Science.gov

Sample records for activity mutational analysis

  1. Alanine-Scanning Mutational Analysis of Durancin GL Reveals Residues Important for Its Antimicrobial Activity.

    PubMed

    Ju, Xingrong; Chen, Xinquan; Du, Lihui; Wu, Xueyou; Liu, Fang; Yuan, Jian

    2015-07-22

    Durancin GL is a novel class IIa bacteriocin with 43 residues produced by Enterococcus durans 41D. This bacteriocin demonstrates narrow inhibition spectrum and potent antimicrobial activity against several Listeria monocytogenes strains, including nisin-resistant L. monocytogenes NR30. A systematic alanine-scanning mutational analysis with site-directed mutagenesis was performed to analyze durancin GL residues important for antimicrobial activity and specificity. Results showed that three mutations lost their antimicrobial activity, ten mutations demonstrated a decreased effect on the activity, and seven mutations exhibited relatively high activity. With regard to inhibitory spectrum, four mutants demonstrated a narrower antimicrobial spectrum than wild-type durancin GL. Another four mutants displayed a broader target cell spectrum and increased potency relative to wild-type durancin GL. These findings broaden our understanding of durancin GL residues important for its antimicrobial activity and contribute to future rational design of variants with increased potency.

  2. Alanine-Scanning Mutational Analysis of Durancin GL Reveals Residues Important for Its Antimicrobial Activity.

    PubMed

    Ju, Xingrong; Chen, Xinquan; Du, Lihui; Wu, Xueyou; Liu, Fang; Yuan, Jian

    2015-07-22

    Durancin GL is a novel class IIa bacteriocin with 43 residues produced by Enterococcus durans 41D. This bacteriocin demonstrates narrow inhibition spectrum and potent antimicrobial activity against several Listeria monocytogenes strains, including nisin-resistant L. monocytogenes NR30. A systematic alanine-scanning mutational analysis with site-directed mutagenesis was performed to analyze durancin GL residues important for antimicrobial activity and specificity. Results showed that three mutations lost their antimicrobial activity, ten mutations demonstrated a decreased effect on the activity, and seven mutations exhibited relatively high activity. With regard to inhibitory spectrum, four mutants demonstrated a narrower antimicrobial spectrum than wild-type durancin GL. Another four mutants displayed a broader target cell spectrum and increased potency relative to wild-type durancin GL. These findings broaden our understanding of durancin GL residues important for its antimicrobial activity and contribute to future rational design of variants with increased potency. PMID:26168032

  3. Analysis of PIK3CA Mutations and Activation Pathways in Triple Negative Breast Cancer

    PubMed Central

    Muroni, Maria Rosaria; Sanges, Francesca; Sotgiu, Giovanni; Ena, Sara; Pira, Giovanna; Murgia, Luciano; Manca, Alessandra; Uras, Maria Gabriela; Sarobba, Maria Giuseppina; Urru, Silvana; De Miglio, Maria Rosaria

    2015-01-01

    Background Triple Negative Breast Cancer (TNBC) accounts for 12–24% of all breast carcinomas, and shows worse prognosis compared to other breast cancer subtypes. Molecular studies demonstrated that TNBCs are a heterogeneous group of tumors with different clinical and pathologic features, prognosis, genetic-molecular alterations and treatment responsivity. The PI3K/AKT is a major pathway involved in the regulation of cell survival and proliferation, and is the most frequently altered pathway in breast cancer, apparently with different biologic impact on specific cancer subtypes. The most common genetic abnormality is represented by PIK3CA gene activating mutations, with an overall frequency of 20–40%. The aims of our study were to investigate PIK3CA gene mutations on a large series of TNBC, to perform a wider analysis on genetic alterations involving PI3K/AKT and BRAF/RAS/MAPK pathways and to correlate the results with clinical-pathologic data. Materials and Methods PIK3CA mutation analysis was performed by using cobas® PIK3CA Mutation Test. EGFR, AKT1, BRAF, and KRAS genes were analyzed by sequencing. Immunohistochemistry was carried out to identify PTEN loss and to investigate for PI3K/AKT pathways components. Results PIK3CA mutations were detected in 23.7% of TNBC, whereas no mutations were identified in EGFR, AKT1, BRAF, and KRAS genes. Moreover, we observed PTEN loss in 11.3% of tumors. Deregulation of PI3K/AKT pathways was revealed by consistent activation of pAKT and p-p44/42 MAPK in all PIK3CA mutated TNBC. Conclusions Our data shows that PIK3CA mutations and PI3K/AKT pathway activation are common events in TNBC. A deeper investigation on specific TNBC genomic abnormalities might be helpful in order to select patients who would benefit from current targeted therapy strategies. PMID:26540293

  4. Quantitative metabolome analysis profiles activation of glutaminolysis in glioma with IDH1 mutation.

    PubMed

    Ohka, Fumiharu; Ito, Maki; Ranjit, Melissa; Senga, Takeshi; Motomura, Ayako; Motomura, Kazuya; Saito, Kaori; Kato, Keiko; Kato, Yukinari; Wakabayashi, Toshihiko; Soga, Tomoyoshi; Natsume, Atsushi

    2014-06-01

    Isocitrate dehydrogenase 1 (IDH1), which localizes to the cytosol and peroxisomes, catalyzes the oxidative decarboxylation of isocitrate to α-ketoglutarate (α-KG) and in parallel converts NADP(+) to NADPH. IDH1 mutations are frequently detected in grades 2-4 gliomas and in acute myeloid leukemias (AML). Mutations of IDH1 have been identified at codon 132, with arginine being replaced with histidine in most cases. Mutant IDH1 gains novel enzyme activity converting α-KG to D-2-hydroxyglutarate (2-HG) which acts as a competitive inhibitor of α-KG. As a result, the activity of α-KG-dependent enzyme is reduced. Based on these findings, 2-HG has been proposed to be an oncometabolite. In this study, we established HEK293 and U87 cells that stably expressed IDH1-WT and IDH1-R132H and investigated the effect of glutaminase inhibition on cell proliferation with 6-diazo-5-oxo-L-norleucine (DON). We found that cell proliferation was suppressed in IDH1-R132H cells. The addition of α-KG restored cell proliferation. The metabolic features of 33 gliomas with wild type IDH1 (IDH1-WT) and with IDH1-R132H mutation were examined by global metabolome analysis using capillary electrophoresis time-of-flight mass spectrometry (CE-TOFMS). We showed that the 2-HG levels were highly elevated in gliomas with IDH1-R132H mutation. Intriguingly, in gliomas with IDH1-R132H, glutamine and glutamate levels were significantly reduced which implies replenishment of α-KG by glutaminolysis. Based on these results, we concluded that glutaminolysis is activated in gliomas with IDH1-R132H mutation and that development of novel therapeutic approaches targeting activated glutaminolysis is warranted.

  5. Mutational analysis of amino acid residues involved in catalytic activity of a family 18 chitinase from tulip bulbs.

    PubMed

    Suzukawa, Keisuke; Yamagami, Takeshi; Ohnuma, Takayuki; Hirakawa, Hideki; Kuhara, Satoru; Aso, Yoichi; Ishiguro, Masatsune

    2003-02-01

    We expressed chitinase-1 (TBC-1) from tulip bulbs (Tulipa bakeri) in E. coli cells and used site-directed mutagenesis to identify amino acid residues essential for catalytic activity. Mutations at Glu-125 and Trp-251 completely abolished enzyme activity, and activity decreased with mutations at Asp-123 and Trp-172 when glycolchitin was the substrate. Activity changed with the mutations of Trp-251 to one of several amino acids with side-chains of little hydrophobicity, suggesting that hydrophobic interaction of Trp-251 is important for the activity. Molecular dynamics (MD) simulation analysis with hevamine as the model compound showed that the distance between Asp-123 and Glu-125 was extended by mutation of Trp-251. Kinetic studies of Trp-251-mutated chitinases confirmed these various phenomena. The results suggested that Glu-125 and Trp-251 are essential for enzyme activity and that Trp-251 had a direct role in ligand binding.

  6. A comparison of ARMS and mutation specific IHC for common activating EGFR mutations analysis in small biopsy and cytology specimens of advanced non small cell lung cancer.

    PubMed

    Wang, Xueqing; Wang, Guoqing; Hao, Yueyue; Xu, Yinhong; Zhang, Lihua

    2014-01-01

    We have compared mutation analysis by Amplification Refractory Mutation System (ARMS) and epidermal growth factor receptor (EGFR) mutant-specific antibodies for their ability to detect two common activating EGFR mutations in a cohort of 115 advanced non-small cell lung cancer (NSCLC), including cytology material, core biopsy, and bronchoscopic biopsies. Assessment of EGFR mutation status was performed by using antibodies and ARMS assay specific to the two major forms of mutant EGFR, exon 19 deletion E746-A750 (c.2235_2249del15 or c.2236_2250del15, p. Glu746_Ala750 del) and exon 21 L858R point mutation (c.2573T>G, p.Leu858Arg). In this study the optimal buffer for antigen retrieval was sodium citrate (pH 6.0). Q score was used to evaluate the specific mutant EGFR proteins expression. Validation using clinical material showed deletions in exon 19 were detected in 19.1% and L858R mutation in 20% of all cases by ARMS assay. A cutoff value of score 1 was used as positive by IHC. No wild type cases were immuno-reactive. The antibodies performed well in cytology, core biopsies and bronchoscopic biopsies. There were only one false positive case using L858R IHC (sensitivity 100%, specificity 98.5%, positive predictive value 96%, negative predictive value 100%). All 23 E746-A750 exon 19 deletions identified by mutation analysis were positive by IHC. The sensitivity of exon 19 IHC for E746-A750 was 100%, specificity 100%, positive predictive value 100% and negative predictive value 100%. The result of the IHC stains was finely correlated with mutations status determined by ARMS assay. Although inferior to molecular genetic analysis of the EGFR gene, IHC is highly specific and sensitive for the targeted EGFR mutations. The antibodies are likely to be of clinical value in cases especially where limited tumor material is available, or in situations where molecular genetic analysis is not readily available.

  7. Mutation Analysis of the LH Receptor Gene in Leydig Cell Adenoma and Hyperplasia and Functional and Biochemical Studies of Activating Mutations of the LH Receptor Gene

    PubMed Central

    Lumbroso, Serge; Verhoef-Post, Miriam; Richter-Unruh, Annette; Looijenga, Leendert H. J.; Funaro, Ada; Beishuizen, Auke; van Marle, André; Drop, Stenvert L. S.; Themmen, Axel P. N.

    2011-01-01

    Context: Germline and somatic activating mutations in the LH receptor (LHR) gene have been reported. Objective: Our objective was to perform mutation analysis of the LHR gene of patients with Leydig cell adenoma or hyperplasia. Functional studies were conducted to compare the D578H-LHR mutant with the wild-type (WT)-LHR and the D578G-LHR mutant, a classic cause of testotoxicosis. The three main signal transduction pathways in which LHR is involved were studied. Patients: We describe eight male patients with gonadotropin-independent precocious puberty due to Leydig cell adenoma or hyperplasia. Results: The D578H-LHR mutation was found in the adenoma or nodule with hyperplasia in all but two patients. D578H-LHR displayed a constitutively increased but noninducible production of cAMP, led to a very high production of inositol phosphates, and induced a slight phosphorylation of p44/42 MAPK in the absence of human chorionic gonadotropin. The D578G-LHR showed a response intermediate between WT-LHR and the D578H-LHR. Subcellular localization studies showed that the WT-LHR was almost exclusively located at the cell membrane, whereas the D578H-LHR showed signs of internalization. D578H-LHR was the only receptor to colocalize with early endosomes in the absence of human chorionic gonadotropin. Conclusions: Although several LHR mutations have been reported in testotoxicosis, the D578H-LHR mutation, which has been found only as a somatic mutation, appears up until now to be specifically responsible for Leydig cell adenomas. This is reflected by the different activation of the signal transduction pathways, when compared with the WT-LHR or D578G-LHR, which may explain the tumorigenesis in the D578H mutant. PMID:21490077

  8. Mutational Analysis of Substrate Interactions with the Active Site of Dialkylglycine Decarboxylase

    PubMed Central

    Fogle, Emily J.; Toney, Michael D.

    2010-01-01

    Pyridoxal phosphate (PLP) dependent enzymes catalyze many different types of reactions at the α-, β-, and γ-carbons of amine and amino acid substrates. Dialkylglycine decarboxylase (DGD) is an unusual PLP dependent enzyme that catalyzes two reaction types, decarboxylation and transamination, in the same active site. A structurally-based, functional model has been proposed for the DGD active site, which maintains that R406 is important in determining substrate specificity through interactions with the substrate carboxylate while W138 provides specificity for short-chain alkyl groups. The mechanistic roles of R406 and W138 were investigated using site directed mutagenesis, alternate substrates, and analysis of steady-state and half-reaction kinetics. Experiments on the R406M and R406K mutants confirm the importance of R406 in substrate binding. Surprisingly, this work also shows that the positive charge of R406 facilitates catalysis of decarboxylation. The W138F mutant demonstrates that W138 indeed acts to limit the size of the subsite C binding pocket, determining specificity for 2,2-dialkylglycines with small side chains as predicted by the model. Finally, work with the double mutant W138F/M141R shows that these mutations expand substrate specificity to include L-glutamate and lead to an increase in specificity for L-glutamate over 2-aminoisobutyrate of approximately eight orders of magnitude compared to WT DGD. PMID:20540501

  9. Analysis of phenotype, enzyme activity and genotype of Chinese patients with POMT1 mutation.

    PubMed

    Yang, Haipo; Manya, Hiroshi; Kobayashi, Kazuhiro; Jiao, Hui; Fu, Xiaona; Xiao, Jiangxi; Li, Xiaoqing; Wang, Jingmin; Jiang, Yuwu; Toda, Tatsushi; Endo, Tamao; Wu, Xiru; Xiong, Hui

    2016-08-01

    Protein O-mannosyltransferase 1 (POMT1) is a glycosyltransferase involved in α-dystroglycan glycosylation. POMT1 mutations cause a wide spectrum of clinical conditions from Walker-Warburg syndrome (WWS), which involves muscle, eye and brain abnormalities, to mild forms of limb-girdle muscular dystrophy with mental retardation. We aimed to elucidate the impact of different POMT1 mutations on the clinical phenotype. We report five Chinese patients with POMT1 mutations: one had a typical clinical manifestation of WWS, and the other four were diagnosed with congenital muscular dystrophy with mental retardation of varying severity. We analyzed the influence of the POMT1 mutations on POMT activity by assaying the patients' muscles and cultured skin fibroblasts. We demonstrated different levels of decreased POMT activity that correlated highly with decreased α-dystroglycan glycosylation. Our results suggest that POMT activity is inversely proportional to clinical severity, and demonstrate that skin fibroblasts can be used for differential diagnosis of patients with α-dystroglycanopathies. We have provided clinical, histological, enzymatic and genetic evidence of POMT1 involvement in five unrelated Chinese patients.

  10. Mutations affecting enzymatic activity in liver arginase

    SciTech Connect

    Vockley, J.G.; Tabor, D.E.; Goodman, B.K.

    1994-09-01

    The hydrolysis of arginine to ornithine and urea is catalyzed by arginase in the last step of the urea cycle. We examined a group of arginase deficient patients by PCR-SSCP analysis to characterize the molecular basis of this disorder. A heterogeneous population of nonsense mutations, microdeletions, and missense mutations has been identified in our cohort. Microdeletions which introduce premature stop codons downstream of the deletion and nonsense mutations result in no arginase activity. These mutations occur randomly along the gene. The majority of missense mutations identified appear to occur in regions of high cross-species homology. To test the effect of these missense mutations on arginase activity, site-directed mutagenesis was used to re-create the patient mutations for in vivo expression studies in a prokaryotic fusion-protein expression system. Of 4 different missense mutations identified in 6 individuals, only one was located outside of a conserved region. The three substitution mutations within the conserved regions had a significant effect on enzymatic activity (0-3.1 nmole/30min, normal is 1300-1400 nmoles/30min, as determined by in vitro arginase assay), while the fourth mutation, a T to S substitution, did not. In addition, site-directed mutagenesis was utilized to create mutations not in residues postulated to play a significant role in the enzymatic function or active site formation in manganese-binding proteins such as arginase. We have determined that the substitution of glycine for a histidine residue, located in a very highly conserved region of exon 3, and the substitution of a histidine and an aspartic acid residue within a similarly conserved region in exon 4, totally abolishes enzymatic activity. Mutations substituting glycine for an additional histidine and aspartic acid residue in exon 4 and two aspartic acid residues in exon 7 have also been created. We are currently in the process of characterizing these mutations.

  11. Mutational analysis of the active site residues of a D: -psicose 3-epimerase from Agrobacterium tumefaciens.

    PubMed

    Kim, Hye-Jung; Yeom, Soo-Jin; Kim, Kwangsoo; Rhee, Sangkee; Kim, Dooil; Oh, Deok-Kun

    2010-02-01

    D-Psicose 3-epimerase from Agrobacterium tumefacience catalyzes the conversion of D: -fructose to D-psicose. According to mutational analysis, the ring at position 112, the negative charge at position 156, and the positive charge at position 215 were essential components for enzyme activity and for binding fructose and psicose. The surface contact area and distance to the bound substrate by molecular modeling suggest that the positive charge of Arg215 was involved in stabilization of cis-endiol intermediate. The distances between the catalytic residues (Glu150 and Glu244) and Mn(2+) are critical to the catalysis, and the negative charges of the metal-binding residues are important for interaction with metal ion. The kinetic parameters of the D183E and H209A mutants for metal-binding residues with substrate and the near-UV circular dichroism spectra indicate that the metal ion bound to Asp183 and His209 is involved not only in catalysis but also in substrate binding.

  12. A Mutational Analysis of the Active Site Loop Residues in cis-3-Chloroacrylic Acid Dehalogenase

    PubMed Central

    Schroeder, Gottfried K.; Huddleston, Jamison P.; Johnson, William H.; Whitman, Christian P.

    2013-01-01

    cis -3-Chloroacrylic acid dehalogenase (cis-CaaD) from Pseudomonas pavonaceae 170 and a homologue from Corynebacterium glutamicum designated Cg10062 share 34% sequence identity (54% similarity). The former catalyzes a key step in a bacterial catabolic pathway for the nematocide 1,3-dichloropropene, whereas the latter has no known biological activity. Although Cg10062 has the six active site residues (Pro-1, His-28, Arg-70, Arg-73, Tyr-103, Glu-114) that are critical for cis-CaaD activity, it shows only a low level cis-CaaD activity and lacks the specificity of cis-CaaD: Cg10062 processes both isomers of 3-chloroacrylate with a preference for the cis-isomer. Although the basis for these differences is unknown, a comparison of the crystal structures of the enzymes covalently modified by an adduct resulting from their incubation with the same inhibitor offers a possible explanation. A 6-residue active site loop in cis-CaaD shows a strikingly different conformation from that observed in Cg10062: the loop closes down on the active site of cis-CaaD, but not on that of Cg10062. In order to examine what this loop might contribute to cis-CaaD catalysis and specificity, the residues were changed individually to those found in Cg10062. Subsequent kinetic and mechanistic analysis suggests that the T34A mutant of cis-CaaD is more Cg10062-like. The mutant enzyme shows a 4-fold increase in Km (using cis-3-bromoacrylate), but not to the degree observed for Cg10062 (687-fold). The mutation also causes a 4-fold decrease in the burst rate (compared to the wild type cis-CaaD), whereas Cg10062 shows no burst rate. More telling is the reaction of the T34A mutant of cis-CaaD with the alternate substrate, 2,3-butadienoate. In the presence of NaBH4 and the allene, cis-CaaD is completely inactivated after one turnover due to the covalent modification of Pro-1. The same experiment with Cg10062 does not result in the covalent modification of Pro-1. The different outcomes are attributed to

  13. Mutational analysis of the active center of plant fructosyltransferases: Festuca 1-SST and barley 6-SFT.

    PubMed

    Altenbach, Denise; Nüesch, Eveline; Ritsema, Tita; Boller, Thomas; Wiemken, Andres

    2005-08-29

    The active center of the glycoside hydrolase family 32 contains the three characteristic motifs (N/S)DPNG, RDP, and EC. We replaced the N-terminal region including the (N/S)DPNG motif of barley 6-SFT (sucrose:fructan 6-fructosyltransferase) by the corresponding region of Festuca 1-SST (sucrose:sucrose 1-fructosyltransferase). The chimeric enzyme, expressed in Pichia, retained the specificity of 6-SFT. Attempts to replace a larger piece at the N-terminus including also the RDP motif failed. A point mutation introduced in the RDP motif of 1-SST abolished enzymatic activity. Interestingly, point mutations of the EC-motif resulted in an enzyme which had lost the capability to form 1-kestose and glucose from sucrose but still accepted 1-kestose, producing fructose and sucrose as well as nystose.

  14. Network Analysis of Genome-Wide Selective Constraint Reveals a Gene Network Active in Early Fetal Brain Intolerant of Mutation

    PubMed Central

    Choi, Jinmyung; Samocha, Kaitlin E.; Daly, Mark J.

    2016-01-01

    Using robust, integrated analysis of multiple genomic datasets, we show that genes depleted for non-synonymous de novo mutations form a subnetwork of 72 members under strong selective constraint. We further show this subnetwork is preferentially expressed in the early development of the human hippocampus and is enriched for genes mutated in neurological Mendelian disorders. We thus conclude that carefully orchestrated developmental processes are under strong constraint in early brain development, and perturbations caused by mutation have adverse outcomes subject to strong purifying selection. Our findings demonstrate that selective forces can act on groups of genes involved in the same process, supporting the notion that purifying selection can act coordinately on multiple genes. Our approach provides a statistically robust, interpretable way to identify the tissues and developmental times where groups of disease genes are active. PMID:27305007

  15. Mutational analysis of Agrobacterium tumefaciens virD2: tyrosine 29 is essential for endonuclease activity.

    PubMed Central

    Vogel, A M; Das, A

    1992-01-01

    Agrobacterium tumefaciens VirD2 polypeptide, in the presence of VirD1, catalyzes a site- and strand-specific nicking reaction at the T-DNA border sequences. VirD2 is found tightly attached to the 5' end of the nicked DNA. The protein-DNA complex is presumably formed via a tyrosine residue of VirD2 (F. Durrenberger, A. Crameri, B. Hohn, and Z. Koukolikova-Nicola, Proc. Natl. Acad. Sci. USA 86:9154-9158, 1989). A mutational approach was used to study whether a tyrosine residue(s) of VirD2 is required for its activity. By site-specific mutagenesis, a tyrosine (Y) residue at position 29, 68, 99, 119, 121, 160, or 195 of the octopine Ti plasmid pTiA6 VirD2 was altered to phenylalanine (F). The Y-29-F or Y-121-F mutation completely abolished nicking activity of VirD2 in vivo in Escherichia coli. Two other substitutions, Y-68-F and Y-160-F, drastically reduced VirD2 activity. A substitution at position 99, 119, or 195 had no effect on VirD2 activity. Additional mutagenesis experiments showed that at position 29, no other amino acid could substitute for tyrosine without destroying VirD2 activity. At position 121, only a tryptophan (W) residue could be substituted. This, however, yielded a mutant protein with significantly reduced VirD2 activity. The nicked DNA from strains bearing a Y-68-F, Y-99-F, Y-119-F, Y-160-F, Y-195-F, or Y-121-W mutation in VirD2 was always found to contain a tightly linked protein. Images PMID:1309520

  16. Mutational Analysis of Escherichia coli MoeA: Two Functional Activities Map to the Active Site Cleft

    SciTech Connect

    Nichols,J.; Xiang, S.; Schindelin, H.; Rajagopalan, K.

    2007-01-01

    The molybdenum cofactor is ubiquitous in nature, and the pathway for Moco biosynthesis is conserved in all three domains of life. Recent work has helped to illuminate one of the most enigmatic steps in Moco biosynthesis, ligation of metal to molybdopterin (the organic component of the cofactor) to form the active cofactor. In Escherichia coli, the MoeA protein mediates ligation of Mo to molybdopterin while the MogA protein enhances this process in an ATP-dependent manner. The X-ray crystal structures for both proteins have been previously described as well as two essential MogA residues, Asp49 and Asp82. Here we describe a detailed mutational analysis of the MoeA protein. Variants of conserved residues at the putative active site of MoeA were analyzed for a loss of function in two different, previously described assays, one employing moeA{sup -} crude extracts and the other utilizing a defined system. Oddly, no correlation was observed between the activity in the two assays. In fact, our results showed a general trend toward an inverse relationship between the activity in each assay. Moco binding studies indicated a strong correlation between a variant's ability to bind Moco and its activity in the purified component assay. Crystal structures of the functionally characterized MoeA variants revealed no major structural changes, indicating that the functional differences observed are not due to disruption of the protein structure. On the basis of these results, two different functional areas were assigned to regions at or near the MoeA active site cleft.

  17. Mutation analysis of PobR and PcaU, closely related transcriptional activators in acinetobacter.

    PubMed

    Kok, R G; D'Argenio, D A; Ornston, L N

    1998-10-01

    Acinetobacter PobR and PcaU are transcriptional activators that closely resemble each other in primary structure, DNA-binding sites, metabolic modulators, and physiological function. PobR responds to the inducer-metabolite p-hydroxybenzoate and activates transcription of pobA, the structural gene for the enzyme that converts p-hydroxybenzoate to protocatechuate. This compound, differing from p-hydroxybenzoate only in that it contains an additional oxygen atom, binds to PcaU and thereby specifically activates transcription of the full set of genes for protocatechuate catabolism. Particular experimental attention has been paid to PobR and PcaU from Acinetobacter strain ADP1, which exhibits exceptional competence for natural transformation. This trait allowed selection of mutant strains in which pobR function had been impaired by nucleotide substitutions introduced by PCR replication errors. Contrary to expectation, the spectrum of amino acids whose substitution led to loss of function in PobR shows no marked similarity to the spectrum of amino acids conserved by the demand for continued function during evolutionary divergence of PobR, PcaU, and related proteins. Surface plasmon resonance was used to determine the ability of mutant PobR proteins to bind to DNA in the pobA-pobR intergenic region. Deleterious mutations that strongly affect DNA binding all cluster in and around the PobR region that contains a helix-turn-helix motif, whereas mutations causing defects in the central portion of the PobR primary sequence do not seem to have a significant effect on operator binding. PCR-generated mutations allowing PobR to mimic PcaU function invariably caused a T57A amino acid substitution, making the helix-turn-helix sequence of PobR more like that of PcaU. The mutant PobR depended on p-hydroxybenzoate for its activity, but this dependence could be relieved by any of six amino acid substitutions in the center of the PobR primary sequence. Independent mutations allowing Pca

  18. Mutational analysis of the active site of indoleglycerol phosphate synthase from Escherichia coli.

    PubMed Central

    Darimont, B.; Stehlin, C.; Szadkowski, H.; Kirschner, K.

    1998-01-01

    Indoleglycerol phosphate synthase catalyzes the ring closure of 1-(2-carboxyphenylamino)-1-deoxyribulose 5'-phosphate to indoleglycerol phosphate, the fifth step in the pathway of tryptophan biosynthesis from chorismate. Because chemical synthesis of indole derivatives from arylamino ketones requires drastic solvent conditions, it is interesting by what mechanism the enzyme catalyzes the same condensation reaction. Seven invariant polar residues in the active site of the enzyme from Escherichia coli have been mutated directly or randomly, to identify the catalytically essential ones. A strain of E. coli suitable for selecting and classifying active mutants by functional complementation was constructed by precise deletion of the trpC gene from the genome. Judged by growth rates of transformants on selective media, mutants with either S58 or S60 replaced by alanine were indistinguishable from the wild-type, but R186 replaced by alanine was still partially active. Saturation random mutagenesis of individual codons showed that E53 was partially replaceable by aspartate and cysteine, whereas K114, E163, and N184 could not be replaced by any other residue. Partially active mutant proteins were purified and their steady-state kinetic and inhibitor binding constants determined. Their relative catalytic efficiencies paralleled their relative complementation efficiencies. These results are compatible with the location of the essential residues in the active site of the enzyme and support a chemically plausible catalytic mechanism. It involves two enzyme-bound intermediates and general acid-base catalysis by K114 and E163 with the support of E53 and N184. PMID:9605328

  19. Mutational Analysis of Rab3 Function for Controlling Active Zone Protein Composition at the Drosophila Neuromuscular Junction.

    PubMed

    Chen, Shirui; Gendelman, Hannah K; Roche, John P; Alsharif, Peter; Graf, Ethan R

    2015-01-01

    At synapses, the release of neurotransmitter is regulated by molecular machinery that aggregates at specialized presynaptic release sites termed active zones. The complement of active zone proteins at each site is a determinant of release efficacy and can be remodeled to alter synapse function. The small GTPase Rab3 was previously identified as playing a novel role that controls the distribution of active zone proteins to individual release sites at the Drosophila neuromuscular junction. Rab3 has been extensively studied for its role in the synaptic vesicle cycle; however, the mechanism by which Rab3 controls active zone development remains unknown. To explore this mechanism, we conducted a mutational analysis to determine the molecular and structural requirements of Rab3 function at Drosophila synapses. We find that GTP-binding is required for Rab3 to traffick to synapses and distribute active zone components across release sites. Conversely, the hydrolytic activity of Rab3 is unnecessary for this function. Through a structure-function analysis we identify specific residues within the effector-binding switch regions that are required for Rab3 function and determine that membrane attachment is essential. Our findings suggest that Rab3 controls the distribution of active zone components via a vesicle docking mechanism that is consistent with standard Rab protein function.

  20. Mutational Analysis of Rab3 Function for Controlling Active Zone Protein Composition at the Drosophila Neuromuscular Junction

    PubMed Central

    Roche, John P.; Alsharif, Peter; Graf, Ethan R.

    2015-01-01

    At synapses, the release of neurotransmitter is regulated by molecular machinery that aggregates at specialized presynaptic release sites termed active zones. The complement of active zone proteins at each site is a determinant of release efficacy and can be remodeled to alter synapse function. The small GTPase Rab3 was previously identified as playing a novel role that controls the distribution of active zone proteins to individual release sites at the Drosophila neuromuscular junction. Rab3 has been extensively studied for its role in the synaptic vesicle cycle; however, the mechanism by which Rab3 controls active zone development remains unknown. To explore this mechanism, we conducted a mutational analysis to determine the molecular and structural requirements of Rab3 function at Drosophila synapses. We find that GTP-binding is required for Rab3 to traffick to synapses and distribute active zone components across release sites. Conversely, the hydrolytic activity of Rab3 is unnecessary for this function. Through a structure-function analysis we identify specific residues within the effector-binding switch regions that are required for Rab3 function and determine that membrane attachment is essential. Our findings suggest that Rab3 controls the distribution of active zone components via a vesicle docking mechanism that is consistent with standard Rab protein function. PMID:26317909

  1. Discovery of catalytically active orthologues of the Parkinson's disease kinase PINK1: analysis of substrate specificity and impact of mutations.

    PubMed

    Woodroof, Helen I; Pogson, Joe H; Begley, Mike; Cantley, Lewis C; Deak, Maria; Campbell, David G; van Aalten, Daan M F; Whitworth, Alexander J; Alessi, Dario R; Muqit, Miratul M K

    2011-11-01

    Missense mutations of the phosphatase and tensin homolog (PTEN)-induced kinase 1 (PINK1) gene cause autosomal-recessive Parkinson's disease. To date, little is known about the intrinsic catalytic properties of PINK1 since the human enzyme displays such low kinase activity in vitro. We have discovered that, in contrast to mammalian PINK1, insect orthologues of PINK1 we have investigated-namely Drosophila melanogaster (dPINK1), Tribolium castaneum (TcPINK1) and Pediculus humanus corporis (PhcPINK1)-are active as judged by their ability to phosphorylate the generic substrate myelin basic protein. We have exploited the most active orthologue, TcPINK1, to assess its substrate specificity and elaborated a peptide substrate (PINKtide, KKWIpYRRSPRRR) that can be employed to quantify PINK1 kinase activity. Analysis of PINKtide variants reveal that PINK1 phosphorylates serine or threonine, but not tyrosine, and we show that PINK1 exhibits a preference for a proline at the +1 position relative to the phosphorylation site. We have also, for the first time, been able to investigate the effect of Parkinson's disease-associated PINK1 missense mutations, and found that nearly all those located within the kinase domain, as well as the C-terminal non-catalytic region, markedly suppress kinase activity. This emphasizes the crucial importance of PINK1 kinase activity in preventing the development of Parkinson's disease. Our findings will aid future studies aimed at understanding how the activity of PINK1 is regulated and the identification of physiological substrates. PMID:22645651

  2. Epistasis analysis of suppressor mutations that allow HO expression in the absence of the yeast SW15 transcriptional activator.

    PubMed

    Stillman, D J; Dorland, S; Yu, Y

    1994-03-01

    We have examined mutations which overcome the requirement for SW15-dependent transcriptional activation of the Saccharomyces cerevisiae HO gene. We show that the RPD3 gene is the same as SDI2, and that SIN4 is the same as the TSF3 and SDI3 genes. We have also identified a new swi5 suppressor, RGR1. The RGR1 gene was identified originally as a negative regulator of SUC2. Epistasis analysis indicates that six swi5 suppressor genes function in four distinct pathways, with RPD3 and SIN3 in one pathway, RGR1 and SIN4 in a second pathway, and SDI4 and SIN5 each in distinct pathways. Finally, we show that complete suppression of the swi5 defect in HO expression by sin5 requires the wild-type ACE2 gene. This suggests that one function of SIN5 is to prevent ACE2, a SWI5 homolog, from activating HO expression.

  3. A Mutational Analysis of Active Site Residues in trans-3-Chloroacrylic Acid Dehalogenase

    PubMed Central

    Poelarends, Gerrit J.; Serrano, Hector; Huddleston, Jamison P.; Johnson, William H.; Whitman, Christian P.

    2013-01-01

    trans -3-Chloroacrylic acid dehalogenase (CaaD) catalyzes the hydrolytic dehalogenation of trans-3-haloacrylates to yield malonate semialdehyde by a mechanism utilizing βPro-1, αArg-8, αArg-11, and αGlu-52. These residues are implicated in a promiscuous hydratase activity where 2-oxo-3-pentynoate is processed to acetopyruvate. The roles of three nearby residues (βAsn-39, αPhe-39, and αPhe-50) are unexplored. Mutants were constructed at these positions (βN39A, αF39A, αF39T, αF50A and αF50Y) and kinetic parameters determined along with those of the αR8K and αR11K mutants. Analysis indicates that αArg-8, αArg-11, and βAsn-39 are critical for dehalogenase activity whereas αArg-11 and αPhe-50 are critical for hydratase activity. Docking studies suggest structural bases for these observations. PMID:23851010

  4. Mutational analysis of GlnB residues critical for NifA activation in Azospirillum brasilense.

    PubMed

    Inaba, Juliana; Thornton, Jeremy; Huergo, Luciano Fernandes; Monteiro, Rose Adele; Klassen, Giseli; Pedrosa, Fábio de Oliveira; Merrick, Mike; de Souza, Emanuel Maltempi

    2015-02-01

    PII proteins are signal transduction that sense cellular nitrogen status and relay this signals to other targets. Azospirillum brasilense is a nitrogen fixing bacterium, which associates with grasses and cereals promoting beneficial effects on plant growth and crop yields. A. brasilense contains two PII encoding genes, named glnB and glnZ. In this paper, glnB was mutagenised in order to identify amino acid residues involved in GlnB signaling. Two variants were obtained by random mutagenesis, GlnBL13P and GlnBV100A and a site directed mutant, GlnBY51F, was obtained. Their ability to complement nitrogenase activity of glnB mutant strains of A. brasilense were determined. The variant proteins were also overexpressed in Escherichia coli, purified and characterized biochemically. None of the GlnB variant forms was able to restore nitrogenase activity in glnB mutant strains of A. brasilense LFH3 and 7628. The purified GlnBY51F and GlnBL13P proteins could not be uridylylated by GlnD, whereas GlnBV100A was uridylylated but at only 20% of the rate for wild type GlnB. Biochemical and computational analyses suggest that residue Leu13, located in the α helix 1 of GlnB, is important to maintain GlnB trimeric structure and function. The substitution V100A led to a lower affinity for ATP binding. Together the results suggest that NifA activation requires uridylylated GlnB bound to ATP.

  5. Mutational analysis of the redox-sensitive transcriptional regulator OxyR: regions important for oxidation and transcriptional activation.

    PubMed Central

    Kullik, I; Toledano, M B; Tartaglia, L A; Storz, G

    1995-01-01

    OxyR is a redox-sensitive transcriptional regulator of the LysR family which activates the expression of genes important for the defense against hydrogen peroxide in Escherichia coli and Samonella typhimurium. OxyR is sensitive to oxidation and reduction, and only oxidized OxyR is able to activate transcription of its target genes. Using site-directed mutagenesis, we found that one cysteine residue (C-199) is critical for the redox sensitivity of OxyR, and a C-199-->S mutation appears to lock the OxyR protein in the reduced form. We also used a random mutagenesis approach to isolate eight constitutively active mutants. All of the mutations are located in the C-terminal half of the protein, and four of the mutations map near the critical C-199 residue. In vivo as well as in vitro transcription experiments showed that the constitutive mutant proteins were able to activate transcription under both oxidizing and reducing conditions, and DNase I footprints showed that this activation is due to the ability of the mutant proteins to induce cooperative binding of RNA polymerase. Unexpectedly, RNA polymerase was also found to reciprocally affect OxyR binding. PMID:7868602

  6. Genomic analysis of diffuse intrinsic pontine gliomas identifies three molecular subgroups and recurrent activating ACVR1 mutations.

    PubMed

    Buczkowicz, Pawel; Hoeman, Christine; Rakopoulos, Patricia; Pajovic, Sanja; Letourneau, Louis; Dzamba, Misko; Morrison, Andrew; Lewis, Peter; Bouffet, Eric; Bartels, Ute; Zuccaro, Jennifer; Agnihotri, Sameer; Ryall, Scott; Barszczyk, Mark; Chornenkyy, Yevgen; Bourgey, Mathieu; Bourque, Guillaume; Montpetit, Alexandre; Cordero, Francisco; Castelo-Branco, Pedro; Mangerel, Joshua; Tabori, Uri; Ho, King Ching; Huang, Annie; Taylor, Kathryn R; Mackay, Alan; Bendel, Anne E; Nazarian, Javad; Fangusaro, Jason R; Karajannis, Matthias A; Zagzag, David; Foreman, Nicholas K; Donson, Andrew; Hegert, Julia V; Smith, Amy; Chan, Jennifer; Lafay-Cousin, Lucy; Dunn, Sandra; Hukin, Juliette; Dunham, Chris; Scheinemann, Katrin; Michaud, Jean; Zelcer, Shayna; Ramsay, David; Cain, Jason; Brennan, Cameron; Souweidane, Mark M; Jones, Chris; Allis, C David; Brudno, Michael; Becher, Oren; Hawkins, Cynthia

    2014-05-01

    Diffuse intrinsic pontine glioma (DIPG) is a fatal brain cancer that arises in the brainstem of children, with no effective treatment and near 100% fatality. The failure of most therapies can be attributed to the delicate location of these tumors and to the selection of therapies on the basis of assumptions that DIPGs are molecularly similar to adult disease. Recent studies have unraveled the unique genetic makeup of this brain cancer, with nearly 80% found to harbor a p.Lys27Met histone H3.3 or p.Lys27Met histone H3.1 alteration. However, DIPGs are still thought of as one disease, with limited understanding of the genetic drivers of these tumors. To understand what drives DIPGs, we integrated whole-genome sequencing with methylation, expression and copy number profiling, discovering that DIPGs comprise three molecularly distinct subgroups (H3-K27M, silent and MYCN) and uncovering a new recurrent activating mutation affecting the activin receptor gene ACVR1 in 20% of DIPGs. Mutations in ACVR1 were constitutively activating, leading to SMAD phosphorylation and increased expression of the downstream activin signaling targets ID1 and ID2. Our results highlight distinct molecular subgroups and novel therapeutic targets for this incurable pediatric cancer. PMID:24705254

  7. Bi-Directional SIFT Predicts a Subset of Activating Mutations

    PubMed Central

    Lee, William; Lazarus, Robert A.; Zhang, Zemin

    2009-01-01

    Advancements in sequencing technologies have empowered recent efforts to identify polymorphisms and mutations on a global scale. The large number of variations and mutations found in these projects requires high-throughput tools to identify those that are most likely to have an impact on function. Numerous computational tools exist for predicting which mutations are likely to be functional, but none that specifically attempt to identify mutations that result in hyperactivation or gain-of-function. Here we present a modified version of the SIFT (Sorting Intolerant from Tolerant) algorithm that utilizes protein sequence alignments with homologous sequences to identify functional mutations based on evolutionary fitness. We show that this bi-directional SIFT (B-SIFT) is capable of identifying experimentally verified activating mutants from multiple datasets. B-SIFT analysis of large-scale cancer genotyping data identified potential activating mutations, some of which we have provided detailed structural evidence to support. B-SIFT could prove to be a valuable tool for efforts in protein engineering as well as in identification of functional mutations in cancer. PMID:20011534

  8. Investigating models of protein function and allostery with a widespread mutational analysis of a light-activated protein.

    PubMed

    Zayner, Josiah P; Antoniou, Chloe; French, Alexander R; Hause, Ronald J; Sosnick, Tobin R

    2013-08-20

    To investigate the relationship between a protein's sequence and its biophysical properties, we studied the effects of more than 100 mutations in Avena sativa light-oxygen-voltage domain 2, a model protein of the Per-Arnt-Sim family. The A. sativa light-oxygen-voltage domain 2 undergoes a photocycle with a conformational change involving the unfolding of the terminal helices. Whereas selection studies typically search for winners in a large population and fail to characterize many sites, we characterized the biophysical consequences of mutations throughout the protein using NMR, circular dichroism, and ultraviolet/visible spectroscopy. Despite our intention to introduce highly disruptive substitutions, most had modest or no effect on function, and many could even be considered to be more photoactive. Substitutions at evolutionarily conserved sites can have minimal effect, whereas those at nonconserved positions can have large effects, contrary to the view that the effects of mutations, especially at conserved positions, are predictable. Using predictive models, we found that the effects of mutations on biophysical function and allostery reflect a complex mixture of multiple characteristics including location, character, electrostatics, and chemistry. PMID:23972854

  9. Mutational analysis of the (p)ppGpp synthetase activity of the Rel enzyme of Mycobacterium tuberculosis.

    PubMed

    Bag, Satyabrata; Das, Bhabatosh; Dasgupta, Shreya; Bhadra, Rupak K

    2014-08-01

    Rel(Mtb), a GTP pyrophosphokinase encoded by the Mycobacterium tuberculosis (Mtb) genome, catalyzes synthesis of (p)ppGpp from ATP and GDP(GTP) and its hydrolysis to GDP(GTP) and pyrophosphate to mediate stringent response, which helps bacteria to survive during nutrient limitation. Like other members of Rel_Spo homologs, Rel(Mtb) has four distinct domains: HD, Rel_Spo (RSD), TGS and ACT. The N-terminal HD and RSD are responsible for (p)ppGpp hydrolysis and synthesis, respectively. In this study, we have dissected the rel(Mtb) gene function and determined the minimal region essential for (p)ppGpp synthetic activity. The Rel(Mtb) and its truncated derivatives were expressed from an arabinose inducible promoter (P(BAD)), and in vivo functional analyses were done in a (p)ppGpp null Escherichia coli strain. Our results indicate that only 243 amino acids (188-430 residues) containing fragment are sufficient for Rel(Mtb) (p)ppGpp synthetic activity. The results were further confirmed by in vitro assays using purified proteins. We further characterized the RSD of Rel(Mtb) by substituting several conserved amino acids with structurally related residues and identified six such residues, which appeared to be critical for maintaining its catalytic activity. Furthermore, we have also extended our analysis to an RSD encoding gene rv1366 of Mtb, and experimental results indicated that the encoded protein Rv1366 is unable to synthesize (p)ppGpp.

  10. Activating STAT6 mutations in follicular lymphoma

    PubMed Central

    Yildiz, Mehmet; Li, Hongxiu; Bernard, Denzil; Amin, Nisar A.; Ouillette, Peter; Jones, Siân; Saiya-Cork, Kamlai; Parkin, Brian; Jacobi, Kathryn; Shedden, Kerby; Wang, Shaomeng; Chang, Alfred E.; Kaminski, Mark S.

    2015-01-01

    Follicular lymphoma (FL) is the second most common non-Hodgkin lymphoma in the Western world. FL cell-intrinsic and cell-extrinsic factors influence FL biology and clinical outcome. To further our understanding of the genetic basis of FL, we performed whole-exome sequencing of 23 highly purified FL cases and 1 transformed FL case and expanded findings to a combined total of 114 FLs. We report recurrent mutations in the transcription factor STAT6 in 11% of FLs and identified the STAT6 amino acid residue 419 as a novel STAT6 mutation hotspot (p.419D/G, p.419D/A, and p.419D/H). FL-associated STAT6 mutations were activating, as evidenced by increased transactivation in HEK293T cell–based transfection/luciferase reporter assays, heightened interleukin-4 (IL-4) –induced activation of target genes in stable STAT6 transfected lymphoma cell lines, and elevated baseline expression levels of STAT6 target genes in primary FL B cells harboring mutant STAT6. Mechanistically, FL-associated STAT6 mutations facilitated nuclear residency of STAT6, independent of IL-4–induced STAT6-Y641 phosphorylation. Structural modeling of STAT6 based on the structure of the STAT1-DNA complex revealed that most FL-associated STAT6 mutants locate to the STAT6-DNA interface, potentially facilitating heightened interactions. The genetic and functional data combined strengthen the recognition of the IL-4/JAK/STAT6 axis as a driver of FL pathogenesis. PMID:25428220

  11. The Energy Landscape Analysis of Cancer Mutations in Protein Kinases

    PubMed Central

    Dixit, Anshuman; Verkhivker, Gennady M.

    2011-01-01

    The growing interest in quantifying the molecular basis of protein kinase activation and allosteric regulation by cancer mutations has fueled computational studies of allosteric signaling in protein kinases. In the present study, we combined computer simulations and the energy landscape analysis of protein kinases to characterize the interplay between oncogenic mutations and locally frustrated sites as important catalysts of allostetric kinase activation. While structurally rigid kinase core constitutes a minimally frustrated hub of the catalytic domain, locally frustrated residue clusters, whose interaction networks are not energetically optimized, are prone to dynamic modulation and could enable allosteric conformational transitions. The results of this study have shown that the energy landscape effect of oncogenic mutations may be allosteric eliciting global changes in the spatial distribution of highly frustrated residues. We have found that mutation-induced allosteric signaling may involve a dynamic coupling between structurally rigid (minimally frustrated) and plastic (locally frustrated) clusters of residues. The presented study has demonstrated that activation cancer mutations may affect the thermodynamic equilibrium between kinase states by allosterically altering the distribution of locally frustrated sites and increasing the local frustration in the inactive form, while eliminating locally frustrated sites and restoring structural rigidity of the active form. The energy landsape analysis of protein kinases and the proposed role of locally frustrated sites in activation mechanisms may have useful implications for bioinformatics-based screening and detection of functional sites critical for allosteric regulation in complex biomolecular systems. PMID:21998754

  12. Comprehensive mutational analysis of primary and relapse acute promyelocytic leukemia.

    PubMed

    Madan, V; Shyamsunder, P; Han, L; Mayakonda, A; Nagata, Y; Sundaresan, J; Kanojia, D; Yoshida, K; Ganesan, S; Hattori, N; Fulton, N; Tan, K-T; Alpermann, T; Kuo, M-C; Rostami, S; Matthews, J; Sanada, M; Liu, L-Z; Shiraishi, Y; Miyano, S; Chendamarai, E; Hou, H-A; Malnassy, G; Ma, T; Garg, M; Ding, L-W; Sun, Q-Y; Chien, W; Ikezoe, T; Lill, M; Biondi, A; Larson, R A; Powell, B L; Lübbert, M; Chng, W J; Tien, H-F; Heuser, M; Ganser, A; Koren-Michowitz, M; Kornblau, S M; Kantarjian, H M; Nowak, D; Hofmann, W-K; Yang, H; Stock, W; Ghavamzadeh, A; Alimoghaddam, K; Haferlach, T; Ogawa, S; Shih, L-Y; Mathews, V; Koeffler, H P

    2016-08-01

    Acute promyelocytic leukemia (APL) is a subtype of myeloid leukemia characterized by differentiation block at the promyelocyte stage. Besides the presence of chromosomal rearrangement t(15;17), leading to the formation of PML-RARA (promyelocytic leukemia-retinoic acid receptor alpha) fusion, other genetic alterations have also been implicated in APL. Here, we performed comprehensive mutational analysis of primary and relapse APL to identify somatic alterations, which cooperate with PML-RARA in the pathogenesis of APL. We explored the mutational landscape using whole-exome (n=12) and subsequent targeted sequencing of 398 genes in 153 primary and 69 relapse APL. Both primary and relapse APL harbored an average of eight non-silent somatic mutations per exome. We observed recurrent alterations of FLT3, WT1, NRAS and KRAS in the newly diagnosed APL, whereas mutations in other genes commonly mutated in myeloid leukemia were rarely detected. The molecular signature of APL relapse was characterized by emergence of frequent mutations in PML and RARA genes. Our sequencing data also demonstrates incidence of loss-of-function mutations in previously unidentified genes, ARID1B and ARID1A, both of which encode for key components of the SWI/SNF complex. We show that knockdown of ARID1B in APL cell line, NB4, results in large-scale activation of gene expression and reduced in vitro differentiation potential. PMID:27063598

  13. Comprehensive mutational analysis of primary and relapse acute promyelocytic leukemia

    PubMed Central

    Madan, V; Shyamsunder, P; Han, L; Mayakonda, A; Nagata, Y; Sundaresan, J; Kanojia, D; Yoshida, K; Ganesan, S; Hattori, N; Fulton, N; Tan, K-T; Alpermann, T; Kuo, M-C; Rostami, S; Matthews, J; Sanada, M; Liu, L-Z; Shiraishi, Y; Miyano, S; Chendamarai, E; Hou, H-A; Malnassy, G; Ma, T; Garg, M; Ding, L-W; Sun, Q-Y; Chien, W; Ikezoe, T; Lill, M; Biondi, A; Larson, R A; Powell, B L; Lübbert, M; Chng, W J; Tien, H-F; Heuser, M; Ganser, A; Koren-Michowitz, M; Kornblau, S M; Kantarjian, H M; Nowak, D; Hofmann, W-K; Yang, H; Stock, W; Ghavamzadeh, A; Alimoghaddam, K; Haferlach, T; Ogawa, S; Shih, L-Y; Mathews, V; Koeffler, H P

    2016-01-01

    Acute promyelocytic leukemia (APL) is a subtype of myeloid leukemia characterized by differentiation block at the promyelocyte stage. Besides the presence of chromosomal rearrangement t(15;17), leading to the formation of PML-RARA (promyelocytic leukemia-retinoic acid receptor alpha) fusion, other genetic alterations have also been implicated in APL. Here, we performed comprehensive mutational analysis of primary and relapse APL to identify somatic alterations, which cooperate with PML-RARA in the pathogenesis of APL. We explored the mutational landscape using whole-exome (n=12) and subsequent targeted sequencing of 398 genes in 153 primary and 69 relapse APL. Both primary and relapse APL harbored an average of eight non-silent somatic mutations per exome. We observed recurrent alterations of FLT3, WT1, NRAS and KRAS in the newly diagnosed APL, whereas mutations in other genes commonly mutated in myeloid leukemia were rarely detected. The molecular signature of APL relapse was characterized by emergence of frequent mutations in PML and RARA genes. Our sequencing data also demonstrates incidence of loss-of-function mutations in previously unidentified genes, ARID1B and ARID1A, both of which encode for key components of the SWI/SNF complex. We show that knockdown of ARID1B in APL cell line, NB4, results in large-scale activation of gene expression and reduced in vitro differentiation potential. PMID:27063598

  14. Identification of an active new mutator transposable element in maize.

    PubMed

    Tan, Bao-Cai; Chen, Zongliang; Shen, Yun; Zhang, Yafeng; Lai, Jinsheng; Sun, Samuel S M

    2011-09-01

    Robertson's Mutator (Mu) system has been used in large scale mutagenesis in maize, exploiting its high mutation frequency, controllability, preferential insertion in genes, and independence of donor location. Eight Mutator elements have been fully characterized (Mu1, Mu2 /Mu1.7, Mu3, Mu4, Mu5, Mu6/7, Mu8, MuDR), and three are defined by TIR (Mu10, Mu11 and Mu12). The genome sequencing revealed a complex family of Mu-like-elements (MULEs) in the B73 genome. In this article, we report the identification of a new Mu element, named Mu13. Mu13 showed typical Mu characteristics by having a ∼220 bp TIR, creating a 9 bp target site duplication upon insertion, yet the internal sequence is completely different from previously identified Mu elements. Mu13 is not present in the B73 genome or a Zea mays subsp. parviglumis accession, but in W22 and several inbreds that found the Robertson's Mutator line. Analysis of mutants isolated from the UniformMu mutagenic population indicated that the Mu13 element is active in transposition. Two novel insertions were found in expressed genes. To test other unknown Mu elements, we selected six new Mu elements from the B73 genome. Southern analysis indicated that most of these elements were present in the UniformMu lines. From these results, we conclude that Mu13 is a new and active Mu element that significantly contributed to the mutagenesis in the UniformMu population. The Robertson's Mutator line may harbor other unknown active Mu elements.

  15. Big Blue Transgenic Mouse lacl mutation analysis

    SciTech Connect

    Stiegler, G.L.; Stillwell, L.C. )

    1993-01-01

    In this report the authors describe a rapid general method for mutant blue plaque molecular analysis. The mutant analysis discussed here resulted from radon inhalation exposure. The described method circumvents Stratagene's plasmid isolation and ensuing sequence analysis of the entire lac1 gene. The authors have adapted the polymerase chain reaction (PCR) method and single-strand conformation polymorphism (SSCP) analysis for localizing mutations within the lac1 coding region. Three overlapping PCR products of approximately 450 bp representing the entire lac1 coding region are used for SSCP analysis. Those PCR products with an altered SSCP electrophoretic migration focus the mutation to a smaller region of the lac1 gene that is analyzed by direct cycle sequencing. 5 refs., 1 fig.

  16. Impacts of the G145R Mutation on the Structure and Immunogenic Activity of the Hepatitis B Surface Antigen: A Computational Analysis

    PubMed Central

    Rezaee, Reza; Poorebrahim, Mansour; Najafi, Saeideh; Sadeghi, Solmaz; Pourdast, Alieh; Alavian, Seyed Moayed; Alavian, Seyed Ehsan; Poortahmasebi, Vahdat

    2016-01-01

    Background Vaccine-escaped hepatitis B virus (HBV) mutations occur within the “a” determinant area, which is located in the major hydrophilic region (MHR) of the hepatitis B surface antigen (HBsAg) protein. It is now well established that the common G145R mutation is highly capable of escaping from HBsAg immune recognition. However, the impacts of this mutation on the structure and immunogenic activity of HBsAg have been poorly investigated. Objectives The present study analyzed the effects of the G145R mutation on the structure and immunogenic activity of the HBsAg. Materials and Methods Three-dimensional (3D) structure of HBsAg for both the wild-type and G145R mutant were predicted and refined using several web tools. After quantitative evaluations, the effects of the G145R mutation on the secondary and 3D structures of the HBsAg were investigated. In parallel, the immunogenic activity of the wild-type and mutant HBsAg was also analyzed using a ClusPro docking server as well as the IEDB web tool. Further analyses were performed via molecular dynamics (MD) simulations using the GROMACS v5.0.2 simulation package. Results The G145R mutation causes a considerable reduction in the immunogenic activity of the HBsAg through a conformational change in the HBsAg antigenic loops. This mutation inserts a new β-strand in the “a” determinant region of the HBsAg, leading to a reduced binding affinity to its monoclonal antibody, MAb12. The G145R mutation also increased the compactness and stability of the HBsAg by enhancing the rigidity of the “a” determinant. Conclusions These data will be beneficial for designing more advanced antibodies for the recognition of the HBsAg in diagnostics. In addition, the results of this study may assist in the design or development of more effective hepatitis B vaccines. PMID:27642350

  17. Genetic analysis of the Kirsten-ras-revertant 1 gene: Potentiation of its tumor suppressor activity by specific point mutations

    SciTech Connect

    Kitayama, Hitoshi Univ. of Tsukuba, Ibaraki ); Matsuzaki, Tomoko; Ikawa, Yoji; Noda, Makoto )

    1990-06-01

    Kirsten-ras-revertant 1 (Krev-1) cDNA encodes a ras-related protein and exhibits an activity of inducing flat revertants at certain frequencies (2-5% of total transfectants) when introduced into a v-K-ras-transformed mouse NIH 3T3 cell line, DT. Toward understanding the mechanism of action of Krev-1 protein, the authors constructed a series of point mutants of Krev-1 cDNA and tested their biological activities in DT cells and HT1080 human fibrosarcoma cells harboring the activated N-ras gene. Substitutions of the amino acid residues in the putative guanine nucleotide-binding regions (Asp{sup 17} and Asn{sup 116}), in the putative effector-binding domain (residue 38), at the putative acylation site (Cys{sup 181}), and at the unique Thr{sup 61} all decreased the transformation suppressor activity. On the other hand, substitutions such as Gly{sup 12} to Val{sup 12} and Gln{sup 63} to Glu{sup 63} were found to significantly increase the transformation suppressor/tumor suppressor activity of Krev-1. These findings are consistent with the idea that Krev-1 protein is regulated like many other G proteins by the guanine triphosphate/guanine diphosphate-exchange mechanism probably in response to certain negative growth-regulatory signals.

  18. Mutational Analysis of AREA, a Transcriptional Activator Mediating Nitrogen Metabolite Repression in Aspergillus nidulans and a Member of the “Streetwise” GATA Family of Transcription Factors

    PubMed Central

    Wilson, Richard A.; Arst, Herbert N.

    1998-01-01

    Summary: The transcriptional activator AREA is a member of the GATA family of transcription factors and mediates nitrogen metabolite repression in the fungus Aspergillus nidulans. The nutritional versatility of A. nidulans and its amenability to classical and reverse genetic manipulations make the AREA DNA binding domain (DBD) a useful model for analyzing GATA family DBDs, particularly as structures of two AREA-DNA complexes have been determined. The 109 extant mutant forms of the AREA DBD surveyed here constitute one of the highest totals of eukaryotic transcription factor DBD mutants, are discussed in light of the roles of individual residues, and are compared to corresponding mutant sequence changes in other fungal GATA factor DBDs. Other topics include delineation of the DBD using both homology and mutational truncation, use of frameshift reversion to detect regions of tolerance to mutational change, the finding that duplication of the DBD can apparently enhance AREA function, and use of the AREA system to analyze a vertebrate GATA factor DBD. Some major points to emerge from work on the AREA DBD are (i) tolerance to sequence change (with retention of function) is surprisingly great, (ii) mutational changes in a transcription factor can have widely differing, even opposing, effects on expression of different structural genes so that monitoring expression of one or even several structural genes can be insufficient and possibly misleading, and (iii) a mutational change altering local hydrophobic packing and DNA binding target specificity can markedly influence the behavior of mutational changes elsewhere in the DBD. PMID:9729601

  19. Probing the Role of N-Linked Glycans in the Stability and Activity of Fungal Cellobiohydrolases by Mutational Analysis

    SciTech Connect

    Adney, W. S.; Jeoh, T.; Beckham, G. T.; Chou,Y. C.; Baker, J. O.; Michener, W.; Brunecky, R.; Himmel, M. E.

    2009-01-01

    The filamentous fungi Trichoderma reesei and Penicillium funiculosum produce highly effective enzyme mixtures that degrade the cellulose and hemicellulose components of plant cell walls. Many fungal species produce a glycoside hydrolase family 7 (Cel7A) cellobiohydrolase, a class of enzymes that catalytically process from the reducing end of cellulose. A direct amino acid comparison of these two enzymes shows that they not only have high amino acid homology, but also contain analogous N-linked glycosylation sites on the catalytic domain. We have previously shown (Jeoh et al. in Biotechnol Biofuels, 1:10, 2008) that expression of T. reesei cellobiohydrolase I in a commonly used industrial expression host, Aspergillus niger var. awamori, results in an increase in the amount of N-linked glycosylation of the enzyme, which negatively affects crystalline cellulose degradation activity as well as thermal stability. This complementary study examines the significance of individual N-linked glycans on the surface of the catalytic domain of Cel7A cellobiohydrolases from T. reesei and P. funiculosum by genetically adding or removing N-linked glycosylation motifs using site directed mutagenesis. Modified enzymes, expressed in A. niger var. awamori, were tested for activity and thermal stability. It was concluded that N-linked glycans in peptide loops that form part of the active site tunnel have the greatest impact on both thermal stability and enzymatic activity on crystalline cellulose for both the T. reesei and P. funiculosum Cel7A enzymes. Specifically, for the Cel7A T. reesei enzyme expressed in A. niger var. awamori, removal of the N384 glycosylation site yields a mutant with 70% greater activity after 120 h compared to the heterologously expressed wild type T. reesei enzyme. In addition, similar activity improvements were found to be associated with the addition of a new glycosylation motif at N194 in P. funiculosum. This mutant also exhibits 70% greater activity after

  20. Integrative visual analysis of protein sequence mutations

    PubMed Central

    2014-01-01

    Background An important aspect of studying the relationship between protein sequence, structure and function is the molecular characterization of the effect of protein mutations. To understand the functional impact of amino acid changes, the multiple biological properties of protein residues have to be considered together. Results Here, we present a novel visual approach for analyzing residue mutations. It combines different biological visualizations and integrates them with molecular data derived from external resources. To show various aspects of the biological information on different scales, our approach includes one-dimensional sequence views, three-dimensional protein structure views and two-dimensional views of residue interaction networks as well as aggregated views. The views are linked tightly and synchronized to reduce the cognitive load of the user when switching between them. In particular, the protein mutations are mapped onto the views together with further functional and structural information. We also assess the impact of individual amino acid changes by the detailed analysis and visualization of the involved residue interactions. We demonstrate the effectiveness of our approach and the developed software on the data provided for the BioVis 2013 data contest. Conclusions Our visual approach and software greatly facilitate the integrative and interactive analysis of protein mutations based on complementary visualizations. The different data views offered to the user are enriched with information about molecular properties of amino acid residues and further biological knowledge. PMID:25237389

  1. A Comprehensive Mutational Analysis of the Arabidopsis Resistance Protein RPW8.2 Reveals Key Amino Acids for Defense Activation and Protein Targeting[W

    PubMed Central

    Wang, Wenming; Zhang, Yi; Wen, Yingqiang; Berkey, Robert; Ma, Xianfeng; Pan, Zhiyong; Bendigeri, Dipti; King, Harlan; Zhang, Qiong; Xiao, Shunyuan

    2013-01-01

    The Arabidopsis thaliana RESISTANCE TO POWDERY MILDEW8.2 (RPW8.2) protein is specifically targeted to the extrahaustorial membrane (EHM) encasing the haustorium, or fungal feeding structure, where RPW8.2 activates broad-spectrum resistance against powdery mildew pathogens. How RPW8.2 activates defenses at a precise subcellular locale is not known. Here, we report a comprehensive mutational analysis in which more than 100 RPW8.2 mutants were functionally evaluated for their defense and trafficking properties. We show that three amino acid residues (i.e., threonine-64, valine-68, and aspartic acid-116) are critical for RPW8.2-mediated cell death and resistance to powdery mildew (Golovinomyces cichoracearum UCSC1). Also, we reveal that two arginine (R)– or lysine (K)–enriched short motifs (i.e., R/K-R/K-x-R/K) make up the likely core EHM-targeting signals, which, together with the N-terminal transmembrane domain, define a minimal sequence of 60 amino acids that is necessary and sufficient for EHM localization. In addition, some RPW8.2 mutants localize to the nucleus and/or to a potentially novel membrane that wraps around plastids or plastid-derived stromules. Results from this study not only reveal critical amino acid elements in RPW8.2 that enable haustorium-targeted trafficking and defense, but also provide evidence for the existence of a specific, EHM-oriented membrane trafficking pathway in leaf epidermal cells invaded by powdery mildew. PMID:24151293

  2. In vitro mutation analysis of Arabidopsis thaliana small GTP-binding proteins and detection of GAP-like activities in plant cells.

    PubMed

    Anai, T; Matsui, M; Nomura, N; Ishizaki, R; Uchimiya, H

    1994-06-13

    Previously, we have reported the molecular cloning of ara genes encoding a small GTP-binding protein from Arabidopsis thaliana. The criterion based on amino acid sequences suggest that such an ara gene family can be classified to be of the YPT/rab type. To examine the biochemical properties of ARA proteins, several deletions and point mutations were introduced into ara cDNAs. Mutant proteins were expressed in E. coli as GST-chimeric molecules and analyzed in terms of their GTP-binding or GTP-hydrolysing ability in vitro. The results indicate that four conserved amino acid sequence regions of ARA proteins are necessary for GTP-binding. A point mutation of Asn at position 72 for ARA-2, or 71 for ARA-4, to Ile decreased GTP-binding and a point mutation of Gln at position 126 for ARA-2, or 125 for ARA-4, to Leu suppressed GTP-hydrolysis activity. Furthermore, certain factors associated with the membrane fraction accelerated GTPase activities of ARA proteins, suggesting the presence of GTPase activating protein(s) (GAP(s)) in the vesicular transport system of higher plant cells.

  3. Novel FOXC2 Mutation in Hereditary Distichiasis Impairs DNA-Binding Activity and Transcriptional Activation.

    PubMed

    Zhang, Leilei; He, Jie; Han, Bing; Lu, Linna; Fan, Jiayan; Zhang, He; Ge, Shengfang; Zhou, Yixiong; Jia, Renbing; Fan, Xianqun

    2016-01-01

    Distichiasis presents as double rows of eyelashes arising from aberrant differentiation of the meibomian glands of the eyelids, and it may be sporadic or hereditary. FOXC2 gene mutations in hereditary distichiasis are rarely reported. Here, we examined two generations of a Chinese family with hereditary distichiasis but without lymphedema or other features of LD syndrome. The FOXC2 gene was amplified and sequenced in all family members. Subcellular localization and luciferase assays were performed to assess the activity of the mutant FOXC2 protein. Clinical examinations showed distichiasis, lower eyelid ectropion, congenital ptosis and photophobia in all affected individuals. Sequence analysis revealed a novel frameshift mutation, c.964_965insG, in the coding region of the FOXC2 gene. This mutation caused protein truncation due to the presence of a premature stop codon. A fluorescence assay showed that this mutation did not change the nuclear localization of the protein. However, it impaired DNA-binding activity and decreased transcriptional activation. This is the first report of a FOXC2 mutation in hereditary distichiasis in the Chinese population. The findings of our study expand the FOXC2 mutation spectrum and contribute to the understanding of the genotype-phenotype correlation of this disease. PMID:27570485

  4. Novel FOXC2 Mutation in Hereditary Distichiasis Impairs DNA-Binding Activity and Transcriptional Activation

    PubMed Central

    Zhang, Leilei; He, Jie; Han, Bing; Lu, Linna; Fan, Jiayan; Zhang, He; Ge, Shengfang; Zhou, Yixiong; Jia, Renbing; Fan, Xianqun

    2016-01-01

    Distichiasis presents as double rows of eyelashes arising from aberrant differentiation of the meibomian glands of the eyelids, and it may be sporadic or hereditary. FOXC2 gene mutations in hereditary distichiasis are rarely reported. Here, we examined two generations of a Chinese family with hereditary distichiasis but without lymphedema or other features of LD syndrome. The FOXC2 gene was amplified and sequenced in all family members. Subcellular localization and luciferase assays were performed to assess the activity of the mutant FOXC2 protein. Clinical examinations showed distichiasis, lower eyelid ectropion, congenital ptosis and photophobia in all affected individuals. Sequence analysis revealed a novel frameshift mutation, c.964_965insG, in the coding region of the FOXC2 gene. This mutation caused protein truncation due to the presence of a premature stop codon. A fluorescence assay showed that this mutation did not change the nuclear localization of the protein. However, it impaired DNA-binding activity and decreased transcriptional activation. This is the first report of a FOXC2 mutation in hereditary distichiasis in the Chinese population. The findings of our study expand the FOXC2 mutation spectrum and contribute to the understanding of the genotype-phenotype correlation of this disease. PMID:27570485

  5. Domain structure of the Moloney murine leukemia virus reverse transcriptase: mutational analysis and separate expression of the DNA polymerase and RNase H activities.

    PubMed Central

    Tanese, N; Goff, S P

    1988-01-01

    The reverse transcriptase of Moloney murine leukemia virus, like that of all retroviruses, exhibits a DNA polymerase activity capable of synthesis on RNA or DNA templates and an RNase H activity with specificity for RNA in the form of an RNA.DNA hybrid. We have generated a library of linker insertion mutants of the Moloney murine leukemia virus enzyme expressed in bacteria and assayed these mutants for both enzymatic activities. Those mutations affecting the DNA polymerase activity were clustered in the 5'-proximal two-thirds of the gene, and those affecting RNase H were in the remaining 3' one-third. Based on these maps, plasmids were made that expressed each one of the domains separately; assays of the proteins encoded by these plasmids showed that each domain exhibited only the expected activity. Images PMID:2450347

  6. Analysis of APC mutation in human ameloblastoma and clinical significance.

    PubMed

    Li, Ning; Liu, Bing; Sui, Chengguang; Jiang, Youhong

    2016-01-01

    As a highly conserved signaling pathway, Wnt/β-catenin signal transduction pathway plays an important role in many processes. Either in the occurrence or development of tumor, activation of this pathway takes an important place. APC inhibits Wnt/β-catenin pathway to regulate cell proliferation and differentiation. This study aimed to investigate the function of cancer suppressor gene. PCR amplification and sequencing method was used to analyze APC mutations of human clinical specimens. The pathological specimens were collected for PCR and clear electrophoretic bands were obtained after electrophoresis. The gene sequence obtained after purification and sequencing analysis was compared with the known APC gene sequence (NM_000038.5). Base mutations at APC 1543 (T → C), APC-4564 (G → A), APC-5353 (T → G), APC-5550 (T → A) and APC-5969 (G → A) locus existed in 22 (27.5 %), 12 (15 %), 5 (6.25 %), 13 (16.25 %) and 12 patients (15 %), respectively. Gene mutations existed in ameloblastoma, and the mutation loci were 1543 locus (T → C), 4564 locus (G → A), 5353 locus (T → G), 5550 locus (T → A) and 5969 locus (G → A) 15 %, respectively. APC mutation plays a certain role in monitoring the tumor malignant degree as it may indicate the transition process of ameloblastoma malignant phenotype. PMID:27065015

  7. Mutational analysis of a histone deacetylase in Drosophila melanogaster: missense mutations suppress gene silencing associated with position effect variegation.

    PubMed Central

    Mottus, R; Sobel, R E; Grigliatti, T A

    2000-01-01

    For many years it has been noted that there is a correlation between acetylation of histones and an increase in transcriptional activity. One prediction, based on this correlation, is that hypomorphic or null mutations in histone deacetylase genes should lead to increased levels of histone acetylation and result in increased levels of transcription. It was therefore surprising when it was reported, in both yeast and fruit flies, that mutations that reduced or eliminated a histone deacetylase resulted in transcriptional silencing of genes subject to telomeric and heterochromatic position effect variegation (PEV). Here we report the first mutational analysis of a histone deacetylase in a multicellular eukaryote by examining six new mutations in HDAC1 of Drosophila melanogaster. We observed a suite of phenotypes accompanying the mutations consistent with the notion that HDAC1 acts as a global transcriptional regulator. However, in contrast to recent findings, here we report that specific missense mutations in the structural gene of HDAC1 suppress the silencing of genes subject to PEV. We propose that the missense mutations reported here are acting as antimorphic mutations that "poison" the deacetylase complex and propose a model that accounts for the various phenotypes associated with lesions in the deacetylase locus. PMID:10655219

  8. Conformational Tinkering Drives Evolution of a Promiscuous Activity through Indirect Mutational Effects.

    PubMed

    Yang, Gloria; Hong, Nansook; Baier, Florian; Jackson, Colin J; Tokuriki, Nobuhiko

    2016-08-16

    How remote mutations can lead to changes in enzyme function at a molecular level is a central question in evolutionary biochemistry and biophysics. Here, we combine laboratory evolution with biochemical, structural, genetic, and computational analysis to dissect the molecular basis for the functional optimization of phosphotriesterase activity in a bacterial lactonase (AiiA) from the metallo-β-lactamase (MBL) superfamily. We show that a 1000-fold increase in phosphotriesterase activity is caused by a more favorable catalytic binding position of the paraoxon substrate in the evolved enzyme that resulted from conformational tinkering of the active site through peripheral mutations. A nonmutated active site residue, Phe68, was displaced by ∼3 Å through the indirect effects of two second-shell trajectory mutations, allowing molecular interactions between the residue and paraoxon. Comparative mutational scanning, i.e., examining the effects of alanine mutagenesis on different genetic backgrounds, revealed significant changes in the functional roles of Phe68 and other nonmutated active site residues caused by the indirect effects of trajectory mutations. Our work provides a quantitative measurement of the impact of second-shell mutations on the catalytic contributions of nonmutated residues and unveils the underlying intramolecular network of strong epistatic mutational relationships between active site residues and more remote residues. Defining these long-range conformational and functional epistatic relationships has allowed us to better understand the subtle, but cumulatively significant, role of second- and third-shell mutations in evolution.

  9. Conformational Tinkering Drives Evolution of a Promiscuous Activity through Indirect Mutational Effects.

    PubMed

    Yang, Gloria; Hong, Nansook; Baier, Florian; Jackson, Colin J; Tokuriki, Nobuhiko

    2016-08-16

    How remote mutations can lead to changes in enzyme function at a molecular level is a central question in evolutionary biochemistry and biophysics. Here, we combine laboratory evolution with biochemical, structural, genetic, and computational analysis to dissect the molecular basis for the functional optimization of phosphotriesterase activity in a bacterial lactonase (AiiA) from the metallo-β-lactamase (MBL) superfamily. We show that a 1000-fold increase in phosphotriesterase activity is caused by a more favorable catalytic binding position of the paraoxon substrate in the evolved enzyme that resulted from conformational tinkering of the active site through peripheral mutations. A nonmutated active site residue, Phe68, was displaced by ∼3 Å through the indirect effects of two second-shell trajectory mutations, allowing molecular interactions between the residue and paraoxon. Comparative mutational scanning, i.e., examining the effects of alanine mutagenesis on different genetic backgrounds, revealed significant changes in the functional roles of Phe68 and other nonmutated active site residues caused by the indirect effects of trajectory mutations. Our work provides a quantitative measurement of the impact of second-shell mutations on the catalytic contributions of nonmutated residues and unveils the underlying intramolecular network of strong epistatic mutational relationships between active site residues and more remote residues. Defining these long-range conformational and functional epistatic relationships has allowed us to better understand the subtle, but cumulatively significant, role of second- and third-shell mutations in evolution. PMID:27444875

  10. Activating HER2 mutations in HER2 gene amplification negative breast cancer

    PubMed Central

    Bose, Ron; Kavuri, Shyam M.; Searleman, Adam C.; Shen, Wei; Shen, Dong; Koboldt, Daniel C.; Monsey, John; Goel, Nicholas; Aronson, Adam B.; Li, Shunqiang; Ma, Cynthia X.; Ding, Li; Mardis, Elaine R.; Ellis, Matthew J.

    2012-01-01

    Data from eight breast cancer genome sequencing projects identified 25 patients with HER2 somatic mutations in cancers lacking HER2 gene amplification. To determine the phenotype of these mutations, we functionally characterized thirteen HER2 mutations using in vitro kinase assays, protein structure analysis, cell culture and xenograft experiments. Seven of these mutations are activating mutations, including G309A, D769H, D769Y, V777L, P780ins, V842I, and R896C. HER2 in-frame deletion 755-759, which is homologous to EGFR exon 19 in-frame deletions, had a neomorphic phenotype with increased phosphorylation of EGFR or HER3. L755S produced lapatinib resistance, but was not an activating mutation in our experimental systems. All of these mutations were sensitive to the irreversible kinase inhibitor, neratinib. These findings demonstrate that HER2 somatic mutation is an alternative mechanism to activate HER2 in breast cancer and they validate HER2 somatic mutations as drug targets for breast cancer treatment. PMID:23220880

  11. High-Throughput Mutational Analysis of a Twister Ribozyme.

    PubMed

    Kobori, Shungo; Yokobayashi, Yohei

    2016-08-22

    Recent discoveries of new classes of self-cleaving ribozymes in diverse organisms have triggered renewed interest in the chemistry and biology of ribozymes. Functional analysis and engineering of ribozymes often involve performing biochemical assays on multiple ribozyme mutants. However, because each ribozyme mutant must be individually prepared and assayed, the number and variety of mutants that can be studied are severely limited. All of the single and double mutants of a twister ribozyme (a total of 10 296 mutants) were generated and assayed for their self-cleaving activity by exploiting deep sequencing to count the numbers of cleaved and uncleaved sequences for every mutant. Interestingly, we found that the ribozyme is highly robust against mutations such that 71 % and 30 % of all single and double mutants, respectively, retain detectable activity under the assay conditions. It was also observed that the structural elements that comprise the ribozyme exhibit distinct sensitivity to mutations. PMID:27461281

  12. Important role for phylogenetically invariant PP2Acalpha active site and C-terminal residues revealed by mutational analysis in Saccharomyces cerevisiae.

    PubMed Central

    Evans, D R; Hemmings, B A

    2000-01-01

    PP2A is a central regulator of eukaryotic signal transduction. The human catalytic subunit PP2Acalpha functionally replaces the endogenous yeast enzyme, Pph22p, indicating a conservation of function in vivo. Therefore, yeast cells were employed to explore the role of invariant PP2Ac residues. The PP2Acalpha Y127N substitution abolished essential PP2Ac function in vivo and impaired catalysis severely in vitro, consistent with the prediction from structural studies that Tyr-127 mediates substrate binding and its side chain interacts with the key active site residues His-118 and Asp-88. The V159E substitution similarly impaired PP2Acalpha catalysis profoundly and may cause global disruption of the active site. Two conditional mutations in the yeast Pph22p protein, F232S and P240H, were found to cause temperature-sensitive impairment of PP2Ac catalytic function in vitro. Thus, the mitotic and cell lysis defects conferred by these mutations result from a loss of PP2Ac enzyme activity. Substitution of the PP2Acalpha C-terminal Tyr-307 residue by phenylalanine impaired protein function, whereas the Y307D and T304D substitutions abolished essential function in vivo. Nevertheless, Y307D did not reduce PP2Acalpha catalytic activity significantly in vitro, consistent with an important role for the C terminus in mediating essential protein-protein interactions. Our results identify key residues important for PP2Ac function and characterize new reagents for the study of PP2A in vivo. PMID:10978272

  13. Analysis of Dominant Mutations Affecting Muscle Excitation in Caenorhabditis Elegans

    PubMed Central

    Reiner, D. J.; Weinshenker, D.; Thomas, J. H.

    1995-01-01

    We examined mutations that disrupt muscle activation in Caenorhabditis elegans. Fifteen of 17 of these genes were identified previously and we describe new mutations in three of them. We also describe mutations in two new genes, exp-3 and exp-4. We assessed the degree of defect in pharyngeal, body-wall, egg-laying, and enteric muscle activation in animals mutant for each gene. Mutations in all 17 genes are semidominant and, in cases that could be tested, appear to be gain-of-function. Based on their phenotypes, the genes fall into three broad categories: mutations in 11 genes cause defective muscle activation, mutations in four genes cause hyperactivated muscle, and mutations in two genes cause defective activation in some muscle types and hyperactivation in others. In all testable cases, the mutations blocked response to pharmacological activators of egg laying, but did not block muscle activation by irradiation with a laser microbeam. The data suggest that these mutations affect muscle excitation, but not the capacity of the muscle fibers to contract. For most of the genes, apparent loss-of-function mutants have a grossly wild-type phenotype. These observations suggest that there is a large group of genes that function in muscle excitation that can be identified primarily by dominant mutations. PMID:8582640

  14. Spectrum of mutations and genotype-phenotype analysis in Noonan syndrome patients with RIT1 mutations.

    PubMed

    Yaoita, Masako; Niihori, Tetsuya; Mizuno, Seiji; Okamoto, Nobuhiko; Hayashi, Shion; Watanabe, Atsushi; Yokozawa, Masato; Suzumura, Hiroshi; Nakahara, Akihiko; Nakano, Yusuke; Hokosaki, Tatsunori; Ohmori, Ayumi; Sawada, Hirofumi; Migita, Ohsuke; Mima, Aya; Lapunzina, Pablo; Santos-Simarro, Fernando; García-Miñaúr, Sixto; Ogata, Tsutomu; Kawame, Hiroshi; Kurosawa, Kenji; Ohashi, Hirofumi; Inoue, Shin-Ichi; Matsubara, Yoichi; Kure, Shigeo; Aoki, Yoko

    2016-02-01

    RASopathies are autosomal dominant disorders caused by mutations in more than 10 known genes that regulate the RAS/MAPK pathway. Noonan syndrome (NS) is a RASopathy characterized by a distinctive facial appearance, musculoskeletal abnormalities, and congenital heart defects. We have recently identified mutations in RIT1 in patients with NS. To delineate the clinical manifestations in RIT1 mutation-positive patients, we further performed a RIT1 analysis in RASopathy patients and identified 7 RIT1 mutations, including two novel mutations, p.A77S and p.A77T, in 14 of 186 patients. Perinatal abnormalities, including nuchal translucency, fetal hydrops, pleural effusion, or chylothorax and congenital heart defects, are observed in all RIT1 mutation-positive patients. Luciferase assays in NIH 3T3 cells demonstrated that the newly identified RIT1 mutants, including p.A77S and p.A77T, and the previously identified p.F82V, p.T83P, p.Y89H, and p.M90I, enhanced Elk1 transactivation. Genotype-phenotype correlation analyses of previously reported NS patients harboring RIT1, PTPN11, SOS1, RAF1, and KRAS revealed that hypertrophic cardiomyopathy (56 %) was more frequent in patients harboring a RIT1 mutation than in patients harboring PTPN11 (9 %) and SOS1 mutations (10 %). The rates of hypertrophic cardiomyopathy were similar between patients harboring RIT1 mutations and patients harboring RAF1 mutations (75 %). Short stature (52 %) was less prevalent in patients harboring RIT1 mutations than in patients harboring PTPN11 (71 %) and RAF1 (83 %) mutations. These results delineate the clinical manifestations of RIT1 mutation-positive NS patients: high frequencies of hypertrophic cardiomyopathy, atrial septal defects, and pulmonary stenosis; and lower frequencies of ptosis and short stature. PMID:26714497

  15. Activation analysis

    SciTech Connect

    Alfassi, Z.B. . Dept. of Nuclear Engineering)

    1990-01-01

    This volume contains 16 chapters on the application of activation analysis in the fields of life sciences, biological materials, coal and its effluents, environmental samples, archaeology, material science, and forensics. Each chapter is processed separately for the data base.

  16. Activating mutations in CTNNB1 in aldosterone producing adenomas

    PubMed Central

    Åkerström, Tobias; Maharjan, Rajani; Sven Willenberg, Holger; Cupisti, Kenko; Ip, Julian; Moser, Ana; Stålberg, Peter; Robinson, Bruce; Alexander Iwen, K.; Dralle, Henning; Walz, Martin K.; Lehnert, Hendrik; Sidhu, Stan; Gomez-Sanchez, Celso; Hellman, Per; Björklund, Peyman

    2016-01-01

    Primary aldosteronism (PA) is the most common cause of secondary hypertension with a prevalence of 5–10% in unreferred hypertensive patients. Aldosterone producing adenomas (APAs) constitute a large proportion of PA cases and represent a surgically correctable form of the disease. The WNT signaling pathway is activated in APAs. In other tumors, a frequent cause of aberrant WNT signaling is mutation in the CTNNB1 gene coding for β-catenin. Our objective was to screen for CTNNB1 mutations in a well-characterized cohort of 198 APAs. Somatic CTNNB1 mutations were detected in 5.1% of the tumors, occurring mutually exclusive from mutations in KCNJ5, ATP1A1, ATP2B3 and CACNA1D. All of the observed mutations altered serine/threonine residues in the GSK3β binding domain in exon 3. The mutations were associated with stabilized β-catenin and increased AXIN2 expression, suggesting activation of WNT signaling. By CYP11B2 mRNA expression, CYP11B2 protein expression, and direct measurement of aldosterone in tumor tissue, we confirmed the ability for aldosterone production. This report provides compelling evidence that aberrant WNT signaling caused by mutations in CTNNB1 occur in APAs. This also suggests that other mechanisms that constitutively activate the WNT pathway may be important in APA formation. PMID:26815163

  17. Pan-Cancer Analysis of Mutation Hotspots in Protein Domains.

    PubMed

    Miller, Martin L; Reznik, Ed; Gauthier, Nicholas P; Aksoy, Bülent Arman; Korkut, Anil; Gao, Jianjiong; Ciriello, Giovanni; Schultz, Nikolaus; Sander, Chris

    2015-09-23

    In cancer genomics, recurrence of mutations in independent tumor samples is a strong indicator of functional impact. However, rare functional mutations can escape detection by recurrence analysis owing to lack of statistical power. We enhance statistical power by extending the notion of recurrence of mutations from single genes to gene families that share homologous protein domains. Domain mutation analysis also sharpens the functional interpretation of the impact of mutations, as domains more succinctly embody function than entire genes. By mapping mutations in 22 different tumor types to equivalent positions in multiple sequence alignments of domains, we confirm well-known functional mutation hotspots, identify uncharacterized rare variants in one gene that are equivalent to well-characterized mutations in another gene, detect previously unknown mutation hotspots, and provide hypotheses about molecular mechanisms and downstream effects of domain mutations. With the rapid expansion of cancer genomics projects, protein domain hotspot analysis will likely provide many more leads linking mutations in proteins to the cancer phenotype. PMID:27135912

  18. Gigaxonin mutation analysis in patients with NIFID.

    PubMed

    Dequen, Florence; Cairns, Nigel J; Bigio, Eileen H; Julien, Jean-Pierre

    2011-08-01

    Neuronal intermediate filament inclusion disease (NIFID) is a frontotemporal lobar degeneration (FTLD) characterized by frontotemporal dementia (FTD), pyramidal and extrapyramidal signs. The disease is histologically characterized by the presence of abnormal neuronal cytoplasmic inclusions (NCIs) which contain α-internexin and other neuronal intermediate filament (IF) proteins. Gigaxonin (GAN) is a cytoskeletal regulating protein and the genetic cause of giant axonal neuropathy. Since the immunoreactive profile of NCIs in NIFID is similar to that observed in brain sections from Gan(Δex1/Δex1) mice, we speculated that GAN could be a candidate gene causing NIFID. Therefore, we performed a mutation analysis of GAN in NIFID patients. Although the NCIs of NIFID and Gan(Δex1/Δex1) mice were immunohistochemically similar, no GAN variant was identified in DNA obtained from well-characterized cases of NIFID. PMID:19782434

  19. A mutational analysis of the structural basis for transcriptional activation and monomer-monomer interaction in the TyrR system of Escherichia coli K-12.

    PubMed Central

    Cui, J; Somerville, R L

    1993-01-01

    In response to the binding of tyrosine or phenylalanine, the TyrR protein (513 amino acids) activates certain promoters and represses others. In a previous study (J. Cui and R. L. Somerville, J. Bacteriol. 175:303-306, 1993), it was shown that promoter activation was selectively abolished in mutant proteins lacking amino acid residues 2 to 9. An additional series of constructs that encoded mutant TyrR proteins having deletions or point mutations near the N terminus were analyzed. Residues Arg-2 and Leu-3 were shown to be critical for the activation of the mtr promoter. In confirmation of previous findings, none of the activation-defective mutant TyrR proteins had lost significant repression function. The TyrR protein was shown by chemical cross-linking to be dimeric. The polypeptide segments critical for dimer formation in vivo were identified by evaluating the negative dominance phenotypes of a series of mutant proteins, all defective in DNA binding, lacking progressively greater numbers of amino acid residues from either the N terminus or the C terminus. Amino acid residues 194 to 438 were found to contain all of the essential dimerization determinants. Images PMID:8449884

  20. Somatic Activating PIK3CA Mutations Cause Venous Malformation.

    PubMed

    Limaye, Nisha; Kangas, Jaakko; Mendola, Antonella; Godfraind, Catherine; Schlögel, Matthieu J; Helaers, Raphael; Eklund, Lauri; Boon, Laurence M; Vikkula, Miikka

    2015-12-01

    Somatic mutations in TEK, the gene encoding endothelial cell tyrosine kinase receptor TIE2, cause more than half of sporadically occurring unifocal venous malformations (VMs). Here, we report that somatic mutations in PIK3CA, the gene encoding the catalytic p110α subunit of PI3K, cause 54% (27 out of 50) of VMs with no detected TEK mutation. The hotspot mutations c.1624G>A, c.1633G>A, and c.3140A>G (p.Glu542Lys, p.Glu545Lys, and p.His1047Arg), frequent in PIK3CA-associated cancers, overgrowth syndromes, and lymphatic malformation (LM), account for >92% of individuals who carry mutations. Like VM-causative mutations in TEK, the PIK3CA mutations cause chronic activation of AKT, dysregulation of certain important angiogenic factors, and abnormal endothelial cell morphology when expressed in human umbilical vein endothelial cells (HUVECs). The p110α-specific inhibitor BYL719 restores all abnormal phenotypes tested, in PIK3CA- as well as TEK-mutant HUVECs, demonstrating that they operate via the same pathogenic pathways. Nevertheless, significant genotype-phenotype correlations in lesion localization and histology are observed between individuals with mutations in PIK3CA versus TEK, pointing to gene-specific effects. PMID:26637981

  1. Phenylketonuria mutation analysis in Northern Ireland: A rapid stepwise approach

    SciTech Connect

    Zschocke, J.; Graham, C.A.; Nevin, N.C.

    1995-12-01

    We present a multistep approach for the rapid analysis of phenylketonuria (PKU) mutations. In the first step, three common mutations and a polymorphic short tandem repeat (STR) system are rapidly analyzed with a fluorescent multiplex assay. In the second step, minihaplotypes combining STR and VNTR data are used to determine rare mutations likely to be present in an investigated patient, which are then confirmed by restriction enzyme analysis. The remaining mutations are analyzed with denaturant gradient-gel electrophoresis and sequencing. The first two steps together identify both mutations in 90%-95% of PKU patients, and results can be obtained within 2 d. We have investigated 121 Northern Irish families with hyperphenylalaninemia, including virtually all patients born since 1972, and have found 34 different mutations on 241 of the 242 mutant alleles. Three mutations (R408W, 165T, and F39L) account for 57.5% of mutations, while 14 mutations occur with a frequency of 1%-6%. The present analysis system is efficient and inexpensive and is particularly well suited to routine mutation analysis in a diagnostic setting. 19 refs., 5 tabs.

  2. HER2 activating mutations are targets for colorectal cancer treatment

    PubMed Central

    Kavuri, Shyam M.; Jain, Naveen; Galimi, Francesco; Cottino, Francesca; Leto, Simonetta M.; Migliardi, Giorgia; Searleman, Adam C.; Shen, Wei; Monsey, John; Trusolino, Livio; Jacobs, Samuel A.; Bertotti, Andrea; Bose, Ron

    2015-01-01

    The Cancer Genome Atlas project identified HER2 somatic mutations and gene amplification in 7% of colorectal cancer patients. Introduction of the HER2 mutations, S310F, L755S, V777L, V842I, and L866M, into colon epithelial cells increased signaling pathways and anchorage-independent cell growth, indicating that they are activating mutations. Introduction of these HER2 activating mutations into colorectal cancer cell lines produced resistance to cetuximab and panitumumab by sustaining MAPK phosphorylation. HER2 mutations are potently inhibited by low nanomolar doses of the irreversible tyrosine kinase inhibitors, neratinib and afatinib. HER2 gene sequencing of 48 cetuximab resistant, quadruple (KRAS, NRAS, BRAF, and PIK3CA) WT colorectal cancer patient-derived xenografts (PDX’s) identified 4 PDX’s with HER2 mutations. HER2 targeted therapies were tested on two PDX’s. Treatment with a single HER2 targeted drug (trastuzumab, neratinib, or lapatinib) delayed tumor growth, but dual HER2 targeted therapy with trastuzumab plus tyrosine kinase inhibitors produced regression of these HER2 mutated PDX’s. PMID:26243863

  3. Mutational dichotomy in desmoplastic malignant melanoma corroborated by multigene panel analysis.

    PubMed

    Jahn, Stephan W; Kashofer, Karl; Halbwedl, Iris; Winter, Gerlinde; El-Shabrawi-Caelen, Laila; Mentzel, Thomas; Hoefler, Gerald; Liegl-Atzwanger, Bernadette

    2015-07-01

    Desmoplastic malignant melanoma is a distinct melanoma entity histologically subtyped into mixed and pure forms due to significantly reduced lymph node metastases in the pure form. Recent reports investigating common actionable driver mutations have demonstrated a lack of BRAF, NRAS, and KIT mutation in pure desmoplastic melanoma. In search for alternative driver mutations next generation amplicon sequencing for hotspot mutations in 50 genes cardinal to tumorigenesis was performed and in addition the RET G691S polymorphism was investigated. Data from 21 desmoplastic melanomas (12 pure and 9 mixed) were retrieved. Pure desmoplastic melanomas were either devoid of mutations (50%) or displayed mutations in tumor suppressor genes (TP53, CDKN2A, and SMAD4) singularly or in combination with the exception of a PIK3CA double-mutation lacking established biological relevance. Mixed desmoplastic melanomas on the contrary were frequently mutated (89%), and 67% exhibited activating mutations similar to common-type cutaneous malignant melanomas (BRAF, NRAS, FGFR2, and ERBB2). Separate analysis of morphologically heterogeneous tumor areas in four mixed desmoplastic malignant melanomas displayed no difference in mutation status and RET G691 status. GNAQ and GNA11, two oncogenes in BRAF and NRAS wild-type uveal melanomas, were not mutated in our cohort. The RET G691S polymorphism was found in 25% of pure and 38% of mixed desmoplastic melanomas. Apart from RET G691S our findings demonstrate absence of activating driver mutations in pure desmoplastic melanoma beyond previously investigated oncogenes (BRAF, NRAS, and KIT). The findings underline the therapeutic dichotomy of mixed versus pure desmoplastic melanoma with regard to activating mutations primarily of the mitogen-activated protein kinase pathway.

  4. TERT promoter mutations and monoallelic activation of TERT in cancer

    PubMed Central

    Huang, F W; Bielski, C M; Rinne, M L; Hahn, W C; Sellers, W R; Stegmeier, F; Garraway, L A; Kryukov, G V

    2015-01-01

    Here we report that promoter mutations in telomerase (TERT), the most common noncoding mutations in cancer, give rise to monoallelic expression of TERT. Through deep RNA sequencing, we find that TERT activation in human cancer cell lines can occur in either mono- or biallelic manner. Without exception, hotspot TERT promoter mutations lead to the re-expression of only one allele, accounting for approximately half of the observed cases of monoallelic TERT expression. Furthermore, we show that monoallelic TERT expression is highly prevalent in certain tumor types and widespread across a broad spectrum of cancers. Taken together, these observations provide insights into the mechanisms of TERT activation and the ramifications of noncoding mutations in cancer. PMID:26657580

  5. Mutational Analysis of the Cyanobacterial Nitrogen Regulator PipX

    PubMed Central

    Laichoubi, Karim Boumediene; Espinosa, Javier; Castells, Miguel Angel; Contreras, Asunción

    2012-01-01

    PipX provides a functional link between the cyanobacterial global transcriptional regulator NtcA and the signal transduction protein PII, a protein found in all three domains of life as integrators of signals of the nitrogen and carbon balance. PipX, which is toxic in the absence of PII, can form alternative complexes with NtcA and PII and these interactions are respectively stimulated and inhibited by 2-oxoglutarate, providing a mechanism by which PII can modulate expression at the NtcA regulon. Structural information on PipX-NtcA complexes suggests that PipX coactivates NtcA controlled genes by stabilizing the active conformation of NtcA bound to 2-oxoglutarate and by possibly helping recruit RNA polymerase. To get insights into PipX functions, we perform here a mutational analysis of pipX informed by the structures of PipX-PII and PipX-NtcA complexes and evaluate the impact of point mutations on toxicity and gene expression. Two amino acid substitutions (Y32A and E4A) were of particular interest, since they increased PipX toxicity and activated NtcA dependent genes in vivo at lower 2-oxoglutarate levels than wild type PipX. While both mutations impaired complex formation with PII, only Y32A had a negative impact on PipX-NtcA interactions. PMID:22558239

  6. Constitutive mutations of Agrobacterium tumefaciens transcriptional activator virG.

    PubMed Central

    Pazour, G J; Ta, C N; Das, A

    1992-01-01

    The virulence (vir) genes of Agrobacterium tumefaciens Ti plasmids are positively regulated by virG in conjunction with virA and plant-derived inducing molecules. A procedure that utilizes both genetic selection and a genetic screen was developed to isolate mutations in virG that led to elevated levels of vir gene expression in the absence of virA and plant phenolic inducers. Mutants were isolated at a frequency of 1 in 10(7) to 10(8). Substitution mutations at two positions in the virG coding region were found to result in the desired phenotype. One mutant had an asparagine-to-aspartic acid substitution at residue 54, and the other contained an isoleucine-to-leucine substitution at residue 106. In both cases, the mutant phenotype required the presence of the active-site aspartic acid residue at position 52. Further analysis showed that no other substitution at residue 54 resulted in a constitutive phenotype. In contrast, several substitutions at residue 106 led to a constitutive phenotype. The possible roles of the residues at positions 54 and 106 in VirG function are discussed. PMID:1597431

  7. Mutational analysis of the human MAOA gene

    SciTech Connect

    Tivol, E.A.; Shalish, C.; Schuback, D.E.; Breakefield, X.O.; Hsu, Yun-Pung

    1996-02-16

    The monoamine oxidases (MAO-A and MAO-B) are the enzymes primarily responsible for the degradation of amine neurotransmitters, such as dopamine, norepinephrine, and serotonin. Wide variations in activity of these isozymes have been reported in control humans. The MAOA and MAOB genes are located next to each other in the p11.3-11.4 region of the human X chromosome. Our recent documentation of an MAO-A-deficiency state, apparently associated with impulsive aggressive behavior in males, has focused attention on genetic variations in the MAOA gene. In the present study, variations in the coding sequence of the MAOA gene were evaluated by RT-PCR, SSCP, and sequencing of mRNA or genomic DNA in 40 control males with >100-fold variations in MAOA activity, as measured in cultured skin fibroblasts. Remarkable conservation of the coding sequence was found, with only 5 polymorphisms observed. All but one of these were in the third codon position and thus did not alter the deduced amino acid sequence. The one amino acid alteration observed, lys{r_arrow}arg, was neutral and should not affect the structure of the protein. This study demonstrates high conservation of coding sequence in the human MAOA gene in control males, and provides primer sets which can be used to search genomic DNA for mutations in this gene in males with neuropsychiatric conditions. 47 refs., 1 fig., 2 tabs.

  8. Mutational analysis of active-site residues in the Mycobacterium leprae RecA intein, a LAGLIDADG homing endonuclease: Asp(122) and Asp(193) are crucial to the double-stranded DNA cleavage activity whereas Asp(218) is not.

    PubMed

    Singh, Pawan; Tripathi, Pankaj; Muniyappa, K

    2010-01-01

    Mycobacterium leprae recA harbors an in-frame insertion sequence that encodes an intein homing endonuclease (PI-MleI). Most inteins (intein endonucleases) possess two conserved LAGLIDADG (DOD) motifs at their active center. A common feature of LAGLIDADG-type homing endonucleases is that they recognize and cleave the same or very similar DNA sequences. However, PI-MleI is distinctive from other members of the family of LAGLIDADG-type HEases for its modular structure with functionally separable domains for DNA-binding and cleavage, each with distinct sequence preferences. Sequence alignment analyses of PI-MleI revealed three putative LAGLIDADG motifs; however, there is conflicting bioinformatics data in regard to their identity and specific location within the intein polypeptide. To resolve this conflict and to determine the active-site residues essential for DNA target site recognition and double-stranded DNA cleavage, we performed site-directed mutagenesis of presumptive catalytic residues in the LAGLIDADG motifs. Analysis of target DNA recognition and kinetic parameters of the wild-type PI-MleI and its variants disclosed that the two amino acid residues, Asp(122) (in Block C) and Asp(193) (in functional Block E), are crucial to the double-stranded DNA endonuclease activity, whereas Asp(218) (in pseudo-Block E) is not. However, despite the reduced catalytic activity, the PI-MleI variants, like the wild-type PI-MleI, generated a footprint of the same length around the insertion site. The D122T variant showed significantly reduced catalytic activity, and D122A and D193A mutations although failed to affect their DNA-binding affinities, but abolished the double-stranded DNA cleavage activity. On the other hand, D122C variant showed approximately twofold higher double-stranded DNA cleavage activity, compared with the wild-type PI-MleI. These results provide compelling evidence that Asp(122) and Asp(193) in DOD motif I and II, respectively, are bona fide active

  9. Mutational analysis of patients with neurofibromatosis 2

    SciTech Connect

    MacCollin, M.; Ramesh, V.; Pulaski, K.; Trofatter, J.A.; Short, M.P.; Bove, C.; Jacoby, L.B.; Louis, D.N.; Rubio, M.P.; Eldridge, R.

    1994-08-01

    Neurofibromatosis 2 (NF2) is a genetic disorder characterized by the development of multiple nervous-system tumors in young adulthood. The NF2 gene has recently been isolated and found to encode a new member, merlin, of the protein 4.1 family of cytoskeleton-associated proteins. To define the molecular basis of NF2 in affected individuals, the authors have used SSCP analysis to scan the exons of the NF2 gene from 33 unrelated patients with NF2. Twenty unique SSCP variants were seen in 21 patients; 10 of these individuals were known to be the only affected person in their kindred, while 7 had at least one other known affected relative. In all cases in which family members were available, the SSCP variant segregated with the disease; comparison of sporadic cases with their parents confirmed the de novo variants. DNA sequence analysis revealed that 19 of the 20 variants observed are predicted to lead to a truncated protein due to frameshift, creation of a stop codon, or interference with normal RNA splicing. A single patient carried a 3-bp deletion removing a phenylalanine residue. The authors conclude that the majority of NF2 patients carry an inactivating mutation of the NF2 gene and that neutral polymorphism in the gene is rare. 18 refs., 3 figs., 2 tabs.

  10. Mutation analysis of 28 gaucher disease patients: The Australasian experience

    SciTech Connect

    Lewis, B.D.; Nelson, P.V.; Robertson, E.F.; Morris, C.P.

    1994-01-15

    Gaucher disease is the most common lysomal storage disease. It is an autosomal recessive disorder that results from a deficiency of {beta}-glucocerrebrosidase. Three clinical phenotypes have been described: non-neuronopathic, acute neuronopathic, and subacuteneuronopathic. Genomic DNA from 28 Australasian patients of diverse ethnic origin with Gaucher disease was screened for 3 common mutations (1226G, 1448C and 84GG) using the amplification refractory mutation system (ARMS), and one uncommon mutation (1504T) by restriction enzyme digestion. Thirty-eight of the 56 independent alleles in these patients were characterized, with 1448C present in 42% and 1226G in 28% of the alleles. The 1226G mutation was associated only with the nonneuronopathic phenotype and 7 of the 15 patients who carried the 1448C mutation developed neuronopathic disease. Three infants who died in the neonatal period following a rapidly progressive neurodegenerative course carried no identifiable mutations. The 84GG mutation was carried by 2 Jewish patients and 1504T was present in one patient. It is now possible to rapidly identify the common Gaucher mutations using ARMS and restriction enzyme digestion, and our findings confirm the heterogeneity of mutations in Gaucher disease. It is also possible to predict in part the phenotypic outcome when screening patients for these mutations. The authors consider mutation analysis to be of most use in prenatal diagnosis and for carrier detection within affected families. 27 refs., 2 figs., 2 tabs.

  11. Complementation analysis of eleven tryptophanase mutations in Escherichia coli.

    PubMed

    White, M K; Yudkin, M D

    1979-10-01

    Nine independent mutants deficient in tryptophanase activity were isolated. Each mutation was transferred to a specialized transducing phage that carries the tryptophanase region of the Escherichia coli chromosome. The nine phages thus produced, and a tenth carrying a previously characterized tryptophanase mutation, were used to lysogenize a bacterial strain harbouring a mutation in the tryptophanase structural gene and also a suppressor of polarity. In no case was complementation observed; we conclude that there is no closely linked positive regulatory gene for tryptophanase.

  12. [Increasing activity of a monoamine oxidase by random mutation].

    PubMed

    Chen, Xuejun; Ma, Yuanhui; Shao, Jianhua; Lai, Dunyue; Wang, Zhiguo; Chen, Zhenming

    2014-01-01

    The monoamine oxidase mutant A-1 (F210V/L213C) from Aspergillus niger showed some catalytic activity on mexiletine. To futher improve its activity, the mutant was subjected to directed evolution with MegaWHOP PCR (Megaprimer PCR of Whole Plasmid) and selection employing a high-throughput agar plate-based colorimetric screen. This approach led to the identification of a mutant ep-1, which specific activity was 189% of that for A-1. The ep-1 also showed significantly improved enantioselectivity, with the E value increased from 101 to 282; its kinetic k(cat)/K(m) value increased from 0.001 51 mmol/(L x s) to 0.002 89 mmol/(L x s), suggesting that catalytic efficiency of ep-1 had been improved. The mutant showed obviously higher specific activities on 7 of all tested 11 amines substrates, and the others were comparable. Sequence analysis revealed that there was a new mutation T162A on ep-1. The molecular dynamics simulation indicated that T162A may affect the secondary structure of the substrate channel and expand the binding pocket. PMID:24818485

  13. Glucocerebrosidase activity in Parkinson's disease with and without GBA mutations.

    PubMed

    Alcalay, Roy N; Levy, Oren A; Waters, Cheryl C; Fahn, Stanley; Ford, Blair; Kuo, Sheng-Han; Mazzoni, Pietro; Pauciulo, Michael W; Nichols, William C; Gan-Or, Ziv; Rouleau, Guy A; Chung, Wendy K; Wolf, Pavlina; Oliva, Petra; Keutzer, Joan; Marder, Karen; Zhang, Xiaokui

    2015-09-01

    Glucocerebrosidase (GBA) mutations have been associated with Parkinson's disease in numerous studies. However, it is unknown whether the increased risk of Parkinson's disease in GBA carriers is due to a loss of glucocerebrosidase enzymatic activity. We measured glucocerebrosidase enzymatic activity in dried blood spots in patients with Parkinson's disease (n = 517) and controls (n = 252) with and without GBA mutations. Participants were recruited from Columbia University, New York, and fully sequenced for GBA mutations and genotyped for the LRRK2 G2019S mutation, the most common autosomal dominant mutation in the Ashkenazi Jewish population. Glucocerebrosidase enzymatic activity in dried blood spots was measured by a mass spectrometry-based assay and compared among participants categorized by GBA mutation status and Parkinson's disease diagnosis. Parkinson's disease patients were more likely than controls to carry the LRRK2 G2019S mutation (n = 39, 7.5% versus n = 2, 0.8%, P < 0.001) and GBA mutations or variants (seven homozygotes and compound heterozygotes and 81 heterozygotes, 17.0% versus 17 heterozygotes, 6.7%, P < 0.001). GBA homozygotes/compound heterozygotes had lower enzymatic activity than GBA heterozygotes (0.85 µmol/l/h versus 7.88 µmol/l/h, P < 0.001), and GBA heterozygotes had lower enzymatic activity than GBA and LRRK2 non-carriers (7.88 µmol/l/h versus 11.93 µmol/l/h, P < 0.001). Glucocerebrosidase activity was reduced in heterozygotes compared to non-carriers when each mutation was compared independently (N370S, P < 0.001; L444P, P < 0.001; 84GG, P = 0.003; R496H, P = 0.018) and also reduced in GBA variants associated with Parkinson's risk but not with Gaucher disease (E326K, P = 0.009; T369M, P < 0.001). When all patients with Parkinson's disease were considered, they had lower mean glucocerebrosidase enzymatic activity than controls (11.14 µmol/l/h versus 11.85 µmol/l/h, P = 0.011). Difference compared to controls persisted in patients with

  14. A comprehensive functional analysis of PTEN mutations: implications in tumor- and autism-related syndromes.

    PubMed

    Rodríguez-Escudero, Isabel; Oliver, María D; Andrés-Pons, Amparo; Molina, María; Cid, Víctor J; Pulido, Rafael

    2011-11-01

    The PTEN (phosphatase and tensin homolog) phosphatase is unique in mammals in terms of its tumor suppressor activity, exerted by dephosphorylation of the lipid second messenger PIP(3) (phosphatidylinositol 3,4,5-trisphosphate), which activates the phosphoinositide 3-kinase/Akt/mTOR (mammalian target of rapamycin) oncogenic pathway. Loss-of-function mutations in the PTEN gene are frequent in human cancer and in the germline of patients with PTEN hamartoma tumor-related syndromes (PHTSs). In addition, PTEN is mutated in patients with autism spectrum disorders (ASDs), although no functional information on these mutations is available. Here, we report a comprehensive in vivo functional analysis of human PTEN using a heterologous yeast reconstitution system. Ala-scanning mutagenesis at the catalytic loops of PTEN outlined the critical role of residues within the P-catalytic loop for PIP(3) phosphatase activity in vivo. PTEN mutations that mimic the P-catalytic loop of mammalian PTEN-like proteins (TPTE, TPIP, tensins and auxilins) affected PTEN function variably, whereas tumor- or PHTS-associated mutations targeting the PTEN P-loop produced complete loss of function. Conversely, Ala-substitutions, as well as tumor-related mutations at the WPD- and TI-catalytic loops, displayed partial activity in many cases. Interestingly, a tumor-related D92N mutation was partially active, supporting the notion that the PTEN Asp92 residue might not function as the catalytic general acid. The analysis of a panel of ASD-associated hereditary PTEN mutations revealed that most of them did not substantially abrogate PTEN activity in vivo, whereas most of PHTS-associated mutations did. Our findings reveal distinctive functional patterns among PTEN mutations found in tumors and in the germline of PHTS and ASD patients, which could be relevant for therapy.

  15. Mutations Closer to the Active Site Improve the Promiscuous Aldolase Activity of 4-Oxalocrotonate Tautomerase More Effectively than Distant Mutations.

    PubMed

    Rahimi, Mehran; van der Meer, Jan-Ytzen; Geertsema, Edzard M; Poddar, Harshwardhan; Baas, Bert-Jan; Poelarends, Gerrit J

    2016-07-01

    The enzyme 4-oxalocrotonate tautomerase (4-OT), which catalyzes enol-keto tautomerization as part of a degradative pathway for aromatic hydrocarbons, promiscuously catalyzes various carbon-carbon bond-forming reactions. These include the aldol condensation of acetaldehyde with benzaldehyde to yield cinnamaldehyde. Here, we demonstrate that 4-OT can be engineered into a more efficient aldolase for this condensation reaction, with a >5000-fold improvement in catalytic efficiency (kcat /Km ) and a >10(7) -fold change in reaction specificity, by exploring small libraries in which only "hotspots" are varied. The hotspots were identified by systematic mutagenesis (covering each residue), followed by a screen for single mutations that give a strong improvement in the desired aldolase activity. All beneficial mutations were near the active site of 4-OT, thus underpinning the notion that new catalytic activities of a promiscuous enzyme are more effectively enhanced by mutations close to the active site. PMID:27238293

  16. Crystal structure, mutational analysis and RNA-dependent ATPase activity of the yeast DEAD-box pre-mRNA splicing factor Prp28

    SciTech Connect

    Jacewicz, Agata; Schwer, Beate; Smith, Paul; Shuman, Stewart

    2014-10-10

    Yeast Prp28 is a DEAD-box pre-mRNA splicing factor implicated in displacing U1 snRNP from the 5' splice site. Here we report that the 588-aa Prp28 protein consists of a trypsin-sensitive 126-aa N-terminal segment (of which aa 1–89 are dispensable for Prp28 function in vivo) fused to a trypsin-resistant C-terminal catalytic domain. Purified recombinant Prp28 and Prp28-(127–588) have an intrinsic RNA-dependent ATPase activity, albeit with a low turnover number. The crystal structure of Prp28-(127–588) comprises two RecA-like domains splayed widely apart. AMPPNP•Mg2+ is engaged by the proximal domain, with proper and specific contacts from Phe194 and Gln201 (Q motif) to the adenine nucleobase. The triphosphate moiety of AMPPNP•Mg2+ is not poised for catalysis in the open domain conformation. Guided by the Prp28•AMPPNP structure, and that of the Drosophila Vasa•AMPPNP•Mg2+•RNA complex, we targeted 20 positions in Prp28 for alanine scanning. ATP-site components Asp341 and Glu342 (motif II) and Arg527 and Arg530 (motif VI) and RNA-site constituent Arg476 (motif Va) are essential for Prp28 activity in vivo. Synthetic lethality of double-alanine mutations highlighted functionally redundant contacts in the ATP-binding (Phe194-Gln201, Gln201-Asp502) and RNA-binding (Arg264-Arg320) sites. As a result, overexpression of defective ATP-site mutants, but not defective RNA-site mutants, elicited severe dominant-negative growth defects.

  17. Crystal structure, mutational analysis and RNA-dependent ATPase activity of the yeast DEAD-box pre-mRNA splicing factor Prp28

    DOE PAGES

    Jacewicz, Agata; Schwer, Beate; Smith, Paul; Shuman, Stewart

    2014-10-10

    Yeast Prp28 is a DEAD-box pre-mRNA splicing factor implicated in displacing U1 snRNP from the 5' splice site. Here we report that the 588-aa Prp28 protein consists of a trypsin-sensitive 126-aa N-terminal segment (of which aa 1–89 are dispensable for Prp28 function in vivo) fused to a trypsin-resistant C-terminal catalytic domain. Purified recombinant Prp28 and Prp28-(127–588) have an intrinsic RNA-dependent ATPase activity, albeit with a low turnover number. The crystal structure of Prp28-(127–588) comprises two RecA-like domains splayed widely apart. AMPPNP•Mg2+ is engaged by the proximal domain, with proper and specific contacts from Phe194 and Gln201 (Q motif) to themore » adenine nucleobase. The triphosphate moiety of AMPPNP•Mg2+ is not poised for catalysis in the open domain conformation. Guided by the Prp28•AMPPNP structure, and that of the Drosophila Vasa•AMPPNP•Mg2+•RNA complex, we targeted 20 positions in Prp28 for alanine scanning. ATP-site components Asp341 and Glu342 (motif II) and Arg527 and Arg530 (motif VI) and RNA-site constituent Arg476 (motif Va) are essential for Prp28 activity in vivo. Synthetic lethality of double-alanine mutations highlighted functionally redundant contacts in the ATP-binding (Phe194-Gln201, Gln201-Asp502) and RNA-binding (Arg264-Arg320) sites. As a result, overexpression of defective ATP-site mutants, but not defective RNA-site mutants, elicited severe dominant-negative growth defects.« less

  18. DMD mutation spectrum analysis in 613 Chinese patients with dystrophinopathy.

    PubMed

    Guo, Ruolan; Zhu, Guosheng; Zhu, Huimin; Ma, Ruiyu; Peng, Ying; Liang, Desheng; Wu, Lingqian

    2015-08-01

    Dystrophinopathy is a group of inherited diseases caused by mutations in the DMD gene. Within the dystrophinopathy spectrum, Duchenne and Becker muscular dystrophies are common X-linked recessive disorders that mainly feature striated muscle necrosis. We combined multiplex ligation-dependent probe amplification with Sanger sequencing to detect large deletions/duplications and point mutations in the DMD gene in 613 Chinese patients. A total of 571 (93.1%) patients were diagnosed, including 428 (69.8%) with large deletions/duplications and 143 (23.3%) with point mutations. Deletion/duplication breakpoints gathered mostly in introns 44-55. Reading frame rules could explain 88.6% of deletion mutations. We identified seventy novel point mutations that had not been previously reported. Spectrum expansion and genotype-phenotype analysis of DMD mutations on such a large sample size in Han Chinese population would provide new insights into the pathogenic mechanism underlying dystrophinopathies.

  19. PAH Mutation Analysis Consortium Database: 1997. Prototype for relational locus-specific mutation databases.

    PubMed Central

    Nowacki, P M; Byck, S; Prevost, L; Scriver, C R

    1998-01-01

    PAHdb (http://www.mcgill.ca/pahdb ) is a curated relational database (Fig. 1) of nucleotide variation in the human PAH cDNA (GenBank U49897). Among 328 different mutations by state (Fig. 2) the majority are rare mutations causing hyperphenylalaninemia (HPA) (OMIM 261600), the remainder are polymorphic variants without apparent effect on phenotype. PAHdb modules contain mutations, polymorphic haplotypes, genotype-phenotype correlations, expression analysis, sources of information and the reference sequence; the database also contains pages of clinical information and data on three ENU mouse orthologues of human HPA. Only six different mutations account for 60% of human HPA chromosomes worldwide, mutations stratify by population and geographic region, and the Oriental and Caucasian mutation sets are different (Fig. 3). PAHdb provides curated electronic publication and one third of its incoming reports are direct submissions. Each different mutation receives a systematic (nucleotide) name and a unique identifier (UID). Data are accessed both by a Newsletter and a search engine on the website; integrity of the database is ensured by keeping the curated template offline. There have been >6500 online interrogations of the website. PMID:9399840

  20. Identification and functional analysis of novel THAP1 mutations.

    PubMed

    Lohmann, Katja; Uflacker, Nils; Erogullari, Alev; Lohnau, Thora; Winkler, Susen; Dendorfer, Andreas; Schneider, Susanne A; Osmanovic, Alma; Svetel, Marina; Ferbert, Andreas; Zittel, Simone; Kühn, Andrea A; Schmidt, Alexander; Altenmüller, Eckart; Münchau, Alexander; Kamm, Christoph; Wittstock, Matthias; Kupsch, Andreas; Moro, Elena; Volkmann, Jens; Kostic, Vladimir; Kaiser, Frank J; Klein, Christine; Brüggemann, Norbert

    2012-02-01

    Mutations in THAP1 have been associated with dystonia 6 (DYT6). THAP1 encodes a transcription factor that represses the expression of DYT1. To further evaluate the mutational spectrum of THAP1 and its associated phenotype, we sequenced THAP1 in 567 patients with focal (n = 461), segmental (n = 68), or generalized dystonia (n = 38). We identified 10 novel variants, including six missense substitutions within the DNA-binding Thanatos-associated protein domain (Arg13His, Lys16Glu, His23Pro, Lys24Glu, Pro26Leu, Ile80Val), a 1bp-deletion downstream of the nuclear localization signal (Asp191Thrfs*9), and three alterations in the untranslated regions. The effect of the missense variants was assessed using prediction tools and luciferase reporter gene assays. This indicated the Ile80Val substitution as a benign variant. The subcellular localization of Asp191Thrfs*9 suggests a disturbed nuclear import for this mutation. Thus, we consider six of the 10 novel variants as pathogenic mutations accounting for a mutation frequency of 1.1%. Mutation carriers presented mainly with early onset dystonia (<12 years in five of six patients). Symptoms started in an arm or neck and spread to become generalized in three patients or segmental in two patients. Speech was affected in four mutation carriers. In conclusion, THAP1 mutations are rare in unselected dystonia patients and functional analysis is necessary to distinguish between benign variants and pathogenic mutations. PMID:21847143

  1. Identification and functional analysis of novel THAP1 mutations

    PubMed Central

    Lohmann, Katja; Uflacker, Nils; Erogullari, Alev; Lohnau, Thora; Winkler, Susen; Dendorfer, Andreas; Schneider, Susanne A; Osmanovic, Alma; Svetel, Marina; Ferbert, Andreas; Zittel, Simone; Kühn, Andrea A; Schmidt, Alexander; Altenmüller, Eckart; Münchau, Alexander; Kamm, Christoph; Wittstock, Matthias; Kupsch, Andreas; Moro, Elena; Volkmann, Jens; Kostic, Vladimir; Kaiser, Frank J; Klein, Christine; Brüggemann, Norbert

    2012-01-01

    Mutations in THAP1 have been associated with dystonia 6 (DYT6). THAP1 encodes a transcription factor that represses the expression of DYT1. To further evaluate the mutational spectrum of THAP1 and its associated phenotype, we sequenced THAP1 in 567 patients with focal (n=461), segmental (n=68), or generalized dystonia (n=38). We identified 10 novel variants, including six missense substitutions within the DNA-binding Thanatos-associated protein domain (Arg13His, Lys16Glu, His23Pro, Lys24Glu, Pro26Leu, Ile80Val), a 1bp-deletion downstream of the nuclear localization signal (Asp191Thrfs*9), and three alterations in the untranslated regions. The effect of the missense variants was assessed using prediction tools and luciferase reporter gene assays. This indicated the Ile80Val substitution as a benign variant. The subcellular localization of Asp191Thrfs*9 suggests a disturbed nuclear import for this mutation. Thus, we consider six of the 10 novel variants as pathogenic mutations accounting for a mutation frequency of 1.1%. Mutation carriers presented mainly with early onset dystonia (<12 years in five of six patients). Symptoms started in an arm or neck and spread to become generalized in three patients or segmental in two patients. Speech was affected in four mutation carriers. In conclusion, THAP1 mutations are rare in unselected dystonia patients and functional analysis is necessary to distinguish between benign variants and pathogenic mutations. PMID:21847143

  2. Molecular analysis of mucopolysaccharidosis IVA: Common mutations and racial difference

    SciTech Connect

    Tomatsu, S.; Hori, T.; Nakashima, Y.

    1994-09-01

    Mucopolysaccharidosis IVA (MPS IVA) is an autosomal recessive disorder caused by a deficiency in N-acetylgalactosamine -6-sulfate sulfatase (GALNS). Studies on the molecular basis of MPS IVA have been facilitated following cloning of the full-length cDNA and genomic DNA. In this study we detected mutations from 20 Caucasian and 19 Japanese MPS IVA patients using SSCP system and compared mutations of Caucasian origin with those of Japanese origin. The results showed the presence of 16 various mutations (3 small, deletions, 2 nonsense and 11 missense mutations) for Caucasian patients and 15 (1 deletion, 1 large alteration and 13 missense mutations) for Japanese. Moreover, two common mutations existed; one is double gene deletion characteristic for Japanese (6 alleles; 15%) and the other is a point mutation (1113F A{yields}T transition) characteristic for Caucasian (9 alleles; 22.5%). And the clear genotype/phenotype relationship among 1342delCA, IVS1(-2), P151S, Q148X, R386C, I113F, Q473X, W220G, P151L, A291T, R90W, and P77R, for a severe type, G96B N204K and V138A for a milder type, was observed. Only R386 mutation was seen in both of the populations. Further, the precise DNA analysis for double gene deletion of a common double gene deletion has been performed by defining the breakpoints and the results showed that one deletion was caused by homologous recombination due to Alu repetitive sequences and the other was due to nonhomologous recombination of short direct repeat. Haplotype analysis for six alleles with double deletion were different, indicating the different origin of this mutation or the frequent recombination events before a mutational event. Thus the mutations in GALNS gene are very heterogeneous and the racial difference is characteristic.

  3. Activation of Antibiotic Production in Bacillus spp. by Cumulative Drug Resistance Mutations.

    PubMed

    Tojo, Shigeo; Tanaka, Yukinori; Ochi, Kozo

    2015-12-01

    Bacillus subtilis strains produce a wide range of antibiotics, including ribosomal and nonribosomal peptide antibiotics, as well as bacilysocin and neotrehalosadiamine. Mutations in B. subtilis strain 168 that conferred resistance to drugs such as streptomycin and rifampin resulted in overproduction of the dipeptide antibiotic bacilysin. Cumulative drug resistance mutations, such as mutations in the mthA and rpsL genes, which confer low- and high-level resistance, respectively, to streptomycin, and mutations in rpoB, which confer resistance to rifampin, resulted in cells that overproduced bacilysin. Transcriptional analysis demonstrated that the enhanced transcription of biosynthesis genes was responsible for the overproduction of bacilysin. This approach was effective also in activating the cryptic genes of Bacillus amyloliquefaciens, leading to actual production of antibiotic(s).

  4. Mutational Analysis of Merkel Cell Carcinoma

    PubMed Central

    Erstad, Derek J.; Cusack, James C.

    2014-01-01

    Merkel cell carcinoma (MCC) is an aggressive cutaneous neuroendocrine malignancy that is associated with a poor prognosis. The pathogenesis of MCC is not well understood, and despite a recent plethora of mutational analyses, we have yet to find a set of signature mutations implicated in the majority of cases. Mutations, including TP53, Retinoblastoma and PIK3CA, have been documented in subsets of patients. Other mechanisms are also likely at play, including infection with the Merkel cell polyomavirus in a subset of patients, dysregulated immune surveillance, epigenetic alterations, aberrant protein expression, posttranslational modifications and microRNAs. In this review, we summarize what is known about MCC genetic mutations and chromosomal abnormalities, and their clinical significance. We also examine aberrant protein function and microRNA expression, and discuss the therapeutic and prognostic implications of these findings. Multiple clinical trials designed to selectively target overexpressed oncogenes in MCC are currently underway, though most are still in early phases. As we accumulate more molecular data on MCC, we will be better able to understand its pathogenic mechanisms, develop libraries of targeted therapies, and define molecular prognostic signatures to enhance our clinicopathologic knowledge. PMID:25329450

  5. RPGR mutation analysis and disease: an update.

    PubMed

    Shu, Xinhua; Black, Graeme C; Rice, Jacqueline M; Hart-Holden, Niki; Jones, Alison; O'Grady, Anna; Ramsden, Simon; Wright, Alan F

    2007-04-01

    Mutations in the retinitis pigmentosa GTPase regulator (RPGR) gene are the most common single cause of retinitis pigmentosa, accounting for up to 15 to 20% of cases in Caucasians. A total of 240 different RPGR mutations have been reported, including 24 novel ones in this work, which are associated with X-linked retinitis pigmentosa (XLRP) (95%), cone, cone-rod dystrophy, or atrophic macular atrophy (3%), and syndromal retinal dystrophies with ciliary dyskinesia and hearing loss (2%). All disease-causing mutations occur in one or more RPGR isoforms containing the carboxyl-terminal exon open reading frame 15 (ORF15), which are widely expressed but show their highest expression in the connecting cilia of rod and cone photoreceptors. Of reported RPGR mutations, 55% occur in a glutamic acid-rich domain within exon ORF15, which accounts for only 31% of the protein. RPGR forms complexes with a variety of other proteins and appears to have a role in microtubular organization and transport between photoreceptor inner and outer segments.

  6. Sensitive and specific KRAS somatic mutation analysis on whole-genome amplified DNA from archival tissues.

    PubMed

    van Eijk, Ronald; van Puijenbroek, Marjo; Chhatta, Amiet R; Gupta, Nisha; Vossen, Rolf H A M; Lips, Esther H; Cleton-Jansen, Anne-Marie; Morreau, Hans; van Wezel, Tom

    2010-01-01

    Kirsten RAS (KRAS) is a small GTPase that plays a key role in Ras/mitogen-activated protein kinase signaling; somatic mutations in KRAS are frequently found in many cancers. The most common KRAS mutations result in a constitutively active protein. Accurate detection of KRAS mutations is pivotal to the molecular diagnosis of cancer and may guide proper treatment selection. Here, we describe a two-step KRAS mutation screening protocol that combines whole-genome amplification (WGA), high-resolution melting analysis (HRM) as a prescreen method for mutation carrying samples, and direct Sanger sequencing of DNA from formalin-fixed, paraffin-embedded (FFPE) tissue, from which limited amounts of DNA are available. We developed target-specific primers, thereby avoiding amplification of homologous KRAS sequences. The addition of herring sperm DNA facilitated WGA in DNA samples isolated from as few as 100 cells. KRAS mutation screening using high-resolution melting analysis on wgaDNA from formalin-fixed, paraffin-embedded tissue is highly sensitive and specific; additionally, this method is feasible for screening of clinical specimens, as illustrated by our analysis of pancreatic cancers. Furthermore, PCR on wgaDNA does not introduce genotypic changes, as opposed to unamplified genomic DNA. This method can, after validation, be applied to virtually any potentially mutated region in the genome.

  7. The prognostic IDH1( R132 ) mutation is associated with reduced NADP+-dependent IDH activity in glioblastoma.

    PubMed

    Bleeker, Fonnet E; Atai, Nadia A; Lamba, Simona; Jonker, Ard; Rijkeboer, Denise; Bosch, Klazien S; Tigchelaar, Wikky; Troost, Dirk; Vandertop, W Peter; Bardelli, Alberto; Van Noorden, Cornelis J F

    2010-04-01

    Somatic mutations in the isocitrate dehydrogenase 1 gene (IDH1) occur at high frequency in gliomas and seem to be a prognostic factor for survival in glioblastoma patients. In our set of 98 glioblastoma patients, IDH1 ( R132 ) mutations were associated with improved survival of 1 year on average, after correcting for age and other variables with Cox proportional hazards models. Patients with IDH1 mutations were on average 17 years younger than patients without mutation. Mutated IDH1 has a gain of function to produce 2-hydroxyglutarate by NADPH-dependent reduction of alpha-ketoglutarate, but it is unknown whether NADPH production in gliomas is affected by IDH1 mutations. We assessed the effect of IDH1 (R132 ) mutations on IDH-mediated NADPH production in glioblastomas in situ. Metabolic mapping and image analysis was applied to 51 glioblastoma samples of which 16 carried an IDH1 (R132 ) mutation. NADP+-dependent IDH activity was determined in comparison with activity of NAD+-dependent IDH and all other NADPH-producing dehydrogenases, glucose-6-phosphate dehydrogenase, 6-phosphogluconate dehydrogenase, malate dehydrogenase, and hexose-6-phosphate dehydrogenase. The occurrence of IDH1 mutations correlated with approx. twofold diminished NADP+-dependent IDH activity, whereas activity of NAD+-dependent IDH and the other NADP+-dependent dehydrogenases was not affected in situ in glioblastoma. The total NADPH production capacity in glioblastoma was provided for 65% by IDH activity and the occurrence of IDH1 (R132 ) mutation reduced this capacity by 38%. It is concluded that NADPH production is hampered in glioblastoma with IDH1 (R132 ) mutation. Moreover, mutated IDH1 consumes rather than produces NADPH, thus likely lowering NADPH levels even further. The low NADPH levels may sensitize glioblastoma to irradiation and chemotherapy, thus explaining the prolonged survival of patients with mutated glioblastoma.

  8. Mutational Spectrum Analysis of Neurodegenerative Diseases and Its Pathogenic Implication.

    PubMed

    Shen, Liang; Ji, Hong-Fang

    2015-10-14

    One of the most conspicuous features of neurodegenerative diseases (NDs) is the occurrence of dramatic conformation change of individual proteins. We performed a mutational spectrum analysis of disease-causing missense mutations in seven types of NDs at nucleotide and amino acid levels, and compared the results with those of non-NDs. The main findings included: (i) The higher mutation ratio of G:C→T:A transversion to G:C→A:T transition was observed in NDs than in non-NDs, interpreting the excessive guanine-specific oxidative DNA damage in NDs; (ii) glycine and proline had highest mutability in NDs than in non-NDs, which favor the protein conformation change in NDs; (iii) surprisingly low mutation frequency of arginine was observed in NDs. These findings help to understand how mutations may cause NDs.

  9. Promoter-dependent activity on androgen receptor N-terminal domain mutations in androgen insensitivity syndrome.

    PubMed

    Tadokoro-Cuccaro, Rieko; Davies, John; Mongan, Nigel P; Bunch, Trevor; Brown, Rosalind S; Audi, Laura; Watt, Kate; McEwan, Iain J; Hughes, Ieuan A

    2014-01-01

    Androgen receptor (AR) mutations are associated with androgen insensitivity syndrome (AIS). Missense mutations identified in the AR-N-terminal domain (AR-NTD) are rare, and clinical phenotypes are typically mild. We investigated 7 missense mutations and 2 insertion/deletions located in the AR-NTD. This study aimed to elucidate the pathogenic role of AR-NTD mutants in AIS and to use this knowledge to further define AR-NTD function. AR-NTD mutations (Q120E, A159T, G216R, N235K, G248V, L272F, and P380R) were introduced into AR-expression plasmids. Stably expressing cell lines were established for del57L and ins58L. Transactivation was measured using luciferase reporter constructs under the control of GRE and Pem promoters. Intrinsic fluorescence spectroscopy and partial proteolysis studies were performed for mutations which showed reduced activities by using a purified AR-AF1 protein. Pem-luciferase reporter activation was reduced for A159T, N235K, and G248V but not the GRE-luciferase reporter. Protein structure analysis detected no significant change in the AR-AF1 region for these mutations. Reduced cellular expression and transactivation activity were observed for ins58L. The mutations Q120E, G216R, L272F, P380R, and del57L showed small or no detectable changes in function. Thus, clinical and experimental analyses have identified novel AR-signalling defects associated with mutations in the structurally disordered AR-NTD domain in patients with AIS.

  10. Control of pT181 replication II. Mutational analysis.

    PubMed Central

    Carleton, S; Projan, S J; Highlander, S K; Moghazeh, S M; Novick, R P

    1984-01-01

    We describe the isolation and analysis of mutations affecting the regulation of Staphylococcus aureus plasmid pT181 replication. Previous results suggested that regulation is achieved by control of the synthesis of RepC, a plasmid-coded replication protein and that the primary negative control element is CopA RNA, which consists of two transcripts that are complementary to the 5' region of the repC mRNA leader. CopA inhibition probably involves a base pairing interaction with the complementary region of the RepC mRNA leader which would facilitate the formation of a downstream stem-loop in the leader that occludes the repC ribosome binding site. RepC is freely diffusible so that regulation of pT181 replication is indirect. Both CopA RNA-sensitive (recessive) and -insensitive (dominant) mutants were isolated. The recessives have defects in CopA RNA structure or activity, the dominants have defects in the site of action (target) of the inhibitor. Some dominants were located within the copA coding sequence. These therefore affect the structure of CopA RNA as well as that of its target. Other dominant mutations mapped outside of the copA gene and therefore produced wild-type CopA RNA. In contrast to directly regulated plasmids, pT181 copy mutants producing wild-type inhibitor could be co-maintained with the wild-type plasmid and mutational changes in inhibitor-target specificity did not change incompatibility specificity. Images Fig. 1. Fig. 4. PMID:6437809

  11. Polygenic mutation in Droosophila melanogaster: Genetic analysis of selection lines

    SciTech Connect

    Fry, J.D.; deRonde, K.A.; Mackay, T.F.C.

    1995-03-01

    The authors have conducted genetic analyses of 12 long-term selection lines of Drosophila melanogaster derived from a highly inbred base population, containing new mutations affecting abdominal and sternopleural bristle number. Biometric analysis of the number of effective factors differentiating the selected lines from the base inbred indicated that with the exception of the three lines selected for increased number of abdominal bristles, three or more mutations contributed to the responses of the selection lines. Analysis of the chromosomal distribution of effects revealed that mutations affecting abdominal bristle number occurred on all three major chromosomes. In addition, Y-linked mutations with effects ranging from one to three bristles occurred in all three lines selected for decreased number of abdominal bristles, as well as in one line selected for increased abdominal bristle number. Mutations affecting sternopleural bristle number were mainly on the X and third chromosomes. One abdominal and one sternopleural selection line showed evidence of a segregating lethal with large effects on bristle number. As an indirect test for allelism of mutations occurring in different selection lines, the three lines selected in the same direction for the same trait were crossed in all possible combinations, and selection continued from the F{sub 2} hybrides. Responses of the hybrid lines usually did not exceed those of the most extreme parental lines, indicating that the responses of the parental lines may have been partly due to mutations at the same loci, although other interpretations are possible.

  12. Activation-Induced Cytidine Deaminase Contributes to Pancreatic Tumorigenesis by Inducing Tumor-Related Gene Mutations.

    PubMed

    Sawai, Yugo; Kodama, Yuzo; Shimizu, Takahiro; Ota, Yuji; Maruno, Takahisa; Eso, Yuji; Kurita, Akira; Shiokawa, Masahiro; Tsuji, Yoshihisa; Uza, Norimitsu; Matsumoto, Yuko; Masui, Toshihiko; Uemoto, Shinji; Marusawa, Hiroyuki; Chiba, Tsutomu

    2015-08-15

    Pancreatic ductal adenocarcinoma (PDAC) develops via an accumulation of various gene mutations. The mechanism underlying the mutations in PDAC development, however, is not fully understood. Recent insight into the close association between the mutation pattern of various cancers and specific mutagens led us to investigate the possible involvement of activation-induced cytidine deaminase (AID), a DNA editing enzyme, in pancreatic tumorigenesis. Our immunohistochemical findings revealed AID protein expression in human acinar ductal metaplasia, pancreatic intraepithelial neoplasia, and PDAC. Both the amount and intensity of the AID protein expression increased with the progression from precancerous to cancerous lesions in human PDAC tissues. To further assess the significance of ectopic epithelial AID expression in pancreatic tumorigenesis, we analyzed the phenotype of AID transgenic (AID Tg) mice. Consistent with our hypothesis that AID is involved in the mechanism of the mutations underlying pancreatic tumorigenesis, we found precancerous lesions developing in the pancreas of AID Tg mice. Using deep sequencing, we also detected Kras and c-Myc mutations in our analysis of the whole pancreas of AID Tg mice. In addition, Sanger sequencing confirmed the presence of Kras, c-Myc, and Smad4 mutations, with the typical mutational footprint of AID in precancerous lesions in AID Tg mice separated by laser capture microdissection. Taken together, our findings suggest that AID contributes to the development of pancreatic precancerous lesions by inducing tumor-related gene mutations. Our new mouse model without intentional manipulation of specific tumor-related genes provides a powerful system for analyzing the mutations involved in PDAC.

  13. Mutational and Functional Analysis of the Tumor-Suppressor PTPRD in Human Melanoma

    PubMed Central

    Walia, Vijay; Prickett, Todd D.; Kim, Jung-Sik; Gartner, Jared J.; Lin, Jimmy C.; Zhou, Ming; Rosenberg, Steven A.; Elble, Randolph C.; Solomon, David A.; Waldman, Todd; Samuels, Yardena

    2015-01-01

    Protein tyrosine phosphatases (PTPs) tightly regulate tyrosine phosphorylation essential for cell growth, adhesion, migration, and survival. We performed a mutational analysis of the PTP gene family in cutaneous metastatic melanoma and identified 23 phosphatase genes harboring somatic mutations. Among these, receptor-type tyrosine–protein phosphatase delta (PTPRD) was one of the most highly mutated genes, harboring 17 somatic mutations in 79 samples, a prevalence of 21.5%. Functional evaluation of six PTPRD mutations revealed enhanced anchorage-dependent and anchorage-independent growth. Interestingly, melanoma cells expressing mutant PTPRD were significantly more migratory than cells expressing wild-type PTPRD or vector alone, indicating a novel gain-of-function associated with mutant PTPRD. To understand the molecular mechanisms of PTPRD mutations, we searched for its binding partners by converting the active PTPRD enzyme into a “substrate trap” form. Using mass spectrometry and coimmunoprecipitation, we report desmoplakin, a desmosomal protein that is implicated in cell–cell adhesion, as a novel PTPRD substrate. Further analysis showed reduced phosphatase activity of mutant PTPRD against desmoplakin. Our findings identify an essential signaling cascade that is disrupted in melanoma. Moreover, because PTPRD is also mutated in glioblastomas and adenocarcinoma of the colon and lung, our data might be applicable to a large number of human cancers. PMID:25113440

  14. Mutational and functional analysis of the tumor-suppressor PTPRD in human melanoma.

    PubMed

    Walia, Vijay; Prickett, Todd D; Kim, Jung-Sik; Gartner, Jared J; Lin, Jimmy C; Zhou, Ming; Rosenberg, Steven A; Elble, Randolph C; Solomon, David A; Waldman, Todd; Samuels, Yardena

    2014-11-01

    Protein tyrosine phosphatases (PTPs) tightly regulate tyrosine phosphorylation essential for cell growth, adhesion, migration, and survival. We performed a mutational analysis of the PTP gene family in cutaneous metastatic melanoma and identified 23 phosphatase genes harboring somatic mutations. Among these, receptor-type tyrosine-protein phosphatase delta (PTPRD) was one of the most highly mutated genes, harboring 17 somatic mutations in 79 samples, a prevalence of 21.5%. Functional evaluation of six PTPRD mutations revealed enhanced anchorage-dependent and anchorage-independent growth. Interestingly, melanoma cells expressing mutant PTPRD were significantly more migratory than cells expressing wild-type PTPRD or vector alone, indicating a novel gain-of-function associated with mutant PTPRD. To understand the molecular mechanisms of PTPRD mutations, we searched for its binding partners by converting the active PTPRD enzyme into a "substrate trap" form. Using mass spectrometry and coimmunoprecipitation, we report desmoplakin, a desmosomal protein that is implicated in cell-cell adhesion, as a novel PTPRD substrate. Further analysis showed reduced phosphatase activity of mutant PTPRD against desmoplakin. Our findings identify an essential signaling cascade that is disrupted in melanoma. Moreover, because PTPRD is also mutated in glioblastomas and adenocarcinoma of the colon and lung, our data might be applicable to a large number of human cancers.

  15. Oncogenically active MYD88 mutations in human lymphoma

    PubMed Central

    Ngo, Vu N.; Young, Ryan M.; Schmitz, Roland; Jhavar, Sameer; Xiao, Wenming; Lim, Kian-Huat; Kohlhammer, Holger; Xu, Weihong; Yang, Yandan; Zhao, Hong; Shaffer, Arthur L.; Romesser, Paul; Wright, George; Powell, John; Rosenwald, Andreas; Muller-Hermelink, Hans Konrad; Ott, German; Gascoyne, Randy D.; Connors, Joseph M.; Rimsza, Lisa M.; Campo, Elias; Jaffe, Elaine S.; Delabie, Jan; Smeland, Erlend B.; Fisher, Richard I.; Braziel, Rita M.; Tubbs, Raymond R.; Cook, J. R.; Weisenburger, Denny D.; Chan, Wing C.; Staudt, Louis M.

    2016-01-01

    The activated B-cell-like (ABC) subtype of diffuse large B-cell lymphoma (DLBCL) remains the least curable form of this malignancy despite recent advances in therapy1. Constitutive nuclear factor (NF)-κB and JAK kinase signalling promotes malignant cell survival in these lymphomas, but the genetic basis for this signalling is incompletely understood. Here we describe the dependence of ABC DLBCLs on MYD88, an adaptor protein that mediates toll and interleukin (IL)-1 receptor signalling2,3, and the discovery of highly recurrent oncogenic mutations affecting MYD88 in ABC DLBCL tumours. RNA interference screening revealed that MYD88 and the associated kinases IRAK1 and IRAK4 are essential for ABC DLBCL survival. High-throughput RNA resequencing uncovered MYD88 mutations in ABC DLBCL lines. Notably, 29% of ABC DLBCL tumours harboured the same amino acid substitution, L265P, in the MYD88 Toll/IL-1 receptor (TIR) domain at an evolutionarily invariant residue in its hydrophobic core. This mutation was rare or absent in other DLBCL subtypes and Burkitt’s lymphoma, but was observed in 9% of mucosa-associated lymphoid tissue lymphomas. At a lower frequency, additional mutations were observed in the MYD88 TIR domain, occurring in both the ABC and germinal centre B-cell-like (GCB) DLBCL subtypes. Survival of ABC DLBCL cells bearing the L265P mutation was sustained by the mutant but not the wild-type MYD88 isoform, demonstrating that L265P is a gain-of-function driver mutation. The L265P mutant promoted cell survival by spontaneously assembling a protein complex containing IRAK1 and IRAK4, leading to IRAK4 kinase activity, IRAK1 phosphorylation, NF-κB signalling, JAK kinase activation of STAT3, and secretion of IL-6, IL-10 and interferon-β. Hence, theMYD88 signalling pathway is integral to the pathogenesis of ABC DLBCL, supporting the development of inhibitors of IRAK4 kinase and other components of this pathway for the treatment of tumours bearing oncogenic MYD88 mutations

  16. Patient-oriented gene set analysis for cancer mutation data.

    PubMed

    Boca, Simina M; Kinzler, Kenneth W; Velculescu, Victor E; Vogelstein, Bert; Parmigiani, Giovanni

    2010-01-01

    Recent research has revealed complex heterogeneous genomic landscapes in human cancers. However, mutations tend to occur within a core group of pathways and biological processes that can be grouped into gene sets. To better understand the significance of these pathways, we have developed an approach that initially scores each gene set at the patient rather than the gene level. In mutation analysis, these patient-oriented methods are more transparent, interpretable, and statistically powerful than traditional gene-oriented methods.

  17. TERT Promoter Mutations Lead to High Transcriptional Activity under Hypoxia and Temozolomide Treatment and Predict Poor Prognosis in Gliomas

    PubMed Central

    Meng, Lingxuan; Li, Zhonghua; Zhang, Xue; Wu, Anhua

    2014-01-01

    Objective This study explored the effects of telomerase reverse transcriptase (TERT) promoter mutations on transcriptional activity of the TERT gene under hypoxic and temozolomide (TMZ) treatment conditions, and investigated the status and prognostic value of these mutations in gliomas. Methods The effect of TERT promoter mutations on the transcriptional activity of the TERT gene under hypoxic and TMZ treatment conditions was investigated in glioma cells using the luciferase assay. TERT promoter mutations were detected in 101 glioma samples (grades I–IV) and 49 other brain tumors by sequencing. TERT mRNA expression in gliomas was examined by real-time PCR. Hazard ratios from survival analysis of glioma patients were determined relative to the presence of TERT promoter mutations. Results Mutations in the TERT promoter enhanced gene transcription even under hypoxic and TMZ treatment conditions, inducing upregulation of TERT mRNA expression. Mutations were detected in gliomas, but not in meningiomas, pituitary adenomas, cavernomas, intracranial metastases, normal brain tissues, or peripheral blood of glioma patients. Patients with TERT promoter mutations had lower survival rates, even after adjusting for other known or potential risk factors, and the incidence of mutation was correlated with patient age. Conclusion TERT promoter mutations were specific to gliomas. TERT promoter mutations maintained its ability of inducing high transcriptional activity even under hypoxic and TMZ treatment conditions, and the presence of mutations was associated with poor prognosis in glioma patients. These findings demonstrate that TERT promoter mutations are novel prognostic markers for gliomas that can inform prospective therapeutic strategies. PMID:24937153

  18. Predictive and Prognostic Analysis of PIK3CA Mutation in Stage III Colon Cancer Intergroup Trial

    PubMed Central

    Liao, Xiaoyun; Imamura, Yu; Yamauchi, Mai; McCleary, Nadine J.; Ng, Kimmie; Niedzwiecki, Donna; Saltz, Leonard B.; Mayer, Robert J.; Whittom, Renaud; Hantel, Alexander; Benson, Al B.; Mowat, Rex B.; Spiegelman, Donna; Goldberg, Richard M.; Bertagnolli, Monica M.; Meyerhardt, Jeffrey A.; Fuchs, Charles S.

    2013-01-01

    Background Somatic mutations in PIK3CA (phosphatidylinositol-4,5-bisphosphonate 3-kinase [PI3K], catalytic subunit alpha gene) activate the PI3K-AKT signaling pathway and contribute to pathogenesis of various malignancies, including colorectal cancer. Methods We examined associations of PIK3CA oncogene mutation with relapse, survival, and treatment efficacy in 627 stage III colon carcinoma case subjects within a randomized adjuvant chemotherapy trial (5-fluorouracil and leucovorin [FU/LV] vs irinotecan [CPT11], fluorouracil and leucovorin [IFL]; Cancer and Leukemia Group B 89803 [Alliance]). We detected PIK3CA mutation in exons 9 and 20 by polymerase chain reaction and pyrosequencing. Cox proportional hazards model was used to assess prognostic and predictive role of PIK3CA mutation, adjusting for clinical features and status of routine standard molecular pathology features, including KRAS and BRAF mutations and microsatellite instability (mismatch repair deficiency). All statistical tests were two-sided. Results Compared with PIK3CA wild-type cases, overall status of PIK3CA mutation positivity or the presence of PIK3CA mutation in either exon 9 or 20 alone was not statistically significantly associated with recurrence-free, disease-free, or overall survival (log-rank P > .70; P > .40 in multivariable regression models). There was no statistically significant interaction between PIK3CA and KRAS (or BRAF) mutation status in survival analysis (P interaction > .18). PIK3CA mutation status did not appear to predict better or worse response to IFL therapy compared with FU/LV therapy (P interaction > .16). Conclusions Overall tumor PIK3CA mutation status is not associated with stage III colon cancer prognosis. PIK3CA mutation does not appear to serve as a predictive tumor molecular biomarker for response to irinotecan-based adjuvant chemotherapy. PMID:24231454

  19. A single point mutation leading to loss of catalytic activity in human thiopurine S-methyltransferase.

    PubMed Central

    Krynetski, E Y; Schuetz, J D; Galpin, A J; Pui, C H; Relling, M V; Evans, W E

    1995-01-01

    Thiopurine S-methyltransferase (TPMT; S-adenosyl-L-methionine:thiopurine S-methyltransferase, EC 2.1.1.67) activity exhibits genetic polymorphism, with approximately 0.33% of Caucasians and African-Americans inheriting TPMT deficiency as an autosomal recessive trait. To determine the molecular genetic basis for this polymorphism, we cloned the TPMT cDNA from a TPMT-deficient patient who had developed severe hematopoietic toxicity during mercaptopurine therapy. Northern blot analysis of RNA isolated from leukocytes of the deficient patient demonstrated the presence of TPMT mRNAs of comparable size to that in subjects with high TPMT activity. Sequencing of the mutant TPMT cDNA revealed a single point mutation (G238-->C), leading to an amino acid substitution at codon 80 (Ala80-->Pro). When assessed in a yeast heterologous expression system, this mutation led to a 100-fold reduction in TPMT catalytic activity relative to the wild-type cDNA, despite a comparable level of mRNA expression. A mutation-specific PCR amplification method was developed and used to detect the G238-->C mutation in genomic DNA of the propositus and her mother. This inactivating mutation in the human TPMT gene provides insights into the genetic basis for this inherited polymorphism in drug metabolism. Images Fig. 1 Fig. 2 Fig. 4 Fig. 5 PMID:7862671

  20. FRAXE mutation analysis in three Spanish families

    SciTech Connect

    Carbonell, P.; Lopez, I.; Gabarron, J.

    1996-08-09

    Very little is known about the phenotype of FRAXE-positive individuals and the relation between the genotype/phenotype and genotype/cytogenetic expression. We describe three families with normal and mildly affected individuals and a severely retarded male expressing fragility at the FRAXE locus or presenting different expansions at the CGG FRAXE triplet. In addition, we analyze the FRAXE mutation in sperm DNA from a retarded male carrier with a handicapped daughter expressing fragility at the FRAXE locus. Mental status in FRAXE individuals is highly variable and, although mild mental retardation is observed in most cases, several carrier males are apparently normal. It seems that methylation is not as strictly associated with size of CGG triplets in the FRAXE locus as in FRAXA, and it is possible that normal carrier individuals with fully methylated increments in lymphocytes have a certain proportion of unmethylated alleles in the critical (i.e., neural) tissues. FRAXE mutation is apparently similar to FRAXA in that males with somatic large methylated increments are carriers of small unmethylated ones in germinal cells. 12 refs., 2 figs., 1 tab.

  1. Recurrent activating mutations of CD28 in peripheral T-cell lymphomas.

    PubMed

    Rohr, J; Guo, S; Huo, J; Bouska, A; Lachel, C; Li, Y; Simone, P D; Zhang, W; Gong, Q; Wang, C; Cannon, A; Heavican, T; Mottok, A; Hung, S; Rosenwald, A; Gascoyne, R; Fu, K; Greiner, T C; Weisenburger, D D; Vose, J M; Staudt, L M; Xiao, W; Borgstahl, G E O; Davis, S; Steidl, C; McKeithan, T; Iqbal, J; Chan, W C

    2016-05-01

    Peripheral T-cell lymphomas (PTCLs) comprise a heterogeneous group of mature T-cell neoplasms with a poor prognosis. Recently, mutations in TET2 and other epigenetic modifiers as well as RHOA have been identified in these diseases, particularly in angioimmunoblastic T-cell lymphoma (AITL). CD28 is the major co-stimulatory receptor in T cells which, upon binding ligand, induces sustained T-cell proliferation and cytokine production when combined with T-cell receptor stimulation. We have identified recurrent mutations in CD28 in PTCLs. Two residues-D124 and T195-were recurrently mutated in 11.3% of cases of AITL and in one case of PTCL, not otherwise specified (PTCL-NOS). Surface plasmon resonance analysis of mutations at these residues with predicted differential partner interactions showed increased affinity for ligand CD86 (residue D124) and increased affinity for intracellular adaptor proteins GRB2 and GADS/GRAP2 (residue T195). Molecular modeling studies on each of these mutations suggested how these mutants result in increased affinities. We found increased transcription of the CD28-responsive genes CD226 and TNFA in cells expressing the T195P mutant in response to CD3 and CD86 co-stimulation and increased downstream activation of NF-κB by both D124V and T195P mutants, suggesting a potential therapeutic target in CD28-mutated PTCLs. PMID:26719098

  2. Mosaic Activating Mutations in FGFR1 Cause Encephalocraniocutaneous Lipomatosis.

    PubMed

    Bennett, James T; Tan, Tiong Yang; Alcantara, Diana; Tétrault, Martine; Timms, Andrew E; Jensen, Dana; Collins, Sarah; Nowaczyk, Malgorzata J M; Lindhurst, Marjorie J; Christensen, Katherine M; Braddock, Stephen R; Brandling-Bennett, Heather; Hennekam, Raoul C M; Chung, Brian; Lehman, Anna; Su, John; Ng, SuYuen; Amor, David J; Majewski, Jacek; Biesecker, Les G; Boycott, Kym M; Dobyns, William B; O'Driscoll, Mark; Moog, Ute; McDonell, Laura M

    2016-03-01

    Encephalocraniocutaneous lipomatosis (ECCL) is a sporadic condition characterized by ocular, cutaneous, and central nervous system anomalies. Key clinical features include a well-demarcated hairless fatty nevus on the scalp, benign ocular tumors, and central nervous system lipomas. Seizures, spasticity, and intellectual disability can be present, although affected individuals without seizures and with normal intellect have also been reported. Given the patchy and asymmetric nature of the malformations, ECCL has been hypothesized to be due to a post-zygotic, mosaic mutation. Despite phenotypic overlap with several other disorders associated with mutations in the RAS-MAPK and PI3K-AKT pathways, the molecular etiology of ECCL remains unknown. Using exome sequencing of DNA from multiple affected tissues from five unrelated individuals with ECCL, we identified two mosaic mutations, c.1638C>A (p.Asn546Lys) and c.1966A>G (p.Lys656Glu) within the tyrosine kinase domain of FGFR1, in two affected individuals each. These two residues are the most commonly mutated residues in FGFR1 in human cancers and are associated primarily with CNS tumors. Targeted resequencing of FGFR1 in multiple tissues from an independent cohort of individuals with ECCL identified one additional individual with a c.1638C>A (p.Asn546Lys) mutation in FGFR1. Functional studies of ECCL fibroblast cell lines show increased levels of phosphorylated FGFRs and phosphorylated FRS2, a direct substrate of FGFR1, as well as constitutive activation of RAS-MAPK signaling. In addition to identifying the molecular etiology of ECCL, our results support the emerging overlap between mosaic developmental disorders and tumorigenesis. PMID:26942290

  3. Mosaic Activating Mutations in FGFR1 Cause Encephalocraniocutaneous Lipomatosis

    PubMed Central

    Bennett, James T.; Tan, Tiong Yang; Alcantara, Diana; Tétrault, Martine; Timms, Andrew E.; Jensen, Dana; Collins, Sarah; Nowaczyk, Malgorzata J.M.; Lindhurst, Marjorie J.; Christensen, Katherine M.; Braddock, Stephen R.; Brandling-Bennett, Heather; Hennekam, Raoul C.M.; Chung, Brian; Lehman, Anna; Su, John; Ng, SuYuen; Amor, David J.; Majewski, Jacek; Biesecker, Les G.; Boycott, Kym M.; Dobyns, William B.; O’Driscoll, Mark; Moog, Ute; McDonell, Laura M.

    2016-01-01

    Encephalocraniocutaneous lipomatosis (ECCL) is a sporadic condition characterized by ocular, cutaneous, and central nervous system anomalies. Key clinical features include a well-demarcated hairless fatty nevus on the scalp, benign ocular tumors, and central nervous system lipomas. Seizures, spasticity, and intellectual disability can be present, although affected individuals without seizures and with normal intellect have also been reported. Given the patchy and asymmetric nature of the malformations, ECCL has been hypothesized to be due to a post-zygotic, mosaic mutation. Despite phenotypic overlap with several other disorders associated with mutations in the RAS-MAPK and PI3K-AKT pathways, the molecular etiology of ECCL remains unknown. Using exome sequencing of DNA from multiple affected tissues from five unrelated individuals with ECCL, we identified two mosaic mutations, c.1638C>A (p.Asn546Lys) and c.1966A>G (p.Lys656Glu) within the tyrosine kinase domain of FGFR1, in two affected individuals each. These two residues are the most commonly mutated residues in FGFR1 in human cancers and are associated primarily with CNS tumors. Targeted resequencing of FGFR1 in multiple tissues from an independent cohort of individuals with ECCL identified one additional individual with a c.1638C>A (p.Asn546Lys) mutation in FGFR1. Functional studies of ECCL fibroblast cell lines show increased levels of phosphorylated FGFRs and phosphorylated FRS2, a direct substrate of FGFR1, as well as constitutive activation of RAS-MAPK signaling. In addition to identifying the molecular etiology of ECCL, our results support the emerging overlap between mosaic developmental disorders and tumorigenesis. PMID:26942290

  4. Analysis of 16 cystic fibrosis mutations in Mexican patients

    SciTech Connect

    Villalobos-Torres, C.; Rojas-Martinez, A.; Barrera-Saldana, H.A.

    1997-04-14

    We carried out molecular analysis of 80 chromosomes from 40 unrelated Mexican patients with a diagnosis of cystic fibrosis. The study was performed in two PCR steps: a preliminary one to identify mutation AF508, the most frequent cause of cystic fibrosis worldwide, and the second a reverse dot-blot with allele-specific oligonucleotide probes to detect 15 additional common mutations in the Caucasian population. A frequency of 45% for AF508 was found, making it the most common in our sample of Mexican patients. Another five mutations (G542X, 3849 + 10 kb C{r_arrow}T, N1303K, S549N, and 621 + 1 G{r_arrow}T) were detected, and these accounted for 11.25%. The remaining mutations (43.75%) were undetectable with the methodology used. 20 refs., 2 tabs.

  5. A novel missense mutation in Van der Woude syndrome: usefulness of fingernail DNA for genetic analysis.

    PubMed

    Matsuzawa, N; Shimozato, K; Natsume, N; Niikawa, N; Yoshiura, K

    2006-12-01

    Van der Woude syndrome (VWS) is an autosomal-dominant oral facial disorder. To find a gene mutation in a Japanese family using fingernail DNA samples, we performed this study. We hypothesized that a gene mutation in IRF6 might be involved in VWS, and that fingernail DNA samples may be valuable for detecting such mutations. Linkage and haplotype analyses of the family mapped the disease locus to the 1q32-q41 region. Mutation analysis with an improved extraction method for fingernail DNA detected a novel missense mutation (1046A>T, E349V) in exon 7 of IRF6 in all the affected members of the family. Since the E349V change may disturb the hydrophobic core and affect regulatory activity of IRF6, it is most likely that the mutation is causative for VWS in this family. Fingernail DNA is thus useful for linkage and mutation analyses, since the fingernail can be easily obtained non-invasively, sent through the mail, and stored for a long period. We emphasize here the usefulness of fingernail DNA for the genetic analysis of a disease. PMID:17122170

  6. Dehydrated Hereditary Stomatocytosislinked to gain-of-function mutations in mechanically activated PIEZO1 ion channels

    PubMed Central

    Albuisson, Juliette; Murthy, Swetha E.; Bandell, Michael; Coste, Bertrand; Louis-dit-Picard, Hélène; Mathur, Jayanti; Fénéant-Thibault, Madeleine; Tertian, Gérard; de Jaureguiberry, Jean-Pierre; Syfuss, Pierre-Yves; Cahalan, Stuart; Garçon, Loic; Toutain, Fabienne; Rohrlich, Pierre Simon; Delaunay, Jean; Picard, Véronique; Jeunemaitre, Xavier; Patapoutian, Ardem

    2013-01-01

    Dehydrated hereditary stomatocytosis (DHS) is a genetic condition with defective red blood cell (RBC) membrane properties that causes an imbalance in intracellular cation concentrations. Recently, two missense mutations inthe mechanically activated PIEZO1(FAM38A) ion channel were associated with DHS. However, it is not known how these mutations affect PIEZO1 function. Here, by combining linkage analysis and whole-exome sequencing in a large pedigree and Sanger sequencing in two additional kindreds and 11 unrelated DHS cases, we identifythree novel missense mutations and one recurrent duplication in PIEZO1, demonstrating that it is the major gene for DHS. All the DHS-associated mutations locate at C-terminal half of PIEZO1. Remarkably, we find that all PIEZO1 mutations give rise to mechanically activated currents that inactivate more slowly than wild-type currents. This gain-of-function PIEZO1 phenotype provides insight that helps to explain the increased permeability of cations in RBCs of DHS patients. Our findings also suggest a new role for mechanotransduction in RBC biology and pathophysiology. PMID:23695678

  7. Mutational analysis of primary central nervous system lymphoma

    PubMed Central

    Bruno, Aurélie; Boisselier, Blandine; Labreche, Karim; Marie, Yannick; Polivka, Marc; Jouvet, Anne; Adam, Clovis; Figarella-Branger, Dominique; Miquel, Catherine; Eimer, Sandrine; Houillier, Caroline; Soussain, Carole; Mokhtari, Karima; Daveau, Romain; Hoang-Xuan, Khê

    2014-01-01

    Little is known about the genomic basis of primary central nervous system lymphoma (PCNSL) tumorigenesis. To investigate the mutational profile of PCNSL, we analyzed nine paired tumor and germline DNA samples from PCNSL patients by high throughput exome sequencing. Eight genes of interest have been further investigated by focused resequencing in 28 additional PCNSL tumors to better estimate their incidence. Our study identified recurrent somatic mutations in 37 genes, some involved in key signaling pathways such as NFKB, B cell differentiation and cell cycle control. Focused resequencing in the larger cohort revealed high mutation rates for genes already described as mutated in PCNSL such as MYD88 (38%), CD79B (30%), PIM1 (22%) and TBL1XR1 (19%) and for genes not previously reported to be involved in PCNSL tumorigenesis such as ETV6 (16%), IRF4 (14%), IRF2BP2 (11%) and EBF1 (11%). Of note, only 3 somatically acquired SNVs were annotated in the COSMIC database. Our results demonstrate a high genetic heterogeneity of PCNSL and mutational pattern similarities with extracerebral diffuse large B cell lymphomas, particularly of the activated B-cell (ABC) subtype, suggesting shared underlying biological mechanisms. The present study provides new insights into the mutational profile of PCNSL and potential targets for therapeutic strategies. PMID:24970810

  8. Analysis of any point mutation in DNA. The amplification refractory mutation system (ARMS).

    PubMed Central

    Newton, C R; Graham, A; Heptinstall, L E; Powell, S J; Summers, C; Kalsheker, N; Smith, J C; Markham, A F

    1989-01-01

    We have improved the "polymerase chain reaction" (PCR) to permit rapid analysis of any known mutation in genomic DNA. We demonstrate a system, ARMS (Amplification Refractory Mutation System), that allows genotyping solely by inspection of reaction mixtures after agarose gel electrophoresis. The system is simple, reliable and non-isotopic. It will clearly distinguish heterozygotes at a locus from homozygotes for either allele. The system requires neither restriction enzyme digestion, allele-specific oligonucleotides as conventionally applied, nor the sequence analysis of PCR products. The basis of the invention is that unexpectedly, oligonucleotides with a mismatched 3'-residue will not function as primers in the PCR under appropriate conditions. We have analysed DNA from patients with alpha 1-antitrypsin (AAT) deficiency, from carriers of the disease and from normal individuals. Our findings are in complete agreement with allele assignments derived by direct sequencing of PCR products. Images PMID:2785681

  9. Comprehensive analysis of cancer-associated somatic mutations in class I HLA genes

    PubMed Central

    Shukla, Sachet A.; Rooney, Michael S.; Rajasagi, Mohini; Tiao, Grace; Dixon, Philip M.; Lawrence, Michael S.; Stevens, Jonathan; Lane, William J.; Dellagatta, Jamie L.; Steelman, Scott; Sougnez, Carrie; Cibulskis, Kristian; Kiezun, Adam; Brusic, Vladimir; Wu, Catherine J.; Getz, Gad

    2015-01-01

    Detection of somatic mutations in HLA genes using whole-exome sequencing (WES) is hampered by the high polymorphism of the HLA loci, which prevents alignment of sequencing reads to the human reference genome. We describe a computational pipeline that enables accurate inference of germline alleles of class I HLA-A, -B and -C genes and subsequent detection of mutations in these genes using the inferred alleles as a reference. Analysis of WES data from 7,930 pairs of tumor and healthy tissue from the same patient revealed 298 non-silent HLA mutations in tumors from 266 patients. These 298 mutations are enriched for likely functional mutations, including putative loss-of-function events. Recurrence of mutations suggested that these ‘hotspot’ sites were positively selected. Cancers with recurrent somatic HLA mutations were associated with upregulation of signatures of cytolytic activity characteristic of tumor infiltration by effector lymphocytes, supporting immune evasion by altered HLA function as a contributory mechanism in cancer. PMID:26372948

  10. Mutation analysis in 600 French cystic fibrosis patients.

    PubMed Central

    Chevalier-Porst, F; Bonardot, A M; Gilly, R; Chazalette, J P; Mathieu, M; Bozon, D

    1994-01-01

    The cystic fibrosis transmembrane conductance regulator (CFTR) gene of 600 unrelated cystic fibrosis (CF) patients living in France (excluding Brittany) was screened for 105 different mutations. This analysis resulted in the identification of 86% of the CF alleles and complete genotyping of 76% of the patients. The most frequent mutations in this population after delta F508 (69% of the CF chromosomes) are G542X (3.3%), N1303K (1.8%), W1282X (1.5%), 1717-1G-->A (1.3%), 2184delA + 2183 A-->G (0.9%), and R553X (0.8%). Images PMID:7525963

  11. Increased sleep spindle activity in patients with Costello syndrome (HRAS gene mutation).

    PubMed

    Della Marca, Giacomo; Leoni, Chiara; Dittoni, Serena; Battaglia, Domenica; Losurdo, Anna; Testani, Elisa; Colicchio, Salvatore; Gnoni, Valentina; Gambardella, Maria L; Mariotti, Paolo; Alfieri, Paolo; Tartaglia, Marco; Zampino, Giuseppe

    2011-06-01

    Costello syndrome is a congenital disorder because of HRAS gene mutation, frequently associated with neurologic impairment and sleep disorders. The aims of the study were to evaluate the sleep EEG, and particularly the sleep spindles, in a population of patients with Costello syndrome and to compare them with those characterizing unaffected subjects. Eleven subjects (5 men and 6 women) with Costello syndrome were included in the study; age ranged between 18 months and 31 years (mean, 9.6 ± 9.4 years). The diagnosis was posed on the basis of established clinical criteria and confirmed molecularly. Sleep EEG was studied by means of full-night, laboratory-based video-polysomnography, performed overnight, during hospitalization. Sleep activity was quantified by means of power spectral analysis. Patients heterozygous for an HRAS mutation exhibited increased EEG power in 12- to 15-Hz activity band compared with age-matched control subjects. In conclusion, the authors observed a consistent increase in the amplitude of cortical sleep spindles in all our subjects with an HRAS mutation. These "giant" spindles were not associated with any evidence of structural damage of the cortex or the thalami and should be considered as phenotypic feature of sleep EEG activity in Costello syndrome because of HRAS mutation.

  12. Metabolomic analysis of exercise effects in the POLG mitochondrial DNA mutator mouse brain.

    PubMed

    Clark-Matott, Joanne; Saleem, Ayesha; Dai, Ying; Shurubor, Yevgeniya; Ma, Xiaoxing; Safdar, Adeel; Beal, Myron Flint; Tarnopolsky, Mark; Simon, David K

    2015-11-01

    Mitochondrial DNA (mtDNA) mutator mice express a mutated form of mtDNA polymerase gamma that results an accelerated accumulation of somatic mtDNA mutations in association with a premature aging phenotype. An exploratory metabolomic analysis of cortical metabolites in sedentary and exercised mtDNA mutator mice and wild-type littermate controls at 9-10 months of age was performed. Pathway analysis revealed deficits in the neurotransmitters acetylcholine, glutamate, and aspartate that were ameliorated by exercise. Nicotinamide adenine dinucleotide (NAD) depletion and evidence of increased poly(adenosine diphosphate-ribose) polymerase 1 (PARP1)activity were apparent in sedentary mtDNA mutator mouse cortex, along with deficits in carnitine metabolites and an upregulated antioxidant response that largely normalized with exercise. These data highlight specific pathways that are altered in the brain in association with an accelerated age-related accumulation of somatic mtDNA mutations. These results may have relevance to age-related neurodegenerative diseases associated with mitochondrial dysfunction, such as Alzheimer's disease and Parkinson's disease and provide insights into potential mechanisms of beneficial effects of exercise on brain function.

  13. Linkage and mutation analysis of Thomsen and Becker myotonia families

    SciTech Connect

    Koty, P.P.; Pegoraro, E.; Hoffman, E.P.

    1994-09-01

    Thomsen (autosomal dominant) and Becker (autosomal recessive) myotonias are characterized by the inability for muscle relaxation after voluntary, mechanical, or electrical stimulation. Families with both diseases have been linked to the skeletal muscle chloride channel (CLC1) on chromosome 7q35; however, only 2 gene mutations have been identified, and the reasons underlying the alternative dominant or recessive inheritance are not clear. We used linkage analysis and SSCP of 23 exons to screen 8 families (56 individuals) and 7 isolated cases with the diagnosis of Thomsen/Becker myotonia. A novel mutation (1290M) in exon 8 was detected in a family with Thomsen disease. Three additional families showed the previously described G230E change. Thus, chloride channel mutations could be identified in 4/5 families showing dominant inheritance. We were able to exclude linkage to the CLC1 gene in the fifth family. In patients with recessive Becker disease, an isolated case had two unique conformers, one causing a novel A437T change in exon 12. We also identified the previously reported F413C change in a second family. We found significant differences in the clinical picture between families with different mutations but also in families with the same mutation. Our data indicates that DNA studies are critical for correct diagnosis of the myotonias.

  14. Kinetic, mutational, and structural analysis of malonate semialdehyde decarboxylase from Coryneform bacterium strain FG41: mechanistic implications for the decarboxylase and hydratase activities.

    PubMed

    Guo, Youzhong; Serrano, Hector; Poelarends, Gerrit J; Johnson, William H; Hackert, Marvin L; Whitman, Christian P

    2013-07-16

    Malonate semialdehyde decarboxylase from Pseudomonas pavonaceae 170 (designated Pp MSAD) is in a bacterial catabolic pathway for the nematicide 1,3-dichloropropene. MSAD has two known activities: it catalyzes the metal ion-independent decarboxylation of malonate semialdehyde to produce acetaldehyde and carbon dioxide and a low-level hydration of 2-oxo-3-pentynoate to yield acetopyruvate. The latter activity is not known to be biologically relevant. Previous studies identified Pro-1, Asp-37, and a pair of arginines (Arg-73 and Arg-75) as critical residues in these activities. In terms of pairwise sequence, MSAD from Coryneform bacterium strain FG41 (designated FG41 MSAD) is 38% identical with the Pseudomonas enzyme, including Pro-1 and Asp-37. However, Gln-73 replaces Arg-73, and the second arginine is shifted to Arg-76 by the insertion of a glycine. To determine how these changes relate to the activities of FG41 MSAD, the gene was cloned and the enzyme expressed and characterized. The enzyme has a comparable decarboxylase activity but a significantly reduced hydratase activity. Mutagenesis along with crystal structures of the native enzyme (2.0 Å resolution) and the enzyme modified by a 3-oxopropanoate moiety (resulting from the incubation of the enzyme and 3-bromopropiolate) (2.2 Å resolution) provided a structural basis. The roles of Pro-1 and Asp-37 are likely the same as those proposed for Pp MSAD. However, the side chains of Thr-72, Gln-73, and Tyr-123 replace those of Arg-73 and Arg-75 in the mechanism and play a role in binding and catalysis. The structures also show that Arg-76 is likely too distant to play a direct role in the mechanism. FG41 MSAD is the second functionally annotated homologue in the MSAD family of the tautomerase superfamily and could represent a new subfamily.

  15. Kinetic, Mutational, and Structural Analysis of Malonate Semialdehyde Decarboxylase from Coryneform bacterium strain FG41: Mechanistic Implications for the Decarboxylase and Hydratase Activities

    PubMed Central

    Guo, Youzhong; Serrano, Hector; Poelarends, Gerrit J.; Johnson, William H.; Hackert, Marvin L.; Whitman, Christian P.

    2013-01-01

    Malonate semialdehyde decarboxylase from Pseudomonas pavonaceae 170 (designated Pp MSAD) is in a bacterial catabolic pathway for the nematicide 1,3-dichloropropene. MSAD has two known activities: it catalyzes the metal-ion independent decarboxylation of malonate semialdehyde to produce acetaldehyde and carbon dioxide, as well as a low-level hydration of 2-oxo-3-pentynoate to yield acetopyruvate. The latter activity is not known to be biologically relevant. Previous studies identified Pro-1, Asp-37, and a pair of arginines (Arg-73 and Arg-75) as critical residues in these activities. MSAD from Coryneform bacterium strain FG41 (designated FG41 MSAD) shares 38% pairwise sequence identity with the Pseudomonas enzyme including Pro-1 and Asp-37. However, Gln-73 replaces Arg-73, and the second arginine is shifted to Arg-76 by the insertion of a glycine. In order to determine how these changes relate to the activities of FG41 MSAD, the gene was cloned and the enzyme expressed and characterized. The enzyme has a comparable decarboxylase activity, but a significantly reduced hydratase activity. Mutagenesis along with crystal structures of the native enzyme (2.0 Å resolution) and the enzyme modified by a 3-oxopropanoate moiety (resulting from the incubation of enzyme and 3-bromopropiolate) (2.2 Å resolution) provided a structural basis. The roles of Pro-1 and Asp-37 are likely the same as those proposed for MSAD. However, the side chains of Thr-72, Gln-73, and Tyr-123 replace those of Arg-73 and Arg-75 in the mechanism and play a role in binding and catalysis. The structures also show that Arg-76 is likely too distant to play a direct role in the mechanism. FG41 MSAD is the second functionally annotated homologue in the MSAD family of the tautomerase superfamily and could represent a new subfamily. PMID:23781927

  16. CDKN2A and CDK4 mutation analysis in Italian melanoma-prone families: functional characterization of a novel CDKN2A germ line mutation.

    PubMed

    Della Torre, G; Pasini, B; Frigerio, S; Donghi, R; Rovini, D; Delia, D; Peters, G; Huot, T J; Bianchi-Scarra, G; Lantieri, F; Rodolfo, M; Parmiani, G; Pierotti, M A

    2001-09-14

    Physical interaction between CDKN2A/p16 and CDK4 proteins regulates the cell cycle progression through the G1 phase and dysfunction of these proteins by gene mutation is implicated in genetic predisposition to melanoma. We analysed 15 Italian melanoma families for germ line mutations in the coding region of the CDKN2A gene and exon 2 of the CDK4 gene. One novel disease-associated mutation (P48T), 3 known pathological mutations (R24P, G101W and N71S) and 2 common polymorphisms (A148T and Nt500 G>C) were identified in the CDKN2A gene. In a family harbouring the R24P mutation, an intronic variant (IVS1, +37 G>C) of uncertain significance was detected in a non-carrier melanoma case. The overall incidence of CDKN2A mutations was 33.3%, but this percentage was higher in families with 3 or more melanoma cases (50%) than in those with only 2 affected relatives (25%). Noteworthy, functional analysis established that the novel mutated protein, while being impaired in cell growth and inhibition assays, retains some in vitro binding to CDK4/6. No variant in the p16-binding region of CDK4 was identified in our families. Our results, obtained in a heterogeneous group of families, support the view that inactivating mutations of CDKN2A contribute to melanoma susceptibility more than activating mutations of CDK4 and that other genetic factors must be responsible for melanoma clustering in a high proportion of families. In addition, they indicate the need for a combination of functional assays to determine the pathogenetic nature of new CDKN2A mutations.

  17. A mutational analysis of Caenorhabditis elegans in space.

    PubMed

    Zhao, Yang; Lai, Kenneth; Cheung, Iris; Youds, Jillian; Tarailo, Maja; Tarailo, Sanja; Rose, Ann

    2006-10-10

    The International Caenorhabditis elegans Experiment First Flight (ICE-First) was a project using C. elegans as a model organism to study the biological effects of short duration spaceflight (11 days in the International Space Station). As a member of the ICE-First research team, our group focused on the mutational effects of spaceflight. Several approaches were taken to measure mutational changes that occurred during the spaceflight including measurement of the integrity of poly-G/poly-C tracts, determination of the mutation frequency in the unc-22 gene, analysis of lethal mutations captured by the genetic balancer eT1(III;V), and identification of alterations in telomere length. By comparing the efficiency, sensitivity, and convenience of these methods, we deduced that the eT1 balancer system is well-suited for capturing, maintaining and recovering mutational events that occur over several generations during spaceflight. In the course of this experiment, we have extended the usefulness of the eT1 balancer system by identifying the physical breakpoints of the eT1 translocation and have developed a PCR assay to follow the eT1 chromosomes. C. elegans animals were grown in a defined liquid media during the spaceflight. This is the first analysis of genetic changes in C. elegans grown in the defined media. Although no significant difference in mutation rate was detected between spaceflight and control samples, which is not surprising given the short duration of the spaceflight, we demonstrate here the utility of worms as an integrating biological dosimeter for spaceflight. PMID:16765996

  18. Mutational analysis of adrenoleukodystrophy (ALD) gene in Japanese ALD patients

    SciTech Connect

    Koike, R.; Onodera, O.; Tabe, H.

    1994-09-01

    Recently a putative ALD gene containing a striking homology with peroxisomal membrane protein (PMP70) has been identified. Besides childhood ALD, various clinical phenotypes have been identified with the onset in adolescence or adulthood (adrenomyeloneuropathy (AMN), adult cerebral ALD or cerebello-brainstem dominant type). The different clinical phenotypes occasionally coexist even in the same family. To investigate if there is a correlation between the clinical phenotypes and genotypes of the mutations in the ALD gene, we have analyzed 43 Japanese ALD patients. By Southern blot analysis, we identified non-overlapping deletions of 0.5 kb to 10.4 kb involving the ALD gene in 3 patients with adult onset cerebello-brainstem dominant type. By detailed direct sequence analysis, we found 4 patients who had point mutations in the coding region. An AMN patient had a point mutation leading to {sup 266}Gly{r_arrow}Arg change, and another patient with adult cerebral ALD had a 3 bp deletion resulting in the loss of glutamic acid at codon 291, which is a conserved amino acid both in ALD protein and PMP70. Two patients with childhood ALD had point mutations leading to {sup 507}Gly{r_arrow}Val, and {sup 518}Arg{r_arrow}Gln, respectively. Since amino acids from 507 to 520 are highly conserved as ATP-binding cassette transporter proteins, mutations in this region are expected to result in dramatic changes of the function of this protein. Although there is a tendancy for mutation in childhood ALD to be present within the ATP-binding site motif, we found two adult patients who had large deletions involving the region. Taken together, strong correlation between genotypes and clinical phenotypes is unlikely to exist, and some other modifying factors might well play an important role for the clinical manifestations of ALD.

  19. A mutational analysis of Caenorhabditis elegans in space.

    PubMed

    Zhao, Yang; Lai, Kenneth; Cheung, Iris; Youds, Jillian; Tarailo, Maja; Tarailo, Sanja; Rose, Ann

    2006-10-10

    The International Caenorhabditis elegans Experiment First Flight (ICE-First) was a project using C. elegans as a model organism to study the biological effects of short duration spaceflight (11 days in the International Space Station). As a member of the ICE-First research team, our group focused on the mutational effects of spaceflight. Several approaches were taken to measure mutational changes that occurred during the spaceflight including measurement of the integrity of poly-G/poly-C tracts, determination of the mutation frequency in the unc-22 gene, analysis of lethal mutations captured by the genetic balancer eT1(III;V), and identification of alterations in telomere length. By comparing the efficiency, sensitivity, and convenience of these methods, we deduced that the eT1 balancer system is well-suited for capturing, maintaining and recovering mutational events that occur over several generations during spaceflight. In the course of this experiment, we have extended the usefulness of the eT1 balancer system by identifying the physical breakpoints of the eT1 translocation and have developed a PCR assay to follow the eT1 chromosomes. C. elegans animals were grown in a defined liquid media during the spaceflight. This is the first analysis of genetic changes in C. elegans grown in the defined media. Although no significant difference in mutation rate was detected between spaceflight and control samples, which is not surprising given the short duration of the spaceflight, we demonstrate here the utility of worms as an integrating biological dosimeter for spaceflight.

  20. JAK-2 V617F mutation increases heparanase procoagulant activity.

    PubMed

    Kogan, Inna; Chap, Dafna; Hoffman, Ron; Axelman, Elena; Brenner, Benjamin; Nadir, Yona

    2016-01-01

    Patients with polycythaemia vera (PV), essential thrombocythaemia (ET) and primary myelofibrosis (PMF) are at increased risk of arterial and venous thrombosis. In patients with ET a positive correlation was observed between JAK-2 V617F mutation, that facilitates erythropoietin receptor signalling, and thrombotic events, although the mechanism involved is not clear. We previously demonstrated that heparanase protein forms a complex and enhances the activity of the blood coagulation initiator tissue factor (TF) which leads to increased factor Xa production and subsequent activation of the coagulation system. The present study was aimed to evaluate heparanase procoagulant activity in myeloproliferative neoplasms. Forty bone marrow biopsies of patients with ET, PV, PMF and chronic myelogenous leukaemia (CML) were immunostained to heparanase, TF and TF pathway inhibitor (TFPI). Erythropoietin receptor positive cell lines U87 human glioma and MCF-7 human breast carcinoma were studied. Heparanase and TFPI staining were more prominent in ET, PV and PMF compared to CML. The strongest staining was in JAK-2 positive ET biopsies. Heparanase level and procoagulant activity were higher in U87 cells transfected to over express JAK-2 V617F mutation compared to control and the effect was reversed using JAK-2 inhibitors (Ruxolitinib, VZ3) and hydroxyurea, although the latter drug did not inhibit JAK-2 phosphorylation. Erythropoietin increased while JAK-2 inhibitors decreased the heparanase level and procoagulant activity in U87 and MCF-7 parental cells. In conclusion, JAK-2 is involved in heparanase up-regulation via the erythropoietin receptor. The present findings may potentially point to a new mechanism of thrombosis in JAK-2 positive ET patients. PMID:26489695

  1. Mutation analysis in patients with Wilson disease: identification of 4 novel mutations. Mutation in brief no. 250. Online.

    PubMed

    Haas, R; Gutierrez-Rivero, B; Knoche, J; Böker, K; Manns, M P; Schmidt, H H

    1999-01-01

    In order to obtain novel mutations in the recently discovered Wilson disease gene, we screened 5 unrelated German individuals for mutations in the 21 exons and their flanking intronic sequences. We detected 9 mutations affecting the Wilson disease gene. Four of those, designated 802-808delTGTAAGT, 2008-2013delTATATG, Cys985Thr, and Ile1148Thr have not yet been reported. One patient had a homozygous mutation whereas the remaining four subjects were compound heterozygous. Therefore these data confirm, that mutations causing Wilson disease are frequently found in affected subjects and they are very heterogenous. PMID:10447265

  2. Mutational analysis of Kaposica reveals that bridging of MG2 and CUB domains of target protein is crucial for the cofactor activity of RCA proteins.

    PubMed

    Gautam, Avneesh Kumar; Panse, Yogesh; Ghosh, Payel; Reza, Malik Johid; Mullick, Jayati; Sahu, Arvind

    2015-10-13

    The complement system has evolved to annul pathogens, but its improper regulation is linked with diseases. Efficient regulation of the system is primarily provided by a family of proteins termed regulators of complement activation (RCA). The knowledge of precise structural determinants of RCA proteins critical for imparting the regulatory activities and the molecular events underlying the regulatory processes, nonetheless, is still limited. Here, we have dissected the structural requirements of RCA proteins that are crucial for one of their two regulatory activities, the cofactor activity (CFA), by using the Kaposi's sarcoma-associated herpesvirus RCA homolog Kaposica as a model protein. We have scanned the entire Kaposica molecule by sequential mutagenesis using swapping and site-directed mutagenesis, which identified residues critical for its interaction with C3b and factor I. Mapping of these residues onto the modeled structure of C3b-Kaposica-factor I complex supported the mutagenesis data. Furthermore, the model suggested that the C3b-interacting residues bridge the CUB (complement C1r-C1s, Uegf, Bmp1) and MG2 (macroglobulin-2) domains of C3b. Thus, it seems that stabilization of the CUB domain with respect to the core of the C3b molecule is central for its CFA. Identification of CFA-critical regions in Kaposica guided experiments in which the equivalent regions of membrane cofactor protein were swapped into decay-accelerating factor. This strategy allowed CFA to be introduced into decay-accelerating factor, suggesting that viral and human regulators use a common mechanism for CFA.

  3. Truncating PREX2 mutations activate its GEF activity and alter gene expression regulation in NRAS-mutant melanoma

    PubMed Central

    Lissanu Deribe, Yonathan; Shi, Yanxia; Rai, Kunal; Nezi, Luigi; Amin, Samir B.; Wu, Chia-Chin; Akdemir, Kadir C.; Mahdavi, Mozhdeh; Peng, Qian; Chang, Qing Edward; Hornigold, Kirsti; Arold, Stefan T.; Welch, Heidi C. E.; Garraway, Levi A.; Chin, Lynda

    2016-01-01

    PREX2 (phosphatidylinositol-3,4,5-triphosphate-dependent Rac-exchange factor 2) is a PTEN (phosphatase and tensin homolog deleted on chromosome 10) binding protein that is significantly mutated in cutaneous melanoma and pancreatic ductal adenocarcinoma. Here, genetic and biochemical analyses were conducted to elucidate the nature and mechanistic basis of PREX2 mutation in melanoma development. By generating an inducible transgenic mouse model we showed an oncogenic role for a truncating PREX2 mutation (PREX2E824*) in vivo in the context of mutant NRAS. Using integrative cross-species gene expression analysis, we identified deregulated cell cycle and cytoskeleton organization as significantly perturbed biological pathways in PREX2 mutant tumors. Mechanistically, truncation of PREX2 activated its Rac1 guanine nucleotide exchange factor activity, abolished binding to PTEN and activated the PI3K (phosphatidyl inositol 3 kinase)/Akt signaling pathway. We further showed that PREX2 truncating mutations or PTEN deletion induces down-regulation of the tumor suppressor and cell cycle regulator CDKN1C (also known as p57KIP2). This down-regulation occurs, at least partially, through DNA hypomethylation of a differentially methylated region in chromosome 11 that is a known regulatory region for expression of the CDKN1C gene. Together, these findings identify PREX2 as a mediator of NRAS-mutant melanoma development that acts through the PI3K/PTEN/Akt pathway to regulate gene expression of a cell cycle regulator. PMID:26884185

  4. Biomedical Mutation Analysis (BMA): A software tool for analyzing mutations associated with antiviral resistance

    PubMed Central

    Salvatierra, Karina; Florez, Hector

    2016-01-01

    Introduction: Hepatitis C virus (HCV) is considered a major public health problem, with 200 million people infected worldwide. The treatment for HCV chronic infection with pegylated interferon alpha plus ribavirin inhibitors is unspecific; consequently, the treatment is effective in only 50% of patients infected. This has prompted the development of direct-acting antivirals (DAA) that target virus proteins. These DAA have demonstrated a potent effect in vitro and in vivo; however, virus mutations associated with the development of resistance have been described. Objective: To design and develop an online information system for detecting mutations in amino acids known to be implicated in resistance to DAA. Materials and methods:    We have used computer applications, technological tools, standard languages, infrastructure systems and algorithms, to analyze positions associated with resistance to DAA for the NS3, NS5A, and NS5B genes of HCV. Results: We have designed and developed an online information system named Biomedical Mutation Analysis (BMA), which allows users to calculate changes in nucleotide and amino acid sequences for each selected sequence from conventional Sanger and cloning sequencing using a graphical interface. Conclusion: BMA quickly, easily and effectively analyzes mutations, including complete documentation and examples. Furthermore, the development of different visualization techniques allows proper interpretation and understanding of the results. The data obtained using BMA will be useful for the assessment and surveillance of HCV resistance to new antivirals, and for the treatment regimens by selecting those DAA to which the virus is not resistant, avoiding unnecessary treatment failures. The software is available at: http://bma.itiud.org. PMID:27547378

  5. Limited diagnostic value of enzyme analysis in patients with mitochondrial tRNA mutations.

    PubMed

    Wibrand, Flemming; Jeppesen, Tina D; Frederiksen, Anja L; Olsen, David B; Duno, Morten; Schwartz, Marianne; Vissing, John

    2010-05-01

    We evaluated the diagnostic value of respiratory chain (RC) enzyme analysis of muscle in adult patients with mitochondrial myopathy (MM). RC enzyme activity was measured in muscle biopsies from 39 patients who carry either the 3243A>G mutation, other tRNA point mutations, or single, large-scale deletions of mtDNA. Findings were compared with those obtained from asymptomatic relatives with the 3243A>G mutation, myotonic dystrophy patients, and healthy subjects. Plasma lactate concentration, maximal oxygen uptake, and ragged-red fibers/cytochrome c-negative fibers in muscle were also determined. Only 10% of patients with the 3243A>G point mutation had decreased enzyme activity of one or more RC complexes, whereas this was the case for 83% of patients with other point mutations and 62% of patients with deletions. Abnormal muscle histochemistry was found in 65%, 100%, and 85% of patients, respectively, in these three groups. The results indicate that RC enzyme analysis in muscle is not a sensitive test for MM in adults. In these patients, abnormal muscle histochemistry appears to be a better predictor ofMM.

  6. Analysis of gene mutations among South Indian patients with maple syrup urine disease: identification of four novel mutations.

    PubMed

    Narayanan, M P; Menon, Krishnakumar N; Vasudevan, D M

    2013-10-01

    Maple syrup urine disease (MSUD) is predominantly caused by mutations in the BCKDHA, BCKDHB and DBT genes, which encode for the E1alpha, E1beta and E2 subunits of the branched-chain alpha-keto acid dehydrogenase complex, respectively. Because disease causing mutations play a major role in the development of the disease, prenatal diagnosis at gestational level may have significance in making decisions by parents. Thus, this study was aimed to screen South Indian MSUD patients for mutations and assess the genotype-phenotype correlation. Thirteen patients diagnosed with MSUD by conventional biochemical screening such as urine analysis by DNPH test, thin layer chromatography for amino acids and blood amino acid quantification by HPLC were selected for mutation analysis. The entire coding regions of the BCKDHA, BCKDHB and DBT genes were analyzed for mutations by PCR-based direct DNA sequencing. BCKDHA and BCKDHB mutations were seen in 43% of the total ten patients, while disease-causing DBT gene mutation was observed only in 14%. Three patients displayed no mutations. Novel mutations were c.130C>T in BCKDHA gene, c. 599C>T and c.121_122delAC in BCKDHB gene and c.190G>A in DBT gene. Notably, patients harbouring these mutations were non-responsive to thiamine supplementation and other treatment regimens and might have a worse prognosis as compared to the patients not having such mutations. Thus, identification of these mutations may have a crucial role in the treatment as well as understanding the molecular mechanisms in MSUD. PMID:24772966

  7. Polar body mutation load analysis in a patient with A3243G tRNALeu(UUR) point mutation.

    PubMed

    Vandewoestyne, Mado; Heindryckx, Björn; Lepez, Trees; Van Coster, Rudy; Gerris, Jan; De Sutter, Petra; Deforce, Dieter

    2011-07-01

    Diseases associated with point mutations in the mitochondrial DNA (mtDNA) are maternally inherited. We evaluated whether pre-implantation genetic diagnosis, based on polar body mutation load detection could be used to distinguish healthy from affected oocytes. Restriction Fragment Length Polymorphism (RFLP) analysis was used and validated, to determine A3243G tRNA(Leu(UUR)) mutation load in metaphase II oocytes and their respective first polar bodies. The results of this study show for the first time that the mutation load measured in the polar bodies correlates well with the mutation load in the respective oocytes. Therefore, human polar body analysis can be used as diagnostic tool to prevent transmission of mitochondrial disorders.

  8. Disease Mutations in Rab7 Result in Unregulated Nucleotide Exchange and Inappropriate Activation

    SciTech Connect

    B McCray; E Skordalakes; J Taylor

    2011-12-31

    Rab GTPases are molecular switches that orchestrate vesicular trafficking, maturation and fusion by cycling between an active, GTP-bound form, and an inactive, GDP-bound form. The activity cycle is coupled to GTP hydrolysis and is tightly controlled by regulatory proteins. Missense mutations of the GTPase Rab7 cause a dominantly inherited axonal degeneration known as Charcot-Marie-Tooth type 2B through an unknown mechanism. We present the 2.8 A crystal structure of GTP-bound L129F mutant Rab7 which reveals normal conformations of the effector binding regions and catalytic site, but an alteration to the nucleotide binding pocket that is predicted to alter GTP binding. Through extensive biochemical analysis, we demonstrate that disease-associated mutations in Rab7 do not lead to an intrinsic GTPase defect, but permit unregulated nucleotide exchange leading to both excessive activation and hydrolysis-independent inactivation. Consistent with augmented activity, mutant Rab7 shows significantly enhanced interaction with a subset of effector proteins. In addition, dynamic imaging demonstrates that mutant Rab7 is abnormally retained on target membranes. However, we show that the increased activation of mutant Rab7 is counterbalanced by unregulated, GTP hydrolysis-independent membrane cycling. Notably, disease mutations are able to rescue the membrane cycling of a GTPase-deficient mutant. Thus, we demonstrate that disease mutations uncouple Rab7 from the spatial and temporal control normally imposed by regulatory proteins and cause disease not by a gain of novel toxic function, but by misregulation of native Rab7 activity.

  9. Structural Characterization of Human 8-Oxoguanine DNA Glycosylase Variants Bearing Active Site Mutations

    SciTech Connect

    Radom,C.; Banerjee, A.; Verdine, G.

    2007-01-01

    The human 8-oxoguanine DNA glycosylase (hOGG1) protein is responsible for initiating base excision DNA repair of the endogenous mutagen 8-oxoguanine. Like nearly all DNA glycosylases, hOGG1 extrudes its substrate from the DNA helix and inserts it into an extrahelical enzyme active site pocket lined with residues that participate in lesion recognition and catalysis. Structural analysis has been performed on mutant versions of hOGG1 having changes in catalytic residues but not on variants having altered 7,8-dihydro-8-oxoguanine (oxoG) contact residues. Here we report high resolution structural analysis of such recognition variants. We found that Ala substitution at residues that contact the phosphate 5 to the lesion (H270A mutation) and its Watson-Crick face (Q315A mutation) simply removed key functionality from the contact interface but otherwise had no effect on structure. Ala substitution at the only residue making an oxoG-specific contact (G42A mutation) introduced torsional stress into the DNA contact surface of hOGG1, but this was overcome by local interactions within the folded protein, indicating that this oxoG recognition motif is 'hardwired'. Introduction of a side chain intended to sterically obstruct the active site pocket (Q315F mutation) led to two different structures, one of which (Q315F{sup *149}) has the oxoG lesion in an exosite flanking the active site and the other of which (Q315F{sup *292}) has the oxoG inserted nearly completely into the lesion recognition pocket. The latter structure offers a view of the latest stage in the base extrusion pathway yet observed, and its lack of catalytic activity demonstrates that the transition state for displacement of the lesion base is geometrically demanding.

  10. Identification of a Tumor Specific, Active-Site Mutation in Casein Kinase 1α by Chemical Proteomics.

    PubMed

    Okerberg, Eric S; Hainley, Anna; Brown, Heidi; Aban, Arwin; Alemayehu, Senait; Shih, Ann; Wu, Jane; Patricelli, Matthew P; Kozarich, John W; Nomanbhoy, Tyzoon; Rosenblum, Jonathan S

    2016-01-01

    We describe the identification of a novel, tumor-specific missense mutation in the active site of casein kinase 1α (CSNK1A1) using activity-based proteomics. Matched normal and tumor colon samples were analyzed using an ATP acyl phosphate probe in a kinase-targeted LC-MS2 platform. An anomaly in the active-site peptide from CSNK1A1 was observed in a tumor sample that was consistent with an altered catalytic aspartic acid. Expression and analysis of the suspected mutant verified the presence of asparagine in the probe-labeled, active-site peptide for CSNK1A1. Genomic sequencing of the colon tumor samples confirmed the presence of a missense mutation in the catalytic aspartic acid of CSNK1A1 (GAC→AAC). To our knowledge, the D163N mutation in CSNK1A1 is a newly defined mutation to the conserved, catalytic aspartic acid of a protein kinase and the first missense mutation identified using activity-based proteomics. The tumorigenic potential of this mutation remains to be determined. PMID:27031502

  11. Identification of a Tumor Specific, Active-Site Mutation in Casein Kinase 1α by Chemical Proteomics

    PubMed Central

    Okerberg, Eric S.; Hainley, Anna; Brown, Heidi; Aban, Arwin; Alemayehu, Senait; Shih, Ann; Wu, Jane; Patricelli, Matthew P.; Kozarich, John W.; Nomanbhoy, Tyzoon; Rosenblum, Jonathan S.

    2016-01-01

    We describe the identification of a novel, tumor-specific missense mutation in the active site of casein kinase 1α (CSNK1A1) using activity-based proteomics. Matched normal and tumor colon samples were analyzed using an ATP acyl phosphate probe in a kinase-targeted LC-MS2 platform. An anomaly in the active-site peptide from CSNK1A1 was observed in a tumor sample that was consistent with an altered catalytic aspartic acid. Expression and analysis of the suspected mutant verified the presence of asparagine in the probe-labeled, active-site peptide for CSNK1A1. Genomic sequencing of the colon tumor samples confirmed the presence of a missense mutation in the catalytic aspartic acid of CSNK1A1 (GAC→AAC). To our knowledge, the D163N mutation in CSNK1A1 is a newly defined mutation to the conserved, catalytic aspartic acid of a protein kinase and the first missense mutation identified using activity-based proteomics. The tumorigenic potential of this mutation remains to be determined. PMID:27031502

  12. Sequence analysis of mutations and translocations across breast cancer subtypes

    PubMed Central

    Banerji, Shantanu; Cibulskis, Kristian; Rangel-Escareno, Claudia; Brown, Kristin K.; Carter, Scott L.; Frederick, Abbie M.; Lawrence, Michael S.; Sivachenko, Andrey Y.; Sougnez, Carrie; Zou, Lihua; Cortes, Maria L.; Fernandez-Lopez, Juan C.; Peng, Shouyong; Ardlie, Kristin G.; Auclair, Daniel; Bautista-Piña, Veronica; Duke, Fujiko; Francis, Joshua; Jung, Joonil; Maffuz-Aziz, Antonio; Onofrio, Robert C.; Parkin, Melissa; Pho, Nam H.; Quintanar-Jurado, Valeria; Ramos, Alex H.; Rebollar-Vega, Rosa; Rodriguez-Cuevas, Sergio; Romero-Cordoba, Sandra L.; Schumacher, Steven E.; Stransky, Nicolas; Thompson, Kristin M.; Uribe-Figueroa, Laura; Baselga, Jose; Beroukhim, Rameen; Polyak, Kornelia; Sgroi, Dennis C.; Richardson, Andrea L.; Jimenez-Sanchez, Gerardo; Lander, Eric S.; Gabriel, Stacey B.; Garraway, Levi A.; Golub, Todd R.; Melendez-Zajgla, Jorge; Toker, Alex; Getz, Gad; Hidalgo-Miranda, Alfredo; Meyerson, Matthew

    2014-01-01

    Breast carcinoma is the leading cause of cancer-related mortality in women worldwide with an estimated 1.38 million new cases and 458,000 deaths in 2008 alone1. This malignancy represents a heterogeneous group of tumours with characteristic molecular features, prognosis, and responses to available therapy2–4. Recurrent somatic alterations in breast cancer have been described including mutations and copy number alterations, notably ERBB2 amplifications, the first successful therapy target defined by a genomic aberration5. Prior DNA sequencing studies of breast cancer genomes have revealed additional candidate mutations and gene rearrangements 6–10. Here we report the whole-exome sequences of DNA from 103 human breast cancers of diverse subtypes from patients in Mexico and Vietnam compared to matched-normal DNA, together with whole-genome sequences of 22 breast cancer/normal pairs. Beyond confirming recurrent somatic mutations in PIK3CA11, TP536, AKT112, GATA313, and MAP3K110, we discovered recurrent mutations in the CBFB transcription factor gene and deletions of its partner RUNX1. Furthermore, we have identified a recurrent MAGI3-AKT3 fusion enriched in triple-negative breast cancer lacking estrogen and progesterone receptors and ERBB2 expression. The Magi3-Akt3 fusion leads to constitutive activation of Akt kinase, which is abolished by treatment with an ATP-competitive Akt small-molecule inhibitor. PMID:22722202

  13. Hereditary hemochromatosis: HFE mutation analysis in Greeks reveals genetic heterogeneity.

    PubMed

    Papanikolaou, G; Politou, M; Terpos, E; Fourlemadis, S; Sakellaropoulos, N; Loukopoulos, D

    2000-04-01

    Hereditary hemochromatosis (HH) is common among Caucasians; reported disease frequencies vary from 0.3 to 0.8%. Identification of a candidate HFE gene in 1996 was soon followed by the description of two ancestral mutations, i.e., c.845G-->A (C282Y) and c.187C-->G (H63D). To these was recently added the mutation S65C, which may represent a simple polymorphism. The incidence of HH in Greece is unknown but clinical cases are rare. Also unknown is the carrier frequency of the two mutant alleles. A first estimate of the latter is given in the present report. It is based on data from the genetic analysis of 10 unrelated patients of Greek origin who were referred to our center for genotyping and 158 unselected male blood donors. The allele frequencies for the C282Y and H63D mutations were 0.003 and 0.145, respectively. The C282Y allele was detected in 50% of HH patients. This is considerably lower than the frequencies reported for HH patients in the U.S.A. (82%) and France (91 %) and closer to that reported in Italy (64%). Five patients did not carry any known HFE mutation; three may represent cases of juvenile hemochromatosis, given their early onset with iron overload, hypogonadism, and heart disease. We suggest that genetic heterogeneity is more prominent in Southern Europe. It is also possible that the penetrance of the responsible genes is different across the Mediterranean.

  14. Targeting Mitogen-Activated Protein Kinase Signaling in Mouse Models of Cardiomyopathy Caused by Lamin A/C Gene Mutations.

    PubMed

    Muchir, Antoine; Worman, Howard J

    2016-01-01

    The most frequently occurring mutations in the gene encoding nuclear lamin A and nuclear lamin C cause striated muscle diseases virtually always involving the heart. In this review, we describe the approaches and methods used to discover that cardiomyopathy-causing lamin A/C gene mutations increase MAP kinase signaling in the heart and that this plays a role in disease pathogenesis. We review different mouse models of cardiomyopathy caused by lamin A/C gene mutations and how transcriptomic analysis of one model identified increased cardiac activity of the ERK1/2, JNK, and p38α MAP kinases. We describe methods used to measure the activity of these MAP kinases in mouse hearts and then discuss preclinical treatment protocols using pharmacological inhibitors to demonstrate their role in pathogenesis. Several of these kinase inhibitors are in clinical development and could potentially be used to treat human subjects with cardiomyopathy caused by lamin A/C gene mutations.

  15. Elastase Activity in Aspergillus fumigatus Can Arise by Random, Spontaneous Mutations

    PubMed Central

    Álvarez-Pérez, Sergio; Blanco, Jose L.; López-Rodas, Victoria; Flores-Moya, Antonio; Costas, Eduardo; García, Marta E.

    2010-01-01

    Aspergillus fumigatus Fresenius has the capacity to degrade elastin (the principal protein of the lungs) and it is considered that elastase activity (EA) is among the most important pathogenicity factors of this mold. In particular, there is a strong correlation between EA in A. fumigatus and invasive aspergillosis. However, EA is not universal in this mold, and it is unknown whether the capacity to degrade elastin is the consequence of physiological mechanisms and/or genetic changes (putative adaptive mutations) induced after the exposure to this substrate or, on the contrary, it is due to random spontaneous mutations that occur under nonselective conditions. In order to discriminate between these possibilities, a Luria-Delbrück fluctuation analysis was carried out on an elastase-negative (EA−) A. fumigatus strain, using as selective factor a culture medium containing elastin as the sole source of nitrogen. Here we show that the EA− → EA+ transformation in A. fumigatus appears by rare, random mutations before the exposure of the strain to selective conditions. This work represents the first experimental evidence of pathogenicity factor acquisition in mycelial fungi by preselective mutation. PMID:21350652

  16. The Splicing Efficiency of Activating HRAS Mutations Can Determine Costello Syndrome Phenotype and Frequency in Cancer.

    PubMed

    Hartung, Anne-Mette; Swensen, Jeff; Uriz, Inaki E; Lapin, Morten; Kristjansdottir, Karen; Petersen, Ulrika S S; Bang, Jeanne Mari V; Guerra, Barbara; Andersen, Henriette Skovgaard; Dobrowolski, Steven F; Carey, John C; Yu, Ping; Vaughn, Cecily; Calhoun, Amy; Larsen, Martin R; Dyrskjøt, Lars; Stevenson, David A; Andresen, Brage S

    2016-05-01

    Costello syndrome (CS) may be caused by activating mutations in codon 12/13 of the HRAS proto-oncogene. HRAS p.Gly12Val mutations have the highest transforming activity, are very frequent in cancers, but very rare in CS, where they are reported to cause a severe, early lethal, phenotype. We identified an unusual, new germline p.Gly12Val mutation, c.35_36GC>TG, in a 12-year-old boy with attenuated CS. Analysis of his HRAS cDNA showed high levels of exon 2 skipping. Using wild type and mutant HRAS minigenes, we confirmed that c.35_36GC>TG results in exon 2 skipping by simultaneously disrupting the function of a critical Exonic Splicing Enhancer (ESE) and creation of an Exonic Splicing Silencer (ESS). We show that this vulnerability of HRAS exon 2 is caused by a weak 3' splice site, which makes exon 2 inclusion dependent on binding of splicing stimulatory proteins, like SRSF2, to the critical ESE. Because the majority of cancer- and CS- causing mutations are located here, they affect splicing differently. Therefore, our results also demonstrate that the phenotype in CS and somatic cancers is not only determined by the different transforming potentials of mutant HRAS proteins, but also by the efficiency of exon 2 inclusion resulting from the different HRAS mutations. Finally, we show that a splice switching oligonucleotide (SSO) that blocks access to the critical ESE causes exon 2 skipping and halts proliferation of cancer cells. This unravels a potential for development of new anti-cancer therapies based on SSO-mediated HRAS exon 2 skipping.

  17. The Splicing Efficiency of Activating HRAS Mutations Can Determine Costello Syndrome Phenotype and Frequency in Cancer

    PubMed Central

    Kristjansdottir, Karen; Petersen, Ulrika S. S.; Bang, Jeanne Mari V.; Guerra, Barbara; Andersen, Henriette Skovgaard; Dobrowolski, Steven F.; Carey, John C.; Yu, Ping; Calhoun, Amy; Larsen, Martin R.; Dyrskjøt, Lars; Stevenson, David A.; Andresen, Brage S.

    2016-01-01

    Costello syndrome (CS) may be caused by activating mutations in codon 12/13 of the HRAS proto-oncogene. HRAS p.Gly12Val mutations have the highest transforming activity, are very frequent in cancers, but very rare in CS, where they are reported to cause a severe, early lethal, phenotype. We identified an unusual, new germline p.Gly12Val mutation, c.35_36GC>TG, in a 12-year-old boy with attenuated CS. Analysis of his HRAS cDNA showed high levels of exon 2 skipping. Using wild type and mutant HRAS minigenes, we confirmed that c.35_36GC>TG results in exon 2 skipping by simultaneously disrupting the function of a critical Exonic Splicing Enhancer (ESE) and creation of an Exonic Splicing Silencer (ESS). We show that this vulnerability of HRAS exon 2 is caused by a weak 3’ splice site, which makes exon 2 inclusion dependent on binding of splicing stimulatory proteins, like SRSF2, to the critical ESE. Because the majority of cancer- and CS- causing mutations are located here, they affect splicing differently. Therefore, our results also demonstrate that the phenotype in CS and somatic cancers is not only determined by the different transforming potentials of mutant HRAS proteins, but also by the efficiency of exon 2 inclusion resulting from the different HRAS mutations. Finally, we show that a splice switching oligonucleotide (SSO) that blocks access to the critical ESE causes exon 2 skipping and halts proliferation of cancer cells. This unravels a potential for development of new anti-cancer therapies based on SSO-mediated HRAS exon 2 skipping. PMID:27195699

  18. Activating JAK1 mutation may predict the sensitivity of JAK-STAT inhibition in hepatocellular carcinoma.

    PubMed

    Yang, Shuqun; Luo, Chonglin; Gu, Qingyang; Xu, Qiang; Wang, Guan; Sun, Hongye; Qian, Ziliang; Tan, Yexiong; Qin, Yuxin; Shen, Yuhong; Xu, Xiaowei; Chen, Shu-Hui; Chan, Chi-Chung; Wang, Hongyang; Mao, Mao; Fang, Douglas D

    2016-02-01

    Hepatocellular carcinoma (HCC) is the fifth most common type of cancers worldwide. However, current therapeutic approaches for this epidemic disease are limited, and its 5-year survival rate hasn't been improved in the past decades. Patient-derived xenograft (PDX) tumor models have become an excellent in vivo system for understanding of disease biology and drug discovery. In order to identify new therapeutic targets for HCC, whole-exome sequencing (WES) was performed on more than 60 HCC PDX models. Among them, four models exhibited protein-altering mutations in JAK1 (Janus Kinase 1) gene. To explore the transforming capability, these mutations were then introduced into HEK293FT and Ba/F3 cells. The results demonstrated that JAK1S703I mutation was able to activate JAK-STAT (Signal Transducer and Activator of Transcription) signaling pathway and drive cell proliferation in the absence of cytokine stimulation in vitro. Furthermore,the sensitivity to the treatment of a JAK1/2 inhibitor, ruxolitinib, was observed in JAK1S703I mutant PDX model, but not in other non-activating mutant or wild type models. Pharmacodynamic analysis showed that phosphorylation of STAT3 in the Ruxolitinib-treated tumor tissues was significantly suppressed. Collectively, our results suggested that JAK1S703I is an activating mutation for JAK-STAT signaling pathway in vitro and in vivo, and JAK-STAT pathway might represent a new therapeutic approach for HCC treatment. Monotherapy using a more potent and specific JAK1 inhibitor and combinatory therapy should be further explored in JAK1 mutant PDX models. PMID:26701727

  19. Activating JAK1 mutation may predict the sensitivity of JAK-STAT inhibition in hepatocellular carcinoma.

    PubMed

    Yang, Shuqun; Luo, Chonglin; Gu, Qingyang; Xu, Qiang; Wang, Guan; Sun, Hongye; Qian, Ziliang; Tan, Yexiong; Qin, Yuxin; Shen, Yuhong; Xu, Xiaowei; Chen, Shu-Hui; Chan, Chi-Chung; Wang, Hongyang; Mao, Mao; Fang, Douglas D

    2016-02-01

    Hepatocellular carcinoma (HCC) is the fifth most common type of cancers worldwide. However, current therapeutic approaches for this epidemic disease are limited, and its 5-year survival rate hasn't been improved in the past decades. Patient-derived xenograft (PDX) tumor models have become an excellent in vivo system for understanding of disease biology and drug discovery. In order to identify new therapeutic targets for HCC, whole-exome sequencing (WES) was performed on more than 60 HCC PDX models. Among them, four models exhibited protein-altering mutations in JAK1 (Janus Kinase 1) gene. To explore the transforming capability, these mutations were then introduced into HEK293FT and Ba/F3 cells. The results demonstrated that JAK1S703I mutation was able to activate JAK-STAT (Signal Transducer and Activator of Transcription) signaling pathway and drive cell proliferation in the absence of cytokine stimulation in vitro. Furthermore,the sensitivity to the treatment of a JAK1/2 inhibitor, ruxolitinib, was observed in JAK1S703I mutant PDX model, but not in other non-activating mutant or wild type models. Pharmacodynamic analysis showed that phosphorylation of STAT3 in the Ruxolitinib-treated tumor tissues was significantly suppressed. Collectively, our results suggested that JAK1S703I is an activating mutation for JAK-STAT signaling pathway in vitro and in vivo, and JAK-STAT pathway might represent a new therapeutic approach for HCC treatment. Monotherapy using a more potent and specific JAK1 inhibitor and combinatory therapy should be further explored in JAK1 mutant PDX models.

  20. Activating JAK1 mutation may predict the sensitivity of JAK-STAT inhibition in hepatocellular carcinoma

    PubMed Central

    Yang, Shuqun; Luo, Chonglin; Gu, Qingyang; Xu, Qiang; Wang, Guan; Sun, Hongye; Qian, Ziliang; Tan, Yexiong; Qin, Yuxin; Shen, Yuhong; Xu, Xiaowei; Chen, Shu-Hui; Chan, Chi-Chung; Wang, Hongyang; Mao, Mao; Fang, Douglas D.

    2016-01-01

    Hepatocellular carcinoma (HCC) is the fifth most common type of cancers worldwide. However, current therapeutic approaches for this epidemic disease are limited, and its 5-year survival rate hasn't been improved in the past decades. Patient-derived xenograft (PDX) tumor models have become an excellent in vivo system for understanding of disease biology and drug discovery. In order to identify new therapeutic targets for HCC, whole-exome sequencing (WES) was performed on more than 60 HCC PDX models. Among them, four models exhibited protein-altering mutations in JAK1 (Janus Kinase 1) gene. To explore the transforming capability, these mutations were then introduced into HEK293FT and Ba/F3 cells. The results demonstrated that JAK1S703I mutation was able to activate JAK-STAT (Signal Transducer and Activator of Transcription) signaling pathway and drive cell proliferation in the absence of cytokine stimulation in vitro. Furthermore, the sensitivity to the treatment of a JAK1/2 inhibitor, ruxolitinib, was observed in JAK1S703I mutant PDX model, but not in other non-activating mutant or wild type models. Pharmacodynamic analysis showed that phosphorylation of STAT3 in the Ruxolitinib-treated tumor tissues was significantly suppressed. Collectively, our results suggested that JAK1S703I is an activating mutation for JAK-STAT signaling pathway in vitro and in vivo, and JAK-STAT pathway might represent a new therapeutic approach for HCC treatment. Monotherapy using a more potent and specific JAK1 inhibitor and combinatory therapy should be further explored in JAK1 mutant PDX models. PMID:26701727

  1. Functional Analysis of Mouse G6pc1 Mutations Using a Novel In Situ Assay for Glucose-6-Phosphatase Activity and the Effect of Mutations in Conserved Human G6PC1/G6PC2 Amino Acids on G6PC2 Protein Expression

    PubMed Central

    Boortz, Kayla A.; Syring, Kristen E.; Pound, Lynley D.; Wang, Yingda; Oeser, James K.; O’Brien, Richard M.

    2016-01-01

    Elevated fasting blood glucose (FBG) has been associated with increased risk for development of type 2 diabetes. Single nucleotide polymorphisms (SNPs) in G6PC2 are the most important common determinants of variations in FBG in humans. Studies using G6pc2 knockout mice suggest that G6pc2 regulates the glucose sensitivity of insulin secretion. G6PC2 and the related G6PC1 and G6PC3 genes encode glucose-6-phosphatase catalytic subunits. This study describes a functional analysis of 22 non-synonymous G6PC2 SNPs, that alter amino acids that are conserved in human G6PC1, mouse G6pc1 and mouse G6pc2, with the goal of identifying variants that potentially affect G6PC2 activity/expression. Published data suggest strong conservation of catalytically important amino acids between all four proteins and the related G6PC3 isoform. Because human G6PC2 has very low glucose-6-phosphatase activity we used an indirect approach, examining the effect of these SNPs on mouse G6pc1 activity. Using a novel in situ functional assay for glucose-6-phosphatase activity we demonstrate that the amino acid changes associated with the human G6PC2 rs144254880 (Arg79Gln), rs149663725 (Gly114Arg) and rs2232326 (Ser324Pro) SNPs reduce mouse G6pc1 enzyme activity without affecting protein expression. The Arg79Gln variant alters an amino acid mutation of which, in G6PC1, has previously been shown to cause glycogen storage disease type 1a. We also demonstrate that the rs368382511 (Gly8Glu), rs138726309 (His177Tyr), rs2232323 (Tyr207Ser) rs374055555 (Arg293Trp), rs2232326 (Ser324Pro), rs137857125 (Pro313Leu) and rs2232327 (Pro340Leu) SNPs confer decreased G6PC2 protein expression. In summary, these studies identify multiple G6PC2 variants that have the potential to be associated with altered FBG in humans. PMID:27611587

  2. Functional Analysis of Mouse G6pc1 Mutations Using a Novel In Situ Assay for Glucose-6-Phosphatase Activity and the Effect of Mutations in Conserved Human G6PC1/G6PC2 Amino Acids on G6PC2 Protein Expression.

    PubMed

    Boortz, Kayla A; Syring, Kristen E; Pound, Lynley D; Wang, Yingda; Oeser, James K; O'Brien, Richard M

    2016-01-01

    Elevated fasting blood glucose (FBG) has been associated with increased risk for development of type 2 diabetes. Single nucleotide polymorphisms (SNPs) in G6PC2 are the most important common determinants of variations in FBG in humans. Studies using G6pc2 knockout mice suggest that G6pc2 regulates the glucose sensitivity of insulin secretion. G6PC2 and the related G6PC1 and G6PC3 genes encode glucose-6-phosphatase catalytic subunits. This study describes a functional analysis of 22 non-synonymous G6PC2 SNPs, that alter amino acids that are conserved in human G6PC1, mouse G6pc1 and mouse G6pc2, with the goal of identifying variants that potentially affect G6PC2 activity/expression. Published data suggest strong conservation of catalytically important amino acids between all four proteins and the related G6PC3 isoform. Because human G6PC2 has very low glucose-6-phosphatase activity we used an indirect approach, examining the effect of these SNPs on mouse G6pc1 activity. Using a novel in situ functional assay for glucose-6-phosphatase activity we demonstrate that the amino acid changes associated with the human G6PC2 rs144254880 (Arg79Gln), rs149663725 (Gly114Arg) and rs2232326 (Ser324Pro) SNPs reduce mouse G6pc1 enzyme activity without affecting protein expression. The Arg79Gln variant alters an amino acid mutation of which, in G6PC1, has previously been shown to cause glycogen storage disease type 1a. We also demonstrate that the rs368382511 (Gly8Glu), rs138726309 (His177Tyr), rs2232323 (Tyr207Ser) rs374055555 (Arg293Trp), rs2232326 (Ser324Pro), rs137857125 (Pro313Leu) and rs2232327 (Pro340Leu) SNPs confer decreased G6PC2 protein expression. In summary, these studies identify multiple G6PC2 variants that have the potential to be associated with altered FBG in humans. PMID:27611587

  3. Mutation analysis of the Fanconi Anemia Gene FACC

    SciTech Connect

    Verlander, P.C.; Lin, J.D.; Udono, M.U.; Zhang, Q.; Auerbach, A.D. ); Gibson, R.A.; Mathew, C.G. )

    1994-04-01

    Fanconi anemia (FA) is a genetically heterogeneous autosomal recessive disorder characterized by a unique hypersensitivity of cells to DNA cross-linking agents; a gene for complementation group C (FACC) has recently been cloned. The authors have amplified FACC exons with their flanking intron sequences from genomic DNA from 174 racially and ethnically diverse families in the International Fanconi Anemia Registry and have screened for mutations by using SSCP analysis. They have identified eight different variants in 32 families; three were detected in exon 1, one in exon 4, one in intron 4, two in exon 6, and one in exon 14. Two of the eight variants, in seven families, did not segregate with the disease allele in multiplex families, suggesting that these variants represented benign polymorphisms. Disease-associated mutations in FACC were detected in a total of 25 (14.4%) of 174 families screened. The most frequent mutations were IVS4 + 4 A [yields] T (intron 4; 12 families) and 322delG (exon 1; 9 families). Other, less common mutations include Q13X in exon 1, R185X and D195V in exon 6, and L554P in exon 14. The polymorphisms were S26F in exon 1 and G139E in exon 4. All patients in the study with 322delG, Q13X, R185X, and D195V are of northern or eastern European or southern Italian ancestry, and 18 of 19 have a mild form of the disease, while the 2 patients with L554P, both from the same family, have a severe phenotype. All 19 patients with IVS4 + 4 A [yields] T have Jewish ancestry and have a severe phenotype. 19 refs., 1 fig., 3 tabs.

  4. Enhancing Human Spermine Synthase Activity by Engineered Mutations

    PubMed Central

    Zhang, Zhe; Zheng, Yueli; Petukh, Margo; Pegg, Anthony; Ikeguchi, Yoshihiko; Alexov, Emil

    2013-01-01

    Spermine synthase (SMS) is an enzyme which function is to convert spermidine into spermine. It was shown that gene defects resulting in amino acid changes of the wild type SMS cause Snyder-Robinson syndrome, which is a mild-to-moderate mental disability associated with osteoporosis, facial asymmetry, thin habitus, hypotonia, and a nonspecific movement disorder. These disease-causing missense mutations were demonstrated, both in silico and in vitro, to affect the wild type function of SMS by either destabilizing the SMS dimer/monomer or directly affecting the hydrogen bond network of the active site of SMS. In contrast to these studies, here we report an artificial engineering of a more efficient SMS variant by transferring sequence information from another organism. It is confirmed experimentally that the variant, bearing four amino acid substitutions, is catalytically more active than the wild type. The increased functionality is attributed to enhanced monomer stability, lowering the pKa of proton donor catalytic residue, optimized spatial distribution of the electrostatic potential around the SMS with respect to substrates, and increase of the frequency of mechanical vibration of the clefts presumed to be the gates toward the active sites. The study demonstrates that wild type SMS is not particularly evolutionarily optimized with respect to the reaction spermidine → spermine. Having in mind that currently there are no variations (non-synonymous single nucleotide polymorphism, nsSNP) detected in healthy individuals, it can be speculated that the human SMS function is precisely tuned toward its wild type and any deviation is unwanted and disease-causing. PMID:23468611

  5. Platelet hexosaminidase a enzyme assay effectively detects carriers missed by targeted DNA mutation analysis.

    PubMed

    Nakagawa, Sachiko; Zhan, Jie; Sun, Wei; Ferreira, Jose Carlos; Keiles, Steven; Hambuch, Tina; Kammesheidt, Anja; Mark, Brian L; Schneider, Adele; Gross, Susan; Schreiber-Agus, Nicole

    2012-01-01

    Biochemical testing of hexosaminidase A (HexA) enzyme activity has been available for decades and has the ability to detect almost all Tay-Sachs disease (TSD) carriers, irrespective of ethnic background. This is increasingly important, as the gene pool of those who identify as Ashkenazi Jewish is diversifying. Here we describe the analysis of a cohort of 4,325 individuals arising from large carrier screening programs and tested by the serum and/or platelet HexA enzyme assays and by targeted DNA mutation analysis. Our results continue to support the platelet assay as a highly effective method for TSD carrier screening, with a low inconclusive rate and the ability to detect possible disease-causing mutation carriers that would have been missed by targeted DNA mutation analysis. Sequence analysis performed on one such platelet assay carrier, who had one non-Ashkenazi Jewish parent, identified the amino acid change Thr259Ala (A775G). Based on crystallographic modeling, this change is predicted to be deleterious, as threonine 259 is positioned proximal to the HexA alpha subunit active site and helps to stabilize key residues therein. Accordingly, if individuals are screened for TSD in broad-based programs by targeted molecular testing alone, they must be made aware that there is a more sensitive and inexpensive test available that can identify additional carriers. Alternatively, the enzyme assays can be offered as a first tier test, especially when screening individuals of mixed or non-Jewish ancestry. PMID:23430931

  6. Splicing mutation analysis reveals previously unrecognized pathways in lymph node-invasive breast cancer

    PubMed Central

    Dorman, Stephanie N.; Viner, Coby; Rogan, Peter K.

    2014-01-01

    Somatic mutations reported in large-scale breast cancer (BC) sequencing studies primarily consist of protein coding mutations. mRNA splicing mutation analyses have been limited in scope, despite their prevalence in Mendelian genetic disorders. We predicted splicing mutations in 442 BC tumour and matched normal exomes from The Cancer Genome Atlas Consortium (TCGA). These splicing defects were validated by abnormal expression changes in these tumours. Of the 5,206 putative mutations identified, exon skipping, leaky or cryptic splicing was confirmed for 988 variants. Pathway enrichment analysis of the mutated genes revealed mutations in 9 NCAM1-related pathways, which were significantly increased in samples with evidence of lymph node metastasis, but not in lymph node-negative tumours. We suggest that comprehensive reporting of DNA sequencing data should include non-trivial splicing analyses to avoid missing clinically-significant deleterious splicing mutations, which may reveal novel mutated pathways present in genetic disorders. PMID:25394353

  7. Systematic analysis of somatic mutations impacting gene expression in 12 tumour types

    PubMed Central

    Ding, Jiarui; McConechy, Melissa K.; Horlings, Hugo M.; Ha, Gavin; Chun Chan, Fong; Funnell, Tyler; Mullaly, Sarah C.; Reimand, Jüri; Bashashati, Ali; Bader, Gary D.; Huntsman, David; Aparicio, Samuel; Condon, Anne; Shah, Sohrab P.

    2015-01-01

    We present a novel hierarchical Bayes statistical model, xseq, to systematically quantify the impact of somatic mutations on expression profiles. We establish the theoretical framework and robust inference characteristics of the method using computational benchmarking. We then use xseq to analyse thousands of tumour data sets available through The Cancer Genome Atlas, to systematically quantify somatic mutations impacting expression profiles. We identify 30 novel cis-effect tumour suppressor gene candidates, enriched in loss-of-function mutations and biallelic inactivation. Analysis of trans-effects of mutations and copy number alterations with xseq identifies mutations in 150 genes impacting expression networks, with 89 novel predictions. We reveal two important novel characteristics of mutation impact on expression: (1) patients harbouring known driver mutations exhibit different downstream gene expression consequences; (2) expression patterns for some mutations are stable across tumour types. These results have critical implications for identification and interpretation of mutations with consequent impact on transcription in cancer. PMID:26436532

  8. Myopathic lamin mutations cause reductive stress and activate the nrf2/keap-1 pathway.

    PubMed

    Dialynas, George; Shrestha, Om K; Ponce, Jessica M; Zwerger, Monika; Thiemann, Dylan A; Young, Grant H; Moore, Steven A; Yu, Liping; Lammerding, Jan; Wallrath, Lori L

    2015-05-01

    Mutations in the human LMNA gene cause muscular dystrophy by mechanisms that are incompletely understood. The LMNA gene encodes A-type lamins, intermediate filaments that form a network underlying the inner nuclear membrane, providing structural support for the nucleus and organizing the genome. To better understand the pathogenesis caused by mutant lamins, we performed a structural and functional analysis on LMNA missense mutations identified in muscular dystrophy patients. These mutations perturb the tertiary structure of the conserved A-type lamin Ig-fold domain. To identify the effects of these structural perturbations on lamin function, we modeled these mutations in Drosophila Lamin C and expressed the mutant lamins in muscle. We found that the structural perturbations had minimal dominant effects on nuclear stiffness, suggesting that the muscle pathology was not accompanied by major structural disruption of the peripheral nuclear lamina. However, subtle alterations in the lamina network and subnuclear reorganization of lamins remain possible. Affected muscles had cytoplasmic aggregation of lamins and additional nuclear envelope proteins. Transcription profiling revealed upregulation of many Nrf2 target genes. Nrf2 is normally sequestered in the cytoplasm by Keap-1. Under oxidative stress Nrf2 dissociates from Keap-1, translocates into the nucleus, and activates gene expression. Unexpectedly, biochemical analyses revealed high levels of reducing agents, indicative of reductive stress. The accumulation of cytoplasmic lamin aggregates correlated with elevated levels of the autophagy adaptor p62/SQSTM1, which also binds Keap-1, abrogating Nrf2 cytoplasmic sequestration, allowing Nrf2 nuclear translocation and target gene activation. Elevated p62/SQSTM1 and nuclear enrichment of Nrf2 were identified in muscle biopsies from the corresponding muscular dystrophy patients, validating the disease relevance of our Drosophila model. Thus, novel connections were made

  9. Myopathic Lamin Mutations Cause Reductive Stress and Activate the Nrf2/Keap-1 Pathway

    PubMed Central

    Dialynas, George; Shrestha, Om K.; Ponce, Jessica M.; Zwerger, Monika; Thiemann, Dylan A.; Young, Grant H.; Moore, Steven A.; Yu, Liping; Lammerding, Jan; Wallrath, Lori L.

    2015-01-01

    Mutations in the human LMNA gene cause muscular dystrophy by mechanisms that are incompletely understood. The LMNA gene encodes A-type lamins, intermediate filaments that form a network underlying the inner nuclear membrane, providing structural support for the nucleus and organizing the genome. To better understand the pathogenesis caused by mutant lamins, we performed a structural and functional analysis on LMNA missense mutations identified in muscular dystrophy patients. These mutations perturb the tertiary structure of the conserved A-type lamin Ig-fold domain. To identify the effects of these structural perturbations on lamin function, we modeled these mutations in Drosophila Lamin C and expressed the mutant lamins in muscle. We found that the structural perturbations had minimal dominant effects on nuclear stiffness, suggesting that the muscle pathology was not accompanied by major structural disruption of the peripheral nuclear lamina. However, subtle alterations in the lamina network and subnuclear reorganization of lamins remain possible. Affected muscles had cytoplasmic aggregation of lamins and additional nuclear envelope proteins. Transcription profiling revealed upregulation of many Nrf2 target genes. Nrf2 is normally sequestered in the cytoplasm by Keap-1. Under oxidative stress Nrf2 dissociates from Keap-1, translocates into the nucleus, and activates gene expression. Unexpectedly, biochemical analyses revealed high levels of reducing agents, indicative of reductive stress. The accumulation of cytoplasmic lamin aggregates correlated with elevated levels of the autophagy adaptor p62/SQSTM1, which also binds Keap-1, abrogating Nrf2 cytoplasmic sequestration, allowing Nrf2 nuclear translocation and target gene activation. Elevated p62/SQSTM1 and nuclear enrichment of Nrf2 were identified in muscle biopsies from the corresponding muscular dystrophy patients, validating the disease relevance of our Drosophila model. Thus, novel connections were made

  10. A recurrent activating PLCG1 mutation in cardiac angiosarcomas increases apoptosis resistance and invasiveness of endothelial cells.

    PubMed

    Kunze, Kristin; Spieker, Tilmann; Gamerdinger, Ulrike; Nau, Kerstin; Berger, Johannes; Dreyer, Thomas; Sindermann, Jürgen R; Hoffmeier, Andreas; Gattenlöhner, Stefan; Bräuninger, Andreas

    2014-11-01

    Primary cardiac angiosarcomas are rare tumors with unfavorable prognosis. Pathogenic driver mutations are largely unknown. We therefore analyzed a collection of cases for genomic aberrations using SNP arrays and targeted next-generation sequencing (tNGS) of oncogenes and tumor-suppressor genes. Recurrent gains of chromosome 1q and a small region of chromosome 4 encompassing KDR and KIT were identified by SNP array analysis. Repeatedly mutated genes identified by tNGS were KDR with different nonsynonymous mutations, MLL2 with different nonsense mutations, and PLCG1 with a recurrent nonsynonymous mutation (R707Q) in the highly conserved autoinhibitory SH2 domain in three of 10 cases. PLCγ1 is usually activated by Y783 phosphorylation and activates protein kinase C and Ca(2+)-dependent second messengers, with effects on cellular proliferation, migration, and invasiveness. Ectopic expression of the PLCγ1-R707Q mutant in endothelial cells revealed reduced PLCγ1-Y783 phosphorylation with concomitant increased c-RAF/MEK/ERK1/2 phosphorylation, increased IP3 amounts, and increased Ca(2+)-dependent calcineurin activation compared with ectopic expressed PLCγ1-wild-type. Furthermore, cofilin, whose activation is associated with actin skeleton reorganization, showed decreased phosphorylation, and thus activation after expression of PLCγ1-R707Q compared with PLCγ1-wild-type. At the cellular level, expression of PLCγ1-R707Q in endothelial cells had no influence on proliferation rate, but increased apoptosis resistance and migration and invasiveness in in vitro assays. Together, these findings indicate that the PLCγ1-R707Q mutation causes constitutive activation of PLCγ1 and may represent an alternative way of activation of KDR/PLCγ1 signaling besides KDR activation in angiosarcomas, with implications for VEGF/KDR targeted therapies. PMID:25252913

  11. Error-prone polymerase activity causes multinucleotide mutations in humans

    PubMed Central

    Nielsen, Rasmus

    2014-01-01

    About 2% of human genetic polymorphisms have been hypothesized to arise via multinucleotide mutations (MNMs), complex events that generate SNPs at multiple sites in a single generation. MNMs have the potential to accelerate the pace at which single genes evolve and to confound studies of demography and selection that assume all SNPs arise independently. In this paper, we examine clustered mutations that are segregating in a set of 1092 human genomes, demonstrating that the signature of MNM becomes enriched as large numbers of individuals are sampled. We estimate the percentage of linked SNP pairs that were generated by simultaneous mutation as a function of the distance between affected sites and show that MNMs exhibit a high percentage of transversions relative to transitions, findings that are reproducible in data from multiple sequencing platforms and cannot be attributed to sequencing error. Among tandem mutations that occur simultaneously at adjacent sites, we find an especially skewed distribution of ancestral and derived alleles, with GC → AA, GA → TT, and their reverse complements making up 27% of the total. These mutations have been previously shown to dominate the spectrum of the error-prone polymerase Pol ζ, suggesting that low-fidelity DNA replication by Pol ζ is at least partly responsible for the MNMs that are segregating in the human population. We develop statistical estimates of MNM prevalence that can be used to correct phylogenetic and population genetic inferences for the presence of complex mutations. PMID:25079859

  12. Effective epitope identification employing phylogenetic, mutational variability, sequence entropy, and correlated mutation analysis targeting NS5B protein of hepatitis C virus: from bioinformatics to therapeutics.

    PubMed

    Meshram, Rohan J; Gacche, Rajesh N

    2015-08-01

    Hepatitis C virus (HCV) is considered as a foremost cause affecting numerous human liver-related disorders. An effective immuno-prophylactic measure (like stable vaccine) is still unavailable for HCV. We perform an in silico analysis of nonstructural protein 5B (NS5B) based CD4 and CD8 epitopes that might be implicated in improvement of treatment strategies for efficient vaccine development programs against HCV. Here, we report on effective utilization of knowledge obtained from multiple sequence alignment and phylogenetic analysis for investigation and evaluation of candidate epitopes that have enormous potential to be used in formulating proficient vaccine, embracing multiple strains prevalent among major geographical locations. Mutational variability data discussed herein focus on discriminating the region under active evolutionary pressure from those having lower mutational potential in existing experimentally verified epitopes, thus, providing a concrete framework for designing an effective peptide-based vaccine against HCV. Additionally, we measured entropy distribution in NS5B residues and pinpoint the positions in epitopes that are more susceptible to mutations and, thus, account for virus strategy to evade the host immune system. Findings from this study are expected to add more details on the sequence and structural aspects of NS5B protein, ultimately facilitating our understanding about the pathophysiology of HCV and assisting advance studies on the function of NS5B antigen on the epitope level. We also report on the mutational crosstalk between functionally important coevolving residues, using correlated mutation analysis, and identify networks of coupled mutations that represent pathways of allosteric communication inside and among NS5B thumb, finger, and palm domains. PMID:25727409

  13. Integrative analysis of mutational and transcriptional profiles reveals driver mutations of metastatic breast cancers.

    PubMed

    Lee, Ji-Hyun; Zhao, Xing-Ming; Yoon, Ina; Lee, Jin Young; Kwon, Nam Hoon; Wang, Yin-Ying; Lee, Kyung-Min; Lee, Min-Joo; Kim, Jisun; Moon, Hyeong-Gon; In, Yongho; Hao, Jin-Kao; Park, Kyung-Mii; Noh, Dong-Young; Han, Wonshik; Kim, Sunghoon

    2016-01-01

    Despite the explosion in the numbers of cancer genomic studies, metastasis is still the major cause of cancer mortality. In breast cancer, approximately one-fifth of metastatic patients survive 5 years. Therefore, detecting the patients at a high risk of developing distant metastasis at first diagnosis is critical for effective treatment strategy. We hereby present a novel systems biology approach to identify driver mutations escalating the risk of metastasis based on both exome and RNA sequencing of our collected 78 normal-paired breast cancers. Unlike driver mutations occurring commonly in cancers as reported in the literature, the mutations detected here are relatively rare mutations occurring in less than half metastatic samples. By supposing that the driver mutations should affect the metastasis gene signatures, we develop a novel computational pipeline to identify the driver mutations that affect transcription factors regulating metastasis gene signatures. We identify driver mutations in ADPGK, NUP93, PCGF6, PKP2 and SLC22A5, which are verified to enhance cancer cell migration and prompt metastasis with in vitro experiments. The discovered somatic mutations may be helpful for identifying patients who are likely to develop distant metastasis. PMID:27625789

  14. Integrative analysis of mutational and transcriptional profiles reveals driver mutations of metastatic breast cancers

    PubMed Central

    Lee, Ji-Hyun; Zhao, Xing-Ming; Yoon, Ina; Lee, Jin Young; Kwon, Nam Hoon; Wang, Yin-Ying; Lee, Kyung-Min; Lee, Min-Joo; Kim, Jisun; Moon, Hyeong-Gon; In, Yongho; Hao, Jin-Kao; Park, Kyung-Mii; Noh, Dong-Young; Han, Wonshik; Kim, Sunghoon

    2016-01-01

    Despite the explosion in the numbers of cancer genomic studies, metastasis is still the major cause of cancer mortality. In breast cancer, approximately one-fifth of metastatic patients survive 5 years. Therefore, detecting the patients at a high risk of developing distant metastasis at first diagnosis is critical for effective treatment strategy. We hereby present a novel systems biology approach to identify driver mutations escalating the risk of metastasis based on both exome and RNA sequencing of our collected 78 normal-paired breast cancers. Unlike driver mutations occurring commonly in cancers as reported in the literature, the mutations detected here are relatively rare mutations occurring in less than half metastatic samples. By supposing that the driver mutations should affect the metastasis gene signatures, we develop a novel computational pipeline to identify the driver mutations that affect transcription factors regulating metastasis gene signatures. We identify driver mutations in ADPGK, NUP93, PCGF6, PKP2 and SLC22A5, which are verified to enhance cancer cell migration and prompt metastasis with in vitro experiments. The discovered somatic mutations may be helpful for identifying patients who are likely to develop distant metastasis.

  15. Integrative analysis of mutational and transcriptional profiles reveals driver mutations of metastatic breast cancers

    PubMed Central

    Lee, Ji-Hyun; Zhao, Xing-Ming; Yoon, Ina; Lee, Jin Young; Kwon, Nam Hoon; Wang, Yin-Ying; Lee, Kyung-Min; Lee, Min-Joo; Kim, Jisun; Moon, Hyeong-Gon; In, Yongho; Hao, Jin-Kao; Park, Kyung-Mii; Noh, Dong-Young; Han, Wonshik; Kim, Sunghoon

    2016-01-01

    Despite the explosion in the numbers of cancer genomic studies, metastasis is still the major cause of cancer mortality. In breast cancer, approximately one-fifth of metastatic patients survive 5 years. Therefore, detecting the patients at a high risk of developing distant metastasis at first diagnosis is critical for effective treatment strategy. We hereby present a novel systems biology approach to identify driver mutations escalating the risk of metastasis based on both exome and RNA sequencing of our collected 78 normal-paired breast cancers. Unlike driver mutations occurring commonly in cancers as reported in the literature, the mutations detected here are relatively rare mutations occurring in less than half metastatic samples. By supposing that the driver mutations should affect the metastasis gene signatures, we develop a novel computational pipeline to identify the driver mutations that affect transcription factors regulating metastasis gene signatures. We identify driver mutations in ADPGK, NUP93, PCGF6, PKP2 and SLC22A5, which are verified to enhance cancer cell migration and prompt metastasis with in vitro experiments. The discovered somatic mutations may be helpful for identifying patients who are likely to develop distant metastasis. PMID:27625789

  16. Suppressor Mutations for Presenilin 1 Familial Alzheimer Disease Mutants Modulate γ-Secretase Activities.

    PubMed

    Futai, Eugene; Osawa, Satoko; Cai, Tetsuo; Fujisawa, Tomoya; Ishiura, Shoichi; Tomita, Taisuke

    2016-01-01

    γ-Secretase is a multisubunit membrane protein complex containing presenilin (PS1) as a catalytic subunit. Familial Alzheimer disease (FAD) mutations within PS1 were analyzed in yeast cells artificially expressing membrane-bound substrate, amyloid precursor protein, or Notch fused to Gal4 transcriptional activator. The FAD mutations, L166P and G384A (Leu-166 to Pro and Gly-384 to Ala substitution, respectively), were loss-of-function in yeast. We identified five amino acid substitutions that suppress the FAD mutations. The cleavage of amyloid precursor protein or Notch was recovered by the secondary mutations. We also found that secondary mutations alone activated the γ-secretase activity. FAD mutants with suppressor mutations, L432M or S438P within TMD9 together with a missense mutation in the second or sixth loops, regained γ-secretase activity when introduced into presenilin null mouse fibroblasts. Notably, the cells with suppressor mutants produced a decreased amount of Aβ42, which is responsible for Alzheimer disease. These results indicate that the yeast system is useful to screen for mutations and chemicals that modulate γ-secretase activity.

  17. VEGF neutralizing aerosol therapy in primary pulmonary adenocarcinoma with K-ras activating-mutations.

    PubMed

    Hervé, Virginie; Rabbe, Nathalie; Guilleminault, Laurent; Paul, Flora; Schlick, Laurène; Azzopardi, Nicolas; Duruisseaux, Michael; Fouquenet, Delphine; Montharu, Jérôme; Redini, Françoise; Paintaud, Gilles; Lemarié, Etienne; Cadranel, Jacques; Wislez, Marie; Heuzé-Vourc'h, Nathalie

    2014-01-01

    K-ras mutations promote angiogenesis in lung cancer and contribute to the drug resistance of cancer cells. It is not clear whether K-ras mutated adenocarcinomas are sensitive to anti-angiogenic therapy with monoclonal antibodies (mAbs) that target vascular endothelial growth factor (VEGF). Anti-angiogenic mAbs are usually delivered systemically, but only a small proportion reaches the lung after intravenous injection. We investigated the relevance of a non-invasive pulmonary route for the delivery of anti-VEGF mAbs in the mouse K-ras(LA1) model. We found that pulmonary delivery of these mAbs significantly reduced the number of tumor lesions and inhibited malignant progression. The antitumor effect involves the VEGFR2-dependent inhibition of blood vessel growth, which impairs tumor proliferation. Pharmacokinetic analysis of aerosolized anti-VEGF showed its low rate of passage into the bloodstream, suggesting that this delivery route is associated with reduced systemic side effects. Our findings highlight the value of the aerosol route for administration of anti-angiogenic mAbs in pulmonary adenocarcinoma with K-ras activating-mutations. PMID:25484066

  18. G2385R and I2020T Mutations Increase LRRK2 GTPase Activity

    PubMed Central

    Jang, Jihoon; Joe, Eun-hye; Son, Ilhong; Seol, Wongi

    2016-01-01

    The LRRK2 mutation is a major causal mutation in familial Parkinson's disease. Although LRRK2 contains functional GTPase and kinase domains and their activities are altered by pathogenic mutations, most studies focused on LRRK2 kinase activity because the most prevalent mutant, G2019S, enhances kinase activity. However, the G2019S mutation is extremely rare in the Asian population. Instead, the G2385R mutation was reported as a major risk factor in the Asian population. Similar to other LRRK2 studies, G2385R studies have also focused on kinase activity. Here, we investigated GTPase activities of G2385R with other LRRK2 mutants, such as G2019S, R1441C, and I2020T, as well as wild type (WT). Our results suggest that both I2020T and G2385R contain GTPase activities stronger than that of WT. A kinase assay using the commercial recombinant proteins showed that I2020T harbored stronger activity, whereas G2385R had weaker activity than that of WT, as reported previously. This is the first report of LRRK2 I2020T and G2385R GTPase activities and shows that most of the LRRK2 mutations that are pathogenic or a risk factor altered either kinase or GTPase activity, suggesting that their physiological consequences are caused by altered enzyme activities. PMID:27314038

  19. Familial adult onset hyperinsulinism due to an activating glucokinase mutation: Implications for pharmacological glucokinase activation

    PubMed Central

    Challis, Benjamin G.; Harris, Julie; Sleigh, Alison; Isaac, Iona; Orme, Steve M.; Seevaratnam, Nandini; Dhatariya, Ketan; Simpson, Helen L.; Semple, Robert K.

    2016-01-01

    Context Glucokinase (GCK) phosphorylates and thereby “traps” glucose in cells, thus serving as a gatekeeper for cellular glucose metabolism, particularly in hepatocytes and pancreatic beta cells. In humans, activating GCK mutations cause familial hyperinsulinaemic hypoglycaemia (GCK-HH), leading to keen interest in the potential of small molecule glucokinase activators (GKAs) as treatments for diabetes mellitus. Many such agents have been developed, however observation of side effects including hypertriglyceridaemia and hepatic steatosis have delayed their clinical development. Objective To describe the clinical presentation and metabolic profiles of affected family members in a kindred with familial hyperinsulinism of adult presentation due to a known activating mutation in GCK. Design Clinical, biochemical and metabolic assessment, and GCK sequencing in affected family members. Results In the 60 year-old female proband, hyperinsulinaemic hypoglycaemia (blood glucose 2.1mmol/mol, insulin 18pmol/l) was confirmed following 34 hours of fasting, however abdominal computed tomography (CT), pancreatic MRI, endoscopic ultrasound, octreotide scintigraphy and selective arterial calcium stimulation failed to localise an insulinoma. A prolonged OGTT revealed fasting hypoglycaemia that was exacerbated after glucose challenge, consistent with dysregulated glucose-stimulated insulin release. A heterozygous activating mutation, p.Val389Leu, in the glucokinase gene (GCK) was found in the proband and four other family members. Of these, two had been investigated elsewhere for recurrent hypoglycaemia in adulthood, while the other two adult relatives were asymptomatic despite profound hypoglycaemia. All three of the available family members with the p.Val389Leu mutation had normal serum lipid profiles, normal rates of fasting hepatic de novo lipogenesis and had hepatic triglyceride levels commensurate with their degree of adiposity. Conclusion Activating GCK mutations may

  20. Activation of Developmentally Mutated Human Globin Genes by Cell Fusion

    NASA Astrophysics Data System (ADS)

    Papayannopoulou, Thalia; Enver, Tariq; Takegawa, Susumu; Anagnou, Nicholas P.; Stamatoyannopoulos, George

    1988-11-01

    Human fetal globin genes are not expressed in hybrid cells produced by the fusion of normal human lymphocytes with mouse erythroleukemia cells. In contrast, when lymphocytes from persons with globin gene developmental mutations (hereditary persistence of fetal hemoglobin) are used for these fusions, fetal globin is expressed in the hybrid cells. Thus, mutations of developmental origin can be reconstituted in vitro by fusing mutant lymphoid cells with differentiated cell lines of the proper lineage. This system can readily be used for analyses, such as globin gene methylation, that normally require large numbers of pure nucleated erythroid cells, which are difficult to obtain.

  1. Sensitive cytometry based system for enumeration, capture and analysis of gene mutations of circulating tumor cells.

    PubMed

    Sawada, Takeshi; Watanabe, Masaru; Fujimura, Yuu; Yagishita, Shigehiro; Shimoyama, Tatsu; Maeda, Yoshiharu; Kanda, Shintaro; Yunokawa, Mayu; Tamura, Kenji; Tamura, Tomohide; Minami, Hironobu; Koh, Yasuhiro; Koizumi, Fumiaki

    2016-03-01

    Methods for the enumeration and molecular characterization of circulating tumor cells (CTC) have been actively investigated. However, such methods are still technically challenging. We have developed a novel epithelial cell adhesion molecule independent CTC enumeration system integrated with a sorting system using a microfluidics chip. We compared the number of CTC detected using our system with those detected using the CellSearch system in 46 patients with various cancers. We also evaluated epidermal growth factor receptor (EGFR) and PIK3CA mutations of captured CTC in a study of 4 lung cancer and 4 breast cancer patients. The percentage of samples with detected CTC was significantly higher with our system (65.2%) than with CellSearch (28.3%). The number of detected CTC per patient using our system was statistically higher than that using CellSearch (median 5, 0; P = 0.000172, Wilcoxon test). In the mutation analysis study, the number of detected CTC per patient was low (median for lung, 4.5; median for breast, 5.5); however, it was easy to detect EGFR and PIK3CA mutations in the CTC of 2 lung and 1 breast cancer patient, respectively, using a commercially available kit. Our system is more sensitive than CellSearch in CTC enumeration of various cancers and is also capable of detecting EGFR and PIK3CA mutations in the CTC of lung and breast cancer patients, respectively. PMID:26708016

  2. Genetic analysis of suppressors of the PF10 mutation in Chlamydomonas reinhardtii

    SciTech Connect

    Dutcher, S.K.; Gibbons, W.; Inwood, W.B.

    1988-12-01

    A mutation at the PF10 locus of the unicellular green alga Chlamydomonas reinhardtii leads to abnormal cell motility. The asymmetric form of the ciliary beat stroke characteristic of wild-type flagella is modified by this mutation to a nearly symmetric beat. We report here that this abnormal motility is a conditional phenotype that depends on light intensity. In the absence of light or under low light intensities, the motility is more severely impaired than at higher light intensities. By UV mutagenesis we obtained 11 intragenic and 70 extragenic strains that show reversion of the pf10 motility phenotype observed in low light. The intragenic events reverted the motility phenotype of the pf10 mutation completely. The extragenic events define at least seven suppressor loci; these map to linkage groups IV, VII, IX, XI, XII and XVII. Suppressor mutations at two of the seven loci (LIS1 and LIS2) require light for their suppressor activity. Forty-eight of the 70 extragenic suppressors were examined in heterozygous diploid cells; 47 of these mutants were recessive to the wild-type allele and one mutant (bop5-1) was dominant to the wild-type allele. Complementation analysis of the 47 recessive mutants showed unusual patterns. Most mutants within a recombinationally defined group failed to complement one another, although there were pairs that showed intra-allelic complementation. Additionally, some of the mutants at each recombinationally defined locus failed to complement mutants at other loci. They define dominant enhancers of one another.

  3. Sensitive cytometry based system for enumeration, capture and analysis of gene mutations of circulating tumor cells.

    PubMed

    Sawada, Takeshi; Watanabe, Masaru; Fujimura, Yuu; Yagishita, Shigehiro; Shimoyama, Tatsu; Maeda, Yoshiharu; Kanda, Shintaro; Yunokawa, Mayu; Tamura, Kenji; Tamura, Tomohide; Minami, Hironobu; Koh, Yasuhiro; Koizumi, Fumiaki

    2016-03-01

    Methods for the enumeration and molecular characterization of circulating tumor cells (CTC) have been actively investigated. However, such methods are still technically challenging. We have developed a novel epithelial cell adhesion molecule independent CTC enumeration system integrated with a sorting system using a microfluidics chip. We compared the number of CTC detected using our system with those detected using the CellSearch system in 46 patients with various cancers. We also evaluated epidermal growth factor receptor (EGFR) and PIK3CA mutations of captured CTC in a study of 4 lung cancer and 4 breast cancer patients. The percentage of samples with detected CTC was significantly higher with our system (65.2%) than with CellSearch (28.3%). The number of detected CTC per patient using our system was statistically higher than that using CellSearch (median 5, 0; P = 0.000172, Wilcoxon test). In the mutation analysis study, the number of detected CTC per patient was low (median for lung, 4.5; median for breast, 5.5); however, it was easy to detect EGFR and PIK3CA mutations in the CTC of 2 lung and 1 breast cancer patient, respectively, using a commercially available kit. Our system is more sensitive than CellSearch in CTC enumeration of various cancers and is also capable of detecting EGFR and PIK3CA mutations in the CTC of lung and breast cancer patients, respectively.

  4. Isolation and Analysis of a Novel Class of Suppressor of Ty Insertion Mutations in Saccharomyces Cerevisiae

    PubMed Central

    Fassler, J. S.; Winston, F.

    1988-01-01

    Using a new scheme for the isolation of suppressor of Ty insertion mutations (spt mutations) in yeast, we have identified six new SPT genes. Mutations in two of these genes, SPT13 and SPT14, exhibit a novel suppression pattern: suppression of complete Ty insertion mutations, but not of solo δ insertion mutations. Transcriptional analysis shows that spt13- and spt14-mediated suppression of Ty insertion mutations is the result of an elevation in the levels of adjacent gene transcription. In spite of the failure of these mutations to suppress solo δ insertion mutations, they do cause changes in transcription of at least one solo δ insertion mutation. In addition, spt13 and spt14 mutations are epistatic to mutations in certain other SPT genes that do suppress solo δ insertion mutations. These results suggest that the SPT13 and SPT14 gene products may act via sequences in both the δ and ε regions of Ty elements. Finally, mutations in SPT13 cause sporulation and mating defects and SPT14 is essential for growth, suggesting that these two genes have important roles in general cellular functions. PMID:2834263

  5. GNA14 Somatic Mutation Causes Congenital and Sporadic Vascular Tumors by MAPK Activation.

    PubMed

    Lim, Young H; Bacchiocchi, Antonella; Qiu, Jingyao; Straub, Robert; Bruckner, Anna; Bercovitch, Lionel; Narayan, Deepak; McNiff, Jennifer; Ko, Christine; Robinson-Bostom, Leslie; Antaya, Richard; Halaban, Ruth; Choate, Keith A

    2016-08-01

    Vascular tumors are among the most common neoplasms in infants and children; 5%-10% of newborns present with or develop lesions within the first 3 months of life. Most are benign infantile hemangiomas that typically regress by 5 years of age; other vascular tumors include congenital tufted angiomas (TAs), kaposiform hemangioendotheliomas (KHEs), and childhood lobular capillary hemangiomas (LCHs). Some of these lesions can become locally invasive and unresponsive to pharmacologic intervention, leading to significant complications. Recent investigation has revealed that activating mutations in HRAS, KRAS, NRAS, GNAQ, and GNA11 can cause certain types of rare childhood vascular tumors, and we have now identified causal recurrent somatic activating mutations in GNA14 by whole-exome and targeted sequencing. We found somatic activating GNA14 c.614A>T (p.Gln205Leu) mutations in one KHE, one TA, and one LCH and a GNA11 c.547C>T (p.Arg183Cys) mutation in two LCH lesions. We examined mutation pathobiology via expression of mutant GNA14 or GNA11 in primary human endothelial cells and melanocytes. GNA14 and GNA11 mutations induced changes in cellular morphology and rendered cells growth-factor independent by upregulating the MAPK pathway. Our findings identify GNA14 mutations as a cause of childhood vascular tumors, offer insight into mechanisms of oncogenic transformation by mutations affecting Gaq family members, and identify potential targets for therapeutic intervention. PMID:27476652

  6. Identification of eight novel mutations and transcript analysis of two splicing mutations in Chinese newborns with MCC deficiency.

    PubMed

    Yang, L; Yang, J; Zhang, T; Weng, C; Hong, F; Tong, F; Yang, R; Yin, X; Yu, P; Huang, X; Qi, M

    2015-11-01

    3-Methylcrotonyl-CoA carboxylase (MCC) deficiency is an autosomal recessive inborn error of leucine metabolism, caused by mutations in either MCCC1 or MCCC2 gene. We identified eight novel mutations of MCCC1 or MCCC2 in six Chinese newborns screened by tandem mass spectrometry. Transcript analysis revealed that the novel splice mutation c.639+5G>T produced a normal transcript and a transcript of exon 6 skipping which led to truncated MCCC1 protein. The remaining seven novel mutations may cause structure damage and dysfunction of MCC as predicted by in silico analysis. In conclusion, our study expands the spectrum of mutations found in MCCC1 and MCCC2 and provides a rough prevalence of 1 of 68,333 in Chinese population. Although the affected patients remained asymptomatic during follow-up, we hold the view that early detection through newborn screening, early intervention and follow-up may provide an important guidance to prevent subsequent metabolic disorders and deal with crisis later in life.

  7. HMG CoA Lyase (HL): Mutation detection and development of a bacterial expression system for screening the activity of mutant alleles from HL-deficient patients

    SciTech Connect

    Robert, M.F.; Ashmarina, L.; Poitier, E.

    1994-09-01

    HL catalyzes the last step of ketogenesis, and autosomal recessive HL deficiency in humans can cause episodes of hypoglycemia and coma. Structurally, HL is a dimer of identical 325-residue peptides which requires a reducing environment to maintain activity. We cloned the human and mouse HL cDNAs and genes and have performed mutation analysis on cells from 30 HL-deficient probands. Using SSCP and also genomic Southern analysis we have identified putative mutations on 53/60 alleles of these patients (88%). To date, we have found 20 mutations: 3 large deletions, 4 termination mutations, 5 frameshift mutations, and 8 missense mutations which we suspect to be pathogenic based on evolutionary conservation and/or our previous studies on purified HL protein. We have also identified 3 polymorphic variants. In order to directly test the activity of the missense mutations, we established a pGEX-based system, using a glutathione S transferase (GST)-HL fusion protein. Expressed wild-type GST-HL was insoluble. We previously located a reactive Cys at the C-terminus of chicken HL which is conserved in human HL. We produced a mutant HL peptide, C323S, which replaced Cys323 with Ser. Purified C323S is soluble and has similar kinetics to wild-type HL. C323S-containing GST-HL is soluble and enzymatically active. We are cloning and expressing the 8 missense mutations.

  8. Direct mutation analysis by high-throughput sequencing: from germline to low-abundant, somatic variants

    PubMed Central

    Gundry, Michael; Vijg, Jan

    2011-01-01

    DNA mutations are the source of genetic variation within populations. The majority of mutations with observable effects are deleterious. In humans mutations in the germ line can cause genetic disease. In somatic cells multiple rounds of mutations and selection lead to cancer. The study of genetic variation has progressed rapidly since the completion of the draft sequence of the human genome. Recent advances in sequencing technology, most importantly the introduction of massively parallel sequencing (MPS), have resulted in more than a hundred-fold reduction in the time and cost required for sequencing nucleic acids. These improvements have greatly expanded the use of sequencing as a practical tool for mutation analysis. While in the past the high cost of sequencing limited mutation analysis to selectable markers or small forward mutation targets assumed to be representative for the genome overall, current platforms allow whole genome sequencing for less than $5,000. This has already given rise to direct estimates of germline mutation rates in multiple organisms including humans by comparing whole genome sequences between parents and offspring. Here we present a brief history of the field of mutation research, with a focus on classical tools for the measurement of mutation rates. We then review MPS, how it is currently applied and the new insight into human and animal mutation frequencies and spectra that has been obtained from whole genome sequencing. While great progress has been made, we note that the single most important limitation of current MPS approaches for mutation analysis is the inability to address low-abundance mutations that turn somatic tissues into mosaics of cells. Such mutations are at the basis of intra-tumor heterogeneity, with important implications for clinical diagnosis, and could also contribute to somatic diseases other than cancer, including aging. Some possible approaches to gain access to low-abundance mutations are discussed, with a

  9. Incomplete activation of Escherichia coli hemolysin (HlyA) due to mutations in the 3' region of hlyC.

    PubMed Central

    Guzmán-Verri, C; García, F; Arvidson, S

    1997-01-01

    Mutational analysis of the carboxy-terminal region of Escherichia coli HlyC was performed by site-directed mutagenesis. Replacement of residue Val-127 or Lys-129 reduced the activity of HlyC to about 30 or 60%, respectively, of that of the wild type, while replacement of Gly-128 reduced the activity to less than 1% of the wild-type level. Complete inactivation of HlyC was caused by a double mutation, replacement of Gly-128 with valine and of Lys-129 with isoleucine. Analysis of culture supernatants from mutants with reduced hemolytic activity by two-dimensional gel electrophoresis revealed the production and simultaneous secretion of nonacylated, monoacylated, and fully acylated HlyA forms, demonstrating impairment of the acylation reaction, possibly due to a decreased affinity of HlyC for the individual HlyA acylation sites. PMID:9294460

  10. DNA analysis of an uncommon missense mutation in a Gaucher disease patient of Jewish-Polish-Russian descent

    SciTech Connect

    Choy, F.Y.M.; Wei, C.; Applegarth, D.A.; McGillivray, B.C.

    1994-06-01

    Gaucher disease is the most frequent lysosomal lipid storage disease. It results from deficient glucocerebrosidase activity and is transmitted as an autosomal recessive trait. Three clinical forms of Gaucher disease have been described: type 1, non-neuronopathic; type 2, acute neuronopathic; and type 3, subacute neuronopathic. We have sequenced the full length cDNA of the glucocerebrosidase gene and identified an uncommon mutation in nucleotide position 1604 (genoma DNA nucleotide position 6683) from a Gaucher disease patient of Jewish-Polish-Russian descent with type 1 Gaucher disease. It is a G{yields}A transition in exon 11 that results in {sup 496}Arg{yields}{sup 496}His of glucocerebrosidase. This missense mutation is present in the heterozygous form and creates a new cleavage site for the endonuclease HphI. We have developed a simple method to detect the presence of this mutation by using HphI restriction fragment length polymorphism analysis of glucocerebrosidase genomic DNA or cDNA. The mutation in the other Gaucher allele of this patient is an A{yields}G transition at cDNA nucleotide position 1226 which creates an XhoI cleavage site after PCR mismatch amplification. The presence of this mutation was also confirmed by sequence analysis. Based on previous reports that mutation 1226 is present only in type 1 Gaucher disease and the observation that there is no neurological involvement in this patient, we conclude that our patient with the 1226/1604 genotype is diagnosed as having type 1 Gaucher disease. Since it was also postulated that mutation 1226 in the homozygous form will usually result in a good prognosis, we speculate that the orthopedic complications and the unusual presence of glomerulosclerosis in this patient may be attributable to the mutation at nucleotide 1604. This speculation will require a description of more patients with this mutation for confirmation. 32 refs., 5 figs.

  11. A mutational analysis defines Vibrio fischeri LuxR binding sites.

    PubMed

    Antunes, Luis Caetano M; Ferreira, Rosana B R; Lostroh, C Phoebe; Greenberg, E Peter

    2008-07-01

    Vibrio fischeri quorum sensing involves the LuxI and LuxR proteins. The LuxI protein generates the quorum-sensing signal N-3-oxohexanoyl-l-homoserine lactone (3OC6-HSL), and LuxR is a signal-responsive transcriptional regulator which activates the luminescence (lux) genes and 17 other V. fischeri genes. For activation of the lux genes, LuxR binds to a 20-base-pair inverted repeat, the lux box, which is centered 42.5 base pairs upstream of the transcriptional start of the lux operon. Similar lux box-like elements have been identified in only a few of the LuxR-activated V. fischeri promoters. To better understand the DNA sequence elements required for LuxR binding and to identify binding sites in LuxR-regulated promoters other than the lux operon promoter, we have systematically mutagenized the lux box and evaluated the activity of many mutants. By doing so, we have identified nucleotides that are critical for promoter activity. Interestingly, certain lux box mutations allow a 3OC6-HSL-independent LuxR activation of the lux operon promoter. We have used the results of the mutational analysis to create a consensus lux box, and we have used this consensus sequence to identify LuxR binding sites in 3OC6-HSL-activated genes for which lux boxes could not be identified previously.

  12. Novel pathogenic mutations and skin biopsy analysis in Knobloch syndrome

    PubMed Central

    Suzuki, Oscar; Kague, Erika; Bagatini, Kelly; Tu, Hongmin; Heljasvaara, Ritva; Carvalhaes, Lorenza; Gava, Elisandra; de Oliveira, Gisele; Godoi, Paulo; Oliva, Glaucius; Kitten, Gregory; Pihlajaniemi, Taina; Passos-Bueno, Maria-Rita

    2009-01-01

    Purpose To facilitate future diagnosis of Knobloch syndrome (KS) and better understand its etiology, we sought to identify not yet described COL18A1 mutations in KS patients. In addition, we tested whether mutations in this gene lead to absence of the COL18A1 gene product and attempted to better characterize the functional effect of a previously reported missense mutation. Methods Direct sequencing of COL18A1 exons was performed in KS patients from four unrelated pedigrees. We used immunofluorescent histochemistry in skin biopsies to evaluate the presence of type XVIII collagen in four KS patients carrying two already described mutations: c.3277C>T, a nonsense mutation, and c.3601G>A, a missense mutation. Furthermore, we determined the binding properties of the mutated endostatin domain p.A1381T (c.3601G>A) to extracellular matrix proteins using ELISA and surface plasmon resonance assays. Results We identified four novel mutations in COL18A1, including a large deletion involving exon 41. Skin biopsies from KS patients revealed lack of type XVIII collagen in epithelial basement membranes and blood vessels. We also found a reduced affinity of p.A1381T endostatin to some extracellular matrix components. Conclusions COL18A1 mutations involved in Knobloch syndrome have a distribution bias toward the coding exons of the C-terminal end. Large deletions must also be considered when point mutations are not identified in patients with characteristic KS phenotype. We report, for the first time, lack of type XVIII collagen in KS patients by immunofluorescent histochemistry in skin biopsy samples. As a final point, we suggest the employment of this technique as a preliminary and complementary test for diagnosis of KS in cases when mutation screening either does not detect mutations or reveals mutations of uncertain effect, such as the p.A1381T change. PMID:19390655

  13. Rapid deoxyribonucleic acid analysis by allele-specific polymerase chain reaction for detection of mutations in the steroid 21-hydroxylase gene

    SciTech Connect

    Wilson, R.C.; Wei, J.Q.; Cheng, K.C.

    1995-05-01

    Rapid DNA analysis based on allele-specific polymerase chain reaction (PCR) using mutation site-specific primers was developed to detect mutations in the CYP21 gene known to cause steroid 21-hydroxylase deficiency. In contrast to the previous method, in which PCR of genomic DNA was followed by dot blot analysis with radio active probes and multiple rounds of stripping and reprobing for each of the 8 most common mutation sites, the results using this new method were immediately visualized after the PCR run by ethidium bromide-stained agarose gel electrophoresis. Using allele-specific PCR, mutation(s) were identified on 148 affected chromosomes out of 160 tested. Although mutation(s) were identified on only one chromosome of 11 of these patients, their parents showed a consistent pattern on DNA analysis. The only exception was that in one family, in which the parents each had a detectable mutation, a mutation was detected on only one allele of the patient. Most likely there is a mutation in the patient`s other allele that could have arisen de novo or was inherited from the parent and was not evident in the transmitting parent`s phenotype. When compared with the dot blot procedure, allele-specific PCR is more rapid, less labor-intensive, and avoids the use of radioactivity. 26 refs., 3 figs., 2 tabs.

  14. Balancing Protein Stability and Activity in Cancer: A New Approach for Identifying Driver Mutations Affecting CBL Ubiquitin Ligase Activation.

    PubMed

    Li, Minghui; Kales, Stephen C; Ma, Ke; Shoemaker, Benjamin A; Crespo-Barreto, Juan; Cangelosi, Andrew L; Lipkowitz, Stanley; Panchenko, Anna R

    2016-02-01

    Oncogenic mutations in the monomeric Casitas B-lineage lymphoma (Cbl) gene have been found in many tumors, but their significance remains largely unknown. Several human c-Cbl (CBL) structures have recently been solved, depicting the protein at different stages of its activation cycle and thus providing mechanistic insight underlying how stability-activity tradeoffs in cancer-related proteins-may influence disease onset and progression. In this study, we computationally modeled the effects of missense cancer mutations on structures representing four stages of the CBL activation cycle to identify driver mutations that affect CBL stability, binding, and activity. We found that recurrent, homozygous, and leukemia-specific mutations had greater destabilizing effects on CBL states than random noncancer mutations. We further tested the ability of these computational models, assessing the changes in CBL stability and its binding to ubiquitin-conjugating enzyme E2, by performing blind CBL-mediated EGFR ubiquitination assays in cells. Experimental CBL ubiquitin ligase activity was in agreement with the predicted changes in CBL stability and, to a lesser extent, with CBL-E2 binding affinity. Two thirds of all experimentally tested mutations affected the ubiquitin ligase activity by either destabilizing CBL or disrupting CBL-E2 binding, whereas about one-third of tested mutations were found to be neutral. Collectively, our findings demonstrate that computational methods incorporating multiple protein conformations and stability and binding affinity evaluations can successfully predict the functional consequences of cancer mutations on protein activity, and provide a proof of concept for mutations in CBL. PMID:26676746

  15. PCR-sequencing is a complementary method to amplification refractory mutation system for EGFR gene mutation analysis in FFPE samples.

    PubMed

    Jiang, Junchang; Wang, Chunhua; Yu, Xiaoli; Sheng, Danli; Zuo, Chen; Ren, Minpu; Wu, Yaqin; Shen, Jie; Jin, Mei; Xu, Songxiao

    2015-12-01

    Amplification Refractory Mutation System (ARMS) is the most popular technology for EGFR gene mutation analysis in China. Cutoff Ct or ΔCt values were used to differentiate low mutation abundance cases from no mutation cases. In this study, all of 359 NSCLC samples were tested by ARMS. Seventeen samples with larger Ct or ΔCt than cutoff values were retested by PCR-sequencing. TKI treatment responses were monitored on the cases with ARMS negative and PCR-sequencing positive results. One exon 18 G719X case, 67 exon 19 deletion cases, 2 exon 20 insertion cases, 1 exon 20 T790M case, 60 exon 21 L858R cases, 5 exon 21 L861Q cases and 201 wild type cases were identified by ARMS. Another 22 cases were evaluated as wild type but had later amplification fluorescent curves. Seventeen out of these 22 cases were retested by PCR-sequencing. It turns out that 3 out of 3 cases with exon 19 deletion later amplifications, 2 out of 2 cases with L858R later amplifications and 4 out of 12 cases with T790M later amplifications were identified as mutation positive. Two cases with exon 19 deletion and L858R respectively were treated by TKI and got responses. Our study indicated that PCR-sequencing might be a complementary way to confirm ARMS results with later amplifications.

  16. PCR-sequencing is a complementary method to amplification refractory mutation system for EGFR gene mutation analysis in FFPE samples.

    PubMed

    Jiang, Junchang; Wang, Chunhua; Yu, Xiaoli; Sheng, Danli; Zuo, Chen; Ren, Minpu; Wu, Yaqin; Shen, Jie; Jin, Mei; Xu, Songxiao

    2015-12-01

    Amplification Refractory Mutation System (ARMS) is the most popular technology for EGFR gene mutation analysis in China. Cutoff Ct or ΔCt values were used to differentiate low mutation abundance cases from no mutation cases. In this study, all of 359 NSCLC samples were tested by ARMS. Seventeen samples with larger Ct or ΔCt than cutoff values were retested by PCR-sequencing. TKI treatment responses were monitored on the cases with ARMS negative and PCR-sequencing positive results. One exon 18 G719X case, 67 exon 19 deletion cases, 2 exon 20 insertion cases, 1 exon 20 T790M case, 60 exon 21 L858R cases, 5 exon 21 L861Q cases and 201 wild type cases were identified by ARMS. Another 22 cases were evaluated as wild type but had later amplification fluorescent curves. Seventeen out of these 22 cases were retested by PCR-sequencing. It turns out that 3 out of 3 cases with exon 19 deletion later amplifications, 2 out of 2 cases with L858R later amplifications and 4 out of 12 cases with T790M later amplifications were identified as mutation positive. Two cases with exon 19 deletion and L858R respectively were treated by TKI and got responses. Our study indicated that PCR-sequencing might be a complementary way to confirm ARMS results with later amplifications. PMID:26477713

  17. Mechanistic study of CuZn-SOD from Ipomoea carnea mutated at dimer interface: enhancement of peroxidase activity upon monomerization.

    PubMed

    Mishra, Panchanand; Dixit, Anshuman; Ray, Mamata; Sabat, Surendra Chandra

    2014-02-01

    The enzymatically active monomeric form of CuZn-superoxide dismutase has always been of interest to decipher the structure-function relationship in this class of enzymes. In the present study, spectroscopic and enzymatic characteristics of the dimeric and monomeric forms of recombinant Ipomoea carnea CuZn-superoxide dismutase were made to decipher their stability and altered catalytic properties. The monomeric form of protein was produced through site directed mutagenesis by replacing a conserved hydrophobic leucine with a polar lysine residue at the dimer-interface. Spectral characteristics of both the forms (monomer and dimer) showed the presence of novel electronic transitions. Superoxide scavenging activity of the mutated form was reduced to nearly half of the activity found in the native enzyme. Concomitantly, compared to native form the mutated enzyme showed an increase in peroxidase activity. High temperature dependent circular dichroism spectral analysis, differential scanning calorimetric profile, and the measurement of temperature dependent superoxide scavenging activity indicated an increased susceptibility of the mutated form to higher temperature as compared to the native form. The inhibitor studies like hydrogen peroxide, diethyldithiocarbamate and phenylglyoxal also indicate higher susceptibility, which might be due to, altered arrangement of active site residues as a consequence of the mutation. Molecular modeling and MD simulation studies further indicated that this specific mutation induces loss of hydrophobic interaction at dimer interface, resulting in the observed instability of the dimeric form. Increased peroxidative activity of the enzyme, upon monomerization may have physiological implication essentially in presence of high concentration of H2O2, as in case of plant cells specifically under stress conditions. PMID:24513093

  18. High Resolution Melting Analysis: A Rapid and Accurate Method to Detect CALR Mutations

    PubMed Central

    Moreno, Melania; Torres, Laura; Santana-Lopez, Gonzalo; Rodriguez-Medina, Carlos; Perera, María; Bellosillo, Beatriz; de la Iglesia, Silvia; Molero, Teresa; Gomez-Casares, Maria Teresa

    2014-01-01

    Background The recent discovery of CALR mutations in essential thrombocythemia (ET) and primary myelofibrosis (PMF) patients without JAK2/MPL mutations has emerged as a relevant finding for the molecular diagnosis of these myeloproliferative neoplasms (MPN). We tested the feasibility of high-resolution melting (HRM) as a screening method for rapid detection of CALR mutations. Methods CALR was studied in wild-type JAK2/MPL patients including 34 ET, 21 persistent thrombocytosis suggestive of MPN and 98 suspected secondary thrombocytosis. CALR mutation analysis was performed through HRM and Sanger sequencing. We compared clinical features of CALR-mutated versus 45 JAK2/MPL-mutated subjects in ET. Results Nineteen samples showed distinct HRM patterns from wild-type. Of them, 18 were mutations and one a polymorphism as confirmed by direct sequencing. CALR mutations were present in 44% of ET (15/34), 14% of persistent thrombocytosis suggestive of MPN (3/21) and none of the secondary thrombocytosis (0/98). Of the 18 mutants, 9 were 52 bp deletions, 8 were 5 bp insertions and other was a complex mutation with insertion/deletion. No mutations were found after sequencing analysis of 45 samples displaying wild-type HRM curves. HRM technique was reproducible, no false positive or negative were detected and the limit of detection was of 3%. Conclusions This study establishes a sensitive, reliable and rapid HRM method to screen for the presence of CALR mutations. PMID:25068507

  19. RFLP analysis for APP 717 mutations associated with Alzheimer's disease.

    PubMed

    Zeldenrust, S R; Murrell, J; Farlow, M; Ghetti, B; Roses, A D; Benson, M D

    1993-06-01

    Familial Alzheimer's disease (FAD) has been shown to be associated with three distinct point mutations within the same codon of the amyloid precursor protein (APP) gene. The mutation identified in the Indiana kindred is a G-->T transversion at the first position of the codon for amino acid 717, resulting in a substitution of phenylalanine for valine in the APP protein. Screening of persons at risk for the APP Phe-717 mutation using a variation of the polymerase chain reaction identified nine positives among 34 tested. In addition, DNA from 145 FAD subjects were tested for the three known APP 717 mutations.

  20. Domain structure of phage P4 alpha protein deduced by mutational analysis.

    PubMed Central

    Ziegelin, G; Linderoth, N A; Calendar, R; Lanka, E

    1995-01-01

    Bacteriophage P4 DNA replication depends on the product of the alpha gene, which has origin recognition ability, DNA helicase activity, and DNA primase activity. One temperature-sensitive and four amber mutations that eliminate DNA replication in vivo were sequenced and located in the alpha gene. Sequence analysis of the entire gene predicted a domain structure for the alpha polypeptide chain (777 amino acid residues, M(r) 84,900), with the N terminus providing the catalytic activity for the primase and the middle part providing that for the helicase/nucleoside triphosphatase. This model was confirmed experimentally in vivo and in vitro. In addition, the ori DNA recognition ability was found to be associated with the C-terminal third of the alpha polypeptide chain. The type A nucleotide-binding site is required for P4 replication in vivo, as shown for alpha mutations at G-506 and K-507. In the absence of an active DnaG protein, the primase function is also essential for P4 replication. Primase-null and helicase-null mutants retain the two remaining activities functionally in vitro and in vivo. The latter was demonstrated by trans complementation studies, indicating the assembly of active P4 replisomes by a primase-null and a helicase-null mutant. PMID:7635818

  1. Clustered mutations in hominid genome evolution are consistent with APOBEC3G enzymatic activity

    PubMed Central

    Pinto, Yishay; Gabay, Orshay; Arbiza, Leonardo; Sams, Aaron J.; Keinan, Alon

    2016-01-01

    The gradual accumulation of mutations by any of a number of mutational processes is a major driving force of divergence and evolution. Here, we investigate a potentially novel mutational process that is based on the activity of members of the AID/APOBEC family of deaminases. This gene family has been recently shown to introduce—in multiple types of cancer—enzyme-induced clusters of co-occurring somatic mutations caused by cytosine deamination. Going beyond somatic mutations, we hypothesized that APOBEC3—following its rapid expansion in primates—can introduce unique germline mutation clusters that can play a role in primate evolution. In this study, we tested this hypothesis by performing a comprehensive comparative genomic screen for APOBEC3-induced mutagenesis patterns across different hominids. We detected thousands of mutation clusters introduced along primate evolution which exhibit features that strongly fit the known patterns of APOBEC3G mutagenesis. These results suggest that APOBEC3G-induced mutations have contributed to the evolution of all genomes we studied. This is the first indication of site-directed, enzyme-induced genome evolution, which played a role in the evolution of both modern and archaic humans. This novel mutational mechanism exhibits several unique features, such as its higher tendency to mutate transcribed regions and regulatory elements and its ability to generate clusters of concurrent point mutations that all occur in a single generation. Our discovery demonstrates the exaptation of an anti-viral mechanism as a new source of genomic variation in hominids with a strong potential for functional consequences. PMID:27056836

  2. Mutation-Independent Activation of the Anaplastic Lymphoma Kinase in Neuroblastoma.

    PubMed

    Regairaz, Marie; Munier, Fabienne; Sartelet, Hervé; Castaing, Marine; Marty, Virginie; Renauleaud, Céline; Doux, Camille; Delbé, Jean; Courty, José; Fabre, Monique; Ohta, Shigeru; Viehl, Philippe; Michiels, Stefan; Valteau-Couanet, Dominique; Vassal, Gilles

    2016-02-01

    Activating mutations of anaplastic lymphoma kinase (ALK) have been identified as important players in neuroblastoma development. Our goal was to evaluate the significance of overall ALK activation in neuroblastoma. Expression of phosphorylated ALK, ALK, and its putative ligands, pleiotrophin and midkine, was screened in 289 neuroblastomas and 56 paired normal tissues. ALK was expressed in 99% of tumors and phosphorylated in 48% of cases. Pleiotrophin and midkine were expressed in 58% and 79% of tumors, respectively. ALK activation was significantly higher in tumors than in paired normal tissues, together with ALK and midkine expression. ALK activation was largely independent of mutations and correlated with midkine expression in tumors. ALK activation in tumors was associated with favorable features, including a younger age at diagnosis, hyperdiploidy, and detection by mass screening. Antitumor activity of the ALK inhibitor TAE684 was evaluated in wild-type or mutated ALK neuroblastoma cell lines and xenografts. TAE684 was cytotoxic in vitro in all cell lines, especially those harboring an ALK mutation. TAE684 efficiently inhibited ALK phosphorylation in vivo in both F1174I and R1275Q xenografts but demonstrated antitumor activity only against the R1275Q xenograft. In conclusion, ALK activation occurs frequently during neuroblastoma oncogenesis, mainly through mutation-independent mechanisms. However, ALK activation is not associated with a poor outcome and is not always a driver of cell proliferation and/or survival in neuroblastoma. PMID:26687816

  3. OGG1 Mutations and Risk of Female Breast Cancer: Meta-Analysis and Experimental Data

    PubMed Central

    Ali, Kashif; Mahjabeen, Ishrat; Sabir, Maimoona; Mehmood, Humera; Kayani, Mahmood Akhtar

    2015-01-01

    In first part of this study association between OGG1 polymorphisms and breast cancer susceptibility was explored by meta-analysis. Second part of the study involved 925 subjects, used for mutational analysis of OGG1 gene using PCR-SSCP and sequencing. Fifteen mutations were observed, which included five intronic mutations, four splice site mutations, two 3′UTR mutations, three missense mutations, and a nonsense mutation. Significantly (p < 0.001) increased (~29 fold) breast cancer risk was associated with a splice site variant g.9800972T>G and 3′UTR variant g.9798848G>A. Among intronic mutations, highest (~15 fold) increase in breast cancer risk was associated with g.9793680G>A (p < 0.009). Similarly ~14-fold increased risk was associated with Val159Gly (p < 0.01), ~17-fold with Gly221Arg (p < 0.005), and ~18-fold with Ser326Cys (p < 0.004) in breast cancer patients compared with controls, whereas analysis of nonsense mutation showed that ~13-fold (p < 0.01) increased breast cancer risk was associated with Trp375STOP in patients compared to controls. In conclusion, a significant association was observed between OGG1 germ line mutations and breast cancer risk. These findings provide evidence that OGG1 may prove to be a good candidate of better diagnosis, treatment, and prevention of breast cancer. PMID:26089588

  4. DNA sequence analysis of X-ray induced Adh null mutations in Drosophila melanogaster

    SciTech Connect

    Mahmoud, J.; Fossett, N.G.; Arbour-Reily, P.; McDaniel, M.; Tucker, A.; Chang, S.H.; Lee, W.R. )

    1991-01-01

    The mutational spectrum for 28 X-ray induced mutations and 2 spontaneous mutations, previously determined by genetic and cytogenetic methods, consisted of 20 multilocus deficiencies (19 induced and 1 spontaneous) and 10 intragenic mutations (9 induced and 1 spontaneous). One of the X-ray induced intragenic mutations was lost, and another was determined to be a recombinant with the allele used in the recovery scheme. The DNA sequence of two X-ray induced intragenic mutations has been published. This paper reports the results of DNA sequence analysis of the remaining intragenic mutations and a summary of the X-ray induced mutational spectrum. The combination of DNA sequence analysis with genetic complementation analysis shows a continuous distribution in size of deletions rather than two different types of mutations consisting of deletions and point mutations'. Sequencing is shown to be essential for detecting intragenic deletions. Of particular importance for future studies is the observation that all of the intragenic deletions consist of a direct repeat adjacent to the breakpoint with one of the repeats deleted.

  5. The application of a linear algebra to the analysis of mutation rates.

    PubMed

    Jones, M E; Thomas, S M; Clarke, K

    1999-07-01

    Cells and bacteria growing in culture are subject to mutation, and as this mutation is the ultimate substrate for selection and evolution, the factors controlling the mutation rate are of some interest. The mutational event is not observed directly, but is inferred from the phenotype of the original mutant or of its descendants; the rate of mutation is inferred from the number of such mutant phenotypes. Such inference presumes a knowledge of the probability distribution for the size of a clone arising from a single mutation. We develop a mathematical formulation that assists in the design and analysis of experiments which investigate mutation rates and mutant clone size distribution, and we use it to analyse data for which the classical Luria-Delbrück clone-size distribution must be rejected.

  6. Germline mutation analysis of MLH1 and MSH2 in Malaysian Lynch syndrome patients

    PubMed Central

    Zahary, Mohd Nizam; Kaur, Gurjeet; Abu Hassan, Muhammad Radzi; Singh, Harjinder; Naik, Venkatesh R; Ankathil, Ravindran

    2012-01-01

    AIM: To investigate the protein expression profile of mismatch repair (MMR) genes in suspected cases of Lynch syndrome and to characterize the associated germline mutations. METHODS: Immunohistochemical analysis of tumor samples was performed to determine the protein expression profile of MMR protein. Germline mutation screening was carried out on peripheral blood samples. The entire exon regions of MLH1 and MSH2 genes were amplified by polymerase chain reaction, screened by denaturing high performance liquid chromatography (dHPLC) and analyzed by DNA sequencing to characterize the germline mutations. RESULTS: Three out of 34 tissue samples (8.8%) and four out of 34 tissue samples (11.8%) showed loss of nuclear staining by immunohistochemistry, indicating the absence of MLH1 and MSH2 protein expression in carcinoma cells, respectively. dHPLC analysis followed by DNA sequencing showed these samples to have germline mutations of MSH2 gene. However, no deleterious mutations were identified in any of the 19 exons or coding regions of MLH1 gene, but we were able to identify MLH1 promoter polymorphism, -93G > A (rs1800734), in 21 out of 34 patients (61.8%). We identified one novel mutation, transversion mutation c.2005G > C, which resulted in a missense mutation (Gly669Arg), a transversion mutation in exon 1, c.142G > T, which resulted in a nonsense mutation (Glu48Stop) and splice-site mutation, c.2006-6T > C, which was adjacent to exon 13 of MSH2 gene. CONCLUSION: Germline mutations were identified in four Malaysian Lynch syndrome patients. Immunohistochemical analysis of tumor tissue proved to be a good pre-screening test before proceeding to germline mutation analysis of DNA MMR genes. PMID:22371642

  7. Biochemical and structural analysis of missense mutations in N-acetylgalactosamine-6-sulfate sulfatase causing mucopolysaccharidosis IVA phenotypes.

    PubMed

    Sukegawa, K; Nakamura, H; Kato, Z; Tomatsu, S; Montaño, A M; Fukao, T; Toietta, G; Tortora, P; Orii, T; Kondo, N

    2000-05-22

    Mucopolysaccharidosis IVA (MPS IVA; OMIM#253000), a lysosomal storage disorder caused by a deficiency of N -acetylgalactosamine-6-sulfate sulfatase (GALNS), has variable clinical phenotypes. To date we have identified 65 missense mutations in the GALNS gene from MPS IVA patients, but the correlation between genotype and phenotype has remained unclear. We studied 17 missense mutations using biochemical approaches and 32 missense mutations, using structural analyses. Fifteen missense mutations and two newly engineered active site mutations (C79S, C79T) were characterized by transient expression analysis. Mutant proteins, except for C79S and C79T, were destabilized and detected as insoluble precursor forms while the C79S and C79T mutants were of a soluble mature size. Mutants found in the severe phenotype had no activity. Mutants found in the mild phenotype had a considerable residual activity (1.3-13.3% of wild-type GALNS activity). Sulfatases, including GALNS, are members of a highly conserved gene family sharing an extensive sequence homology. Thus, a tertiary structural model of human GALNS was constructed from the X-ray crystal structure of N -acetylgalacto-samine-4-sulfatase and arylsulfatase A, using homology modeling, and 32 missense mutations were investigated. Consequently, we propose that there are at least three different reasons for the severe phenotype: (i) destruction of the hydrophobic core or modification of the packing; (ii) removal of a salt bridge to destabilize the entire conformation; (iii) modification of the active site. In contrast, mild mutations were mostly located on the surface of the GALNS protein. These studies shed further light on the genotype-phenotype correlation of MPS IVA and structure-function relationship in the sulfatase family. PMID:10814710

  8. Geographic distribution and regional origin of 272 cystic fibrosis mutations in European populations. The Biomed CF Mutation Analysis Consortium.

    PubMed

    Estivill, X; Bancells, C; Ramos, C

    1997-01-01

    C (Sweden) and R560T (northern Ireland). Most of these mutations must have an origin and diffusion in the specific European population subgroup. Overall 55 mutations are common in one or several countries or regions of Europe and 217 mutations are rare with relative frequencies of lower than 1% in any of these regions and countries. This information might facilitate mutation analysis of CF in the different regions of Europe.

  9. Activating PI3Kδ mutations in a cohort of 669 patients with primary immunodeficiency.

    PubMed

    Elgizouli, M; Lowe, D M; Speckmann, C; Schubert, D; Hülsdünker, J; Eskandarian, Z; Dudek, A; Schmitt-Graeff, A; Wanders, J; Jørgensen, S F; Fevang, B; Salzer, U; Nieters, A; Burns, S; Grimbacher, B

    2016-02-01

    The gene PIK3CD codes for the catalytic subunit of phosphoinositide 3-kinase δ (PI3Kδ), and is expressed solely in leucocytes. Activating mutations of PIK3CD have been described to cause an autosomal dominant immunodeficiency that shares clinical features with common variable immunodeficiency (CVID). We screened a cohort of 669 molecularly undefined primary immunodeficiency patients for five reported mutations (four gain-of-function mutations in PIK3CD and a loss of function mutation in PIK3R1) using pyrosequencing. PIK3CD mutations were identified in three siblings diagnosed with CVID and two sporadic cases with a combined immunodeficiency (CID). The PIK3R1 mutation was not identified in the cohort. Our patients with activated PI3Kδ syndrome (APDS) showed a range of clinical and immunological findings, even within a single family, but shared a reduction in naive T cells. PIK3CD gain of function mutations are more likely to occur in patients with defective B and T cell responses and should be screened for in CVID and CID, but are less likely in patients with a pure B cell/hypogammaglobulinaemia phenotype. PMID:26437962

  10. Recurrent mTORC1-activating RRAGC mutations in follicular lymphoma.

    PubMed

    Okosun, Jessica; Wolfson, Rachel L; Wang, Jun; Araf, Shamzah; Wilkins, Lucy; Castellano, Brian M; Escudero-Ibarz, Leire; Al Seraihi, Ahad Fahad; Richter, Julia; Bernhart, Stephan H; Efeyan, Alejo; Iqbal, Sameena; Matthews, Janet; Clear, Andrew; Guerra-Assunção, José Afonso; Bödör, Csaba; Quentmeier, Hilmar; Mansbridge, Christopher; Johnson, Peter; Davies, Andrew; Strefford, Jonathan C; Packham, Graham; Barrans, Sharon; Jack, Andrew; Du, Ming-Qing; Calaminici, Maria; Lister, T Andrew; Auer, Rebecca; Montoto, Silvia; Gribben, John G; Siebert, Reiner; Chelala, Claude; Zoncu, Roberto; Sabatini, David M; Fitzgibbon, Jude

    2016-02-01

    Follicular lymphoma is an incurable B cell malignancy characterized by the t(14;18) translocation and mutations affecting the epigenome. Although frequent gene mutations in key signaling pathways, including JAK-STAT, NOTCH and NF-κB, have also been defined, the spectrum of these mutations typically overlaps with that in the closely related diffuse large B cell lymphoma (DLBCL). Using a combination of discovery exome and extended targeted sequencing, we identified recurrent somatic mutations in RRAGC uniquely enriched in patients with follicular lymphoma (17%). More than half of the mutations preferentially co-occurred with mutations in ATP6V1B2 and ATP6AP1, which encode components of the vacuolar H(+)-ATP ATPase (V-ATPase) known to be necessary for amino acid-induced activation of mTORC1. The RagC variants increased raptor binding while rendering mTORC1 signaling resistant to amino acid deprivation. The activating nature of the RRAGC mutations, their existence in the dominant clone and their stability during disease progression support their potential as an excellent candidate for therapeutic targeting. PMID:26691987

  11. Recurrent mTORC1-activating RRAGC mutations in follicular lymphoma

    PubMed Central

    Wang, Jun; Araf, Shamzah; Wilkins, Lucy; Castellano, Brian M.; Escudero-Ibarz, Leire; Al Seraihi, Ahad Fahad; Richter, Julia; Bernhart, Stephan H.; Efeyan, Alejo; Iqbal, Sameena; Matthews, Janet; Clear, Andrew; Guerra-Assunção, José Afonso; Bödör, Csaba; Quentmeier, Hilmar; Mansbridge, Christopher; Johnson, Peter; Davies, Andrew; Strefford, Jonathan C.; Packham, Graham; Barrans, Sharon; Jack, Andrew; Du, Ming-Qing; Calaminici, Maria; Lister, T. Andrew; Auer, Rebecca; Montoto, Silvia; Gribben, John G.; Siebert, Reiner; Chelala, Claude; Zoncu, Roberto; Sabatini, David M.; Fitzgibbon, Jude

    2015-01-01

    Follicular lymphoma is an incurable B-cell malignancy1 characterized by the t(14;18) and mutations in one or more components of the epigenome2,3. Whilst frequent gene mutations in signaling pathways, including JAK-STAT, NOTCH and NF-κB, have also been defined2-7, the spectrum of these mutations typically overlap with the closely-related diffuse large B cell lymphoma (DLBCL)6-13. A combination of discovery exome and extended targeted sequencing revealed recurrent somatic mutations in RRAGC uniquely enriched in FL patients (17%). More than half of the mutations preferentially co-occurred with ATP6V1B2 and ATP6AP1 mutations, components of the vacuolar H+-adenosine triphosphate ATPase (v-ATPase) known to be necessary for amino acid-induced mTORC1 activation. The RagC mutants increased raptor binding whilst rendering mTORC1 signaling resistant to amino acid deprivation. Collectively, the activating nature of the RRAGC mutations, their existence within the dominant clone and stability during disease progression supports their potential as an excellent candidate to be therapeutically exploited. PMID:26691987

  12. The RNAmute web server for the mutational analysis of RNA secondary structures.

    PubMed

    Churkin, Alexander; Gabdank, Idan; Barash, Danny

    2011-07-01

    RNA mutational analysis at the secondary-structure level can be useful to a wide-range of biological applications. It can be used to predict an optimal site for performing a nucleotide mutation at the single molecular level, as well as to analyze basic phenomena at the systems level. For the former, as more sequence modification experiments are performed that include site-directed mutagenesis to find and explore functional motifs in RNAs, a pre-processing step that helps guide in planning the experiment becomes vital. For the latter, mutations are generally accepted as a central mechanism by which evolution occurs, and mutational analysis relating to structure should gain a better understanding of system functionality and evolution. In the past several years, the program RNAmute that is structure based and relies on RNA secondary-structure prediction has been developed for assisting in RNA mutational analysis. It has been extended from single-point mutations to treat multiple-point mutations efficiently by initially calculating all suboptimal solutions, after which only the mutations that stabilize the suboptimal solutions and destabilize the optimal one are considered as candidates for being deleterious. The RNAmute web server for mutational analysis is available at http://www.cs.bgu.ac.il/~xrnamute/XRNAmute.

  13. Heteroduplex analysis of the dystrophin gene: Application to point mutation and carrier detection

    SciTech Connect

    Prior, T.W.; Papp, A.C.; Snyder, P.J.; Sedra, M.S.; Western, L.M.; Bartolo, C.; Mendell, J.R.; Moxley, R.T.

    1994-03-01

    Approximately one-third of Duchenne muscular dystrophy patients have undefined mutations in the dystrophin gene. For carrier and prenatal studies in families without detectable mutations, the indirect restriction fragment length polymorphism linkage approach is used. Using a multiplex amplification and heteroduplex analysis of dystrophin exons, the authors identified nonsense mutations in two DMD patients. Although the nonsense mutations are predicted to severely truncate the dystrophin protein, both patients presented with mild clinical courses of the disease. As a result of identifying the mutation in the affected boys, direct carrier studies by heteroduplex analysis were extended to other relatives. The authors conclude that the technique is not only ideal for mutation detection but is also useful for diagnostic testing. 29 refs., 4 figs.

  14. 5'-methylthioadenosine nucleosidase from yellow lupine (Lupinus luteus): molecular characterization and mutational analysis.

    PubMed

    Bretes, Ewa; Guranowski, Andrzej; Nuc, Katarzyna

    2011-08-01

    This is report of mutational analysis of higher plant 5'-methylthioadenosine nucleosidase (MTAN). We identified and characterized the gene encoding yellow lupine (Lupinus luteus) MTAN (LlMTAN). The role of active site amino acids residues Glu24, Phe134, Glu188 and Asp211 was analyzed by site-directed mutagenesis. The Glu24Gln and Asp211Asn substitutions completely abolished the enzyme activity. The Glu188Gln mutant showed only trace activity toward 5'-methylthioadenosine. These results indicate that these three amino acid residues are necessary for enzyme activity. Furthermore, as the result of replacement of Phe134 by less bulky leucine, LlMTAN acquired the ability to bind and hydrolyze S-adenosylhomocysteine. We also analyzed the sequence of the LlMTAN promoter region. It appeared that there may be a direct link between LlMTAN expression regulation and sulfate metabolism.

  15. Mutational analysis of primary and metastatic colorectal cancer samples underlying the resistance to cetuximab-based therapy

    PubMed Central

    Nemecek, Radim; Berkovcova, Jitka; Radova, Lenka; Kazda, Tomas; Mlcochova, Jitka; Vychytilova-Faltejskova, Petra; Slaby, Ondrej; Svoboda, Marek

    2016-01-01

    Purpose Although several molecular markers predicting resistance to cetuximab- or panitumumab-based therapy of metastatic colorectal cancer were described, mutations in RAS proto-oncogenes remain the only predictors being used in daily clinical practice. However, 35%–45% of wild-type RAS patients still do not respond to this anti-epidermal growth factor receptor (anti-EGFR) monoclonal antibody-based therapy, and therefore the definition of other predictors forms an important clinical need. The aim of the present retrospective single-institutional study was to evaluate potential genes responsible for resistance to anti-EGFR therapy in relation to mutational analysis of primary versus metastatic lesions. Patients and methods Twenty-four paired primary and corresponding metastatic tissue samples from eight nonresponding and four responding metastatic colorectal cancer patients treated with cetuximab-based therapy were sequenced using a next-generation sequencing panel of 26 genes involved in EGFR signaling pathway and colorectal carcinogenesis. Results Mutational status of primary tumors and metastatic lesions was highly concordant in TP53, APC, CTNNB1, KRAS, PIK3CA, PTEN, and FBXW7 genes. Metastatic samples harbor significantly more mutations than primary tumors. Potentially negative predictive value of FBXW7 mutations in relationship to anti-EGFR treatment outcomes was confirmed. Finally, new occurrences of activating KRAS mutations were identified in a group of patients initially determined as wild-type RAS by routinely used qPCR-based RAS mutational tests. All newly detected activating KRAS mutations most likely led to cetuximab treatment failure. Conclusion The results of the present study suggest a need of careful consideration of previously published results of anti-EGFR-targeted therapy with regard to potentially inaccurate diagnostic tools used in the past. Based on our findings, we recommend more extensive use of next-generation sequencing testing in daily

  16. Active-to-absorbing-state phase transition in an evolving population with mutation

    NASA Astrophysics Data System (ADS)

    Sarkar, Niladri

    2015-10-01

    We study the active to absorbing phase transition (AAPT) in a simple two-component model system for a species and its mutant. We uncover the nontrivial critical scaling behavior and weak dynamic scaling near the AAPT that shows the significance of mutation and highlights the connection of this model with the well-known directed percolation universality class. Our model should be a useful starting point to study how mutation may affect extinction or survival of a species.

  17. EGFR Mutation Analysis of Circulating Tumor DNA Using an Improved PNA-LNA PCR Clamp Method

    PubMed Central

    Watanabe, Kana; Fukuhara, Tatsuro; Tsukita, Yoko; Morita, Mami; Suzuki, Aya; Tanaka, Nobuyuki; Terasaki, Hiroshi; Nukiwa, Toshihiro

    2016-01-01

    Introduction. Rebiopsies have become more crucial in non-small cell lung cancer (NSCLC). Instead of invasive biopsies, development of collecting biological data of the tumor from blood samples is expected. We conducted a prospective study to assess the feasibility of detection of epidermal growth factor receptor (EGFR) mutation in plasma samples. Method. NSCLC patients harboring EGFR activating mutations, who were going to receive EGFR-tyrosine kinase inhibitors (TKIs) as first-line treatment, were enrolled in this study. Plasma EGFR activating mutations and the T790M resistance mutation were analyzed by an improved PNA-LNA PCR clamp method, characterized by a 10-fold or more sensitivity compared with the original methods. Result. Six patients with wild-type EGFR and 24 patients with EGFR mutations were enrolled in this study. Pretreatment plasma samples achieved sensitivity of 79%. The 6 patients with wild-type EGFR were all negative for plasma EGFR mutations. At the time of disease progression, plasma T790M mutation was detected in 8 of 16 cases. Absence of T790M before and during TKI treatment and disappearance of activating mutations during TKI treatment were considered as predictors of EGFR-TKIs efficacy. Conclusion. We were able to detect EGFR mutations in plasma samples by using an improved PNA-LNA PCR clamp method. PMID:27478396

  18. Impact of kinase activating and inactivating patient mutations on binary PKA interactions

    PubMed Central

    Röck, Ruth; Mayrhofer, Johanna E.; Bachmann, Verena; Stefan, Eduard

    2015-01-01

    The second messenger molecule cAMP links extracellular signals to intracellular responses. The main cellular cAMP effector is the compartmentalized protein kinase A (PKA). Upon receptor initiated cAMP-mobilization, PKA regulatory subunits (R) bind cAMP thereby triggering dissociation and activation of bound PKA catalytic subunits (PKAc). Mutations in PKAc or RIa subunits manipulate PKA dynamics and activities which contribute to specific disease patterns. Mutations activating cAMP/PKA signaling contribute to carcinogenesis or hormone excess, while inactivating mutations cause hormone deficiency or resistance. Here we extended the application spectrum of a Protein-fragment Complementation Assay based on the Renilla Luciferase to determine binary protein:protein interactions (PPIs) of the PKA network. We compared time- and dose-dependent influences of cAMP-elevation on mutually exclusive PPIs of PKAc with the phosphotransferase inhibiting RIIb and RIa subunits and the protein kinase inhibitor peptide (PKI). We analyzed PKA dynamics following integration of patient mutations into PKAc and RIa. We observed that oncogenic modifications of PKAc(L206R) and RIa(Δ184-236) as well as rare disease mutations in RIa(R368X) affect complex formation of PKA and its responsiveness to cAMP elevation. With the cell-based PKA PPI reporter platform we precisely quantified the mechanistic details how inhibitory PKA interactions and defined patient mutations contribute to PKA functions. PMID:26347651

  19. ALK kinase domain mutations in primary anaplastic large cell lymphoma: consequences on NPM-ALK activity and sensitivity to tyrosine kinase inhibitors.

    PubMed

    Lovisa, Federica; Cozza, Giorgio; Cristiani, Andrea; Cuzzolin, Alberto; Albiero, Alessandro; Mussolin, Lara; Pillon, Marta; Moro, Stefano; Basso, Giuseppe; Rosolen, Angelo; Bonvini, Paolo

    2015-01-01

    ALK inhibitor crizotinib has shown potent antitumor activity in children with refractory Anaplastic Large Cell Lymphoma (ALCL) and the opportunity to include ALK inhibitors in first-line therapies is oncoming. However, recent studies suggest that crizotinib-resistance mutations may emerge in ALCL patients. In the present study, we analyzed ALK kinase domain mutational status of 36 paediatric ALCL patients at diagnosis to identify point mutations and gene aberrations that could impact on NPM-ALK gene expression, activity and sensitivity to small-molecule inhibitors. Amplicon ultra-deep sequencing of ALK kinase domain detected 2 single point mutations, R335Q and R291Q, in 2 cases, 2 common deletions of exon 23 and 25 in all the patients, and 7 splicing-related INDELs in a variable number of them. The functional impact of missense mutations and INDELs was evaluated. Point mutations were shown to affect protein kinase activity, signalling output and drug sensitivity. INDELs, instead, generated kinase-dead variants with dominant negative effect on NPM-ALK kinase, in virtue of their capacity of forming non-functional heterocomplexes. Consistently, when co-expressed, INDELs increased crizotinib inhibitory activity on NPM-ALK signal processing, as demonstrated by the significant reduction of STAT3 phosphorylation. Functional changes in ALK kinase activity induced by both point mutations and structural rearrangements were resolved by molecular modelling and dynamic simulation analysis, providing novel insights into ALK kinase domain folding and regulation. Therefore, these data suggest that NPM-ALK pre-therapeutic mutations may be found at low frequency in ALCL patients. These mutations occur randomly within the ALK kinase domain and affect protein activity, while preserving responsiveness to crizotinib.

  20. Mutation in E1, the ubiquitin activating enzyme, reduces Drosophila lifespan and results in motor impairment.

    PubMed

    Liu, Hsiu-Yu; Pfleger, Cathie M

    2013-01-01

    Neurodegenerative diseases cause tremendous suffering for those afflicted and their families. Many of these diseases involve accumulation of mis-folded or aggregated proteins thought to play a causal role in disease pathology. Ubiquitinated proteins are often found in these protein aggregates, and the aggregates themselves have been shown to inhibit the activity of the proteasome. These and other alterations in the Ubiquitin Pathway observed in neurodegenerative diseases have led to the question of whether impairment of the Ubiquitin Pathway on its own can increase mortality or if ongoing neurodegeneration alters Ubiquitin Pathway function as a side-effect. To address the role of the Ubiquitin Pathway in vivo, we studied loss-of-function mutations in the Drosophila Ubiquitin Activating Enzyme, Uba1 or E1, the most upstream enzyme in the Ubiquitin Pathway. Loss of only one functional copy of E1 caused a significant reduction in adult lifespan. Rare homozygous hypomorphic E1 mutants reached adulthood. These mutants exhibited further reduced lifespan and showed inappropriate Ras activation in the brain. Removing just one functional copy of Ras restored the lifespan of heterozygous E1 mutants to that of wild-type flies and increased the survival of homozygous E1 mutants. E1 homozygous mutants also showed severe motor impairment. Our findings suggest that processes that impair the Ubiquitin Pathway are sufficient to cause early mortality. Reduced lifespan and motor impairment are seen in the human disease X-linked Infantile Spinal Muscular Atrophy, which is associated with mutation in human E1 warranting further analysis of these mutants as a potential animal model for study of this disease.

  1. Outside-binding site mutations modify the active site's shapes in neuraminidase from influenza A H1N1.

    PubMed

    Tolentino-Lopez, Luis; Segura-Cabrera, Aldo; Reyes-Loyola, Paola; Zimic, Mirko; Quiliano, Miguel; Briz, Veronica; Muñoz-Fernández, Angeles; Rodríguez-Pérez, Mario; Ilizaliturri-Flores, Ian; Correa-Basurto, Jose

    2013-01-01

    The recent occurrence of 2009 influenza A (H1N1) pandemic as well as others has raised concern of a far more dangerous outcome should this virus becomes resistant to current drug therapies. The number of clinical cases that are resistant to oseltamivir (Tamiflu®) is larger than the limited number of neuraminidase (NA) mutations (H275Y, N295S, and I223R) that have been identified at the active site and that are associated to oseltamivir resistance. In this study, we have performed a comparative analysis between a set of NAs that have the most representative mutations located outside the active site. The recently crystallized NA-oseltamivir complex (PDB ID: 3NSS) was used as a wild-type structure. After selecting the target NA sequences, their three-dimensional (3D) structure was built using 3NSS as a template by homology modeling. The 3D NA models were refined by molecular dynamics (MD) simulations. The refined models were used to perform a docking study, using oseltamivir as a ligand. Furthermore, the docking results were refined by free-energy analysis using the MM-PBSA method. The analysis of the MD simulation results showed that the NA models reached convergence during the first 10 ns. Visual inspection and structural measures showed that the mutated NA active sites show structural variations. The docking and MM-PBSA results from the complexes showed different binding modes and free energy values. These results suggest that distant mutations located outside the active site of NA affect its structure and could be considered to be a new source of resistance to oseltamivir, which agrees with reports in the clinical literature.

  2. Activation Mechanism of Oncogenic Deletion Mutations in BRAF, EGFR, and HER2.

    PubMed

    Foster, Scott A; Whalen, Daniel M; Özen, Ayşegül; Wongchenko, Matthew J; Yin, JianPing; Yen, Ivana; Schaefer, Gabriele; Mayfield, John D; Chmielecki, Juliann; Stephens, Philip J; Albacker, Lee A; Yan, Yibing; Song, Kyung; Hatzivassiliou, Georgia; Eigenbrot, Charles; Yu, Christine; Shaw, Andrey S; Manning, Gerard; Skelton, Nicholas J; Hymowitz, Sarah G; Malek, Shiva

    2016-04-11

    Activating mutations in protein kinases drive many cancers. While how recurring point mutations affect kinase activity has been described, the effect of in-frame deletions is not well understood. We show that oncogenic deletions within the β3-αC loop of HER2 and BRAF are analogous to the recurrent EGFR exon 19 deletions. We identify pancreatic carcinomas with BRAF deletions mutually exclusive with KRAS mutations. Crystal structures of BRAF deletions reveal the truncated loop restrains αC in an active "in" conformation, imparting resistance to inhibitors like vemurafenib that bind the αC "out" conformation. Characterization of loop length explains the prevalence of five amino acid deletions in BRAF, EGFR, and HER2 and highlights the importance of this region for kinase activity and inhibitor efficacy. PMID:26996308

  3. Complete androgen insensitivity syndrome caused by a deep intronic pseudoexon-activating mutation in the androgen receptor gene.

    PubMed

    Känsäkoski, Johanna; Jääskeläinen, Jarmo; Jääskeläinen, Tiina; Tommiska, Johanna; Saarinen, Lilli; Lehtonen, Rainer; Hautaniemi, Sampsa; Frilander, Mikko J; Palvimo, Jorma J; Toppari, Jorma; Raivio, Taneli

    2016-01-01

    Mutations in the X-linked androgen receptor (AR) gene underlie complete androgen insensitivity syndrome (CAIS), the most common cause of 46,XY sex reversal. Molecular genetic diagnosis of CAIS, however, remains uncertain in patients who show normal coding region of AR. Here, we describe a novel mechanism of AR disruption leading to CAIS in two 46,XY sisters. We analyzed whole-genome sequencing data of the patients for pathogenic variants outside the AR coding region. Patient fibroblasts from the genital area were used for AR cDNA analysis and protein quantification. Analysis of the cDNA revealed aberrant splicing of the mRNA caused by a deep intronic mutation (c.2450-118A>G) in the intron 6 of AR. The mutation creates a de novo 5' splice site and a putative exonic splicing enhancer motif, which leads to the preferential formation of two aberrantly spliced mRNAs (predicted to include a premature stop codon). Patient fibroblasts contained no detectable AR protein. Our results show that patients with CAIS and normal AR coding region need to be examined for deep intronic mutations that can lead to pseudoexon activation. PMID:27609317

  4. Complete androgen insensitivity syndrome caused by a deep intronic pseudoexon-activating mutation in the androgen receptor gene

    PubMed Central

    Känsäkoski, Johanna; Jääskeläinen, Jarmo; Jääskeläinen, Tiina; Tommiska, Johanna; Saarinen, Lilli; Lehtonen, Rainer; Hautaniemi, Sampsa; Frilander, Mikko J.; Palvimo, Jorma J.; Toppari, Jorma; Raivio, Taneli

    2016-01-01

    Mutations in the X-linked androgen receptor (AR) gene underlie complete androgen insensitivity syndrome (CAIS), the most common cause of 46,XY sex reversal. Molecular genetic diagnosis of CAIS, however, remains uncertain in patients who show normal coding region of AR. Here, we describe a novel mechanism of AR disruption leading to CAIS in two 46,XY sisters. We analyzed whole-genome sequencing data of the patients for pathogenic variants outside the AR coding region. Patient fibroblasts from the genital area were used for AR cDNA analysis and protein quantification. Analysis of the cDNA revealed aberrant splicing of the mRNA caused by a deep intronic mutation (c.2450-118A>G) in the intron 6 of AR. The mutation creates a de novo 5′ splice site and a putative exonic splicing enhancer motif, which leads to the preferential formation of two aberrantly spliced mRNAs (predicted to include a premature stop codon). Patient fibroblasts contained no detectable AR protein. Our results show that patients with CAIS and normal AR coding region need to be examined for deep intronic mutations that can lead to pseudoexon activation. PMID:27609317

  5. Novel mutation in SUCLA2 identified on sequencing analysis.

    PubMed

    Güngör, Olcay; Özkaya, Ahmet Kağan; Güngör, Gülay; Karaer, Kadri; Dilber, Cengiz; Aydin, Kürşad

    2016-07-01

    Succinate-CoA ligase, ADP-forming, beta subunit (SUCLA2)-related mitochondrial DNA depletion syndrome is caused by mutations affecting the ADP-using isoform of the beta subunit in succinyl-CoA synthase, which is involved in the Krebs cycle. The SUCLA2 protein is found mostly in heart, skeletal muscle, and brain tissues. SUCLA2 mutations result in a mitochondrial disorder that manifests as deafness, lesions in the basal ganglia, and encephalomyopathy accompanied by dystonia. Such mutations are generally associated with mildly increased plasma methylmalonic acid, increased plasma lactate, elevated plasma carnitine esters, and the presence of methylmalonic acid in urine. In this case report, we describe a new mutation in a patient with a succinyl-CoA synthase deficiency caused by an SUCLA2 defect. PMID:26952923

  6. Single-molecule PCR: an artifact-free PCR approach for the analysis of somatic mutations.

    PubMed

    Kraytsberg, Yevgenya; Khrapko, Konstantin

    2005-09-01

    A critical review of the clone-by-clone approach to the analysis of complex spectra of somatic mutations is presented. The study of a priori unknown somatic mutations requires painstaking analysis of complex mixtures of multiple mutant and non-mutant DNA molecules. If mutant fractions are sufficiently high, these mixtures can be dissected by the cloning of individual DNA molecules and scanning of the individual clones for mutations (e.g., by sequencing). Currently, the majority of such cloning is performed using PCR fragments. However, post-PCR cloning may result in various PCR artifacts - PCR errors and jumping PCR - and preferential amplification of certain mutations. This review argues that single-molecule PCR is a simple alternative that promises to evade the disadvantages inherent to post-PCR cloning and enhance mutational analysis in the future. PMID:16149882

  7. Genomic, transcriptional and mutational analysis of the mouse microphthalmia locus.

    PubMed Central

    Hallsson, J H; Favor, J; Hodgkinson, C; Glaser, T; Lamoreux, M L; Magnúsdóttir, R; Gunnarsson, G J; Sweet, H O; Copeland, N G; Jenkins, N A; Steingrímsson, E

    2000-01-01

    Mouse microphthalmia transcription factor (Mitf) mutations affect the development of four cell types: melanocytes, mast cells, osteoclasts, and pigmented epithelial cells of the eye. The mutations are phenotypically diverse and can be arranged in an allelic series. In humans, MITF mutations cause Waardenburg syndrome type 2A (WS2A) and Tietz syndrome, autosomal dominant disorders resulting in deafness and hypopigmentation. Mitf mice thus represent an important model system for the study of human disease. Here we report the complete exon/intron structure of the mouse Mitf gene and show it to be similar to the human gene. We also found that the mouse gene is transcriptionally complex and is capable of generating at least 13 different Mitf isoforms. Some of these isoforms are missing important functional domains of the protein, suggesting that they might play an inhibitory role in Mitf function and signal transduction. In addition, we determined the molecular basis for six microphthalmia mutations. Two of the mutations are reported for the first time here (Mitf(mi-enu198) and Mitf(mi-x39)), while the others (Mitf(mi-ws), Mitf(mi-bws), Mitf(mi-ew), and Mitf(mi-di)) have been described but the molecular basis for the mutation not determined. When analyzed in terms of the genomic and transcriptional data presented here, it is apparent that these mutations result from RNA processing or transcriptional defects. Interestingly, three of the mutations (Mitf(mi-x39), Mitf(mi-bws), and Mitf(mi-ws)) produce proteins that are missing important functional domains of the protein identified in in vitro studies, further confirming a biological role for these domains in the whole animal. PMID:10790403

  8. Multi-center analysis of glucocerebrosidase mutations in Parkinson disease

    PubMed Central

    Sidransky, Ellen; Nalls, Michael A.; Aasly, Jan O.; Aharon-Peretz, Judith; Annesi, Grazia; Barbosa, Egberto Reis; Bar-Shira, Anat; Berg, Daniela; Bras, Jose; Brice, Alexis; Chen, Chiung-Mei; Clark, Lorraine N.; Condroyer, Christel; De Marco, Elvira Valeria; Dürr, Alexandra; Eblan, Michael J.; Fahn, Stanley; Farrer, Matthew; Fung, Hon-Chung; Gan-Or, Ziv; Gasser, Thomas; Gershoni-Baruch, Ruth; Giladi, Nir; Griffith, Alida; Gurevich, Tanya; Januario, Cristina; Kropp, Peter; Lang, Anthony E.; Lee-Chen, Guey-Jen; Lesage, Suzanne; Marder, Karen; Mata, Ignacio F.; Mirelman, Anat; Mitsui, Jun; Mizuta, Ikuko; Nicoletti, Giuseppe; Oliveira, Catarina; Ottman, Ruth; Orr-Urtreger, Avi; Pereira, Lygia V.; Quattrone, Aldo; Rogaeva, Ekaterina; Rolfs, Arndt; Rosenbaum, Hanna; Rozenberg, Roberto; Samii, Ali; Samaddar, Ted; Schulte, Claudia; Sharma, Manu; Singleton, Andrew; Spitz, Mariana; Tan, Eng-King; Tayebi, Nahid; Toda, Tatsushi; Troiano, André; Tsuji, Shoji; Wittstock, Matthias; Wolfsberg, Tyra G.; Wu, Yih-Ru; Zabetian, Cyrus P.; Zhao, Yi; Ziegler, Shira G.

    2010-01-01

    Background Recent studies indicate an increased frequency of mutations in the gene for Gaucher disease, glucocerebrosidase (GBA), among patients with Parkinson disease. An international collaborative study was conducted to ascertain the frequency of GBA mutations in ethnically diverse patients with Parkinson disease. Methods Sixteen centers participated, including five from the Americas, six from Europe, two from Israel and three from Asia. Each received a standard DNA panel to compare genotyping results. Genotypes and phenotypic data from patients and controls were analyzed using multivariate logistic regression models and the Mantel Haenszel procedure to estimate odds ratios (ORs) across studies. The sample included 5691 patients (780 Ashkenazi Jews) and 4898 controls (387 Ashkenazi Jews). Results All 16 centers could detect GBA mutations, L444P and N370S, and the two were found in 15.3% of Ashkenazi patients with Parkinson disease (ORs = 4.95 for L444P and 5.62 for N370S), and in 3.2% of non-Ashkenazi patients (ORs = 9.68 for L444P and 3.30 for N370S). GBA was sequenced in 1642 non-Ashkenazi subjects, yielding a frequency of 6.9% for all mutations, demonstrate that limited mutation screens miss half the mutant alleles. The presence of any GBA mutation was associated with an OR of 5.43 across studies. Clinically, although phenotypes varied, subjects with a GBA mutation presented earlier, and were more likely to have affected relatives and atypical manifestations. Conclusion Data collected from sixteen centers demonstrate that there is a strong association between GBA mutations and Parkinson disease. PMID:19846850

  9. Landscape of activating cancer mutations in FGFR kinases and their differential responses to inhibitors in clinical use

    PubMed Central

    Thiyagarajan, Nethaji; Norman, Richard A.; Ogg, Derek; Breed, Jason; Ashford, Paul; Potterton, Andrew; Edwards, Mina; Williams, Sarah V.; Thomson, Gary S.; Pang, Camilla S.M.; Knowles, Margaret A.; Breeze, Alexander L.; Orengo, Christine; Phillips, Chris; Katan, Matilda

    2016-01-01

    Frequent genetic alterations discovered in FGFRs and evidence implicating some as drivers in diverse tumors has been accompanied by rapid progress in targeting FGFRs for anticancer treatments. Wider assessment of the impact of genetic changes on the activation state and drug responses is needed to better link the genomic data and treatment options. We here apply a direct comparative and comprehensive analysis of FGFR3 kinase domain variants representing the diversity of point-mutations reported in this domain. We reinforce the importance of N540K and K650E and establish that not all highly activating mutations (for example R669G) occur at high-frequency and conversely, that some “hotspots” may not be linked to activation. Further structural characterization consolidates a mechanistic view of FGFR kinase activation and extends insights into drug binding. Importantly, using several inhibitors of particular clinical interest (AZD4547, BGJ-398, TKI258, JNJ42756493 and AP24534), we find that some activating mutations (including different replacements of the same residue) result in distinct changes in their efficacy. Considering that there is no approved inhibitor for anticancer treatments based on FGFR-targeting, this information will be immediately translatable to ongoing clinical trials. PMID:26992226

  10. Analysis of mutations and bone marrow micronuclei in Big Blue rats fed leucomalachite green.

    PubMed

    Manjanatha, M G; Shelton, S D; Bishop, M; Shaddock, J G; Dobrovolsky, V N; Heflich, R H; Webb, P J; Blankenship, L R; Beland, F A; Greenlees, K J; Culp, S J

    2004-03-22

    Leucomalachite green (LMG) is the major metabolite of malachite green (MG), a triphenylmethane dye that has been used widely as an antifungal agent in the fish industry. Concern over MG and LMG is due to the potential for consumer exposure, suggestive evidence of tumor promotion in rodent liver, and suspicion of carcinogenicity based on structure-activity relationships. In order to evaluate the risks associated with exposure to LMG, female Big Blue rats were fed up to 543 ppm LMG; groups of these rats were killed after 4, 16, or 32 weeks of exposure and evaluated for genotoxicity. We previously reported that this treatment resulted in a dose-dependent induction of liver DNA adducts, and that the liver lacI mutant frequency (MF) was increased, but only in rats fed 543 ppm LMG for 16 weeks. In the present study, we report the results from lymphocyte Hprt mutant assays and bone marrow micronucleus assays performed on these same rats. In addition, we have determined the types of lacI mutations induced in the rats fed 543 ppm LMG for 16 weeks and the rats fed control diet. No significant increases in the frequency of micronuclei or Hprt mutants were observed for any of the doses or time points assayed. Molecular analysis of 80 liver lacI mutants from rats fed 543 ppm LMG for 16 weeks revealed that 21% (17/80) were clonal in origin and that most (55/63) of the independent mutations were base pair substitutions. The predominant type of mutation was G:C --> A:T transition (31/63) and the majority (68%) of these involved CpG sites. When corrected for clonality, the 16-week lacI mutation frequency (36 +/- 10) x 10(-6) in treated rats was not significantly different from the clonally corrected control frequency (17 +/- 9 x 10(-6); P = 0.06). Furthermore, the lacI mutational spectrum in treated rats was not significantly different from that found for control rats (P = 0.09). Taken together, these data indicate that the DNA adducts produced by LMG in female rats do not result

  11. Single Quantum Dot Analysis Enables Multiplexed Point Mutation Detection by Gap Ligase Chain Reaction

    PubMed Central

    Song, Yunke; Zhang, Yi; Wang, Tza-Huei

    2014-01-01

    Gene point mutations present important biomarkers for genetic diseases. However, existing point mutation detection methods suffer from low sensitivity, specificity, and tedious assay processes. In this report, we propose an assay technology which combines the outstanding specificity of gap ligase chain reaction (Gap-LCR), the high sensitivity of single molecule coincidence detection and superior optical properties of quantum dots (QDs) for multiplexed detection of point mutations in genomic DNA. Mutant-specific ligation products are generated by Gap-LCR and subsequently captured by QDs to form DNA-QD nanocomplexes that are detected by single molecule spectroscopy (SMS) through multi-color fluorescence burst coincidence analysis, allowing for multiplexed mutation detection in a separation-free format. The proposed assay is capable of detecting zeptomoles of KRAS codon 12 mutation variants with near 100% specificity. Its high sensitivity allows direct detection of KRAS mutation in crude genomic DNA without PCR pre-amplification. PMID:23239594

  12. Lethal Factor Active-Site Mutations Affect Catalytic Activity In Vitro

    PubMed Central

    Hammond, S. E.; Hanna, P. C.

    1998-01-01

    The lethal factor (LF) protein of Bacillus anthracis lethal toxin contains the thermolysin-like active-site and zinc-binding consensus motif HEXXH (K. R. Klimpel, N. Arora, and S. H. Leppla, Mol. Microbiol. 13:1093–1100, 1994). LF is hypothesized to act as a Zn2+ metalloprotease in the cytoplasm of macrophages, but no proteolytic activities have been previously shown on any target substrate. Here, synthetic peptides are hydrolyzed by LF in vitro. Mass spectroscopy and peptide sequencing of isolated cleavage products separated by reverse-phase high-pressure liquid chromatography indicate that LF seems to prefer proline-containing substrates. Substitution mutations within the consensus active-site residues completely abolish all in vitro catalytic functions, as does addition of 1,10-phenanthroline, EDTA, and certain amino acid hydroxamates, including the novel zinc metalloprotease inhibitor ZINCOV. In contrast, the protease inhibitors bestatin and lysine CMK, previously shown to block LF activity on macrophages, did not block LF activity in vitro. These data provide the first direct evidence that LF may act as an endopeptidase. PMID:9573135

  13. CFTR mutation analysis and haplotype associations in CF patients☆

    PubMed Central

    Cordovado, S.K.; Hendrix, M.; Greene, C.N.; Mochal, S.; Earley, M.C.; Farrell, P.M.; Kharrazi, M.; Hannon, W.H.; Mueller, P.W.

    2012-01-01

    Most newborn screening (NBS) laboratories use second-tier molecular tests for cystic fibrosis (CF) using dried blood spots (DBS). The Centers for Disease Control and Prevention’s NBS Quality Assurance Program offers proficiency testing (PT) in DBS for CF transmembrane conductance regulator (CFTR) gene mutation detection. Extensive molecular characterization on 76 CF patients, family members or screen positive newborns was performed for quality assurance. The coding, regulatory regions and portions of all introns were sequenced and large insertions/deletions were characterized as well as two intronic di-nucleotide microsatellites. For CF patient samples, at least two mutations were identified/verified and four specimens contained three likely CF-associated mutations. Thirty-four sequence variations in 152 chromosomes were identified, five of which were not previously reported. Twenty-seven of these variants were used to predict haplotypes from the major haplotype block defined by HapMap data that spans the promoter through intron 19. Chromosomes containing the F508del (p.Phe508del), G542X (p.Gly542X) and N1303K (p.Asn1303Lys) mutations shared a common haplotype subgroup, consistent with a common ancient European founder. Understanding the haplotype background of CF-associated mutations in the U.S. population provides a framework for future phenotype/genotype studies and will assist in determining a likely cis/trans phase of the mutations without need for parent studies. PMID:22137130

  14. Aceruloplasminemia in an asymptomatic patient with a new mutation. Diagnosis and family genetic analysis.

    PubMed

    Pérez-Aguilar, Fernando; Burguera, Juan A; Benlloch, Salvador; Berenguer, Marina; Rayón, Jose M

    2005-06-01

    A 39-year-old asymptomatic man showed elevated serum ferritin levels, mild hypertransaminasemia and serum ceruloplasmin almost undetectable. There was histological iron accumulation within the hepatocytes and also in the central nervous system (MRI). A genetic analysis revealed a new missense mutation in the ceruloplasmin gene. Two of the other four siblings were also affected by this mutation.

  15. Mutation detection in autosomal dominant Hirschsprung disease: SSCP analysis of the RET proto-oncogene

    SciTech Connect

    Angrist, M.; Bolk, S.; Chakravarti, A.

    1994-09-01

    Hirschsprung disease (HSCR), or congenital aganglionic megacolon, is the most common cause of congenital bowel obstruction, with an incidence of 1 in 5000. Recently, linkage of an incompletely penetrant, dominant form of HSCR to the pericentromeric region of chromosome 10 was reported, followed by identification of mutations in the RET proto-oncogene in HSCR patients. RET mutations have also been reported in both sporadic and familial forms of three neuroendrocrine tumor syndromes. Unlike the clustered RET mutations observed in these syndromes, the 18 reported HSCR mutations are distributed throughout the extracellular and tryosine kinase domains of RET. In an effort to determine the frequency of RET mutations in HSCR and correlate genotype with phenotype, we have begun to screen for mutations among 80 HSCR probands representing a wide range of phenotypes and pedigree structures. Non-isotopic single strand conformation of polymorphism (SSCP) analysis was carried out using the Pharmacia PhastSystem{trademark}. Initial screening of exons 2 through 6 detected variants in 11 patients not seen in 24 controls. One additional band shift in exon 6 has been observed in both patients and controls. Preliminary sequence analysis has revealed two putative familial mutations in exon 2: a single base pair deletion (49Pro del C 296) and a point mutation that leads to a conservative amino acid substitution (93Gly{r_arrow}Ser). These results suggest that HSCR may be associated with a range of alterations in the coding sequence of the RET extracellular domain. Additional mutations will be described.

  16. Frequencies, Laboratory Features, and Granulocyte Activation in Chinese Patients with CALR-Mutated Myeloproliferative Neoplasms

    PubMed Central

    Tian, Ruiyuan; Chang, Jianmei; Li, Jianlan; Tan, Yanhong; Xu, Zhifang; Ren, Fanggang; Zhao, Junxia; Pan, Jie; Zhang, Na; Wang, Xiaojuan; He, Jianxia; Yang, Wanfang; Wang, Hongwei

    2015-01-01

    Somatic mutations in the CALR gene have been recently identified as acquired alterations in myeloproliferative neoplasms (MPNs). In this study, we evaluated mutation frequencies, laboratory features, and granulocyte activation in Chinese patients with MPNs. A combination of qualitative allele-specific polymerase chain reaction and Sanger sequencing was used to detect three driver mutations (i.e., CALR, JAK2V617F, and MPL). CALR mutations were identified in 8.4% of cases with essential thrombocythemia (ET) and 5.3% of cases with primary myelofibrosis (PMF). Moreover, 25% of polycythemia vera, 29.5% of ET, and 48.1% of PMF were negative for all three mutations (JAK2V617F, MPL, and CALR). Compared with those patients with JAK2V617F mutation, CALR-mutated ET patients displayed unique hematological phenotypes, including higher platelet counts, and lower leukocyte counts and hemoglobin levels. Significant differences were not found between Chinese PMF patients with mutants CALR and JAK2V617F in terms of laboratory features. Interestingly, patients with CALR mutations showed markedly decreased levels of leukocyte alkaline phosphatase (LAP) expression, whereas those with JAK2V617F mutation presented with elevated levels. Overall, a lower mutant rate of CALR gene and a higher triple-negative rate were identified in the cohort of Chinese patients with MPNs. This result indicates that an undiscovered mutant gene may have a significant role in these patients. Moreover, these pathological features further imply that the disease biology varies considerably between mutants CALR and JAK2V617F. PMID:26375990

  17. Segmental basal cell naevus syndrome caused by an activating mutation in smoothened.

    PubMed

    Khamaysi, Z; Bochner, R; Indelman, M; Magal, L; Avitan-Hersh, E; Sarig, O; Sprecher, E; Bergman, R

    2016-07-01

    Aberrant sonic hedgehog signalling, mostly due to PTCH1 mutations, has been shown to play a central role in the pathogenesis of basal cell carcinoma (BCC), as well as in basal cell naevus syndrome (BCNS). Mutations in smoothened (SMO) encoding a receptor for sonic hedgehog have been reported in sporadic BCCs but not in BCNS. We report a case with multiple BCCs, pits and comedones in a segmental distribution over the upper part of the body, along with other findings compatible with BCNS. Histopathologically, there were different types of BCC. A heterozygous mutation (c.1234C>T, p.L412F) in SMO was detected in three BCCs but not in peripheral blood lymphocytes or the uninvolved skin. These were compatible with the type 1 mosaic form of BCNS. The p.L412F mutation was found experimentally to result in increased SMO transactivating activity, and the patient responded to vismodegib therapy. Activating mutations in SMO may cause BCNS. The identification of a gain-of-function mutation in SMO causing a type 1 mosaic form of BCNS further expands our understanding of the pathogenesis of BCC, with implications for the treatment of these tumours, whether sporadic or inherited. PMID:26822128

  18. A microsphere-based assay for mutation analysis of the biotinidase gene using dried blood spots.

    PubMed

    Lindau-Shepard, Barbara; Janik, David K; Pass, Kenneth A

    2012-09-01

    Biotinidase deficiency is an autosomal recessive syndrome caused by defects in the biotinidase gene, the product of which affects biotin metabolism. Newborn screening (NBS) for biotinidase deficiency can identify affected infants prior to onset of symptoms; biotin supplementation can resolve or prevent the clinical features. In NBS, dry blood spots (DBS) are usually tested for biotinidase enzyme activity by colorimetric analysis. By taking advantage of the multiplexing capabilities of the Luminex platform, we have developed a microsphere-based array genotyping method for the simultaneous detection of six disease causing mutations in the biotinidase gene, thereby permitting a second tier of molecular analysis. Genomic DNA was extracted from 3.2 mm DBS. Biotinidase gene sequences, containing the mutations of interest, were amplified by multiplexed polymerase chain reaction, followed by multiplexed allele-specific primer extension using universally tagged genotyping primers. The products were then hybridized to anti-tag carrying xTAG microspheres and detected on the Luminex platform. Genotypes were verified by sequencing. Genotyping results of 22 known biotinidase deficient samples by our xTAG biotinidase assay was in concordance with the results obtained from DNA sequencing, for all 6 mutations used in our panel. These results indicate that genotyping by an xTAG microsphere-based array is accurate, flexible, and can be adapted for high-throughput. Since NBS for biotinidase deficiency is by enzymatic assay, less than optimal quality of the DBS itself can compromise enzyme activity, while the DNA from these samples mostly remains unaffected. This assay warrants evaluation as a viable complement to the biotinidase semi-quantitative colorimetric assay. PMID:27625817

  19. A microsphere-based assay for mutation analysis of the biotinidase gene using dried blood spots

    PubMed Central

    Lindau-Shepard, Barbara; Janik, David K.; Pass, Kenneth A.

    2012-01-01

    Biotinidase deficiency is an autosomal recessive syndrome caused by defects in the biotinidase gene, the product of which affects biotin metabolism. Newborn screening (NBS) for biotinidase deficiency can identify affected infants prior to onset of symptoms; biotin supplementation can resolve or prevent the clinical features. In NBS, dry blood spots (DBS) are usually tested for biotinidase enzyme activity by colorimetric analysis. By taking advantage of the multiplexing capabilities of the Luminex platform, we have developed a microsphere-based array genotyping method for the simultaneous detection of six disease causing mutations in the biotinidase gene, thereby permitting a second tier of molecular analysis. Genomic DNA was extracted from 3.2 mm DBS. Biotinidase gene sequences, containing the mutations of interest, were amplified by multiplexed polymerase chain reaction, followed by multiplexed allele-specific primer extension using universally tagged genotyping primers. The products were then hybridized to anti-tag carrying xTAG microspheres and detected on the Luminex platform. Genotypes were verified by sequencing. Genotyping results of 22 known biotinidase deficient samples by our xTAG biotinidase assay was in concordance with the results obtained from DNA sequencing, for all 6 mutations used in our panel. These results indicate that genotyping by an xTAG microsphere-based array is accurate, flexible, and can be adapted for high-throughput. Since NBS for biotinidase deficiency is by enzymatic assay, less than optimal quality of the DBS itself can compromise enzyme activity, while the DNA from these samples mostly remains unaffected. This assay warrants evaluation as a viable complement to the biotinidase semi-quantitative colorimetric assay.

  20. Antitumor effects and molecular mechanisms of ponatinib on endometrial cancer cells harboring activating FGFR2 mutations.

    PubMed

    Kim, Do-Hee; Kwak, Yeonui; Kim, Nam Doo; Sim, Taebo

    2016-01-01

    Aberrant mutational activation of FGFR2 is associated with endometrial cancers (ECs). AP24534 (ponatinib) currently undergoing clinical trials has been known to be an orally available multi-targeted tyrosine kinase inhibitor. Our biochemical kinase assay showed that AP24534 is potent against wild-type FGFR1-4 and 5 mutant FGFRs (V561M-FGFR1, N549H-FGFR2, K650E-FGFR3, G697C-FGFR3, N535K-FGFR4) and possesses the strongest kinase-inhibitory activity on N549H-FGFR2 (IC50 of 0.5 nM) among all FGFRs tested. We therefore investigated the effects of AP24534 on endometrial cancer cells harboring activating FGFR2 mutations and explored the underlying molecular mechanisms. AP24534 significantly inhibited the proliferation of endometrial cancer cells bearing activating FGFR2 mutations (N549K, K310R/N549K, S252W) and mainly induced G1/S cell cycle arrest leading to apoptosis. AP24534 also diminished the kinase activity of immunoprecipitated FGFR2 derived from MFE-296 and MFE-280 cells and reduced the phosphorylation of FGFR2 and FRS2 on MFE-296 and AN3CA cells. AP24534 caused substantial reductions in ERK phosphorylation, PLCγ signaling and STAT5 signal transduction on ECs bearing FGFR2 activating mutations. Akt signaling pathway was also deactivated by AP24534. AP24534 causes the chemotherapeutic effect through mainly the blockade of ERK, PLCγ and STAT5 signal transduction on ECs. Moreover, AP24534 inhibited migration and invasion of endometrial cancer cells with FGFR2 mutations. In addition, AP24534 significantly blocked anchorage-independent growth of endometrial cancer cells. We, for the first time, report the molecular mechanisms by which AP24534 exerts antitumor effects on ECs with FGFR2 activating mutations, which would provide mechanistic insight into ongoing clinical investigations of AP24534 for ECs.

  1. Novel mutations in dihydrolipoamide dehydrogenase deficiency in two cousins with borderline-normal PDH complex activity.

    PubMed

    Cameron, Jessie M; Levandovskiy, Valeriy; Mackay, Neviana; Raiman, Julian; Renaud, Deborah L; Clarke, Joe T R; Feigenbaum, Annette; Elpeleg, Orly; Robinson, Brian H

    2006-07-15

    We have diagnosed dihydrolipoamide dehydrogenase (DLD) deficiency in two male second cousins, who presented with markedly different clinical phenotypes. Patient 1 had a recurrent encephalopathy, and patient 2 had microcephaly and lactic acidosis. Their presentation is unusual, in that the DLD subunit deficiency had little effect on pyruvate dehydrogenase complex activity, but caused a severe reduction in the activities of other enzymes that utilize this subunit. We have identified two mutations in the DLD gene in each patient. The second cousins have one novel mutation in common resulting in a substitution of isoleucine for threonine (I47T), which has not been previously reported in the literature. Patient 1 has a second mutation that has been reported to be common in the Ashkenazi Jewish population, G229C. Patient 2 has a second mutation, E375K, which has also been previously reported in the literature. Enzyme kinetic measurements on patient fibroblasts show that under certain conditions, one heteroallelic mutation may have a higher K(m). This may account for the differing clinical phenotypes. These findings have important repercussions for other patients with similar clinical phenotypes, as DLD activity is not normally measured in cases with normal PDHc activity.

  2. Mutations of fumarase that distinguish between the active site and a nearby dicarboxylic acid binding site.

    PubMed Central

    Weaver, T.; Lees, M.; Banaszak, L.

    1997-01-01

    Two mutant forms of fumarase C from E. coli have been made using PCR and recombinant DNA. The recombinant form of the protein included a histidine arm on the C-terminal facilitating purification. Based on earlier studies, two different carboxylic acid binding sites, labeled A- and B-, were observed in crystal structures of the wild type and inhibited forms of the enzyme. A histidine at each of the sites was mutated to an asparagine. H188N at the A-site resulted in a large decrease in specific activity, while the H129N mutation at the B-site had essentially no effect. From the results, we conclude that the A-site is indeed the active site, and a dual role for H188 as a potential catalytic base is proposed. Crystal structures of the two mutant proteins produced some unexpected results. Both mutations reduced the affinity for the carboxylic acids at their respective sites. The H129N mutant should be particularly useful in future kinetic studies because it sterically blocks the B-site with the carboxyamide of asparagine assuming the position of the ligand's carboxylate. In the H188N mutation at the active site, the new asparagine side chain still interacts with an active site water that appears to have moved slightly as a result of the mutation. PMID:9098893

  3. Mutational analysis of the N-methyltransferase domain of the multifunctional enzyme enniatin synthetase.

    PubMed

    Hacker, C; Glinski, M; Hornbogen, T; Doller, A; Zocher, R

    2000-10-01

    N-Methylcyclopeptides like cyclosporins and enniatins are synthesized by multifunctional enzymes representing hybrid systems of peptide synthetases and S-adenosyl-l-methionine (AdoMet)-dependent N-methyltransferases. The latter constitute a new family of N-methyltransferases sharing high homology within procaryotes and eucaryotes. Here we describe the mutational analysis of the N-methyltransferase domain of enniatin synthetase from Fusarium scirpi to gain insight into the assembly of the AdoMet-binding site. The role of four conserved motifs (I, (2085)VLEIGTGSGMIL; II/Y, (2105)SYVGLDPS; IV, (2152)DLVVFNSVVQYFTPPEYL; and V, (2194)ATNGHFLAARA) in cofactor binding as measured by photolabeling was studied. Deletion of the first 21 N-terminal amino acid residues of the N-methyltransferase domain did not affect AdoMet binding. Further shortening close to motif I resulted in loss of binding activity. Truncation of 38 amino acids from the C terminus and also internal deletions containing motif V led to complete loss of AdoMet-binding activity. Point mutations converting the conserved Tyr(223) (corresponding to position 2106 in enniatin synthetase) in motif II/Y (close to motif I) into Val, Ala, and Ser, respectively, strongly diminished AdoMet binding, whereas conversion of this residue to Phe restored AdoMet-binding activity to approximately 70%, indicating that Tyr(223) is important for AdoMet binding and that the aromatic Tyr(223) may be crucial for AdoMet binding in N-methylpeptide synthetases.

  4. Expression status and mutational analysis of the PTEN and P13K subunit genes in ovarian granulosa cell tumors.

    PubMed

    Bittinger, Sophie; Alexiadis, Maria; Fuller, Peter J

    2009-04-01

    Granulosa cell tumors (GCT) are a unique subset of ovarian tumors which have a molecular phenotype resembling that of follicle stimulating hormone (FSH)-stimulated pre-ovulatory granulosa cells. FSH acts via its receptor to stimulate signaling pathways including the phosphatidylinositol 3-kinase (PI3K)-AKT pathway. Activation of this pathway occurs in solid tumors, including ovarian epithelial tumors, through mutation of the PI3K subunit genes or inactivation of the tumor suppressor, PTEN. Activation of this pathway would be predicted to be tumorigenic in granulosa cells.Expression of the 2 PI3K subunit genes, PIK3CA, which encodes the catalytic subunit, and PIK3R1, which encodes the regulatory subunit, together with the PTEN gene was determined in a panel of GCT, 2 human GCT-derived cell lines, COV434 and KGN, and normal ovary. Direct sequence analysis was used to screen for mutations. Expression of all 3genes was observed in the GCT without evidence of overexpression for the PI3K subunit genes or loss of expression for PTEN. Sequence analysis of amplicons spanning exons 9and 20, in which greater than 75% of mutations occur in the PIK3CA gene did not identify any missense mutations. Similarly, the previously reported deletions in exons 12 and 13 of the PIK3R1 were not found in the GCT. Three amplicons spanning the entire coding sequence of the PTEN gene were sequenced; neither deletions nor mutations were identified.These findings suggest that activation of PI3K signaling through PI3K/PTEN mutation or altered expression, in contrast to many other types of solid tumor, is not associated with GCT.

  5. The TP53 website: an integrative resource centre for the TP53 mutation database and TP53 mutant analysis

    PubMed Central

    Leroy, Bernard; Fournier, Jean Louis; Ishioka, Chikashi; Monti, Paola; Inga, Alberto; Fronza, Gilberto; Soussi, Thierry

    2013-01-01

    A novel resource centre for TP53 mutations and mutants has been developed (http://p53.fr). TP53 gene dysfunction can be found in the majority of human cancer types. The potential use of TP53 mutation as a biomarker for clinical studies or exposome analysis has led to the publication of thousands of reports describing the TP53 gene status in >10 000 tumours. The UMD TP53 mutation database was created in 1990 and has been regularly updated. The 2012 release of the database has been carefully curated, and all suspicious reports have been eliminated. It is available either as a flat file that can be easily manipulated or as novel multi-platform analytical software that has been designed to analyse various aspects of TP53 mutations. Several tools to ascertain TP53 mutations are also available for download. We have developed TP53MULTLoad, a manually curated database providing comprehensive details on the properties of 2549 missense TP53 mutants. More than 100 000 entries have been arranged in 39 different activity fields, such as change of transactivation on various promoters, apoptosis or growth arrest. For several hot spot mutants, multiple gain of function activities are also included. The database can be easily browsed via a graphical user interface. PMID:23161690

  6. The age of human mutation: Genealogical and linkage disequilibrium analysis of the CLN5 mutation in the Finnish population

    SciTech Connect

    Varilo, T; Savukoski, M.; Peltonen, L.

    1996-03-01

    Variant late infantile neuronal ceroid lipofuscinosis (vLINCL) is an autosomal recessive progressive encephalopathy of childhood enriched in the western part of Finland, with a local incidence of 1/1,500. We recently assigned the locus for vLINCL, CLN5, to 13q21.1-q32. In the present study, the haplotype analysis of Finnish CLN5 chromosomes provides evidence that one single mutation causes vLINCL in the Finnish population. Eight microsatellite markers closely linked to the CLN5 gene on chromosome 13q were analyzed, to study identity by descent by shared haplotype analysis. One single haplotype formed by flanking markers D13S160 and D13S162 in strong linkage disequilibrium (P < .0001) was present in 81% of disease-bearing chromosomes. Allele 4 at the marker locus D13S162 was detected in 94% of disease-bearing chromosomes. To evaluate the age of the CLN5 mutation by virtue of its restricted geographical distribution, church records were used to identify the common ancestors for 18 vLINCL families diagnosed in Finland. The pedigrees of the vLINCL ancestors merged on many occasions, which also supports a single founder mutation that obviously happened 20-30 generations ago (i.e., {approximately}500 years ago) in this isolated population. Linkage disequilibrium was detected with seven markers covering an extended genetic distance of 11 cM, which further supports the young age of the CLN5 mutation. When the results of genealogical and linkage disequilibrium studies were combined, the CLN5 gene was predicted to lie {approximately}200-400 kb (total range 30-1,360 kb) from the closest marker D13S162. 29 refs., 2 figs., 5 tabs.

  7. Functional impact of mutational activation on the Listeria monocytogenes central virulence regulator PrfA

    PubMed Central

    Miner, Maurine D.; Port, Gary C.; Freitag, Nancy E.

    2009-01-01

    SUMMARY The transcriptional activator PrfA is required for the expression of virulence factors necessary for Listeria monocytogenes pathogenesis. PrfA is believed to become activated following L. monocytogenes entry into the cytosol of infected host cells resulting in the induction of target genes whose products are required for bacterial intracellular growth and cell-to-cell spread. Several mutations have been identified that appear to lock PrfA into its highly activated cytosolic form (known as prfA* mutations). In this study PrfA and five PrfA* mutant proteins exhibiting differing degrees of activity were purified and analyzed to define the influences of the mutations on distinct aspects of PrfA activity. Based on limited proteolytic digestion conformational changes were detected for the PrfA* mutant proteins in comparison to wild type PrfA. For all but one mutant (PrfA Y63C), the DNA binding affinity as measured by electophoretic mobility shift assay (EMSA) appeared to directly correlate with levels of PrfA mutational activation such that the high activity mutants exhibited the largest increases in DNA binding affinity and moderately activated mutants exhibited more moderate increases. Surprisingly, the ability of PrfA and PrfA* mutants to form dimers in solution appeared to inversely correlate with levels of PrfA-dependent gene expression. Based on comparisons of protein activity and structural similarities with PrfA family members Crp and CooA, the prfA* mutations modify distinct aspects of PrfA activity that include DNA binding and protein-protein interactions. PMID:18957610

  8. Mutational Analysis of Oculocutaneous Albinism: A Compact Review

    PubMed Central

    Kamaraj, Balu

    2014-01-01

    Oculocutaneous albinism (OCA) is an autosomal recessive disorder caused by either complete lack of or a reduction of melanin biosynthesis in the melanocytes. The OCA1A is the most severe type with a complete lack of melanin production throughout life, while the milder forms OCA1B, OCA2, OCA3, and OCA4 show some pigment accumulation over time. Mutations in TYR, OCA2, TYRP1, and SLC45A2 are mainly responsible for causing oculocutaneous albinism. Recently, two new genes SLC24A5 and C10orf11 are identified that are responsible to cause OCA6 and OCA7, respectively. Also a locus has been mapped to the human chromosome 4q24 region which is responsible for genetic cause of OCA5. In this paper, we summarized the clinical and molecular features of OCA genes. Further, we reviewed the screening of pathological mutations of OCA genes and its molecular mechanism of the protein upon mutation by in silico approach. We also reviewed TYR (T373K, N371Y, M370T, and P313R), OCA2 (R305W), TYRP1 (R326H and R356Q) mutations and their structural consequences at molecular level. It is observed that the pathological genetic mutations and their structural and functional significance of OCA genes will aid in development of personalized medicine for albinism patients. PMID:25093188

  9. System analysis of gene mutations and clinical phenotype in Chinese patients with autosomal-dominant polycystic kidney disease

    PubMed Central

    Jin, Meiling; Xie, Yuansheng; Chen, Zhiqiang; Liao, Yujie; Li, Zuoxiang; Hu, Panpan; Qi, Yan; Yin, Zhiwei; Li, Qinggang; Fu, Ping; Chen, Xiangmei

    2016-01-01

    Autosomal dominant polycystic kidney disease (ADPKD) is the most common inherited kidney disorder mainly caused by mutation in PKD1/PKD2. However, ethnic differences in mutations, the association between mutation genotype/clinical phenotype, and the clinical applicable value of mutation detection are poorly understood. We made systematically analysis of Chinese ADPKD patients based on a next-generation sequencing platform. Among 148 ADPKD patients enrolled, 108 mutations were detected in 127 patients (85.8%). Compared with mutations in Caucasian published previously, the PKD2 mutation detection rate was lower, and patients carrying the PKD2 mutation invariably carried the PKD1 mutation. The definite pathogenic mutation detection rate was lower, whereas the multiple mutations detection rate was higher in Chinese patients. Then, we correlated PKD1/PKD2 mutation data and clinical data: patients with mutation exhibited a more severe phenotype; patients with >1 mutations exhibited a more severe phenotype; patients with pathogenic mutations exhibited a more severe phenotype. Thus, the PKD1/PKD2 mutation status differed by ethnicity, and the PKD1/PKD2 genotype may affect the clinical phenotype of ADPKD. Furthermore, it makes sense to detect PKD1/PKD2 mutation status for early diagnosis and prognosis, perhaps as early as the embryo/zygote stage, to facilitate early clinical intervention and family planning. PMID:27782177

  10. Analysis of HBV genotype, drug resistant mutations, and pre-core/basal core promoter mutations in Korean patients with acute hepatitis B.

    PubMed

    Lee, Jong Ho; Hong, Sun Pyo; Jang, Eun Sun; Park, Sang Jong; Hwang, Seong Gyu; Kang, Sook-Kyoung; Jeong, Sook-Hyang

    2015-06-01

    Acute hepatitis B, caused by hepatitis B virus (HBV) strains with drug resistant mutations or pre-core/basal core promoter (PC/BCP) mutations, is a public health concern, because this infection is often associated with poor disease outcome or difficulty in therapeutic choice. The HBV genotype, the prevalence of drug resistant mutations, and PC/BCP mutations in Korean patients with acute hepatitis B were studied. From 2006 to 2008, 36 patients with acute hepatitis B were enrolled prospectively in four general hospitals. Among them, 20 showed detectable HBV DNA (median value was 4.8 log copies/mL). HBV genotyping and analysis of HBV mutations that conferred resistance against lamivudine, adefovir, or entecavir and of PC/BCP mutations were performed using highly sensitive restriction fragment mass polymorphism (RFMP) analysis. All 20 patients were infected with HBV genotype C, which causes almost all cases of chronic hepatitis B in Korea. No patient showed mutations that conferred resistance against lamivudine (L180M, M204V/I), adefovir (A181T, N236S), or entecavir (I169M, A184T/V, S202I/G, M250V/I/L). However, four patients had BCP mutations, and two had PC mutations. Platelet counts were significantly lower in the four patients with PC/BCP mutations compared to those with wild type. In this study, all acute hepatitis B patients had genotype C HBV strains with no drug resistant mutations. However, 20% showed PC/BCP mutations. This highlights the need for further study on the significance of PC/BCP mutations.

  11. An analysis of substitution, deletion and insertion mutations in cancer genes.

    PubMed

    Iengar, Prathima

    2012-08-01

    Cancer-associated mutations in cancer genes constitute a diverse set of mutations associated with the disease. To gain insight into features of the set, substitution, deletion and insertion mutations were analysed at the nucleotide level, from the COSMIC database. The most frequent substitutions were c → t, g → a, g → t, and the most frequent codon changes were to termination codons. Deletions more than insertions, FS (frameshift) indels more than I-F (in-frame) ones, and single-nucleotide indels, were frequent. FS indels cause loss of significant fractions of proteins. The 5'-cut in FS deletions, and 5'-ligation in FS insertions, often occur between pairs of identical bases. Interestingly, the cut-site and 3'-ligation in insertions, and 3'-cut and join-pair in deletions, were each found to be the same significantly often (p < 0.001). It is suggested that these features aid the incorporation of indel mutations. Tumor suppressors undergo larger numbers of mutations, especially disruptive ones, over the entire protein length, to inactivate two alleles. Proto-oncogenes undergo fewer, less-disruptive mutations, in selected protein regions, to activate a single allele. Finally, catalogues, in ranked order, of genes mutated in each cancer, and cancers in which each gene is mutated, were created. The study highlights the nucleotide level preferences and disruptive nature of cancer mutations.

  12. Ras-related TC21 is activated by mutation in a breast cancer cell line, but infrequently in breast carcinomas in vivo.

    PubMed Central

    Barker, K. T.; Crompton, M. R.

    1998-01-01

    Activating ras mutations are found in many types of human tumour. Mutations in Harvey (H-), Kirsten (K-) and neuronal (N-) ras are, however, rarely found in breast carcinomas. TC21 is a ras family member that shares close homology to H-, K- and N-ras, and activating mutations have been found in ovarian carcinoma and leiomyosarcoma cell lines. We have examined panels of cDNAs from breast, ovarian and cervical cell lines, and primary and metastatic breast tumours for mutations in TC21 using a single-strand conformational polymorphism (SSCP)-based assay. One breast cancer cell line, CAL51, exhibited an altered SSCP pattern, compared with normal tissue, which was due to an A-T base change in codon 72, causing a predicted Gln-Leu activating mutation. Of nine primary and 15 metastatic breast tumour cDNAs analysed, none exhibited an altered pattern by SSCP. The apparently wild-type pattern by SSCP analysis was confirmed by sequence analysis of some of the cDNAs assayed. Thus, we conclude that mutations in TC21 are uncommon in breast carcinomas. Images Figure 1 Figure 2 Figure 3 PMID:9703274

  13. A meta-analysis of prognostic value of KIT mutation status in gastrointestinal stromal tumors

    PubMed Central

    Jiang, Zhiqiang; Zhang, Jian; Li, Zhi; Liu, Yingjun; Wang, Daohai; Han, Guangsen

    2016-01-01

    Numerous types of KIT mutations have been reported in gastrointestinal stromal tumors (GISTs); however, controversy still exists regarding their clinicopathological significance. In this study, we reviewed the publicly available literature to assess the data by a meta-analysis to characterize KIT mutations and different types of KIT mutations in prognostic prediction in patients with GISTs. Twenty-eight studies that included 4,449 patients were identified and analyzed. We found that KIT mutation status was closely correlated with size of tumors and different mitosis indexes, but not with tumor location. KIT mutation was also observed to be significantly correlated with tumor recurrence, metastasis, as well as the overall survival of patients. Interestingly, there was higher risk of progression in KIT exon 9-mutated patients than in exon 11-mutated patients. Five-year relapse-free survival (RFS) rate was significantly higher in KIT exon 11-deleted patients than in those with other types of KIT exon 11 mutations. In addition, RFS for 5 years was significantly worse in patients bearing KIT codon 557–558 deletions than in those bearing other KIT exon 11 deletions. Our results strongly support the hypothesis that KIT mutation status is another evaluable factor for prognosis prediction in GISTs. PMID:27350754

  14. Laminin-5 mutational analysis in an Italian cohort of patients with junctional epidermolysis bullosa.

    PubMed

    Posteraro, Patrizia; De Luca, Naomi; Meneguzzi, Guerrino; El Hachem, May; Angelo, Corrado; Gobello, Tommaso; Tadini, Gianluca; Zambruno, Giovanna; Castiglia, Daniele

    2004-10-01

    Junctional epidermolysis bullosa (JEB) is a rare genodermatosis characterized by dermal-epidermal separation that is caused by mutations in the genes encoding hemidesmosomal components and laminin-5, the major epithelial adhesion ligand. Here, we report on the mutational analysis of LAMA3, LAMB3, and LAMC2 genes encoding laminin-5 chains in 19 Italian patients, 11 affected with the severe Herlitz (H JEB) and eight with the mild non-Herlitz variant of JEB (non-H JEB). Eighteen mutations, seven of which were novel, were identified and their consequences analyzed at the mRNA and protein level. Premature termination codon mutations in both alleles of LAMB3 or LAMC2 genes were found in nine of the 11 H JEB patients, with a prevalence of mutations in LAMC2. In one case, a homozygous frameshift mutation in LAMB3 was associated to illegitimate splicing leading to non-H JEB. One H JEB patient showed a large intragenic duplication within LAMC2, a genetic defect so far uncovered in laminin-5 genes. Splicing or missense mutations, were prevalent in non-H JEB patients. Collectively, five mutations appeared to be frequent in laminin-5 JEB patients: R635X, 29insC, E210K, W143X in LAMB3 and R95X in LAMC2. These recurrent mutations account for approximately 44% of laminin-5 JEB alleles in Italian patients. PMID:15373767

  15. Systematic analysis of mutation distribution in three dimensional protein structures identifies cancer driver genes

    PubMed Central

    Fujimoto, Akihiro; Okada, Yukinori; Boroevich, Keith A.; Tsunoda, Tatsuhiko; Taniguchi, Hiroaki; Nakagawa, Hidewaki

    2016-01-01

    Protein tertiary structure determines molecular function, interaction, and stability of the protein, therefore distribution of mutation in the tertiary structure can facilitate the identification of new driver genes in cancer. To analyze mutation distribution in protein tertiary structures, we applied a novel three dimensional permutation test to the mutation positions. We analyzed somatic mutation datasets of 21 types of cancers obtained from exome sequencing conducted by the TCGA project. Of the 3,622 genes that had ≥3 mutations in the regions with tertiary structure data, 106 genes showed significant skew in mutation distribution. Known tumor suppressors and oncogenes were significantly enriched in these identified cancer gene sets. Physical distances between mutations in known oncogenes were significantly smaller than those of tumor suppressors. Twenty-three genes were detected in multiple cancers. Candidate genes with significant skew of the 3D mutation distribution included kinases (MAPK1, EPHA5, ERBB3, and ERBB4), an apoptosis related gene (APP), an RNA splicing factor (SF1), a miRNA processing factor (DICER1), an E3 ubiquitin ligase (CUL1) and transcription factors (KLF5 and EEF1B2). Our study suggests that systematic analysis of mutation distribution in the tertiary protein structure can help identify cancer driver genes. PMID:27225414

  16. Systematic analysis of mutation distribution in three dimensional protein structures identifies cancer driver genes.

    PubMed

    Fujimoto, Akihiro; Okada, Yukinori; Boroevich, Keith A; Tsunoda, Tatsuhiko; Taniguchi, Hiroaki; Nakagawa, Hidewaki

    2016-01-01

    Protein tertiary structure determines molecular function, interaction, and stability of the protein, therefore distribution of mutation in the tertiary structure can facilitate the identification of new driver genes in cancer. To analyze mutation distribution in protein tertiary structures, we applied a novel three dimensional permutation test to the mutation positions. We analyzed somatic mutation datasets of 21 types of cancers obtained from exome sequencing conducted by the TCGA project. Of the 3,622 genes that had ≥3 mutations in the regions with tertiary structure data, 106 genes showed significant skew in mutation distribution. Known tumor suppressors and oncogenes were significantly enriched in these identified cancer gene sets. Physical distances between mutations in known oncogenes were significantly smaller than those of tumor suppressors. Twenty-three genes were detected in multiple cancers. Candidate genes with significant skew of the 3D mutation distribution included kinases (MAPK1, EPHA5, ERBB3, and ERBB4), an apoptosis related gene (APP), an RNA splicing factor (SF1), a miRNA processing factor (DICER1), an E3 ubiquitin ligase (CUL1) and transcription factors (KLF5 and EEF1B2). Our study suggests that systematic analysis of mutation distribution in the tertiary protein structure can help identify cancer driver genes. PMID:27225414

  17. Extended RAS and BRAF Mutation Analysis Using Next-Generation Sequencing.

    PubMed

    Sakai, Kazuko; Tsurutani, Junji; Yamanaka, Takeharu; Yoneshige, Azusa; Ito, Akihiko; Togashi, Yosuke; De Velasco, Marco A; Terashima, Masato; Fujita, Yoshihiko; Tomida, Shuta; Tamura, Takao; Nakagawa, Kazuhiko; Nishio, Kazuto

    2015-01-01

    Somatic mutations in KRAS, NRAS, and BRAF genes are related to resistance to anti-EGFR antibodies in colorectal cancer. We have established an extended RAS and BRAF mutation assay using a next-generation sequencer to analyze these mutations. Multiplexed deep sequencing was performed to detect somatic mutations within KRAS, NRAS, and BRAF, including minor mutated components. We first validated the technical performance of the multiplexed deep sequencing using 10 normal DNA and 20 formalin-fixed, paraffin-embedded (FFPE) tumor samples. To demonstrate the potential clinical utility of our assay, we profiled 100 FFPE tumor samples and 15 plasma samples obtained from colorectal cancer patients. We used a variant calling approach based on a Poisson distribution. The distribution of the mutation-positive population was hypothesized to follow a Poisson distribution, and a mutation-positive status was defined as a value greater than the significance level of the error rate (α = 2 x 10(-5)). The cut-off value was determined to be the average error rate plus 7 standard deviations. Mutation analysis of 100 clinical FFPE tumor specimens was performed without any invalid cases. Mutations were detected at a frequency of 59% (59/100). KRAS mutation concordance between this assay and Scorpion-ARMS was 92% (92/100). DNA obtained from 15 plasma samples was also analyzed. KRAS and BRAF mutations were identified in both the plasma and tissue samples of 6 patients. The genetic screening assay using next-generation sequencer was validated for the detection of clinically relevant RAS and BRAF mutations using FFPE and liquid samples.

  18. SCN10A Mutation in a Patient with Erythromelalgia Enhances C-Fiber Activity Dependent Slowing.

    PubMed

    Kist, Andreas M; Sagafos, Dagrun; Rush, Anthony M; Neacsu, Cristian; Eberhardt, Esther; Schmidt, Roland; Lunden, Lars Kristian; Ørstavik, Kristin; Kaluza, Luisa; Meents, Jannis; Zhang, Zhiping; Carr, Thomas Hedley; Salter, Hugh; Malinowsky, David; Wollberg, Patrik; Krupp, Johannes; Kleggetveit, Inge Petter; Schmelz, Martin; Jørum, Ellen; Lampert, Angelika; Namer, Barbara

    2016-01-01

    Gain-of-function mutations in the tetrodotoxin (TTX) sensitive voltage-gated sodium channel (Nav) Nav1.7 have been identified as a key mechanism underlying chronic pain in inherited erythromelalgia. Mutations in TTX resistant channels, such as Nav1.8 or Nav1.9, were recently connected with inherited chronic pain syndromes. Here, we investigated the effects of the p.M650K mutation in Nav1.8 in a 53 year old patient with erythromelalgia by microneurography and patch-clamp techniques. Recordings of the patient's peripheral nerve fibers showed increased activity dependent slowing (ADS) in CMi and less spontaneous firing compared to a control group of erythromelalgia patients without Nav mutations. To evaluate the impact of the p.M650K mutation on neuronal firing and channel gating, we performed current and voltage-clamp recordings on transfected sensory neurons (DRGs) and neuroblastoma cells. The p.M650K mutation shifted steady-state fast inactivation of Nav1.8 to more hyperpolarized potentials and did not significantly alter any other tested gating behaviors. The AP half-width was significantly broader and the stimulated action potential firing rate was reduced for M650K transfected DRGs compared to WT. We discuss the potential link between enhanced steady state fast inactivation, broader action potential width and the potential physiological consequences.

  19. Recurrent activating mutation in PRKACA in cortisol-producing adrenal tumors.

    PubMed

    Goh, Gerald; Scholl, Ute I; Healy, James M; Choi, Murim; Prasad, Manju L; Nelson-Williams, Carol; Kunstman, John W; Kuntsman, John W; Korah, Reju; Suttorp, Anna-Carinna; Dietrich, Dimo; Haase, Matthias; Willenberg, Holger S; Stålberg, Peter; Hellman, Per; Akerström, Göran; Björklund, Peyman; Carling, Tobias; Lifton, Richard P

    2014-06-01

    Adrenal tumors autonomously producing cortisol cause Cushing's syndrome. We performed exome sequencing of 25 tumor-normal pairs and identified 2 subgroups. Eight tumors (including three carcinomas) had many somatic copy number variants (CNVs) with frequent deletion of CDC42 and CDKN2A, amplification of 5q31.2 and protein-altering mutations in TP53 and RB1. Seventeen tumors (all adenomas) had no somatic CNVs or TP53 or RB1 mutations. Six of these had known gain-of-function mutations in CTNNB1 (β-catenin) or GNAS (Gαs). Six others had somatic mutations in PRKACA (protein kinase A (PKA) catalytic subunit) resulting in a p.Leu206Arg substitution. Further sequencing identified this mutation in 13 of 63 tumors (35% of adenomas with overt Cushing's syndrome). PRKACA, GNAS and CTNNB1 mutations were mutually exclusive. Leu206 directly interacts with the regulatory subunit of PKA, PRKAR1A. Leu206Arg PRKACA loses PRKAR1A binding, increasing the phosphorylation of downstream targets. PKA activity induces cortisol production and cell proliferation, providing a mechanism for tumor development. These findings define distinct mechanisms underlying adrenal cortisol-producing tumors. PMID:24747643

  20. SCN10A Mutation in a Patient with Erythromelalgia Enhances C-Fiber Activity Dependent Slowing

    PubMed Central

    Neacsu, Cristian; Eberhardt, Esther; Schmidt, Roland; Lunden, Lars Kristian; Ørstavik, Kristin; Kaluza, Luisa; Meents, Jannis; Zhang, Zhiping; Carr, Thomas Hedley; Salter, Hugh; Malinowsky, David; Wollberg, Patrik; Krupp, Johannes; Kleggetveit, Inge Petter; Schmelz, Martin; Jørum, Ellen; Namer, Barbara

    2016-01-01

    Gain-of-function mutations in the tetrodotoxin (TTX) sensitive voltage-gated sodium channel (Nav) Nav1.7 have been identified as a key mechanism underlying chronic pain in inherited erythromelalgia. Mutations in TTX resistant channels, such as Nav1.8 or Nav1.9, were recently connected with inherited chronic pain syndromes. Here, we investigated the effects of the p.M650K mutation in Nav1.8 in a 53 year old patient with erythromelalgia by microneurography and patch-clamp techniques. Recordings of the patient’s peripheral nerve fibers showed increased activity dependent slowing (ADS) in CMi and less spontaneous firing compared to a control group of erythromelalgia patients without Nav mutations. To evaluate the impact of the p.M650K mutation on neuronal firing and channel gating, we performed current and voltage-clamp recordings on transfected sensory neurons (DRGs) and neuroblastoma cells. The p.M650K mutation shifted steady-state fast inactivation of Nav1.8 to more hyperpolarized potentials and did not significantly alter any other tested gating behaviors. The AP half-width was significantly broader and the stimulated action potential firing rate was reduced for M650K transfected DRGs compared to WT. We discuss the potential link between enhanced steady state fast inactivation, broader action potential width and the potential physiological consequences. PMID:27598514

  1. SCN10A Mutation in a Patient with Erythromelalgia Enhances C-Fiber Activity Dependent Slowing.

    PubMed

    Kist, Andreas M; Sagafos, Dagrun; Rush, Anthony M; Neacsu, Cristian; Eberhardt, Esther; Schmidt, Roland; Lunden, Lars Kristian; Ørstavik, Kristin; Kaluza, Luisa; Meents, Jannis; Zhang, Zhiping; Carr, Thomas Hedley; Salter, Hugh; Malinowsky, David; Wollberg, Patrik; Krupp, Johannes; Kleggetveit, Inge Petter; Schmelz, Martin; Jørum, Ellen; Lampert, Angelika; Namer, Barbara

    2016-01-01

    Gain-of-function mutations in the tetrodotoxin (TTX) sensitive voltage-gated sodium channel (Nav) Nav1.7 have been identified as a key mechanism underlying chronic pain in inherited erythromelalgia. Mutations in TTX resistant channels, such as Nav1.8 or Nav1.9, were recently connected with inherited chronic pain syndromes. Here, we investigated the effects of the p.M650K mutation in Nav1.8 in a 53 year old patient with erythromelalgia by microneurography and patch-clamp techniques. Recordings of the patient's peripheral nerve fibers showed increased activity dependent slowing (ADS) in CMi and less spontaneous firing compared to a control group of erythromelalgia patients without Nav mutations. To evaluate the impact of the p.M650K mutation on neuronal firing and channel gating, we performed current and voltage-clamp recordings on transfected sensory neurons (DRGs) and neuroblastoma cells. The p.M650K mutation shifted steady-state fast inactivation of Nav1.8 to more hyperpolarized potentials and did not significantly alter any other tested gating behaviors. The AP half-width was significantly broader and the stimulated action potential firing rate was reduced for M650K transfected DRGs compared to WT. We discuss the potential link between enhanced steady state fast inactivation, broader action potential width and the potential physiological consequences. PMID:27598514

  2. A novel human autoimmune syndrome caused by combined hypomorphic and activating mutations in ZAP-70.

    PubMed

    Chan, Alice Y; Punwani, Divya; Kadlecek, Theresa A; Cowan, Morton J; Olson, Jean L; Mathes, Erin F; Sunderam, Uma; Fu, Shu Man; Srinivasan, Rajgopal; Kuriyan, John; Brenner, Steven E; Weiss, Arthur; Puck, Jennifer M

    2016-02-01

    A brother and sister developed a previously undescribed constellation of autoimmune manifestations within their first year of life, with uncontrollable bullous pemphigoid, colitis, and proteinuria. The boy had hemophilia due to a factor VIII autoantibody and nephrotic syndrome. Both children required allogeneic hematopoietic cell transplantation (HCT), which resolved their autoimmunity. The early onset, severity, and distinctive findings suggested a single gene disorder underlying the phenotype. Whole-exome sequencing performed on five family members revealed the affected siblings to be compound heterozygous for two unique missense mutations in the 70-kD T cell receptor ζ-chain associated protein (ZAP-70). Healthy relatives were heterozygous mutation carriers. Although pre-HCT patient T cells were not available, mutation effects were determined using transfected cell lines and peripheral blood from carriers and controls. Mutation R192W in the C-SH2 domain exhibited reduced binding to phosphorylated ζ-chain, whereas mutation R360P in the N lobe of the catalytic domain disrupted an autoinhibitory mechanism, producing a weakly hyperactive ZAP-70 protein. Although human ZAP-70 deficiency can have dysregulated T cells, and autoreactive mouse thymocytes with weak Zap-70 signaling can escape tolerance, our patients' combination of hypomorphic and activating mutations suggested a new disease mechanism and produced previously undescribed human ZAP-70-associated autoimmune disease. PMID:26783323

  3. Transforming activity of the c-Ha-ras oncogene having two point mutations in codons 12 and 61.

    PubMed

    Sekiya, T; Prassolov, V S; Fushimi, M; Nishimura, S

    1985-09-01

    A recombinant plasmid carrying the human c-Ha-ras gene with two point mutations in codons 12 and 61 was constructed and its transforming activity on mouse NIH 3T3 cells was compared with those of genes with a single mutation in either codon 12 or 61. Quantitative analyses revealed that the gene with two mutations had essentially the same transforming activity as the genes with single mutations. These results indicate that a single mutation of the c-Ha-ras gene in either codon 12 or 61 is sufficient to activate the gene and that neither of the two mutation sites involved in activation of the gene needs to be intact for transforming activity.

  4. Mutation analysis and molecular genetics of epidermolysis bullosa.

    PubMed

    Pulkkinen, L; Uitto, J

    1999-02-01

    Cutaneous basement membrane zone (BMZ) consists of a number of attachment structures that are critical for stable association of the epidermis to the underlying dermis. These include hemidesmosomes, anchoring filaments and anchoring fibrils which form an interconnecting network extending from the intracellular milieu of basal keratinocytes across the dermal-epidermal basement membrane to the underlying dermis. Aberrations in this network structure, e.g. due to genetic lesions in the corresponding genes, can result in fragility of the skin at the level of the cutaneous BMZ. The prototype of such diseases is epidermolysis bullosa (EB), a heterogeneous group of genodermatoses characterized by fragility and blistering of the skin, often associated with extracutaneous manifestations, and inherited either in an autosomal dominant or autosomal recessive manner. Based on constellations of the phenotypic manifestations, severity of the disease, and the level of tissue separation within the cutaneous BMZ, EB has been divided into clinically distinct subcategories, including the simplex, hemidesmosomal, junctional and dystrophic variants. Elucidation of BMZ gene/protein systems and development of mutation detection strategies have allowed identification of mutations in 10 different BMZ genes which can explain the clinical heterogeneity of EB. These include mutations in the type VII collagen gene (COL7A1) in the dystrophic (severely scarring) forms of EB; mutations in the laminin 5 genes (LAMA3, LAMB3 and LAMC2) in a lethal (Herlitz) variant of junctional EB; aberrations in the type XVII collagen gene (COL17A1) in non-lethal forms of junctional EB; mutations in the alpha6 and beta4 integrin genes in a distinct hemidesmosomal variant of EB with congenital pyloric atresia; and mutations in the plectin gene (PLEC1) in a form of EB associated with late-onset muscular dystrophy. Identification of mutations in these gene/protein systems attests to their critical importance in the

  5. Next-generation sequencing with a myeloid gene panel in core-binding factor AML showed KIT activation loop and TET2 mutations predictive of outcome

    PubMed Central

    Cher, C Y; Leung, G M K; Au, C H; Chan, T L; Ma, E S K; Sim, J P Y; Gill, H; Lie, A K W; Liang, R; Wong, K F; Siu, L L P; Tsui, C S P; So, C C; Wong, H W W; Yip, S F; Lee, H K K; Liu, H S Y; Lau, J S M; Luk, T H; Lau, C K; Lin, S Y; Kwong, Y L; Leung, A Y H

    2016-01-01

    Clinical outcome and mutations of 96 core-binding factor acute myeloid leukemia (AML) patients 18–60 years old were examined. Complete remission (CR) after induction was 94.6%. There was no significant difference in CR, leukemia-free-survival (LFS) and overall survival (OS) between t(8;21) (N=67) and inv(16) patients (N=29). Univariate analysis showed hematopoietic stem cell transplantation at CR1 as the only clinical parameter associated with superior LFS. Next-generation sequencing based on a myeloid gene panel was performed in 72 patients. Mutations in genes involved in cell signaling were associated with inferior LFS and OS, whereas those in genes involved in DNA methylation were associated with inferior LFS. KIT activation loop (AL) mutations occurred in 25 patients, and were associated with inferior LFS (P=0.003) and OS (P=0.001). TET2 mutations occurred in 8 patients, and were associated with significantly shorter LFS (P=0.015) but not OS. Patients negative for KIT-AL and TET2 mutations (N=41) had significantly better LFS (P<0.001) and OS (P=0.012) than those positive for both or either mutation. Multivariate analysis showed that KIT-AL and TET2 mutations were associated with inferior LFS, whereas age ⩾40 years and marrow blast ⩾70% were associated with inferior OS. These observations provide new insights that may guide better treatment for this AML subtype. PMID:27391574

  6. T396I Mutation of Mouse Sufu Reduces the Stability and Activity of Gli3 Repressor

    PubMed Central

    Makino, Shigeru; Zhulyn, Olena; Mo, Rong; Puviindran, Vijitha; Zhang, Xiaoyun; Murata, Takuya; Fukumura, Ryutaro; Ishitsuka, Yuichi; Kotaki, Hayato; Matsumaru, Daisuke; Ishii, Shunsuke; Hui, Chi-Chung; Gondo, Yoichi

    2015-01-01

    Hedgehog signaling is primarily transduced by two transcription factors: Gli2, which mainly acts as a full-length activator, and Gli3, which tends to be proteolytically processed from a full-length form (Gli3FL) to an N-terminal repressor (Gli3REP). Recent studies using a Sufu knockout mouse have indicated that Sufu is involved in regulating Gli2 and Gli3 activator and repressor activity at multiple steps of the signaling cascade; however, the mechanism of specific Gli2 and Gli3 regulation remains to be elucidated. In this study, we established an allelic series of ENU-induced mouse strains. Analysis of one of the missense alleles, SufuT396I, showed that Thr396 residue of Sufu played a key role in regulation of Gli3 activity. SufuT396I/T396I embryos exhibited severe polydactyly, which is indicative of compromised Gli3 activity. Concomitantly, significant quantitative reductions of unprocessed Gli3 (Gli3FL) and processed Gli3 (Gli3REP) were observed in vivo as well as in vitro. Genetic experiments showed that patterning defects in the limb buds of SufuT396I/T396I were rescued by a constitutive Gli3REP allele (Gli3∆699), strongly suggesting that SufuT396I reduced the truncated Gli3 repressor. In contrast, SufuT396I qualitatively exhibited no mutational effects on Gli2 regulation. Taken together, the results of this study show that the Thr396 residue of Sufu is specifically required for regulation of Gli3 but not Gli2. This implies a novel Sufu-mediated mechanism in which Gli2 activator and Gli3 repressor are differentially regulated. PMID:25760946

  7. Mutational analysis of Btk, the defective gene in X-linked agammaglobulinemia

    SciTech Connect

    Conley, M.E.; Fitch-Hilgenberg, M.E.; Rohrer, J.

    1994-09-01

    Recent studies have shown that X-linked agammaglobulinemia (XLA), a disorder of B cell development, is due to mutations in an scr-like cytoplasmic tyrosine kinase, Btk. Thus far, mutations in this gene have been identified by sequencing of cDNA. To permit the detection of mutations in genomic DNA, we determined the structure of Btk and identified 19 exons in 37 kb of DNA. PCR primers were designed to amplify each exon with its splice sites. Two overlapping PCR products were employed for exons longer than 230 base pairs. Single strand conformation polymorphism (SSCP) analysis was used to screen genomic DNA from 30 unrelated families presumed to carry a mutation in Btk. It was possible to amplify DNA in every reaction from every patient. None of the DNA samples demonstrated more than one aberrant SSCP pattern. Twenty three mutations were detected in 25 families. Seven point mutations resulting in amino acid substitutions were seen. An additional 7 base pair substitutions gave rise to premature stop codons. Two splice defects were noted. Small insertions or deletions, all resulting in frameshifts and premature stop codons were seen in eight patients. One patient had an A to G transition in the ATG start codon. Two mutations, both at CpG dinucleotides, were seen in more than one family. Haplotype analysis, using CA repeats closely linked to Btk, demonstrated that the mutations in these families arose independently. We conclude from these studies that the mutations in Btk in patients with XLA are highly variable. Large deletions are uncommon, although small 1 to 4 bp insertions or deletions constitute as many as one third of the mutations. Further analysis of patients with amino acid substitutions will permit structure/function correlations.

  8. DETECTION OF K-RAS AND P53 MUTATIONS IN SPUTUM SAMPLES OF LUNG CANCER PATIENTS USING LASER CAPTURE MICRODISSECTION MICROSCOPE AND MUTATION ANALYSIS

    EPA Science Inventory

    Detection of K-ras and p53 Mutations in Sputum Samples of Lung Cancer Patients Using Laser Capture Microdissection Microscope and Mutation Analysis

    Phouthone Keohavong a,*, Wei-Min Gao a, Kui-Cheng Zheng a, Hussam Mady b, Qing Lan c, Mona Melhem b, and Judy Mumford d.
    <...

  9. Identification of a recently active Prunus-specific non-autonomous Mutator element with considerable genome shaping force.

    PubMed

    Halász, Júlia; Kodad, Ossama; Hegedűs, Attila

    2014-07-01

    Miniature inverted-repeat transposable elements (MITEs) are known to contribute to the evolution of plants, but only limited information is available for MITEs in the Prunus genome. We identified a MITE that has been named Falling Stones, FaSt. All structural features (349-bp size, 82-bp terminal inverted repeats and 9-bp target site duplications) are consistent with this MITE being a putative member of the Mutator transposase superfamily. FaSt showed a preferential accumulation in the short AT-rich segments of the euchromatin region of the peach genome. DNA sequencing and pollination experiments have been performed to confirm that the nested insertion of FaSt into the S-haplotype-specific F-box gene of apricot resulted in the breakdown of self-incompatibility (SI). A bioinformatics-based survey of the known Rosaceae and other genomes and a newly designed polymerase chain reaction (PCR) assay verified the Prunoideae-specific occurrence of FaSt elements. Phylogenetic analysis suggested a recent activity of FaSt in the Prunus genome. The occurrence of a nested insertion in the apricot genome further supports the recent activity of FaSt in response to abiotic stress conditions. This study reports on a presumably active non-autonomous Mutator element in Prunus that exhibits a major indirect genome shaping force through inducing loss-of-function mutation in the SI locus.

  10. Analysis of the mutations inducedd by conazole fungicides in vivo

    EPA Science Inventory

    The mouse liver tumorigenic conazo1e fungicides triadimefon and propiconazo1e have previously been shown to be in vivo mouse liver mutagens in the Big Blue" transgenic mutation assay when administered in feed at tumorigenic doses, whereas the nontumorigenic conazo1e myc1obutani1 ...

  11. Genetic and proteomic characterization of rpoB mutations and their effect on nematicidal activity in Photorhabdus luminescens LN2.

    PubMed

    Qiu, Xuehong; Yan, Xun; Liu, Mingxing; Han, Richou

    2012-01-01

    Rifampin resistant (Rif(R)) mutants of the insect pathogenic bacterium Photorhabdus luminescens LN2 from entomopathogenic nematode Heterorhabditis indica LN2 were genetically and proteomically characterized. The Rif(R) mutants showed typical phase one characters of Photorhabdus bacteria, and insecticidal activity against Galleria mellonella larvae, but surprisingly influenced their nematicidal activity against axenic infective juveniles (IJs) of H. bacteriophora H06, an incompatible nematode host. 13 out of 34 Rif(R) mutants lost their nematicidal activity against H06 IJs but supported the reproduction of H06 nematodes. 7 nematicidal-producing and 7 non-nematicidal-producing Rif(R) mutants were respectively selected for rpoB sequence analysis. rpoB mutations were found in all 14 Rif(R) mutants. The rpoB (P564L) mutation was found in all 7 mutants which produced nematicidal activity against H06 nematodes, but not in the mutants which supported H06 nematode production. Allelic exchange assays confirmed that the Rif-resistance and the impact on nematicidal activity of LN2 bacteria were conferred by rpoB mutation(s). The non-nematicidal-producing Rif(R) mutant was unable to colonize in the intestines of H06 IJs, but able to colonize in the intestines of its indigenous LN2 IJs. Proteomic analysis revealed different protein expression between wild-type strain and Rif(R) mutants, or between nematicidal-producing and non nematicidal-producing mutants. At least 7 putative proteins including DsbA, HlpA, RhlE, RplC, NamB (a protein from T3SS), and 2 hypothetical proteins (similar to unknown protein YgdH and YggE of Escherichia coli respectively) were probably involved in the nematicidal activity of LN2 bacteria against H06 nematodes. This hypothesis was further confirmed by creating insertion-deletion mutants of three selected corresponding genes (the downregulated rhlE and namB, and upregulated dsbA). These results indicate that the rpoB mutations greatly influence the

  12. Genetic and Proteomic Characterization of rpoB Mutations and Their Effect on Nematicidal Activity in Photorhabdus luminescens LN2

    PubMed Central

    Qiu, Xuehong; Yan, Xun; Liu, Mingxing; Han, Richou

    2012-01-01

    Rifampin resistant (RifR) mutants of the insect pathogenic bacterium Photorhabdus luminescens LN2 from entomopathogenic nematode Heterorhabditis indica LN2 were genetically and proteomically characterized. The RifR mutants showed typical phase one characters of Photorhabdus bacteria, and insecticidal activity against Galleria mellonella larvae, but surprisingly influenced their nematicidal activity against axenic infective juveniles (IJs) of H. bacteriophora H06, an incompatible nematode host. 13 out of 34 RifR mutants lost their nematicidal activity against H06 IJs but supported the reproduction of H06 nematodes. 7 nematicidal-producing and 7 non-nematicidal-producing RifR mutants were respectively selected for rpoB sequence analysis. rpoB mutations were found in all 14 RifR mutants. The rpoB (P564L) mutation was found in all 7 mutants which produced nematicidal activity against H06 nematodes, but not in the mutants which supported H06 nematode production. Allelic exchange assays confirmed that the Rif-resistance and the impact on nematicidal activity of LN2 bacteria were conferred by rpoB mutation(s). The non-nematicidal-producing RifR mutant was unable to colonize in the intestines of H06 IJs, but able to colonize in the intestines of its indigenous LN2 IJs. Proteomic analysis revealed different protein expression between wild-type strain and RifR mutants, or between nematicidal-producing and non nematicidal-producing mutants. At least 7 putative proteins including DsbA, HlpA, RhlE, RplC, NamB (a protein from T3SS), and 2 hypothetical proteins (similar to unknown protein YgdH and YggE of Escherichia coli respectively) were probably involved in the nematicidal activity of LN2 bacteria against H06 nematodes. This hypothesis was further confirmed by creating insertion-deletion mutants of three selected corresponding genes (the downregulated rhlE and namB, and upregualted dsbA). These results indicate that the rpoB mutations greatly influence the symbiotic

  13. Recurrent activating mutations of G-protein-coupled receptor CYSLTR2 in uveal melanoma

    PubMed Central

    Moore, Amanda R; Ceraudo, Emilie; Sher, Jessica J; Guan, Youxin; Shoushtari, Alexander N; Chang, Matthew T; Zhang, Jenny Q; Walczak, Edward G; Kazmi, Manija A; Taylor, Barry S; Huber, Thomas; Chi, Ping; Sakmar, Thomas P; Chen, Yu

    2016-01-01

    Uveal melanomas are molecularly distinct from cutaneous melanomas and lack mutations in BRAF, NRAS, KIT, and NF1. Instead, they are characterized by activating mutations in GNAQ and GNA11, two highly homologous α subunits of Gαq/11 heterotrimeric G proteins, and in PLCB4 (phospholipase C β4), the downstream effector of Gαq signaling 1–3. We analyzed genomics data from 136 uveal melanoma samples and found a recurrent mutation in CYSLTR2 (cysteinyl leukotriene receptor 2) encoding a p.Leu129Gln substitution in 4 of 9 samples that lacked mutations in GNAQ, GNA11, and PLCB4 but in 0 of 127 samples that harbored mutations in these genes. The Leu129Gln CysLT2R mutant protein constitutively activates endogenous Gαq and is unresponsive to stimulation by leukotriene. Expression of Leu129Gln CysLT2R in melanocytes enforces expression of a melanocyte-lineage signature, drives phorbol ester–independent growth in vitro, and promotes tumorigenesis in vivo. Our findings implicate CYSLTR2 as a uveal melanoma oncogene and highlight the critical role of Gαq signaling in uveal melanoma pathogenesis. PMID:27089179

  14. Novel Cystic Fibrosis mutation L1093P: functional analysis and possible Native American origin.

    PubMed

    Yee, K; Robinson, C; Hurlock, G; Moss, R B; Wine, J J

    2000-02-01

    A novel mutation was detected using single-strand conformation polymorphism and heteroduplex analysis in a cystic fibrosis subject of mixed ancestry. Mutation 3410T-->C in exon 17b caused the novel missense mutation L1093P; the other chromosome has mutation N1303K. The 31-year-old subject is pancreatic insufficient, had an FEV(1) score that was 33% of normal prior to a heart/lung transplant, and sweat chloride values of 116 and 95 mM when tested at ages 1 and 11. Functional analysis using forskolin-stimulated efflux of (125)I in HEK cells transfected with an ABCC7 construct harboring the L1093P mutation confirmed that cAMP-mediated anion efflux was abnormal, but some function was preserved. Analysis of parental DNA established that N1303K was of English origin, while L1093P was of Greek, Irish or Native American (Cherokee) origin. Given the intensive screening for CF mutations in European populations, we hypothesize that L1093P is of Native American origin. Hum Mutat 15:208, 2000. PMID:10649505

  15. Functional analysis of 'a' determinant mutations associated with occult HBV in HIV-positive South Africans.

    PubMed

    Powell, Eleanor A; Boyce, Ceejay L; Gededzha, Maemu P; Selabe, Selokela G; Mphahlele, M Jeffrey; Blackard, Jason T

    2016-07-01

    Occult hepatitis B is defined by the presence of hepatitis B virus (HBV) DNA in the absence of hepatitis B surface antigen (HBsAg). Occult HBV is associated with the development of hepatocellular carcinoma, reactivation during immune suppression, and virus transmission. Viral mutations contribute significantly to the occult HBV phenotype. Mutations in the 'a' determinant of HBsAg are of particular interest, as these mutations are associated with immune escape, vaccine escape and diagnostic failure. We examined the effects of selected occult HBV-associated mutations identified in a population of HIV-positive South Africans on HBsAg production in vitro. Mutations were inserted into two different chronic HBV backbones and transfected into a hepatocyte-derived cell line. HBsAg levels were quantified by enzyme-linked immunosorbent assay (ELISA), while the detectability of mutant HBsAg was determined using an HA-tagged HBsAg expression system. Of the seven mutations analysed, four (S132P, C138Y, N146D and C147Y) resulted in decreased HBsAg expression in one viral background but not in the second viral background. One mutation (N146D) led to a decrease in HBsAg detected as compared to HA-tag, indicating that this mutation compromises the ability of the ELISA to detect HBsAg. The contribution of occult-associated mutations to the HBsAg-negative phenotype of occult HBV cannot be determined adequately by testing the effect of the mutation in a single viral background, and rigorous analysis of these mutations is required.

  16. Functional analysis of 'a' determinant mutations associated with occult HBV in HIV-positive South Africans.

    PubMed

    Powell, Eleanor A; Boyce, Ceejay L; Gededzha, Maemu P; Selabe, Selokela G; Mphahlele, M Jeffrey; Blackard, Jason T

    2016-07-01

    Occult hepatitis B is defined by the presence of hepatitis B virus (HBV) DNA in the absence of hepatitis B surface antigen (HBsAg). Occult HBV is associated with the development of hepatocellular carcinoma, reactivation during immune suppression, and virus transmission. Viral mutations contribute significantly to the occult HBV phenotype. Mutations in the 'a' determinant of HBsAg are of particular interest, as these mutations are associated with immune escape, vaccine escape and diagnostic failure. We examined the effects of selected occult HBV-associated mutations identified in a population of HIV-positive South Africans on HBsAg production in vitro. Mutations were inserted into two different chronic HBV backbones and transfected into a hepatocyte-derived cell line. HBsAg levels were quantified by enzyme-linked immunosorbent assay (ELISA), while the detectability of mutant HBsAg was determined using an HA-tagged HBsAg expression system. Of the seven mutations analysed, four (S132P, C138Y, N146D and C147Y) resulted in decreased HBsAg expression in one viral background but not in the second viral background. One mutation (N146D) led to a decrease in HBsAg detected as compared to HA-tag, indicating that this mutation compromises the ability of the ELISA to detect HBsAg. The contribution of occult-associated mutations to the HBsAg-negative phenotype of occult HBV cannot be determined adequately by testing the effect of the mutation in a single viral background, and rigorous analysis of these mutations is required. PMID:27031988

  17. A limited spectrum of mutations causes constitutive activation of the yeast alpha-factor receptor.

    PubMed

    Sommers, C M; Martin, N P; Akal-Strader, A; Becker, J M; Naider, F; Dumont, M E

    2000-06-13

    Activation of G protein coupled receptors (GPCRs) by binding of ligand is the initial event in diverse cellular signaling pathways. To examine the frequency and diversity of mutations that cause constitutive activation of one particular GPCR, the yeast alpha-factor receptor, we screened libraries of random mutations for constitutive alleles. In initial screens for mutant receptor alleles that exhibit signaling in the absence of added ligand, 14 different point mutations were isolated. All of these 14 mutants could be further activated by alpha-factor. Ten of the mutants also acquired the ability to signal in response to binding of desTrp(1)¿Ala(3)ălpha-factor, a peptide that acts as an antagonist toward normal alpha-factor receptors. Of these 10 mutants, at least eight alleles residing in the third, fifth, sixth, and seventh transmembrane segments exhibit bona fide constitutive signaling. The remaining alleles are hypersensitive to alpha-factor rather than constitutive. They can be activated by low concentrations of endogenous alpha-factor present in MATa cells. The strongest constitutively active receptor alleles were recovered multiple times from the mutational libraries, and extensive mutagenesis of certain regions of the alpha-factor receptor did not lead to recovery of any additional constitutive alleles. Thus, only a limited number of mutations is capable of causing constitutive activation of this receptor. Constitutive and hypersensitive signaling by the mutant receptors is partially suppressed by coexpression of normal receptors, consistent with preferential association of the G protein with unactivated receptors. PMID:10841771

  18. Activating Mutations in PIK3CA Lead to Widespread Modulation of the Tyrosine Phosphoproteome

    PubMed Central

    Blair, Brian G.; Pinto, Sneha M.; Nirujogi, Raja S.; Jelinek, Christine A.; Malhotra, Radhika; Kim, Min-Sik; Park, Ben Ho; Pandey, Akhilesh

    2015-01-01

    The human oncogene PIK3CA is frequently mutated in human cancers. Two hotspot mutations in PIK3CA, E545K and H1047R, have been shown to regulate widespread signaling events downstream of AKT, leading to increased cell proliferation, growth, survival, and motility. We used quantitative mass spectrometry to profile the global phosphotyrosine proteome of isogenic knock-in cell lines containing these activating mutations, where we identified 824 unique phosphopeptides. Although it is well understood that these mutations result in hyperactivation of the serine/threonine kinase AKT, we found a surprisingly widespread modulation of tyrosine phosphorylation levels of proteins in the mutant cells. In the tyrosine kinome alone, 29 tyrosine kinases were altered in their phosphorylation status. Many of the regulated phosphosites that we identified were located in the kinase domain or the canonical activation sites, indicating that these kinases and their downstream signaling pathways were activated. Our study demonstrates that there is frequent and unexpected cross-talk that occurs between tyrosine signaling pathways and serine/threonine signaling pathways activated by the canonical PI3K-AKT axis. PMID:26267517

  19. XPD Helicase Structures and Activities: Insights into the Cancer and Aging Phenotypes from XPD Mutations

    SciTech Connect

    Tainer, John; Fan, Li; Fuss, Jill O.; Cheng, Quen J.; Arvai, Andrew S.; Hammel, Michal; Roberts, Victoria A.; Cooper, Priscilla K.; Tainer, John A.

    2008-06-02

    Mutations in XPD helicase, required for nucleotide excision repair (NER) as part of the transcription/repair complex TFIIH, cause three distinct phenotypes: cancer-prone xeroderma pigmentosum (XP), or aging disorders Cockayne syndrome (CS), and trichothiodystrophy (TTD). To clarify molecular differences underlying these diseases, we determined crystal structures of the XPD catalytic core from Sulfolobus acidocaldarius and measured mutant enzyme activities. Substrate-binding grooves separate adjacent Rad51/RecA-like helicase domains (HD1, HD2) and an arch formed by 4FeS and Arch domains. XP mutations map along the HD1 ATP-binding edge and HD2 DNA-binding channel and impair helicase activity essential for NER. XP/CS mutations both impair helicase activity and likely affect HD2 functional movement. TTD mutants lose or retain helicase activity but map to sites in all four domains expected to cause framework defects impacting TFIIH integrity. These results provide a foundation for understanding disease consequences of mutations in XPD and related 4Fe-4S helicases including FancJ.

  20. XPD Helicase Structures And Activities: Insights Into the Cancer And Aging Phenotypes From XPD Mutations

    SciTech Connect

    Fan, L.; Fuss, J.O.; Cheng, Q.J.; Arvai, A.S.; Hammel, M.; Roberts, V.A.; Cooper, P.K.; Tainer, J.A.

    2009-05-18

    Mutations in XPD helicase, required for nucleotide excision repair (NER) as part of the transcription/repair complex TFIIH, cause three distinct phenotypes: cancer-prone xeroderma pigmentosum (XP), or aging disorders Cockayne syndrome (CS), and trichothiodystrophy (TTD). To clarify molecular differences underlying these diseases, we determined crystal structures of the XPD catalytic core from Sulfolobus acidocaldarius and measured mutant enzyme activities. Substrate-binding grooves separate adjacent Rad51/RecA-like helicase domains (HD1, HD2) and an arch formed by 4FeS and Arch domains. XP mutations map along the HD1 ATP-binding edge and HD2 DNA-binding channel and impair helicase activity essential for NER. XP/CS mutations both impair helicase activity and likely affect HD2 functional movement. TTD mutants lose or retain helicase activity but map to sites in all four domains expected to cause framework defects impacting TFIIH integrity. These results provide a foundation for understanding disease consequences of mutations in XPD and related 4Fe-4S helicases including FancJ.

  1. Hotspot activating PRKD1 somatic mutations in polymorphous low-grade adenocarcinomas of the salivary glands.

    PubMed

    Weinreb, Ilan; Piscuoglio, Salvatore; Martelotto, Luciano G; Waggott, Daryl; Ng, Charlotte K Y; Perez-Ordonez, Bayardo; Harding, Nicholas J; Alfaro, Javier; Chu, Kenneth C; Viale, Agnes; Fusco, Nicola; da Cruz Paula, Arnaud; Marchio, Caterina; Sakr, Rita A; Lim, Raymond; Thompson, Lester D R; Chiosea, Simion I; Seethala, Raja R; Skalova, Alena; Stelow, Edward B; Fonseca, Isabel; Assaad, Adel; How, Christine; Wang, Jianxin; de Borja, Richard; Chan-Seng-Yue, Michelle; Howlett, Christopher J; Nichols, Anthony C; Wen, Y Hannah; Katabi, Nora; Buchner, Nicholas; Mullen, Laura; Kislinger, Thomas; Wouters, Bradly G; Liu, Fei-Fei; Norton, Larry; McPherson, John D; Rubin, Brian P; Clarke, Blaise A; Weigelt, Britta; Boutros, Paul C; Reis-Filho, Jorge S

    2014-11-01

    Polymorphous low-grade adenocarcinoma (PLGA) is the second most frequent type of malignant tumor of the minor salivary glands. We identified PRKD1 hotspot mutations encoding p.Glu710Asp in 72.9% of PLGAs but not in other salivary gland tumors. Functional studies demonstrated that this kinase-activating alteration likely constitutes a driver of PLGA.

  2. Pooled analysis of clinical outcome for EGFR TKI-treated patients with EGFR mutation-positive NSCLC.

    PubMed

    Paz-Ares, Luis; Soulières, Denis; Moecks, Joachim; Bara, Ilze; Mok, Tony; Klughammer, Barbara

    2014-08-01

    Patients with non-small-cell lung cancer (NSCLC) appear to gain particular benefit from treatment with epidermal growth factor receptor (EGFR) tyrosine-kinase inhibitors (TKI) if their disease tests positive for EGFR activating mutations. Recently, several large, controlled, phase III studies have been published in NSCLC patients with EGFR mutation-positive tumours. Given the increased patient dataset now available, a comprehensive literature search for EGFR TKIs or chemotherapy in EGFR mutation-positive NSCLC was undertaken to update the results of a previously published pooled analysis. Pooling eligible progression-free survival (PFS) data from 27 erlotinib studies (n = 731), 54 gefitinib studies (n = 1802) and 20 chemotherapy studies (n = 984) provided median PFS values for each treatment. The pooled median PFS was: 12.4 months (95% accuracy intervals [AI] 11.6-13.4) for erlotinib-treated patients; 9.4 months (95% AI 9.0-9.8) for gefitinib-treated patients; and 5.6 months (95% AI 5.3-6.0) for chemotherapy. Both erlotinib and gefitinib resulted in significantly longer PFS than chemotherapy (permutation testing; P = 0.000 and P = 0.000, respectively). Data on more recent TKIs (afatinib, dacomitinib and icotinib) were insufficient at this time-point to carry out a pooled PFS analysis on these compounds. The results of this updated pooled analysis suggest a substantial clear PFS benefit of treating patients with EGFR mutation-positive NSCLC with erlotinib or gefitinib compared with chemotherapy.

  3. Mutation analysis of the STRA6 gene in isolated and non-isolated anophthalmia/microphthalmia.

    PubMed

    Chassaing, N; Ragge, N; Kariminejad, A; Buffet, A; Ghaderi-Sohi, S; Martinovic, J; Calvas, P

    2013-03-01

    PDAC syndrome [Pulmonary hypoplasia/agenesis, Diaphragmatic hernia/eventration, Anophthalmia/microphthalmia (A/M) and Cardiac Defect] is a condition associated with recessive mutations in the STRA6 gene in some of these patients. Recently, cases with isolated anophthalmia have been associated with STRA6 mutations. To determine the minimal findings associated with STRA6 mutations, we performed mutation analysis of the STRA6 gene in 28 cases with anophthalmia. In 7 of the cases the anophthalmia was isolated, in 14 cases it was associated with one of the major features included in PDAC and 7 had other abnormalities. Mutations were identified in two individuals: one with bilateral anophthalmia and some features included in PDAC, who was a compound heterozygote for a missense mutation and a large intragenic deletion, and the second case with all the major features of PDAC and who had a homozygous splicing mutation. This study suggests that STRA6 mutations are more likely to be identified in individuals with A/M and other abnormalities included in the PDAC spectrum, rather than in isolated A/M cases.

  4. Mutational analysis of the androgen receptor gene in two Chinese families with complete androgen insensitivity syndrome

    PubMed Central

    WANG, SONG; XU, HAIKUN; AN, WEI; ZHU, DECHUN; LI, DEJUN

    2016-01-01

    Androgens are essential for normal male sex differentiation and are responsible for the normal development of male secondary sexual characteristics at puberty. The physiological effects of androgens are mediated by the androgen receptor (AR). Mutations in the AR gene are the most common cause of androgen insensitivity syndrome. The present study undertook a genetic analysis of the AR gene in two unrelated families affected by complete androgen insensitivity syndrome (CAIS) in China. In family 1, a previously reported nonsense mutation (G-to-A; p.W751X) was identified in exon 5 of the AR gene. In addition, a novel missense mutation was detected in exon 6 of the AR gene from family 2; this mutation resulted in a predicted amino acid change from phenylalanine to serine at codon 804 (T-to-C; p.F804S) in the ligand-binding domain (LBD) of AR. Computer simulation of the structural changes generated by the p.F804S substitution revealed marked conformational alterations in the hydrophobic core responsible for the stability and function of the AR-LBD. In conclusion, the present study identified two mutations from two unrelated Chinese families affected by CAIS. The novel mutation (p.F804S) may provide insights into the molecular mechanism underlying CAIS. Furthermore, it expands on the number of mutational hot spots in the international AR mutation database, which may be useful in the future for prenatal diagnosis and genetic counseling. PMID:27284311

  5. Pan-cancer network analysis identifies combinations of rare somatic mutations across pathways and protein complexes.

    PubMed

    Leiserson, Mark D M; Vandin, Fabio; Wu, Hsin-Ta; Dobson, Jason R; Eldridge, Jonathan V; Thomas, Jacob L; Papoutsaki, Alexandra; Kim, Younhun; Niu, Beifang; McLellan, Michael; Lawrence, Michael S; Gonzalez-Perez, Abel; Tamborero, David; Cheng, Yuwei; Ryslik, Gregory A; Lopez-Bigas, Nuria; Getz, Gad; Ding, Li; Raphael, Benjamin J

    2015-02-01

    Cancers exhibit extensive mutational heterogeneity, and the resulting long-tail phenomenon complicates the discovery of genes and pathways that are significantly mutated in cancer. We perform a pan-cancer analysis of mutated networks in 3,281 samples from 12 cancer types from The Cancer Genome Atlas (TCGA) using HotNet2, a new algorithm to find mutated subnetworks that overcomes the limitations of existing single-gene, pathway and network approaches. We identify 16 significantly mutated subnetworks that comprise well-known cancer signaling pathways as well as subnetworks with less characterized roles in cancer, including cohesin, condensin and others. Many of these subnetworks exhibit co-occurring mutations across samples. These subnetworks contain dozens of genes with rare somatic mutations across multiple cancers; many of these genes have additional evidence supporting a role in cancer. By illuminating these rare combinations of mutations, pan-cancer network analyses provide a roadmap to investigate new diagnostic and therapeutic opportunities across cancer types.

  6. Analysis of in vivo mutation data can inform cancer risk assessment.

    PubMed

    Moore, Martha M; Heflich, Robert H; Haber, Lynne T; Allen, Bruce C; Shipp, Annette M; Kodell, Ralph L

    2008-07-01

    Under the new U.S. Environmental Protection Agency (EPA) Cancer Risk Assessment Guidelines [U.S. EPA, 2005. Guidelines for Carcinogen Risk Assessment. EPA/630/P-03/001B, March 2005], the quantitative model chosen for cancer risk assessment is based on the mode-of-action (MOA) of the chemical under consideration. In particular, the risk assessment model depends on whether or not the chemical causes tumors through a direct DNA-reactive mechanism. It is assumed that direct DNA-reactive carcinogens initiate carcinogenesis by inducing mutations and have low-dose linear dose-response curves, whereas carcinogens that operate through a nonmutagenic MOA may have nonlinear dose-responses. We are currently evaluating whether the analysis of in vivo gene mutation data can inform the risk assessment process by better defining the MOA for cancer and thus influencing the choice of the low-dose extrapolation model. This assessment includes both a temporal analysis of mutation induction and a dose-response concordance analysis of mutation with tumor incidence. Our analysis of published data on riddelliine in rats and dichloroacetic acid in mice indicates that our approach has merit. We propose an experimental design and graphical analysis that allow for assessing time-to-mutation and dose-response concordance, thereby optimizing the potential for in vivo mutation data to inform the choice of the quantitative model used in cancer risk assessment.

  7. Identification of gene mutation in patients with osteogenesis imperfect using high resolution melting analysis

    PubMed Central

    Wang, Jianhai; Ren, Xiuzhi; Bai, Xue; Zhang, Tianke; Wang, Yi; Li, Keqiu; Li, Guang

    2015-01-01

    Osteogenesis imperfecta (OI), a congenital bone disorder, is caused by mutations in COL1A1 and COL1A2 genes, leading to deficiency of type I collagen. The high resolution melting (HRM) analysis has been used for detecting mutations, polymorphisms and epigenetic alteration in double-stranded DNAs. This study was to evaluate the potential application of HRM analysis for identifying gene mutations in patients with OI. This study included four children with OI and their parents and fifty normal people as controls. Blood samples were collected for HRM analysis of PCR-amplified exons and flanking DNA sequences of COL1A1 and COL1A2 genes. Direct gene sequencing was performed to validate HRM-identified gene mutations. As compared to controls, HRM analysis of samples form children with OI showed abnormal melting curves in exons 11 and 33–34 of the COL1A1 gene and exons 19 and 48 of the COL1A2 gene, which indicates the presence of heterozygous mutations in COL1A1 and COL1A2 genes. In addition to two known mutations in the COL1A2 gene, c.982G > A and c.3197G > T, sequencing analysis identified two novel mutations in the COL1A1 gene, c.2321delC and c.768dupC mutations, which function as premature stop codons. These results support future studies of applying HRM analysis as a diagnostic approach for OI. PMID:26307460

  8. Identification of gene mutation in patients with osteogenesis imperfect using high resolution melting analysis.

    PubMed

    Wang, Jianhai; Ren, Xiuzhi; Bai, Xue; Zhang, Tianke; Wang, Yi; Li, Keqiu; Li, Guang

    2015-01-01

    Osteogenesis imperfecta (OI), a congenital bone disorder, is caused by mutations in COL1A1 and COL1A2 genes, leading to deficiency of type I collagen. The high resolution melting (HRM) analysis has been used for detecting mutations, polymorphisms and epigenetic alteration in double-stranded DNAs. This study was to evaluate the potential application of HRM analysis for identifying gene mutations in patients with OI. This study included four children with OI and their parents and fifty normal people as controls. Blood samples were collected for HRM analysis of PCR-amplified exons and flanking DNA sequences of COL1A1 and COL1A2 genes. Direct gene sequencing was performed to validate HRM-identified gene mutations. As compared to controls, HRM analysis of samples form children with OI showed abnormal melting curves in exons 11 and 33-34 of the COL1A1 gene and exons 19 and 48 of the COL1A2 gene, which indicates the presence of heterozygous mutations in COL1A1 and COL1A2 genes. In addition to two known mutations in the COL1A2 gene, c.982G > A and c.3197G > T, sequencing analysis identified two novel mutations in the COL1A1 gene, c.2321delC and c.768dupC mutations, which function as premature stop codons. These results support future studies of applying HRM analysis as a diagnostic approach for OI. PMID:26307460

  9. Structural mutations that probe the interactions between the catalytic and dianion activation sites of triosephosphate isomerase.

    PubMed

    Zhai, Xiang; Amyes, Tina L; Wierenga, Rik K; Loria, J Patrick; Richard, John P

    2013-08-27

    Triosephosphate isomerase (TIM) catalyzes the isomerization of dihydroxyacetone phosphate to form d-glyceraldehyde 3-phosphate. The effects of two structural mutations in TIM on the kinetic parameters for catalysis of the reaction of the truncated substrate glycolaldehyde (GA) and the activation of this reaction by phosphite dianion are reported. The P168A mutation results in similar 50- and 80-fold decreases in (kcat/Km)E and (kcat/Km)E·HPi, respectively, for deprotonation of GA catalyzed by free TIM and by the TIM·HPO(3)(2-) complex. The mutation has little effect on the observed and intrinsic phosphite dianion binding energy or the magnitude of phosphite dianion activation of TIM for catalysis of deprotonation of GA. A loop 7 replacement mutant (L7RM) of TIM from chicken muscle was prepared by substitution of the archaeal sequence 208-TGAG with 208-YGGS. L7RM exhibits a 25-fold decrease in (kcat/Km)E and a larger 170-fold decrease in (kcat/Km)E·HPi for reactions of GA. The mutation has little effect on the observed and intrinsic phosphodianion binding energy and only a modest effect on phosphite dianion activation of TIM. The observation that both the P168A and loop 7 replacement mutations affect mainly the kinetic parameters for TIM-catalyzed deprotonation but result in much smaller changes in the parameters for enzyme activation by phosphite dianion provides support for the conclusion that catalysis of proton transfer and dianion activation of TIM take place at separate, weakly interacting, sites in the protein catalyst.

  10. Mutational analysis of human papillomavirus type 16 E7 functions.

    PubMed Central

    Watanabe, S; Kanda, T; Sato, H; Furuno, A; Yoshiike, K

    1990-01-01

    The human papillomavirus type 16 E7 gene encodes a nuclear oncoprotein (98 amino acids [AAs] long) consisting of three regions: regions 1 (AAs 1 to 20) and 2 (AAs 21 to 40), which show high homology to the sequences of conserved domains 1 and 2, respectively, of adenovirus E1A; and region 3 (AAs 41 to 98) containing two metal-binding motifs Cys-X-X-Cys (AAs 58 and 91 to 94). We constructed AA deletion (substitution) mutants and single-AA substitution mutants of E7 placed under the control of the simian virus 40 promoter and examined their biological functions. Stable expression of E7 protein in monkey COS-1 cells required almost the entire length of E7 and was markedly lowered by the mutations in region 3. Transactivation of the adenovirus E2 promoter in monkey CV-1 cells was lowered by the mutations. It was abolished by changing Cys-24 to Gly and markedly decreased by a mutation at His-2 or at the metal-binding motifs in region 3. Focal transformation of rat 3Y1 cells by E7 was eliminated by changing His-2 to Asp or Cys-24 to Gly and was greatly impaired by changing Cys-61 or Cys-94 to Gly. The transforming function survived mutations at Leu-13 and Cys-68 and deletion of Asp-Ser-Ser (AAs 30 to 32). The data suggest that regions 1 to 3 are required for its functions and that the meta-binding motifs in region 3 are required to maintain a stable or functional structure of the E7 protein. Images PMID:2152813

  11. DNA transposon activity is associated with increased mutation rates in genes of rice and other grasses

    PubMed Central

    Wicker, Thomas; Yu, Yeisoo; Haberer, Georg; Mayer, Klaus F. X.; Marri, Pradeep Reddy; Rounsley, Steve; Chen, Mingsheng; Zuccolo, Andrea; Panaud, Olivier; Wing, Rod A.; Roffler, Stefan

    2016-01-01

    DNA (class 2) transposons are mobile genetic elements which move within their ‘host' genome through excising and re-inserting elsewhere. Although the rice genome contains tens of thousands of such elements, their actual role in evolution is still unclear. Analysing over 650 transposon polymorphisms in the rice species Oryza sativa and Oryza glaberrima, we find that DNA repair following transposon excisions is associated with an increased number of mutations in the sequences neighbouring the transposon. Indeed, the 3,000 bp flanking the excised transposons can contain over 10 times more mutations than the genome-wide average. Since DNA transposons preferably insert near genes, this is correlated with increases in mutation rates in coding sequences and regulatory regions. Most importantly, we find this phenomenon also in maize, wheat and barley. Thus, these findings suggest that DNA transposon activity is a major evolutionary force in grasses which provide the basis of most food consumed by humankind. PMID:27599761

  12. DNA transposon activity is associated with increased mutation rates in genes of rice and other grasses.

    PubMed

    Wicker, Thomas; Yu, Yeisoo; Haberer, Georg; Mayer, Klaus F X; Marri, Pradeep Reddy; Rounsley, Steve; Chen, Mingsheng; Zuccolo, Andrea; Panaud, Olivier; Wing, Rod A; Roffler, Stefan

    2016-01-01

    DNA (class 2) transposons are mobile genetic elements which move within their 'host' genome through excising and re-inserting elsewhere. Although the rice genome contains tens of thousands of such elements, their actual role in evolution is still unclear. Analysing over 650 transposon polymorphisms in the rice species Oryza sativa and Oryza glaberrima, we find that DNA repair following transposon excisions is associated with an increased number of mutations in the sequences neighbouring the transposon. Indeed, the 3,000 bp flanking the excised transposons can contain over 10 times more mutations than the genome-wide average. Since DNA transposons preferably insert near genes, this is correlated with increases in mutation rates in coding sequences and regulatory regions. Most importantly, we find this phenomenon also in maize, wheat and barley. Thus, these findings suggest that DNA transposon activity is a major evolutionary force in grasses which provide the basis of most food consumed by humankind. PMID:27599761

  13. Rosai-Dorfman Disease Harboring an Activating KRAS K117N Missense Mutation.

    PubMed

    Shanmugam, Vignesh; Margolskee, Elizabeth; Kluk, Michael; Giorgadze, Tamara; Orazi, Attilio

    2016-09-01

    Rosai-Dorfman disease (RDD) or sinus histiocytosis with massive lymphadenopathy is a rare histiocytic proliferation that is generally considered to be reactive with a benign clinical course. The etiology of RDD is very poorly understood. Recent studies have shown frequent BRAF, NRAS, KRAS, and PIK3CA activating mutations in several histiocytic neoplasms highlighting the emerging importance of the RAF/MEK/ERK pathway in the pathogenesis of these diseases. Here we report a case of Rosai-Dorfman disease involving the submandibular salivary gland with a KRAS K117N missense mutation discovered by next-generation sequencing. These results suggest that at least a subset of RDD cases may be clonal processes. Further mutational studies on this rare histiocytic disease should be undertaken to better characterize its pathogenesis as well as open up potential avenues for therapy.

  14. Genetic Studies on the Loss of Mu Mutator Activity in Maize

    PubMed Central

    Robertson, Donald S.

    1986-01-01

    Mutator activity of the Mu mutator system of maize can be lost by either outcrossing or inbreeding Mu stocks. The nature of these two kinds of Mu-loss phenomena was analyzed by testing the results of crossing Mu-loss stocks by active Mu lines. Outcross- Mu-loss stocks are capable of supporting Mu activity if crossed by an active mutator line. Inbred-Mu-loss stocks, however, inactivate the active Mu system contributed by a Mu line. Also, inbred- Mu-loss lines do not regain Mu activity after at least three generations of outcrossing to non-Mu stocks. These results suggest that, once the Mu system is inactivated by inbreeding, it remains inactivated for at least three generations of outcrossing. Further, once the system responsible for inactivation is established, it will, in turn, inactivate an active Mu system contributed by crossing with Mu plants. The outcross-Mu-loss does not seem to involve such an inactivation system. These results are interpreted in the light of recent evidence that Mu inactivation results from the modification of Mu 1 transposable elements involved in the Mu phenotype. PMID:17246337

  15. Genetic analysis of transcription-associated mutation in Saccharomyces cerevisiae.

    PubMed Central

    Morey, N J; Greene, C N; Jinks-Robertson, S

    2000-01-01

    High levels of transcription are associated with elevated mutation rates in yeast, a phenomenon referred to as transcription-associated mutation (TAM). The transcription-associated increase in mutation rates was previously shown to be partially dependent on the Rev3p translesion bypass pathway, thus implicating DNA damage in TAM. In this study, we use reversion of a pGAL-driven lys2DeltaBgl allele to further examine the genetic requirements of TAM. We find that TAM is increased by disruption of the nucleotide excision repair or recombination pathways. In contrast, elimination of base excision repair components has only modest effects on TAM. In addition to the genetic studies, the lys2DeltaBgl reversion spectra of repair-proficient low and high transcription strains were obtained. In the low transcription spectrum, most of the frameshift events correspond to deletions of AT base pairs whereas in the high transcription strain, deletions of GC base pairs predominate. These results are discussed in terms of transcription and its role in DNA damage and repair. PMID:10628973

  16. Molecular analysis of rice plant mutated after space flight

    NASA Astrophysics Data System (ADS)

    Cheng, Z.; Li, C.; Wei, L.; Xu, D.; Gu, D.; Guan, S.; Zhao, H.; Xin, P.; Sun, Y.

    We have obtained several rice mutants planted from seeds flown on recoverable satellites. Some new traits, such as good yields, diseases resistances and higher nutrient values, have been identified, putatively as consequences of the space environment. Radiation inside the Chinese recoverable satellite was composed of low flux of high energy particles (>40 Mev/u). To study the mechanisms of plant mutations induced by the space environment, we used dry rice seeds as a model to identify the phenotype of mutations, and used the wealth of the rice genome to identify the mutated genes in the mutants. The research included collecting rice plant mutants in the seeds flown on the satellites, identifying the nature of genomic and proteomic alterations, modifications and identifying the functional changes of the specific genes. The study showed that the rice seeds are a good model for exploring biological effect of space environment since 1) it is easy fly the seeds without specific hardware and crew work, 2) it is easy to obtain pure mutant breed lines for cloning DNA sequence in order to compare with the sequence in the wild type, and 3) it is easy to quantitatively analyze genetics using advanced molecular techniques.

  17. Structural Analysis of Single-Point Mutations Given an RNA Sequence: A Case Study with RNAMute

    NASA Astrophysics Data System (ADS)

    Churkin, Alexander; Barash, Danny

    2006-12-01

    We introduce here for the first time the RNAMute package, a pattern-recognition-based utility to perform mutational analysis and detect vulnerable spots within an RNA sequence that affect structure. Mutations in these spots may lead to a structural change that directly relates to a change in functionality. Previously, the concept was tried on RNA genetic control elements called "riboswitches" and other known RNA switches, without an organized utility that analyzes all single-point mutations and can be further expanded. The RNAMute package allows a comprehensive categorization, given an RNA sequence that has functional relevance, by exploring the patterns of all single-point mutants. For illustration, we apply the RNAMute package on an RNA transcript for which individual point mutations were shown experimentally to inactivate spectinomycin resistance in Escherichia coli. Functional analysis of mutations on this case study was performed experimentally by creating a library of point mutations using PCR and screening to locate those mutations. With the availability of RNAMute, preanalysis can be performed computationally before conducting an experiment.

  18. A comparison of ARMS and DNA sequencing for mutation analysis in clinical biopsy samples

    PubMed Central

    2010-01-01

    Background We have compared mutation analysis by DNA sequencing and Amplification Refractory Mutation System™ (ARMS™) for their ability to detect mutations in clinical biopsy specimens. Methods We have evaluated five real-time ARMS assays: BRAF 1799T>A, [this includes V600E and V600K] and NRAS 182A>G [Q61R] and 181C>A [Q61K] in melanoma, EGFR 2573T>G [L858R], 2235-2249del15 [E746-A750del] in non-small-cell lung cancer, and compared the results to DNA sequencing of the mutation 'hot-spots' in these genes in formalin-fixed paraffin-embedded tumour (FF-PET) DNA. Results The ARMS assays maximised the number of samples that could be analysed when both the quality and quantity of DNA was low, and improved both the sensitivity and speed of analysis compared with sequencing. ARMS was more robust with fewer reaction failures compared with sequencing and was more sensitive as it was able to detect functional mutations that were not detected by DNA sequencing. DNA sequencing was able to detect a small number of lower frequency recurrent mutations across the exons screened that were not interrogated using the specific ARMS assays in these studies. Conclusions ARMS was more sensitive and robust at detecting defined somatic mutations than DNA sequencing on clinical samples where the predominant sample type was FF-PET. PMID:20925915

  19. Genetic and molecular analysis of chlorambucil-induced germ-line mutations in the mouse

    SciTech Connect

    Rinchik, E.M.; Bangham, J.W.; Hunsicker, P.R.; Cacheiro, N.L.A.; Russell, L.B. ); Kwon, B.S. ); Jackson, I.J. )

    1990-02-01

    Eighteen variants recovered from specific locus mutation rate experiments involving the mutagen chlorambucil were subjected to several genetic and molecular analyses. Most mutations were found to be homozygous lethal. Because lethality is often presumptive evidence for multilocus-deletion events, 10 mutations were analyzed by Southern blot analysis with probes at, or closely linked to, several of the specific locus test markers, namely, albino (c), brown (b), and dilute (d). All eight mutations (two c; three b; two d; and one dilute-short ear (Df(d se))) that arose in post-spermatogonial germ cells were deleted for DNA sequences. No evidence for deletion of two d-se region probes was obtained for the remaining two d mutations that arose in stem-cell spermatogonia. Six of the primary mutants also produced low litter sizes (semisterility). Karyotypic analysis has, to date, confirmed the presence of reciprocal translocations in four of the six. The high frequency of deletions and translocations among the mutations induced in post-spermatogonial stages by chlorambucil, combined with its overall high efficiency in inducing mutations in these stages, should make chlorambucil mutagenesis useful for generating experimentally valuable germ-line deletions throughout the mouse genome.

  20. Neonatal diabetes mellitus: description of two Puerto Rican children with KCNJ11 activating gene mutation.

    PubMed

    Nieves-Rivera, Francisco; González-Pijem, Lilliam

    2011-06-01

    Neonatal diabetes mellitus (NDM) is a rare disorder. A one-month-old boy presented with vomiting, hyperglycemia (968 mg/dl [53.8 mmol/L]), severe acetonemia, and metabolic acidosis (pH 6.95, HCO3-4.2 mmol/L). A second child (three months of age) presented with upper respiratory tract symptoms and a plasma glucose level of 835 mg/dl, without acetonemia or acidosis. Both were hospitalized and managed with intravenous fluids and then discharged on insulin. Genetic testing identified the presence of the de nova V59M and E322K activating mutations in the KCNJ11 gene encoding the sulphonylurea/potassium channel (Kir6.2 subunit) of the insulin beta cell. Both patients were switched to glibenclamide and remain off insulin. To our knowledge, these are the first children in Puerto Rico identified with NDM secondary to a KCNJ11 activating mutation. We conclude that NDM secondary to KCNJ11/Kir6.2 activating mutations, although unusual, should be considered in similar cases since patients with these mutations could come off insulin.

  1. The TREAT-NMD DMD Global Database: Analysis of More than 7,000 Duchenne Muscular Dystrophy Mutations

    PubMed Central

    Bladen, Catherine L; Salgado, David; Monges, Soledad; Foncuberta, Maria E; Kekou, Kyriaki; Kosma, Konstantina; Dawkins, Hugh; Lamont, Leanne; Roy, Anna J; Chamova, Teodora; Guergueltcheva, Velina; Chan, Sophelia; Korngut, Lawrence; Campbell, Craig; Dai, Yi; Wang, Jen; Barišić, Nina; Brabec, Petr; Lahdetie, Jaana; Walter, Maggie C; Schreiber-Katz, Olivia; Karcagi, Veronika; Garami, Marta; Viswanathan, Venkatarman; Bayat, Farhad; Buccella, Filippo; Kimura, En; Koeks, Zaïda; van den Bergen, Janneke C; Rodrigues, Miriam; Roxburgh, Richard; Lusakowska, Anna; Kostera-Pruszczyk, Anna; Zimowski, Janusz; Santos, Rosário; Neagu, Elena; Artemieva, Svetlana; Rasic, Vedrana Milic; Vojinovic, Dina; Posada, Manuel; Bloetzer, Clemens; Jeannet, Pierre-Yves; Joncourt, Franziska; Díaz-Manera, Jordi; Gallardo, Eduard; Karaduman, A Ayşe; Topaloğlu, Haluk; El Sherif, Rasha; Stringer, Angela; Shatillo, Andriy V; Martin, Ann S; Peay, Holly L; Bellgard, Matthew I; Kirschner, Jan; Flanigan, Kevin M; Straub, Volker; Bushby, Kate; Verschuuren, Jan; Aartsma-Rus, Annemieke; Béroud, Christophe; Lochmüller, Hanns

    2015-01-01

    Analyzing the type and frequency of patient-specific mutations that give rise to Duchenne muscular dystrophy (DMD) is an invaluable tool for diagnostics, basic scientific research, trial planning, and improved clinical care. Locus-specific databases allow for the collection, organization, storage, and analysis of genetic variants of disease. Here, we describe the development and analysis of the TREAT-NMD DMD Global database (http://umd.be/TREAT_DMD/). We analyzed genetic data for 7,149 DMD mutations held within the database. A total of 5,682 large mutations were observed (80% of total mutations), of which 4,894 (86%) were deletions (1 exon or larger) and 784 (14%) were duplications (1 exon or larger). There were 1,445 small mutations (smaller than 1 exon, 20% of all mutations), of which 358 (25%) were small deletions and 132 (9%) small insertions and 199 (14%) affected the splice sites. Point mutations totalled 756 (52% of small mutations) with 726 (50%) nonsense mutations and 30 (2%) missense mutations. Finally, 22 (0.3%) mid-intronic mutations were observed. In addition, mutations were identified within the database that would potentially benefit from novel genetic therapies for DMD including stop codon read-through therapies (10% of total mutations) and exon skipping therapy (80% of deletions and 55% of total mutations). PMID:25604253

  2. An active hAT transposable element causing bud mutation of carnation by insertion into the flavonoid 3'-hydroxylase gene.

    PubMed

    Momose, Masaki; Nakayama, Masayoshi; Itoh, Yoshio; Umemoto, Naoyuki; Toguri, Toshihiro; Ozeki, Yoshihiro

    2013-04-01

    The molecular mechanisms underlying spontaneous bud mutations, which provide an important breeding tool in carnation, are poorly understood. Here we describe a new active hAT type transposable element, designated Tdic101, the movement of which caused a bud mutation in carnation that led to a change of flower color from purple to deep pink. The color change was attributed to Tdic101 insertion into the second intron of F3'H, the gene for flavonoid 3'-hydroxylase responsible for purple pigment production. Regions on the deep pink flowers of the mutant can revert to purple, a visible phenotype of, as we show, excision of the transposable element. Sequence analysis revealed that Tdic101 has the characteristics of an autonomous element encoding a transposase. A related, but non-autonomous element dTdic102 was found to move in the genome of the bud mutant as well. Its mobilization might be the result of transposase activities provided by other elements such as Tdic101. In carnation, therefore, the movement of transposable elements plays an important role in the emergence of a bud mutation.

  3. Rapid detection of regionally clustered germ-line BRCA1 mutations by multiplex heteroduplex analysis

    SciTech Connect

    Gayther, S.A.; Harrington, P.; Russell, P.

    1996-03-01

    Germ-line mutations of the BRCA1 gene are responsible for a substantial proportion of families with multiple cases of early-onset breast and/or ovarian cancer. Since the isolation of BRCA1 last year, >65 distinct mutations scattered throughout the coding region have been detected, making analysis of the gene time consuming and technically challenging. We have developed a multiplex heteroduplex analysis that is designed to analyze one-quarter of the coding sequence in a single-step screening procedure and that will detect {approximately}50% of all BRCA1 mutations so far reported in breast/ovarian cancer families. We have used this technique to analyze BRCA1 in 162 families with a history of breast and/or ovarian cancer and identified 12 distinct mutations in 35 families. 20 refs., 2 figs., 2 tabs.

  4. Mutational analysis of ATP7B in Chinese Wilson disease patients.

    PubMed

    Hua, Rui; Hua, Fang; Jiao, Yonggeng; Pan, Yu; Yang, Xu; Peng, Shanshan; Niu, Junqi

    2016-01-01

    Wilson Disease (WD) is an inborn error of copper metabolism inherited in an autosomal recessive manner caused by the mutations in the P-type ATPase gene (ATP7B). In this study, we screen and detect the mutations of the ATP7B gene in unrelated Chinese WD patients. A total of 68 individuals from ten provinces of China with WD were recruited. Of them, 43 were males and 25 were females, and their onset ages were from 1 to 48 years with a median onset age of 22.2 years. All the exons and exon/intron boundaries of ATP7B gene of the patients were sequenced and aligned to the referred ATP7B gene sequence. The results suggested that 66 of the 68 patents carried with at least one mutation and 48 different mutations were identified including 34 missense, one synonymous, two nonsense, two splicing, and nine frameshift mutations (five insertion and four deletion). Among these mutations, c.2333G>T, c.2310C>G, c.2975C>T, and c.3443T>C were the most prevalent mutants and c.2310C>G always linked with c.2333G>T. The eighth, 11(th), and 18(th) exons carried more mutations (6/48, 5/48, and 5/48, respectively) than others. After comparing with the mutations reported previously, 22 out of the 48 mutations were identified as novel mutations. A popular algorithm, Polyphen-2, was used to predict the effects of the amino-acid substitution due to the mutations on the structure and function of ATP7B function and the predicted results indicated that all the missense mutations were unfavorable except c.121A>G and c.748G>A. Phenotype/genotype correlation analysis suggested that the patients with c.2975C>T or c.3809A>G often presented WD features before 12 years old while the patients with c.3443T>C almost presented WD after 12 years old. This is the first time to identify the common mutations contributing to early onset age in Chinese WD patients. Our study will broaden our knowledge about ATP7B mutations in WD patients.

  5. Mutational analysis of ATP7B in Chinese Wilson disease patients.

    PubMed

    Hua, Rui; Hua, Fang; Jiao, Yonggeng; Pan, Yu; Yang, Xu; Peng, Shanshan; Niu, Junqi

    2016-01-01

    Wilson Disease (WD) is an inborn error of copper metabolism inherited in an autosomal recessive manner caused by the mutations in the P-type ATPase gene (ATP7B). In this study, we screen and detect the mutations of the ATP7B gene in unrelated Chinese WD patients. A total of 68 individuals from ten provinces of China with WD were recruited. Of them, 43 were males and 25 were females, and their onset ages were from 1 to 48 years with a median onset age of 22.2 years. All the exons and exon/intron boundaries of ATP7B gene of the patients were sequenced and aligned to the referred ATP7B gene sequence. The results suggested that 66 of the 68 patents carried with at least one mutation and 48 different mutations were identified including 34 missense, one synonymous, two nonsense, two splicing, and nine frameshift mutations (five insertion and four deletion). Among these mutations, c.2333G>T, c.2310C>G, c.2975C>T, and c.3443T>C were the most prevalent mutants and c.2310C>G always linked with c.2333G>T. The eighth, 11(th), and 18(th) exons carried more mutations (6/48, 5/48, and 5/48, respectively) than others. After comparing with the mutations reported previously, 22 out of the 48 mutations were identified as novel mutations. A popular algorithm, Polyphen-2, was used to predict the effects of the amino-acid substitution due to the mutations on the structure and function of ATP7B function and the predicted results indicated that all the missense mutations were unfavorable except c.121A>G and c.748G>A. Phenotype/genotype correlation analysis suggested that the patients with c.2975C>T or c.3809A>G often presented WD features before 12 years old while the patients with c.3443T>C almost presented WD after 12 years old. This is the first time to identify the common mutations contributing to early onset age in Chinese WD patients. Our study will broaden our knowledge about ATP7B mutations in WD patients. PMID:27398169

  6. Mutational analysis of ATP7B in Chinese Wilson disease patients

    PubMed Central

    Hua, Rui; Hua, Fang; Jiao, Yonggeng; Pan, Yu; Yang, Xu; Peng, Shanshan; Niu, Junqi

    2016-01-01

    Wilson Disease (WD) is an inborn error of copper metabolism inherited in an autosomal recessive manner caused by the mutations in the P-type ATPase gene (ATP7B). In this study, we screen and detect the mutations of the ATP7B gene in unrelated Chinese WD patients. A total of 68 individuals from ten provinces of China with WD were recruited. Of them, 43 were males and 25 were females, and their onset ages were from 1 to 48 years with a median onset age of 22.2 years. All the exons and exon/intron boundaries of ATP7B gene of the patients were sequenced and aligned to the referred ATP7B gene sequence. The results suggested that 66 of the 68 patents carried with at least one mutation and 48 different mutations were identified including 34 missense, one synonymous, two nonsense, two splicing, and nine frameshift mutations (five insertion and four deletion). Among these mutations, c.2333G>T, c.2310C>G, c.2975C>T, and c.3443T>C were the most prevalent mutants and c.2310C>G always linked with c.2333G>T. The eighth, 11th, and 18th exons carried more mutations (6/48, 5/48, and 5/48, respectively) than others. After comparing with the mutations reported previously, 22 out of the 48 mutations were identified as novel mutations. A popular algorithm, Polyphen-2, was used to predict the effects of the amino-acid substitution due to the mutations on the structure and function of ATP7B function and the predicted results indicated that all the missense mutations were unfavorable except c.121A>G and c.748G>A. Phenotype/genotype correlation analysis suggested that the patients with c.2975C>T or c.3809A>G often presented WD features before 12 years old while the patients with c.3443T>C almost presented WD after 12 years old. This is the first time to identify the common mutations contributing to early onset age in Chinese WD patients. Our study will broaden our knowledge about ATP7B mutations in WD patients. PMID:27398169

  7. Mutation analysis of 13 driver genes of colorectal cancer-related pathways in Taiwanese patients

    PubMed Central

    Chang, Yuli Christine; Chang, Jan-Gowth; Liu, Ta-Chih; Lin, Chien-Yu; Yang, Shu-Fen; Ho, Cheng-Mao; Chen, William Tzu-Liang; Chang, Ya-Sian

    2016-01-01

    AIM: To investigate the driver gene mutations associated with colorectal cancer (CRC) in the Taiwanese population. METHODS: In this study, 103 patients with CRC were evaluated. The samples consisted of 66 men and 37 women with a median age of 59 years and an age range of 26-86 years. We used high-resolution melting analysis (HRM) and direct DNA sequencing to characterize the mutations in 13 driver genes of CRC-related pathways. The HRM assays were conducted using the LightCycler® 480 Instrument provided with the software LightCycler® 480 Gene Scanning Software Version 1.5. We also compared the clinicopathological data of CRC patients with the driver gene mutation status. RESULTS: Of the 103 patients evaluated, 73.79% had mutations in one of the 13 driver genes. We discovered 18 novel mutations in APC, MLH1, MSH2, PMS2, SMAD4 and TP53 that have not been previously reported. Additionally, we found 16 de novo mutations in APC, BMPR1A, MLH1, MSH2, MSH6, MUTYH and PMS2 in cancerous tissues previously reported in the dbSNP database; however, these mutations could not be detected in peripheral blood cells. The APC mutation correlates with lymph node metastasis (34.69% vs 12.96%, P = 0.009) and cancer stage (34.78% vs 14.04%, P = 0.013). No association was observed between other driver gene mutations and clinicopathological features. Furthermore, having two or more driver gene mutations correlates with the degree of lymph node metastasis (42.86% vs 24.07%, P = 0.043). CONCLUSION: Our findings confirm the importance of 13 CRC-related pathway driver genes in the development of CRC in Taiwanese patients. PMID:26900293

  8. Altered Activation of Protein Kinase PKR and Enhanced Apoptosis in Dystonia Cells Carrying a Mutation in PKR Activator Protein PACT*

    PubMed Central

    Vaughn, Lauren S; Bragg, D. Cristopher; Sharma, Nutan; Camargos, Sarah; Cardoso, Francisco; Patel, Rekha C

    2015-01-01

    PACT is a stress-modulated activator of the interferon-induced double-stranded RNA-activated protein kinase (PKR). Stress-induced phosphorylation of PACT is essential for PACT's association with PKR leading to PKR activation. PKR activation leads to phosphorylation of translation initiation factor eIF2α inhibition of protein synthesis and apoptosis. A recessively inherited form of early-onset dystonia DYT16 has been recently identified to arise due to a homozygous missense mutation P222L in PACT. To examine if the mutant P222L protein alters the stress-response pathway, we examined the ability of mutant P222L to interact with and activate PKR. Our results indicate that the substitution mutant P222L activates PKR more robustly and for longer duration albeit with slower kinetics in response to the endoplasmic reticulum stress. In addition, the affinity of PACT-PACT and PACT-PKR interactions is enhanced in dystonia patient lymphoblasts, thereby leading to intensified PKR activation and enhanced cellular death. P222L mutation also changes the affinity of PACT-TRBP interaction after cellular stress, thereby offering a mechanism for the delayed PKR activation in response to stress. Our results demonstrate the impact of a dystonia-causing substitution mutation on stress-induced cellular apoptosis. PMID:26231208

  9. Structure-Based Analysis Reveals Cancer Missense Mutations Target Protein Interaction Interfaces

    PubMed Central

    Engin, H. Billur; Kreisberg, Jason F.; Carter, Hannah

    2016-01-01

    Recently it has been shown that cancer mutations selectively target protein-protein interactions. We hypothesized that mutations affecting distinct protein interactions involving established cancer genes could contribute to tumor heterogeneity, and that novel mechanistic insights might be gained into tumorigenesis by investigating protein interactions under positive selection in cancer. To identify protein interactions under positive selection in cancer, we mapped over 1.2 million nonsynonymous somatic cancer mutations onto 4,896 experimentally determined protein structures and analyzed their spatial distribution. In total, 20% of mutations on the surface of known cancer genes perturbed protein-protein interactions (PPIs), and this enrichment for PPI interfaces was observed for both tumor suppressors (Odds Ratio 1.28, P-value < 10−4) and oncogenes (Odds Ratio 1.17, P-value < 10−3). To study this further, we constructed a bipartite network representing structurally resolved PPIs from all available human complexes in the Protein Data Bank (2,864 proteins, 3,072 PPIs). Analysis of frequently mutated cancer genes within this network revealed that tumor-suppressors, but not oncogenes, are significantly enriched with functional mutations in homo-oligomerization regions (Odds Ratio 3.68, P-Value < 10−8). We present two important examples, TP53 and beta-2-microglobulin, for which the patterns of somatic mutations at interfaces provide insights into specifically perturbed biological circuits. In patients with TP53 mutations, patient survival correlated with the specific interactions that were perturbed. Moreover, we investigated mutations at the interface of protein-nucleotide interactions and observed an unexpected number of missense mutations but not silent mutations occurring within DNA and RNA binding sites. Finally, we provide a resource of 3,072 PPI interfaces ranked according to their mutation rates. Analysis of this list highlights 282 novel candidate cancer

  10. Impaired dNTPase Activity of SAMHD1 by Phosphomimetic Mutation of Thr-592*♦

    PubMed Central

    Tang, Chenxiang; Ji, Xiaoyun; Wu, Li; Xiong, Yong

    2015-01-01

    SAMHD1 is a cellular protein that plays key roles in HIV-1 restriction and regulation of cellular dNTP levels. Mutations in SAMHD1 are also implicated in the pathogenesis of chronic lymphocytic leukemia and Aicardi-Goutières syndrome. The anti-HIV-1 activity of SAMHD1 is negatively modulated by phosphorylation at residue Thr-592. The mechanism underlying the effect of phosphorylation on anti-HIV-1 activity remains unclear. SAMHD1 forms tetramers that possess deoxyribonucleotide triphosphate triphosphohydrolase (dNTPase) activity, which is allosterically controlled by the combined action of GTP and all four dNTPs. Here we demonstrate that the phosphomimetic mutation T592E reduces the stability of the SAMHD1 tetramer and the dNTPase activity of the enzyme. To better understand the underlying mechanisms, we determined the crystal structures of SAMHD1 variants T592E and T592V. Although the neutral substitution T592V does not perturb the structure, the charged T592E induces large conformational changes, likely triggered by electrostatic repulsion from a distinct negatively charged environment surrounding Thr-592. The phosphomimetic mutation results in a significant decrease in the population of active SAMHD1 tetramers, and hence the dNTPase activity is substantially decreased. These results provide a mechanistic understanding of how SAMHD1 phosphorylation at residue Thr-592 may modulate its cellular and antiviral functions. PMID:26294762

  11. Mutations in MAP3K7 that Alter the Activity of the TAK1 Signaling Complex Cause Frontometaphyseal Dysplasia.

    PubMed

    Wade, Emma M; Daniel, Philip B; Jenkins, Zandra A; McInerney-Leo, Aideen; Leo, Paul; Morgan, Tim; Addor, Marie Claude; Adès, Lesley C; Bertola, Debora; Bohring, Axel; Carter, Erin; Cho, Tae-Joon; Duba, Hans-Christoph; Fletcher, Elaine; Kim, Chong A; Krakow, Deborah; Morava, Eva; Neuhann, Teresa; Superti-Furga, Andrea; Veenstra-Knol, Irma; Wieczorek, Dagmar; Wilson, Louise C; Hennekam, Raoul C M; Sutherland-Smith, Andrew J; Strom, Tim M; Wilkie, Andrew O M; Brown, Matthew A; Duncan, Emma L; Markie, David M; Robertson, Stephen P

    2016-08-01

    Frontometaphyseal dysplasia (FMD) is a progressive sclerosing skeletal dysplasia affecting the long bones and skull. The cause of FMD in some individuals is gain-of-function mutations in FLNA, although how these mutations result in a hyperostotic phenotype remains unknown. Approximately one half of individuals with FMD have no identified mutation in FLNA and are phenotypically very similar to individuals with FLNA mutations, except for an increased tendency to form keloid scars. Using whole-exome sequencing and targeted Sanger sequencing in 19 FMD-affected individuals with no identifiable FLNA mutation, we identified mutations in two genes-MAP3K7, encoding transforming growth factor β (TGF-β)-activated kinase (TAK1), and TAB2, encoding TAK1-associated binding protein 2 (TAB2). Four mutations were found in MAP3K7, including one highly recurrent (n = 15) de novo mutation (c.1454C>T [ p.Pro485Leu]) proximal to the coiled-coil domain of TAK1 and three missense mutations affecting the kinase domain (c.208G>C [p.Glu70Gln], c.299T>A [p.Val100Glu], and c.502G>C [p.Gly168Arg]). Notably, the subjects with the latter three mutations had a milder FMD phenotype. An additional de novo mutation was found in TAB2 (c.1705G>A, p.Glu569Lys). The recurrent mutation does not destabilize TAK1, or impair its ability to homodimerize or bind TAB2, but it does increase TAK1 autophosphorylation and alter the activity of more than one signaling pathway regulated by the TAK1 kinase complex. These findings show that dysregulation of the TAK1 complex produces a close phenocopy of FMD caused by FLNA mutations. Furthermore, they suggest that the pathogenesis of some of the filaminopathies caused by FLNA mutations might be mediated by misregulation of signaling coordinated through the TAK1 signaling complex. PMID:27426733

  12. PAK4 kinase activity and somatic mutation promote carcinoma cell motility and influence inhibitor sensitivity

    PubMed Central

    Whale, Andrew D.; Dart, Anna; Holt, Mark; Jones, Gareth E.; Wells, Claire M.

    2012-01-01

    Hepatocyte growth factor (HGF) and its receptor (c-Met) are associated with cancer cell motility and invasiveness. p21-activated kinase 4 (PAK4), a potential therapeutic target, is recruited to and activated by c-Met. In response, PAK4 phosphorylates LIM kinase 1 (LIMK1) in an HGF-dependent manner in metastatic prostate carcinoma cells. PAK4 overexpression is known to induce increased cell migration speed but the requirement for kinase activity has not been established. We have used a panel of PAK4 truncations and mutations in a combination of over-expression and RNAi rescue experiments to determine the requirement for PAK4 kinase activity during carcinoma cell motility downstream of HGF. We find that neither the kinase domain alone nor a PAK4 mutant unable to bind Cdc42 is able to fully rescue cell motility in a PAK4-deficient background. Nevertheless, we find that PAK4 kinase activity and associated LIMK1 activity are essential for carcinoma cell motility, highlighting PAK4 as a potential anti-metastatic therapeutic target. We also show here that overexpression of PAK4 harboring a somatic mutation, E329K, increased the HGF-driven motility of metastatic prostate carcinoma cells. E329 lies within the G-loop region of the kinase. Our data suggest E329K mutation leads to a modest increase in kinase activity conferring resistance to competitive ATP inhibitors in addition to promoting cell migration. The existence of such a mutation may have implications for the development of PAK4-specific competitive ATP inhibitors should PAK4 be further explored for clinical inhibition. PMID:22689056

  13. An activating Pik3ca mutation coupled with Pten loss is sufficient to initiate ovarian tumorigenesis in mice.

    PubMed

    Kinross, Kathryn M; Montgomery, Karen G; Kleinschmidt, Margarete; Waring, Paul; Ivetac, Ivan; Tikoo, Anjali; Saad, Mirette; Hare, Lauren; Roh, Vincent; Mantamadiotis, Theo; Sheppard, Karen E; Ryland, Georgina L; Campbell, Ian G; Gorringe, Kylie L; Christensen, James G; Cullinane, Carleen; Hicks, Rodney J; Pearson, Richard B; Johnstone, Ricky W; McArthur, Grant A; Phillips, Wayne A

    2012-02-01

    Mutations in the gene encoding the p110α subunit of PI3K (PIK3CA) that result in enhanced PI3K activity are frequently observed in human cancers. To better understand the role of mutant PIK3CA in the initiation or progression of tumorigenesis, we generated mice in which a PIK3CA mutation commonly detected in human cancers (the H1047R mutation) could be conditionally knocked into the endogenous Pik3ca locus. Activation of this mutation in the mouse ovary revealed that alone, Pik3caH1047R induced premalignant hyperplasia of the ovarian surface epithelium but no tumors. Concomitantly, we analyzed several human ovarian cancers and found PIK3CA mutations coexistent with KRAS and/or PTEN mutations, raising the possibility that a secondary defect in a co-regulator of PI3K activity may be required for mutant PIK3CA to promote transformation. Consistent with this notion, we found that Pik3caH1047R mutation plus Pten deletion in the mouse ovary led to the development of ovarian serous adenocarcinomas and granulosa cell tumors. Both mutational events were required for early, robust Akt activation. Pharmacological inhibition of PI3K/mTOR in these mice delayed tumor growth and prolonged survival. These results demonstrate that the Pik3caH1047R mutation with loss of Pten is enough to promote ovarian cell transformation and that we have developed a model system for studying possible therapies.

  14. Mudi, a web tool for identifying mutations by bioinformatics analysis of whole-genome sequence.

    PubMed

    Iida, Naoko; Yamao, Fumiaki; Nakamura, Yasukazu; Iida, Tetsushi

    2014-06-01

    In forward genetics, identification of mutations is a time-consuming and laborious process. Modern whole-genome sequencing, coupled with bioinformatics analysis, has enabled fast and cost-effective mutation identification. However, for many experimental researchers, bioinformatics analysis is still a difficult aspect of whole-genome sequencing. To address this issue, we developed a browser-accessible and easy-to-use bioinformatics tool called Mutation discovery (Mudi; http://naoii.nig.ac.jp/mudi_top.html), which enables 'one-click' identification of causative mutations from whole-genome sequence data. In this study, we optimized Mudi for pooled-linkage analysis aimed at identifying mutants in yeast model systems. After raw sequencing data are uploaded, Mudi performs sequential analysis, including mapping, detection of variant alleles, filtering and removal of background polymorphisms, prioritization, and annotation. In an example study of suppressor mutants of ptr1-1 in the fission yeast Schizosaccharomyces pombe, pooled-linkage analysis with Mudi identified mip1(+) , a component of Target of Rapamycin Complex 1 (TORC1), as a novel component involved in RNA interference (RNAi)-related cell-cycle control. The accessibility of Mudi will accelerate systematic mutation analysis in forward genetics.

  15. Genetic analysis and SOD1 mutation screening in Iranian amyotrophic lateral sclerosis patients.

    PubMed

    Alavi, Afagh; Nafissi, Shahriar; Rohani, Mohammad; Zamani, Babak; Sedighi, Behnaz; Shamshiri, Hosein; Fan, Jian-Bing; Ronaghi, Mostafa; Elahi, Elahe

    2013-05-01

    Amyotrophic lateral sclerosis (ALS) is a fatal motor neuron disease, and the most common in European populations. Results of genetic analysis and mutation screening of SOD1 in a cohort of 60 Iranian ALS patients are here reported. Initially, linkage analysis in 4 families identified a disease-linked locus that included the known ALS gene, SOD1. Screening of SOD1 identified homozygous p.Asp90Ala causing mutations in all the linked families. Haplotype analysis suggests that the p.Asp90Ala alleles in the Iranian patients might share a common founder with the renowned Scandinavian recessive p.Asp90Ala allele. Subsequent screening in all the patients resulted in identification of 3 other mutations in SOD1, including p.Leu84Phe in the homozygous state. Phenotypic features of the mutation-bearing patients are presented. SOD1 mutations were found in 11.7% of the cohort, 38.5% of the familial ALS probands, and 4.25% of the sporadic ALS cases. SOD1 mutations contribute significantly to ALS among Iranians.

  16. A novel TMPRSS6 mutation that prevents protease auto-activation causes IRIDA

    PubMed Central

    Altamura, Sandro; D'Alessio, Flavia; Selle, Barbara; Muckenthaler, Martina U.

    2010-01-01

    IRIDA (iron-refractory iron-deficiency anaemia) is a rare autosomal-recessive disorder hallmarked by hypochromic microcytic anaemia, low transferrin saturation and high levels of the iron-regulated hormone hepcidin. The disease is caused by mutations in the transmembrane serine protease TMPRSS6 (transmembrane protease serine 6) that prevent inactivation of HJV (haemojuvelin), an activator of hepcidin transcription. In the present paper, we describe a patient with IRIDA who carries a novel mutation (Y141C) in the SEA domain of the TMPRSS6 gene. Functional characterization of the TMPRSS6(Y141C) mutant protein in cultured cells showed that it localizes to similar subcellular compartments as wild-type TMPRSS6 and binds HJV, but fails to auto-catalytically activate itself. As a consequence, hepcidin mRNA expression is increased, causing the clinical symptoms observed in this IRIDA patient. The present study provides important mechanistic insight into how TMPRSS6 is activated. PMID:20704562

  17. Activity-dependent neuroprotective protein (ADNP): a case study for highly conserved chordata-specific genes shaping the brain and mutated in cancer.

    PubMed

    Gozes, Illana; Yeheskel, Adva; Pasmanik-Chor, Metsada

    2015-01-01

    The recent finding of activity-dependent neuroprotective protein (ADNP) as a protein decreased in serum of patients with Alzheimer's disease (AD) compared to controls, alongside with the discovery of ADNP mutations in autism and coupled with the original description of cancer mutations, ignited an interest for a comparative analysis of ADNP with other AD/autism/cancer-associated genes. We strive toward a better understanding of the molecular structure of key players in psychiatric/neurodegenerative diseases including autism, schizophrenia, and AD. This article includes data mining and bioinformatics analysis on the ADNP gene and protein, in addition to other related genes, with emphasis on recent literature. ADNP is discovered here as unique to chordata with specific autism mutations different from cancer-associated mutation. Furthermore, ADNP exhibits similarities to other cancer/autism-associated genes. We suggest that key genes, which shape and maintain our brain and are prone to mutations, are by in large unique to chordata. Furthermore, these brain-controlling genes, like ADNP, are linked to cell growth and differentiation, and under different stress conditions may mutate or exhibit expression changes leading to cancer propagation. Better understanding of these genes could lead to better therapeutics.

  18. Mutation analysis with random DNA identifiers (MARDI) catalogs Pig-a mutations in heterogeneous pools of CD48-deficient T cells derived from DMBA-treated rats.

    PubMed

    Revollo, Javier R; Crabtree, Nathaniel M; Pearce, Mason G; Pacheco-Martinez, M Monserrat; Dobrovolsky, Vasily N

    2016-03-01

    Identification of mutations induced by xenotoxins is a common task in the field of genetic toxicology. Mutations are often detected by clonally expanding potential mutant cells and genotyping each viable clone by Sanger sequencing. Such a "clone-by-clone" approach requires significant time and effort, and sometimes is even impossible to implement. Alternative techniques for efficient mutation identification would greatly benefit both basic and regulatory genetic toxicology research. Here, we report the development of Mutation Analysis with Random DNA Identifiers (MARDI), a novel high-fidelity Next Generation Sequencing (NGS) approach that circumvents clonal expansion and directly catalogs mutations in pools of mutant cells. MARDI uses oligonucleotides carrying Random DNA Identifiers (RDIs) to tag progenitor DNA molecules before PCR amplification, enabling clustering of descendant DNA molecules and eliminating NGS- and PCR-induced sequencing artifacts. When applied to the Pig-a cDNA analysis of heterogeneous pools of CD48-deficient T cells derived from DMBA-treated rats, MARDI detected nearly all Pig-a mutations that were previously identified by conventional clone-by-clone analysis and discovered many additional ones consistent with DMBA exposure: mostly A to T transversions, with the mutated A located on the non-transcribed DNA strand. PMID:26683280

  19. Novel pathogenic mechanism suggested by ex vivo analysis of MCT8 (SLC16A2) mutations.

    PubMed

    Visser, W Edward; Jansen, Jurgen; Friesema, Edith C H; Kester, Monique H A; Mancilla, Edna; Lundgren, Johan; van der Knaap, Marjo S; Lunsing, Roelineke J; Brouwer, Oebele F; Visser, Theo J

    2009-01-01

    Monocarboxylate transporter 8 (MCT8; approved symbol SLC16A2) facilitates cellular uptake and efflux of 3,3',5-triiodothyronine (T3). Mutations in MCT8 are associated with severe psychomotor retardation, high serum T3 and low 3,3',5'-triiodothyronine (rT3) levels. Here we report three novel MCT8 mutations. Two subjects with the F501del mutation have mild psychomotor retardation with slightly elevated T3 and normal rT3 levels. T3 uptake was mildly affected in F501del fibroblasts and strongly decreased in fibroblasts from other MCT8 patients, while T3 efflux was always strongly reduced. Moreover, type 3 deiodinase activity was highly elevated in F501del fibroblasts, whereas it was reduced in fibroblasts from other MCT8 patients, probably reflecting parallel variation in cellular T3 content. Additionally, T3-responsive genes were markedly upregulated by T3 treatment in F501del fibroblasts but not in fibroblasts with other MCT8 mutations. In conclusion, mutations in MCT8 result in a decreased T3 uptake in skin fibroblasts. The much milder clinical phenotype of patients with the F501del mutation may be correlated with the relatively small decrease in T3 uptake combined with an even greater decrease in T3 efflux. If fibroblasts are representative of central neurons, abnormal brain development associated with MCT8 mutations may be the consequence of either decreased or increased intracellular T3 concentrations. PMID:18636565

  20. Intragenic suppression of an active site mutation in the human apurinic/apyrimidinic endonuclease.

    PubMed

    Izumi, T; Malecki, J; Chaudhry, M A; Weinfeld, M; Hill, J H; Lee, J C; Mitra, S

    1999-03-19

    The apurinic/apyrimidinic endonucleases (APE) contain several highly conserved sequence motifs. The glutamic acid residue in a consensus motif, LQE96TK98 in human APE (hAPE-1), is crucial because of its role in coordinating Mg2+, an essential cofactor. Random mutagenesis of the inactive E96A mutant cDNA, followed by phenotypic screening in Escherichia coli, led to isolation of an intragenic suppressor with a second site mutation, K98R. Although the Km of the suppressor mutant was about sixfold higher than that of the wild-type enzyme, their kcat values were similar for AP endonuclease activity. These results suggest that the E96A mutation affects only the DNA-binding step, but not the catalytic step of the enzyme. The 3' DNA phosphoesterase activities of the wild-type and the suppressor mutant were also comparable. No global change of the protein conformation is induced by the single or double mutations, but a local perturbation in the structural environment of tryptophan residues may be induced by the K98R mutation. The wild-type and suppressor mutant proteins have similar Mg2+ requirement for activity. These results suggest a minor perturbation in conformation of the suppressor mutant enabling an unidentified Asp or Glu residue to substitute for Glu96 in positioning Mg2+ during catalysis. The possibility that Asp70 is such a residue, based on its observed proximity to the metal-binding site in the wild-type protein, was excluded by site-specific mutation studies. It thus appears that another acidic residue coordinates with Mg2+ in the mutant protein. These results suggest a rather flexible conformation of the region surrounding the metal binding site in hAPE-1 which is not obvious from the X-ray crystallographic structure. PMID:10074406

  1. The protist Trichomonas vaginalis harbors multiple lineages of transcriptionally active Mutator-like elements

    PubMed Central

    Lopes, Fabrício R; Silva, Joana C; Benchimol, Marlene; Costa, Gustavo GL; Pereira, Gonçalo AG; Carareto, Claudia MA

    2009-01-01

    Background For three decades the Mutator system was thought to be exclusive of plants, until the first homolog representatives were characterized in fungi and in early-diverging amoebas earlier in this decade. Results Here, we describe and characterize four families of Mutator-like elements in a new eukaryotic group, the Parabasalids. These Trichomonas vaginalis Mutator- like elements, or TvMULEs, are active in T. vaginalis and patchily distributed among 12 trichomonad species and isolates. Despite their relatively distinctive amino acid composition, the inclusion of the repeats TvMULE1, TvMULE2, TvMULE3 and TvMULE4 into the Mutator superfamily is justified by sequence, structural and phylogenetic analyses. In addition, we identified three new TvMULE-related sequences in the genome sequence of Candida albicans. While TvMULE1 is a member of the MuDR clade, predominantly from plants, the other three TvMULEs, together with the C. albicans elements, represent a new and quite distinct Mutator lineage, which we named TvCaMULEs. The finding of TvMULE1 sequence inserted into other putative repeat suggests the occurrence a novel TE family not yet described. Conclusion These findings expand the taxonomic distribution and the range of functional motif of MULEs among eukaryotes. The characterization of the dynamics of TvMULEs and other transposons in this organism is of particular interest because it is atypical for an asexual species to have such an extreme level of TE activity; this genetic landscape makes an interesting case study for causes and consequences of such activity. Finally, the extreme repetitiveness of the T. vaginalis genome and the remarkable degree of sequence identity within its repeat families highlights this species as an ideal system to characterize new transposable elements. PMID:19622157

  2. Activation of initiation factor 2 by ligands and mutations for rapid docking of ribosomal subunits.

    PubMed

    Pavlov, Michael Y; Zorzet, Anna; Andersson, Dan I; Ehrenberg, Måns

    2011-01-19

    We previously identified mutations in the GTPase initiation factor 2 (IF2), located outside its tRNA-binding domain, compensating strongly (A-type) or weakly (B-type) for initiator tRNA formylation deficiency. We show here that rapid docking of 30S with 50S subunits in initiation of translation depends on switching 30S subunit-bound IF2 from its inactive to active form. Activation of wild-type IF2 requires GTP and formylated initiator tRNA (fMet-tRNA(i)). In contrast, extensive activation of A-type IF2 occurs with only GTP or with GDP and fMet-tRNA(i), implying a passive role for initiator tRNA as activator of IF2 in subunit docking. The theory of conditional switching of GTPases quantitatively accounts for all our experimental data. We find that GTP, GDP, fMet-tRNA(i) and A-type mutations multiplicatively increase the equilibrium ratio, K, between active and inactive forms of IF2 from a value of 4 × 10(-4) for wild-type apo-IF2 by factors of 300, 8, 80 and 20, respectively. Functional characterization of the A-type mutations provides keys to structural interpretation of conditional switching of IF2 and other multidomain GTPases. PMID:21151095

  3. In silico analysis of the thermodynamic stability changes of psychrophilic and mesophilic alpha-amylases upon exhaustive single-site mutations.

    PubMed

    Gilis, Dimitri

    2006-01-01

    Identifying sequence modifications that distinguish psychrophilic from mesophilic proteins is important for designing enzymes with different thermodynamic stabilities and to understand the underlying mechanisms. The PoPMuSiC algorithm is used to introduce, in silico, all the single-site mutations in four mesophilic and one psychrophilic chloride-dependent alpha-amylases and to evaluate the changes in thermodynamic stability. The analysis of the distribution of the sequence positions that could be stabilized upon mutation shows a clear difference between the three domains of psychrophilic and mesophilic alpha-amylases. Most of the mutations stabilizing the psychrophilic enzyme are found in domains B and C, contrary to the mesophilic proteins where they are preferentially situated in the catalytic domain A. Moreover, the calculations show that the environment of some residues responsible for the activity of the psychrophilic protein has evolved to reinforce favorable interactions with these residues. In the second part, these results are exploited to propose rationally designed mutations that are predicted to confer to the psychrophilic enzyme mesophilic-like thermodynamic properties. Interestingly, most of the mutations found in domain C strengthen the interactions with domain A, in agreement with suggestions made on the basis of structural analyses. Although this study focuses on single-site mutations, the thermodynamic effects of the recommended mutations should be additive if the mutated residues are not close in space.

  4. Molecular analysis of HEXA gene in Argentinean patients affected with Tay-Sachs disease: possible common origin of the prevalent c.459+5A>G mutation.

    PubMed

    Zampieri, Stefania; Montalvo, Annalisa; Blanco, Mariana; Zanin, Irene; Amartino, Hernan; Vlahovicek, Kristian; Szlago, Marina; Schenone, Andrea; Pittis, Gabriela; Bembi, Bruno; Dardis, Andrea

    2012-05-15

    Tay-Sachs disease (TSD) is a recessively inherited disorder caused by the deficient activity of hexosaminidase A due to mutations in the HEXA gene. Up to date there is no information regarding the molecular genetics of TSD in Argentinean patients. In the present study we have studied 17 Argentinean families affected by TSD, including 20 patients with the acute infantile form and 3 with the sub-acute form. Overall, we identified 14 different mutations accounting for 100% of the studied alleles. Eight mutations were novel: 5 were single base changes leading to drastic residue changes or truncated proteins, 2 were small deletions and one was an intronic mutation that may cause a splicing defect. Although the spectrum of mutations was highly heterogeneous, a high frequency of the c.459+5G>A mutation, previously described in different populations was found among the studied cohort. Haplotype analysis suggested that in these families the c.459+5G>A mutation might have arisen by a single mutational event.

  5. Molecular analysis of HEXA gene in Argentinean patients affected with Tay-Sachs disease: possible common origin of the prevalent c.459+5A>G mutation.

    PubMed

    Zampieri, Stefania; Montalvo, Annalisa; Blanco, Mariana; Zanin, Irene; Amartino, Hernan; Vlahovicek, Kristian; Szlago, Marina; Schenone, Andrea; Pittis, Gabriela; Bembi, Bruno; Dardis, Andrea

    2012-05-15

    Tay-Sachs disease (TSD) is a recessively inherited disorder caused by the deficient activity of hexosaminidase A due to mutations in the HEXA gene. Up to date there is no information regarding the molecular genetics of TSD in Argentinean patients. In the present study we have studied 17 Argentinean families affected by TSD, including 20 patients with the acute infantile form and 3 with the sub-acute form. Overall, we identified 14 different mutations accounting for 100% of the studied alleles. Eight mutations were novel: 5 were single base changes leading to drastic residue changes or truncated proteins, 2 were small deletions and one was an intronic mutation that may cause a splicing defect. Although the spectrum of mutations was highly heterogeneous, a high frequency of the c.459+5G>A mutation, previously described in different populations was found among the studied cohort. Haplotype analysis suggested that in these families the c.459+5G>A mutation might have arisen by a single mutational event. PMID:22441121

  6. Design and analysis issues in genome-wide somatic mutation studies of cancer.

    PubMed

    Parmigiani, Giovanni; Boca, Simina; Lin, Jimmy; Kinzler, Kenneth W; Velculescu, Victor; Vogelstein, Bert

    2009-01-01

    The availability of the human genome sequence and progress in sequencing and bioinformatic technologies have enabled genome-wide investigation of somatic mutations in human cancers. This article briefly reviews challenges arising in the statistical analysis of mutational data of this kind. A first challenge is that of designing studies that efficiently allocate sequencing resources. We show that this can be addressed by two-stage designs and demonstrate via simulations that even relatively small studies can produce lists of candidate cancer genes that are highly informative for future research efforts. A second challenge is to distinguish mutated genes that are selected for by cancer (drivers) from mutated genes that have no role in the development of cancer and simply happened to mutate (passengers). We suggest that this question is best approached as a classification problem and discuss some of the difficulties of more traditional testing-based approaches. A third challenge is to identify biologic processes affected by the driver genes. This can be pursued by gene set analyses. These can reliably identify functional groups and pathways that are enriched for mutated genes even when the individual genes involved in those pathways or sets are not mutated at sufficient frequencies to provide conclusive evidence as drivers.

  7. Mutation analysis of PALB2 gene in French breast cancer families.

    PubMed

    Damiola, Francesca; Schultz, Inès; Barjhoux, Laure; Sornin, Valérie; Dondon, Marie-Gabrielle; Eon-Marchais, Séverine; Marcou, Morgane; Caron, Olivier; Gauthier-Villars, Marion; de Pauw, Antoine; Luporsi, Elisabeth; Berthet, Pascaline; Delnatte, Capucine; Bonadona, Valérie; Maugard, Christine; Pujol, Pascal; Lasset, Christine; Longy, Michel; Bignon, Yves-Jean; Fricker, Jean-Pierre; Andrieu, Nadine; Sinilnikova, Olga M; Stoppa-Lyonnet, Dominique; Mazoyer, Sylvie; Muller, Danièle

    2015-12-01

    Several population-based and family-based studies have demonstrated that germline mutations of the PALB2 gene (Partner and Localizer of BRCA2) are associated with an increased risk of breast cancer. Distinct mutation frequencies and spectrums have been described depending on the population studied. Here we describe the first complete PALB2 coding sequence screening in the French population. We screened the complete coding sequence and intron-exon boundaries of PALB2, using the EMMA technique, to assess the contribution of pathogenic mutations in a set of 835 familial breast cancer cases and 662 unrelated controls from the French national study GENESIS and the Paul Strauss Cancer Centre, all previously tested negative for BRCA1 and BRCA2 pathogenic mutations. Our analysis revealed the presence of four novel deleterious mutations: c.1186insT, c.1857delT and c.2850delC in three cases, c.3418dupT in one control. In addition, we identified two in-frame insertion/deletion, 19 missense substitutions (two of them predicted as pathogenic), 9 synonymous variants, 28 variants located in introns and 2 in UTRs, as well as frequent variants. Truncating PALB2 mutations were found in 0.36% of familial breast cancer cases, a frequency lower than the one detected in comparable studies in other populations (0.73-3.40%). This suggests a small but significant contribution of PALB2 mutations to the breast cancer susceptibility in the French population. PMID:26564480

  8. A three-dimensional model of mammalian tyrosinase active site accounting for loss of function mutations.

    PubMed

    Schweikardt, Thorsten; Olivares, Concepción; Solano, Francisco; Jaenicke, Elmar; García-Borrón, José Carlos; Decker, Heinz

    2007-10-01

    Tyrosinases are the first and rate-limiting enzymes in the synthesis of melanin pigments responsible for colouring hair, skin and eyes. Mutation of tyrosinases often decreases melanin production resulting in albinism, but the effects are not always understood at the molecular level. Homology modelling of mouse tyrosinase based on recently published crystal structures of non-mammalian tyrosinases provides an active site model accounting for loss-of-function mutations. According to the model, the copper-binding histidines are located in a helix bundle comprising four densely packed helices. A loop containing residues M374, S375 and V377 connects the CuA and CuB centres, with the peptide oxygens of M374 and V377 serving as hydrogen acceptors for the NH-groups of the imidazole rings of the copper-binding His367 and His180. Therefore, this loop is essential for the stability of the active site architecture. A double substitution (374)MS(375) --> (374)GG(375) or a single M374G mutation lead to a local perturbation of the protein matrix at the active site affecting the orientation of the H367 side chain, that may be unable to bind CuB reliably, resulting in loss of activity. The model also accounts for loss of function in two naturally occurring albino mutations, S380P and V393F. The hydroxyl group in S380 contributes to the correct orientation of M374, and the substitution of V393 for a bulkier phenylalanine sterically impedes correct side chain packing at the active site. Therefore, our model explains the mechanistic necessity for conservation of not only active site histidines but also adjacent amino acids in tyrosinase. PMID:17850513

  9. Disease-associated mutations inactivate AMP-lysine hydrolase activity of Aprataxin.

    PubMed

    Seidle, Heather F; Bieganowski, Pawel; Brenner, Charles

    2005-06-01

    Ataxia-oculomotor apraxia syndrome 1 is an early onset cerebellar ataxia that results from loss of function mutations in the APTX gene, encoding Aprataxin, which contains three conserved domains. The forkhead-associated domain of Aprataxin mediates protein-protein interactions with molecules that respond to DNA damage, but the cellular phenotype of the disease does not appear to be consistent with a major loss in DNA damage responses. Disease-associated mutations in Aprataxin target a histidine triad domain that is similar to Hint, a universally conserved AMP-lysine hydrolase, or truncate the protein NH2-terminal to a zinc finger. With novel fluorigenic substrates, we demonstrate that Aprataxin possesses an active-site-dependent AMP-lysine and GMP-lysine hydrolase activity that depends additionally on the zinc finger for protein stability and on the forkhead associated domain for enzymatic activity. Alleles carrying any of eight recessive mutations associated with ataxia and oculomotor apraxia encode proteins with huge losses in protein stability and enzymatic activity, consistent with a null phenotype. The mild presentation allele, APTX-K197Q, associated with ataxia but not oculomotor apraxia, encodes a protein with a mild defect in stability and activity, while enzyme encoded by the atypical presentation allele, APTX-R199H, retained substantial function, consistent with altered and not loss of activity. The data suggest that the essential function of Aprataxin is reversal of nucleotidylylated protein modifications, that all three domains contribute to formation of a stable enzyme, and that the in vitro behavior of cloned APTX alleles can score disease-associated mutations. PMID:15790557

  10. The STAT3 HIES mutation is a gain-of-function mutation that activates genes via AGG-element carrying promoters

    PubMed Central

    Xu, Li; Ji, Jin-Jun; Le, Wangping; Xu, Yan S.; Dou, Dandan; Pan, Jieli; Jiao, Yifeng; Zhong, Tianfei; Wu, Dehong; Wang, Yumei; Wen, Chengping; Xie, Guan-Qun; Yao, Feng; Zhao, Heng; Fan, Yong-Sheng; Chin, Y. Eugene

    2015-01-01

    Cytokine or growth factor activated STAT3 undergoes multiple post-translational modifications, dimerization and translocation into nuclei, where it binds to serum-inducible element (SIE, ‘TTC(N3)GAA’)-bearing promoters to activate transcription. The STAT3 DNA binding domain (DBD, 320–494) mutation in hyper immunoglobulin E syndrome (HIES), called the HIES mutation (R382Q, R382W or V463Δ), which elevates IgE synthesis, inhibits SIE binding activity and sensitizes genes such as TNF-α for expression. However, the mechanism by which the HIES mutation sensitizes STAT3 in gene induction remains elusive. Here, we report that STAT3 binds directly to the AGG-element with the consensus sequence ‘AGG(N3)AGG’. Surprisingly, the helical N-terminal region (1–355), rather than the canonical STAT3 DBD, is responsible for AGG-element binding. The HIES mutation markedly enhances STAT3 AGG-element binding and AGG-promoter activation activity. Thus, STAT3 is a dual specificity transcription factor that promotes gene expression not only via SIE- but also AGG-promoter activity. PMID:26384563

  11. WISP3 mutational analysis in Indian patients diagnosed with progressive pseudorheumatoid dysplasia and report of a novel mutation at p.Y198*

    PubMed Central

    Santhanam, M.; Rajagopal, K.; Sugumar, L. K.; Balaji, V.

    2016-01-01

    Objectives To determine the pattern of mutations of the WISP3 gene in clinically identified progressive pseudorheumatoid dysplasia (PPD) in an Indian population. Patients and Methods A total of 15 patients with clinical features of PPD were enrolled in this study. Genomic DNA was isolated and polymerase chain reaction performed to amplify the WISP3 gene. Screening for mutations was done by conformation-sensitive gel electrophoresis, beginning with the fifth exon and subsequently proceeding to the remaining exons. Sanger sequencing was performed for both forward and reverse strands to confirm the mutations. Results In all, two of the 15 patients had compound heterozygous mutations: one a nonsense mutation c.156C>A (p.C52*) in exon 2, and the other a missense mutation c.677G>T (p.G226V) in exon 4. All others were homozygous, with three bearing a nonsense mutation c.156C>A (p.C52*) in exon 2, three a missense mutation c.233G>A (p.C78Y) in exon 2, five a missense mutation c.1010G>A (p.C337Y) in exon 5, one a nonsense mutation c.348C>A (p.Y116*) in exon 3, and one with a novel deletion mutation c.593_597delATAGA (p.Y198*) in exon 4. Conclusion We identified a novel mutation c.593_597delATAGA (p.Y198*) in the fourth exon of the WISP3 gene. We also confirmed c.1010G>A as one of the common mutations in an Indian population with progressive pseudorheumatoid dysplasia. Cite this article: V. Madhuri, M. Santhanam, K. Rajagopal, L. K. Sugumar, V. Balaji. WISP3 mutational analysis in Indian patients diagnosed with progressive pseudorheumatoid dysplasia and report of a novel mutation at p.Y198* Bone Joint Res 2016;5:301–306. DOI: 10.1302/2046-3758.57.2000520. PMID:27436824

  12. Functional and structural analysis of four novel mutations of CYP21A2 gene in Italian patients with 21-hydroxylase deficiency.

    PubMed

    Massimi, A; Malaponti, M; Federici, L; Vinciguerra, D; Manca Bitti, M L; Vottero, A; Ghizzoni, L; Maccarrone, M; Cappa, M; Bernardini, S; Porzio, O

    2014-06-01

    Congenital adrenal hyperplasia (CAH) is an autosomal recessive disorder mainly caused by defects in the 21-hydroxylase gene (CYP21A2), coding for the enzyme 21-hydroxylase (21-OH). About 95% of the mutations arise from gene conversion between CYP21A2 and the inactive pseudogene CYP21A1P: only 5% are novel CYP21A2 mutations, in which functional analysis of mutant enzymes has been helpful to correlate genotype-phenotype. In the present study, we describe 3 novel point mutations (p.L122P, p.Q481X, and p.E161X) in 3 Italian patients with CAH: the fourth mutation (p.M150R) was found in the carrier state. Molecular modeling suggests a major impact on 21-hydroxylase activity, and functional analysis after expression in COS-7 cells confirms reduced enzymatic activity of the mutant enzymes. Only the p.M150R mutation affected the activity to a minor extent, associated with NC CAH. CYP21A2 genotyping and functional characterization of each disease-causing mutation has relevance both for treatment and genetic counseling to the patients.

  13. Mutational analysis of the N-ras, p53, p16INK4a, CDK4, and MC1R genes in human congenital melanocytic naevi.

    PubMed

    Papp, T; Pemsel, H; Zimmermann, R; Bastrop, R; Weiss, D G; Schiffmann, D

    1999-08-01

    Eighteen human congenital melanocytic naevi (CMN) from 17 patients were screened for activating point mutations in the oncogenes N-ras and CDK4 and for sequence variants in the MC1R gene by combined RFLP-PCR/SSCP analysis. In addition, all lesions were screened for deletions and point mutations in the tumour suppressor genes p53 and p16INK4a (CDKN2A) by combined multiplex PCR/SSCP analysis. Positive screening data were specified by sequencing of the corresponding PCR product. Activating point mutations in the N-ras gene (nine CAA (Gln) to AAA (Lys) transversions and one CAA (Gln) to CGA (Arg) transition at codon 61) were detected at high frequency (56%). Furthermore, three missense mutations (V92M) and two silent mutations (CGA (Arg) to CGG (Arg), codon 213, exon 6) were found in the MC1R and p53 genes, respectively. No mutations were found in p16 or CDK4. The activated N-ras oncogene, which is also found in human cutaneous melanomas, may constitute a potential risk factor for melanoma formation within CMN.

  14. Intragenic single nucleotide polymorphism haplotype analysis of SUR1 mutations in familial hyperinsulinism.

    PubMed

    Glaser, B; Furth, J; Stanley, C A; Baker, L; Thornton, P S; Landau, H; Permutt, M A

    1999-01-01

    Familial hyperinsulinism (HI; MIM# 256450) is an autosomal recessive disorder of pancreatic beta-cell function, characterized by inadequate suppression of insulin secretion despite severe recurrent fasting hypoglycemia. Subtotal pancreatectomy is frequently required to prevent permanent neurologic sequelae. The incidence of HI in the Caucasian population is estimated at 1:50,000, however an apparent increased incidence among Ashkenazi Jews and Saudi Arabian Arabs has been reported. A locus for HI was assigned by linkage analyses to human chromosome 11p15.1. The sulfonylurea receptor (MIM# 600509, SUR1) and the potassium channel, inwardly rectifying, subfamily J member 11 (MIM# 600937, KIR6.2) genes, 2 components of the beta-cell K(ATP) channel, are clustered in this chromosomal region, and mutations in these genes have been implicated in HI. We previously demonstrated that two mutations in the SUR1 gene are present on approximately 88% of HI-associated chromosomes in Ashkenazi Jewish patients. Haplotype analysis with microsatellite markers flanking the gene revealed that one mutation (delF1388), reported only in Ashkenazi probands, occurred on two related extended haplotypes. By contrast, the second, more common mutation (3992-9g-->a) was associated with nine different intergenic haplotypes and has been reported in non-Jewish HI patients as well. In this study, we evaluated disease-associated chromosomes from 41 Ashkenazi Jewish and 2 non-Jewish HI patients carrying the 3992-9g-->a mutation by assessing haplotypes defined by nine common single nucleotide polymorphisms (SNPs), six in the SUR1 gene, and three in the KIR6.2 gene. Our results indicate that all 54 chromosomes carrying the 3992-9g-->a mutation in the Jewish patients appear to have originated from one founder mutation, whereas the same mutation on chromosomes from non-Jewish patients originated independently. Furthermore, our findings have implications concerning the HI-associated chromosomes on which no

  15. Molecular Analysis of CYP21A2 Gene Mutations among Iraqi Patients with Congenital Adrenal Hyperplasia

    PubMed Central

    Al-Obaidi, Ruqayah G. Y.; Al-Zubaidi, Munib Ahmed K.; Oberkanins, Christian; Németh, Stefan; Al-Obaidi, Yusra G. Y.

    2016-01-01

    Congenital adrenal hyperplasia is a group of autosomal recessive disorders. The most frequent one is 21-hydroxylase deficiency. Analyzing CYP21A2 gene mutations was so far not reported in Iraq. This work aims to analyze the spectrum and frequency of CYP21A2 mutations among Iraqi CAH patients. Sixty-two children were recruited from the Pediatric Endocrine Consultation Clinic, Children Welfare Teaching Hospital, Baghdad, Iraq, from September 2014 till June 2015. Their ages ranged between one day and 15 years. They presented with salt wasting, simple virilization, or pseudoprecocious puberty. Cytogenetic study was performed for cases with ambiguous genitalia. Molecular analysis of CYP21A2 gene was done using the CAH StripAssay (ViennaLab Diagnostics) for detection of 11 point mutations and >50% of large gene deletions/conversions. Mutations were found in 42 (67.7%) patients; 31 (50%) patients were homozygotes, 9 (14.5%) were heterozygotes, and 2 (3.2%) were compound heterozygotes with 3 mutations, while 20 (32.3%) patients had none of the tested mutations. The most frequently detected mutations were large gene deletions/conversions found in 12 (19.4%) patients, followed by I2Splice and Q318X in 8 (12.9%) patients each, I172N in 5 (8.1%) patients, and V281L in 4 (6.5%) patients. Del 8 bp, P453S, and R483P were each found in one (1.6%) and complex alleles were found in 2 (3.2%). Four point mutations (P30L, Cluster E6, L307 frameshift, and R356W) were not identified in any patient. In conclusion, gene deletions/conversions and 7 point mutations were recorded in varying proportions, the former being the commonest, generally similar to what was reported in regional countries. PMID:27777794

  16. Comparing analysis methods for mutation-accumulation data: a simulation study.

    PubMed Central

    García-Dorado, Aurora; Gallego, Araceli

    2003-01-01

    We simulated single-generation data for a fitness trait in mutation-accumulation (MA) experiments, and we compared three methods of analysis. Bateman-Mukai (BM) and maximum likelihood (ML) need information on both the MA lines and control lines, while minimum distance (MD) can be applied with or without the control. Both MD and ML assume gamma-distributed mutational effects. ML estimates of the rate of deleterious mutation had larger mean square error (MSE) than MD or BM had due to large outliers. MD estimates obtained by ignoring the mean decline observed from comparison to a control are often better than those obtained using that information. When effects are simulated using the gamma distribution, reducing the precision with which the trait is assayed increases the probability of obtaining no ML or MD estimates but causes no appreciable increase of the MSE. When the residual errors for the means of the simulated lines are sampled from the empirical distribution in a MA experiment, instead of from a normal one, the MSEs of BM, ML, and MD are practically unaffected. When the simulated gamma distribution accounts for a high rate of mild deleterious mutation, BM detects only approximately 30% of the true deleterious mutation rate, while MD or ML detects substantially larger fractions. To test the robustness of the methods, we also added a high rate of common contaminant mutations with constant mild deleterious effect to a low rate of mutations with gamma-distributed deleterious effects and moderate average. In that case, BM detects roughly the same fraction as before, regardless of the precision of the assay, while ML fails to provide estimates. However, MD estimates are obtained by ignoring the control information, detecting approximately 70% of the total mutation rate when the mean of the lines is assayed with good precision, but only 15% for low-precision assays. Contaminant mutations with only tiny deleterious effects could not be detected with acceptable

  17. Identification and characterization of NF1 mutations using single strand conformational polymorphism (SSCP) analysis

    SciTech Connect

    Rodenhiser, D.I.; Hovland, K.; Singh, S.M.

    1994-09-01

    Neurofibromatosis type 1 (NF1) is one of the most common human genetic disorders with a constellation of cutaneous and skeletal manifestations, intellectual impairment, and an increased risk for a variety of malignancies. The neurofibromin gene is also considered a tumor-suppressor gene since its loss of function is associated with a variety of sporadic cancers in the general population. The NF1 gene has a high spontaneous mutation rate, and while a number of laboratories are involved in a coordinated effort to identify NF1 mutations, only a small number of mutations have been characterized. Despite considerable efforts no high frequency or recurrent mutation has been found. We report the application of single strand conformational polymorphism (SSCP) and heteroduplex analysis on the Phastgel system to identify mutations in the neurofibromin gene. A DNA panel of patients representing 100 families from Ontario, Canada was used to screen fourteen NF1 exons encompassing 30% of the NF1 gene: the 5{prime} exons 1, 17, 24 and the 3{prime} exons 28-33, 39-42 and 49. SSCP and heteroduplex variants were identified in PCR products amplified from 8 exons and mutations were identified in 10% of patients. Three RFLPs also have been identified and three other SSCP variants are being characterized. While most small deletions and insertions form heteroduplexes readily detectable on native gels, our results suggest that the detection of heteroduplexes resulting from point mutations is best facilitated on native Phastgels at low temperature. Our results suggest that as point mutations comprise a significant proportion of NF1 mutations, optimization of the SSCP protocol is critical to ensure the detection of all sequence variants.

  18. Retinitis Pigmentosa Mutations in Bad Response to Refrigeration 2 (Brr2) Impair ATPase and Helicase Activity.

    PubMed

    Ledoux, Sarah; Guthrie, Christine

    2016-06-01

    Brr2 is an RNA-dependent ATPase required to unwind the U4/U6 snRNA duplex during spliceosome assembly. Mutations within the ratchet helix of the Brr2 RNA binding channel result in a form of degenerative human blindness known as retinitis pigmentosa (RP). The biochemical consequences of these mutations on Brr2's RNA binding, helicase, and ATPase activity have not yet been characterized. Therefore, we identified the largest construct of Brr2 that is soluble in vitro, which truncates the first 247 amino acids of the N terminus (Δ247-Brr2), to characterize the effects of the RP mutations on Brr2 activity. The Δ247-Brr2 RP mutants exhibit a gradient of severity of weakened RNA binding, reduced helicase activity, and reduced ATPase activity compared with wild type Δ247-Brr2. The globular C-terminal Jab1/Mpn1-like domain of Prp8 increases the ability of Δ247-Brr2 to bind the U4/U6 snRNA duplex at high pH and increases Δ247-Brr2's RNA-dependent ATPase activity and the extent of RNA unwinding. However, this domain of Prp8 does not differentially affect the Δ247-Brr2 RP mutants compared with the wild type Δ247-Brr2. When stimulated by Prp8, wild type Δ247-Brr2 is able to unwind long stable duplexes in vitro, and even the RP mutants capable of binding RNA with tight affinity are incapable of fully unwinding short duplex RNAs. Our data suggest that the RP mutations within the ratchet helix impair Brr2 translocation through RNA helices. PMID:27072132

  19. Mutational analysis of human bone morphogenetic protein 15 in Chinese women with polycystic ovary syndrome.

    PubMed

    Liu, Jingjing; Wang, Binbin; Wei, Zhaolian; Zhou, Ping; Zu, Yuping; Zhou, Sirui; Wen, Qiaolian; Wang, Jing; Cao, Yunxia; Ma, Xu

    2011-11-01

    Polycystic ovary syndrome (PCOS) is one of the common defects that cause ovary dysfunction and link to the aberrant process of folliculogenesis. Bone morphogenetic protein 15 (BMP15) is expressed in human oocytes and functions importantly to regulate early follicle growth and fertility. Previous studies have discovered several mutations in the screening of BMP15 in premature ovarian failure but none in PCOS. In this current study, we focused on the mutational analysis of the coding region of BMP15 among 216 Chinese PCOS patients. Five novel missense mutations in BMP15 were discovered, namely, c.34C>G, c.109G>C, c.169C>G, c.288G>C, and c.598C>T. These results are the first to indicate that BMP15 gene mutations may be potentially associated with PCOS patients.

  20. Sequence analysis of tyrosinase gene in ocular and oculocutaneous albinism patients: introducing three novel mutations

    PubMed Central

    Khordadpoor-Deilamani, Faravareh; Karimipoor, Morteza; Javadi, Gholamreza

    2015-01-01

    Purpose Albinism is a heterogeneous genetic disorder of melanin synthesis that results in hypopigmented eyes (in patients with ocular albinism) or hair, skin, and eyes (in individuals with oculocutaneous albinism). It is associated with decreased visual acuity, nystagmus, strabismus, and photophobia. The tyrosinase gene is known to be involved in both oculocutaneous albinism and autosomal recessive ocular albinism. In this study, we aimed to screen the mutations in the TYR gene in the nonsyndromic OCA and autosomal recessive ocular albinism patients from Iran. Methods The tyrosinase gene was examined in 23 unrelated patients with autosomal recessive ocular albinism or nonsyndromic OCA using DNA sequencing and bioinformatics analysis. Results TYR gene mutations were identified in 14 (app. 60%) albinism patients. Conclusions We found 10 mutations, 3 of which were novel. No mutation was found in our ocular albinism patients, but one of them was heterozygous for the p.R402Q polymorphism. PMID:26167114

  1. Identification of mutations by RNA conformational polymorphism {open_quotes}bar code{close_quotes} analysis

    SciTech Connect

    Lenz, H.J.; Danenberg, K.D.; Schnieders, B. |

    1995-11-01

    DNA single-strand conformational polymorphism (SSCP) analysis is widely used for detection of point mutations in clinical specimens. Performing SSCP analysis with cRNA instead of DNA has been shown to improve mutation detection frequency. RNA can exist in numerous metastable conformations, which appear as patterns of bands on nondenaturing electrophoresis gels. Single base mutations can cause not only mobility shifts of major bands, but also loss of some conformations and appearance of new conformations. Unique RNA SSCP patterns associated with specific base sequences in many cases allow visual identification of point mutations. However, in some cases, the RNA SSCP pattern of a single base change in a sequence is not sufficiently different for a positive identification of the mutation. Improvement in the detection capability of RNA SSCP was obtained by adding 3{prime}-deoxy-nucleotides to the transcription reaction. The presence of chain-terminating nucleotides in the transcription reaction formed numerous new RNA fragments, thereby generating complex band patterns ({open_quotes}bar codes{close_quotes}) unique to each RNA sequence. This method was applied to analyzing p53 mutations in patients with colon cancer. 8 refs., 3 figs.

  2. Analysis of mutational and clinicopathologic characteristics of lung adenocarcinoma with clear cell component

    PubMed Central

    Li, Yuan; Shen, Xuxia; Shi, Jianxin; Chen, Haiquan

    2016-01-01

    Introduction Lung adenocarcinoma with clear cell component is extremely rare and the cases reported in literature remain scarce. The biological behaviors, clinicopathologic characteristics, mutational status and prognosis of lung adenocarcinoma with clear cell component are still uncertain. Methods Thirty-eight lung adenocarcinomas with clear cell component and 1659 lung adenocarcinomas were subjected to the study. All the corresponding clinicopathologic data, the distributions of relapse-free survival (RFS) and overall survival (OS), and the status of gene mutations were investigated. Results Of 1697 adenocarcinomas, 38 (2.2%) had clear cell component. Fifty percent of adenocarcinomas with clear cell component (11/22) harbored EGFR mutation, 41 percent (9/22) harbored KRAS mutation and 5 percent (1/22) harbored AKT1 mutation. Univariable analysis revealed that sex, age, tumor stage, tumor size, nodal stage and pathology were all significant predictors of RFS and OS while the tumor size and nodal stage were still significant predictors in multivariable analysis. There were significantly differences in RFS and OS for lung adenocarcinomas with clear cell component compared with those lung adenocarcinomas. Conclusions Lung adenocarcinoma with clear cell component is a rare, malignant tumor with poor prognosis and displays more frequent EGFR and KRAS mutations. PMID:27013585

  3. Mutation analysis of the cystic fibrosis transmembrane regulator gene in native American populations of the southwest

    SciTech Connect

    Grebe, T.A. Maricopa Medical Center, Phoenix, AZ ); Doane, W.W.; Norman, R.A.; Rhodes, S.N. ); Richter, S.F. ); Clericuzio, C. ); Seltzer, W.K. ); Goldberg, B.E. ); Hernried, L.S. ); McClure, M.; Kaplan, G.

    1992-10-01

    The authors report DNA and clinical analysis of cystic fibrosis (CF) in two previously unstudied, genetically isolated populations: Pueblo and Navajo Native Americans. Direct mutation analysis of six mutations of the CFTR gene - namely, [Delta]F508, G542X, G551D, R553X, N1303K, and W1282X - was performed on PCR-amplified genomic DNA extracted from blood samples. Haplotype analyses with marker/enzyme pairs XV2c/TaqI and KM29/PstI were performed as well. Of the 12 affected individuals studied, no [Delta]F508 mutation was detected; only one G542X mutation was found. None of the other mutations was detected. All affected individuals have either an AA, AC, or CC haplotype, except for the one carrying the G542X mutation, who has the haplotye AB. Clinically, six of the affected individuals examined exhibit growth deficiency, and five (all from the Zuni Pueblo) have a severe CF phenotype. Four of the six Zunis with CF are also microcephalic, a finding not previously noted in CF patients. The DNA data have serious implications for risk assessment of CF carrier status for these people. 14 refs., 3 tabs.

  4. Woot, an Active Gypsy-Class Retrotransposon in the Flour Beetle, Tribolium Castaneum, Is Associated with a Recent Mutation

    PubMed Central

    Beeman, R. W.; Thomson, M. S.; Clark, J. M.; DeCamillis, M. A.; Brown, S. J.; Denell, R. E.

    1996-01-01

    A recently isolated, lethal mutation of the homeotic Abdominal gene of the red flour beetle Tribolium castaneum is associated with an insertion of a novel retrotransposon into an intron. Sequence analysis indicates that this retrotransposon, named Woot, is a member of the gypsy family of mobile elements. Most strains of T. castaneum appear to harbor ~25-35 copies of Woot per genome. Woot is composed of long terminal repeats of unprecedented length (3.6 kb each), flanking an internal coding region 5.0 kb in length. For most copies of Woot, the internal region includes two open reading frames (ORFs) that correspond to the gag and pol genes of previously described retrotransposons and retroviruses. The copy of Woot inserted into Abdominal bears an apparent single frameshift mutation that separates the normal second ORF into two. Woot does not appear to generate infectious virions by the criterion that no envelop gene is discernible. The association of Woot with a recent mutation suggests that this retroelement is currently transpositionally active in at least some strains. PMID:8722793

  5. Impact of cofactor-binding loop mutations on thermotolerance and activity of E. coli transketolase.

    PubMed

    Morris, P; Rios-Solis, L; García-Arrazola, R; Lye, G J; Dalby, P A

    2016-07-01

    Improvement of thermostability in engineered enzymes can allow biocatalysis on substrates with poor aqueous solubility. Denaturation of the cofactor-binding loops of Escherichia coli transketolase (TK) was previously linked to the loss of enzyme activity under conditions of high pH or urea. Incubation at temperatures just below the thermal melting transition, above which the protein aggregates, was also found to anneal the enzyme to give an increased specific activity. The potential role of cofactor-binding loop instability in this process remained unclear. In this work, the two cofactor-binding loops (residues 185-192 and 382-392) were progressively mutated towards the equivalent sequence from the thermostable Thermus thermophilus TK and variants assessed for their impact on both thermostability and activity. Cofactor-binding loop 2 variants had detrimental effects on specific activity at elevated temperatures, whereas the H192P mutation in cofactor-binding loop 1 resulted in a two-fold improved stability to inactivation at elevated temperatures, and increased the critical onset temperature for aggregation. The specific activity of H192P was 3-fold and 19-fold higher than that for wild-type at 60°C and 65°C respectively, and also remained 2.7-4 fold higher after re-cooling from pre-incubations at either 55°C or 60°C for 1h. Interestingly, H192P was also 2-times more active than wild-type TK at 25°C. Optimal activity was achieved at 60°C for H192P compared to 55°C for wild type. These results show that cofactor-binding loop 1, plays a pivotal role in partial denaturation and aggregation at elevated temperatures. Furthermore, a single rigidifying mutation within this loop can significantly improve the enzyme specific activity, as well as the stability to thermal denaturation and aggregation, to give an increased temperature optimum for activity.

  6. Mutation Analysis of Nine Chordoma Specimens by Targeted Next-Generation Cancer Panel Sequencing

    PubMed Central

    Fischer, Carina; Scheipl, Susanne; Zopf, Agnes; Niklas, Norbert; Deutsch, Alexander; Jorgensen, Mette; Lohberger, Birgit; Froehlich, Elke Verena; Leithner, Andreas; Gabriel, Christian; Liegl-Atzwanger, Bernadette; Rinner, Beate

    2015-01-01

    Background: Chordoma is a rare primary malignant bone tumour. Treatment options are mainly restricted to surgical excision, since chordomas are largely resistant to conventional ionising radiation and chemotherapy. Thus, there is a strong need to gain more thorough insights into the molecular biology and genetics of chordoma to allow for the development of new therapeutic options. We performed an ultra-deep sequencing analysis to find novel mutations in cancer associated genes in chordomas to date unseen with Sanger sequencing. Material and Methods: Nine chordomas (skull base (n=3), mobile spine (n=4), and sacrum/coccyx (n=2) were screened for mutations in 48 cancer genes using the Hot Spot Cancer Panel (Illumina). All putative mutations were compared against multiple databases (e.g. NCBI, COSMIC, PolyPhen, EGB, SIFT) and published Copy Number Variation (CNV) data for chordoma. Results: Our results showed mutations with a frequency above 5% in tumorsuppressor- and onco-genes, revealing new possible driver genes for chordomas. We detected three different variants accounting for 11 point mutations in three cancer associated genes (KIT, KDR and TP53). None of the detected mutations was found in all samples investigated. However, all genes affected interact or are connected in pathway analysis. There were no correlations to already reported CNVs in the samples analysed. Conclusions: We identified mutations in the associated genes KIT, KDR, and TP53. These mutations have been described previously and have been predicted to be tolerated. Further results on a larger series are warranted. The driver mechanisms of chordoma still have to be identified. PMID:26366211

  7. A novel SCARB2 mutation in progressive myoclonus epilepsy indicated by reduced β-glucocerebrosidase activity.

    PubMed

    Zeigler, Marsha; Meiner, Vardiella; Newman, J P; Steiner-Birmanns, Bettina; Bargal, Ruth; Sury, Vivi; Mengistu, Getu; Kakhlon, Or; Leykin, Ina; Argov, Zohar; Abramsky, Oded; Lossos, Alexander

    2014-04-15

    Action myoclonus renal failure (AMRF) syndrome is a rare form of progressive myoclonus epilepsy with renal dysfunction related to mutations in the SCARB2 gene. This gene is involved in lysosomal mannose-6-phosphate-independent trafficking of β-glucocerebrosidase (GC), an enzyme deficient in Gaucher disease. We report a family with myoclonic epilepsy, ataxia and skeletal muscle atrophy but without cognitive impairment or overt renal disease. A novel SCARB2 mutation was indicated by a striking discrepancy between lymphocyte and fibroblast GC activity in the proband evaluated for possible Gaucher disease. Our findings expand the genetic and phenotypic diversity of AMRF and suggest that low GC activity may present an important biochemical clue to the diagnosis of AMRF.

  8. Dysferlin expression in monocytes: a source of mRNA for mutation analysis.

    PubMed

    De Luna, N; Freixas, A; Gallano, P; Caselles, L; Rojas-García, R; Paradas, C; Nogales, G; Dominguez-Perles, R; Gonzalez-Quereda, L; Vílchez, J J; Márquez, C; Bautista, J; Guerrero, A; Salazar, J A; Pou, A; Illa, I; Gallardo, E

    2007-01-01

    Dysferlin protein is expressed in peripheral blood monocytes. The genomic analysis of the DYSF gene has proved to be time consuming because it has 55 exons. We designed a mutational screening strategy based on cDNA from monocytes to find out whether the mutational analysis could be performed in mRNA from a source less invasive than the muscle biopsy. We studied 34 patients from 23 families diagnosed with dysferlinopathy. The diagnosis was based on clinical findings and on the absence of protein expression using either immunohistochemistry or Western blot of skeletal muscle and/or monocytes. We identified 28 different mutations, 13 of which were novel. The DYSF mutations in both alleles were found in 30 patients and only in one allele in four. The results were confirmed using genomic DNA in 26/34 patients. This is the first report to furnish evidence of reliable mutational analysis using monocytes cDNA and constitutes a good alternative to genomic DNA analysis.

  9. Progranulin Mutations Affects Brain Oscillatory Activity in Fronto-Temporal Dementia

    PubMed Central

    Moretti, Davide V.; Benussi, Luisa; Fostinelli, Silvia; Ciani, Miriam; Binetti, Giuliano; Ghidoni, Roberta

    2016-01-01

    Background: Mild cognitive impairment (MCI) is a clinical stage indicating a prodromal phase of dementia. This practical concept could be used also for fronto-temporal dementia (FTD). Progranulin (PGRN) has been recently recognized as a useful diagnostic biomarker for fronto-temporal lobe degeneration (FTLD) due to GRN null mutations. Electroencephalography (EEG) is a reliable tool in detecting brain networks changes. The working hypothesis of the present study is that EEG oscillations could detect different modifications among FTLD stages (FTD-MCI versus overt FTD) as well as differences between GRN mutation carriers versus non-carriers in patients with overt FTD. Materials and Methods: EEG in all patients and PGRN dosage in patients with a clear FTD were detected. The cognitive state has been investigated through mini mental state examination (MMSE). Results: MCI-FTD showed a significant lower spectral power in both alpha and theta oscillations as compared to overt FTD. GRN mutations carriers affected by FTLD show an increase in high alpha and decrease in theta oscillations as compared to non-carriers. Conclusion: EEG frequency rhythms are sensible to different stage of FTD and could detect changes in brain oscillatory activity affected by GRN mutations. PMID:26973510

  10. Somatic Activating Mutations in GNAQ and GNA11 Are Associated with Congenital Hemangioma.

    PubMed

    Ayturk, Ugur M; Couto, Javier A; Hann, Steven; Mulliken, John B; Williams, Kaitlin L; Huang, August Yue; Fishman, Steven J; Boyd, Theonia K; Kozakewich, Harry P W; Bischoff, Joyce; Greene, Arin K; Warman, Matthew L

    2016-04-01

    Congenital hemangioma is a rare vascular tumor that forms in utero. Postnatally, the tumor either involutes quickly (i.e., rapidly involuting congenital hemangioma [RICH]) or partially regresses and stabilizes (i.e., non-involuting congenital hemangioma [NICH]). We hypothesized that congenital hemangiomas arise due to somatic mutation and performed massively parallel mRNA sequencing on affected tissue from eight participants. We identified mutually exclusive, mosaic missense mutations that alter glutamine at amino acid 209 (Glu209) in GNAQ or GNA11 in all tested samples, at variant allele frequencies (VAF) ranging from 3% to 33%. We verified the presence of the mutations in genomic DNA using a combination of molecular inversion probe sequencing (MIP-seq) and digital droplet PCR (ddPCR). The Glu209 GNAQ and GNA11 missense variants we identified are common in uveal melanoma and have been shown to constitutively activate MAPK and/or YAP signaling. When we screened additional archival formalin-fixed paraffin-embedded (FFPE) congenital cutaneous and hepatic hemangiomas, 4/8 had GNAQ or GNA11 Glu209 variants. The same GNAQ or GNA11 mutation is found in both NICH and RICH, so other factors must account for these tumors' different postnatal behaviors.

  11. Somatic Activating Mutations in GNAQ and GNA11 Are Associated with Congenital Hemangioma

    PubMed Central

    Ayturk, Ugur M.; Couto, Javier A.; Hann, Steven; Mulliken, John B.; Williams, Kaitlin L.; Huang, August Yue; Fishman, Steven J.; Boyd, Theonia K.; Kozakewich, Harry P.W.; Bischoff, Joyce; Greene, Arin K.; Warman, Matthew L.

    2016-01-01

    Congenital hemangioma is a rare vascular tumor that forms in utero. Postnatally, the tumor either involutes quickly (i.e., rapidly involuting congenital hemangioma [RICH]) or partially regresses and stabilizes (i.e., non-involuting congenital hemangioma [NICH]). We hypothesized that congenital hemangiomas arise due to somatic mutation and performed massively parallel mRNA sequencing on affected tissue from eight participants. We identified mutually exclusive, mosaic missense mutations that alter glutamine at amino acid 209 (Glu209) in GNAQ or GNA11 in all tested samples, at variant allele frequencies (VAF) ranging from 3% to 33%. We verified the presence of the mutations in genomic DNA using a combination of molecular inversion probe sequencing (MIP-seq) and digital droplet PCR (ddPCR). The Glu209 GNAQ and GNA11 missense variants we identified are common in uveal melanoma and have been shown to constitutively activate MAPK and/or YAP signaling. When we screened additional archival formalin-fixed paraffin-embedded (FFPE) congenital cutaneous and hepatic hemangiomas, 4/8 had GNAQ or GNA11 Glu209 variants. The same GNAQ or GNA11 mutation is found in both NICH and RICH, so other factors must account for these tumors’ different postnatal behaviors. PMID:27058448

  12. Novel Mutations in the Transcriptional Activator Domain of the Human TBX20 in Patients with Atrial Septal Defect

    PubMed Central

    Monroy-Muñoz, Irma Eloisa; Rodríguez-Pérez, José Manuel; Muñoz-Medina, José Esteban; Angeles-Martínez, Javier; García-Trejo, José J.; Morales-Ríos, Edgar; Massó, Felipe; Sandoval-Jones, Juan Pablo; Cervantes-Salazar, Jorge; García-Montes, José Antonio; Calderón-Colmenero, Juan; Vargas-Alarcón, Gilberto

    2015-01-01

    Background. The relevance of TBX20 gene in heart development has been demonstrated in many animal models, but there are few works that try to elucidate the effect of TBX20 mutations in human congenital heart diseases. In these studies, all missense mutations associated with atrial septal defect (ASD) were found in the DNA-binding T-box domain, none in the transcriptional activator domain. Methods. We search for TBX20 mutations in a group of patients with ASD or ventricular septal defect (VSD) using the High Resolution Melting (HRM) method and DNA sequencing. Results. We report three missense mutations (Y309D, T370O, and M395R) within the transcriptional activator domain of human TBX20 that were associated with ASD. Conclusions. This is the first association of TBX20 transcriptional activator domain missense mutations with ASD. These findings could have implications for diagnosis, genetic screening, and patient follow-up. PMID:25834824

  13. Functional Analysis of a De Novo GRIN2A Missense Mutation Associated with Early-onset Epileptic Encephalopathy

    PubMed Central

    Yuan, Hongjie; Hansen, Kasper B.; Zhang, Jing; Pierson, Tyler Mark; Markello, Thomas C.; Fuentes Fajardo, Karin V.; Holloman, Conisha M.; Golas, Gretchen; Adams, David R.; Boerkoel, Cornelius F.; Gahl, William A.; Traynelis, Stephen F.

    2014-01-01

    NMDA receptors (NMDAR), ligand-gated ion channels, play important roles in various neurological disorders, including epilepsy. Here we show the functional analysis of a de novo missense mutation (L812M) in a gene encoding NMDAR subunit GluN2A (GRIN2A). The mutation, identified in a patient with early-onset epileptic encephalopathy and profound developmental delay, is located in the linker region between the ligand-binding and transmembrane domains. Electrophysiological recordings revealed that the mutation enhances agonist potency, decreases sensitivity to negative modulators including magnesium, protons and zinc, prolongs the synaptic response time course, and increases single channel open probability. The functional changes of this amino acid apply to all other NMDAR subunits, suggesting an important role of this residue on the function of NMDARs. Taken together, these data suggest that the L812M mutation causes over-activation of NMDARs and drives neuronal hyperexcitability. We hypothesize that this mechanism underlies the patient’s epileptic phenotype as well as cerebral atrophy. PMID:24504326

  14. 3-Methylcrotonyl-CoA carboxylase deficiency: mutation analysis in 28 probands, 9 symptomatic and 19 detected by newborn screening.

    PubMed

    Dantas, Maria Fernanda; Suormala, Terttu; Randolph, Ann; Coelho, David; Fowler, Brian; Valle, David; Baumgartner, Matthias R

    2005-08-01

    Isolated 3-methylcrotonyl-CoA carboxylase (MCC) deficiency is an autosomal recessive disorder that appears to be the most frequent organic aciduria detected in tandem mass spectrometry (TMS)-based neonatal screening programs. The phenotype is variable, ranging from neonatal onset with severe neurological involvement to asymptomatic adults. MCC is a heteromeric mitochondrial enzyme composed of biotin containing alpha subunits and smaller beta subunits, encoded by MCCA and MCCB, respectively. We report mutation analysis in 28 MCC-deficient probands, 19 of whom were asymptomatic newborns detected by TMS newborn screening, and nine presented with clinical symptoms. Ten have mutations in MCCA, and 18 in MCCB. We identified 10 novel MCCA and 14 novel MCCB mutant alleles including missense, nonsense, frameshift and splice site mutations, and show that three of the missense mutations result in severely decreased MCC activity when expressed in MCC-deficient cell lines. Our data demonstrate no clear correlation between genotype and phenotype suggesting that factors other than the genotype at the MCC loci have a major influence on the phenotype of MCC deficiency.

  15. Frequency of Calreticulin (CALR) Mutation and Its Clinical Prognostic Significance in Essential Thrombocythemia and Primary Myelofibrosis: A Meta-analysis.

    PubMed

    Kong, Hao; Liu, Yancheng; Luo, Sai; Li, Qiaoqiao; Wang, Qinglu

    2016-01-01

    Objective As the calreticulin (CALR) mutation frequency is significantly associated with essential thrombocythemia (ET) and primary myelofibrosis (PMF), this mutation may be an important biomarker in patients with ET and PMF. Methods We performed a literature search until April 2015 and obtained 21 relevant studies. The outcome was pooled as the effect size by using the Stata software program. Results The CALR mutation frequencies in patients with ET and PMF were 19% and 22%, respectively. The CALR mutation ratio in Asian patients with ET was 23% and higher than that in European-American patients (16%). Moreover, the mutation ratio in Asian patients with PMF was lower (21%) than that in European-American patients (23%). A slight trend toward fibrotic transformation was found in ET with CALR mutations, whereas leukemic transformation was not significant in patients with ET or PMF with CALR mutations. Conclusion CALR mutations significantly influence the incident of ET as demonstrated by the meta-analysis. PMID:27477402

  16. Binding of AID to DNA does not correlate with mutator activity.

    PubMed

    Matthews, Allysia J; Husain, Solomon; Chaudhuri, Jayanta

    2014-07-01

    The DNA deaminase activation-induced cytidine deaminase (AID) initiates somatic hypermutation (SHM) and class switch recombination (CSR) by deaminating cytidines to uridines at V region (V) genes and switch (S) regions. The mechanism by which AID is recruited to V genes and S region DNA is poorly understood. In this study, we used the CH12 B lymphoma line to demonstrate that, although S regions can efficiently recruit AID and undergo mutations and deletions, AID neither binds to nor mutates the V gene, thus clearly demonstrating intraimmunoglobulin locus specificity. Depletion of the RNA-binding protein polypyrimidine tract binding protein-2, previously shown to promote recruitment of AID to S regions, enables stable association of AID with the V gene. Surprisingly, AID binding to the V gene does not induce SHM. These results unmask a striking lack of correlation between AID binding and its mutator activity, providing evidence for the presence of factors required downstream of AID binding to effect SHM. Furthermore, our findings suggest that S regions are preferred targets for AID and, aided by polypyrimidine tract binding protein-2, act as "sinks" to sequester AID activity from other genomic regions.

  17. Mutational analysis of human immunodeficiency virus type 1 protease suggests functional homology with aspartic proteinases.

    PubMed Central

    Loeb, D D; Hutchison, C A; Edgell, M H; Farmerie, W G; Swanstrom, R

    1989-01-01

    Processing of the retroviral gag and pol gene products is mediated by a viral protease. Bacterial expression systems have been developed which permit genetic analysis of the human immunodeficiency virus type 1 protease as measured by cleavage of the pol protein precursor. Deletion analysis of the pol reading frame locates the sequences required to encode a protein with appropriate proteolytic activity near the left end of the pol reading frame but largely outside the gag-pol overlap region, which is at the extreme left end of pol. Most missense mutations within an 11-amino-acid domain highly conserved among retroviral proteases and with sequence similarity to the active site of aspartic proteinases abolish appropriate processing, suggesting that the retrovirus proteases share a catalytic mechanism with aspartic proteinases. Substitution of the amino acids flanking the scissile bond at three of the processing sites encoded by pol demonstrates distinct sequence requirements for cleavage at these different sites. The inclusion of a charged amino acid at the processing site blocks cleavage. A subset of these substitutions also inhibits processing at the nonmutated sites. Images PMID:2642305

  18. Identification of novel BRCA founder mutations in Middle Eastern breast cancer patients using capture and Sanger sequencing analysis.

    PubMed

    Bu, Rong; Siraj, Abdul K; Al-Obaisi, Khadija A S; Beg, Shaham; Al Hazmi, Mohsen; Ajarim, Dahish; Tulbah, Asma; Al-Dayel, Fouad; Al-Kuraya, Khawla S

    2016-09-01

    Ethnic differences of breast cancer genomics have prompted us to investigate the spectra of BRCA1 and BRCA2 mutations in different populations. The prevalence and effect of BRCA 1 and BRCA 2 mutations in Middle Eastern population is not fully explored. To characterize the prevalence of BRCA mutations in Middle Eastern breast cancer patients, BRCA mutation screening was performed in 818 unselected breast cancer patients using Capture and/or Sanger sequencing. 19 short tandem repeat (STR) markers were used for founder mutation analysis. In our study, nine different types of deleterious mutation were identified in 28 (3.4%) cases, 25 (89.3%) cases in BRCA 1 and 3 (10.7%) cases in BRCA 2. Seven recurrent mutations identified accounted for 92.9% (26/28) of all the mutant cases. Haplotype analysis was performed to confirm c.1140 dupG and c.4136_4137delCT mutations as novel putative founder mutation, accounting for 46.4% (13/28) of all BRCA mutant cases and 1.6% (13/818) of all the breast cancer cases, respectively. Moreover, BRCA 1 mutation was significantly associated with BRCA 1 protein expression loss (p = 0.0005). Our finding revealed that a substantial number of BRCA mutations were identified in clinically high risk breast cancer from Middle East region. Identification of the mutation spectrum, prevalence and founder effect in Middle Eastern population facilitates genetic counseling, risk assessment and development of cost-effective screening strategy.

  19. Neutron activation analysis system

    DOEpatents

    Taylor, M.C.; Rhodes, J.R.

    1973-12-25

    A neutron activation analysis system for monitoring a generally fluid media, such as slurries, solutions, and fluidized powders, including two separate conduit loops for circulating fluid samples within the range of radiation sources and detectors is described. Associated with the first loop is a neutron source that emits s high flux of slow and thermal neutrons. The second loop employs a fast neutron source, the flux from which is substantially free of thermal neutrons. Adjacent to both loops are gamma counters for spectrographic determination of the fluid constituents. Other gsmma sources and detectors are arranged across a portion of each loop for deterMining the fluid density. (Official Gazette)

  20. Single-cell codetection of metabolic activity, intracellular functional proteins, and genetic mutations from rare circulating tumor cells.

    PubMed

    Zhang, Yu; Tang, Yin; Sun, Shuai; Wang, Zhihua; Wu, Wenjun; Zhao, Xiaodong; Czajkowsky, Daniel M; Li, Yan; Tian, Jianhui; Xu, Ling; Wei, Wei; Deng, Yuliang; Shi, Qihui

    2015-10-01

    The high glucose uptake and activation of oncogenic signaling pathways in cancer cells has long made these features, together with the mutational spectrum, prime diagnostic targets of circulating tumor cells (CTCs). Further, an ability to characterize these properties at a single cell resolution is widely believed to be essential, as the known extensive heterogeneity in CTCs can obscure important correlations in data obtained from cell population-based methods. However, to date, it has not been possible to quantitatively measure metabolic, proteomic, and genetic data from a single CTC. Here we report a microchip-based approach that allows for the codetection of glucose uptake, intracellular functional proteins, and genetic mutations at the single-cell level from rare tumor cells. The microchip contains thousands of nanoliter grooves (nanowells) that isolate individual CTCs and allow for the assessment of their glucose uptake via imaging of a fluorescent glucose analog, quantification of a panel of intracellular signaling proteins using a miniaturized antibody barcode microarray, and retrieval of the individual cell nuclei for subsequent off-chip genome amplification and sequencing. This approach integrates molecular-scale information on the metabolic, proteomic, and genetic status of single cells and permits the inference of associations between genetic signatures, energy consumption, and phosphoproteins oncogenic signaling activities in CTCs isolated from blood samples of patients. Importantly, this microchip chip-based approach achieves this multidimensional molecular analysis with minimal cell loss (<20%), which is the bottleneck of the rare cell analysis. PMID:26378744

  1. Mutation analysis of tuberous sclerosis families using the chromosome 16 (TSC2) tuberin gene

    SciTech Connect

    Gilbert, J.; Wolpert, C.; Kumar, A.

    1994-09-01

    Tuberous sclerosis complex (TSC) is an autosomal dominant disorder which affects numerous body systems, especially brain and kidneys. The estimated prevalence of TSC is 1 per 10,000 population and the disease occurs in all racial groups. TSC exhibits both incomplete penetrance and variable expression and it is estimated that approximately 50% of affected individuals are the result of new mutations. TSC is a heterogeneous disorder with at least two disease loci which linkage studies have mapped to chromosomes 9q34 (TSC1) and 16p13.3 (TSC2). The chromosome 16 TSC gene, a 5.5 kb transcript which has been named tuberin, has recently been isolated and the characterization of the gene and mutational analysis of chromosome 16 families are presently underway. Using cDNA clones which cover approximately 90%, including the 3{prime} end, of the tuberin gene, we have screened Southern blots of 44 confirmed familial and sporadic TSC cases using the restriction enzymes Bam HI, Hind III and Taq I. To date, we have detected no confirmed deletions in any of these cases. We are in the process of screening using Pvu II blots. In addition, our laboratory is beginning to screen the TSC cases for mutations using SSCP in conjunction with RT-PCR of lymphoblast RNA and PCR of lymphoblast DNA using primers prepared from the gene sequence. We have recently ascertained an additional 20 sproadic TSC cases which will be subjected to analysis and these results together with our mutation findings will be presented. Our results would indicate that the number of mutations detectable using Southern blotting is small, especially in the larger chromosome 16 TSC families as opposed to sporadic mutations, and that more detailed technical analysis will be necessary to determine the full range of mutations in the large majority of TSC cases.

  2. TP53 Mutational Analysis Enhances the Prognostic Accuracy of IHC4 and PAM50 Assays

    PubMed Central

    Lin, Ching-Hung; Chen, I-Chiun; Huang, Chiun-Sheng; Hu, Fu-Chang; Kuo, Wen-Hung; Kuo, Kuan-Ting; Wang, Chung-Chieh; Wu, Pei-Fang; Chang, Dwan-Ying; Wang, Ming-Yang; Chang, Chin-Hao; Chen, Wei-Wu; Lu, Yen-Shen; Cheng, Ann-Lii

    2015-01-01

    IHC4 and PAM50 assays have been shown to provide additional prognostic information for patients with early breast cancer. We evaluated whether incorporating TP53 mutation analysis can further enhance their prognostic accuracy. We examined TP53 mutation and the IHC4 score in tumors of 605 patients diagnosed with stage I–III breast cancer at National Taiwan University Hospital (the NTUH cohort). We obtained information regarding TP53 mutation and PAM50 subtypes in 699 tumors from the Molecular Taxonomy of Breast Cancer International Consortium (METABRIC) cohort. We found that TP53 mutation was significantly associated with high-risk IHC4 group and with luminal B, HER2-enriched, and basal-like subtypes. Despite the strong associations, TP53 mutation independently predicted shorter relapse-free survival (hazard ratio [HR] = 1.63, P = 0.007) in the NTUH cohort and shorter breast cancer-specific survival (HR = 2.35, P = <0.001) in the METABRIC cohort. TP53 mutational analysis added significant prognostic information in addition to the IHC4 score (∆ LR-χ2 = 8.61, P = 0.002) in the NTUH cohort and the PAM50 subtypes (∆ LR-χ2 = 18.9, P = <0.001) in the METABRIC cohort. We conclude that incorporating TP53 mutation analysis can enhance the prognostic accuracy of the IHC4 and PAM50 assays. PMID:26671300

  3. A single center analysis of nucleophosmin in acute myeloid leukemia: value of combining immunohistochemistry with molecular mutation analysis.

    PubMed

    Woolthuis, Carolien M; Mulder, André B; Verkaik-Schakel, Rikst Nynke; Rosati, Stefano; Diepstra, Arjan; van den Berg, Eva; Schuringa, Jan Jacob; Vellenga, Edo; Kluin, Philip M; Huls, Gerwin

    2013-10-01

    Mutations of nucleophosmin 1 are frequently found in acute myeloid leukemia and lead to aberrant cytoplasmic accumulation of nucleophosmin protein. Immunohistochemical staining is therefore recommended as the technique of choice in front-line screening. In this study, we assessed the sensitivity and specificity of immunohistochemistry on formalin-fixed bone marrow biopsies compared with gold standard molecular analysis to predict nucleophosmin 1 mutation status in 119 patients with acute myeloid leukemia. Discrepant cases were further characterized by gene expression analyses and fluorescence in situ hybridization. A large overlap between both methods was observed. Nevertheless, nine patients demonstrated discordant results at initial screening. Five cases demonstrated nuclear staining of nucleophosmin 1 by immunohistochemistry, but a nucleophosmin 1 mutation by molecular analysis. In two cases this could be attributed to technical issues and in three cases minor subpopulations of myeloblasts had not been discovered initially. All tested cases exhibited the characteristic nucleophosmin-mutated gene expression pattern. Four cases had cytoplasmic nucleophosmin 1 staining and a nucleophosmin-mutated gene expression pattern without a detectable nucleophosmin 1 mutation. In two of these cases we found the chromosomal translocation t(3;5)(q25;q35) encoding the NPM-MLF1 fusion protein. In the other discrepant cases the aberrant cytoplasmic nucleophosmin staining and gene expression could not be explained. In total six patients (5%) had true discordant results between immunohistochemistry and mutation analysis. We conclude that cytoplasmic nucleophosmin localization is not always caused by a conventional nucleophosmin 1 mutation and that in the screening for nucleophosmin 1 abnormalities, most information will be obtained by combining immunohistochemistry with molecular analysis. PMID:23716555

  4. The sup-pf-2 mutations of Chlamydomonas alter the activity of the outer dynein arms by modification of the gamma-dynein heavy chain

    PubMed Central

    1996-01-01

    The sup-pf-2 mutation is a member of a group of dynein regulatory mutations that are capable of restoring motility to paralyzed central pair or radial spoke defective strains. Previous work has shown that the flagellar beat frequency is reduced in sup-pf-2, but little else was known about the sup-pf-2 phenotype (Huang, B., Z. Ramanis, and D.J.L. Luck. 1982. Cell. 28:115-125; Brokaw, C.J., and D.J.L. Luck. 1985. Cell Motil. 5:195-208). We have reexamined sup-pf-2 using improved biochemical and structural techniques and by the analysis of additional sup-pf-2 alleles. We have found that the sup-pf-2 mutations are associated with defects in the outer dynein arms. Biochemical analysis of sup-pf-2-1 axonemes indicates that both axonemal ATPase activity and outer arm polypeptides are reduced by 40-50% when compared with wild type. By thin-section EM, these defects correlate with an approximately 45% loss of outer dynein arm structures. Interestingly, this loss is biased toward a subset of outer doublets, resulting in a radial asymmetry that may reflect some aspect of outer arm assembly. The defects in outer arm assembly do not appear to result from defects in either the outer doublet microtubules or the outer arm docking structures, but rather appear to result from defects in outer dynein arm components. Analysis of new sup-pf-2 mutations indicates that the severity of the outer arm assembly defects varies with different alleles. Complementation tests and linkage analysis reveal that the sup- pf-2 mutations are alleles of the PF28/ODA2 locus, which is thought to encode the gamma-dynein heavy chain subunit of the outer arm. The sup- pf-2 mutations therefore appear to alter the activity of the outer dynein arms by modification of the gamma-dynein heavy chain. PMID:8991096

  5. Detection of Indel Mutations in Drosophila by High-Resolution Melt Analysis (HRMA).

    PubMed

    Housden, Benjamin E; Perrimon, Norbert

    2016-01-01

    Although CRISPR technology allows specific genome alterations to be created with relative ease, detection of these events can be problematic. For example, CRISPR-induced double-strand breaks are often repaired imprecisely to generate unpredictable short indel mutations. Detection of these events requires the use of molecular screening techniques such as endonuclease assays, restriction profiling, or high-resolution melt analysis (HRMA). Here, we provide detailed protocols for HRMA-based mutation screening in Drosophila and analysis of the resulting data using the online tool HRMAnalyzer. PMID:27587781

  6. A cautionary lesson on the use of targeted methods for EGFR mutation analysis: a case report.

    PubMed

    Walsh, K; Wallace, W A; Butler, R; Mackean, M J; Harrison, D J; Stirling, D; Oniscu, A

    2014-08-01

    Epidermal growth factor receptor (EGFR) mutation analysis is recommended for lung cancer patients prior to the prescription of first-line EGFR tyrosine kinase inhibitors in order to predict response to treatment. There are many methods available to identify mutations in the EGFR gene; a large number of clinical laboratories use the therascreen EGFR RGQ PCR kit (Qiagen). We report a case where this kit detected an exon 19 deletion, predicting sensitivity to tyrosine kinase inhibitors (TKIs), which on further analysis was found to be a 2 bp indel (c.2239_2240delinsCC, p.(Leu747Pro)). Two of four published cases with this mutation were found to be associated with resistance to EGFR TKI. The sample was also tested using two other commercial kits, one of which indicated a deletion. This is a rare mutation making the erroneous detection of a deletion unlikely; however, it is important that clinical laboratories are aware of the potential failings of two commercial kits for EGFR mutation analysis. PMID:24811487

  7. Molecular analysis of mutations in the CSB (ERCC6) gene in patients with Cockayne syndrome.

    PubMed

    Mallery, D L; Tanganelli, B; Colella, S; Steingrimsdottir, H; van Gool, A J; Troelstra, C; Stefanini, M; Lehmann, A R

    1998-01-01

    Cockayne syndrome is a multisystem sun-sensitive genetic disorder associated with a specific defect in the ability to perform transcription-coupled repair of active genes after UV irradiation. Two complementation groups (CS-A and CS-B) have been identified, and 80% of patients have been assigned to the CS-B complementation group. We have analyzed the sites of the mutations in the CSB gene in 16 patients, to determine the spectrum of mutations in this gene and to see whether the nature of the mutation correlates with the type and severity of the clinical symptoms. In nine of the patients, the mutations resulted in truncated products in both alleles, whereas, in the other seven, at least one allele contained a single amino acid change. The latter mutations were confined to the C-terminal two-thirds of the protein and were shown to be inactivating by their failure to restore UV-irradiation resistance to hamster UV61 cells, which are known to be defective in the CSB gene. Neither the site nor the nature of the mutation correlated with the severity of the clinical features. Severe truncations were found in different patients with either classical or early-onset forms of the disease. PMID:9443879

  8. MECP2 mutations in Czech patients with Rett syndrome and Rett-like phenotypes: novel mutations, genotype-phenotype correlations and validation of high-resolution melting analysis for mutation scanning.

    PubMed

    Zahorakova, Daniela; Lelkova, Petra; Gregor, Vladimir; Magner, Martin; Zeman, Jiri; Martasek, Pavel

    2016-07-01

    Rett syndrome (RTT) is an X-linked neurodevelopmental disorder characterized by developmental regression with loss of motor, communication and social skills, onset of stereotypic hand movements and often seizures. RTT is primarily caused by de novo mutations in the methyl-CpG-binding protein 2 gene (MECP2). We established a high-resolution melting (HRM) technique for mutation scanning of the MECP2 gene and performed analyses in Czech patients with RTT, autism spectrum conditions and intellectual disability with Rett-like features. In the cases with confirmed MECP2 mutations, we determined X-chromosome inactivation (XCI), examined the relationships between genotype and clinical severity and evaluated the modifying influence of XCI. Our results demonstrate that HRM analysis is a reliable method for the detection of point mutations, small deletions and duplications in the MECP2 gene. We identified 29 pathogenic mutations in 75 girls, including four novel mutations: c.155_1189del1035;909_932inv;insC, c.573delC, c.857_858dupAA and c.1163_1200del38. Skewed XCI (ratio >75%) was found in 19.3% of the girls, but no gross divergence in clinical severity was observed. Our findings confirm a high mutation frequency in classic RTT (92%) and a correlation between the MECP2 mutation type and clinical severity. We also demonstrate limitations of XCI in explaining all of the phenotypic differences in RTT.

  9. Comprehensive genetic analysis and structural characterization of CYP21A2 mutations in CAH patients.

    PubMed

    Carvalho, B; Pereira, M; Marques, C J; Carvalho, D; Leão, M; Oliveira, J P; Barros, A; Carvalho, F

    2012-10-01

    Congenital adrenal hyperplasia (CAH) due to 21-hydroxylase deficiency is a common autosomal recessive disorder caused by mutations in the steroid 21-hydroxylase gene (CYP21A2). Complete DNA sequencing of CYP21A2 was performed in 5 patients, 3 non-classic and 2 classic forms of the disease, that were previously screened for the 10 most common mutations, in order to detect additional mutations that could justify the phenotype of the patients. 5 mutations were identified with the whole gene extended analysis. The mutations, p.Pro432Leu and p.Ala434Glu, the first previously reported by our group and the second a novel one were structurally analyzed with ICM-Pro software regarding biochemical properties such as protein stability, accessibility to surface and hydrophobicity, in order to elucidate their effects on the CYP21A2 protein. The 2 affected residues, Pro432 and Ala434, were also studied for conservation purposes in order to predict the severity of both mutations with PolyPhen-2 software and were considered as "probably damaging". Prediction of clinical severity, based on molecular modelling and sequence conservation, was in accordance with the patient's clinical diagnosis.

  10. Analysis of mutations in the entire coding sequence of the factor VIII gene

    SciTech Connect

    Bidichadani, S.I.; Lanyon, W.G.; Connor, J.M.

    1994-09-01

    Hemophilia A is a common X-linked recessive disorder of bleeding caused by deleterious mutations in the gene for clotting factor VIII. The large size of the factor VIII gene, the high frequency of de novo mutations and its tissue-specific expression complicate the detection of mutations. We have used a combination of RT-PCR of ectopic factor VIII transcripts and genomic DNA-PCRs to amplify the entire essential sequence of the factor VIII gene. This is followed by chemical mismatch cleavage analysis and direct sequencing in order to facilitate a comprehensive search for mutations. We describe the characterization of nine potentially pathogenic mutations, six of which are novel. In each case, a correlation of the genotype with the observed phenotype is presented. In order to evaluate the pathogenicity of the five missense mutations detected, we have analyzed them for evolutionary sequence conservation and for their involvement of sequence motifs catalogued in the PROSITE database of protein sites and patterns.

  11. A mutational analysis of the acetylcholine receptor channel transmitter binding site.

    PubMed Central

    Akk, G; Zhou, M; Auerbach, A

    1999-01-01

    Mutagenesis and single-channel kinetic analysis were used to investigate the roles of four acetylcholine receptor channel (AChR) residues that are candidates for interacting directly with the agonist. The EC50 of the ACh dose-response curve was increased following alpha-subunit mutations Y93F and Y198F and epsilon-subunit mutations D175N and E184Q. Single-channel kinetic modeling indicates that the increase was caused mainly by a reduced gating equilibrium constant (Theta) in alphaY198F and epsilonD175N, by an increase in the equilibrium dissociation constant for ACh (KD) and a reduction in Theta in alphaY93F, and only by a reduction in KD in epsilonE184Q. This mutation altered the affinity of only one of the two binding sites and was the only mutation that reduced competition by extracellular K+. Additional mutations of epsilonE184 showed that K+ competition was unaltered in epsilonE184D and was virtually eliminated in epsilonE184K, but that neither of these mutations altered the intrinsic affinity for ACh. Thus there is an apparent electrostatic interaction between the epsilonE184 side chain and K+ ( approximately 1.7kBT), but not ACh+. The results are discussed in terms of multisite and induced-fit models of ligand binding to the AChR. PMID:9876135

  12. Identification and functional analysis of two novel connexin 50 mutations associated with autosome dominant congenital cataracts.

    PubMed

    Yu, Yinhui; Wu, Menghan; Chen, Xinyi; Zhu, Yanan; Gong, Xiaohua; Yao, Ke

    2016-01-01

    Autosomal dominant congenital cataracts (ADCC) are clinically and genetically heterogeneous diseases. The present study recruited two Chinese families with bilateral nuclear cataract or zonular pulverulent phenotype. Direct sequencing of candidate genes identified two novel missense mutations of Cx50, Cx50P59A (c.175C > G) and Cx50R76H (c.227G > A), both co-segregated well with all affected individuals. Bioinformatics analysis predicted deleterious for both mutations. Functional and cellular behaviors of wild type and mutant Cx50 examined by stably transfecting recombinant systems revealed similar protein expression levels. Protein distribution pattern by fluorescence microscopy showed that Cx50R76H localized at appositional membranes forming gap junctions with enormous cytoplasmic protein accumulation, whereas the Cx50P59A mutation was found inefficient at forming detectable plaques. Cell growth test by MTT assay showed that induction of Cx50P59A decreased cell viability. Our study constitutes the first report that the Cx50P59A and Cx50R76H mutations are associated with ADCC and expands the mutation spectrum of Cx50 in association with congenital cataracts. The genetic, cellular, and functional data suggest that the altered intercellular communication governed by mutated Cx50 proteins may act as the molecular mechanism underlying ADCC, which further confirms the role of Cx50 in the maintenance of human lens transparency. PMID:27216975

  13. Identification and functional analysis of two novel connexin 50 mutations associated with autosome dominant congenital cataracts

    PubMed Central

    Yu, Yinhui; Wu, Menghan; Chen, Xinyi; Zhu, Yanan; Gong, Xiaohua; Yao, Ke

    2016-01-01

    Autosomal dominant congenital cataracts (ADCC) are clinically and genetically heterogeneous diseases. The present study recruited two Chinese families with bilateral nuclear cataract or zonular pulverulent phenotype. Direct sequencing of candidate genes identified two novel missense mutations of Cx50, Cx50P59A (c.175C > G) and Cx50R76H (c.227G > A), both co-segregated well with all affected individuals. Bioinformatics analysis predicted deleterious for both mutations. Functional and cellular behaviors of wild type and mutant Cx50 examined by stably transfecting recombinant systems revealed similar protein expression levels. Protein distribution pattern by fluorescence microscopy showed that Cx50R76H localized at appositional membranes forming gap junctions with enormous cytoplasmic protein accumulation, whereas the Cx50P59A mutation was found inefficient at forming detectable plaques. Cell growth test by MTT assay showed that induction of Cx50P59A decreased cell viability. Our study constitutes the first report that the Cx50P59A and Cx50R76H mutations are associated with ADCC and expands the mutation spectrum of Cx50 in association with congenital cataracts. The genetic, cellular, and functional data suggest that the altered intercellular communication governed by mutated Cx50 proteins may act as the molecular mechanism underlying ADCC, which further confirms the role of Cx50 in the maintenance of human lens transparency. PMID:27216975

  14. IGF1R mutation analysis in short children with Silver-Russell syndrome features

    PubMed Central

    Soellner, Lukas; Spengler, Sabrina; Begemann, Matthias; Wollmann, Hartmut A.; Binder, Gerhard; Eggermann, Thomas

    2013-01-01

    The insulin-like growth factor 1 receptor (IGF1R) is a key factor in intrauterine and postnatal growth by mediating the biological function of IGF-I. Mutations of IGF1R gene are usually associated with growth retardation, but the clinical picture of IGF1R mutation carriers is heterogeneous. Indeed, these patients show clinical signs compatible with Silver-Russell syndrome (SRS), and some IGF1R mutation carriers have been identified in SRS cohorts. We therefore investigated deoxyribonucleic acid samples of 19 growth-retarded patients with SRS features. Apart from 8 non-pathogenic variants, we detected heterozygosity for the unknown duplication, c.1056_1057dup, leading to a premature termination in one patient and his growth retarded sister. Due to its nature, we assumed that this variant is probably pathogenic. However, the patient and his sister exhibited spontaneous catch-up growth in later life. We therefore hypothesize that the c.1056_1057dup does not result in a significant disruption to the GH-IGFI axis. Thus, this IGF1R mutation without obvious clinical consequence might challenge the actual concept of IGF1R haploinsufficiency as a general cause for disturbed growth in IGF1R mutation carriers. In the future, mutation analysis of IGF1R should be considered in growth-retarded patients with microcephaly and minor SRS features, but not in probands with the characteristic SRS phenotype including macrocephaly. PMID:27625849

  15. IGF1R mutation analysis in short children with Silver-Russell syndrome features.

    PubMed

    Soellner, Lukas; Spengler, Sabrina; Begemann, Matthias; Wollmann, Hartmut A; Binder, Gerhard; Eggermann, Thomas

    2013-09-01

    The insulin-like growth factor 1 receptor (IGF1R) is a key factor in intrauterine and postnatal growth by mediating the biological function of IGF-I. Mutations of IGF1R gene are usually associated with growth retardation, but the clinical picture of IGF1R mutation carriers is heterogeneous. Indeed, these patients show clinical signs compatible with Silver-Russell syndrome (SRS), and some IGF1R mutation carriers have been identified in SRS cohorts. We therefore investigated deoxyribonucleic acid samples of 19 growth-retarded patients with SRS features. Apart from 8 non-pathogenic variants, we detected heterozygosity for the unknown duplication, c.1056_1057dup, leading to a premature termination in one patient and his growth retarded sister. Due to its nature, we assumed that this variant is probably pathogenic. However, the patient and his sister exhibited spontaneous catch-up growth in later life. We therefore hypothesize that the c.1056_1057dup does not result in a significant disruption to the GH-IGFI axis. Thus, this IGF1R mutation without obvious clinical consequence might challenge the actual concept of IGF1R haploinsufficiency as a general cause for disturbed growth in IGF1R mutation carriers. In the future, mutation analysis of IGF1R should be considered in growth-retarded patients with microcephaly and minor SRS features, but not in probands with the characteristic SRS phenotype including macrocephaly. PMID:27625849

  16. Mutation analysis of the PALB2 gene in unselected pancreatic cancer patients in the Czech Republic.

    PubMed

    Borecka, M; Zemankova, P; Vocka, M; Soucek, P; Soukupova, J; Kleiblova, P; Sevcik, J; Kleibl, Z; Janatova, M

    2016-05-01

    Pancreatic ductal adenocarcinoma (PDAC) has the worst prognosis among common solid cancer diagnoses. It has been shown that up to 10% of PDAC cases have a familial component. Characterization of PDAC-susceptibility genes could reveal high-risk individuals and patients that may benefit from tailored therapy. Hereditary mutations in PALB2 (Partner and Localizer of BRCA2) gene has been shown to predispose, namely to PDAC and breast cancers; however, frequencies of mutations vary among distinct geographical populations. Using the combination of sequencing, high-resolution melting and multiplex ligation-dependent probe amplification analyses, we screened the entire PALB2 gene in 152 unselected Czech PDAC patients. Truncating mutations were identified in three (2.0%) patients. Genotyping of found PALB2 variants in 1226 control samples revealed one carrier of PALB2 truncating variant (0.08%; P = 0.005). The mean age at PDAC diagnosis was significantly lower among PALB2 mutation carriers (51 years) than in non-carriers (63 years; P = 0.016). Only one patient carrying germline PALB2 mutation had a positive family breast cancer history. Our results indicate that hereditary PALB2 mutation represents clinically considerable genetic factor increasing PDAC susceptibility in our population and that analysis of PALB2 should be considered not only in PDAC patients with familial history of breast or pancreatic cancers but also in younger PDAC patients without family cancer history. PMID:27106063

  17. Identification of novel KIF11 mutations in patients with familial exudative vitreoretinopathy and a phenotypic analysis

    PubMed Central

    Li, Jia-Kai; Fei, Ping; Li, Yian; Huang, Qiu-Jing; Zhang, Qi; Zhang, Xiang; Rao, Yu-Qing; Li, Jing; Zhao, Peiquan

    2016-01-01

    KIF11 gene mutations cause a rare autosomal dominant inheritable disease called microcephaly with or without chorioretinopathy, lymphedema, or mental retardation (MCLMR). Recently, such mutations were also found to be associated with familial exudative vitreoretinopathy (FEVR). Here, we report 7 novel KIF11 mutations identified by targeted gene capture in a cohort of 142 probands with FEVR who were diagnosed in our clinic between March 2015 and November 2015. These mutations were: p.L171V, c.790-2A>C, p.Q525*, p.Q842*, p.S936*, p.L983fs and p.R1025G. Phenotypic analysis revealed that all of the affected probands had advanced FEVR (stage 4 or above). Three had microcephaly, and one had chorioretinopathy, which indicated a phenotypic overlap with MCLMR. Two mutations were also found in the families of the affected probands. One parent with a p.R1025G mutation had an avascular peripheral retina and abnormal looping vessels. However, one parent with p.L983fs had normal retina, which indicated incomplete penetration of the genotype. Our results further confirmed that KIF11 is causative of FEVR in an autosomal dominant manner. We also suggest the examination of MCLMR-like features, such as microcephaly, chorioretinopathy, for patients with FEVR and wide-field fundus photography for patients with MCLMR in future practice. PMID:27212378

  18. Mutational analysis of the extracellular Ca{sup 2+}-sensing receptor gene in human parathyroid tumors

    SciTech Connect

    Hosokawa, Yoshitaka; Arnold, A.; Pollak, M.R.; Brown, E.M.

    1995-10-01

    Despite recent progress, such as the identification of PRAD1/cyclin D1 as a parathyroid oncogene, it is likely that many genes involved in the molecular pathogenesis of parathyroid tumors remain unknown. Individuals heterozygous for inherited mutations in the extracellular Ca{sup 2+}-sensing receptor gene that reduce its biological activity exhibit a disorder termed familial hypocalciuric hypercalcemia or familial benign hypercalcemia, which is characterized by reduced responsiveness of parathyroid and kidney to calcium and by PTH-dependent hypercalcemia. Those who are homozygous for such mutations present with neonatal severe hyperparathyroidism and have marked parathroid hypercellularity. Thus, the Ca{sup 2+}-sensing receptor gene is a candidate parathyroid tumor suppressor gene, with inactivating mutations plausibly explaining set-point abnormalities in the regulation of both parathyroid cellular proliferation and PTH secretion by extracellular Ca{sup 2+} similar to those seen in hyperparathyroidism. Using a ribonuclease A protection assay that has detected multiple mutations in the Ca{sup 2+}-sensing receptor gene in familial hypocalciuric hypercalcemia and covers more than 90% of its coding region, we sought somatic mutations in this gene in a total of 44 human parathyroid tumors (23 adenomas, 4 carcinomas, 5 primary hyperplasias, and 12 secondary hyperplasias). No such mutations were detected in these 44 tumors. Thus, our studies suggest that somatic mutation of the Ca{sup 2+}-sensing receptor gene does not commonly contribute to the pathogenesis of sporadic parathyroid tumors. As such, PTH set-point dysfunction in parathroid tumors may well be secondary to other clonal proliferative defects and/or mutations in other components of the extracellular Ca{sup 2+}-sensing pathway. 29 refs., 2 figs.

  19. A novel mutation in the β-spectrin gene causes the activation of a cryptic 5'-splice site and the creation of a de novo 3'-splice site.

    PubMed

    Salas, Pilar Carrasco; Rosales, José Miguel Lezana; Milla, Carmen Palma; Montiel, Javier López; Siles, Juan López

    2015-01-01

    The analysis of genes involved in hereditary spherocytosis, by next-generation sequencing in two patients with clinical diagnosis of the disease, showed the presence of the c.1795+1G>A mutation in the SPTB gene. cDNA amplification then revealed the occurrence of a consequent aberrant mRNA isoform produced from the activation of a cryptic 5'-splice site and the creation of a newly 3'-splice site. The mechanisms by which these two splice sites are used as a result of the same mutation should be analyzed in depth in further studies.

  20. Somatic mutational analysis of FAK in breast cancer: A novel gain-of-function mutation due to deletion of exon 33

    SciTech Connect

    Fang, Xu-Qian; Liu, Xiang-Fan; Yao, Ling; Chen, Chang-Qiang; Gu, Zhi-Dong; Ni, Pei-Hua; Zheng, Xin-Min; Fan, Qi-Shi

    2014-01-10

    Highlights: •A novel FAK splicing mutation identified in breast tumor. •FAK-Del33 mutation promotes cell migration and invasion. •FAK-Del33 mutation regulates FAK/Src signal pathway. -- Abstract: Focal adhesion kinase (FAK) regulates cell adhesion, migration, proliferation, and survival. We identified a novel splicing mutant, FAK-Del33 (exon 33 deletion, KF437463), in both breast and thyroid cancers through colony sequencing. Considering the low proportion of mutant transcripts in samples, this mutation was detected by TaqMan-MGB probes based qPCR. In total, three in 21 paired breast tissues were identified with the FAK-Del33 mutation, and no mutations were found in the corresponding normal tissues. When introduced into a breast cell line through lentivirus infection, FAK-Del33 regulated cell motility and migration based on a wound healing assay. We demonstrated that the expression of Tyr397 (main auto-phosphorylation of FAK) was strongly increased in FAK-Del33 overexpressed breast tumor cells compared to wild-type following FAK/Src RTK signaling activation. These results suggest a novel and unique role of the FAK-Del33 mutation in FAK/Src signaling in breast cancer with significant implications for metastatic potential.

  1. Cost-Effectiveness Analysis of Screening for KRAS and BRAF Mutations in Metastatic Colorectal Cancer

    PubMed Central

    2012-01-01

    Background In 2009, the American Society of Clinical Oncology recommended that patients with metastatic colorectal cancer (mCRC) who are candidates for anti-epidermal growth factor receptor (EGFR) therapy have their tumors tested for KRAS mutations because tumors with such mutations do not respond to anti-EGFR therapy. Limiting anti-EGFR therapy to those without KRAS mutations will reserve treatment for those likely to benefit while avoiding unnecessary costs and harm to those who would not. Similarly, tumors with BRAF genetic mutations may not respond to anti-EGFR therapy, though this is less clear. Economic analyses of mutation testing have not fully explored the roles of alternative therapies and resection of metastases. Methods This paper is based on a decision analytic framework that forms the basis of a cost-effectiveness analysis of screening for KRAS and BRAF mutations in mCRC in the context of treatment with cetuximab. A cohort of 50 000 patients with mCRC is simulated 10 000 times, with attributes randomly assigned on the basis of distributions from randomized controlled trials. Results Screening for both KRAS and BRAF mutations compared with the base strategy (of no anti-EGFR therapy) increases expected overall survival by 0.034 years at a cost of $22 033, yielding an incremental cost-effectiveness ratio of approximately $650 000 per additional year of life. Compared with anti-EGFR therapy without screening, adding KRAS testing saves approximately $7500 per patient; adding BRAF testing saves another $1023, with little reduction in expected survival. Conclusions Screening for KRAS and BFAF mutation improves the cost-effectiveness of anti-EGFR therapy, but the incremental cost effectiveness ratio remains above the generally accepted threshold for acceptable cost effectiveness ratio of $100 000/quality adjusted life year. PMID:23197490

  2. High Resolution Melting Analysis for JAK2 Exon 14 and Exon 12 Mutations

    PubMed Central

    Rapado, Inmaculada; Grande, Silvia; Albizua, Enriqueta; Ayala, Rosa; Hernández, José-Angel; Gallardo, Miguel; Gilsanz, Florinda; Martinez-Lopez, Joaquin

    2009-01-01

    JAK2 mutations are important criteria for the diagnosis of Philadelphia chromosome-negative myeloproliferative neoplasms. We aimed to assess JAK2 exon 14 and exon 12 mutations by high-resolution melting (HRM) analysis, which allows variation screening. The exon 14 analysis included 163 patients with polycythemia vera, secondary erythrocytoses, essential thrombocythemia, or secondary thrombocytoses, and 126 healthy subjects. The study of exon 12 included 40 JAK2 V617F-negative patients (nine of which had polycythemia vera, and 31 with splanchnic vein thrombosis) and 30 healthy subjects. HRM analyses of JAK2 exons 14 and 12 gave analytical sensitivities near 1% and both intra- and interday coefficients of variation of less than 1%. For HRM analysis of JAK2 exon 14 in polycythemia vera and essential thrombocythemia, clinical sensitivities were 93.5% and 67.9%, clinical specificities were 98.8% and 97.0%, positive predictive values were 93.5% and 79.2%, and negative predictive values were 98.8% and 94.6, respectively. Correlations were observed between the results from HRM and three commonly used analytical methods. The JAK2 exon 12 HRM results agreed completely with those from sequencing analysis, and the three mutations in exon 12 were detected by both methods. Hence, HRM analysis of exons 14 and 12 in JAK2 shows better diagnostic values than three other routinely used methods against which it was compared. In addition, HRM analysis has the advantage of detecting unknown mutations. PMID:19225136

  3. Mutations in the substrate entrance region of β-glucosidase from Trichoderma reesei improve enzyme activity and thermostability.

    PubMed

    Lee, Hsiao-Lin; Chang, Chih-Kang; Jeng, Wen-Yih; Wang, Andrew H-J; Liang, Po-Huang

    2012-11-01

    β-Glucosidase (EC 3.2.1.21) plays an essential role in biofuel production since it can cleave β-1,4-glycosidic bond to convert cellobiose into fermentable glucose. Based on the structure of Trichoderma reesei β-glucosidase 2 (TrBgl2) we solved, the amino acids in the outer channel of active site were mutated in this study. Mutants P172L and P172L/F250A showed the most enhanced k(cat)/K(m) and k(cat) values by 5.3- and 6.9-fold, respectively, compared to the wild type (WT) toward 4-nitrophenyl-β-D-glucopyranoside (p-NPG) substrate at 40°C. L167W and P172L/F250A mutations resulted in shift of optimal temperature to 50°C, at which WT was almost inactive. However, thin-layer chromatography analysis revealed that mutant L167W had the best synergism with T. reesei cellulases on degrading cellulosic substrates into glucose. This study enhances our understanding on the roles of amino acids in the substrate entrance region away from the active site and provides engineered T. reesei β-glucosidases with better activity and/or thermostability to hydrolyze cellobiose. PMID:23077275

  4. Mutations in the substrate entrance region of β-glucosidase from Trichoderma reesei improve enzyme activity and thermostability.

    PubMed

    Lee, Hsiao-Lin; Chang, Chih-Kang; Jeng, Wen-Yih; Wang, Andrew H-J; Liang, Po-Huang

    2012-11-01

    β-Glucosidase (EC 3.2.1.21) plays an essential role in biofuel production since it can cleave β-1,4-glycosidic bond to convert cellobiose into fermentable glucose. Based on the structure of Trichoderma reesei β-glucosidase 2 (TrBgl2) we solved, the amino acids in the outer channel of active site were mutated in this study. Mutants P172L and P172L/F250A showed the most enhanced k(cat)/K(m) and k(cat) values by 5.3- and 6.9-fold, respectively, compared to the wild type (WT) toward 4-nitrophenyl-β-D-glucopyranoside (p-NPG) substrate at 40°C. L167W and P172L/F250A mutations resulted in shift of optimal temperature to 50°C, at which WT was almost inactive. However, thin-layer chromatography analysis revealed that mutant L167W had the best synergism with T. reesei cellulases on degrading cellulosic substrates into glucose. This study enhances our understanding on the roles of amino acids in the substrate entrance region away from the active site and provides engineered T. reesei β-glucosidases with better activity and/or thermostability to hydrolyze cellobiose.

  5. Single Active Site Mutation Causes Serious Resistance of HIV Reverse Transcriptase to Lamivudine: Insight from Multiple Molecular Dynamics Simulations.

    PubMed

    Moonsamy, Suri; Bhakat, Soumendranath; Walker, Ross C; Soliman, Mahmoud E S

    2016-03-01

    Molecular dynamics simulations, binding free energy calculations, principle component analysis (PCA), and residue interaction network analysis were employed in order to investigate the molecular mechanism of M184I single mutation which played pivotal role in making the HIV-1 reverse transcriptase (RT) totally resistant to lamivudine. Results showed that single mutations at residue 184 of RT caused (1) distortion of the orientation of lamivudine in the active site due to the steric conflict between the oxathiolane ring of lamivudine and the side chain of beta-branched amino acids Ile at position 184 which, in turn, perturbs inhibitor binding, (2) decrease in the binding affinity by (~8 kcal/mol) when compared to the wild-type, (3) variation in the overall enzyme motion as evident from the PCA for both systems, and (4) distortion of the hydrogen bonding network and atomic interactions with the inhibitor. The comprehensive analysis presented in this report can provide useful information for understanding the drug resistance mechanism against lamivudine. The results can also provide some potential clues for further design of novel inhibitors that are less susceptible to drug resistance. PMID:26972300

  6. Chitosan-Modified Graphene Electrodes for DNA Mutation Analysis

    PubMed Central

    Alwarappan, Subbiah; Cissell, Kyle; Dixit, Suraj; Mohapatra, Shyam; Li, Chen-Zhong

    2012-01-01

    Graphene has remarkable electrochemical properties that make it an ideal material for constructing biosensors,however it has not been explored for DNA biosensing. Herein, we report on a chitosan-modified graphene platform for the electrochemical detection of changes in DNA sequences. For this purpose, graphene synthesized chemically and characterized by Raman spectroscopy and Transmission electron microscopy, was covalently modified with positively charged chitosan to facilitate the immobilization of a single-stranded DNA `capture' oligonucleotide. The covalent attachment of chitosan to graphene was confirmed by FT-IR spectroscopy and then the capture DNA was immobilized on to the chitosan modified graphene electrode. Then, the target DNA (complementary or mismatched `mutant' DNA) was applied to the electrode and cyclic voltammetry was performed. The results of the voltammetric experiments indicate that the chitosan modified graphene electrodes immobilized with ssDNA+complementary DNA exhibit a significantly higher magnitude of redox peak current than the chitosan modified graphene electrodes immobilized with the non-complementary mutant DNAs. Together, these results demonstrate that the chitosan-graphene platform provides a rapid, stable and sensitive detection of mismatched DNA and has the potential to be used for point-of-care diagnostic tests for specific DNA mutations associated with disease conditions. PMID:23472058

  7. Structural analysis of thermostabilizing mutations of cocaine esterase

    SciTech Connect

    Narasimhan, Diwahar; Nance, Mark R.; Gao, Daquan; Ko, Mei-Chuan; Macdonald, Joanne; Tamburi, Patricia; Yoon, Dan; Landry, Donald M.; Woods, James H.; Zhan, Chang-Guo; Tesmer, John J.G.; Sunahara, Roger K.

    2010-09-03

    Cocaine is considered to be the most addictive of all substances of abuse and mediates its effects by inhibiting monoamine transporters, primarily the dopamine transporters. There are currently no small molecules that can be used to combat its toxic and addictive properties, in part because of the difficulty of developing compounds that inhibit cocaine binding without having intrinsic effects on dopamine transport. Most of the effective cocaine inhibitors also display addictive properties. We have recently reported the use of cocaine esterase (CocE) to accelerate the removal of systemic cocaine and to prevent cocaine-induced lethality. However, wild-type CocE is relatively unstable at physiological temperatures ({tau}{sub 1/2} {approx} 13 min at 37 C), presenting challenges for its development as a viable therapeutic agent. We applied computational approaches to predict mutations to stabilize CocE and showed that several of these have increased stability both in vitro and in vivo, with the most efficacious mutant (T172R/G173Q) extending half-life up to 370 min. Here we present novel X-ray crystallographic data on these mutants that provide a plausible model for the observed enhanced stability. We also more extensively characterize the previously reported variants and report on a new stabilizing mutant, L169K. The improved stability of these engineered CocE enzymes will have a profound influence on the use of this protein to combat cocaine-induced toxicity and addiction in humans.

  8. Mutational Analysis of the Chlamydia muridarum Plasticity Zone

    PubMed Central

    Rajaram, Krithika; Giebel, Amanda M.; Toh, Evelyn; Hu, Shuai; Newman, Jasmine H.; Morrison, Sandra G.; Kari, Laszlo; Morrison, Richard P.

    2015-01-01

    Pathogenically diverse Chlamydia spp. can have surprisingly similar genomes. Chlamydia trachomatis isolates that cause trachoma, sexually transmitted genital tract infections (chlamydia), and invasive lymphogranuloma venereum (LGV) and the murine strain Chlamydia muridarum share 99% of their gene content. A region of high genomic diversity between Chlamydia spp. termed the plasticity zone (PZ) may encode niche-specific virulence determinants that dictate pathogenic diversity. We hypothesized that PZ genes might mediate the greater virulence and gamma interferon (IFN-γ) resistance of C. muridarum compared to C. trachomatis in the murine genital tract. To test this hypothesis, we isolated and characterized a series of C. muridarum PZ nonsense mutants. Strains with nonsense mutations in chlamydial cytotoxins, guaBA-add, and a phospholipase D homolog developed normally in cell culture. Two of the cytotoxin mutants were less cytotoxic than the wild type, suggesting that the cytotoxins may be functional. However, none of the PZ nonsense mutants exhibited increased IFN-γ sensitivity in cell culture or were profoundly attenuated in a murine genital tract infection model. Our results suggest that C. muridarum PZ genes are transcribed—and some may produce functional proteins—but are dispensable for infection of the murine genital tract. PMID:25939505

  9. Effect of lysine to alanine mutations on the phosphate activation and BPTES inhibition of glutaminase.

    PubMed

    McDonald, Charles J; Acheff, Eric; Kennedy, Ryan; Taylor, Lynn; Curthoys, Norman P

    2015-09-01

    The GLS1 gene encodes a mitochondrial glutaminase that is highly expressed in brain, kidney, small intestine and many transformed cells. Recent studies have identified multiple lysine residues in glutaminase that are sites of N-acetylation. Interestingly, these sites are located within either a loop segment that regulates access of glutamine to the active site or the dimer:dimer interface that participates in the phosphate-dependent oligomerization and activation of the enzyme. These two segments also contain the binding sites for bis-2[5-phenylacetamido-1,2,4-thiadiazol-2-yl]ethylsulfide (BPTES), a highly specific and potent uncompetitive inhibitor of this glutaminase. BPTES is also the lead compound for development of novel cancer chemotherapeutic agents. To provide a preliminary assessment of the potential effects of N-acetylation, the corresponding lysine to alanine mutations were constructed in the hGACΔ1 plasmid. The wild type and mutated proteins were purified by Ni(+)-affinity chromatography and their phosphate activation and BPTES inhibition profiles were analyzed. Two of the alanine substitutions in the loop segment (K311A and K328A) and the one in the dimer:dimer interface (K396A) form enzymes that require greater concentrations of phosphate to produce half-maximal activation and exhibit greater sensitivity to BPTES inhibition. By contrast, the K320A mutation results in a glutaminase that exhibits near maximal activity in the absence of phosphate and is not inhibited by BPTES. Thus, lysine N-acetylation may contribute to the acute regulation of glutaminase activity in various tissues and alter the efficacy of BPTES-type inhibitors.

  10. [Role of the activating mutation Val617Phe of Janus kinase 2 gene in myeloproliferative diseases and significance of its detection].

    PubMed

    Andrikovics, Hajnalka; Szilvási, Anikó; Meggyesi, Nóra; Király, Viktória; Halm, Gabriella; Lueff, Sándor; Nahajevszky, Sarolta; Mikala, Gábor; Sipos, Andrea; Lovas, Nóra; Csukly, Zoltán; Mátrai, Zoltán; Tamáska, Júlia; Tordai, Attila; Masszi, Tamás

    2007-02-01

    The Val617Phe point mutation of Janus kinase 2 gene is believed to participate in the pathogenesis of myeloproliferative syndrome characterised by the clonal alteration of hematopoietic stem cells. According to current results, the frequency of Val617Phe activating mutation is around 80% in polycythaemia vera, 35% in essential thrombocythemia, and 50% in chronic idiopathic myelofibrosis. The diagnoses of polycythemia vera, essential thrombocythemia and idiopathic myelofibrosis were so far based on the exclusion of secondary factors as well as bone marrow biopsy histology. The goal of the present work was to establish simple molecular genetic techniques for the routine testing of Janus kinase 2 gene Val617Phe mutation, and to compare the clinical phenotypes of Val617Phe mutation positive and negative myeloproliferative syndromes. We employed the allele specific polymerase chain technique for detection of Val617Phe mutation in 252 patients with myeloproliferative syndrome. We measured Val617Phe frequency as 85,4% (117/137) in polycythemia vera, 56,6% (56/99) in essential thrombocythemia, and 87,5% (14/16) in idiopathic myelofibrosis. We found significantly elevated hemoglobin levels and white blood cell counts (measured at the time of diagnosis) in Val617Phe-positive polycythemia vera and essential thrombocythemia patient groups compared to Val617Phe-negative patients. However, the frequencies of splenomegaly and other complications (thrombosis, bleeding, transformation to acute leukemia) were not significantly different between the mutation-positive and negative groups. In conclusion, the non-invasive mutation analysis of the Janus kinase 2 Val617Phe is suitable for routine laboratory application and helps the differential diagnosis of myeloproliferative syndrome. Although the exact role of Val617Phe mutation testing has not yet been identified on the basis of a broad professional consensus, the testing is suggested in cases of erythrocytoses and thrombocytoses of

  11. Germline NLRP1 Mutations Cause Skin Inflammatory and Cancer Susceptibility Syndromes via Inflammasome Activation.

    PubMed

    Zhong, Franklin L; Mamaï, Ons; Sborgi, Lorenzo; Boussofara, Lobna; Hopkins, Richard; Robinson, Kim; Szeverényi, Ildikó; Takeichi, Takuya; Balaji, Reshmaa; Lau, Aristotle; Tye, Hazel; Roy, Keya; Bonnard, Carine; Ahl, Patricia J; Jones, Leigh Ann; Baker, Paul; Lacina, Lukas; Otsuka, Atsushi; Fournie, Pierre R; Malecaze, François; Lane, E Birgitte; Akiyama, Masashi; Kabashima, Kenji; Connolly, John E; Masters, Seth L; Soler, Vincent J; Omar, Salma Samir; McGrath, John A; Nedelcu, Roxana; Gribaa, Moez; Denguezli, Mohamed; Saad, Ali; Hiller, Sebastian; Reversade, Bruno

    2016-09-22

    Inflammasome complexes function as key innate immune effectors that trigger inflammation in response to pathogen- and danger-associated signals. Here, we report that germline mutations in the inflammasome sensor NLRP1 cause two overlapping skin disorders: multiple self-healing palmoplantar carcinoma (MSPC) and familial keratosis lichenoides chronica (FKLC). We find that NLRP1 is the most prominent inflammasome sensor in human skin, and all pathogenic NLRP1 mutations are gain-of-function alleles that predispose to inflammasome activation. Mechanistically, NLRP1 mutations lead to increased self-oligomerization by disrupting the PYD and LRR domains, which are essential in maintaining NLRP1 as an inactive monomer. Primary keratinocytes from patients experience spontaneous inflammasome activation and paracrine IL-1 signaling, which is sufficient to cause skin inflammation and epidermal hyperplasia. Our findings establish a group of non-fever inflammasome disorders, uncover an unexpected auto-inhibitory function for the pyrin domain, and provide the first genetic evidence linking NLRP1 to skin inflammatory syndromes and skin cancer predisposition. PMID:27662089

  12. Target DNA sequence directly regulates the frequency of activation-induced deaminase-dependent mutations.

    PubMed

    Chen, Zhangguo; Viboolsittiseri, Sawanee S; O'Connor, Brian P; Wang, Jing H

    2012-10-15

    Activation-induced deaminase (AID) catalyses class switch recombination (CSR) and somatic hypermutation (SHM) in B lymphocytes to enhance Ab diversity. CSR involves breaking and rejoining highly repetitive switch (S) regions in the IgH (Igh) locus. S regions appear to be preferential targets of AID. To determine whether S region sequence per se, independent of Igh cis regulatory elements, can influence AID targeting efficiency and mutation frequency, we established a knock-in mouse model by inserting a core Sγ1 region into the first intron of proto-oncogene Bcl6, which is a non-Ig target of SHM. We found that the mutation frequency of the inserted Sγ1 region was dramatically higher than that of the adjacent Bcl6 endogenous sequence. Mechanistically, S region-enhanced SHM was associated with increased recruitment of AID and RNA polymerase II, together with Spt5, albeit to a lesser extent. Our studies demonstrate that target DNA sequences influence mutation frequency via regulating AID recruitment. We propose that the nucleotide sequence preference may serve as an additional layer of AID regulation by restricting its mutagenic activity to specific sequences despite the observation that AID has the potential to access the genome widely.

  13. Mutation analysis of the CYP21A2 gene in congenital adrenal hyperplasia.

    PubMed

    Forouzanfar, K; Seifi, M; Hashemi-Gorji, F; Karimi, N; Estiar, M A; Karimoei, M; Sakhinia, E; Karimipour, M; Ghergherehchi, R

    2015-01-01

    Congenital adrenal hyperplasia (CAH) is an inherited autosomal recessive enzymatic disorder involving the synthesis of adrenal corticosteroids. 21-Hydroxylase deficiency (21-OHD) is the most common form of the disease which is observed in more than 90% of patients with CAH. Early identification of mutations in the genes involved in this disease is critical. A marker of the disease, errors in the CYP21A2 gene, is thought to be part of the pathophysiology of CAH. Therefore, the identification of gene mutations would be very beneficial in the early detection of CAH. This research was a descriptive epidemiological study conducted on individuals elected by the inclusion criteria whom were referred to the Genetic Diagnosis Center of Tabriz during 2012 to 2013. After sampling and DNA extraction, PCR for the detection of mutations in the CYP21A2 gene was performed followed by sequencing. For data analysis, the results of sequencing were compared with the reference gene by blast, Gene Runner and MEGA-5 software. Obtained changes were compared with NCBI databases. The analysis of the sequencing determined the mutations located in Exons 6, 7, 8 and 10. The most frequent findings were Q318X (53%) and R356W (28%). Exon 6 cluster (7%), E431k (4%), V237E (2%), V281L (2%), E351K (2%), R426C (2%) were also frequent in our patients. The most frequent genotype was compound heterozygote, Q318X/R356W. Three rare mutations in our study were E431K, E351K and R426C. Observed mutation frequencies in this study were much higher than those reported in previous studies in Iranian populations. Thus, it seems that it is necessary to follow-up screening programs and use sequencing methods to better identify mutations in the development of the disease.

  14. Deep Intronic Mutation and Pseudo Exon Activation as a Novel Muscular Hypertrophy Modifier in Cattle

    PubMed Central

    Bouyer, Claire; Forestier, Lionel; Renand, Gilles; Oulmouden, Ahmad

    2014-01-01

    Myostatin is essential for proper regulation of myogenesis, and inactivation of Myostatin results in muscle hypertrophy. Here, we identified an unexpected mutation in the myostatin gene which is almost fixed in Blonde d'Aquitaine cattle. In skeletal muscle, the mutant allele was highly expressed leading to an abnormal transcript consisting of a 41-bp inclusion and premature termination codons and to residual levels of a correctly spliced transcript. This expression pattern, caused by a leaky intronic mutation with regard to spliceosome activity and its apparent stability with regard to surveillance mechanisms, could contribute to the moderate muscle hypertrophy in this cattle breed. This finding is of importance for genetic counseling for meat quantity and quality in livestock production and possibly to manipulate myostatin pre-mRNA in human muscle diseases. PMID:24827585

  15. A GPR54-activating mutation in a patient with central precocious puberty.

    PubMed

    Teles, Milena Gurgel; Bianco, Suzy D C; Brito, Vinicius Nahime; Trarbach, Ericka B; Kuohung, Wendy; Xu, Shuyun; Seminara, Stephanie B; Mendonca, Berenice B; Kaiser, Ursula B; Latronico, Ana Claudia

    2008-02-14

    Gonadotropin-dependent, or central, precocious puberty is caused by early maturation of the hypothalamic-pituitary-gonadal axis. In girls, this condition is most often idiopathic. Recently, a G protein-coupled receptor, GPR54, and its ligand, kisspeptin, were described as an excitatory neuroregulator system for the secretion of gonadotropin-releasing hormone (GnRH). In this study, we have identified an autosomal dominant GPR54 mutation--the substitution of proline for arginine at codon 386 (Arg386Pro)--in an adopted girl with idiopathic central precocious puberty (whose biologic family was not available for genetic studies). In vitro studies have shown that this mutation leads to prolonged activation of intracellular signaling pathways in response to kisspeptin. The Arg386Pro mutant appears to be associated with central precocious puberty.

  16. Congenital central hypoventilation syndrome: Mutation analysis of the receptor tyrosine kinase RET

    SciTech Connect

    Bolk, S.; Angrist, M.; Schwartz, S.; Chakravarti, A. |

    1996-06-28

    Congenital central hypoventilation syndrome (CCHS) usually occurs as an isolated phenotype. However, 16% of the index cases are also affected with Hirschsprung disease (HSCR). Complex segregation analysis suggests that CCHS is familial and has the same inheritance pattern with or without HSCR. We postulate that alteration of normal function of the receptor tyrosine kinase, RET, may contribute to CCHS based on RET`s expression pattern and the identification of RET mutations in HSCR patients. To further explore the nature of the inheritance of CCHS, we have undertaken two main routes of investigation: cytogenetic analysis and mutation detection. Cytogenetic analysis of metaphase chromosomes showed normal karyotypes in 13 of the 14 evaluated index cases; one index case carried a familial pericentric inversion on chromosome 2. Mutation analysis showed no sequence changes unique to index cases, as compared to control individuals, and as studied by single strand conformational polymorphism (SSCP) analysis of the coding region of RET. We conclude that point mutations in the RET coding region cannot account for a substantial fraction of CCHS in this patient population, and that other candidate genes involved in neural crest cell differentiation and development must be considered. 54 refs.

  17. The Clinical Value of Oxymatrine in Preventing Lamivudine Induced YMDD Mutation: A Meta-Analysis.

    PubMed

    He, Min; Wu, Yu; Wang, Mengmeng; Chen, Wenwen; Yuan, Weian; Jiang, Jian

    2015-01-01

    Oxymatrine (OMTR) is widely used for the treatment of chronic hepatitis B (CHB) in China. Several reports revealed that combination of OMTR and lamivudine reduced the incidence of tyrosine- (Y-) methionine- (M-) aspartic acid- (D-) aspartic acid (D) (YMDD) mutations in CHB patients. The aim of this study was to evaluate the clinical value of oxymatrine in preventing lamivudine induced YMDD mutation using meta-analysis of data from published randomized controlled trials (RCTs) and to provide some useful information for clinical treatment and future research of YMDD mutation. The Cochrane Central Register of Controlled Trials, Medline, Science Citation Index, EMBASE, China National Knowledge Infrastructure, Wanfang Database, and China Biomedical Database were searched to identify RCTs that evaluated the incidence of YMDD-motif mutation to lamivudine therapy and lamivudine plus OMTR therapies in CHB patients. Data analysis was carried out with the use of RevMan 5.3.2. The literature search yielded 324 studies, and 16 RCTs matched the selection criteria. Overall, the incidence of YMDD mutation was significantly lower in patients treated with lamivudine plus OMTR than in patients treated with lamivudine alone (11.14% versus 28.18%; RR: 0.41; 95% CI: 0.33-0.52; p < 0.05). The exact outcome needs to perform rigorously designed, multicenter, and large randomized controlled trials. PMID:26508988

  18. Identification of FGFR4-activating mutations in human rhabdomyosarcomas that promote metastasis in xenotransplanted models

    PubMed Central

    VI, James G. Taylor; Cheuk, Adam T.; Tsang, Patricia S.; Chung, Joon-Yong; Song, Young K.; Desai, Krupa; Yu, Yanlin; Chen, Qing-Rong; Shah, Kushal; Youngblood, Victoria; Fang, Jun; Kim, Su Young; Yeung, Choh; Helman, Lee J.; Mendoza, Arnulfo; Ngo, Vu; Staudt, Louis M.; Wei, Jun S.; Khanna, Chand; Catchpoole, Daniel; Qualman, Stephen J.; Hewitt, Stephen M.; Merlino, Glenn; Chanock, Stephen J.; Khan, Javed

    2009-01-01

    Rhabdomyosarcoma (RMS) is a childhood cancer originating from skeletal muscle, and patient survival is poor in the presence of metastatic disease. Few determinants that regulate metastasis development have been identified. The receptor tyrosine kinase FGFR4 is highly expressed in RMS tissue, suggesting a role in tumorigenesis, although its functional importance has not been defined. Here, we report the identification of mutations in FGFR4 in human RMS tumors that lead to its activation and present evidence that it functions as an oncogene in RMS. Higher FGFR4 expression in RMS tumors was associated with advanced-stage cancer and poor survival, while FGFR4 knockdown in a human RMS cell line reduced tumor growth and experimental lung metastases when the cells were transplanted into mice. Moreover, 6 FGFR4 tyrosine kinase domain mutations were found among 7 of 94 (7.5%) primary human RMS tumors. The mutants K535 and E550 increased autophosphorylation, Stat3 signaling, tumor proliferation, and metastatic potential when expressed in a murine RMS cell line. These mutants also transformed NIH 3T3 cells and led to an enhanced metastatic phenotype. Finally, murine RMS cell lines expressing the K535 and E550 FGFR4 mutants were substantially more susceptible to apoptosis in the presence of a pharmacologic FGFR inhibitor than the control cell lines expressing the empty vector or wild-type FGFR4. Together, our results demonstrate that mutationally activated FGFR4 acts as an oncogene, and these are what we believe to be the first known mutations in a receptor tyrosine kinase in RMS. These findings support the potential therapeutic targeting of FGFR4 in RMS. PMID:19809159

  19. Gain-of-Function Mutations in the Toll-Like Receptor Pathway: TPL2-Mediated ERK1/ERK2 MAPK Activation, a Path to Tumorigenesis in Lymphoid Neoplasms?

    PubMed Central

    Rousseau, Simon; Martel, Guy

    2016-01-01

    Lymphoid neoplasms form a family of cancers affecting B-cells, T-cells, and NK cells. The Toll-Like Receptor (TLR) signaling adapter molecule MYD88 is the most frequently mutated gene in these neoplasms. This signaling adaptor relays signals from TLRs to downstream effector pathways such as the Nuclear Factor kappa B (NFκB) and Mitogen Activated Protein Kinase (MAPK) pathways to regulate innate immune responses. Gain-of-function mutations such as MYD88[L265P] activate downstream signaling pathways in absence of cognate ligands for TLRs, resulting in increased cellular proliferation and survival. This article reports an analysis of non-synonymous somatic mutations found in the TLR signaling network in lymphoid neoplasms. In accordance with previous reports, mutations map to MYD88 pro-inflammatory signaling and not TRIF-mediated Type I IFN production. Interestingly, the analysis of somatic mutations found downstream of the core TLR-signaling network uncovered a strong association with the ERK1/2 MAPK cascade. In support of this analysis, heterologous expression of MYD88[L265P] in HEK293 cells led to ERK1/2 MAPK phosphorylation in addition to NFκB activation. Moreover, this activation is dependent on the protein kinase Tumor Promoting Locus 2 (TPL2), activated downstream of the IKK complex. Activation of ERK1/2 would then lead to activation, amongst others, of MYC and hnRNPA1, two proteins previously shown to contribute to tumor formation in lymphoid neoplasms. Taken together, this analysis suggests that TLR-mediated ERK1/2 activation via TPL2 may be a novel path to tumorigenesis. Therefore, the hypothesis proposed is that inhibition of ERK1/2 MAPK activation would prevent tumor growth downstream of MYD88[L265]. It will be interesting to test whether pharmacological inhibitors of this pathway show efficacy in primary tumor cells derived from hematologic malignancies such as Waldenstrom's Macroglobulinemia, where the majority of the cells carry the MYD88[L265P

  20. Mutations in the diastrophic dysplasia sulfate transporter (DTDST) gene: correlation between sulfate transport activity and chondrodysplasia phenotype.

    PubMed

    Karniski, L P

    2001-07-01

    The diastrophic dysplasia sulfate transporter (DTDST) gene encodes a transmembrane protein that transports sulfate into chondrocytes to maintain adequate sulfation of proteoglycans. Mutations in this gene are responsible for four recessively inherited chondrodysplasias that include diastrophic dysplasia, multiple epiphyseal dysplasia, atelosteogenesis type 2 and achondrogenesis 1B (ACG-1B). To determine whether the DTDST mutations found in individuals with these chondrodysplasias differ functionally from each other, we compared the sulfate transport activity of 11 reported DTDST mutations. Five mutations, G255E, Delta a1751, L483P, R178X and N425D, had minimal sulfate transport function following expression in Xenopus laevis oocytes. Two mutations, Delta V340 and R279W, transported sulfate at rates of 17 and 32%, respectively, of wild-type DTDST. Four mutations, A715V, C653S, Q454P and G678V, had rates of sulfate transport nearly equal to that of wild-type DTDST. Transport kinetics were not different among the four mutations with near-normal sulfate transport function and wild-type DTDST. When the sulfate transport function of the different DTDST mutations are grouped according to the general phenotypes, individuals with the most severe form, ACG-1B, tend to be homozygous for null mutations, individuals with the moderately severe atelosteogenesis type 2 have at least one allele with a loss-of-function mutation, and individuals with the mildest forms are typically homozygous for mutations with residual sulfate transport function. However, in the X.laevis oocyte expression system, the correlation between residual transport function and the severity of phenotype was not absolute, suggesting that factors in addition to the intrinsic sulfate transport properties of the DTDST protein may influence the phenotype in individuals with DTDST mutations. PMID:11448940

  1. Topological and mutational analysis of Saccharomyces cerevisiae Fks1.

    PubMed

    Johnson, Michael E; Edlind, Thomas D

    2012-07-01

    Fks1, with orthologs in nearly all fungi as well as plants and many protists, plays a central role in fungal cell wall formation as the putative catalytic component of β-1,3-glucan synthase. It is also the target for an important new antifungal group, the echinocandins, as evidenced by the localization of resistance-conferring mutations to Fks1 hot spots 1, 2, and 3 (residues 635 to 649, 1354 to 1361, and 690 to 700, respectively). Since Fks1 is an integral membrane protein and echinocandins are cyclic peptides with lipid tails, Fks1 topology is key to understanding its function and interaction with echinocandins. We used hemagglutinin (HA)-Suc2-His4C fusions to C-terminally truncated Saccharomyces cerevisiae Fks1 to experimentally define its topology and site-directed mutagenesis to test function of selected residues. Of the 15 to 18 transmembrane helices predicted in silico for Fks1 from evolutionarily diverse fungi, 13 were experimentally confirmed. The N terminus (residues 1 to 445) is cytosolic and the C terminus (residues 1823 to 1876) external; both are essential to Fks1 function. The cytosolic central domain (residues 715 to 1294) includes newly recognized homology to glycosyltransferases, and residues potentially involved in substrate UDP-glucose binding and catalysis are essential. All three hot spots are external, with hot spot 1 adjacent to and hot spot 3 largely embedded within the outer leaflet of the membrane. This topology suggests a model in which echinocandins interact through their lipid tails with hot spot 3 and through their cyclic peptides with hot spots 1 and 2.

  2. Topological and Mutational Analysis of Saccharomyces cerevisiae Fks1

    PubMed Central

    Edlind, Thomas D.

    2012-01-01

    Fks1, with orthologs in nearly all fungi as well as plants and many protists, plays a central role in fungal cell wall formation as the putative catalytic component of β-1,3-glucan synthase. It is also the target for an important new antifungal group, the echinocandins, as evidenced by the localization of resistance-conferring mutations to Fks1 hot spots 1, 2, and 3 (residues 635 to 649, 1354 to 1361, and 690 to 700, respectively). Since Fks1 is an integral membrane protein and echinocandins are cyclic peptides with lipid tails, Fks1 topology is key to understanding its function and interaction with echinocandins. We used hemagglutinin (HA)-Suc2-His4C fusions to C-terminally truncated Saccharomyces cerevisiae Fks1 to experimentally define its topology and site-directed mutagenesis to test function of selected residues. Of the 15 to 18 transmembrane helices predicted in silico for Fks1 from evolutionarily diverse fungi, 13 were experimentally confirmed. The N terminus (residues 1 to 445) is cytosolic and the C terminus (residues 1823 to 1876) external; both are essential to Fks1 function. The cytosolic central domain (residues 715 to 1294) includes newly recognized homology to glycosyltransferases, and residues potentially involved in substrate UDP-glucose binding and catalysis are essential. All three hot spots are external, with hot spot 1 adjacent to and hot spot 3 largely embedded within the outer leaflet of the membrane. This topology suggests a model in which echinocandins interact through their lipid tails with hot spot 3 and through their cyclic peptides with hot spots 1 and 2. PMID:22581527

  3. Disruption of dopamine neuron activity pattern regulation through selective expression of a human KCNN3 mutation.

    PubMed

    Soden, Marta E; Jones, Graham L; Sanford, Christina A; Chung, Amanda S; Güler, Ali D; Chavkin, Charles; Luján, Rafael; Zweifel, Larry S

    2013-11-20

    The calcium-activated small conductance potassium channel SK3 plays an essential role in the regulation of dopamine neuron activity patterns. Here we demonstrate that expression of a human disease-related SK3 mutation (hSK3Δ) in dopamine neurons of mice disrupts the balance between tonic and phasic dopamine neuron activity. Expression of hSK3Δ suppressed endogenous SK currents, reducing coupling between SK channels and NMDA receptors (NMDARs) and increasing permissiveness for burst firing. Consistent with enhanced excitability of dopamine neurons, hSK3Δ increased evoked calcium signals in dopamine neurons in vivo and potentiated evoked dopamine release. Specific expression of hSK3Δ led to deficits in attention and sensory gating and heightened sensitivity to a psychomimetic drug. Sensory-motor alterations and psychomimetic sensitivity were recapitulated in a mouse model of transient, reversible dopamine neuron activation. These results demonstrate the cell-autonomous effects of a human ion channel mutation on dopamine neuron physiology and the impact of activity pattern disruption on behavior. PMID:24206670

  4. Disruption of dopamine neuron activity pattern regulation through selective expression of a human KCNN3 mutation.

    PubMed

    Soden, Marta E; Jones, Graham L; Sanford, Christina A; Chung, Amanda S; Güler, Ali D; Chavkin, Charles; Luján, Rafael; Zweifel, Larry S

    2013-11-20

    The calcium-activated small conductance potassium channel SK3 plays an essential role in the regulation of dopamine neuron activity patterns. Here we demonstrate that expression of a human disease-related SK3 mutation (hSK3Δ) in dopamine neurons of mice disrupts the balance between tonic and phasic dopamine neuron activity. Expression of hSK3Δ suppressed endogenous SK currents, reducing coupling between SK channels and NMDA receptors (NMDARs) and increasing permissiveness for burst firing. Consistent with enhanced excitability of dopamine neurons, hSK3Δ increased evoked calcium signals in dopamine neurons in vivo and potentiated evoked dopamine release. Specific expression of hSK3Δ led to deficits in attention and sensory gating and heightened sensitivity to a psychomimetic drug. Sensory-motor alterations and psychomimetic sensitivity were recapitulated in a mouse model of transient, reversible dopamine neuron activation. These results demonstrate the cell-autonomous effects of a human ion channel mutation on dopamine neuron physiology and the impact of activity pattern disruption on behavior.

  5. Missense mutations that cause Van der Woude syndrome and popliteal pterygium syndrome affect the DNA-binding and transcriptional activation functions of IRF6.

    PubMed

    Little, Hayley J; Rorick, Nicholas K; Su, Ling-I; Baldock, Clair; Malhotra, Saimon; Jowitt, Tom; Gakhar, Lokesh; Subramanian, Ramaswamy; Schutte, Brian C; Dixon, Michael J; Shore, Paul

    2009-02-01

    Cleft lip and cleft palate (CLP) are common disorders that occur either as part of a syndrome, where structures other than the lip and palate are affected, or in the absence of other anomalies. Van der Woude syndrome (VWS) and popliteal pterygium syndrome (PPS) are autosomal dominant disorders characterized by combinations of cleft lip, CLP, lip pits, skin-folds, syndactyly and oral adhesions which arise as the result of mutations in interferon regulatory factor 6 (IRF6). IRF6 belongs to a family of transcription factors that share a highly conserved N-terminal, DNA-binding domain and a less well-conserved protein-binding domain. To date, mutation analyses have suggested a broad genotype-phenotype correlation in which missense and nonsense mutations occurring throughout IRF6 may cause VWS; in contrast, PPS-causing mutations are highly associated with the DNA-binding domain, and appear to preferentially affect residues that are predicted to interact directly with the DNA. Nevertheless, this genotype-phenotype correlation is based on the analysis of structural models rather than on the investigation of the DNA-binding properties of IRF6. Moreover, the effects of mutations in the protein interaction domain have not been analysed. In the current investigation, we have determined the sequence to which IRF6 binds and used this sequence to analyse the effect of VWS- and PPS-associated mutations in the DNA-binding domain of IRF6. In addition, we have demonstrated that IRF6 functions as a co-operative transcriptional activator and that mutations in the protein interaction domain of IRF6 disrupt this activity. PMID:19036739

  6. CLONING, EXPRESSION, AND MUTATIONAL ANALYSIS OF RAT S-ADENOSYL-1-METHIONINE: ARSENIC (III) METHYLTRANSFERASE

    EPA Science Inventory

    CLONING, EXPRESSION, AND MUTATIONAL ANALYSIS OF RAT
    S-ADENOSYL-L-METHIONINE: ARSENIC(III) METHYLTRANSFERASE

    Stephen B. Waters, Ph.D., Miroslav Styblo, Ph.D., Melinda A. Beck, Ph.D., University of North Carolina at Chapel Hill; David J. Thomas, Ph.D., U.S. Environmental...

  7. MOLECULAR ANALYSIS OF MUTATIONS INDUCED BY MUTAGENS IN THE TK GENE OF MOUSE LYMPHOMA CELLS

    EPA Science Inventory

    MOLECULAR ANALYSIS OF MUTATIONS INDUCED BY BROMATE AND N- ETHYL-N-NITROSOUREA IN THE TK GENE OF MOUSE L YMPHOMA CELLS

    The mouse lymphoma assay is widely used to identify chemical mutagens The Tk +1- gene located on an autosome in mouse lymphoma cells may recover a wide ra...

  8. Structural investigations of T854A mutation in EGFR and identification of novel inhibitors using structure activity relationships

    PubMed Central

    2015-01-01

    Background The epidermal growth factor receptor (EGFR) is a member of the ErbB family that is involved in a number of processes responsible for cancer development and progression such as angiogenesis, apoptosis, cell proliferation and metastatic spread. Malfunction in activation of protein tyrosine kinases has been shown to result in uncontrolled cell growth. The EGFR TK domain has been identified as suitable target in cancer therapy and tyrosine kinase inhibitors such as erlotinib have been used for treatment of cancer. Mutations in the region of the EGFR gene encoding the tyrosine kinase (TK) domain causes altered responses to EGFR TK inhibitors (TKI). In this paper we perform molecular dynamics simulations and PCA analysis on wild-type and mutant (T854A) structures to gain insight into the structural changes observed in the target protein upon mutation. We also report two novel inhibitors identified by combined approach of QSAR model development. Results The wild-type and mutant structure was observed to be stable for 26 ns and 24 ns respectively. In PCA analysis, the mutant structure proved to be more flexible than wild-type. We developed a 3D-QSAR model using 38 thiazolyl-pyrazoline compounds which was later used for prediction of inhibitory activity of natural compounds of ZINC library. The 3D-QSAR model was proved to be robust by the statistical parameters such as r2 (0.9751), q2(0.9491) and pred_r2(0.9525). Conclusion Analysis of molecular dynamics simulations results indicate stability loss and increased flexibility in the mutant structure. This flexibility results in structural changes which render the mutant protein drug resistant against erlotinib. We report two novel compounds having high predicted inhibitory activity to EGFR TK domain with both wild-type and mutant structure. PMID:26041145

  9. PTEN gene mutations correlate to poor prognosis in glioma patients: a meta-analysis

    PubMed Central

    Han, Feng; Hu, Rong; Yang, Hua; Liu, Jian; Sui, Jianmei; Xiang, Xin; Wang, Fan; Chu, Liangzhao; Song, Shibin

    2016-01-01

    Background We conducted this meta-analysis based on eligible trials to investigate the relationship between phosphatase and tensin homolog (PTEN) genetic mutation and glioma patients’ survival. Methods PubMed, Web of Science, and EMBASE were searched for eligible studies regarding the relationship between PTEN genetic mutation and glioma patients’ survival. The primary outcome was the overall survival of glioma patient with or without PTEN genetic mutation, and second outcome was prognostic factors for the survival of glioma patient. A fixed-effects or random-effects model was used to pool the estimates according to the heterogeneity among the included studies. Results Nine cohort studies, involving 1,173 patients, were included in this meta-analysis. Pooled results suggested that glioma patients with PTEN genetic mutation had a significant shorter overall survival than those without PTEN genetic mutation (hazard ratio [HR] =2.23, 95% confidence interval [CI]: 1.35, 3.67; P=0.002). Furthermore, subgroup analysis indicated that this association was only observed in American patients (HR =2.19, 95% CI: 1.23, 3.89; P=0.008), but not in Chinese patients (HR =1.44, 95% CI: 0.29, 7.26; P=0.657). Histopathological grade (HR =1.42, 95% CI: 0.07, 28.41; P=0.818), age (HR =0.94, 95% CI: 0.43, 2.04; P=0.877), and sex (HR =1.28, 95% CI: 0.55, 2.98; P=0.564) were not significant prognostic factors for the survival of patients with glioma. Conclusion Current evidence indicates that PTEN genetic mutation is associated with poor prognosis in glioma patients. However, this finding is derived from data in observational studies, potentially subject to selection bias, and hence well conducted, high-quality randomized controlled trials are warranted. PMID:27366085

  10. Recessive Inactivating Mutations in TBCK, Encoding a Rab GTPase-Activating Protein, Cause Severe Infantile Syndromic Encephalopathy.

    PubMed

    Chong, Jessica X; Caputo, Viviana; Phelps, Ian G; Stella, Lorenzo; Worgan, Lisa; Dempsey, Jennifer C; Nguyen, Alina; Leuzzi, Vincenzo; Webster, Richard; Pizzuti, Antonio; Marvin, Colby T; Ishak, Gisele E; Ardern-Holmes, Simone; Richmond, Zara; Bamshad, Michael J; Ortiz-Gonzalez, Xilma R; Tartaglia, Marco; Chopra, Maya; Doherty, Dan

    2016-04-01

    Infantile encephalopathies are a group of clinically and biologically heterogeneous disorders for which the genetic basis remains largely unknown. Here, we report a syndromic neonatal encephalopathy characterized by profound developmental disability, severe hypotonia, seizures, diminished respiratory drive requiring mechanical ventilation, brain atrophy, dysgenesis of the corpus callosum, cerebellar vermis hypoplasia, and facial dysmorphism. Biallelic inactivating mutations in TBCK (TBC1-domain-containing kinase) were independently identified by whole-exome sequencing as the cause of this condition in four unrelated families. Matching these families was facilitated by the sharing of phenotypic profiles and WES data in a recently released web-based tool (Geno2MP) that links phenotypic information to rare variants in families with Mendelian traits. TBCK is a putative GTPase-activating protein (GAP) for small GTPases of the Rab family and has been shown to control cell growth and proliferation, actin-cytoskeleton dynamics, and mTOR signaling. Two of the three mutations (c.376C>T [p.Arg126(∗)] and c.1363A>T [p.Lys455(∗)]) are predicted to truncate the protein, and loss of the major TBCK isoform was confirmed in primary fibroblasts from one affected individual. The third mutation, c.1532G>A (p.Arg511His), alters a conserved residue within the TBC1 domain. Structural analysis implicated Arg511 as a required residue for Rab-GAP function, and in silico homology modeling predicted impaired GAP function in the corresponding mutant. These results suggest that loss of Rab-GAP activity is the underlying mechanism of disease. In contrast to other disorders caused by dysregulated mTOR signaling associated with focal or global brain overgrowth, impaired TBCK function results in progressive loss of brain volume. PMID:27040692

  11. Recessive Inactivating Mutations in TBCK, Encoding a Rab GTPase-Activating Protein, Cause Severe Infantile Syndromic Encephalopathy

    PubMed Central

    Chong, Jessica X.; Caputo, Viviana; Phelps, Ian G.; Stella, Lorenzo; Worgan, Lisa; Dempsey, Jennifer C.; Nguyen, Alina; Leuzzi, Vincenzo; Webster, Richard; Pizzuti, Antonio; Marvin, Colby T.; Ishak, Gisele E.; Ardern-Holmes, Simone; Richmond, Zara; Bamshad, Michael J.; Ortiz-Gonzalez, Xilma R.; Tartaglia, Marco; Chopra, Maya; Doherty, Dan

    2016-01-01

    Infantile encephalopathies are a group of clinically and biologically heterogeneous disorders for which the genetic basis remains largely unknown. Here, we report a syndromic neonatal encephalopathy characterized by profound developmental disability, severe hypotonia, seizures, diminished respiratory drive requiring mechanical ventilation, brain atrophy, dysgenesis of the corpus callosum, cerebellar vermis hypoplasia, and facial dysmorphism. Biallelic inactivating mutations in TBCK (TBC1-domain-containing kinase) were independently identified by whole-exome sequencing as the cause of this condition in four unrelated families. Matching these families was facilitated by the sharing of phenotypic profiles and WES data in a recently released web-based tool (Geno2MP) that links phenotypic information to rare variants in families with Mendelian traits. TBCK is a putative GTPase-activating protein (GAP) for small GTPases of the Rab family and has been shown to control cell growth and proliferation, actin-cytoskeleton dynamics, and mTOR signaling. Two of the three mutations (c.376C>T [p.Arg126∗] and c.1363A>T [p.Lys455∗]) are predicted to truncate the protein, and loss of the major TBCK isoform was confirmed in primary fibroblasts from one affected individual. The third mutation, c.1532G>A (p.Arg511His), alters a conserved residue within the TBC1 domain. Structural analysis implicated Arg511 as a required residue for Rab-GAP function, and in silico homology modeling predicted impaired GAP function in the corresponding mutant. These results suggest that loss of Rab-GAP activity is the underlying mechanism of disease. In contrast to other disorders caused by dysregulated mTOR signaling associated with focal or global brain overgrowth, impaired TBCK function results in progressive loss of brain volume. PMID:27040692

  12. Recessive Inactivating Mutations in TBCK, Encoding a Rab GTPase-Activating Protein, Cause Severe Infantile Syndromic Encephalopathy.

    PubMed

    Chong, Jessica X; Caputo, Viviana; Phelps, Ian G; Stella, Lorenzo; Worgan, Lisa; Dempsey, Jennifer C; Nguyen, Alina; Leuzzi, Vincenzo; Webster, Richard; Pizzuti, Antonio; Marvin, Colby T; Ishak, Gisele E; Ardern-Holmes, Simone; Richmond, Zara; Bamshad, Michael J; Ortiz-Gonzalez, Xilma R; Tartaglia, Marco; Chopra, Maya; Doherty, Dan

    2016-04-01

    Infantile encephalopathies are a group of clinically and biologically heterogeneous disorders for which the genetic basis remains largely unknown. Here, we report a syndromic neonatal encephalopathy characterized by profound developmental disability, severe hypotonia, seizures, diminished respiratory drive requiring mechanical ventilation, brain atrophy, dysgenesis of the corpus callosum, cerebellar vermis hypoplasia, and facial dysmorphism. Biallelic inactivating mutations in TBCK (TBC1-domain-containing kinase) were independently identified by whole-exome sequencing as the cause of this condition in four unrelated families. Matching these families was facilitated by the sharing of phenotypic profiles and WES data in a recently released web-based tool (Geno2MP) that links phenotypic information to rare variants in families with Mendelian traits. TBCK is a putative GTPase-activating protein (GAP) for small GTPases of the Rab family and has been shown to control cell growth and proliferation, actin-cytoskeleton dynamics, and mTOR signaling. Two of the three mutations (c.376C>T [p.Arg126(∗)] and c.1363A>T [p.Lys455(∗)]) are predicted to truncate the protein, and loss of the major TBCK isoform was confirmed in primary fibroblasts from one affected individual. The third mutation, c.1532G>A (p.Arg511His), alters a conserved residue within the TBC1 domain. Structural analysis implicated Arg511 as a required residue for Rab-GAP function, and in silico homology modeling predicted impaired GAP function in the corresponding mutant. These results suggest that loss of Rab-GAP activity is the underlying mechanism of disease. In contrast to other disorders caused by dysregulated mTOR signaling associated with focal or global brain overgrowth, impaired TBCK function results in progressive loss of brain volume.

  13. Determining structure and function of steroid dehydrogenase enzymes by sequence analysis, homology modeling, and rational mutational analysis.

    PubMed

    Duax, William L; Thomas, James; Pletnev, Vladimir; Addlagatta, Anthony; Huether, Robert; Habegger, Lukas; Weeks, Charles M

    2005-12-01

    The short-chain oxidoreductase (SCOR) family of enzymes includes over 6,000 members identified in sequenced genomes. Of these enzymes, approximately 300 have been characterized functionally, and the three-dimensional crystal structures of approximately 40 have been reported. Since some SCOR enzymes are steroid dehydrogenases involved in hypertension, diabetes, breast cancer, and polycystic kidney disease, it is important to characterize the other members of the family for which the biological functions are currently unknown and to determine their three-dimensional structure and mechanism of action. Although the SCOR family appears to have only a single fully conserved residue, it was possible, using bioinformatics methods, to determine characteristic fingerprints composed of 30-40 residues that are conserved at the 70% or greater level in SCOR subgroups. These fingerprints permit reliable prediction of several important structure-function features including cofactor preference, catalytic residues, and substrate specificity. Human type 1 3beta-hydroxysteroid dehydrogenase isomerase (3beta-HSDI) has 30% sequence identity with a human UDP galactose 4-epimerase (UDPGE), a SCOR family enzyme for which an X-ray structure has been reported. Both UDPGE and 3-HSDI appear to trace their origins back to bacterial 3alpha,20beta-HSD. Combining three-dimensional structural information and sequence data on the 3alpha,20beta-HSD, UDPGE, and 3beta-HSDI subfamilies with mutational analysis, we were able to identify the residues critical to the dehydrogenase function of 3-HSDI. We also identified the residues most probably responsible for the isomerase activity of 3beta-HSDI. We test our predictions by specific mutations based on sequence analysis and our structure-based model.

  14. Determining Structure and Function of Steroid Dehydrogenase Enzymes by Sequence Analysis, Homology Modeling, and Rational Mutational Analysis

    PubMed Central

    DUAX, WILLIAM L.; THOMAS, JAMES; PLETNEV, VLADIMIR; ADDLAGATTA, ANTHONY; HUETHER, ROBERT; HABEGGER, LUKAS; WEEKS, CHARLES M.

    2006-01-01

    The short-chain oxidoreductase (SCOR) family of enzymes includes over 6,000 members identified in sequenced genomes. Of these enzymes, ~300 have been characterized functionally, and the three-dimensional crystal structures of ~40 have been reported. Since some SCOR enzymes are steroid dehydrogenases involved in hypertension, diabetes, breast cancer, and polycystic kidney disease, it is important to characterize the other members of the family for which the biological functions are currently unknown and to determine their three-dimensional structure and mechanism of action. Although the SCOR family appears to have only a single fully conserved residue, it was possible, using bioinformatics methods, to determine characteristic fingerprints composed of 30–40 residues that are conserved at the 70% or greater level in SCOR subgroups. These fingerprints permit reliable prediction of several important structure-function features including cofactor preference, catalytic residues, and substrate specificity. Human type 1 3β-hydroxysteroid dehydrogenase isomerase (3β-HSDI) has 30% sequence identity with a human UDP galactose 4-epimerase (UDPGE), a SCOR family enzyme for which an X-ray structure has been reported. Both UDPGE and 3-HSDI appear to trace their origins back to bacterial 3α,20β-HSD. Combining three-dimensional structural information and sequence data on the 3α,20β-HSD, UDPGE, and 3β-HSDI subfamilies with mutational analysis, we were able to identify the residues critical to the dehydrogenase function of 3-HSDI. We also identified the residues most probably responsible for the isomerase activity of 3β-HSDI. We test our predictions by specific mutations based on sequence analysis and our structure-based model. PMID:16467263

  15. Novel gene mutations in patients with 1alpha-hydroxylase deficiency that confer partial enzyme activity in vitro.

    PubMed

    Wang, Xuemei; Zhang, Martin Y H; Miller, Walter L; Portale, Anthony A

    2002-06-01

    The rate-limiting, hormonally regulated step in the biological activation of vitamin D is its 1alpha-hydroxylation to 1,25-dihydroxyvitamin D [1,25-(OH)(2)D] in the kidney, catalyzed by the mitochondrial cytochrome P450 enzyme, P450c1alpha. We previously cloned the human P450c1alpha cDNA and gene, and identified 14 different mutations, including 7 missense, in 19 patients with 1alpha-hydroxylase deficiency, also known as vitamin D-dependent rickets type 1. None of the missense mutations encoded a protein with detectable enzymatic activity in vitro. Although there is phenotypic variation among such patients, the molecular basis of this variation is unknown. We analyzed 6 additional patients with clinical and radiographic features of rickets; in 4 patients the laboratory abnormalities were typical of 1alpha-hydroxylase deficiency, but in 2 they were unusually mild [mild hypocalcemia and normal serum 1,25-(OH)(2)D concentration]. Direct sequencing revealed that all patients had P450c1alpha mutations on both alleles. Five new and 2 known mutations were identified. The new mutations included a 5-bp deletion with a 6-bp novel insertion causing a frameshift in exon 2, and a G to A change at +1 of intron 2; a minigene experiment proved that this intronic mutation prevented proper splicing. Three new missense mutations were found and tested by expressing the mutant cDNA in mouse Leydig MA-10 cells. The R389G mutant was totally inactive, but mutant L343F retained 2.3% of wild-type activity, and mutant E189G retained 22% of wild-type activity. The two mutations that confer partial enzyme activity in vitro were found in the 2 patents with mild laboratory abnormalities, suggesting that such mutations contribute to the phenotypic variation observed in patients with 1alpha-hydroxylase deficiency.

  16. Selective disruption of high sensitivity heat activation but not capsaicin activation of TRPV1 channels by pore turret mutations.

    PubMed

    Cui, Yuanyuan; Yang, Fan; Cao, Xu; Yarov-Yarovoy, Vladimir; Wang, KeWei; Zheng, Jie

    2012-04-01

    The capsaicin receptor transient receptor potential vanilloid (TRPV)1 is a highly heat-sensitive ion channel. Although chemical activation and heat activation of TRPV1 elicit similar pungent, painful sensation, the molecular mechanism underlying synergistic activation remains mysterious. In particular, where the temperature sensor is located and whether heat and capsaicin share a common activation pathway are debated. To address these fundamental issues, we searched for channel mutations that selectively affected one form of activation. We found that deletion of the first 10 amino acids of the pore turret significantly reduced the heat response amplitude and shifted the heat activation threshold, whereas capsaicin activation remained unchanged. Removing larger portions of the turret disrupted channel function. Introducing an artificial sequence to replace the deleted region restored sensitive capsaicin activation in these nonfunctional channels. The heat activation, however, remained significantly impaired, with the current exhibiting diminishing heat sensitivity to a level indistinguishable from that of a voltage-gated potassium channel, Kv7.4. Our results demonstrate that heat and capsaicin activation of TRPV1 are structurally and mechanistically distinct processes, and the pore turret is an indispensible channel structure involved in the heat activation process but is not part of the capsaicin activation pathway. Synergistic effect of heat and capsaicin on TRPV1 activation may originate from convergence of the two pathways on a common activation gate.

  17. Reproducible Analysis of Post-Translational Modifications in Proteomes—Application to Human Mutations

    PubMed Central

    Holehouse, Alex S.; Naegle, Kristen M.

    2015-01-01

    Background Protein post-translational modifications (PTMs) are an important aspect of protein regulation. The number of PTMs discovered within the human proteome, and other proteomes, has been rapidly expanding in recent years. As a consequence of the rate in which new PTMs are identified, analysis done in one year may result in different conclusions when repeated in subsequent years. Among the various functional questions pertaining to PTMs, one important relationship to address is the interplay between modifications and mutations. Specifically, because the linear sequence surrounding a modification site often determines molecular recognition, it is hypothesized that mutations near sites of PTMs may be more likely to result in a detrimental effect on protein function, resulting in the development of disease. Methods and Results We wrote an application programming interface (API) to make analysis of ProteomeScout, a comprehensive database of PTMs and protein information, easy and reproducible. We used this API to analyze the relationship between PTMs and human mutations associated with disease (based on the ‘Clinical Significance’ annotation from dbSNP). Proteins containing pathogenic mutations demonstrated a significant study bias which was controlled for by analyzing only well-studied proteins, based on their having at least one pathogenic mutation. We found that pathogenic mutations are significantly more likely to lie within eight amino acids of a phosphoserine, phosphotyrosine or ubiquitination site when compared to mutations in general, based on a Fisher’s Exact test. Despite the skew of pathogenic mutations occurring on positively charged arginines, we could not account for this relationship based only on residue type. Finally, we hypothesize a potential mechanism for a pathogenic mutation on RAF1, based on its proximity to a phosphorylation site, which represents a subtle regulation difference that may explain why its biochemical effect has failed to

  18. KA1-targeted regulatory domain mutations activate Chk1 in the absence of DNA damage.

    PubMed

    Gong, Eun-Yeung; Smits, Veronique A J; Fumagallo, Felipe; Piscitello, Desiree; Morrice, Nick; Freire, Raimundo; Gillespie, David A

    2015-01-01

    The Chk1 protein kinase is activated in response to DNA damage through ATR-mediated phosphorylation at multiple serine-glutamine (SQ) residues within the C-terminal regulatory domain, however the molecular mechanism is not understood. Modelling indicates a high probability that this region of Chk1 contains a kinase-associated 1 (KA1) domain, a small, compact protein fold found in multiple protein kinases including SOS2, AMPK and MARK3. We introduced mutations into Chk1 designed to disrupt specific structural elements of the predicted KA1 domain. Remarkably, six of seven Chk1 KA1 mutants exhibit constitutive biological activity (Chk1-CA) in the absence of DNA damage, profoundly arresting cells in G2 phase of the cell cycle. Cell cycle arrest induced by selected Chk1-CA mutants depends on kinase catalytic activity, which is increased several-fold compared to wild-type, however phosphorylation of the key ATR regulatory site serine 345 (S345) is not required. Thus, mutations targeting the putative Chk1 KA1 domain confer constitutive biological activity by circumventing the need for ATR-mediated positive regulatory phosphorylation. PMID:26039276

  19. Functional analysis and in vitro correction of splicing FAH mutations causing tyrosinemia type I.

    PubMed

    Pérez-Carro, R; Sánchez-Alcudia, R; Pérez, B; Navarrete, R; Pérez-Cerdá, C; Ugarte, M; Desviat, L R

    2014-08-01

    Hereditary tyrosinemia type I (HT1) is a rare disease caused by a deficiency of fumarylacetoacetate hydrolase (FAH) in the tyrosine catabolic pathway, resulting mainly in hepatic alterations due to accumulation of the toxic metabolites fumarylacetoacetate, maleylacetoacetate and succinylacetone. We have characterized using minigenes four splicing mutations affecting exonic or intronic nucleotides of the FAH gene identified in two HT1 patients. Two of the mutations are novel, c.82-1G>A and c.913G>C and the other two have been previously associated with a splicing defect (c.836A>G and c.1062+5G>A). All mutations were confirmed to affect splicing in minigenes, resulting in exon skipping or activation of a cryptic splice site. We have analyzed the effect of different compounds known to modulate splicing (valproic acid, phenyl butyrate, M344, EIPA, and resveratrol) and the overexpression of splice factors of the SR protein family on the transcriptional profile of the mutant minigenes. For the c.836A>G mutation, a partial recovery of the correctly spliced transcript was observed. These results confirm the relevance of performing functional studies for mutations potentially affecting the splicing process and open the possibility of supplementary therapeutic approaches to diseases caused by splicing defects.

  20. Systematic Analysis Reveals that Cancer Mutations Converge on Deregulated Metabolism of Arachidonate and Xenobiotics.

    PubMed

    Gatto, Francesco; Schulze, Almut; Nielsen, Jens

    2016-07-19

    Mutations are the basis of the clonal evolution of most cancers. Nevertheless, a systematic analysis of whether mutations are selected in cancer because they lead to the deregulation of specific biological processes independent of the type of cancer is still lacking. In this study, we correlated the genome and transcriptome of 1,082 tumors. We found that nine commonly mutated genes correlated with substantial changes in gene expression, which primarily converged on metabolism. Further network analyses circumscribed the convergence to a network of reactions, termed AraX, that involves the glutathione- and oxygen-mediated metabolism of arachidonic acid and xenobiotics. In an independent cohort of 4,462 samples, all nine mutated genes were consistently correlated with the deregulation of AraX. Among all of the metabolic pathways, AraX deregulation represented the strongest predictor of patient survival. These findings suggest that oncogenic mutations drive a selection process that converges on the deregulation of the AraX network. PMID:27396332

  1. AB036. Analysis of human mitochondrial genome mutations of Vietnamese patients tentatively diagnosed with encephalomyopathy

    PubMed Central

    Nghia, Phan Tuan; Thai, Trinh Hong; Hue, Truong Thi; Van Minh, Nguyen; Khanh, Phung Bao; Hiep, Tran Duc; Anh, Tran Kieu; Loan, Nguyen Thi Hong; Van, Nguyen Thi Hong; Anh, Pham Van; Hung, Cao Vu; Anh, Le Ngoc

    2015-01-01

    Human mitochondrial genome consists of 16,569 bp, and replicates independently from the nuclear genome. Mutations in mitochondrial genome are usually causative factors of various metabolic disorders, especially those of encephalomyopathy. DNA analysis is the most reliable method for detection of mitochondrial genome mutations, and accordingly an excellent diagnostic tool for mitochondrial mutation-related diseases. In this study, 19 different mitochondrial genome mutations including A3243G, A3251G, T3271C and T3291C (MELAS); A8344G, T8356C and G8363A (MERRF); G3460A, G11778A and T14484C (LHON); T8993G/C and T9176G (Leigh); A1555G (deafness) and A4225G, G4298A, T10010C, T14727C, T14728C, T14709C (encephalomyopathy in general) were analyzed using PCR-RFLP in combination with DNA sequencing. In addition, a real-time PCR method using locked nucleic acid (LNA) Taqman probe was set up for heteroplasmy determination. Screening of 283 tentatively diagnosed encephalomyopathy patients revealed 7 cases of A3243G, 1 case of G11778A, 1 case of A1555G, 1 case of A4225G, 1 case G4298A, and 1 case of 6 bp (ACTCCT/CTCCTA) deletion. Using the LNA Taqman probe real-time PCR, the heteroplasmy of some point mutations was determined and the results support a potential relationship between heteroplasmy level and severity of the disease.

  2. Expanding the mutation spectrum in 130 probands with ARPKD: identification of 62 novel PKHD1 mutations by sanger sequencing and MLPA analysis.

    PubMed

    Melchionda, Salvatore; Palladino, Teresa; Castellana, Stefano; Giordano, Mario; Benetti, Elisa; De Bonis, Patrizia; Zelante, Leopoldo; Bisceglia, Luigi

    2016-09-01

    Autosomal recessive polycystic kidney disease (ARPKD) is a rare severe genetic disorder arising in the perinatal period, although a late-onset presentation of the disease has been described. Pulmonary hypoplasia is the major cause of morbidity and mortality in the newborn period. ARPKD is caused by mutations in the PKHD1 (polycystic kidney and hepatic disease 1) gene that is among the largest human genes. To achieve a molecular diagnosis of the disease, a large series of Italian affected subjects were recruited. Exhaustive mutation analysis of PKHD1 gene was carried out by Sanger sequencing and multiple ligation probe amplification (MLPA) technique in 110 individuals. A total of 173 mutations resulting in a detection rate of 78.6% were identified. Additional 20 unrelated patients, in whom it was not possible to analyze the whole coding sequence, have been included in this study. Taking into account the total number (n=130) of this cohort of patients, 107 different types of mutations have been detected in 193 mutated alleles. Out of 107 mutations, 62 were novel: 11 nonsense, 6 frameshift, 7 splice site mutations, 2 in-frame deletions and 2 multiexon deletion detected by MLPA. Thirty-four were missense variants. In conclusion, our report expands the spectrum of PKHD1 mutations and confirms the heterogeneity of this disorder. The population under study represents the largest Italian ARPKD cohort reported to date. The estimated costs and the time invested for molecular screening of genes with large size and allelic heterogeneity such as PKHD1 demand the use of next-generation sequencing (NGS) technologies for a faster and cheaper screening of the affected subjects. PMID:27225849

  3. Expanding the mutation spectrum in 130 probands with ARPKD: identification of 62 novel PKHD1 mutations by sanger sequencing and MLPA analysis.

    PubMed

    Melchionda, Salvatore; Palladino, Teresa; Castellana, Stefano; Giordano, Mario; Benetti, Elisa; De Bonis, Patrizia; Zelante, Leopoldo; Bisceglia, Luigi

    2016-09-01

    Autosomal recessive polycystic kidney disease (ARPKD) is a rare severe genetic disorder arising in the perinatal period, although a late-onset presentation of the disease has been described. Pulmonary hypoplasia is the major cause of morbidity and mortality in the newborn period. ARPKD is caused by mutations in the PKHD1 (polycystic kidney and hepatic disease 1) gene that is among the largest human genes. To achieve a molecular diagnosis of the disease, a large series of Italian affected subjects were recruited. Exhaustive mutation analysis of PKHD1 gene was carried out by Sanger sequencing and multiple ligation probe amplification (MLPA) technique in 110 individuals. A total of 173 mutations resulting in a detection rate of 78.6% were identified. Additional 20 unrelated patients, in whom it was not possible to analyze the whole coding sequence, have been included in this study. Taking into account the total number (n=130) of this cohort of patients, 107 different types of mutations have been detected in 193 mutated alleles. Out of 107 mutations, 62 were novel: 11 nonsense, 6 frameshift, 7 splice site mutations, 2 in-frame deletions and 2 multiexon deletion detected by MLPA. Thirty-four were missense variants. In conclusion, our report expands the spectrum of PKHD1 mutations and confirms the heterogeneity of this disorder. The population under study represents the largest Italian ARPKD cohort reported to date. The estimated costs and the time invested for molecular screening of genes with large size and allelic heterogeneity such as PKHD1 demand the use of next-generation sequencing (NGS) technologies for a faster and cheaper screening of the affected subjects.

  4. Mutation analysis of the NSD1 gene in patients with autism spectrum disorders and macrocephaly

    PubMed Central

    Buxbaum, Joseph D; Cai, Guiqing; Nygren, Gudrun; Chaste, Pauline; Delorme, Richard; Goldsmith, Juliet; Råstam, Maria; Silverman, Jeremy M; Hollander, Eric; Gillberg, Christopher; Leboyer, Marion; Betancur, Catalina

    2007-01-01

    Background Sotos syndrome is an overgrowth syndrome characterized by macrocephaly, advanced bone age, characteristic facial features, and learning disabilities, caused by mutations or deletions of the NSD1 gene, located at 5q35. Sotos syndrome has been described in a number of patients with autism spectrum disorders, suggesting that NSD1 could be involved in other cases of autism and macrocephaly. Methods We screened the NSD1 gene for mutations and deletions in 88 patients with autism spectrum disorders and macrocephaly (head circumference 2 standard deviations or more above the mean). Mutation analysis was performed by direct sequencing of all exons and flanking regions. Dosage analysis of NSD1 was carried out using multiplex ligation-dependent probe amplification. Results We identified three missense variants (R604L, S822C and E1499G) in one patient each, but none is within a functional domain. In addition, segregation analysis showed that all variants were inherited from healthy parents and in two cases were also present in unaffected siblings, indicating that they are probably nonpathogenic. No partial or whole gene deletions/duplications were observed. Conclusion Our findings suggest that Sotos syndrome is a rare cause of autism spectrum disorders and that screening for NSD1 mutations and deletions in patients with autism and macrocephaly is not warranted in the absence of other features of Sotos syndrome. PMID:18001468

  5. Characterization of two MODY2 mutations with different susceptibility to activation

    SciTech Connect

    Langer, Sara; Platz, Christian; Waterstradt, Rica; Baltrusch, Simone

    2015-09-04

    Glucokinase plays a key role in glucose sensing in pancreatic beta cells and in liver metabolism. Heterozygous inactivating glucokinase mutations cause the autosomal dominantly inherited MODY2 subtype of maturity-onset diabetes of the young. The goal of this study was to elucidate the pathogenicity of the recently described glucokinase mutants L304P and L315H, located in an alpha-helix and connecting region, respectively, at the outer region of the large domain of glucokinase. Both mutants showed wild-type-like cytosolic localization, but faster protein degradation in insulin-secreting MIN6 cells. However, strongly reduced nuclear/cytoplasmic localization of the mutants was observed in primary hepatocytes suggesting reduced interaction with the liver specific glucokinase regulatory protein. Both mutants displayed a significantly lowered glucokinase activity compared to the wild-type protein. Even though the L315H protein showed the lowest enzymatic activity, this mutant was very sensitive to allosteric activation. The endogenous activator fructose-2,6-bisphosphatase evoked an increase in glucokinase activity for both mutants, but much stronger for L315H compared to L304P. The synthetic activator RO281675 was ineffective against the L304P mutant. Expression of the mutant proteins evoked loss of glucose-induced insulin secretion in MIN6 cells. Administration of RO281675 increased insulin secretion, however, only for the L315H mutant. Thus, a glucokinase activator drug therapy may help MODY2 patients not in general, but seems to be a useful strategy for carriers of the L315H glucokinase mutation. - Highlights: • The GK mutants L304P and L315H display a highly reduced enzymatic activity. • In hepatocytes both mutations lower the nuclear/cytoplasmic localization ratio of GK. • Both mutants inhibit stimulus-secretion coupling in insulin-producing cells. • Activation by fructose-2,6-bisphosphatase and by RO281675 is stronger for L315H. • RO281675 stimulates

  6. Analysis of Founder Mutations in Rare Tumors Associated With Hereditary Breast/Ovarian Cancer Reveals a Novel Association of BRCA2 Mutations with Ampulla of Vater Carcinomas.

    PubMed

    Pinto, Pedro; Peixoto, Ana; Santos, Catarina; Rocha, Patrícia; Pinto, Carla; Pinheiro, Manuela; Leça, Luís; Martins, Ana Teresa; Ferreira, Verónica; Bartosch, Carla; Teixeira, Manuel R

    2016-01-01

    BRCA1 and BRCA2 mutations are responsible for hereditary breast and ovarian cancer, but they also confer an increased risk for the development of rarer cancers associated with this syndrome, namely, cancer of the pancreas, male breast, peritoneum, and fallopian tube. The objective of this work was to quantify the contribution of the founder mutations BRCA2 c.156_157insAlu and BRCA1 c.3331_3334del for cancer etiology in unselected hospital-based cohorts of Portuguese patients diagnosed with these rarer cancers, by using a strategy that included testing of archival tumor tissue. A total of 102 male breast, 68 pancreatic and 33 peritoneal/fallopian tube carcinoma cases were included in the study. The BRCA2 c.156_157insAlu mutation was observed with a frequency of 7.8% in male breast cancers, 3.0% in peritoneal/fallopian tube cancers, and 1.6% in pancreatic cancers, with estimated total contributions of germline BRCA2 mutations of 14.3%, 5.5%, and 2.8%, respectively. No carriers of the BRCA1 c.3331_3334del mutation were identified. During our study, a patient with an ampulla of Vater carcinoma was incidentally found to carry the BRCA2 c.156_157insAlu mutation, so we decided to test a consecutive series of additional 15 ampullary carcinomas for BRCA1/BRCA2 mutations using a combination of direct founder mutation testing and full gene analysis with next generation sequencing. BRCA2 mutations were observed with a frequency of 14.3% in ampulla of Vater carcinomas. In conclusion, taking into account the implications for both the individuals and their family members, we recommend that patients with these neoplasias should be offered BRCA1/BRCA2 genetic testing and we here show that it is feasible to test for founder mutations in archival tumor tissue. Furthermore, we identified for the first time a high frequency of germline BRCA2 mutations in ampullary cancers. PMID:27532258

  7. Analysis of Founder Mutations in Rare Tumors Associated With Hereditary Breast/Ovarian Cancer Reveals a Novel Association of BRCA2 Mutations with Ampulla of Vater Carcinomas

    PubMed Central

    Pinto, Pedro; Peixoto, Ana; Santos, Catarina; Rocha, Patrícia; Pinto, Carla; Pinheiro, Manuela; Leça, Luís; Martins, Ana Teresa; Ferreira, Verónica; Bartosch, Carla

    2016-01-01

    BRCA1 and BRCA2 mutations are responsible for hereditary breast and ovarian cancer, but they also confer an increased risk for the development of rarer cancers associated with this syndrome, namely, cancer of the pancreas, male breast, peritoneum, and fallopian tube. The objective of this work was to quantify the contribution of the founder mutations BRCA2 c.156_157insAlu and BRCA1 c.3331_3334del for cancer etiology in unselected hospital-based cohorts of Portuguese patients diagnosed with these rarer cancers, by using a strategy that included testing of archival tumor tissue. A total of 102 male breast, 68 pancreatic and 33 peritoneal/fallopian tube carcinoma cases were included in the study. The BRCA2 c.156_157insAlu mutation was observed with a frequency of 7.8% in male breast cancers, 3.0% in peritoneal/fallopian tube cancers, and 1.6% in pancreatic cancers, with estimated total contributions of germline BRCA2 mutations of 14.3%, 5.5%, and 2.8%, respectively. No carriers of the BRCA1 c.3331_3334del mutation were identified. During our study, a patient with an ampulla of Vater carcinoma was incidentally found to carry the BRCA2 c.156_157insAlu mutation, so we decided to test a consecutive series of additional 15 ampullary carcinomas for BRCA1/BRCA2 mutations using a combination of direct founder mutation testing and full gene analysis with next generation sequencing. BRCA2 mutations were observed with a frequency of 14.3% in ampulla of Vater carcinomas. In conclusion, taking into account the implications for both the individuals and their family members, we recommend that patients with these neoplasias should be offered BRCA1/BRCA2 genetic testing and we here show that it is feasible to test for founder mutations in archival tumor tissue. Furthermore, we identified for the first time a high frequency of germline BRCA2 mutations in ampullary cancers. PMID:27532258

  8. Mutational analysis of COQ2 in patients with MSA in Italy.

    PubMed

    Ronchi, Dario; Di Biase, Ernesto; Franco, Giulia; Melzi, Valentina; Del Sorbo, Francesca; Elia, Antonio; Barzaghi, Chiara; Garavaglia, Barbara; Bergamini, Christian; Fato, Romana; Mora, Gabriele; Del Bo, Roberto; Fortunato, Francesco; Borellini, Linda; Trezzi, Ilaria; Compagnoni, Giacomo Monzio; Monfrini, Edoardo; Frattini, Emanuele; Bonato, Sara; Cogiamanian, Filippo; Ardolino, Gianluca; Priori, Alberto; Bresolin, Nereo; Corti, Stefania; Comi, Giacomo Pietro; Di Fonzo, Alessio

    2016-09-01

    COQ2 mutations have been implicated in the etiology of multiple system atrophy (MSA) in Japan. However, several genetic screenings have not confirmed the role of its variants in the disease. We performed COQ2 sequence analysis in 87 probable MSA. A homozygous change p.A43G was found in an MSA-C patient. Cosegregation analysis and the evaluation of CoQ10 content in muscle and fibroblasts did not support the pathogenic role of this variant. PMID:27394078

  9. Mutational analysis of BRAF and KRAS in ovarian serous borderline (atypical proliferative) tumours and associated peritoneal implants

    PubMed Central

    Ardighieri, Laura; Zeppernick, Felix; Hannibal, Charlotte G; Vang, Russell; Cope, Leslie; Junge, Jette; Kjaer, Susanne K; Kurman, Robert J; Shih, Ie-Ming

    2014-01-01

    There is debate as to whether peritoneal implants associated with serous borderline tumours/atypical proliferative serous tumours (SBT/APSTs) of the ovary are derived from the primary ovarian tumour or arise independently in the peritoneum. We analysed 57 SBT/APSTs from 45 patients with advanced-stage disease identified from a nation-wide tumour registry in Denmark. Mutational analysis for hotspots in KRAS and BRAF was successful in 55 APSTs and demonstrated KRAS mutations in 34 (61.8%) and BRAF mutations in eight (14.5%). Mutational analysis was successful in 56 peritoneal implants and revealed KRAS mutations in 34 (60.7%) and BRAF mutations in seven (12.5%). Mutational analysis could not be performed in two primary tumours and in nine implants, either because DNA amplification failed or because there was insufficient tissue for mutational analysis. For these specimens we performed VE1 immunohistochemistry, which was shown to be a specific and sensitive surrogate marker for a V600E BRAF mutation. VE1 staining was positive in one of two APSTs and seven of nine implants. Thus, among 63 implants for which mutation status was known (either by direct mutational analysis or by VE1 immunohistochemistry), 34 (53.9%) had KRAS mutations and 14 (22%) had BRAF mutations, of which identical KRAS mutations were found in 34 (91%) of 37 SBT/APST–implant pairs and identical BRAF mutations in 14 (100%) of 14 SBT/APST–implant pairs. Wild-type KRAS and BRAF (at the loci investigated) were found in 11 (100%) of 11 SBT/APST–implant pairs. Overall concordance of KRAS and BRAF mutations was 95% in 59 of 62 SBT/APST–implant (non-invasive and invasive) pairs (p < 0.00001). This study provides cogent evidence that the vast majority of peritoneal implants, non-invasive and invasive, harbour the identical KRAS or BRAF mutations that are present in the associated SBT/APST, supporting the view that peritoneal implants are derived from the primary ovarian tumour. PMID:24307542

  10. Mutations, kataegis, and translocations in B lymphocytes: towards a mechanistic understanding of AID promiscuous activity

    PubMed Central

    Casellas, Rafael; Basu, Uttiya; Yewdell, William T.; Chaudhuri, Jayanta; Robbiani, Davide F.; Di Noia, Javier M.

    2016-01-01

    As B cells engage in the immune response they express the deaminase AID to initiate the hypermutation and recombination of immunoglobulin genes, which are crucial processes for the efficient recognition and disposal of pathogens, However, AID must be tightly controlled in B cells to minimize off-targeting mutations, which can drive chromosomal translocations and the development of B cell malignancies, such as lymphomas. Recent genomic and biochemical analyses have begun to unravel the crucial question of how AID-mediated deamination is targeted outside immunoglobulin genes. Here, we discuss the transcriptional and topological features that are emerging as key drivers of AID promiscuous activity. PMID:26898111

  11. Automated extraction and semantic analysis of mutation impacts from the biomedical literature

    PubMed Central

    2012-01-01

    Open Mutation Miner (OMM), the first comprehensive, fully open-source approach to automatically extract impacts and related relevant information from the biomedical literature. We assessed the performance of our work on manually annotated corpora and the results show the reliability of our approach. The representation of the extracted information into a structured format facilitates knowledge management and aids in database curation and correction. Furthermore, access to the analysis results is provided through multiple interfaces, including web services for automated data integration and desktop-based solutions for end user interactions. PMID:22759648

  12. The H29D Mutation Does Not Enhance Cytosolic Ca2+ Activation of the Cardiac Ryanodine Receptor

    PubMed Central

    Xiao, Zhichao; Guo, Wenting; Yuen, Siobhan M. Wong King; Wang, Ruiwu; Zhang, Lin; Van Petegem, Filip; Chen, S. R. Wayne

    2015-01-01

    The N-terminal domain of the cardiac ryanodine receptor (RyR2) harbors a large number of naturally occurring mutations that are associated with stress-induced ventricular tachyarrhythmia and sudden death. Nearly all these disease-associated N-terminal mutations are located at domain interfaces or buried within domains. Mutations at these locations would alter domain-domain interactions or the stability/folding of domains. Recently, a novel RyR2 mutation H29D associated with ventricular arrhythmia at rest was found to enhance the activation of single RyR2 channels by diastolic levels of cytosolic Ca2+. Unlike other N-terminal disease-associated mutations, the H29D mutation is located on the surface of the N-terminal domain. It is unclear how this surface-exposed H29D mutation that does not appear to interact with other parts of the RyR2 structure could alter the intrinsic properties of the channel. Here we carried out detailed functional characterization of the RyR2-H29D mutant at the molecular and cellular levels. We found that the H29D mutation has no effect on the basal level or the Ca2+ dependent activation of [3H]ryanodine binding to RyR2, the cytosolic Ca2+ activation of single RyR2 channels, or the cytosolic Ca2+- or caffeine-induced Ca2+ release in HEK293 cells. In addition, the H29D mutation does not alter the propensity for spontaneous Ca2+ release or the thresholds for Ca2+ release activation or termination. Furthermore, the H29D mutation does not have significant impact on the thermal stability of the N-terminal region (residues 1–547) of RyR2. Collectively, our data show that the H29D mutation exerts little or no effect on the function of RyR2 or on the folding stability of the N-terminal region. Thus, our results provide no evidence that the H29D mutation enhances the cytosolic Ca2+ activation of RyR2. PMID:26405799

  13. The H29D Mutation Does Not Enhance Cytosolic Ca2+ Activation of the Cardiac Ryanodine Receptor.

    PubMed

    Xiao, Zhichao; Guo, Wenting; Yuen, Siobhan M Wong King; Wang, Ruiwu; Zhang, Lin; Van Petegem, Filip; Chen, S R Wayne

    2015-01-01

    The N-terminal domain of the cardiac ryanodine receptor (RyR2) harbors a large number of naturally occurring mutations that are associated with stress-induced ventricular tachyarrhythmia and sudden death. Nearly all these disease-associated N-terminal mutations are located at domain interfaces or buried within domains. Mutations at these locations would alter domain-domain interactions or the stability/folding of domains. Recently, a novel RyR2 mutation H29D associated with ventricular arrhythmia at rest was found to enhance the activation of single RyR2 channels by diastolic levels of cytosolic Ca2+. Unlike other N-terminal disease-associated mutations, the H29D mutation is located on the surface of the N-terminal domain. It is unclear how this surface-exposed H29D mutation that does not appear to interact with other parts of the RyR2 structure could alter the intrinsic properties of the channel. Here we carried out detailed functional characterization of the RyR2-H29D mutant at the molecular and cellular levels. We found that the H29D mutation has no effect on the basal level or the Ca2+ dependent activation of [3H]ryanodine binding to RyR2, the cytosolic Ca2+ activation of single RyR2 channels, or the cytosolic Ca2+- or caffeine-induced Ca2+ release in HEK293 cells. In addition, the H29D mutation does not alter the propensity for spontaneous Ca2+ release or the thresholds for Ca2+ release activation or termination. Furthermore, the H29D mutation does not have significant impact on the thermal stability of the N-terminal region (residues 1-547) of RyR2. Collectively, our data show that the H29D mutation exerts little or no effect on the function of RyR2 or on the folding stability of the N-terminal region. Thus, our results provide no evidence that the H29D mutation enhances the cytosolic Ca2+ activation of RyR2.

  14. EGFR and KRAS mutational analysis in a large series of Italian non-small cell lung cancer patients: 2,387 cases from a single center.

    PubMed

    Giannini, Riccardo; Lupi, Cristiana; Sensi, Elisa; Alì, Greta; Proietti, Agnese; Boldrini, Laura; Servadio, Adele; Giordano, Mirella; Macerola, Elisabetta; Bruno, Rossella; Borrelli, Nicla; Chella, Antonio; Melfi, Franca; Lucchi, Marco; Ribechini, Alessandro; Vasile, Enrico; Cappuzzo, Federico; Mussi, Alfredo; Fontanini, Gabriella

    2016-08-01

    Activating EGFR mutations are important genetic alterations that have strong therapeutic implications for non-small cell lung cancer (NSCLC) patients. However, the role of KRAS mutations in this process is still under evaluation. Here, we report on the feasibility of a large‑scale EGFR and KRAS mutation analysis in the daily routine of a single center. NSCLCs from 2,387 patients were screened for EGFR and KRAS mutations from January 2010 to September 2015. Mutational analyses were performed in a single laboratory using single strand conformation polymorphism (SSCP)-Sanger sequencing and matrix‑assisted laser desorption ionization‑time of flight (MALDI‑TOF) on Sequenom platform for EGFR and pyrosequencing for KRAS. Activating EGFR mutations were found in 14.1% of all tumors, whereas KRAS mutations were found in 30.5% of all tumors. Direct sequencing showed analyzable cytological, small biopsy and surgical specimen percentages of 90.3, 90.9 and 98.1%, respectively, whereas the MALDI‑TOF platform showed analyzable cytological samples, small biopsies and surgical specimens percentages of 94.6, 95.7 and 96.9%, respectively. The mean analytical turnaround times (TAT) were 4 and 3 days for direct sequencing and the MALDI‑TOF platform, respectively. Our results confirm that small biopsy or cytological samples can be used for reliable EGFR and KRAS mutation testing and indicate that adopting the MALDI‑TOF platform reduces the rate of missed samples among the samples. Moreover, the 3-day analytical TAT of the MALDI-TOF multi-target technique is appropriate for clinical management and reduces the overall treatment decision time. PMID:27373829

  15. The missense Thr211Pro mutation in the factor X activation peptide of a bleeding patient causes molecular defect in the clotting cascade.

    PubMed

    Ding, Qiulan; Shen, Yiping; Yang, Likui; Wang, Xuefeng; Rezaie, Alireza R

    2013-07-01

    Factor X (FX) is a vitamin K-dependent coagulation zymogen, which upon activation to factor Xa assembles into the prothrombinase complex to activate prothrombin to thrombin. FX can be activated by either factor VIIa-tissue factor or factor IXa-factor VIIIa in extrinsic and intrinsic pathways, respectively. In this study, we identified a bleeding patient with moderate FX deficiency who exhibits a clotting defect only in the intrinsic pathway. Exome sequencing revealed that the patient carries a novel homozygous missense mutation that results in substitution of Thr211 with Pro in the activation peptide of FX. Thr211 is the site of an O-linked glycosylation in the activation peptide of FX. We postulated that the lack of this post-translational modification specifically impacts the activation of FX by intrinsic Xase, thereby impairing thrombin generation in the subject. To test this hypothesis, we expressed both wild-type FX and FX containing this mutation in mammalian cells and following the purification of the zymogens to homogeneity characterized their properties in both purified and plasma-based assay systems. Analysis of the results suggests that Thr211 to Pro substitution renders the FX mutant a poor substrate for both physiological activators, however, at physiological concentration of the substrate, the clotting defect manifest itself only in the intrinsic pathway, thus explaining the bleeding phenotype for the patient carrying this mutation. PMID:23677006

  16. A strong loss-of-function mutation in RAN1 results in constitutive activation of the ethylene response pathway as well as a rosette-lethal phenotype

    NASA Technical Reports Server (NTRS)

    Woeste, K. E.; Kieber, J. J.; Evans, M. L. (Principal Investigator)

    2000-01-01

    A recessive mutation was identified that constitutively activated the ethylene response pathway in Arabidopsis and resulted in a rosette-lethal phenotype. Positional cloning of the gene corresponding to this mutation revealed that it was allelic to responsive to antagonist1 (ran1), a mutation that causes seedlings to respond in a positive manner to what is normally a competitive inhibitor of ethylene binding. In contrast to the previously identified ran1-1 and ran1-2 alleles that are morphologically indistinguishable from wild-type plants, this ran1-3 allele results in a rosette-lethal phenotype. The predicted protein encoded by the RAN1 gene is similar to the Wilson and Menkes disease proteins and yeast Ccc2 protein, which are integral membrane cation-transporting P-type ATPases involved in copper trafficking. Genetic epistasis analysis indicated that RAN1 acts upstream of mutations in the ethylene receptor gene family. However, the rosette-lethal phenotype of ran1-3 was not suppressed by ethylene-insensitive mutants, suggesting that this mutation also affects a non-ethylene-dependent pathway regulating cell expansion. The phenotype of ran1-3 mutants is similar to loss-of-function ethylene receptor mutants, suggesting that RAN1 may be required to form functional ethylene receptors. Furthermore, these results suggest that copper is required not only for ethylene binding but also for the signaling function of the ethylene receptors.

  17. M-CSF receptor mutations in hereditary diffuse leukoencephalopathy with spheroids impair not only kinase activity but also surface expression

    SciTech Connect

    Hiyoshi, Masateru; Hashimoto, Michihiro; Yukihara, Mamiko; Bhuyan, Farzana; Suzu, Shinya

    2013-11-01

    Highlights: •Many mutations were identified in Fms as a putative genetic cause of HDLS. •All of the mutations tested severely impair the kinase activity. •Most of the mutations also impair the trafficking to the cell surface. •These defects further suggest that HDLS is caused by a loss of Fms function. -- Abstract: The tyrosine kinase Fms, the cell surface receptor for M-CSF and IL-34, is critical for microglial proliferation and differentiation in the brain. Recently, a number of mutations have been identified in Fms as a putative genetic cause of hereditary diffuse leukoencephalopathy with spheroids (HDLS), implying an important role of microglial dysfunction in HDLS pathogenesis. In this study, we initially confirmed that 11 mutations, which reside within the ATP-binding or major tyrosine kinase domain, caused a severe impairment of ligand-induced Fms auto-phosphorylation. Intriguingly, we found that 10 of the 11 mutants also showed a weak cell surface expression, which was associated with a concomitant increase in the low molecular weight hypo-N-glycosylated immature gp130Fms-like species. Indeed, the mutant proteins heavily accumulated to the Golgi-like perinuclear regions. These results indicate that all of the Fms mutations tested severely impair the kinase activity and most of the mutations also impair the trafficking to the cell surface, further suggesting that HDLS is caused by the loss of Fms function.

  18. Catch-and-Hold Activation of Muscle Acetylcholine Receptors Having Transmitter Binding Site Mutations

    PubMed Central

    Purohit, Prasad; Bruhova, Iva; Gupta, Shaweta; Auerbach, Anthony

    2014-01-01

    Agonists turn on receptors because their target sites have a higher affinity in the active versus resting conformation of the protein. We used single-channel electrophysiology to measure the lower-affinity (LA) and higher-affinity (HA) equilibrium dissociation constants for acetylcholine in adult-type muscle mouse nicotinic receptors (AChRs) having mutations of agonist binding site amino acids. For a series of agonists and for all mutations of αY93, αG147, αW149, αY190, αY198, εW55, and δW57, the change in LA binding energy was approximately half that in HA binding energy. The results were analyzed as a linear free energy relationship between LA and HA agonist binding, the slope of which (κ) gives the fraction of the overall binding chemical potential where the LA complex is established. The linear correlation between LA and HA binding energies suggests that the overall binding process is by an integrated mechanism (catch-and-hold). For the agonist and the above mutations, κ ∼ 0.5, but side-chain substitutions of two residues had a slope that was significantly higher (0.90; αG153) or lower (0.25; εP121). The results suggest that backbone rearrangements in loop B, loop C, and the non-α surface participate in both LA binding and the LA ↔ HA affinity switch. It appears that all of the intermediate steps in AChR activation comprise a single, energetically coupled process. PMID:24988344

  19. LYN-activating mutations mediate antiestrogen resistance in estrogen receptor-positive breast cancer.

    PubMed

    Schwarz, Luis J; Fox, Emily M; Balko, Justin M; Garrett, Joan T; Kuba, María Gabriela; Estrada, Mónica Valeria; González-Angulo, Ana María; Mills, Gordon B; Red-Brewer, Monica; Mayer, Ingrid A; Abramson, Vandana; Rizzo, Monica; Kelley, Mark C; Meszoely, Ingrid M; Arteaga, Carlos L

    2014-12-01

    Estrogen receptor-positive (ER(+)) breast cancers adapt to hormone deprivation and become resistant to antiestrogen therapy. Here, we performed deep sequencing on ER(+) tumors that remained highly proliferative after treatment with the aromatase inhibitor letrozole and identified a D189Y mutation in the inhibitory SH2 domain of the SRC family kinase (SFK) LYN. Evaluation of 463 breast tumors in The Cancer Genome Atlas revealed four LYN mutations, two of which affected the SH2 domain. In addition, LYN was upregulated in multiple ER(+) breast cancer lines resistant to long-term estrogen deprivation (LTED). An RNAi-based kinome screen revealed that LYN is required for growth of ER(+) LTED breast cancer cells. Kinase assays and immunoblot analyses of SRC substrates in transfected cells indicated that LYN(D189Y) has higher catalytic activity than WT protein. Further, LYN(D189Y) exhibited reduced phosphorylation at the inhibitory Y507 site compared with LYN(WT). Other SH2 domain LYN mutants, E159K and K209N, also exhibited higher catalytic activity and reduced inhibitory site phosphorylation. LYN(D189Y) overexpression abrogated growth inhibition by fulvestrant and/or the PI3K inhibitor BKM120 in 3 ER(+) breast cancer cell lines. The SFK inhibitor dasatinib enhanced the antitumor effect of BKM120 and fulvestrant against estrogen-deprived ER(+) xenografts but not LYN(D189Y)-expressing xenografts. These results suggest that LYN mutations mediate escape from antiestrogens in a subset of ER(+) breast cancers.

  20. Mutational Analysis of TCOF1, GSC, and HOXA2 in Patients With Treacher Collins Syndrome.

    PubMed

    Hao, Shaojuan; Jin, Lei; Wang, Huijun; Li, Chenlong; Zheng, Fengyun; Ma, Duan; Zhang, Tianyu

    2016-09-01

    Treacher Collins syndrome is an autosomal dominant craniofacial malformation mainly caused by mutations in the TCOF1 gene. Few cases have been observed in the Chinese population. Herein, the authors report the mutational analysis of TCOF1, GSC, and HOXA2 to determine the mutational features of the 3 genes in Chinese patients with Treacher Collins syndrome. Genomic DNA of the patients and their parents was extracted from peripheral blood following a standard protocol. DNA sequencing analysis was performed on all exons and the exon-intron borders of TCOF1, GSC, and HOXA2 in addition to the 1200-bp upstream of TCOF1. Four novel single nucleotide polymorphisms were detected in TCOF1, one of which was in the promoter region. Mutations in GSC and HOXA2 were not found in the 3 patients. Our results suggest the possibility of genetic heterogeneity or different mechanisms leading to the disease. Further functional study of the alteration is necessary to obtain more definitive information.

  1. Mutational Analysis of TCOF1, GSC, and HOXA2 in Patients With Treacher Collins Syndrome

    PubMed Central

    Hao, Shaojuan; Jin, Lei; Wang, Huijun; Li, Chenlong; Zheng, Fengyun; Ma, Duan; Zhang, Tianyu

    2016-01-01

    Abstract Treacher Collins syndrome is an autosomal dominant craniofacial malformation mainly caused by mutations in the TCOF1 gene. Few cases have been observed in the Chinese population. Herein, the authors report the mutational analysis of TCOF1, GSC, and HOXA2 to determine the mutational features of the 3 genes in Chinese patients with Treacher Collins syndrome. Genomic DNA of the patients and their parents was extracted from peripheral blood following a standard protocol. DNA sequencing analysis was performed on all exons and the exon-intron borders of TCOF1, GSC, and HOXA2 in addition to the 1200-bp upstream of TCOF1. Four novel single nucleotide polymorphisms were detected in TCOF1, one of which was in the promoter region. Mutations in GSC and HOXA2 were not found in the 3 patients. Our results suggest the possibility of genetic heterogeneity or different mechanisms leading to the disease. Further functional study of the alteration is necessary to obtain more definitive information. PMID:27526242

  2. The effects of R683S (G) genetic mutations on the JAK2 activity, structure and stability.

    PubMed

    Li, Feng; Guo, Hua-Yan; Wang, Man; Geng, Hong-Li; Bian, Mei-Ru; Cao, Jiang; Chen, Chong; Zeng, Ling-Yu; Wang, Xiao-Yun; Wu, Qing-Yun

    2013-09-01

    Janus kinase 2 (JAK2) is an important mediator of cytokine receptor signaling and plays key roles in the hematopoietic and immune response. The acquired JAK2 R683S (G) mutations are presumed to be a biomarker for B-cell acute lymphoblastic leukemia (B-ALL). However, how these mutations leading to the B-ALL is still unclear. The crystal structure of JAK2 JH2 domain suggests that the residue R683 locating in the linker between the N and C lobes of JH2 domain is important for keeping the compact structure, activity and structural stability of this domain. Mutations R683S, R683G and R683E significantly increase JAK2 activity and decrease its structural stability. While the R683K and R683H mutations almost have no effects on the JAK2 activity and structural stability. Furthermore, the spectroscopic experiments imply that mutations R683S, R683G and R683E impair the structure of JAK2 JH2 domain, and lead JAK2 to partially unfolded state. It may be this partially unfolded state that caused JAK2 R683S (G) constitutive activation. This study provides clues in understanding the mechanism of JAK2 R683S (G) mutations caused B-ALL.

  3. Carboxy-terminal mutations of bile acid CoA:N-acyltransferase alter activity and substrate specificity.

    PubMed

    Styles, Nathan A; Shonsey, Erin M; Falany, Josie L; Guidry, Amber L; Barnes, Stephen; Falany, Charles N

    2016-07-01

    Bile acid CoA:amino acid N-acyltransferase (BAAT) is the terminal enzyme in the synthesis of bile salts from cholesterol and catalyzes the conjugation of taurine or glycine to bile acid CoA thioesters to form bile acid N-acylamidates. BAAT has a dual localization to the cytosol and peroxisomes, possibly due to an inefficient carboxy-terminal peroxisomal targeting signal (PTS), -serine-glutamine-leucine (-SQL). Mutational analysis was used to define the role of the carboxy terminus in peroxisomal localization and kinetic activity. Amidation activity of BAAT and BAAT lacking the final two amino acids (AAs) (BAAT-S) were similar, whereas the activity of BAAT with a canonical PTS sequence (BAAT-SKL) was increased >2.5-fold. Kinetic analysis of BAAT and BAAT-SKL showed that BAAT-SKL had a lower Km for taurine and glycine as well as a greater Vmax There was no difference in the affinity for cholyl-CoA. In contrast to BAAT, BAAT-SKL forms bile acid N-acylamidates with β-alanine. BAAT-S immunoprecipitated when incubated with peroxisomal biogenesis factor 5 (Pex5) and rabbit anti-Pex5 antibodies; however, deleting the final 12 AAs prevented coimmunoprecipitation with Pex5, indicating the Pex5 interaction involves more than the -SQL sequence. These results indicate that even small changes in the carboxy terminus of BAAT can have significant effects on activity and substrate specificity. PMID:27230263

  4. Carboxy-terminal mutations of bile acid CoA:N-acyltransferase alter activity and substrate specificity.

    PubMed

    Styles, Nathan A; Shonsey, Erin M; Falany, Josie L; Guidry, Amber L; Barnes, Stephen; Falany, Charles N

    2016-07-01

    Bile acid CoA:amino acid N-acyltransferase (BAAT) is the terminal enzyme in the synthesis of bile salts from cholesterol and catalyzes the conjugation of taurine or glycine to bile acid CoA thioesters to form bile acid N-acylamidates. BAAT has a dual localization to the cytosol and peroxisomes, possibly due to an inefficient carboxy-terminal peroxisomal targeting signal (PTS), -serine-glutamine-leucine (-SQL). Mutational analysis was used to define the role of the carboxy terminus in peroxisomal localization and kinetic activity. Amidation activity of BAAT and BAAT lacking the final two amino acids (AAs) (BAAT-S) were similar, whereas the activity of BAAT with a canonical PTS sequence (BAAT-SKL) was increased >2.5-fold. Kinetic analysis of BAAT and BAAT-SKL showed that BAAT-SKL had a lower Km for taurine and glycine as well as a greater Vmax There was no difference in the affinity for cholyl-CoA. In contrast to BAAT, BAAT-SKL forms bile acid N-acylamidates with β-alanine. BAAT-S immunoprecipitated when incubated with peroxisomal biogenesis factor 5 (Pex5) and rabbit anti-Pex5 antibodies; however, deleting the final 12 AAs prevented coimmunoprecipitation with Pex5, indicating the Pex5 interaction involves more than the -SQL sequence. These results indicate that even small changes in the carboxy terminus of BAAT can have significant effects on activity and substrate specificity.

  5. Phenotype characterization and DSPP mutational analysis of three Brazilian dentinogenesis imperfecta type II families.

    PubMed

    Acevedo, A C; Santos, L J S; Paula, L M; Dong, J; MacDougall, M

    2009-01-01

    The aim of this study was to perform phenotype analysis and dentin sialophosphoprotein (DSPP) mutational analysis on 3 Brazilian families diagnosed with dentinogenesis imperfecta type II (DGI-II) attending the Dental Anomalies Clinic in Brasilia, Brazil. Physical and oral examinations, as well as radiographic and histopathological analyses, were performed on 28 affected and unaffected individuals. Clinical, radiographic and histopathological analyses confirmed the diagnosis of DGI-II in 19 individuals. Pulp stones were observed in ground sections of several teeth in 2 families, suggesting that obliteration of pulp chambers and root canals results from the growth of these nodular structures. Mutational DSPP gene analysis of representative affected family members revealed 7 various non-disease-causing alterations in exons 1-4 within the dentin sialoprotein domain. Further longitudinal studies are necessary to elucidate the progression of pulpal obliteration in the DGI-II patients studied as well as the molecular basis of their disease.

  6. Mutational analysis of the NF1 GAP-related domain in neuroectodermal tumors

    SciTech Connect

    Vinanzi, C.; Basso, G.; Perilongo, G.

    1994-09-01

    To try to contribute to the more precise characterization of the function of the NF1 gene in tumorigenesis we have analyzed the most conserved region of its coding sequence, the GAP-related domain (NF1 GRD), which is attributed with tumor suppressor function. The rationale for the study was based on the likelihood of finding structural alterations resulting in loss of function of this region, in situations such as tumors of neuroepithelial tissues. In these situations, the activity of the NF1 gene product, neurofibromis, a GTPase activating protein, seems to be crucial in regulating the mechanisms of signal transduction mediated by p21 ras. We have studied the NF1 GRD region by PCR amplification of each exon (exons 21-27a) followed by subsequent PAGE and SSCP analysis of the amplification products in 60 primary sporadic neuroectodermal tumors. Our sample included: 14 neuroblastoma, 11 glioblastoma, 8 medulloblastoma, 7 ependimoma, 6 peripheral PNET, 1 ganglioneuroma, 1 glioma, 1 Ewing sarcoma, 1 meningioma and 1 schwannoma. We have not identified structural alterations of the NF1 GRD region in the tumors analysed, with one possible exception now in the process of being characterized. We can conclude that the loss of the NF1 gene tumor suppressor function that might lead or contribute to the development of malignancies in tissues of neuroectodermal origin is not due to structural abnormalities of the region of the gene interacting with p21 ras, either as a negative regulator or as a downstream effector of it. These data, together with the observation that the oncogene ras 21 is not typically mutated in neuroectodermal tumors, and that GTP-ras has been found normally regulated in neurofibromis-deficient melanoma and neuroblastoma cell lines, seem to support the hypothesis that the antioncogene activity of the NF1 gene could be totally independent from its interaction with ras.

  7. Correlation between the 1.6 A crystal structure and mutational analysis of keratinocyte growth factor.

    PubMed Central

    Osslund, T. D.; Syed, R.; Singer, E.; Hsu, E. W.; Nybo, R.; Chen, B. L.; Harvey, T.; Arakawa, T.; Narhi, L. O.; Chirino, A.; Morris, C. F.

    1998-01-01

    A comprehensive deletion, mutational, and structural analysis of the native recombinant keratinocyte growth factor (KGF) polypeptide has resulted in the identification of the amino acids responsible for its biological activity. One of these KGF mutants (delta23KGF-R144Q) has biological activity comparable to the native protein, and its crystal structure was determined by the multiple isomorphous replacement plus anomalous scattering method (MIRAS). The structure of KGF reveals that it folds into a beta-trefoil motif similar to other members of fibroblast growth factor (FGF) family whose structures have been resolved. This fold consists of 12 anti-parallel beta-strands in which three pairs of the strands form a six-stranded beta-barrel structure and the other three pairs of beta-strands cap the barrel with hairpin triplets forming a triangular array. KGF has 10 well-defined beta strands, which form five double-stranded anti-parallel beta-sheets. A sixth poorly defined beta-strand pair is in the loop between residues 133 and 144, and is defined by only a single hydrogen bond between the two strands. The KGF mutant has 10 additional ordered amino terminus residues (24-33) compared to the other FGF structures, which are important for biological activity. Based on mutagenesis, thermal stability, and structural data we postulate that residues TRP125, THR126, and His127 predominantly confer receptor binding specificity to KGF. Additionally, residues GLN152, GLN138, and THR42 are implicated in heparin binding. The increased thermal stability of delta23KGF-R144Q can structurally be explained by the additional formation of hydrogen bonds between the GLN side chain and a main-chain carbonyl on an adjoining loop. The correlation of the structure and biochemistry of KGF provides a framework for a rational design of this potentially important human therapeutic. PMID:10082365

  8. Mutational analysis of the human immunodeficiency virus type 1 Rev transactivator: essential residues near the amino terminus.

    PubMed Central

    Hope, T J; McDonald, D; Huang, X J; Low, J; Parslow, T G

    1990-01-01

    The expression of certain mRNAs from human immunodeficiency virus type 1 (HIV-1) is controlled by the viral transactivator Rev, a nucleolar protein that binds a cis-acting element in these mRNAs. Rev is encoded by two viral exons that specify amino acids 1 to 26 and 27 to 116, respectively. Earlier studies have mapped essential regions of the protein that are encoded in the second exon. By further mutational analysis of Rev, we have now identified a novel locus encoded by the first exon that also is essential for transactivation in vivo. Defined by mutations at residues 14 to 20, this locus coincides with a cluster of positively charged and nonpolar amino acids that is conserved in Rev proteins of all known primate immunodeficiency viruses. Rev proteins that contained mutations at this site were defective in both nuclear localization and transactivation and did not function as trans-dominant inhibitors of wild-type Rev. Fusion of these mutants to a heterologous nuclear protein complemented the defect in localization but did not restore biological activity. Our findings suggest that this N-terminal locus may play a direct role in transactivation, perhaps contributing to essential protein-protein interactions or forming part of the RNA-binding domain of Rev. Images PMID:2120472

  9. Analysis of phenotype and outcome in essential thrombocythemia with CALR or JAK2 mutations

    PubMed Central

    Al Assaf, Carla; Van Obbergh, Florence; Billiet, Johan; Lierman, Els; Devos, Timothy; Graux, Carlos; Hervent, Anne-Sophie; Emmerechts, Jan; Tousseyn, Thomas; De Paepe, Pascale; Papadopoulos, Petros; Michaux, Lucienne; Vandenberghe, Peter

    2015-01-01

    The JAK2 V617F mutation, the thrombopoietin receptor MPL W515K/L mutation and calreticulin (CALR) mutations are mutually exclusive in essential thrombocythemia and support a novel molecular categorization of essential thrombocythemia. CALR mutations account for approximately 30% of cases of essential thrombocythemia. In a retrospective study, we examined the frequency of MPL and CALR mutations in JAK2 V617F-negative cases of essential thrombocythemia (n=103). In addition, we compared the clinical phenotype and outcome of CALR mutant cases of essential thrombocythemia with a cohort of JAK2 V617F-positive essential thrombocythemia (n=57). CALR-positive cases represented 63.7% of double-negative cases of essential thrombocythemia, and most carried CALR type 1 or type 2 indels. However, we also identified one patient who was positive for both the JAK2 V617F and the CALR mutations. This study revealed that CALR mutant essential thrombocythemia is associated with younger age, higher platelet counts, lower erythrocyte counts, leukocyte counts, hemoglobin, and hematocrit, and increased risk of progression to myelofibrosis in comparison with JAK2 V617F-positive essential thrombocythemia. Analysis of the CALR mutant group according to indel type showed that CALR type 1 deletion is strongly associated with male gender. CALR mutant patients had a better overall survival than JAK2 V617F-positive patients, in particular patients of age 60 years or younger. In conclusion, this study in a Belgian cohort of patients supports and extends the growing body of evidence that CALR mutant cases of essential thrombocythemia are phenotypically distinct from JAK2 V617F-positive cases, with regards to clinical and hematologic presentation as well as overall survival. PMID:25934766

  10. Linkage and mutational analysis of familial Alzheimer disease kindreds for the APP gene region

    PubMed Central

    Kamino, Kouzin; Orr, Harry T.; Payami, Haydeh; Wijsman, Ellen M.; Alonso, Ma. Elisa; Pulst, Stefan M.; Anderson, Leojean; O'dahl, Sheldon; Nemens, Ellen; White, June A.; Sadovnick, Adele D.; Ball, Melvyn J.; Kaye, Jeffery; Warren, Andrew; McInnis, Melvin; Antonarakis, Stylianos E.; Korenberg, Julie R.; Sharma, Vikram; Kukull, Walter; Larson, Eric; Heston, Leonard L.; Martin, George M.; Bird, Thomas D.; Schellenberg, Gerard D.

    1992-01-01

    A large number of familial Alzheimer disease (FAD) kindreds were examined to determine whether mutations in the amyloid precursor protein (APP) gene could be responsible for the disease. Previous studies have identified three mutations at APP codon 717 which are pathogenic for Alzheimer disease (AD). Samples from affected subjects were examined for mutations in exons 16 and 17 of the APP gene. A combination of direct sequencing and single-strand conformational polymorphism analysis was used. Sporadic AD and normal controls were also examined by the same methods. Five sequence variants were identified. One variant at APP codon 693 resulted in a Glu→Gly change. This is the same codon as the hereditary cerebral hemorrhage with amyloidosis–Dutch type Glu→Gln mutation. Another single-base change at APP codon 708 did not alter the amino acid encoded at this site. Two point mutations and a 6-bp deletion were identified in the intronic sequences surrounding exon 17. None of the variants could be unambiguously determined to be responsible for FAD. The larger families were also analyzed by testing for linkage of FAD to a highly polymorphic short tandem repeat marker (D21S210) that is tightly linked to APP. Highly negative LOD scores were obtained for the family groups tested, and linkage was formally excluded beyond θ = .10 for the Volga German kindreds, θ = .20 for early-onset non-Volga Germans, and θ = .10 for late-onset families. LOD scores for linkage of FAD to markers centromeric to APP (D21S1/S11, D21S13, and D21S215) were also negative in the three family groups. These studies show that APP mutations account for AD in only a small fraction of FAD kindreds. ImagesFigure 4p1009-a PMID:1415269

  11. Linkage and mutational analysis of familial Alzheimer disease kindreds for the APP gene region

    SciTech Connect

    Kamino, K.; Anderson, L.; O'dahl, S.; Nemens, E.; Bird, T.D.; Schellenberg, G.D.; Wijsman, E.M.; Kukall, W.; Larson, E. ); Heston, L.L.

    1992-11-01

    A large number of familial Alzheimer disease (FAD) kindreds were examined to determine whether mutations in the amyloid precursor protein (APP) gene could be responsible for the disease. Previous studies have identified three mutations at APP codon 717 which are pathogenic for Alzheimer disease (AD). Samples from affected subjects were examined for mutations in exons 16 and 17 of the APP gene. A combination of direct sequencing and single-strand conformational polymorphism analysis was used. Sporadic AD and normal controls were also examined by the same methods. Five sequence variants were identified. One variant at APP codon 693 resulted in a Glu[yields]Gly change. This is the same codon as the hereditary cerebral hemorrhage with amyloidosis-Dutch type Glu[yields]Gln mutation. Another single-base change at APP codon 708 did not alter the amino acid encoded at this site. Two point mutations and a 6-bp deletion were identified in the intronic sequences surrounding exon 17. None of the variants could be unambigously determined to be responsible for FAD. The larger families were also analyzed by testing for linkage of FAD to a highly polymorphic short tandem repeat marker (D21S210) that is tightly linked to APP. Highly negative LOD scores were obtained for the family groups tested, and linkage was formally excluded beyond [theta] = .10 for the Volga German kindreds, [theta] = .20 for early-onset non-Volga Germans, and [theta] = .10 for late-onset families. LOD scores for linkage of FAD to markers centromeric to APP (D21S1/S11, D21S13, and D21S215) were also negative in the three family groups. These studies show that APP mutations account for AD in only a small fraction of FAD kindreds. 49 refs., 6 figs., 4 tabs.

  12. Functional Analysis of A Novel Splicing Mutation in The Mutase Gene of Two Unrelated Pedigrees

    PubMed Central

    Miryounesi, Mohammad; Pasalar, Parvin; Keramatipour, Mohammad

    2016-01-01

    Objective Methylmalonic acidura (MMA) is a rare autosomal recessive inborn error of metabolism. In this study we present a novel nucleotide change in the mutase (MUT) gene of two unrelated Iranian pedigrees and introduce the methods used for its functional analysis. Materials and Methods Two probands with definite diagnosis of MMA and a common novel variant in the MUT were included in a descriptive study. Bioinformatic prediction of the splicing variant was done with different prediction servers. Reverse transcriptionpolymerase chain reaction (RT-PCR) was done for splicing analysis and the products were analyzed by sequencing. Results The included index patients showed elevated levels of propionylcarnitine (C3). Urine organic acid analysis confirmed the diagnosis of MMA, and screening for mutations in the MUT revealed a novel C to G variation at the 3´ splice acceptor site in intron 12. In silico analysis suggested the change as a mutation in a conserved sequence. The splicing analysis showed that the C to G nucleotide change at position -3 in the acceptor splice site can lead to retention of the intron 12 sequence. Conclusion This is the first report of a mutation at the position -3 in the MUT intron 12 (c.2125-3C>G). The results suggest that the identified va