang, Wan-Ke; Ma, Biao; Chen, Shou-Yi; Zhang, Jin-Song

    2009-09-01

    Ethylene receptor is the first component of ethylene signaling that regulates plant growth, development and stress responses. Previously, we have demonstrated that tobacco subfamily 2 ethylene receptor NTHK1 had Ser/Thr kinase activity, and overexpression of NTHK1 caused large rosette, reduced ethylene sensitivity, and increased salt sensitivity in transgenic Arabidopsis plants. Here we found that N-box mutation in the NTHK1 kinase domain abolished the kinase activity and led to disruption of NTHK1 roles in conferring reduced ethylene sensitivity and salt sensitive response in transgenic Arabidopsis plants. However, N-box mutation had partial effects on NTHK1 regulation of rosette growth and expression of salt- and ethylene-responsive genes AtNAC2, AtERF1 and AtCor6.6. Mutation of conserved residues in the H box did not affect kinase activity, seedling growth, ethylene sensitivity or salt-induced epinasty in transgenic plants but did influence NTHK1 function in control of specific salt- and ethylene-responsive gene expression. Compared with NTHK1, the tobacco subfamily 1 ethylene receptor NtETR1 had His kinase activity and played a weak role in regulation of rosette growth, triple response and salt response. Mutation of the conserved His residue in the NtETR1 H box eliminated phosphorylation and altered the effect of Ntetr1-1 on reporter gene activity. These results imply that the Ser/Thr kinase activity of NTHK1 is differentially required for various responses, and NTHK1 plays a larger role than NtETR1.

  5. Signal transducer and activator of transcription 3 mutation with invasive eosinophilic disease

    PubMed Central

    Swender, David; Chernin, Leah; Hafez-Khayyata, Said; Ochs, Hans; Tcheurekdjian, Haig; Hostoffer, Robert

    2012-01-01

    Hyper-IgE syndrome (HIES), or Jobs disease, is a rare immunologic disorder characterized by the triad of staphylococcal abscesses, pneumonia with pneumatocele formation, and elevated IgE. It has been shown to have multiple modes of inheritance, autosomal dominant being more common than autosomal recessive, with sporadic cases as well. A mutation in signal transducer and activator of transcription 3 (STAT3) gene has been linked to the development of the sporadic and dominant forms of HIES. Peripheral eosinophilia, typically greater than two standard deviations from the normal population, is often seen in association with HIES. Despite these elevated levels of blood eosinophils, there have been no reported cases of invasive eosinophilic disease, such as eosonophilic esophagitic. Here we report the first description, to our knowledge, of a patient with HIES with a STAT3 mutation involving exon 12, Thr389Ile, and invasive eosinophilic disease of the esophagus. STAT3 modulates the expression of several genes that control central cell processes such as growth and death in response to external soluble stimuli. A mutation in the STAT3 molecule may affect the eosinophil's response to IL-5 and thus reduce the chemotaxic ability of those cells to migrate into tissues. This may then explain the paucity of eosinophilic infiltrative disease in patients with STAT3 mutations. The level of eosinophilic involvement may be related to the site or type of mutation within the STAT3 molecule. As more data are collected, we may be able to assess whether certain mutations dictate different clinical outcomes, which could prove helpful in directing therapy. PMID:23342295

  6. Identification of an AR Mutation-Negative Class of Androgen Insensitivity by Determining Endogenous AR Activity

    PubMed Central

    Ukat, M.; Schweikert, H. U.; Hiort, O.; Werner, R.; Drop, S. L. S.; Cools, M.; Hughes, I. A.; Audi, L.; Ahmed, S. F.; Demiri, J.; Rodens, P.; Worch, L.; Wehner, G.; Kulle, A. E.; Dunstheimer, D.; Müller-Roßberg, E.; Reinehr, T.; Hadidi, A. T.; Eckstein, A. K.; van der Horst, C.; Seif, C.; Siebert, R.; Ammerpohl, O.; Holterhus, P.-M.

    2016-01-01

    Context: Only approximately 85% of patients with a clinical diagnosis complete androgen insensitivity syndrome and less than 30% with partial androgen insensitivity syndrome can be explained by inactivating mutations in the androgen receptor (AR) gene. Objective: The objective of the study was to clarify this discrepancy by in vitro determination of AR transcriptional activity in individuals with disorders of sex development (DSD) and male controls. Design: Quantification of DHT-dependent transcriptional induction of the AR target gene apolipoprotein D (APOD) in cultured genital fibroblasts (GFs) (APOD assay) and next-generation sequencing of the complete coding and noncoding AR locus. Setting: The study was conducted at a university hospital endocrine research laboratory. Patients: GFs from 169 individuals were studied encompassing control males (n = 68), molecular defined DSD other than androgen insensitivity syndrome (AIS; n = 18), AR mutation-positive AIS (n = 37), and previously undiagnosed DSD including patients with a clinical suspicion of AIS (n = 46). Intervention(s): There were no interventions. Main Outcome Measure(s): DHT-dependent APOD expression in cultured GF and AR mutation status in 169 individuals was measured. Results: The APOD assay clearly separated control individuals (healthy males and molecular defined DSD patients other than AIS) from genetically proven AIS (cutoff < 2.3-fold APOD-induction; 100% sensitivity, 93.3% specificity, P < .0001). Of 46 DSD individuals with no AR mutation, 17 (37%) fell below the cutoff, indicating disrupted androgen signaling. Conclusions: AR mutation-positive AIS can be reliably identified by the APOD assay. Its combination with next-generation sequencing of the AR locus uncovered an AR mutation-negative, new class of androgen resistance, which we propose to name AIS type II. Our data support the existence of cellular components outside the AR affecting androgen signaling during sexual differentiation with high

  7. Glucose-6-Phosphate Dehydrogenase: Update and Analysis of New Mutations around the World

    PubMed Central

    Gómez-Manzo, Saúl; Marcial-Quino, Jaime; Vanoye-Carlo, America; Serrano-Posada, Hugo; Ortega-Cuellar, Daniel; González-Valdez, Abigail; Castillo-Rodríguez, Rosa Angélica; Hernández-Ochoa, Beatriz; Sierra-Palacios, Edgar; Rodríguez-Bustamante, Eduardo; Arreguin-Espinosa, Roberto

    2016-01-01

    Glucose-6-phosphate dehydrogenase (G6PD) is a key regulatory enzyme in the pentose phosphate pathway which produces nicotinamide adenine dinucleotide phosphate (NADPH) to maintain an adequate reducing environment in the cells and is especially important in red blood cells (RBC). Given its central role in the regulation of redox state, it is understandable that mutations in the gene encoding G6PD can cause deficiency of the protein activity leading to clinical manifestations such as neonatal jaundice and acute hemolytic anemia. Recently, an extensive review has been published about variants in the g6pd gene; recognizing 186 mutations. In this work, we review the state of the art in G6PD deficiency, describing 217 mutations in the g6pd gene; we also compile information about 31 new mutations, 16 that were not recognized and 15 more that have recently been reported. In order to get a better picture of the effects of new described mutations in g6pd gene, we locate the point mutations in the solved three-dimensional structure of the human G6PD protein. We found that class I mutations have the most deleterious effects on the structure and stability of the protein. PMID:27941691

  8. Glucose-6-Phosphate Dehydrogenase: Update and Analysis of New Mutations around the World.

    PubMed

    Gómez-Manzo, Saúl; Marcial-Quino, Jaime; Vanoye-Carlo, America; Serrano-Posada, Hugo; Ortega-Cuellar, Daniel; González-Valdez, Abigail; Castillo-Rodríguez, Rosa Angélica; Hernández-Ochoa, Beatriz; Sierra-Palacios, Edgar; Rodríguez-Bustamante, Eduardo; Arreguin-Espinosa, Roberto

    2016-12-09

    Glucose-6-phosphate dehydrogenase (G6PD) is a key regulatory enzyme in the pentose phosphate pathway which produces nicotinamide adenine dinucleotide phosphate (NADPH) to maintain an adequate reducing environment in the cells and is especially important in red blood cells (RBC). Given its central role in the regulation of redox state, it is understandable that mutations in the gene encoding G6PD can cause deficiency of the protein activity leading to clinical manifestations such as neonatal jaundice and acute hemolytic anemia. Recently, an extensive review has been published about variants in the g6pd gene; recognizing 186 mutations. In this work, we review the state of the art in G6PD deficiency, describing 217 mutations in the g6pd gene; we also compile information about 31 new mutations, 16 that were not recognized and 15 more that have recently been reported. In order to get a better picture of the effects of new described mutations in g6pd gene, we locate the point mutations in the solved three-dimensional structure of the human G6PD protein. We found that class I mutations have the most deleterious effects on the structure and stability of the protein.

  9. Novel pathogenic mechanism suggested by ex vivo analysis of MCT8 (SLC16A2) mutations.

    PubMed

    Visser, W Edward; Jansen, Jurgen; Friesema, Edith C H; Kester, Monique H A; Mancilla, Edna; Lundgren, Johan; van der Knaap, Marjo S; Lunsing, Roelineke J; Brouwer, Oebele F; Visser, Theo J

    2009-01-01

    Monocarboxylate transporter 8 (MCT8; approved symbol SLC16A2) facilitates cellular uptake and efflux of 3,3',5-triiodothyronine (T3). Mutations in MCT8 are associated with severe psychomotor retardation, high serum T3 and low 3,3',5'-triiodothyronine (rT3) levels. Here we report three novel MCT8 mutations. Two subjects with the F501del mutation have mild psychomotor retardation with slightly elevated T3 and normal rT3 levels. T3 uptake was mildly affected in F501del fibroblasts and strongly decreased in fibroblasts from other MCT8 patients, while T3 efflux was always strongly reduced. Moreover, type 3 deiodinase activity was highly elevated in F501del fibroblasts, whereas it was reduced in fibroblasts from other MCT8 patients, probably reflecting parallel variation in cellular T3 content. Additionally, T3-responsive genes were markedly upregulated by T3 treatment in F501del fibroblasts but not in fibroblasts with other MCT8 mutations. In conclusion, mutations in MCT8 result in a decreased T3 uptake in skin fibroblasts. The much milder clinical phenotype of patients with the F501del mutation may be correlated with the relatively small decrease in T3 uptake combined with an even greater decrease in T3 efflux. If fibroblasts are representative of central neurons, abnormal brain development associated with MCT8 mutations may be the consequence of either decreased or increased intracellular T3 concentrations.

  10. Mutation analysis of PALB2 gene in French breast cancer families.

    PubMed

    Damiola, Francesca; Schultz, Inès; Barjhoux, Laure; Sornin, Valérie; Dondon, Marie-Gabrielle; Eon-Marchais, Séverine; Marcou, Morgane; Caron, Olivier; Gauthier-Villars, Marion; de Pauw, Antoine; Luporsi, Elisabeth; Berthet, Pascaline; Delnatte, Capucine; Bonadona, Valérie; Maugard, Christine; Pujol, Pascal; Lasset, Christine; Longy, Michel; Bignon, Yves-Jean; Fricker, Jean-Pierre; Andrieu, Nadine; Sinilnikova, Olga M; Stoppa-Lyonnet, Dominique; Mazoyer, Sylvie; Muller, Danièle

    2015-12-01

    Several population-based and family-based studies have demonstrated that germline mutations of the PALB2 gene (Partner and Localizer of BRCA2) are associated with an increased risk of breast cancer. Distinct mutation frequencies and spectrums have been described depending on the population studied. Here we describe the first complete PALB2 coding sequence screening in the French population. We screened the complete coding sequence and intron-exon boundaries of PALB2, using the EMMA technique, to assess the contribution of pathogenic mutations in a set of 835 familial breast cancer cases and 662 unrelated controls from the French national study GENESIS and the Paul Strauss Cancer Centre, all previously tested negative for BRCA1 and BRCA2 pathogenic mutations. Our analysis revealed the presence of four novel deleterious mutations: c.1186insT, c.1857delT and c.2850delC in three cases, c.3418dupT in one control. In addition, we identified two in-frame insertion/deletion, 19 missense substitutions (two of them predicted as pathogenic), 9 synonymous variants, 28 variants located in introns and 2 in UTRs, as well as frequent variants. Truncating PALB2 mutations were found in 0.36% of familial breast cancer cases, a frequency lower than the one detected in comparable studies in other populations (0.73-3.40%). This suggests a small but significant contribution of PALB2 mutations to the breast cancer susceptibility in the French population.

  11. Mutation analysis of the coding sequence of the MECP2 gene in infantile autism.

    PubMed

    Beyer, Kim S; Blasi, Francesca; Bacchelli, Elena; Klauck, Sabine M; Maestrini, Elena; Poustka, Annemarie

    2002-10-01

    Mutations in the coding region of the methyl-CpG-binding protein 2 ( MECP2) gene cause Rett syndrome and have also been reported in a number of X-linked mental retardation syndromes. Furthermore, such mutations have recently been described in a few autistic patients. In this study, a large sample of individuals with autism was screened in order to elucidate systematically whether specific mutations in MECP2 play a role in autism. The mutation analysis of the coding sequence of the gene was performed by denaturing high-pressure liquid chromatography and direct sequencing. Taken together, 14 sequence variants were identified in 152 autistic patients from 134 German families and 50 unrelated patients from the International Molecular Genetic Study of Autism Consortium affected relative-pair sample. Eleven of these variants were excluded for having an aetiological role as they were either silent mutations, did not cosegregate with autism in the pedigrees of the patients or represented known polymorphisms. The relevance of the three remaining mutations towards the aetiology of autism could not be ruled out, although they were not localised within functional domains of MeCP2 and may be rare polymorphisms. Taking into account the large size of our sample, we conclude that mutations in the coding region of MECP2 do not play a major role in autism susceptibility. Therefore, infantile autism and Rett syndrome probably represent two distinct entities at the molecular genetic level.

  12. Molecular analysis of HEXA gene in Argentinean patients affected with Tay-Sachs disease: possible common origin of the prevalent c.459+5A>G mutation.

    PubMed

    Zampieri, Stefania; Montalvo, Annalisa; Blanco, Mariana; Zanin, Irene; Amartino, Hernan; Vlahovicek, Kristian; Szlago, Marina; Schenone, Andrea; Pittis, Gabriela; Bembi, Bruno; Dardis, Andrea

    2012-05-15

    Tay-Sachs disease (TSD) is a recessively inherited disorder caused by the deficient activity of hexosaminidase A due to mutations in the HEXA gene. Up to date there is no information regarding the molecular genetics of TSD in Argentinean patients. In the present study we have studied 17 Argentinean families affected by TSD, including 20 patients with the acute infantile form and 3 with the sub-acute form. Overall, we identified 14 different mutations accounting for 100% of the studied alleles. Eight mutations were novel: 5 were single base changes leading to drastic residue changes or truncated proteins, 2 were small deletions and one was an intronic mutation that may cause a splicing defect. Although the spectrum of mutations was highly heterogeneous, a high frequency of the c.459+5G>A mutation, previously described in different populations was found among the studied cohort. Haplotype analysis suggested that in these families the c.459+5G>A mutation might have arisen by a single mutational event.

  13. In silico analysis of the thermodynamic stability changes of psychrophilic and mesophilic alpha-amylases upon exhaustive single-site mutations.

    PubMed

    Gilis, Dimitri

    2006-01-01

    Identifying sequence modifications that distinguish psychrophilic from mesophilic proteins is important for designing enzymes with different thermodynamic stabilities and to understand the underlying mechanisms. The PoPMuSiC algorithm is used to introduce, in silico, all the single-site mutations in four mesophilic and one psychrophilic chloride-dependent alpha-amylases and to evaluate the changes in thermodynamic stability. The analysis of the distribution of the sequence positions that could be stabilized upon mutation shows a clear difference between the three domains of psychrophilic and mesophilic alpha-amylases. Most of the mutations stabilizing the psychrophilic enzyme are found in domains B and C, contrary to the mesophilic proteins where they are preferentially situated in the catalytic domain A. Moreover, the calculations show that the environment of some residues responsible for the activity of the psychrophilic protein has evolved to reinforce favorable interactions with these residues. In the second part, these results are exploited to propose rationally designed mutations that are predicted to confer to the psychrophilic enzyme mesophilic-like thermodynamic properties. Interestingly, most of the mutations found in domain C strengthen the interactions with domain A, in agreement with suggestions made on the basis of structural analyses. Although this study focuses on single-site mutations, the thermodynamic effects of the recommended mutations should be additive if the mutated residues are not close in space.

  14. Molecular analysis of Frasier syndrome: mutation in the WT1 gene in a girl with gonadal dysgenesis and nephronophthisis.

    PubMed

    Pérez de Nanclares, G; Castaño, L; Bilbao, J R; Vallo, A; Rica, I; Vela, A; Martul, P

    2002-01-01

    The Wilms' tumor gene (WT1) encodes a protein that is believed to exert transcriptional and tumor-suppressor activities. Mutations in this gene have occasionally been associated with Wilms' tumor (<15% patients) and, more consistently, with three syndromes characterized by urogenital abnormalities (WAGR, Denys-Drash and Frasier syndromes). We report 17 years follow-up of a 29 year-old phenotypic female with 46,XY karyotype, gonadal dysgenesis and nephronophthisis in order to identify possible germline alterations of the WT1 gene. Frasier syndrome was suspected and confirmed by genetic analysis. Sequence analysis permitted the identification of an A40-->G mutation in position +5 in the donor splice site of intron 9. During surgery for streak gonads extirpation, a microscopic gonadoblastoma was found, a typical complication of Frasier syndrome.

  15. Expression and mutational analysis of Autographa californica nucleopolyhedrovirus HCF-1: functional requirements for cysteine residues.

    PubMed

    Wilson, Joyce A; Forney, Scott D; Ricci, Alessondra M; Allen, Emily G; Hefferon, Kathleen L; Miller, Lois K

    2005-11-01

    The host cell-specific factor 1 gene (hcf-1) of the baculovirus Autographa californica multiple nucleopolyhedrovirus is required for efficient virus growth in TN368 cells but is dispensable for virus replication in SF21 cells. However, the mechanism of action of hcf-1 is unknown. To begin to understand its function in virus replication we have investigated the expression and localization pattern of HCF-1 in infected cells. Analysis of virus-infected TN368 cells showed that hcf-1 is expressed at an early time in the virus life cycle, between 2 and 12 h postinfection, and localized the protein to punctate nuclear foci. Through coprecipitation experiments we have confirmed that HCF-1 self-associates into dimers or higher-order structures. We also found that overexpression of HCF-1 repressed expression from the hcf-1 promoter in transient reporter assays. Mutagenesis of cysteine residues within a putative RING finger domain in the amino acid sequence of HCF-1 abolished self-association activity and suggests that the RING domain may be involved in this protein-protein interaction. A different but overlapping set of cysteine residues were required for efficient gene repression activity. Functional analysis of HCF-1 mutants showed that the cysteine amino acids required for both self-association and gene repression activities of HCF-1 were also required for efficient late-gene expression and occlusion body formation in TN368 cells. Mutational analysis also identified essential charged and hydrophobic amino acids located between two of the essential cysteine residues. We propose that HCF-1 is a RING finger-containing protein whose activity requires HCF-1 self-association and gene repression activity.

  16. Mutational analysis of the N-ras, p53, p16INK4a, CDK4, and MC1R genes in human congenital melanocytic naevi

    PubMed Central

    Papp, T.; Pemsel, H.; Zimmermann, R.; Bastrop, R.; Weiss, D.; Schiffmann, D.

    1999-01-01

    Eighteen human congenital melanocytic naevi (CMN) from 17 patients were screened for activating point mutations in the oncogenes N-ras and CDK4 and for sequence variants in the MC1R gene by combined RFLP-PCR/SSCP analysis. In addition, all lesions were screened for deletions and point mutations in the tumour suppressor genes p53 and p16INK4a (CDKN2A) by combined multiplex PCR/SSCP analysis. Positive screening data were specified by sequencing of the corresponding PCR product. Activating point mutations in the N-ras gene (nine CAA (Gln) to AAA (Lys) transversions and one CAA (Gln) to CGA (Arg) transition at codon 61) were detected at high frequency (56%). Furthermore, three missense mutations (V92M) and two silent mutations (CGA (Arg) to CGG (Arg), codon 213, exon 6) were found in the MC1R and p53 genes, respectively. No mutations were found in p16 or CDK4. The activated N-ras oncogene, which is also found in human cutaneous melanomas, may constitute a potential risk factor for melanoma formation within CMN.


Keywords: naevi; N-ras; p53; p16 PMID:10465111

  17. Mutational analysis of the N-ras, p53, p16INK4a, CDK4, and MC1R genes in human congenital melanocytic naevi.

    PubMed

    Papp, T; Pemsel, H; Zimmermann, R; Bastrop, R; Weiss, D G; Schiffmann, D

    1999-08-01

    Eighteen human congenital melanocytic naevi (CMN) from 17 patients were screened for activating point mutations in the oncogenes N-ras and CDK4 and for sequence variants in the MC1R gene by combined RFLP-PCR/SSCP analysis. In addition, all lesions were screened for deletions and point mutations in the tumour suppressor genes p53 and p16INK4a (CDKN2A) by combined multiplex PCR/SSCP analysis. Positive screening data were specified by sequencing of the corresponding PCR product. Activating point mutations in the N-ras gene (nine CAA (Gln) to AAA (Lys) transversions and one CAA (Gln) to CGA (Arg) transition at codon 61) were detected at high frequency (56%). Furthermore, three missense mutations (V92M) and two silent mutations (CGA (Arg) to CGG (Arg), codon 213, exon 6) were found in the MC1R and p53 genes, respectively. No mutations were found in p16 or CDK4. The activated N-ras oncogene, which is also found in human cutaneous melanomas, may constitute a potential risk factor for melanoma formation within CMN.

  18. WISP3 mutational analysis in Indian patients diagnosed with progressive pseudorheumatoid dysplasia and report of a novel mutation at p.Y198*

    PubMed Central

    Santhanam, M.; Rajagopal, K.; Sugumar, L. K.; Balaji, V.

    2016-01-01

    Objectives To determine the pattern of mutations of the WISP3 gene in clinically identified progressive pseudorheumatoid dysplasia (PPD) in an Indian population. Patients and Methods A total of 15 patients with clinical features of PPD were enrolled in this study. Genomic DNA was isolated and polymerase chain reaction performed to amplify the WISP3 gene. Screening for mutations was done by conformation-sensitive gel electrophoresis, beginning with the fifth exon and subsequently proceeding to the remaining exons. Sanger sequencing was performed for both forward and reverse strands to confirm the mutations. Results In all, two of the 15 patients had compound heterozygous mutations: one a nonsense mutation c.156C>A (p.C52*) in exon 2, and the other a missense mutation c.677G>T (p.G226V) in exon 4. All others were homozygous, with three bearing a nonsense mutation c.156C>A (p.C52*) in exon 2, three a missense mutation c.233G>A (p.C78Y) in exon 2, five a missense mutation c.1010G>A (p.C337Y) in exon 5, one a nonsense mutation c.348C>A (p.Y116*) in exon 3, and one with a novel deletion mutation c.593_597delATAGA (p.Y198*) in exon 4. Conclusion We identified a novel mutation c.593_597delATAGA (p.Y198*) in the fourth exon of the WISP3 gene. We also confirmed c.1010G>A as one of the common mutations in an Indian population with progressive pseudorheumatoid dysplasia. Cite this article: V. Madhuri, M. Santhanam, K. Rajagopal, L. K. Sugumar, V. Balaji. WISP3 mutational analysis in Indian patients diagnosed with progressive pseudorheumatoid dysplasia and report of a novel mutation at p.Y198* Bone Joint Res 2016;5:301–306. DOI: 10.1302/2046-3758.57.2000520. PMID:27436824

  19. Retinitis Pigmentosa Mutations in Bad Response to Refrigeration 2 (Brr2) Impair ATPase and Helicase Activity.

    PubMed

    Ledoux, Sarah; Guthrie, Christine

    2016-06-03

    Brr2 is an RNA-dependent ATPase required to unwind the U4/U6 snRNA duplex during spliceosome assembly. Mutations within the ratchet helix of the Brr2 RNA binding channel result in a form of degenerative human blindness known as retinitis pigmentosa (RP). The biochemical consequences of these mutations on Brr2's RNA binding, helicase, and ATPase activity have not yet been characterized. Therefore, we identified the largest construct of Brr2 that is soluble in vitro, which truncates the first 247 amino acids of the N terminus (Δ247-Brr2), to characterize the effects of the RP mutations on Brr2 activity. The Δ247-Brr2 RP mutants exhibit a gradient of severity of weakened RNA binding, reduced helicase activity, and reduced ATPase activity compared with wild type Δ247-Brr2. The globular C-terminal Jab1/Mpn1-like domain of Prp8 increases the ability of Δ247-Brr2 to bind the U4/U6 snRNA duplex at high pH and increases Δ247-Brr2's RNA-dependent ATPase activity and the extent of RNA unwinding. However, this domain of Prp8 does not differentially affect the Δ247-Brr2 RP mutants compared with the wild type Δ247-Brr2. When stimulated by Prp8, wild type Δ247-Brr2 is able to unwind long stable duplexes in vitro, and even the RP mutants capable of binding RNA with tight affinity are incapable of fully unwinding short duplex RNAs. Our data suggest that the RP mutations within the ratchet helix impair Brr2 translocation through RNA helices.

  20. In Vitro Mutational and Bioinformatics Analysis of the M71 Odorant Receptor and Its Superfamily

    PubMed Central

    Tomoiaga, Delia; D’Hulst, Charlotte; Krampis, Konstantinos; Feinstein, Paul

    2015-01-01

    We performed an extensive mutational analysis of the canonical mouse odorant receptor (OR) M71 to determine the properties of ORs that inhibit plasma membrane trafficking in heterologous expression systems. We employed the use of the M71::GFP fusion protein to directly assess plasma membrane localization and functionality of M71 in heterologous cells in vitro or in olfactory sensory neurons (OSNs) in vivo. OSN expression of M71::GFP show only small differences in activity compared to untagged M71. However, M71::GFP could not traffic to the plasma membrane even in the presence of proposed accessory proteins RTP1S or mβ2AR. To ask if ORs contain an internal “kill sequence”, we mutated ~15 of the most highly conserved OR specific amino acids not found amongst the trafficking non-OR GPCR superfamily; none of these mutants rescued trafficking. Addition of various amino terminal signal sequences or different glycosylation motifs all failed to produce trafficking. The addition of the amino and carboxy terminal domains of mβ2AR or the mutation Y289A in the highly conserved GPCR motif NPxxY does not rescue plasma membrane trafficking. The failure of targeted mutagenesis on rescuing plasma membrane localization in heterologous cells suggests that OR trafficking deficits may not be attributable to conserved collinear motifs, but rather the overall amino acid composition of the OR family. Thus, we performed an in silico analysis comparing the OR and other amine receptor superfamilies. We find that ORs contain fewer charged residues and more hydrophobic residues distributed throughout the protein and a conserved overall amino acid composition. From our analysis, we surmise that it may be difficult to traffic ORs at high levels to the cell surface in vitro, without making significant amino acid modifications. Finally, we observed specific increases in methionine and histidine residues as well as a marked decrease in tryptophan residues, suggesting that these changes

  1. Neutron activation analysis system

    DOEpatents

    Taylor, M.C.; Rhodes, J.R.

    1973-12-25

    A neutron activation analysis system for monitoring a generally fluid media, such as slurries, solutions, and fluidized powders, including two separate conduit loops for circulating fluid samples within the range of radiation sources and detectors is described. Associated with the first loop is a neutron source that emits s high flux of slow and thermal neutrons. The second loop employs a fast neutron source, the flux from which is substantially free of thermal neutrons. Adjacent to both loops are gamma counters for spectrographic determination of the fluid constituents. Other gsmma sources and detectors are arranged across a portion of each loop for deterMining the fluid density. (Official Gazette)

  2. Woot, an Active Gypsy-Class Retrotransposon in the Flour Beetle, Tribolium Castaneum, Is Associated with a Recent Mutation

    PubMed Central

    Beeman, R. W.; Thomson, M. S.; Clark, J. M.; DeCamillis, M. A.; Brown, S. J.; Denell, R. E.

    1996-01-01

    A recently isolated, lethal mutation of the homeotic Abdominal gene of the red flour beetle Tribolium castaneum is associated with an insertion of a novel retrotransposon into an intron. Sequence analysis indicates that this retrotransposon, named Woot, is a member of the gypsy family of mobile elements. Most strains of T. castaneum appear to harbor ~25-35 copies of Woot per genome. Woot is composed of long terminal repeats of unprecedented length (3.6 kb each), flanking an internal coding region 5.0 kb in length. For most copies of Woot, the internal region includes two open reading frames (ORFs) that correspond to the gag and pol genes of previously described retrotransposons and retroviruses. The copy of Woot inserted into Abdominal bears an apparent single frameshift mutation that separates the normal second ORF into two. Woot does not appear to generate infectious virions by the criterion that no envelop gene is discernible. The association of Woot with a recent mutation suggests that this retroelement is currently transpositionally active in at least some strains. PMID:8722793

  3. Molecular Analysis of CYP21A2 Gene Mutations among Iraqi Patients with Congenital Adrenal Hyperplasia

    PubMed Central

    Al-Obaidi, Ruqayah G. Y.; Al-Zubaidi, Munib Ahmed K.; Oberkanins, Christian; Németh, Stefan; Al-Obaidi, Yusra G. Y.

    2016-01-01

    Congenital adrenal hyperplasia is a group of autosomal recessive disorders. The most frequent one is 21-hydroxylase deficiency. Analyzing CYP21A2 gene mutations was so far not reported in Iraq. This work aims to analyze the spectrum and frequency of CYP21A2 mutations among Iraqi CAH patients. Sixty-two children were recruited from the Pediatric Endocrine Consultation Clinic, Children Welfare Teaching Hospital, Baghdad, Iraq, from September 2014 till June 2015. Their ages ranged between one day and 15 years. They presented with salt wasting, simple virilization, or pseudoprecocious puberty. Cytogenetic study was performed for cases with ambiguous genitalia. Molecular analysis of CYP21A2 gene was done using the CAH StripAssay (ViennaLab Diagnostics) for detection of 11 point mutations and >50% of large gene deletions/conversions. Mutations were found in 42 (67.7%) patients; 31 (50%) patients were homozygotes, 9 (14.5%) were heterozygotes, and 2 (3.2%) were compound heterozygotes with 3 mutations, while 20 (32.3%) patients had none of the tested mutations. The most frequently detected mutations were large gene deletions/conversions found in 12 (19.4%) patients, followed by I2Splice and Q318X in 8 (12.9%) patients each, I172N in 5 (8.1%) patients, and V281L in 4 (6.5%) patients. Del 8 bp, P453S, and R483P were each found in one (1.6%) and complex alleles were found in 2 (3.2%). Four point mutations (P30L, Cluster E6, L307 frameshift, and R356W) were not identified in any patient. In conclusion, gene deletions/conversions and 7 point mutations were recorded in varying proportions, the former being the commonest, generally similar to what was reported in regional countries. PMID:27777794

  4. Analysis of genetic mutations in Chinese patients with systemic primary carnitine deficiency.

    PubMed

    Han, Lianshu; Wang, Fei; Wang, Yu; Ye, Jun; Qiu, Wenjuan; Zhang, Huiwen; Gao, Xiaolan; Gong, Zhuwen; Gu, Xuefan

    2014-10-01

    Systemic primary carnitine deficiency (CDSP) is caused by mutations in SLC22A5 gene, which encodes organic cation transporter 2(OCTN2). CDSP leads to skeletal or cardiac myopathy and hepatic encephalopathy. The present study aimed to identify SLC22A5 gene mutations and analyze the potential relationship between genotype and clinical symptoms in 20 Chinese patients with CDSP. The complete coding region of the SLC22A5 gene including intron-exon boundaries were amplified and sequenced in all patients. Eighteen different mutations were found; of which, nine were novel. The mutations clustering in exons 1 and 4 accounted for 66.7% of all mutant alleles (26/39). The c.760C>T (p. R254X) was the most frequent mutation (25.6%, 10/39), suggesting it as an ethnic founder mutation. The relationship between genotype and phenotype was investigated in patients carrying the R254X mutation. Homozygous patients with R254X were late-onset cases who presented with dilated cardiomyopathy and muscle weakness after 1 year of age. Compound heterozygous patients carrying R254X, combined with other missense mutations occurred in very specific positions, dramatically altered OCTN2 protein function. Based on the analysis of case studies, a clear relationship between free carnitine (C0) level in plasma and OCTN2 genotype was not found in the present work, however, the low plasma C0 level could not indicate disease severity or genotype. Further functional studies with a large sample size are required to understand the relationship between R254X mutation and CDSP.

  5. Significance of sarcomere gene mutations analysis in the end-stage phase of hypertrophic cardiomyopathy.

    PubMed

    Biagini, Elena; Olivotto, Iacopo; Iascone, Maria; Parodi, Maria I; Girolami, Francesca; Frisso, Giulia; Autore, Camillo; Limongelli, Giuseppe; Cecconi, Massimiliano; Maron, Barry J; Maron, Martin S; Rosmini, Stefania; Formisano, Francesco; Musumeci, Beatrice; Cecchi, Franco; Iacovoni, Attilio; Haas, Tammy S; Bacchi Reggiani, Maria L; Ferrazzi, Paolo; Salvatore, Francesco; Spirito, Paolo; Rapezzi, Claudio

    2014-09-01

    End-stage hypertrophic cardiomyopathy (ES-HC) has an ominous prognosis. Whether genotype can influence ES-HC occurrence is unresolved. We assessed the spectrum and clinical correlates of HC-associated mutations in a large multicenter cohort with end-stage ES-HC. Sequencing analysis of 8 sarcomere genes (MYH7, MYBPC3, TNNI3, TNNT2, TPM1, MYL2, MYL3, and ACTC1) and 2 metabolic genes (PRKAG2 and LAMP2) was performed in 156 ES-HC patients with left ventricular (LV) ejection fraction (EF) <50%. A comparison among mutated and negative ES-HC patients and a reference cohort of 181 HC patients with preserved LVEF was performed. Overall, 131 mutations (36 novel) were identified in 104 ES-HC patients (67%) predominantly affecting MYH7 and MYBPC3 (80%). Complex genotypes with double or triple mutations were present in 13% compared with 5% of the reference cohort (p = 0.013). The distribution of mutations was otherwise indistinguishable in the 2 groups. Among ES-HC patients, those presenting at first evaluation before the age of 20 had a 30% prevalence of complex genotypes compared with 19% and 21% in the subgroups aged 20 to 59 and ≥60 years (p = 0.003). MYBPC3 mutation carriers with ES-HC were older than patients with MYH7, other single mutations, or multiple mutations (median 41 vs 16, 26, and 28 years, p ≤0.001). Outcome of ES-HC patients was severe irrespective of genotype. In conclusion, the ES phase of HC is associated with a variable genetic substrate, not distinguishable from that of patients with HC and preserved EF, except for a higher frequency of complex genotypes with double or triple mutations of sarcomere genes.

  6. Identification of five novel FBN1 mutations by non-radioactive single-strand conformation analysis

    SciTech Connect

    Liu, W.; Qian, C.; Comeau, K.; Francke, U.

    1994-09-01

    Marfan syndrome (MFS), one of the most common genetic disorders of connective tissue, is characterized by variable manifestations in skeletal, cardiovascular and ocular systems. Mutations in the fibrillin gene on chromosome 15 (FBN1) have been shown to cause MFS. To examine the relationship between FBN1 gene mutations, fibrillin protein function and MFS phenotypes, we screened for alternations in the fibrillin coding sequence in fibroblast derived cDNA from MFS patients. To date, abnormally migrating bands in more than 20 unrelated MFS patients have been identified by using non-radioactive single-strand conformation analysis and silver staining. Five altered bands have been directly sequenced. Two missense mutations and three splice site mutations have been identified. Both missense mutations substitute another amino acid for a cysteine residue (C1402W and C1672R) in EGF-like motifs of the fibrillin polypeptide chain. The two splice site mutations are at nucleotide positions 6994+1 (G{yields}A), and 7205-2 (A{yields}G) and result in in-frame skipping of exon 56 and 58, respectively. Skipping of exon 56 occurs in 50% of mutant transcripts. Use of a cryptic splice site 51 bp upstream of the normal donor site results in half of the mutant transcripts containing part of exon 56. Both products contain in-frame deletions. Another splice site mutation, identified by exon screening from patient genomic DNA using intron primers, is at nucleotide position 2293+2 (T{yields}A), but the predicted exon skipping has not been detected at the RT-PCR level. This may be due to instability of the mutant transcript. Including the mutations reported here, a total of 8 out of 36 published FBN1 gene mutations involve exon skipping. It may be inferred that FBN1 exon skipping plays an important pathogenic role in MFS.

  7. Identification and characterization of NF1 mutations using single strand conformational polymorphism (SSCP) analysis

    SciTech Connect

    Rodenhiser, D.I.; Hovland, K.; Singh, S.M.

    1994-09-01

    Neurofibromatosis type 1 (NF1) is one of the most common human genetic disorders with a constellation of cutaneous and skeletal manifestations, intellectual impairment, and an increased risk for a variety of malignancies. The neurofibromin gene is also considered a tumor-suppressor gene since its loss of function is associated with a variety of sporadic cancers in the general population. The NF1 gene has a high spontaneous mutation rate, and while a number of laboratories are involved in a coordinated effort to identify NF1 mutations, only a small number of mutations have been characterized. Despite considerable efforts no high frequency or recurrent mutation has been found. We report the application of single strand conformational polymorphism (SSCP) and heteroduplex analysis on the Phastgel system to identify mutations in the neurofibromin gene. A DNA panel of patients representing 100 families from Ontario, Canada was used to screen fourteen NF1 exons encompassing 30% of the NF1 gene: the 5{prime} exons 1, 17, 24 and the 3{prime} exons 28-33, 39-42 and 49. SSCP and heteroduplex variants were identified in PCR products amplified from 8 exons and mutations were identified in 10% of patients. Three RFLPs also have been identified and three other SSCP variants are being characterized. While most small deletions and insertions form heteroduplexes readily detectable on native gels, our results suggest that the detection of heteroduplexes resulting from point mutations is best facilitated on native Phastgels at low temperature. Our results suggest that as point mutations comprise a significant proportion of NF1 mutations, optimization of the SSCP protocol is critical to ensure the detection of all sequence variants.

  8. Sequence analysis of tyrosinase gene in ocular and oculocutaneous albinism patients: introducing three novel mutations

    PubMed Central

    Khordadpoor-Deilamani, Faravareh; Karimipoor, Morteza; Javadi, Gholamreza

    2015-01-01

    Purpose Albinism is a heterogeneous genetic disorder of melanin synthesis that results in hypopigmented eyes (in patients with ocular albinism) or hair, skin, and eyes (in individuals with oculocutaneous albinism). It is associated with decreased visual acuity, nystagmus, strabismus, and photophobia. The tyrosinase gene is known to be involved in both oculocutaneous albinism and autosomal recessive ocular albinism. In this study, we aimed to screen the mutations in the TYR gene in the nonsyndromic OCA and autosomal recessive ocular albinism patients from Iran. Methods The tyrosinase gene was examined in 23 unrelated patients with autosomal recessive ocular albinism or nonsyndromic OCA using DNA sequencing and bioinformatics analysis. Results TYR gene mutations were identified in 14 (app. 60%) albinism patients. Conclusions We found 10 mutations, 3 of which were novel. No mutation was found in our ocular albinism patients, but one of them was heterozygous for the p.R402Q polymorphism. PMID:26167114

  9. Clonal analysis of delayed karyotypic abnormalities and gene mutations in radiation-induced genetic instability.

    PubMed Central

    Grosovsky, A J; Parks, K K; Giver, C R; Nelson, S L

    1996-01-01

    Many tumors exhibit extensive chromosomal instability, but karyotypic alterations will be significant in carcinogenesis only by influencing specific oncogenes or tumor suppressor loci within the affected chromosomal segments. In this investigation, the specificity of chromosomal rearrangements attributable to radiation-induced genomic instability is detailed, and a qualitative and quantitative correspondence with mutagenesis is demonstrated. Chromosomal abnormalities preferentially occurred near the site of prior rearrangements, resulting in complex abnormalities, or near the centromere, resulting in deletion or translocation of the entire chromosome arm, but no case of an interstitial chromosomal deletion was observed. Evidence for chromosomal instability in the progeny of irradiated cells also included clonal karyotypic heterogeneity. The persistence of instability was demonstrated for at least 80 generations by elevated mutation rates at the heterozygous, autosomal marker locus tk. Among those TK- mutants that showed a loss of heterozygosity, a statistically significant increase in mutation rate was observed only for those in which the loss of heterozygosity encompasses the telomeric region. This mutational specificity corresponds with the prevalence of terminal deletions, additions, and translocations, and the absence of interstitial deletions, in karyotypic analysis. Surprisingly, the elevated rate of TK- mutations is also partially attributable to intragenic base substitutions and small deletions, and DNA sequence analysis of some of these mutations is presented. Complex chromosomal abnormalities appear to be the most significant indicators of a high rate of persistent genetic instability which correlates with increased rates of both intragenic and chromosomal-scale mutations at tk. PMID:8887655

  10. Mutation analysis of the cystic fibrosis transmembrane regulator gene in native American populations of the southwest

    SciTech Connect

    Grebe, T.A. Maricopa Medical Center, Phoenix, AZ ); Doane, W.W.; Norman, R.A.; Rhodes, S.N. ); Richter, S.F. ); Clericuzio, C. ); Seltzer, W.K. ); Goldberg, B.E. ); Hernried, L.S. ); McClure, M.; Kaplan, G.

    1992-10-01

    The authors report DNA and clinical analysis of cystic fibrosis (CF) in two previously unstudied, genetically isolated populations: Pueblo and Navajo Native Americans. Direct mutation analysis of six mutations of the CFTR gene - namely, [Delta]F508, G542X, G551D, R553X, N1303K, and W1282X - was performed on PCR-amplified genomic DNA extracted from blood samples. Haplotype analyses with marker/enzyme pairs XV2c/TaqI and KM29/PstI were performed as well. Of the 12 affected individuals studied, no [Delta]F508 mutation was detected; only one G542X mutation was found. None of the other mutations was detected. All affected individuals have either an AA, AC, or CC haplotype, except for the one carrying the G542X mutation, who has the haplotye AB. Clinically, six of the affected individuals examined exhibit growth deficiency, and five (all from the Zuni Pueblo) have a severe CF phenotype. Four of the six Zunis with CF are also microcephalic, a finding not previously noted in CF patients. The DNA data have serious implications for risk assessment of CF carrier status for these people. 14 refs., 3 tabs.

  11. Gentamicin B1 is a minor gentamicin component with major nonsense mutation suppression activity

    PubMed Central

    Baradaran-Heravi, Alireza; Niesser, Jürgen; Balgi, Aruna D.; Choi, Kunho; Zimmerman, Carla; South, Andrew P.; Anderson, Hilary J.; Strynadka, Natalie C.; Bally, Marcel B.; Roberge, Michel

    2017-01-01

    Nonsense mutations underlie about 10% of rare genetic disease cases. They introduce a premature termination codon (PTC) and prevent the formation of full-length protein. Pharmaceutical gentamicin, a mixture of several related aminoglycosides, is a frequently used antibiotic in humans that can induce PTC readthrough and suppress nonsense mutations at high concentrations. However, testing of gentamicin in clinical trials has shown that safe doses of this drug produce weak and variable readthrough activity that is insufficient for use as therapy. In this study we show that the major components of pharmaceutical gentamicin lack PTC readthrough activity but the minor component gentamicin B1 (B1) is a potent readthrough inducer. Molecular dynamics simulations reveal the importance of ring I of B1 in establishing a ribosome configuration that permits pairing of a near-cognate complex at a PTC. B1 induced readthrough at all three nonsense codons in cultured cancer cells with TP53 (tumor protein p53) mutations, in cells from patients with nonsense mutations in the TPP1 (tripeptidyl peptidase 1), DMD (dystrophin), SMARCAL1 (SWI/SNF-related, matrix-associated, actin-dependent regulator of chromatin, subfamily a-like 1), and COL7A1 (collagen type VII alpha 1 chain) genes, and in an in vivo tumor xenograft model. The B1 content of pharmaceutical gentamicin is highly variable and major gentamicins suppress the PTC readthrough activity of B1. Purified B1 provides a consistent and effective source of PTC readthrough activity to study the potential of nonsense suppression for treatment of rare genetic disorders. PMID:28289221

  12. Novel Mutations in the Transcriptional Activator Domain of the Human TBX20 in Patients with Atrial Septal Defect

    PubMed Central

    Monroy-Muñoz, Irma Eloisa; Rodríguez-Pérez, José Manuel; Muñoz-Medina, José Esteban; Angeles-Martínez, Javier; García-Trejo, José J.; Morales-Ríos, Edgar; Massó, Felipe; Sandoval-Jones, Juan Pablo; Cervantes-Salazar, Jorge; García-Montes, José Antonio; Calderón-Colmenero, Juan; Vargas-Alarcón, Gilberto

    2015-01-01

    Background. The relevance of TBX20 gene in heart development has been demonstrated in many animal models, but there are few works that try to elucidate the effect of TBX20 mutations in human congenital heart diseases. In these studies, all missense mutations associated with atrial septal defect (ASD) were found in the DNA-binding T-box domain, none in the transcriptional activator domain. Methods. We search for TBX20 mutations in a group of patients with ASD or ventricular septal defect (VSD) using the High Resolution Melting (HRM) method and DNA sequencing. Results. We report three missense mutations (Y309D, T370O, and M395R) within the transcriptional activator domain of human TBX20 that were associated with ASD. Conclusions. This is the first association of TBX20 transcriptional activator domain missense mutations with ASD. These findings could have implications for diagnosis, genetic screening, and patient follow-up. PMID:25834824

  13. Antihelminth compound niclosamide downregulates Wnt signaling and elicits antitumor responses in tumors with activating APC mutations.

    PubMed

    Osada, Takuya; Chen, Minyong; Yang, Xiao Yi; Spasojevic, Ivan; Vandeusen, Jeffrey B; Hsu, David; Clary, Bryan M; Clay, Timothy M; Chen, Wei; Morse, Michael A; Lyerly, H Kim

    2011-06-15

    Wnt/β-catenin pathway activation caused by adenomatous polyposis coli (APC) mutations occurs in approximately 80% of sporadic colorectal cancers (CRC). The antihelminth compound niclosamide downregulates components of the Wnt pathway, specifically Dishevelled-2 (Dvl2) expression, resulting in diminished downstream β-catenin signaling. In this study, we determined whether niclosamide could inhibit the Wnt/β-catenin pathway in human CRCs and whether its inhibition might elicit antitumor effects in the presence of APC mutations. We found that niclosamide inhibited Wnt/β-catenin pathway activation, downregulated Dvl2, decreased downstream β-catenin signaling, and exerted antiproliferative effects in human colon cancer cell lines and CRC cells isolated by surgical resection of metastatic disease, regardless of mutations in APC. In contrast, inhibition of NF-κB or mTOR did not exert similar antiproliferative effects in these CRC model systems. In mice implanted with human CRC xenografts, orally administered niclosamide was well tolerated, achieved plasma and tumor levels associated with biologic activity, and led to tumor control. Our findings support clinical explorations to reposition niclosamide for the treatment of CRC.

  14. Mutational analysis of human immunodeficiency virus type 1 protease suggests functional homology with aspartic proteinases.

    PubMed Central

    Loeb, D D; Hutchison, C A; Edgell, M H; Farmerie, W G; Swanstrom, R

    1989-01-01

    Processing of the retroviral gag and pol gene products is mediated by a viral protease. Bacterial expression systems have been developed which permit genetic analysis of the human immunodeficiency virus type 1 protease as measured by cleavage of the pol protein precursor. Deletion analysis of the pol reading frame locates the sequences required to encode a protein with appropriate proteolytic activity near the left end of the pol reading frame but largely outside the gag-pol overlap region, which is at the extreme left end of pol. Most missense mutations within an 11-amino-acid domain highly conserved among retroviral proteases and with sequence similarity to the active site of aspartic proteinases abolish appropriate processing, suggesting that the retrovirus proteases share a catalytic mechanism with aspartic proteinases. Substitution of the amino acids flanking the scissile bond at three of the processing sites encoded by pol demonstrates distinct sequence requirements for cleavage at these different sites. The inclusion of a charged amino acid at the processing site blocks cleavage. A subset of these substitutions also inhibits processing at the nonmutated sites. Images PMID:2642305

  15. Identification of novel BRCA founder mutations in Middle Eastern breast cancer patients using capture and Sanger sequencing analysis.

    PubMed

    Bu, Rong; Siraj, Abdul K; Al-Obaisi, Khadija A S; Beg, Shaham; Al Hazmi, Mohsen; Ajarim, Dahish; Tulbah, Asma; Al-Dayel, Fouad; Al-Kuraya, Khawla S

    2016-09-01

    Ethnic differences of breast cancer genomics have prompted us to investigate the spectra of BRCA1 and BRCA2 mutations in different populations. The prevalence and effect of BRCA 1 and BRCA 2 mutations in Middle Eastern population is not fully explored. To characterize the prevalence of BRCA mutations in Middle Eastern breast cancer patients, BRCA mutation screening was performed in 818 unselected breast cancer patients using Capture and/or Sanger sequencing. 19 short tandem repeat (STR) markers were used for founder mutation analysis. In our study, nine different types of deleterious mutation were identified in 28 (3.4%) cases, 25 (89.3%) cases in BRCA 1 and 3 (10.7%) cases in BRCA 2. Seven recurrent mutations identified accounted for 92.9% (26/28) of all the mutant cases. Haplotype analysis was performed to confirm c.1140 dupG and c.4136_4137delCT mutations as novel putative founder mutation, accounting for 46.4% (13/28) of all BRCA mutant cases and 1.6% (13/818) of all the breast cancer cases, respectively. Moreover, BRCA 1 mutation was significantly associated with BRCA 1 protein expression loss (p = 0.0005). Our finding revealed that a substantial number of BRCA mutations were identified in clinically high risk breast cancer from Middle East region. Identification of the mutation spectrum, prevalence and founder effect in Middle Eastern population facilitates genetic counseling, risk assessment and development of cost-effective screening strategy.

  16. Mutation analysis of tuberous sclerosis families using the chromosome 16 (TSC2) tuberin gene

    SciTech Connect

    Gilbert, J.; Wolpert, C.; Kumar, A.

    1994-09-01

    Tuberous sclerosis complex (TSC) is an autosomal dominant disorder which affects numerous body systems, especially brain and kidneys. The estimated prevalence of TSC is 1 per 10,000 population and the disease occurs in all racial groups. TSC exhibits both incomplete penetrance and variable expression and it is estimated that approximately 50% of affected individuals are the result of new mutations. TSC is a heterogeneous disorder with at least two disease loci which linkage studies have mapped to chromosomes 9q34 (TSC1) and 16p13.3 (TSC2). The chromosome 16 TSC gene, a 5.5 kb transcript which has been named tuberin, has recently been isolated and the characterization of the gene and mutational analysis of chromosome 16 families are presently underway. Using cDNA clones which cover approximately 90%, including the 3{prime} end, of the tuberin gene, we have screened Southern blots of 44 confirmed familial and sporadic TSC cases using the restriction enzymes Bam HI, Hind III and Taq I. To date, we have detected no confirmed deletions in any of these cases. We are in the process of screening using Pvu II blots. In addition, our laboratory is beginning to screen the TSC cases for mutations using SSCP in conjunction with RT-PCR of lymphoblast RNA and PCR of lymphoblast DNA using primers prepared from the gene sequence. We have recently ascertained an additional 20 sproadic TSC cases which will be subjected to analysis and these results together with our mutation findings will be presented. Our results would indicate that the number of mutations detectable using Southern blotting is small, especially in the larger chromosome 16 TSC families as opposed to sporadic mutations, and that more detailed technical analysis will be necessary to determine the full range of mutations in the large majority of TSC cases.

  17. Leukocyte adhesion deficiency-III is caused by mutations in KINDLIN3 affecting integrin activation

    PubMed Central

    Svensson, Lena; Howarth, Kimberley; McDowall, Alison; Patzak, Irene; Evans, Rachel; Ussar, Siegfried; Moser, Markus; Metin, Ayse; Fried, Mike; Tomlinson, Ian; Hogg, Nancy

    2009-01-01

    Integrins are the major adhesion receptors of leukocytes and platelets. β1 and β2 integrin function on leukocytes is crucial for a successful immune response and the platelet integrin αIIbβ3 initiates the process of blood clotting through binding fibrinogen1-3. Integrins on circulating cells bind poorly to their ligands but become active after ‘inside-out’ signaling through other membrane receptors4,5. Subjects with leukocyte adhesion deficiency-1 (LAD-I) do not express β2 integrins because of mutations in the gene specifying the β2 subunit, and they suffer recurrent bacterial infections6,7. Mutations affecting αIIbβ3 integrin cause the bleeding disorder termed Glanzmann’s thrombasthenia3. Subjects with LAD-III show symptoms of both LAD-I and Glanzmann’s thrombasthenia. Their hematopoietically-derived cells express β1, β2 and β3 integrins, but defective inside-out signaling causes immune deficiency and bleeding problems8. The LAD-III lesion has been attributed to a C→A mutation in the gene encoding calcium and diacylglycerol guanine nucleotide exchange factor (CALDAGGEF1; official symbol RASGRP2) specifying the CALDAG-GEF1 protein9, but we show that this change is not responsible for the LAD-III disorder. Instead, we identify mutations in the KINDLIN3 (official symbol FERMT3) gene specifying the KINDLIN-3 protein as the cause of LAD-III in Maltese and Turkish subjects. Two independent mutations result in decreased KINDLIN3 messenger RNA levels and loss of protein expression. Notably, transfection of the subjects’ lymphocytes with KINDLIN3 complementary DNA but not CALDAGGEF1 cDNA reverses the LAD-III defect, restoring integrin-mediated adhesion and migration. PMID:19234463

  18. Detection of Indel Mutations in Drosophila by High-Resolution Melt Analysis (HRMA).

    PubMed

    Housden, Benjamin E; Perrimon, Norbert

    2016-09-01

    Although CRISPR technology allows specific genome alterations to be created with relative ease, detection of these events can be problematic. For example, CRISPR-induced double-strand breaks are often repaired imprecisely to generate unpredictable short indel mutations. Detection of these events requires the use of molecular screening techniques such as endonuclease assays, restriction profiling, or high-resolution melt analysis (HRMA). Here, we provide detailed protocols for HRMA-based mutation screening in Drosophila and analysis of the resulting data using the online tool HRMAnalyzer.

  19. Analysis of phenotypic features and FGFR2 mutations in Apert syndrome.

    PubMed Central

    Park, W J; Theda, C; Maestri, N E; Meyers, G A; Fryburg, J S; Dufresne, C; Cohen, M M; Jabs, E W

    1995-01-01

    A phenotypic and genotypic survey was conducted on 36 Apert syndrome patients. In all but one patient, an FGFR2 mutation, either S252W or P253R, was found in exon IIIa (exon U or 7). The frequency was 71% and 26%, for the mutations S252W and P253R, respectively. These mutations occur in the linker region between immunoglobulin-like domains II and III, which are involved in activation of the receptor by ligand binding and dimerization. The fact that one patient did not have a mutation in the same exon suggests further genetic heterogeneity in Apert syndrome. The frequencies of occurrence or means for measurements of 29 different clinical features (including severity of craniofacial features, syndactyly of the hands and feet, and multisystem involvement) were determined for all patients and for the two subgroups defined by their mutations. Comparison between the subgroups for the different clinical features was performed and suggested no statistically significant differences. These results are not unexpected, because the two common mutations for Apert syndrome alter FGFR2 at adjacent amino acids that are likely to have similar biological, and therefore phenotypic, consequences. Images Figure 2 Figure 3 Figure 4 PMID:7668257

  20. Analysis of phenotypic features and FGFR2 mutations in Apert syndrome

    SciTech Connect

    Park, Woo-Jin; Theda, C.; Maestri, N.E.

    1995-08-01

    A phenotypic and genotypic survey was conducted on 36 Apert syndrome patients. In all but one patient, an FGFR2 mutation, either S252W or P253R, was found in exon IIIa (exon U or 7). The frequency was 71% and 26% for the mutations S252W and P253R, respectively. These mutations occur in the linker region between immunoglobulin-like domains II and III, which are involved in activation of the receptor by ligand binding and dimerization. The fact that one patient did not have a mutation in the same exon suggests further genetic heterogeneity in Apert syndrome. The frequencies of occurrence or means for measurements of 29 different clinical features (including severity of craniofacial features, syndactyly of the hands and feet, and multisystem involvement) were determined for all patients and for the two subgroups defined by their mutations. Comparison between the subgroups for the different clinical features was performed and suggested no statistically significant differences. These results are not unexpected, because the two common mutations for Apert syndrome alter FGFR2 at adjacent amino acids that are likely to have similar biological, and therefore phenotypic, consequences. 34 refs., 4 figs., 1 tab.

  1. Molecular analysis of mutations in the CSB (ERCC6) gene in patients with Cockayne syndrome.

    PubMed Central

    Mallery, D L; Tanganelli, B; Colella, S; Steingrimsdottir, H; van Gool, A J; Troelstra, C; Stefanini, M; Lehmann, A R

    1998-01-01

    Cockayne syndrome is a multisystem sun-sensitive genetic disorder associated with a specific defect in the ability to perform transcription-coupled repair of active genes after UV irradiation. Two complementation groups (CS-A and CS-B) have been identified, and 80% of patients have been assigned to the CS-B complementation group. We have analyzed the sites of the mutations in the CSB gene in 16 patients, to determine the spectrum of mutations in this gene and to see whether the nature of the mutation correlates with the type and severity of the clinical symptoms. In nine of the patients, the mutations resulted in truncated products in both alleles, whereas, in the other seven, at least one allele contained a single amino acid change. The latter mutations were confined to the C-terminal two-thirds of the protein and were shown to be inactivating by their failure to restore UV-irradiation resistance to hamster UV61 cells, which are known to be defective in the CSB gene. Neither the site nor the nature of the mutation correlated with the severity of the clinical features. Severe truncations were found in different patients with either classical or early-onset forms of the disease. PMID:9443879

  2. Factor IX gene analysis in 70 unrelated patients with haemophilia B: description of 13 new mutations.

    PubMed

    Attali, O; Vinciguerra, C; Trzeciak, M C; Durin, A; Pernod, G; Gay, V; Ménart, C; Sobas, F; Dechavanne, M; Négrier, C

    1999-11-01

    Seventy unrelated patients suffering from haemophilia B have been screened for determining the molecular defect and for evaluating the spectrum of factor IX mutations in the Rhône Alpes region in France. Most patients were characterized with respect to factor IX antigen and factor IX coagulant activity. We have used denaturing gradient gel electrophoresis to obtain a full scanning of the whole coding, promoter, and exon flanking sequences of the factor IX gene. This technique enabled us to determine the molecular defect in 68 out of 70 families (97%), and the mutation was further identified in the two last patients with a direct sequencing of the gene. A total of 2 complete gene deletions in patients with antifactor IX inhibitor, 6 small insertions/deletions and 62 point mutations were found. Two of these nucleotide substitutions (Arg145His and Ala233Thr) were detected in 21 patients (30%) suggesting the existence of a local founder effect. Thirteen mutations were previously undescribed, including 7 missense mutations. The detection of mutations in patients affected with haemophilia B may shed some light in the structure-function relationship of factor IX molecule within the coagulation system.

  3. Free-energy computations identify the mutations required to confer trans-sialidase activity into Trypanosoma rangeli sialidase.

    PubMed

    Pierdominici-Sottile, Gustavo; Palma, Juliana; Roitberg, Adrian E

    2014-03-01

    Trypanosoma rangeli's sialidase (TrSA) and Trypanosoma cruzi's trans-sialidase (TcTS) are members of the glycoside hydrolase family 33 (GH-33). They share 70% of sequence identity and their crystallographic Cα RMSD is 0.59 Å. Despite these similarities they catalyze different reactions. TcTS transfers sialic acid between glycoconjugates while TrSA can only cleave sialic acid from sialyl-glyconjugates. Significant effort has been invested into unraveling the differences between TrSA and TcTS, and into conferring TrSA with trans-sialidase activity through appropriate point mutations. Recently, we calculated the free-energy change for the formation of the covalent intermediate (CI) in TcTS and performed an energy decomposition analysis of that process. In this article we present a similar study for the formation of the CI in TrSA, as well as in a quintuple mutant (TrSA5mut), which has faint trans-sialidase activity. The comparison of these new results with those previously obtained for TcTS allowed identifying five extra mutations to be introduced in TrSA5mut that should create a mutant (TrSA10mut ) with high trans-sialidase activity.

  4. Mutations in the substrate entrance region of β-glucosidase from Trichoderma reesei improve enzyme activity and thermostability.

    PubMed

    Lee, Hsiao-Lin; Chang, Chih-Kang; Jeng, Wen-Yih; Wang, Andrew H-J; Liang, Po-Huang

    2012-11-01

    β-Glucosidase (EC 3.2.1.21) plays an essential role in biofuel production since it can cleave β-1,4-glycosidic bond to convert cellobiose into fermentable glucose. Based on the structure of Trichoderma reesei β-glucosidase 2 (TrBgl2) we solved, the amino acids in the outer channel of active site were mutated in this study. Mutants P172L and P172L/F250A showed the most enhanced k(cat)/K(m) and k(cat) values by 5.3- and 6.9-fold, respectively, compared to the wild type (WT) toward 4-nitrophenyl-β-D-glucopyranoside (p-NPG) substrate at 40°C. L167W and P172L/F250A mutations resulted in shift of optimal temperature to 50°C, at which WT was almost inactive. However, thin-layer chromatography analysis revealed that mutant L167W had the best synergism with T. reesei cellulases on degrading cellulosic substrates into glucose. This study enhances our understanding on the roles of amino acids in the substrate entrance region away from the active site and provides engineered T. reesei β-glucosidases with better activity and/or thermostability to hydrolyze cellobiose.

  5. Anaerobically Grown Escherichia coli Has an Enhanced Mutation Rate and Distinct Mutational Spectra

    PubMed Central

    Shewaramani, Sonal; Finn, Thomas J.; Kassen, Rees; Rainey, Paul B.

    2017-01-01

    Oxidative stress is a major cause of mutation but little is known about how growth in the absence of oxygen impacts the rate and spectrum of mutations. We employed long-term mutation accumulation experiments to directly measure the rates and spectra of spontaneous mutation events in Escherichia coli populations propagated under aerobic and anaerobic conditions. To detect mutations, whole genome sequencing was coupled with methods of analysis sufficient to identify a broad range of mutational classes, including structural variants (SVs) generated by movement of repetitive elements. The anaerobically grown populations displayed a mutation rate nearly twice that of the aerobic populations, showed distinct asymmetric mutational strand biases, and greater insertion element activity. Consistent with mutation rate and spectra observations, genes for transposition and recombination repair associated with SVs were up-regulated during anaerobic growth. Together, these results define differences in mutational spectra affecting the evolution of facultative anaerobes. PMID:28103245

  6. Analysis of mutations in the entire coding sequence of the factor VIII gene

    SciTech Connect

    Bidichadani, S.I.; Lanyon, W.G.; Connor, J.M.

    1994-09-01

    Hemophilia A is a common X-linked recessive disorder of bleeding caused by deleterious mutations in the gene for clotting factor VIII. The large size of the factor VIII gene, the high frequency of de novo mutations and its tissue-specific expression complicate the detection of mutations. We have used a combination of RT-PCR of ectopic factor VIII transcripts and genomic DNA-PCRs to amplify the entire essential sequence of the factor VIII gene. This is followed by chemical mismatch cleavage analysis and direct sequencing in order to facilitate a comprehensive search for mutations. We describe the characterization of nine potentially pathogenic mutations, six of which are novel. In each case, a correlation of the genotype with the observed phenotype is presented. In order to evaluate the pathogenicity of the five missense mutations detected, we have analyzed them for evolutionary sequence conservation and for their involvement of sequence motifs catalogued in the PROSITE database of protein sites and patterns.

  7. Identification of novel KIF11 mutations in patients with familial exudative vitreoretinopathy and a phenotypic analysis

    PubMed Central

    Li, Jia-Kai; Fei, Ping; Li, Yian; Huang, Qiu-Jing; Zhang, Qi; Zhang, Xiang; Rao, Yu-Qing; Li, Jing; Zhao, Peiquan

    2016-01-01

    KIF11 gene mutations cause a rare autosomal dominant inheritable disease called microcephaly with or without chorioretinopathy, lymphedema, or mental retardation (MCLMR). Recently, such mutations were also found to be associated with familial exudative vitreoretinopathy (FEVR). Here, we report 7 novel KIF11 mutations identified by targeted gene capture in a cohort of 142 probands with FEVR who were diagnosed in our clinic between March 2015 and November 2015. These mutations were: p.L171V, c.790-2A>C, p.Q525*, p.Q842*, p.S936*, p.L983fs and p.R1025G. Phenotypic analysis revealed that all of the affected probands had advanced FEVR (stage 4 or above). Three had microcephaly, and one had chorioretinopathy, which indicated a phenotypic overlap with MCLMR. Two mutations were also found in the families of the affected probands. One parent with a p.R1025G mutation had an avascular peripheral retina and abnormal looping vessels. However, one parent with p.L983fs had normal retina, which indicated incomplete penetration of the genotype. Our results further confirmed that KIF11 is causative of FEVR in an autosomal dominant manner. We also suggest the examination of MCLMR-like features, such as microcephaly, chorioretinopathy, for patients with FEVR and wide-field fundus photography for patients with MCLMR in future practice. PMID:27212378

  8. Identification of eight point mutations in protein S deficiency type I--analysis of 15 pedigrees.

    PubMed

    Gómez, E; Poort, S R; Bertina, R M; Reitsma, P H

    1995-05-01

    We described molecular genetic studies of 15 patients with protein S deficiency type I (i.e. reduced total protein S antigen). All the exons of the PROS 1 gene were analyzed both by PCR and direct sequencing in all 15 probands. This analysis led to the identification of point mutations affecting eight individuals. One of these mutations (codon-25, insertion of T) has been described previously in a Dutch pedigree. The other mutations are novel and all are located in exons that code for the protein S domain that is homologous to the steroid hormone binding globulins. They include two amino acid replacements (one individual with 340 Gly--> Val, and two individuals with 467 Val --> Gly), and four frameshift mutations due to either one bp deletions (in codon 261 deletion of T and in codon 267 deletion of G) or insertions (in codon 565 insertion T and after codon 578 insertions of C). Studies performed in six families (totalling 43 subjects) showed cosegregation of the genetic abnormality with reduced plasma protein S levels, and provided genetic evidence for a heterozygous protein S deficiency in 25 of them. The yield of mutations in this study (53%) confirms that the percentage of protein S deficient cases in which a point mutation is found remains low.

  9. A mutational analysis of the acetylcholine receptor channel transmitter binding site.

    PubMed Central

    Akk, G; Zhou, M; Auerbach, A

    1999-01-01

    Mutagenesis and single-channel kinetic analysis were used to investigate the roles of four acetylcholine receptor channel (AChR) residues that are candidates for interacting directly with the agonist. The EC50 of the ACh dose-response curve was increased following alpha-subunit mutations Y93F and Y198F and epsilon-subunit mutations D175N and E184Q. Single-channel kinetic modeling indicates that the increase was caused mainly by a reduced gating equilibrium constant (Theta) in alphaY198F and epsilonD175N, by an increase in the equilibrium dissociation constant for ACh (KD) and a reduction in Theta in alphaY93F, and only by a reduction in KD in epsilonE184Q. This mutation altered the affinity of only one of the two binding sites and was the only mutation that reduced competition by extracellular K+. Additional mutations of epsilonE184 showed that K+ competition was unaltered in epsilonE184D and was virtually eliminated in epsilonE184K, but that neither of these mutations altered the intrinsic affinity for ACh. Thus there is an apparent electrostatic interaction between the epsilonE184 side chain and K+ ( approximately 1.7kBT), but not ACh+. The results are discussed in terms of multisite and induced-fit models of ligand binding to the AChR. PMID:9876135

  10. A genetic pedigree analysis to identify gene mutations involved in femoral head necrosis.

    PubMed

    Wang, Lin; Pan, Hehai; Zhu, Zhen-An

    2014-10-01

    The present study presents results from a linkage and mutation screening analysis aiming to identify the causative gene of femoral head necrosis, also known as osteonecrosis of femoral head (ONFH), in a Chinese pedigree. We collected clinical data on the osteonecrosis pedigree, and extracted blood and genomic DNA from the family members. Polymerase chain reaction (PCR) and direct sequencing allowed to identify a mutation in the COL2A1 gene of the proband; the clinical manifestations of the proband meet the criteria for osteonecrosis. The exons of COL2A1 were amplified by polymerase chain reaction and mutation screening was conducted by direct sequencing in all the family members. The locus was also sequenced in 50 unrelated healthy controls. The c.3665G>A heterozygous mutation was detected in patients of the pedigree, but not in healthy individuals. We conclude that a mutation in the COL2A1 gene is the causative agent of ONFH in this family. Therefore, this mutation may be associated with osteonecrosis in Chinese populations.

  11. Mutation and methylation analysis of the chromodomain-helicase-DNA binding 5 gene in ovarian cancer.

    PubMed

    Gorringe, Kylie L; Choong, David Yh; Williams, Louise H; Ramakrishna, Manasa; Sridhar, Anita; Qiu, Wen; Bearfoot, Jennifer L; Campbell, Ian G

    2008-11-01

    Chromodomain, helicase, DNA binding 5 (CHD5) is a member of a subclass of the chromatin remodeling Swi/Snf proteins and has recently been proposed as a tumor suppressor in a diverse range of human cancers. We analyzed all 41 coding exons of CHD5 for somatic mutations in 123 primary ovarian cancers as well as 60 primary breast cancers using high-resolution melt analysis. We also examined methylation of the CHD5 promoter in 48 ovarian cancer samples by methylation-specific single-stranded conformation polymorphism and bisulfite sequencing. In contrast to previous studies, no mutations were identified in the breast cancers, but somatic heterozygous missense mutations were identified in 3 of 123 ovarian cancers. We identified promoter methylation in 3 of 45 samples with normal CHD5 and in 2 of 3 samples with CHD5 mutation, suggesting these tumors may have biallelic inactivation of CHD5. Hemizygous copy number loss at CHD5 occurred in 6 of 85 samples as assessed by single nucleotide polymorphism array. Tumors with CHD5 mutation or methylation were more likely to have mutation of KRAS or BRAF (P = .04). The aggregate frequency of CHD5 haploinsufficiency or inactivation is 16.2% in ovarian cancer. Thus, CHD5 may play a role as a tumor suppressor gene in ovarian cancer; however, it is likely that there is another target of the frequent copy number neutral loss of heterozygosity observed at 1p36.

  12. Rapid quantification of single-nucleotide mutations in mixed influenza A viral populations using allele-specific mixture analysis.

    PubMed

    Liu, Cindy M; Driebe, Elizabeth M; Schupp, James; Kelley, Erin; Nguyen, Jack T; McSharry, James J; Weng, Qingmei; Engelthaler, David M; Keim, Paul S

    2010-01-01

    Monitoring antiviral resistance in influenza is critical to public health epidemiology and pandemic preparedness activities. Effective monitoring requires methods to detect low-level resistance and to monitor the change in resistance as a function of time and drug treatment. Resistance-conferring single-nucleotide mutations in influenza virus are ideal targets for such methods. In the present study, fives sets of paired TaqMan allele-specific PCR (ASPCR) assays were developed and validated for quantitative single-nucleotide polymorphism (SNP) analysis. This novel method using Delta Ct is termed allele-specific mixture analysis (ASMA) or FluASMA. The FluASMA assays target L26F, V27A, A30T, and S31N mutations in the A/Albany/1/98 (H3N2) M2 gene and H275Y mutation in the A/New Caledonia/20/99 (H1N1) NA gene and have a limit of quantification of 0.25-0.50% mutant. The error for % mutant estimation was less than 10% in all FluASMA assays, with intra-run Delta Ct coefficient of variance (CoV) at analysis method, even for minor mutant components (<1%).

  13. Single Active Site Mutation Causes Serious Resistance of HIV Reverse Transcriptase to Lamivudine: Insight from Multiple Molecular Dynamics Simulations.

    PubMed

    Moonsamy, Suri; Bhakat, Soumendranath; Walker, Ross C; Soliman, Mahmoud E S

    2016-03-01

    Molecular dynamics simulations, binding free energy calculations, principle component analysis (PCA), and residue interaction network analysis were employed in order to investigate the molecular mechanism of M184I single mutation which played pivotal role in making the HIV-1 reverse transcriptase (RT) totally resistant to lamivudine. Results showed that single mutations at residue 184 of RT caused (1) distortion of the orientation of lamivudine in the active site due to the steric conflict between the oxathiolane ring of lamivudine and the side chain of beta-branched amino acids Ile at position 184 which, in turn, perturbs inhibitor binding, (2) decrease in the binding affinity by (~8 kcal/mol) when compared to the wild-type, (3) variation in the overall enzyme motion as evident from the PCA for both systems, and (4) distortion of the hydrogen bonding network and atomic interactions with the inhibitor. The comprehensive analysis presented in this report can provide useful information for understanding the drug resistance mechanism against lamivudine. The results can also provide some potential clues for further design of novel inhibitors that are less susceptible to drug resistance.

  14. High Resolution Melting Analysis for JAK2 Exon 14 and Exon 12 Mutations

    PubMed Central

    Rapado, Inmaculada; Grande, Silvia; Albizua, Enriqueta; Ayala, Rosa; Hernández, José-Angel; Gallardo, Miguel; Gilsanz, Florinda; Martinez-Lopez, Joaquin

    2009-01-01

    JAK2 mutations are important criteria for the diagnosis of Philadelphia chromosome-negative myeloproliferative neoplasms. We aimed to assess JAK2 exon 14 and exon 12 mutations by high-resolution melting (HRM) analysis, which allows variation screening. The exon 14 analysis included 163 patients with polycythemia vera, secondary erythrocytoses, essential thrombocythemia, or secondary thrombocytoses, and 126 healthy subjects. The study of exon 12 included 40 JAK2 V617F-negative patients (nine of which had polycythemia vera, and 31 with splanchnic vein thrombosis) and 30 healthy subjects. HRM analyses of JAK2 exons 14 and 12 gave analytical sensitivities near 1% and both intra- and interday coefficients of variation of less than 1%. For HRM analysis of JAK2 exon 14 in polycythemia vera and essential thrombocythemia, clinical sensitivities were 93.5% and 67.9%, clinical specificities were 98.8% and 97.0%, positive predictive values were 93.5% and 79.2%, and negative predictive values were 98.8% and 94.6, respectively. Correlations were observed between the results from HRM and three commonly used analytical methods. The JAK2 exon 12 HRM results agreed completely with those from sequencing analysis, and the three mutations in exon 12 were detected by both methods. Hence, HRM analysis of exons 14 and 12 in JAK2 shows better diagnostic values than three other routinely used methods against which it was compared. In addition, HRM analysis has the advantage of detecting unknown mutations. PMID:19225136

  15. In silico thermodynamics stability change analysis involved in BH4 responsive mutations in phenylalanine hydroxylase: QM/MM and MD simulations analysis.

    PubMed

    Chadha, Nidhi; Tiwari, Anjani K; Kumar, Vikas; Milton, Marilyn D; Mishra, Anil K

    2015-01-01

    The mammalian tetrahydrobiopterin (BH4)-dependent phenylalanine hydroxylases (PAH), involved in important metabolic pathways of phenylalanine, belong to non-heme iron-containing aromatic acid hydroxylases' enzyme (AAH) family. AAHs utilize BH4 as protein co-factor and thus promote hydroxylation reactions of their substrates. Any alterations in BH4 -mediated AAH's pathway or mutations in these enzymes are responsible for various disorders, and thus highlights the importance of mutational analysis to assess the effect on their biosynthetic pathways. Our present studies are aimed at single-site mutations in PAH that lead to thermodynamic stability change upon folding and further validation of designed non-reduced BH2 designed co-factors. We have presented single-site mutational analysis of PAH where single-site mutations have been identified from known literature. Further, in silico studies with the PAH, in silico mutant PAH, and crystallized known mutant A313T forms, involved QM/MM and Molecular Dynamics (MD) simulations analysis. The modified co-factor A showed high affinity with PAH and all mutant PAH with high G-score of -14.851. The best pose high affinity co-factor A subjected to QM/MM optimization which leads to square-pyramidal coordination of non-heme active site. The structural and energetic information obtained from the production phase of 20 ns MD simulation of co-factor-metalloprotein complex results helped to understand the binding mode and involvement of three molecules throughout the reaction pathways' catalysis of PAH. The free energies of binding (dG) of A were found to be -68.181 kcal/mol and -72.249 for 1DMW and 1TDW for A313T mutant. Binding of Co-factor A do not perturb the coordination environment of iron at the active site which resides in 2-Histdine and 1-Glutamate triad, and may enhance the percentage response towards co-factor-mediated therapy.

  16. Identification and Expression Analysis of Spastin Gene Mutations in Hereditary Spastic Paraplegia

    PubMed Central

    Svenson, Ingrid K.; Ashley-Koch, Allison E.; Gaskell, P. Craig; Riney, Travis J.; Cumming, W. J. Ken; Kingston, Helen M.; Hogan, Edward L.; Boustany, Rose-Mary N.; Vance, Jeffery M.; Nance, Martha A.; Pericak-Vance, Margaret A.; Marchuk, Douglas A.

    2001-01-01

    Pure hereditary spastic paraplegia (SPG) type 4 is the most common form of autosomal dominant hereditary SPG, a neurodegenerative disease characterized primarily by hyperreflexia and progressive spasticity of the lower limbs. It is caused by mutations in the gene encoding spastin, a member of the AAA family of ATPases. We have screened the spastin gene for mutations in 15 families consistent with linkage to the spastin gene locus, SPG4, and have identified 11 mutations, 10 of which are novel. Five of the mutations identified are in noninvariant splice-junction sequences. Reverse transcription–PCR analysis of mRNA from patients shows that each of these five mutations results in aberrant splicing. One mutation was found to be “leaky,” or partially penetrant; that is, the mutant allele produced both mutant (skipped exon) and wild-type (full-length) transcripts. This phenomenon was reproduced in in vitro splicing experiments, with a minigene splicing-vector construct only in the context of the endogenous splice junctions flanking the splice junctions of the skipped exon. In the absence of endogenous splice junctions, only mutant transcript was detected. The existence of at least one leaky mutation suggests that relatively small differences in the level of wild-type spastin expression can have significant functional consequences. This may account, at least in part, for the wide ranges in age at onset, symptom severity, and rate of symptom progression that have been reported to occur both among and within families with SPG linked to SPG4. In addition, these results suggest caution in the interpretation of data solely obtained with minigene constructs to study the effects of sequence variation on splicing. The lack of full genomic sequence context in these constructs can mask important functional consequences of the mutation. PMID:11309678

  17. Somatic mutational analysis of FAK in breast cancer: A novel gain-of-function mutation due to deletion of exon 33

    SciTech Connect

    Fang, Xu-Qian; Liu, Xiang-Fan; Yao, Ling; Chen, Chang-Qiang; Gu, Zhi-Dong; Ni, Pei-Hua; Zheng, Xin-Min; Fan, Qi-Shi

    2014-01-10

    Highlights: •A novel FAK splicing mutation identified in breast tumor. •FAK-Del33 mutation promotes cell migration and invasion. •FAK-Del33 mutation regulates FAK/Src signal pathway. -- Abstract: Focal adhesion kinase (FAK) regulates cell adhesion, migration, proliferation, and survival. We identified a novel splicing mutant, FAK-Del33 (exon 33 deletion, KF437463), in both breast and thyroid cancers through colony sequencing. Considering the low proportion of mutant transcripts in samples, this mutation was detected by TaqMan-MGB probes based qPCR. In total, three in 21 paired breast tissues were identified with the FAK-Del33 mutation, and no mutations were found in the corresponding normal tissues. When introduced into a breast cell line through lentivirus infection, FAK-Del33 regulated cell motility and migration based on a wound healing assay. We demonstrated that the expression of Tyr397 (main auto-phosphorylation of FAK) was strongly increased in FAK-Del33 overexpressed breast tumor cells compared to wild-type following FAK/Src RTK signaling activation. These results suggest a novel and unique role of the FAK-Del33 mutation in FAK/Src signaling in breast cancer with significant implications for metastatic potential.

  18. Mutation Analysis Identifies GUCY2D as the Major Gene Responsible for Autosomal Dominant Progressive Cone Degeneration

    PubMed Central

    Kitiratschky, Veronique B. D.; Wilke, Robert; Renner, Agnes B.; Kellner, Ulrich; Vadalà, Maria; Birch, David G.; Wissinger, Bernd; Zrenner, Eberhart; Kohl, Susanne

    2017-01-01

    Purpose Heterozygous mutations in the GUCY2D gene, which encodes the membrane-bound retinal guanylyl cyclase-1 protein (RetGC-1), have been shown to cause autosomal dominant inherited cone degeneration and cone–rod degeneration (adCD, adCRD). The present study was a comprehensive screening of the GUCY2D gene in 27 adCD and adCRD unrelated families of these rare disorders. Methods Mutation analysis was performed by direct sequencing as well as PCR and subsequent restriction length polymorphism analysis (PCR/RFLP). Haplotype analysis was performed in selected patients by using microsatellite markers. Results GUCY2D gene mutations were identified in 11 (40%) of 27 patients, and all mutations clustered to codon 838, including two known and one novel missense mutation: p.R838C, p.R838H, and p.R838G. Haplotype analysis showed that among the studied patients only two of the six analyzed p.R838C mutation carriers shared a common haplotype and that none of the p.R838H mutation carriers did. Conclusions GUCY2D is a major gene responsible for progressive autosomal dominant cone degeneration. All identified mutations localize to codon 838. Haplotype analysis indicates that in most cases these mutations arise independently. Thus, codon 838 is likely to be a mutation hotspot in the GUCY2D gene. PMID:18487367

  19. Effect of lysine to alanine mutations on the phosphate activation and BPTES inhibition of glutaminase.

    PubMed

    McDonald, Charles J; Acheff, Eric; Kennedy, Ryan; Taylor, Lynn; Curthoys, Norman P

    2015-09-01

    The GLS1 gene encodes a mitochondrial glutaminase that is highly expressed in brain, kidney, small intestine and many transformed cells. Recent studies have identified multiple lysine residues in glutaminase that are sites of N-acetylation. Interestingly, these sites are located within either a loop segment that regulates access of glutamine to the active site or the dimer:dimer interface that participates in the phosphate-dependent oligomerization and activation of the enzyme. These two segments also contain the binding sites for bis-2[5-phenylacetamido-1,2,4-thiadiazol-2-yl]ethylsulfide (BPTES), a highly specific and potent uncompetitive inhibitor of this glutaminase. BPTES is also the lead compound for development of novel cancer chemotherapeutic agents. To provide a preliminary assessment of the potential effects of N-acetylation, the corresponding lysine to alanine mutations were constructed in the hGACΔ1 plasmid. The wild type and mutated proteins were purified by Ni(+)-affinity chromatography and their phosphate activation and BPTES inhibition profiles were analyzed. Two of the alanine substitutions in the loop segment (K311A and K328A) and the one in the dimer:dimer interface (K396A) form enzymes that require greater concentrations of phosphate to produce half-maximal activation and exhibit greater sensitivity to BPTES inhibition. By contrast, the K320A mutation results in a glutaminase that exhibits near maximal activity in the absence of phosphate and is not inhibited by BPTES. Thus, lysine N-acetylation may contribute to the acute regulation of glutaminase activity in various tissues and alter the efficacy of BPTES-type inhibitors.

  20. Mutational analysis of an autoantibody: differential binding and pathogenicity

    PubMed Central

    1994-01-01

    We have used site-directed mutagenesis to change amino acid residues in the heavy chain of the pathogenic R4A anti-double-stranded DNA (dsDNA) antibody and have looked for resultant alterations in DNA binding and in pathogenicity. The data demonstrate that single amino acid substitutions in both complementarity determining and framework regions alter antigen binding. Changes in only a few amino acids entirely ablate DNA specificity or cause a 10-fold increase in relative binding. In vivo studies in mice of the pathogenicity of the mutated antibodies show that a single amino acid substitution leading to a loss of dsDNA binding leads also to a loss of glomerular sequestration. Amino acid substitutions that increase relative affinity for dsDNA cause a change in localization of immunoglobulin deposition from glomeruli to renal tubules. These studies demonstrate that small numbers of amino acid substitutions can dramatically alter antigen binding and pathogenicity, and that the pathogenicity of anti-DNA antibodies does not strictly correlate with affinity for DNA. PMID:8064241

  1. Structural analysis of thermostabilizing mutations of cocaine esterase

    SciTech Connect

    Narasimhan, Diwahar; Nance, Mark R.; Gao, Daquan; Ko, Mei-Chuan; Macdonald, Joanne; Tamburi, Patricia; Yoon, Dan; Landry, Donald M.; Woods, James H.; Zhan, Chang-Guo; Tesmer, John J.G.; Sunahara, Roger K.

    2010-09-03

    Cocaine is considered to be the most addictive of all substances of abuse and mediates its effects by inhibiting monoamine transporters, primarily the dopamine transporters. There are currently no small molecules that can be used to combat its toxic and addictive properties, in part because of the difficulty of developing compounds that inhibit cocaine binding without having intrinsic effects on dopamine transport. Most of the effective cocaine inhibitors also display addictive properties. We have recently reported the use of cocaine esterase (CocE) to accelerate the removal of systemic cocaine and to prevent cocaine-induced lethality. However, wild-type CocE is relatively unstable at physiological temperatures ({tau}{sub 1/2} {approx} 13 min at 37 C), presenting challenges for its development as a viable therapeutic agent. We applied computational approaches to predict mutations to stabilize CocE and showed that several of these have increased stability both in vitro and in vivo, with the most efficacious mutant (T172R/G173Q) extending half-life up to 370 min. Here we present novel X-ray crystallographic data on these mutants that provide a plausible model for the observed enhanced stability. We also more extensively characterize the previously reported variants and report on a new stabilizing mutant, L169K. The improved stability of these engineered CocE enzymes will have a profound influence on the use of this protein to combat cocaine-induced toxicity and addiction in humans.

  2. LYN-activating mutations mediate antiestrogen resistance in estrogen receptor–positive breast cancer

    PubMed Central

    Schwarz, Luis J.; Fox, Emily M.; Balko, Justin M.; Garrett, Joan T.; Kuba, María Gabriela; Estrada, Mónica Valeria; González-Angulo, Ana María; Mills, Gordon B.; Red-Brewer, Monica; Mayer, Ingrid A.; Abramson, Vandana; Rizzo, Monica; Kelley, Mark C.; Meszoely, Ingrid M.; Arteaga, Carlos L.

    2014-01-01

    Estrogen receptor–positive (ER+) breast cancers adapt to hormone deprivation and become resistant to antiestrogen therapy. Here, we performed deep sequencing on ER+ tumors that remained highly proliferative after treatment with the aromatase inhibitor letrozole and identified a D189Y mutation in the inhibitory SH2 domain of the SRC family kinase (SFK) LYN. Evaluation of 463 breast tumors in The Cancer Genome Atlas revealed four LYN mutations, two of which affected the SH2 domain. In addition, LYN was upregulated in multiple ER+ breast cancer lines resistant to long-term estrogen deprivation (LTED). An RNAi-based kinome screen revealed that LYN is required for growth of ER+ LTED breast cancer cells. Kinase assays and immunoblot analyses of SRC substrates in transfected cells indicated that LYND189Y has higher catalytic activity than WT protein. Further, LYND189Y exhibited reduced phosphorylation at the inhibitory Y507 site compared with LYNWT. Other SH2 domain LYN mutants, E159K and K209N, also exhibited higher catalytic activity and reduced inhibitory site phosphorylation. LYND189Y overexpression abrogated growth inhibition by fulvestrant and/or the PI3K inhibitor BKM120 in 3 ER+ breast cancer cell lines. The SFK inhibitor dasatinib enhanced the antitumor effect of BKM120 and fulvestrant against estrogen-deprived ER+ xenografts but not LYND189Y-expressing xenografts. These results suggest that LYN mutations mediate escape from antiestrogens in a subset of ER+ breast cancers. PMID:25401474

  3. Germline NLRP1 Mutations Cause Skin Inflammatory and Cancer Susceptibility Syndromes via Inflammasome Activation.

    PubMed

    Zhong, Franklin L; Mamaï, Ons; Sborgi, Lorenzo; Boussofara, Lobna; Hopkins, Richard; Robinson, Kim; Szeverényi, Ildikó; Takeichi, Takuya; Balaji, Reshmaa; Lau, Aristotle; Tye, Hazel; Roy, Keya; Bonnard, Carine; Ahl, Patricia J; Jones, Leigh Ann; Baker, Paul; Lacina, Lukas; Otsuka, Atsushi; Fournie, Pierre R; Malecaze, François; Lane, E Birgitte; Akiyama, Masashi; Kabashima, Kenji; Connolly, John E; Masters, Seth L; Soler, Vincent J; Omar, Salma Samir; McGrath, John A; Nedelcu, Roxana; Gribaa, Moez; Denguezli, Mohamed; Saad, Ali; Hiller, Sebastian; Reversade, Bruno

    2016-09-22

    Inflammasome complexes function as key innate immune effectors that trigger inflammation in response to pathogen- and danger-associated signals. Here, we report that germline mutations in the inflammasome sensor NLRP1 cause two overlapping skin disorders: multiple self-healing palmoplantar carcinoma (MSPC) and familial keratosis lichenoides chronica (FKLC). We find that NLRP1 is the most prominent inflammasome sensor in human skin, and all pathogenic NLRP1 mutations are gain-of-function alleles that predispose to inflammasome activation. Mechanistically, NLRP1 mutations lead to increased self-oligomerization by disrupting the PYD and LRR domains, which are essential in maintaining NLRP1 as an inactive monomer. Primary keratinocytes from patients experience spontaneous inflammasome activation and paracrine IL-1 signaling, which is sufficient to cause skin inflammation and epidermal hyperplasia. Our findings establish a group of non-fever inflammasome disorders, uncover an unexpected auto-inhibitory function for the pyrin domain, and provide the first genetic evidence linking NLRP1 to skin inflammatory syndromes and skin cancer predisposition.

  4. Mutational Analysis of the sbo-alb Locus of Bacillus subtilis: Identification of Genes Required for Subtilosin Production and Immunity

    PubMed Central

    Zheng, Guolu; Hehn, Robin; Zuber, Peter

    2000-01-01

    The Bacillus subtilis 168 derivative JH642 produces a bacteriocin, subtilosin, which possesses activity against Listeria monocytogenes. Inspection of the amino acid sequence of the presubtilosin polypeptide encoded by the gene sboA and sequence data from analysis of mature subtilosin indicate that the precursor subtilosin peptide undergoes several unique and unusual chemical modifications during its maturation process. The genes of the sbo-alb operon are believed to function in the synthesis and maturation of subtilosin. Nonpolar mutations introduced into each of the alb genes resulted in loss or reduction of subtilosin production. sboA, albA, and albF mutants showed no antilisterial activity, indicating that the products of these genes are critical for the production of active subtilosin. Mutations in albB, -C, and -D resulted in reduction of antilisterial activity and decreased immunity to subtilosin, particularly under anaerobic conditions. A new gene, sboX, encoding another bacteriocin-like product was discovered residing in a sequence overlapping the coding region of sboA. Construction of an sboX-lacZ translational fusion and analysis of its expression indicate that sboX is induced in stationary phase of anaerobic cultures of JH642. An in-frame deletion of the sboX coding sequence did not affect the antilisterial activity or production of or immunity to subtilosin. The results of this investigation show that the sbo-alb genes are required for the mechanisms of subtilosin synthesis and immunity. PMID:10809709

  5. Single-strand conformation polymorphism analysis using capillary array electrophoresis for large-scale mutation detection.

    PubMed

    Larsen, Lars Allan; Jespersgaard, Cathrine; Andersen, Paal Skytt

    2007-01-01

    This protocol describes capillary array electrophoresis single-strand conformation polymorphism (CAE-SSCP), a screening method for detection of unknown and previously identified mutations. The method detects 98% of mutations in a sample material and can be applied to any organism where the goal is to determine genetic variation. This protocol describes how to screen for mutations in 192 singleplex or up to 768 multiplex samples over 3 days. The protocol is based on the principle of sequence-specific mobility of single-stranded DNA in a native polymer, and covers all stages in the procedure, from initial DNA purification to final CAE-SSCP data analysis, as follows: DNA is purified, followed by PCR amplification using fluorescent primers. After PCR amplification, double-stranded DNA is heat-denatured to separate the strands and subsequently cooled on ice to avoid reannealing. Finally, samples are analyzed by capillary electrophoresis and appropriate analysis software.

  6. CNS germinomas are characterized by global demethylation, chromosomal instability and mutational activation of the Kit-, Ras/Raf/Erk- and Akt-pathways

    PubMed Central

    Schulte, Simone Laura; Waha, Andreas; Steiger, Barbara; Denkhaus, Dorota; Dörner, Evelyn; Calaminus, Gabriele; Leuschner, Ivo; Pietsch, Torsten

    2016-01-01

    CNS germinomas represent a unique germ cell tumor entity characterized by undifferentiated tumor cells and a high response rate to current treatment protocols. Limited information is available on their underlying genomic, epigenetic and biological alterations. We performed a genome-wide analysis of genomic copy number alterations in 49 CNS germinomas by molecular inversion profiling. In addition, CpG dinucleotide methylation was studied by immunohistochemistry for methylated cytosine residues. Mutational analysis was performed by resequencing of candidate genes including KIT and RAS family members. Ras/Erk and Akt pathway activation was analyzed by immunostaining with antibodies against phospho-Erk, phosho-Akt, phospho-mTOR and phospho-S6. All germinomas coexpressed Oct4 and Kit but showed an extensive global DNA demethylation compared to other tumors and normal tissues. Molecular inversion profiling showed predominant genomic instability in all tumors with a high frequency of regional gains and losses including high level gene amplifications. Activating mutations of KIT exons 11, 13, and 17 as well as a case with genomic KIT amplification and activating mutations or amplifications of RAS gene family members including KRAS, NRAS and RRAS2 indicated mutational activation of crucial signaling pathways. Co-activation of Ras/Erk and Akt pathways was present in 83% of germinomas. These data suggest that CNS germinoma cells display a demethylated nuclear DNA similar to primordial germ cells in early development. This finding has a striking coincidence with extensive genomic instability. In addition, mutational activation of Kit-, Ras/Raf/Erk- and Akt- pathways indicate the biological importance of these pathways and their components as potential targets for therapy. PMID:27391150

  7. Structural analysis of mitochondrial mutations reveals a role for bigenomic protein interactions in human disease.

    PubMed

    Lloyd, Rhiannon E; McGeehan, John E

    2013-01-01

    Mitochondria are the energy producing organelles of the cell, and mutations within their genome can cause numerous and often severe human diseases. At the heart of every mitochondrion is a set of five large multi-protein machines collectively known as the mitochondrial respiratory chain (MRC). This cellular machinery is central to several processes important for maintaining homeostasis within cells, including the production of ATP. The MRC is unique due to the bigenomic origin of its interacting proteins, which are encoded in the nucleus and mitochondria. It is this, in combination with the sheer number of protein-protein interactions that occur both within and between the MRC complexes, which makes the prediction of function and pathological outcome from primary sequence mutation data extremely challenging. Here we demonstrate how 3D structural analysis can be employed to predict the functional importance of mutations in mtDNA protein-coding genes. We mined the MITOMAP database and, utilizing the latest structural data, classified mutation sites based on their location within the MRC complexes III and IV. Using this approach, four structural classes of mutation were identified, including one underexplored class that interferes with nuclear-mitochondrial protein interactions. We demonstrate that this class currently eludes existing predictive approaches that do not take into account the quaternary structural organization inherent within and between the MRC complexes. The systematic and detailed structural analysis of disease-associated mutations in the mitochondrial Complex III and IV genes significantly enhances the predictive power of existing approaches and our understanding of how such mutations contribute to various pathologies. Given the general lack of any successful therapeutic approaches for disorders of the MRC, these findings may inform the development of new diagnostic and prognostic biomarkers, as well as new drugs and targets for gene therapy.

  8. Gain-of-Function Mutations in the Toll-Like Receptor Pathway: TPL2-Mediated ERK1/ERK2 MAPK Activation, a Path to Tumorigenesis in Lymphoid Neoplasms?

    PubMed Central

    Rousseau, Simon; Martel, Guy

    2016-01-01

    Lymphoid neoplasms form a family of cancers affecting B-cells, T-cells, and NK cells. The Toll-Like Receptor (TLR) signaling adapter molecule MYD88 is the most frequently mutated gene in these neoplasms. This signaling adaptor relays signals from TLRs to downstream effector pathways such as the Nuclear Factor kappa B (NFκB) and Mitogen Activated Protein Kinase (MAPK) pathways to regulate innate immune responses. Gain-of-function mutations such as MYD88[L265P] activate downstream signaling pathways in absence of cognate ligands for TLRs, resulting in increased cellular proliferation and survival. This article reports an analysis of non-synonymous somatic mutations found in the TLR signaling network in lymphoid neoplasms. In accordance with previous reports, mutations map to MYD88 pro-inflammatory signaling and not TRIF-mediated Type I IFN production. Interestingly, the analysis of somatic mutations found downstream of the core TLR-signaling network uncovered a strong association with the ERK1/2 MAPK cascade. In support of this analysis, heterologous expression of MYD88[L265P] in HEK293 cells led to ERK1/2 MAPK phosphorylation in addition to NFκB activation. Moreover, this activation is dependent on the protein kinase Tumor Promoting Locus 2 (TPL2), activated downstream of the IKK complex. Activation of ERK1/2 would then lead to activation, amongst others, of MYC and hnRNPA1, two proteins previously shown to contribute to tumor formation in lymphoid neoplasms. Taken together, this analysis suggests that TLR-mediated ERK1/2 activation via TPL2 may be a novel path to tumorigenesis. Therefore, the hypothesis proposed is that inhibition of ERK1/2 MAPK activation would prevent tumor growth downstream of MYD88[L265]. It will be interesting to test whether pharmacological inhibitors of this pathway show efficacy in primary tumor cells derived from hematologic malignancies such as Waldenstrom's Macroglobulinemia, where the majority of the cells carry the MYD88[L265P

  9. Activating E17K mutation in the gene encoding the protein kinase AKT1 in a subset of squamous cell carcinoma of the lung.

    PubMed

    Malanga, Donatella; Scrima, Marianna; De Marco, Carmela; Fabiani, Fernanda; De Rosa, Nicla; De Gisi, Silvia; Malara, Natalia; Savino, Rocco; Rocco, Gaetano; Chiappetta, Gennaro; Franco, Renato; Tirino, Virginia; Pirozzi, Giuseppe; Viglietto, Giuseppe

    2008-03-01

    Somatic mutation (E17K) that constitutively activates the protein kinase AKT1 has been found in human cancer patients. We determined the role of the E17K mutation of AKT1 in lung cancer, through sequencing of AKT1 exon 4 in 105 resected, clinically annotated non-small cell lung cancer specimens. We detected a missense mutations G-->A transition at nucleotide 49 (that results in the E17K substitution) in two squamous cell carcinoma (2/36) but not in adenocarcinoma (0/53). The activity of the endogenous kinase carrying the E17K mutation immunoprecipitated by tumour tissue was significantly higher compared with the wild-type kinase immunoprecipitated by the adjacent normal tissue as determined both by in vitro kinase assay using a consensus peptide as substrate and by in vivo analysis of the phosphorylation status of AKT1 itself (pT308, pS473) or of known downstream substrates such as GSK3 (pS9/S22) and p27 (T198). Immunostaining or immunoblot analysis on membrane-enriched extracts indicated that the enhanced membrane localization exhibited by the endogenous E17K-AKT1 may account for the observed increased activity of mutant E17K kinase in comparison with the wild-type AKT1 from adjacent normal tissue. In conclusion, this is the first report of AKT1 mutation in lung cancer. Our data provide evidence that, although AKT1 mutations are apparently rare in lung cancer (1.9%), the oncogenic properties of E17K-AKT1 may contribute to the development of a fraction of lung carcinoma with squamous histotype (5.5%).

  10. Identification of FGFR4-activating mutations in human rhabdomyosarcomas that promote metastasis in xenotransplanted models.

    PubMed

    Taylor, James G; Cheuk, Adam T; Tsang, Patricia S; Chung, Joon-Yong; Song, Young K; Desai, Krupa; Yu, Yanlin; Chen, Qing-Rong; Shah, Kushal; Youngblood, Victoria; Fang, Jun; Kim, Su Young; Yeung, Choh; Helman, Lee J; Mendoza, Arnulfo; Ngo, Vu; Staudt, Louis M; Wei, Jun S; Khanna, Chand; Catchpoole, Daniel; Qualman, Stephen J; Hewitt, Stephen M; Merlino, Glenn; Chanock, Stephen J; Khan, Javed

    2009-11-01

    Rhabdomyosarcoma (RMS) is a childhood cancer originating from skeletal muscle, and patient survival is poor in the presence of metastatic disease. Few determinants that regulate metastasis development have been identified. The receptor tyrosine kinase FGFR4 is highly expressed in RMS tissue, suggesting a role in tumorigenesis, although its functional importance has not been defined. Here, we report the identification of mutations in FGFR4 in human RMS tumors that lead to its activation and present evidence that it functions as an oncogene in RMS. Higher FGFR4 expression in RMS tumors was associated with advanced-stage cancer and poor survival, while FGFR4 knockdown in a human RMS cell line reduced tumor growth and experimental lung metastases when the cells were transplanted into mice. Moreover, 6 FGFR4 tyrosine kinase domain mutations were found among 7 of 94 (7.5%) primary human RMS tumors. The mutants K535 and E550 increased autophosphorylation, Stat3 signaling, tumor proliferation, and metastatic potential when expressed in a murine RMS cell line. These mutants also transformed NIH 3T3 cells and led to an enhanced metastatic phenotype. Finally, murine RMS cell lines expressing the K535 and E550 FGFR4 mutants were substantially more susceptible to apoptosis in the presence of a pharmacologic FGFR inhibitor than the control cell lines expressing the empty vector or wild-type FGFR4. Together, our results demonstrate that mutationally activated FGFR4 acts as an oncogene, and these are what we believe to be the first known mutations in a receptor tyrosine kinase in RMS. These findings support the potential therapeutic targeting of FGFR4 in RMS.

  11. Transcriptional pausing and stalling causes multiple clustered mutations by human activation-induced deaminase

    PubMed Central

    Canugovi, Chandrika; Samaranayake, Mala; Bhagwat, Ashok S.

    2009-01-01

    Transcription of the rearranged immunoglobulin gene and expression of the enzyme activation-induced deaminase (AID) are essential for somatic hypermutations of this gene during antibody maturation. While AID acts as a single-strand DNA-cytosine deaminase creating U · G mispairs that lead to mutations, the role played by transcription in this process is less clear. We have used in vitro transcription of the kan gene by the T7 RNA polymerase (RNAP) in the presence of AID and a genetic reversion assay for kanamycin-resistance to investigate the causes of multiple clustered mutations (MCMs) during somatic hypermutations. We find that, depending on transcription conditions, AID can cause single-base substitutions or MCMs. When wild-type RNAP is used for transcription at physiologically relevant concentrations of ribonucleoside triphosphates (NTPs), few MCMs are found. In contrast, slowing the rate of elongation by reducing the NTP concentration or using a mutant RNAP increases several-fold the percent of revertants containing MCMs. Arresting the elongation complexes by a quick removal of NTPs leads to formation of RNA-DNA hybrids (R-loops). Treatment of these structures with AID results in a high percentage of KanR revertants with MCMs. Furthermore, selecting for transcription elongation complexes stalled near the codon that suffers mutations during acquisition of kanamycin-resistance results in an overwhelming majority of revertants with MCMs. These results show that if RNAP II pauses or stalls during transcription of immunoglobulin gene, AID is likely to promote MCMs. As changes in physiological conditions such as occurrence of certain DNA primary or secondary structures or DNA adducts are known to cause transcriptional pausing and stalling in mammalian cells, this process may cause MCMs during somatic hypermutation.—Canugovi, C., Samaranayake, M., Bhagwat, A. S. Transcriptional pausing and stalling causes multiple clustered mutations by human activation

  12. Identification of FGFR4-activating mutations in human rhabdomyosarcomas that promote metastasis in xenotransplanted models

    PubMed Central

    VI, James G. Taylor; Cheuk, Adam T.; Tsang, Patricia S.; Chung, Joon-Yong; Song, Young K.; Desai, Krupa; Yu, Yanlin; Chen, Qing-Rong; Shah, Kushal; Youngblood, Victoria; Fang, Jun; Kim, Su Young; Yeung, Choh; Helman, Lee J.; Mendoza, Arnulfo; Ngo, Vu; Staudt, Louis M.; Wei, Jun S.; Khanna, Chand; Catchpoole, Daniel; Qualman, Stephen J.; Hewitt, Stephen M.; Merlino, Glenn; Chanock, Stephen J.; Khan, Javed

    2009-01-01

    Rhabdomyosarcoma (RMS) is a childhood cancer originating from skeletal muscle, and patient survival is poor in the presence of metastatic disease. Few determinants that regulate metastasis development have been identified. The receptor tyrosine kinase FGFR4 is highly expressed in RMS tissue, suggesting a role in tumorigenesis, although its functional importance has not been defined. Here, we report the identification of mutations in FGFR4 in human RMS tumors that lead to its activation and present evidence that it functions as an oncogene in RMS. Higher FGFR4 expression in RMS tumors was associated with advanced-stage cancer and poor survival, while FGFR4 knockdown in a human RMS cell line reduced tumor growth and experimental lung metastases when the cells were transplanted into mice. Moreover, 6 FGFR4 tyrosine kinase domain mutations were found among 7 of 94 (7.5%) primary human RMS tumors. The mutants K535 and E550 increased autophosphorylation, Stat3 signaling, tumor proliferation, and metastatic potential when expressed in a murine RMS cell line. These mutants also transformed NIH 3T3 cells and led to an enhanced metastatic phenotype. Finally, murine RMS cell lines expressing the K535 and E550 FGFR4 mutants were substantially more susceptible to apoptosis in the presence of a pharmacologic FGFR inhibitor than the control cell lines expressing the empty vector or wild-type FGFR4. Together, our results demonstrate that mutationally activated FGFR4 acts as an oncogene, and these are what we believe to be the first known mutations in a receptor tyrosine kinase in RMS. These findings support the potential therapeutic targeting of FGFR4 in RMS. PMID:19809159

  13. Activating mutations in FGFR3 and HRAS reveal a shared genetic origin for congenital disorders and testicular tumors

    PubMed Central

    Goriely, Anne; Hansen, Ruth M. S.; Taylor, Indira B.; Olesen, Inge A.; Jacobsen, Grete Krag; McGowan, Simon J.; Pfeifer, Susanne P.; McVean, Gilean A. T.; Meyts, Ewa Rajpert-De; Wilkie, Andrew O.M.

    2010-01-01

    Genes mutated in congenital malformation syndromes are frequently implicated in oncogenesis1,2, but the causative germline and somatic mutations occur in separate cells at different times of an organism’s life. Here we unify these processes for mutations arising in male germ cells that show a paternal age effect3. Screening of 30 spermatocytic seminomas4,5 for oncogenic mutations in 17 genes identified 2 mutations in FGFR3 (both 1948A>G encoding K650E, which causes thanatophoric dysplasia in the germline)6 and 5 mutations in HRAS. Massively parallel sequencing of sperm DNA showed that the FGFR3 mutation increases with paternal age, with a similar mutation spectrum at the K650 codon to that in bladder cancer7,8. Most spermatocytic seminomas show increased immunoreactivity for FGFR3 and/or HRAS. We propose that paternal age effect mutations activate a common “selfish” pathway supporting proliferation in the testis, leading to diverse phenotypes in the next generation including fetal lethality, congenital syndromes and cancer. PMID:19855393

  14. Disruption of dopamine neuron activity pattern regulation through selective expression of a human KCNN3 mutation.

    PubMed

    Soden, Marta E; Jones, Graham L; Sanford, Christina A; Chung, Amanda S; Güler, Ali D; Chavkin, Charles; Luján, Rafael; Zweifel, Larry S

    2013-11-20

    The calcium-activated small conductance potassium channel SK3 plays an essential role in the regulation of dopamine neuron activity patterns. Here we demonstrate that expression of a human disease-related SK3 mutation (hSK3Δ) in dopamine neurons of mice disrupts the balance between tonic and phasic dopamine neuron activity. Expression of hSK3Δ suppressed endogenous SK currents, reducing coupling between SK channels and NMDA receptors (NMDARs) and increasing permissiveness for burst firing. Consistent with enhanced excitability of dopamine neurons, hSK3Δ increased evoked calcium signals in dopamine neurons in vivo and potentiated evoked dopamine release. Specific expression of hSK3Δ led to deficits in attention and sensory gating and heightened sensitivity to a psychomimetic drug. Sensory-motor alterations and psychomimetic sensitivity were recapitulated in a mouse model of transient, reversible dopamine neuron activation. These results demonstrate the cell-autonomous effects of a human ion channel mutation on dopamine neuron physiology and the impact of activity pattern disruption on behavior.

  15. Structure and mutational analysis of the PhoN protein of Salmonella typhimurium provide insight into mechanistic details.

    PubMed

    Makde, Ravindra D; Mahajan, Suresh K; Kumar, Vinay

    2007-02-27

    The Salmonella typhimurium PhoN protein is a nonspecific acid phosphatase and belongs to the phosphatidic acid phosphatase type 2 (PAP2) superfamily. We report here the crystal structures of phosphate-bound PhoN, the PhoN-tungstate complex, and the T159D mutant of PhoN along with functional characterization of three mutants: L39T, T159D, and D201N. Invariant active site residues, Lys-123, Arg-130, Ser-156, Gly-157, His-158, and Arg-191, interact with phosphate and tungstate oxyanions. Ser-156 also accepts a hydrogen bond from Thr-159. The T159D mutation, surprisingly, severely diminishes phosphatase activity, apparently by disturbing the active site scaffold: Arg-191 is swung out of the active site resulting in conformational changes in His-158 and His-197 residues. Our results reveal a hitherto unknown functional role of Arg-191, namely, restricting the active conformation of catalytic His-158 and His-197 residues. Consistent with the conserved nature of Asp-201 in the PAP2 superfamily, the D201N mutation completely abolished phosphatase activity. On the basis of this observation and in silico analysis we suggest that the crucial mechanistic role of Asp-201 is to stabilize the positive charge on the phosphohistidine intermediate generated by the transfer of phosphoryl to the nucleophile, His-197, located within hydrogen bond distance to the invariant Asp-201. This is in contrast to earlier suggestions that Asp-201 stabilizes His-197 and the His197-Asp201 dyad facilitates formation of the phosphoenzyme intermediate through a charge-relay system. Finally, the L39T mutation in the conserved polyproline motif (39LPPPP43) of dimeric PhoN leads to a marginal reduction in activity, in contrast to the nearly 50-fold reduction observed for monomeric Prevotella intermedia acid phosphatase, suggesting that the varying quaternary structure of PhoN orthologues may have functional significance.

  16. EGF-independent activation of cell-surface EGF receptors harboring mutations found in gefitinib-sensitive lung cancer.

    PubMed

    Choi, S H; Mendrola, J M; Lemmon, M A

    2007-03-08

    Several somatic mutations within the tyrosine kinase domain of epidermal growth factor receptor (EGFR) have been identified that predict clinical response of non-small-cell lung carcinoma (NSCLC) patients to gefitinib. To test the hypothesis that these mutations cause constitutive EGF receptor signaling, and to investigate its mechanistic basis, we expressed representative examples in a null background and analysed their biochemical properties. Each mutation caused significant EGF-independent tyrosine phosphorylation of EGFR, and allowed the receptor to promote Ba/F3 cell mitogenesis in the absence of EGF, arguing that these are oncogenic mutations. Active mutated receptors are present at the cell surface and are fully competent to bind EGF. Recent structural studies show that the inactive EGFR tyrosine kinase domain is autoinhibited by intramolecular interactions between its activation loop and alphaC helix. We find that mutations predicted to disrupt this autoinhibitory interaction (including several that have not been described in NSCLC) elevate EGF-independent tyrosine kinase activity, thus providing new insight into how somatic mutations activate EGFR and other ErbB family members.

  17. Recessive Inactivating Mutations in TBCK, Encoding a Rab GTPase-Activating Protein, Cause Severe Infantile Syndromic Encephalopathy.

    PubMed

    Chong, Jessica X; Caputo, Viviana; Phelps, Ian G; Stella, Lorenzo; Worgan, Lisa; Dempsey, Jennifer C; Nguyen, Alina; Leuzzi, Vincenzo; Webster, Richard; Pizzuti, Antonio; Marvin, Colby T; Ishak, Gisele E; Ardern-Holmes, Simone; Richmond, Zara; Bamshad, Michael J; Ortiz-Gonzalez, Xilma R; Tartaglia, Marco; Chopra, Maya; Doherty, Dan

    2016-04-07

    Infantile encephalopathies are a group of clinically and biologically heterogeneous disorders for which the genetic basis remains largely unknown. Here, we report a syndromic neonatal encephalopathy characterized by profound developmental disability, severe hypotonia, seizures, diminished respiratory drive requiring mechanical ventilation, brain atrophy, dysgenesis of the corpus callosum, cerebellar vermis hypoplasia, and facial dysmorphism. Biallelic inactivating mutations in TBCK (TBC1-domain-containing kinase) were independently identified by whole-exome sequencing as the cause of this condition in four unrelated families. Matching these families was facilitated by the sharing of phenotypic profiles and WES data in a recently released web-based tool (Geno2MP) that links phenotypic information to rare variants in families with Mendelian traits. TBCK is a putative GTPase-activating protein (GAP) for small GTPases of the Rab family and has been shown to control cell growth and proliferation, actin-cytoskeleton dynamics, and mTOR signaling. Two of the three mutations (c.376C>T [p.Arg126(∗)] and c.1363A>T [p.Lys455(∗)]) are predicted to truncate the protein, and loss of the major TBCK isoform was confirmed in primary fibroblasts from one affected individual. The third mutation, c.1532G>A (p.Arg511His), alters a conserved residue within the TBC1 domain. Structural analysis implicated Arg511 as a required residue for Rab-GAP function, and in silico homology modeling predicted impaired GAP function in the corresponding mutant. These results suggest that loss of Rab-GAP activity is the underlying mechanism of disease. In contrast to other disorders caused by dysregulated mTOR signaling associated with focal or global brain overgrowth, impaired TBCK function results in progressive loss of brain volume.

  18. Recessive Inactivating Mutations in TBCK, Encoding a Rab GTPase-Activating Protein, Cause Severe Infantile Syndromic Encephalopathy

    PubMed Central

    Chong, Jessica X.; Caputo, Viviana; Phelps, Ian G.; Stella, Lorenzo; Worgan, Lisa; Dempsey, Jennifer C.; Nguyen, Alina; Leuzzi, Vincenzo; Webster, Richard; Pizzuti, Antonio; Marvin, Colby T.; Ishak, Gisele E.; Ardern-Holmes, Simone; Richmond, Zara; Bamshad, Michael J.; Ortiz-Gonzalez, Xilma R.; Tartaglia, Marco; Chopra, Maya; Doherty, Dan

    2016-01-01

    Infantile encephalopathies are a group of clinically and biologically heterogeneous disorders for which the genetic basis remains largely unknown. Here, we report a syndromic neonatal encephalopathy characterized by profound developmental disability, severe hypotonia, seizures, diminished respiratory drive requiring mechanical ventilation, brain atrophy, dysgenesis of the corpus callosum, cerebellar vermis hypoplasia, and facial dysmorphism. Biallelic inactivating mutations in TBCK (TBC1-domain-containing kinase) were independently identified by whole-exome sequencing as the cause of this condition in four unrelated families. Matching these families was facilitated by the sharing of phenotypic profiles and WES data in a recently released web-based tool (Geno2MP) that links phenotypic information to rare variants in families with Mendelian traits. TBCK is a putative GTPase-activating protein (GAP) for small GTPases of the Rab family and has been shown to control cell growth and proliferation, actin-cytoskeleton dynamics, and mTOR signaling. Two of the three mutations (c.376C>T [p.Arg126∗] and c.1363A>T [p.Lys455∗]) are predicted to truncate the protein, and loss of the major TBCK isoform was confirmed in primary fibroblasts from one affected individual. The third mutation, c.1532G>A (p.Arg511His), alters a conserved residue within the TBC1 domain. Structural analysis implicated Arg511 as a required residue for Rab-GAP function, and in silico homology modeling predicted impaired GAP function in the corresponding mutant. These results suggest that loss of Rab-GAP activity is the underlying mechanism of disease. In contrast to other disorders caused by dysregulated mTOR signaling associated with focal or global brain overgrowth, impaired TBCK function results in progressive loss of brain volume. PMID:27040692

  19. Pooled analysis of clinical outcome for EGFR TKI-treated patients with EGFR mutation-positive NSCLC

    PubMed Central

    Paz-Ares, Luis; Soulières, Denis; Moecks, Joachim; Bara, Ilze; Mok, Tony; Klughammer, Barbara

    2014-01-01

    Patients with non-small-cell lung cancer (NSCLC) appear to gain particular benefit from treatment with epidermal growth factor receptor (EGFR) tyrosine-kinase inhibitors (TKI) if their disease tests positive for EGFR activating mutations. Recently, several large, controlled, phase III studies have been published in NSCLC patients with EGFR mutation-positive tumours. Given the increased patient dataset now available, a comprehensive literature search for EGFR TKIs or chemotherapy in EGFR mutation-positive NSCLC was undertaken to update the results of a previously published pooled analysis. Pooling eligible progression-free survival (PFS) data from 27 erlotinib studies (n = 731), 54 gefitinib studies (n = 1802) and 20 chemotherapy studies (n = 984) provided median PFS values for each treatment. The pooled median PFS was: 12.4 months (95% accuracy intervals [AI] 11.6–13.4) for erlotinib-treated patients; 9.4 months (95% AI 9.0–9.8) for gefitinib-treated patients; and 5.6 months (95% AI 5.3–6.0) for chemotherapy. Both erlotinib and gefitinib resulted in significantly longer PFS than chemotherapy (permutation testing; P = 0.000 and P = 0.000, respectively). Data on more recent TKIs (afatinib, dacomitinib and icotinib) were insufficient at this time-point to carry out a pooled PFS analysis on these compounds. The results of this updated pooled analysis suggest a substantial clear PFS benefit of treating patients with EGFR mutation-positive NSCLC with erlotinib or gefitinib compared with chemotherapy. PMID:25100284

  20. Mutational and nucleotide sequence analysis of S-adenosyl-L-homocysteine hydrolase from Rhodobacter capsulatus.

    PubMed Central

    Sganga, M W; Aksamit, R R; Cantoni, G L; Bauer, C E

    1992-01-01

    The genetic locus ahcY, encoding the enzyme S-adenosyl-L-homocysteine hydrolase (EC 3.3.1.1) from the bacterium Rhodobacter capsulatus, has been mapped by mutational analysis to within a cluster of genes involved in regulating the induction and maintenance of the bacterial photosynthetic apparatus. Sequence analysis demonstrates that ahcY encodes a 51-kDa polypeptide that displays 64% sequence identity to its human homolog. Insertion mutants in ahcY lack detectable S-adenosyl-L-homocysteine hydrolase activity and, as a consequence, S-adenosyl-L-homocysteine accumulates in the cells, resulting in a 16-fold decrease in the intracellular ratio of S-adenosyl-L-methionine to S-adenosyl-L-homocysteine as compared to wild-type cells. The ahcY disrupted strain fails to grow in minimal medium; however, growth is restored in minimal medium supplemented with methionine or homocysteine or in a complex medium, thereby indicating that the hydrolysis of S-adenosyl-L-homocysteine plays a key role in the metabolism of sulfur-containing amino acids. The ahcY mutant, when grown in supplemented medium, synthesizes significantly reduced levels of bacteriochlorophyll, indicating that modulation of the intracellular ratio of S-adenosyl-L-methionine to S-adenosyl-L-homocysteine may be an important factor in regulating bacteriochlorophyll biosynthesis. PMID:1631127

  1. Selective disruption of high sensitivity heat activation but not capsaicin activation of TRPV1 channels by pore turret mutations.

    PubMed

    Cui, Yuanyuan; Yang, Fan; Cao, Xu; Yarov-Yarovoy, Vladimir; Wang, KeWei; Zheng, Jie

    2012-04-01

    The capsaicin receptor transient receptor potential vanilloid (TRPV)1 is a highly heat-sensitive ion channel. Although chemical activation and heat activation of TRPV1 elicit similar pungent, painful sensation, the molecular mechanism underlying synergistic activation remains mysterious. In particular, where the temperature sensor is located and whether heat and capsaicin share a common activation pathway are debated. To address these fundamental issues, we searched for channel mutations that selectively affected one form of activation. We found that deletion of the first 10 amino acids of the pore turret significantly reduced the heat response amplitude and shifted the heat activation threshold, whereas capsaicin activation remained unchanged. Removing larger portions of the turret disrupted channel function. Introducing an artificial sequence to replace the deleted region restored sensitive capsaicin activation in these nonfunctional channels. The heat activation, however, remained significantly impaired, with the current exhibiting diminishing heat sensitivity to a level indistinguishable from that of a voltage-gated potassium channel, Kv7.4. Our results demonstrate that heat and capsaicin activation of TRPV1 are structurally and mechanistically distinct processes, and the pore turret is an indispensible channel structure involved in the heat activation process but is not part of the capsaicin activation pathway. Synergistic effect of heat and capsaicin on TRPV1 activation may originate from convergence of the two pathways on a common activation gate.

  2. Mutations That Extend the Specificity of the Endonuclease Activity of λ Terminase

    PubMed Central

    Arens, Jean Sippy; Hang, Qi; Hwang, Young; Tuma, Bill; Max, Sara; Feiss, Mike

    1999-01-01

    Terminase, an enzyme encoded by the Nu1 and A genes of bacteriophage lambda, is crucial for packaging concatemeric DNA into virions. cosN, a 22-bp segment, is the site on the virus chromosome where terminase introduces staggered nicks to cut the concatemer to generate unit-length virion chromosomes. Although cosN is rotationally symmetric, mutations in cosN have asymmetric effects. The cosN G2C mutation (a G-to-C change at position 2) in the left half of cosN reduces the phage yield 10-fold, whereas the symmetric mutation cosN C11G, in the right half of cosN, does not affect the burst size. The reduction in phage yield caused by cosN G2C is correlated with a defect in cos cleavage. Three suppressors of the cosN G2C mutation, A-E515G, A-N509K, and A-R504C, have been isolated that restore the yield of λ cosN G2C to the wild-type level. The suppressors are missense mutations that alter amino acids located near an ATPase domain of gpA. λ A-E515G, A-N509K, and A-R504C phages, which are cosN+, also had wild-type burst sizes. In vitro cos cleavage experiments on cosN G2C C11G DNA showed that the rate of cleavage for A-E515G terminase is three- to fourfold higher than for wild-type terminase. The A-E515G mutation changes residue 515 of gpA from glutamic acid to glycine. Uncharged polar and hydrophobic residues at position 515 suppressed the growth defect of λ cosN G2C C11G. In contrast, basic (K, R) and acidic (E, D) residues at position 515 failed to suppress the growth defect of λ cosN G2C C11G. In a λ cosN+ background, all amino acids tested at position 515 were functional. These results suggest that A-E515G plays an indirect role in extending the specificity of the endonuclease activity of λ terminase. PMID:9864333

  3. MOLECULAR ANALYSIS OF MUTATIONS INDUCED BY MUTAGENS IN THE TK GENE OF MOUSE LYMPHOMA CELLS

    EPA Science Inventory

    MOLECULAR ANALYSIS OF MUTATIONS INDUCED BY BROMATE AND N- ETHYL-N-NITROSOUREA IN THE TK GENE OF MOUSE L YMPHOMA CELLS

    The mouse lymphoma assay is widely used to identify chemical mutagens The Tk +1- gene located on an autosome in mouse lymphoma cells may recover a wide ra...

  4. CLONING, EXPRESSION, AND MUTATIONAL ANALYSIS OF RAT S-ADENOSYL-1-METHIONINE: ARSENIC (III) METHYLTRANSFERASE

    EPA Science Inventory

    CLONING, EXPRESSION, AND MUTATIONAL ANALYSIS OF RAT
    S-ADENOSYL-L-METHIONINE: ARSENIC(III) METHYLTRANSFERASE

    Stephen B. Waters, Ph.D., Miroslav Styblo, Ph.D., Melinda A. Beck, Ph.D., University of North Carolina at Chapel Hill; David J. Thomas, Ph.D., U.S. Environmental...

  5. Determining structure and function of steroid dehydrogenase enzymes by sequence analysis, homology modeling, and rational mutational analysis.

    PubMed

    Duax, William L; Thomas, James; Pletnev, Vladimir; Addlagatta, Anthony; Huether, Robert; Habegger, Lukas; Weeks, Charles M

    2005-12-01

    The short-chain oxidoreductase (SCOR) family of enzymes includes over 6,000 members identified in sequenced genomes. Of these enzymes, approximately 300 have been characterized functionally, and the three-dimensional crystal structures of approximately 40 have been reported. Since some SCOR enzymes are steroid dehydrogenases involved in hypertension, diabetes, breast cancer, and polycystic kidney disease, it is important to characterize the other members of the family for which the biological functions are currently unknown and to determine their three-dimensional structure and mechanism of action. Although the SCOR family appears to have only a single fully conserved residue, it was possible, using bioinformatics methods, to determine characteristic fingerprints composed of 30-40 residues that are conserved at the 70% or greater level in SCOR subgroups. These fingerprints permit reliable prediction of several important structure-function features including cofactor preference, catalytic residues, and substrate specificity. Human type 1 3beta-hydroxysteroid dehydrogenase isomerase (3beta-HSDI) has 30% sequence identity with a human UDP galactose 4-epimerase (UDPGE), a SCOR family enzyme for which an X-ray structure has been reported. Both UDPGE and 3-HSDI appear to trace their origins back to bacterial 3alpha,20beta-HSD. Combining three-dimensional structural information and sequence data on the 3alpha,20beta-HSD, UDPGE, and 3beta-HSDI subfamilies with mutational analysis, we were able to identify the residues critical to the dehydrogenase function of 3-HSDI. We also identified the residues most probably responsible for the isomerase activity of 3beta-HSDI. We test our predictions by specific mutations based on sequence analysis and our structure-based model.

  6. Pathogenesis of hypertrophic cardiomyopathy caused by myozenin 2 mutations is independent of calcineurin activity

    PubMed Central

    Ruggiero, Alessandra; Chen, Suet Nee; Lombardi, Raffaella; Rodriguez, Gabriela; Marian, Ali J.

    2013-01-01

    Aims The role of calcineurin protein phosphatase 2B (PP2B) in the pathogenesis of human hypertrophic cardiomyopathy (HCM) remains unsettled. We determined potential involvement of calcineurin in the pathogenesis of HCM caused by mutations in myozenin 2 (MYOZ2), an inhibitor of calcineurin. Methods and results We generated multiple lines of transgenic mice expressing either Flag-tagged wild-type (WT) (MYOZ2WT) or mutant MYOZ2S48P and MYOZ2I246M, identified in families with HCM, in the heart. To mimic the human genotype, we generated bigenic mice expressing WT and mutant MYOZ2 in the background of hemizygous endogenous MYOZ2 (Myoz2+/−). Transgene proteins constituted 15–48% of the total MYOZ2 protein in the heart. Mutant MYOZ2 mice showed molecular, cellular, and gross cardiac hypertrophy, preserved systolic function, and interstitial fibrosis. Immunofluorescence staining showed co-localization of WT and mutant MYOZ2 proteins with α-actinin at the Z disks. Electron microscopy showed disrupted and mal-aligned Z disks in the mutant mice. Cardiac calcineurin activity, determined by quantifying Rcan1.4 mRNA and protein levels, luciferase activity in triple transgenic Myoz2+/−:NFATc-Luc:MYOZ2I246M and Myoz2+/−:NFATc-Luc:MYOZ2WT mice, and NFATc transcriptional activity assay, was unchanged in the mutant transgenic mice. However, levels of phospho-ERK1/2 and JNK54/46 were altered in the transgenic mice. Likewise, lentiviral-mediated expression of the MYOZ2I246M did not affect RCAN1.4 and calcineurin (PPP3CB) protein levels. Conclusions Thus, the cardiac phenotype in HCM caused by MYOZ2 mutations might be independent of calcineurin activity in the heart. Z disk abnormalities might provide the stimulus for the induction of cardiac hypertrophy caused by MYOZ2 mutations. PMID:22987565

  7. Activating mutations in RRAS underlie a phenotype within the RASopathy spectrum and contribute to leukaemogenesis

    PubMed Central

    Flex, Elisabetta; Jaiswal, Mamta; Pantaleoni, Francesca; Martinelli, Simone; Strullu, Marion; Fansa, Eyad K.; Caye, Aurélie; De Luca, Alessandro; Lepri, Francesca; Dvorsky, Radovan; Pannone, Luca; Paolacci, Stefano; Zhang, Si-Cai; Fodale, Valentina; Bocchinfuso, Gianfranco; Rossi, Cesare; Burkitt-Wright, Emma M.M.; Farrotti, Andrea; Stellacci, Emilia; Cecchetti, Serena; Ferese, Rosangela; Bottero, Lisabianca; Castro, Silvana; Fenneteau, Odile; Brethon, Benoît; Sanchez, Massimo; Roberts, Amy E.; Yntema, Helger G.; Van Der Burgt, Ineke; Cianci, Paola; Bondeson, Marie-Louise; Cristina Digilio, Maria; Zampino, Giuseppe; Kerr, Bronwyn; Aoki, Yoko; Loh, Mignon L.; Palleschi, Antonio; Di Schiavi, Elia; Carè, Alessandra; Selicorni, Angelo; Dallapiccola, Bruno; Cirstea, Ion C.; Stella, Lorenzo; Zenker, Martin; Gelb, Bruce D.; Cavé, Hélène; Ahmadian, Mohammad R.; Tartaglia, Marco

    2014-01-01

    RASopathies, a family of disorders characterized by cardiac defects, defective growth, facial dysmorphism, variable cognitive deficits and predisposition to certain malignancies, are caused by constitutional dysregulation of RAS signalling predominantly through the RAF/MEK/ERK (MAPK) cascade. We report on two germline mutations (p.Gly39dup and p.Val55Met) in RRAS, a gene encoding a small monomeric GTPase controlling cell adhesion, spreading and migration, underlying a rare (2 subjects among 504 individuals analysed) and variable phenotype with features partially overlapping Noonan syndrome, the most common RASopathy. We also identified somatic RRAS mutations (p.Gly39dup and p.Gln87Leu) in 2 of 110 cases of non-syndromic juvenile myelomonocytic leukaemia, a childhood myeloproliferative/myelodysplastic disease caused by upregulated RAS signalling, defining an atypical form of this haematological disorder rapidly progressing to acute myeloid leukaemia. Two of the three identified mutations affected known oncogenic hotspots of RAS genes and conferred variably enhanced RRAS function and stimulus-dependent MAPK activation. Expression of an RRAS mutant homolog in Caenorhabditis elegans enhanced RAS signalling and engendered protruding vulva, a phenotype previously linked to the RASopathy-causing SHOC2S2G mutant. Overall, these findings provide evidence of a functional link between RRAS and MAPK signalling and reveal an unpredicted role of enhanced RRAS function in human disease. PMID:24705357

  8. Activating mutations in RRAS underlie a phenotype within the RASopathy spectrum and contribute to leukaemogenesis.

    PubMed

    Flex, Elisabetta; Jaiswal, Mamta; Pantaleoni, Francesca; Martinelli, Simone; Strullu, Marion; Fansa, Eyad K; Caye, Aurélie; De Luca, Alessandro; Lepri, Francesca; Dvorsky, Radovan; Pannone, Luca; Paolacci, Stefano; Zhang, Si-Cai; Fodale, Valentina; Bocchinfuso, Gianfranco; Rossi, Cesare; Burkitt-Wright, Emma M M; Farrotti, Andrea; Stellacci, Emilia; Cecchetti, Serena; Ferese, Rosangela; Bottero, Lisabianca; Castro, Silvana; Fenneteau, Odile; Brethon, Benoît; Sanchez, Massimo; Roberts, Amy E; Yntema, Helger G; Van Der Burgt, Ineke; Cianci, Paola; Bondeson, Marie-Louise; Cristina Digilio, Maria; Zampino, Giuseppe; Kerr, Bronwyn; Aoki, Yoko; Loh, Mignon L; Palleschi, Antonio; Di Schiavi, Elia; Carè, Alessandra; Selicorni, Angelo; Dallapiccola, Bruno; Cirstea, Ion C; Stella, Lorenzo; Zenker, Martin; Gelb, Bruce D; Cavé, Hélène; Ahmadian, Mohammad R; Tartaglia, Marco

    2014-08-15

    RASopathies, a family of disorders characterized by cardiac defects, defective growth, facial dysmorphism, variable cognitive deficits and predisposition to certain malignancies, are caused by constitutional dysregulation of RAS signalling predominantly through the RAF/MEK/ERK (MAPK) cascade. We report on two germline mutations (p.Gly39dup and p.Val55Met) in RRAS, a gene encoding a small monomeric GTPase controlling cell adhesion, spreading and migration, underlying a rare (2 subjects among 504 individuals analysed) and variable phenotype with features partially overlapping Noonan syndrome, the most common RASopathy. We also identified somatic RRAS mutations (p.Gly39dup and p.Gln87Leu) in 2 of 110 cases of non-syndromic juvenile myelomonocytic leukaemia, a childhood myeloproliferative/myelodysplastic disease caused by upregulated RAS signalling, defining an atypical form of this haematological disorder rapidly progressing to acute myeloid leukaemia. Two of the three identified mutations affected known oncogenic hotspots of RAS genes and conferred variably enhanced RRAS function and stimulus-dependent MAPK activation. Expression of an RRAS mutant homolog in Caenorhabditis elegans enhanced RAS signalling and engendered protruding vulva, a phenotype previously linked to the RASopathy-causing SHOC2(S2G) mutant. Overall, these findings provide evidence of a functional link between RRAS and MAPK signalling and reveal an unpredicted role of enhanced RRAS function in human disease.

  9. Effect of Vandetanib on Lung Tumorigenesis in Transgenic Mice Carrying an Activating Egfr Gene Mutation.

    PubMed

    Osawa, Masahiro; Ohashi, Kadoaki; Kubo, Toshio; Ichihara, Eiki; Takata, Saburo; Takigawa, Nagio; Takata, Minoru; Tanimoto, Mitsune; Kiura, Katsuyuki

    2016-08-01

    Vandetanib (ZactimaTM) is a novel, orally available inhibitor of both vascular endothelial growth factor receptor-2 (VEGFR-2) and epidermal growth factor receptor (EGFR) tyrosine kinase. In the present study, a line of transgenic mice with a mouse Egfr gene mutation (delE748-A752) corresponding to a human EGFR mutation (delE746-A750) was established. The transgenic mice developed atypical adenomatous hyperplasia to adenocarcinoma of the lung at around 5 weeks of age and died of lung tumors at approximately 17 weeks of age. In the mice treated with vandetanib (6mg/kg/day), these lung tumors disappeared and the phosphorylations of EGFR and VEGFR-2 were reduced in lung tissues to levels comparable to those of non-transgenic control mice. The median overall survival time of the transgenic mice was 28 weeks in the vandetanib-treated group and 17 weeks in the vehicle-treated group. Vandetanib significantly prolonged the survival of the transgenic mice (log-rank test, p< 0.01); resistance to vandetanib occurred at 20 weeks of age and the animals died from their lung tumors at about 28 weeks of age. These data suggest that vandetanib could suppress the progression of tumors harboring an activating EGFR mutation.

  10. Mutation and polymorphism analysis of the human homogentisate 1, 2-dioxygenase gene in alkaptonuria patients.

    PubMed

    Beltrán-Valero de Bernabé, D; Granadino, B; Chiarelli, I; Porfirio, B; Mayatepek, E; Aquaron, R; Moore, M M; Festen, J J; Sanmartí, R; Peñalva, M A; de Córdoba, S R

    1998-04-01

    Alkaptonuria (AKU), a rare hereditary disorder of phenylalanine and tyrosine catabolism, was the first disease to be interpreted as an inborn error of metabolism. AKU patients are deficient for homogentisate 1,2 dioxygenase (HGO); this deficiency causes homogentisic aciduria, ochronosis, and arthritis. We cloned the human HGO gene and characterized two loss-of-function mutations, P230S and V300G, in the HGO gene in AKU patients. Here we report haplotype and mutational analysis of the HGO gene in 29 novel AKU chromosomes. We identified 12 novel mutations: 8 (E42A, W97G, D153G, S189I, I216T, R225H, F227S, and M368V) missense mutations that result in amino acid substitutions at positions conserved in HGO in different species, 1 (F10fs) frameshift mutation, 2 intronic mutations (IVS9-56G-->A, IVS9-17G-->A), and 1 splice-site mutation (IVS5+1G-->T). We also report characterization of five polymorphic sites in HGO and describe the haplotypic associations of alleles at these sites in normal and AKU chromosomes. One of these sites, HGO-3, is a variable dinucleotide repeat; IVS2+35T/A, IVS5+25T/C, and IVS6+46C/A are intronic sites at which single nucleotide substitutions (dimorphisms) have been detected; and c407T/A is a relatively frequent nucleotide substitution in the coding sequence, exon 4, resulting in an amino acid change (H80Q). These data provide insight into the origin and evolution of the various AKU alleles.

  11. Mutation and polymorphism analysis of the human homogentisate 1, 2-dioxygenase gene in alkaptonuria patients.

    PubMed Central

    Beltrán-Valero de Bernabé, D; Granadino, B; Chiarelli, I; Porfirio, B; Mayatepek, E; Aquaron, R; Moore, M M; Festen, J J; Sanmartí, R; Peñalva, M A; de Córdoba, S R

    1998-01-01

    Alkaptonuria (AKU), a rare hereditary disorder of phenylalanine and tyrosine catabolism, was the first disease to be interpreted as an inborn error of metabolism. AKU patients are deficient for homogentisate 1,2 dioxygenase (HGO); this deficiency causes homogentisic aciduria, ochronosis, and arthritis. We cloned the human HGO gene and characterized two loss-of-function mutations, P230S and V300G, in the HGO gene in AKU patients. Here we report haplotype and mutational analysis of the HGO gene in 29 novel AKU chromosomes. We identified 12 novel mutations: 8 (E42A, W97G, D153G, S189I, I216T, R225H, F227S, and M368V) missense mutations that result in amino acid substitutions at positions conserved in HGO in different species, 1 (F10fs) frameshift mutation, 2 intronic mutations (IVS9-56G-->A, IVS9-17G-->A), and 1 splice-site mutation (IVS5+1G-->T). We also report characterization of five polymorphic sites in HGO and describe the haplotypic associations of alleles at these sites in normal and AKU chromosomes. One of these sites, HGO-3, is a variable dinucleotide repeat; IVS2+35T/A, IVS5+25T/C, and IVS6+46C/A are intronic sites at which single nucleotide substitutions (dimorphisms) have been detected; and c407T/A is a relatively frequent nucleotide substitution in the coding sequence, exon 4, resulting in an amino acid change (H80Q). These data provide insight into the origin and evolution of the various AKU alleles. PMID:9529363

  12. Prognostic significance of BRCA mutations in ovarian cancer: an updated systematic review with meta-analysis

    PubMed Central

    Zhao, Yingchao

    2017-01-01

    There is no consensus on the syntheses concerning the impact of BRCA mutation on ovarian cancer survival. A systematic review and meta-analysis of observational studies was conducted that evaluated the impact of BRCA mutations on the survival outcomes of patients with ovarian cancer. The primary outcome measure was overall survival (OS) and secondary outcome was progression-free survival (PFS). We presented data with hazard ratios (HRs) and 95% confidence interval (CI) and pooled them using the random-effects models. From 2,624 unique records, 34 eligible studies including 18,396 patients were identified. BRCA1/2 mutations demonstrated both OS and PFS benefits in patients with ovarian cancer (OS: HR = 0.67, 95% CI, 0.57 to 0.78, I2 = 76.5%, P <0.001; PFS: HR = 0.62, 95% CI, 0.53 to 0.73, I2 = 18.1%, P = 0.261). For BRCA1 mutation carriers, the HRs for OS and PFS benefits were 0.73 (95% CI, 0.63 to 0.86) and 0.68 (95% CI, 0.52 to 0.89), respectively. For BRCA2 mutation carriers, the HRs for OS and PFS benefits were 0.57 (95% CI, 0.45 to 0.73) and 0.48 (95% CI, 0.30 to 0.75), respectively. The results of subgroup analyses for OS stratified by study quality, tumor stage, study design, sample size, number of research center, duration of follow-up, baseline characteristics adjusted and tumor histology were mostly constant across BRCA1/2, BRCA1 and BRCA2 mutation subtypes. In summary, for patients with ovarian cancer, BRCA mutations were associated with improved OS and PFS. Further large-scale prospective cohort studies should be conducted to test its benefits in specific patients. PMID:27690218

  13. FLT3 kinase inhibitor TTT-3002 overcomes both activating and drug resistance mutations in FLT3 in acute myeloid leukemia

    PubMed Central

    Ma, Hayley S.; Nguyen, Bao; Duffield, Amy S.; Li, Li; Galanis, Allison; Williams, Allen B.; Brown, Patrick A.; Levis, Mark J.; Leahy, Daniel J.; Small, Donald

    2014-01-01

    There have been a number of clinical trials testing the efficacy of FLT3 tyrosine kinase inhibitors (TKIs) in acute myeloid leukemia (AML). patients harboring a constitutively activating mutation in FLT3 However, there has been limited efficacy, most often due to inadequate achievement of FLT3 inhibition through a variety of mechanisms In a previous study, TTT-3002 was identified as a novel FLT3 inhibitor with the most potent activity to date against FLT3 internal tandem duplication (FLT3/ITD) mutations Here the activity of TTT-3002 is demonstrated against a broad spectrum of FLT3 activating point mutations (FLT3/PMs), including the most frequently occurring D835 mutations The compound is also active against a number of point mutations selected for in FLT3/ITD alleles that confer resistance to other TKIs, including the F691L gatekeeper mutation TTT-3002 maintains activity against relapsed AML patient samples that are resistant to sorafenib and AC220 Studies utilizing human plasma samples from healthy donors and AML patients indicate that TTT-3002 is only moderately protein bound compared to several other TKIs currently in clinical trials Tumor burden of mice in a FLT3 TKI-resistant transplant model is significantly improved by oral dosing of TTT-3002 Therefore, TTT-3002 has demonstrated preclinical potential as a promising new FLT3 TKI that may overcome some of the limitations of other TKIs in the treatment of FLT3-mutant AML PMID:25060518

  14. Reproducible Analysis of Post-Translational Modifications in Proteomes—Application to Human Mutations

    PubMed Central

    Holehouse, Alex S.; Naegle, Kristen M.

    2015-01-01

    Background Protein post-translational modifications (PTMs) are an important aspect of protein regulation. The number of PTMs discovered within the human proteome, and other proteomes, has been rapidly expanding in recent years. As a consequence of the rate in which new PTMs are identified, analysis done in one year may result in different conclusions when repeated in subsequent years. Among the various functional questions pertaining to PTMs, one important relationship to address is the interplay between modifications and mutations. Specifically, because the linear sequence surrounding a modification site often determines molecular recognition, it is hypothesized that mutations near sites of PTMs may be more likely to result in a detrimental effect on protein function, resulting in the development of disease. Methods and Results We wrote an application programming interface (API) to make analysis of ProteomeScout, a comprehensive database of PTMs and protein information, easy and reproducible. We used this API to analyze the relationship between PTMs and human mutations associated with disease (based on the ‘Clinical Significance’ annotation from dbSNP). Proteins containing pathogenic mutations demonstrated a significant study bias which was controlled for by analyzing only well-studied proteins, based on their having at least one pathogenic mutation. We found that pathogenic mutations are significantly more likely to lie within eight amino acids of a phosphoserine, phosphotyrosine or ubiquitination site when compared to mutations in general, based on a Fisher’s Exact test. Despite the skew of pathogenic mutations occurring on positively charged arginines, we could not account for this relationship based only on residue type. Finally, we hypothesize a potential mechanism for a pathogenic mutation on RAF1, based on its proximity to a phosphorylation site, which represents a subtle regulation difference that may explain why its biochemical effect has failed to

  15. Genetic interaction analysis of point mutations enables interrogation of gene function at a residue-level resolution: exploring the applications of high-resolution genetic interaction mapping of point mutations.

    PubMed

    Braberg, Hannes; Moehle, Erica A; Shales, Michael; Guthrie, Christine; Krogan, Nevan J

    2014-07-01

    We have achieved a residue-level resolution of genetic interaction mapping - a technique that measures how the function of one gene is affected by the alteration of a second gene - by analyzing point mutations. Here, we describe how to interpret point mutant genetic interactions, and outline key applications for the approach, including interrogation of protein interaction interfaces and active sites, and examination of post-translational modifications. Genetic interaction analysis has proven effective for characterizing cellular processes; however, to date, systematic high-throughput genetic interaction screens have relied on gene deletions or knockdowns, which limits the resolution of gene function analysis and poses problems for multifunctional genes. Our point mutant approach addresses these issues, and further provides a tool for in vivo structure-function analysis that complements traditional biophysical methods. We also discuss the potential for genetic interaction mapping of point mutations in human cells and its application to personalized medicine.

  16. Characterization of two MODY2 mutations with different susceptibility to activation

    SciTech Connect

    Langer, Sara; Platz, Christian; Waterstradt, Rica; Baltrusch, Simone

    2015-09-04

    Glucokinase plays a key role in glucose sensing in pancreatic beta cells and in liver metabolism. Heterozygous inactivating glucokinase mutations cause the autosomal dominantly inherited MODY2 subtype of maturity-onset diabetes of the young. The goal of this study was to elucidate the pathogenicity of the recently described glucokinase mutants L304P and L315H, located in an alpha-helix and connecting region, respectively, at the outer region of the large domain of glucokinase. Both mutants showed wild-type-like cytosolic localization, but faster protein degradation in insulin-secreting MIN6 cells. However, strongly reduced nuclear/cytoplasmic localization of the mutants was observed in primary hepatocytes suggesting reduced interaction with the liver specific glucokinase regulatory protein. Both mutants displayed a significantly lowered glucokinase activity compared to the wild-type protein. Even though the L315H protein showed the lowest enzymatic activity, this mutant was very sensitive to allosteric activation. The endogenous activator fructose-2,6-bisphosphatase evoked an increase in glucokinase activity for both mutants, but much stronger for L315H compared to L304P. The synthetic activator RO281675 was ineffective against the L304P mutant. Expression of the mutant proteins evoked loss of glucose-induced insulin secretion in MIN6 cells. Administration of RO281675 increased insulin secretion, however, only for the L315H mutant. Thus, a glucokinase activator drug therapy may help MODY2 patients not in general, but seems to be a useful strategy for carriers of the L315H glucokinase mutation. - Highlights: • The GK mutants L304P and L315H display a highly reduced enzymatic activity. • In hepatocytes both mutations lower the nuclear/cytoplasmic localization ratio of GK. • Both mutants inhibit stimulus-secretion coupling in insulin-producing cells. • Activation by fructose-2,6-bisphosphatase and by RO281675 is stronger for L315H. • RO281675 stimulates

  17. Expression and mutation analysis of her2 in head and neck squamous cell carcinoma.

    PubMed

    Ali, Mahmoud A L Sheikh; Gunduz, Mehmet; Gunduz, Esra; Tamamura, Ryo; Beder, Levent Bekir; Katase, Naoki; Hatipoglu, Omer Faruk; Fukushima, Kunihiro; Yamanaka, Noboru; Shimizu, Kenji; Nagatsuka, Hitoshi

    2010-06-01

    We analyzed mutation and expression status of human epidermal growth factor receptor 2 (Her2) in head and neck squamous cell carcinoma (HNSCC) using single strand conformation polymorphism (SSCP) mutation analysis and immunohistochemistry (IHC). Mutations were absent in all 85 cases. Out of 57 cases available for IHC, Her2 protein expression was negative (0) in 40 tumors (70%). Seventeen tumors (29.8%) expressed Her2, among these 13 tumors (22.8%) showed a weak (+1) expression and 4 (7%) showed a moderate expression (+2), none showed a strong (+3) expression. There was not a significant association between expression and any of the patients' clinical variables or prognosis. Our results suggest that Her2 may not be useful as a molecular target in HNSCC.

  18. Mutational analysis of plum pox potyvirus polyprotein processing by the NIa protease in Escherichia coli.

    PubMed

    García, J A; Laín, S; Cervera, M T; Riechmann, J L; Martín, M T

    1990-12-01

    A binary Escherichia coli expression system has been used to study the pathway for proteolytic processing of the plum pox potyvirus (PPV) polyprotein. Trans cleavage at the carboxyl end of the cylindrical inclusion protein occurred, although with lower efficiency than that at the large nuclear inclusion protein-capsid protein junction. No trans cleavage at the carboxyl end of the small nuclear inclusion protein (NIa) was detected. The proteolytic activities at different cleavage sites of several deletion and point mutations of NIa protein have been analysed. The large delta SX deletion and two different point mutations at His 239 abolished proteolytic activity at all sites. The effect of other mutations, particularly a Glu substitution for Asp 274, depended on the particular cleavage site analysed. The results obtained with the PPV NIa protein mutants were similar to those reported for comparable mutations in the tobacco etch virus 49K protease, despite differences in the sequences recognized for processing. No evident competitive inhibition of the proteolytic activity of PPV NIa protease by the presence of an excess of the different protease mutants could be demonstrated.

  19. Exome sequence analysis of Kaposiform hemangioendothelioma: identification of putative driver mutations*

    PubMed Central

    Egashira, Sho; Jinnin, Masatoshi; Harada, Miho; Masuguchi, Shinichi; Fukushima, Satoshi; Ihn, Hironobu

    2016-01-01

    BACKGROUND Kaposiform hemangioendothelioma is a rare, intermediate, malignant tumor. The tumor's etiology remains unknown and there are no specific treatments. OBJECTIVE In this study, we performed exome sequencing using DNA from a Kaposiform hemangioendothelioma patient, and found putative candidates for the responsible mutations. METHOD The genomic DNA for exome sequencing was obtained from the tumor tissue and matched normal tissue from the same individual. Exome sequencing was performed on HiSeq2000 sequencer platform. RESULTS Among oncogenes, germline missense single nucleotide variants were observed in the TP53 and APC genes in both the tumor and normal tissue. As tumor-specific somatic mutations, we identified 81 candidate genes, including 4 nonsense changes, 68 missense changes and 9 insertions/deletions. The mutations in ITGB2, IL-32 and DIDO1 were included in them. CONCLUSION This is a pilot study, and future analysis with more patients is needed to clarify: the detailed pathogenesis of this tumor, the novel diagnostic methods by detecting specific mutations, and the new therapeutic strategies targeting the mutation. PMID:28099595

  20. Rapid and Reliable Detection of Nonsyndromic Hearing Loss Mutations by Multicolor Melting Curve Analysis

    PubMed Central

    Wang, Xudong; Hong, Yongjun; Cai, Peihong; Tang, Ning; Chen, Ying; Yan, Tizhen; Liu, Yinghua; Huang, Qiuying; Li, Qingge

    2017-01-01

    Hearing loss is a common birth defect worldwide. The GJB2, SLC26A4, MT-RNR1 and MT-TS1 genes have been reported as major pathogenic genes in nonsyndromic hearing loss. Early genetic screening is recommended to minimize the incidence of hearing loss. We hereby described a multicolor melting curve analysis (MMCA)-based assay for simultaneous detection of 12 prevalent nonsyndromic hearing loss-related mutations. The three-reaction assay could process 30 samples within 2.5 h in a single run on a 96-well thermocycler. Allelic types of each mutation could be reproducibly obtained from 10 pg ~100 ng genomic DNA per reaction. For the mitochondrial mutations, 10% ~ 20% heteroplasmic mutations could be detected. A comparison study using 501 clinical samples showed that the MMCA assay had 100% concordance with both SNaPshot minisequencing and Sanger sequencing. We concluded that the MMCA assay is a rapid, convenient and cost-effective method for detecting the common mutations, and can be expectedly a reliable tool in preliminary screening of nonsyndromic hearing loss in the Chinese Han population. PMID:28225033

  1. An activating Pik3ca mutation coupled with Pten loss is sufficient to initiate ovarian tumorigenesis in mice

    PubMed Central

    Kinross, Kathryn M.; Montgomery, Karen G.; Kleinschmidt, Margarete; Waring, Paul; Ivetac, Ivan; Tikoo, Anjali; Saad, Mirette; Hare, Lauren; Roh, Vincent; Mantamadiotis, Theo; Sheppard, Karen E.; Ryland, Georgina L.; Campbell, Ian G.; Gorringe, Kylie L.; Christensen, James G.; Cullinane, Carleen; Hicks, Rodney J.; Pearson, Richard B.; Johnstone, Ricky W.; McArthur, Grant A.; Phillips, Wayne A.

    2012-01-01

    Mutations in the gene encoding the p110α subunit of PI3K (PIK3CA) that result in enhanced PI3K activity are frequently observed in human cancers. To better understand the role of mutant PIK3CA in the initiation or progression of tumorigenesis, we generated mice in which a PIK3CA mutation commonly detected in human cancers (the H1047R mutation) could be conditionally knocked into the endogenous Pik3ca locus. Activation of this mutation in the mouse ovary revealed that alone, Pik3caH1047R induced premalignant hyperplasia of the ovarian surface epithelium but no tumors. Concomitantly, we analyzed several human ovarian cancers and found PIK3CA mutations coexistent with KRAS and/or PTEN mutations, raising the possibility that a secondary defect in a co-regulator of PI3K activity may be required for mutant PIK3CA to promote transformation. Consistent with this notion, we found that Pik3caH1047R mutation plus Pten deletion in the mouse ovary led to the development of ovarian serous adenocarcinomas and granulosa cell tumors. Both mutational events were required for early, robust Akt activation. Pharmacological inhibition of PI3K/mTOR in these mice delayed tumor growth and prolonged survival. These results demonstrate that the Pik3caH1047R mutation with loss of Pten is enough to promote ovarian cell transformation and that we have developed a model system for studying possible therapies. PMID:22214849

  2. BRAF Mutations in Canine Cancers.

    PubMed

    Mochizuki, Hiroyuki; Kennedy, Katherine; Shapiro, Susan G; Breen, Matthew

    2015-01-01

    Activating mutations of the BRAF gene lead to constitutive activation of the MAPK pathway. Although many human cancers carry the mutated BRAF gene, this mutation has not yet been characterized in canine cancers. As human and canine cancers share molecular abnormalities, we hypothesized that BRAF gene mutations also exist in canine cancers. To test this hypothesis, we sequenced the exon 15 of BRAF, mutation hot spot of the gene, in 667 canine primary tumors and 38 control tissues. Sequencing analysis revealed that a single nucleotide T to A transversion at nucleotide 1349 occurred in 64 primary tumors (9.6%), with particularly high frequency in prostatic carcinoma (20/25, 80%) and urothelial carcinoma (30/45, 67%). This mutation results in the amino acid substitution of glutamic acid for valine at codon 450 (V450E) of canine BRAF, corresponding to the most common BRAF mutation in human cancer, V600E. The evolutional conservation of the BRAF V600E mutation highlights the importance of MAPK pathway activation in neoplasia and may offer opportunity for molecular diagnostics and targeted therapeutics for dogs bearing BRAF-mutated cancers.

  3. Mutations, kataegis, and translocations in B lymphocytes: towards a mechanistic understanding of AID promiscuous activity

    PubMed Central

    Casellas, Rafael; Basu, Uttiya; Yewdell, William T.; Chaudhuri, Jayanta; Robbiani, Davide F.; Di Noia, Javier M.

    2016-01-01

    As B cells engage in the immune response they express the deaminase AID to initiate the hypermutation and recombination of immunoglobulin genes, which are crucial processes for the efficient recognition and disposal of pathogens, However, AID must be tightly controlled in B cells to minimize off-targeting mutations, which can drive chromosomal translocations and the development of B cell malignancies, such as lymphomas. Recent genomic and biochemical analyses have begun to unravel the crucial question of how AID-mediated deamination is targeted outside immunoglobulin genes. Here, we discuss the transcriptional and topological features that are emerging as key drivers of AID promiscuous activity. PMID:26898111

  4. Mutational analysis of COQ2 in patients with MSA in Italy.

    PubMed

    Ronchi, Dario; Di Biase, Ernesto; Franco, Giulia; Melzi, Valentina; Del Sorbo, Francesca; Elia, Antonio; Barzaghi, Chiara; Garavaglia, Barbara; Bergamini, Christian; Fato, Romana; Mora, Gabriele; Del Bo, Roberto; Fortunato, Francesco; Borellini, Linda; Trezzi, Ilaria; Compagnoni, Giacomo Monzio; Monfrini, Edoardo; Frattini, Emanuele; Bonato, Sara; Cogiamanian, Filippo; Ardolino, Gianluca; Priori, Alberto; Bresolin, Nereo; Corti, Stefania; Comi, Giacomo Pietro; Di Fonzo, Alessio

    2016-09-01

    COQ2 mutations have been implicated in the etiology of multiple system atrophy (MSA) in Japan. However, several genetic screenings have not confirmed the role of its variants in the disease. We performed COQ2 sequence analysis in 87 probable MSA. A homozygous change p.A43G was found in an MSA-C patient. Cosegregation analysis and the evaluation of CoQ10 content in muscle and fibroblasts did not support the pathogenic role of this variant.

  5. Mutation of Fnip1 is associated with B-cell deficiency, cardiomyopathy, and elevated AMPK activity

    PubMed Central

    Siggs, Owen M.; Stockenhuber, Alexander; Deobagkar-Lele, Mukta; Bull, Katherine R.; Crockford, Tanya L.; Kingston, Bethany L.; Crawford, Greg; Anzilotti, Consuelo; Steeples, Violetta; Ghaffari, Sahar; Czibik, Gabor; Bellahcene, Mohamed; Watkins, Hugh; Ashrafian, Houman; Davies, Benjamin; Woods, Angela; Carling, David; Yavari, Arash; Beutler, Bruce; Cornall, Richard J.

    2016-01-01

    Folliculin (FLCN) is a tumor-suppressor protein mutated in the Birt–Hogg–Dubé (BHD) syndrome, which associates with two paralogous proteins, folliculin-interacting protein (FNIP)1 and FNIP2, forming a complex that interacts with the AMP-activated protein kinase (AMPK). Although it is clear that this complex influences AMPK and other metabolic regulators, reports of its effects have been inconsistent. To address this issue, we created a recessive loss-of-function variant of Fnip1. Homozygous FNIP1 deficiency resulted in profound B-cell deficiency, partially restored by overexpression of the antiapoptotic protein BCL2, whereas heterozygous deficiency caused a loss of marginal zone B cells. FNIP1-deficient mice developed cardiomyopathy characterized by left ventricular hypertrophy and glycogen accumulation, with close parallels to mice and humans bearing gain-of-function mutations in the γ2 subunit of AMPK. Concordantly, γ2-specific AMPK activity was elevated in neonatal FNIP1-deficient myocardium, whereas AMPK-dependent unc-51–like autophagy activating kinase 1 (ULK1) phosphorylation and autophagy were increased in FNIP1-deficient B-cell progenitors. These data support a role for FNIP1 as a negative regulator of AMPK. PMID:27303042

  6. Germline activating AKT3 mutation associated with megalencephaly, polymicrogyria, epilepsy and hypoglycemia.

    PubMed

    Nellist, Mark; Schot, Rachel; Hoogeveen-Westerveld, Marianne; Neuteboom, Rinze F; van der Louw, Elles J T M; Lequin, Maarten H; Bindels-de Heus, Karen; Sibbles, Barbara J; de Coo, René; Brooks, Alice; Mancini, Grazia M S

    2015-03-01

    Activating germ-line and somatic mutations in AKT3 (OMIM 611223) are associated with megalencephaly-polymicrogyria-polydactyly-hydrocephalus syndrome (MPPH; OMIM # 615937) and megalencephaly-capillary malformation (MCAP; OMIM # 602501). Here we report an individual with megalencephaly, polymicrogyria, refractory epilepsy, hypoglycemia and a germline AKT3 mutation. At birth, head circumference was 43 cm (5 standard deviations above the mean). No organomegaly was present, but there was generalized hypotonia, joint and skin laxity, developmental delay and failure to thrive. At 6 months of age the patient developed infantile spasms that were resistant to antiepileptic polytherapy. Recurrent hypoglycemia was noted during treatment with adrenocorticotropic hormone but stabilized upon introduction of continuous, enriched feeding. The infantile spasms responded to the introduction of a ketogenic diet, but the hypoglycemia recurred until the diet was adjusted for increased resting energy expenditure. A novel, de novo AKT3 missense variant (exon 5; c.548T>A, p.(V183D)) was identified and shown to activate AKT3 by in vitro functional testing. We hypothesize that the sustained hypoglycemia in this patient is caused by increased glucose utilization due to activation of AKT3 signaling. This might explain the efficacy of the ketogenic diet in this individual.

  7. Equivalence Testing for FORTRAN Mutation System Using Data Flow Analysis.

    DTIC Science & Technology

    1981-12-01

    phaselI ; end ; -- end of data-flow-analysis procedure phasel ; var g : graph -number h : header-node-number £ x : exit-edge-number 1 : edge-from...do begin pri] : pp PB[i] D[i] := (DP PB+I]) + DB[i; end end end ; end ; -- end of phaseT procedure phaselT ; var g : graph -number h : header-node

  8. SUMF1 mutations affecting stability and activity of formylglycine generating enzyme predict clinical outcome in multiple sulfatase deficiency.

    PubMed

    Schlotawa, Lars; Ennemann, Eva Charlotte; Radhakrishnan, Karthikeyan; Schmidt, Bernhard; Chakrapani, Anupam; Christen, Hans-Jürgen; Moser, Hugo; Steinmann, Beat; Dierks, Thomas; Gärtner, Jutta

    2011-03-01

    Multiple Sulfatase Deficiency (MSD) is caused by mutations in the sulfatase-modifying factor 1 gene encoding the formylglycine-generating enzyme (FGE). FGE post translationally activates all newly synthesized sulfatases by generating the catalytic residue formylglycine. Impaired FGE function leads to reduced sulfatase activities. Patients display combined clinical symptoms of single sulfatase deficiencies. For ten MSD patients, we determined the clinical phenotype, FGE expression, localization and stability, as well as residual FGE and sulfatase activities. A neonatal, very severe clinical phenotype resulted from a combination of two nonsense mutations leading to almost fully abrogated FGE activity, highly unstable FGE protein and nearly undetectable sulfatase activities. A late infantile mild phenotype resulted from FGE G263V leading to unstable protein but high residual FGE activity. Other missense mutations resulted in a late infantile severe phenotype because of unstable protein with low residual FGE activity. Patients with identical mutations displayed comparable clinical phenotypes. These data confirm the hypothesis that the phenotypic outcome in MSD depends on both residual FGE activity as well as protein stability. Predicting the clinical course in case of molecularly characterized mutations seems feasible, which will be helpful for genetic counseling and developing therapeutic strategies aiming at enhancement of FGE.

  9. The H29D Mutation Does Not Enhance Cytosolic Ca2+ Activation of the Cardiac Ryanodine Receptor.

    PubMed

    Xiao, Zhichao; Guo, Wenting; Yuen, Siobhan M Wong King; Wang, Ruiwu; Zhang, Lin; Van Petegem, Filip; Chen, S R Wayne

    2015-01-01

    The N-terminal domain of the cardiac ryanodine receptor (RyR2) harbors a large number of naturally occurring mutations that are associated with stress-induced ventricular tachyarrhythmia and sudden death. Nearly all these disease-associated N-terminal mutations are located at domain interfaces or buried within domains. Mutations at these locations would alter domain-domain interactions or the stability/folding of domains. Recently, a novel RyR2 mutation H29D associated with ventricular arrhythmia at rest was found to enhance the activation of single RyR2 channels by diastolic levels of cytosolic Ca2+. Unlike other N-terminal disease-associated mutations, the H29D mutation is located on the surface of the N-terminal domain. It is unclear how this surface-exposed H29D mutation that does not appear to interact with other parts of the RyR2 structure could alter the intrinsic properties of the channel. Here we carried out detailed functional characterization of the RyR2-H29D mutant at the molecular and cellular levels. We found that the H29D mutation has no effect on the basal level or the Ca2+ dependent activation of [3H]ryanodine binding to RyR2, the cytosolic Ca2+ activation of single RyR2 channels, or the cytosolic Ca2+- or caffeine-induced Ca2+ release in HEK293 cells. In addition, the H29D mutation does not alter the propensity for spontaneous Ca2+ release or the thresholds for Ca2+ release activation or termination. Furthermore, the H29D mutation does not have significant impact on the thermal stability of the N-terminal region (residues 1-547) of RyR2. Collectively, our data show that the H29D mutation exerts little or no effect on the function of RyR2 or on the folding stability of the N-terminal region. Thus, our results provide no evidence that the H29D mutation enhances the cytosolic Ca2+ activation of RyR2.

  10. The H29D Mutation Does Not Enhance Cytosolic Ca2+ Activation of the Cardiac Ryanodine Receptor

    PubMed Central

    Xiao, Zhichao; Guo, Wenting; Yuen, Siobhan M. Wong King; Wang, Ruiwu; Zhang, Lin; Van Petegem, Filip; Chen, S. R. Wayne

    2015-01-01

    The N-terminal domain of the cardiac ryanodine receptor (RyR2) harbors a large number of naturally occurring mutations that are associated with stress-induced ventricular tachyarrhythmia and sudden death. Nearly all these disease-associated N-terminal mutations are located at domain interfaces or buried within domains. Mutations at these locations would alter domain-domain interactions or the stability/folding of domains. Recently, a novel RyR2 mutation H29D associated with ventricular arrhythmia at rest was found to enhance the activation of single RyR2 channels by diastolic levels of cytosolic Ca2+. Unlike other N-terminal disease-associated mutations, the H29D mutation is located on the surface of the N-terminal domain. It is unclear how this surface-exposed H29D mutation that does not appear to interact with other parts of the RyR2 structure could alter the intrinsic properties of the channel. Here we carried out detailed functional characterization of the RyR2-H29D mutant at the molecular and cellular levels. We found that the H29D mutation has no effect on the basal level or the Ca2+ dependent activation of [3H]ryanodine binding to RyR2, the cytosolic Ca2+ activation of single RyR2 channels, or the cytosolic Ca2+- or caffeine-induced Ca2+ release in HEK293 cells. In addition, the H29D mutation does not alter the propensity for spontaneous Ca2+ release or the thresholds for Ca2+ release activation or termination. Furthermore, the H29D mutation does not have significant impact on the thermal stability of the N-terminal region (residues 1–547) of RyR2. Collectively, our data show that the H29D mutation exerts little or no effect on the function of RyR2 or on the folding stability of the N-terminal region. Thus, our results provide no evidence that the H29D mutation enhances the cytosolic Ca2+ activation of RyR2. PMID:26405799

  11. Mutation of active site residues in synthetic T4-lysozyme gene and their effect on lytic activity.

    PubMed

    Anand, N N; Stephen, E R; Narang, S A

    1988-06-16

    The active site amino acids (Glu11 and Asp20) in T4-lysozyme have been mutated to their isosteric residues Gln or Asn and/or acidic residues such as Glu----Asp or Asp----Glu by the oligonucleotide-replacement method. Out of eight mutants so generated the mutant T4-lysozyme obtained from pTLY.Asp11 retains maximum amount of activity (approximately 16%), pTLY.Asn20 the least (0.9%) whereas pTLY.Gln11 lost completely. A systematic study of the active and inactive mutants thus generated supports the important role of Glu11 and Asp20 in T4-lysozyme activity as predicted in earlier studies.

  12. A strong loss-of-function mutation in RAN1 results in constitutive activation of the ethylene response pathway as well as a rosette-lethal phenotype

    NASA Technical Reports Server (NTRS)

    Woeste, K. E.; Kieber, J. J.; Evans, M. L. (Principal Investigator)

    2000-01-01

    A recessive mutation was identified that constitutively activated the ethylene response pathway in Arabidopsis and resulted in a rosette-lethal phenotype. Positional cloning of the gene corresponding to this mutation revealed that it was allelic to responsive to antagonist1 (ran1), a mutation that causes seedlings to respond in a positive manner to what is normally a competitive inhibitor of ethylene binding. In contrast to the previously identified ran1-1 and ran1-2 alleles that are morphologically indistinguishable from wild-type plants, this ran1-3 allele results in a rosette-lethal phenotype. The predicted protein encoded by the RAN1 gene is similar to the Wilson and Menkes disease proteins and yeast Ccc2 protein, which are integral membrane cation-transporting P-type ATPases involved in copper trafficking. Genetic epistasis analysis indicated that RAN1 acts upstream of mutations in the ethylene receptor gene family. However, the rosette-lethal phenotype of ran1-3 was not suppressed by ethylene-insensitive mutants, suggesting that this mutation also affects a non-ethylene-dependent pathway regulating cell expansion. The phenotype of ran1-3 mutants is similar to loss-of-function ethylene receptor mutants, suggesting that RAN1 may be required to form functional ethylene receptors. Furthermore, these results suggest that copper is required not only for ethylene binding but also for the signaling function of the ethylene receptors.

  13. Early-Onset Hypertrophic Cardiomyopathy Mutations Significantly Increase the Velocity, Force, and Actin-Activated ATPase Activity of Human β-Cardiac Myosin.

    PubMed

    Adhikari, Arjun S; Kooiker, Kristina B; Sarkar, Saswata S; Liu, Chao; Bernstein, Daniel; Spudich, James A; Ruppel, Kathleen M

    2016-12-13

    Hypertrophic cardiomyopathy (HCM) is a heritable cardiovascular disorder that affects 1 in 500 people. A significant percentage of HCM is attributed to mutations in β-cardiac myosin, the motor protein that powers ventricular contraction. This study reports how two early-onset HCM mutations, D239N and H251N, affect the molecular biomechanics of human β-cardiac myosin. We observed significant increases (20%-90%) in actin gliding velocity, intrinsic force, and ATPase activity in comparison to wild-type myosin. Moreover, for H251N, we found significantly lower binding affinity between the S1 and S2 domains of myosin, suggesting that this mutation may further increase hyper-contractility by releasing active motors. Unlike previous HCM mutations studied at the molecular level using human β-cardiac myosin, early-onset HCM mutations lead to significantly larger changes in the fundamental biomechanical parameters and show clear hyper-contractility.

  14. Mutation of aspartic acid-351, lysine-352, and lysine-515 alters the Ca2+ transport activity of the Ca2+-ATPase expressed in COS-1 cells.

    PubMed Central

    Maruyama, K; MacLennan, D H

    1988-01-01

    Full-length cDNAs encoding neonatal and adult isoforms of the Ca2+-ATPase of rabbit fast-twitch skeletal muscle sarcoplasmic reticulum were expressed transiently in COS-1 cells. The microsomal fraction isolated from transfected COS-1 cells contained immunoreactive Ca2+-ATPase and catalyzed Ca2+ transport at rates at least 15-fold above controls. No differences were observed in either the rates or Ca2+ dependency of Ca2+ transport catalyzed by the two isoforms. Aspartic acid-351, the site of formation of the catalytic acyl phosphate in the enzyme, was mutated to asparagine, glutamic acid, serine, threonine, histidine, or alanine. In every case, Ca2+ transport activity and Ca2+-dependent phosphorylation were eliminated. Ca2+ transport was also eliminated by mutation of lysine-352 to arginine, glutamine, or glutamic acid or by mutation of Asp351-Lys352 to Lys351-Asp352. Mutation of lysine-515, the site of fluorescein isothiocyanate modification in the enzyme, resulted in diminished Ca2+ transport activity as follows: arginine, 60%; glutamine, 25%; glutamic acid, 5%. These results demonstrate the absolute requirement of acylphosphate formation for the Ca2+ transport function and define a residue important for ATP binding. They also demonstrate the feasibility of a thorough analysis of active sites in the Ca2+-ATPase by expression and site-specific mutagenesis. Images PMID:2966962

  15. Albinism-Causing Mutations in Recombinant Human Tyrosinase Alter Intrinsic Enzymatic Activity

    PubMed Central

    Dolinska, Monika B.; Kovaleva, Elena; Backlund, Peter; Wingfield, Paul T.; Brooks, Brian P.; Sergeev, Yuri V.

    2014-01-01

    Background Tyrosinase (TYR) catalyzes the rate-limiting, first step in melanin production and its gene (TYR) is mutated in many cases of oculocutaneous albinism (OCA1), an autosomal recessive cause of childhood blindness. Patients with reduced TYR activity are classified as OCA1B; some OCA1B mutations are temperature-sensitive. Therapeutic research for OCA1 has been hampered, in part, by the absence of purified, active, recombinant wild-type and mutant human enzymes. Methodology/Principal Findings The intra-melanosomal domain of human tyrosinase (residues 19–469) and two OCA1B related temperature-sensitive mutants, R422Q and R422W were expressed in insect cells and produced in T. ni larvae. The short trans-membrane fragment was deleted to avoid potential protein insolubility, while preserving all other functional features of the enzymes. Purified tyrosinase was obtained with a yield of >1 mg per 10 g of larval biomass. The protein was a monomeric glycoenzyme with maximum enzyme activity at 37°C and neutral pH. The two purified mutants when compared to the wild-type protein were less active and temperature sensitive. These differences are associated with conformational perturbations in secondary structure. Conclusions/Significance The intramelanosomal domains of recombinant wild-type and mutant human tyrosinases are soluble monomeric glycoproteins with activities which mirror their in vivo function. This advance allows for the structure – function analyses of different mutant TYR proteins and correlation with their corresponding human phenotypes; it also provides an important tool to discover drugs that may improve tyrosinase activity and treat OCA1. PMID:24392141

  16. M-CSF receptor mutations in hereditary diffuse leukoencephalopathy with spheroids impair not only kinase activity but also surface expression

    SciTech Connect

    Hiyoshi, Masateru; Hashimoto, Michihiro; Yukihara, Mamiko; Bhuyan, Farzana; Suzu, Shinya

    2013-11-01

    Highlights: •Many mutations were identified in Fms as a putative genetic cause of HDLS. •All of the mutations tested severely impair the kinase activity. •Most of the mutations also impair the trafficking to the cell surface. •These defects further suggest that HDLS is caused by a loss of Fms function. -- Abstract: The tyrosine kinase Fms, the cell surface receptor for M-CSF and IL-34, is critical for microglial proliferation and differentiation in the brain. Recently, a number of mutations have been identified in Fms as a putative genetic cause of hereditary diffuse leukoencephalopathy with spheroids (HDLS), implying an important role of microglial dysfunction in HDLS pathogenesis. In this study, we initially confirmed that 11 mutations, which reside within the ATP-binding or major tyrosine kinase domain, caused a severe impairment of ligand-induced Fms auto-phosphorylation. Intriguingly, we found that 10 of the 11 mutants also showed a weak cell surface expression, which was associated with a concomitant increase in the low molecular weight hypo-N-glycosylated immature gp130Fms-like species. Indeed, the mutant proteins heavily accumulated to the Golgi-like perinuclear regions. These results indicate that all of the Fms mutations tested severely impair the kinase activity and most of the mutations also impair the trafficking to the cell surface, further suggesting that HDLS is caused by the loss of Fms function.

  17. LYN-activating mutations mediate antiestrogen resistance in estrogen receptor-positive breast cancer.

    PubMed

    Schwarz, Luis J; Fox, Emily M; Balko, Justin M; Garrett, Joan T; Kuba, María Gabriela; Estrada, Mónica Valeria; González-Angulo, Ana María; Mills, Gordon B; Red-Brewer, Monica; Mayer, Ingrid A; Abramson, Vandana; Rizzo, Monica; Kelley, Mark C; Meszoely, Ingrid M; Arteaga, Carlos L

    2014-12-01

    Estrogen receptor-positive (ER(+)) breast cancers adapt to hormone deprivation and become resistant to antiestrogen therapy. Here, we performed deep sequencing on ER(+) tumors that remained highly proliferative after treatment with the aromatase inhibitor letrozole and identified a D189Y mutation in the inhibitory SH2 domain of the SRC family kinase (SFK) LYN. Evaluation of 463 breast tumors in The Cancer Genome Atlas revealed four LYN mutations, two of which affected the SH2 domain. In addition, LYN was upregulated in multiple ER(+) breast cancer lines resistant to long-term estrogen deprivation (LTED). An RNAi-based kinome screen revealed that LYN is required for growth of ER(+) LTED breast cancer cells. Kinase assays and immunoblot analyses of SRC substrates in transfected cells indicated that LYN(D189Y) has higher catalytic activity than WT protein. Further, LYN(D189Y) exhibited reduced phosphorylation at the inhibitory Y507 site compared with LYN(WT). Other SH2 domain LYN mutants, E159K and K209N, also exhibited higher catalytic activity and reduced inhibitory site phosphorylation. LYN(D189Y) overexpression abrogated growth inhibition by fulvestrant and/or the PI3K inhibitor BKM120 in 3 ER(+) breast cancer cell lines. The SFK inhibitor dasatinib enhanced the antitumor effect of BKM120 and fulvestrant against estrogen-deprived ER(+) xenografts but not LYN(D189Y)-expressing xenografts. These results suggest that LYN mutations mediate escape from antiestrogens in a subset of ER(+) breast cancers.

  18. The effects of R683S (G) genetic mutations on the JAK2 activity, structure and stability.

    PubMed

    Li, Feng; Guo, Hua-Yan; Wang, Man; Geng, Hong-Li; Bian, Mei-Ru; Cao, Jiang; Chen, Chong; Zeng, Ling-Yu; Wang, Xiao-Yun; Wu, Qing-Yun

    2013-09-01

    Janus kinase 2 (JAK2) is an important mediator of cytokine receptor signaling and plays key roles in the hematopoietic and immune response. The acquired JAK2 R683S (G) mutations are presumed to be a biomarker for B-cell acute lymphoblastic leukemia (B-ALL). However, how these mutations leading to the B-ALL is still unclear. The crystal structure of JAK2 JH2 domain suggests that the residue R683 locating in the linker between the N and C lobes of JH2 domain is important for keeping the compact structure, activity and structural stability of this domain. Mutations R683S, R683G and R683E significantly increase JAK2 activity and decrease its structural stability. While the R683K and R683H mutations almost have no effects on the JAK2 activity and structural stability. Furthermore, the spectroscopic experiments imply that mutations R683S, R683G and R683E impair the structure of JAK2 JH2 domain, and lead JAK2 to partially unfolded state. It may be this partially unfolded state that caused JAK2 R683S (G) constitutive activation. This study provides clues in understanding the mechanism of JAK2 R683S (G) mutations caused B-ALL.

  19. Activation induced deaminase mutational signature overlaps with CpG methylation sites in follicular lymphoma and other cancers

    PubMed Central

    Rogozin, Igor B.; Lada, Artem G.; Goncearenco, Alexander; Green, Michael R.; De, Subhajyoti; Nudelman, German; Panchenko, Anna R.; Koonin, Eugene V.; Pavlov, Youri I.

    2016-01-01

    Follicular lymphoma (FL) is an uncurable cancer characterized by progressive severity of relapses. We analyzed sequence context specificity of mutations in the B cells from a large cohort of FL patients. We revealed substantial excess of mutations within a novel hybrid nucleotide motif: the signature of somatic hypermutation (SHM) enzyme, Activation Induced Deaminase (AID), which overlaps the CpG methylation site. This finding implies that in FL the SHM machinery acts at genomic sites containing methylated cytosine. We identified the prevalence of this hybrid mutational signature in many other types of human cancer, suggesting that AID-mediated, CpG-methylation dependent mutagenesis is a common feature of tumorigenesis. PMID:27924834

  20. Phenotype Characterization and DSPP Mutational Analysis of Three Brazilian Dentinogenesis Imperfecta Type II Families

    PubMed Central

    Acevedo, A.C.; Santos, L.J.S.; Paula, L.M.; Dong, J.; MacDougall, M.

    2008-01-01

    The aim of this study was to perform phenotype analysis and dentin sialophosphoprotein (DSPP) mutational analysis on 3 Brazilian families diagnosed with dentinogenesis imperfecta type II (DGI-II) attending the Dental Anomalies Clinic in Brasilia, Brazil. Physical and oral examinations, as well as radiographic and histopathological analyses, were performed on 28 affected and unaffected individuals. Clinical, radiographic and histopathological analyses confirmed the diagnosis of DGI-II in 19 individuals. Pulp stones were observed in ground sections of several teeth in 2 families, suggesting that obliteration of pulp chambers and root canals results from the growth of these nodular structures. Mutational DSPP gene analysis of representative affected family members revealed 7 various non-disease-causing alterations in exons 1–4 within the dentin sialoprotein domain. Further longitudinal studies are necessary to elucidate the progression of pulpal obliteration in the DGI-II patients studied as well as the molecular basis of their disease. PMID:18797159

  1. Mutational analysis of the NF1 GAP-related domain in neuroectodermal tumors

    SciTech Connect

    Vinanzi, C.; Basso, G.; Perilongo, G.

    1994-09-01

    To try to contribute to the more precise characterization of the function of the NF1 gene in tumorigenesis we have analyzed the most conserved region of its coding sequence, the GAP-related domain (NF1 GRD), which is attributed with tumor suppressor function. The rationale for the study was based on the likelihood of finding structural alterations resulting in loss of function of this region, in situations such as tumors of neuroepithelial tissues. In these situations, the activity of the NF1 gene product, neurofibromis, a GTPase activating protein, seems to be crucial in regulating the mechanisms of signal transduction mediated by p21 ras. We have studied the NF1 GRD region by PCR amplification of each exon (exons 21-27a) followed by subsequent PAGE and SSCP analysis of the amplification products in 60 primary sporadic neuroectodermal tumors. Our sample included: 14 neuroblastoma, 11 glioblastoma, 8 medulloblastoma, 7 ependimoma, 6 peripheral PNET, 1 ganglioneuroma, 1 glioma, 1 Ewing sarcoma, 1 meningioma and 1 schwannoma. We have not identified structural alterations of the NF1 GRD region in the tumors analysed, with one possible exception now in the process of being characterized. We can conclude that the loss of the NF1 gene tumor suppressor function that might lead or contribute to the development of malignancies in tissues of neuroectodermal origin is not due to structural abnormalities of the region of the gene interacting with p21 ras, either as a negative regulator or as a downstream effector of it. These data, together with the observation that the oncogene ras 21 is not typically mutated in neuroectodermal tumors, and that GTP-ras has been found normally regulated in neurofibromis-deficient melanoma and neuroblastoma cell lines, seem to support the hypothesis that the antioncogene activity of the NF1 gene could be totally independent from its interaction with ras.

  2. Functional Trade-Offs in Promiscuous Enzymes Cannot Be Explained by Intrinsic Mutational Robustness of the Native Activity

    PubMed Central

    Kaltenbach, Miriam; Emond, Stephane; Tokuriki, Nobuhiko

    2016-01-01

    The extent to which an emerging new function trades off with the original function is a key characteristic of the dynamics of enzyme evolution. Various cases of laboratory evolution have unveiled a characteristic trend; a large increase in a new, promiscuous activity is often accompanied by only a mild reduction of the native, original activity. A model that associates weak trade-offs with “evolvability” was put forward, which proposed that enzymes possess mutational robustness in the native activity and plasticity in promiscuous activities. This would enable the acquisition of a new function without compromising the original one, reducing the benefit of early gene duplication and therefore the selection pressure thereon. Yet, to date, no experimental study has examined this hypothesis directly. Here, we investigate the causes of weak trade-offs by systematically characterizing adaptive mutations that occurred in two cases of evolutionary transitions in enzyme function: (1) from phosphotriesterase to arylesterase, and (2) from atrazine chlorohydrolase to melamine deaminase. Mutational analyses in various genetic backgrounds revealed that, in contrast to the prevailing model, the native activity is less robust to mutations than the promiscuous activity. For example, in phosphotriesterase, the deleterious effect of individual mutations on the native phosphotriesterase activity is much larger than their positive effect on the promiscuous arylesterase activity. Our observations suggest a revision of the established model: weak trade-offs are not caused by an intrinsic robustness of the native activity and plasticity of the promiscuous activity. We propose that upon strong adaptive pressure for the new activity without selection against the original one, selected mutations will lead to the largest possible increases in the new function, but whether and to what extent they decrease the old function is irrelevant, creating a bias towards initially weak trade-offs and

  3. Functional Analysis of A Novel Splicing Mutation in The Mutase Gene of Two Unrelated Pedigrees

    PubMed Central

    Miryounesi, Mohammad; Pasalar, Parvin; Keramatipour, Mohammad

    2016-01-01

    Objective Methylmalonic acidura (MMA) is a rare autosomal recessive inborn error of metabolism. In this study we present a novel nucleotide change in the mutase (MUT) gene of two unrelated Iranian pedigrees and introduce the methods used for its functional analysis. Materials and Methods Two probands with definite diagnosis of MMA and a common novel variant in the MUT were included in a descriptive study. Bioinformatic prediction of the splicing variant was done with different prediction servers. Reverse transcriptionpolymerase chain reaction (RT-PCR) was done for splicing analysis and the products were analyzed by sequencing. Results The included index patients showed elevated levels of propionylcarnitine (C3). Urine organic acid analysis confirmed the diagnosis of MMA, and screening for mutations in the MUT revealed a novel C to G variation at the 3´ splice acceptor site in intron 12. In silico analysis suggested the change as a mutation in a conserved sequence. The splicing analysis showed that the C to G nucleotide change at position -3 in the acceptor splice site can lead to retention of the intron 12 sequence. Conclusion This is the first report of a mutation at the position -3 in the MUT intron 12 (c.2125-3C>G). The results suggest that the identified variation can be associated with the typical clinical manifestations of MMA. PMID:27602322

  4. Mutational analysis of HRAS and KRAS genes in oral carcinoma cell lines.

    PubMed

    Maemoto, Sachiko; Yumoto, Megumi; Ibata, Masato; Torizuka, Sho; Ozawa, Naohumi; Tatsumi, Shunsuke; Hashido, Moeko; Morikawa, Masako; Maeda, Genta; Imai, Kazushi

    2012-07-01

    RAS overexpression and its active mutations are involved in malignant tumorigenesis. However, the mutation rates in oral carcinoma cells differ between populations. In the present study, genomic DNA of oral carcinoma cells (HOC313, TSU, HSC2, HSC3, KOSC2, KOSC3, SCCKN, OSC19, Ca9.22, and Ho1u1 cells) or normal gingival fibroblasts (GF12 cells) derived from a Japanese population were amplified by polymerase chain reaction using primer sets, spanning HRAS and KRAS exons. Nucleotide substitutions were analyzed by single strand conformation polymorphism. In contrast to no substitutions in KRAS, nine different substitutions were detected in HRAS. Of the nine, six substitutions were located at intron 1 (HSC2 and HSC3 cells) or intron 2 (HSC3, SCCKN and Ca9.22 cells), and one each of exon 1 (all cells), exon 2 (HOC313, TSU, HSC2 and HSC3 cells) and the 5' upstream region (all cells). Substitutions at exons 1 and 2 did not affect the amino acid sequence; the exon 1 substitution was positioned at the 5' untranslated region, which may be a single nucleotide polymorphism (SNP) sequence because all the cells were isolated from a Japanese population, and the mutations at exon 2 was a silent mutation. A substitution at the 5' upstream region was an SNP. These data demonstrate that SNPs and point mutations observed in HRAS do not change the amino acid sequence, and suggest that the mutations affecting the amino acid sequence may be a rare event in oral carcinomas of the Japanese population.

  5. A mutational analysis of leaf morphogenesis in Arabidopsis thaliana.

    PubMed Central

    Berná, G; Robles, P; Micol, J L

    1999-01-01

    As a contribution to a better understanding of the developmental processes that are specific to plants, we have begun a genetic analysis of leaf ontogeny in the model system Arabidopsis thaliana by performing a large-scale screening for mutants with abnormal leaves. After screening 46,159 M2 individuals, arising from 5770 M1 parental seeds exposed to EMS, we isolated 1926 M2 putative leaf mutants, 853 of which yielded viable M3 inbred progeny. Mutant phenotypes were transmitted with complete penetrance and small variations in expressivity in 255 lines. Most of them were inherited as recessive monogenic traits, belonging to 94 complementation groups, which suggests that we did not reach saturation of the genome. We discuss the nature of the processes presumably perturbed in the phenotypic classes defined among our mutants. PMID:10353913

  6. Mutational analysis of UMP kinase from Escherichia coli.

    PubMed

    Bucurenci, N; Serina, L; Zaharia, C; Landais, S; Danchin, A; Bârzu, O

    1998-02-01

    UMP kinase from Escherichia coli is one of the four regulatory enzymes involved in the de novo biosynthetic pathway of pyrimidine nucleotides. This homohexamer, with no counterpart in eukarya, might serve as a target for new antibacterial drugs. Although the bacterial enzyme does not show sequence similarity with any other known nucleoside monophosphate kinase, two segments between amino acids 35 to 78 and 145 to 194 exhibit 28% identity with phosphoglycerate kinase and 30% identity with aspartokinase, respectively. Based on these similarities, a number of residues of E. coli UMP kinase were selected for site-directed mutagenesis experiments. Biochemical, kinetic, and spectroscopic analysis of the modified proteins identified residues essential for catalysis (Asp146), binding of UMP (Asp174), and interaction with the allosteric effectors, GTP and UTP (Arg62 and Asp77).

  7. Analysis of Fifty Hotspot Mutations of Lung Squamous Cell Carcinoma in Never-smokers

    PubMed Central

    2017-01-01

    Smoking is the major risk factor for lung squamous cell carcinoma (SCC), although a small number of lung SCCs occurs in never-smokers. The purpose of this study was to compare 50 hotspot mutations of lung SCCs between never-smokers and smokers. We retrospectively reviewed the medical records of patients newly diagnosed with lung SCC between January 1, 2011 and December 31, 2013 in the Seoul National University Hospital. Formalin-fixed, paraffin-embedded tumor samples were used for analysis of hotspot mutations. Fifty cancer-related genes in never-smokers were compared to those in ever-smokers. Of 379 lung SCC patients, 19 (5.0%) were never-smokers. The median age of these 19 patients was 67 years (interquartile range 57–73 years), and 10 of these patients were women (52.5%). The incidence rates of stage I, II, III, and IV disease in this group were 26.4%, 5.3%, 31.6%, and 36.8%, respectively, and sequencing was performed successfully in 14 cases. In the 26 lung SCC tumor samples (12 from never-smokers and 14 from ever-smokers) sequenced using personal genome machine, the most common mutations were in TP53 (75.0%), RAS (66.7%), and STK11 (33.3%), but mutations were also found in EGFR, KIT, and PTEN. The distribution of hotspot mutations in never-smokers was similar to that in ever-smokers. There was no significant difference in overall survival between the 2 groups. The 50 hotspot mutations of lung SCC in never-smokers were similar to those of ever-smokers. PMID:28145643

  8. Linkage and mutational analysis of familial Alzheimer disease kindreds for the APP gene region

    SciTech Connect

    Kamino, K.; Anderson, L.; O'dahl, S.; Nemens, E.; Bird, T.D.; Schellenberg, G.D.; Wijsman, E.M.; Kukall, W.; Larson, E. ); Heston, L.L.

    1992-11-01

    A large number of familial Alzheimer disease (FAD) kindreds were examined to determine whether mutations in the amyloid precursor protein (APP) gene could be responsible for the disease. Previous studies have identified three mutations at APP codon 717 which are pathogenic for Alzheimer disease (AD). Samples from affected subjects were examined for mutations in exons 16 and 17 of the APP gene. A combination of direct sequencing and single-strand conformational polymorphism analysis was used. Sporadic AD and normal controls were also examined by the same methods. Five sequence variants were identified. One variant at APP codon 693 resulted in a Glu[yields]Gly change. This is the same codon as the hereditary cerebral hemorrhage with amyloidosis-Dutch type Glu[yields]Gln mutation. Another single-base change at APP codon 708 did not alter the amino acid encoded at this site. Two point mutations and a 6-bp deletion were identified in the intronic sequences surrounding exon 17. None of the variants could be unambigously determined to be responsible for FAD. The larger families were also analyzed by testing for linkage of FAD to a highly polymorphic short tandem repeat marker (D21S210) that is tightly linked to APP. Highly negative LOD scores were obtained for the family groups tested, and linkage was formally excluded beyond [theta] = .10 for the Volga German kindreds, [theta] = .20 for early-onset non-Volga Germans, and [theta] = .10 for late-onset families. LOD scores for linkage of FAD to markers centromeric to APP (D21S1/S11, D21S13, and D21S215) were also negative in the three family groups. These studies show that APP mutations account for AD in only a small fraction of FAD kindreds. 49 refs., 6 figs., 4 tabs.

  9. Linkage and mutational analysis of familial Alzheimer disease kindreds for the APP gene region

    PubMed Central

    Kamino, Kouzin; Orr, Harry T.; Payami, Haydeh; Wijsman, Ellen M.; Alonso, Ma. Elisa; Pulst, Stefan M.; Anderson, Leojean; O'dahl, Sheldon; Nemens, Ellen; White, June A.; Sadovnick, Adele D.; Ball, Melvyn J.; Kaye, Jeffery; Warren, Andrew; McInnis, Melvin; Antonarakis, Stylianos E.; Korenberg, Julie R.; Sharma, Vikram; Kukull, Walter; Larson, Eric; Heston, Leonard L.; Martin, George M.; Bird, Thomas D.; Schellenberg, Gerard D.

    1992-01-01

    A large number of familial Alzheimer disease (FAD) kindreds were examined to determine whether mutations in the amyloid precursor protein (APP) gene could be responsible for the disease. Previous studies have identified three mutations at APP codon 717 which are pathogenic for Alzheimer disease (AD). Samples from affected subjects were examined for mutations in exons 16 and 17 of the APP gene. A combination of direct sequencing and single-strand conformational polymorphism analysis was used. Sporadic AD and normal controls were also examined by the same methods. Five sequence variants were identified. One variant at APP codon 693 resulted in a Glu→Gly change. This is the same codon as the hereditary cerebral hemorrhage with amyloidosis–Dutch type Glu→Gln mutation. Another single-base change at APP codon 708 did not alter the amino acid encoded at this site. Two point mutations and a 6-bp deletion were identified in the intronic sequences surrounding exon 17. None of the variants could be unambiguously determined to be responsible for FAD. The larger families were also analyzed by testing for linkage of FAD to a highly polymorphic short tandem repeat marker (D21S210) that is tightly linked to APP. Highly negative LOD scores were obtained for the family groups tested, and linkage was formally excluded beyond θ = .10 for the Volga German kindreds, θ = .20 for early-onset non-Volga Germans, and θ = .10 for late-onset families. LOD scores for linkage of FAD to markers centromeric to APP (D21S1/S11, D21S13, and D21S215) were also negative in the three family groups. These studies show that APP mutations account for AD in only a small fraction of FAD kindreds. ImagesFigure 4p1009-a PMID:1415269

  10. Transcriptionally Silenced Transgenes in Maize Are Activated by Three Mutations Defective in Paramutation

    PubMed Central

    McGinnis, Karen M.; Springer, Catherine; Lin, Yan; Carey, Charles C.; Chandler, Vicki

    2006-01-01

    Plants with mutations in one of three maize genes, mop1, rmr1, and rmr2, are defective in paramutation, an allele-specific interaction that leads to meiotically heritable chromatin changes. Experiments reported here demonstrate that these genes are required to maintain the transcriptional silencing of two different transgenes, suggesting that paramutation and transcriptional silencing of transgenes share mechanisms. We hypothesize that the transgenes are silenced through an RNA-directed chromatin mechanism, because mop1 encodes an RNA-dependent RNA polymerase. In all the mutants, DNA methylation was reduced in the active transgenes relative to the silent transgenes at all of the CNG sites monitored within the transgene promoter. However, asymmetrical methylation persisted at one site within the reactivated transgene in the rmr1-1 mutant. With that one mutant, rmr1-1, the transgene was efficiently resilenced upon outcrossing to reintroduce the wild-type protein. In contrast, with the mop1-1 and rmr2-1 mutants, the transgene remained active in a subset of progeny even after the wild-type proteins were reintroduced by outcrossing. Interestingly, this immunity to silencing increased as the generations progressed, consistent with a heritable chromatin state being formed at the transgene in plants carrying the mop1-1 and rmr2-1 mutations that becomes more resistant to silencing in subsequent generations. PMID:16702420

  11. Activating mutations in the NT5C2 nucleotidase gene drive chemotherapy resistance in relapsed ALL.

    PubMed

    Tzoneva, Gannie; Perez-Garcia, Arianne; Carpenter, Zachary; Khiabanian, Hossein; Tosello, Valeria; Allegretta, Maddalena; Paietta, Elisabeth; Racevskis, Janis; Rowe, Jacob M; Tallman, Martin S; Paganin, Maddalena; Basso, Giuseppe; Hof, Jana; Kirschner-Schwabe, Renate; Palomero, Teresa; Rabadan, Raul; Ferrando, Adolfo

    2013-03-01

    Acute lymphoblastic leukemia (ALL) is an aggressive hematological tumor resulting from the malignant transformation of lymphoid progenitors. Despite intensive chemotherapy, 20% of pediatric patients and over 50% of adult patients with ALL do not achieve a complete remission or relapse after intensified chemotherapy, making disease relapse and resistance to therapy the most substantial challenge in the treatment of this disease. Using whole-exome sequencing, we identify mutations in the cytosolic 5'-nucleotidase II gene (NT5C2), which encodes a 5'-nucleotidase enzyme that is responsible for the inactivation of nucleoside-analog chemotherapy drugs, in 20/103 (19%) relapse T cell ALLs and 1/35 (3%) relapse B-precursor ALLs. NT5C2 mutant proteins show increased nucleotidase activity in vitro and conferred resistance to chemotherapy with 6-mercaptopurine and 6-thioguanine when expressed in ALL lymphoblasts. These results support a prominent role for activating mutations in NT5C2 and increased nucleoside-analog metabolism in disease progression and chemotherapy resistance in ALL.

  12. An integrative analysis of PIK3CA mutation, PTEN, and INPP4B expression in terms of trastuzumab efficacy in HER2-positive breast cancer.

    PubMed

    Sueta, Aiko; Yamamoto, Yutaka; Yamamoto-Ibusuki, Mutsuko; Hayashi, Mitsuhiro; Takeshita, Takashi; Yamamoto, Satoko; Iwase, Hirotaka

    2014-01-01

    The phosphoinositide-3-kinase (PI3K) pathway is commonly deregulated in breast cancer through several mechanisms, including PIK3CA mutation and loss of phosphatase and tensin homolog (PTEN) and inositol polyphosphate 4-phosphatase-II (INPP4B). We aimed to evaluate the predictive relevance of these biomarkers to trastuzumab efficacy in HER2-positive disease. We evaluated the effect of trastuzumab in 43 breast cancer patients with HER2-overexpression who received neoadjuvant treatment. PIK3CA mutation was examined by direct sequencing and digital PCR assay, and PIK3CA copy number was assessed by digital PCR assay of pretreatment tissues. PTEN, pAkt, and INPP4B were assessed by immunohistochemistry. Direct sequencing detected mutant DNA in 21% of all patients, but the incidence increased to 49% using digital PCR. The pathological complete response (pCR) rate in patients with PIK3CA mutations was 29% compared with 67% for those without PIK3CA mutations (P = 0.093), when the mutation was defined as positive if the mutant proportion was more than 10% of total genetic content by digital PCR. Low PTEN expression was associated with less pCR compared to high expression (33% versus 72%, P = 0.034). There were no significant associations of PIK3CA copy number, pAKt, or INPP4B with trastuzumab efficacy. In multivariate analysis, activation of the PI3K pathway due to either PIK3CA mutation or low PTEN were related to poorer response to trastuzumab (OR of predictive pCR was 0.11, 95%CI; 0.03-0.48). In conclusion, activating the PI3K pathway is associated with low pCR to trastuzumab-based treatment in HER2-positive breast cancer. Combined analysis of PIK3CA mutation and PTEN expression may serve as critical indicators to identify patients unlikely to respond to trastuzumab.

  13. Structural analysis of chloroplast DNA in Prunus (Rosaceae): evolution, genetic diversity and unequal mutations.

    PubMed

    Katayama, H; Uematsu, C

    2005-11-01

    In order to understand the evolutionary aspects of the chloroplast DNA (cpDNA) structures in Rosaceous plants, a physical map of peach (Prunus persica cv. Hakuhou) cpDNA was constructed. Fourteen lambda phage clones which covered the entire sequence of the peach cpDNA were digested by restriction enzymes (SalI, XhoI, BamHI, SacI, and PstI) used singly or in combination. The molecular size of peach cpDNA was estimated to be about 152 kb. The gene order and contents were revealed to be equivalent to those of standard type of angiosperms by the localization of 31 genes on the physical map. Eighteen accessions from 14 Prunus species (P. persica, P. mira, P. davidiana, P. cerasis, P. cerasifera, P. domestica, P. insititia, P. spinosa, P. salicina, P. maritima, P. armeniaca, P. mume, P. tomentosa, P. zippeliana, and P. salicifolia) and one interspecific hybrid were used for the structural analysis of cpDNAs. Seventeen mutations (16 recognition site changes and one length mutation) were found in the cpDNA of these 18 accessions by RFLP analysis allowing a classification into 11 genome types. Although the base substitution rate in the recognition site (100p = 0.72) of cpDNA in Prunus was similar to that of other plants, i.e., Triticum-Aegilops, Brassica, and Pisum, it differed from Pyrus (100p = 0.15) in Rosaceae. Seven mutations including one length mutation were densely located within a region of about 9.1 kb which includes psbA and atpA in the left border of a large single-copy region of Prunus cpDNAs. The length mutation was detected only in P. persica and consisted of a 277 bp deletion which occurred in a spacer region between the trnS and trnG genes within the 9.1 kb region. Additional fragment length mutations (insertion/deletion), which were not detected by RFLP analysis, were revealed by PCR and sequence analyses in P. zippeliana and P. salicifolia. All of these length mutations occurred within the 9.1 kb region between psbA and atpA. This region could be an intra

  14. Diversity, Mutation and Recombination Analysis of Cotton Leaf Curl Geminiviruses.

    PubMed

    Saleem, Huma; Nahid, Nazia; Shakir, Sara; Ijaz, Sehrish; Murtaza, Ghulam; Khan, Asif Ali; Mubin, Muhammad; Nawaz-Ul-Rehman, Muhammad Shah

    2016-01-01

    The spread of cotton leaf curl disease in China, India and Pakistan is a recent phenomenon. Analysis of available sequence data determined that there is a substantial diversity of cotton-infecting geminiviruses in Pakistan. Phylogenetic analyses indicated that recombination between two major groups of viruses, cotton leaf curl Multan virus (CLCuMuV) and cotton leaf curl Kokhran virus (CLCuKoV), led to the emergence of several new viruses. Recombination detection programs and phylogenetic analyses showed that CLCuMuV and CLCuKoV are highly recombinant viruses. Indeed, CLCuKoV appeared to be a major donor virus for the coat protein (CP) gene, while CLCuMuV donated the Rep gene in the majority of recombination events. Using recombination free nucleotide datasets the substitution rates for CP and Rep genes were determined. We inferred similar nucleotide substitution rates for the CLCuMuV-Rep gene (4.96X10-4) and CLCuKoV-CP gene (2.706X10-4), whereas relatively higher substitution rates were observed for CLCuMuV-CP and CLCuKoV-Rep genes. The combination of sequences with equal and relatively low substitution rates, seemed to result in the emergence of viral isolates that caused epidemics in Pakistan and India. Our findings also suggest that CLCuMuV is spreading at an alarming rate, which can potentially be a threat to cotton production in the Indian subcontinent.

  15. Diversity, Mutation and Recombination Analysis of Cotton Leaf Curl Geminiviruses

    PubMed Central

    Saleem, Huma; Nahid, Nazia; Shakir, Sara; Ijaz, Sehrish; Murtaza, Ghulam; Khan, Asif Ali; Mubin, Muhammad; Nawaz-ul-Rehman, Muhammad Shah

    2016-01-01

    The spread of cotton leaf curl disease in China, India and Pakistan is a recent phenomenon. Analysis of available sequence data determined that there is a substantial diversity of cotton-infecting geminiviruses in Pakistan. Phylogenetic analyses indicated that recombination between two major groups of viruses, cotton leaf curl Multan virus (CLCuMuV) and cotton leaf curl Kokhran virus (CLCuKoV), led to the emergence of several new viruses. Recombination detection programs and phylogenetic analyses showed that CLCuMuV and CLCuKoV are highly recombinant viruses. Indeed, CLCuKoV appeared to be a major donor virus for the coat protein (CP) gene, while CLCuMuV donated the Rep gene in the majority of recombination events. Using recombination free nucleotide datasets the substitution rates for CP and Rep genes were determined. We inferred similar nucleotide substitution rates for the CLCuMuV-Rep gene (4.96X10-4) and CLCuKoV-CP gene (2.706X10-4), whereas relatively higher substitution rates were observed for CLCuMuV-CP and CLCuKoV-Rep genes. The combination of sequences with equal and relatively low substitution rates, seemed to result in the emergence of viral isolates that caused epidemics in Pakistan and India. Our findings also suggest that CLCuMuV is spreading at an alarming rate, which can potentially be a threat to cotton production in the Indian subcontinent. PMID:26963635

  16. Creation of chimeric human/rabbit APOBEC1 with HIV-1 restriction and DNA mutation activities

    NASA Astrophysics Data System (ADS)

    Ikeda, Terumasa; Ong, Eugene Boon Beng; Watanabe, Nobumoto; Sakaguchi, Nobuo; Maeda, Kazuhiko; Koito, Atsushi

    2016-01-01

    APOBEC1 (A1) proteins from lagomorphs and rodents have deaminase-dependent restriction activity against HIV-1, whereas human A1 exerts a negligible effect. To investigate these differences in the restriction of HIV-1 by A1 proteins, a series of chimeric proteins combining rabbit and human A1s was constructed. Homology models of the A1s indicated that their activities derive from functional domains that likely act in tandem through a dimeric interface. The C-terminal region containing the leucine-rich motif and the dimerization domains of rabbit A1 is important for its anti-HIV-1 activity. The A1 chimeras with strong anti-HIV-1 activity were incorporated into virions more efficiently than those without anti-HIV-1 activity, and exhibited potent DNA-mutator activity. Therefore, the C-terminal region of rabbit A1 is involved in both its packaging into the HIV-1 virion and its deamination activity against both viral cDNA and genomic RNA. This study identifies the novel molecular mechanism underlying the target specificity of A1.

  17. EGFR activating mutations detected by different PCR techniques in Caucasian NSCLC patients with CNS metastases: short report.

    PubMed

    Kamila, Wojas-Krawczyk; Michał, Skroński; Paweł, Krawczyk; Paulina, Jaguś; Tomasz, Kucharczyk; Bożena, Jarosz; Radosław, Mlak; Justyna, Szumiło; Marek, Sawicki; Trojanowski, Tomasz; Janusz, Milanowski; Joanna, Chorostowska-Wynimko

    2013-12-01

    EGFR mutation testing has become an essential determination to decide treatment options for NSCLC. The mutation analysis is often conducted in samples with low percentage of tumour cells from primary tumour biopsies. There is very little evidence that samples from metastatic tissues are suitable for EGFR testing. We had evaluated the frequency of EGFR mutations with three highly sensitive PCR techniques in formalin-fixed, paraffin-embedded samples of 143 NSCLC patients with central nervous system (CNS) metastases. 32 corresponding primary tumours were also examined. We used PCR followed by DNA fragments length analysis (FLA), ASP-PCR and PNA-LNA PCR clamp techniques. We found 9 (6.29 %) EGFR gene mutations in CNS samples: 3 (2.1 %) in exon 19 and 6 (4.2 %) in exon 21. The full concordance between CNS metastases and primary tumour samples was observed. PCR followed by DNA-FLA and PNA-LNA PCR clamp were sensitive enough to detect exon 19 deletions. Two mutations in exon 21 were detected by ASP-PCR only, one L858R substitution was detected only by PNA-LNA PCR clamp. With respect to sensitivity, PCR followed by DNA-FLA achieved a level of detection of at least 10 % of mutated DNA for exon 19 deletion, as for ASP-PCR it was at least 5 % of mutated DNA for L858R substitution. Higher sensitivity of 1 % of mutated DNA was achieved by PNA-LNA PCR clamp technique for both mutations. The use of different methodological techniques authenticates the negative result of molecular tests.

  18. Mutational analysis of Mycobacterium tuberculosis lysine ɛ-aminotransferase and inhibitor co-crystal structures, reveals distinct binding modes.

    PubMed

    Tripathi, Sarvind Mani; Agarwal, Aparna; Ramachandran, Ravishankar

    Lysine ɛ-aminotransferase (LAT) converts lysine to α-aminoadipate-δ-semialdehyde in a PLP-mediated reaction. We mutated active-site T330, N328 and E243, and structurally rationalized their properties. T330A and T330S mutants cannot bind PLP and are inactive. N328A although inactive, binds to PLP. E243A retains activity, but binds α-ketoglutarate in a different conformation. We had earlier identified 2-aminomethyl piperidine derivative as a LAT inhibitor. The co-crystal structure reveals that it mimics binding of C5 substrates and exhibits two binding modes. E243, that shields R422 in the apo enzyme, exhibits conformational changes to permit the binding of the inhibitor in one of the binding modes. Structure-based analysis of bound water in the active site suggests optimization strategies for synthesis of improved inhibitors.

  19. Activated Alk triggers prolonged neurogenesis and Ret upregulation providing a therapeutic target in ALK-mutated neuroblastoma

    PubMed Central

    Cazes, Alex; Lopez-Delisle, Lucille; Tsarovina, Konstantina; Pierre-Eugène, Cécile; De Preter, Katleen; Peuchmaur, Michel; Nicolas, André; Provost, Claire; Louis-Brennetot, Caroline; Daveau, Romain; Kumps, Candy; Cascone, Ilaria; Schleiermacher, Gudrun; Prignon, Aurélie; Speleman, Frank; Rohrer, Hermann; Delattre, Olivier; Janoueix-Lerosey, Isabelle

    2014-01-01

    Activating mutations of the ALK (Anaplastic lymphoma Kinase) gene have been identified in sporadic and familial cases of neuroblastoma, a cancer of early childhood arising from the sympathetic nervous system (SNS). To decipher ALK function in neuroblastoma predisposition and oncogenesis, we have characterized knock-in (KI) mice bearing the two most frequent mutations observed in neuroblastoma patients. A dramatic enlargement of sympathetic ganglia is observed in AlkF1178L mice from embryonic to adult stages associated with an increased proliferation of sympathetic neuroblasts from E14.5 to birth. In a MYCN transgenic context, the F1178L mutation displays a higher oncogenic potential than the R1279Q mutation as evi