Science.gov

Sample records for activity oxygen consumption

  1. Cerebral Oxygen Delivery and Consumption During Evoked Neural Activity

    PubMed Central

    Vazquez, Alberto L.; Masamoto, Kazuto; Fukuda, Mitsuhiro; Kim, Seong-Gi

    2010-01-01

    Increases in neural activity evoke increases in the delivery and consumption of oxygen. Beyond observations of cerebral tissue and blood oxygen, the role and properties of cerebral oxygen delivery and consumption during changes in brain function are not well understood. This work overviews the current knowledge of functional oxygen delivery and consumption and introduces recent and preliminary findings to explore the mechanisms by which oxygen is delivered to tissue as well as the temporal dynamics of oxygen metabolism. Vascular oxygen tension measurements have shown that a relatively large amount of oxygen exits pial arterioles prior to capillaries. Additionally, increases in cerebral blood flow (CBF) induced by evoked neural activation are accompanied by arterial vasodilation and also by increases in arteriolar oxygenation. This increase contributes not only to the down-stream delivery of oxygen to tissue, but also to delivery of additional oxygen to extra-vascular spaces surrounding the arterioles. On the other hand, the changes in tissue oxygen tension due to functional increases in oxygen consumption have been investigated using a method to suppress the evoked CBF response. The functional decreases in tissue oxygen tension induced by increases in oxygen consumption are slow to evoked changes in CBF under control conditions. Preliminary findings obtained using flavoprotein autofluorescence imaging suggest cellular oxidative metabolism changes at a faster rate than the average changes in tissue oxygen. These issues are important in the determination of the dynamic changes in tissue oxygen metabolism from hemoglobin-based imaging techniques such as blood oxygenation-level dependent functional magnetic resonance imaging (fMRI). PMID:20616881

  2. [Oxygen consumption rate and effects of hypoxia stress on enzyme activities of Sepiella maindron].

    PubMed

    Wang, Chun-lin; Wu, Dan-hua; Dong, Tian-ye; Jiang, Xia-min

    2008-11-01

    The oxygen consumption rate and suffocation point of Sepiella maindroni were determined through the measurement of dissolved oxygen in control and experimental respiration chambers by Winkler's method, and the changes of S. maindroni enzyme activities under different levels of hypoxia stress were studied. The results indicated that the oxygen consumption rate of S. maindroni exhibited an obvious diurnal fluctuation of 'up-down-up-down', and positively correlated with water temperature (16 degrees C-28 degrees C) and illumination (3-500 micromol x m(-2) x s(-1)) while negatively correlated with water pH (6.25-9.25). With increasing water salinity from 18.1 to 29.8, the oxygen consumption rate had a variation of 'up-down-up', being the lowest at salinity 24. 8. Female S. maindroni had a higher oxygen consumption rate than male S. maindroni. The suffocation point of S. maindroni decreased with its increasing body mass, and that of (38.70 +/- 0.52) g in mass was (0.9427 +/- 0.0318) mg x L(-1). With the increase of hypoxia stress, the activities of superoxide dismutase (SOD), catalase (CAT) and peroxidase (POD) decreased after an initial increase, lipase activity decreased, protease activity had a variation of 'decrease-increase-decrease', and lactate dehydrogenase (LDH) activity had a trend of increasing first and decreasing then. The enzyme activities were higher under hypoxia stress than under normal conditions.

  3. Aerobic composting of waste activated sludge: Kinetic analysis for microbiological reaction and oxygen consumption

    SciTech Connect

    Yamada, Y.; Kawase, Y. . E-mail: bckawase@mail.eng.toyo.ac.jp

    2006-07-01

    In order to examine the optimal design and operating parameters, kinetics for microbiological reaction and oxygen consumption in composting of waste activated sludge were quantitatively examined. A series of experiments was conducted to discuss the optimal operating parameters for aerobic composting of waste activated sludge obtained from Kawagoe City Wastewater Treatment Plant (Saitama, Japan) using 4 and 20 L laboratory scale bioreactors. Aeration rate, compositions of compost mixture and height of compost pile were investigated as main design and operating parameters. The optimal aerobic composting of waste activated sludge was found at the aeration rate of 2.0 L/min/kg (initial composting mixture dry weight). A compost pile up to 0.5 m could be operated effectively. A simple model for composting of waste activated sludge in a composting reactor was developed by assuming that a solid phase of compost mixture is well mixed and the kinetics for microbiological reaction is represented by a Monod-type equation. The model predictions could fit the experimental data for decomposition of waste activated sludge with an average deviation of 2.14%. Oxygen consumption during composting was also examined using a simplified model in which the oxygen consumption was represented by a Monod-type equation and the axial distribution of oxygen concentration in the composting pile was described by a plug-flow model. The predictions could satisfactorily simulate the experiment results for the average maximum oxygen consumption rate during aerobic composting with an average deviation of 7.4%.

  4. Atrial natriuretic peptide regulates lipid mobilization and oxygen consumption in human adipocytes by activating AMPK

    SciTech Connect

    Souza, Sandra C.; Chau, Mary D.L.; Yang, Qing; Gauthier, Marie-Soleil; Clairmont, Kevin B.; Wu, Zhidan; Gromada, Jesper; Dole, William P.

    2011-07-08

    Highlights: {yields} Treatment of differentiated human adipocytes with atrial natriuretic peptide (ANP) increased lipolysis and oxygen consumption by activating AMP-activated protein kinase (AMPK). {yields} ANP stimulated lipid mobilization by selective activation of the alpha2 subunit of AMPK and increased energy utilization through activation of both the alpha1 and alpha2 subunits of AMPK. {yields} ANP enhanced adipocyte mitochondrial oxidative capacity as evidenced by induction of oxidative mitochondrial genes and increase in oxygen consumption. {yields} Exposure of human adipocytes to fatty acids and (TNF{alpha}) induced insulin resistance and decreased expression of mitochondrial genes which was restored to normal by ANP. -- Abstract: Atrial natriuretic peptide (ANP) has been shown to regulate lipid and carbohydrate metabolism providing a possible link between cardiovascular function and metabolism by mediating the switch from carbohydrate to lipid mobilization and oxidation. ANP exerts a potent lipolytic effect via cGMP-dependent protein kinase (cGK)-I mediated-stimulation of AMP-activated protein kinase (AMPK). Activation of the ANP/cGK signaling cascade also promotes muscle mitochondrial biogenesis and fat oxidation. Here we demonstrate that ANP regulates lipid metabolism and oxygen utilization in differentiated human adipocytes by activating the alpha2 subunit of AMPK. ANP treatment increased lipolysis by seven fold and oxygen consumption by two fold, both of which were attenuated by inhibition of AMPK activity. ANP-induced lipolysis was shown to be mediated by the alpha2 subunit of AMPK as introduction of dominant-negative alpha2 subunit of AMPK attenuated ANP effects on lipolysis. ANP-induced activation of AMPK enhanced mitochondrial oxidative capacity as evidenced by a two fold increase in oxygen consumption and induction of mitochondrial genes, including carnitine palmitoyltransferase 1A (CPT1a) by 1.4-fold, cytochrome C (CytC) by 1.3-fold, and

  5. The oxygen consumption of mammalian non-myelinated nerve fibres at rest and during activity

    PubMed Central

    Ritchie, J. M.

    1967-01-01

    1. A study has been made of the oxygen consumption of non-myelinated nerve fibres of rabbit desheathed cervical vagus nerves at rest and during activity. 2. The average resting oxygen consumption (Qr) was 0·0924 μmole/g. min at 21° C. Stimulation for 1-3 min at 3/sec caused an extra oxygen consumption (Qs) of 816 p-mole/g.shock. 3. When the frequency of stimulation was increased, to 10/sec and 30/sec, Qs fell. When the frequency was decreased, to 1/sec and 0·3/sec, Qs increased slightly. 4. When the temperature was decreased, Qr fell; when the temperature was increased, Qs also increased. Temperature similarly affected Qs with high frequencies of stimulation, but had relatively little effect on Qs at low frequencies of stimulation. 5. An isolated single shock seemed to produce an increase in oxygen consumption of about 1200 p-mole/g, and this value was largely independent of temperature. 6. When part of the sodium in the Locke solution was replaced by barium, Qr decreased (by 12%) whereas Qs increased (by 87%). 7. Veratrine (1 μg/ml.) increased both Qr (by 142%) and Qs (by 361%). 8. Acetylcholine (1·7 mM) increased Qr (by 32%). 9. When nerves were transferred to potassium-free solutions there was little change in Qr, and Qs fell slightly (by 8%). 10. When the potassium concentration in the Locke solution was increased 4-fold, Qr increased (by 27%). 11. Salicylate (1-10 mM) increased Qr (by 24%) and abolished Qs. 12. When the sodium of Locke solution was replaced by lithium, Qr decreased (by 19%) and Qs was abolished. 13. In sodium-Locke solution ouabain (100 μM) decreased Qr (by 26%) and abolished Qs. In lithium-Locke solution ouabain also decreased Qr (by 28%). 14. All or nearly all of the oxygen consumed at rest or during activity seemed to be used to pump potassium ions into, and sodium ions out of, the axoplasm. 15. The K/O2 ratio during pumping was about 5·0. PMID:6032203

  6. Oxygen consumption rate and Na+/K+-ATPase activity in early developmental stages of the sea urchin Paracentrotus lividus Lam.

    NASA Astrophysics Data System (ADS)

    Tomšić, Sanja; Stanković, Suzana; Lucu, Čedomil

    2011-09-01

    Changes in oxygen consumption rate and Na+/K+-ATPase activity during early development were studied in the sea urchin Paracentrotus lividus Lam. The oxygen consumption rate increased from 0.12 μmol O2 mg protein-1 h-1 in unfertilized eggs to 0.38 μmol O2 mg protein-1 h-1 25 min after fertilization. Specific activity of the Na+/K+-ATPase was significantly stimulated after fertilization, ranging up to 1.07 μmol Pi h-1 mg protein-1 in the late blastula stage and slightly lower values in the early and late pluteus stages.

  7. Oxygen consumption and active sodium and chloride transport in bovine tracheal epithelium.

    PubMed Central

    Durand, J; Durand-Arczynska, W; Schoenenweid, F

    1986-01-01

    The O2 consumption (Jr) and the short-circuit current (Ji) were measured simultaneously in bovine tracheal epithelium in vitro. In this tissue, Ji is the sum of two active transport processes, Cl- secretion and Na+ absorption. Jr was determined from the decrease of PO2 in the incubation solution, at 37 +/- 0.05 degrees C and at a PO2 around 600 torr. Microbial contamination and leaks of dissolved O2 from the solution never exceeded 4% of the rate of PO2 decrease due to the O2 consumption of the tissue. Ji and Jr were stable over 5 h of incubation under standard conditions. Ji was 106 +/- 4 nequiv min-1 cm-2 and Jr was 39.8 +/- 1.1 nmol O2 min-1 cm-2 (mean +/- S.E., n = 46). Ji was varied with several agents known to affect ion transport across the tracheal epithelium. Na+ absorption was inhibited partly with amiloride or completely following Na+ substitution with choline. Cl- secretion was selectively suppressed by furosemide. Ji was also reduced to a very low level, using ouabain or K+ suppression to inhibit the Na+-K+-ATPase. All these manoeuvres resulted in significant reductions of both Ji and Jr. Basal Jr was not affected when Ji was modified. A plot of the relative change in suprabasal Jr versus the relative change of Ji gave a straight line (r = 0.98, n = 60). A plot using absolute values yielded a stoichiometric ratio of 13.9 ions per O2 molecule, for Na+ as well as for Cl-. The stoichiometric ratio was also calculated for each experiment. Its mean value was 14.9 ions per O2 molecule. The population of the ratios was widely dispersed, but this was explained as a predictable statistical phenomenon. PMID:3723416

  8. MODELING ENERGY EXPENDITURE AND OXYGEN CONSUMPTION IN HUMAN EXPOSURE MODELS: ACCOUNTING FOR FATIGUE AND EPOC

    EPA Science Inventory

    Human exposure and dose models often require a quantification of oxygen consumption for a simulated individual. Oxygen consumption is dependent on the modeled Individual's physical activity level as described in an activity diary. Activity level is quantified via standardized val...

  9. Effect of thiamine pyrophosphate on levels of serum lactate, maximum oxygen consumption and heart rate in athletes performing aerobic activity.

    PubMed

    Bautista-Hernández, V M; López-Ascencio, R; Del Toro-Equihua, M; Vásquez, C

    2008-01-01

    The aim of this study was to determine the effect of thiamine pyrophosphate (TPP) on serum lactate levels, maximum oxygen consumption (Vo(2max)) and heart rate in male athletes performing aerobic activity. A double-blind, randomized, crossover study was performed in which lactate levels, Vo(2max) and heart rates in 27 male athletes were compared at rest and after exercise, following administration of placebo (sodium chloride 0.9%) or TPP (1 mg/kg). At rest, serum lactate levels after placebo or TPP were similar; however, after exercise, the levels were lower in the athletes after taking TPP than after placebo. During exercise, Vo(2max) in athletes on TPP was higher than on placebo. At rest, heart rate after taking placebo or TPP was similar but, after exercise, heart rate was lower after taking TPP than after placebo. It is concluded that TPP caused serum lactate levels and heart rate to be lower than placebo and Vo(2max) to be higher in athletes performing aerobic physical activity.

  10. Oxygen consumption of animals under conditions of hypokinesia

    NASA Technical Reports Server (NTRS)

    Loginova, Y. N.; Volozhin, A. I.; Krasnyku, I. G.; Stroganova, Y. A.

    1980-01-01

    The influence of hypokinesia on the oxygen consumption of rats, dog, and squirrels was investigated. Three periods of gaseous exchange were revealed in rats under conditions of a limited motor activity. During the first 10-15 days O2 consumption displayed a sharp elevation; on the 20th-30th day, it became stabilized at a higher level (in comparison with control) and it sharply rose again on the 40th-100th day. In dogs, hypokinesia produced a reduction of O2 consumption and then a tendency to its elevation was seen. A short period of physical exercises in squirrels after hypokinesia led to increased oxygen consumption at rest.

  11. Wii, Kinect, and Move. Heart Rate, Oxygen Consumption, Energy Expenditure, and Ventilation due to Different Physically Active Video Game Systems in College Students.

    PubMed

    Scheer, Krista S; Siebrant, Sarah M; Brown, Gregory A; Shaw, Brandon S; Shaw, Ina

    Nintendo Wii, Sony Playstation Move, and Microsoft XBOX Kinect are home video gaming systems that involve player movement to control on-screen game play. Numerous investigations have demonstrated that playing Wii is moderate physical activity at best, but Move and Kinect have not been as thoroughly investigated. The purpose of this study was to compare heart rate, oxygen consumption, and ventilation while playing the games Wii Boxing, Kinect Boxing, and Move Gladiatorial Combat. Heart rate, oxygen consumption, and ventilation were measured at rest and during a graded exercise test in 10 males and 9 females (19.8 ± 0.33 y, 175.4 ± 2.0 cm, 80.2 ± 7.7 kg,). On another day, in a randomized order, the participants played Wii Boxing, Kinect Boxing, and Move Gladiatorial Combat while heart rate, ventilation, and oxygen consumption were measured. There were no differences in heart rate (116.0 ± 18.3 vs. 119.3 ± 17.6 vs. 120.1 ± 17.6 beats/min), oxygen consumption (9.2 ± 3.0 vs. 10.6 ± 2.4 vs. 9.6 ± 2.4 ml/kg/min), or minute ventilation (18.9 ± 5.7 vs. 20.8 ± 8.0 vs. 19.7 ± 6.4 L/min) when playing Wii boxing, Kinect boxing, or Move Gladiatorial Combat (respectively). Playing Nintendo Wii Boxing, XBOX Kinect Boxing, and Sony PlayStation Move Gladiatorial Combat all increase heart rate, oxygen consumption, and ventilation above resting levels but there were no significant differences between gaming systems. Overall, playing a "physically active" home video game system does not meet the minimal threshold for moderate intensity physical activity, regardless of gaming system.

  12. Influence of different production strategies on the stability of color, oxygen consumption and metmyoglobin reducing activity of meat from Ningxia Tan sheep.

    PubMed

    Gao, Xiaoguang; Wang, Zhenyu; Miao, Jing; Xie, Li; Dai, Yan; Li, Xingmin; Chen, Yong; Luo, Hailing; Dai, Ruitong

    2014-02-01

    Fifty male Ningxia Tan sheep were randomly divided into five groups (10 per group). Different feeding strategies were applied to each group for 120 days prior to slaughter. The sheep belong to five groups were pastured for 0 h (feedlot-fed), 2h, 4h, 8h, 12h per day on a natural grazing ground, respectively. M. semitendinosus muscle from Tan sheep was obtained after slaughter. Instrumental color, pH values, oxygen consumption rate, metmyoglobin reducing activity and relative metmyoglobin percentages were analyzed after 1, 3, 5, 7 and 9 days of refrigerated storage. Long-term daily grazing and herbage-based diet were conducive to maintain a lower oxygen consumption rate, higher metmyoglobin reducing activity and lower metmyoglobin accumulation. The combination of pasture-fed and feedlot-fed was conducive to weight gain, and at the same time, increased the color stability of the meat from Ningxia Tan sheep.

  13. Rat splanchnic net oxygen consumption, energy implications.

    PubMed Central

    Casado, J; Fernández-López, J A; Esteve, M; Rafecas, I; Argilés, J M; Alemany, M

    1990-01-01

    1. The blood flow, PO2, pH and PCO2 have been estimated in portal and suprahepatic veins as well as in hepatic artery of fed and overnight starved rats given an oral glucose load. From these data the net intestinal, hepatic and splanchnic balances for oxygen and bicarbonate were calculated. The oxygen consumption of the intact animal has also been measured under comparable conditions. 2. The direct utilization of oxygen balances as energy equivalents when establishing the contribution of energy metabolism of liver and intestine to the overall energy expenses of the rat, has been found to be incorrect, since it incorporates the intrinsic error of interorgan proton transfer through bicarbonate. Liver and intestine produced high net bicarbonate balances in all situations tested, implying the elimination (by means of oxidative pathways, i.e. consuming additional oxygen) of high amounts of H+ generated with bicarbonate. The equivalence in energy output of the oxygen balances was then corrected for bicarbonate production to 11-54% lower values. 3. Intestine and liver consume a high proportion of available oxygen, about one-half in basal (fed or starved) conditions and about one-third after gavage, the intestine consumption being about 15% in all situations tested and the liver decreasing its oxygen consumption with gavage. PMID:2129230

  14. Measuring Oxygen Consumption Rate in Caenorhabditis elegans

    PubMed Central

    Palikaras, Konstantinos; Tavernarakis, Nektarios

    2017-01-01

    The rate of oxygen consumption is a vital marker indicating cellular function during lifetime under normal or metabolically challenged conditions. It is used broadly to study mitochondrial function (Artal-Sanz and Tavernarakis, 2009; Palikaras et al., 2015; Ryu et al., 2016) or investigate factors mediating the switch from oxidative phosphorylation to aerobic glycolysis (Chen et al., 2015; Vander Heiden et al., 2009). In this protocol, we describe a method for the determination of oxygen consumption rates in the nematode Caenorhabditis elegans. PMID:28239622

  15. Oxygen consumption by conserved archaeological wood.

    PubMed

    Mortensen, Martin N; Matthiesen, Henning

    2013-07-01

    Rates of oxygen consumption have been measured over extended time periods for 29 whole samples of conserved, archaeological wood and four samples of fresh, unconserved wood, at 50% relative humidity and room temperature. Samples from the Swedish Warship Vasa and the Danish Skuldelev Viking ships are included. Most rates were close to 1 μg O2 (g wood)(-1) day(-1) and the process persisted for several years at least. Consumption of oxygen is related to change in chemical composition, which is, in turn, related to degradation. It is thus demonstrated that despite conservation, waterlogged archaeological wood continues to degrade in a museum climate.

  16. Two cytochrome oxygen consumption model and mechanism for carotid body chemoreception.

    PubMed

    Nair, P K; Buerk, D G; Whalen, W J; Schubert, R W

    1986-01-01

    We have measured sinus nerve discharge, tissue PO2 and oxygen consumption (VO2) in cat carotid bodies under different experimental conditions using our recessed oxygen microelectrode. Our results indicate that the change in chemoreceptor activity with oxygen disappearance following blood flow occlusion can be related to a two cytochrome model for oxygen consumption as previously proposed by Mills and Jöbsis (1972).

  17. Oxygen consumption in subseafloor basaltic crust

    NASA Astrophysics Data System (ADS)

    Orcutt, B. N.; Wheat, C. G.; Hulme, S.; Edwards, K. J.; Bach, W.

    2012-12-01

    Oceanic crust is the largest potential habitat for life on Earth and may contain a significant fraction of Earth's total microbial biomass, yet little is known about the form and function of life in this vast subseafloor realm that covers nearly two-thirds of the Earth's surface. A deep biosphere hosted in subseafloor basalts has been suggested from several lines of evidence; yet, empirical analysis of metabolic reaction rates in basaltic crust is lacking. Here we report the first measure of oxygen consumption in young (~ 8 Ma) and cool (<25 degrees C) basaltic crust, calculated from modeling oxygen and strontium profiles in basal sediments collected during Integrated Ocean Drilling Program (IODP) Expedition 336 to 'North Pond', a sediment 'pond' on the western flank of the Mid-Atlantic Ridge (MAR), where vigorous fluid circulation within basaltic crust occurs. Dissolved oxygen concentrations increased towards the sediment-basement interface, indicating an upward diffusional supply from oxic fluids circulating within the crust. A parametric reaction-transport model suggests oxygen consumption rates on the order of 0.5-500 nmol per cubic centimeter fluid per day in young and cool basaltic crust, providing sufficient energy to support a subsurface crustal biosphere.

  18. The relationship between body temperature, heart rate, breathing rate, and rate of oxygen consumption, in the tegu lizard (Tupinambis merianae) at various levels of activity.

    PubMed

    Piercy, Joanna; Rogers, Kip; Reichert, Michelle; Andrade, Denis V; Abe, Augusto S; Tattersall, Glenn J; Milsom, William K

    2015-12-01

    The present study determined whether EEG and/or EMG recordings could be used to reliably define activity states in the Brazilian black and white tegu lizard (Tupinambis merianae) and then examined the interactive effects of temperature and activity states on strategies for matching O2 supply and demand. In a first series of experiments, the rate of oxygen consumption (VO2), breathing frequency (fR), heart rate (fH), and EEG and EMG (neck muscle) activity were measured in different sleep/wake states (sleeping, awake but quiet, alert, or moving). In general, metabolic and cardio-respiratory changes were better indictors of the transition from sleep to wake than were changes in the EEG and EMG. In a second series of experiments, the interactive effects of temperature (17, 27 and 37 °C) and activity states on fR, tidal volume (VT), the fraction of oxygen extracted from the lung per breath (FIO2-FEO2), fH, and the cardiac O2 pulse were quantified to determine the relative roles of each of these variables in accommodating changes in VO2. The increases in oxygen supply to meet temperature- and activity-induced increases in oxygen demand were produced almost exclusively by increases in fH and fR. Regression analysis showed that the effects of temperature and activity state on the relationships between fH, fR and VO2 was to extend a common relationship along a single curve, rather than separate relationships for each metabolic state. For these lizards, the predictive powers of fR and fH were maximized when the effects of changes in temperature, digestive state and activity were pooled. However, the best r(2) values obtained were 0.63 and 0.74 using fR and fH as predictors of metabolic rate, respectively.

  19. Curcumin prevents maleate-induced nephrotoxicity: relation to hemodynamic alterations, oxidative stress, mitochondrial oxygen consumption and activity of respiratory complex I.

    PubMed

    Tapia, E; Sánchez-Lozada, L G; García-Niño, W R; García, E; Cerecedo, A; García-Arroyo, F E; Osorio, H; Arellano, A; Cristóbal-García, M; Loredo, M L; Molina-Jijón, E; Hernández-Damián, J; Negrette-Guzmán, M; Zazueta, C; Huerta-Yepez, S; Reyes, J L; Madero, M; Pedraza-Chaverrí, J

    2014-11-01

    The potential protective effect of the dietary antioxidant curcumin (120 mg/Kg/day for 6 days) against the renal injury induced by maleate was evaluated. Tubular proteinuria and oxidative stress were induced by a single injection of maleate (400 mg/kg) in rats. Maleate-induced renal injury included increase in renal vascular resistance and in the urinary excretion of total protein, glucose, sodium, neutrophil gelatinase-associated lipocalin (NGAL) and N-acetyl β-D-glucosaminidase (NAG), upregulation of kidney injury molecule (KIM)-1, decrease in renal blood flow and claudin-2 expression besides of necrosis and apoptosis of tubular cells on 24 h. Oxidative stress was determined by measuring the oxidation of lipids and proteins and diminution in renal Nrf2 levels. Studies were also conducted in renal epithelial LLC-PK1 cells and in mitochondria isolated from kidneys of all the experimental groups. Maleate induced cell damage and reactive oxygen species (ROS) production in LLC-PK1 cells in culture. In addition, maleate treatment reduced oxygen consumption in ADP-stimulated mitochondria and diminished respiratory control index when using malate/glutamate as substrate. The activities of both complex I and aconitase were also diminished. All the above-described alterations were prevented by curcumin. It is concluded that curcumin is able to attenuate in vivo maleate-induced nephropathy and in vitro cell damage. The in vivo protection was associated to the prevention of oxidative stress and preservation of mitochondrial oxygen consumption and activity of respiratory complex I, and the in vitro protection was associated to the prevention of ROS production.

  20. CORRECTING ENERGY EXPENDITURES FOR FATIGUE AND EXCESS POST-EXERCISE OXYGEN CONSUMPTION

    EPA Science Inventory

    The EPA's human exposure and dose models often require a quantification of oxygen consumption for a simulated individual. Oxygen consumption is dependent on the individual's current level of physical activity (PA), which is determined from activity diaries selected from the Conso...

  1. Production and Consumption of Reactive Oxygen Species by Fullerenes

    EPA Science Inventory

    Reactive oxygen species (ROS) are one of the most important intermediates in chemical, photochemical, and biological processes. To understand the environmental exposure and toxicity of fullerenes better, the production and consumption of ROS (singlet oxygen, superoxide, hydrogen ...

  2. Development of a new oxygen consumption rate assay in cultures of Acanthamoeba (Protozoa: Lobosea) and its application to evaluate viability and amoebicidal activity in vitro.

    PubMed

    Heredero-Bermejo, I; Criado-Fornelio, A; Soliveri, J; Díaz-Martín, J A; Matilla-Fuentes, J; Sánchez-Arias, J A; Copa-Patiño, J L; Pérez-Serrano, J

    2015-08-01

    A new fluorometric method has been developed for measuring the oxygen consumption rate (OCR) of Acanthamoeba cultures in microplates and for screening molecules with amoebicidal activity against this microorganism. The use of a biofunctional matrix (containing an oxygen-sensitive fluorogenic probe) attached to the microplate wells allowed continuous measurement of OCR in the medium, hence assessment of amoebic growth. The new OCR method applied to cell viability yielded a linear relationship and monitoring was much quicker than with indirect viability assays previously used. In addition, two drugs were tested in a cytotoxicity assay monitored by the new OCR viability test. With this procedure, the standard amoebicidal drug chlorhexidine digluconate showed an IC50 of 3.53 + 1.3 mg/l against Acanthamoeba polyphaga and 3.19 + 1.2 mg/l against Acanthamoeba castellanii, whereas a cationic dendrimer [G1Si(NMe3+)4] showed an IC50 of 6.42 + 1.3 mg/l against A. polyphaga. These data agree with previous studies conducted in our laboratory. Therefore, the new OCR method has proven powerful and quick for amoebicidal drug screening and is likely to be applied in biochemical studies concerning protozoa respiration and metabolism.

  3. Decavanadate induces mitochondrial membrane depolarization and inhibits oxygen consumption.

    PubMed

    Soares, S S; Gutiérrez-Merino, C; Aureliano, M

    2007-05-01

    Decavanadate induced rat liver mitochondrial depolarization at very low concentrations, half-depolarization with 39 nM decavanadate, while it was needed a 130-fold higher concentration of monomeric vanadate (5 microM) to induce the same effect. Decavanadate also inhibits mitochondrial repolarization induced by reduced glutathione in vitro, with an inhibition constant of 1 microM, whereas no effect was observed up to 100 microM of monomeric vanadate. The oxygen consumption by mitochondria is also inhibited by lower decavanadate than monomeric vanadate concentrations, i.e. 50% inhibition is attained with 99 M decavanadate and 10 microM monomeric vanadate. Thus, decavanadate is stronger as mitochondrial depolarization agent than as inhibitor of mitochondrial oxygen consumption. Up to 5 microM, decavanadate does not alter mitochondrial NADH levels nor inhibit neither F(O)F(1)-ATPase nor cytochrome c oxidase activity, but it induces changes in the redox steady-state of mitochondrial b-type cytochromes (complex III). NMR spectra showed that decameric vanadate is the predominant vanadate species in decavanadate solutions. It is concluded that decavanadate is much more potent mitochondrial depolarization agent and a more potent inhibitor of mitochondrial oxygen consumption than monomeric vanadate, pointing out the importance to take into account the contribution of higher oligomeric species of vanadium for the biological effects of vanadate solutions.

  4. Oxygen delivery, consumption, and conversion to reactive oxygen species in experimental models of diabetic retinopathy

    PubMed Central

    Eshaq, Randa S.; Wright, William S.; Harris, Norman R.

    2014-01-01

    Retinal tissue receives its supply of oxygen from two sources – the retinal and choroidal circulations. Decreases in retinal blood flow occur in the early stages of diabetes, with the eventual development of hypoxia thought to contribute to pathological neovascularization. Oxygen consumption in the retina has been found to decrease in diabetes, possibly due to either a reduction in neuronal metabolism or to cell death. Diabetes also enhances the rate of conversion of oxygen to superoxide in the retina, with experimental evidence suggesting that mitochondrial superoxide not only drives the overall production of reactive oxygen species, but also initiates several pathways leading to retinopathy, including the increased activity of the polyol and hexosamine pathways, increased production of advanced glycation end products and expression of their receptors, and activation of protein kinase C. PMID:24936440

  5. Oxygen consumption in the lizard genus Lacerta in relation to diel variation, maximum activity and body weight.

    PubMed

    Cragg, P A

    1978-12-01

    1. Diel recordings of VO2 under a 12 h Light/12 h Dark regime, constant light or constant dark reveal a strong endogenous diurnal rhythm in L. sicula. L. vivipara show an exogeneous rhythm with activity occurring only in the light whilst L. viridis have a weak endogeneous rhythm that is modified by behavioural factors and inhibited by dark. 2. Standard (or basal) VO2 can only be attained after several hours in an 'indifferent' environment, shielded from extraneous stimuli. Measurements must be at night (light or dark) for unrestrained L. sicula and in the dark (day or night, restrained or unrestrained) for L. vivipara and L. viridis. Intrageneric std VO2 (ml h-1 STPD) = 0.328 W0.76 or 0.216 W0.77 for 1- or 3-days starvation at 30 degrees C for 0.2 to 34 g Lacerta. 3. Intrageneric maximum VO2 (determined for 30 to 60 s of provoked activity during the day) = 2.66 W0.747 at 30 degrees C for 1-days starvation. 4. Respiratory exchange ratio, R = 0.75 or 0.85 for std VO2 after 1 or 3 days starvation and 0.95 and 1.45 for mean daily and max VO2. High R values are considered a result of anaerobic metabolism and hyperventilation during activity.

  6. Modeling energy expenditure and oxygen consumption in human exposure models: accounting for fatigue and EPOC.

    PubMed

    Isaacs, Kristin; Glen, Graham; Mccurdy, Thomas; Smith, Luther

    2008-05-01

    Human exposure and dose models often require a quantification of oxygen consumption for a simulated individual. Oxygen consumption is dependent on the modeled individual's physical activity level as described in an activity diary. Activity level is quantified via standardized values of metabolic equivalents of work (METS) for the activity being performed and converted into activity-specific oxygen consumption estimates. However, oxygen consumption remains elevated after a moderate- or high-intensity activity is completed. This effect, which is termed excess post-exercise oxygen consumption (EPOC), requires upward adjustment of the METS estimates that follow high-energy expenditure events, to model subsequent increased ventilation and intake dose rates. In addition, since an individual's capacity for work decreases during extended activity, methods are also required to adjust downward those METS estimates that exceed physiologically realistic limits over time. A unified method for simultaneously performing these adjustments is developed. The method simulates a cumulative oxygen deficit for each individual and uses it to impose appropriate time-dependent reductions in the METS time series and additions for EPOC. The relationships between the oxygen deficit and METS limits are nonlinear and are derived from published data on work capacity and oxygen consumption. These modifications result in improved modeling of ventilation patterns, and should improve intake dose estimates associated with exposure to airborne environmental contaminants.

  7. Development of a model to determine oxygen consumption when crawling.

    PubMed

    Pollard, J P; Heberger, J R; Dempsey, P G

    During a mine disaster or emergency, underground air can quickly become contaminated. In these circumstances, all underground mine workers are taught to don breathable air supply units at the first sign of an emergency. However, no contemporary oxygen consumption data is available for the purposes of designing breathing air supply equipment specifically for mine escape. Further, it would be useful to quantify the oxygen requirements of breathing air supply users for various escape scenarios. To address this need, 14 participants crawled a distance of 305 m each while their breath-by-breath oxygen consumption measurements were taken. Using these data, linear regression models were developed to determine peak and average oxygen consumption rates as well as total oxygen consumption. These models can be used by manufacturers of breathing air supply equipment to aid in the design of devices that would be capable of producing sufficient on-demand oxygen to allow miners to perform self-escape.

  8. Development of a model to determine oxygen consumption when crawling

    PubMed Central

    Pollard, J.P.; Heberger, J.R.; Dempsey, P.G.

    2016-01-01

    During a mine disaster or emergency, underground air can quickly become contaminated. In these circumstances, all underground mine workers are taught to don breathable air supply units at the first sign of an emergency. However, no contemporary oxygen consumption data is available for the purposes of designing breathing air supply equipment specifically for mine escape. Further, it would be useful to quantify the oxygen requirements of breathing air supply users for various escape scenarios. To address this need, 14 participants crawled a distance of 305 m each while their breath-by-breath oxygen consumption measurements were taken. Using these data, linear regression models were developed to determine peak and average oxygen consumption rates as well as total oxygen consumption. These models can be used by manufacturers of breathing air supply equipment to aid in the design of devices that would be capable of producing sufficient on-demand oxygen to allow miners to perform self-escape. PMID:26997858

  9. Simultaneous sampling of tissue oxygenation and oxygen consumption in skeletal muscle.

    PubMed

    Nugent, William H; Song, Bjorn K; Pittman, Roland N; Golub, Aleksander S

    2016-05-01

    Under physiologic conditions, microvascular oxygen delivery appears to be well matched to oxygen consumption in respiring tissues. We present a technique to measure interstitial oxygen tension (PISFO2) and oxygen consumption (VO2) under steady-state conditions, as well as during the transitions from rest to activity and back. Phosphorescence Quenching Microscopy (PQM) was employed with pneumatic compression cycling to achieve 1 to 10 Hz sampling rates of interstitial PO2 and simultaneous recurrent sampling of VO2 (3/min) in the exteriorized rat spinotrapezius muscle. The compression pressure was optimized to 120-130 mmHg without adverse effect on the tissue preparation. A cycle of 5s compression followed by 15s recovery yielded a resting VO2 of 0.98 ± 0.03 ml O2/100 cm(3)min while preserving microvascular oxygen delivery. The measurement system was then used to assess VO2 dependence on PISFO2 at rest and further tested under conditions of isometric muscle contraction to demonstrate a robust ability to monitor the on-kinetics of tissue respiration and the compensatory changes in PISFO2 during contraction and recovery. The temporal and spatial resolution of this approach is well suited to studies seeking to characterize microvascular oxygen supply and demand in thin tissues.

  10. Computational Model for Oxygen Transport and Consumption in Human Vitreous

    PubMed Central

    Filas, Benjamen A.; Shui, Ying-Bo; Beebe, David C.

    2013-01-01

    Purpose. Previous studies that measured liquefaction and oxygen content in human vitreous suggested that exposure of the lens to excess oxygen causes nuclear cataracts. Here, we developed a computational model that reproduced available experimental oxygen distributions for intact and degraded human vitreous in physiologic and environmentally perturbed conditions. After validation, the model was used to estimate how age-related changes in vitreous physiology and structure alter oxygen levels at the lens. Methods. A finite-element model for oxygen transport and consumption in the human vitreous was created. Major inputs included ascorbate-mediated oxygen consumption in the vitreous, consumption at the posterior lens surface, and inflow from the retinal vasculature. Concentration-dependent relations were determined from experimental human data or estimated from animal studies, with the impact of all assumptions explored via parameter studies. Results. The model reproduced experimental data in humans, including oxygen partial pressure (Po2) gradients (≈15 mm Hg) across the anterior-posterior extent of the vitreous body, higher oxygen levels at the pars plana relative to the vitreous core, increases in Po2 near the lens after cataract surgery, and equilibration in the vitreous chamber following vitrectomy. Loss of the antioxidative capacity of ascorbate increases oxygen levels 3-fold at the lens surface. Homogeneous vitreous degeneration (liquefaction), but not partial posterior vitreous detachment, greatly increases oxygen exposure to the lens. Conclusions. Ascorbate content and the structure of the vitreous gel are critical determinants of lens oxygen exposure. Minimally invasive surgery and restoration of vitreous structure warrant further attention as strategies for preventing nuclear cataracts. PMID:24008409

  11. Oxygen Consumption by Postfermentation Wine Yeast Lees: Factors Affecting Its Rate and Extent under Oenological Conditions

    PubMed Central

    Müller, Jonas; Schmidt, Dominik

    2016-01-01

    Summary Postfermentation wine yeast lees show antioxidant properties based on their ability to consume dissolved oxygen. The oxygen consumption capacity of suspended yeast lees obtained after fermentations with six commercial active dry yeast strains was investigated in model, white and red wines using fluorescence-based oxygen sensors operating in a nondestructive way. In model solution, the oxygen consumption rate of yeast lees was shown to depend on their amount, yeast strain, sulfur dioxide and temperature. It is slightly lower in red than in white wines. It is strongly decreased by current levels of free sulfur dioxide, thus excluding the complementary use of both as antioxidants in wine. However, in 25 randomly sampled white wines produced under commercial conditions, the rate and extent of oxygen consumption during the first six months of postfermentation had no significant correlation with any of these interacting factors, making it difficult to predict the actual antioxidant effect of yeast lees. In these wines, yeast lees consumed 0 to 47% of the dissolved oxygen. Although total oxygen consumption capacity of yeast lees is not a limiting factor under commercial winemaking conditions, their oxygen consumption proceeds at a limited rate that reduces but cannot totally prevent concomitant chemical oxidation of the wine. PMID:28115896

  12. Systemic oxygen delivery and consumption in dogs with heartworm disease.

    PubMed

    Kitagawa, H; Kitoh, K; Yasuda, K; Sasaki, Y

    1995-02-01

    To investigate systemic oxygen (O2) transport, we calculated the oxygen delivery index (Do2I), oxygen consumption index (Vo2I) and oxygen extraction ratio (ER) in dogs with heartworm (HW) disease. The Do2I was 770 +/- 331 ml/min/kg in dogs mildly affected with pulmonary HW disease showing respiratory signs, mild anemia and mild cardiac insufficiency (n = 34); 238 +/- 155 ml/min/kg in dogs with ascitic pulmonary HW disease (n = 7); and 577 +/- 320 ml/min/kg in dogs with caval syndrome (CS) which survived (n = 15) or died (n = 7) after surgical HW removal. The Do2I was lower (P < 0.01) in all HW-infected groups, especially in ascites and CS-non-surviving dogs, than in HW-free dogs (n = 11, 1041 +/- 264 ml/min/kg). The Vo2I was higher in some mildly affected dogs (161 +/- 88 ml/min/kg), and lower (P < 0.01) in ascitic dogs (45 +/- 53 ml/min/kg) than in HW-free dogs (123 +/- 44 ml/min/kg). The ER was higher (P < 0.01) in all HW-infected groups than in HW-free dogs. The Do2I correlated significantly with Vo2I (r = 0.84, P < 0.01), and the Vo2I correlated significantly with ER (r = 0.48, P < 0.01). The Do2I correlated significantly with arterial O2 tension (r = 0.33), serum LDH (r = -0.46) and CK (r = -0.46) activities, serum urea nitrogen (UN, r = -0.32) and lactic acid (LA, r = -0.39) concentrations and cardiac index (r = 0.64).(ABSTRACT TRUNCATED AT 250 WORDS)

  13. Oxygen consumption of human heart cells in monolayer culture.

    PubMed

    Sekine, Kaori; Kagawa, Yuki; Maeyama, Erina; Ota, Hiroki; Haraguchi, Yuji; Matsuura, Katsuhisa; Shimizu, Tatsuya

    2014-09-26

    Tissue engineering in cardiovascular regenerative therapy requires the development of an efficient oxygen supply system for cell cultures. However, there are few studies which have examined human cardiomyocytes in terms of oxygen consumption and metabolism in culture. We developed an oxygen measurement system equipped with an oxygen microelectrode sensor and estimated the oxygen consumption rates (OCRs) by using the oxygen concentration profiles in culture medium. The heart is largely made up of cardiomyocytes, cardiac fibroblasts, and cardiac endothelial cells. Therefore, we measured the oxygen consumption of human induced pluripotent stem cell derived cardiomyocytes (hiPSC-CMs), cardiac fibroblasts, human cardiac microvascular endothelial cell and aortic smooth muscle cells. Then we made correlations with their metabolisms. In hiPSC-CMs, the value of the OCR was 0.71±0.38pmol/h/cell, whereas the glucose consumption rate and lactate production rate were 0.77±0.32pmol/h/cell and 1.61±0.70pmol/h/cell, respectively. These values differed significantly from those of the other cells in human heart. The metabolism of the cells that constitute human heart showed the molar ratio of lactate production to glucose consumption (L/G ratio) that ranged between 1.97 and 2.2. Although the energy metabolism in adult heart in vivo is reported to be aerobic, our data demonstrated a dominance of anaerobic glycolysis in an in vitro environment. With our measuring system, we clearly showed the differences in the metabolism of cells between in vivo and in vitro monolayer culture. Our results regarding cell OCRs and metabolism may be useful for future tissue engineering of human heart.

  14. Quantifying consumption rates of dissolved oxygen along bed forms

    NASA Astrophysics Data System (ADS)

    Boano, Fulvio; De Falco, Natalie; Arnon, Shai

    2016-04-01

    Streambed interfaces represent hotspots for nutrient transformations because they host different microbial species, and the evaluation of these reaction rates is important to assess the fate of nutrients in riverine environments. In this work we analyze a series of flume experiments on oxygen demand in dune-shaped hyporheic sediments under losing and gaining flow conditions. We employ a new modeling code to quantify oxygen consumption rates from observed vertical profiles of oxygen concentration. The code accounts for transport by molecular diffusion and water advection, and automatically determines the reaction rates that provide the best fit between observed and modeled concentration values. The results show that reaction rates are not uniformly distributed across the streambed, in agreement with the expected behavior predicted by hyporheic exchange theory. Oxygen consumption was found to be highly influenced by the presence of gaining or losing flow conditions, which controlled the delivery of labile DOC to streambed microorganisms.

  15. The jumbo squid, Dosidicus gigas (Ommastrephidae), living in oxygen minimum zones I: Oxygen consumption rates and critical oxygen partial pressures

    NASA Astrophysics Data System (ADS)

    Trueblood, Lloyd A.; Seibel, Brad A.

    2013-10-01

    Dosidicus gigas is a large, metabolically active, epipelagic squid known to undertake diel vertical migrations across a large temperature and oxygen gradient in the Eastern Pacific. Hypoxia is known to cause metabolic suppression in D. gigas. However, the precise oxygen level at which metabolic suppression sets in is unknown. Here we describe a novel ship-board swim tunnel respirometer that was used to measure metabolic rates and critical oxygen partial pressures (Pcrit) for adult squids (2-7kg). Metabolic rate measurements were validated by comparison to the activity of the Krebs cycle enzyme, citrate synthase, in mantle muscle tissue (2-17kg). We recorded a mean routine metabolic rate of 5.91μmolg-1h-1 at 10°C and 12.62μmolg-1h-1 at 20°C. A temperature coefficient, Q10, of 2.1 was calculated. D. gigas had Pcrits of 1.6 and 3.8kPa at 10 and 20°C, respectively. Oxygen consumption rate (MO2) varied with body mass (M) according to MO2=11.57M-0.12±0.03 at 10°C. Citrate synthase activity varied with body mass according to Y=9.32M-0.19±0.02.

  16. Nonoxidative Glucose Consumption during Focal Physiologic Neural Activity

    NASA Astrophysics Data System (ADS)

    Fox, Peter T.; Raichle, Marcus E.; Mintun, Mark A.; Dence, Carmen

    1988-07-01

    Brain glucose uptake, oxygen metabolism, and blood flow in humans were measured with positron emission tomography, and a resting-state molar ratio of oxygen to glucose consumption of 4.1:1 was obtained. Physiological neural activity, however, increased glucose uptake and blood flow much more (51 and 50 percent, respectively) than oxygen consumption (5 percent) and produced a molar ratio for the increases of 0.4:1. Transient increases in neural activity cause a tissue uptake of glucose in excess of that consumed by oxidative metabolism, acutely consume much less energy than previously believed, and regulate local blood flow for purposes other than oxidative metabolism.

  17. Ocular oxygen consumption during vitreoperfusion in the cat.

    PubMed Central

    Blair, N P

    2000-01-01

    PURPOSE: Little is known about the total ocular oxygen consumption rate (QO2) in human diseases. Reductions in QO2 may indicate the amount of tissue loss produced by conditions such as retinal ischemia. We sought a method to estimate QO2 that eventually could be used in patients during vitrectomy surgery. METHODS: We performed vitreoperfusion (perfusion of the vitreous cavity after vitrectomy) in 22 cat eyes with no ocular blood flow. The solution contained nutrients and a high partial pressure of oxygen (PO2). In 8 eyes we placed an oxygen electrode on the sclera, choroid, or outer retina to evaluate oxygen delivery from the vitreoperfusion solution (group 1). In 8 eyes the retinas were undisturbed (group 2), and in 6 eyes we excised the retinas (group 3). In groups 2 and 3 we estimated QO2 from the temporal decline of PO2 in the vitreoperfusion solution according to a pharmacokinetic model. RESULTS: Group 1 demonstrated oxygenation of the entire retina. The means and standard deviations of QO2 were 3.2 +/- 0.8 and 0.4 +/- 0.7 microL/min in groups 2 and 3, respectively, the difference being the retinal contribution, 88%. In group 2, metabolism accounted for an average of 82% of the oxygen loss from the vitreoperfusion solution, whereas flow and diffusion accounted for 13% and 5%, respectively. CONCLUSIONS: Ocular oxygen consumption can be estimated by means of vitreoperfusion. Further developments may allow measurements in patients during vitreous surgery to clarify the pathophysiology of their diseases and assess the amount of retinal tissue that has been lost. Images FIGURE 2 PMID:11190030

  18. Oxygen transport and consumption during experimental cardiopulmonary bypass using oxyfluor.

    PubMed

    Briceño, J C; Rincón, I E; Vélez, J F; Castro, I; Arcos, M I; Velásquez, C E

    1999-01-01

    To evaluate a perfluorocarbon based oxygen carrier (Oxyfluor), a porcine model of cardiopulmonary bypass (CPB) was implemented. Swine (30 kg) were subjected to 2 h of normothermic CPB using Oxyfluor (OF group, n = 8) or Ringer's lactate (RL group, n = 13) as the prime. Mean arterial pressure (MAP) was kept at 50 mm Hg, flow rate at 80 ml x min(-1) x kg(-1), and PaCO2 at 35 mm Hg. Hemodynamic, hematologic, fluid balance, and blood gasimetry variables were measured. Total body oxygen delivery (DO2), consumption (VO2), and the fractional contribution to delivery (FCD) and to consumption (FCC) of the red blood cells (RBC), PFC, and plasma phases were calculated. Mixed venous PO2 (PvO2) was significantly higher at 30 min and 1 h on CPB in the OF group than in the RL group. FCCRBC was significantly lower at 30 min, 1 h, and 90 min on CPB in the OF group than in the RL group. PvjO2, Ca-vO2, Ca-vj O2, and VO2 were slightly higher in the OF group than in the RL group. Tissue fluid accumulation was not alleviated with Oxyfluor, and tissue and brain acidosis were significantly increased in the OF group. This study presented evidence that Oxyfluor improved tissue oxygenation and total body oxygen consumption during experimental CPB. In addition, Oxyfluor reduced FCCRBC, increasing oxygen transport reserve of the RBC phase, which can be useful to reduce hypoxic events during CPB. Further research should be conducted to optimize PFC-OCs for use in CPB and to reduce secondary effects.

  19. Oxygen monitor for semi-closed rebreathers: design and use for estimating metabolic oxygen consumption

    NASA Astrophysics Data System (ADS)

    Clarke, John R.; Southerland, David

    1999-07-01

    Semi-closed circuit underwater breathing apparatus (UBA) provide a constant flow of mixed gas containing oxygen and nitrogen or helium to a diver. However, as a diver's work rate and metabolic oxygen consumption varies, the oxygen percentages within the UBA can change dramatically. Hence, even a resting diver can become hypoxic and become at risk for oxygen induced seizures. Conversely, a hard working diver can become hypoxic and lose consciousness. Unfortunately, current semi-closed UBA do not contain oxygen monitors. We describe a simple oxygen monitoring system designed and prototyped at the Navy Experimental Diving Unit. The main monitor components include a PIC microcontroller, analog-to-digital converter, bicolor LED, and oxygen sensor. The LED, affixed to the diver's mask is steady green if the oxygen partial pressure is within pre- defined acceptable limits. A more advanced monitor with a depth senor and additional computational circuitry could be used to estimate metabolic oxygen consumption. The computational algorithm uses the oxygen partial pressure and the diver's depth to compute O2 using the steady state solution of the differential equation describing oxygen concentrations within the UBA. Consequently, dive transients induce errors in the O2 estimation. To evalute these errors, we used a computer simulation of semi-closed circuit UBA dives to generate transient rich data as input to the estimation algorithm. A step change in simulated O2 elicits a monoexponential change in the estimated O2 with a time constant of 5 to 10 minutes. Methods for predicting error and providing a probable error indication to the diver are presented.

  20. [Endocellular regulation of oxygen consumption in the neurone of isolated crawfish stretch receptor].

    PubMed

    Zaguskin, S L; Zaguskina, L D; Zaguskina, S S

    2007-01-01

    Morphological correlations of functional regulation of oxygen consumption have been investigated in single of isolated crustacean stretch receptor neuron. The increase in oxygen consumption is promoted by: 1) redistribution of mitochondria and increase in cytochrome oxidase (CO) activity in mitochondria near to the plasmatic membrane; 2) coordination of mitochondria aggregation rhythms with pO2 rhythms in external environment of a cell; 3) reduction of the area with high CO and mitochondria activity, and reduction of the way of oxygen diffusion; 4) increase in CO activity gradient from periphery to the center of the neuron body; 5) carry of oxygen by water current under hydration of the neuron body, and cytoplasm dilution under transition of a part of gel in sol; 6) cyclic changes in the neuron body and hillock sizes ratio determining carry of oxygen by water current into the neuron body, oxygen absorption by mitochondria in the neuron body, and transition of the water released from oxygen from the neuron body into hillock and further into the external environment.

  1. Oxygen consumption by the isolated smooth muscle of guinea-pig taenia coli

    PubMed Central

    Bülbring, Edith; Golenhofen, K.

    1967-01-01

    1. An apparatus is described for simultaneous measurement of oxygen consumption and electrical and mechanical activity of isolated smooth muscle preparations. 2. The mean oxygen uptake by the isolated taenia coli of the guinea-pig was 10-20 μl./g/min. 3. In spontaneously active preparations, adrenaline (10-8-10-7 g/ml.) caused, with the inhibition of electrical and mechanical activity, a reduction in oxygen uptake. 4. After prolonged exposure to substrate free solution spontaneous activity ceased periodically. Adrenaline, when applied during a silent period, had no detectable effect on resting oxygen consumption, while readmission of substrate, either glucose or β-hydroxybutyrate, increased oxygen uptake. 5. Adrenaline did not modify the increased oxygen uptake during the initial recovery period when it was given simultaneously with the substrate. However, adrenaline shortened the time interval which elapsed from the addition of substrate until spontaneous activity was resumed, indicating an acceleration of the recovery process. ImagesFig. 2Fig. 3Fig. 4Fig. 5Fig. 6Fig. 7 PMID:16992285

  2. Excess postexercise oxygen consumption after aerobic exercise training.

    PubMed

    Sedlock, Darlene A; Lee, Man-Gyoon; Flynn, Michael G; Park, Kyung-Shin; Kamimori, Gary H

    2010-08-01

    Literature examining the effects of aerobic exercise training on excess postexercise oxygen consumption (EPOC) is sparse. In this study, 9 male participants (19-32 yr) trained (EX) for 12 wk, and 10 in a control group (CON) maintained normal activity. VO(2max), rectal temperature (T(re)), epinephrine, norepinephrine, free fatty acids (FFA), insulin, glucose, blood lactate (BLA), and EPOC were measured before (PRE) and after (POST) the intervention. EPOC at PRE was measured for 120 min after 30 min of treadmill running at 70% VO(2max). EX completed 2 EPOC trials at POST, i.e., at the same absolute (ABS) and relative (REL) intensity; 1 EPOC test for CON served as both the ABS and REL trial because no significant change in VO(2max) was noted. During the ABS trial, total EPOC decreased significantly (p < .01) from PRE (39.4 ± 3.6 kcal) to POST (31.7 ± 2.2 kcal). T(re), epinephrine, insulin, glucose, and BLA at end-exercise or during recovery were significantly lower and FFA significantly higher after training. Training did not significantly affect EPOC during the REL trial; however, epinephrine was significantly lower, and norepinephrine and FFA, significantly higher, at endexercise after training. Results indicate that EPOC varies as a function of relative rather than absolute metabolic stress and that training improves the efficiency of metabolic regulation during recovery from exercise. Mechanisms for the decreased magnitude of EPOC in the ABS trial include decreases in BLA, T(re), and perhaps epinephrine-mediated hepatic glucose production and insulin-mediated glucose uptake.

  3. Comparison of maximal oxygen consumption with oral and nasal breathing.

    PubMed

    Morton, A R; King, K; Papalia, S; Goodman, C; Turley, K R; Wilmore, J H

    1995-09-01

    The major cause of exercise-induced asthma (EIA) is thought to be the drying and cooling of the airways during the 'conditioning' of the inspired air. Nasal breathing increases the respiratory system's ability to warm and humidity the inspired air compared to oral breathing and reduces the drying and cooling effects of the increased ventilation during exercise. This will reduce the severity of EIA provoked by a given intensity and duration of exercise. The purpose of the study was to determine the exercise intensity (%VO2 max) at which healthy subjects, free from respiratory disease, could perform while breathing through the nose-only and to compare this with mouth-only and mouth plus nose breathing. Twenty subjects (11 males and 9 females) ranging from 18-55 years acted as subjects in this study. They were all non-smokers and non-asthmatic. At the time of the study, all subjects were involved in regular physical activity and were classified, by a physician, as free from nasal polyps or other nasal obstruction. The percentage decrease in maximal ventilation with nose-only breathing compare to mouth and mouth plus nose breathing was three times the percentage decrease in maximal oxygen consumption. The pattern of nose-only breathing at maximal work showed a small reduction in tidal volume and large reduction in breathing frequency. Nasal breathing resulted in a reduction in FEO2 and an increase in FECO2. While breathing through the nose-only, all subjects could attain a work intensity great enough to produce an aerobic training effect (based on heart rate and percentage of VO2 max).

  4. Oxygen consumption by mitochondria from an endotherm and an ectotherm.

    PubMed

    Berner, N J

    1999-09-01

    Comparisons of metabolic properties of mitochondria from an endothermic and an ectothermic vertebrate were performed. Oxygen (O2) consumption rates of liver mitochondria from laboratory mice and western fence lizard (Sceloporus occidentalis) were determined over a range of temperatures (10, 20, 30 and 37 degrees C) and in the presence of a variety of substrates. At 37 degrees C the O2 consumption rate of mouse mitochondria was 4-11 times higher than lizard mitochondria in the presence of five of eight substrates. This range of differences is similar to differences reported for O2 consumption of endothermic animals, tissues and cells over those of ectotherms. Thermal sensitivity of mitochondria was measured by calculation of Q10s for O2 consumption. Q10s were highest for mouse mitochondria overall. The range that showed the highest Q10s for the mouse mitochondria was 30-20 degrees C, whereas for the lizard mitochondria it was 20-10 degrees C. Thus, mitochondria from the ectotherm showed a lower degree of temperature sensitivity than did mitochondria from the endotherm. The preferred substrate for all mitochondria at all temperatures was succinate, but mouse mitochondria then showed some preference for alpha-ketoglutarate and citrate, whereas lizard mitochondria showed a preference for pyruvate and malate + pyruvate.

  5. A novel approach to the assess biotic oxygen consumption in marine sediment communities

    NASA Astrophysics Data System (ADS)

    Baranov, Victor; Queiros, Ana; Widdicombe, Stephen; Stephens, Nick; Lessin, Gennadi; Krause, Stefan; Lewandowski, Joerg

    2016-04-01

    Bioturbation , the mixing of the sediment matrix by burrowing animals impacts sediment metabolism, including respiration through redistribution of particulate organics, changes in bacterial biota diversity and acitivity, as well as via burrowing fauna's own metabolism. Bioturbation, reflecting faunal activity, is also a proxy for the general sedimentary ecosystem health, and can be impacted by many of emerging marine environmental issues such as ocean acidification, warming and the occurrence of heat waves. Sedimentary oxygen consumption is often taken as a proxy for the activity of bioturbating fauna, but determining baselines can be difficult because of the confounding effects of other fauna and microbes present in sediments, as well as irnorganic processes that consume oxygen. Limitations therefore exist in current methodologies, and numerous confounding factors are hampering progress in this area. Here, we present novel method for the assessment of sediment respiration which is expected to be affected only by the biogenic oxygen consumption (namely aerobic respiration). As long as tracer reduction "immune" to inorganic oxygen consumption, so that measurements using this method can be used, alongside traditional methods, to decouple biological respiration from inorganic oxygen consumption reactions. The tracer is easily detectable, non-toxic and can be applied in systems with constant oxygen supply. The latter allow for incubation without the need to to work with unsealed experimental units, bringing procedural advantage over traditional methods. Consequently assessed bioturbating fauna is not exposed to hypoxia and additional stress. Here, we had applied system for the first time to investigate impacts of a common North-Atlantic bioturbator, the brittle star Amphiura filiformis, - on respiration of marine sediments. Two series of experiments were conducted with animals and sediment collected from Cawsand Bay, Plymouth, UK Preliminary results show that tracer

  6. Oxygen consumption in the foraging honeybee depends on the reward rate at the food source.

    PubMed

    Moffatt, L; Núñez, J A

    1997-01-01

    Oxygen consumption of the honeybee Apis mellifera ligustica was measured as a function of the flow rate supply of sucrose solution at an automatic feeder located inside a respirometric chamber. Trained bees freely entered the respirometric chamber and collected the sucrose solution supplied. The mean value of the O2 consumption rate per visit increased with the sucrose flow rate, and for a given flow rate, with increasing locomotor activity. However, when no locomotor activity was displayed, O2 consumption also increased with increasing nectar flow rate. Crop load attained at the end of the visit showed a positive relationship with the nectar flow rate; however, for a given flow rate, O2 consumption showed either no correlation or a negative one with the final crop load attained. It is concluded that the energy expenditure of the foraging bee is controlled by a motivational drive whose intensity depends on the reward rate at the food source.

  7. Oxygen consumption and chloride secretion in rat distal colon isolated mucosa.

    PubMed

    Saraví, Fernando D; Saldeña, Teobaldo A; Carrera, Cristian A; Ibañez, Jorge E; Cincunegui, Liliana M; Carra, Graciela E

    2003-09-01

    The aerobic metabolic cost of chloride secretion was studied in rat distal colon isolated mucosa under several conditions by simultaneous measurement of short-circuit current and oxygen consumption under conditions that preserve vectorial ion transport. A low-chloride solution and the presence of bumetanide plus diphenylamine-2-carboxylate reduced short-circuit current by 75% and oxygen consumption by 25%. Ouabain decreased short-circuit current by 93% and oxygen consumption by 32%. Serotonin increased both variables by 59% and 33%, respectively. Bumetanide and diphenylamine-2-carboxylate reduced but did not abolish the effect of serotonin on short-circuit current and oxygen consumption. Changes in short-circuit current and oxygen consumption were linearly correlated under all conditions tested. It is concluded that, in the unstimulated rat distal colon epithelium, chloride secretion accounts for about 75% of ouabain-sensitive short-circuit current and oxygen consumption. Stimulated chloride secretion may demand over 40% of total oxygen consumption.

  8. Oxygen Consumption Rates of Bacteria under Nutrient-Limited Conditions

    PubMed Central

    Riedel, Timothy E.; Nealson, Kenneth H.; Finkel, Steven E.

    2013-01-01

    Many environments on Earth experience nutrient limitation and as a result have nongrowing or very slowly growing bacterial populations. To better understand bacterial respiration under environmentally relevant conditions, the effect of nutrient limitation on respiration rates of heterotrophic bacteria was measured. The oxygen consumption and population density of batch cultures of Escherichia coli K-12, Shewanella oneidensis MR-1, and Marinobacter aquaeolei VT8 were tracked for up to 200 days. The oxygen consumption per CFU (QO2) declined by more than 2 orders of magnitude for all three strains as they transitioned from nutrient-abundant log-phase growth to the nutrient-limited early stationary phase. The large reduction in QO2 from growth to stationary phase suggests that nutrient availability is an important factor in considering environmental respiration rates. Following the death phase, during the long-term stationary phase (LTSP), QO2 values of the surviving population increased with time and more cells were respiring than formed colonies. Within the respiring population, a subpopulation of highly respiring cells increased in abundance with time. Apparently, as cells enter LTSP, there is a viable but not culturable population whose bulk community and per cell respiration rates are dynamic. This result has a bearing on how minimal energy requirements are met, especially in nutrient-limited environments. The minimal QO2 rates support the extension of Kleiber's law to the mass of a bacterium (100-fg range). PMID:23770901

  9. Oxygen consumption rates and oxygen concentration in molt-4 cells and their mtDNA depleted (rho0) mutants.

    PubMed

    Shen, Jiangang; Khan, Nadeem; Lewis, Lionel D; Armand, Ray; Grinberg, Oleg; Demidenko, Eugene; Swartz, Harold

    2003-02-01

    Respiratory deficient cell lines are being increasingly used to elucidate the role of mitochondria and to understand the pathophysiology of mitochondrial genetic disease. We have investigated the oxygen consumption rates and oxygen concentration in wild-type (WT) and mitochondrial DNA (mtDNA) depleted (rho(0)) Molt-4 cells. Wild-type Molt-4 cells have moderate oxygen consumption rates, which were significantly reduced in the rho(0) cells. PCMB (p-chloromercurobenzoate) inhibited the oxygen consumption rates in both WT and rho(0) cells, whereas potassium cyanide decreased the oxygen consumption rates only in WT Molt-4 cells. Menadione sodium bisulfite (MSB) increased the oxygen consumption rates in both cell lines, whereas CCCP (carbonyl cyanide m-chlorophenylhydrazone) stimulated the oxygen consumption rates only in WT Molt-4 cells. Superoxide radical adducts were observed in both WT and rho(0) cells when stimulated with MSB. The formation of this adduct was inhibited by PCMB but not by potassium cyanide. These results suggest that the reactive oxygen species (ROS) induced by MSB were at least in part produced via a mitochondrial independent pathway. An oxygen gradient between the extra- and intracellular compartments was observed in WT Molt-4 cells, which further increased when cells were stimulated by CCCP and MSB. The results are consistent with our earlier findings suggesting that such oxygen gradients may be a general phenomenon found in most or all cell systems under appropriate conditions.

  10. Low levels of lipopolysaccharide modulate mitochondrial oxygen consumption in skeletal muscle

    PubMed Central

    Frisard, Madlyn I.; Wu, Yaru; McMillan, Ryan P.; Voelker, Kevin A.; Wahlberg, Kristin A.; Anderson, Angela S.; Boutagy, Nabil; Resendes, Kyle; Ravussin, Eric; Hulver, Matthew W.

    2014-01-01

    Objective We have previously demonstrated that activation of toll-like receptor 4 (TLR4) in skeletal muscle results in an increased reliance on glucose as an energy source and a concomitant decrease in fatty acid oxidation under basal conditions. Herein, we examined the effects of lipopolysaccharide (LPS), the primary ligand for TLR4, on mitochondrial oxygen consumption in skeletal muscle cell culture and isolated mitochondria. Materials/ methods Skeletal muscle cell cultures were exposed to LPS and oxygen consumption was assessed using a Seahorse Bioscience extracellular flux analyzer. Mice were also exposed to LPS and oxygen consumption was assessed in mitochondria isolated from skeletal muscle. Results Acute LPS exposure resulted in significant reductions in cyanide 4-(trifluoromethoxy) phenylhydrazone (FCCP)-stimulated maximal respiration (state 3u) and increased oligomycin induced state 4 (state 4O) respiration in C2C12 and human primary myotubes. These findings were observed in conjunction with increased mRNA of uncoupling protein 3 (UCP3), superoxide dismutase 2 (SOD2), and pyruvate dehydrogenase activity. The LPS-mediated changes in substrate oxidation and maximal mitochondrial respiration were prevented in the presence of the antioxidants N-acetylcysteine and catalase, suggesting a potential role of reactive oxygen species in mediating these effects. Mitochondria isolated from red gastrocnemius and quadriceps femoris muscle from mice injected with LPS also demonstrated reduced respiratory control ratio (RCR), and ADP- and FCCP-stimulated respiration. Conclusion LPS exposure in skeletal muscle alters mitochondrial oxygen consumption and substrate preference, which is absent when antioxidants are present. PMID:25528444

  11. Dynamics of oxygen supply and consumption during mainstream large-scale composting in China.

    PubMed

    Zeng, Jianfei; Shen, Xiuli; Han, Lujia; Huang, Guangqun

    2016-11-01

    This study characterized some physicochemical and biological parameters to systematically evaluate the dynamics of oxygen supply and consumption during large-scale trough composting in China. The results showed that long active phases, low maximum temperatures, low organic matter losses and high pore methane concentrations were observed in different composting layers. Pore oxygen concentrations in the top, middle and bottom layers maintained <5vol.% for 40, 42 and 45days, respectively, which accounted for more than 89% of the whole period. After each mechanical turning, oxygen was consumed at a stable respiration rate to a concentration of 5vol.% in no more than 99min and remained anaerobic in the subsequent static condition. The daily percentage of time under aerobic condition was no more than 14% of a single day. Therefore, improving FAS, adjusting aeration interval or combining turning with forced aeration was suggested to provide sufficient oxygen during composting.

  12. A Nomogram for Calculation of Oxygen Consumption from Minute Ventilation at Varying Workloads

    DTIC Science & Technology

    1979-07-01

    981~ IZ:;: I~ ~ TATL’MLNrh j.V Approved for public releasel ’ý [ I .Ad& - ABSTRACT .L Oxygen consumption can be difficult and time consuming to measure ...employed to evaluate diff-erent aspects of cardiopulmonary function (1). One of the principal measurements used to quantify response to exercise is...the oxygen consumption. The direct measurement of oxygen consumption is time consuming and cumbersome. Unfortunately, no reliable indirect method for

  13. EFFECTS OF RAPAMYCIN ON CEREBRAL OXYGEN SUPPLY AND CONSUMPTION DURING REPERFUSION AFTER CEREBRAL ISCHEMIA

    PubMed Central

    CHI, O. Z.; BARSOUM, S.; VEGA-COTTO, N. M.; JACINTO, E.; LIU, X.; MELLENDER, S. J.; WEISS, H. R.

    2016-01-01

    Abstract—Activation of the mammalian target of rapamycin (mTOR) leads to cell growth and survival. We tested the hypothesis that inhibition of mTOR would increase infarct size and decrease microregional O2 supply/consumption balance after cerebral ischemia–reperfusion. This was tested in isoflurane-anesthetized rats with middle cerebral artery blockade for 1 h and reperfusion for 2 h with and without rapamycin (20 mg/kg once daily for two days prior to ischemia). Regional cerebral blood flow was determined using a C14-iodoantipyrine autoradiographic technique. Regional small-vessel arterial and venous oxygen saturations were determined microspectrophotometrically. The control ischemic-reperfused cortex had a similar blood flow and O2 consumption to the contralateral cortex. However, microregional O2 supply/consumption balance was significantly reduced in the ischemic-reperfused cortex. Rapamycin significantly increased cerebral O2 consumption and further reduced O2 supply/consumption balance in the reperfused area. This was associated with an increased cortical infarct size (13.5 ± 0.8% control vs. 21.5 ± 0.9% rapamycin). We also found that ischemia–reperfusion increased AKT and S6K1 phosphorylation, while rapamycin decreased this phosphorylation in both the control and ischemic-reperfused cortex. This suggests that mTOR is important for not only cell survival, but also for the control of oxygen balance after cerebral ischemia–reperfusion. PMID:26742793

  14. Effects of rapamycin on cerebral oxygen supply and consumption during reperfusion after cerebral ischemia.

    PubMed

    Chi, O Z; Barsoum, S; Vega-Cotto, N M; Jacinto, E; Liu, X; Mellender, S J; Weiss, H R

    2016-03-01

    Activation of the mammalian target of rapamycin (mTOR) leads to cell growth and survival. We tested the hypothesis that inhibition of mTOR would increase infarct size and decrease microregional O2 supply/consumption balance after cerebral ischemia-reperfusion. This was tested in isoflurane-anesthetized rats with middle cerebral artery blockade for 1h and reperfusion for 2h with and without rapamycin (20mg/kg once daily for two days prior to ischemia). Regional cerebral blood flow was determined using a C(14)-iodoantipyrine autoradiographic technique. Regional small-vessel arterial and venous oxygen saturations were determined microspectrophotometrically. The control ischemic-reperfused cortex had a similar blood flow and O2 consumption to the contralateral cortex. However, microregional O2 supply/consumption balance was significantly reduced in the ischemic-reperfused cortex. Rapamycin significantly increased cerebral O2 consumption and further reduced O2 supply/consumption balance in the reperfused area. This was associated with an increased cortical infarct size (13.5±0.8% control vs. 21.5±0.9% rapamycin). We also found that ischemia-reperfusion increased AKT and S6K1 phosphorylation, while rapamycin decreased this phosphorylation in both the control and ischemic-reperfused cortex. This suggests that mTOR is important for not only cell survival, but also for the control of oxygen balance after cerebral ischemia-reperfusion.

  15. Detection of the oxygen consumption rate of migrating zebrafish by electrochemical equalization systems.

    PubMed

    Yasukawa, Tomoyuki; Koide, Masahiro; Tatarazako, Norihisa; Abe, Ryoko; Shiku, Hitoshi; Mizutani, Fumio; Matsue, Tomokazu

    2014-01-07

    A novel measurement system to determine oxygen consumption rates via respiration in migrating Zebrafish (Danio rerio) has been developed. A signal equalization system was adapted to detect oxygen in a chamber with one fish, because typical electrochemical techniques cannot measure respiration activities for migrating organisms. A closed chamber was fabricated using a pipet tip attached to a Pt electrode, and a columnar Vycor glass tip was used as the salt bridge. Pt electrode, which was attached to the chamber with one zebrafish, and Ag electrode were immersed in 10 mM potassium iodide (KI), and both the electrodes were connected externally to form a galvanic cell. Pt and Ag electrodes act as the cathode and anode to reduce oxygen and oxidize silver, respectively, allowing the deposition of insoluble silver iodide (AgI). The AgI acts as the signal source accumulated on the Ag electrode by conversion of oxygen. The amount of AgI deposited on the Ag electrode was determined by cathodic stripping voltammetry. The presence of zebrafish or its embryo led to a decrease in the stripping currents generated by a 10 min conversion of oxygen to AgI. The conversion of oxygen to AgI is disturbed by the migration of the zebrafish and allows the detection of different equalized signals corresponding to respiration activity. The oxygen consumption rates of the zebrafish and its embryo were estimated and determined to be ∼4.1 and 2.4 pmol·s(-1), respectively. The deposited AgI almost completely disappeared with a single stripping process. The signal equalization system provides a method to determine the respiration activities for migrating zebrafish and could be used to estimate environmental risk and for effective drug screening.

  16. A new method for measuring the oxygen diffusion constant and oxygen consumption rate of arteriolar walls.

    PubMed

    Sasaki, Nobuhiko; Horinouchi, Hirohisa; Ushiyama, Akira; Minamitani, Haruyuki

    2012-01-01

    Oxygen transport is believed to primarily occur via capillaries and depends on the oxygen tension gradient between the vessels and tissues. As blood flows along branching arterioles, the O(2) saturation drops, indicating either consumption or diffusion. The blood flow rate, the O(2) concentration gradient, and Krogh's O(2) diffusion constant (K) of the vessel wall are parameters affecting O(2)delivery. We devised a method for evaluating K of arteriolar wall in vivo using phosphorescence quenching microscopy to measure the partial pressure of oxygen in two areas almost simultaneously. The K value of arteriolar wall (inner diameter, 63.5 ± 11.9 μm; wall thickness, 18.0 ± 1.2 μm) was found to be 6.0 ± 1.2 × 10(-11) (cm(2)/s)(ml O(2)·cm(-3) tissue·mmHg(-1)). The arteriolar wall O(2) consumption rate (M) was 1.5 ± 0.1 (ml O(2)·100 cm(-3) tissue·min(-1)), as calculated using Krogh's diffusion equation. These results suggest that the arteriolar wall consumes a considerable proportion of the O(2) that diffuses through it.

  17. Consumption and diffusion of dissolved oxygen in sedimentary rocks.

    PubMed

    Manaka, M; Takeda, M

    2016-10-01

    Fe(II)-bearing minerals (e.g., biotite, chlorite, and pyrite) are a promising reducing agent for the consumption of atmospheric oxygen in repositories for the geological disposal of high-level radioactive waste. To estimate effective diffusion coefficients (De, in m(2)s(-1)) for dissolved oxygen (DO) and the reaction rates for the oxidation of Fe(II)-bearing minerals in a repository environment, we conducted diffusion-chemical reaction experiments using intact rock samples of Mizunami sedimentary rock. In addition, we conducted batch experiments on the oxidation of crushed sedimentary rock by DO in a closed system. From the results of the diffusion-chemical reaction experiments, we estimated the values of De for DO to lie within the range 2.69×10(-11)

  18. Consumption and diffusion of dissolved oxygen in sedimentary rocks

    NASA Astrophysics Data System (ADS)

    Manaka, M.; Takeda, M.

    2016-10-01

    Fe(II)-bearing minerals (e.g., biotite, chlorite, and pyrite) are a promising reducing agent for the consumption of atmospheric oxygen in repositories for the geological disposal of high-level radioactive waste. To estimate effective diffusion coefficients (De, in m2 s- 1) for dissolved oxygen (DO) and the reaction rates for the oxidation of Fe(II)-bearing minerals in a repository environment, we conducted diffusion-chemical reaction experiments using intact rock samples of Mizunami sedimentary rock. In addition, we conducted batch experiments on the oxidation of crushed sedimentary rock by DO in a closed system. From the results of the diffusion-chemical reaction experiments, we estimated the values of De for DO to lie within the range 2.69 × 10- 11 < De < 6.30 × 10- 11. Values of the second-order rate constant (k, in L mol-1 s- 1) were in the range - 3.66 < log k < - 2.83 (from batch experiments) and in the range - 3.87 < log k < - 2.22 (from diffusion-chemical reaction experiments). Many of these values are within the range of previously published rates for reaction between O2(aq) and Fe(II) surface complexes. The average value for the total concentration of reactive sites was about 10- 4 mol m- 2 from batch experiments. In contrast, the value of reactive sites estimated from the physical surface area was about 10- 8 mol m- 2, indicating that the reaction within intact rock is limited to the sites that originally existed with accessible porosity for O2(aq). This difference arises because the batch experiments used powdered samples, meaning that new sites which formed during milling were added to the original reaction sites. On the basis of these observations and interpretations, diffusion-chemical reaction experiments make it possible to determine the values of the kinetic parameter and diffusivity for an intact rock sample simultaneously.

  19. On-line monitoring of oxygen as a method to qualify the oxygen consumption rate of wines.

    PubMed

    Nevares, Ignacio; Martínez-Martínez, Víctor; Martínez-Gil, Ana; Martín, Roberto; Laurie, V Felipe; Del Álamo-Sanza, María

    2017-08-15

    Measuring the oxygen content during winemaking and bottle storage has become increasingly popular due to its impact on the sensory quality and longevity of wines. Nevertheless, only a few attempts to describe the kinetics of oxygen consumption based on the chemical composition of wines have been published. Therefore, this study proposes firstly a new fitting approach describing oxygen consuming kinetics and secondly the use of an Artificial Neural Network approach to describe and compare the oxygen avidity of wines according to their basic chemical composition (i.e. the content of ethanol, titratable acidity, total sulfur dioxide, total phenolics, iron and copper). The results showed no significant differences in the oxygen consumption rate between white and red wines, and allowed the sorting of the wines studied according to their oxygen consumption rate.

  20. Oxygen consumption and temperature control of premature infants in a double-wall incubator.

    PubMed

    Marks, K H; Lee, C A; Bolan, C D; Maisels, M J

    1981-07-01

    The effects of a double wall in a forced convection-heated incubator were studied on ten naked, nondistressed, premature infants by measuring their mean skin temperature, esophageal temperature, and oxygen consumption when they were in thermal steady state, with, and without, the double wall in place. The incubator air temperature was maintained within the recommended thermoneutral zone during the consecutive paired experiments. Ambient room temperature and relative humidity were constant and the infant's activity (quiet sleep) and postprandial state were the same in both conditions. Together with a significant rise in operative temperature (P less than .05) induced by the double wall (accounted for by a 0.9 C mean increased in incubator wall temperature nearest the baby), their mean skin temperature and esophageal temperatures increased (P less than .025), while a decrease in oxygen consumption occurred in nine of the ten infants (P less than .05). These findings suggest that the double wall reduced radiant and total heat loss from the baby by diminishing the temperature gradient between the skin and incubator surfaces and that metabolic heat production (oxygen consumption) was reduced when the double wall was in place.

  1. Determining oxygen consumption rate and asphyxiation point in Chanodichthys mongolicus using an improved respirometer chamber

    NASA Astrophysics Data System (ADS)

    Geng, Longwu; Jiang, Haifeng; Tong, Guangxiang; Xu, Wei

    2017-03-01

    Knowledge of oxygen consumption rates and asphyxiation points in fish is important to determine appropriate stocking and water quality management in aquaculture. The oxygen consumption rate and asphyxiation point in Chanodichthys mongolicus were detected under laboratory conditions using an improved respirometer chamber. The results revealed that more accurate estimates can be obtained by adjusting the volume of the respirometer chamber, which may avoid system errors caused by either repeatedly adjusting fish density or selecting different equipment specifications. The oxygen consumption rate and asphyxiation point of C. mongolicus increased with increasing water temperature and decreasing fish size. Changes in the C. mongolicus oxygen consumption rate were divided into three stages at water temperatures of 11-33°C: (1) a low temperature oxygen consumption rate stage when water temperature was 11-19°C, (2) the optimum temperature oxygen consumption rate stage when water temperature was 19-23°C, and (3) a high temperature oxygen consumption rate stage when water temperature was > 27°C. The temperature quotients (Q10) obtained suggested that C. mongolicus preferred a temperature range of 19-23°C. At 19°C, C. mongolicus exhibited higher oxygen consumption rates during the day when the maximum values were observed at 10:00 and 14:00 than at night when the minimum occurred at 02:00.

  2. Determining oxygen consumption rate and asphyxiation point in Chanodichthys mongolicus using an improved respirometer chamber

    NASA Astrophysics Data System (ADS)

    Geng, Longwu; Jiang, Haifeng; Tong, Guangxiang; Xu, Wei

    2016-05-01

    Knowledge of oxygen consumption rates and asphyxiation points in fish is important to determine appropriate stocking and water quality management in aquaculture. The oxygen consumption rate and asphyxiation point in Chanodichthys mongolicus were detected under laboratory conditions using an improved respirometer chamber. The results revealed that more accurate estimates can be obtained by adjusting the volume of the respirometer chamber, which may avoid system errors caused by either repeatedly adjusting fish density or selecting different equipment specifications. The oxygen consumption rate and asphyxiation point of C. mongolicus increased with increasing water temperature and decreasing fish size. Changes in the C. mongolicus oxygen consumption rate were divided into three stages at water temperatures of 11-33°C: (1) a low temperature oxygen consumption rate stage when water temperature was 11-19°C, (2) the optimum temperature oxygen consumption rate stage when water temperature was 19-23°C, and (3) a high temperature oxygen consumption rate stage when water temperature was > 27°C. The temperature quotients (Q10) obtained suggested that C. mongolicus preferred a temperature range of 19-23°C. At 19°C, C. mongolicus exhibited higher oxygen consumption rates during the day when the maximum values were observed at 10:00 and 14:00 than at night when the minimum occurred at 02:00.

  3. Phylogenetic analysis of mammalian maximal oxygen consumption during exercise.

    PubMed

    Dlugosz, Elizabeth M; Chappell, Mark A; Meek, Thomas H; Szafranska, Paulina A; Zub, Karol; Konarzewski, Marek; Jones, James H; Bicudo, J Eduardo P W; Nespolo, Roberto F; Careau, Vincent; Garland, Theodore

    2013-12-15

    We compiled published values of mammalian maximum oxygen consumption during exercise ( ) and supplemented these data with new measurements of for the largest rodent (capybara), 20 species of smaller-bodied rodents, two species of weasels and one small marsupial. Many of the new data were obtained with running-wheel respirometers instead of the treadmill systems used in most previous measurements of mammalian . We used both conventional and phylogenetically informed allometric regression models to analyze of 77 'species' (including subspecies or separate populations within species) in relation to body size, phylogeny, diet and measurement method. Both body mass and allometrically mass-corrected showed highly significant phylogenetic signals (i.e. related species tended to resemble each other). The Akaike information criterion corrected for sample size was used to compare 27 candidate models predicting (all of which included body mass). In addition to mass, the two best-fitting models (cumulative Akaike weight=0.93) included dummy variables coding for three species previously shown to have high (pronghorn, horse and a bat), and incorporated a transformation of the phylogenetic branch lengths under an Ornstein-Uhlenbeck model of residual variation (thus indicating phylogenetic signal in the residuals). We found no statistical difference between wheel- and treadmill-elicited values, and diet had no predictive ability for . Averaged across all models, the allometric scaling exponent was 0.839, with 95% confidence limits of 0.795 and 0.883, which does not provide support for a scaling exponent of 0.67, 0.75 or unity.

  4. Maximal Oxygen Consumption Is Reduced in Aquaporin-1 Knockout Mice

    PubMed Central

    Al-Samir, Samer; Goossens, Dominique; Cartron, Jean-Pierre; Nielsen, Søren; Scherbarth, Frank; Steinlechner, Stephan; Gros, Gerolf; Endeward, Volker

    2016-01-01

    We have measured maximal oxygen consumption (V˙O2,max) of mice lacking one or two of the established mouse red-cell CO2 channels AQP1, AQP9, and Rhag. We intended to study whether these proteins, by acting as channels for O2, determine O2 exchange in the lung and in the periphery. We found that V˙O2,max as determined by the Helox technique is reduced by ~16%, when AQP1 is knocked out, but not when AQP9 or Rhag are lacking. This figure holds for animals respiring normoxic as well as hypoxic gas mixtures. To see whether the reduction of V˙O2,max is due to impaired O2 uptake in the lung, we measured carotid arterial O2 saturation (SO2) by pulse oximetry. Neither under normoxic (inspiratory O2 21%) nor under hypoxic conditions (11% O2) is there a difference in SO2 between AQP1null and WT mice, suggesting that AQP1 is not critical for O2 uptake in the lung. The fact that the % reduction of V˙O2,max is identical in normoxia and hypoxia indicates moreover that the limitation of V˙O2,max is not due to an O2 diffusion problem, neither in the lung nor in the periphery. Instead, it appears likely that AQP1null animals exhibit a reduced V˙O2,max due to the reduced wall thickness and muscle mass of the left ventricles of their hearts, as reported previously. We conclude that very likely the properties of the hearts of AQP1 knockout mice cause a reduced maximal cardiac output and thus cause a reduced V˙O2,max, which constitutes a new phenotype of these mice. PMID:27559317

  5. Hyperoxia Reduces Oxygen Consumption in Children with Pulmonary Hypertension.

    PubMed

    Guo, Long; Bobhate, Prashant; Kumar, Shine; Vadlamudi, Karunakar; Kaddoura, Tarek; Elgendi, Mohamed; Holinski, Paula; Coe, James Y; Rutledge, Jennifer; Adatia, Ian

    2017-03-18

    High inspired oxygen concentration (FiO2 > 0.85) is administered to test pulmonary vascular reactivity in children with pulmonary hypertension (PH). It is difficult to measure oxygen consumption (VO2) if the subject is breathing a hyperoxic gas mixture so the assumption is made that baseline VO2 does not change. We hypothesized that hyperoxia changes VO2. We sought to compare the VO2 measured by a thermodilution catheter in room air and hyperoxia. A retrospective review of the hemodynamic data obtained in children with PH who underwent cardiac catheterization was conducted between 2009 and 2014. Cardiac index (CI) was measured by a thermodilution catheter in room air and hyperoxia. VO2 was calculated using the equation CI = VO2/arterial-venous oxygen content difference. Data were available in 24 subjects (males = 10), with median age 8.3 years (0.8-17.6 years), weight 23.3 kg (7.5-95 kg), and body surface area 0.9 m(2) (0.4-2.0 m(2)). In hyperoxia compared with room air, we measured decreased VO2 (154 ± 38 to 136 ± 34 ml/min/m(2), p = 0.007), heart rate (91 [Formula: see text] 20 to 83 [Formula: see text] 21 beats/minute, p=0.005), mean pulmonary artery pressure (41 [Formula: see text] 16 to 35 [Formula: see text] 14 mmHg, p=0.024), CI (3.6 [Formula: see text] 0.8 to 3.3 [Formula: see text] 0.9 L/min/m(2), p = 0.03), pulmonary vascular resistance (9 [Formula: see text] 6 to 7 [Formula: see text] 3 WU m(2), p = 0.029), increased mean aortic (61 [Formula: see text] 11 to 67 [Formula: see text] 11 mmHg, p = 0.005), pulmonary artery wedge pressures (11 [Formula: see text] 8 to 13 [Formula: see text] 9 mmHg, p = 0.006), and systemic vascular resistance (12 [Formula: see text] 6 to 20 [Formula: see text] 7 WU m(2), p=0.001). Hyperoxia decreased VO2 and CI and caused pulmonary vasodilation and systemic vasoconstriction in children with PH. The assumption that VO

  6. Daily cycle in oxygen consumption by the sea anemone Nematostella vectensis Stephenson

    PubMed Central

    Maas, Amy E.; Jones, Ian T.; Reitzel, Adam M.; Tarrant, Ann M.

    2016-01-01

    ABSTRACT In bilaterian animals, the circadian clock is intimately involved in regulating energetic metabolism. Although cnidarians exhibit diel behavioral rhythms including cycles in locomotor activity, tentacle extension and spawning, daily cycles in cnidarian metabolism have not been described. To explore a possible circadian metabolic cycle, we maintained the anemone Nematostella vectensis in a 12 h light/dark cycle, a reversed light cycle, or in constant darkness. Oxygen consumption rates were measured at intervals using an optical oxygen meter. Respiration rates responded to entrainment with higher rates during light periods. During a second experiment with higher temporal resolution, respiration rates peaked late in the light period. The diel pattern could be detected after six days in constant darkness. Together, our results suggest that respiration rates in Nematostella exhibit a daily cycle that may be under circadian control and that the cycle in respiration rate is not driven by the previously described nocturnal increase in locomotor activity in this species. PMID:26772201

  7. Daily cycle in oxygen consumption by the sea anemone Nematostella vectensis Stephenson.

    PubMed

    Maas, Amy E; Jones, Ian T; Reitzel, Adam M; Tarrant, Ann M

    2016-01-15

    In bilaterian animals, the circadian clock is intimately involved in regulating energetic metabolism. Although cnidarians exhibit diel behavioral rhythms including cycles in locomotor activity, tentacle extension and spawning, daily cycles in cnidarian metabolism have not been described. To explore a possible circadian metabolic cycle, we maintained the anemone Nematostella vectensis in a 12 h light/dark cycle, a reversed light cycle, or in constant darkness. Oxygen consumption rates were measured at intervals using an optical oxygen meter. Respiration rates responded to entrainment with higher rates during light periods. During a second experiment with higher temporal resolution, respiration rates peaked late in the light period. The diel pattern could be detected after six days in constant darkness. Together, our results suggest that respiration rates in Nematostella exhibit a daily cycle that may be under circadian control and that the cycle in respiration rate is not driven by the previously described nocturnal increase in locomotor activity in this species.

  8. Seasonal and ontogenetic changes modulate oxygen consumption and antioxidant defenses in the cutlassfish Trichiurus lepturus (Pisces, Trichiuridae).

    PubMed

    Filho, Danilo Wilhelm; Fraga, César G; Boveris, Alberto

    2017-03-24

    Several oxidative stress markers and liver oxygen consumption were measured in different tissues of the marine fish Trichiurus lepturus in late summer and late winter, as well as in juveniles and adult females. Oxygen consumption in liver, superoxide dismutase (SOD) and catalase (CAT) activity in liver, red cells, lens and roe, vitamin E, ubiquinol10, β-carotene in liver, red cells, and roe, as well as contents of reduced glutathione (GSH) and lipoperoxidation (TBARS) in red cells were evaluated. Regarding ontogeny, compared to adult fish, juveniles showed significant higher SOD activity in liver and lens, as well as higher liver contents of vitamin E. In contrast, adult females showed higher contents of vitamin E in roe, ubiquinol10 in liver and roe, and higher GSH levels in red cells, while the other markers remained unchanged. Regarding seasonal changes, no differences were detected in adult females for liver CAT and ubiquinol10, CAT in roe, vitamin E in roe and in red cells, liver and red cell ubiquinol10, and in GSH in red cells. However, and coinciding with the spawning period of late summer, liver oxygen consumption, SOD and CAT activity and ubiquinol10 contents in roe and SOD activity in red cells, and red cell TBARS contents were higher compared to late winter. These temporal antioxidant adjustments of Trichiurus lepturus seem to be parallel to the higher oxygen consumption typical of juvenile forms and also to the intense spawning and foraging activities of adult females in late summer.

  9. High-CHO diet increases post-exercise oxygen consumption after a supramaximal exercise bout

    PubMed Central

    Ferreira, G.A.; Bertuzzi, R.; De-Oliveira, F.R.; Pires, F.O.; Lima-Silva, A.E.

    2016-01-01

    We investigated if carbohydrate (CHO) availability could affect the excess post-exercise oxygen consumption (EPOC) after a single supramaximal exercise bout. Five physically active men cycled at 115% of peak oxygen uptake (V̇O2 peak) until exhaustion with low or high pre-exercise CHO availability. The endogenous CHO stores were manipulated by performing a glycogen-depletion exercise protocol 48 h before the trial, followed by 48 h consuming either a low- (10% CHO) or a high-CHO (80% CHO) diet regime. Compared to the low-CHO diet, the high-CHO diet increased time to exhaustion (3.0±0.6 min vs 4.4±0.6, respectively, P=0.01) and the total O2 consumption during the exercise (6.9±0.9 L and 11.3±2.1, respectively, P=0.01). This was accompanied by a higher EPOC magnitude (4.6±1.8 L vs 6.2±2.8, respectively, P=0.03) and a greater total O2 consumption throughout the session (exercise+recovery: 11.5±2.5 L vs 17.5±4.2, respectively, P=0.01). These results suggest that a single bout of supramaximal exercise performed with high CHO availability increases both exercise and post-exercise energy expenditure. PMID:27783812

  10. High-CHO diet increases post-exercise oxygen consumption after a supramaximal exercise bout.

    PubMed

    Ferreira, G A; Bertuzzi, R; De-Oliveira, F R; Pires, F O; Lima-Silva, A E

    2016-10-24

    We investigated if carbohydrate (CHO) availability could affect the excess post-exercise oxygen consumption (EPOC) after a single supramaximal exercise bout. Five physically active men cycled at 115% of peak oxygen uptake (V̇O2 peak) until exhaustion with low or high pre-exercise CHO availability. The endogenous CHO stores were manipulated by performing a glycogen-depletion exercise protocol 48 h before the trial, followed by 48 h consuming either a low- (10% CHO) or a high-CHO (80% CHO) diet regime. Compared to the low-CHO diet, the high-CHO diet increased time to exhaustion (3.0±0.6 min vs 4.4±0.6, respectively, P=0.01) and the total O2 consumption during the exercise (6.9±0.9 L and 11.3±2.1, respectively, P=0.01). This was accompanied by a higher EPOC magnitude (4.6±1.8 L vs 6.2±2.8, respectively, P=0.03) and a greater total O2 consumption throughout the session (exercise+recovery: 11.5±2.5 L vs 17.5±4.2, respectively, P=0.01). These results suggest that a single bout of supramaximal exercise performed with high CHO availability increases both exercise and post-exercise energy expenditure.

  11. A New Approach for Measuring Single-Cell Oxygen Consumption Rates

    PubMed Central

    Molter, Timothy W.; McQuaide, Sarah C.; Holl, Mark R.; Meldrum, Deirdre R.; Dragavon, Joseph M.; Anderson, Judith B.; Young, A. Cody; Burgess, Lloyd W.; Lidstrom, Mary E.

    2010-01-01

    A novel system that has enabled the measurement of single-cell oxygen consumption rates is presented. The experimental apparatus includes a temperature controlled environmental chamber, an array of microwells etched in glass, and a lid actuator used to seal cells in the microwells. Each microwell contains an oxygen sensitive platinum phosphor sensor used to monitor the cellular metabolic rates. Custom automation software controls the digital image data collection for oxygen sensor measurements, which are analyzed using an image-processing program to yield the oxygen concentration within each microwell versus time. Two proof-of-concept experiments produced oxygen consumption rate measurements for A549 human epithelial lung cancer cells of 5.39 and 5.27 fmol/min/cell, closely matching published oxygen consumption rates for bulk A549 populations. PMID:21057593

  12. Coupling Oxygen Consumption with Hydrocarbon Oxidation in Bacterial Multicomponent Monooxygenases.

    PubMed

    Wang, Weixue; Liang, Alexandria D; Lippard, Stephen J

    2015-09-15

    A fundamental goal in catalysis is the coupling of multiple reactions to yield a desired product. Enzymes have evolved elegant approaches to address this grand challenge. A salient example is the biological conversion of methane to methanol catalyzed by soluble methane monooxygenase (sMMO), a member of the bacterial multicomponent monooxygenase (BMM) superfamily. sMMO is a dynamic protein complex of three components: a hydroxylase, a reductase, and a regulatory protein. The active site, a carboxylate-rich non-heme diiron center, is buried inside the 251 kDa hydroxylase component. The enzyme processes four substrates: O2, protons, electrons, and methane. To couple O2 activation to methane oxidation, timely control of substrate access to the active site is critical. Recent studies of sMMO, as well as its homologues in the BMM superfamily, have begun to unravel the mechanism. The emerging and unifying picture reveals that each substrate gains access to the active site along a specific pathway through the hydroxylase. Electrons and protons are delivered via a three-amino-acid pore located adjacent to the diiron center; O2 migrates via a series of hydrophobic cavities; and hydrocarbon substrates reach the active site through a channel or linked set of cavities. The gating of these pathways mediates entry of each substrate to the diiron active site in a timed sequence and is coordinated by dynamic interactions with the other component proteins. The result is coupling of dioxygen consumption with hydrocarbon oxidation, avoiding unproductive oxidation of the reductant rather than the desired hydrocarbon. To initiate catalysis, the reductase delivers two electrons to the diiron(III) center by binding over the pore of the hydroxylase. The regulatory component then displaces the reductase, docking onto the same surface of the hydroxylase. Formation of the hydroxylase-regulatory component complex (i) induces conformational changes of pore residues that may bring protons to the

  13. Effect of Solcoseryl on cadaveric split-skin oxygen consumption during 4 degrees C storage and in frozen biopsies.

    PubMed

    Alsbjörn, B F; Jensen, M G; Sørensen, B

    1989-04-01

    Oxygen consumption rate in cadaveric split-skin biopsies was investigated. Biopsies were harvested at different times postmortem and stored at different temperatures in either Solcoseryl (a protein-free bovine hemodialysate) or placebo-containing media. During the first week of storage Solcoseryl had no influence on oxygen consumption. However, in the second and third weeks the oxygen consumption was improved by Solcoseryl.

  14. Oxygen consumption along bed forms under losing and gaining streamflow conditions

    NASA Astrophysics Data System (ADS)

    De Falco, Natalie; Arnon, Shai; Boano, Fulvio

    2016-04-01

    Recent studies have demonstrated that bed forms are the most significant geomorphological structure that drives hyporheic exchange and biogeochemical processes in stream networks. Other studies also demonstrated that due to the hyporheic flow patterns within bed form, biogeochemical processes do not occur uniformly along and within the bed forms. The objective of this work was to systematically evaluate how losing or gaining flow conditions affect oxygen consumption by biofilm along sandy bed forms. We measured the effects of losing and gaining flow conditions on oxygen consumption by combining modeling and experiments in a novel laboratory flume system that enable the control of losing and gaining fluxes. Oxygen consumption was measured after growing a benthic biofilm fed with Sodium Benzoate (as a carbon source) and measuring the distribution of oxygen in the streambed with microelectrodes. The experimental results were analyzed using a novel code that calculates vertical profiles of reaction rates in the presence of hyporheic water fluxes. These experimental observations and modeling revealed that oxygen distribution varied along the bed forms. The zone of oxygen consumption (i.e. depth of penetration) was the largest at the upstream side of the bed form and the smallest in the lee side (at the lowest part of the bed form), regardless of the flow conditions. Also, the zone of oxygen consumption was the largest under losing conditions, the smallest under gaining conditions, and in-between under neutral conditions. The distribution of oxygen consumption rates determined with our new model will be also discussed. Our preliminary results enable us to show the importance of the coupling between flow conditions and oxygen consumption along bed forms and are expected to improve our understanding of nutrient cycling in streams.

  15. Fish oil reduces heart rate and oxygen consumption during exercise.

    PubMed

    Peoples, Gregory E; McLennan, Peter L; Howe, Peter R C; Groeller, Herbert

    2008-12-01

    Dietary omega-3 polyunsaturated fatty acids (PUFAs) are readily incorporated into heart and skeletal muscle membranes where, in the heart, animal studies show they reduce O2 consumption. To test the hypothesis that omega-3 PUFAs alter O2 efficiency in humans, the effects of fish oil (FO) supplementation on O2 consumption during exercise were evaluated. Sixteen well-trained men (cyclists), randomly assigned to receive 8 x 1 g capsules per day of olive oil (control) or FO for 8 weeks in a double-blind, parallel design, completed the study (control: n = 7, age 27.1 +/- 2.7 years; FO: n = 9, age 23.2 +/- 1.2 years). Subjects used an electronically braked cycle ergometer to complete peak O2 consumption tests (VO 2peak) and sustained submaximal exercise tests at 55% of peak workload (from the VO 2peak test) before and after supplementation. Whole-body O2 consumption and indirect measurements of myocardial O2 consumption [heart rate and rate pressure product (RPP)] were assessed. FO supplementation increased omega-3 PUFA content of erythrocyte cell membranes. There were no differences in VO 2peak (mL kg(-1) min(-1)) (control: pre 66.8 +/- 2.4, post 67.2 +/- 2.3; FO: pre 68.3 +/- 1.4, post 67.2 +/- 1.2) or peak workload after supplementation. The FO supplementation lowered heart rate (including peak heart rate) during incremental workloads to exhaustion (P < 0.05). In addition, the FO supplementation lowered steady-state submaximal exercise heart rate, whole-body O2 consumption, and RPP (P < 0.01). Time to voluntary fatigue was not altered by FO supplementation. This study indicates that FOs may act within the healthy heart and skeletal muscle to reduce both whole-body and myocardial O2 demand during exercise, without a decrement in performance.

  16. Metabolically Derived Human Ventilation Rates: A Revised Approach Based Upon Oxygen Consumption Rates (Final Report, 2009)

    EPA Science Inventory

    EPA announced the availability of the final report, Metabolically Derived Human Ventilation Rates: A Revised Approach Based Upon Oxygen Consumption Rates. This report provides a revised approach for calculating an individual's ventilation rate directly from their oxygen c...

  17. Oxygen Consumption during Underwater Fin Swimming Wearing Dry Suits

    DTIC Science & Technology

    1990-05-01

    ensur-d Hydration was encouraged and any exercise 2 or diving within 24 hours was prevented to avoid dehydration. Caffeine consumption was kept to a...experiment in maintaining homeostasis in a long distance underwater swimmer . U.S. Naval Medical Research Institute (Bethesda, MD) Report MR 005.13-4001.06, No

  18. A comparison between laddermill and treadmill maximal oxygen consumption.

    PubMed

    Montoliu, M A; Gonzalez, V; Rodriguez, B; Palenciano, L

    1997-01-01

    Maximal O2 consumption (VO2max) is an index of the capacity for work over an 8 h workshift. Running on a treadmill is the most common method of eliciting it, because it is an easy, natural exercise, and also, by engaging large muscle masses, larger values are obtained than by other exercises. It has been claimed, however, that climbing a laddermill elicits a still higher VO2max, probably because more muscle mass is apparently engaged (legs + arms) than on the treadmill (legs only). However, no data in support of this claim have been presented. To see if differences exist, we conducted progressive tests to exhaustion on 44 active coal miners, on a laddermill (slant angle 75 degrees, vertical separation of rungs 25 cm) and on a treadmill set at a 5% gradient. The subjects' mean (range) age was 37.4 (31-47) years, height 174.3 (164-187) cm, body mass 82.2 (64-103) kg. Mean (range) VO2max on the laddermill was 2.83 (2.31-3.64) l x min(-1) and 2.98 (2.03-4.22) l x min(-1) on the treadmill (P < 0.01, Student's paired t-test). Mean (range) of maximal heart rate f(cmax) (beats x min(-1)) on the laddermill and on the treadmill were 181.0 (161-194) and 181.3 (162-195), respectively (NS). Laddermill:treadmill VO2max was negatively related to both treadmill VO2max x kg body mass(-1) (r = -0.410, P < 0.01) and body mass (r = -0.409, P < 0.01). Laddermill:treadmill f(cmax) was negatively related to treadmill VO2max x kg body mass(-1) (r = -0.367, P < 0.02) but not to body mass (r = -0.166, P = 0.28). Our data would suggest that for fitter subjects (VO2max > 2.6 l x min or VO2max kg body mass(-1) > 30 ml x min(-1) x kg(-1)) and/or higher body masses (> 70 kg), exercise on the laddermill is not dynamic enough to elicit a VO2max as high as on the treadmill. For such subjects, treadmill VO2max would overestimate exercise capacity for jobs requiring a fair amount of climbing ladders or ladder-like structures.

  19. UV radiation impacts body weight, oxygen consumption, and shelter selection in the intertidal vertebrate Girella laevifrons.

    PubMed

    Pulgar, José; Waldisperg, Melany; Galbán-Malagón, Cristóbal; Maturana, Diego; Pulgar, Victor M; Aldana, Marcela

    2017-02-01

    The amount of ultraviolet (UV) radiation reaching the earth's surface has increased due to ozone layer depletion, and this fact represents an opportunity to evaluate the physiological and behavioral responses of animals to this global-scale stressor. The transitory fish Girella laevifrons inhabits pools in the upper intertidal zone, which is characterized by exposure to a wide range of stressors, including UV radiation. We documented the field magnitude and the impact of UV radiation on oxygen consumption, body mass variations, and shelter (rocky and algae) selection by G. laevifrons. UV-exposed animals showed increased oxygen consumption, slower body weight increase, and active rocky shelter selection. Control fish showed increased body weight and no evident shelter selection. The results indicated that UV exposure affects fish energetic balance and habitat selection to favor greater protection against radiation. Increased UV exposure in transitory intertidal animals at levels observed in upper intertidal pools may alter the residency time of fish before leaving for the subtidal zone. Therefore, UV-induced energetic changes may determine animal performance and ontogenetic physiological itineraries, whereas shelter quality might determine habitat use.

  20. Active oxygen doctors the evidence.

    PubMed

    Castelló, Ana; Francès, Francesc; Corella, Dolores; Verdú, Fernando

    2009-02-01

    Investigation at the scene of a crime begins with the search for clues. In the case of bloodstains, the most frequently used reagents are luminol and reduced phenolphthalein (or phenolphthalin that is also known as the Kastle-Meyer colour test). The limitations of these reagents have been studied and are well known. Household cleaning products have evolved with the times, and new products with active oxygen are currently widely used, as they are considered to be highly efficient at removing all kinds of stains on a wide range of surfaces. In this study, we investigated the possible effects of these new cleaning products on latent bloodstains that may be left at a scene of a crime. To do so, various fabrics were stained with blood and then washed using cleaning agents containing active oxygen. The results of reduced phenolphthalein, luminol and human haemoglobin tests on the washed fabrics were negative. The conclusion is that these new products alter blood to such an extent that it can no longer be detected by currently accepted methods employed in criminal investigations. This inability to locate bloodstains means that highly important evidence (e.g. a DNA profile) may be lost. Consequently, it is important that investigators are aware of this problem so as to compensate for it.

  1. Luciferase-dependent oxygen consumption by bioluminescent vibrios.

    PubMed Central

    Makemson, J C

    1986-01-01

    Oxygen uptake due to luciferase in two luminous Vibrio species was estimated in vivo by utilizing inhibitors having specificities for luciferase (decanol) and cytochromes (cyanide). Cyanide titration of respiration revealed a component of oxygen uptake less sensitive to cyanide which was completely inhibitable by low concentrations of decanol. From this it was estimated that in vivo luciferase is responsible for less than 12% (Vibrio harveyi) or 20% (Vibrio fischeri) of the total respiration. From these data in vivo bioluminescent quantum yields are estimated to be not lower than 1.7 and 2.6%, respectively. PMID:3944057

  2. Luciferase-dependent oxygen consumption by bioluminescent vibrios

    SciTech Connect

    Makemson, J.C.

    1986-02-01

    Oxygen uptake due to luciferase in two luminous Vibrio species was estimated in vivo by utilizing inhibitors having specificities for luciferase (decanol) and cytochromes (cyanide). Cyanide titration of respiration revealed a component of oxygen uptake less sensitive to cyanide which was completely inhibitable by low concentrations of decanol. From this it was estimated that in vivo luciferase is responsible for less than 12% (Vibrio harveyi) or 20% (Vibrio fischeri) of the total respiration. From these data in vivo bioluminescent quantum yields are estimated to be not lower than 1.7 and 2.6%, respectively.

  3. Plant respirometer enables high resolution of oxygen consumption rates

    NASA Technical Reports Server (NTRS)

    Foster, D. L.

    1966-01-01

    Plant respirometer permits high resolution of relatively small changes in the rate of oxygen consumed by plant organisms undergoing oxidative metabolism in a nonphotosynthetic state. The two stage supply and monitoring system operates by a differential pressure transducer and provides a calibrated output by digital or analog signals.

  4. Prediction of Maximum Oxygen Consumption from Walking, Jogging, or Running.

    ERIC Educational Resources Information Center

    Larsen, Gary E.; George, James D.; Alexander, Jeffrey L.; Fellingham, Gilbert W.; Aldana, Steve G.; Parcell, Allen C.

    2002-01-01

    Developed a cardiorespiratory endurance test that retained the inherent advantages of submaximal testing while eliminating reliance on heart rate measurement in predicting maximum oxygen uptake (VO2max). College students completed three exercise tests. The 1.5-mile endurance test predicted VO2max from submaximal exercise without requiring heart…

  5. Kidney hypoxia, attributable to increased oxygen consumption, induces nephropathy independently of hyperglycemia and oxidative stress.

    PubMed

    Friederich-Persson, Malou; Thörn, Erik; Hansell, Peter; Nangaku, Masaomi; Levin, Max; Palm, Fredrik

    2013-11-01

    Diabetic nephropathy is strongly associated with both increased oxidative stress and kidney tissue hypoxia. The increased oxidative stress causes increased kidney oxygen consumption resulting in kidney tissue hypoxia. To date, it has been difficult to determine the role of kidney hypoxia, per se, for the development of nephropathy. We tested the hypothesis that kidney hypoxia, without confounding factors such as hyperglycemia or elevated oxidative stress, results in nephropathy. To induce kidney hypoxia, dinitrophenol (30 mg per day per kg bodyweight by gavage), a mitochondrial uncoupler that increases oxygen consumption and causes kidney hypoxia, was administered for 30 consecutive days to rats. Thereafter, glomerular filtration rate, renal blood flow, kidney oxygen consumption, kidney oxygen tension, kidney concentrations of glucose and glycogen, markers of oxidative stress, urinary protein excretion, and histological findings were determined and compared with vehicle-treated controls. Dinitrophenol did not affect arterial blood pressure, renal blood flow, glomerular filtration rate, blood glucose, or markers of oxidative stress but increased kidney oxygen consumption, and reduced cortical and medullary concentrations of glucose and glycogen, and resulted in intrarenal tissue hypoxia. Furthermore, dinitrophenol treatment increased urinary protein excretion, kidney vimentin expression, and infiltration of inflammatory cells. In conclusion, increased mitochondrial oxygen consumption results in kidney hypoxia and subsequent nephropathy. Importantly, these results demonstrate that kidney tissue hypoxia, per se, without confounding hyperglycemia or oxidative stress, may be sufficient to initiate the development of nephropathy and therefore demonstrate a new interventional target for treating kidney disease.

  6. Physical Activity and Beverage Consumption among Adolescents.

    PubMed

    Bibiloni, Maria Del Mar; Özen, Asli Emine; Pons, Antoni; González-Gross, Marcela; Tur, Josep A

    2016-06-23

    This study assessed the relationship between physical activity and beverage consumption among adolescents with a population based cross-sectional survey was carried out in the Balearic Islands, Spain (n = 1988; 12-17 years old). Body composition, educational and income level, physical activity (PA), and beverage consumption and energy intake were assessed. Sixty-two percent of adolescents engaged in >300 min/week of PA. Boys were more active than girls, younger adolescents were more active than older counterparts, low parental income was associated with physical inactivity, and time spent watching TV (including, TV, Internet or handheld cellular devices) was inversely associated with PA practice. The average beverage intake of the studied adolescents was 0.9 L/day, higher in boys than in girls. Beverage intake was positively associated with PA practice, and the highest amount of energy intake from beverages was observed in active boys and girls. Most of the studied adolescent population met the PA recommendations. Gender, age, parental income, and time spent watching TV were significant determinants of PA. Type and amount of beverages drunk varied according to gender and PA, and general daily total beverage intake was lower than recommended adequate fluid intake. PA behavior should be considered when analyzing beverage consumption in adolescents.

  7. Physical Activity and Beverage Consumption among Adolescents

    PubMed Central

    Bibiloni, Maria del Mar; Özen, Asli Emine; Pons, Antoni; González-Gross, Marcela; Tur, Josep A.

    2016-01-01

    This study assessed the relationship between physical activity and beverage consumption among adolescents with a population based cross-sectional survey was carried out in the Balearic Islands, Spain (n = 1988; 12–17 years old). Body composition, educational and income level, physical activity (PA), and beverage consumption and energy intake were assessed. Sixty-two percent of adolescents engaged in >300 min/week of PA. Boys were more active than girls, younger adolescents were more active than older counterparts, low parental income was associated with physical inactivity, and time spent watching TV (including, TV, Internet or handheld cellular devices) was inversely associated with PA practice. The average beverage intake of the studied adolescents was 0.9 L/day, higher in boys than in girls. Beverage intake was positively associated with PA practice, and the highest amount of energy intake from beverages was observed in active boys and girls. Most of the studied adolescent population met the PA recommendations. Gender, age, parental income, and time spent watching TV were significant determinants of PA. Type and amount of beverages drunk varied according to gender and PA, and general daily total beverage intake was lower than recommended adequate fluid intake. PA behavior should be considered when analyzing beverage consumption in adolescents. PMID:27347993

  8. Oxygen consumption of the chicken embryo: interaction between temperature and oxygenation.

    PubMed

    Mortola, Jacopo P; Labbè, Katherine

    2005-03-01

    We measured the effects of hypoxia and changes in ambient temperature (T) on the oxygen consumption (VO2) of chicken embryos at embryonic days 11, 16 and 20 (E11, E16 and E20, respectively), and post-hatching day 1 (H1). Between 30 and 39 degrees C, at E11 and E16, VO2 changed linearly with T, as in ectothermic animals, with a Q10 of about 2.1. At E20, VO2 did not significantly change with T, indicating the onset of endothermy. At H1, a drop in T increased VO2, a clear thermogenic response. Hypoxia (11% O2 for 30 min) decreased VO2, by an amount that varied with T and age. At H1, hypoxia lowered VO2 especially at low T. At E20, hypoxic hypometabolism was similar at all T. At E11 and E16, hypoxia lowered VO2 only at the higher T. In fact, at E11, with T=39 degrees C even a modest hypoxia (15-18% O2) decreased VO2. Upon return to normoxia after 40 min of 11% O2, VO2 did not rise above the pre-hypoxic level, indicating that the hypometabolism during hypoxia did not generate an O2 debt. At E11, during modest hypoxia (16% O2) at 36 degrees C, the drop in VO2 was lifted by raising the T to 39 degrees C, suggesting that the hypoxic hypometabolism at 36 degrees C was not due to O2-supply limitation. In conclusion, the hypometabolic effects of hypoxia on the chicken embryo's VO2 depend on the development of the thermogenic ability, occurring predominantly at high T during the early (ectothermic phase) and at low T during the late (endothermic) phase. At E11, both low T and low oxygen force VO2 to drop. However, at a near-normal T, modest hypoxia promotes a hypometabolic response with the characteristics of regulated O2 conformism.

  9. Measurement of oxygen consumption during muscle flaccidity exercise by near-infrared spectroscopy

    NASA Astrophysics Data System (ADS)

    Fukuda, K.; Fukawa, Y.

    2013-03-01

    Quantitative measurement oxygen consumption in the muscles is important to evaluate the effect of the exercise. Near-infrared spectroscopy (NIRS) is a noninvasive method for measuring muscle oxygenation. However, measurement results are affected by blood volume change due to changes in the blood pressure. In order to evaluate changes in blood volume and to improve measurement accuracy, we proposed a calculation method of three-wavelength measurement with considering the scattering factor and the measurement with monitoring blood flow for measuring the temporal change of the oxygen concentration more precisely. We applied three-wavelength light source (680nm, 808nm and 830nm) for the continued wave measurement. Two detectors (targeted detector and the reference detector) were placed near the target muscle and apart from it. We measured the blood flow by controlling the intravascular pressure and the oxygen consumption with the handgrip exercise in the forearm. The measured results show that the scattering factor contains the artifact at the surface and the blood flow in the artery and the vein in the same phase. The artifact and the blood flow in the same phase are reduced from the oxygenated and the deoxygenated hemoglobin densities. Thus our proposed method is effective for reducing the influence of the artifact and the blood flow in the same phase from the oxygen consumption measurement. Further, it is shown that the oxygen consumption is measured more accurately by subtracting the blood flow measured by the reference detector.

  10. A novel isotopic fractionation during dissolved oxygen consumption in mesopelagic waters inferred from observation and model simulation of dissolved oxygen δ18O in open oceanic regions

    NASA Astrophysics Data System (ADS)

    Nakayama, N.; Oka, A.; Gamo, T.

    2012-12-01

    Oxygen isotopic ratio (δ18O) of dissolved oxygen is a useful for bioactive tracer of the subsurface aphotic (mesopelagic) ocean since it varies nonlinearly related to oxygen consumption via stoichiometry of organic matter decomposition. Therefore, along with global circulation model (GCM), observed δ18O and their vertical/geographical distribution can be effectively used to quantitatively determine how marine biological and ocean physical processes contribute to varying dissolved oxygen (DO) concentration in the ocean, in particular mesopelagic zone where pronounced biological activity alters DO concentration significantly. In the central north Pacific Ocean and Indian Ocean, including Arabian Sea, one of the few regions in the open ocean which has oxygen minimum zone (OMZ, a layer with severely depleted DO), vertical profiles of DO and δ18O were observed. These observed data are compared with a GCM simulation in which a constant isotopic fractionation factor of DO by marine biological respiration and a fixed Redfield molar ratio between P and O are assumed. Even in the Arabian Sea OMZ, relationship between DO and δ18O was found to be similar to those observed in other open oceans, indicating that no specific oxygen consumption process occurred in the OMZ. Using the GCM model, we attempted to reproduce the observed overall relationship between DO and δ18O, but it failed when we adopted the previously reported isotopic fractionation factor: Discrepancy became larger when oxygen saturation level decreased, in particular in thermocline water (at 20% oxygen saturation level, modeled δ18O was heavier than observed values by +7‰). Sensitivity simulations with the GCM model revealed that (1) simply changing the intensity of oxygen consumption by respiration/organic matter decomposition nor physical processes (diffusion and/or advection) could explain the observed relationship between DO and δ18O, (2) applying a smaller isotopic fractionation for deep waters

  11. Oxygen Consumption Rate and Energy Expenditure in Mice: Indirect Calorimetry.

    PubMed

    Kim, Eun Ran; Tong, Qingchun

    2017-01-01

    Global obesity epidemic demands more effective therapeutic treatments and better understanding of obesity pathophysiology. Since obesity results from energy imbalance, accurate quantification of energy intake and energy expenditure (EE) becomes an essential prerequisite to phenotype the cause for obesity development. Indirect calorimetry has long been used as one of the most established methods in EE quantification by detecting changes in levels of O2 consumption and CO2 production. In this article, we describe procedures and important considerations for an effective measurement using indirect calorimetry.

  12. Oxygen consumption rates in subseafloor basaltic crust derived from a reaction transport model.

    PubMed

    Orcutt, Beth N; Wheat, C Geoffrey; Rouxel, Olivier; Hulme, Samuel; Edwards, Katrina J; Bach, Wolfgang

    2013-01-01

    Oceanic crust is the largest potential habitat for life on Earth and may contain a significant fraction of Earth's total microbial biomass; yet, empirical analysis of reaction rates in basaltic crust is lacking. Here we report the first assessment of oxygen consumption in young (~8 Ma) and cool (<25 °C) basaltic crust, which we calculate from modelling dissolved oxygen and strontium pore water gradients in basal sediments collected during Integrated Ocean Drilling Program Expedition 336 to 'North Pond' on the western flank of the Mid-Atlantic Ridge. Dissolved oxygen is completely consumed within the upper to middle section of the sediment column, with an increase in concentration towards the sediment-basement interface, indicating an upward supply from oxic fluids circulating within the crust. A parametric reaction transport model of oxygen behaviour in upper basement suggests oxygen consumption rates of 1 nmol  cm(-3)ROCK d(-1) or less in young and cool basaltic crust.

  13. Oxygen production/consumption rates in the upper layer of the northwestern subtropical North Pacific

    NASA Astrophysics Data System (ADS)

    Tsubono, K.; Suga, T.; Sukigara, C.; Kobayashi, T.; Hosoda, S.

    2010-12-01

    The cycling of nutrients in the subtropical gyre is crucial in sustaining primary production and the biological pump. Recently it has been proposed that subtropical mode water (STMW) and its subduction processes play a major role in sustaining nutrient distribution in the permanent pycnocline in the subtropical gyres and also facilitating nutrient supply to the euphotic zone. It is not easy, however, to describe temporal evolution of nutrients themselves associated with those processes over a few months to a year or so. As an alternative approach, we examine temporal evolution of dissolved oxygen, which increases or decreases associated with the nutrient utilization by primary production or its production by remineralization. We analyze time-series data of dissolved oxygen obtained by profiling floats drifting over several months to a year in the upper layer of the northwestern subtropical North Pacific. The purpose of this study is to document the temporal variation of dissolved oxygen in STMW and its adjacent layers, to estimate oxygen production/consumption rates at each vertical level, and to discuss their implication in nutrient cycle. The dissolved oxygen in the subsurface layer centered at 50-70 m continuously increased over a few months after the formation of the seasonal pycnocline, resulting in a distinctive shallow oxygen maximum (SOM). Since the SOM is insulated from the atmosphere, the net increase in its oxygen concentration must be attributable to biological oxygen production. On the other hand, a continuous decrease in dissolved oxygen over several months is observed in the layer below 100 m probably due to biological consumption. The estimation of the oxygen production/consumption rates is done by applying the least square method for the time series of dissolved oxygen either at each depth or each isopycnal surface. The Net Community Production (NCP) is estimated for the depth range of 0-100m, where the remarkable oxygen increase occurs. The

  14. Oxygen Consumption of Tilapia and Preliminary Mass Flows through a Prototype Closed Aquaculture System

    NASA Technical Reports Server (NTRS)

    Muller, Matthew S.; Bauer, Clarence F.

    1994-01-01

    Performance of NASA's prototype CELSS Breadboard Project Closed Aquaculture System was evaluated by estimating gas exchange quantification and preliminary carbon and nitrogen balances. The total system oxygen consumption rate was 535 mg/hr kg/fish (cv = 30%) when stocked with Tilapia aurea populations (fresh weights of 97 +/- 19 to 147 +/- 36 g/fish for various trials). Oxygen consumption by T. aurea (260 mg/hr kg/fish) contributed to approximately one-half of total system demand. Continuous carbon dioxide quantification methods were analyzed using the,relation of carbon dioxide to oxygen consumption. Overall food conversion rates averaged 18.2 +/- 3.2%. Major pathways for nitrogen and carbon in the system were described with preliminary mass closure of 60-80% and 60% for nitrogen and carbon.

  15. Cardiac output assessment using oxygen consumption estimated from the left ventricular pressure-volume area.

    PubMed

    Negroni, Jorge A; Lascano, Elena C; Bertolotti, Alejandro M; Gómez, Carmen B; Rodríguez Correa, Carlos A; Favaloro, Roberto R

    2010-01-01

    Use of a majority of structural variables (age, sex, height) to estimate oxygen consumption in the calculation of cardiac output (CO) by the Fick principle does not account for changes in physiological conditions. To improve this limitation, oxygen consumption was estimated based on the left ventricular pressure-volume area. A pilot study with 10 patients undergoing right cardiac catheterization showed that this approach was successful to estimate CO (r=0,73, vs. thermodilution measured CO). Further essays changing end-diastolic-volume in the pressure-volume area formula by body weight or body surface area showed that this last yielded the best correlation with the thermodilution measured CO (slope=1, ordinate =0.01 and r=0.93). These preliminary results indicate that use of a formula originated from the pressure-volume-area concept is a good alternative to estimate oxygen consumption for CO calculation.

  16. Effect of rocker shoe radius on oxygen consumption rate in young able-bodied persons.

    PubMed

    Hansen, Andrew H; Wang, Charles C

    2011-04-07

    We studied oxygen consumption rate of eleven young able-bodied persons walking at self-selected speed with five different pairs of shoes: one regular pair without rocker soles (REG) and four pairs with uniform hardness (35-40 shore A durometer) rocker soles of different radii (25% of leg length (LL) (R25), 40% LL (R40), 55% LL (R55), and infinite radius (FLAT)). Rocker soled shoes in the study were developed to provide similar vertical lift (three inches higher than the REG shoes condition). Oxygen consumption rate was significantly affected by the use of the different shoes (p<0.001) and pairwise comparisons indicated that persons consumed significantly less oxygen (per minute per kilogram of body mass) when walking on the R40 shoes when compared with both the FLAT (p<0.001) and REG (p=0.021) shoe conditions. Oxygen consumption was also significantly less for the R25 shoes compared with the FLAT shoes (p=0.005) and for the R55 shoes compared with FLAT shoes (p=0.027). The three-inch lift on the FLAT shoe did not cause a significant change in oxygen consumption compared to the shoe without the lift (REG).

  17. Probing oxygen consumption in epileptic brain slices with QDs-based FRET sensors

    NASA Astrophysics Data System (ADS)

    Zhang, Chunfeng; Ingram, Justin; Schiff, Steven; Xu, Jian; Xiao, Min

    2011-02-01

    We developed ratiometric optical oxygen sensors to probe the oxygen consumption during epileptic events in rat brain slices. The oxygen sensors consist of the sensing part of phosphorescence dyes (Platinum (II) octaethylporphine ketone) and reference part of nanocystal quantum dots (NQDs) embedded in polymer blends, with pre-designed excitation through fluorescence resonance energy transfer (FRET) from NQDs to the oxygen sensitive dyes (OSDs). The ratiometric FRET sensors with fast temporal response and excellent bio-compatibility are suitable for real time quantitative dissolved oxygen (D.O.) probes in biological microenvironment. Coating the sensors onto the micro-pipettes, we performed simultaneous oxygen probes at pyramidal and oriens layers in rat hippocampal CA1. Different spatiotemporal patterns with maximum D.O. decreases of 9.9+/-1.1 mg/L and 4.9+/-0.7 mg/L during seizure events were observed in pyramidal and oriens layers, respectively.

  18. Measurement of mitochondrial oxygen consumption rates in mouse primary neurons and astrocytes.

    PubMed

    Ribeiro, Sofia M; Giménez-Cassina, Alfredo; Danial, Nika N

    2015-01-01

    The introduction of microplate-based assays that measure extracellular fluxes in intact, living cells has revolutionized the field of cellular bioenergetics. Here, we describe a method for real time assessment of mitochondrial oxygen consumption rates in primary mouse cortical neurons and astrocytes. This method requires the Extracellular Flux Analyzer Instrument (XF24, Seahorse Biosciences), which uses fluorescent oxygen sensors in a microplate assay format.

  19. Excess Postexercise Oxygen Consumption After High-Intensity and Sprint Interval Exercise, and Continuous Steady-State Exercise.

    PubMed

    Tucker, Wesley J; Angadi, Siddhartha S; Gaesser, Glenn A

    2016-11-01

    Tucker, WJ, Angadi, SS, and Gaesser, GA. Excess postexercise oxygen consumption after high-intensity and sprint interval exercise, and continuous steady-state exercise. J Strength Cond Res 30(11): 3090-3097, 2016-Higher excess postexercise oxygen consumption (EPOC) after high-intensity interval exercise (HIE) and sprint interval exercise (SIE) may contribute to greater fat loss sometimes reported after interval training compared with continuous steady-state exercise (SSE) training. We compared EPOC after HIE, SIE, and SSE. Ten recreationally active men (age 24 ± 4 years) participated in this randomized crossover study. On separate days, subjects completed a resting control trial and 3 exercise conditions on a cycle ergometer: HIE (four 4-minute intervals at 95% peak heart rate (HRpeak), separated by 3 minutes of active recovery), SIE (six 30-second Wingate sprints, separated by 4 minutes of active recovery), and SSE (30 minutes at 80% of HRpeak). Oxygen consumption (V[Combining Dot Above]O2) was measured continuously during and for 3 hours after exercise. For all conditions, V[Combining Dot Above]O2 was higher than resting control only during the first hour postexercise. Although 3-hour EPOC and total net exercise energy expenditure (EE) after exercise were higher (p = 0.01) for SIE (22.0 ± 9.3 L; 110 ± 47 kcal) compared with SSE (12.8 ± 8.5 L; 64 ± 43 kcal), total (exercise + postexercise) net O2 consumed and net EE were greater (p = 0.03) for SSE (69.5 ± 18.4 L; 348 ± 92 kcal) than those for SIE (54.2 ± 12.0 L; 271 ± 60 kcal). Corresponding values for HIE were not significantly different from SSE or SIE. Excess postexercise oxygen consumption after SIE and HIE is unlikely to account for the greater fat loss per unit EE associated with SIE and HIE training reported in the literature.

  20. Oxygen consumption rate v. rate of energy utilization of fishes: a comparison and brief history of the two measurements.

    PubMed

    Nelson, J A

    2016-01-01

    Accounting for energy use by fishes has been taking place for over 200 years. The original, and continuing gold standard for measuring energy use in terrestrial animals, is to account for the waste heat produced by all reactions of metabolism, a process referred to as direct calorimetry. Direct calorimetry is not easy or convenient in terrestrial animals and is extremely difficult in aquatic animals. Thus, the original and most subsequent measurements of metabolic activity in fishes have been measured via indirect calorimetry. Indirect calorimetry takes advantage of the fact that oxygen is consumed and carbon dioxide is produced during the catabolic conversion of foodstuffs or energy reserves to useful ATP energy. As measuring [CO2 ] in water is more challenging than measuring [O2 ], most indirect calorimetric studies on fishes have used the rate of O2 consumption. To relate measurements of O2 consumption back to actual energy usage requires knowledge of the substrate being oxidized. Many contemporary studies of O2 consumption by fishes do not attempt to relate this measurement back to actual energy usage. Thus, the rate of oxygen consumption (M˙O2 ) has become a measurement in its own right that is not necessarily synonymous with metabolic rate. Because all extant fishes are obligate aerobes (many fishes engage in substantial net anaerobiosis, but all require oxygen to complete their life cycle), this discrepancy does not appear to be of great concern to the fish biology community, and reports of fish oxygen consumption, without being related to energy, have proliferated. Unfortunately, under some circumstances, these measures can be quite different from one another. A review of the methodological history of the two measurements and a look towards the future are included.

  1. [Nitrogenase, hydrogenase and nitrate reductase activities, oxygen consumption, and ATP content in nodules formed by strains of Rhizobium leguminosarum 128C53 and 300 in symbiosis with pea plants].

    PubMed

    Bedmar, E J; Olivares, J

    1986-10-01

    The nitrogenase activity, nitrate reductase activity and oxygen uptake as well as the hydrogen incorporation and ATP content were examined in the root nodules and bacteroids, respectively, formed by Rhizobium leguminosarum strains 128C53 (hydrogenase positive) and 300 (hydrogenase negative) in symbiosis with Pisum sativum plants grown in the presence of 2 mM KNO3. The strain 128C53 showed the greatest values for all parameters analyzed, except for the nitrate reductase activity, which was higher for the strain 300. Similarly, nodule nitrate reductase activity in strain 300 was greater than that in strain 128C53 when plants grew in the absence of combined nitrogen. In general, the highest values were obtained when determinations were made after 7 hours of plant illumination. However, the hydrogenase activity of strain 128C53 and the nitrate reductase activities of both strains increased with the light period, reaching a maximum after 14 hours of illumination. These results suggest that the benefits derived from the superior symbiotic properties and from the presence of hydrogenase activity in strain 128C53 could be counteracted by the higher rates of the nodule nitrate reductase activity in strain 300.

  2. Noninvasive optical quantification of absolute blood flow, blood oxygenation, and oxygen consumption rate in exercising skeletal muscle

    PubMed Central

    Gurley, Katelyn; Shang, Yu

    2012-01-01

    Abstract. This study investigates a method using novel hybrid diffuse optical spectroscopies [near-infrared spectroscopy (NIRS) and diffuse correlation spectroscopy (DCS)] to obtain continuous, noninvasive measurement of absolute blood flow (BF), blood oxygenation, and oxygen consumption rate (V˙O2) in exercising skeletal muscle. Healthy subjects (n=9) performed a handgrip exercise to increase BF and V˙O2 in forearm flexor muscles, while a hybrid optical probe on the skin surface directly monitored oxy-, deoxy-, and total hemoglobin concentrations ([HbO2], [Hb], and THC), tissue oxygen saturation (StO2), relative BF (rBF), and relative oxygen consumption rate (rV˙O2). The rBF and rV˙O2 signals were calibrated with absolute baseline BF and V˙O2 obtained through venous and arterial occlusions, respectively. Known problems with muscle-fiber motion artifacts in optical measurements during exercise were mitigated using a novel gating algorithm that determined muscle contraction status based on control signals from a dynamometer. Results were consistent with previous findings in the literature. This study supports the application of NIRS/DCS technology to quantitatively evaluate hemodynamic and metabolic parameters in exercising skeletal muscle and holds promise for improving diagnosis and treatment evaluation for patients suffering from diseases affecting skeletal muscle and advancing fundamental understanding of muscle and exercise physiology. PMID:22894482

  3. Noninvasive optical quantification of absolute blood flow, blood oxygenation, and oxygen consumption rate in exercising skeletal muscle

    NASA Astrophysics Data System (ADS)

    Gurley, Katelyn; Shang, Yu; Yu, Guoqiang

    2012-07-01

    This study investigates a method using novel hybrid diffuse optical spectroscopies [near-infrared spectroscopy (NIRS) and diffuse correlation spectroscopy (DCS)] to obtain continuous, noninvasive measurement of absolute blood flow (BF), blood oxygenation, and oxygen consumption rate (\\Vdot O2) in exercising skeletal muscle. Healthy subjects (n=9) performed a handgrip exercise to increase BF and \\Vdot O2 in forearm flexor muscles, while a hybrid optical probe on the skin surface directly monitored oxy-, deoxy-, and total hemoglobin concentrations ([HbO2], [Hb], and THC), tissue oxygen saturation (StO2), relative BF (rBF), and relative oxygen consumption rate (r\\Vdot O2). The rBF and r\\Vdot O2 signals were calibrated with absolute baseline BF and \\Vdot O2 obtained through venous and arterial occlusions, respectively. Known problems with muscle-fiber motion artifacts in optical measurements during exercise were mitigated using a novel gating algorithm that determined muscle contraction status based on control signals from a dynamometer. Results were consistent with previous findings in the literature. This study supports the application of NIRS/DCS technology to quantitatively evaluate hemodynamic and metabolic parameters in exercising skeletal muscle and holds promise for improving diagnosis and treatment evaluation for patients suffering from diseases affecting skeletal muscle and advancing fundamental understanding of muscle and exercise physiology.

  4. Metabolically Derived human ventilation rates: A revised approach based upon oxygen consumption rates (Final Report) 2009

    EPA Science Inventory

    The purpose of this report is to provide a revised approach for calculating an individual's ventilation rate directly from their oxygen consumption rate. This revised approach will be used to update the ventilation rate information in the Exposure Factors Handbook, which serve as...

  5. Effects of cadmium chloride on oxygen consumption and gill morphology of Indian flying barb, Esomus danricus.

    PubMed

    Das, Suchismita; Gupta, Abhik

    2012-11-01

    Effects of three sub lethal concentrations of cadmium chloride (0.636, 0.063 and 0.006 mg l(-1)) on oxygen consumption and gill morphology in Indian flying barb, Esomus danricus (Hamilton-Buchanan), a teleost fish, were studied. When compared to control, 0.636 mg l(-1) of cadmium chloride after 7,14, 21 and 28 day exposure showed a significant decline in rates of oxygen consumption at 32.98, 28.40, 23.88 and 21.69 ml hr(1) 100 g(-1) of tissue, respectively; while, 0.063 mg l(-1) of cadmium chloride for the same exposure durations showed a significant decline in rates of oxygen consumption at 34.28, 29.30, 28.05 and 26.47 ml hr(1)100 g(-1) of tissue, respectively. However, significant decline in the rate of oxygen consumption at 0.006 mg l(-1) of cadmium chloride could be observed from 21st day of exposure. Gill tissue showed various histopathological changes including epithelial lifting, hyperplasia, mucous secretion, marked leucocyte infiltration in the epithelium after 28 days of cadmium chloride exposure.

  6. Methylmalonate inhibits succinate-supported oxygen consumption by interfering with mitochondrial succinate uptake.

    PubMed

    Mirandola, S R; Melo, D R; Schuck, P F; Ferreira, G C; Wajner, M; Castilho, R F

    2008-02-01

    The effect of methylmalonate (MMA) on mitochondrial succinate oxidation has received great attention since it could present an important role in energy metabolism impairment in methylmalonic acidaemia. In the present work, we show that while millimolar concentrations of MMA inhibit succinate-supported oxygen consumption by isolated rat brain or muscle mitochondria, there is no effect when either a pool of NADH-linked substrates or N,N,N',N'-tetramethyl-p-phenylendiamine (TMPD)/ascorbate were used as electron donors. Interestingly, the inhibitory effect of MMA, but not of malonate, on succinate-supported brain mitochondrial oxygen consumption was minimized when nonselective permeabilization of mitochondrial membranes was induced by alamethicin. In addition, only a slight inhibitory effect of MMA was observed on succinate-supported oxygen consumption by inside-out submitochondrial particles. In agreement with these observations, brain mitochondrial swelling experiments indicate that MMA is an important inhibitor of succinate transport by the dicarboxylate carrier. Under our experimental conditions, there was no evidence of malonate production in MMA-treated mitochondria. We conclude that MMA inhibits succinate-supported mitochondrial oxygen consumption by interfering with the uptake of this substrate. Although succinate generated outside the mitochondria is probably not a sig-nificant contributor to mitochondrial energy generation, the physiopathological implications of MMA-induced inhibition of substrate transport by the mitochondrial dicarboxylate carrier are discussed.

  7. Thermodynamics of the heart: Relation between cardiac output and oxygen consumption

    NASA Astrophysics Data System (ADS)

    Uehara, Mituo; Sakane, Kumiko K.; Bertolotti, Simone A.

    2008-06-01

    A thermodynamic approach is used to derive a relation between cardiac output and rate of oxygen consumption. As an example, the relation is used to calculate the cardiac output of a young woman exercising on a treadmill. The results can be understood by undergraduates without any previous knowledge of human physiology.

  8. MODELING NITROGEN-CARBON CYCLING AND OXYGEN CONSUMPTION IN BOTTOM SEDIMENTS

    EPA Science Inventory

    A model framework is presented for simulating nitrogen and carbon cycling at the sediment–water interface, and predicting oxygen consumption by oxidation reactions inside the sediments. Based on conservation of mass and invoking simplifying assumptions, a coupled system of diffus...

  9. Oxygen supply and consumption in the retina: implications for studies of retinopathy of prematurity.

    PubMed

    Cringle, Stephen J; Yu, Dao-Yi

    2010-02-01

    A disrupted oxygen environment in the retina of severely premature neonates is thought to be a key factor in the development of retinopathy of prematurity (ROP). This review describes our understanding of intraretinal oxygen distribution and consumption in a range of animal models, including species with naturally avascular retinas and models of induced occlusion of the retinal vasculature. The influence of graded systemic hyperoxia on retinal oxygenation is also discussed along with modulation of retinal oxygen metabolism. The differences in retinal oxygenation between developing and mature retinas are also described. Comparisons are made with studies in the monkey retina in order to assess possible similarities in behaviour between rat and human retinas. Pathogenesis mechanism and possible intervention strategies during the diseased processes in ROP are proposed based on our current knowledge.

  10. Variation in the link between oxygen consumption and ATP production, and its relevance for animal performance

    PubMed Central

    Salin, Karine; Auer, Sonya K.; Rey, Benjamin; Selman, Colin; Metcalfe, Neil B.

    2015-01-01

    It is often assumed that an animal's metabolic rate can be estimated through measuring the whole-organism oxygen consumption rate. However, oxygen consumption alone is unlikely to be a sufficient marker of energy metabolism in many situations. This is due to the inherent variability in the link between oxidation and phosphorylation; that is, the amount of adenosine triphosphate (ATP) generated per molecule of oxygen consumed by mitochondria (P/O ratio). In this article, we describe how the P/O ratio can vary within and among individuals, and in response to a number of environmental parameters, including diet and temperature. As the P/O ratio affects the efficiency of cellular energy production, its variability may have significant consequences for animal performance, such as growth rate and reproductive output. We explore the adaptive significance of such variability and hypothesize that while a reduction in the P/O ratio is energetically costly, it may be associated with advantages in terms of somatic maintenance through reduced production of reactive oxygen species. Finally, we discuss how considering variation in mitochondrial efficiency, together with whole-organism oxygen consumption, can permit a better understanding of the relationship between energy metabolism and life history for studies in evolutionary ecology. PMID:26203001

  11. Effect of bottom water oxygenation on oxygen consumption and benthic biogeochemical processes at the Crimean Shelf (Black Sea)

    NASA Astrophysics Data System (ADS)

    Lichtschlag, A.; Janssen, F.; Wenzhöfer, F.; Holtappels, M.; Struck, U.; Jessen, G.; Boetius, A.

    2012-04-01

    Hypoxia occurs where oxygen concentrations fall below a physiological threshold of many animals, usually defined as <63 µmol L-1. Oxygen depletion can be caused by anthropogenic influences, such as global warming and eutrophication, but as well occurs naturally due to restricted water exchange in combination with high nutrient loads (e.g. upwelling). Bottom-water oxygen availability not only influences the composition of faunal communities, but is also one of the main factors controlling sediment-water exchange fluxes and organic carbon degradation in the sediment, usually shifting processes towards anaerobic mineralization pathways mediated by microorganisms. The Black Sea is one of the world's largest meromictic marine basins with an anoxic water column below 180m. The outer shelf edge, where anoxic waters meet the seafloor, is an ideal natural laboratory to study the response of benthic ecosystems to hypoxia, including benthic biogeochemical processes. During the MSM 15/1 expedition with the German research vessel MARIA S. MERIAN, the NW area of the Black Sea (Crimean Shelf) was studied. The study was set up to investigate the influence of bottom water oxygenation on, (1) the respective share of fauna-mediated oxygen uptake, microbial respiration, or re-oxidation of reduced compounds formed in the deeper sediments for the total oxygen flux and (2) on the efficiency of benthic biogeochemical cycles. During our study, oxygen consumption and pathways of organic carbon degradation were estimated from benthic chamber incubations, oxygen microprofiles measured in situ, and pore water and solid phase profiles measured on retrieved cores under oxic, hypoxic, and anoxic water column conditions. Benthic oxygen fluxes measured in Crimean Shelf sediments in this study were comparable to fluxes from previous in situ and laboratory measurements at similar oxygen concentrations (total fluxes -8 to -12 mmol m-2 d-1; diffusive fluxes: -2 to -5 mmol m-2 d-1) with oxygen

  12. The influence of delta9-tetrahydrocannabinol, cannabinol and cannabidiol on tissue oxygen consumption.

    PubMed

    Chiu, P; Karler, R; Craven, C; Olsen, D M; Turkanis, S A

    1975-10-01

    The mechanism of the hypothermia produced in mice by the naturally occurring cannabinoids, delta9-tetrahydrocannabinol, cannabinol, and cannabidiol, was investigated by evaluating the direct effect of these drugs on the oxygen consumption of tissue homogenates and isolated mitochondria. The tissues studied were brain, liver, skeletal muscle, and heart; the mitochondrial preparations were limited to brain and skeletal muscle. The in-vitro studies included a description of the influence of various cannabinoid vehicles containing Tween 80, ethanol, Pluronic F68, and albumin on the oxygen consumption of tissue preparations. Of these vehicles, only albumin was without effect on all tissues. The other vehicles produced diverse responses, including some that were qualitatively different; the data illustrate that the influence of each vehicle on oxygen consumption must be defined for each tissue employed. In spite of the different vehicle effects, delta9-tetrahydrocannabinol generally reduced oxygen consumption of all tissue preparations; however, the vehicles were capable of modifying the dose-effect relationship. The results of all three drugs prepared in Pluronic F68 on brain and skeletal muscle indicated that the cannabinoids generally cause a dose-related depression of oxygen consumption. The findings demonstrate that the cannabinoids can directly decrease oxidative metabolism of tissue and isolated mitochondria and that a marked response occurs in the concentration range of 1 X 10(-5) to 1 X 10(-4) M. Because these concentrations can exist in tissues following the in-vivo administration of delta9-tetrahydrocannabinol, the results suggest that the depressant effect of the cannabinoids on metabolic rate may contribute to the mechanism of the hypothermia produced by the drugs.

  13. Long-term fasting decreases mitochondrial avian UCP-mediated oxygen consumption in hypometabolic king penguins

    PubMed Central

    Rey, Benjamin; Halsey, Lewis G.; Dolmazon, Virginie; Rouanet, Jean-Louis; Roussel, Damien; Handrich, Yves; Butler, Patrick J.; Duchamp, Claude

    2008-01-01

    In endotherms, regulation of the degree of mitochondrial coupling affects cell metabolic efficiency. Thus it may be a key contributor to minimizing metabolic rate during long periods of fasting. The aim of the present study was to investigate whether variation in mitochondrial avian uncoupling proteins (avUCP), as putative regulators of mitochondrial oxidative phosphorylation, may contribute to the ability of king penguins (Aptenodytes patagonicus) to withstand fasting for several weeks. After 20 days of fasting, king penguins showed a reduced rate of whole animal oxygen consumption (V̇o2; −33%) at rest, together with a reduced abundance of avUCP and peroxisome proliferator-activated receptor-γ coactivator-1α (PGC1-α) mRNA in pectoralis muscle (−54%, −36%, respectively). These parameters were restored after the birds had been refed for 3 days. Furthermore, in recently fed, but not in fasted penguins, isolated muscle mitochondria showed a guanosine diphosphate-inhibited, fatty acid plus superoxide-activated respiration, indicating the presence of a functional UCP. It was calculated that variation in mitochondrial UCP-dependent respiration in vitro may contribute to nearly 20% of the difference in resting V̇o2 between fed or refed penguins and fasted penguins measured in vivo. These results suggest that the lowering of avUCP activity during periods of long-term energetic restriction may contribute to the reduction in metabolic rate and hence the ability of king penguins to face prolonged periods of fasting. PMID:18495832

  14. Mapping cerebral glutamate 13C turnover and oxygen consumption by in vivo NMR.

    PubMed

    Hyder, Fahmeed; Brown, Peter; Nixon, Terennce W; Behar, Kevin L

    2003-01-01

    Regional rates of 13C incorporation from glucose to glutamate were detected in anesthetized rat brain in vivo at 7T with high temporal and spatial resolution using NMR method ICED PEPSI (in vivo carbon edited detection with proton echo planar spectroscopic imaging). Time courses of regional glutamate 13C turnover were fitted by a metabolic model to obtain regional tri-carboxylic acid (TCA) cycle flux and cerebral metabolic rate of oxygen consumption (CMRO2) in each voxel (8 microL) of rat cortex. CMRO2 maps obtained for rats under either alpha-chloralose or morphine anesthesia revealed average cortical values of 1.5 +/- 0.2 (n = 3) and 3.2 +/- 0.3 (n = 4) mumol/g/min, respectively. These values of CMRO2 are in good agreement with previous cortical measurements with coarser spatial resolution. The heterogeneity within each map, which depicted predominantly gray and white matter differences, was significantly greater under morphine (higher cortical activity) than under-alpha-chloralose (lower cortical activity) anesthesia. The regional variations in the basal awake state, which are expected to be even greater, should be considered to avoid partial-volume artifacts in functional activation studies of awake subjects.

  15. Cortisol-induced changes in oxygen consumption and ionic regulation in coastal cutthroat trout (Oncorhynchus clarki clarki) parr.

    PubMed

    Morgan, J D; Iwama, G K

    1996-11-01

    The influence of cortisol on oxygen consumption and osmoregulatory variables was examined in coastal cutthroat trout (Oncorhynchus clarki clarki) parr kept in fresh water (FW) and transferred to seawater (SW). Intraperitoneal implants containing cortisol (50 μg g(-1)) in vegetable oil resulted in elevated plasma cortisol titres similar to those observed in fish following a 24h SW exposure. Cortisol treatment significantly increased the oxygen consumption and plasma glucose levels of trout in FW, consistent with the glucocorticoid role of cortisol. Cortisol treatment did not cause any changes in plasma ion concentrations or gill Na(+),K(+)-ATPase activity in FW after 10 days. Cortisol-implanted fish exposed to SW for 24h showed slightly improved ion regulatory ability compare to non-implanted controls. The results of this study suggest that during SW transfer in juvenile salmonids, increases in cortisol may act as both a mineralocorticoid and a glucocorticoid, depending on the developmental state of the fish (e.g., smolt versus parr). Furthermore, the relative energetic costs of osmoregulation and that of the stress associated SW transfer cannot be discerned using whole-animal oxygen consumption rates.

  16. PTP1B regulates non-mitochondrial oxygen consumption via RNF213 to promote tumour survival during hypoxia

    PubMed Central

    Banh, Robert S.; Cojocari, Dan; Rahman, Anas Abdel; Pawling, Judy; Zhang, Wei; Sinha, Ankit; Rose, Christopher M.; Isasa, Marta; Zhang, Shuang; Wu, Ronald; Virtanen, Carl; Hitomi, Toshiaki; Habu, Toshiyuki; Sidhu, Sachdev S.; Koizumi, Akio; Wilkins, Sarah E.; Kislinger, Thomas; Gygi, Steven P.; Schofield, Christopher J.; Dennis, James W.; Wouters, Bradly G.; Neel, Benjamin G.

    2016-01-01

    Tumours exist in a hypoxic microenvironment and must limit excessive oxygen consumption. Hypoxia-inducible factor controls mitochondrial oxygen consumption, but how/if tumours regulate non-mitochondrial oxygen consumption (NMOC) is unknown. Protein-Tyrosine Phosphatase-1B (PTP1B) is required for Her2/Neu-driven breast cancer (BC) in mice, though the underlying mechanism and human relevance remain unclear. We found that PTP1B-deficient HER2+ xenografts have increased hypoxia, necrosis and impaired growth. In vitro, PTP1B deficiency sensitizes HER2+ BC lines to hypoxia by increasing NMOC by α-KG-dependent dioxygenases (α-KGDDs). The Moyamoya disease gene product RNF213 , an E3 ligase, is negatively regulated by PTP1B in HER2+ BC cells. RNF213 knockdown reverses the effects of PTP1B-deficiency on α-KGDDs, NMOC and hypoxia-induced death of HER2+ BC cells, and partially restores tumourigenicity. We conclude that PTP1B acts via RNF213 to suppress α-KGDD activity and NMOC. This PTP1B/RNF213/α-KGDD pathway is critical for survival of HER2+ BC, and possibly other malignancies, in the hypoxic tumour microenvironment. PMID:27323329

  17. System for measuring oxygen consumption rates of mammalian cells in static culture under hypoxic conditions.

    PubMed

    Kagawa, Yuki; Miyahara, Hirotaka; Ota, Yuri; Tsuneda, Satoshi

    2016-01-01

    Estimating the oxygen consumption rates (OCRs) of mammalian cells in hypoxic environments is essential for designing and developing a three-dimensional (3-D) cell culture system. However, OCR measurements under hypoxic conditions are infrequently reported in the literature. Here, we developed a system for measuring OCRs at low oxygen levels. The system injects nitrogen gas into the environment and measures the oxygen concentration by an optical oxygen microsensor that consumes no oxygen. The developed system was applied to HepG2 cells in static culture. Specifically, we measured the spatial profiles of the local dissolved oxygen concentration in the medium, then estimated the OCRs of the cells. The OCRs, and also the pericellular oxygen concentrations, decreased nonlinearly as the oxygen partial pressure in the environment decreased from 19% to 1%. The OCRs also depended on the culture period and the matrix used for coating the dish surface. Using this system, we can precisely estimate the OCRs of various cell types under environments that mimic 3-D culture conditions, contributing crucial data for an efficient 3-D culture system design.

  18. Alteration of oxygen consumption and energy metabolism during repetitive exposure of mice to hypoxia.

    PubMed

    Lu, G W; Cui, X Y; Zhao, B M

    1999-05-01

    Changes in oxygen consumption, body temperature and energy metabolism were studied while mice were repeatedly exposed to a sealed environment. The average tolerance limits of environmental oxygen level (vol%) and the average oxygen consumption rates (ml/g x min) were exponentially decreased and the average body rectal temperatures (degrees C) were linearly declined while the average tolerable times (min) to hypoxia were linearly increased as animals were repeatedly exposed to hypoxia for 5 runs. The average survival times (min) in sealed environments after administration of normal saline, iodoacetic acid, malonic acid, potassium cyanide, and potassium cyanide plus iodoacetic acid in group exposed repeatedly to hypoxia for three runs were, respectively, 3.1, 3.9, 1.4, 2.6, and 2.8 times those of the control groups that had corresponding administration of the different chemicals, but no exposure to hypoxia. The results indicate that progressive increase in hypoxia tolerance is related to progressively lower rate of oxygen consumption and heat production, and the lowered energy requirement during repetitive exposure to hypoxia is achieved mainly via pathways of the respiratory chain and glycolysis.

  19. Nitrification and its oxygen consumption along the turbid Changjiang River plume

    NASA Astrophysics Data System (ADS)

    Hsiao, Sung-Yun; Hsu, Ting-Chang; Jing-Yu Yang, Terence; Liu, Jing-Wen; Xie, Xia-Bing; Zhang, Yao; Hsu, Shih-Chieh; Lin, Jing; Dai, Minhan; Kao, Shuh-Ji

    2013-04-01

    Enhanced nutrients and organic material export from rivers cause severe oxygen consumption, subsequently, hypoxia at the land-ocean boundary resulting in disruption of coastal ecosystem and potentially increasing emission of greenhouse gas. Nitrification is thought to be one of the important oxygen consuming process and the dominant N2O contributor in aquatic environment. By using stable isotope tracer method we determine the nitrification rate (bulk water and >3 μm particle free) and N2O production rate along Changjiang River plume in 2011 August. Community respiration rate was measured to identify the role of nitrification in oxygen consumption. Total suspended material, nutrients, dissolved oxygen, and particulate iron /manganese(acid-leacheable) were measured to explore controlling factors for nitrification. The bulk nitrification rate ranged from undetectable to 4586 nmol L-1 day-1 and peaked at inter salinity (S=29). The nitrous oxide was produced only in river mouth, but the production rate was not high enough to support the water column nitrous oxide concentration. Results implied that the water column nitrification was not the main source of nitrous oxide. The determination of nitrification rate and β-proteobacterial AmoA gene abundance on particle or particle-free fraction showed that nitrification preferred to occur on particles in turbid region. Moreover, the amount of reactive Fe/Mn on suspended particles was found linearly correlated to nitrification rate separately in inner shelf and river mouth. In previous study in sediment Fe/Mn were proposed to be alternative oxidant when oxygen was exhausted. However, in this survey we didn't observe hypoxia. In inner shelf region, the estimated oxygen consumption by nitrification ranged from 0.4% to 317% of total community respiration.The excess oxygen demand indicates the oxygen might not be the only oxidant. Stoichiometrical calculation suggests reactive Fe was sufficient to support nitrification along all

  20. Matching of postcontraction perfusion to oxygen consumption across submaximal contraction intensities in exercising humans

    PubMed Central

    Elder, Christopher P.; Donahue, Manus J.; Damon, Bruce M.

    2015-01-01

    Studying the magnitude and kinetics of blood flow, oxygen extraction, and oxygen consumption at exercise onset and during the recovery from exercise can lead to insights into both the normal control of metabolism and blood flow and the disturbances to these processes in metabolic and cardiovascular diseases. The purpose of this study was to examine the on- and off-kinetics for oxygen delivery, extraction, and consumption as functions of submaximal contraction intensity. Eight healthy subjects performed four 1-min isometric dorsiflexion contractions, with two at 20% MVC and two at 40% MVC. During one contraction at each intensity, relative perfusion changes were measured by using arterial spin labeling, and the deoxyhemoglobin percentage (%HHb) was estimated using the spin- and gradient-echo sequence and a previously published empirical calibration. For the whole group, the mean perfusion did not increase during contraction. The %HHb increased from ∼28 to 38% during contractions of each intensity, with kinetics well described by an exponential function and mean response times (MRTs) of 22.7 and 21.6 s for 20 and 40% MVC, respectively. Following contraction, perfusion increased ∼2.5-fold. The %HHb, oxygen consumption, and perfusion returned to precontraction levels with MRTs of 27.5, 46.4, and 50.0 s, respectively (20% MVC), and 29.2, 75.3, and 86.0 s, respectively (40% MVC). These data demonstrate in human subjects the varied recovery rates of perfusion and oxygen consumption, along with the similar rates of %HHb recovery, across these exercise intensities. PMID:26066829

  1. Matching of postcontraction perfusion to oxygen consumption across submaximal contraction intensities in exercising humans.

    PubMed

    Buck, Amanda K W; Elder, Christopher P; Donahue, Manus J; Damon, Bruce M

    2015-08-01

    Studying the magnitude and kinetics of blood flow, oxygen extraction, and oxygen consumption at exercise onset and during the recovery from exercise can lead to insights into both the normal control of metabolism and blood flow and the disturbances to these processes in metabolic and cardiovascular diseases. The purpose of this study was to examine the on- and off-kinetics for oxygen delivery, extraction, and consumption as functions of submaximal contraction intensity. Eight healthy subjects performed four 1-min isometric dorsiflexion contractions, with two at 20% MVC and two at 40% MVC. During one contraction at each intensity, relative perfusion changes were measured by using arterial spin labeling, and the deoxyhemoglobin percentage (%HHb) was estimated using the spin- and gradient-echo sequence and a previously published empirical calibration. For the whole group, the mean perfusion did not increase during contraction. The %HHb increased from ∼28 to 38% during contractions of each intensity, with kinetics well described by an exponential function and mean response times (MRTs) of 22.7 and 21.6 s for 20 and 40% MVC, respectively. Following contraction, perfusion increased ∼2.5-fold. The %HHb, oxygen consumption, and perfusion returned to precontraction levels with MRTs of 27.5, 46.4, and 50.0 s, respectively (20% MVC), and 29.2, 75.3, and 86.0 s, respectively (40% MVC). These data demonstrate in human subjects the varied recovery rates of perfusion and oxygen consumption, along with the similar rates of %HHb recovery, across these exercise intensities.

  2. Effect of Feeding-Fasting Cycles on Oxygen Consumption and Bioenergetics of Yellow Perch

    USGS Publications Warehouse

    Chipps, Steven R.; Travis W. Schaeffer,; Daniel E. Spengler,; Casey W. Schoenebeck,; Michael L. Brown,

    2012-01-01

    We measured growth and oxygen consumption of age-1 yellow perch Perca flavescenssubjected to ad libitum (control) or variable feeding cycles of 2 (i.e., 2 d of feed, 2 d of deprivation), 6, or 12 d for a 72-d period. Individual, female yellow perch (initial weight = 51.9 ± 0.9 g [mean ± SE]) were stocked in 110-L aquaria to provide six replicates per treatment and fed measured rations of live fathead minnow Pimephales promelas. Consumption, absolute growth rate, growth efficiency, and oxygen consumption were similar among feeding regimens. However, growth trajectories for fish on the 2-d cycle were significantly lower than other feed–fast cycles. Hyperphagia occurred in all treatments. Bioenergetics model simulations indicated that consumption was significantly underestimated (t = 5.4, df = 4, P = 0.006), while growth was overestimated (t = −5.5, df = 4, P = 0.005) for fish on the 12-d cycle. However, model errors detected between observed and predicted values were low, ranging from −10.1% to +7.8%. We found that juvenile yellow perch exhibited compensatory growth (CG), but none of the feed–fast treatments resulted in growth overcompensation. Likewise, we found no evidence that respiration rates varied with CG, implying that yellow perch bioenergetics models could be used to predict the effects of feeding history and CG response on food consumption and fish growth.

  3. Fractional Consumption of Liquid Hydrogen and Liquid Oxygen During the Space Shuttle Program

    NASA Technical Reports Server (NTRS)

    Partridge, Jonathan K.

    2011-01-01

    The Space Shuttle uses the propellants, liquid hydrogen and liquid oxygen, to meet part of the propulsion requirements from ground to orbit. The Kennedy Space Center procured over 25 million kilograms of liquid hydrogen and over 250 million kilograms of liquid oxygen during the 3D-year Space Shuttle Program. Because of the cryogenic nature of the propellants, approximately 55% of the total purchased liquid hydrogen and 30% of the total purchased liquid oxygen were used in the Space Shuttle Main Engines. The balance of the propellants were vaporized during operations for various purposes. This paper dissects the total consumption of liqUid hydrogen and liqUid oxygen and determines the fraction attributable to each of the various processing and launch operations that occurred during the entire Space Shuttle Program at the Kennedy Space Center.

  4. Estimating streambed travel times and respiration rates based on temperature and oxygen consumption

    NASA Astrophysics Data System (ADS)

    Vieweg, M.; Fleckenstein, J. H.; Schmidt, C.

    2015-12-01

    Oxygen consumption is a common proxy for aerobic respiration and novel in situ measurement techniques with high spatial resolution enable an accurate determination of the oxygen distribution in the streambed. The oxygen concentration at a certain location in the streambed depends on the input concentration, the respiration rate, temperature, and the travel time of the infiltrating flowpath. While oxygen concentrations and temperature can directly be measured, respiration rate and travel time must be estimated from the data. We investigated the interplay of these factors using a 6 month long, 5-min resolution dataset collected in a 3rdorder gravel-bed stream. Our objective was twofold, to determine transient rates of hyporheic respiration and to estimate travel times in the streambed based solely on oxygen and temperature measurements. Our results show that temperature and travel time explains ~70% of the variation in oxygen concentration in the streambed. Independent travel times were obtained using natural variations in the electrical conductivity (EC) of the stream water as tracer (µ=4.1 h; σ=2.3 h). By combining these travel times with the oxygen consumption, we calculated a first order respiration rate (µ=9.7 d-1; σ=6.1 d-1). Variations in the calculated respiration rate are largely explained by variations in streambed temperature. An empirical relationship between our respiration rate and temperature agrees with the theoretical Boltzmann-Arrhenius equation. With this relationship, a temperature-based respiration rate can be estimated and used to re-estimate subsurface travel times. The resulting travel times distinctively resemble the EC-derived travel times (R20.47; Nash-Sutcliffe coefficient 0.32). Both calculations of travel time are correlated to stream water levels and increase during discharge events, enhancing the oxygen consumption for these periods. No other physical factors besides temperature were significantly correlated with the respiration

  5. Oxygen consumption of cycle ergometry is nonlinearly related to work rate and pedal rate.

    PubMed

    Londeree, B R; Moffitt-Gerstenberger, J; Padfield, J A; Lottmann, D

    1997-06-01

    The purpose of the study was to develop an equation to predict the oxygen cost of cycle ergometry. Forty subjects performed an incremental cycle ergometer test on three occasions at 50, 70, or 90 rpm in a counterbalanced order. Work rate was incremented every 5 or 6 min when steady rate values were achieved. To ensure accurate work rates, ergometer resistance was calibrated and flywheel revolutions were electronically measured. Oxygen consumption was measured with a computer interfaced system which provided results every minute. Oxygen consumption (mL.min-1) was the dependent variable, and independent variables were work rate (WR in kgm.min-1), pedal rate (rpm), weight (Kg), and gender (males, 0; females, 1). The following nonlinear equation was selected; VO2 = 0.42.WR1.2 + 0.00061.rpm3 + 6.35.Wt + 0.1136.RPM50.WR-0.10144.RPM90-WR-52-Gender, R2 = 0.9961, Sy.x = 106 mL.min-1, where RPM50: 50 rpm = 1, and RPM90: 90 rpm = 1, else = 0. It was concluded that the oxygen cost of cycle ergometry is nonlinearly related to work rate and pedal rate, linearly related to weight, and that females use less oxygen for a particular work rate.

  6. Nitric oxide inhibits succinate dehydrogenase-driven oxygen consumption in potato tuber mitochondria in an oxygen tension-independent manner.

    PubMed

    Simonin, Vagner; Galina, Antonio

    2013-01-01

    NO (nitric oxide) is described as an inhibitor of plant and mammalian respiratory chains owing to its high affinity for COX (cytochrome c oxidase), which hinders the reduction of oxygen to water. In the present study we show that in plant mitochondria NO may interfere with other respiratory complexes as well. We analysed oxygen consumption supported by complex I and/or complex II and/or external NADH dehydrogenase in Percoll-isolated potato tuber (Solanum tuberosum) mitochondria. When mitochondrial respiration was stimulated by succinate, adding the NO donors SNAP (S-nitroso-N-acetyl-DL-penicillamine) or DETA-NONOate caused a 70% reduction in oxygen consumption rate in state 3 (stimulated with 1 mM of ADP). This inhibition was followed by a significant increase in the Km value of SDH (succinate dehydrogenase) for succinate (Km of 0.77±0.19 to 34.3±5.9 mM, in the presence of NO). When mitochondrial respiration was stimulated by external NADH dehydrogenase or complex I, NO had no effect on respiration. NO itself and DETA-NONOate had similar effects to SNAP. No significant inhibition of respiration was observed in the absence of ADP. More importantly, SNAP inhibited PTM (potato tuber mitochondria) respiration independently of oxygen tensions, indicating a different kinetic mechanism from that observed in mammalian mitochondria. We also observed, in an FAD reduction assay, that SNAP blocked the intrinsic SDH electron flow in much the same way as TTFA (thenoyltrifluoroacetone), a non-competitive SDH inhibitor. We suggest that NO inhibits SDH in its ubiquinone site or its Fe-S centres. These data indicate that SDH has an alternative site of NO action in plant mitochondria.

  7. Rate of oxygen consumption in seasonal and non-seasonal depression.

    PubMed

    Pinchasov, Boris B; Grischin, Oleg V; Putilov, Arcady A

    2002-04-01

    Most depressives suffer from weight loss, anorexia and insomnia, while for winter depressives the typical symptoms are weight gain, carbohydrate craving, overeating, oversleeping and extreme lack of energy. It is important to know whether winter depressives differ from most other depressives on measures of energy regulation. In wintertime, we evaluated the rate of oxygen consumption in relationship to neuro-vegetative depressive symptoms in 92 Siberian women. The seated subjects underwent oxyspirography in the mid-morning (1.5 hours after a standard breakfast). It was found that the oxygen consumption rate was similar in non-depressed women (n = 25) and depressed women with non-seasonal depression (n = 27). The comparatively lower values were obtained in women with winter depression (n = 40). This finding supports the suggestion that the behaviour disturbances typical for winter depression may represent a physiological feedback loop to energy conservation.

  8. Exendin-4 increases oxygen consumption and thermogenic gene expression in muscle cells.

    PubMed

    Choung, Jin-Seung; Lee, Young-Sun; Jun, Hee-Sook

    2017-02-01

    Glucagon-like peptide-1 (GLP1) has many anti-diabetic actions and also increases energy expenditure in vivo As skeletal muscle is a major organ controlling energy metabolism, we investigated whether GLP1 can affect energy metabolism in muscle. We found that treatment of differentiated C2C12 cells with exendin-4 (Ex-4), a GLP1 receptor agonist, reduced oleate:palmitate-induced lipid accumulation and triglyceride content compared with cells without Ex-4 treatment. When we examined the oxygen consumption rate (OCR), not only the basal OCR but also the OCR induced by oleate:palmitate addition was significantly increased in Ex-4-treated differentiated C2C12 cells, and this was inhibited by exendin-9, a GLP1 receptor antagonist. The expression of uncoupling protein 1 (UCP1), β3-adrenergic receptor, peroxisome proliferator-activator receptor a (PPARa) and farnesoid X receptor mRNA was significantly upregulated in Ex-4-treated differentiated C2C12 cells, and the upregulation of these mRNA was abolished by treatment with adenylate cyclase inhibitor (2'5'-dideoxyadenosine) or PKA inhibitor (H-89). As well, intramuscular injection of Ex-4 into diet-induced obese mice significantly increased the expression of UCP1, PPARa and p-AMPK in muscle. We suggest that exposure to GLP1 increases energy expenditure in muscle through the upregulation of fat oxidation and thermogenic gene expression, which may contribute to reducing obesity and insulin resistance.

  9. LXRα fuels fatty acid-stimulated oxygen consumption in white adipocytes[S

    PubMed Central

    Dib, Lea; Bugge, Anne; Collins, Sheila

    2014-01-01

    Liver X receptors (LXRs) are transcription factors known for their role in hepatic cholesterol and lipid metabolism. Though highly expressed in fat, the role of LXR in this tissue is not well characterized. We generated adipose tissue LXRα knockout (ATaKO) mice and showed that these mice gain more weight and fat mass on a high-fat diet compared with wild-type controls. White adipose tissue (WAT) accretion in ATaKO mice results from both a decrease in WAT lipolytic and oxidative capacities. This was demonstrated by decreased expression of the β2- and β3-adrenergic receptors, reduced level of phosphorylated hormone-sensitive lipase, and lower oxygen consumption rates (OCRs) in WAT of ATaKO mice. Furthermore, LXR activation in vivo and in vitro led to decreased adipocyte size in WAT and increased glycerol release from primary adipocytes, respectively, with a concomitant increase in OCR in both models. Our findings show that absence of LXRα in adipose tissue results in elevated adiposity through a decrease in WAT oxidation, secondary to attenuated FA availability. PMID:24259533

  10. Endurance running program reverses the age related declines in peak oxygen consumption

    SciTech Connect

    Cartee, G.D.; Farrar, R.P.

    1986-03-01

    This study was designed to determine whether aging per se produces a decline in peak oxygen consumption (peak VO/sub 2/) or whether that decline may be due to the documented reduction in spontaneous activity. Male F344 rats, at the initial ages of 4 and 18 mos. of age, were divided into trained and untrained groups (YUT, YT, OUT, and OT). The trained groups ran up to 60 min/day 5 days/wk at a speed of 20m/min for 6 mos. The OUT rats demonstrated a 12% decline in peak VO/sub 2/ when compared to YUT rats. The OT rats had the same peak VO/sub 2/ as the YUT, but a 13% lower peak VO/sub 2/ than the YT. Representative enzymes of the TCA cycle, B oxidation, and electron transport system from gastrocnemius homogenates all declined in the OUT compared to YUT (14 to 24%). /sup 14/C-palmitate oxidation declined 45% in the OUT gastrocnemius compared to YUT. The carnitine values of the OUT were not significantly lower than the YUT and could not account for the large depression in palmitate oxidation. In contrast to the peak VO/sub 2/ which increased in OT only up to YUT values, the oxidative capacity of the skeletal muscle of OT was increased above the YUT group values equal to those of YT.

  11. Elevated Myocardial Oxygen Consumption During Cutaneous Cold Stress in Young Adult Overweight and Obese Africans

    PubMed Central

    Olaniyan, Toyib; Olatunji, Lawrence A.

    2015-01-01

    Exaggerated sympathetic-mediated cardiovascular responses to stressful stimuli (such as cold exposure) has been linked to the development of hypertension and cardiovascular disease, which in turn has been demonstrated to predict the development of future hypertension. The aim of the present study was to test the hypothesis that enhanced change in myocardial oxygen consumption (MVO2) to cutaneous cold stress may be one potential mechanism that predisposes overweight/obese individuals in Africa to developing hypertension. The Rate-Pressure-Product (a non-invasive determinant of MVO2) was measured in normotensive young individuals aged between 18 and 25 years at baseline and during sympathetic activation elicited by cutaneous cold stimulation (CCS). Following CCS, there was a significant enhanced rate pressure product (RPP) change in overweight individuals (P = 0.019). Furthermore, multivariate regression analysis showed that body mass index, but not body weight had a significant influence on RPP variation following CCS. Thus, it can be concluded that normotensive overweight or obese individuals have an exaggerated RPP response to the CCS. However, exposure to cold may augment sympathetic reactivity in overweight/obese individuals, which may contribute to increased risk of developing myocardial dysfunction, even in young normotensive individuals. PMID:28299141

  12. Oxygen in activator centers of zinc sulfide

    SciTech Connect

    Golobeva, N.P.; Fok, M.V.

    1986-05-01

    The authors observed the sensitized luminescence of Tm and Dy without addition of Cu and Ag in samples which had been obtained by the sulfonation of zinc sulfide in hydrogen sulfide; the zinc sulfide has a copper concentration below 5.10/sup -6/ mass %. In this case the excitation can be transmitted from the ZnS lattice to the rare-earth activators mainly through defects including oxygen. The following conclusions were made. In the case of activated ZnS, oxygen is present in formations accounting for the excitation and luminescence of a number of luminophors. When an activator is introduced in the region of ZnS layer faults, where also the oxygen must be located, the positioning of the faults in close vicinity is facilitated even when the oxygen concentration of the ZnS is low. All this must be considered when models of luminescence centers of zinc sulfide are developed.

  13. A program of moderate physical training for Wistar rats based on maximal oxygen consumption.

    PubMed

    Leandro, Carol Góis; Levada, Adriana Cristina; Hirabara, Sandro Massao; Manhães-de-Castro, Raul; De-Castro, Célia Barbosa; Curi, Rui; Pithon-Curi, Tânia Cristina

    2007-08-01

    Moderate physical training is often associated with improved cardiorespiratory fitness in athletes and the general population. In animals, studies are designed to investigate basic physiology that could be invasive and uncomfortable for humans. The standardization of an exercise training protocol for rats based on maximal consumption of oxygen (VO(2)max) is needed. This study validated a program of moderate physical training for Wistar rats based on VO(2)max determined once a week. A 10-stage treadmill running test was developed to measure VO(2)max through an indirect, open circuit calorimeter. Thirty male Wistar rats (210-226 g) were randomly assigned to either a nontrained group or a trained group. The animals were evaluated weekly to follow their VO(2)max during 8 weeks of moderate training and to adjust the intensity of the protocol of training. The soleus muscle was removed for determination of citrate synthase activity. Trained animals maintained their values of VO(2)max during a moderate running training and showed a significant less body weight gain. An increase of 42% in citrate synthase activity of the soleus muscle from trained rats was found after the training program. Our study presents a protocol of moderate physical training for Wistar rats based on VO(2)max. Peripheral adaptations such as the values of citrate synthase activity also responded to the moderate training program imposed as observed for VO(2)max. Other studies can use our protocol of moderate training to study the physiologic adaptations underlying this specific intensity of training. It will provide support for study with humans.

  14. Comparison of maximal oxygen consumption between obese black and white adolescents.

    PubMed

    Andreacci, Joseph L; Robertson, Robert J; Dubé, John J; Aaron, Deborah J; Dixon, Curt B; Arslanian, Silva A

    2005-09-01

    The purpose of this investigation was to determine whether maximal oxygen consumption (VO2max) differed between clinically obese black and white children and if a difference existed to determine whether it was related to hematological profiles and/or physical activity/inactivity levels. Twenty-three black and 21 white adolescents were matched for age, BMI, and Tanner stage (II-V). Body composition was determined by DEXA and CT scan. Daily physical activity/inactivity was assessed by questionnaire. VO2max was assessed using the Bruce treadmill protocol. Black participants had significantly lower VO2max and VO2maxFFM values when compared with white adolescents (26.1 +/- 4.2 versus 29.9 +/- 3.1 mL . kg(-1) . min(-1); 48.3 +/- 8.8 versus 55.6 +/- 5.2 mL . kgFFM(-1) . min(-1), respectively). Black adolescents also had significantly lower Hb concentrations ([Hb]) than white children (12.7 +/- 1.3 versus 13.4 +/- 0.7 g/dL). Black adolescents were more physically inactive than their white peers. VO2max correlated with [Hb] for the combined groups. Obese black adolescents had lower VO2max compared with white children and this difference was explained, in part, by the lower [Hb] observed in the black participants. Further investigations should study Hb flow rate (a function of [Hb] . maximal cardiac output) and physical activity/inactivity patterns in obese black and white children as it relates to VO2max.

  15. Effects of fluctuating hypoxia on benthic oxygen consumption in the Black Sea (Crimean shelf)

    NASA Astrophysics Data System (ADS)

    Lichtschlag, A.; Donis, D.; Janssen, F.; Jessen, G. L.; Holtappels, M.; Wenzhöfer, F.; Mazlumyan, S.; Sergeeva, N.; Waldmann, C.; Boetius, A.

    2015-08-01

    The outer western Crimean shelf of the Black Sea is a natural laboratory to investigate effects of stable oxic versus varying hypoxic conditions on seafloor biogeochemical processes and benthic community structure. Bottom-water oxygen concentrations ranged from normoxic (175 μmol O2 L-1) and hypoxic (< 63 μmol O2 L-1) or even anoxic/sulfidic conditions within a few kilometers' distance. Variations in oxygen concentrations between 160 and 10 μmol L-1 even occurred within hours close to the chemocline at 134 m water depth. Total oxygen uptake, including diffusive as well as fauna-mediated oxygen consumption, decreased from 15 mmol m-2 d-1 on average in the oxic zone, to 7 mmol m-2 d-1 on average in the hypoxic zone, correlating with changes in macrobenthos composition. Benthic diffusive oxygen uptake rates, comprising respiration of microorganisms and small meiofauna, were similar in oxic and hypoxic zones (on average 4.5 mmol m-2 d-1), but declined to 1.3 mmol m-2 d-1 in bottom waters with oxygen concentrations below 20 μmol L-1. Measurements and modeling of porewater profiles indicated that reoxidation of reduced compounds played only a minor role in diffusive oxygen uptake under the different oxygen conditions, leaving the major fraction to aerobic degradation of organic carbon. Remineralization efficiency decreased from nearly 100 % in the oxic zone, to 50 % in the oxic-hypoxic zone, to 10 % in the hypoxic-anoxic zone. Overall, the faunal remineralization rate was more important, but also more influenced by fluctuating oxygen concentrations, than microbial and geochemical oxidation processes.

  16. Rhythms of locomotion and oxygen consumption in the estuarine amphipod Corophium volutator (Crustacea: Amphipoda).

    PubMed

    Harris, G J; Morgan, E

    1984-01-01

    The estuarine amphipod Corophium volutator exhibits an endogenous circatidal rhythm of swimming activity, with maxima occurring just after the expected time of high water, under constant laboratory conditions. Oxygen uptake by Corophium is also subject to modulation across the tidal cycle. The period of highest oxygen uptake occurs during the ebb tide, in phase with the period of maximum swimming activity. A second increase in oxygen uptake during the early flood tide is thought to reflect either in-burrow activity or a previously described rhythm of emergence. This being so, this aspect of the animal's respiratory metabolism may be regulated by an autonomous oscillator independent of that governing the animal's swimming behaviour.

  17. Effect of Carbamate, Organophosphate, and Avermectin Nematicides on Oxygen Consumption by Three Meloidogyne spp.

    PubMed

    Nordmeyer, D; Dickson, D W

    1989-10-01

    Second-stage juveniles (I2) of Meloidogyne arenaria consumed more oxygen (P oxygen consumption depended on the nematicide used. Except for aldicarb, there was no differential sensitivity among the three nematode species. Meloidogyne javanica had a greater percentage decrease (P oxygen uptake when treated with aldicarb, relative to the untreated control, than either M. arenaria or M. incognita. Meloidogyne javanica J2 had a greater degree of recovery from fenamiphos or aldicarb intoxication, after subsequent transfer to water, than did M. incognita. This finding may relate to differential sensitivity among Meloidogyne spp. in the field. Degree of respiratory inhibition and loss of nematode motility for M. javanica after exposure to the nematicides were positively correlated (P

  18. Tide-related biological rhythm in the oxygen consumption rate of ghost shrimp (Neotrypaea uncinata).

    PubMed

    Leiva, Félix P; Niklitschek, Edwin J; Paschke, Kurt; Gebauer, Paulina; Urbina, Mauricio A

    2016-07-01

    The effects of tidal height (high and low), acclimation to laboratory conditions (days in captivity) and oxygen level (hypoxia and normoxia) were evaluated in the oxygen consumption rate (OCR) of the ghost shrimp Neotrypaea uncinata We evaluated the hypothesis that N. uncinata reduces its OCR during low tide and increases it during high tide, regardless of oxygen level or acclimation. Additionally, the existence of an endogenous rhythm in OCR was explored, and we examined whether it synchronized with tidal, diurnal or semidiurnal cycles. Unexpectedly, high OCRs were observed at low tide, during normoxia, in non-acclimated animals. Results from a second, longer experiment under normoxic conditions suggested the presence of a tide-related metabolic rhythm, a response pattern not yet demonstrated for a burrowing decapod. Although rhythms persisted for only 2 days after capture, their period of 12.8 h closely matched the semidiurnal tidal cycle that ghost shrimp confront inside their burrows.

  19. Both superficial and deep zone articular chondrocyte subpopulations exhibit the Crabtree effect but have different basal oxygen consumption rates.

    PubMed

    Heywood, Hannah K; Knight, Martin M; Lee, David A

    2010-06-01

    In the absence of in vivo measurements, the oxygen concentration within articular cartilage is calculated from the balance between cellular oxygen consumption and mass transfer. Current estimates of the oxygen tension within articular cartilage are based on oxygen consumption data from full-depth tissue samples. However, superficial and deep cell subpopulations of articular cartilage express intrinsic metabolic differences. We test the hypothesis that the subpopulations differ with respect to their intrinsic oxygen consumption rate. Chondrocytes from the full cartilage thickness demonstrate enhanced oxygen consumption when deprived of glucose, consistent with the Crabtree phenomena. Chondrocyte subpopulations differ in the prevailing availability of oxygen and glucose, which decrease with distance from the cartilage-synovial fluid interface. Thus, we tested the hypothesis that the oxygen consumption of each subpopulation is modulated by nutrient availability, by examining the expression of the Crabtree effect. The deep cells had a greater oxygen consumption than the superficial cells (V(max) of 6.6 compared to 3.2 fmol/cell/h), consistent with our observations of mitochondrial volume (mean values 52.0 vs. 36.4 microm(3)/cell). Both populations expressed the Crabtree phenomena, with oxygen consumption increasing approximately 2.5-fold in response to glycolytic inhibition by glucose deprivation or 2-deoxyglucose. Over 90% of this increase was oligomycin-sensitive and thus accounted for by oxidative phosphorylation. The data contributes towards our understanding of chondrocyte energy metabolism and provides information valuable for the accurate calculation of the oxygen concentration that the cells experience in vivo. The work has further application to the optimisation of bioreactor design and engineered tissues.

  20. Mode of exercise and sex are not important for oxygen consumption during and in recovery from sprint interval training.

    PubMed

    Townsend, Logan K; Couture, Katie M; Hazell, Tom J

    2014-12-01

    Most sprint interval training (SIT) research involves cycling as the mode of exercise and whether running SIT elicits a similar excess postexercise oxygen consumption (EPOC) response to cycling SIT is unknown. As running is a more whole-body-natured exercise, the potential EPOC response could be greater when using a running session compared with a cycling session. The purpose of the current study was to determine the acute effects of a running versus cycling SIT session on EPOC and whether potential sex differences exist. Sixteen healthy recreationally active individuals (8 males and 8 females) had their gas exchange measured over ∼2.5 h under 3 experimental sessions: (i) a cycle SIT session, (ii) a run SIT session, and (iii) a control (CTRL; no exercise) session. Diet was controlled. During exercise, both SIT modes increased oxygen consumption (cycle: male, 1.967 ± 0.343; female, 1.739 ± 0.296 L·min(-1); run: male, 2.169 ± 0.369; female, 1.791 ± 0.481 L·min(-1)) versus CTRL (male, 0.425 ± 0.065 L·min(-1); female, 0.357 ± 0.067; P < 0.001), but not compared with each other (P = 0.234). In the first hour postexercise, oxygen consumption was still increased following both run (male, 0.590 ± 0.065; female, 0.449 ± 0.084) and cycle SIT (male, 0.556 ± 0.069; female, 0.481 ± 0.110 L·min(-1)) versus CTRL and oxygen consumption was maintained through the second hour postexercise (CTRL: male, 0.410 ± 0.048; female, 0.332 ± 0.062; cycle: male, 0.430 ± 0.047; female, 0.395 ± 0.087; run: male, 0.463 ± 0.051; female, 0.374 ± 0.087 L·min(-1)). The total EPOC was not significantly different between modes of exercise or males and females (P > 0.05). Our data demonstrate that the mode of exercise during SIT (cycling or running) is not important to O2 consumption and that males and females respond similarly.

  1. Acute EPOC response in women to circuit training and treadmill exercise of matched oxygen consumption.

    PubMed

    Braun, W A; Hawthorne, W E; Markofski, M M

    2005-08-01

    The purpose of the study was to evaluate the effects of circuit training (CT) and treadmill exercise performed at matched rates of oxygen consumption and exercise duration on elevated post-exercise oxygen consumption (EPOC) in untrained women, while controlling for the menstrual cycle. Eight, untrained females (31.3 +/- 9.1 years; 2.04 +/- 0.26 l min(-1) estimated VO2max; BMI=24.6+/-3.9 kg/m2) volunteered to participate in the study. Testing was performed during the early follicular phase for each subject to minimize hormonal variability between tests. Subjects performed two exercise sessions approximately 28 days apart. Resting, supine energy expenditure was measured for 30 min preceding exercise and for 1 h after completion of exercise. Respiratory gas exchange data were collected continuously during rest and exercise periods via indirect calorimetry. CT consisted of three sets of eight common resistance exercises. Pre-exercise and exercise oxygen consumption was not different between testing days (P>0.05). Thus, exercise conditions were appropriately matched. Analysis of EPOC data revealed that CT resulted in a significantly higher (p<0.05) oxygen uptake during the first 30 min of recovery (0.27 +/- 0.01 l min(-1) vs 0.23+/-0.01 l min(-1)); though, at 60 min, treatment differences were not present. Mean VO2 remained significantly higher (0.231 +/- 0.01 l min(-1)) than pre-exercise measures (0.193 +/- 0.01 l min(-1)) throughout the 60-min EPOC period (p<0.05). Heart rate, RPE, V(E) and RER were all significantly greater during CT (p<0.05). When exercise VO2 and exercise duration were matched, CT was associated with a greater metabolic disturbance and cost during the early phases of EPOC.

  2. Diffusion and Monod kinetics model to determine in vivo human corneal oxygen-consumption rate during soft contact lens wear

    PubMed Central

    Del Castillo, Luis F.; da Silva, Ana R. Ferreira; Hernández, Saul I.; Aguilella, M.; Andrio, Andreu; Mollá, Sergio; Compañ, Vicente

    2014-01-01

    Purpose We present an analysis of the corneal oxygen consumption Qc from non-linear models, using data of oxygen partial pressure or tension (pO2) obtained from in vivo estimation previously reported by other authors.1 Methods Assuming that the cornea is a single homogeneous layer, the oxygen permeability through the cornea will be the same regardless of the type of lens that is available on it. The obtention of the real value of the maximum oxygen consumption rate Qc,max is very important because this parameter is directly related with the gradient pressure profile into the cornea and moreover, the real corneal oxygen consumption is influenced by both anterior and posterior oxygen fluxes. Results Our calculations give different values for the maximum oxygen consumption rate Qc,max, when different oxygen pressure values (high and low pO2) are considered at the interface cornea-tears film. Conclusion Present results are relevant for the calculation on the partial pressure of oxygen, available at different depths into the corneal tissue behind contact lenses of different oxygen transmissibility. PMID:25649636

  3. Contributions to elevated metabolism during recovery: dissecting the excess postexercise oxygen consumption (EPOC) in the desert iguana (Dipsosaurus dorsalis).

    PubMed

    Hancock, Thomas V; Gleeson, Todd T

    2008-01-01

    The excess postexercise oxygen consumption (EPOC), a measure of recovery costs, is known to be large in ectothermic vertebrates such as the desert iguana (Dipsosaurus dorsalis), especially after vigorous activity. To analyze the cause of these large recovery costs in a terrestrial ectotherm, Dipsosaurus were run for 15 s at maximal-intensity (distance 35.0+/-1.9 m; 2.33+/-0.13 m s(-1)) while O(2) uptake was monitored via open-flow respirometry. Muscle metabolites (adenylates, phosphocreatine, and lactate) were measured at rest and after 0, 3, 10, and 60 min of recovery. Cardiac and ventilatory activity during rest and recovery were measured, as were whole-body lactate and blood lactate, which were used to estimate total muscle activity. This vigorous activity was supported primarily by glycolysis (65%) and phosphocreatine hydrolysis (29%), with only a small contribution from aerobic metabolism (2.5%). Aerobic recovery lasted 43.8+/-4.6 min, and EPOC measured 0.166+/-0.025 mL O(2) g(-1). This was a large proportion (98%) of the total suprabasal metabolic cost of the activity to the animal. The various contributions to EPOC after this short but vigorous activity were quantified, and a majority of EPOC was accounted for. The two primary causes of EPOC were phosphocreatine repletion (32%-50%) and lactate glycogenesis (30%-47%). Four other components played smaller roles: ATP repletion (8%-13%), elevated ventilatory activity (2%), elevated cardiac activity (2%), and oxygen store resaturation (1%).

  4. Rodent Working Heart Model for the Study of Myocardial Performance and Oxygen Consumption

    PubMed Central

    Kheir, John N.

    2016-01-01

    Isolated working heart models have been used to understand the effects of loading conditions, heart rate and medications on myocardial performance in ways that cannot be accomplished in vivo. For example, inotropic medications commonly also affect preload and afterload, precluding load-independent assessments of their myocardial effects in vivo. Additionally, this model allows for sampling of coronary sinus effluent without contamination from systemic venous return, permitting assessment of myocardial oxygen consumption. Further, the advent of miniaturized pressure-volume catheters has allowed for the precise quantification of markers of both systolic and diastolic performance. We describe a model in which the left ventricle can be studied while performing both volume and pressure work under controlled conditions. In this technique, the heart and lungs of a Sprague-Dawley rat (weight 300-500 g) are removed en bloc under general anesthesia. The aorta is dissected free and cannulated for retrograde perfusion with oxygenated Krebs buffer. The pulmonary arteries and veins are ligated and the lungs removed from the preparation. The left atrium is then incised and cannulated using a separate venous cannula, attached to a preload block. Once this is determined to be leak-free, the left heart is loaded and retrograde perfusion stopped, creating the working heart model. The pulmonary artery is incised and cannulated for collection of coronary effluent and determination of myocardial oxygen consumption. A pressure-volume catheter is placed into the left ventricle either retrograde or through apical puncture. If desired, atrial pacing wires can be placed for more precise control of heart rate. This model allows for precise control of preload (using a left atrial pressure block), afterload (using an afterload block), heart rate (using pacing wires) and oxygen tension (using oxygen mixtures within the perfusate). PMID:27584550

  5. Spatial mapping of blood flow and oxygen consumption in the human calf muscle using near-infrared spectroscopy

    NASA Astrophysics Data System (ADS)

    Fantini, Sergio; Hoimes, Matthew L.; Casavola, Claudia; Franceschini, Maria-Angela

    2001-05-01

    We have designed a new optical probe to perform spatially resolved measurements of blood flow and oxygen consumption over an area of about 4 x 4 cm2 of the lateral gastrocnemius muscle (calf muscle) of human subjects. The blood flow and the oxygen consumption were measured non- invasively with frequency-domain, near-infrared spectroscopy from the maximum rate of increase of the oxy- and deoxy- hemoglobin concentrations in the muscle during venous occlusion. In a preliminary test on one subject, involving measurements at rest and after exercise, we have found that the spatial variability of the measured blood flow and oxygen consumption is significantly greater than the variability of repeated measurements at a given tissue location. We have also observed a strong spatial dependence of the exercise-induced increase in blood flow and oxygen consumption.

  6. Relationship between oxygen consumption kinetics and BODE Index in COPD patients

    PubMed Central

    Borghi-Silva, Audrey; Beltrame, Thomas; Reis, Michel Silva; Sampaio, Luciana Maria Malosá; Catai, Aparecida Maria; Arena, Ross; Costa, Dirceu

    2012-01-01

    Background and objective Patients with chronic obstructive pulmonary disease (COPD) present with reduced exercise capacity due to impaired oxygen consumption (VO2), caused primarily by pulmonary dysfunction and deleterious peripheral adaptations. Assuming that COPD patients present with slower VO2 and heart rate (HR) on-kinetics, we hypothesized that this finding is related to disease severity as measured by the BODE Index. In this context, the present study intends to evaluate the relationship between VO2 uptake on-kinetics during high-intensity exercise and the BODE Index in patients with COPD. Methods Twenty males with moderate-to-severe stable COPD and 13 healthy control subjects matched by age and sex were evaluated. COPD patients were screened by the BODE Index and then underwent an incremental cardiopulmonary exercise test and a constant speed treadmill session at 70% of maximal intensity for 6 minutes. The onset of the exercise (first 360 seconds) response for O2 uptake and HR was modeled according to a monoexponential fit. Results Oxygen consumption and HR on-kinetics were slower in the COPD group compared with controls. Additionally, VO2 on-kinetic parameters revealed a strong positive correlation (r = 0.77, P < 0.05) with BODE scores and a moderate negative correlation with walking distance (r = −0.45, P < 0.05). Conclusion Our data show that moderate-to-severe COPD is related to impaired oxygen delivery and utilization during the onset of intense exercise. PMID:23118534

  7. Vertical diffusion and oxygen consumption during stagnation periods in the deep North Aegean

    NASA Astrophysics Data System (ADS)

    Zervakis, Vassilis; Krasakopoulou, Evangelia; Georgopoulos, Dimitris; Souvermezoglou, Ekaterini

    2003-01-01

    Ventilation of the deep basins of the North Aegean Sea takes place during relatively scarce events of massive dense water formation in that region. In the time intervals between such events, the bottom waters of each sub-basin are excluded from interaction with other water masses through advection or isopycnal mixing and the only process that changes their properties is diapycnal mixing with overlying waters. In this work we utilize a simple one-dimensional model in order to estimate the vertical eddy diffusion coefficient Kρ based on the observed rate of change of density and stratification. Vertical diffusivity is estimated for each of three sub-basins of the North Aegean, one of convex shape of the seabed and the other two of concave topography. It is noteworthy that the convex sub-basin exhibited much higher vertical diffusivity than the two concave sub-basins, a fact consistent with theoretical predictions that internal-wave-induced mixing is higher over the former shape of seabed. Furthermore, the estimates of Kρ are exploited in computing the vertical transport of dissolved oxygen through diffusion and the rate of oxygen consumption by decaying organic matter. The different levels of the estimated diffusion and oxygen consumption rates testify to the dynamical and biogeochemical characteristics of each basin.

  8. FEM-based oxygen consumption and cell viability models for avascular pancreatic islets

    PubMed Central

    Buchwald, Peter

    2009-01-01

    Background The function and viability of cultured, transplanted, or encapsulated pancreatic islets is often limited by hypoxia because these islets have lost their vasculature during the isolation process and have to rely on gradient-driven passive diffusion, which cannot provide adequate oxygen transport. Pancreatic islets (islets of Langerhans) are particularly susceptible due to their relatively large size, large metabolic demand, and increased sensitivity to hypoxia. Here, finite element method (FEM) based multiphysics models are explored to describe oxygen transport and cell viability in avascular islets both in static and in moving culture media. Methods Two- and three-dimensional models were built in COMSOL Multiphysics using the convection and diffusion as well as the incompressible Navier-Stokes fluid dynamics application modes. Oxygen consumption was assumed to follow Michaelis-Menten-type kinetics and to cease when local concentrations fell below a critical threshold; in a dynamic model, it was also allowed to increase with increasing glucose concentration. Results Partial differential equation (PDE) based exploratory cellular-level oxygen consumption and cell viability models incorporating physiologically realistic assumptions have been implemented for fully scaled cell culture geometries with 100, 150, and 200 μm diameter islets as representative. Calculated oxygen concentrations and intra-islet regions likely to suffer from hypoxia-related necrosis obtained for traditional flask-type cultures, oxygen-permeable silicone-rubber membrane bottom cultures, and perifusion chambers with flowing media and varying incoming glucose levels are presented in detail illustrated with corresponding colour-coded figures and animations. Conclusion Results of the computational models are, as a first estimate, in good quantitative agreement with existing experimental evidence, and they confirm that during culture, hypoxia is often a problem for non-vascularised islet

  9. Effects of exercise intensity and duration on the excess post-exercise oxygen consumption.

    PubMed

    LaForgia, J; Withers, R T; Gore, C J

    2006-12-01

    Recovery from a bout of exercise is associated with an elevation in metabolism referred to as the excess post-exercise oxygen consumption (EPOC). A number of investigators in the first half of the last century reported prolonged EPOC durations and that the EPOC was a major component of the thermic effect of activity. It was therefore thought that the EPOC was a major contributor to total daily energy expenditure and hence the maintenance of body mass. Investigations conducted over the last two or three decades have improved the experimental protocols used in the pioneering studies and therefore have more accurately characterized the EPOC. Evidence has accumulated to suggest an exponential relationship between exercise intensity and the magnitude of the EPOC for specific exercise durations. Furthermore, work at exercise intensities >or=50-60% VO2max stimulate a linear increase in EPOC as exercise duration increases. The existence of these relationships with resistance exercise at this stage remains unclear because of the limited number of studies and problems with quantification of work intensity for this type of exercise. Although the more recent studies do not support the extended EPOC durations reported by some of the pioneering investigators, it is now apparent that a prolonged EPOC (3-24 h) may result from an appropriate exercise stimulus (submaximal: >or=50 min at >or=70% VO2max; supramaximal: >or=6 min at >or=105% VO2max). However, even those studies incorporating exercise stimuli resulting in prolonged EPOC durations have identified that the EPOC comprises only 6-15% of the net total oxygen cost of the exercise. But this figure may need to be increased when studies utilizing intermittent work bouts are designed to allow the determination of rest interval EPOCs, which should logically contribute to the EPOC determined following the cessation of the last work bout. Notwithstanding the aforementioned, the earlier research optimism regarding an important role

  10. Relationship between Maximal Oxygen Consumption (VO2max) and Home Range Area in Mammals.

    PubMed

    Albuquerque, Ralph L; Sanchez, Gabriela; Garland, Theodore

    2015-01-01

    Home range is defined as the area traversed during normal daily activities, such as foraging, avoiding predators, and social or antagonistic behaviors. All else being equal, larger home ranges should be associated with longer daily movement distances and/or higher average movement speeds. The maximal rate of oxygen consumption (VO2max) generally sets an upper limit to the intensity of work (e.g., speed of locomotion) that an animal can sustain without fatigue. Therefore, home range area and VO2max are predicted to evolve in concert (coadapt). We gathered literature data on home range and VO2max for 55 species of mammals. We computed residuals from log-log (allometric) regressions on body mass with two different regression models: ordinary least squares (OLS) and phylogenetic generalized least squares (PGLS). Residuals were weakly positively related for both the OLS (r = 0.278, one-tailed P < 0.05) and PGLS (r = 0.210, P > 0.05) regressions. For VO2max, the PGLS regression model had a slightly higher likelihood than the OLS model, but the situation was reversed for home range area. In addition, for both home range area and VO2max, models that fit better than either OLS or PGLS were obtained by modeling residual variation with the Ornstein-Uhlenbeck process to mimic stabilizing selection (RegOU), indicating that phylogenetic signal is present in both size-adjusted traits, consistent with findings of previous studies. (However, residuals from the RegOU models cannot be tested for correlation due to mathematical complexities.) We conclude that the best estimate of the residual correlation is probably somewhere between these two values reported above. Possible reasons for the low correlation between residual home range area and VO2max are discussed.

  11. Validation of manometric microrespirometers for measuring oxygen consumption in small arthropods

    PubMed Central

    Melvin, Richard G.; Ballard, J. William O.; Williams, Joseph B.

    2008-01-01

    Scientists have used numerous techniques to measure organismal metabolic rate, including assays of oxygen (O2) consumption and carbon dioxide (CO2) production. Relatively few studies have directly compared estimates of metabolic rate on the same groups of animals as determined by different assay methods. This study directly compared measures of the metabolic rate of three lines of Drosophila simulans as determined either from direct measures of CO2 production using infrared gas analysis (IRGA), or from estimates of O2 consumption based on manometeric techniques. Determinations of metabolic rate of the same cohorts of flies using these two methods produced results that often differed widely. Typically metabolic rate as determined by the manometric method was significantly greater than that determined by CO2 output. These differences are difficult to explain by simple biotic or abiotic factor/s. Because of the idiosyncratic nature of these differences it is not possible to use a simple factor to convert from metabolic rate measurements done using manometric techniques to those expected from direct measures of CO2 output or O2 consumption. Although manometric devices are simple to construct and use, measurements of metabolic rate made with this method can vary significantly from measurements made by directly assaying CO2 production or O2 consumption. PMID:18606168

  12. Influence of solid corrosion by-products on the consumption of dissolved oxygen in copper pipes

    SciTech Connect

    Vargas, Ignacio T.; Alsina, Marco A.; Pastén, Pablo A.; Pizarro, Gonzalo E.

    2009-06-12

    Research on corrosion of copper pipes has given little consideration to the influence of solid corrosion by-products on the processes occurring at the metal-liquid interface. Consequently, the effect of such solid phases on the rate of dissolved oxygen (DO) consumption remains poorly understood. In-situ experiments were performed in copper pipes under different carbonate concentrations and ageing times. Our results show that the amount of solid corrosion by-products and concentration of hydrogen ions affect the rate of DO consumption during stagnation. Furthermore, our findings support the existing hypothesis that the available concentration of hydrogen ions, rather than DO, is the limiting factor for copper release into drinking water.

  13. Effects of TFM and Bayer 73 on in vivo oxygen consumption of the aquatic midge Chironomus tentans

    USGS Publications Warehouse

    Kawatski, J.A.; Dawson, V.K.; Reuvers, J.L.

    1974-01-01

    Exposure of fourth instar larvae of Chironomus tentans to 2.0-8.0 mg/liter of TFM (3-trifluormethyl-4-nitrophenol) for 6 hr at 22 A? 0.5 C in soft water resulted in a significantly increased rate of larval oxygen consumption compared to that of control larvae, as measured with the Warburg respirometer. Maximum stimulation of oxygen consumption occurred with 8.0 mg/liter of TFM, and 1.0 mg/liter of TFM had no measurable effect on basal respiration. When hardness of exposure water was progressively increased, the effect of TFM on oxygen consumption was diminished. Bayer 73 (5,2'-dichloro-4'-nitrosalicylanilide) stimulated oxygen consumption at 0.75 and 1.0 mg/liter, had no significant effect at concentrations less that 0.75 mg/liter, and inhibited oxygen consumption at concentrations of 1.20 mg/liter or greater. Mixtures of TFM and Bayer 73, in the ratio of 98:2, had no greater effect on oxygen consumption than TFM alone.

  14. Swimming for your life: locomotor effort and oxygen consumption during the green turtle (Chelonia mydas) hatchling frenzy.

    PubMed

    Booth, David T

    2009-01-01

    Swimming effort and oxygen consumption of newly emerged green turtle Chelonia mydas hatchlings was measured simultaneously and continuously for the first 18 h of swimming after hatchlings entered the water. Oxygen consumption was tightly correlated to swimming effort during the first 12 h of swimming indicating that swimming is powered predominantly by aerobic metabolism. The patterns of swimming effort and oxygen consumption could be divided into three distinct phases: (1) the rapid fatigue phase from 0 to 2 h when the mean swim thrust decreased from 45 to 30 mN and oxygen consumption decreased from 33 to 18 ml h(-1); (2) the slow fatigue phase from 2 to 12 h when the mean swim thrust decreased from 30 to 22 mN and oxygen consumption decreased from 18 to 10 ml h(-1); and (3) the sustained effort phase from 12 to 18 h when mean swim thrust averaged 22 mN and oxygen consumption averaged 10 ml h(-1). The decrease in mean swim thrust was caused by a combination of a decrease in front flipper stroke rate during a power stroking bout, a decrease in mean maximum thrust during a power stroking bout and a decrease in the proportion of time spent power stroking. Hence hatchlings maximise their swimming thrust as soon as they enter the water, a time when a fast swimming speed will maximise the chance of surviving the gauntlet of predators inhabiting the shallow fringing reef before reaching the relative safety of deeper water.

  15. Oxygen Consumption and Usage During Physical Exercise: The Balance Between Oxidative Stress and ROS-Dependent Adaptive Signaling

    PubMed Central

    Zhao, Zhongfu; Koltai, Erika; Ohno, Hideki; Atalay, Mustafa

    2013-01-01

    Abstract The complexity of human DNA has been affected by aerobic metabolism, including endurance exercise and oxygen toxicity. Aerobic endurance exercise could play an important role in the evolution of Homo sapiens, and oxygen was not important just for survival, but it was crucial to redox-mediated adaptation. The metabolic challenge during physical exercise results in an elevated generation of reactive oxygen species (ROS) that are important modulators of muscle contraction, antioxidant protection, and oxidative damage repair, which at moderate levels generate physiological responses. Several factors of mitochondrial biogenesis, such as peroxisome proliferator-activated receptor-γ coactivator 1α (PGC-1α), mitogen-activated protein kinase, and SIRT1, are modulated by exercise-associated changes in the redox milieu. PGC-1α activation could result in decreased oxidative challenge, either by upregulation of antioxidant enzymes and/or by an increased number of mitochondria that allows lower levels of respiratory activity for the same degree of ATP generation. Endogenous thiol antioxidants glutathione and thioredoxin are modulated with high oxygen consumption and ROS generation during physical exercise, controlling cellular function through redox-sensitive signaling and protein–protein interactions. Endurance exercise-related angiogenesis, up to a significant degree, is regulated by ROS-mediated activation of hypoxia-inducible factor 1α. Moreover, the exercise-associated ROS production could be important to DNA methylation and post-translation modifications of histone residues, which create heritable adaptive conditions based on epigenetic features of chromosomes. Accumulating data indicate that exercise with moderate intensity has systemic and complex health-promoting effects, which undoubtedly involve regulation of redox homeostasis and signaling. Antioxid. Redox Signal. 18, 1208–1246. PMID:22978553

  16. Regional brain blood flow and cerebral hemispheric oxygen consumption during acute hypoxaemia in the llama fetus

    PubMed Central

    Llanos, Aníbal J; Riquelme, Raquel A; Sanhueza, Emilia M; Herrera, Emilio; Cabello, Gertrudis; Giussani, Dino A; Parer, Julian T

    2002-01-01

    Unlike fetal animals of lowland species, the llama fetus does not increase its cerebral blood flow during an episode of acute hypoxaemia. This study tested the hypothesis that the fetal llama brain maintains cerebral hemispheric O2 consumption by increasing cerebral O2 extraction rather than decreasing cerebral oxygen utilisation during acute hypoxaemia. Six llama fetuses were surgically instrumented under general anaesthesia at 217 days of gestation (term ca 350 days) with vascular and amniotic catheters in order to carry out cardiorespiratory studies. Following a control period of 1 h, the llama fetuses underwent 3 × 20 min episodes of progressive hypoxaemia, induced by maternal inhalational hypoxia. During basal conditions and during each of the 20 min of hypoxaemia, fetal cerebral blood flow was measured with radioactive microspheres, cerebral oxygen extraction was calculated, and fetal cerebral hemispheric O2 consumption was determined by the modified Fick principle. During hypoxaemia, fetal arterial O2 tension and fetal pH decreased progressively from 24 ± 1 to 20 ± 1 Torr and from 7.36 ± 0.01 to 7.33 ± 0.01, respectively, during the first 20 min episode, to 16 ± 1 Torr and 7.25 ± 0.05 during the second 20 min episode and to 14 ± 1 Torr and 7.21 ± 0.04 during the final 20 min episode. Fetal arterial partial pressure of CO2 (Pa,CO2, 42 ± 2 Torr) remained unaltered from baseline throughout the experiment. Fetal cerebral hemispheric blood flow and cerebral hemispheric oxygen extraction were unaltered from baseline during progressive hypoxaemia. In contrast, a progressive fall in fetal cerebral hemispheric oxygen consumption occurred during the hypoxaemic challenge. In conclusion, these data do not support the hypothesis that the fetal llama brain maintains cerebral hemispheric O2 consumption by increasing cerebral hemispheric O2 extraction. Rather, the data show that in the llama fetus, a reduction in cerebral hemispheric metabolism occurs during acute

  17. [Effects of temperature and salinity on oxygen consumption rate and asphyxiation point of Sagitta crassa].

    PubMed

    Liu, Qing; Zhu, Hai-Yan; Liu, Fang; Ding, Zi-Yuan

    2011-11-01

    A laboratory test was conducted to study the effects of different temperature and salinity on the oxygen consumption rate and asphyxiation point of chaetognath Sagitta crassa. Both temperature and salinity had significant effects on the oxygen consumption rate (IO) and specific oxygen consumption rate (SO) of S. crassa. When the temperature raised from 5 degrees C to 25 degrees C, the IO and SO of S. crassa increased first, and then presented an obvious decreasing trend, with the regression function being y = 0.0058x3-0.2956x2 +4.415x-8.7816 (R2 = 0.99, P < 0.05) for IO and y = 0.0011x3-0.0546x2+0.8161x-1.6232 (R2 = 0.99, P < 0.05) for SO. The IO and SO at different temperature were in the ranges of 6.30-11.71 microg x ind(-1) x h(-1) and 1.22-2.16 microg x mg(-1) x h(-1), respectively, and the asphyxiation point was 4.18-6.87 mg x L(-1). When the salinity increased from 10 to 40, the IO and SO of S. crassa decreased gradually, with the regression function being y = -0.0068x2-0.1412x+21.702 (R2 = 0.89, P < 0.05) for IO and y = -0.0013x2 -0.0261x+ 4.0114 (R2 = 0.89, P < 0.05) for SO. The IO and SO at different salinity were in the ranges of 4.98-17.73 microg x ind(-1) x h(-1) and 0.92-3.56 microg x mg(-1) x h(-1), respectively, and the asphyxiation point was 4.02-6.24 mg x L(-1). Based on the differences in the oxygen consumption rate and asphyxiation point between S. crassa and other aquatic animals, it was concluded that S. crassa was a stenooxybiotic zooplankton species.

  18. Effects of temperature and dissolved oxygen content on oxygen consumption rate of Chinese prawn, giant tiger prawn and giant freshwater prawn

    NASA Astrophysics Data System (ADS)

    Dai, Xi-Lin; Zang, Wei-Ling; Wang, Wei-Dong; Shi, Yong-Hai; Liu, Wen-Cui; Xu, Gui-Rong; Li, Shi-Hua

    1999-06-01

    Temperature and the dissolved oxygen content affect the oxygen consumption of juveniles of Chinese prawn ( Penaeus chinensis), giant tiger prawn ( P. monodon) and giant freshwater prawn ( Macrobrachium rosenbergii). There is good correlation between the oxygen consumption rate ( V, mg/g·h) of the above three prawn species and the water temperature, and dissolved oxygen. In the range of test temperature, V increased with water temperature and dissolved oxygen content. The V of the above three prawn species increased 0.085 mg/g·h, 0.093 mg/g·h and 0.08 mg/g·h respectively with each °C of rising temperature. The comatose point and stifling point of the juveniles rose obviously at unsuitable temperature.

  19. Mitochondrial oxygen consumption in permeabilized fibers and its link to colour changes in bovine M. semimembranosus muscle.

    PubMed

    Phung, V T; Khatri, M; Liland, K H; Slinde, E; Sørheim, O; Almøy, T; Saarem, K; Egelandsdal, B

    2013-01-01

    Animal and muscle characteristics were recorded for 41 cattle. The oxygen consumption rate (OCR) of M. semimembranosus was measured between 3.0-6.4h post mortem (PM3-6) and after 3 weeks in a vacuum pack at 4°C. Colour change measurements were performed following the 3 weeks using reflectance spectra (400-1,100 nm) and the colour coordinates L, a and b, with the samples being packaged in oxygen permeable film and stored at 4°C for 167 h. Significant individual animal differences in OCR at PM3-6 were found for mitochondrial complexes I and II. OCR of complex I declined with increased temperature and time PM, while residual oxygen-consuming side-reactions (ROX) did not. OCR of stored muscles was dominated by complex II respiration. A three-way regression between samples, colour variables collected upon air exposure and OCR of 3 weeks old fibres revealed a positive relationship between OCR and complex II activity and also between OCR and OCR(ROX). The presence of complex I and β-oxidation activities increased metmyoglobin formation.

  20. Benthic nutrient fluxes and sediment oxygen consumption in a full-scale facultative pond in Patagonia, Argentina.

    PubMed

    Faleschini, M; Esteves, J L

    2013-01-01

    The study of benthic metabolism is an interesting tool to understand the process that occurs in bottom water at wastewater stabilization ponds. Here, rates of benthic oxygen consumption and nutrient exchange across the water-sludge interface were measured in situ using a benthic chamber. The research was carried out during autumn, winter, and summer at a municipal facultative stabilization pond working in a temperate region (Puerto Madryn city, Argentina). Both a site near the raw wastewater inlet (Inlet station) and a site near the outlet (Outlet station) were sampled. Important seasonal and spatial patterns were identified as being related to benthic fluxes. Ammonium release ranged from undetectable (autumn/summer - Inlet station) to +30.7 kg-NH4(+) ha(-1) d(-1) (autumn - Outlet station), denitrification ranged from undetectable (winter - in both sites) to -4.0 kg-NO3(-) ha(-1) d(-1) (autumn - Outlet station), and oxygen consumption ranged from 0.07 kg-O2ha(-1) d(-1) (autumn/summer - Outlet station) to 0.84 kg-O2ha(-1) d(-1) (autumn - Inlet station). During the warmer months, the mineralization of organic matter from the bottom pond acts as a source of nutrients, which seem to support the important development of phytoplankton and nitrification activity recorded in the surface water. Bottom processes could be related to the advanced degree and efficiency of the treatment, the temperature, and probably the strong and frequent wind present in the region.

  1. Stable Isotope Composition of Molecular Oxygen in Soil Gas and Groundwater: A Potentially Robust Tracer for Diffusion and Oxygen Consumption Processes

    NASA Astrophysics Data System (ADS)

    Aggarwal, Pradeep K.; Dillon, M. A.

    1998-02-01

    We have measured the concentration and isotopic composition of molecular oxygen in soil gas and groundwater. At a site near Lincoln, Nebraska, USA, soil gas oxygen concentrations ranged from 13.8 to 17.6% at depths of 3-4 m and the δ 18O values ranged mostly from 24.0 to 27.2‰ (SMOW). The concentration of dissolved oxygen in a perched aquifer in the Texas Panhandle (depth to water ˜76 m) was about 5 mg/L and the δ 18O values were 21.2-22.9‰. The δ 18O of soil gas oxygen in our study are higher and those of dissolved oxygen are lower than the δ 18O of atmospheric oxygen (23.5‰). A model for the oxygen concentration and isotopic composition in soil gas was developed using the molecular diffusion theory. The higher δ 18O values in soil gas at the Nebraska site can be explained by the effects of diffusion and soil respiration (plant root and bacterial) on the isotopic composition of molecular oxygen. The lower δ 18O of dissolved oxygen at the Texas site indicates that oxygen consumption below the root zone in the relatively thick unsaturated zone here may have occurred with a different fractionation factor (either due to inorganic consumption or due to low respiration rates) than that observed for the dominant pathways of plant root and bacterial respiration. It is concluded that the use of the concentration and isotopic composition of soil gas and dissolved oxygen should provide a robust tool for studying the subsurface gaseous diffusion and oxygen consumption processes.

  2. PET imaging of cerebral perfusion and oxygen consumption in acute ischemic stroke: Relation to outcome

    SciTech Connect

    Marchal, G.; Serrati, C.; Rioux, P.; Petit-Taboue, M.C.; Viader, F.; Sayette, V. de la; Doze, F. le; Lonchon, P; Derlon, J.M.; Orgogozo, J.M.; Baron, J.C.

    1993-04-10

    The authors used positron emission tomography (PET) to assess the relation between combined imaging of cerebral blood flow and oxygen consumption 5-18 h after first middle cerebral artery (MCA) stroke and neurological outcome at 2 months. All 18 patients could be classified into three visually defined PET patterns of perfusion and oxygen consumption changes. Pattern 1 suggested extensive irreversible damage and was consistently associated with poor outcome. Pattern 2 suggested continuing ischemia and was associated with variable outcome. Pattern 3 with hyperperfusion and little or no metabolic alteration, was associated with excellent recovery, which suggests that early reperfusion is beneficial. This relation between PET and outcome was highly significant. The results suggest that within 5-18 h of stroke onset, PET is a good predictor of outcome in patterns 1 and 3, for which therapy seems limited. The absence of predictive value for pattern 2 suggests that it is due to a reversible ischemic state that is possibly amenable to therapy. These findings may have important implications for acute MCA stroke management and for patients' selection for therapeutic trials.

  3. Berberine promotes glucose consumption independently of AMP-activated protein kinase activation.

    PubMed

    Xu, Miao; Xiao, Yuanyuan; Yin, Jun; Hou, Wolin; Yu, Xueying; Shen, Li; Liu, Fang; Wei, Li; Jia, Weiping

    2014-01-01

    Berberine is a plant alkaloid with anti-diabetic action. Activation of AMP-activated protein kinase (AMPK) pathway has been proposed as mechanism for berberine's action. This study aimed to examine whether AMPK activation was necessary for berberine's glucose-lowering effect. We found that in HepG2 hepatocytes and C2C12 myotubes, berberine significantly increased glucose consumption and lactate release in a dose-dependent manner. AMPK and acetyl coenzyme A synthetase (ACC) phosphorylation were stimulated by 20 µmol/L berberine. Nevertheless, berberine was still effective on stimulating glucose utilization and lactate production, when the AMPK activation was blocked by (1) inhibition of AMPK activity by Compound C, (2) suppression of AMPKα expression by siRNA, and (3) blockade of AMPK pathway by adenoviruses containing dominant-negative forms of AMPKα1/α2. To test the effect of berberine on oxygen consumption, extracellular flux analysis was performed in Seahorse XF24 analyzer. The activity of respiratory chain complex I was almost fully blocked in C2C12 myotubes by berberine. Metformin, as a positive control, showed similar effects as berberine. These results suggest that berberine and metformin promote glucose metabolism by stimulating glycolysis, which probably results from inhibition of mitochondrial respiratory chain complex I, independent of AMPK activation.

  4. Following the N2O consumption at the Oxygen Minimum Zone in the eastern South Pacific

    NASA Astrophysics Data System (ADS)

    Cornejo, M.; Farías, L.

    2012-03-01

    Oxygen deficient zones (OMZs), such as those found in the eastern South Pacific (ESP), are the most important N2O sources in the world ocean relative to their volume. N2O production is related to low O2 concentrations and high primary productivity. However, when O2 is sufficiently low, canonical denitrification takes place and N2O consumption can be expected. N2O distribution in the ESP was analyzed over a wide latitudinal range (from 5° to 30° S and 71°-76° to ~84° W) based on ~890 N2O measurements. The intense consumption of N2O appears to be related to secondary NO2- accumulation, the best indicator of very low O2 levels. Using relationships that depend on threshold levels of O2 (<8 μM) and nitrite (>0.75 μM), we reproduced the apparent N2O production (ΔN2O) with high reliability (r2=0.73 p=0.01). Our results contribute to quantify the ratio of N2O production/consumption that is being cycling in O2 deficient water of N2O and may improve the prediction of N2O behavior under future scenarios of the OMZ expansion.

  5. Energy Consumption of Actively Beating Flagella

    NASA Astrophysics Data System (ADS)

    Chen, Daniel; Nicastro, Daniela; Dogic, Zvonimir

    2012-02-01

    Motile cilia and flagella are important for propelling cells or driving fluid over tissues. The microtubule-based core in these organelles, the axoneme, has a nearly universal ``9+2'' arrangement of 9 outer doublet microtubules assembled around two singlet microtubules in the center. Thousands of molecular motor proteins are attached to the doublets and walk on neighboring outer doublets. The motors convert the chemical energy of ATP hydrolysis into sliding motion between adjacent doublet microtubules, resulting in precisely regulated oscillatory beating. Using demembranated sea urchin sperm flagella as an experimental platform, we simultaneously monitor the axoneme's consumption of ATP and its beating dynamics while key parameters, such as solution viscosity and ATP concentration, are varied. Insights into motor cooperativity during beating and energetic consequences of hydrodynamic interactions will be presented.

  6. On the adhesion-cohesion balance and oxygen consumption characteristics of liver organoids

    PubMed Central

    Mattei, Giorgio; Magliaro, Chiara; Giusti, Serena; Ramachandran, Sarada Devi; Heinz, Stefan; Braspenning, Joris; Ahluwalia, Arti

    2017-01-01

    Liver organoids (LOs) are of interest in tissue replacement, hepatotoxicity and pathophysiological studies. However, it is still unclear what triggers LO self-assembly and what the optimal environment is for their culture. Hypothesizing that LO formation occurs as a result of a fine balance between cell-substrate adhesion and cell-cell cohesion, we used 3 cell types (hepatocytes, liver sinusoidal endothelial cells and mesenchymal stem cells) to investigate LO self-assembly on different substrates keeping the culture parameters (e.g. culture media, cell types/number) and substrate stiffness constant. As cellular spheroids may suffer from oxygen depletion in the core, we also sought to identify the optimal culture conditions for LOs in order to guarantee an adequate supply of oxygen during proliferation and differentiation. The oxygen consumption characteristics of LOs were measured using an O2 sensor and used to model the O2 concentration gradient in the organoids. We show that no LO formation occurs on highly adhesive hepatic extra-cellular matrix-based substrates, suggesting that cellular aggregation requires an optimal trade-off between the adhesiveness of a substrate and the cohesive forces between cells and that this balance is modulated by substrate mechanics. Thus, in addition to substrate stiffness, physicochemical properties, which are also critical for cell adhesion, play a role in LO self-assembly. PMID:28267799

  7. Temporal changes and spatial variation of soil oxygen consumption, nitrification and denitrification rates in a tidal salt marsh of the Lagoon of Venice, Italy

    NASA Astrophysics Data System (ADS)

    Eriksson, P. G.; Svensson, J. M.; Carrer, G. M.

    2003-12-01

    The aim of the present study was to investigate seasonal and spatial patterns of soil oxygen consumption, nitrification, denitrification and fluxes of dissolved inorganic nitrogen (DIN) in a tidal salt marsh of the Lagoon of Venice, Italy. In the salt marsh, intact soil cores including overlying water were collected monthly at high tide from April to October in salt marsh creeks and in areas covered by the dominant vegetation, Limonium serotinum. In May, cores were also collected in areas with vegetation dominated by Juncus maritimus and Halimione portulacoides. In laboratory incubations at in situ temperature in the dark, flux rates of oxygen and DIN were monitored in the overlying water of the intact cores. 15N-nitrate was added to the overlying water and nitrification and denitrification were measured using isotope-dilution and -pairing techniques. The results show that highest soil oxygen consumption coincided with the highest water temperature in June and July. The highest denitrification rates were recorded in spring and autumn coinciding with the highest nitrate concentrations. Soil oxygen consumption and nitrification rates differed between sampling sites, but denitrification rates were similar among the different vegetation types. The highest rates were recorded in areas covered with L. serotinum. Burrowing soil macrofauna enhanced oxygen consumption, nitrification and denitrification in April and May. The data presented in this study indicate high temporal as well as spatial variations in the flux of oxygen and DIN, and nitrogen transformations in the tidal salt marshes of the Venice lagoon during the growth season. The results identify the salt marshes of the Venice lagoon as being metabolically very active ecosystems with a high capacity to process nitrogen.

  8. Effect of split exercise sessions on excess post-exercise oxygen consumption.

    PubMed Central

    Kaminsky, L A; Padjen, S; LaHam-Saeger, J

    1990-01-01

    In this study the excess post-exercise oxygen consumption (EPOC), and related metabolic measures, following a 50 minute run compared to two 25 minute runs all at 70 per cent of peak VO2 in six women were investigated. Open-circuit spirometry procedures were used and appropriate control conditions were maintained for all trials. Following exercise, VO2 returned to baseline within 30 minutes for all three exercise trials. Magnitude of EPOC was also similar after all runs. However, the combined magnitude (expressed in kcals) of the two 25 minute runs was significantly greater than the continuous 50 minute run (13.88 vs 6.39). Heart rate remained elevated above baseline, and respiratory exchange ratio was lower than baseline 30 minutes after exercise. It is concluded that split exercise sessions can significantly increase post-exercise caloric expenditure. However, the overall magnitude of the increase is small. PMID:2265322

  9. Oxygen consumption of zooplankton as affected by laboratory and field Cadmium exposures. [None

    SciTech Connect

    Kettle, W.D.; deNoyelles, F. Jr.; Lei, C.H.

    1980-10-01

    Virtually none of the many studies of the responses of aquatic organisms to heavy metals has involved organism response to heavy metals under natural, whole system exposure. The ability of laboratory studies to simulate and predict actual field conditions and responses remains questionable. The effects of cadmium exposure on zooplankton has been measured in laboratory studies and in enclosures placed in the field. However, studies involving zooplankton subjected to field exposure of cadmium are lacking. The objectives of this experiment were to measure oxygen consumption, survivorship, and reproduction of Daphnia pulex and Simocephalus serrulatus in response to low level cadmium exposure, in both laboratory and field situations. This design makes possible the comparisons of 1) laboratory and field exposures, and 2) responses of 2 common freshwater zooplankton species.

  10. Effects of metal contamination in situ on osmoregulation and oxygen consumption in the mudflat fiddler crab Uca rapax (Ocypodidae, Brachyura).

    PubMed

    Capparelli, Mariana V; Abessa, Denis M; McNamara, John C

    2016-01-01

    The contamination of estuaries by metals can impose additional stresses on estuarine species, which may exhibit a limited capability to adjust their regulatory processes and maintain physiological homeostasis. The mudflat fiddler crab Uca rapax is a typical estuarine crab, abundant in both pristine and contaminated areas along the Atlantic coast of Brazil. This study evaluates osmotic and ionic regulatory ability and gill Na(+)/K(+)-ATPase activity in different salinities (<0.5, 25 and 60‰ S) and oxygen consumption rates at different temperatures (15, 25 and 35°C) in U. rapax collected from localities along the coast of São Paulo State showing different histories of metal contamination (most contaminated Ilha Diana, Santos>Rio Itapanhaú, Bertioga>Picinguaba, Ubatuba [pristine reference site]). Our findings show that the contamination of U. rapax by metals in situ leads to bioaccumulation and induces biochemical and physiological changes compared to crabs from the pristine locality. U. rapax from the contaminated sites exhibit stronger hyper- and hypo-osmotic regulatory abilities and show greater gill Na(+)/K(+)-ATPase activities than crabs from the pristine site, revealing that the underlying biochemical machinery can maintain systemic physiological processes functioning well. However, oxygen consumption, particularly at elevated temperatures, decreases in crabs showing high bioaccumulation titers but increases in crabs with low/moderate bioaccumulation levels. These data show that U. rapax chronically contaminated in situ exhibits compensatory biochemical and physiological adjustments, and reveal the importance of studies on organisms exposed to metals in situ, particularly estuarine invertebrates subject to frequent changes in natural environmental parameters like salinity and temperature.

  11. Biochar activated by oxygen plasma for supercapacitors

    NASA Astrophysics Data System (ADS)

    Gupta, Rakesh Kumar; Dubey, Mukul; Kharel, Parashu; Gu, Zhengrong; Fan, Qi Hua

    2015-01-01

    Biochar, also known as black carbon, is a byproduct of biomass pyrolysis. As a low-cost, environmental-friendly material, biochar has the potential to replace more expensive synthesized carbon nanomaterials (e.g. carbon nanotubes) for use in future supercapacitors. To achieve high capacitance, biochar requires proper activation. A conventional approach involves mixing biochar with a strong base and baking at a high temperature. However, this process is time consuming and energy inefficient (requiring temperatures >900 °C). This work demonstrates a low-temperature (<150 °C) plasma treatment that efficiently activates a yellow pine biochar. Particularly, the effects of oxygen plasma on the biochar microstructure and supercapacitor characteristics are studied. Significant enhancement of the capacitance is achieved: 171.4 F g-1 for a 5-min oxygen plasma activation, in comparison to 99.5 F g-1 for a conventional chemical activation and 60.4 F g-1 for untreated biochar. This enhancement of the charge storage capacity is attributed to the creation of a broad distribution in pore size and a larger surface area. The plasma activation mechanisms in terms of the evolution of the biochar surface and microstructure are further discussed.

  12. Differences in oxygen consumption and external power between male and female speed skaters during supramaximal cycling.

    PubMed

    van Ingen Schenau, G J; de Groot, G

    1983-01-01

    Differences in performance levels between elite male and female endurance athletes are often explained by differences found in VO2 max even when expressed in VO2 max per kilogram lean body mass (VO2/LBM). Such an explanation is only a matter of course when less or no difference exists in mechanical efficiency, anaerobic power and technical variables like friction constants between males and females. Particularly during supramaximal exercises. In this study five elite male speed skaters were compared with five elite female speed skaters with respect to oxygen consumption and external power during a 3 min supramaximal bicycle ergometer test. The training background and training history of both groups were comparable. Although the elite males showed a 20% higher VO2/BW and 8% higher VO2/LBM (71.0 versus 65.01 x min-1 . kg-1) than the females, the female group showed the same mean external power Pc per kilogram body weight, and a surprising 12% higher Pc/LBM than the males (6.47 versus 5.79 W x kg-1). Hence the female group delivered 22% more external power per liter of oxygen consumption. With the help of additional data from 14 male and 11 female sub-elite skaters it is shown that the differences between the elite groups are mainly due to sex differences. In the light of differences between men and women reported in other studies, it seems likely that the differences found in this study are due to a difference in mechanical efficiency which particularly occurs in supramaximal tasks.(ABSTRACT TRUNCATED AT 250 WORDS)

  13. Oxygen consumption by a sediment bed for stagnant water: comparison to SOD with fluid flow.

    PubMed

    Higashino, Makoto

    2011-10-01

    A model of sedimentary oxygen demand (SOD) for stagnant water in a lake or a reservoir is presented. For the purposes of this paper, stagnant water is defined as the bottom layer of stratified water columns in relatively unproductive systems that are underlain by silt and sand-dominated sediments with low-organic carbon (C) and nitrogen (N). The modeling results are compared to those with fluid flow to investigate how flow over the sediment surface raises SOD compared to stagnant water, depending on flow velocity and biochemical activity in the sediment. SOD is found to be substantially limited by oxygen transfer in the water column when water is stagnant. When flow over the sediment surface is present, SOD becomes larger than that for stagnant water, depending on flow velocity and the biochemical oxygen uptake rate in the sediment. Flow over the sediment surface causes an insignificant raise in SOD when the biochemical oxygen uptake rate is small. The difference between SOD with fluid flow and SOD for stagnant water becomes significant as the biochemical oxygen uptake rate becomes larger, i.e. SOD is 10-100 times larger when flow over the sediment surface is present.

  14. Effect of 29 days of simulated microgravity on maximal oxygen consumption and fat-free mass of rats

    NASA Technical Reports Server (NTRS)

    Woodman, Christopher R.; Stump, Craig S.; Stump, Jane A.; Rahman, Zia; Tipton, Charles M.

    1991-01-01

    Effects of a 29-days exposure to simulated microgravity on the values of maximal oxygen consumption and fat-free mass (FFM) and on the mechanical efficiency of running were investigated in rats randomly assigned to one of three regimens: head-down suspension (HDS) at 45 deg, horizontal suspension (HS), or cage control (CC). Before suspension and on days 7, 14, 21, and 28, five exercise performance tests were carried out, with measurements related to maximal oxygen consumption, treadmill run time, and mechanical efficiency. It was found that maximal oxygen consumption of both HDS and HS groups decreased significantly at day 7, after which the HDS rats remained decreased while the HS rats returned to presuspension values. Apparent mechanical efficiency in the HDS and HS groups decreased by 22-35 percent during the experimental period, and FFM decreased significantly.

  15. Quantification of Low-Level Drug Effects Using Real-Time, in vitro Measurement of Oxygen Consumption Rate.

    PubMed

    Neal, Adam; Rountree, Austin M; Philips, Craig W; Kavanagh, Terrance J; Williams, Dominic P; Newham, Peter; Khalil, Gamal; Cook, Daniel L; Sweet, Ian R

    2015-12-01

    There is a general need to detect toxic effects of drugs during preclinical screening. We propose that increased sensitivity of xenobiotics toxicity combined with improved in vitro physiological recapitulation will more accurately assess potentially toxic perturbations of cellular biochemistry that are near in vivo pharmacological exposure levels. Importantly, measurement of such cytopathologies avoids activating mechanisms mediating toxicity at suprapharmacologic levels not relevant to in vivo effects. We present a sensitive method to measure changes in oxygen consumption rate (OCR), a well-established parameter reflecting a potential hazard, in response to exposure to pharmacologic levels of drugs using a flow culture system and state of the art oxygen sensing system. We tested metformin and acetaminophen on rat liver slices to illustrate the method. The features of the method include continuous and very stable measurement of OCR over the course of 48 h in liver slices in a continuous flow chamber with the ability to resolve changes as small as 0.3%/h. Kinetic modeling of metformin inhibition of OCR over a wide range of concentrations revealed both a slow and fast mechanism, where the fast mechanism activated only at concentrations above 0.6 mM. For both drugs, small amounts of inhibition were reversible, but higher decrements were irreversible. Overall the study highlights the advantages of measuring low-level toxicity so as to avoid the common extrapolations made about drug toxicity based on effects of drugs tested at suprapharmacologic levels.

  16. Insulin regulates glucose consumption and lactate production through reactive oxygen species and pyruvate kinase M2.

    PubMed

    Li, Qi; Liu, Xue; Yin, Yu; Zheng, Ji-Tai; Jiang, Cheng-Fei; Wang, Jing; Shen, Hua; Li, Chong-Yong; Wang, Min; Liu, Ling-Zhi; Jiang, Bing-Hua

    2014-01-01

    Although insulin is known to regulate glucose metabolism and closely associate with liver cancer, the molecular mechanisms still remain to be elucidated. In this study, we attempt to understand the mechanism of insulin in promotion of liver cancer metabolism. We found that insulin increased pyruvate kinase M2 (PKM2) expression through reactive oxygen species (ROS) for regulating glucose consumption and lactate production, key process of glycolysis in hepatocellular carcinoma HepG2 and Bel7402 cells. Interestingly, insulin-induced ROS was found responsible for the suppression of miR-145 and miR-128, and forced expression of either miR-145 or miR-128 was sufficient to abolish insulin-induced PKM2 expression. Furthermore, the knockdown of PKM2 expression also inhibited cancer cell growth and insulin-induced glucose consumption and lactate production, suggesting that PKM2 is a functional downstream effecter of insulin. Taken together, this study would provide a new insight into the mechanism of insulin-induced glycolysis.

  17. Brain natriuretic peptide predicts forced vital capacity of the lungs, oxygen pulse and peak oxygen consumption in physiological condition.

    PubMed

    Popovic, Dejana; Ostojic, Miodrag C; Popovic, Bojana; Petrovic, Milan; Vujisic-Tesic, Bosiljka; Kocijancic, Aleksandar; Banovic, Marko; Arandjelovic, Aleksandra; Stojiljkovic, Stanimir; Markovic, Vidan; Damjanovic, Svetozar S

    2013-05-01

    Brain natriuretic peptide (NT-pro-BNP) is used as marker of cardiac and pulmonary diseases. However, the predictive value of circulating NT-pro-BNP for cardiac and pulmonary performance is unclear in physiological conditions. Standard echocardiography, tissue Doppler and forced spirometry at rest were used to assess cardiac parameters and forced vital capacity (FVC) in two groups of athletes (16 elite male wrestlers (W), 21 water polo player (WP)), as different stress adaptation models, and 20 sedentary subjects (C) matched for age. Cardiopulmonary test on treadmill (CPET), as acute stress model, was used to measure peak oxygen consumption (peak VO2), maximal heart rate (HRmax) and peak oxygen pulse (peak VO2/HR). NT-pro-BNP was measured by immunoassey sandwich technique 10min before the test - at rest, at the beginning of the test, at maximal effort, at third minute of recovery. FVC was higher in athletes and the highest in W (WP 5.60±0.29 l; W 6.57±1.00 l; C 5.41±0.29 l; p<0.01). Peak VO2 and peak VO2/HR were higher in athletes and the highest in WP. HRmax was not different among groups. In all groups, NT-pro-BNP decreased from rest to the beginning phase, increased in maximal effort and stayed unchanged in recovery. NT-pro-BNP was higher in C than W in all phases; WP had similar values as W and C. On multiple regression analysis, in all three groups together, ΔNT-pro-BNP from rest to the beginning phase independently predicted both peak VO2 and peak VO2/HR (r=0.38, 0.35; B=37.40, 0.19; p=0.007, 0.000, respectively). NT-pro-BNP at rest predicted HRmax (r=-0.32, B=-0.22, p=0.02). Maximal NT-pro-BNP predicted FVC (r=-0.22, B=-0.07, p=0.02). These results show noticeable predictive value of NT-pro-BNP for both cardiac and pulmonary performance in physiological conditions suggesting that NT-pro-BNP could be a common regulatory factor coordinating adaptation of heart and lungs to stress condition.

  18. Oxygen consumption and osmoregulatory capacity in Neomysis integer reduce competition for resources among mysid shrimp in a temperate estuary.

    PubMed

    Vilas, Cesar; Drake, Pilar; Pascual, Emilio

    2006-01-01

    Results of field surveys and laboratory measurements of oxygen consumption and body fluid osmolality at different salinities in the mysids Neomysis integer, Mesopodopsis slabberi, and Rhopalophthalmus mediterraneus from the Guadalquivir estuary (southwest Spain) were used to test the hypothesis that osmotic stress (oxygen consumption vs. isosmotic points) was lowest at salinities that field distributions suggest are optimal. The three species showed overlapping spatial distributions within the estuary but clear segregation along the salinity gradient: N. integer, M. slabberi, and R. mediterraneus displayed maximal densities at lower, intermediate, and higher salinities, respectively. Adults of N. integer were extremely efficient hyperregulators (isosmotic point 30 per thousand) over the full salinity range tested (3 per thousand-32 per thousand), and their oxygen consumption rates were independent of salinity; adults of M. slabberi were strong hyper- and hyporegulators at salinities between 7 per thousand and 29 per thousand (isosmotic point, 21 per thousand) and showed higher oxygen consumptions at the lowest salinity (6 per thousand); adults of R. mediterraneus hyperregulated at salinities between 19 per thousand and seawater (isosmotic point, 36 per thousand), with the lowest oxygen consumption at salinity around their isosmotic point (35 per thousand). Thus, the osmoregulation capabilities of M. slabberi and R. mediterraneus seem to determine the salinity ranges in which most of their adults live, but this is not so for adults of N. integer. Moreover, maximal field densities of M. slabberi (males and females) and R. mediterraneus (males) occur at the same salinities as the lowest oxygen consumption. In contrast, field distribution of N. integer was clearly biased toward the lower end of the salinity ranges within which it osmoregulated. We hypothesize that the greater euryhalinity of N. integer makes it possible for this species to avoid competition with R

  19. Effects of temperature on oxygen consumption and ammonia—N excretion of Chlamys farreri

    NASA Astrophysics Data System (ADS)

    Yang, Hong-Sheng; Zhang, Tao; Wang, Ping; He, Yi-Chao; Zhang, Fu-Sui

    1998-06-01

    Effects of temperature on oxygen consumption rate (OCR) and ammonia—N excretion rate of scallop Chlamys farreri (1.7 6.2 cm in shell height) were studied in laboratory from Dec. 30,1996 to Jan. 28,1997. Under the controlled conditions of ambient water temperature 10 31°C and salinity 32, the concentrations of dissolved oxygen and ammonia—N were determined by the Winkle method and the hypobromite method, respectively. Results showed that the OCR ranged from 1.20 mg/g (DW) · h to 5.76 mg/g (DW) · h. The OCR increased with temperature from 10°C to 23°C, but at 28°C the OCR of mature individuals decreased, and that of different size scallops reduced at 31°C. The ammonia—N excretion rate ranged from 113.03 μg NH4-N/g (DW) · h to 486.63 μg NH4-N/g (DW) · h, and increased with temperature from 10°C to 31°C.

  20. Effects of reduced salinity on oxygen consumption and ammonia-N excretion of Chlamys farreri

    NASA Astrophysics Data System (ADS)

    Yang, Hong-Sheng; Wang, Ping; Zhang, Tao; Wang, Jian; He, Yi-Chao; Zhang, Fu-Sui

    1999-09-01

    Effects of reduced salinity on the oxygen consumption rate (OCR) and the ammonia-N excretion rate (AER) of scallop Chlamys farreri (3.2 5.9 cm in shell height, 0.147 1.635 g in soft tissue dry weight) were studied in laboratory from March 21, 1997 to April 16, 1997. Under the controlled conditions of reduced salinity from 31.5 to 15.0 and ambient temperature 17°C and 23°C, the concentrations of dissolved oxygen and ammonia-N were determined by the Winkle method and the hypobromite method, respectively. Results showed that with controlled reduced salinity, the mean values of the OCR were 2.17 mg/(g.h) at 17°C, and 2.86 mg/(g.h) at 23°C and that the mean values of the AER were 178.0 μg/(g.h) at 17°C and 147.0 μg/(g.h) at 23°C. The OCR and the AER decreased with reducing salinity from 31.5 to 15.0 both at 17°C and 23°C. The effects of reduced salinity on the OCR and the AER of scallop C. farreri could be represented by the allometric equation and the exponential equation, respectively.

  1. Argon, xenon, hydrogen, and the oxygen consumption and glycolysis of mouse tissue slices.

    PubMed

    SOUTH, F E; COOK, S F

    1954-01-20

    The effects of xenon, argon, and hydrogen on the aerobic and anaerobic metabolism of mouse liver, brain, and sarcoma slices have been investigated. Xenon was found to alter the rates of metabolism of these tissues in a manner almost identical with helium. The gas increased the rate of oxygen consumption in all three tissues and significantly depressed that of anaerobic glycolysis in brain and liver. The depression of glycolysis in sarcoma was less pronounced and not highly significant. Although both the magnitude and statistical significance of the effects observed with argon were much smaller, there was a seeming adherence to the general pattern established by xenon and helium. Hydrogen while remaining essentially ineffective insofar as oxygen uptake was concerned, depressed glycolysis in both liver and brain slices but did not significantly affect sarcoma slices. The following points are stressed in the Discussion: (1) the magnitude and direction of effects exerted by helium, argon, xenon, hydrogen, and nitrogen do not conform with the relative values of molecular weight, density, and solubility of these gases; (2) the effect of these gases on tissue metabolism does not necessarily parallel that exerted upon the whole organism.

  2. Oxygen consumption estimation with combined color doppler ultrasound and photoacoustic microscopy: a phantom study

    NASA Astrophysics Data System (ADS)

    Jiang, Yan; Harrison, Tyler; Forbrich, Alex; Zemp, Roger J.

    2011-03-01

    The metabolic rate of oxygen consumption (MRO2) quantifies tissue metabolism, which is important for diagnosis of many diseases. For a single vessel model, the MRO2 can be estimated in terms of the mean flow velocity, vessel crosssectional area, total concentration of hemoglobin (CHB), and the difference between the oxygen saturation (sO2) of blood flowing into and out of the tissue region. In this work, we would like to show the feasibility to estimate MRO2 with our combined photoacoustic and high-frequency ultrasound imaging system. This system uses a swept-scan 25-MHz ultrasound transducer with confocal dark-field laser illumination optics. A pulse-sequencer enables ultrasonic and laser pulses to be interlaced so that photoacoustic and Doppler ultrasound images are co-registered. Since the mean flow velocity can be measured by color Doppler ultrasound, the vessel cross-sectional area can be measured by power Doppler or photoacoustic imaging, and multi-wavelength photoacoustic methods can be used to estimate sO2 and CHB, all of these parameters necessary for MRO2 estimation can be provided by our system. Experiments have been performed on flow phantoms to generate co-registered color Doppler and photoacoustic images. To verify the sO2 estimation, two ink samples (red and blue) were mixed in various concentration ratios to mimic different levels of sO2, and the result shows a good match between the calculated concentration ratios and actual values.

  3. Increased oxygen radical-dependent inactivation of metabolic enzymes by liver microsomes after chronic ethanol consumption

    SciTech Connect

    Dicker, E.; Cederbaum, A.I. )

    1988-10-01

    Enzymatic and nonenzymatic mixed-function oxidase systems have been shown to generate an oxidant that catalyzes the inactivation of glutamine synthetase and other metabolic enzymes. Recent studies have shown that microsomes isolated from rats chronically fed ethanol generate reactive oxygen intermediates at elevated rates compared with controls. Microsomes from rats fed ethanol were found to be more effective than control microsomes in catalyzing the inactivation of enzymes added to the incubation system. The enzymes studied were alcohol dehydrogenase, lactic dehydrogenase, and pyruvate kinase. The inactivation process by both types of microsomal preparations was sensitive to catalase and glutathione plus glutathione peroxidase, but was not affected by superoxide dismutase or hydroxyl radical scavengers. Iron was required for the inactivation of added enzymes; microsomes from the rats fed ethanol remained more effective than control microsomes in catalyzing the inactivation of enzymes in the absence or presence of several ferric complexes. The inactivation of enzymes was enhanced by the addition of menadione or paraquat to the microsomes, and rates of inactivation were higher with the microsomes from the ethanol-fed rats. The enhanced generation of reactive oxygen intermediates and increased inactivation of enzymes by microsomes may contribute toward the hepatotoxic effects associated with ethanol consumption.

  4. Oxygen consumption of elite distance runners on an anti-gravity treadmill®.

    PubMed

    McNeill, David K P; Kline, John R; de Heer, Hendrick D; Coast, J Richard

    2015-06-01

    amounts of body weight-support (BWS), the slope of the relationship between velocity and oxygen consumption (ΔVO2/Δv) decreases significantly. This means the change in oxygen consumption (VO2) is significantly smaller over a given change in velocity at higher amounts of BWS.There is a non-linear decrease in VO2 with increasing BWS. As such, with each increment in the amount of BWS provided, the reduction in VO2 becomes increasingly smaller.This paper provides first of its kind data on the effects of BWS on the cost of running among highly trained, elite runners. The outcomes of this study are in line with previous findings among non-elite runners.

  5. Acute toxicity of lead on tolerance, oxygen consumption, ammonia-N excretion, and metal accumulation in Penaeus indicus postlarvae.

    PubMed

    Chinni, Satyavathi; Khan, Ritindra N; Yallapragada, Prabhakara Rao

    2002-02-01

    The estuaries and backwaters that are the potential breeding grounds of penaeid shrimps are subject to heavy metal pollution through industrial effluents and domestic sewage. In the present investigation, laboratory experiments were conducted to study the acute toxicity of lead on tolerance, oxygen consumption, ammonia-N excretion, and metal accumulation in Penaeus indicus postlarvae. Static bioassay tests were employed to determine tolerance limits. Oxygen consumption, ammonia-N excretion, and metal accumulation were determined in postlarvae by exposing them to different concentrations of lead for a period of 48 h. Oxygen consumption measurements were made by using a respiratory chamber equipped with an oxygen electrode and ammonia-N was determined with trione (dichloro-S-triamine 2,4,6(1H,3H,5H-trione)). Accumulation of metal was estimated by wet-ash method. The LC50 value for 96 h was 7.223 ppm and the regression equation Y=4.1638+0.9738X with correlation coefficient of 0.9613 was obtained by probit method. A decrease in oxygen consumption and ammonia-N excretion was observed in postlarvae with increasing concentration of lead. A concentration-dependent accumulation of metal was noticed in these postlarvae. Modifications in O:N ratios of postlarvae suggest that lead accumulation might have altered utilization patterns.

  6. Effect of micro- and macroencapsulation on oxygen consumption by pancreatic islets.

    PubMed

    Cornolti, Roberta; Figliuzzi, Marina; Remuzzi, Andrea

    2009-01-01

    Immunoisolation of pancreatic islets is extensively investigated for glycemic control in diabetic experimental animals. We previously reported that subcutaneous xenotransplantation of bovine islets protected by a selective polysulfone membrane successfully controlled glycemia in diabetic rats for up to 20 days. We then wondered whether immunoisolated islets have adequate oxygen supply in this device, where only diffusive transport allows cell function and survival. Here we set up an experimental technique to measure oxygen consumption rate (OCR) using a Clark's electrode inserted in a glass thermostated chamber connected to a data recorder and acquisition system. Bovine islets were isolated from 6-month-old calves, encapsulated in sodium alginate microcapsules or inserted in polysulfone hollow fibers. After 1 and 2 days in culture a series of measurements was performed using free islets (at normal or high-glucose concentration), islets encapsulated in microcapsules, or in hollow fibers. In free islets OCR averaged from 2.0 +/- 0.8 pmol/IEQ/min at low-glucose concentration and from 2.5 +/- 1.0 pmol/IEQ/min at high-glucose concentration (p < 0.01). OCR in islets encapsulated in microcapsules and in hollow fibers was comparable, and not significantly different from that measured in free islets. Two days after isolation OCR averaged 2.3 +/- 0.6 in free islets, 2.3 +/- 0.9 in alginate microcapsules, and 2.2 +/- 0.7 pmol/IEQ/min in hollow fibers. These results show that OCR by bovine islets is comparable to that previously reported for other species. OCR increases in islets stimulated with high glucose and may be considered as a functional index. Moreover, islet encapsulation in alginate microcapsule, as well as in hollow fiber membranes, did not significantly affect in vitro OCR, suggesting adequate islet oxygenation in these conditions.

  7. [The value of systematic monitoring of oxygen consumption in the diagnosis and therapy of septic shock].

    PubMed

    Pilas, V; Cubrilo, M; Bakula, V; Vranjkovic, S; Bakula, B; Bilic, A

    1990-01-01

    In 31 patients with sepsis and multiple organic dysfunction, changes in the systemic oxygen consumption (VO2) during reanimation were observed in order to discover more objective indicators of the course and prognosis of the disease. In a prospective randomized study, 21 live (Group 1) and 11 dead patients (Group 2) were included. The investigation was based upon the application of the invasive tracing of oxygen hemodynamics and transport. The findings of the initially hypovolemic status were compared with those of the stabile normovolemic status obtained by the application of infusions and the blood volume substitute. In the early phase of the disease there were no significant differences in the clinical finding of the circulatory shock and the volume deficit of the circulated blood between these two groups of patients. Group 1 patients had lower values of the cardiac index (CI) and the systemic oxygen transport (DO2). In them there was a greater frequency of acute organic insufficiency, especially pulmonal, renal and hepatal. In the initial status VO2 decreased. In the normovolemic status of Group 1, a significant VO2 was found, while in Group 2 in spite of a DO2 increase and hemodynamics improvement, a more significant VO2 increase was not obtained. As VO2 is an objective indicator of oxidative metabolic reactions of the organism and the circulatory system, the authors maintain that by the VO2 tracing, a better insight into the seriousness and course of the disease is obtained, and that an inadequate VO2 finding during the therapeutic treatment requires a revision of the treatment.

  8. Tissue blood flow and oxygen consumption measured with near-infrared frequency-domain spectroscopy

    NASA Astrophysics Data System (ADS)

    Paunescu, Lelia Adelina

    2001-12-01

    For decades, researchers have contributed with new ways of applying physics' principles to medicine. Moreover, researchers were involved in developing new, non-invasive instrumentation for medical applications. Recently, application of optical techniques in biology and medicine became an important field. Researchers found a non- invasive approach of using visible and near-infrared light as a probe for tissue investigation. Optical methods can contribute to medicine by offering the possibility of rapid, low-resolution, functional images and real-time devices. Near-infrared spectroscopy (NIRS) is a useful technique for the investigation of biological tissues because of the relatively low absorption of water and high absorption of oxy- and deoxy-hemoglobin in the near- infrared region of 750-900 nm. Due to these properties, the near-infrared light can penetrate biological tissues in the range of 0.5-2 cm, offering investigation possibility of deep tissues and differentiate among healthy and diseased tissues. This work represents the initial steps towards understanding and improving of the promising near- infrared frequency-domain technique. This instrument has a very important advantage: it can be used non-invasively to investigate many parts of the human body, including the brain. My research consists primarily of in vivo measurements of optical parameters such as absorption and reduced scattering coefficients and consequently, blood parameters such as oxy, deoxy, and total hemoglobin concentrations, tissue oxygen saturation, blood flow and oxygen consumption of skeletal muscle of healthy and diseased subjects. This research gives a solid background towards a ready- to-use instrument that can continuously, in real-time, measure blood parameters and especially blood oxygenation. This is a very important information in emergency medicine, for persons under intensive care, or undergoing surgery, organ transplant or other interventions.

  9. In vitro measurements of oxygen consumption rates in hTERT-RPE cells exposed to low levels of red light

    NASA Astrophysics Data System (ADS)

    Wigle, Jeffrey C.; Castellanos, Cherry C.

    2016-03-01

    Exposure to 2.88 J/cm2 of red light induces an adaptive response against a lethal pulse of 2.0 μm laser radiation in hTERT-RPE cells in vitro, but not in a knockdown mutant for vascular endothelial growth factor c (VEGF-C). The generally accepted initiation sequence for photobiomodulation is that absorption of red light by cytochome c oxidase (CCOX) of the electron transport chain increases the binding affinity of CCOX for O2 vs. nitric oxide (NO). This results in displacement of NO by O2 in the active site of CCOX, thereby increasing cellular respiration and intracellular ATP. We've previously reported that red-light exposure induces a small, but consistently reproducible, increase in NO levels in these cells. But the relative importance of NO and oxidative phosphorylation is unclear because little is known about the relative contributions of NO and ATP to the response. However, if NO dissociation from CCOX actually increases oxidative phosphorylation, one should see a corresponding increase in oxygen consumption. A Seahorse Extracellular Flux Analyzer was used to measure oxygen consumption rates (OCR) in normal and mutant cells as a proxy for oxidative phosphorylation. Both basal respiration and maximum respiration rates in normal cells are significantly higher than in the mutant. The normal cells have a significant amount of "excess capacity," whereas the VEGF-C(KD) have little or none. The OCR in exposed normal cells is lower than in unexposed cells when measured immediately after exposure. The exposures used for these experiments had no effect on the OCR in mutant cells.

  10. Oxygen consumption and development of volatile sulfur compounds during bottle aging of two Shiraz wines. Influence of pre- and postbottling controlled oxygen exposure.

    PubMed

    Ugliano, Maurizio; Dieval, Jean-Baptiste; Siebert, Tracey E; Kwiatkowski, Mariola; Aagaard, Olav; Vidal, Stéphane; Waters, Elizabeth J

    2012-09-05

    The evolution of different volatile sulfur compounds (VSCs) during bottle maturation of two Shiraz wines submitted to controlled oxygen exposure prior to bottling (through micro-oxygenation, MOX) and postbottling (through the closure) was investigated. H(2)S, methyl mercaptan (MeSH), and dimethyl sulfide (DMS) were found to increase during aging. Lower postbottling oxygen exposure, as obtained by different degrees of oxygen ingress through the closure, resulted in increased H(2)S and methyl mercaptan. In one wine MOX increased the concentration of H(2)S and methyl mercaptan during maturation. Dimethyl disulfide and DMS were not affected by any form of oxygen exposure. Overall, postbottling oxygen had a stronger influence than MOX on the evolution of VSCs. Data suggest that dimethyl disulfide was not a precursor to methyl mercaptan during bottle maturation. For the two wines studied, a consumption of oxygen of 5 mg/L over 12 months was the most effective oxygen exposure regimen to decrease accumulation of MeSH and H(2)S during bottle aging.

  11. Effect of long-term caloric restriction on oxygen consumption and body temperature in two different strains of mice.

    PubMed

    Ferguson, Melissa; Sohal, Barbara H; Forster, Michael J; Sohal, Rajindar S

    2007-10-01

    The hypothesis, that a decrease in metabolic rate mediates the life span prolonging effect of caloric restriction (CR), was tested using two strains of mice, one of which, C57BL/6, exhibits life span extension as a result of CR, while the other, DBA/2, shows little or no effect. Comparisons of the rate of resting oxygen consumption and body temperature were made between the strains after they were fed ad libitum (AL) or maintained under 40% CR, from 4 to 16 months of age. Ad libitum-fed mice of the two strains weighed the same when young and consumed similar amounts of food throughout the experiment; however, the C57BL/6 mice weighed 25% more than DBA/2 mice at 15 months of age. The rate of oxygen consumption was normalized as per gram body weight, lean body mass or organ weight as well as per animal. The body temperature and the rate of oxygen consumption, expressed according to all of the four criteria, were decreased in the DBA/2 mice following CR. The C57BL/6 mice also showed a CR-related decrease in body temperature and in the rate of oxygen consumption per animal and when normalized according to lean body mass or organ weight. The results of this study indicate that CR indeed lowers the rate of metabolism; however, this effect by CR does not necessarily entail the prolongation of the life span of mice.

  12. Metabolically-Derived Human Ventilation Rates: A Revised Approach Based Upon Oxygen Consumption Rates (External Review Draft)

    EPA Science Inventory

    EPA has released a draft report entitled, Metabolically-Derived Human Ventilation Rates: A Revised Approach Based Upon Oxygen Consumption Rates, for independent external peer review and public comment. NCEA published the Exposure Factors Handbook in 1997. This comprehens...

  13. EFFECT OF HYPOXIA ON THE RATE OF OXYGEN CONSUMPTION OF NEWBORN, YOUNG, AND ADULT MICE AT VARIOUS ENVIRONMENTAL TEMPERATURES,

    DTIC Science & Technology

    Critical Po2 that is, Po2 below the point at which oxygen consumption is reduced - was measured in newborn, 5-day-old, and adult mice. At...thermoneutral environmental temperatures, the critical Po2 of newborn was 85 mm. Hg; that of 5-day-old mice was 100 mm. Hg; and that of adults was 70 mm. Hg

  14. Following the N2O consumption in the oxygen minimum zone of the eastern South Pacific

    NASA Astrophysics Data System (ADS)

    Cornejo, M.; Farías, L.

    2012-08-01

    Oxygen minimum zones (OMZs), such as those found in the eastern South Pacific (ESP), are the most important N2O sources in the global ocean relative to their volume. N2O production is related to low O2 concentrations and high primary productivity. However, when O2 is sufficiently low, canonical denitrification takes place and N2O consumption can be expected. N2O distribution in the ESP was analyzed over a wide latitudinal and longitudinal range (from 5° to 30° S and from 71-76° to ~ 84° W) based on ~ 890 N2O measurements. Intense N2O consumption, driving undersaturations as low as 40%, was always associated with secondary NO2- accumulation (SNM), a good indicator of suboxic/anoxic O2 levels. First, we explore relationships between ΔN2O and O2 based on existing data of denitrifying bacteria cultures and field observations. Given the uncertainties in the O2 measurements, a second relationship between ΔN2O and NO2- (> 0.75 μM) was established for suboxic waters (O2 < 8 μM). We reproduced the apparent N2O production (ΔN2O) along the OMZ in ESP with high reliability (r2 = 0.73 p = 0.01). Our results will contribute to the quantification of the N2O that is recycled in O2 deficient waters, and improve the prediction of N2O behavior under future scenarios of OMZ expansion and intensification.

  15. On–off asymmetries in oxygen consumption kinetics of single Xenopus laevis skeletal muscle fibres suggest higher-order control

    PubMed Central

    Wüst, Rob CI; van der Laarse, Willem J; Rossiter, Harry B

    2013-01-01

    The mechanisms controlling skeletal muscle oxygen consumption () during exercise are not well understood. We determined whether first-order control could explain kinetics at contractions onset () and cessation () in single skeletal muscle fibres differing in oxidative capacity, and across stimulation intensities up to . Xenopus laevis fibres (n= 21) were suspended in a sealed chamber with a fast response electrode to measure every second before, during and after stimulated isometric contractions. A first-order model did not well characterise on-transient kinetics. Including a time delay (TD) in the model provided a significantly improved characterisation than a first-order fit without TD (F-ratio; P < 0.05), and revealed separate ‘activation’ and ‘exponential’ phases in 15/21 fibres contracting at (mean ± SD TD: 14 ± 3 s). On-transient kinetics () was weakly and linearly related to (R2= 0.271, P= 0.015). Off-transient kinetics, however, were first-order, and was greater in low-oxidative ( < 0.05 nmol mm−3 s−1) than high-oxidative fibres ( > 0.10 nmol mm−3 s−1; 170 ± 70 vs. 29 ± 6 s, P < 0.001). was proportional to (R2= 0.727, P < 0.001), unlike in the on-transient. The calculated oxygen deficit was larger (P < 0.05) than the post-contraction volume of consumed oxygen at all intensities except . These data show a clear dissociation between the kinetic control of at the onset and cessation of contractions and across stimulation intensities. More complex models are therefore required to understand the activation of mitochondrial respiration in skeletal muscle at the start of exercise. PMID:23165768

  16. Effect of catalase inactivation on levels of inorganic peroxides, superoxide dismutase, glutathione, oxygen consumption and life span in adult houseflies (Musca domestica).

    PubMed Central

    Allen, R G; Farmer, K J; Sohal, R S

    1983-01-01

    The effects of total inhibition of catalase, induced by 3-amino-1,2,4-triazole, on the adult housefly (Musca domestica) were examined. The lack of catalase activity had no effect on the longevity of the houseflies. Inorganic-peroxide concentration was elevated at younger ages, but declined in older flies. The rate of oxygen consumption by the flies was greatly decreased and the levels of oxidized as well as reduced glutathione were augmented. Superoxide dismutase activity showed a slight increase. This study suggests that loss of catalase activity does not affect survival of houseflies due to adaptive responses. PMID:6661212

  17. Knee angle-dependent oxygen consumption of human quadriceps muscles during maximal voluntary and electrically evoked contractions.

    PubMed

    Kooistra, R D; de Ruiter, C J; de Haan, A

    2008-01-01

    Fatigability and muscle oxygen consumption (mVO(2)) during sustained voluntary isometric knee extensions are less at extended (30 degrees knee angle; 0 degrees , full extension) versus flexed knee angles (90 degrees). This lower energy consumption may partially result from lower neural activation at extended knee angles. We hypothesized a smaller difference in mVO(2) between extended and flexed knee angles during electrical stimulation, which guaranteed maximal activation, than during maximal voluntary contractions (MVC). In eight healthy young males, MVC extension torque was obtained at 30 degrees, 60 degrees and 90 degrees knee angles. mVO(2) of the rectus femoris (RF), vastus lateralis (VL) and medialis muscle was measured using near-infrared spectroscopy during tetanic (10 s) and maximal voluntary (15 s) contractions (MVC(15)). For electrically induced contractions, steady state mVO(2) was reached at similar (P > 0.05) times after torque onset (4.6 +/- 0.7 s) at all knee angles. In contrast, during MVC(15) at 30 degrees mVO(2) was reached at 7.1 +/- 1.1 s, significantly later compared to 60 degrees and 90 degrees knee angles. The knee angle dependent differences in mVO(2) were not lower in electrically induced contractions (as hypothesised) but were similar as in voluntary contractions. Normalized mVO(2) at 30 degrees (percentage 90 degrees knee angle) was 79.0 +/- 9.4% (across muscles) for electrically induced and 79.5 +/- 7.6% (across muscles) for voluntary contractions (P < 0.05). We conclude that the slower onset of mVO(2) during voluntary effort at 30 degrees may have been due to a lower maximal activation. However, because steady state mVO(2) both during electrically induced and voluntary contractions was approximately 20% less at extended versus flexed knee angles, the causes for the lower mVO(2) must reside within the muscle itself.

  18. Oxygen consumption and heart rate responses to isolated ballet exercise sets.

    PubMed

    Rodrigues-Krause, Josianne; Dos Santos Cunha, Giovani; Alberton, Cristine Lima; Follmer, Bruno; Krause, Mauricio; Reischak-Oliveira, Alvaro

    2014-01-01

    Ballet stage performances are associated with higher cardiorespiratory demand than rehearsals and classes. Hence, new interest is emerging to create periodized training that enhances dancers' fitness while minimizing delayed exercise-induced fatigue and possible injuries. Finding out in what zones of intensity dancers work during different ballet movements may support the use of supplemental training adjusted to the needs of the individual dancer. Therefore, the main purpose of this study was to describe dancers' oxygen consumption (VO2) and heart rate (HR) responses during the performance of nine isolated ballet exercise sets, as correlated with their first and second ventilatory thresholds (VT1 and VT2). Twelve female ballet dancers volunteered for the study. Their maximum oxygen consumption (VO2max), VT1, and VT2 were determined by use of an incremental treadmill test. Nine sets of ballet movements were assessed: pliés, tendus, jetés, rond de jambes, fondus, grand adage (adage), grand battements, temps levés, and sautés. The sets were randomly executed and separated by 5 minute rest periods. ANOVA for repeated measurements followed by the Bonferroni Post-hoc test were applied (p < 0.05). VO2 responses were as follows: pliés (17.6 ± 1.6 ml·kg(-1)·min(-1)); tendus and adage were not significantly greater than VT1; rond de jambes (21.8 ± 3.1 ml·kg(-1) ·min(-1)); fondus and jetés were higher than VT1 and the previous exercises; grand battements (25.8 ± 2.9 ml·kg(-1)·min(-1)) was greater than all the other exercises and VT1; and VT2 was significantly higher than all ballet sets. This stratification followed closely, but not exactly, the variation in HR. For example, rond de jambes (156.8 ± 19 b·min(-1)) did not show any significant difference from all the other ballet sets, nor VT1 or VT2. It is concluded that the workloads of isolated ballet sets, based on VO2 responses, vary between low and moderate aerobic intensity in relation to dancers' VT1 and

  19. Effect of flow rate on growth and oxygen consumption of biofilm in gravity sewer.

    PubMed

    Xu, Jingwei; Li, Muzhi; He, Qiang; Sun, Xingfu; Zhou, Xiangren; Su, Zhenping; Ai, Hainan

    2017-01-01

    The function of sewer as reactors must rely on the biofilm in it. In this paper, the formation, structure, oxygen transfer, and activity of the biofilm under different hydraulic conditions were studied by the microelectrode technology, oxygen uptake rate (OUR) technology, and 454 high-throughput pyrosequencing technology. Results showed that when the wall-shear stresses were 1.12, 1.29, and 1.45 Pa, the porosity of the steady-state biofilm were 69.1, 64.4, and 55.1 %, respectively. The maximum values of OUR were 0.033, 0.027, and 0.022 mg/(L*s), respectively, and the COD removal efficiency in the sewers reached 40, 35, and 32 %, respectively. The research findings had an important significance on how to improve the treatment efficiency of the sewers. Fig. a Graphical Abstract.

  20. Direct measurement of oxygen consumption rates from attached and unattached cells in a reversibly sealed, diffusionally isolated sample chamber

    PubMed Central

    Strovas, Timothy J.; McQuaide, Sarah C.; Anderson, Judy B.; Nandakumar, Vivek; Kalyuzhnaya, Marina G.; Burgess, Lloyd W.; Holl, Mark R.; Meldrum, Deirdre R.; Lidstrom, Mary E.

    2011-01-01

    Oxygen consumption is a fundamental component of metabolic networks, mitochondrial function, and global carbon cycling. To date there is no method available that allows for replicate measurements on attached and unattached biological samples without compensation for extraneous oxygen leaking into the system. Here we present the Respiratory Detection System, which is compatible with virtually any biological sample. The RDS can be used to measure oxygen uptake in microliter-scale volumes with a reversibly sealed sample chamber, which contains a porphyrin-based oxygen sensor. With the RDS, one can maintain a diffusional seal for up to three hours, allowing for the direct measurement of respiratory function of samples with fast or slow metabolic rates. The ability to easily measure oxygen uptake in small volumes with small populations or dilute samples has implications in cell biology, environmental biology, and clinical diagnostics. PMID:21546993

  1. Reduction in Post-Marathon Peak Oxygen Consumption: Sign of Cardiac Fatigue in Amateur Runners?

    PubMed Central

    Sierra, Ana Paula Rennó; da Silveira, Anderson Donelli; Francisco, Ricardo Contesini; Barretto, Rodrigo Bellios de Mattos; Sierra, Carlos Anibal; Meneghelo, Romeu Sergio; Kiss, Maria Augusta Peduti Dal Molin; Ghorayeb, Nabil; Stein, Ricardo

    2016-01-01

    Background Prolonged aerobic exercise, such as running a marathon, produces supraphysiological stress that can affect the athlete's homeostasis. Some degree of transient myocardial dysfunction ("cardiac fatigue") can be observed for several days after the race. Objective To verify if there are changes in the cardiopulmonary capacity, and cardiac inotropy and lusitropy in amateur marathoners after running a marathon. Methods The sample comprised 6 male amateur runners. All of them underwent cardiopulmonary exercise testing (CPET) one week before the São Paulo Marathon, and 3 to 4 days after that race. They underwent echocardiography 24 hours prior to and immediately after the marathon. All subjects were instructed not to exercise, to maintain their regular diet, ingest the same usual amount of liquids, and rest at least 8 hours a day in the period preceding the CPET. Results The athletes completed the marathon in 221.5 (207; 250) minutes. In the post-marathon CPET, there was a significant reduction in peak oxygen consumption and peak oxygen pulse compared to the results obtained before the race (50.75 and 46.35 mL.kg-1 .min-1; 19.4 and 18.1 mL.btm, respectively). The echocardiography showed a significant reduction in the s' wave (inotropic marker), but no significant change in the E/e' ratio (lusitropic marker). Conclusions In amateur runners, the marathon seems to promote changes in the cardiopulmonary capacity identified within 4 days after the race, with a reduction in the cardiac contractility. Such changes suggest that some degree of "cardiac fatigue" can occur. PMID:26760783

  2. Oxygen Consumption by Red Wines. Part I: Consumption Rates, Relationship with Chemical Composition, and Role of SO₂.

    PubMed

    Ferreira, Vicente; Carrascon, Vanesa; Bueno, Mónica; Ugliano, Maurizio; Fernandez-Zurbano, Purificación

    2015-12-30

    Fifteen Spanish red wines extensively characterized in terms of SO2, color, antioxidant indexes, metals, and polyphenols were subjected to five consecutive sensor-controlled cycles of air saturation at 25 °C. Within each cycle, O2 consumption rates cannot be interpreted by simple kinetic models. Plots of cumulated consumed O2 made it possible to define a fast and highly wine-dependent initial O2 consumption rate and a second and less variable average O2 consumption rate which remains constant in saturations 2 to 5. Both rates have been satisfactorily modeled, and in both cases they were independent of Fe and SO2 and highly dependent on Cu levels. Average rates were also related to Mn, pH, Folin, protein precipitable proanthocyanidins (PPAs), and polyphenolic profile. Initial rates were strong and negatively correlated to SO2 consumption, indicating that such an initial rate is either controlled by an unknown antioxidant present in some wines or affected by a poor real availability of SO2. Remaining unreacted SO2 is proportional to initial combined SO2 and to final free acetaldehyde.

  3. Effect of exercise intensity, duration and mode on post-exercise oxygen consumption.

    PubMed

    Børsheim, Elisabet; Bahr, Roald

    2003-01-01

    In the recovery period after exercise there is an increase in oxygen uptake termed the 'excess post-exercise oxygen consumption' (EPOC), consisting of a rapid and a prolonged component. While some studies have shown that EPOC may last for several hours after exercise, others have concluded that EPOC is transient and minimal. The conflicting results may be resolved if differences in exercise intensity and duration are considered, since this may affect the metabolic processes underlying EPOC. Accordingly, the absence of a sustained EPOC after exercise seems to be a consistent finding in studies with low exercise intensity and/or duration. The magnitude of EPOC after aerobic exercise clearly depends on both the duration and intensity of exercise. A curvilinear relationship between the magnitude of EPOC and the intensity of the exercise bout has been found, whereas the relationship between exercise duration and EPOC magnitude appears to be more linear, especially at higher intensities. Differences in exercise mode may potentially contribute to the discrepant findings of EPOC magnitude and duration. Studies with sufficient exercise challenges are needed to determine whether various aerobic exercise modes affect EPOC differently. The relationships between the intensity and duration of resistance exercise and the magnitude and duration of EPOC have not been determined, but a more prolonged and substantial EPOC has been found after hard- versus moderate-resistance exercise. Thus, the intensity of resistance exercise seems to be of importance for EPOC. Lastly, training status and sex may also potentially influence EPOC magnitude, but this may be problematic to determine. Still, it appears that trained individuals have a more rapid return of post-exercise metabolism to resting levels after exercising at either the same relative or absolute work rate; however, studies after more strenuous exercise bouts are needed. It is not determined if there is a sex effect on EPOC

  4. Oxygen distribution and consumption within the retina in vascularised and avascular retinas and in animal models of retinal disease.

    PubMed

    Yu, D Y; Cringle, S J

    2001-03-01

    Maintenance of an adequate oxygen supply to the retina is critical for retinal function. In species with vascularised retinas, such as man, oxygen is delivered to the retina via a combination of the choroidal vascular bed, which lies immediately behind the retina, and the retinal vasculature, which lies within the inner retina. The high-oxygen demands of the retina, and the relatively sparse nature of the retinal vasculature, are thought to contribute to the particular vulnerability of the retina to vascular disease. A large proportion of retinal blindness is associated with diseases having a vascular component, and disrupted oxygen supply to the retina is likely to be a critical factor. Much attention has therefore been directed at determining the intraretinal oxygen environment in healthy and diseased eyes. Measurements of oxygen levels within the retina have largely been restricted to animal studies in which oxygen sensitive microelectrodes can be used to obtain high-resolution measurements of oxygen tension as a function of retinal depth. Such measurements can immediately identify which retinal layers are supplied with oxygen from the different vascular elements. Additionally, in the outer retinal layers, which do not have any intrinsic oxygen sources, the oxygen distribution can be analysed mathematically to quantify the oxygen consumption rate of specific retinal layers. This has revealed a remarkable heterogeneity of oxygen requirements of different components of the outer retina, with the inner segments of the photoreceptors being the dominant oxygen consumers. Since the presence of the retinal vasculature precludes such a simple quantitative analysis of local oxygen consumption within the inner retina, our understanding of the oxygen needs of the inner retinal components is much less complete. Although several lines of evidence suggest that in the more commonly studied species such as cat, pig, and rat, the oxygen demands of the inner retina as a whole is

  5. Effects of Walking with Blood Flow Restriction on Excess Post-exercise Oxygen Consumption.

    PubMed

    Mendonca, G V; Vaz, J R; Pezarat-Correia, P; Fernhall, B

    2015-02-09

    This study determined the influence of walking with blood flow restriction (BFR) on the excess post-exercise oxygen consumption (EPOC) of healthy young men. 17 healthy young men (22.1±2.9 years) performed graded treadmill exercise to assess VO2peak. In a randomized fashion, each participant performed 5 sets of 3-min treadmill exercise at their optimal walking speed with 1-min interval either with or without BFR. Participants were then seated in a chair and remained there for 30 min of recovery. Expired gases were continuously monitored during exercise and recovery. BFR increased the O2 cost of walking as well as its relative intensity and cumulative O2 deficit (p<0.05). The EPOC magnitude after walking with BFR was greater than in the non-BFR condition (p<0.05). No differences between conditions were seen for the duration of EPOC. The EPOC magnitude was no longer different between conditions after controlling for the differences in relative intensity and in the cumulative O2 deficit (p>0.05). These data indicate that walking with BFR increases the magnitude of EPOC. Moreover, they also demonstrate that such increment in EPOC is likely explained by the effects of BFR on walking relative intensity and cumulative O2 deficit.

  6. Modeling oxygen consumption in the proximal tubule: effects of NHE and SGLT2 inhibition

    PubMed Central

    Vallon, Volker; Edwards, Aurélie

    2015-01-01

    The objective of this study was to investigate how physiological, pharmacological, and pathological conditions that alter sodium reabsorption (TNa) in the proximal tubule affect oxygen consumption (QO2) and Na+ transport efficiency (TNa/QO2). To do so, we expanded a mathematical model of solute transport in the proximal tubule of the rat kidney. The model represents compliant S1, S2, and S3 segments and accounts for their specific apical and basolateral transporters. Sodium is reabsorbed transcellularly, via apical Na+/H+ exchangers (NHE) and Na+-glucose (SGLT) cotransporters, and paracellularly. Our results suggest that TNa/QO2 is 80% higher in S3 than in S1–S2 segments, due to the greater contribution of the passive paracellular pathway to TNa in the former segment. Inhibition of NHE or Na-K-ATPase reduced TNa and QO2, as well as Na+ transport efficiency. SGLT2 inhibition also reduced proximal tubular TNa but increased QO2; these effects were relatively more pronounced in the S3 vs. the S1–S2 segments. Diabetes increased TNa and QO2 and reduced TNa/QO2, owing mostly to hyperfiltration. Since SGLT2 inhibition lowers diabetic hyperfiltration, the net effect on TNa, QO2, and Na+ transport efficiency in the proximal tubule will largely depend on the individual extent to which glomerular filtration rate is lowered. PMID:25855513

  7. Human islet oxygen consumption rate and DNA measurements predict diabetes reversal in nude mice.

    PubMed

    Papas, K K; Colton, C K; Nelson, R A; Rozak, P R; Avgoustiniatos, E S; Scott, W E; Wildey, G M; Pisania, A; Weir, G C; Hering, B J

    2007-03-01

    There is a need for simple, quantitative and prospective assays for islet quality assessment that are predictive of islet transplantation outcome. The current state-of-the-art athymic nude mouse bioassay is costly, technically challenging and retrospective. In this study, we report on the ability of 2 parameters characterizing human islet quality: (1) oxygen consumption rate (OCR), a measure of viable volume; and (2) OCR/DNA, a measure of fractional viability, to predict diabetes reversal in nude mice. Results demonstrate that the probability for diabetes reversal increases as the graft's OCR/DNA and total OCR increase. For a given transplanted OCR dose, diabetes reversal is strongly dependent on OCR/DNA. The OCR and OCR/DNA (the 'OCR test') data exhibit 89% sensitivity and 77% specificity in predicting diabetes reversal in nude mice (n = 86). We conclude that the prospective OCR test can effectively replace the retrospective athymic nude mouse bioassay in assessing human islet quality prior to islet transplantation.

  8. Measurement of ADP-ATP exchange in relation to mitochondrial transmembrane potential and oxygen consumption.

    PubMed

    Chinopoulos, Christos; Kiss, Gergely; Kawamata, Hibiki; Starkov, Anatoly A

    2014-01-01

    We have previously described a fluorometric method to measure ADP-ATP exchange rates in mitochondria of permeabilized cells, in which several enzymes that consume substantial amounts of ATP and other competing reactions interconverting adenine nucleotides are present. This method relies on recording changes in free extramitochondrial Mg(2+) with the Mg(2+)-sensitive fluorescent indicator Magnesium Green (MgGr)™, exploiting the differential affinity of ADP and ATP for Mg(2+). In particular, cells are permeabilized with digitonin in the presence of BeF3(-) and Na3VO4, inhibiting all ATP- and ADP-utilizing reactions but mitochondrial exchange of ATP with ADP catalyzed by the adenine nucleotide translocase. The rate of ATP appearing in the medium upon the addition of ADP to energized mitochondria is then calculated from the rate of change in free extramitochondrial Mg(2+) using standard binding equations. Here, we describe a variant of this method involving an improved calibration step. This step minimizes errors that may be introduced during the conversion of the MgGr™ signal into free extramitochondrial [Mg(2+)] and ATP. Furthermore, we describe an approach for combining this methodology with the measurement of mitochondrial membrane potential and oxygen consumption in the same sample. The method described herein is useful for the study of malignant cells, which are known to thrive in hypoxic environments and to harbor mitochondria with profound functional alterations.

  9. Measurement of ADP–ATP Exchange in Relation to Mitochondrial Transmembrane Potential and Oxygen Consumption

    PubMed Central

    Chinopoulos, Christos; Kiss, Gergely; Kawamata, Hibiki; Starkov, Anatoly A.

    2015-01-01

    We have previously described a fluorometric method to measure ADP–ATP exchange rates in mitochondria of permeabilized cells, in which several enzymes that consume substantial amounts of ATP and other competing reactions interconverting adenine nucleotides are present. This method relies on recording changes in free extramitochondrial Mg2+ with the Mg2+-sensitive fluorescent indicator Magnesium Green (MgGr)™, exploiting the differential affinity of ADP and ATP for Mg2+. In particular, cells are permeabilized with digitonin in the presence of BeF3− and Na3VO4, inhibiting all ATP- and ADP-utilizing reactions but mitochondrial exchange of ATP with ADP catalyzed by the adenine nucleotide translocase. The rate of ATP appearing in the medium upon the addition of ADP to energized mitochondria is then calculated from the rate of change in free extramitochondrial Mg2+ using standard binding equations. Here, we describe a variant of this method involving an improved calibration step. This step minimizes errors that may be introduced during the conversion of the MgGr™ signal into free extramitochondrial [Mg2+] and ATP. Furthermore, we describe an approach for combining this methodology with the measurement of mitochondrial membrane potential and oxygen consumption in the same sample. The method described herein is useful for the study of malignant cells, which are known to thrive in hypoxic environments and to harbor mitochondria with profound functional alterations. PMID:24862274

  10. Functional Capacity, Respiratory Muscle Strength, and Oxygen Consumption Predict Mortality in Patients with Cirrhosis

    PubMed Central

    Telles da Rosa, Luis Henrique; Garcia, Eduardo; Marroni, Cláudio Augusto

    2016-01-01

    Introduction. Liver diseases influence musculoskeletal functions and may negatively affect the exercise capacity of patients with cirrhosis. Aim. To test the relationship between the six-minute walk test (6MWT), maximal inspiratory pressure (MIP), and exercise capacity (VO2peak) measures and the survival rate of patients with cirrhosis. Methods. This prospective cohort study consisted of 86 patients diagnosed with cirrhosis with the following aetiology: hepatitis C virus (HCV), hepatitis B virus (HBV), and/or alcoholic cirrhosis (AC). All patients were followed up for three years and submitted to the 6MWT, pressure measurements with a compound gauge, and an exercise test (VO2peak). Results. The survival analysis showed that the individuals who covered a distance shorter than 410 m during the 6MWT had a survival rate of 55% compared with a rate of 97% for the individuals who walked more than 410 m (p = 0.0001). Individuals with MIPs below −70 cmH2O had a survival rate of 62% compared with a rate of 93% for those with MIPs above −70 cmH2O (p = 0.0001). The patients with values below 17 mL/kg had a survival rate of 55% compared with a rate of 94% for those with values above 17 mL/kg (p = 0.0001). Conclusion. The 6MWT distance, MIP, and oxygen consumption are predictors of mortality in patients with cirrhosis. PMID:27559536

  11. Effects of Dissolved Oxygen Concentration on Oxygen Consumption and Development of Channel Catfish Eggs and Fry: Implications for Hatchery Management

    Technology Transfer Automated Retrieval System (TEKTRAN)

    Channel catfish spawns were incubated under controlled conditions to determine the effect of dissolved oxygen (DO) concentration on development and survival. Routine metabolic rate and limiting oxygen concentration were determined on eggs, sac fry and swim-up fry. Eight channel catfish spawns were s...

  12. Mitigating an increase of specific power consumption in a cryogenic air separation unit at reduced oxygen production

    NASA Astrophysics Data System (ADS)

    Singla, Rohit; Chowdhury, Kanchan

    2017-02-01

    Specific power consumed in a Linde double column air separation unit (ASU) increases as the quantity of oxygen produced at a given purity is decreased due to the changes of system requirement or market demand. As the plant operates in part load condition, the specific power consumption (SPC) increases as the total power consumption remains the same. In order to mitigate the increase of SPC at lower oxygen production, the operating pressure of high pressure column (HPC) can be lowered by extending the low pressure column (LPC) by a few trays and adding a second reboiler. As the duty of second reboiler in LPC is increased, the recovery of oxygen decreases with a lowering of the HPC pressure. This results in mitigation of the increase of SPC of the plant. A Medium pressure ASU with dual reboiler that produces pressurised gaseous and liquid products of oxygen and nitrogen is simulated in Aspen Hysys 8.6®, a commercial process simulator to determine SPC at varying oxygen production. The effects of reduced pressure of air feed into the cold box on the size of heat exchangers (HX) are analysed. Operation strategy to obtain various oxygen production rates at varying demand is also proposed.

  13. Acute and chronic effects of parathion and 2,4 D on the oxygen consumption of Chasmagnathus granulata (Decapoda, Brachyura).

    PubMed

    Rodríguez, E M; Monserrat, J M

    1991-01-01

    The effect of two pesticides widely used in Argentina on the oxygen consumption of the estuarine crab Chasmagnathus granulata was studied. Constant pressure respirometers were employed to estimate the rate of oxygen consumption per weight unit of animals treated previously with each pesticide, both acute (96 h) and chronically (15 and 30 days). Crabs exposed to parathion -an organophosphorate insecticide that causes the inhibition of acetylcholinesterase- show an increase of oxygen consumption at 0.5 ppm under acute exposure, and at 10 ppb under a chronic one. On the other hand, crabs exposed to 2,4 D (an herbicide) did not show changes in their consumption after an acute exposure, but those exposed chronically did show an increase at low concentration (5 ppm) followed by a relative decrease at the highest concentration (50 ppm). The results obtained for parathion are in accordance with the abnormal cholinergic excitation that it may exert on crustacean nervous system. The effect of 2,4 D was consistent with its uncoupler action at respiratory chain level, at low concentrations, while a possible Krebs cycle enzymes inhibition might be occurring at higher concentrations of that pesticide, as in other crustacean species. The faster action of parathion, respect to 2,4 D, is explained by its neurotoxic nature.

  14. Elevated Oxygen Consumption Rate in Response to Acute Low- Glucose Stress: Metformin Restores Rate to Normal Level

    PubMed Central

    Williams, Emmanuel D.; Rogers, Steven C.; Zhang, Xiaomin; Azhar, Gohar; Wei, Jeanne Y.

    2015-01-01

    Cardiovascular Disease (CVD) continues to be the leading cause of mortality among all age demographics in the United States, with the highest occurrence in populations aged 65 and older. Glucose levels, particularly hyperglycemia, are associated with the premature onset of age-related diseases including CVD. A major challenge in the treatment of elderly patients with chronically elevated blood glucose is the frequency of hypoglycemic episodes. Molecular mechanisms of hypoglycemia remain unclear, but are associated with premature onset of age-related-diseases. Here we report a mitochondrial metabolic profile assessing short-term (up to six hours) and longer-term (12–24 hours) durations of low-glucose stress. We observed that the antidiabetic biguanide and mitochondrial complex I inhibitor, metformin, can lower and restore the elevated oxygen consumption rate during shorter-term glucose stress to levels similar to that of cells cultured in normal glucose. This effect appears, in part, to involve activation of the 5′ AMP-activated protein kinase (AMPK). PMID:26256471

  15. 1α,25-Dihydroxyvitamin D3 Regulates Mitochondrial Oxygen Consumption and Dynamics in Human Skeletal Muscle Cells*

    PubMed Central

    Ryan, Zachary C.; Craig, Theodore A.; Folmes, Clifford D.; Wang, Xuewei; Lanza, Ian R.; Schaible, Niccole S.; Salisbury, Jeffrey L.; Nair, K. Sreekumaran; Terzic, Andre; Sieck, Gary C.; Kumar, Rajiv

    2016-01-01

    Muscle weakness and myopathy are observed in vitamin D deficiency and chronic renal failure, where concentrations of the active vitamin D3 metabolite, 1α,25-dihydroxyvitamin D3 (1α,25(OH)2D3), are low. To evaluate the mechanism of action of 1α,25(OH)2D3 in skeletal muscle, we examined mitochondrial oxygen consumption, dynamics, and biogenesis and changes in expression of nuclear genes encoding mitochondrial proteins in human skeletal muscle cells following treatment with 1α,25(OH)2D3. The mitochondrial oxygen consumption rate (OCR) increased in 1α,25(OH)2D3-treated cells. Vitamin D3 metabolites lacking a 1α-hydroxyl group (vitamin D3, 25-hydroxyvitamin D3, and 24R,25-dihydroxyvitamin D3) decreased or failed to increase OCR. 1α-Hydroxyvitamin D3 did not increase OCR. In 1α,25(OH)2D3-treated cells, mitochondrial volume and branching and expression of the pro-fusion protein OPA1 (optic atrophy 1) increased, whereas expression of the pro-fission proteins Fis1 (fission 1) and Drp1 (dynamin 1-like) decreased. Phosphorylated pyruvate dehydrogenase (PDH) (Ser-293) and PDH kinase 4 (PDK4) decreased in 1α,25(OH)2D3-treated cells. There was a trend to increased PDH activity in 1α,25(OH)2D3-treated cells (p = 0.09). 83 nuclear mRNAs encoding mitochondrial proteins were changed following 1α,25(OH)2D3 treatment; notably, PDK4 mRNA decreased, and PDP2 mRNA increased. MYC, MAPK13, and EPAS1 mRNAs, which encode proteins that regulate mitochondrial biogenesis, were increased following 1α,25(OH)2D3 treatment. Vitamin D receptor-dependent changes in the expression of 1947 mRNAs encoding proteins involved in muscle contraction, focal adhesion, integrin, JAK/STAT, MAPK, growth factor, and p53 signaling pathways were observed following 1α,25(OH)2D3 treatment. Five micro-RNAs were induced or repressed by 1α,25(OH)2D3. 1α,25(OH)2D3 regulates mitochondrial function, dynamics, and enzyme function, which are likely to influence muscle strength. PMID:26601949

  16. Temperature induced variation in oxygen consumption of juvenile and adult stage of the dog conch Laevistrombus canarium (Linnaeus 1758)

    NASA Astrophysics Data System (ADS)

    Hassan, Wan Nurul Husna Wan; Amin, S. M. Nurul; Ghaffar, Mazlan Abd; Cob, Zaidi Che

    2015-09-01

    Laevistrombus canarium Linnaeus, 1758 is one of the important edible sea snail within the western Johor Straits, Malaysia. In this study, the impact of temperature on oxygen consumption (MO2) of L. canarium based on their ontogenetic changes (juvenile and adult) was measured in the laboratory condition at 22.0, 26.0, 30.0 and 34.0°C. Measurement of MO2 were taken every 1 s for 60 min on 4.20 - 34.00 g dog conch using respirometry chamber. All experiments were carried out in static conditions in five replicates with one snail per chambers. The results of oxygen consumption showed that juvenile dog conch respired at the rate of 0.163 ml h-1 and adult respired at the rate of 0.119 ml h-1. Consequently, the oxygen consumption in juvenile and adult dog conch was expressed as a total energy spends. The results indicates that total energy spend for oxygen consumed (ml h-1) of L. canarium at different temperature regimes (22.0 to 34.0°C) slightly increased over time period (0.63 ± 0.12 to 3.24 ± 0.05 J h-1) respectively. This finding of the present study suggested L. canarium is well adapted for life in high temperature environment.

  17. Protein nitration, lipid peroxidation and DNA damage at high altitude in acclimatized lowlanders and native highlanders: relation with oxygen consumption.

    PubMed

    Sinha, Sanchari; Dutta, Arkadeb; Singh, Som Nath; Ray, Uday Sankar

    2010-04-30

    Reactive oxygen and nitrogen species have been reported to be increased due to hypobaric hypoxia. It was hypothesized that lowlanders are more susceptible to protein nitration, lipid peroxidation and DNA damage at high altitude than highlanders and formation of these biomarkers may have strong correlation with oxygen consumption. Male volunteers were randomly selected and categorized into 3 groups, i.e. lowlanders at sea level (LL-SL, n=10), lowlanders at an altitude of 4560 m (LL-HA, n=10) and highlanders (HAN, n=10). Volunteers performed maximal aerobic exercise. Resting and post-exercise blood samples were taken at sea level and high altitude. Both resting and maximum oxygen consumption showed positive correlation with stress markers. LL-HA showed increased 3-nitrotyrosine and lipid hydroperoxide than LL-SL at rest. 3-Nitrotyrosine and lipid hydroperoxide increased after exercise in 3 groups, but percentage increase was higher in HAN than LL-SL and LL-HA. LL-SL and HAN showed significant DNA damage after exercise. Results indicate that resting oxygen consumption is positively correlated with nitrosative and oxidative stress markers irrespective of environmental condition and adaptation levels. Lowlanders have shown higher susceptibility to hypoxic insult than highlanders at rest, but when subjected to exercise test, they showed better tolerance to hypoxia than highlanders.

  18. Changes in oxygen consumption induced by t-butyl hydroperoxide in perfused rat liver. Effect of free-radical scavengers.

    PubMed Central

    Videla, L A; Villena, M I; Donoso, G; Giulivi, C; Boveris, A

    1984-01-01

    The addition of t-butyl hydroperoxide to perfused rat liver elicited a biphasic effect on hepatic respiration. A rapid fall in liver oxygen consumption was initially observed, followed by a recovery phase leading to respiratory rates higher than the initial steady-state values of oxygen uptake. This overshoot in hepatic oxygen uptake was abolished by free-radical scavengers such as (+)-cyanidanol-3 or butylated hydroxyanisole at concentrations that did not alter mitochondrial respiration. (+)-Cyanidanol-3 was also able to facilitate the recovery of respiration, the diminution in the calculated rate of hydroperoxide utilization and the decrease in liver GSH content produced by two consecutive pulses of t-butyl hydroperoxide. It is suggested that the t-butyl hydroperoxide-induced overshoot in liver respiration is related to increased utilization of oxygen for lipid peroxidation as a consequence of free radicals produced in the scission of the hydroperoxide by cellular haemoproteins. PMID:6508746

  19. Influence of lightweight ambulatory oxygen on oxygen use and activity patterns of COPD patients receiving long-term oxygen therapy.

    PubMed

    Casaburi, Richard; Porszasz, Janos; Hecht, Ariel; Tiep, Brian; Albert, Richard K; Anthonisen, Nicholas R; Bailey, William C; Connett, John E; Cooper, J Allen; Criner, Gerard J; Curtis, Jeffrey; Dransfield, Mark; Lazarus, Stephen C; Make, Barry; Martinez, Fernando J; McEvoy, Charlene; Niewoehner, Dennis E; Reilly, John J; Scanlon, Paul; Scharf, Steven M; Sciurba, Frank C; Woodruff, Prescott

    2012-02-01

    Lightweight ambulatory oxygen devices are provided on the assumptions that they enhance compliance and increase activity, but data to support these assumptions are lacking. We studied 22 patients with severe chronic obstructive pulmonary disease receiving long-term oxygen therapy (14 men, average age = 66.9 y, FEV(1) = 33.6%pred, PaO(2) at rest = 51.7 torr) who were using E-cylinders as their portable oxygen. Subjects were recruited at 5 sites and studied over a 2-week baseline period and for 6 months after randomizing them to either continuing to use 22-lb E-cylinders towed on a cart or to carrying 3.6-lb aluminum cylinders. Utilizing novel electronic devices, ambulatory and stationary oxygen use was monitored continuously over the 2 weeks prior to and the 6 months following randomization. Subjects wore tri-axial accelerometers to monitor physical activity during waking hours for 2-3 weeks prior to, and at 3 and 6 months after, randomization. Seventeen subjects completed the study. At baseline, subjects used 17.2 hours of stationary and 2.5 hours of ambulatory oxygen daily. At 6 months, ambulatory oxygen use was 1.4 ± 1.0 hrs in those randomized to E-cylinders and 1.9 ± 2.4 hrs in those using lightweight oxygen (P = NS). Activity monitoring revealed low activity levels prior to randomization and no significant increase over time in either group. In this group of severe chronic obstructive pulmonary disease patients, providing lightweight ambulatory oxygen did not increase either oxygen use or activity. Future efforts might focus on strategies to encourage oxygen use and enhance activity in this patient group. This trial is registered at ClinicalTrials.gov (NCT003257540).

  20. Reactive transport modeling of dissolved oxygen migration and consumption in a sedimentary basins affected by a deglaciation event

    NASA Astrophysics Data System (ADS)

    Bea, S. A.; Mayer, K. U.; MacQuarrie, K. T.

    2012-12-01

    In intracratonic sedimentary basins, geochemical conditions are currently reducing at depth. Deep groundwater flow systems are driven primarily by salinity differences, topographic gradients and recharge derived from precipitation; these systems are also influenced by the hydrostratigraphy of the basin. However, during periods of glacial melt water production (i.e., deglaciation events), the melting of ice sheets may alter the patterns of freshwater infiltration, potentially resulting in enhanced recharge of glacial melt water containing relatively high concentrations of dissolved oxygen. Reactive transport modeling can be used to understand the evolution of geochemical conditions and redox-buffering capacity of these formations. Dissolved oxygen will interact with reduced mineral phases that are present in the sedimentary units (e.g., chlorite) or with solid organic matter causing oxygen consumption. Processes included in the model are density-driven flow and transport, vertical mechanical deformation, as well as chemical reactions (aqueous complexation, mineral dissolution and precipitation including evaporites, sulfates and carbonates, cation-exchange, redox processes involving the decomposition of organic matter, dissolution of Fe-bearing minerals, biotite and chlorite, and the oxidation of ferrous iron and sulfide). Transient boundary conditions are imposed in the upper part of the model to mimic ice sheet advance and retreat. Simulation results indicate that the presence of dense brines at depth results in low groundwater velocities during glacial meltwater infiltration, restricting the ingress of oxygenated waters in the basin. In addition, due to the abundance of reduced mineral phases and solid organic matter in these formations, geochemical processes causing oxygen consumption are restricted to shallow aquifers, further limiting the ingress of oxygenated waters to the first 100 m in the main aquifers (i.e., sandstones) and 50 m in the carbonates aquifers

  1. Ventilation and oxygen consumption during acute hypoxia in newborn mammals: a comparative analysis.

    PubMed

    Mortola, J P; Rezzonico, R; Lanthier, C

    1989-10-01

    We asked whether the lack of sustained hyperventilation during acute hypoxia, often reported to occur in the infant, is a common characteristic among newborn mammalian species, and to which extent inter-species differences may be accounted for by differences in metabolic responses. Ventilation (VE) and breathing pattern have been measured by flow-plethysmography or by the barometric method in normoxia and after 10 min of 10% O2 breathing in newborn mammals of 17 species over a 3 g to 20 kg range in body size. In 14 of these species oxygen consumption (VO2) has also been measured by a manometric technique or by calculation from the changes in chamber O2 pressure. VE and VO2 changed in proportion, among species, both in normoxia and hypoxia. In hypoxia, VE was higher, similar, or even lower than in normoxia, with some relation to the degree of maturity of the species at birth. In general, the small or absent VE responses to hypoxia resulted from small or no increase in tidal volume, while breathing frequency stayed elevated. The few departures from this pattern could be explained by interspecies differences in hypoxic sensitivity, since additional experiments in kittens and puppies indicated that, with more severe hypoxia, the pattern changed from rapid and shallow to deep and slow. In all cases, irrespective of the magnitude of the VE response, the VE/VO2 (and the mean inspiratory flow/VO2) increased during hypoxia, because the drop in VE, when present, was accompanied by an even larger drop in VO2. In fact, VO2 in hypoxia decreased in most species, although to variable degrees. Body temperature either did not change or decreased slightly, possibly indicating a trend toward a decrease of the set point of thermoregulation during hypoxia. In conclusion, the analysis gave further support to the concept that, during acute hypoxia, changes in metabolic rate play a paramount role in the ventilatory response of the newborn mammal.

  2. Comparison of a kayaking ergometer protocol with an arm crank protocol for evaluating peak oxygen consumption.

    PubMed

    Forbes, Scott C; Chilibeck, Philip D

    2007-11-01

    The purpose of this study was to compare a kayak ergometer protocol with an arm crank protocol for determining peak oxygen consumption (V(.-)O2). On separate days in random order, 10 men and 5 women (16-24 years old) with kayaking experience completed the kayak ergometer protocol and a standardized arm crank protocol. The kayak protocol began at 70 strokes per minute and increased by 10 strokes per minute every 2 minutes until volitional fatigue. The arm crank protocol consisted of a crank rate of 70 revolutions per minute, initial loading of 35 W and subsequent increases of 35 W every 2 minutes until volitional fatigue. The results showed a significant difference (p < 0.01) between the kayak ergometer and the arm crank protocols for relative peak V(.-)O2 (47.5 +/- 3.9 ml x kg(-1) x min(-1) vs. 44.2 +/- 6.2 ml x kg(-1) x min(-1)) and absolute peak V(.-)O2 (3.38 L x min(-1) +/- 0.53 vs. 3.14 +/- 0.64 L x min(-1)). The correlation between kayak and arm crank protocol was 0.79 and 0.90, for relative and absolute V(.-)O2 peak, respectively (both p < 0.01). The higher peak V(.-)O2 on the kayak ergometer may be due to the greater muscle mass involved compared to the arm crank ergometer. The kayak ergometer protocol may therefore be more specific to the sport of kayaking than an arm crank protocol.

  3. RSI: oxygen consumption, blood flow, and reoxygenation in patients suffering RSI measured by noninvasive optical spectroscopy

    NASA Astrophysics Data System (ADS)

    Thijssen, Dick H. J.; van Uden, Caro J. T.; Krijgsman, Hans; Colier, Willy N. J. M.

    2003-07-01

    Background: Repetitive Strain Injury (RSI) is a major problem in nowadays health care and creates high financial costs and personal distress. Average prevalence rates in the Netherlands vary from 20-40% of the working population. Insight into the patho-physiological mechanism of RSI is important in order to establish adequate treatment and prevention programs. Objective: The aim of this study was to gain insight in muscle oxygen consumption (mVO2), blood flow (BF), and reoxygenation (ReOx) in the forearm of computer workers with stage III Repetitive Strain Injury (RSI). Method: We have used continuous wave infrared spectroscopy (NIRS) to measure these variables. Measurements were conducted on the extensor and flexor muscle in both arms as well in RSI-patients (n=10) as in control subjects (n=21). A protocol of increased isometric repetitive contraction in a handgrip ergonometer was used with increasing levels of strength. Results: mVO2 in the extensor muscle in RSI-subjects (dominant side) was increased compared to control subjects and compared to the non-dominant side (p<0.05). ReOx was not increased in RSI (dominant side-extensor muscle). However, there was a tendency towards statistical significance (p=0.065). BF in rest was equal in both groups, however after exercise it tended to be increased. Half-time recovery (T ») was measured during only one part of the protocol and it was significantly increased (p<0.05). Conclusion: mVO2 in RSI is impaired. BF and ReOx did not show difference between both groups. Future research should aim at a microvascular dysfunction in RSI.

  4. Local muscle oxygen consumption related to external and joint specific power.

    PubMed

    Skovereng, Knut; Ettema, Gertjan; van Beekvelt, Mireille

    2016-02-01

    The purpose of the present study was to examine the effects of external work rate on joint specific power and the relationship between knee extension power and vastus lateralis muscle oxygen consumption (mVO2). We measured kinematics and pedal forces and used inverse dynamics to calculate joint power for the hip, knee and ankle joints during an incremental cycling protocol performed by 21 recreational cyclists. Vastus lateralis mVO2 was estimated using near-infrared spectroscopy with an arterial occlusion. The main finding was a non-linear relationship between vastus lateralis mVO2 and external work rate that was characterised by an increase followed by a tendency for a levelling off (R(2)=0.99 and 0.94 for the quadratic and linear models respectively, p<0.05). When comparing 100W and 225W, there was a ∼43W increase in knee extension but still a ∼9% decrease in relative contribution of knee extension to external work rate resulting from a ∼47W increase in hip extension. When vastus lateralis mVO2 was related to knee extension power, the relationship was still non-linear (R(2)=0.99 and 0.97 for the quadratic and linear models respectively, p<0.05). These results demonstrate a non-linear response in mVO2 relative to a change in external work rate. Relating vastus lateralis mVO2 to knee extension power showed a better fit to a linear equation compared to external work rate, but it is not a straight line.

  5. Plasma osmolality and oxygen consumption of perch Perca fluviatilis in response to different salinities and temperatures.

    PubMed

    Christensen, E A F; Svendsen, M B S; Steffensen, J F

    2017-03-01

    The present study determined the blood plasma osmolality and oxygen consumption of the perch Perca fluviatilis at different salinities (0, 10 and 15) and temperatures (5, 10 and 20° C). Blood plasma osmolality increased with salinity at all temperatures. Standard metabolic rate (SMR) increased with salinity at 10 and 20° C. Maximum metabolic rate (MMR) and aerobic scope was lowest at salinity of 15 at 5° C, yet at 20° C, they were lowest at a salinity of 0. A cost of osmoregulation (SMR at a salinity of 0 and 15 compared with SMR at a salinity of 10) could only be detected at a salinity of 15 at 20° C, where it was 28%. The results show that P. fluviatilis have capacity to osmoregulate in hyper-osmotic environments. This contradicts previous studies and indicates intraspecific variability in osmoregulatory capabilities among P. fluviatilis populations or habitat origins. An apparent cost of osmoregulation (28%) at a salinity of 15 at 20° C indicates that the cost of osmoregulation in P. fluviatilis increases with temperature under hyperosmotic conditions and a power analysis showed that the cost of osmoregulation could be lower than 12·5% under other environmental conditions. The effect of salinity on MMR is possibly due to a reduction in gill permeability, initiated to reduce osmotic stress. An interaction between salinity and temperature on aerobic scope shows that high salinity habitats are energetically beneficial during warm periods (summer), whereas low salinity habitats are energetically beneficial during cold periods (winter). It is suggested, therefore, that the seasonal migrations of P. fluviatilis between brackish and fresh water is to select an environment that is optimal for metabolism and aerobic scope.

  6. Prediction method for the volume of the excess post-exercise oxygen consumption (EPOC) following supramaximal exercise.

    PubMed

    Stefanova, D

    2000-01-01

    Short (up to 60 s) supramaximal (about 400 W on the average) exercise is accompanied by specific biochemical processes in the working muscles and by a general increase in energy metabolism. Outwardly, this is manifested by an excess post-exercise oxygen consumption (EPOC). Since its actual measurement is time consuming and associated sometimes with difficulties, we propose a fixed 3-min test for EPOC prediction. The measured volumes of oxygen consumption are related to the corresponding periods in a coordinate system as reciprocal values. The linear equation, whose parameters were calculated by the method of least squares or were determined graphically, provided for prediction of the EPOC volume with satisfactory accuracy and precision. The obtained increase of the predicted values over the actually measured values was below 5%, and the correlation coefficient r = 0.98. Other parameters of the recovery process were also calculated, such as tau (half-time) of EPOC and the rate constant k.

  7. Oxygen consumption by oak chips in a model wine solution; Influence of the botanical origin, toast level and ellagitannin content.

    PubMed

    Navarro, María; Kontoudakis, Nikolaos; Giordanengo, Thomas; Gómez-Alonso, Sergio; García-Romero, Esteban; Fort, Francesca; Canals, Joan Miquel; Hermosín-Gutíerrez, Isidro; Zamora, Fernando

    2016-05-15

    The botanical origin, toast level and ellagitannin content of oak chips in a model wine solution have been studied in terms of their influence on oxygen consumption. French oak chips released significantly higher amounts of ellagitannins than American oak chips at any toast level. The release of ellagitannins by oak chips decreased as the toast level increased in the French oak but this trend was not so clear in American oak. Oxygen consumption rate was clearly related to the level of released ellagitannins. Therefore, oak chips should be chosen for their potential to release ellagitannins release should be considered, not only because they can have a direct impact on the flavor and body of the wine, but also because they can protect against oxidation.

  8. DNA evidence uncompromised by active oxygen.

    PubMed

    Castelló, Ana; Francés, Francesc; Verdú, Fernando

    2010-03-05

    Currently, forensic sciences can make use of the potential of instrumental analysis techniques to obtain information from the smallest, even invisible, samples. However, as laboratory techniques improve, so too should the procedures applied in the search for and initial testing of clues in order to be equally effective. This requires continuous revision so that those procedures may resolve the problems that samples present. As far as bloodstains are concerned, there are methods available that are recognized as being both highly sensitive and effective. Nevertheless, the marketing of new cleaning products, those that contain active oxygen, has raised doubts about the ability of those procedures to detect blood. It has been shown that stains washed with these detergents (and still visible) invalidated both the presumptive test (reduced phenolphthalein, luminol, and Bluestar) and that applied for determining human hemoglobin. These findings have caused considerable concern both within the forensic and scientific community, and among the general public, so obliging us to seek solutions. In this work, the effect of these new cleaning products on DNA analyses is studied. The results, encouraging ones, show that these detergents, despite invalidating all other tests, do not hinder the extraction, or the subsequent analysis, of DNA.

  9. Thermographic analysis of the radiant heat of chicken and duck eggs in relation to the embryo's oxygen consumption.

    PubMed

    Mortola, Jacopo P; Kim, John; Lorzadeh, Alireza; Leurer, Catherine

    2015-02-01

    In eggs, the metabolic activities of the developing embryo produce heat (H) that is dissipated in various forms, including radiation. Given that much of the total heat radiated by an egg (Htot) is heat acquired passively, we asked whether it was possible to detect the fraction produced metabolically (Hmetab) and the extent of its correlation with the embryo's metabolic rate. In chicken and duck eggs at various incubation ages, under standardized experimental conditions of heat conduction and convection, Hmetab was measured by thermography as the difference in Htot between fertile and sterile eggs. Then, Hmetab was correlated to the embryo's oxygen consumption ( [Formula: see text] ), measured by an open-circuit methodology. Heat loss by water evaporation was found to be less than 3% of the total. During the first half of incubation Hmetab was too small to be significantly separated from Htot. In the second half of incubation Hmetab was significant, represented 30-50% of the total energy consumed and correlated linearly with [Formula: see text] for a good fraction of incubation. We conclude that under standardized conditions of heat conduction and convection, in the second half of incubation thermography offers a simple tool not only to verify the progression of the embryo's incubation but also to estimate its metabolic rate.

  10. The Effects of a Lower Body Exoskeleton Load Carriage Assistive Device on Oxygen Consumption and Kinematics During Walking with Loads

    DTIC Science & Technology

    2006-11-01

    analyze the associated gait biomechanics . Ten Army enlisted men participated in the study. Oxygen consumption (VO2) and gait biomechanics were...measured while Soldiers walked at 4.83 km/h and 0% grade under three realistic load weight configurations that were comprised of Army clothing and...increases users’ metabolic cost while carrying various loads and alters their gait biomechanics compared to conventional load carriage using a backpack

  11. Relationship of efficiency indices with performance, heart rate, oxygen consumption, blood parameters, and estimated heat production in Nellore steers.

    PubMed

    Chaves, A S; Nascimento, M L; Tullio, R R; Rosa, A N; Alencar, M M; Lanna, D P

    2015-10-01

    The objective of this study was to examine the relationship of efficiency indices with performance, heart rate, oxygen consumption, blood parameters, and estimated heat production (EHP) in Nellore steers. Eighteen steers were individually lot-fed diets of 2.7 Mcal ME/kg DM for 84 d. Estimated heat production was determined using oxygen pulse (OP) methodology, in which heart rate (HR) was monitored for 4 consecutive days. Oxygen pulse was obtained by simultaneously measuring HR and oxygen consumption during a 10- to 15-min period. Efficiency traits studied were feed efficiency (G:F) and residual feed intake (RFI) obtained by regression of DMI in relation to ADG and midtest metabolic BW (RFI). Alternatively, RFI was also obtained based on equations reported by the NRC's to estimate individual requirement and DMI (RFI calculated by the NRC [1996] equation [RFI]). The slope of the regression equation and its significance was used to evaluate the effect of efficiency indices (RFI, RFI, or G:F) on the traits studied. A mixed model was used considering RFI, RFI, or G:F and pen type as fixed effects and initial age as a covariate. For HR and EHP variables, day was included as a random effect. There was no relationship between efficiency indices and back fat depth measured by ultrasound or daily HR and EHP ( > 0.05). Because G:F is obtained in relation to BW, the slope of G:F was positive and significant ( < 0.05). Regardless of the method used, efficient steers had lower DMI ( < 0.05). The initial LM area was indirectly related to RFI and RFI ( < 0.05); however, the final muscle area was related to only RFI. Oxygen consumption per beat was not related to G:F; however, it was lower for RFI- and RFI-efficient steers, and consequently, oxygen volume (mL·min·kg) and OP (μL O·beat·kg) were also lower ( < 0.05). Blood parameters were not related to RFI and RFI ( > 0.05); however, G:F-efficient steers showed lower hematocrit and hemoglobin concentrations ( < 0

  12. Seasonal variation in thermal tolerance, oxygen consumption, antioxidative enzymes and non-specific immune indices of Indian hill trout, Barilius bendelisis (Hamilton, 1807) from central Himalaya, India.

    PubMed

    Sharma, Neeraj Kumar; Akhtar, M S; Pandey, Nityanand; Singh, Ravindra; Singh, Atul Kumar

    2015-08-01

    We studied the season dependent thermal tolerance, oxygen consumption, respiratory burst response and antioxidative enzyme activities in juveniles of Barilius bendelisis. The critical thermal maximum (CTmax), lethal thermal maximum (LTmax), critical thermal minimum (CTmin) and lethal thermal minimum (LTmin) were significantly different at five different seasons viz. winter (10.64°C), spring (16.25°C), summer (22.11°C), rainy (20.87°C) and autumn (17.77°C). The highest CTmax was registered in summer (36.02°C), and lowest CTmin was recorded during winter (2.77°C). Water temperature, dissolved oxygen and pH were strongly related to CTmax, LTmax, CTmin and LTmin suggesting seasonal acclimatization of B. bendelisis. The thermal tolerance polygon area of the B. bendelisis juveniles within the range of seasonal temperature (10.64-22.11°C) was calculated as 470.92°C(2). Oxygen consumption rate was significantly different (p<0.05) between seasons with maximum value during summer (57.66mgO2/kg/h) and lowest in winter (32.60mgO2/kg/h). Total white blood cell count including neutrophil and monocytes also showed significant difference (p<0.05) between seasons with maximum value during summer and minimum number in winter and were found correlated to temperature, dissolved oxygen, pH and respiratory burst activity. Respiratory burst activity of blood phagocytes significantly differed (p<0.05) among seasons with higher value during summer (0.163 OD540nm) and minimum in winter season (0.054 OD540nm). The activity of superoxide dismutase, catalase and glutathione-s-transferase both in liver and gill, also varied significantly (p<0.05) during different seasons. Overall results of this study suggest that multiple environmental factors play a role in seasonal acclimation in B. bendelisis, which modulate the thermal tolerance, oxygen consumption, respiratory burst activity and status of anti-oxidative potential in wild environment.

  13. Analysing domestic activity to reduce household energy consumption.

    PubMed

    Fréjus, Myriam; Guibourdenche, Julien

    2012-01-01

    This paper presents our reflections on the issue of behavioral change according to energy conservation constraints and on the status of sustainability in the design of ambient interactive systems at home. We point out how ergonomics contributes to the study of human factors underlying energy consumption. Relating to situated cognition and human computer interaction, our approach relies both on the ergonomic evaluation of feedback consumption displays and on the modeling of domestic activities in order to identify household concerns in real settings. We present empirical results to illustrate this global approach. The results of those studies allow the design of interactive systems: informative and pedagogical systems as well as pervasive and adaptive ambient systems. In our approach, sustainability is taken into account as a design criterion, as security could be, whereas the main design purpose is to aid households in their daily life in order to build a "sustainable situation".

  14. The relationship between oxygen consumption rate and viability of in vivo-derived pig embryos vitrified by the micro volume air cooling method.

    PubMed

    Sakagami, N; Nishida, K; Misumi, K; Hirayama, Y; Yamashita, S; Hoshi, H; Misawa, H; Akiyama, K; Suzuki, C; Yoshioka, K

    2016-01-01

    The aim of this study was to assess the viability of vitrified-warmed in vivo-derived pig embryos after measuring the oxygen consumption rate. Six days after artificial insemination, blastocysts were collected from gilts and vitrified by the micro volume air cooling method. The oxygen consumption rate was measured in 60 vitrified-warmed embryos, which were then cultured for 48h to assess the viability. The survival (re-expansion) rate of embryos after warming was 85.0%. The average oxygen consumption rate of embryos immediately after warming was greater in embryos which could re-expand during subsequent culture (F=0.75±0.04) than that in those which failed to re-expand (F=0.33±0.05). Moreover, the oxygen consumption rate of vitrified-warmed embryos was greater in the hatched (F=0.88±0.06) than that in the not-hatched group (F=0.53±0.04). When the oxygen consumption rate of the vitrified-warmed embryos and the numbers of viable and dead cells in embryos were determined, there was a positive correlation between the oxygen consumption rate and the number of live cells (P<0.01, r=0.538). A total of 29 vitrified embryos after warming and measuring the oxygen consumption rate were surgically transferred into uterine horns of two recipients. Both of the recipients become pregnant and farrowed 12 healthy piglets. These results demonstrate that the oxygen consumption rate of vitrified-warmed pig embryos can be related to the number of live cells and that the measurement of oxygen consumption of embryos after cryopreservation may be useful for estimating embryo survivability.

  15. Transfer and consumption of oxygen during the cultivation of the ectomycorrhizal fungus Rhizopogon nigrescens in an airlift bioreactor.

    PubMed

    Rossi, Márcio José; Nascimento, Francisco Xavier; Giachini, Admir José; Oliveira, Vetúria Lopes; Furigo, Agenor

    2017-02-01

    The study had the objective of examining the aspects involved in the cultivation of ectomycorrhizal fungi for the production of commercially sustainable inoculant to attend the demands of the seedling nursery industry. It focused on certain parameters, such as the oxygen consumption levels, during the cultivation of the ectomycorrhizal fungus Rhizopogon nigrescens CBMAI 1472, which was performed in a 5-L airlift bioreactor. The dynamic method was employed to determine the volumetric coefficient for the oxygen transfer (k L a) and the specific oxygen uptake rate (Q O2 ). The results indicate that specific growth rates (μ X ) and oxygen consumption decline rapidly with time, affected mainly by increases in biomass concentration (X). Increases in X are obtained primarily by increases in the size of pellets that are formed, altering, consequently, the cultivation dynamics. This is the result of natural increases in transferring resistance that are observed in these environments. Therefore, to avoid critical conditions that affect viability and the productivity of the process, particular settings are discussed.

  16. [Food consumption in children and youth: effect of sedentary activities].

    PubMed

    Thivel, D; Chaput, J P

    2013-08-01

    Sedentary behavior has progressed with modern society, generating very low levels of energy expenditure and subsequent body weight disorders (obesity). There is also evidence that the absence of physical activity associated with short sleep time and watching television or playing video games leads to poor eating habits and favors high-energy intake. These findings have generally been reported in adults, with a few studies including data on children and adolescents. This brief review summarizes the current literature regarding the impact of such activities on food consumption and eating behavior in children and adolescents. There appears to be an uncoupling effect dissociating these activities from the sensation of hunger and thus energy intake. Children and adolescents seem to increase their energy intake during and after such activities without any alteration of their subjective appetite. In addition to considering the impact of sedentary behavior and physical activity level, future public health recommendations should also focus on associated nutritional adaptations (energy balance).

  17. Role of macrofauna on benthic oxygen consumption in sandy sediments of a high-energy tidal beach

    NASA Astrophysics Data System (ADS)

    Charbonnier, Céline; Lavesque, Nicolas; Anschutz, Pierre; Bachelet, Guy; Lecroart, Pascal

    2016-06-01

    Sandy beaches exposed to tide and waves are characterized by low abundance and diversity of benthic macrofauna, because of high-energy conditions. This is the reason why there are few studies on benthic communities living in such highly dynamic environments. It has been shown recently that tidal sandy beaches may act as biogeochemical reactors. Marine organic matter that is supplied in the sand during each flood tide is efficiently mineralized through aerobic respiration. In order to quantify the role of macrofauna in the whole beach benthic respiration, we studied the macrofauna and the pore water oxygen content of an exposed sandy beach (Truc Vert, SW of France) during four seasons in 2011. The results showed that macrofauna was characterised by a low number of species of specialized organisms such as the crustaceans Eurydice naylori and Gastrosaccus spp. and the polychaetes Ophelia bicornis and Scolelepis squamata. The distribution and abundance of macrofauna were clearly affected by exposure degree and emersion time. The combined monitoring of benthic macrofauna and pore waters chemistry allowed us to estimate (1) the macrofauna oxygen uptake, calculated with a standard allometric relationship using biomass data, and (2) the total benthic oxygen uptake, calculated from the oxygen deficit measured in pore waters. This revealed that benthic macrofauna respiration represented a variable but low (<10%) contribution to the total benthic oxygen consumption. This suggests that oxygen was mainly consumed by microbial respiration.

  18. FORMING SELF-ASSEMBLED CELL ARRAYS AND MEASURING THE OXYGEN CONSUMPTION RATE OF A SINGLE LIVE CELL.

    PubMed

    Etzkorn, James R; McQuaide, Sarah C; Anderson, Judy B; Meldrum, Deirdre R; Parviz, Babak A

    2009-06-01

    We report a method for forming arrays of live single cells on a chip using polymer micro-traps made of SU8. We have studied the toxicity of the microfabricated structures and the associated environment for two cell lines. We also report a method for measuring the oxygen consumption rate of a single cell using optical interrogation of molecular oxygen sensors placed in micromachined micro-wells by temporarily sealing the cells in the micro-traps. The new techniques presented here add to the collection of tools available for performing "single-cell" biology. A single-cell self-assembly yield of 61% was achieved with oxygen draw down rates of 0.83, 0.82, and 0.71 fmol/minute on three isolated live A549 cells.

  19. Solute transport and oxygen consumption along the nephrons: effects of Na+ transport inhibitors.

    PubMed

    Layton, Anita T; Laghmani, Kamel; Vallon, Volker; Edwards, Aurélie

    2016-12-01

    Sodium and its associated anions are the major determinant of extracellular fluid volume, and the reabsorption of Na(+) by the kidney plays a crucial role in long-term blood pressure control. The goal of this study was to investigate the extent to which inhibitors of transepithelial Na(+) transport (TNa) along the nephron alter urinary solute excretion and TNa efficiency and how those effects may vary along different nephron segments. To accomplish that goal, we used the multinephron model developed in the companion study (28). That model represents detailed transcellular and paracellular transport processes along the nephrons of a rat kidney. We simulated the inhibition of the Na(+)/H(+) exchanger (NHE3), the bumetanide-sensitive Na(+)-K(+)-2Cl(-) transporter (NKCC2), the Na(+)-Cl(-) cotransporter (NCC), and the amiloride-sensitive Na(+) channel (ENaC). Under baseline conditions, NHE3, NKCC2, NCC, and ENaC reabsorb 36, 22, 4, and 7%, respectively, of filtered Na(+) The model predicted that inhibition of NHE3 substantially reduced proximal tubule TNa and oxygen consumption (QO2 ). Whole-kidney TNa efficiency, as reflected by the number of moles of Na(+) reabsorbed per moles of O2 consumed (denoted by the ratio TNa/QO2 ), decreased by ∼20% with 80% inhibition of NHE3. NKCC2 inhibition simulations predicted a substantial reduction in thick ascending limb TNa and QO2 ; however, the effect on whole-kidney TNa/QO2 was minor. Tubular K(+) transport was also substantially impaired, resulting in elevated urinary K(+) excretion. The most notable effect of NCC inhibition was to increase the excretion of Na(+), K(+), and Cl(-); its impact on whole-kidney TNa and its efficiency was minor. Inhibition of ENaC was predicted to have opposite effects on the excretion of Na(+) (increased) and K(+) (decreased) and to have only a minor impact on whole-kidney TNa and TNa/QO2 Overall, model predictions agree well with measured changes in Na(+) and K(+) excretion in response to

  20. Prediction of oxygen consumption in cardiac rehabilitation patients performing leg ergometry

    NASA Astrophysics Data System (ADS)

    Alvarez, John Gershwin

    The purpose of this study was two-fold. First, to determine the validity of the ACSM leg ergometry equation in the prediction of steady-state oxygen consumption (VO2) in a heterogeneous population of cardiac patients. Second, to determine whether a more accurate prediction equation could be developed for use in the cardiac population. Thirty-one cardiac rehabilitation patients participated in the study of which 24 were men and 7 were women. Biometric variables (mean +/- sd) of the participants were as follows: age = 61.9 +/- 9.5 years; height = 172.6 +/- 1.6 cm; and body mass = 82.3 +/- 10.6 kg. Subjects exercised on a MonarchTM cycle ergometer at 0, 180, 360, 540 and 720 kgm ˙ min-1. The length of each stage was five minutes. Heart rate, ECG, and VO2 were continuously monitored. Blood pressure and heart rate were collected at the end of each stage. Steady state VO 2 was calculated for each stage using the average of the last two minutes. Correlation coefficients, standard error of estimate, coefficient of determination, total error, and mean bias were used to determine the accuracy of the ACSM equation (1995). The analysis found the ACSM equation to be a valid means of estimating VO2 in cardiac patients. Simple linear regression was used to develop a new equation. Regression analysis found workload to be a significant predictor of VO2. The following equation is the result: VO2 = (1.6 x kgm ˙ min-1) + 444 ml ˙ min-1. The r of the equation was .78 (p < .05) and the standard error of estimate was 211 ml ˙ min-1. Analysis of variance was used to determine significant differences between means for actual and predicted VO2 values for each equation. The analysis found the ACSM and new equation to significantly (p < .05) under predict VO2 during unloaded pedaling. Furthermore, the ACSM equation was found to significantly (p < .05) under predict VO 2 during the first loaded stage of exercise. When the accuracy of the ACSM and new equations were compared based on

  1. Cardiovascular determinants of maximal oxygen consumption in upright and supine posture at the end of prolonged bed rest in humans.

    PubMed

    Bringard, Aurélien; Pogliaghi, Silvia; Adami, Alessandra; De Roia, Gabriela; Lador, Frédéric; Lucini, Daniela; Pizzinelli, Paolo; Capelli, Carlo; Ferretti, Guido

    2010-06-30

    We tested the hypothesis that, after bed rest, maximal oxygen consumption ( VO₂max ) decreases more upright than supine, because of adequate cardiovascular response supine, but not upright. On 9 subjects, we determined VO₂max and maximal cardiac output (Q ) upright and supine, before and after (reambulation day upright, the following day supine) 35-day bed rest, by classical steady state protocol. Oxygen consumption, heart rate (f(H)) and stroke volume (Q(st)) were measured by a metabolic cart, electrocardiography and Modelflow from pulse pressure profiles, respectively. We computed Q as f(H) times Q(st), and systemic oxygen flow ( QaO₂) as Q. times arterial oxygen concentration, obtained after haemoglobin and arterial oxygen saturation measurements. Before bed rest, all parameters at maximal exercise were similar upright and supine. After bed rest, VO₂max was lower (p<0.05) than before, both upright (-38.6%) and supine (-17.0%), being 30.8% higher supine than upright. Maximal Q(st) decreased upright (-44.3%), but not supine (+3.7%), being 98.9% higher supine than upright. Maximal Q decreased upright (-45.1%), but not supine (+9.0%), being higher supine than upright (+98.4%). Maximal QaO₂ decreased upright (-37.8%), but not supine (+14.8%), being higher (+74.8%) upright than supine. After bed rest, the cardiovascular response (i) did not affect VO₂max supine, (ii) partially explained the VO₂max decrease upright, and (iii) caused the VO₂max differences between postures. We speculate that impaired peripheral oxygen transfer and/or utilisation may explain the VO₂max decrease supine and the fraction of VO₂max decrease upright unexplained by cardiovascular responses.

  2. In-airway molecular flow sensing: A new technology for continuous, noninvasive monitoring of oxygen consumption in critical care

    PubMed Central

    Ciaffoni, Luca; O’Neill, David P.; Couper, John H.; Ritchie, Grant A. D.; Hancock, Gus; Robbins, Peter A.

    2016-01-01

    There are no satisfactory methods for monitoring oxygen consumption in critical care. To address this, we adapted laser absorption spectroscopy to provide measurements of O2, CO2, and water vapor within the airway every 10 ms. The analyzer is integrated within a novel respiratory flow meter that is an order of magnitude more precise than other flow meters. Such precision, coupled with the accurate alignment of gas concentrations with respiratory flow, makes possible the determination of O2 consumption by direct integration over time of the product of O2 concentration and flow. The precision is illustrated by integrating the balance gas (N2 plus Ar) flow and showing that this exchange was near zero. Measured O2 consumption changed by <5% between air and O2 breathing. Clinical capability was illustrated by recording O2 consumption during an aortic aneurysm repair. This device now makes easy, accurate, and noninvasive measurement of O2 consumption for intubated patients in critical care possible. PMID:27532048

  3. Simultaneous evaluation of substrate-dependent oxygen consumption rates and mitochondrial membrane potential by TMRM and safranin in cortical mitochondria

    PubMed Central

    Chowdhury, Subir Roy; Djordjevic, Jelena; Albensi, Benedict C.; Fernyhough, Paul

    2015-01-01

    Mitochondrial membrane potential (mtMP) is critical for maintaining the physiological function of the respiratory chain to generate ATP. The present study characterized the inter-relationship between mtMP, using safranin and tetramethyl rhodamine methyl ester (TMRM), and mitochondrial respiratory activity and established a protocol for functional analysis of mitochondrial bioenergetics in a multi-sensor system. Coupled respiration was decreased by 27 and 30–35% in the presence of TMRM and safranin respectively. Maximal respiration was higher than coupled with Complex I- and II-linked substrates in the presence of both dyes. Safranin showed decreased maximal respiration at a higher concentration of carbonyl cyanide-4-(trifluoromethoxy)phenylhydrazone (FCCP) compared with TMRM. FCCP titration revealed that maximal respiration in the presence of glutamate and malate was not sustainable at higher FCCP concentrations as compared with pyruvate and malate. Oxygen consumption rate (OCR) and mtMP in response to mitochondrial substrates were higher in isolated mitochondria compared with tissue homogenates. Safranin exhibited higher sensitivity to changes in mtMP than TMRM. This multi-sensor system measured mitochondrial parameters in the brain of transgenic mice that model Alzheimer's disease (AD), because mitochondrial dysfunction is believed to be a primary event in the pathogenesis of AD. The coupled and maximal respiration of electron transport chain were decreased in the cortex of AD mice along with the mtMP compared with age-matched controls. Overall, these data demonstrate that safranin and TMRM are suitable for the simultaneous evaluation of mtMP and respiratory chain activity using isolated mitochondria and tissue homogenate. However, certain care should be taken concerning the selection of appropriate substrates and dyes for specific experimental circumstances. PMID:26647379

  4. Effect of meal size on excess post-exercise oxygen consumption in fishes with different locomotive and digestive performance.

    PubMed

    Fu, Shi-Jian; Zeng, Ling-Qing; Li, Xiu-Ming; Pang, Xu; Cao, Zhen-Dong; Peng, Jiang-Lan; Wang, Yu-Xiang

    2009-05-01

    Effects of feeding on pre-exercise VO(2) and excess post-exercise oxygen consumption (EPOC) after exhaustive exercise were investigated in sedentary southern catfish, active herbivorous grass carp, omnivorous crucian carp, and sluggish omnivorous darkbarbel catfish to test whether feeding had different effects on EPOC and to compare EPOC in fishes with different ecological habits. For fasting fish, the pre-exercise and peak post-exercise VO(2) were higher and recovery rates were faster in crucian carp and grass carp compared to those of darkbarbel catfish and southern catfish. EPOC magnitudes of grass carp and southern catfish were significantly larger than those of crucian carp and darkbarbel catfish. Feeding had no significant effect on peak post-exercise VO(2), recovery rate, and EPOC magnitude in grass carp. Both the pre-exercise and peak post-exercise VO(2) increased with meal size, while the EPOC magnitude and duration decreased significantly in the larger meal size groups of crucian carp and southern catfish. In darkbarbel catfish, both the pre-exercise and peak post-exercise VO(2) increased with meal size, but the VO(2) increment elicited by exercise was larger in feeding groups compared with the fasting group. These results suggest that (1) the characteristics of the post-exercise VO(2) profile, such as peak post-exercise VO(2) and recovery rate, were closely related to the activity of fishes, whereas the EPOC magnitude was not and (2) the effects of feeding on EPOC were more closely related to the postprandial increase in VO(2).

  5. Simultaneous evaluation of substrate-dependent oxygen consumption rates and mitochondrial membrane potential by TMRM and safranin in cortical mitochondria.

    PubMed

    Chowdhury, Subir Roy; Djordjevic, Jelena; Albensi, Benedict C; Fernyhough, Paul

    2015-12-08

    Mitochondrial membrane potential (mtMP) is critical for maintaining the physiological function of the respiratory chain to generate ATP. The present study characterized the inter-relationship between mtMP, using safranin and tetramethyl rhodamine methyl ester (TMRM), and mitochondrial respiratory activity and established a protocol for functional analysis of mitochondrial bioenergetics in a multi-sensor system. Coupled respiration was decreased by 27 and 30-35% in the presence of TMRM and safranin respectively. Maximal respiration was higher than coupled with Complex I- and II-linked substrates in the presence of both dyes. Safranin showed decreased maximal respiration at a higher concentration of carbonyl cyanide-4-(trifluoromethoxy)phenylhydrazone (FCCP) compared with TMRM. FCCP titration revealed that maximal respiration in the presence of glutamate and malate was not sustainable at higher FCCP concentrations as compared with pyruvate and malate. Oxygen consumption rate (OCR) and mtMP in response to mitochondrial substrates were higher in isolated mitochondria compared with tissue homogenates. Safranin exhibited higher sensitivity to changes in mtMP than TMRM. This multi-sensor system measured mitochondrial parameters in the brain of transgenic mice that model Alzheimer's disease (AD), because mitochondrial dysfunction is believed to be a primary event in the pathogenesis of AD. The coupled and maximal respiration of electron transport chain were decreased in the cortex of AD mice along with the mtMP compared with age-matched controls. Overall, these data demonstrate that safranin and TMRM are suitable for the simultaneous evaluation of mtMP and respiratory chain activity using isolated mitochondria and tissue homogenate. However, certain care should be taken concerning the selection of appropriate substrates and dyes for specific experimental circumstances.

  6. An Equation for the Prediction of Oxygen Consumption in a Brazilian Population.

    PubMed

    Almeida, Antonio Eduardo Monteiro de; Stefani, Charles de Moraes; Nascimento, João Agnaldo do; Almeida, Narla Miranda de; Santos, Amilton da Cruz; Ribeiro In Memoriam, Jorge Pinto; Stein, Ricardo

    2014-09-12

    Background: The equations predicting maximal oxygen uptake (VO2max or peak) presently in use in cardiopulmonary exercise testing (CPET) softwares in Brazil have not been adequately validated. These equations are very important for the diagnostic capacity of this method. Objective: Build and validate a Brazilian Equation (BE) for prediction of VO2peak in comparison to the equation cited by Jones (JE) and the Wasserman algorithm (WA). Methods: Treadmill evaluation was performed on 3119 individuals with CPET (breath by breath). The construction group (CG) of the equation consisted of 2495 healthy participants. The other 624 individuals were allocated to the external validation group (EVG). At the BE (derived from a multivariate regression model), age, gender, body mass index (BMI) and physical activity level were considered. The same equation was also tested in the EVG. Dispersion graphs and Bland-Altman analyses were built. Results: In the CG, the mean age was 42.6 years, 51.5% were male, the average BMI was 27.2, and the physical activity distribution level was: 51.3% sedentary, 44.4% active and 4.3% athletes. An optimal correlation between the BE and the CPET measured VO2peak was observed (0.807). On the other hand, difference came up between the average VO2peak expected by the JE and WA and the CPET measured VO2peak, as well as the one gotten from the BE (p = 0.001). Conclusion: BE presents VO2peak values close to those directly measured by CPET, while Jones and Wasserman differ significantly from the real VO2peak.

  7. An Equation for the Prediction of Oxygen Consumption in a Brazilian Population

    PubMed Central

    de Almeida, Antonio Eduardo Monteiro; Stefani, Charles de Moraes; do Nascimento, João Agnaldo; de Almeida, Narla Miranda; Santos, Amilton da Cruz; Stein, Ricardo

    2014-01-01

    Background The equations predicting maximal oxygen uptake (VO2max or peak) presently in use in cardiopulmonary exercise testing (CPET) softwares in Brazil have not been adequately validated. These equations are very important for the diagnostic capacity of this method. Objective Build and validate a Brazilian Equation (BE) for prediction of VO2peak in comparison to the equation cited by Jones (JE) and the Wasserman algorithm (WA). Methods Treadmill evaluation was performed on 3119 individuals with CPET (breath by breath). The construction group (CG) of the equation consisted of 2495 healthy participants. The other 624 individuals were allocated to the external validation group (EVG). At the BE (derived from a multivariate regression model), age, gender, body mass index (BMI) and physical activity level were considered. The same equation was also tested in the EVG. Dispersion graphs and Bland-Altman analyses were built. Results In the CG, the mean age was 42.6 years, 51.5% were male, the average BMI was 27.2, and the physical activity distribution level was: 51.3% sedentary, 44.4% active and 4.3% athletes. An optimal correlation between the BE and the CPET measured VO2peak was observed (0.807). On the other hand, difference came up between the average VO2peak expected by the JE and WA and the CPET measured VO2peak, as well as the one gotten from the BE (p = 0.001). Conclusion BE presents VO2peak values close to those directly measured by CPET, while Jones and Wasserman differ significantly from the real VO2peak. PMID:25352504

  8. Dynamic model for the tissue concentration and oxygen saturation of hemoglobin in relation to blood volume, flow velocity, and oxygen consumption: Implications for functional neuroimaging and coherent hemodynamics spectroscopy (CHS)

    PubMed Central

    Fantini, Sergio

    2013-01-01

    This article presents a dynamic model that quantifies the temporal evolution of the concentration and oxygen saturation of hemoglobin in tissue, as determined by time-varying hemodynamic and metabolic parameters: blood volume, flow velocity, and oxygen consumption. This multi-compartment model determines separate contributions from arterioles, capillaries, and venules that comprise the tissue microvasculature, and treats them as a complete network, without making assumptions on the details of the architecture and morphology of the microvascular bed. A key parameter in the model is the effective blood transit time through the capillaries and its associated probability of oxygen release from hemoglobin to tissue, as described by a rate constant for oxygen diffusion. The solution of the model in the time domain predicts the signals measured by hemodynamic-based neuroimaging techniques such as functional near-infrared spectroscopy (fNIRS) and functional magnetic resonance imaging (fMRI) in response to brain activation. In the frequency domain, the model yields an analytical solution based on a phasor representation that provides a framework for quantitative spectroscopy of coherent hemodynamic oscillations. I term this novel technique coherent hemodynamics spectroscopy (CHS), and this article describes how it can be used for the assessment of cerebral autoregulation and the study of hemodynamic oscillations resulting from a variety of periodic physiological challenges, brain activation protocols, or physical maneuvers. PMID:23583744

  9. Low energy consumption method for separating gaseous mixtures and in particular for medium purity oxygen production

    DOEpatents

    Jujasz, Albert J.; Burkhart, James A.; Greenberg, Ralph

    1988-01-01

    A method for the separation of gaseous mixtures such as air and for producing medium purity oxygen, comprising compressing the gaseous mixture in a first compressor to about 3.9-4.1 atmospheres pressure, passing said compressed gaseous mixture in heat exchange relationship with sub-ambient temperature gaseous nitrogen, dividing the cooled, pressurized gaseous mixture into first and second streams, introducing the first stream into the high pressure chamber of a double rectification column, separating the gaseous mixture in the rectification column into a liquid oxygen-enriched stream and a gaseous nitrogen stream and supplying the gaseous nitrogen stream for cooling the compressed gaseous mixture, removing the liquid oxygen-enriched stream from the low pressure chamber of the rectification column and pumping the liquid, oxygen-enriched steam to a predetermined pressure, cooling the second stream, condensing the cooled second stream and evaporating the oxygen-enriched stream in an evaporator-condenser, delivering the condensed second stream to the high pressure chamber of the rectification column, and heating the oxygen-enriched stream and blending the oxygen-enriched stream with a compressed blend-air stream to the desired oxygen concentration.

  10. Influence of simulated microgravity on the maximal oxygen consumption of nontrained and trained rats

    NASA Technical Reports Server (NTRS)

    Woodman, Christopher R.; Monnin, Kimberly A.; Sebastian, Lisa A.; Tipton, Charles M.

    1993-01-01

    The effects of microgravity and endurance training (TR) on maximal O2 consumption was investigated in trained and nontrained (NT) rats subjected to head-down suspension (HDS) by comparing maximal O2 consumption, treadmill run time (RT), and mechanical efficiency (ME) of treadmill running in HDS rats, both NT and TR, and in respective cage controls. It was found that HDS for 28 days was associated with significant reduction in absolute maximal O2 consumption in both TR and NT rats. Relative maximal O2 consumption, however, was significantly reduced in TR but not NT rats. Reductions in RT and ME occurring in both TR and NT rats after 28 days of HDS were similar. The TR rats exhibited greater diuretic, natriuretic, and kaliuretic responses to HDS than the NT rats.

  11. Simple model of dissolved oxygen consumption in a bay within high organic loading: an applied remediation tool.

    PubMed

    Ahumada, Ramón; Vargas, José; Pagliero, Liliana

    2006-07-01

    San Vicente Bay is a coastal shallow embayment in Central Chile with multiple uses, one of which is receiving wastewater from industrial fisheries, steel mill effluents, and domestic sewage. A simulation model was developed and applied to dissolved oxygen consumption by organic residues released into this embayment. Three compartments were established as function of: depth, circulation and outfall location. The model compartments had different volumes, and their oxygen saturation value was used as baseline. The parameters: (a) BOD5 of the industrial and urban effluents, (b) oxygen demand by organic sediments, (c) respiration, (d) photosynthesis and (e) re-aeration were included in the model. Iteration results of the model showed severe alterations in Compartment 1, with a decrease of 65% in the oxygen below saturation. Compartment 2 showed a small decline (10%) and compartment 3 did not show apparent changes in oxygen values. Measures recommended for remediation were to decrease the BOD5 loading by 30% in the affected sector. Iteration of the model for 200 h following recommendations derived from the preceding results produced an increase in saturation of 60% (5 ml O2 L(-1)), which suggested an improvement of the environmental conditions.

  12. Influence of mechanical and metabolic strain on the oxygen consumption slow component during forward pulled running.

    PubMed

    Avogadro, Patrick; Kyröläinen, Heikki; Belli, Alain

    2004-10-01

    The possible influence of increased eccentric mechanical work on the increase in oxygen uptake ( V(.)O(2)) after 3 min of running (Delta V(.)O(2)) was investigated through forward pulled running. Ten subjects ran at individually predetermined constant velocity on a treadmill, while being pulled forward. Ground reaction forces, expired gas and EMGs from leg muscles were collected after 3 min and at the end of the run. V(.)O(2) and mechanical work were then calculated. The amplitude of Delta V(.)O(2) was 138 (139) ml x min(-1) [mean (SD)]. Increased ventilation explained only 8% of Delta V(.)O(2). Stride frequency slightly decreased, inducing a similar decrease in internal work and total mechanical work (all P<0.01), while integrated EMG showed no modifications. It was concluded that Delta V(.)O(2) does not come from either an increase in mechanical work production or an increase in muscular activity. Delta V(.)O(2) could come from a lower muscle efficiency that could be due to a modification of fibre type recruitment.

  13. Diurnal dynamics of oxygen and carbon dioxide concentrations in shoots and rhizomes of a perennial in a constructed wetland indicate down-regulation of below ground oxygen consumption.

    PubMed

    Faußer, Anna C; Dušek, Jiří; Čížková, Hana; Kazda, Marian

    2016-01-01

    Wetland plants actively provide oxygen for aerobic processes in submerged tissues and the rhizosphere. The novel concomitant assessment of diurnal dynamics of oxygen and carbon dioxide concentrations under field conditions tests the whole-system interactions in plant-internal gas exchange and regulation. Oxygen concentrations ([O2]) were monitored in-situ in central culm and rhizome pith cavities of common reed (Phragmites australis) using optical oxygen sensors. The corresponding carbon dioxide concentrations ([CO2]) were assessed via gas samples from the culms. Highly dynamic diurnal courses of [O2] were recorded, which started at 6.5-13 % in the morning, increased rapidly up to 22 % during midday and declined exponentially during the night. Internal [CO2] were high in the morning (1.55-17.5 %) and decreased (0.04-0.94 %) during the rapid increase of [O2] in the culms. The observed negative correlations between [O2] and [CO2] particularly describe the below ground relationship between plant-mediated oxygen supply and oxygen use by respiration and biogeochemical processes in the rhizosphere. Furthermore, the nocturnal declining slopes of [O2] in culms and rhizomes indicated a down-regulation of the demand for oxygen in the complete below ground plant-associated system. These findings emphasize the need for measurements of plant-internal gas exchange processes under field conditions because it considers the complex interactions in the oxic-anoxic interface.

  14. Diurnal dynamics of oxygen and carbon dioxide concentrations in shoots and rhizomes of a perennial in a constructed wetland indicate down-regulation of below ground oxygen consumption

    PubMed Central

    Faußer, Anna C.; Dušek, Jiří; Čížková, Hana; Kazda, Marian

    2016-01-01

    Wetland plants actively provide oxygen for aerobic processes in submerged tissues and the rhizosphere. The novel concomitant assessment of diurnal dynamics of oxygen and carbon dioxide concentrations under field conditions tests the whole-system interactions in plant-internal gas exchange and regulation. Oxygen concentrations ([O2]) were monitored in-situ in central culm and rhizome pith cavities of common reed (Phragmites australis) using optical oxygen sensors. The corresponding carbon dioxide concentrations ([CO2]) were assessed via gas samples from the culms. Highly dynamic diurnal courses of [O2] were recorded, which started at 6.5–13 % in the morning, increased rapidly up to 22 % during midday and declined exponentially during the night. Internal [CO2] were high in the morning (1.55–17.5 %) and decreased (0.04–0.94 %) during the rapid increase of [O2] in the culms. The observed negative correlations between [O2] and [CO2] particularly describe the below ground relationship between plant-mediated oxygen supply and oxygen use by respiration and biogeochemical processes in the rhizosphere. Furthermore, the nocturnal declining slopes of [O2] in culms and rhizomes indicated a down-regulation of the demand for oxygen in the complete below ground plant-associated system. These findings emphasize the need for measurements of plant-internal gas exchange processes under field conditions because it considers the complex interactions in the oxic-anoxic interface. PMID:27207278

  15. Multiplexed MRI methods for rapid estimation of global cerebral metabolic rate of oxygen consumption.

    PubMed

    Lee, Hyunyeol; Langham, Michael C; Rodriguez-Soto, Ana E; Wehrli, Felix W

    2017-04-01

    The global cerebral metabolic rate of oxygen (CMRO2), which reflects metabolic activity of the brain under various physiologic conditions, can be quantified using a method, referred to as 'OxFlow', which simultaneously measures hemoglobin oxygen saturation in a draining vein (Yv) and total cerebral blood flow (tCBF). Conventional OxFlow (Conv-OxFlow) entails four interleaves incorporated in a single pulse sequence - two for phase-contrast based measurement of tCBF in the supplying arteries of the neck, and two to measure the intra- to extravascular phase difference in the superior sagittal sinus to derive Yv [Jain et al., JCBFM 2010]. However, this approach limits achievable temporal resolution thus precluding capture of rapid changes of brain metabolic states such as the response to apneic stimuli. Here, we developed a time-efficient, multiplexed OxFlow method and evaluated its potential for measuring dynamic alterations in global CMRO2 during a breath-hold challenge. Two different implementations of multiplexed OxFlow were investigated: 1) simultaneous-echo-refocusing based OxFlow (SER-OxFlow) and 2) simultaneous-multi-slice imaging-based dual-band OxFlow (DB-OxFlow). The two sequences were implemented on 3T scanners (Siemens TIM Trio and Prisma) and their performance was evaluated in comparison to Conv-OxFlow in ten healthy subjects for baseline CMRO2 quantification. Comparison of measured parameters (Yv, tCBF, CMRO2) revealed no significant bias of SER-OxFlow and DB-OxFlow, with respect to the reference Conv-OxFlow while improving temporal resolution two-fold (12.5 versus 25s). Further acceleration shortened scan time to 8 and 6s for SER and DB-OxFlow, respectively, for time-resolved CMRO2 measurement. The two sequences were able of capturing smooth transitions of Yv, tCBF, and CMRO2 over the time course consisting of 30s of normal breathing, 30s of volitional apnea, and 90s of recovery. While both SER- and DB-OxFlow techniques provide significantly improved

  16. Modeling the fluid-dynamics and oxygen consumption in a porous scaffold stimulated by cyclic squeeze pressure.

    PubMed

    Ferroni, Marco; Giusti, Serena; Nascimento, Diana; Silva, Ana; Boschetti, Federica; Ahluwalia, Arti

    2016-08-01

    The architecture and dynamic physical environment of tissues can be recreated in-vitro by combining 3D porous scaffolds and bioreactors able to apply controlled mechanical stimuli on cells. In such systems, the entity of the stimuli and the distribution of nutrients within the engineered construct depend on the micro-structure of the scaffolds. In this work, we present a new approach for optimizing computational fluid-dynamics (CFD) models for the investigation of fluid-induced forces generated by cyclic squeeze pressure within a porous construct, coupled with oxygen consumption of cardiomyocytes. A 2D axial symmetric macro-scaled model of a squeeze pressure bioreactor chamber was used as starting point for generating time dependent pressure profiles. Subsequently the fluid movement generated by the pressure fields was coupled with a complete 3D micro-scaled model of a porous protein cryogel. Oxygen transport and consumption inside the scaffold was evaluated considering a homogeneous distribution of cardiomyocytes throughout the structure, as confirmed by preliminary cell culture experiments. The results show that a 3D description of the system, coupling a porous geometry and time dependent pressure driven flow with fluid-structure-interaction provides an accurate and meaningful description of the microenvironment in terms of shear stress and oxygen distribution than simple stationary 2D models.

  17. The collaboration of Antoine and Marie-Anne Lavoisier and the first measurements of human oxygen consumption.

    PubMed

    West, John B

    2013-12-01

    Antoine Lavoisier (1743-1794) was one of the most eminent scientists of the late 18th century. He is often referred to as the father of chemistry, in part because of his book Elementary Treatise on Chemistry. In addition he was a major figure in respiratory physiology, being the first person to recognize the true nature of oxygen, elucidating the similarities between respiration and combustion, and making the first measurements of human oxygen consumption under various conditions. Less well known are the contributions made by his wife, Marie-Anne Lavoisier. However, she was responsible for drawings of the experiments on oxygen consumption when the French revolution was imminent. These are of great interest because written descriptions are not available. Possible interpretations of the experiments are given here. In addition, her translations from English to French of papers by Priestley and others were critical in Lavoisier's demolition of the erroneous phlogiston theory. She also provided the engravings for her husband's textbook, thus documenting the extensive new equipment that he developed. In addition she undertook editorial work, for example in preparing his posthumous memoirs. The scientific collaboration of this husband-wife team is perhaps unique among the giants of respiratory physiology.

  18. High- and moderate-intensity aerobic exercise and excess post-exercise oxygen consumption in men with metabolic syndrome.

    PubMed

    Larsen, I; Welde, B; Martins, C; Tjønna, A E

    2014-06-01

    Physical activity is central in prevention and treatment of metabolic syndrome. High-intensity aerobic exercise can induce larger energy expenditure per unit of time compared with moderate-intensity exercise. Furthermore, it may induce larger energy expenditure at post-exercise recovery. The aim of this study is to compare the excess post-exercise oxygen consumption (EPOC) in three different aerobic exercise sessions in men with metabolic syndrome. Seven men (age: 56.7 ± 10.8) with metabolic syndrome participated in this crossover study. The sessions consisted of one aerobic interval (1-AIT), four aerobic intervals (4-AIT), and 47-min continuous moderate exercise (CME) on separate days, with at least 48 h between each test day. Resting metabolic rate (RMR) was measured pre-exercise and used as baseline value. EPOC was measured until baseline metabolic rate was re-established. An increase in O2 uptake lasting for 70.4 ± 24.8 min (4-AIT), 35.9 ± 17.3 min (1-AIT), and 45.6 ± 17.3 min (CME) was observed. EPOC were 2.9 ± 1.7 L O2 (4-AIT), 1.3 ±  .1 L O2 (1-AIT), and 1.4 ± 1.1 L O2 (CME). There were significant differences (P < 0.001) between 4-AIT, CME, and 1-AIT. Total EPOC was highest after 4-AIT. These data suggest that exercise intensity has a significant positive effect on EPOC in men with metabolic syndrome.

  19. Sexual Preferences in Nutrient Utilization Regulate Oxygen Consumption and Reactive Oxygen Species Generation in Schistosoma mansoni: Potential Implications for Parasite Redox Biology

    PubMed Central

    Oliveira, Matheus P.; Correa Soares, Juliana B. R.; Oliveira, Marcus F.

    2016-01-01

    Schistosoma mansoni, one of the causative agents of human schistosomiasis, has a unique antioxidant network that is key to parasite survival and a valuable chemotherapeutic target. The ability to detoxify and tolerate reactive oxygen species increases along S. mansoni development in the vertebrate host, suggesting that adult parasites are more exposed to redox challenges than young stages. Indeed, adult parasites are exposed to multiple redox insults generated from blood digestion, activated immune cells, and, potentially, from their own parasitic aerobic metabolism. However, it remains unknown how reactive oxygen species are produced by S. mansoni metabolism, as well as their biological effects on adult worms. Here, we assessed the contribution of nutrients and parasite gender to oxygen utilization pathways, and reactive oxygen species generation in whole unpaired adult S. mansoni worms. We also determined the susceptibilities of both parasite sexes to a pro-oxidant challenge. We observed that glutamine and serum importantly contribute to both respiratory and non-respiratory oxygen utilization in adult worms, but with different proportions among parasite sexes. Analyses of oxygen utilization pathways revealed that respiratory rates were high in male worms, which contrast with high non-respiratory rates in females, regardless nutritional sources. Interestingly, mitochondrial complex I-III activity was higher than complex IV specifically in females. We also observed sexual preferences in substrate utilization to sustain hydrogen peroxide production towards glucose in females, and glutamine in male worms. Despite strikingly high oxidant levels and hydrogen peroxide production rates, female worms were more resistant to a pro-oxidant challenge than male parasites. The data presented here indicate that sexual preferences in nutrient metabolism in adult S. mansoni worms regulate oxygen utilization and reactive oxygen species production, which may differently contribute

  20. Measurement of Oxygen Consumption Using the Canadian Clearance Diving Apparatus (CCDA)

    DTIC Science & Technology

    1988-08-01

    tem for the measurement of Vo in water. * iii INTRODUCTION In semi- closed circuit underwater breathing apparatus (SCCBA) the oxygen partial pressure...13 9 9 0 0 ii ABSTRACT The Canadian Clearance Diving Apparatus (CCDA) was modified to serve as a 100% oxygen rebreathing ...were open- circuit , compressed-air systems based upon the principles used in the LRBS. In the LRBA and UMAS, the subject inspired gas from a bag

  1. Relationship between level of forage intake, blood flow and oxygen consumption by splanchnic tissues of sheep fed a tropical grass forage.

    PubMed

    Hentz, F; Kozloski, G V; Zeni, D; Brun, M V; Stefanello, S

    2017-02-01

    Four Polwarth castrated male sheep (42 ± 4.4 kg live weight (LW) surgically implanted with chronic indwelling catheters into the mesenteric, portal and hepatic veins, housed in metabolism cages and offered Cynodon sp. hay at rates (g of dry matter (DM)/kg LW) of 7, 14, 21 or ad libitum, were used in a 4 × 4 Latin square experiment to evaluate the effect of the level of forage intake on blood flow and oxygen consumption by the portal-drained viscera (PDV), liver and total splanchnic tissues (ST). The portal blood flow and the oxygen consumption by PDV linearly increased at increased organic matter (OM) intake. No effect of level of OM intake was obtained for the hepatic artery blood flow and oxygen consumption by liver. As a consequence, the level of OM intake only tended to directly affect hepatic blood flow and oxygen consumption by total ST. Oxygen consumption was linearly and positively related to blood flow across PDV, liver and total ST. The heat production by PDV and total ST, as proportion of metabolizable energy (ME) intake, decreased curvilinearly at increased ME intake. In conclusion, the oxygen consumption by PDV, but not by liver, was directly related to the level of forage intake by sheep. Moreover, when ingested at levels below maintenance, most of ME was spent as heat produced by ST.

  2. Redox activity of surface oxygen anions in oxygen-deficient perovskite oxides during electrochemical reactions.

    PubMed

    Mueller, David N; Machala, Michael L; Bluhm, Hendrik; Chueh, William C

    2015-01-19

    Surface redox-active centres in transition-metal oxides play a key role in determining the efficacy of electrocatalysts. The extreme sensitivity of surface redox states to temperatures, to gas pressures and to electrochemical reaction conditions renders them difficult to investigate by conventional surface-science techniques. Here we report the direct observation of surface redox processes by surface-sensitive, operando X-ray absorption spectroscopy using thin-film iron and cobalt perovskite oxides as model electrodes for elevated-temperature oxygen incorporation and evolution reactions. In contrast to the conventional view that the transition metal cations are the dominant redox-active centres, we find that the oxygen anions near the surface are a significant redox partner to molecular oxygen due to the strong hybridization between oxygen 2p and transition metal 3d electronic states. We propose that a narrow electronic state of significant oxygen 2p character near the Fermi level exchanges electrons with the oxygen adsorbates. This result highlights the importance of surface anion-redox chemistry in oxygen-deficient transition-metal oxides.

  3. Impact of wine production on the fractionation of copper and iron in Chardonnay wine: Implications for oxygen consumption.

    PubMed

    Rousseva, Michaela; Kontoudakis, Nikolaos; Schmidtke, Leigh M; Scollary, Geoffrey R; Clark, Andrew C

    2016-07-15

    Copper and iron in wine can influence oxidative, reductive and colloidal stability. The current study utilises a solid phase extraction technique to fractionate these metals into hydrophobic, cationic and residual forms, with quantification by ICP-OES. The impact of aspects of wine production on the metal fractions was examined, along with the relationship between metal fractions and oxygen decay rates. Addition of copper and iron to juice, followed by fermentation, favoured an increase in all of their respective metal fractions in the wine, with the largest increase observed for the cationic form of iron. Bentonite fining of the protein-containing wines led to a significant reduction in the cationic fraction of copper and an increase in the cationic form of iron. Total copper correlated more closely with oxygen consumption in the wine compared to total iron, and the residual and cationic forms of copper provided the largest contribution to this impact.

  4. Probing Oxygen Activation Sites in Two Flavoprotein Oxidases Using Chloride as an Oxygen Surrogate

    SciTech Connect

    Kommoju, Phaneeswara-Rao; Chen, Zhi-wei; Bruckner, Robert C.; Mathews, F. Scott; Jorns, Marilyn Schuman

    2011-08-16

    A single basic residue above the si-face of the flavin ring is the site of oxygen activation in glucose oxidase (GOX) (His516) and monomeric sarcosine oxidase (MSOX) (Lys265). Crystal structures of both flavoenzymes exhibit a small pocket at the oxygen activation site that might provide a preorganized binding site for superoxide anion, an obligatory intermediate in the two-electron reduction of oxygen. Chloride binds at these polar oxygen activation sites, as judged by solution and structural studies. First, chloride forms spectrally detectable complexes with GOX and MSOX. The protonated form of His516 is required for tight binding of chloride to oxidized GOX and for rapid reaction of reduced GOX with oxygen. Formation of a binary MSOX-chloride complex requires Lys265 and is not observed with Lys265Met. Binding of chloride to MSOX does not affect the binding of a sarcosine analogue (MTA, methylthioactetate) above the re-face of the flavin ring. Definitive evidence is provided by crystal structures determined for a binary MSOX-chloride complex and a ternary MSOX-chloride-MTA complex. Chloride binds in the small pocket at a position otherwise occupied by a water molecule and forms hydrogen bonds to four ligands that are arranged in approximate tetrahedral geometry: Lys265:NZ, Arg49:NH1, and two water molecules, one of which is hydrogen bonded to FAD:N5. The results show that chloride (i) acts as an oxygen surrogate, (ii) is an effective probe of polar oxygen activation sites, and (iii) provides a valuable complementary tool to the xenon gas method that is used to map nonpolar oxygen-binding cavities.

  5. Shoulder and forearm oxygenation and myoelectric activity in patients with work-related muscle pain and healthy subjects.

    PubMed

    Elcadi, Guilherme H; Forsman, Mikael; Aasa, Ulrika; Fahlstrom, Martin; Crenshaw, Albert G

    2013-05-01

    We tested hypotheses of (a) reduced oxygen usage, oxygen recovery, blood flow and oxygen consumption; and (b) increased muscle activity for patients diagnosed with work-related muscle pain (WRMP) in comparison to healthy controls. Oxygenation was measured with near infrared spectroscopy (NIRS), and muscle activity with EMG for the extensor carpi radialis (ECR) and trapezius descendens (TD) muscles. Eighteen patients with diffuse neck-shoulder-arm pain and 17 controls (matched in age and sex) were equipped with NIRS and EMG probes. After determining an individual's maximum voluntary contraction (MVC) force, short-term (20 s) isometric contractions for the ECR and TD of 10, 30, 50 and 70 % MVC generated ∆StO₂ and StO₂% recovery (Rslope) from NIRS, and RMS%max from EMG signals. In addition, upper arm venous (VO) and arterial (AO) occlusions generated slopes of total hemoglobin (HbTslope) and deoxyhemoglobin (HHbslope) for the resting ECR as surrogates of blood flow and oxygen consumption, respectively. Mixed model analyses, t tests, and Mann-Whitney test were used to assess differences between groups. There was no significant difference in MVC between groups for either muscle. Also, ∆StO₂%, Rslope for either muscle, and ECR-HbTslope were not different between groups, thus our hypotheses of reduced oxygen use, recovery, and blood flow for patients were not confirmed. However, patients had a significantly lower ECR-HHbslope confirming our hypothesis of reduced consumption. Further, there was no difference in RMS%max during contractions meaning that the hypothesis of increased activity for patients was not confirmed. When taking into account the number of NIRS variables studied, differences we found between our patient group and healthy controls (i.e., in forearm oxygen consumption and shoulder oxygen saturation level) may be considered modest. Overall our findings may have been impacted by the fact that our patients and controls were similar in muscle strength

  6. Chocolate consumption, fecal water antioxidant activity, and hydroxyl radical production.

    PubMed

    Record, Ian R; McInerney, Jennifer K; Noakes, Manny; Bird, Anthony R

    2003-01-01

    As part of a larger study into the effects of polyphenols derived from chocolate on bowel health we have compared the effects of consumption of chocolate containing either 200 mg of flavanols and related procyanidins or a similar chocolate containing less than 10 mg of polyphenols on fecal free radical production and antioxidant activity in 18 volunteers. In a double-blind crossover trail volunteers consumed chocolate for two 4-wk periods separated by a 4-wk washout period. During the time the volunteers consumed the chocolate they also consumed a low-polyphenol diet. Free radical production in the fecal water was lowered from 122 +/- 10 micromol/l/h to 94 +/- 9 micromol/l/h (P = 0.009) when the high procyanidin chocolate diet was consumed and from 117 +/- 14 micromol/l/h to 86 +/- 12 micromol/l/h when the low procyanidin chocolate was consumed (P = 0.014). Fecal water antioxidant capacity measured by either the Trolox equivalent antioxidant capacity or ferric reducing ability of plasma procedure was not significantly affected. Consumption of either chocolate reduced the production of free radicals in fecal water. This suggests that some component of the chocolate other than the flavanols and related procyanidins may have been effective.

  7. Low intensity light stimulates nitrite-dependent nitric oxide synthesis but not oxygen consumption by cytochrome c oxidase: Implications for phototherapy.

    PubMed

    Ball, Kerri A; Castello, Pablo R; Poyton, Robert O

    2011-03-02

    Cytochrome c oxidase (Cco) has been reported to be a receptor for some of the beneficial effects of low intensity visible and near-infrared light on cells and tissues. Here, we have explored the role of low intensity light in affecting a newly described function of Cco, its ability to catalyze nitrite-dependent nitric oxide (NO) synthesis (Cco/NO). Using a new assay for Cco/NO we have found that both yeast and mouse brain mitochondrial Cco produce NO over a wide range of oxygen concentrations and that the rate of NO synthesis increases as the oxygen concentration decreases, becoming optimal under hypoxic conditions. Low intensity broad-spectrum light increases Cco/NO activity in an intensity-dependent fashion but has no effect on oxygen consumption by Cco. By using a series of bandpass filters and light emitting devices (LEDs) we have determined that maximal stimulation of Cco/NO activity is achieved by exposure to light whose central wavelength is 590 ± 14 nm. This wavelength of light stimulates Cco/NO synthesis at physiological nitrite concentrations. These findings raise the interesting possibility that low intensity light exerts a beneficial effect on cells and tissues by increasing NO synthesis catalyzed by Cco and offer a new explanation for the increase in NO bioavailability experienced by tissue exposed to light.

  8. Active rehabilitation in a pediatric extracorporeal membrane oxygenation patient.

    PubMed

    Zebuhr, Carleen; Sinha, Amit; Skillman, Heather; Buckvold, Shannon

    2014-05-01

    Decreased intensive care unit (ICU) mortality has led to an increase in ICU morbidity. ICU-induced immobilization plays a major role in this morbidity. Recently, ICU mobility has been shown to be safe and effective in adolescent and adult patients. We report the successful rehabilitation of an 8-year-old boy with severe acute respiratory distress syndrome on extracorporeal membrane oxygenation. A child who is critically ill may safely perform active rehabilitation while on venovenous extracorporeal membrane oxygenation. The gains achieved through active rehabilitation and optimal nutrition can facilitate recovery from severe acute respiratory distress syndrome in select pediatric patients on extracorporeal membrane oxygenation.

  9. Nitrification and its oxygen consumption along the turbid Changjiang River plume

    NASA Astrophysics Data System (ADS)

    Hsiao, S. S.-Y.; Hsu, T.-C.; Liu, J.-W.; Xie, X.; Zhang, Y.; Lin, J.; Wang, H.; Yang, J.-Y. T.; Hsu, S.-C.; Dai, M.; Kao, S.-J.

    2013-05-01

    Nitrification rates of bulk water (NRb) and particle free (NRpf, particle > 3 μm eliminated) were determined along the Changjiang River plume in August 2011 by nitrogen isotope tracer technique. Dissolved oxygen (DO), community respiration rate (CR), nutrients, dissolved organic nitrogen, total suspended matter (TSM), particulate organic carbon/nitrogen (POC/PON), acid-leachable iron and manganese on suspended particles and both archaeal and β-proteobacterial amoA abundance on size-fractioned particle (> 3 μm and 0.22-3 μm) were measured. The NRb ranged from undetectable up to 4.6 μmol L-1 d-1 peaking at salinity of ~ 29. NRb values were positively correlated with ammonia concentration suggesting the importance of substrate in nitrification. In river mouth and inner plume, NRb was much higher than NRpf indicating nitrifying bacteria is mainly particle-associated, which was supported by amoA gene abundance and regression analysis of TSM and NRb. The estimated oxygen demand of nitrification accounted for 0.4% to 317% of CR. The nitrification oxygen demand is much higher than Redfield model's estimation (23%) indicating that oxygen might not be the sole oxidant though DO was sufficient (> 58 μmol kg-1). The excess nitrification oxygen demand showed tendency to occur at lower DO samples accompanying with higher acid-leachable Fe/Mn, which implied reactive Fe3+/Mn4+ may play a role as oxidant in nitrification process. Stoichiometric calculation suggested reactive Fe on particles was even 10-fold the oxidant demand for complete ammonia oxidation along all areas of the plume. The involvement of reactive iron and manganese in nitrification process in oxygenated water further complicated the nitrogen cycling in turbid river plume.

  10. Impact of oxygen cut off and starvation conditions on biological activity and physico-chemical properties of activated sludge.

    PubMed

    Villain, Maud; Clouzot, Ludiwine; Guibaud, Gilles; Marrot, Benoit

    2013-01-01

    Physico-chemical and biological parameters were monitored both throughout different oxygen cut off and starvation (OCS) times (6 h-72 h) and after the restoration of normal operational conditions. Sludge apparent viscosity and soluble extracellular polymeric substances (EPS) characteristics were measured to determine the activated sludge (AS) properties. Oxygen transfer, biological activity with specific oxygen uptake rate (SOUR) measurements during endogenous/exogenous conditions (without any external substrate/with external substrate consumption) and chemical oxygen demand (COD) removal were measured to assess the AS performances. During the different stress times, AS deflocculated as a decrease of apparent viscosity was observed and microorganisms biodegraded the released EPS to survive. After aeration return, and under endogenous conditions, size exclusion chromatographic fingerprints of soluble EPS were modified and macromolecules probably of type humic-like substances appeared in significant quantities. These new macromolecules presumably acted as biosurfactants. Consequently, the liquid surface tension, as well as the oxygen transfer rate (OTR), decreased. Under exogenous conditions, high biological activity (SOUR = 11.8 +/- 2.1 mg(O2 x g(MLVSS)(-1) x h(-1)) compensated the decrease of oxygen transfer. Finally, AS biomass maintained a constant COD degradation rate (15.7 +/- 1.9 mg(O2) x g(MLVSS)(-1) x h(-1)) before and after the disturbances for all times tested. This work demonstrates that AS microorganisms can counteract concomitant oxygen and nutrients shortage when the duration of such a condition does not exceed 72 h. Dissociation of endogenous/exogenous conditions appears to offer an ideal laboratory model to study EPS and biomass activity effects on oxygen transfer.

  11. Cold-induced vasodilatation of finger and maximal oxygen consumption of young female athletes born in Hokkaido

    NASA Astrophysics Data System (ADS)

    Moriya, Kiyoshi; Nakagawa, Koya

    1990-03-01

    To determine whether there is a direct correlation between endurance capacity and cold tolerance, maximal oxygen consumption (VO2max), and cold-induced vasodilatation (CIVD), we measured these factors in 14 young female athletes born in Hokkaido, Japan's northernmost island. We determined the VO2max by a standard incremental test on a cycle ergometer and measured the oxygen consumption (VO2) by means of the Douglas-bag method. We determined the CIVD reaction by measuring the skin temperature of the left middle finger during immersion in cold water at 0°C for 20 min. The athletes showed significant positive correlations between VO2max, expressed as l/min, and CIVD as well as other peripheral cold tolerance indexes (resistance index against frostbite and CIVD index). The body weight VO2max (VO2max/kg body weight) failed to correlate significantly with either the CIVD or with other cold tolerance indexes. These results suggest that CIVD in females may depend on factors other than those determined in this study, in addition to the functional spread of the vascular beds in peripheral tissues, including striated muscle; it is known that the size and the vascular bed in this tissue are affected by exercise training and that this results in the elevation of VO2max and VO2max/kg body weight.

  12. Effect of Endotoxin on Oxygen Consumption By a Flow-Controlled Canine Hind-Limb Preparation

    DTIC Science & Technology

    1980-10-01

    a reduction in the cardiac metabolic units of the periphery, (3) the red bloodq output and a widening of the central arteriovenous cell or...explained readily by the reduction in takeoff of the profunda femoris artery; the internal + SNum ber Volume 88 Effect of endotoxin on oxygen

  13. Measurement of Diaphragmatic Blood Flow and Oxygen Consumption in the Dog by the Kety-Schmidt Technique

    PubMed Central

    Rochester, Dudley F.

    1974-01-01

    To assess energy expenditure of the diaphragm directly, a method was devised for percutaneous catheterization of the left inferior phrenic vein in dogs. Necropsy studies, including retrograde injection of india ink and measurement of radioactivity in diaphragmatic muscle strips, suggested that the territory drained by the inferior phrenic vein was uniformly perfused, and that there were no major anastomoses between this bed and adjacent ones. Diaphragmatic blood flow (˙Q di) was calculated from the integrated diaphragmatic arteriovenous difference of 85Kr by the Kety-Schmidt technique. Diaphragmatic oxygen consumption (˙Vo2 di) was determined as the product of ˙Q di and the diaphragmatic arteriovenous oxygen content difference [(A-V)O2 di]. When lightly anesthetized dogs breathed quietly, ˙Q di was 22±SD 6 ml/min/100 g, (A-V)O2 di was 6.1±SD 2.5 ml/100 ml, and ˙VO2 di averaged 1.2±SD 0.3 ml/min/100 g. This represented 1.0±SD 0.2% of total body oxygen consumption. ˙VO2 di remained relatively constant during quiet breathing, whereas ˙Q di varied directly with cardiac output and reciprocally with (A-V)O2 di. The oxygen consumption of the noncontracting diaphragm was 60±SD 20% of the level measured during quiet breathing. The energy expended by the diaphragm to support simple hyperventilation was small. A 100% increase in minute ventilation, induced by inhalation of 5% CO2 in 21% or 14% O2, increased ˙Q di 13%, (A-V)O2 di 19%, and ˙VO2 di 40%. The diaphragm consumed 0.13±SD 0.09 ml O2 for each additional liter of ventilation. In four dogs, pneumonia appeared to increase ˙VO2 both by increasing minute ventilation and by increasing the energy cost per liter of ventilation. PMID:4825221

  14. Effects of nitrous oxide on oxygen consumption by isolated cerebral cortex mitochondria

    SciTech Connect

    Becker, G.L.; Pelligrino, D.A.; Miletich, D.J.; Albrecht, R.F.

    1986-04-01

    The influence of N2O on O2 consumption by mitochondria isolated from the cerebral cortex of goats was examined in incubations preequilibrated with N2O-O2 or N2-O2. Rates of O2 consumption were measured polarographically in a closed system while adenosine triphosphate (ATP) formation was maximal (after addition of excess adenosine diphosphate (ADP), state 3 respiration) and then when it was at zero (after addition of excess oligomycin, state 4 respiration). Compared with 90% N2, 90% N2O produced no change in the rate of state 3 respiration; but an observed 9% decrease in the state 4 rate and an 11% increase in the state 3: state 4 ratio were statistically significant (P less than 0.05). These differences were not seen with N2 and N2O at 70% rather than at 90%, or when succinate rather than pyruvate-malate was used as the respiratory substrate. We conclude the following: Unlike other inhalation anesthetics, N2O at comparable anesthetic concentrations does not inhibit mitochondrial electron transport or ATP formation coupled to it (oxidative phosphorylation). N2O does inhibit one or more other processes, as yet unidentified, which are energetically coupled to electron transport. The increased cerebral O2 consumption that accompanies N2O anesthesia cannot be attributed to a direct effect of N2O on mitochondrial respiration.

  15. Silibinin activates AMP-activated protein kinase to protect neuronal cells from oxygen and glucose deprivation-re-oxygenation.

    PubMed

    Xie, Zhi; Ding, Sheng-quan; Shen, Ya-fang

    2014-11-14

    In this study, we explored the cytoprotective potential of silibinin against oxygen-glucose deprivation (OGD)-induced neuronal cell damages, and studied underling mechanisms. In vitro model of ischemic stroke was created by keeping neuronal cells (SH-SY5Y cells and primary mouse cortical neurons) in an OGD condition followed by re-oxygenation. Pre-treatment of silibinin significantly inhibited OGD/re-oxygenation-induced necrosis and apoptosis of neuronal cells. OGD/re-oxygenation-induced reactive oxygen species (ROS) production and mitochondrial membrane potential (MMP) reduction were also inhibited by silibinin. At the molecular level, silibinin treatment in SH-SY5Y cells and primary cortical neurons led to significant AMP-activated protein kinase (AMPK) signaling activation, detected by phosphorylations of AMPKα1, its upstream kinase liver kinase B1 (LKB1) and the downstream target acetyl-CoA Carboxylase (ACC). Pharmacological inhibition or genetic depletion of AMPK alleviated the neuroprotective ability of silibinin against OGD/re-oxygenation. Further, ROS scavenging ability by silibinin was abolished with AMPK inhibition or silencing. While A-769662, the AMPK activator, mimicked silibinin actions and suppressed ROS production and neuronal cell death following OGD/re-oxygenation. Together, these results show that silibinin-mediated neuroprotection requires activation of AMPK signaling.

  16. Is beetroot juice more effective than sodium nitrate? The effects of equimolar nitrate dosages of nitrate-rich beetroot juice and sodium nitrate on oxygen consumption during exercise.

    PubMed

    Flueck, Joelle Leonie; Bogdanova, Anna; Mettler, Samuel; Perret, Claudio

    2016-04-01

    Dietary nitrate has been reported to lower oxygen consumption in moderate- and severe-intensity exercise. To date, it is unproven that sodium nitrate (NaNO3(-); NIT) and nitrate-rich beetroot juice (BR) have the same effects on oxygen consumption, blood pressure, and plasma nitrate and nitrite concentrations or not. The aim of this study was to compare the effects of different dosages of NIT and BR on oxygen consumption in male athletes. Twelve healthy, well-trained men (median [minimum; maximum]; peak oxygen consumption: 59.4 mL·min(-1)·kg(-1) [40.5; 67.0]) performed 7 trials on different days, ingesting different nitrate dosages and placebo (PLC). Dosages were 3, 6, and 12 mmol nitrate as concentrated BR or NIT dissolved in plain water. Plasma nitrate and nitrite concentrations were measured before, 3 h after ingestion, and postexercise. Participants cycled for 5 min at moderate intensity and further 8 min at severe intensity. End-exercise oxygen consumption at moderate intensity was not significantly different between the 7 trials (p = 0.08). At severe-intensity exercise, end-exercise oxygen consumption was ~4% lower in the 6-mmol BR trial compared with the 6-mmol NIT (p = 0.003) trial as well as compared with PLC (p = 0.010). Plasma nitrite and nitrate concentrations were significantly increased after the ingestion of BR and NIT with the highest concentrations in the 12-mmol trials. Plasma nitrite concentration between NIT and BR did not significantly differ in the 6-mmol (p = 0.27) and in the 12-mmol (p = 0.75) trials. In conclusion, BR might reduce oxygen consumption to a greater extent compared with NIT.

  17. Social ideological influences on food consumption, physical activity and BMI.

    PubMed

    Wang, W C; Worsley, A; Cunningham, E G

    2009-12-01

    We investigated relationships between ideological beliefs (i.e., diaphanous body image and environmental concerns), food attitudes, evening meal patterns, physical activity, and Body Mass Index (BMI). A behavioural model was hypothesized based on the Theory of Reasoned Action. A survey was conducted among shoppers aged 40-70 years at Eastland Shopping Centre, Melbourne, Australia. The hypothesized model was tested among female baby boomers (n=547) for younger (n=245) and older (n=302) age groups using structural equation modeling. Findings showed that diaphanous body image had a direct and positive influence on negative food attitudes, which is likely to lead to higher BMI for both age groups. Body image beliefs were positively related to physical activity only for women aged 56-70 years. In contrast, among women aged 40-55 years, strong pro-environmental concerns suggested less consumption of both healthy (e.g., fruit and vegetables) and unhealthy (e.g., sugar and fats) foods. Moreover, strong pro-animal concerns resulted in higher BMI for the younger women. As expected, increased physical activity negatively influenced BMI. Importantly, the associations between ideological beliefs, attitudes, evening meal patterns, and BMI differed between younger and older female baby boomers.

  18. Phospholipase C activation is required for cardioprotection by ethanol consumption

    PubMed Central

    Miyamae, Masami; Domae, Naochika; Zhou, Hui-Zhong; Sugioka, Shingo; Diamond, Ivan; Figueredo, Vincent M

    2003-01-01

    Regular alcohol consumption decreases the incidence of myocardial infarction (MI) and improves post-MI survival. It has previously been reported that chronic ethanol exposure induces long-term protection against cardiac ischemia/reperfusion injury, which improves myocardial recovery after MI. Chronic cardioprotection by ethanol requires the activation of myocyte adenosine A1 receptors and sustained intramyocyte translocation of epsilon protein kinase C. A1 receptors activate phospholipase C (PLC). In the present paper, the role of PLC in mediating ethanol’s protective effect against ischemia/reperfusion injury is investigated. Isolated hearts from guinea pigs fed 2.5% ethanol in their water for four months were subjected to ischemia/reperfusion. Hearts from ethanol-treated animals showed improved recovery of left ventricular developed pressure compared with controls (61% versus 38% of baseline, respectively; P<0.05) and decreased necrosis, assessed by the release of creatine kinase (263±18 U/mL × g dry weight versus 360±24 U/mL × g dry weight, respectively; P<0.05). Ethanol protection was abolished by the PLC antagonist, U-73122 (50 nM). These findings suggest that PLC activation is required for ethanol cardioprotection against ischemia/reperfusion injury. PMID:19649218

  19. Sensitivity of hypoxia predictions for the northern Gulf of Mexico to sediment oxygen consumption and model nesting

    NASA Astrophysics Data System (ADS)

    Fennel, Katja; Hu, Jiatang; Laurent, Arnaud; Marta-Almeida, Martinho; Hetland, Robert

    2013-02-01

    Every summer, a large area (15,000 km2 on average) over the Texas-Louisiana shelf in the northern Gulf of Mexico turns hypoxic due to decay of organic matter that is primarily derived from nutrient inputs from the Mississippi/Atchafalaya River System. Interannual variability in the size of the hypoxic zone is large. The 2008 Action Plan put forth by the Mississippi River/Gulf of Mexico Watershed Nutrient Task Force, an alliance of multiple state and federal agencies and tribes, calls for a reduction of the size of the hypoxic zone through nutrient management in the watershed. Comprehensive models help build mechanistic understanding of the processes underlying hypoxia formation and variability and are thus indispensable tools for devising efficient nutrient reduction strategies and for building reasonable expectations as to what responses can be expected for a given nutrient reduction. Here we present such a model, evaluate its hypoxia simulations against monitoring observations, and assess the sensitivity of the hypoxia simulations to model resolution, variations in sediment oxygen consumption, and choice of physical horizontal boundary conditions. We find that hypoxia simulations on the shelf are very sensitive to the parameterization of sediment oxygen consumption, a result of the fact that hypoxic conditions are restricted to a relatively thin layer above the bottom over most of the shelf. We show that the strength of vertical stratification is an important predictor of dissolved oxygen concentration in bottom waters and that modification of physical horizontal boundary conditions can have a large effect on hypoxia simulations because it can affect stratification strength.

  20. Nitrification and its oxygen consumption along the turbid Chang Jiang River plume

    NASA Astrophysics Data System (ADS)

    Hsiao, S. S.-Y.; Hsu, T.-C.; Liu, J.-w.; Xie, X.; Zhang, Y.; Lin, J.; Wang, H.; Yang, J.-Y. T.; Hsu, S.-C.; Dai, M.; Kao, S.-J.

    2014-04-01

    Nitrification is a series of processes that oxidizes ammonia to nitrate, which contributes to hypoxia development in coastal oceans, especially in eutrophicated regions. The nitrification rate of bulk water (NRb) and particle free water (NRpf, particle > 3 μm eliminated) were determined along the Chang Jiang River plume in August 2011 by nitrogen isotope tracer technique. Measurements of dissolved oxygen (DO), community respiration rate (CR), nutrients, dissolved organic nitrogen (DON), total suspended matter (TSM), particulate organic carbon/nitrogen (POC / PON), acid-leachable iron and manganese on suspended particles and both archaeal and β-proteobacterial ammonia monooxygenase subunit A gene (amoA) abundance on size-fractioned particles (> 3 μm and 0.22-3 μm) were conducted. The NRb ranged from undetectable up to 4.6 μmol L-1 day-1, peaking at a salinity of ~ 29. NRb values were positively correlated with ammonium concentration, suggesting the importance of substrate in nitrification. In the river mouth and the inner plume, NRb was much higher than NRpf, indicating that the nitrifying microorganism is mainly particle associated, which was supported by its significant correlation with amoA gene abundance and TSM concentration. The estimated oxygen demands of nitrification accounted for 0.32 to 318% of CR, in which 50% samples demanded more oxygen than that predicted by by the Redfield model (23%), indicating that oxygen might not be the sole oxidant though DO was sufficient (> 58 μmol kg-1) throughout the observation period. The excess nitrification-associated oxygen demand (NOD) showed a tendency to occur at lower DO samples accompanied by higher acid-leachable Fe / Mn, which implied reactive Fe3+ / Mn4+ may play a role as oxidant in the nitrification process. Stoichiometric calculation suggested that reactive Fe on particles was 10 times the oxidant demand required to complete ammonia oxidation in the entire plume. The potential involvement of reactive

  1. Improving the Accuracy of Predicting Maximal Oxygen Consumption (VO2pk)

    NASA Technical Reports Server (NTRS)

    Downs, Meghan E.; Lee, Stuart M. C.; Ploutz-Snyder, Lori; Feiveson, Alan

    2016-01-01

    Maximal oxygen (VO2pk) is the maximum amount of oxygen that the body can use during intense exercise and is used for benchmarking endurance exercise capacity. The most accurate method to determineVO2pk requires continuous measurements of ventilation and gas exchange during an exercise test to maximal effort, which necessitates expensive equipment, a trained staff, and time to set-up the equipment. For astronauts, accurate VO2pk measures are important to assess mission critical task performance capabilities and to prescribe exercise intensities to optimize performance. Currently, astronauts perform submaximal exercise tests during flight to predict VO2pk; however, while submaximal VO2pk prediction equations provide reliable estimates of mean VO2pk for populations, they can be unacceptably inaccurate for a given individual. The error in current predictions and logistical limitations of measuring VO2pk, particularly during spaceflight, highlights the need for improved estimation methods.

  2. Simultaneous Real-Time Monitoring of Oxygen Consumption and Hydrogen Peroxide Production in Cells Using Our Newly Developed Chip-Type Biosensor Device

    PubMed Central

    Prasad, Ankush; Kikuchi, Hiroyuki; Inoue, Kumi Y.; Suzuki, Makoto; Sugiura, Yamato; Sugai, Tomoya; Tomonori, Amano; Tada, Mika; Kobayashi, Masaki; Matsue, Tomokazu; Kasai, Shigenobu

    2016-01-01

    All living organisms bear its defense mechanism. Immune cells during invasion by foreign body undergoes phagocytosis during which monocyte and neutrophil produces reactive oxygen species (ROS). The ROS generated in animal cells are known to be involved in several diseases and ailments, when generated in excess. Therefore, if the ROS generated in cells can be measured and analyzed precisely, it can be employed in immune function evaluation and disease detection. The aim of the current study is to introduce our newly developed chip-type biosensor device with high specificity and sensitivity. It comprises of counter electrode and working electrodes I and II. The counter electrode is a platinum plate while the working electrodes I and II are platinum microelectrode and osmium-horseradish peroxidase modified gold electrode, respectively which acts as oxygen and hydrogen peroxide (H2O2) detection sensors. Simultaneous measurement of oxygen consumption and H2O2 generation were measured in animal cells under the effect of exogenous addition of differentiation inducer, phorbol 12-myristate 13-acetate. The results obtained showed considerable changes in reduction currents in the absence and presence of inducer. Our newly developed chip-type biosensor device is claimed to be a useful tool for real-time monitoring of the respiratory activity and precise detection of H2O2 in cells. It can thus be widely applied in biomedical research and in clinical trials being an advancement over other H2O2 detection techniques. PMID:27065878

  3. Oxygen consumption in the shrimp, Palaemonetes pugio, exposed to fluctuating temperatures and food contaminated with the diaromatic petroleum hydrocarbon, dimethylnaphthalene

    NASA Astrophysics Data System (ADS)

    Dillon, T. M.

    1983-04-01

    Oxygen consumption rates ( V˙o 2) in the grass shrimp Palaemonetes pugio were determined after a 32 day exposure to fluctuating temperatures (FT) (18-22°C) and/or dimethylnaphthalene (DMN)-contaminated food (0·24 μg DMN g wet wt -1) and again after a 16 day recovery period of stable temperatures (20°C) and uncontaminated food. Ingestion of DMN-contaminated food for 32 days resulted in elevated V˙>o 2 in shrimp exposed to declining oxygen concentrations. After the 32 day exposure period, FT had no significant effect on V˙o 2 at 15, 20 and 25°C, tissue V˙o 2 and V˙o 2 in declining oxygen. Hemolymph copper concentrations were significantly depressed in shrimp exposed to DMN-contaminated food. After the 16 day recovery period, shrimp from the FT regime exhibited depressed V˙o 2 when exposed to 25°C but not to 15°C. These depressed respiratory rates were offset by the stimulatory effect of DMN-contaminated food. These respiration studies were generally unproductive in explaining the previously reported effects of FT and DMN-contaminated food on the survival of P. pugio under hypoxic conditions.

  4. Total, chemical, and biological oxygen consumption of the sediments in the Ziya River watershed, China.

    PubMed

    Rong, Nan; Shan, Baoqing

    2016-07-01

    Sediment oxygen demand (SOD) is a critical dissolved oxygen (DO) sink in many rivers. Understanding the relative contributions of the biological and chemical components of SOD would improve our knowledge of the potential environmental harm SOD could cause and allow appropriate management systems to be developed. A various inhibitors addition technique was conducted to measure the total, chemical, and biological SOD of sediment samples from 13 sites in the Ziya River watershed, a severely polluted and anoxic river system in the north of China. The results showed that the major component of SOD was chemical SOD due to iron predominate. The ferrous SOD accounted for 21.6-78.9 % of the total SOD and 33.26-96.79 % of the chemical SOD. Biological SOD represented 41.13 % of the overall SOD averagely. Sulfide SOD accounted for 1.78-45.71 % of the total SOD and it was the secondary predominate of the chemical SOD. Manganous SOD accounted for 1.2-16.6 % of the total SOD and it was insignificant at many sites. Only four kinds of benthos were collected in the Ziya River watershed, resulting from the low DO concentration in the sediment surface due to SOD. This study would be helpful for understanding and preventing the potential sediment oxygen depletion during river restoration.

  5. CELL RESPIRATION STUDIES : II. A COMPARATIVE STUDY OF THE OXYGEN CONSUMPTION OF BLOOD FROM NORMAL INDIVIDUALS AND PATIENTS WITH INCREASED LEUCOCYTE COUNTS (SEPSIS; CHRONIC MYELOGENOUS LEUCEMIA).

    PubMed

    Daland, G A; Isaacs, R

    1927-06-30

    1. The oxygen consumption of blood of normal individuals, when the hemoglobin is saturated with oxygen, is practically zero within the limits of experimental error of the microspirometer used. 2. The oxygen consumed in a microspirometer by the blood of patients with chronic myelogenous leucemia with a high white blood cell count, and of one with leucocytosis from sepsis, was proportional to the number of adult polymorphonuclear neutrophils in the blood. 3. No correlation could be made between the rate of oxygen absorption and the total number of white blood cells in the blood, or the total number of immature cells, or the number of red blood cells, or the amount of oxyhemoglobin. 4. The blood of patients with chronic myelogenous leucemia continued to use oxygen in the microspirometer longer than that of normal individuals, and the hemoglobin, in the leucemic bloods, became desaturated even though exposed to air. 5. In blood in which the bulk. of the cells were immature and the mature cells few, the oxygen consumption was lower than in blood in which the mature cells predominated. The rate of oxygen consumption of the immature cells was relatively low as compared to the mature. 6. The slower rate of oxygen absorption by the immature leucocytes in chronic myelogenous leucemia as compared to the mature cells, places them, in accord with Warburg's reports, in the class of the malignant tissues in this respect rather than in the group of young or embryonic cells.

  6. Restoration of Normal Cerebral Oxygen Consumption with Rapamycin Treatment in a Rat Model of Autism–Tuberous Sclerosis

    PubMed Central

    Chi, Oak Z.; Wu, Chang-Chih; Liu, Xia; Rah, Kang H.; Jacinto, Estela

    2016-01-01

    Tuberous sclerosis (TSC) is associated with autism spectrum disorders and has been linked to metabolic dysfunction and unrestrained signaling of the mammalian target of rapamycin (mTOR). Inhibition of mTOR by rapamycin can mitigate some of the phenotypic abnormalities associated with TSC and autism, but whether this is due to the mTOR-related function in energy metabolism remains to be elucidated. In young Eker rats, an animal model of TSC and autism, which harbors a germ line heterozygous Tsc2 mutation, we previously reported that cerebral oxygen consumption was pronouncedly elevated. Young (4 weeks) male control Long–Evans and Eker rats were divided into control and rapamycin-treated (20 mg/kg once daily for 2 days) animals. Cerebral regional blood flow (14C-iodoantipyrine) and O2 consumption (cryomicrospectrophotometry) were determined in isoflurane-anesthetized rats. We found significantly increased basal O2 consumption in the cortex (8.7 ± 1.5 ml O2/min/100 g Eker vs. 2.7 ± 0.2 control), hippocampus, pons and cerebellum. Regional cerebral blood flow and cerebral O2 extractions were also elevated in all brain regions. Rapamycin had no significant effect on O2 consumption in any brain region of the control rats, but significantly reduced consumption in the cortex (4.1 ± 0.3) and all other examined regions of the Eker rats. Phosphorylation of mTOR and S6K1 was similar in the two groups and equally reduced by rapamycin. Thus, a rapamycin-sensitive, mTOR-dependent but S6K1-independent, signal led to enhanced oxidative metabolism in the Eker brain. We found decreased Akt phosphorylation in Eker but not Long–Evans rat brains, suggesting that this may be related to the increased cerebral O2 consumption in the Eker rat. Our findings suggest that rapamycin targeting of Akt to restore normal cerebral metabolism could have therapeutic potential in tuberous sclerosis and autism. PMID:26048361

  7. Restoration of Normal Cerebral Oxygen Consumption with Rapamycin Treatment in a Rat Model of Autism-Tuberous Sclerosis.

    PubMed

    Chi, Oak Z; Wu, Chang-Chih; Liu, Xia; Rah, Kang H; Jacinto, Estela; Weiss, Harvey R

    2015-09-01

    Tuberous sclerosis (TSC) is associated with autism spectrum disorders and has been linked to metabolic dysfunction and unrestrained signaling of the mammalian target of rapamycin (mTOR). Inhibition of mTOR by rapamycin can mitigate some of the phenotypic abnormalities associated with TSC and autism, but whether this is due to the mTOR-related function in energy metabolism remains to be elucidated. In young Eker rats, an animal model of TSC and autism, which harbors a germ line heterozygous Tsc2 mutation, we previously reported that cerebral oxygen consumption was pronouncedly elevated. Young (4 weeks) male control Long-Evans and Eker rats were divided into control and rapamycin-treated (20 mg/kg once daily for 2 days) animals. Cerebral regional blood flow ((14)C-iodoantipyrine) and O2 consumption (cryomicrospectrophotometry) were determined in isoflurane-anesthetized rats. We found significantly increased basal O2 consumption in the cortex (8.7 ± 1.5 ml O2/min/100 g Eker vs. 2.7 ± 0.2 control), hippocampus, pons and cerebellum. Regional cerebral blood flow and cerebral O2 extractions were also elevated in all brain regions. Rapamycin had no significant effect on O2 consumption in any brain region of the control rats, but significantly reduced consumption in the cortex (4.1 ± 0.3) and all other examined regions of the Eker rats. Phosphorylation of mTOR and S6K1 was similar in the two groups and equally reduced by rapamycin. Thus, a rapamycin-sensitive, mTOR-dependent but S6K1-independent, signal led to enhanced oxidative metabolism in the Eker brain. We found decreased Akt phosphorylation in Eker but not Long-Evans rat brains, suggesting that this may be related to the increased cerebral O2 consumption in the Eker rat. Our findings suggest that rapamycin targeting of Akt to restore normal cerebral metabolism could have therapeutic potential in tuberous sclerosis and autism.

  8. THE USE OF HEART RATE TO ESTIMATE OXYGEN CONSUMPTION OF FREE-RANGING BLACK-BROWED ALBATROSSES DIOMEDEA MELANOPHRYS

    PubMed

    Bevan; Woakes; Butler; Boyd

    1994-08-01

    Heart rates (fh) and rates of oxygen consumption (V(dot)O2) were measured in eight black-browed albatrosses (Diomedea melanophrys) when walking on a treadmill, with the aim of using fh to predict V(dot)O2 in free-ranging albatrosses. The resulting relationship between the variables was: V(dot)O2 (ml min-1) = [0.0157fh (beats min-1)]1.60, r2=0.80, P<0.001. In addition to the calibration procedure, six of the albatrosses were injected with doubly labelled water (DLW), and fh and V(dot)O2 were monitored continuously over a 3 day period while the birds were held in a respirometer. During the 3 day period, the birds were walked for up to 3­4 h day-1 in bouts lasting approximately 0.5 h. The heart rate data were used to estimate the metabolic rates of these birds using the above regression. Estimates of metabolic rate derived from fh, DLW and respirometry did not differ (ANOVA; P=0.94), primarily because of the variance between individual birds. There was also no significant difference between the different estimates obtained from the different equations used to calculate energy expenditure from the DLW technique (ANOVA; P=0.95). Mean estimates of V(dot)O2 from fh under active and inactive conditions differed from measured values of V(dot)O2 by -5.9 % and -1.7 % respectively. In addition, the estimates of V(dot)O2 from fh at different walking speeds did not differ significantly from the measured values. It appears that, in the black-browed albatross, fh is as good a predictor of the mean metabolic rate of free-ranging birds as DLW or time­energy budgets combined with either respirometry or DLW. However, the method should be applied to as many individuals and as many instances of a particular behaviour as possible. The heart rate technique offers potential for much more detailed analyses of the daily energy budgets of these birds, and over much longer periods, than has previously been possible.

  9. Activation of oxygen evolving perovskites for oxygen reduction by functionalization with Fe-N(x)/C groups.

    PubMed

    Rincón, Rosalba A; Masa, Justus; Mehrpour, Sara; Tietz, Frank; Schuhmann, Wolfgang

    2014-12-07

    The incorporation of Fe-Nx/C moieties into perovskites remarkably activates them for the oxygen reduction reaction (ORR) and also leads to notable improvement of their activity towards the oxygen evolution reaction (OER) thus presenting a new route for realizing high performance, low cost bifunctional catalysts for reversible oxygen electrodes.

  10. Functional imaging of muscle oxygenation and oxygen consumption in the knee extensor muscles during isometric contractions by spatially resolved near-infrared spectroscopy

    NASA Astrophysics Data System (ADS)

    Kek, Khai Jun; Miyakawa, Takahiro; Kudo, Nobuki; Yamamoto, Katsuyuki

    2007-02-01

    In this study, we showed that exercise type- and intensity-dependent regional differences in muscle oxygenation and oxygen consumption rate (Vo II) of the knee extensor muscles could be imaged in real time with a multi-channel spatially resolved near-infrared spectroscopy (SR-NIRS) imaging device. Healthy subjects performed isometric knee extension exercise for 30 s (without- or with-leg-press action) at different exercise intensities [10%, 40% and 70% of maximum voluntary contraction (MVC)]. "Separation-type" probes were attached to the skin over the major knee extensor muscles: vastus lateralis (VL), rectus femoris (RF) and vastus medialis (VM). Placement of the probes enabled simultaneously measurement of 12 sites over a skin area of about 30 cm2 (temporal resolution = 0.25 s). Local Vo II of each muscle, resting Vo II (Vo II, rest) and recovery Vo II (Vo II, rec ), were determined with arterial occlusion before the start and after the end of contraction, respectively. There was no significant difference between the values of Vo II rest, in the muscles. However, during knee extension exercise without-leg-press action, Vo II rec, value of the RF was significantly greater than the values of the VL and VM at all exercise intensities. In contrast, during exercise with-leg-press action, Vo II rec, values of the RF and VM were greater than those of the VL, especially during exercise at 40% and 70% MVC. In summary, the regional differences in muscle oxygenation and Vo II of the knee extensor muscles, probably due to the differences in relative contributions of muscles to exercise and in muscle architecture, were imaged using SR-NIRS.

  11. Reproduction in cultured versus wild coral colonies: fertilization, larval oxygen consumption, and survival.

    PubMed

    Okubo, Nami; Yamamoto, Hiromi Hannah; Nakaya, Fumio; Okaji, Ken

    2010-06-01

    In the late 1990s, the once prolific populations of the coral Acropora intermedia surrounding Okinawa, Japan, dramatically declined because of thermal stress, bleaching caused by heat stress, and consequent mortality. Before the bleaching event, 72 fragments (about 15 cm in length) were collected and transferred to the Okinawa Churami Aquarium. Through growth and repeated fragmentation, these original fragments developed into about 100 colonies that spawned from 1999 to 2009. In this study, we compared gametogenesis, fertilization, survival, and O(2) consumption in cultured and wild colonies of A. intermedia and their offspring. Cultured A. intermedia had larger oocytes and higher fertilization and survival rates than samples from wild colonies. O(2) consumption of cultured embryos was similar to that of wild embryos. These results suggest that cultured A. intermedia and their offspring are as viable as wild colonies. Aquaria can play a role in the conservation of endangered corals, and their cultured colonies could be used to re-establish devastated species on the Okinawa reefs.

  12. Diffusion and consumption of oxygen in the superfused retina of the drone (Apis mellifera) in darkness

    PubMed Central

    1981-01-01

    Double-barreled O2 microelectrodes were used to study O2 diffusion and consumption in the superfused drone (Apis mellifera) retina in darkness at 22 degrees C. Po2 was measured at different sites in the bath and retinas. It was found that diffusion was essentially in one dimension and that the rate of O2 consumption (Q) was practically constant (on the macroscale) down to Po2 s less than 20 mm Hg, a situation that greatly simplified the analysis. The value obtained for Q was 18 +/- 0.7 (SEM) microliter O2/cm3 tissue . min (n = 10), and Krogh's permeation coefficient (alpha D) was 3.24 +/- 0.18 (SEM) X 10(-5) ml O1/min . atm . cm (n = 10). Calculations indicate that only a small fraction of this Q in darkness is necessary for the energy requirements of the sodium pump. the diffusion coefficient (D) in the retina was measured by abruptly cutting off diffusion from the bath and analyzing the time-course of the fall in Po2 at the surface of the tissue. The mean value of D was 1.03 +/- 0.08 (SEM) X 10(-5) cm2/s (n = 10). From alpha D and D, the solubility coefficient alpha was calculated to be 54 +/- 4.0 (SEM) microliter O2 STP/cm3 . atm (n = 10), approximately 1.8 times that for water. PMID:7264598

  13. Effect of temperature on excess post-exercise oxygen consumption in juvenile southern catfish (Silurus meridionalis Chen) following exhaustive exercise.

    PubMed

    Zeng, Ling-Qing; Zhang, Yao-Guang; Cao, Zhen-Dong; Fu, Shi-Jian

    2010-12-01

    The effects of temperature on resting oxygen consumption rate (MO2rest) and excess post-exercise oxygen consumption (EPOC) after exhaustive exercise (chasing) were measured in juvenile southern catfish (Silurus meridionalis) (8.40±0.30 g, n=40) to test whether temperature has a significant influence on MO2rest, maximum post-exercise oxygen consumption rate (MO2peak) and EPOC and to investigate how metabolic scope (MS: MO2peak - MO2rest) varies with acclimation temperature. The MO2rest increased from 64.7 (10°C) to 160.3 mg O2 h(-1) kg(-1) (25°C) (P<0.05) and reached a plateau between 25 and 30°C. The post-exercise MO2 in all temperature groups increased immediately to the peak values and then decreased slowly to a steady state that was higher than the pre-exercise MO2. The MO2peak did not significantly differ among the 20, 25 and 30°C groups, though these values were much higher than those of the lower temperature groups (10 and 15°C) (P<0.05). The duration of EPOC varied from 32.9 min at 10°C to 345 min at 20°C, depending on the acclimation temperatures. The MS values of the lower temperature groups (10 and 15°C) were significantly smaller than those of the higher temperature groups (20, 25 and 30°C) (P<0.05). The magnitude of EPOC varied ninefold among all of the temperature groups and was the largest for the 20°C temperature group (about 422.4 mg O2 kg(-1)). These results suggested that (1) the acclimation temperature had a significant effect on maintenance metabolism (as indicated by MO2rest) and the post-exercise metabolic recovery process (as indicated by MO2peak, duration and magnitude of EPOC), and (2) the change of the MS as a function of acclimation temperature in juvenile southern catfish might be related to their high degree of physiological flexibility, which allows them to adapt to changes in environmental conditions in their habitat in the Yangtze River and the Jialing River.

  14. Intermediates of Krebs cycle correct the depression of the whole body oxygen consumption and lethal cooling in barbiturate poisoning in rat.

    PubMed

    Ivnitsky, Jury Ju; Schäfer, Timur V; Malakhovsky, Vladimir N; Rejniuk, Vladimir L

    2004-10-01

    Rats poisoned with one LD50 of thiopental or amytal are shown to increase oxygen consumption when intraperitoneally given sucinate, malate, citrate, alpha-ketoglutarate, dimethylsuccinate or glutamate (the Krebs cycle intermediates or their precursors) but not when given glucose, pyruvate, acetate, benzoate or nicotinate (energy substrates of other metabolic stages etc). Survival was increased with succinate or malate from control groups, which ranged from 30-83% to 87-100%. These effects were unrelated to respiratory depression or hypoxia as judged by little or no effect of succinate on ventilation indices and by the lack of effect of oxygen administration. Body cooling of comatose rats at ambient temperature approximately 19 degrees C became slower with succinate, the rate of cooling correlated well with oxygen consumption decrease. Succinate had no potency to modify oxygen consumption and body temperature in intact rats. A condition for antidote effect of the Krebs intermediate was sufficiently high dosage (5 mmol/kg), further dose increase made no odds. Repeated dosing of succinate had more marked protective effect, than a single one, to oxygen consumption and tended to promote the attenuation of lethal effect of barbiturates. These data suggest that suppression of whole body oxygen consumption with barbiturate overdose could be an important contributor to both body cooling and mortality. Intermediates of Krebs cycle, not only succinate, may have a pronounced therapeutic effect under the proper treatment regimen. Availability of Krebs cycle intermediates may be a limiting factor for the whole body oxygen consumption in barbiturate coma, its role in brain needs further elucidation.

  15. The effects of hypothermia on myocardial oxygen consumption and transmural coronary blood flow in the potassium-arrested heart.

    PubMed Central

    Chitwood, W R; Sink, J D; Hill, R C; Wechsler, A S; Sabiston, D C

    1979-01-01

    Hypothermia remains the primary adjunct employed to lower cellular metabolism during various cardiac procedures. In these experiments, left ventricular myocardial oxygen consumption (MVO2) and transmural blood flow (TBF) were measured during cardiopulmonary bypass with the range of temperatures used clinically. Determinations were made in empty beating normothermic hearts and after potassium cardioplegia at 37, 32, 28, 22, 18, and 15 degrees (K+ = 15--37 meq/L: Hct 25 volumes %). Oxygen content of the total coronary sinus collection was compared with a large volume arterial sample using a Lex-O2-Con-TL analyzer (vs Van Slyke, R = 0.98). Transmural blood flow was measured at each temperature using microspheres (8 microns), and perfusion was maintained at 80 mmHg. Asystole (37 degrees) alone decreased MVO2 from 5.18 +/- 0.55 to 1.85 +/- 0.20 ml O2/min/100 g of left ventricle or approximately 65% (p less than 0.001). With progressive cooling to 15 degrees an additional 82% decrement in oxygen uptake occurred during asystole (p less than 0.001). During asystole at 37 degrees the decrease in MVO2 was reflected mainly by a large decrement (p less than 0.01) in TBF (1.27 +/- 0.19 to 0.74 +/- 0.17 ml/min/g of mean left ventricular flow). However, with cooling below 32 degrees, the arteriovenous oxygen difference narrowed progressively (p less than 0.001) while TBF paradoxically returned to control levels. Endocardial/epicardial flow ratios were not altered by cooling. These data not only confirm earlier reports describing a sequential drop in MVO2 with incremental myocardial cooling, but also establish MVO2 levels for perfused hearts arrested by potassium at lower temperatures (18--15 degrees). Moreover, as transmural blood flow becomes independent of metabolic necessity during hypothermia, coronary autoregulation appears to be impaired, possibly affecting detrimental tissue over perfusion. PMID:464672

  16. Impact of extreme oxygen consumption by pollutants on macroinvertebrate assemblages in plain rivers of the Ziya River Basin, north China.

    PubMed

    Ding, Yuekui; Rong, Nan; Shan, Baoqing

    2016-07-01

    The aim of the study was to estimate the impact of oxygen depletion on macroinvertebrate community structure in benthic space. Macroinvertebrate assemblages and potential of dissolved oxygen (DO) consumption were investigated simultaneously in the plain rivers of the Ziya River Basin. The degree of DO depletion was represented by sediment oxygen demand (SOD) and DO, chemical oxygen demand (CODCr), and ammonia nitrogen (NH4 (+)-N) in the overlying water. The results showed an all-around hypoxia environment formed, and the values of DO, SOD, CODCr, and NH4 (+)-N were separately 0.11-4.03 mg L(-1), 0.41-2.60 g m(-2) day(-1), 27.50-410.00 mg L(-1), and 1.79-101.41 mg L(-1). There was an abnormal macroinvertebrate assemblage, and only 3 classes, Insecta, Gastropoda, and Oligochaeta, were found, which included 9 orders, 30 families, and 54 genera. The biodiversity was at a low level, and Shannon-Wiener index was 0.00-1.72. SOD, and NH4 (+)-N had major impact on the macroinvertebrate community, and the former had negative effect on most taxa, for instance, Nais, Branchiura, Paraleptophlebia, etc., which were sensitive or had a moderate-high tolerance to pollution. NH4 (+)-N had both positive and negative impacts on benthic animals, for instance, Dicrotendipes, Gomphus, Cricotopus, etc., for the former, and Procladius, Limnodrilus, Hippeutis, etc., for the latter. They all had a moderate-high tolerance to pollution. It is significant to improve DO condition and macroinvertebrate diversity in river harnessing and management.

  17. The relationship between energy-dependent phagocytosis and the rate of oxygen consumption in Tetrahymena.

    PubMed

    Skriver, L; Nilsson, J R

    1978-12-01

    The induction of high rates of food vacuole formation in Tetrahymena pyriformis increased the rate of respiration in exponentially growing cells by 17% and in starving cells by 47.5%. The increased rate of oxygen uptake was caused by phagocytosis itself, as shown by comparing the rates of respiration of a Tetrahymena mutant exposed to particles at the permissive or restrictive temperatures for food vacuole formation. During cell division, heat-synchronized cells in rich, particle-supplemented medium showed a significant decrease in the rate of respiration. Furthermore, dimethyl sulphoxide, in concentrations sufficient to block food vacuole formation, suppressed the rate of respiration to a level similar to that of starved cells. Cytochalasin B, fowever, did not reduce the rate of oxygen uptake despite the inability of the cells to complete the formation of food vacuoles during treatment; a possible explanation for this finding is discussed. There was a strong correlation between formation of food vacuoles and a high metabolic rate in Tetrahymena.

  18. The effects of dietary deprivation on body temperature and oxygen consumption in black-tailed prairie dogs (Cynomys ludovicianus).

    PubMed

    Wallace, G M; Pfeiffer, E W

    1992-04-01

    1. Body temperature (Tb) and oxygen consumption (VO2) were compared between fed (Control), food and water deprived (FWD), and water deprived (WD) black-tailed prairie dogs, in the month of January. 2. Mean Tb of Control black-tailed prairie dogs (36.2 degrees C) was significantly different from FWD (33.4 degrees C) and WD (30.4 degrees C) black-tailed prairie dogs. 3. VO2 was not significantly different between FWD and Control black-tailed prairie dogs (4.4 and 4.0 ml O2/kg/hr, respectively), while VO2 was significantly different between WD and Control animals (2.9 and 4.0 ml O2/kg/hr, respectively). 4. These findings are discussed as possible mechanisms for conserving body water.

  19. Microfluidic Platform Generates Oxygen Landscapes for Localized Hypoxic Activation

    PubMed Central

    Rexius, Megan L.; Mauleon, Gerardo; Malik, Asrar B.; Rehman, Jalees; Eddington, David T.

    2014-01-01

    An open-well microfluidic platform generates an oxygen landscape using gas-perfused networks which diffuse across a membrane. The device enables real-time analysis of cellular and tissue responses to oxygen tension to define how cells adapt to heterogeneous oxygen conditions found in the physiological setting. We demonstrate that localized hypoxic activation of cells elicited specific metabolic and gene responses in human microvascular endothelial cells and bone marrow-derived mesenchymal stem cells. A robust demonstration of the compatibility of the device with standard laboratory techniques demonstrates the wide utility of the method. This platform is ideally suited to study real-time cell responses and cell-cell interactions within physiologically relevant oxygen landscapes. PMID:25315003

  20. Microfluidic platform generates oxygen landscapes for localized hypoxic activation.

    PubMed

    Rexius-Hall, Megan L; Mauleon, Gerardo; Malik, Asrar B; Rehman, Jalees; Eddington, David T

    2014-12-21

    An open-well microfluidic platform generates an oxygen landscape using gas-perfused networks which diffuse across a membrane. The device enables real-time analysis of cellular and tissue responses to oxygen tension to define how cells adapt to heterogeneous oxygen conditions found in the physiological setting. We demonstrate that localized hypoxic activation of cells elicited specific metabolic and gene responses in human microvascular endothelial cells and bone marrow-derived mesenchymal stem cells. A robust demonstration of the compatibility of the device with standard laboratory techniques demonstrates the wide utility of the method. This platform is ideally suited to study real-time cell responses and cell-cell interactions within physiologically relevant oxygen landscapes.

  1. The effects of physical fitness and body composition on oxygen consumption and heart rate recovery after high-intensity exercise.

    PubMed

    Campos, E Z; Bastos, F N; Papoti, M; Freitas Junior, I F; Gobatto, C A; Balikian Junior, P

    2012-08-01

    The aim of this study was to investigate the potential relationship between excess post-exercise oxygen consumption (EPOC), heart rate recovery (HRR) and their respective time constants (tvo2 and t HR) and body composition and aerobic fitness (VO2max) variables after an anaerobic effort. 14 professional cyclists (age=28.4±4.8 years, height=176.0±6.7 cm, body mass=74.4±8.1 kg, VO2max=66.8±7.6 mL·kg - 1·min - 1) were recruited. Each athlete made 3 visits to the laboratory with 24 h between each visit. During the first visit, a total and segmental body composition assessment was carried out. During the second, the athletes undertook an incremental test to determine VO2max. In the final visit, EPOC (15-min) and HRR were measured after an all-out 30 s Wingate test. The results showed that EPOC is positively associated with % body fat (r=0.64), total body fat (r=0.73), fat-free mass (r=0.61) and lower limb fat-free mass (r=0.55) and negatively associated with HRR (r= - 0.53, p<0.05 for all). HRR had a significant negative correlation with total body fat and % body fat (r= - 0.62, r= - 0.56 respectively, p<0.05 for all). These findings indicate that VO2max does not influence HRR or EPOC after high-intensity exercise. Even in short-term exercise, the major metabolic disturbance due to higher muscle mass and total muscle mass may increase EPOC. However, body fat impedes HRR and delays recovery of oxygen consumption after effort in highly trained athletes.

  2. Measurement of oxygen consumption in children undergoing cardiac catheterization: comparison between mass spectrometry and the breath-by-breath method.

    PubMed

    Guo, Long; Cui, Yong; Pharis, Scott; Walsh, Mark; Atallah, Joseph; Tan, Meng-Wei; Rutledge, Jennifer; Coe, J Y; Adatia, Ian

    2014-06-01

    Accurate measurement of oxygen consumption (VO2) is important to precise calculation of blood flow using the Fick equation. This study aimed to validate the breath-by-breath method (BBBM) of measuring oxygen consumption VO2 compared with respiratory mass spectroscopy (MS) for intubated children during cardiac catheterization. The study used MS and BBBM to measure VO2 continuously and simultaneously for 10 min in consecutive anesthetized children undergoing cardiac catheterization who were intubated with a cuffed endotracheal tube, ventilated mechanically, and hemodynamically stable, with normal body temperature. From 26 patients, 520 data points were obtained. The mean VO2 was 94.5 ml/min (95 % confidence interval [CI] 65.7-123.3 ml/min) as measured by MS and 91.4 ml/min (95 % CI 64.9-117.9 ml/min) as measured by BBBM. The mean difference in VO2 measurements between MS and BBBM (3.1 ml/min; 95 % CI -1.7 to +7.9 ml/min) was not significant (p = 0.19). The MS and BBBM VO2 measurements were highly correlated (R (2) = 0.98; P < 0.0001). Bland-Altman analysis showed good correspondence between MS and BBBM, with a mean difference of -3.01 and 95 % limits of agreement ranging from -26.2 to +20.0. The mean VO2 indexed to body surface area did not differ significantly between MS and BBBM (3.4 ml/min m(2); 95 % CI -1.4 to 8.2; p = 0.162). The mean difference and limits of agreement were -3.8 ml/min m(2) (range, -19.9 to 26.7). Both MS and BBBM may be used to measure VO2 in anesthetized intubated children undergoing cardiac catheterization. The two methods demonstrated excellent agreement. However, BBBM may be more suited to clinical use with children.

  3. Oxygen consumption and filtering rate of Daphnia Pulex after exposure to water-soluble fractions of naphthalene, phenanthrene, No. 2 fuel oil, and coal-tar creosote

    SciTech Connect

    Geiger, J.G.; Buikema, A.L.

    1981-12-01

    The effects of short-term exposure to water-soluble fractions (WSF) of naphthalene, phenanthrene, No. 2 fuel oil, and coal-tar creosote upon oxygen consumption and filtering rates of Daphnia pulex are examined. Approximately 60 young Daphnia were exposed to test solutions of LC20 and LC30 concentrations of WSF for at least three molt cycles. Oxygen consumption was determined by the azide modification of the Winkler Method (American Public Health Association et al. 1975). Algal counts were made for experimental and control bottles using an Electrozone electronic particle counter interfaced with a PDP-11 minicomputer. Filtering rates were computed and expressed as ml/Daphnia/day. Results indicate no significant differences in oxygen consumption rates. However, changes in filtering rates may be a sensitive indicator of sublethal stress. 3 tables (JMT)

  4. Validation of measurement protocols to assess oxygen consumption and blood flow in the human forearm by near-infrared spectroscopy

    NASA Astrophysics Data System (ADS)

    van Beekvelt, Mireille C.; Colier, Willy N.; van Engelen, Baziel G.; Hopman, Maria T.; Wevers, Ron A.; Oeseburg, Berend

    1997-12-01

    Near infrared spectroscopy (NIRS) has been used to monitor oxygenation changes in muscle. Quantitative values for O2 consumption, blood flow and venous saturation have been reported by several investigators. The amount of these measurements is, however, still limited and complete validation has not yet been established. The aim of this study was to investigate the different NIRS methods to calculate O2 consumption (VO2) and forearm blood flow (FBF) and to validate the data with the accepted method of strain-gauge plethysmography and blood sampling. Thirteen subjects were tested in rest and during static isometric handgrip exercise at 10% MVC. The NIRS optodes were positioned on the flexor region of the arm. A significant correlation was found between plethysmograph data and NIRS [tHb] during venous occlusion in rest (r EQ 0.925 - 0.994, P < 0.05) as well as during exercise (r equals 0.895 - 0.990, P < 0.05). No correlation was found, however, for the calculated FBF and VO2 values between NIRS and the combination of plethysmography and blood sampling. In rest nor during exercise. It seems that although NIRS is a good qualitative monitoring technique, quantification is difficult due to the great variability that is found between the subjects.

  5. Validation of measurement protocols to assess oxygen consumption and blood flow in the human forearm by near-infrared spectroscopy

    NASA Astrophysics Data System (ADS)

    Van Beekvelt, Mireille C. P.; Colier, Willy N.; van Engelen, Baziel G. M.; Hopman, Maria T. E.; Wevers, Ron A.; Oeseburg, Berend

    1998-01-01

    Near infrared spectroscopy (NIRS) has been used to monitor oxygenation changes in muscle. Quantitative values for O2 consumption, blood flow and venous saturation have been reported by several investigators. The amount of these measurements is, however, still limited and complete validation has not yet been established. The aim of this study was to investigate the different NIRS methods to calculate O2 consumption (VO2) and forearm blood flow (FBF) and to validate the data with the accepted method of strain-gauge plethysmography and blood sampling. Thirteen subjects were tested in rest and during static isometric handgrip exercise at 10% MVC. The NIRS optodes were positioned on the flexor region of the arm. A significant correlation was found between plethysmograph data and NIRS [tHb] during venous occlusion in rest (r EQ 0.925 - 0.994, P < 0.05) as well as during exercise (r equals 0.895 - 0.990, P < 0.05). No correlation was found, however, for the calculated FBF and VO2 values between NIRS and the combination of plethysmography and blood sampling. In rest nor during exercise. It seems that although NIRS is a good qualitative monitoring technique, quantification is difficult due to the great variability that is found between the subjects.

  6. Excited states in the active media of oxygen - iodine lasers

    SciTech Connect

    Azyazov, V N

    2009-11-30

    A review of investigations of kinetic processes in active media oxygen - iodine lasers (OILs) performed in the last decade is presented. The mechanisms of pumping and quenching of electronically and vibrationally excited O{sub 2} and I{sub 2} molecules are considered, and dissociation mechanisms of I{sub 2} in the active medium of the OIL are analysed. The values of kinetic constants of processes proceeding in the active media of OILs are recommended. (review)

  7. Where the O2 goes to: preservation of human fetal oxygen delivery and consumption at high altitude

    PubMed Central

    Postigo, Lucrecia; Heredia, Gladys; Illsley, Nicholas P; Torricos, Tatiana; Dolan, Caitlin; Echalar, Lourdes; Tellez, Wilma; Maldonado, Ivan; Brimacombe, Michael; Balanza, Elfride; Vargas, Enrique; Zamudio, Stacy

    2009-01-01

    Fetal growth is decreased at high altitude (> 2700 m). We hypothesized that variation in fetal O2 delivery might account for both the altitude effect and the relative preservation of fetal growth in multigenerational natives to high altitude. Participants were 168 women of European or Andean ancestry living at 3600 m or 400 m. Ancestry was genetically confirmed. Umbilical vein blood flow was measured using ultrasound and Doppler. Cord blood samples permitted calculation of fetal O2 delivery and consumption. Andean fetuses had greater blood flow and oxygen delivery than Europeans and weighed more at birth, regardless of altitude (+208 g, P < 0.0001). Fetal blood flow was decreased at 3600 m (P < 0.0001); the decrement was similar in both ancestry groups. Altitude-associated decrease in birth weight was greater in Europeans (−417 g) than Andeans (−228 g, P < 0.005). Birth weight at 3600 m was > 200 g lower for Europeans at any given level of blood flow or O2 delivery. Fetal haemoglobin concentration was increased, decreased, and the fetal / curve was left-shifted at 3600 m. Fetuses receiving less O2 extracted more (r2= 0.35, P < 0.0001). These adaptations resulted in similar fetal O2 delivery and consumption across all four groups. Increased umbilical venous O2 delivery correlated with increased fetal O2 consumption per kg weight (r2= 0.50, P < 0.0001). Blood flow (r2= 0.16, P < 0.001) and O2 delivery (r2= 0.17, P < 0.001) correlated with birth weight at 3600 m, but not at 400 m (r2= 0.04, and 0.03, respectively). We concluded that the most pronounced difference at high altitude is reduced fetal blood flow, but fetal haematological adaptation and fetal capacity to increase O2 extraction indicates that deficit in fetal oxygen delivery is unlikely to be causally associated with the altitude- and ancestry-related differences in fetal growth. PMID:19074967

  8. Analysis of the application of the generalized monod kinetics model to describe the human corneal oxygen-consumption rate during soft contact lens wear.

    PubMed

    Compañ, V; Aguilella-Arzo, M; Del Castillo, L F; Hernández, S I; Gonzalez-Meijome, J M

    2016-07-26

    This work is an analysis of the application of the generalized Monod kinetics model describing human corneal oxygen consumption during soft contact lens wear to models previously used by Chhabra et al. (J Biomed Mater Res B Appl Biomater, 2009a;90:202-209, Optom Vis Sci 2009b;86:454-466) and Larrea and Büchler (Invest Ophthalmol Vis Sci 2009;50:1076-1080). We use oxygen tension from in vivo estimations provided by Bonanno [Bonanno et al., Invest Ophthalmol Vis Sci 2002;43:371-376, and Bonanno et al 2009]. We consider four hydrogel and six silicone hydrogel lenses. The cornea is considered a single homogeneous layer, with constant oxygen permeability regardless of the type of lens worn. Our calculations yield different values for the maximum oxygen consumption rate Qc,max , whith differents oxygen tensions (high and low pc ) at the cornea-tears interface. Surprisingly, for both models, we observe an increase in oxygen consumption near an oxygen tension of 105 mmHg until a maximum is reached, then decreasing for higher levels of oxygen pressure. That is, when lowering the pressure of oxygen, the parameter Qc,max initially increases depending on the intensity of the change in pressure. Which, it could be related with the variation of the pH. Furthermore, it is also noted that to greater reductions in pressure, this parameter decreases, possibly due to changes in the concentration of glucose related to the anaerobic respiration. The averaged in vivo human corneal oxygen consumption rate of 1.47 × 10(-4) cm(3) of O2 /cm(3) tissue s, with Monod kinetics model, considering all the lenses studied, is smaller than the average oxygen consumption rate value obtained using the Larrea and Büchler model. The impact that these calculations have on the oxygen partial pressure available at different depths in the corneal tissue is presented and discussed, taking into consideration previous models used in this study. © 2016 Wiley Periodicals, Inc. J Biomed Mater Res Part B: Appl

  9. High temporal resolution MRI quantification of global cerebral metabolic rate of oxygen consumption in response to apneic challenge.

    PubMed

    Rodgers, Zachary B; Jain, Varsha; Englund, Erin K; Langham, Michael C; Wehrli, Felix W

    2013-10-01

    We present a technique for quantifying global cerebral metabolic rate of oxygen consumption (CMRO2) in absolute physiologic units at 3-second temporal resolution and apply the technique to quantify the dynamic CMRO2 response to volitional apnea. Temporal resolution of 3 seconds was achieved via a combination of view sharing and superior sagittal sinus-based estimation of total cerebral blood flow (tCBF) rather than tCBF measurement in the neck arteries. These modifications were first validated in three healthy adults and demonstrated to produce minimal errors in image-derived blood flow and venous oxygen saturation (SvO2) values. The technique was then applied in 10 healthy adults during an apnea paradigm of three repeated 30-second breath-holds. Subject-averaged baseline tCBF, arteriovenous oxygen difference (AVO2D), and CMRO2 were 48.6 ± 7.0 mL/100 g per minute, 29.4 ± 3.4 %HbO2, and 125.1 ± 11.4 μmol/100 g per minute, respectively. Subject-averaged maximum changes in tCBF and AVO2D were 43.5 ± 9.4% and -32.1 ± 5.7%, respectively, resulting in a small (6.0 ± 3.5%) but statistically significant (P=0.00044, two-tailed t-test) increase in average end-apneic CMRO2. This method could be used to investigate neurometabolic-hemodynamic relationships in normal physiology, to better define the biophysical origins of the BOLD signal, and to quantify neurometabolic responsiveness in diseases of altered neurovascular reactivity.

  10. The relationship between heart rate and rate of oxygen consumption in Galapagos marine iguanas (Amblyrhynchus cristatus) at two different temperatures.

    PubMed

    Butler, Patrick J; Frappell, Peter B; Wang, Tobias; Wikelski, Martin

    2002-07-01

    To enable the use of heart rate (fH) for estimating field metabolic rate (FMR) in free-ranging Galapagos marine iguanas Amblyrhynchus cristatus, we determined the relationships between fH and mass-specific rate of oxygen consumption (sVO2) in seven iguanas before and during exercise on a treadmill and during the post-exercise period. The experiments were conducted at 27 and 35 degrees C, which are the temperatures that represent the lowest and highest average body temperatures of these animals in the field during summer. There were linear and significant relationships between fH and sVO2 at both temperatures (r(2)=0.86 and 0.91 at 27 degrees C and 36 degrees C, respectively). The slopes of the two regression lines did not differ, but there were significant differences in their intercepts. Thus, while heart rate can be used to predict FMR, the effects of temperature on the intercept of the regression must be taken into account when converting fH to sVO2. On the basis of our data, this can be achieved by applying the following formula: sVO2=0.0113fH-0.2983Q(10)((T(b)-27)/10). The increase in sVO2 with elevated body temperature results from an increase in fH, with no significant change in mass-specific oxygen pulse (sO(2) pulse; cardiac stroke volume times the difference in oxygen content between arterial and mixed venous blood). However, during exercise at both temperatures, increases in fH are insufficient to provide all of the additional O(2) required and there are also significant increases in the sO(2) pulses. This creates the situation whereby the same fH at the two temperatures can represent different values of sVO2.

  11. Organic matter fluxes and the sites of oxygen consumption in deep water

    NASA Astrophysics Data System (ADS)

    Tsunogai, Shizuo; Noriki, Shinichiro

    1987-06-01

    Sediment trap experiments at various stations in the Pacific and Antarctic Ocean compare observed particulate organic carbon fluxes with those obtained indirectly from vertical profiles of dissolved oxygen in the Pacific deep water. The observed carbon fluxes are characterized by large spatial variation and small vertical variation. The organic carbon fluxes at the 1000 m level ranged from 2 mg C m -2 d -1 in the subtropical ocean to more than 100 mg C m -2 d -1 in the highly productive subpolar sea, and decreased by 25 ± 10% at intervals 1000 m in depth. These results suggest that much particulate matter is transferred rapidly to the bottom of comparatively small areas of the polar, subpolar, hemipelagic and coastal seas and degraded there, and that the bottom water imprint resulting from the effects of degradation of particulate matter is transported fairly quickly to the pelagic ocean by isopycnal mixing and advection. Many unsolved phenomena occurring in the deep ocean can be explained by this suggestion.

  12. Diffusion of oxygen through activated sludge flocs: experimental measurement, modeling, and implications for simultaneous nitrification and denitrification.

    PubMed

    Daigger, Glen T; Adams, Craig D; Steller, Holley Kaempfer

    2007-04-01

    Diffusion of dissolved oxygen through activated sludge flocs was studied, as it represents a potential mechanism for simultaneous nitrification and denitrification in activated sludge systems. Dissolved oxygen profiles through six floc particles collected at different times from a full-scale activated sludge plant demonstrated that that the dissolved oxygen concentration declines through all floc particles. For larger floc particles (2-mm diameter and greater), the dissolved oxygen concentration reached near-zero values at depths depending on process operating conditions. A mathematical model based on diffusion of dissolved oxygen, organic substrate (methanol), ammonia, nitrite, and nitrate through a spherical floc and consumption of dissolved oxygen by heterotrophs and autotrophs accurately predicted the dissolved oxygen profile and required adjustment of only one model parameter--the concentration of heterotrophs. A different dissolved oxygen decline pattern was exhibited for the smaller floc particles characterized, with the dissolved oxygen reaching a non-zero plateau toward the center of the floc. This pattern was not reproduced with the mathematical model developed and suggests that additional mechanisms are responsible for the transport of dissolved oxygen into the center of these flocs. Implications of these results regarding the occurrence of simultaneous nitrification and denitrification include consideration of the factors that affect floc size and distribution (simultaneous nitrification and denitrification is maximized with larger floc particles), coupling of the International Water Association (London) activated models to predict activated sludge composition with diffusion models to consider intrafloc effects, and the effects of substrate diffusion on the apparent half-saturation constant for various substrates in activated sludge systems.

  13. No effect of acute beetroot juice ingestion on oxygen consumption, glucose kinetics, or skeletal muscle metabolism during submaximal exercise in males.

    PubMed

    Betteridge, Scott; Bescós, Raúl; Martorell, Miquel; Pons, Antoni; Garnham, Andrew P; Stathis, Christos C; McConell, Glenn K

    2016-02-15

    Beetroot juice, which is rich in nitrate (NO3 (-)), has been shown in some studies to decrease oxygen consumption (V̇o2) for a given exercise workload, i.e., increasing efficiency and exercise tolerance. Few studies have examined the effect of beetroot juice or nitrate supplementation on exercise metabolism. Eight healthy recreationally active males participated in three trials involving ingestion of either beetroot juice (Beet; ∼8 mmol NO3 (-)), Placebo (nitrate-depleted Beet), or Beet + mouthwash (Beet+MW), all of which were performed in a randomized single-blind crossover design. Two-and-a-half hours later, participants cycled for 60 min on an ergometer at 65% of V̇o2 peak. [6,6-(2)H]glucose was infused to determine glucose kinetics, blood samples obtained throughout exercise, and skeletal muscle biopsies that were obtained pre- and postexercise. Plasma nitrite [NO2 (-)] increased significantly (∼130%) with Beet, and this was attenuated in MW+Beet. Beet and Beet+MW had no significant effect on oxygen consumption, blood glucose, blood lactate, plasma nonesterified fatty acids, or plasma insulin during exercise. Beet and Beet+MW also had no significant effect on the increase in glucose disposal during exercise. In addition, Beet and Beet+MW had no significant effect on the decrease in muscle glycogen and phosphocreatine and the increase in muscle creatine, lactate, and phosphorylated acetyl CoA carboxylase during exercise. In conclusion, at the dose used, acute ingestion of beetroot juice had little effect on skeletal muscle metabolism during exercise.

  14. Twin-sibling study and meta-analysis on the heritability of maximal oxygen consumption

    PubMed Central

    Nederend, Ineke; Hudziak, James J.; Bartels, Meike; de Geus, Eco J. C.

    2016-01-01

    Large individual differences exist in aerobic fitness in childhood and adolescence, but the relative contribution of genetic factors to this variation remains to be established. In a sample of adolescent twins and siblings (n = 479), heart rate (HR) and maximal oxygen uptake (V̇o2max) were recorded during the climax of a graded maximal exercise test. In addition, V̇o2max was predicted in two graded submaximal exercise tests on the cycle ergometer and the treadmill, using extrapolation of the HR/V̇o2 curve to the predicted HRmax. Heritability estimates for measured V̇o2max were 60% in ml/min and 55% for V̇o2max in ml·min−1·kg−1. Phenotypic correlations between measured V̇o2max and predicted V̇o2max from either submaximal treadmill or cycle ergometer tests were modest (0.57 < r < 0.70), in part because of the poor agreement between predicted and actual HRmax. The majority of this correlation was explained by genetic factors; therefore, the submaximal exercise tests still led to very comparable estimates of heritability of V̇o2max. To arrive at a robust estimate for the heritability of V̇o2max in children to young adults, a sample size weighted meta-analysis was performed on all extant twin and sibling studies in this age range. Eight studies, including the current study, were meta-analyzed and resulted in a weighted heritability estimate of 59% (ml/min) and 72% (ml·min−1·kg−1) for V̇o2max. Taken together, the twin-sibling study and meta-analyses showed that from childhood to early adulthood genetic factors determine more than half of the individual differences in V̇o2max. PMID:26787216

  15. Twin-sibling study and meta-analysis on the heritability of maximal oxygen consumption.

    PubMed

    Schutte, Nienke M; Nederend, Ineke; Hudziak, James J; Bartels, Meike; de Geus, Eco J C

    2016-03-01

    Large individual differences exist in aerobic fitness in childhood and adolescence, but the relative contribution of genetic factors to this variation remains to be established. In a sample of adolescent twins and siblings (n = 479), heart rate (HR) and maximal oxygen uptake (V̇o2max) were recorded during the climax of a graded maximal exercise test. In addition, V̇o2max was predicted in two graded submaximal exercise tests on the cycle ergometer and the treadmill, using extrapolation of the HR/V̇o2 curve to the predicted HRmax. Heritability estimates for measured V̇o2max were 60% in ml/min and 55% for V̇o2max in ml·min(-1)·kg(-1). Phenotypic correlations between measured V̇o2max and predicted V̇o2max from either submaximal treadmill or cycle ergometer tests were modest (0.57 < r < 0.70), in part because of the poor agreement between predicted and actual HRmax. The majority of this correlation was explained by genetic factors; therefore, the submaximal exercise tests still led to very comparable estimates of heritability of V̇o2max. To arrive at a robust estimate for the heritability of V̇o2max in children to young adults, a sample size weighted meta-analysis was performed on all extant twin and sibling studies in this age range. Eight studies, including the current study, were meta-analyzed and resulted in a weighted heritability estimate of 59% (ml/min) and 72% (ml·min(-1)·kg(-1)) for V̇o2max. Taken together, the twin-sibling study and meta-analyses showed that from childhood to early adulthood genetic factors determine more than half of the individual differences in V̇o2max.

  16. Data on oxygen consumption rate, respiratory exchange ratio, and movement in C57BL/6J female mice on the third day of consuming a high-fat diet

    PubMed Central

    Marvyn, Phillip M.; Bradley, Ryan M.; Mardian, Emily B.; Marks, Kristin A.; Duncan, Robin E.

    2016-01-01

    Whole animal physiological measures were assessed following three days of either standard diet or high fat diet, in either the fasted or non-fasted states. Our data shows that acute 3-day high fat feeding increases whole body lipid oxidation. When this feeding protocol is followed by an overnight fast, oxygen consumption (VO2) in the light phase is reduced in both dietary groups, but oxygen consumption in the dark phase is only reduced in mice fed the high-fat diet. Furthermore, the fasting-induced rise in dark cycle activity level observed in mice maintained on a standard diet is abolished when mice are fed a high-fat diet. PMID:27014733

  17. A Qualitative Investigation of the Relationship between Consumption, Physical Activity, Eating Disorders, and Weight Consciousness

    ERIC Educational Resources Information Center

    Piazza-Gardner, Anna K.; Barry, Adam E.

    2014-01-01

    Background: Previous research has identified a positive relationship between alcohol consumption and disordered eating, alcohol consumption and physical activity, and physical activity and disordered eating. However, there is a paucity of published research examining the interrelatedness of all 3 behaviors together. Purpose: This study examines…

  18. Early Oxygen-Utilization and Brain Activity in Preterm Infants

    PubMed Central

    de Vries, Linda S.; Groenendaal, Floris; Toet, Mona C.; Lemmers, Petra M. A.; Vosse van de, Renè E.; van Bel, Frank; Benders, Manon J. N. L.

    2015-01-01

    The combined monitoring of oxygen supply and delivery using Near-InfraRed spectroscopy (NIRS) and cerebral activity using amplitude-integrated EEG (aEEG) could yield new insights into brain metabolism and detect potentially vulnerable conditions soon after birth. The relationship between NIRS and quantitative aEEG/EEG parameters has not yet been investigated. Our aim was to study the association between oxygen utilization during the first 6 h after birth and simultaneously continuously monitored brain activity measured by aEEG/EEG. Forty-four hemodynamically stable babies with a GA < 28 weeks, with good quality NIRS and aEEG/EEG data available and who did not receive morphine were included in the study. aEEG and NIRS monitoring started at NICU admission. The relation between regional cerebral oxygen saturation (rScO2) and cerebral fractional tissue oxygen extraction (cFTOE), and quantitative measurements of brain activity such as number of spontaneous activity transients (SAT) per minute (SAT rate), the interval in seconds (i.e. time) between SATs (ISI) and the minimum amplitude of the EEG in μV (min aEEG) were evaluated. rScO2 was negatively associated with SAT rate (β=-3.45 [CI=-5.76- -1.15], p=0.004) and positively associated with ISI (β=1.45 [CI=0.44-2.45], p=0.006). cFTOE was positively associated with SAT rate (β=0.034 [CI=0.009-0.059], p=0.008) and negatively associated with ISI (β=-0.015 [CI=-0.026- -0.004], p=0.007). Oxygen delivery and utilization, as indicated by rScO2 and cFTOE, are directly related to functional brain activity, expressed by SAT rate and ISI during the first hours after birth, showing an increase in oxygen extraction in preterm infants with increased early electro-cerebral activity. NIRS monitored oxygenation may be a useful biomarker of brain vulnerability in high-risk infants. PMID:25965343

  19. Mitochondrial respiration and genomic analysis provide insight into the influence of the symbiotic bacterium on host trypanosomatid oxygen consumption.

    PubMed

    Azevedo-Martins, A C; Machado, A C L; Klein, C C; Ciapina, L; Gonzaga, L; Vasconcelos, A T R; Sagot, M F; DE Souza, W; Einicker-Lamas, M; Galina, A; Motta, M C M

    2015-02-01

    Certain trypanosomatids co-evolve with an endosymbiotic bacterium in a mutualistic relationship that is characterized by intense metabolic exchanges. Symbionts were able to respire for up to 4 h after isolation from Angomonas deanei. FCCP (carbonyl cyanide-4-(trifluoromethoxy)phenylhydrazone) similarly increased respiration in wild-type and aposymbiotic protozoa, though a higher maximal O2 consumption capacity was observed in the symbiont-containing cells. Rotenone, a complex I inhibitor, did not affect A. deanei respiration, whereas TTFA (thenoyltrifluoroacetone), a complex II activity inhibitor, completely blocked respiration in both strains. Antimycin A and cyanide, inhibitors of complexes III and IV, respectively, abolished O2 consumption, but the aposymbiotic protozoa were more sensitive to both compounds. Oligomycin did not affect cell respiration, whereas carboxyatractyloside (CAT), an inhibitor of the ADP-ATP translocator, slightly reduced O2 consumption. In the A. deanei genome, sequences encoding most proteins of the respiratory chain are present. The symbiont genome lost part of the electron transport system (ETS), but complex I, a cytochrome d oxidase, and FoF1-ATP synthase remain. In conclusion, this work suggests that the symbiont influences the mitochondrial respiration of the host protozoan.

  20. Reversible depression of oxygen consumption in isolated liver mitochondria during hibernation.

    PubMed

    Martin, S L; Maniero, G D; Carey, C; Hand, S C

    1999-01-01

    The biochemical mechanisms by which hibernators cool as they enter torpor are not fully understood. In order to examine whether rates of substrate oxidation vary as a function of hibernation, liver mitochondria were isolated from telemetered ground squirrels (Spermophilus lateralis) in five phases of their annual hibernation cycle: summer active, and torpid, interbout aroused, entrance, and arousing hibernators. Rates of state 3 and state 4 respiration were measured in vitro at 25 degrees C. Relative to mitochondria from summer-active animals, rates of state 3 respiration were significantly depressed in mitochondria from torpid animals yet fully restored during interbout arousals. These findings indicate that a depression of ADP-dependent respiration in liver mitochondria occurs during torpor and is reversed during the interbout arousals to euthermia. Because this inhibition was determined to be temporally independent of entrance and arousal, it is unlikely that active suppression of state 3 respiration causes entrance into torpor by facilitating metabolic depression. In contrast to the observed depression of state 3 respiration in torpid animals, state 4 respiration did not differ significantly among any of the five groups, suggesting that alterations in proton leak are not contributing appreciably to downregulation of respiration in hibernation.

  1. Impact of Dissolved Oxygen on Feed Conversion, Feed Consumption, and Growth of Blue Catfish Ictalurus furcatus, Channel Catfish I. punctatus, and Blue X Channel Catfish Hybrids

    Technology Transfer Automated Retrieval System (TEKTRAN)

    Studies were conducted in 15 1-acre and six ¼-acre ponds over several years to determine the effect of low dissolved oxygen (DO) concentration on food conversion ratio (FCR), food consumption, growth, and net production of blue catfish (BC), channel catfish (CC), and their hybrid (BC X CC). Control ...

  2. Changes to coral health and metabolic activity under oxygen deprivation

    PubMed Central

    Richmond, Robert H.

    2016-01-01

    On Hawaiian reefs, the fast-growing, invasive algae Gracilaria salicornia overgrows coral heads, restricting water flow and light, thereby smothering corals. Field data shows hypoxic conditions (dissolved oxygen (DO2) < 2 mg/L) occurring underneath algal mats at night, and concurrent bleaching and partial tissue loss of shaded corals. To analyze the impact of nighttime oxygen-deprivation on coral health, this study evaluated changes in coral metabolism through the exposure of corals to chronic hypoxic conditions and subsequent analyses of lactate, octopine, alanopine, and strombine dehydrogenase activities, critical enzymes employed through anaerobic respiration. Following treatments, lactate and octopine dehydrogenase activities were found to have no significant response in activities with treatment and time. However, corals subjected to chronic nighttime hypoxia were found to exhibit significant increases in alanopine dehydrogenase activity after three days of exposure and strombine dehydrogenase activity starting after one overnight exposure cycle. These findings provide new insights into coral metabolic shifts in extremely low-oxygen environments and point to ADH and SDH assays as tools for quantifying the impact of hypoxia on coral health. PMID:27114888

  3. Activated oxygen alters cerebral microvascular responses in newborn pigs

    SciTech Connect

    Leffler, C.W.; Busiia, D.W.; Armstead, W.M.; Mirro, R.; Thelin, O. )

    1990-02-26

    In piglets, cerebral ischemia/reperfusion blocks prostanoid dependent cerebral vasodilation to hypercapnia (CO{sub 2}) and hypotension but not prostanoid independent dilation to isoproterenol (Isu) or constriction to norepinephrine (NE). Ischemia/reperfusion increases activated-O{sub 2} production by piglet brains. Using cranial windows in piglets, the authors investigated the hypothesis that activated oxygen can block prostanoid dependent cerebral vasodilator responses to CO{sub 2} and hypotension without altering responses to Isu and NE. Exposure to an activated oxygen generating system of xanthine oxidase, hypoxanthine, and Fe that made about 3 times the activated-O{sub 2} on the brain surface as ischemia/reperfusion caused reversible pial arteriolar dilation. After exposure, pial arteriolar dilation was reduced to CO{sub 2} and hypotension but not to Isu. NE constrictor responses were also unaltered. H{sub 2}O{sub 2} or H{sub 2}O{sub 2} + Fe caused constriction followed by reversible dilation. After exposure, pial arteriolar dilation in response to CO{sub 2} and hypotension was not altered. However, addition of xanthine oxidase and hypoxanthine with H{sub 2}O{sub 2} and Fe totally eliminated pial arteriolar dilator responses to CO{sub 2} and hypotension but did not decrease dilation caused by Isu or constriction caused by NE. The authors conclude that activated oxygen could produce the altered prostanoid dependent pial arteriolar responses observed following ischemia in piglets.

  4. Metabolic profile analysis of a single developing zebrafish embryo via monitoring of oxygen consumption rates within a microfluidic device.

    PubMed

    Huang, Shih-Hao; Huang, Kuo-Sheng; Yu, Chu-Hung; Gong, Hong-Yi

    2013-01-01

    A combination of a microfluidic device with a light modulation system was developed to detect the oxygen consumption rate (OCR) of a single developing zebrafish embryo via phase-based phosphorescence lifetime detection. The microfluidic device combines two components: an array of glass microwells containing Pt(II) octaethylporphyrin as an oxygen-sensitive luminescent layer and a microfluidic module with pneumatically actuated glass lids above the microwells to controllably seal the microwells of interest. The total basal respiration (OCR, in pmol O2/min/embryo) of a single developing zebrafish embryo inside a sealed microwell has been successfully measured from the blastula stage (3 h post-fertilization, 3 hpf) through the hatching stage (48 hpf). The total basal respiration increased in a linear and reproducible fashion with embryonic age. Sequentially adding pharmacological inhibitors of bioenergetic pathways allows us to perform respiratory measurements of a single zebrafish embryo at key developmental stages and thus monitor changes in mitochondrial function in vivo that are coordinated with embryonic development. We have successfully measured the metabolic profiles of a single developing zebrafish embryo from 3 hpf to 48 hpf inside a microfluidic device. The total basal respiration is partitioned into the non-mitochondrial respiration, mitochondrial respiration, respiration due to adenosine triphosphate (ATP) turnover, and respiration due to proton leak. The changes in these respirations are correlated with zebrafish embryonic development stages. Our proposed platform provides the potential for studying bioenergetic metabolism in a developing organism and for a wide range of biomedical applications that relate mitochondrial physiology and disease.

  5. The influence of dairy consumption and physical activity on ultrasound bone measurements in Flemish children.

    PubMed

    De Smet, Stephanie; Michels, Nathalie; Polfliet, Carolien; D'Haese, Sara; Roggen, Inge; De Henauw, Stefaan; Sioen, Isabelle

    2015-03-01

    The study's aim was to analyse whether children's bone status, assessed by calcaneal ultrasound measurements, is influenced by dairy consumption and objectively measured physical activity (PA). Moreover, the interaction between dairy consumption and PA on bone mass was studied. Participants of this cross-sectional study were 306 Flemish children (6-12 years). Body composition was measured with air displacement plethysmography (BodPod), dairy consumption with a Food Frequency Questionnaire, PA with an accelerometer (only in 234 of the 306 children) and bone mass with quantitative ultrasound, quantifying speed of sound (SOS), broadband ultrasound attenuation (BUA) and Stiffness Index (SI). Regression analyses were used to study the associations between dairy consumption, PA, SOS, BUA and SI. Total dairy consumption and non-cheese dairy consumption were positively associated with SOS and SI, but no significant association could be demonstrated with BUA. In contrast, milk consumption, disregarding other dairy products, had no significant effect on calcaneal bone measurements. PA [vigorous PA, moderate to vigorous physical activity (MVPA) and counts per minute] was positively associated and sedentary time was negatively associated with BUA and SI, but no significant influence on SOS could be detected. Dairy consumption and PA (sedentary time and MVPA) did not show any interaction influencing bone measurements. In conclusion, even at young age, PA and dairy consumption positively influence bone mass. Promoting PA and dairy consumption in young children may, therefore, maximize peak bone mass, an important protective factor against osteoporosis later in life.

  6. Effects of Deepwater Horizon crude oil exposure, temperature and developmental stage on oxygen consumption of embryonic and larval mahi-mahi (Coryphaena hippurus).

    PubMed

    Pasparakis, Christina; Mager, Edward M; Stieglitz, John D; Benetti, Daniel; Grosell, Martin

    2016-12-01

    The timing and location of the 2010 Deepwater Horizon (DWH) incident within the Gulf of Mexico resulted in crude oil exposure of many commercially and ecologically important fish species, such as mahi-mahi (Coryphaena hippurus), during the sensitive early life stages. Previous research has shown that oil exposure during the embryonic stage of predatory pelagic fish reduces cardiac function - a particularly important trait for fast-swimming predators with high aerobic demands. However, it is unclear whether reductions in cardiac function translate to impacts on oxygen consumption in these developing embryos and larvae. A 24-channel optical-fluorescence oxygen-sensing system for high-throughput respiration measurements was used to investigate the effects of oil exposure, temperature and developmental stage on oxygen consumption rates in embryonic and larval mahi-mahi. Oil-exposed developing mahi-mahi displayed increased oxygen consumption, despite clear cardiac deformities and bradycardia, confirming oxygen uptake and delivery from a source other than the circulatory system. In addition to metabolic rate measurements, nitrogenous waste excretion was measured to test the hypothesis that increased energy demand was fueled by protein catabolism. This is the first study to our knowledge that demonstrates increased energy demand and energy depletion in oil-exposed developing mahi-mahi.

  7. Activation mechanism of Gi and Go by reactive oxygen species.

    PubMed

    Nishida, Motohiro; Schey, Kevin L; Takagahara, Shuichi; Kontani, Kenji; Katada, Toshiaki; Urano, Yasuteru; Nagano, Tetsuo; Nagao, Taku; Kurose, Hitoshi

    2002-03-15

    Reactive oxygen species are proposed to work as intracellular mediators. One of their target proteins is the alpha subunit of heterotrimeric GTP-binding proteins (Galpha(i) and Galpha(o)), leading to activation. H(2)O(2) is one of the reactive oxygen species and activates purified Galpha(i2). However, the activation requires the presence of Fe(2+), suggesting that H(2)O(2) is converted to more reactive species such as c*OH. The analysis with mass spectrometry shows that seven cysteine residues (Cys(66), Cys(112), Cys(140), Cys(255), Cys(287), Cys(326), and Cys(352)) of Galpha(i2) are modified by the treatment with *OH. Among these cysteine residues, Cys(66), Cys(112), Cys(140), Cys(255), and Cys(352) are not involved in *OH-induced activation of Galpha(i2). Although the modification of Cys(287) but not Cys(326) is required for subunit dissociation, the modification of both Cys(287) and Cys(326) is necessary for the activation of Galpha(i2) as determined by pertussis toxin-catalyzed ADP-ribosylation, conformation-dependent change of trypsin digestion pattern or guanosine 5'-3-O-(thio)triphosphate binding. Wild type Galpha(i2) but not Cys(287)- or Cys(326)-substituted mutants are activated by UV light, singlet oxygen, superoxide anion, and nitric oxide, indicating that these oxidative stresses activate Galpha(i2) by the mechanism similar to *OH-induced activation. Because Cys(287) exists only in G(i) family, this study explains the selective activation of G(i)/G(o) by oxidative stresses.

  8. Effects of auricular acupuncture on heart rate, oxygen consumption and blood lactic acid for elite basketball athletes.

    PubMed

    Lin, Zen-Pin; Chen, Yi-Hung; Fan, Chia; Wu, Huey-June; Lan, Lawrence W; Lin, Jaung-Geng

    2011-01-01

    This study investigated the effects of auricular acupuncture on athletes' recovery abilities after exercise. Subjects were selected from twenty-four male elite university basketball players, randomly divided into two groups: auricular acupuncture group (AAG), and normal control group (NCG), each group containing twelve subjects. Auricular acupuncture was experimented to each AAG athlete while no auricular acupuncture was conducted to each NCG athlete. Each subject in both groups performed a ride on the stationary bike until exhausted. The data of heart rate (HR(max)), oxygen consumption (VO(2 max)), and blood lactic acid were measured at four points of time: during the rest period after warm-ups and at the 5th, 30th and 60th minutes post-exercise, respectively. One-way ANOVA and repeated Scheffé methods were used to test the differences of the data between these two groups. The results showed that both HR(max) and blood lactic acid in AAG were significantly lower than those in NCG at the 30th and 60th minutes post-exercise. This suggests that auricular acupuncture can enhance athletes' recovery abilities after aggressive exercise.

  9. Noninvasive estimation of regional myocardial oxygen consumption by positron emission tomography with carbon-11 acetate in patients with myocardial infarction

    SciTech Connect

    Walsh, M.N.; Geltman, E.M.; Brown, M.A.; Henes, C.G.; Weinheimer, C.J.; Sobel, B.E.; Bergmann, S.R. )

    1989-11-01

    We previously demonstrated in experimental studies that myocardial oxygen consumption (MVO2) can be estimated noninvasively with positron emission tomography (PET) from analysis of the myocardial turnover rate constant (k) after administration of carbon-11 (11C) acetate. To determine regional k in healthy human subjects and to estimate alterations in MVO2 accompanying myocardial ischemia, we administered (11C)acetate to five healthy human volunteers and to six patients with myocardial infarction. Extraction of (11C)acetate by the myocardium was avid and clearance from the blood-pool rapid yielding myocardial images of excellent quality. Regional k was homogeneous in myocardium of healthy volunteers (coefficient variation = 11%). In patients, k in regions remote from the area of infarction was not different from values in myocardium of healthy human volunteers (0.061 +/- 0.025 compared with 0.057 +/- 0.008 min-1). In contrast, MVO2 in the center of the infarct region was only 6% of that in remote regions (p less than 0.01). In four patients studied within 48 hr of infarction and again more than seven days after the acute event, regional k and MVO2 did not change. The approach developed should facilitate evaluation of the efficacy of interventions designed to enhance recovery of jeopardized myocardium and permit estimation of regional MVO2 and metabolic reserve underlying cardiac disease of diverse etiologies.

  10. Movement, swimming speed, and oxygen consumption of juvenile white sturgeon in response to changing flows, water temperatures, and light level in the Snake River, Idaho

    SciTech Connect

    Geist, David R.; Brown, Richard S.; Cullinan, Valerie I.; Brink, Steve R.; Lepla, Kenneth B.; Bates, Phil; Chandler, James A.

    2005-07-01

    The flow of the Snake River downstream of Hells Canyon Dam, Idaho, frequently fluctuates as the dam responds to power production requirements. These flow fluctuations have the potential to increase the energy used by individual juvenile white sturgeon (Acipenser transmontanus) that move to avoid unfavorable habitat or that alter their swimming speeds to maintain position over a range of velocities. Following swimming respirometry experiments, a field study using electromyogram (EMG) and sonic telemetry evaluated whether sturgeon were being negatively affected by operations of Hells Canyon Dam during three study periods where flows were artificially fluctuated (247 to 856 m3/s), held high and stable (438 to 600 m3/s), or held low and stable (275 to 284 m3/s). Respirometry results confirmed that oxygen consumption of juvenile sturgeon increased with swim speed and was temperature dependent, and when corrected for fish mass, ranged from 140.2 to 306.5 mg O2 kg-1 h-1. The telemetry study showed that movements and activity levels, as measured by swimming speeds and oxygen consumption, of sturgeon were variable among fish and across study periods. When flows were held low and stable, sturgeon movement increased while activity levels decreased when compared to the study periods when flows were variable or were high and stable. Although the overall trend was for activity levels to be less during the study period when flows were low and stable, the majority of differences between study periods appeared to be due to differences in water temperature and light levels that changed during the three-month investigation. The results suggest high flows, even those of relatively short durations such as what occurs during load-following operations, restrict the movement of juvenile sturgeon, but do not result in an increase of energy expenditure, possibly because of morphological and behavioral adaptations to living in a high-velocity environment. This may have significant

  11. Maximal oxygen consumption increases with temperature in the European eel (Anguilla anguilla) through increased heart rate and arteriovenous extraction

    PubMed Central

    Claësson, Débora; Wang, Tobias; Malte, Hans

    2016-01-01

    Global warming results in increasing water temperature, which may represent a threat to aquatic ectotherms. The rising temperature affects ecology through physiology, by exerting a direct limiting effect on the individual. The mechanism controlling individual thermal tolerance is still elusive, but some evidence shows that the heart plays a central role, and that insufficient transport of oxygen to the respiring tissues may determine the thermal tolerance of animals. In this study, the influence of the heart in thermal limitation was investigated by measurements of aerobic scope in the European eel (Anguilla anguilla) together with measurements of cardiac output during rest and activity. Aerobic capacity was not limited by an acutely increased temperature in the European eel. Oxygen demand was met by an increase in heart rate and arteriovenous extraction. These findings suggest that thermal tolerance during exposure to acute temperature changes is not defined by oxygen transport capacity in the eel, and other mechanisms may play a central role in limiting thermal tolerance in these fish. PMID:27766150

  12. Maximal oxygen consumption increases with temperature in the European eel (Anguilla anguilla) through increased heart rate and arteriovenous extraction.

    PubMed

    Claësson, Débora; Wang, Tobias; Malte, Hans

    2016-01-01

    Global warming results in increasing water temperature, which may represent a threat to aquatic ectotherms. The rising temperature affects ecology through physiology, by exerting a direct limiting effect on the individual. The mechanism controlling individual thermal tolerance is still elusive, but some evidence shows that the heart plays a central role, and that insufficient transport of oxygen to the respiring tissues may determine the thermal tolerance of animals. In this study, the influence of the heart in thermal limitation was investigated by measurements of aerobic scope in the European eel (Anguilla anguilla) together with measurements of cardiac output during rest and activity. Aerobic capacity was not limited by an acutely increased temperature in the European eel. Oxygen demand was met by an increase in heart rate and arteriovenous extraction. These findings suggest that thermal tolerance during exposure to acute temperature changes is not defined by oxygen transport capacity in the eel, and other mechanisms may play a central role in limiting thermal tolerance in these fish.

  13. Removal of Biologically Active Organic Contaminants using Atomic Oxygen

    NASA Technical Reports Server (NTRS)

    Banks, Bruce A. (Inventor); Banks, Michael A. (Inventor); Banks, Eric B. (Inventor)

    2003-01-01

    Biomedical devices that are to come into contact with living tissue, such as prosthetic and other implants for the human body and the containers used to store and transport them, are together cleaned of non-living, but biologically active organic materials, including endotoxins such as lipopolysaccharides, and assembled into a hermetically sealed package without recontamination. This is achieved by cleaning both the device and package components together in an apparatus, which includes a hermetically sealed chamber, in which they are contacted with atomic oxygen which biocleans them, by oxidizing the biologically active organic materials. The apparatus also includes means for manipulating the device and container and hermetically sealing the cleaned device into the cleaned container to form the package. A calibrated witness coupon visually indicates whether or not the device and container have received enough exposure to the atomic oxygen to have removed the organic materials from their surfaces. Gamma radiation is then used to sterilize the device in the sealed container.

  14. Dietary and activity correlates of sugar-sweetened beverage consumption among adolescents

    PubMed Central

    Ranjit, Nalini; Evans, Martin H.; Byrd-Williams, Courtney; Evans, Alexandra E.; Hoelscher, Deanna M.

    2011-01-01

    OBJECTIVE To examine the dietary and activity correlates of sugar-sweetened beverage (SSB) consumption in middle and high-school children. METHODS Data were obtained from a cross-sectional survey of 15,283 middle and high school children in Texas, USA. Consumption of sodas and consumption of non-carbonated flavored and sports beverages (FSB) were examined separately for their associations with level of (a) unhealthy foods (fried meats, fries, desserts) and (b) healthy foods (vegetables, fruit, and milk) (c) physical activity including usual vigorous physical activity, and participation in organized physical activity, and (d) sedentary activity, including hours spent on TV, the computer, and videogames. RESULTS In both sexes, consumption of soda and FSB were systematically associated with a number of unhealthy dietary practices, as well as with sedentary behaviors. However, consumption of flavored and sports beverages showed significant positive graded associations with several healthy dietary practices and level of physical activity, while soda consumption showed no such associations with healthy behaviors. CONCLUSIONS Consumption of flavored and sports beverages coexists with healthy dietary and physical activity behaviors, suggesting popular misperception of these beverages as consistent with a healthy lifestyle. Assessment and obesity-prevention efforts targeting SSB need to distinguish between flavored and sports beverages from sodas. PMID:20876172

  15. Influence of uranium (VI) on the metabolic activity of stable multispecies biofilms studied by oxygen microsensors and fluorescence microscopy

    NASA Astrophysics Data System (ADS)

    Krawczyk-Bärsch, Evelyn; Grossmann, Kay; Arnold, Thuro; Hofmann, Susann; Wobus, Axel

    2008-11-01

    The effect of uranium added in ecologically relevant concentrations (1 × 10 -5 and 1 × 10 -6 M) to stable multispecies biofilms was studied by electrochemical oxygen microsensors with tip diameters of 10 μm and by confocal laser fluorescence microscopy (CLSM). The microsensor profile measurements in the stable multispecies biofilms exposed to uranium showed that the oxygen concentration decreased faster with increasing biofilm depth compared to the uranium free biofilms. In the uranium containing biofilms, the oxygen consumption, calculated from the steady-state microprofiles, showed high consumption rates of up to 61.7 nmol cm -3 s -1 in the top layer (0-70 μm) and much lower consumption rates in the lower zone of the biofilms. Staining experiments with 5-cyano-2,3-ditolyl tetrazolium chloride (CTC) and 4,6-diamidino-2-phenylindole (DAPI) confirmed the high respiratory activities of the bacteria in the upper layer. Analysis of the amplified 16S rRNA gene fragments showed that the addition of uranium in ecologically relevant concentrations did not change the bacterial diversity in the stable multispecies biofilms and is therefore not responsible for the different oxygen profiles in the biofilms. The fast decrease in the oxygen concentrations in the biofilm profiles showed that the bacteria in the top region of the biofilms, i.e., the metabolically most active biofilm zone, battle the toxic effects of aqueous uranium with an increased respiratory activity. This increased respiratory activity results in O 2 depleted zones closer to the biofilm/air interface which may trigger uranium redox processes, since suitable redox partners, e.g., extracellular polymeric substance (EPS) and other organics (e.g., metabolites), are sufficiently available in the biofilm porewaters. Such redox reactions may lead to precipitation of uranium (IV) solids and consequently to a removal of uranium from the aqueous phase.

  16. Oxygen Affects Gut Bacterial Colonization and Metabolic Activities in a Gnotobiotic Cockroach Model

    PubMed Central

    Tegtmeier, Dorothee; Thompson, Claire L.; Schauer, Christine

    2015-01-01

    The gut microbiota of termites and cockroaches represents complex metabolic networks of many diverse microbial populations. The distinct microenvironmental conditions within the gut and possible interactions among the microorganisms make it essential to investigate how far the metabolic properties of pure cultures reflect their activities in their natural environment. We established the cockroach Shelfordella lateralis as a gnotobiotic model and inoculated germfree nymphs with two bacterial strains isolated from the guts of conventional cockroaches. Fluorescence microscopy revealed that both strains specifically colonized the germfree hindgut. In diassociated cockroaches, the facultatively anaerobic strain EbSL (a new species of Enterobacteriaceae) always outnumbered the obligately anaerobic strain FuSL (a close relative of Fusobacterium varium), irrespective of the sequence of inoculation, which showed that precolonization by facultatively anaerobic bacteria does not necessarily favor colonization by obligate anaerobes. Comparison of the fermentation products of the cultures formed in vitro with those accumulated in situ indicated that the gut environment strongly affected the metabolic activities of both strains. The pure cultures formed the typical products of mixed-acid or butyrate fermentation, whereas the guts of gnotobiotic cockroaches accumulated mostly lactate and acetate. Similar shifts toward more-oxidized products were observed when the pure cultures were exposed to oxygen, which corroborated the strong effects of oxygen on the metabolic fluxes previously observed in termite guts. Oxygen microsensor profiles of the guts of germfree, gnotobiotic, and conventional cockroaches indicated that both gut tissue and microbiota contribute to oxygen consumption and suggest that the oxygen status influences the colonization success. PMID:26637604

  17. Oxygen Affects Gut Bacterial Colonization and Metabolic Activities in a Gnotobiotic Cockroach Model.

    PubMed

    Tegtmeier, Dorothee; Thompson, Claire L; Schauer, Christine; Brune, Andreas

    2015-12-04

    The gut microbiota of termites and cockroaches represents complex metabolic networks of many diverse microbial populations. The distinct microenvironmental conditions within the gut and possible interactions among the microorganisms make it essential to investigate how far the metabolic properties of pure cultures reflect their activities in their natural environment. We established the cockroach Shelfordella lateralis as a gnotobiotic model and inoculated germfree nymphs with two bacterial strains isolated from the guts of conventional cockroaches. Fluorescence microscopy revealed that both strains specifically colonized the germfree hindgut. In diassociated cockroaches, the facultatively anaerobic strain EbSL (a new species of Enterobacteriaceae) always outnumbered the obligately anaerobic strain FuSL (a close relative of Fusobacterium varium), irrespective of the sequence of inoculation, which showed that precolonization by facultatively anaerobic bacteria does not necessarily favor colonization by obligate anaerobes. Comparison of the fermentation products of the cultures formed in vitro with those accumulated in situ indicated that the gut environment strongly affected the metabolic activities of both strains. The pure cultures formed the typical products of mixed-acid or butyrate fermentation, whereas the guts of gnotobiotic cockroaches accumulated mostly lactate and acetate. Similar shifts toward more-oxidized products were observed when the pure cultures were exposed to oxygen, which corroborated the strong effects of oxygen on the metabolic fluxes previously observed in termite guts. Oxygen microsensor profiles of the guts of germfree, gnotobiotic, and conventional cockroaches indicated that both gut tissue and microbiota contribute to oxygen consumption and suggest that the oxygen status influences the colonization success.

  18. Quantifying the heterogeneity of hypoxic and anoxic areas in the Baltic Sea by a simplified coupled hydrodynamic-oxygen consumption model approach

    NASA Astrophysics Data System (ADS)

    Lehmann, Andreas; Hinrichsen, Hans-Harald; Getzlaff, Klaus; Myrberg, Kai

    2014-06-01

    The Baltic Sea deep waters suffer from extended areas of hypoxia and anoxia. Their intra- and inter-annual variability is mainly determined by saline inflows which transport oxygenated water to deeper layers. During the last decades, oxygen conditions in the Baltic Sea have generally worsened and thus, the extent of hypoxic as well as anoxic bottom water has increased considerably. Climate change may further increase hypoxia due to changes in the atmospheric forcing conditions resulting in less deep water renewal Baltic inflows, decreased oxygen solubility and increased respiration rates. Feedback from climate change can amplify effects from eutrophication. A decline in oxygen conditions has generally a negative impact on marine life in the Baltic Sea. Thus, a detailed description of the evolution of oxygenated, hypoxic and anoxic areas is particularly required when studying oxygen-related processes such as habitat utilization of spawning fish, survival rates of their eggs as well as settlement probability of juveniles. One of today's major challenges is still the modeling of deep water dissolved oxygen, especially for the Baltic Sea with its seasonal and quasi-permanent extended areas of oxygen deficiency. The detailed spatial and temporal evolution of the oxygen concentrations in the entire Baltic Sea have been simulated for the period 1970-2010 by utilizing a hydrodynamic Baltic Sea model coupled to a simple pelagic and benthic oxygen consumption model. Model results are in very good agreement with CTD/O2-profiles taken in different areas of the Baltic Sea. The model proved to be a useful tool to describe the detailed evolution of oxygenated, hypoxic and anoxic areas in the entire Baltic Sea. Model results are further applied to determine frequencies of the occurrence of areas of oxygen deficiency and cod reproduction volumes.

  19. The flavonols quercetin, myricetin, kaempferol, and galangin inhibit the net oxygen consumption by immune complex-stimulated human and rabbit neutrophils.

    PubMed

    Figueiredo-Rinhel, Andréa S G; Santos, Everton O L; Kabeya, Luciana M; Azzolini, Ana Elisa C S; Simões-Ambrosio, Livia M C; Lucisano-Valim, Yara M

    2014-01-01

    Stimulated human neutrophils exhibit increased net oxygen consumption (NOC) due to the conversion of O2 into the superoxide anion by the NADPH oxidase enzymatic complex during the respiratory burst. In several inflammatory diseases, overproduction of these oxidants causes tissue damage. The present study aims to: (a) optimize the experimental conditions used to measure the NOC in serum-opsonized zymosan (OZ)- and insoluble immune complex (i-IC)-stimulated human and rabbit neutrophils; and (b) compare the effect of four flavonols (quercetin, myricetin, kaempferol, and galangin) on this activity. We used a Clark-type oxygen electrode to measure the NOC of stimulated neutrophils. Eliciting the neutrophil respiratory burst with OZ and i-IC yielded similar maximum O2 uptake levels within the same species, but the human neutrophil NOC was almost four times higher than the rabbit neutrophil NOC. The optimal experimental conditions established for both cell types were 4 x 10(6) neutrophils mL(-1), 2 mg mL(-1) OZ, and 240 microg mL(-1) i-IC. Upon stimulation with OZ or i-IC, the tested flavonols reduced the human and rabbit neutrophil NOC in the same order of potency--quercetin and galangin were the most and the least potent, respectively. These compounds were around four times more effective in inhibiting the rabbit as compared to the human neutrophil NOC, respectively. The four flavonols were not toxic to human or rabbit neutrophils. The experimental conditions used are suitable for both the determination of human and rabbit neutrophil NOC and for the assessment of the modulatory effects of natural compounds on these activities. The relationship between the level of NOC and the inhibitory potency of the flavonols suggests that rabbit neutrophils can be useful experimental models to predict the effect of drugs on immune complex-stimulated human neutrophils.

  20. Non-linear scaling of oxygen consumption and heart rate in a very large cockroach species (Gromphadorhina portentosa): correlated changes with body size and temperature.

    PubMed

    Streicher, Jeffrey W; Cox, Christian L; Birchard, Geoffrey F

    2012-04-01

    Although well documented in vertebrates, correlated changes between metabolic rate and cardiovascular function of insects have rarely been described. Using the very large cockroach species Gromphadorhina portentosa, we examined oxygen consumption and heart rate across a range of body sizes and temperatures. Metabolic rate scaled positively and heart rate negatively with body size, but neither scaled linearly. The response of these two variables to temperature was similar. This correlated response to endogenous (body mass) and exogenous (temperature) variables is likely explained by a mutual dependence on similar metabolic substrate use and/or coupled regulatory pathways. The intraspecific scaling for oxygen consumption rate showed an apparent plateauing at body masses greater than about 3 g. An examination of cuticle mass across all instars revealed isometric scaling with no evidence of an ontogenetic shift towards proportionally larger cuticles. Published oxygen consumption rates of other Blattodea species were also examined and, as in our intraspecific examination of G. portentosa, the scaling relationship was found to be non-linear with a decreasing slope at larger body masses. The decreasing slope at very large body masses in both intraspecific and interspecific comparisons may have important implications for future investigations of the relationship between oxygen transport and maximum body size in insects.

  1. Development of a novel electrochemical system for oxygen control (ESOC) to examine dissolved oxygen inhibition on algal activity.

    PubMed

    Keymer, Philip C; Pratt, Steven; Lant, Paul A

    2013-09-01

    The development of an Electrochemical System for Oxygen Control (ESOC) for examining algal photosynthetic activity as a function of dissolved oxygen (DO) is outlined. The main innovation of the tool is coulombic titration in order to balance the electrochemical reduction of oxygen with the oxygen input to achieve a steady DO set-point. ESOC allows quantification of algal oxygen production whilst simultaneously maintaining a desired DO concentration. The tool was validated abiotically by comparison with a mass transfer approach for quantifying oxygenation. It was then applied to quantify oxygen inhibition of algal activity. Five experiments, using an enriched culture of Scenedesmus sp. as the inoculum, are presented. For each experiment, ESOC was used to quantify algal activity at a series of DO set-points. In all experiments substantial oxygen inhibition was observed at DO >30 mgO2 L-1. Inhibition was shown to fit a Hill inhibition model, with a common Hill coefficient of 0.22±0.07 L mg-1 and common log10  CI50 of 27.2±0.7 mg L-1. This is the first time that the oxygen inhibition kinetic parameters have been quantified under controlled DO conditions.

  2. Oxide Defect Engineering Enables to Couple Solar Energy into Oxygen Activation.

    PubMed

    Zhang, Ning; Li, Xiyu; Ye, Huacheng; Chen, Shuangming; Ju, Huanxin; Liu, Daobin; Lin, Yue; Ye, Wei; Wang, Chengming; Xu, Qian; Zhu, Junfa; Song, Li; Jiang, Jun; Xiong, Yujie

    2016-07-20

    Modern development of chemical manufacturing requires a substantial reduction in energy consumption and catalyst cost. Sunlight-driven chemical transformation by metal oxides holds great promise for this goal; however, it remains a grand challenge to efficiently couple solar energy into many catalytic reactions. Here we report that defect engineering on oxide catalyst can serve as a versatile approach to bridge light harvesting with surface reactions by ensuring species chemisorption. The chemisorption not only spatially enables the transfer of photoexcited electrons to reaction species, but also alters the form of active species to lower the photon energy requirement for reactions. In a proof of concept, oxygen molecules are activated into superoxide radicals on defect-rich tungsten oxide through visible-near-infrared illumination to trigger organic aerobic couplings of amines to corresponding imines. The excellent efficiency and durability for such a highly important process in chemical transformation can otherwise be virtually impossible to attain by counterpart materials.

  3. Is rate–pressure product of any use in the isolated rat heart? Assessing cardiac ‘effort’ and oxygen consumption in the Langendorff‐perfused heart

    PubMed Central

    Aksentijević, Dunja; Lewis, Hannah R.

    2016-01-01

    New Findings What is the central question of this study? Rate–pressure product (RPP) is commonly used as an index of cardiac ‘effort’. In canine and human hearts (which have a positive force–frequency relationship), RPP is linearly correlated with oxygen consumption and has therefore been widely adopted as a species‐independent index of cardiac work. However, given that isolated rodent hearts demonstrate a negative force–frequency relationship, its use in this model requires validation. What is the main finding and its importance? Despite its widespread use, RPP is not correlated with oxygen consumption (or cardiac ‘effort’) in the Langendorff‐perfused isolated rat heart. This lack of correlation was also evident when perfusions included a range of metabolic substrates, insulin or β‐adrenoceptor stimulation. Langendorff perfusion of hearts isolated from rats and mice has been used extensively for physiological, pharmacological and biochemical studies. The ability to phenotype these hearts reliably is, therefore, essential. One of the commonly used indices of function is rate–pressure product (RPP); a rather ill‐defined index of ‘work’ or, more correctly, ‘effort’. Rate–pressure product, as originally described in dog or human hearts, was shown to be correlated with myocardial oxygen consumption (MV˙O2). Despite its widespread use, the application of this index to rat or mouse hearts (which, unlike the dog or human, have a negative force–frequency relationship) has not been characterized. The aim of this study was to examine the relationship between RPP and MV˙O2 in Langendorff‐perfused rat hearts. Paced hearts (300–750 beats min−1) were perfused either with Krebs–Henseleit (KH) buffer (11 mm glucose) or with buffer supplemented with metabolic substrates and insulin. The arteriovenous oxygen consumption (MV˙O2) was recorded. Metabolic status was assessed using 31P magnetic resonance spectroscopy and lactate efflux

  4. Modelling aerobic biodegradation in vertical flow sand filters: impact of operational considerations on oxygen transfer and bacterial activity.

    PubMed

    Petitjean, A; Forquet, N; Wanko, A; Laurent, J; Molle, P; Mosé, R; Sadowski, A

    2012-05-01

    Oxygen renewal, as a prominent phenomenon for aerobic bacterial activity, deeply impacts Vertical Flow Constructed Wetland (VFCW) treatment efficiency. We introduce a multiphase model able to simulate multi-component transfer in VFCWs. It is based on a two-phase flow module, and a transport module. The flow module can quantify both water and air velocities throughout the filter during operation. The reactive transport module follows dissolved and gaseous oxygen concentrations, and the transport of solutes such as ammonium and readily biodegradable COD (Chemical Oxygen Demand). The consumption of components is governed by Monod-type kinetics. Heterotrophic and autotrophic bacteria, which are responsible for COD and ammonium degradation respectively, are part of the model components. The kinetics are based on the Constructed Wetlands Model 1. The results from the simulation tool were compared with existing experimental data, and two kinds of operation with VFCWs were investigated. The authors show strong interplay between oxygen renewal and bacterial consumption in case of sequential batch feeding with transient flooding of surface. Oxygen renewal is essentially convection mediated in such operation, while convection is not significant in non-flooding operation. Simulated bacterial patterns are impacted by the operation, both quantitatively and spatially. From a modelling point of view, the authors highlight some limitations of the biological model: the description of bacterial lysis processes needs to be enhanced, as well as ammonium adsorption to organic matter.

  5. Utilization of a BGO detector as an active oxygen target

    NASA Astrophysics Data System (ADS)

    Loveman, R.; Gozani, T.; Bendahan, J.; Krivicich, J.; Elias, E.; Altschuler, E.

    1994-12-01

    The (n, n'γx) cross section for the 6.13 MeV state in oxygen has recently become of general interest because of the possibility of using this process to assay oxygen as a part of non-intrusive inspections. Localized densities of carbon, oxygen, and nitrogen are particularly useful in determining the presence of explosives and/or drugs in containers of all sizes, from suitcases to cargo containers. The presence of oxygen in BGO (Bi 4Ge 3O 12) scintillator makes this detector suitable for use as an active target for the measurement of the energy dependence of the excitation, of the first (6.049 MeV O +) and second (6.130 MeV 3 -) excited states in 16O by fast neutron interactions. An active target functions as both a target and an active device such as a detector. The de-excitations of the 6.049 and 6.130 states take place by nuclear pair production and γ-ray emission respectively. There is a large probability of absorbing all of the de-excitation energy in the scintillator in either of these cases. Since the energies deposited in the scintillator by these transitions are very close, the de-excitations are indistinguishable. However, since the cross section for the excitation of the 6.13 MeV state is believed to be larger than that of the 6.049 MeV, the major measured features of the energy variations are those related to the second state. The validity of the technique was initially tested using (MCNP) calculations. The calculations established that the detected neutron count rate in the crystal was proportional to the cross-sections used as input for the calculations, and that the constant of proportionality did not vary with neutron energy. Subsequently, measurements were made with a BGO detector as an active oxygen target. The results clearly show a strong energy dependence including several resonances.

  6. Support nanostructure boosts oxygen transfer to catalytically active platinum nanoparticles.

    PubMed

    Vayssilov, Georgi N; Lykhach, Yaroslava; Migani, Annapaola; Staudt, Thorsten; Petrova, Galina P; Tsud, Nataliya; Skála, Tomáš; Bruix, Albert; Illas, Francesc; Prince, Kevin C; Matolín, Vladimír; Neyman, Konstantin M; Libuda, Jörg

    2011-04-01

    Interactions of metal particles with oxide supports can radically enhance the performance of supported catalysts. At the microscopic level, the details of such metal-oxide interactions usually remain obscure. This study identifies two types of oxidative metal-oxide interaction on well-defined models of technologically important Pt-ceria catalysts: (1) electron transfer from the Pt nanoparticle to the support, and (2) oxygen transfer from ceria to Pt. The electron transfer is favourable on ceria supports, irrespective of their morphology. Remarkably, the oxygen transfer is shown to require the presence of nanostructured ceria in close contact with Pt and, thus, is inherently a nanoscale effect. Our findings enable us to detail the formation mechanism of the catalytically indispensable Pt-O species on ceria and to elucidate the extraordinary structure-activity dependence of ceria-based catalysts in general.

  7. The effect of dietary restriction and menstrual cycle on excess post-exercise oxygen consumption (EPOC) in young women.

    PubMed

    Fukuba, Y; Yano, Y; Murakami, H; Kan, A; Miura, A

    2000-03-01

    The purpose of this study was to evaluate the effect of acute dietary restriction on excess post-exercise oxygen consumption (EPOC) in young women at two different phases of the menstrual cycle. Five young sedentary women (age 21-22 years) participated in this study. Each subject visited the laboratory eight times for measurement of EPOC. They performed cycle ergometer exercise for 60 min at a work rate corresponding to approximately 70% of VO2max under each four different conditions (i.e. standard diet/follicular phase (SF), standard diet/luteal phase (SL), restricted diet/follicular phase (RF) and restricted diet/luteal phase (RL)). The exercise was performed in the morning and VO2 was measured for the last 15 min of each hour for 7 h after the exercise. As a control, VO2 was also measured with an identical time schedule under the same four conditions but without exercise. EPOC was calculated as the difference of the VO2-time integral for 7 h between the exercise and control trial days in each of the four conditions (i.e. SL, SF, RL and RF). The diet was precisely controlled during 2 days (i.e. the test day and the day preceding it). The standard diet was 1600 kcal day-1 and the restricted diet was half of the standard diet. A two-way (dietary and menstrual cycle factors) ANOVA indicated that EPOC was significantly affected only by the dietary factor. The dietary restriction decreased EPOC compared to the standard dietary condition (SF 8.6 +/- 2.1, RF 5.3 +/- 1.6, SL 8.9 +/- 4.8, RL 4.0 +/- 1.2 l). These data indicate that for young sedentary women, EPOC is significantly lowered by prior acute dietary restriction but is not influenced by different phases of the menstrual cycle.

  8. Excess postexercise oxygen consumption is unaffected by the resistance and aerobic exercise order in an exercise session.

    PubMed

    Oliveira, Norton L; Oliveira, Jose

    2011-10-01

    The main purpose of this study was to compare the magnitude and duration of excess postexercise oxygen consumption (EPOC) after 2 exercise sessions with different exercise mode orders, resistance followed by aerobic exercise (R-A); aerobic by resistance exercise (A-R). Seven young men (19.6 ± 1.4 years) randomly underwent the 2 sessions. Aerobic exercise was performed on a treadmill for 30 minutes (80-85% of reserve heart rate). Resistance exercise consisted of 3 sets of 10 repetition maximum on 5 exercises. Previous to the exercise sessions, V(O2), heart rate, V(CO2), and respiratory exchange rate (RER) were measured for 15 minutes and again during recovery from exercise for 60 minutes. The EPOC magnitude was not significantly different between R-A (5.17 ± 2.26 L) and A-R (5.23 ± 2.48 L). Throughout the recovery period (60 minutes), V(O2) and HR values were significantly higher than those observed in the pre-exercise period (p < 0.05) in both exercise sessions. In the first 10 minutes of recovery, V(CO2) and RER declined to pre-exercise levels. Moreover, V(CO2) and RER values in A-R were significantly lower than in R-A. In conclusion, the main result of this study suggests that exercise mode order does not affect the EPOC magnitude and duration. Therefore, it is not necessary for an individual to consider the EPOC when making the decision as to which exercise mode is better to start a training session.

  9. Scaling the amplitudes of the circadian pattern of resting oxygen consumption, body temperature and heart rate in mammals.

    PubMed

    Mortola, Jacopo P; Lanthier, Clement

    2004-09-01

    We questioned whether the amplitudes of the circadian pattern of body temperature (T(b)), oxygen consumption (V (O(2))) and heart rate (HR) changed systematically among species of different body weight (W). Because bodies of large mass have a greater heat capacitance than those of smaller mass, if the relative amplitude (i.e., amplitude/mean value) of metabolic rate was constant, one would expect the T(b) oscillation to decrease with the increase in the species W. We compiled data of T(b), V (O(2)) and HR from a literature survey of over 200 studies that investigated the circadian pattern of these parameters. Monotremata, Marsupials and Chiroptera, were excluded because of their characteristically low metabolic rate and T(b). The peak-trough ratios of V (O(2)) (42 species) and HR (35 species) averaged, respectively, 1.57+/-0.08, and 1.35+/-0.07, and were independent of W. The daily high values of T(b) did not change, while the daily low T(b) values slightly increased, with the species W; hence, the high-low T(b) difference (57 species) decreased with W (3.3 degrees C.W(-0.13)). However, the decrease in T(b) amplitude with W was much less than expected from physical principles, and the high-low T(b) ratio remained significantly above unity even in the largest mammals. Thus, it appears that in mammals, despite the huge differences in physical characteristics, the amplitude of the circadian pattern is a fixed (for V (O(2)) and HR), or almost fixed (for T(b)), fraction of the 24-h mean value. Presumably, the amplitudes of the oscillations are controlled parameters of physiological significance.

  10. Inhibition of De Novo Ceramide Synthesis Reverses Diet-Induced Insulin Resistance and Enhances Whole-Body Oxygen Consumption

    PubMed Central

    Ussher, John R.; Koves, Timothy R.; Cadete, Virgilio J.J.; Zhang, Liyan; Jaswal, Jagdip S.; Swyrd, Suzanne J.; Lopaschuk, David G.; Proctor, Spencer D.; Keung, Wendy; Muoio, Deborah M.; Lopaschuk, Gary D.

    2010-01-01

    OBJECTIVE It has been proposed that skeletal muscle insulin resistance arises from the accumulation of intramyocellular lipid metabolites that impede insulin signaling, including diacylglycerol and ceramide. We determined the role of de novo ceramide synthesis in mediating muscle insulin resistance. RESEARCH DESIGN AND METHODS Mice were subjected to 12 weeks of diet-induced obesity (DIO), and then treated for 4 weeks with myriocin, an inhibitor of serine palmitoyl transferase-1 (SPT1), the rate-limiting enzyme of de novo ceramide synthesis. RESULTS After 12 weeks of DIO, C57BL/6 mice demonstrated a doubling in gastrocnemius ceramide content, which was completely reversed (141.5 ± 15.8 vs. 94.6 ± 10.2 nmol/g dry wt) via treatment with myriocin, whereas hepatic ceramide content was unaffected by DIO. Interestingly, myriocin treatment did not alter the DIO-associated increase in gastrocnemius diacyglycerol content, and the only correlation observed between lipid metabolite accumulation and glucose intolerance occurred with ceramide (R = 0.61). DIO mice treated with myriocin showed a complete reversal of glucose intolerance and insulin resistance which was associated with enhanced insulin-stimulated Akt and glycogen synthase kinase 3β phosphorylation. Furthermore, myriocin treatment also decreased intramyocellular ceramide content and prevented insulin resistance development in db/db mice. Finally, myriocin-treated DIO mice displayed enhanced oxygen consumption rates (3,041 ± 124 vs. 2,407 ± 124 ml/kg/h) versus their control counterparts. CONCLUSIONS Our results demonstrate that the intramyocellular accumulation of ceramide correlates strongly with the development of insulin resistance, and suggests that inhibition of SPT1 is a potentially promising target for the treatment of insulin resistance. PMID:20522596

  11. Noninvasive estimation of oxygen consumption in human calf muscle through combined NMR measurements of ASL perfusion and T₂ oxymetry.

    PubMed

    Decorte, Nicolas; Buehler, Tania; Caldas de Almeida Araujo, Ericky; Vignaud, Alexandre; Carlier, Pierre G

    2014-01-01

    The objective of this work was to demonstrate the feasibility of measuring muscle O2 consumption (V˙O2) noninvasively with a combination of functional nuclear magnetic resonance (NMR) imaging methods, and to verify that changes in muscle V˙O2 can be detected with a temporal resolution compatible with physiological investigation and patient ease. T2-based oxymetry of arterial and venous blood was combined with the arterial-spin labeling (ASL)-based determination of muscle perfusion. These measurements were performed on 8 healthy volunteers under normoxic and hypoxic conditions in order to assess the sensitivity of measurements over a range of saturation values. Blood samples were drawn simultaneously and used to titrate blood T2 measurements versus hemoglobin O2 saturation (%HbO2) in vitro. The in vitro calibration curve of blood T2 fitted very well with the %HbO2 (r(2): 0.95). The in vivo venous T2 measurements agreed well with the in vitro measurements (intraclass correlation coefficient 0.82, 95% confidence interval 0.61-0.91). Oxygen extraction at rest decreased in the calf muscles subjected to hypoxia (p = 0.031). The combination of unaltered muscle perfusion and pinched arteriovenous O2 difference (p = 0.038) pointed towards a reduced calf muscle V˙O2 during transient hypoxia (p = 0.018). The results of this pilot study confirmed that muscle O2 extraction and V˙O2 can be estimated noninvasively using a combination of functional NMR techniques. Further studies are needed to confirm the usefulness in a larger sample of volunteers and patients.

  12. Antepartum cardiorespiratory fitness (CRF) quantification by estimation of maximal oxygen consumption (Vo2 max) in pregnant South Indian women.

    PubMed

    Chakaravertty, Biswajit; Parkavi, K; Coumary, Sendhil A; Felix, A J W

    2012-04-01

    The aim of the study was to calculate the maximal oxygen consumption (Vo2max) for pregnant women of varying trimesters and to quantify the cardiorespiratory fitness (CRF)with the objective of being able to determine the exercise dose for antenatal women which can be prescribed to achieve optimal exercise benefits during various trimesters. A study group comprising 64 pregnant women with uncomplicated singleton pregnancy and control group with 77 non-pregnant women were subjected to Cooper's 12 minutes walk test. From the distance covered in 12 minutes, Vo2max was calculated. The Vo2max values were statistically analysed between the non-pregnant and pregnant and also its variability among the trimesters. Percentile tables of Vo2max were drawn and multiple comparisons were applied. Results show that the Vo2max values among non-pregnant and first trimester ranges between 18 and 22 ml/kg/minute. Trimesters II and III had a range of Vo2max values between 16-20 and 14-18 ml/kg/minute respectively. The CRF of pregnant women significantly reduced to 6%, 9% and 18% in each trimester respectively when compared with the reference table framed out of non-pregnant Vo2max values. Among the study group the reduction in Vo2max values had no statistical significance between first 2 trimesters but trimester III significantly differs from other trimesters. The exercise prescription cannot be the same for pregnant and non-pregnant women. Even among the pregnant women, III trimester needs separate exercise prescription from the other two trimesters as CRF is markedly compromised towards term.

  13. Activation of surface oxygen sites on an iridium-based model catalyst for the oxygen evolution reaction

    NASA Astrophysics Data System (ADS)

    Grimaud, Alexis; Demortiere, Arnaud; Saubanere, Matthieu; Dachraoui, Walid; Duchamp, Martial; Doublet, Marie-Liesse; Tarascon, Jean-Marie

    2017-01-01

    The oxygen evolution reaction (OER) is of prime importance in multiple energy storage devices; however, deeper mechanistic understanding is required to design enhanced electrocatalysts for the reaction. Current understanding of the OER mechanism based on oxygen adsorption on a metallic surface site fails to fully explain the activity of iridium and ruthenium oxide surfaces, and the drastic surface reconstruction observed for the most active OER catalysts. Here we demonstrate, using La2LiIrO6 as a model catalyst, that the exceptionally high activity found for Ir-based catalysts arises from the formation of active surface oxygen atoms that act as electrophilic centres for water to react. Moreover, with the help of transmission electron microscopy, we observe drastic surface reconstruction and iridium migration from the bulk to the surface. Therefore, we establish a correlation between surface activity and surface stability for OER catalysts that is rooted in the formation of surface reactive oxygen.

  14. Removal of trichlorobenzene using 'oxygen-enriched' highly active absorbent.

    PubMed

    Zhao, Yi; He, Peng; Zhang, Yu-Hai; Ma, Shuangchen

    2011-01-01

    Fly ash, industry lime and an additive, Ca(ClO2)2 (C) were used to prepare the 'oxygen-enriched' highly active absorbent (HAA). The influencing factors for removal of 1,2,4-trichlorobenzene (TCB) using this absorbent such as reaction temperature, simulating gas flow rate, oxygen content, etc. were studied in a self-designed reactor. The optimum experimental conditions of removing 1,2,4-TCB are that the content of an oxidizing additive in the absorbent is 3% (wt), simulating gas flow rate is 100 mL/min, reaction temperature is 250 degrees C, and the content of oxygen in simulating gas is 6%. The maximum removal efficiency is 81.71% in 10 mins. The absorption capacity of the absorbent is 0.000111 g/g. The reaction products were determined by gas chromatograph/mass spectrometer (GC/ MS), 2,6-Bis-[1,1-Dimethylethyl]-4-methyl-Phenol is considered to be the major intermediate product. The reaction route was revealed.

  15. The Online Morphology Control and Dynamic Studies on Improving Vitamin B12 Production by Pseudomonas denitrificans with Online Capacitance and Specific Oxygen Consumption Rate.

    PubMed

    Wang, Ze-Jian; Shi, Hui-Lin; Wang, Ping

    2016-07-01

    The relationship between the morphological character of Pseudomonas denitrificans and vitamin B12 synthesis based on real-time capacitance measurement and online specific oxygen consumption rate (Q O2) control was established for enhancing vitamin B12 production. Results demonstrated that the threshold Q O2 value lower than 2.0 mmol/gDCW/l would greatly stimulate the state transfer from the cell number growth phase to the cell elongation phase and promote rapid vitamin B12 biosynthesis, while the vitamin B12 biosynthesis rate could also be inhibited when the rate of cell's length-to-width ratio (ratio-LW) was higher than 10:1. Furthermore, the optimal morphology controlling strategy was achieved based on online Q O2 control, which increases the appropriate active cell numbers at the former phase, and then control the elongation of ratio-LW no more than 10:1 at the vitamin B12 biosynthesis phase. The maximal vitamin B12 production reached 239.7 mg/l at 168 h, which was improved by 14.7 % compared with the control (208 mg/l). This online controlling strategy would be effectively applied for improving industrial vitamin B12 fermentation.

  16. Device for measuring oxygen activity in liquid sodium

    DOEpatents

    Roy, P.; Young, R.S.

    1973-12-01

    A composite ceramic electrolyte in a configuration (such as a closed end tube or a plate) suitable to separate liquid sodium from a reference electrode with a high impedance voltmeter connected to measure EMF between the sodium and the reference electrode as a measure of oxygen activity in the sodium is described. The composite electrolyte consists of zirconiacalcia with a bonded layer of thoria-yttria. The device is used with a gaseous reference electrode on the zirconia-calcia side and liquid sodium on the thoria-yttria side of the electrolyte. (Official Gazette)

  17. Bio-filtration capacity, oxygen consumption and ammonium excretion of Dosinia ponderosa and Chione gnidia (Veneroida: Veneridae) from areas impacted and non-impacted by shrimp aquaculture effluents.

    PubMed

    Ramos-Corella, Karime; Martínez-Córdova, Luis Rafael; Enríquez-Ocaña, Luis Fernando; Miranda-Baeza, Anselmo; López-Elías, José Antonio

    2014-09-01

    Mollusks are some of the most important, abundant and diverse organisms inhabiting not only aquatic ecosystems, but also terrestrial environments. Recently, they have been used for bioremediation of aquaculture effluents; nevertheless, for that purpose it is necessary to analyze the capacity of a particular species. In this context, an experimental investigation was developed to evaluate the performance of two bivalves C. gnidia and D. ponderosa, collected from areas with or without shrimp aquaculture effluents. For this, the filtration capacity (as clearance rate) as well as the oxygen consumption and ammonia excretion rates were measured following standard methods. The clearance rate was significantly higher for D. ponderosa from impacted areas, when com- pared to C. gnidia, from both areas. Contrarily, the oxygen consumption was greater for C. gnidia from impacted areas compared to D. ponderosa from both areas. The same tendency was observed for the ammonia excretion with the highest rates observed for C. gnidia from impacted areas, whereas no differences were observed among D. ponderosa from both areas. The results suggest that both species developed different strategies to thrive and survive under the impacted conditions; D. ponderosa improved its filtration efficiency, while C. gnidia modified its oxygen consumption and ammonia excretion. We concluded that both species, and particularly D. ponderosa, can be used for bioremediation purposes.

  18. Dive behaviour impacts the ability of heart rate to predict oxygen consumption in Steller sea lions (Eumetopias jubatus) foraging at depth.

    PubMed

    Young, Beth L; Rosen, David A S; Hindle, Allyson G; Haulena, Martin; Trites, Andrew W

    2011-07-01

    The predictive relationship between heart rate (f(H)) and oxygen consumption (VO2) has been derived for several species of marine mammals swimming horizontally or diving in tanks to shallow depths. However, it is unclear how dive activity affects the f(H):VO2 relationship and whether the existing equations apply to animals diving to deeper depths. We investigated these questions by simultaneously measuring the f(H) and VO2 of Steller sea lions (Eumetopias jubatus) under different activity states (surface resting or diving), types of dives (single dives or dive bouts), and depths (10 or 40 m). We examined the relationship over dives only and also over dive cycles (dive + surface interval). We found that f(H) could only predict VO2 over a complete single dive cycle or dive bout cycle (i.e. surface intervals had to be included). The predictive equation derived for sea lions resting on the surface did not differ from that for single dive cycles. However, the equation derived over dive bout cycles (multiple dives + surface intervals) differed from those for single dive cycles or surface resting, with similar f(H) for multiple dive bout equations yielding higher predicted VO2 than that for single dive bout cycles (or resting). The f(H):VO2 relationships were not significantly affected by dive duration, dive depth, water temperature or cumulative food consumed under the conditions tested. Ultimately, our results demonstrate that f(H) can be used to predict activity-specific metabolic rates of diving Steller sea lions, but only over complete dive cycles that include a post-dive surface recovery period.

  19. Association between physical activity level and consumption of fruit and vegetables among adolescents in northeast Brazil

    PubMed Central

    Silva, Diego Augusto Santos; Silva, Roberto Jerônimo dos Santos

    2015-01-01

    OBJECTIVE: To determine the association between low levels of physical activity and consumption of fruits and vegetables among adolescents. METHODS: This cross-sectional study included 2,057 adolescents aged 13 to 18 years from the city of Aracaju, Northeastern Brazil. We analyzed the level of physical activity, consumption of fruits and vegetables by standardized and validated questionnaires. The control variables were sex, age, socioeconomic status, maternal education, alcohol consumption and smoking. For data analysis, univariate and multivariate logistic regression were used, with a significance level of 5%. RESULTS: The prevalence of low levels of physical activity was 81.9%; the inadequate consumption of fruits ocurred in 79.1% and the inadequate consumption of vegetables in 90.6%. Adolescents who consumed few fruits daily had an increase in 40% of chance of being insufficiently active and, for those who consumed few vegetable's the likelihood of being insufficiently active was 50% higher, compared to those who had adequate intake of these foods. CONCLUSIONS: Low levels of physical activity were associated with inadequate fruit and vegetable intake among adolescents in a city in northeastern Brazil. These findings suggest that insufficiently active adolescents have other unhealthy behaviors that may increase the risk of chronic diseases in adulthood. PMID:25887930

  20. Chronic alcohol consumption enhances iNKT cell maturation and activation

    SciTech Connect

    Zhang, Hui Zhang, Faya; Zhu, Zhaohui; Luong, Dung; Meadows, Gary G.

    2015-01-15

    Alcohol consumption exhibits diverse effects on different types of immune cells. NKT cells are a unique T cell population and play important immunoregulatory roles in different types of immune responses. The effects of chronic alcohol consumption on NKT cells remain to be elucidated. Using a mouse model of chronic alcohol consumption, we found that alcohol increases the percentage of NKT cells, especially iNKT cells in the thymus and liver, but not in the spleen or blood. Alcohol consumption decreases the percentage of NK1.1{sup −} iNKT cells in the total iNKT cell population in all of the tissues and organs examined. In the thymus, alcohol consumption increases the number of NK1.1{sup +}CD44{sup hi} mature iNKT cells but does not alter the number of NK1.1{sup −} immature iNKT cells. A BrdU incorporation assay shows that alcohol consumption increases the proliferation of thymic NK1.1{sup −} iNKT cells, especially the NK1.1{sup −}CD44{sup lo} Stage I iNKT cells. The percentage of NKG2A{sup +} iNKT cells increases in all of the tissues and organs examined; whereas CXCR3{sup +} iNKT cells only increases in the thymus of alcohol-consuming mice. Chronic alcohol consumption increases the percentage of IFN-γ-producing iNKT cells and increases the blood concentration of IFN-γ and IL-12 after in vivo α-galactosylceramide (αGalCer) stimulation. Consistent with the increased cytokine production, the in vivo activation of iNKT cells also enhances the activation of dendritic cells (DC) and NK, B, and T cells in the alcohol-consuming mice. Taken together the data indicate that chronic alcohol consumption enhances iNKT cell maturation and activation, which favors the Th1 immune response. - Highlights: • Chronic alcohol consumption increases iNKT cells in the thymus and liver • Chronic alcohol consumption enhances thymic Stage I iNKT cell proliferation • Chronic alcohol consumption enhances iNKT cell maturation in thymus and periphery • Chronic alcohol

  1. Variation of antioxidative activity and growth enhancement of Brassicaceae induced by low-pressure oxygen plasma

    NASA Astrophysics Data System (ADS)

    Ono, Reoto; Hayashi, Nobuya

    2015-06-01

    The mechanism of growth enhancement induced by active oxygen species generated in an oxygen plasma is investigated. The plant growth enhancement induced by the active oxygen species would relate to an antioxidative activity, which is one of the biological responses. The amount of generated active oxygen species is varied by the oxygen gas pressure in a low-pressure RF glow discharge plasma. The antioxidative activity of sprouts of Brassicaceae induced by the oxygen plasma is maximized at pressures between 30 and 40 Pa, whereas the antioxidative activity becomes small at around 60 and 80 Pa. The pressure dependence of the antioxidative activity of sprout stems is opposite to that of the stem length of the sprouts. The growth enhancement would be induced by the increase in the concentration of active oxygen species in plants owing to the decrease in the amount of antioxidative substances.

  2. Reactive oxygen species-activated nanomaterials as theranostic agents

    PubMed Central

    Kim, Kye S; Lee, Dongwon; Song, Chul Gyu; Kang, Peter M

    2015-01-01

    Reactive oxygen species (ROS) are generated from the endogenous oxidative metabolism or from exogenous pro-oxidant exposure. Oxidative stress occurs when there is excessive production of ROS, outweighing the antioxidant defense mechanisms which may lead to disease states. Hydrogen peroxide (H2O2) is one of the most abundant and stable forms of ROS, implicated in inflammation, cellular dysfunction and apoptosis, which ultimately lead to tissue and organ damage. This review is an overview of the role of ROS in different diseases. We will also examine ROS-activated nanomaterials with emphasis on hydrogen peroxide, and their potential medical implications. Further development of the biocompatible, stimuli-activated agent responding to disease causing oxidative stress, may lead to a promising clinical use. PMID:26328770

  3. The interrelationship between muscle oxygenation, muscle activation, and pulmonary oxygen uptake to incremental ramp exercise: influence of aerobic fitness.

    PubMed

    Boone, Jan; Barstow, Thomas J; Celie, Bert; Prieur, Fabrice; Bourgois, Jan

    2016-01-01

    We investigated whether muscle and ventilatory responses to incremental ramp exercise would be influenced by aerobic fitness status by means of a cross-sectional study with a large subject population. Sixty-four male students (age: 21.2 ± 3.2 years) with a heterogeneous peak oxygen uptake (51.9 ± 6.3 mL·min(-1)·kg(-1), range 39.7-66.2 mL·min(-1)·kg(-1)) performed an incremental ramp cycle test (20-35 W·min(-1)) to exhaustion. Breath-by-breath gas exchange was recorded, and muscle activation and oxygenation were measured with surface electromyography and near-infrared spectroscopy, respectively. The integrated electromyography (iEMG), mean power frequency (MPF), deoxygenated [hemoglobin and myoglobin] (deoxy[Hb+Mb]), and total[Hb+Mb] responses were set out as functions of work rate and fitted with a double linear function. The respiratory compensation point (RCP) was compared and correlated with the breakpoints (BPs) (as percentage of peak oxygen uptake) in muscle activation and oxygenation. The BP in total[Hb+Mb] (83.2% ± 3.0% peak oxygen uptake) preceded (P < 0.001) the BP in iEMG (86.7% ± 4.0% peak oxygen uptake) and MPF (86.3% ± 4.1% peak oxygen uptake), which in turn preceded (P < 0.01) the BP in deoxy[Hb+Mb] (88.2% ± 4.5% peak oxygen uptake) and RCP (87.4% ± 4.5% peak oxygen uptake). Furthermore, the peak oxygen uptake was significantly (P < 0.001) positively correlated to the BPs and RCP, indicating that the BPs in total[Hb+Mb] (r = 0.66; P < 0.001), deoxy[Hb+Mb] (r = 0.76; P < 0.001), iEMG (r = 0.61; P < 0.001), MPF (r = 0.63; P < 0.001), and RCP (r = 0.75; P < 0.001) occurred at a higher percentage of peak oxygen uptake in subjects with a higher peak oxygen uptake. In this study a close relationship between muscle oxygenation, activation, and pulmonary oxygen uptake was found, occurring in a cascade of events. In subjects with a higher aerobic fitness level this cascade occurred at a higher relative intensity.

  4. Dual Effect of Adenosine A1 Receptor Activation on Renal O2 Consumption.

    PubMed

    Babich, Victor; Vadnagara, Komal; Di Sole, Francesca

    2015-12-01

    The high requirement of O2 in the renal proximal tubule stems from a high rate of Na(+) transport. Adenosine A1 receptor (A1R) activation regulates Na(+) transport in this nephron segment. Thus, the effect of the acute activation and the mechanisms of A1R on the rate of O2 consumption were evaluated. The A1R-antagonist, 8-cyclopentyl-1,3-dipropylxanthine (CPX) and adenosine deaminase (ADA), which metabolize endogenous adenosine, reduced O2 consumption (40-50%). Replacing Na(+) in the buffer reversed the ADA- or CPX-mediated reduction of O2 consumption. Blocking the Na/H-exchanger activity, which decreases O2 usage per se, did not enhance the ADA- or CPX-induced inhibition of O2 consumption. These data indicate that endogenous adenosine increases O2 usage via the activation of Na(+) transport. In the presence of endogenous adenosine, A1R was further activated by the A1R-agonist N(6)-cyclopentyladenosine (CPA); CPA inhibited O2 usage (30%) and this effect also depended on Na(+) transport. Moreover, a low concentration of CPA activated O2 usage in tissue pretreated with ADA, whereas a high concentration of CPA inhibited O2 usage; both effects depended on Na(+). Protein kinase C signaling mediated the inhibitory effect of A1R, while adenylyl cyclase mediated its stimulatory effect on O2 consumption. In summary, increasing the local concentrations of adenosine can either activate or inhibit O2 consumption via A1R, and this mechanism depends on Na(+) transport. The inhibition of O2 usage by A1R activation might restore the compromised balance between energy supply and demand under pathophysiological conditions, such as renal ischemia, which results in high adenosine production.

  5. Physical Activity, Body Mass Index, Alcohol Consumption and Cigarette Smoking among East Asian College Students

    ERIC Educational Resources Information Center

    Seo, Dong-Chul; Torabi, Mohammad R.; Chin, Ming-Kai; Lee, Chung Gun; Kim, Nayoung; Huang, Sen-Fang; Chen, Chee Keong; Mok, Magdalena Mo Ching; Wong, Patricia; Chia, Michael; Park, Bock-Hee

    2014-01-01

    Objective: To identify levels of moderate-intensity physical activity (MPA) and vigorous-intensity physical activity (VPA) in a representative sample of college students in six East Asian economies and examine their relationship with weight, alcohol consumption and cigarette smoking. Design: Cross-sectional survey. Setting: College students…

  6. Active Oxygen Species Generator by Low Pressure Silent Discharge and its Application to Water Treatment

    NASA Astrophysics Data System (ADS)

    Tanaka, Masaaki; Ikeda, Akira; Tanimura, Yasuhiro; Ohta, Koji; Yoshiyasu, Hajimu

    We have proposed the new water treatment using the active oxygen species such as an atomic oxygen with the oxidation power that is stronger than ozone. Based on the results of simulations we designed the silent discharge type active oxygen generator with a water ejector, which is operated on the discharge conditions of low pressure of 6.6kPa. and high temperature of about 200°C. The experimental results are as follows. (1) The yield of the active oxygen increases with the increase of the discharge tube temperature and the decrease of the gas pressure. (2) The life time of active oxygen is tens msec. (3) The active oxygen oxidizes efficiently the formic acid compared with ozone. It is assumed from these results that the active oxygen species having a strong oxidation power is generated.

  7. Active Oxygen Generator by Silent Discharge and Oxidation Power in Formation of Oxide Thin Films

    NASA Astrophysics Data System (ADS)

    Tanaka, Masaaki; Kawagoe, Yasuyuki; Tsukazaki, Hisashi; Yamanishi, Kenichiro

    We have studied the low pressure silent discharge type active oxygen generator in terms of the application to the formation of oxide thin films. In this paper the oxidation power of active oxygen in the oxide thin film formation is compared with that of oxygen and ozone by forming silicon oxide thin films. It was confirmed that the oxidation power is in turn of active oxygen > ozone > oxygen from the experimental result of the number of x in SiOx thin film. Furthermore we applied active oxygen to the formation of the thin film high temperature super conductor and active oxygen was found to be effective to the formation of the thin film with high performance.

  8. Correlation between the sorption of dissolved oxygen onto chitosan and its antimicrobial activity against Esherichia coli.

    PubMed

    Gylienė, Ona; Servienė, Elena; Vepštaitė, Iglė; Binkienė, Rima; Baranauskas, Mykolas; Lukša, Juliana

    2015-10-20

    The ability of chitosan to adsorb dissolved oxygen from solution depends on its physical shape and is related to the surface area. Depending on conditions chitosan is capable of adsorbing or releasing oxygen. Chitosan, modificated by the substances possessing antimicrobial activity, such as succinic acid, Pd(II) ions, metallic Pd or Ag, distinctly increases the ability to adsorb the dissolved oxygen. The additional treatment of chitosan with air oxygen or electrochemically produced oxygen also increases the uptake of dissolved oxygen by chitosan. A strong correlation between the amount of oxygen adsorbed onto chitosan and its antimicrobial activity against Esherichia coli has been observed. This finding suggests that one of the sources of antimicrobial activity of chitosan is the ability to sorb dissolved oxygen, along with other well-known factors such as physical state and chemical composition.

  9. Simultaneous measurement of brain tissue oxygen partial pressure, temperature, and global oxygen consumption during hibernation, arousal, and euthermy in non-sedated and non-anesthetized Arctic ground squirrels.

    PubMed

    Ma, Yilong; Wu, Shufen

    2008-09-30

    This study reports an online temperature correction method for determining tissue oxygen partial pressure P(tO2) in the striatum and a novel simultaneous measurement of brain P(tO2) and temperature (T(brain)) in conjunction with global oxygen consumption V(O2) in non-sedated and non-anesthetized freely moving Arctic ground squirrels (AGS, Spermophilus parryii). This method fills an important research gap-the lack of a suitable method for physiologic studies of tissue P(O2) in hibernating or other cool-blooded species. P(tO2) in AGS brain during euthermy (21.22+/-2.06 mmHg) is significantly higher (P=0.016) than during hibernation (13.21+/-0.46 mmHg) suggests brain oxygenation in the striatum is normoxic during euthermy and hypoxic during hibernation. These results in P(tO2) are different from blood oxygen partial pressure P(aO2) in AGS, which are significantly lower during euthermy than during hibernation and are actually hypoxic during euthermy and normoxic during hibernation in our previous study. This intriguing difference between the P(O2) of brain tissue and blood during these two physiological states suggests that regional mechanisms in the brain play a role in maintaining tissue oxygenation and protect against hypoxia during hibernation.

  10. A ligand field chemistry of oxygen generation by the oxygen-evolving complex and synthetic active sites.

    PubMed

    Betley, Theodore A; Surendranath, Yogesh; Childress, Montana V; Alliger, Glen E; Fu, Ross; Cummins, Christopher C; Nocera, Daniel G

    2008-03-27

    Oxygen-oxygen bond formation and O2 generation occur from the S4 state of the oxygen-evolving complex (OEC). Several mechanistic possibilities have been proposed for water oxidation, depending on the formal oxidation state of the Mn atoms. All fall under two general classifications: the AB mechanism in which nucleophilic oxygen (base, B) attacks electrophilic oxygen (acid, A) of the Mn4Ca cluster or the RC mechanism in which radical-like oxygen species couple within OEC. The critical intermediate in either mechanism involves a metal oxo, though the nature of this oxo for AB and RC mechanisms is disparate. In the case of the AB mechanism, assembly of an even-electron count, high-valent metal-oxo proximate to a hydroxide is needed whereas, in an RC mechanism, two odd-electron count, high-valent metal oxos are required. Thus the two mechanisms give rise to very different design criteria for functional models of the OEC active site. This discussion presents the electron counts and ligand geometries that support metal oxos for AB and RC O-O bond-forming reactions. The construction of architectures that bring two oxygen functionalities together under the purview of the AB and RC scenarios are described.

  11. Energy Requirements for the Transport of Methylthio-β-d-Galactoside by Escherichia coli: Measurement by Microcalorimetry and by Rates of Oxygen Consumption and Carbon Dioxide Production1

    PubMed Central

    Long, Richard A.; Martin, W. G.; Schneider, Henry

    1977-01-01

    The energy cost for maintenance of gradients of methylthio-β-d-galactoside in Escherichia coli was evaluated. Information was also obtained concerning the energy flow associated with gradient establishment under some circumstances. Energy flow was evaluated from transport-induced changes in the rate of heat evolution, oxygen consumption, and carbon dioxide production in metabolically active cells. Heats were measured with an isothermal calorimeter. Energy expenditure behavior was characterized by a transition that depended on the level of accumulation. The data for steady-state maintenance could be rationalized in terms of the Mitchell hypothesis, two models for influx and efflux, and a transition between them. At low levels of uptake, steady-state proton-methylthio-β-d-galactoside (TMG) symport for influx and efflux occurred via a nonenergy-requiring exchange process. The only energy requirement was that necessary to pump back in any TMG exiting via a leakage pathway (model I). Above the transition, all influx occurred with proton symport, but all exit, leak and carrier mediated, occurred without proton symport (model II). The H+/TMG stoichiometric ratio computed for the region of model II applicability (carbon source present, high level of uptake) approached 1. This value agreed with that of other workers for downhill β-galactoside flow, suggesting that the energy cost for both downhill and uphill flow was approximately the same. For low levels of uptake, initial establishment of the gradient was followed by a burst of metabolism that was much larger than that expected on the basis of the chemiosmotic hypothesis. In the absence of carbon source, the stimulation in respiration was sufficient to produce 13 times more protons than are apparently necessary to establish the gradient. The results indicate also that the nature of the biochemical process stimulated by TMG depends on its level of uptake. Insight into several aspects of the nature of these processes was

  12. Acute ascorbic acid ingestion increases skeletal muscle blood flow and oxygen consumption via local vasodilation during graded handgrip exercise in older adults.

    PubMed

    Richards, Jennifer C; Crecelius, Anne R; Larson, Dennis G; Dinenno, Frank A

    2015-07-15

    Human aging is associated with reduced skeletal muscle perfusion during exercise, which may be a result of impaired endothelium-dependent dilation and/or attenuated ability to blunt sympathetically mediated vasoconstriction. Intra-arterial infusion of ascorbic acid (AA) increases nitric oxide-mediated vasodilation and forearm blood flow (FBF) during handgrip exercise in older adults, yet it remains unknown whether an acute oral dose can similarly improve FBF or enhance the ability to blunt sympathetic vasoconstriction during exercise. We hypothesized that 1) acute oral AA would improve FBF (Doppler ultrasound) and oxygen consumption (V̇o2) via local vasodilation during graded rhythmic handgrip exercise in older adults (protocol 1), and 2) AA ingestion would not enhance sympatholysis in older adults during handgrip exercise (protocol 2). In protocol 1 (n = 8; 65 ± 3 yr), AA did not influence FBF or V̇o2 during rest or 5% maximal voluntary contraction (MVC) exercise, but increased FBF (199 ± 13 vs. 248 ± 16 ml/min and 343 ± 24 vs. 403 ± 33 ml/min; P < 0.05) and V̇o2 (26 ± 2 vs. 34 ± 3 ml/min and 43 ± 4 vs. 50 ± 5 ml/min; P < 0.05) at both 15 and 25% MVC, respectively. The increased FBF was due to elevations in forearm vascular conductance (FVC). In protocol 2 (n = 10; 63 ± 2 yr), following AA, FBF was similarly elevated during 15% MVC (∼ 20%); however, vasoconstriction to reflex increases in sympathetic activity during -40 mmHg lower-body negative pressure at rest (ΔFVC: -16 ± 3 vs. -16 ± 2%) or during 15% MVC (ΔFVC: -12 ± 2 vs. -11 ± 4%) was unchanged. Our collective results indicate that acute oral ingestion of AA improves muscle blood flow and V̇o2 during exercise in older adults via local vasodilation.

  13. Effect of oxygen on the microbial activities of thermophilic anaerobic biomass.

    PubMed

    Pedizzi, C; Regueiro, L; Rodriguez-Verde, I; Lema, J M; Carballa, M

    2016-07-01

    Low oxygen levels (μgO2L(-1)) in anaerobic reactors are quite common and no relevant consequences are expected. On the contrary, higher concentrations could affect the process. This work aimed to study the influence of oxygen (4.3 and 8.8mgO2L(-1), respectively) on the different microbial activities (hydrolytic, acidogenic and methanogenic) of thermophilic anaerobic biomass and on the methanogenic community structure. Batch tests in presence of oxygen were conducted using specific substrates for each biological activity and a blank (with minimum oxygen) was included. No effect of oxygen was observed on the hydrolytic and acidogenic activities. In contrast, the methane production rate decreased by 40% in all oxygenated batches and the development of active archaeal community was slower in presence of 8.8mgO2L(-1). However, despite this sensitivity of methanogens to oxygen at saturation levels, the inhibition was reversible.

  14. Time of day effects on the regulation of food consumption after activation of health goals.

    PubMed

    Boland, Wendy Attaya; Connell, Paul M; Vallen, Beth

    2013-11-01

    Previous research has found that while self-regulation is a resource that can be depleted, enhanced motivation to do so can help people successfully self-regulate. The aim of this research was to determine whether activating health goals-either via laboratory priming techniques or via advertisements-can help people regulate food intake later in the day, when self-regulation resources are typically depleted. In two experimental studies, participants completed goal activation tasks in the morning or in the afternoon while they had a snack food (M&M's candies) available for consumption. In study 1, 121 participants viewed television shows with either healthy food ads, indulgent food ads, or non-food ads embedded within the program. In study 2, 149 participants completed a supraliminal but nonconscious goal priming exercise, in which they searched for health, indulgence, or control words in a puzzle. In both studies, activation of health goals led to decreased consumption of the snack food in the afternoon. In contrast, activation of health goals did not change consumption in the morning, when self-regulatory resources are typically high, due to replenishment after rest. These results suggest that activating health goals-either via classic laboratory goal-priming paradigms or via "real world primes," such as ads for healthy foods-helps people to overcome failures in curbing food consumption due to depleted self-regulatory resources later in the day.

  15. [Noninvasive, continuous monitoring of artificial respiration in premature and newborn infants by the constant measurement of respiratory minute volume, oxygen consumption and carbon dioxide release].

    PubMed

    Leidig, E; Noller, F; Mentzel, H

    1986-01-01

    A system of instrumentation for the continuous measurement of the respiratory gases during assisted ventilation of neonates and premature infants based upon "breath-by-breath-method" is described. The four respiratory parameters flow (V), ventilation pressure (p), oxygen-concentration and carbon dioxide-concentration are measured. These datas are processed by a computer to generate a continuous display of the respiratory minute volume, the tidal volume, the breath rate, the oxygen consumption and the carbon dioxide production. All parameters are stored and can be displayed or plotted as trends. The flow-measurement is performed using hot-wire-anemometry. The very small flow sensor is adapted directly to the tube. Next to this sensor, the respiratory gas for the analysis of the O2- and CO2- concentration is suctioned off continuously. First clinical experience in mechanically ventilated newborns is characterized.

  16. Alcohol consumption and antitumor immunity: dynamic changes from activation to accelerated deterioration of the immune system.

    PubMed

    Zhang, Hui; Zhu, Zhaohui; Zhang, Faya; Meadows, Gary G

    2015-01-01

    The molecular mechanisms of how alcohol and its metabolites induce cancer have been studied extensively. However, the mechanisms whereby chronic alcohol consumption affects antitumor immunity and host survival have largely been unexplored. We studied the effects of chronic alcohol consumption on the immune system and antitumor immunity in mice inoculated with B16BL6 melanoma and found that alcohol consumption activates the immune system leading to an increase in the proportion of IFN-γ-producing NK, NKT, and T cells in mice not injected with tumors. One outcome associated with enhanced IFN-γ activation is inhibition of melanoma lung metastasis. However, the anti-metastatic effects do not translate into increased survival of mice bearing subcutaneous tumors. Continued growth of the subcutaneous tumors and alcohol consumption accelerates the deterioration of the immune system, which is reflected in the following: (1) inhibition in the expansion of memory CD8+ T cells, (2) accelerated decay of Th1 cytokine-producing cells, (3) increased myeloid-derived suppressor cells, (4) compromised circulation of B cells and T cells, and (5) increased NKT cells that exhibit an IL-4 dominant cytokine profile, which is inhibitory to antitumor immunity. Taken together, the dynamic effects of alcohol consumption on antitumor immunity are in two opposing phases: the first phase associated with immune stimulation is tumor inhibitory and the second phase resulting from the interaction between the effects of alcohol and the tumor leads to immune inhibition and resultant tumor progression.

  17. Quantitative assessment of the balance between oxygen delivery and consumption in the rat brain after transient ischemia with T2 -BOLD magnetic resonance imaging.

    PubMed

    Kettunen, Mikko I; Gröhn, Olli H J; Silvennoinen, M Johanna; Penttonen, Markku; Kauppinen, Risto A

    2002-03-01

    The balance between oxygen consumption and delivery in the rat brain after exposure to transient ischemia was quantitatively studied with single-spin echo T2-BOLD (blood oxygenation level-dependent) magnetic resonance imaging at 4.7 T. The rats were exposed to graded common carotid artery occlusions using a modification of the four-vessel model of Pulsinelli. T2, diffusion, and cerebral blood volume were quantified with magnetic resonance imaging, and CBF was measured with the hydrogen clearance method. A transient common carotid artery occlusion below the CBF value of approximately 20 mL x 100 g(-1) x min(-1) was needed to yield a T2 increase of 4.6 +/- 1.2 milliseconds (approximately 9% of cerebral T2) and 6.8 +/- 1.7 milliseconds (approximately 13% of cerebral T2) after 7 and 15 minutes of ischemia, respectively. Increases in CBF of 103 +/- 75% and in cerebral blood volume of 29 +/- 20% were detected in the reperfusion phase. These hemodynamic changes alone could account for only approximately one third of the T2 increase in luxury perfusion, suggesting that a substantial increase in blood oxygen saturation (resulting from reduced oxygen extraction by the brain) is needed to explain the magnetic resonance imaging observation.

  18. Do Negative Emotions Predict Alcohol Consumption, Saturated Fat Intake, and Physical Activity in Older Adults?

    ERIC Educational Resources Information Center

    Anton, Stephen D.; Miller, Peter M.

    2005-01-01

    This study examined anger, depression, and stress as related to alcohol consumption, saturated fat intake, and physical activity. Participants were 23 older adults enrolled in either an outpatient or in-residence executive health program. Participants completed (a) a health-risk appraisal assessing medical history and current health habits, (b)…

  19. Oxygen transfer dynamics and activated sludge floc structure under different sludge retention times at low dissolved oxygen concentrations.

    PubMed

    Fan, Haitao; Liu, Xiuhong; Wang, Hao; Han, Yunping; Qi, Lu; Wang, Hongchen

    2017-02-01

    In activated sludge systems, the aeration process consumes the most energy. The energy cost can be dramatically reduced by decreasing the operating dissolved oxygen (DO) concentration. However, low DO may lead to incomplete nitrification and poor settling performance of activated sludge flocs (ASFs). This study investigates oxygen transfer dynamics and settling performances of activated sludge under different sludge retention times (SRTs) and DO conditions using microelectrodes and microscopic techniques. Our experimental results showed that with longer SRTs, treatment capacity and settling performances of activated sludge improved due to smaller floc size and less extracellular polymeric substances (EPS). Long-term low DO conditions produced larger flocs and more EPS per unit sludge, which produced a more extensive anoxic area and led to low oxygen diffusion performance in flocs. Long SRTs mitigated the adverse effects of low DO. According to the microelectrode analysis and fractal dimension determination, smaller floc size and less EPS in the long SRT system led to high oxygen diffusion property and more compact floc structure that caused a drop in the sludge volume index (SVI). In summary, our results suggested that long SRTs of activated sludge can improve the operating performance under low DO conditions.

  20. Fat-free mass and excess post-exercise oxygen consumption in the 40 minutes after short-duration exhaustive exercise in young male Japanese athletes.

    PubMed

    Tahara, Yasuaki; Moji, Kazuhiko; Honda, Sumihisa; Nakao, Rieko; Tsunawake, Noriaki; Fukuda, Rika; Aoyagi, Kiyoshi; Mascie-Taylor, Nicholas

    2008-05-01

    The relationship between fat-free mass (FFM) and excess post-exercise oxygen consumption (EPOC) has not been well researched because of the relatively small number of subjects studied. This study investigated the effects of FFM on EPOC and EPOC/maximum oxygen consumption. 250 Japanese male athletes between 16 and 21 years old from Nagasaki prefecture had their EPOC measured up to 40 minutes after short-duration exhaustive exercise. The value was named as EPOC40 min. The proportions of EPOC up to 1, 3, 6, 10, and 25 minutes to EPOC40 min were calculated and named as P1, P3, P6, P10, and P25, respectively. Body size and composition, VO2max and resting metabolic rate (RMR) were also measured. Mean EPOC40 min was 9.04 L or 158 ml/kg FFM. EPOC40 min was related to FFM (r=0.55, p<0.001) and VO2max (r=0.37, p<0.001). The ratio of EPOC40 min to VO2max was related to FFM (r=0.28, p<0.001). P1, P3, P6, P10, and P25 were negatively related to EPOC40 min/FFM, EPOC40 min/VO2max, and FFM. Athletes who had larger FFM had larger EPOC40 40 min and EPOC40 40 min/VO2max, and smaller P1, P3, P10, and P25.

  1. Correlating two-photon excited fluorescence imaging of breast cancer cellular redox state with seahorse flux analysis of normalized cellular oxygen consumption

    NASA Astrophysics Data System (ADS)

    Hou, Jue; Wright, Heather J.; Chan, Nicole; Tran, Richard; Razorenova, Olga V.; Potma, Eric O.; Tromberg, Bruce J.

    2016-06-01

    Two-photon excited fluorescence (TPEF) imaging of the cellular cofactors nicotinamide adenine dinucleotide and oxidized flavin adenine dinucleotide is widely used to measure cellular metabolism, both in normal and pathological cells and tissues. When dual-wavelength excitation is used, ratiometric TPEF imaging of the intrinsic cofactor fluorescence provides a metabolic index of cells-the "optical redox ratio" (ORR). With increased interest in understanding and controlling cellular metabolism in cancer, there is a need to evaluate the performance of ORR in malignant cells. We compare TPEF metabolic imaging with seahorse flux analysis of cellular oxygen consumption in two different breast cancer cell lines (MCF-7 and MDA-MB-231). We monitor metabolic index in living cells under both normal culture conditions and, for MCF-7, in response to cell respiration inhibitors and uncouplers. We observe a significant correlation between the TPEF-derived ORR and the flux analyzer measurements (R=0.7901, p<0.001). Our results confirm that the ORR is a valid dynamic index of cell metabolism under a range of oxygen consumption conditions relevant for cancer imaging.

  2. In situ hydrogen consumption kinetics as an indicator of subsurface microbial activity

    USGS Publications Warehouse

    Harris, S.H.; Smith, R.L.; Suflita, J.M.

    2007-01-01

    There are few methods available for broadly assessing microbial community metabolism directly within a groundwater environment. In this study, hydrogen consumption rates were estimated from in situ injection/withdrawal tests conducted in two geochemically varying, contaminated aquifers as an approach towards developing such a method. The hydrogen consumption first-order rates varied from 0.002 nM h-1 for an uncontaminated, aerobic site to 2.5 nM h-1 for a contaminated site where sulfate reduction was a predominant process. The method could accommodate the over three orders of magnitude range in rates that existed between subsurface sites. In a denitrifying zone, the hydrogen consumption rate (0.02 nM h-1) was immediately abolished in the presence of air or an antibiotic mixture, suggesting that such measurements may also be sensitive to the effects of environmental perturbations on field microbial activities. Comparable laboratory determinations with sediment slurries exhibited hydrogen consumption kinetics that differed substantially from the field estimates. Because anaerobic degradation of organic matter relies on the rapid consumption of hydrogen and subsequent maintenance at low levels, such in situ measures of hydrogen turnover can serve as a key indicator of the functioning of microbial food webs and may be more reliable than laboratory determinations. ?? 2007 Federation of European Microbiological Societies.

  3. Activated Macrophages as a Novel Determinant of Tumor Cell Radioresponse: The Role of Nitric Oxide-Mediated Inhibition of Cellular Respiration and Oxygen Sparing

    SciTech Connect

    Jiang Heng; De Ridder, Mark; Verovski, Valeri N.; Sonveaux, Pierre; Jordan, Benedicte F.; Law, Kalun; Monsaert, Christinne; Van den Berge, Dirk L.; Verellen, Dirk; Feron, Olivier; Gallez, Bernard; Storme, Guy A.

    2010-04-15

    Purpose: Nitric oxide (NO), synthesized by the inducible nitric oxide synthase (iNOS), is known to inhibit metabolic oxygen consumption because of interference with mitochondrial respiratory activity. This study examined whether activation of iNOS (a) directly in tumor cells or (b) in bystander macrophages may improve radioresponse through sparing of oxygen. Methods and Materials: EMT-6 tumor cells and RAW 264.7 macrophages were exposed to bacterial lipopolysaccharide plus interferon-gamma, and examined for iNOS expression by reverse transcription polymerase chain reaction, Western blotting and enzymatic activity. Tumor cells alone, or combined with macrophages were subjected to metabolic hypoxia and analyzed for radiosensitivity by clonogenic assay, and for oxygen consumption by electron paramagnetic resonance and a Clark-type electrode. Results: Both tumor cells and macrophages displayed a coherent picture of iNOS induction at transcriptional/translational levels and NO/nitrite production, whereas macrophages showed also co-induction of the inducible heme oxygenase-1, which is associated with carbon monoxide (CO) and bilirubin production. Activation of iNOS in tumor cells resulted in a profound oxygen sparing and a 2.3-fold radiosensitization. Bystander NO-producing, but not CO-producing, macrophages were able to block oxygen consumption by 1.9-fold and to radiosensitize tumor cells by 2.2-fold. Both effects could be neutralized by aminoguanidine, a metabolic iNOS inhibitor. An improved radioresponse was clearly observed at macrophages to tumor cells ratios ranging between 1:16 to 1:1. Conclusions: Our study is the first, as far as we are aware, to provide evidence that iNOS may induce radiosensitization through oxygen sparing, and illuminates NO-producing macrophages as a novel determinant of tumor cell radioresponse within the hypoxic tumor microenvironment.

  4. A coupled model representing the deep-sea organic carbon mineralization and oxygen consumption in surficial sediments

    NASA Astrophysics Data System (ADS)

    Rabouille, C.; Gaillard, J.-F.

    1991-02-01

    A model based on transport reaction equations has been developed, introducing a new bacterial kinetic term for the oxidation of organic matter by oxygen. This formulation is known as the Monod rate law. As it depends on both the oxygen and the organic carbon concentrations, it allows in a single model the representation of sediments undergoing totally oxic or oxic plus suboxic diagenesis. It results, however, in a system of coupled nonlinear second-order ordinary differential equations. As the common numerical solutions to such systems are not straightforward, it has infrequently been used in diagenetic modeling. By applying a numerical iterative method which utilizes the previous computation step to solve nonlinearity, the numerical instabilities of the usual methods were avoided. In order to illustrate the wide application field of this model to various diagenetic situations, verifications and sensitivity studies were performed. Rather large variations in bioturbation coefficients and kinetic constants led to small changes in the distribution of oxygen and organic carbon. On the other hand, small variations in the organic carbon rain rate or bottom water oxygen concentrations resulted in large changes in the calculated depth of the oxic-suboxic boundary. In contrast, the effect of varying sedimentation rate was negligible. Organic carbon preservation was very sensitive to sedimentation rate, the flux of organic carbon, and the bottom water concentration of oxygen. This emphasizes the importance of these three parameters and the key role of their precise determination for the quantification of the organic carbon recycling in the sediments. The effect of near-surface compaction was also estimated in order to assess the influence of physical processes on the early diagenesis of organic carbon and oxygen. The inclusion of this compaction produced a maximum departure of 30% in the oxygen penetration depth and may multiply the carbon preservation by almost a factor of

  5. Correspondence of physical activity and fruit/vegetable consumption among prostate cancer survivors and their spouses.

    PubMed

    Myers Virtue, S; Manne, S L; Kashy, D; Heckman, C J; Zaider, T; Kissane, D W; Kim, I; Lee, D; Olekson, G

    2015-11-01

    A healthy diet and physical activity are recommended for prostate cancer survivors. Interdependence theory suggests that the spousal relationship influences those health behaviours and the degree of correspondence may be an indicator of this influence. This study evaluated the correspondence between prostate cancer survivors and spouses regarding physical activity and fruit/vegetable consumption. Baseline data from an ongoing randomised control trial were utilised. Men who had been treated for prostate cancer within the past year and their partners (N = 132 couples) completed self-report measures of physical activity, fruit/vegetable consumption, relationship satisfaction and support for partner's healthy diet and physical activity. Couples reported similar fruit/vegetable consumption and physical activity as indicated by high levels of correspondence. Greater fruit/vegetable correspondence was related to higher relationship satisfaction (F = 4.14, P = 0.018) and greater patient (F = 13.29, P < 0.001) and spouse-rated support (F = 7.2, P < 0.001). Greater physical activity correspondence was related to greater patient (F = 3.57, P = 0.028) and spouse-rated support (F = 4.59, P = 0.031). Prostate cancer survivors and spouses may influence each other's diet and exercise behaviours. Couple-based interventions may promote healthy behaviours among this population.

  6. Growth enhancement and gene expression of Arabidopsis thaliana irradiated with active oxygen species

    NASA Astrophysics Data System (ADS)

    Watanabe, Satoshi; Ono, Reoto; Hayashi, Nobuya; Shiratani, Masaharu; Tashiro, Kosuke; Kuhara, Satoru; Inoue, Asami; Yasuda, Kaori; Hagiwara, Hiroko

    2016-07-01

    The characteristics of plant growth enhancement effect and the mechanism of the enhancement induced by plasma irradiation are investigated using various active species in plasma. Active oxygen species in oxygen plasma are effective for growth enhancement of plants. DNA microarray analysis of Arabidopsis thaliana indicates that the genes coding proteins that counter oxidative stresses by eliminating active oxygen species are expressed at significantly high levels. The size of plant cells increases owing to oxygen plasma irradiation. The increases in gene expression levels and cell size suggest that the increase in the expression level of the expansin protein is essential for plant growth enhancement phenomena.

  7. Physical activity and beverage consumption in preschoolers: focus groups with parents and teachers

    PubMed Central

    2013-01-01

    Background Qualitative research is a method in which new ideas and strategies can be discovered. This qualitative study aimed to investigate parents’ and teachers’ opinions on physical activity and beverage consumption of preschool children. Through separate, independent focus groups, they expressed their perceptions on children’s current physical activity and beverage consumption levels, factors that influence and enhance these behaviours, and anticipated barriers to making changes. Methods Multi-cultural and multi-geographical focus groups were carried out in six European countries (Belgium, Bulgaria, Germany, Greece, Poland and Spain). In total, twenty-four focus groups with 122 parents and eighteen focus groups with 87 teachers were conducted between October 2010 and January 2011. Based on a semi-structured interview guide, questions on preschoolers’ physical activity (opinions on preschoolers’ physical activity, how to increase physical activity, facilitators and barriers of physical activity) and beverage consumption (rules and policies, factors influencing promotion of healthy drinking, recommendations for future intervention development) were asked. The information was analyzed using qualitative data analysis software (NVivo8). Results The focus group results indicated misperceptions of caregivers on preschoolers’ physical activity and beverage consumption levels. Caregivers perceived preschoolers as sufficiently active; they argue that children need to learn to sit still in preparation for primary school. At most preschools, children can drink only water. In some preschools sugar-sweetened beverages like chocolate milk or fruit juices, are also allowed. It was mentioned that sugar-sweetened beverages can be healthy due to mineral and vitamin content, although according to parents their daily intake is limited. These opinions resulted in low perceived needs to change behaviours. Conclusions Although previous research shows need of change in

  8. The effects of breathing a helium-oxygen gas mixture on maximal pulmonary ventilation and maximal oxygen consumption during exercise in acute moderate hypobaric hypoxia.

    PubMed

    Ogawa, Takeshi; Calbet, Jose A L; Honda, Yasushi; Fujii, Naoto; Nishiyasu, Takeshi

    2010-11-01

    To test the hypothesis that maximal exercise pulmonary ventilation (VE max) is a limiting factor affecting maximal oxygen uptake (VO2 max) in moderate hypobaric hypoxia (H), we examined the effect of breathing a helium-oxygen gas mixture (He-O(2); 20.9% O(2)), which would reduce air density and would be expected to increase VE max. Fourteen healthy young male subjects performed incremental treadmill running tests to exhaustion in normobaric normoxia (N; sea level) and in H (atmospheric pressure equivalent to 2,500 m above sea level). These exercise tests were carried out under three conditions [H with He-O(2), H with normal air and N] in random order. VO2 max and arterial oxy-hemoglobin saturation (SaO(2)) were, respectively, 15.2, 7.5 and 4.0% higher (all p < 0.05) with He-O(2) than with normal air (VE max, 171.9 ± 16.1 vs. 150.1 ± 16.9 L/min; VO2 max, 52.50 ± 9.13 vs. 48.72 ± 5.35 mL/kg/min; arterial oxyhemoglobin saturation (SaO(2)), 79 ± 3 vs. 76 ± 3%). There was a linear relationship between the increment in VE max and the increment in VO2 max in H (r = 0.77; p < 0.05). When subjects were divided into two groups based on their VO2 max, both groups showed increased VE max and SaO(2) in H with He-O(2), but VO2 max was increased only in the high VO2 max group. These findings suggest that in acute moderate hypobaric hypoxia, air-flow resistance can be a limiting factor affecting VE max; consequently, VO2 max is limited in part by VE max especially in subjects with high VO2 max.

  9. Influence of malfunctions of the maintenance activities on the urban buses fuel consumption

    NASA Astrophysics Data System (ADS)

    George, Crişan; Nicolae, Filip

    2014-06-01

    Optimization of activities with the aim to provide quality service in conditions of high profitability, is one of the main objectives chased by managers in transportation companies. As a consequence, directing the attention towards monitoring of maintenance activities of vehicles fleet, can achieve desired results. Two of the most important issues related to the maintenance activity, is the increase of reliability and reduction of fuel consumption of the vehicles fleet. Aforementioned actions represents a way forward for raising the quality and profitability of services offered. In this paper, the main ways of monitoring the fuel consumption, in order to reduce it and increase the reliability of transportation vehicles fleet, are presented. For the evaluation of the maintenance system and the degree of influence of malfunctions recorded on the fuel consumption, using the Pareto -ABC method, following case study on a fleet of buses for urban public transport has been conducted. Results obtained highlights the deficiencies of the maintenance process carried out and constitutes a solid base for the reorganization of the maintenance activity, involving preventive maintenance activities, in order to contribute decisively to the results targeted by the management of transport companies.

  10. Acculturation, physical activity, and fast-food consumption among Asian-American and Hispanic adolescents.

    PubMed

    Unger, Jennifer B; Reynolds, Kim; Shakib, Sohaila; Spruijt-Metz, Donna; Sun, Ping; Johnson, C Anderson

    2004-12-01

    Previous studies have implicated acculturation to the US as a risk factor for unhealthy behaviors among Hispanic and Asian-American adolescents, including substance use, violence, and unsafe sex. This study examined the association between acculturation and obesity-related behaviors-physical activity and fast-food consumption-among 619 Asian-American and 1385 Hispanic adolescents in Southern California. Respondents completed surveys in 6th and 7th grade. The 6th grade survey assessed acculturation with the AHIMSA acculturation scale and a measure of English language usage. The 7th grade survey assessed frequency of moderate-to-intense physical activity and frequency of eating fast-food. Multiple regression analyses included acculturation and demographic covariates as predictors of physical activity and fast-food consumption. Acculturation to the US, assessed in 6th grade, was significantly associated with a lower frequency of physical activity participation and a higher frequency of fast-food consumption in 7th grade. The significant associations persisted after controlling for covariates and were consistent across gender and ethnic groups. Results suggest that acculturation to the US is a risk factor for obesity-related behaviors among Asian-American and Hispanic adolescents. Health promotion programs are needed to encourage physical activity and healthy diets among adolescents in acculturating families.

  11. Inhibition and oxygen activation in copper amine oxidases.

    PubMed

    Shepard, Eric M; Dooley, David M

    2015-05-19

    the roles of Cu(I), TPQSQ, and TPQAMQ in O2 activation, for example, distinguishing inner-sphere versus outer-sphere electron transfer mechanisms, has been actively investigated since the discovery of TPQSQ in 1991 and has only recently been clarified. Kinetics and spectroscopic studies encompassing metal substitution, stopped-flow and temperature-jump relaxation methods, and oxygen kinetic isotope experiments have provided strong support for an inner-sphere electron transfer step from Cu(I) to O2. Data for two enzymes support a mechanism wherein O2 prebinds to a three-coordinate Cu(I) site, yielding a [Cu(II)(η(1)-O2(-1))](+) intermediate, with H2O2 generated from ensuing rate-determining proton coupled electron transfer from TPQSQ. While kinetics data from the cobalt-substituted yeast enzyme indicated that O2 is reduced through an outer-sphere process involving TPQAMQ, new findings with a bacterial CuAO demonstrate that both the Cu(II) and Co(II) forms of the enzyme operate via parallel mechanisms involving metal-superoxide intermediates. Structural observations of a coordinated TPQSQ-Cu(I) complex in two CuAOs supports previous indications that Cu(II)/(I) ligand substitution chemistry may be mechanistically relevant. Substantial evidence indicates that rapid and reversible inner-sphere reduction of O2 at a three-coordinate Cu(I) site occurs, but the existence of a coordinated semiquinone in some AOs suggests that, in these enzymes, an outer-sphere reaction between O2 and TPQSQ may also be possible, since this is expected to be energetically favorable compared with outer-sphere electron transfer from TPQAMQ to O2.

  12. Hydrazide derivatives produce active oxygen species as hydrazine.

    PubMed

    Timperio, Anna Maria; Rinalducci, Sara; Zolla, Lello

    2005-12-01

    It is well documented that some hydrazines are quite sensitive to oxidation and may serve as the electron donor for the reduction of oxygen, whereas hydrazides are not believed to react directly with oxygen. Data presented in this paper show that both hydrazides and hydrazines share an N-N moiety, which is assumed to react with atmospheric oxygen and produce oxygen radicals, at various degrees of efficiency. Since spectrometric measurements of hydrazide just after solubilization showed that the molecular mass remains constant in the absence of oxygen, we can conclude that hydrazides do not react with the oxygen through a slow spontaneous hydrolytic release of hydrazine. However, hydrazine is more reactive than hydrazide, which requires hours rather than minutes to produce measurable quantities of radical species. Differences were also apparent for various substituted derivatives. The reaction was significantly enhanced by the presence of metal ions. Data reported here demonstrate that hydrazides cause irreversible damage to the prosthetic group of proteins as well as causing degradation of the polypeptide chain into small fragments.

  13. P38 activation is more important than ERK activation in lung injury induced by prolonged hyperbaric oxygen.

    PubMed

    Ma, Jun; Fang, Yi-Qun; Gu, Ai-Mei; Wang, Fang-Fang; Zhang, Shi; Li, Kai-Cheng

    2013-01-01

    Prolonged exposure to hyperbaric oxygen can cause pulmonary and nerve system toxicity. Although hyperbaric oxygen treatment has been used for a broad spectrum of ailments, the mechanisms of prolonged hyperbaric oxygen-induced lung injury are not fully understood. The purpose of the present work was to investigate the roles of ERK, p38, and caspase-3 in rat lung tissue exposed to hyperbaric oxygen at 2.3 atmospheres absolute (atm abs) for two, six and 10 hours. The results showed that the ERK and p38 were phosphorylated at two hours and reached a peak at six hours into exposure to hyperbaric oxygen. While the phosphorylation level of ERK decreased, p38 remained at a high level of activation at 10 hours. The activation of ERK and p38 was down-regulated when rats were exposed to normoxic hyperbaric nitrogen for 10 hours. However, caspase-3 was activated at six hours and 10 hours into exposure to hyperbaric oxygen. These results demonstrated different changes of activation of ERK and p38 during lung injury induced by prolonged exposure to hyperbaric oxygen. The time course changes of activated caspase-3 were similar to the process of p38 activation upon exposure to hyperbaric oxygen. In this way, activation of p38, not ERK, seems to be a mechanism associated with prolonged hyperbaric oxygen-induced lung injury.

  14. Iodinated contrast media inhibit oxygen consumption in freshly isolated proximal tubular cells from elderly humans and diabetic rats: Influence of nitric oxide.

    PubMed

    Liss, Per; Hansell, Peter; Fasching, Angelica; Palm, Fredrik

    2016-01-01

    Objectives Mechanisms underlying contrast medium (CM)-induced nephropathy remain elusive, but recent attention has been directed to oxygen availability. The purpose of this study was to evaluate the effect of the low-osmolar CM iopromide and the iso-osmolar CM iodixanol on oxygen consumption (QO2) in freshly isolated proximal tubular cells (PTC) from kidneys ablated from elderly humans undergoing nephrectomy for renal carcinomas and from normoglycemic or streptozotocin-diabetic rats. Materials PTC were isolated from human kidneys, or kidneys of normoglycemic or streptozotocin-diabetic rats. QO2 was measured with Clark-type microelectrodes in a gas-tight chamber with and without each CM (10 mg I/mL medium). L-NAME was used to inhibit nitric oxide (NO) production caused by nitric oxide synthase. Results Both CM reduced QO2 in human PTC (about -35%) which was prevented by L-NAME. PTC from normoglycemic rats were unaffected by iopromide, whereas iodixanol decreased QO2 (-34%). Both CM decreased QO2 in PTC from diabetic rats (-38% and -36%, respectively). L-NAME only prevented the effect of iopromide in the diabetic rat PTC. Conclusions These observations demonstrate that CM can induce NO release from isolated PTC in vitro, which affects QO2. Our results suggest that the induction of NO release and subsequent effect on the cellular oxygen metabolism are dependent on several factors, including CM type and pre-existing risk factors for the development of CM-induced nephropathy.

  15. Assessing the effect of natural attenuation on oxygen consumption processes in a sewage-contaminated aquifer by use of a natural-gradient tracer test

    NASA Astrophysics Data System (ADS)

    Mathisen, P. P.; Kent, D. B.; Smith, R. L.; Barber, L. B.; Harvey, R. W.; Metge, D. W.; Hess, K. M.; Leblanc, D. R.; Koch, J. C.

    2003-12-01

    Processes associated with aquifer restoration subsequent to cessation of treated-sewage loading in a sand and gravel aquifer are being investigated at the USGS Toxic Substances Hydrology Site on Cape Cod, MA. Restoration has been slow because of significant oxygen depletion resulting from biogeochemical processes associated with residual sorbed pools of organic carbon, ammonium, and reduced metals in the aquifer. The in situ interaction of the physical, chemical, and biological processes governing oxygen consumption was examined by using a natural-gradient tracer test in fall 2001, 6 years after sewage disposal had been discontinued. Ground water with a high dissolved oxygen (DO) concentration was withdrawn from an uncontaminated zone of the aquifer and re-injected with a conservative tracer, bromide, into an anoxic zone directly below a former sewage-effluent disposal bed where Fe and sulfide concentrations were below detection and the DO was less than 5 uM. An injection with negligible ammonium, a nitrate concentration of 22 uM, and DO of approximately 260 uM was maintained at approximately 15 L/hr for a period of 75 days. An array of multi-level samplers (MLS), placed at distances ranging from 1 to 7 m down-gradient from the injection well, was sampled prior to and throughout the 75-day injection, and during a 25-day period after the injection. Water samples from the MLS were analyzed for DO and a variety of aqueous constituents. The DO decreased from approximately 260 uM to 210 uM over 7 m of transport, indicating the presence of rate-limited oxygen consumption. An increase in nitrate from 22 to approximately 36 uM indicated the presence of rate-limited ammonium oxidation. However, this ammonium oxidation was not sufficient to account for all of the DO consumption. Further characterization of these processes was accomplished by use of PHREEQC, a one-dimensional, geochemical reactive transport model. The 1D model is based on an ion association model for aqueous

  16. Comparison of V-4 and V-5 Exercise/Oxygen Prebreathe Protocols to Support Extravehicular Activity in Microgravity

    NASA Technical Reports Server (NTRS)

    Pollock, N. W.; Natoli, M. J.; Vann, R. D.; Gernhardt, M. L.; Conkin, Johnny

    2007-01-01

    The Prebreathe Reduction Program (PRP) used exercise during oxygen prebreathe to reduce necessary prebreathe time prior to depressurizing to work in a 4.3 psi suit during extravehicular activity (EVA). Initial testing produced a two-hour protocol incorporating ergometry exercise and a 30 min cycle of depress/repress to 10.2 psi where subjects breathed 26.5% oxygen/balance nitrogen (Phase II - 10 min at 75% peak oxygen consumption [VO2 peak] followed by 40 min intermittent light exercise [ILE] [approx. 5.8 mL-per kilogram- per minute], then 50 min of rest). The Phase II protocol (0/45 DCS) was approved for operations and has been used on 40 EVAs, providing significant time savings compared to the standard 4 h resting oxygen prebreathe. The Phase V effort focused on performing all light in-suit exercise. Two oxygen prebreathe protocols were tested sequentially: V-4) 160 min prebreathe with 150 min of continuous ILE. The entire protocol was completed at 14.7 psi. All exercise involved upper body effort. Exercise continued until decompression. V-5) 160 min prebreathe with 140 min of ILE - first 40 min at 14.7 psi, then 30 min at 10.2 psi (breathing 26.5% oxygen) after a 20 min depress, simulating a suit donning period. Subjects were then repressed to 14.7 psi and performed another 50 min of lower body ILE, followed by 50 min rest before decompression. The V-4 protocol was rejected with 3 DCS/6 person-exposures. Initial V-5 testing has produced 0 DCS/11 person-exposures (ongoing trials). The difference in DCS rate was significant (Fisher Exact p=0.029). The observations of DCS were significantly lower in early V-5 trials than in V-4 trials. Additional studies are required to evaluate the relative contribution of the variables in exercise distribution, the 10.2 psi depress/repress component, pre-decompression rest, or possible variation in total oxygen consumption.

  17. Inhibition of Chlamydia psittaci in oxidatively active thioglycolate-elicited macrophages: distinction between lymphokine-mediated oxygen-dependent and oxygen-independent macrophage activation.

    PubMed Central

    Byrne, G I; Faubion, C L

    1983-01-01

    Immune sensitization of spleen cells was required to generate lymphokines (LK) that activated thioglycolate-elicited peritoneal macrophages (thio MACs) to respond via both oxygen-dependent and oxygen-independent systems. LK produced by incubating spleen cells from immunized A/J and LAF mice with concanavalin A stimulated a response by thio MACs to phorbol-12-myristate-13-acetate (PMA)-induced chemiluminescence and activated these cells to inhibit intracellular Chlamydia psittaci replication. Concanavalin A-incubated spleen cell preparations from unimmunized animals stimulated neither PMA-induced chemiluminescence nor antichlamydial activity. Activated thio MACs demonstrated a rapid chemiluminescence response to the intracellular protozoan Toxoplasma gondii, but C. psittaci did not induce chemiluminescence in LK-activated thio MACs, although cells exposed to C. psittaci retained their responsiveness to PMA-induced chemiluminescence. The PMA-induced response was inhibited by the addition of exogenous superoxide dismutase and catalase and was therefore related to the production of superoxide anion (O2 . -) and H2O2 by these cells. LK preparations incubated at 56 degrees C before macrophage treatment retained antichlamydial activity, but heated preparations no longer stimulated thio MACs to respond in the chemiluminescence assay. These data provide evidence that macrophage oxygen-dependent and oxygen-independent systems are simultaneously activated by LK, and these preparations comprise at least two distinct activities. The portion responsible for activating oxygen-dependent systems (PMA-induced chemiluminescence) is heat labile, whereas the portion responsible for activating oxygen-independent systems is heat stable. It is the latter system that results in restriction of chlamydial growth and in vitro parasite persistence. PMID:6840848

  18. Effects of epinephrine and lactate on the increase in oxygen consumption of non-exercising skeletal muscle after aerobic exercise

    NASA Astrophysics Data System (ADS)

    Murakami, Motohide; Katsumura, Toshihito; Hamaoka, Takatumi; Osada, Takuya; Sako, Takayuki; Higuchi, Hiroyuki; Esaki, Kazuki; Kime, Ryotaro; Shimomitsu, Teruichi

    2000-10-01

    The purpose of this study was to measure O2 consumption of nonexercising skeletal muscles (VO2nonex) at rest and after aerobic exercise and to investigate the stimulant factors of O2 consumption. In experiment 1, we measured the resting metabolic rate of the finger flexor muscles in seven healthy males by 31P-magnetic resonance spectroscopy during a 15 min arterial occlusion. In experiment 2, the VO2nonex of the finger flexor muscles was measured using near infrared continuous wave spectroscopy at rest, immediate postexercise, and 3, 5, 10, 15, and 20 min following a cycling exercise at a workload corresponding to 50% of peak pulmonary O2 uptake for 20 min. We also monitored deep tissue temperature in the VO2nonex measurement area and determined catecholamines and lactate concentrations in the blood at rest and immediate postexercise. VO2nonex at rest was 1.1 +/- 0.1 (mu) M O2/s (mean +/- standard error) and VO2nonex after exercise increased 59.6 +/- 7.2% (p < 0.001) from the resting values. There were significant correlations between the increase in VO2nonex and the increase in epinephrine concentration (p < 0.01), and between the increase in VO2nonex and the increase in lactate concentration (p < 0.05). These results suggest that epinephrine and lactate concentrations are important VO2nonex stimulant factors.

  19. Pastime in a pub: observations of young adults' activities and alcohol consumption.

    PubMed

    Bot, Sander M; Engels, Rutger C M E; Knibbe, Ronald A; Meeus, Wim H J

    2007-03-01

    Alcohol consumption typically takes place in a time-out situation, which can be spent by engaging in several leisure time activities. Usually, conversation is the dominant pastime in a bar, but this may take place during other activities, like watching TV or playing games. These activities may inhibit drinking because of the physical difficulties of drinking and being active at the same time. Findings of an observational study on drinking in young adults (N=238) in a bar lab will be discussed. In the present study, we followed the ad-lib drinking of peer groups (7-9 persons) during 1-h periods. The results suggest that (1) selection of activities is not related to initial drinking level or personality characteristics; (2) active pastime is related to slower drinking than passive pastime (in males); (3) male problem drinkers appear to compensate for the "lost" amount of drinking after an active phase; and (4) involvement in active pastime is not related to total alcohol consumption. Implications of these findings are discussed.

  20. Cerebral blood flow decreases with time whereas cerebral oxygen consumption remains stable during hypothermic cardiopulmonary bypass in humans

    SciTech Connect

    Prough, D.S.; Rogers, A.T.; Stump, D.A.; Roy, R.C.; Cordell, A.R.; Phipps, J.; Taylor, C.L. )

    1991-02-01

    Recent investigations demonstrate that cerebral blood flow (CBF) progressively declines during hypothermic, nonpulsatile cardiopulmonary bypass (CPB). If CBF declines because of brain cooling, the cerebral metabolic rate for oxygen (CMRO2) should decline in parallel with the reduction in CBF. Therefore we studied the response of CBF, the cerebral arteriovenous oxygen content difference (A-VDcereO2) and CMRO2 as a function of the duration of CPB in humans. To do this, we compared the cerebrovascular response to changes in the PaCO2. Because sequential CBF measurements using xenon 133 (133Xe) clearance must be separated by 15-25 min, we hypothesized that a time-dependent decline in CBF would accentuate the CBF reduction caused by a decrease in PaCO2, but would blunt the CBF increase associated with a rise in PaCO2. We measured CBF in 25 patients and calculated the cerebral arteriovenous oxygen content difference using radial arterial and jugular venous bulb blood samples. Patients were randomly assigned to management within either a lower (32-48 mm Hg) or higher (50-71 mm Hg) range of PaCO2 uncorrected for temperature. Each patient underwent two randomly ordered sets of measurements, one at a lower PaCO2 and the other at a higher PaCO2 within the respective ranges. Cerebrovascular responsiveness to changes in PaCO2 was calculated as specific reactivity (SR), the change in CBF divided by the change in PaCO2, expressed in mL.100 g-1.min-1.mm Hg-1.

  1. Activation of molecular oxygen by infrared laser radiation in pigment-free aerobic systems.

    PubMed

    Krasnovsky, A A; Drozdova, N N; Ivanov, A V; Ambartsumian, R V

    2003-09-01

    With the goal of mimicking the mechanisms of the biological effects of low energy laser irradiation, we have shown that infrared low intensity laser radiation causes oxygenation of the chemical traps of singlet oxygen dissolved in organic media and water saturated by air at normal atmospheric pressure. The photooxygenation rate was directly proportional to the oxygen concentration and strongly inhibited by the singlet oxygen quenchers. The maximum of the photooxygenation action spectrum coincided with the maximum of the oxygen absorption band at 1270 nm. The data provide unambiguous evidence that photooxygenation is determined by the reactive singlet (1)Delta(g )state formed as a result of direct laser excitation of molecular oxygen. Hence, activation of oxygen caused by its direct photoexcitation may occur in natural systems.

  2. OXIDATIVE PHOSPHORYLATION: Kinetic and Thermodynamic Correlation between Electron Flow, Proton Translocation, Oxygen Consumption and ATP Synthesis under Close to In Vivo Concentrations of Oxygen

    PubMed Central

    Reynafarje, Baltazar D.; Ferreira, Jorge

    2008-01-01

    For the fist time the mitochondrial process of oxidative phosphorylation has been studied by determining the extent and initial rates of electron flow, H+ translocation, O2 uptake and ATP synthesis under close to in vivo concentrations of oxygen. The following novel results were obtained. 1) The real rates of O2 uptake and ATP synthesis are orders of magnitude higher than those observed under state-3 metabolic conditions. 2) The phosphorylative process of ATP synthesis is neither kinetically nor thermodynamically related to the respiratory process of H+ ejection. 3) The ATP/O stoichiometry is not constant but varies depending on all, the redox potential (ΔEh), the degree of reduction of the membrane and the relative concentrations of O2, ADP, and protein. 4) The free energy of electron flow is not only used for the enzymatic binding and release of substrates and products but fundamentally for the actual synthesis of ATP from ADP and Pi. 5) The concentration of ADP that produces half-maximal responses of ATP synthesis (EC50) is not constant but varies depending on both ΔEh and O2 concentration. 6) The process of ATP synthesis exhibits strong positive catalytic cooperativity with a Hill coefficient, n, of ~3.0. It is concluded that the most important factor in determining the extent and rates of ATP synthesis is not the level of ADP or the proton gradient but the concentration of O2 and the state of reduction and/or protonation of the membrane. PMID:18566675

  3. Associations of reward sensitivity with food consumption, activity pattern, and BMI in children.

    PubMed

    De Decker, Annelies; Sioen, Isabelle; Verbeken, Sandra; Braet, Caroline; Michels, Nathalie; De Henauw, Stefaan

    2016-05-01

    In the current study, the associations of reward sensitivity with weight related behaviors and body mass index were investigated in a general population sample of 443 Flemish children (50.3% boys) aged 5.5-12 years. Cross-sectional data on palatable food consumption frequency, screen time, physical activity, parental education level and measured length and weight were collected. The Drive subscale of the 'Behavioral Inhibition Scale/Behavioral Activation Scale' was used as a short method to measure reward sensitivity. A significant positive association of reward sensitivity with the fast food and sweet drink consumption frequency was found. Furthermore, a significant positive association of reward sensitivity with the z-score of body mass index was demonstrated, which explained additional variance to the variance explained by palatable food consumption frequency, screen time, physical activity and parental education level. Hence, the assessment of reward sensitivity may have an added value to the assessment of weight-related behavior indicators when evaluating the determinants of overweight in a child. In sum, children high in reward sensitivity might be more attracted to fast food and sweet drinks, and hence, might be more vulnerable to develop unfavorable food habits and overweight. These findings suggest that considering inter-individual differences in reward sensitivity is of importance in future childhood obesity prevention campaigns.

  4. Enzyme-based online monitoring and measurement of antioxidant activity using an optical oxygen sensor coupled to an HPLC system.

    PubMed

    Quaranta, Michela; Nugroho Prasetyo, Endry; Koren, Klaus; Nyanhongo, Gibson S; Murkovic, Michael; Klimant, Ingo; Guebitz, Georg M

    2013-03-01

    It is estimated that up to 50% of the adult population take antioxidant products on a daily basis to promote their health status. Strangely, despite the well-recognized importance of antioxidants, currently there is no international standard index for labeling owing to the lack of standardized methods for antioxidant measurement in complex products. Here, an online high-performance liquid chromatography (HPLC)-based method to detect and measure the total antioxidant capacity of antioxidant samples is presented. In this approach, complex samples containing antioxidants are separated by the HPLC system, which is further coupled to an antioxidant measuring system consisting of an optical oxygen sensor, laccase, and tetramethoxy azobismethylene quinone (TMAMQ). The antioxidants, separated via HPLC, reduce TMAMQ to syringaldazine, which is then reoxidized by laccase while simultaneously consuming O(2). The amount of consumed oxygen is directly proportional to the concentration of antioxidants and is measured by the optical oxygen sensor. The sensor is fabricated by coating a glass capillary with an oxygen-sensitive thin layer made of platinum(II) meso-tetra(4-fluorophenyl)tetrabenzoporphyrin and polystyrene, which makes real-time analysis possible (t(90) = 1.1 s in solution). Four selected antioxidants (3 mM), namely, catechin, ferulic acid, naringenin (used as a control), and Trolox, representing flavonol, hydrocinnamic acid, flavanone, and vitamin E, respectively, were injected into the online antioxidant monitoring system, separated, and then mixed with the TMAMQ/laccase solution, which resulted in oxygen consumption. This study shows that, with the use of such a system, the antioxidant activity of individual antioxidant molecules in a sample and their contribution to the total antioxidant activity of the sample can be correctly assigned.

  5. Cell death induced by direct laser activation of singlet oxygen at 1270 nm

    NASA Astrophysics Data System (ADS)

    Anquez, F.; El Yazidi Belkoura, I.; Suret, P.; Randoux, S.; Courtade, E.

    2013-02-01

    Singlet oxygen plays a major role in many chemical and biological photo-oxidation processes. It has a high chemical reactivity, which is commonly harnessed for therapeutic issues. Indeed, singlet oxygen is recognized as the major cytotoxic agent in photodynamic therapy. In this treatment of cancer, singlet oxygen is created, among other reactive species, by an indirect transfer of energy from light to molecular oxygen via excitation of a photosensitizer. In this paper, we show that the conventional singlet oxygen production scheme can be simplified. Production of singlet oxygen is achieved in living cells from photosensitizer-free 1270 nm laser excitation of the electronic ground state of molecular oxygen. The quantity of singlet oxygen produced in this way is sufficient to induce an oxidative stress leading to cell death. Other effects such as thermal stress are discriminated, and we conclude that cell death is only due to singlet oxygen creation. This new simplified scheme of singlet oxygen activation can be seen as a breakthrough for phototherapies of malignant diseases and/or as a non-invasive possibility to generate reactive oxygen species in a tightly controlled manner.

  6. Assessment of mercury toxicity by the changes in oxygen consumption and ion levels in the freshwater snail, Pila globosa, and the mussel, Lamellidens marginalis

    SciTech Connect

    Sivaramakrishna, B.; Radhakrishnaiah, K.; Suresh, A. )

    1991-06-01

    There are many studies on mercury toxicity in freshwater fishes but very few on freshwater molluscs (Wright 1978) though they serve as bio-indicators of metal pollution. A few reports on marine gastropods and bivalves indicated the importance of these animals in metal toxicity studies. Hence, in the present study, the level of tolerance of the freshwater gastropod Pila globosa and of a freshwater bivalve Lamellidens marginalis mercury at lethal and sublethal levels was determined and compared with the rate of whole animal oxygen consumption and the level of sodium, potassium and calcium ions in the hepatopancreas and the foot of these animals. As the period of exposure is one of the important factors in toxicity studies, the level of tolerance was determined at 120 hours of exposure and the other parameters were analyzed at 1, 3 and 5 days in lethal and at 1, 7 and 15 days in sublethal concentrations.

  7. An Exercise Protocol Designed to control Energy Expenditure and to have a Positive Impact on Maximal Oxygen Consumption for Long-Term Space Missions

    NASA Astrophysics Data System (ADS)

    Matsuo, Tomoaki; Ohkawara, Kazunori; Seino, Satoshi; Shimojo, Nobutake; Yamada, Shin; Ohshima, Hiroshi; Tanaka, Kiyoji; Mukai, Chiaki

    2013-02-01

    Maximal oxygen consumption decreases during spaceflight, and astronauts also experience controversial weight loss. Future space missions require a more efficient exercise program to maintain work efficiency and to control increased energy expenditure (EE). We have been developing two types of original exercise training protocols which are better suited to astronauts’ daily routine exercise during long-term spaceflight: sprint interval training (SIT) and high-intensity interval aerobic training (HIAT). In this study, we compared the total EE, including excess post-exercise energy expenditure (EPEE), induced by our interval cycling protocols with the total EE of a traditional, continuous aerobic training (CAT). In the results, while the EPEEs after the SIT and HIAT were greater than after the CAT, the total EE for an entire exercise/rest session with the CAT was the greatest of our three exercise protocols. The SIT and HIAT would be potential protocols to control energy expenditure for long space missions.

  8. Effect of dietary supplementation of l-tryptophan on thermal tolerance and oxygen consumption rate in Cirrhinus mrigala fingerlings under varied stocking density.

    PubMed

    Tejpal, C S; Sumitha, E B; Pal, A K; Shivananda Murthy, H; Sahu, N P; Siddaiah, G M

    2014-04-01

    A 60 day feeding trial was conducted to study the effect of dietary l-tryptophan on thermal tolerance and oxygen consumption rate of freshwater fish, mrigala, Cirrhinus mrigala reared under ambient temperature at low and high stocking density. Four hundred eighty fingerlings were distributed into eight experimental groups. Four groups each of low density group (10 fishes/75L water) and higher density group (30 fishes/75L water) were fed a diet containing 0, 0.68, 1.36 or 2.72% l-tryptophan in the diet, thus forming eight experimental groups namely, Low density control (LC) (basal feed +0% l-tryptophan); LT1 (basal feed+0.68% l-tryptophan); LT2 (basal feed+1.36% l-tryptophan); LT3 (basal feed+2.72% l-tryptophan); high density control (HC) (basal feed+0% l-tryptophan); HT1 (basal feed+0.68% l-tryptophan); HT2 (basal feed+1.36% l-tryptophan); and HT3 (basal feed+2.72% l-tryptophan) were fed at 3% of the body weight. The test diets having crude protein 34.33±0.23 to 35.81±0.18% and lipid 423.49±1.76 to 425.85±0.31KCal/100g were prepared using purified ingredients. The possible role of dietary l-tryptophan on thermal tolerance and oxygen consumption rate was assessed in terms of critical thermal maxima (CTMax), critical thermal minima (CTMin), lethal thermal maxima (LTMax) and lethal thermal minima (LTMin). The CTMax, CTMin, LTMax and LTMin values were found to be significantly higher (p<0.05) in the treatment groups with CTMax 42.94±0.037 (LT2); LT Max 43.18±0.070 (LT2); CTMin 10.47±0.088 (LT2) and LTMin 9.42±0.062 (LT3), whereas the control group showed a lower tolerance level. The same trend was observed in the high density group (CTMax 42.09±0.066 (LT3); LTMax 43 23±0.067 (HT3); CTMin 10.98±0.040 (HT3) and LTMin 9.74±0.037 (HT3). However, gradual supplementation of dietary l-tryptophan in the diet significantly reduced the oxygen consumption rate in both the low density group (Y=-26.74x+222.4, r²=0.915) and the high density group (Y=-32.96x+296.5, r²=0

  9. Effects of maternal ingestion of aroclor 1254 (PCB) on the development pattern of oxygen consumption and body temperature in neonatal rats

    SciTech Connect

    Seo, B.W.; Meserve, L.A.

    1995-07-01

    Polychlorinated biphenyl (PCB) is an environmental pollutant that has been implicated in depression of reproductive success in Great Lakes gulls, production of congenital deformities in humans, and increased incidence of carcinogenesis in laboratory mice. PCB has also been shown to be a thyrotoxin in both adult and developing animals. Most recently, the hypothyroid effects of PCB exposure have been reported to elicit effects similar to those of hypothyroidism caused by other methods. This study was done to determine the effects of PCB ingestion in pregnant and lactating rats on the development of thermoregulation in neonatal animals. Body temperature and rate of oxygen consumption was evaluated in rat puts on days 4 through 14 after birth. Because the major thermomregulatory hormones are thyroid hormones, thyroid hormone status and thyroid weights were evaluated at the end of the study on postnatal day 15. 19 refs., 2 figs., 1 tab.

  10. Boosting oxygen reduction/evolution reaction activities with layered perovskite catalysts.

    PubMed

    Chen, Dengjie; Wang, Jian; Zhang, Zhenbao; Shao, Zongping; Ciucci, Francesco

    2016-08-25

    Layered PrBaMn2O5+δ (H-PBM) was simply prepared by annealing pristine Pr0.5Ba0.5MnO3-δ in H2. The oxygen reduction/evolution reaction activities are remarkably enhanced by employing H-PBM. The improvement can be ascribed to the introduction of additional oxygen vacancies, an optimized eg filling of Mn ions, and the facile incorporation of oxygen into layered H-PBM.

  11. Ambulatory 24-hour cardiac oxygen consumption and blood pressure-heart rate variability: effects of nebivolol and valsartan alone and in combination.

    PubMed

    Izzo, Joseph L; Khan, Safi U; Saleem, Osman; Osmond, Peter J

    2015-07-01

    We compared an angiotensin receptor blocker (valsartan; VAL), a beta-blocker (nebivolol; NEB) and the combination of NEB/VAL with respect to 24-hour myocardial oxygen consumption (determined by 24-hour ambulatory heart rate-central systolic pressure product [ACRPP]) and its components. Subjects with hypertension (systolic blood pressure >140 or diastolic blood pressure >90; n = 26) were studied in a double-blinded, double-dummy, forced-titration, crossover design with 3 random-order experimental periods: VAL 320 mg, NEB 40 mg, and NEB/VAL 320/40 mg daily. After 4 weeks of each drug, ambulatory pulse wave analysis (MobilOGraph) was performed every 20 minutes for 24 hours. All three treatments resulted in nearly identical brachial and central systolic blood pressures. NEB alone or in combination with VAL resulted in lower ACRPP (by 11%-14%; P < .001 each) and heart rate (by 18%-20%; P < .001 each) compared with VAL, but stroke work (ACRPP per beat) was lower with VAL. Relative and adjusted variability (standard deviation and coefficient of variation) of heart rate were also lower with NEB and NEB/VAL than VAL. Results in African Americans, the majority subpopulation, were similar to those of the entire treatment group. We conclude that the rate-slowing effects of NEB cause ambulatory cardiac myocardial oxygen consumption to be lower with NEB monotherapy or NEB/VAL combination therapy than with VAL monotherapy. NEB/VAL is not superior to NEB alone in controlling heart rate, blood pressure, or ACRPP. Heart rate variability but not ACRPP variability is reduced by NEB or the combination NEB/VAL. There is no attenuation of beta-blocker-induced rate-slowing effects of in African Americans.

  12. Oral glucose before venepuncture relieves neonates of pain, but stress is still evidenced by increase in oxygen consumption, energy expenditure, and heart rate.

    PubMed

    Bauer, Karl; Ketteler, Jörg; Hellwig, Magdalena; Laurenz, Maren; Versmold, Hans

    2004-04-01

    Oral glucose was recommended as pain therapy during venepuncture in neonates. It is unclear whether this intervention reduces excess oxygen consumption (o(2)), energy loss, or cardiovascular destabilization associated with venepuncture, and whether <2 mL glucose solution is effective. We tested the hypothesis that oral glucose solution attenuates the increases in neonatal oxygen consumption, energy expenditure (EE), and heart rate associated with venepuncture for two different volumes of glucose solution (2 and 0.4 mL). In this prospective, randomized, controlled, double-blind trial, 58 neonates (gestational age, 31-42 wk; postnatal age, 1-7 d) were randomized to 2 mL glucose 30%, 0.4 mL glucose 30%, or 2 mL water by mouth before venepuncture. The videotaped behavioral pain reactions were scored with the Premature Infant Pain Profile. Cry duration, o(2), EE (indirect calorimetry), and heart rate were measured. The 2 mL glucose solution reduced pain score and crying after venepuncture compared with controls [median pain score, 5.5 (interquartile range, 4-9) versus 11 (7-12), p = 0.01; median duration of first cry, 0 s (0-43 s) versus 13 s (2-47 s), p < 0.05, respectively]. The 0.4 mL glucose solution had no effect. The 2 mL glucose solution did not attenuate the o(2) increase during venepuncture (1.5 +/- 0.2 mL/kg min (water) versus 1.7 +/- 0.5 (0.4 mL glucose) versus 1.1 +/- 0.2 (2 mL glucose) (mean +/- SEM) nor EE nor heart rate. We conclude that oral administration of 2 mL glucose 30% before venepuncture reduced pain expression and crying, but did not prevent the rise in o(2), EE, or heart rate. Alternative therapies against the stress of nonpainful handling during venepuncture should be explored.

  13. Spatiotemporal dynamics of phosphorus release, oxygen consumption and greenhouse gas emissions after localised soil amendment with organic fertilisers.

    PubMed

    Christel, Wibke; Zhu, Kun; Hoefer, Christoph; Kreuzeder, Andreas; Santner, Jakob; Bruun, Sander; Magid, Jakob; Jensen, Lars Stoumann

    2016-06-01

    Organic fertilisation inevitably leads to heterogeneous distribution of organic matter and nutrients in soil, i.e. due to uneven surface spreading or inhomogeneous incorporation. The resulting localised hotspots of nutrient application will induce various biotic and abiotic nutrient turnover processes and fixation in the residue sphere, giving rise to distinct differences in nutrient availability, soil oxygen content and greenhouse gas (GHG) production. In this study we investigated the spatiotemporal dynamics of the reaction of manure solids and manure solids char with soil, focusing on their phosphorus (P) availability, as current emphasis on improving societal P efficiency through recycling waste or bio-based fertilisers necessitates a sound understanding of their behaviour. Soil layers amended at a constant P application rate with either pig manure solids or char made from pig manure solids were incubated for three weeks between layers of non-amended, P-depleted soil. Spatial and temporal changes in and around the amendment layers were simultaneously investigated in this study using a sandwich sensor consisting of a planar oxygen optode and multi-element diffusive gradients in thin films (DGT) gels, combined with GHG emission measurements. After three weeks of incubation, the soil containing a layer amended with manure solids had a lower overall O2 content and had emitted significantly more CO2 than the non-amended control or the char-amended soil. The P availability from manure solids was initially higher than that from the char, but decreased over time, whereas from the char-amended layer P availability increased in the same period. In both treatments, increases in P availability were confined to the amended soil layer and did not greatly affect P availability in the directly adjacent soil layers during the three-week incubation. These results highlight the importance of placing organic P fertilisers close to where the plant roots will grow in order to

  14. Increasing consumption of fruits and vegetables in the school cafeteria: the influence of active choice.

    PubMed

    Hakim, Sharon M; Meissen, Gregory

    2013-01-01

    This study evaluated a setting-level intervention designed to increase consumption of fruits and vegetables among low-socioeconomic status elementary and middle school students participating in the National School Lunch Program (NSLP). The NSLP provides students with access to fruits and vegetables; however, food served does not necessarily equal food consumed. High rates of waste, especially of fruits and vegetables, are well documented. The current, low-cost intervention altered the choice architecture of the cafeteria by introducing an active, forced choice into the school lunch service. Consumption was measured by observing (n=2,064) and weighing (n=84) student plate waste over two 10-day periods pre-intervention and during implementation. Results show an average daily 15% increase in consumption of both fruits and vegetables during the intervention period. These findings suggest that local schools can actively encourage students to take advantage of fruits and vegetables offered through the NSLP by implementing setting-level changes to the cafeteria environment.

  15. Cigarette smoking, physical activity, and alcohol consumption: relationship to blood lipids and lipoproteins in premenopausal females.

    PubMed

    Stamford, B A; Matter, S; Fell, R D; Sady, S; Cresanta, M K; Papanek, P

    1984-07-01

    A total of 164 premenopausal female subjects were randomly selected for evaluation from a much larger pool of volunteers. The relationships between blood lipid and lipoprotein levels as dependent variables and cigarette smoking, physical activity, and alcohol consumption were determined from partial regression coefficients. A lower HDL-C level (10.1 mg/dL) was seen in smokers v nonsmokers. For each ounce of alcohol consumed, HDL-C level was higher by 2.8 mg/dL, and greater physical activity was associated with a higher HDL-C level of 8.6 mg/dL. An analysis of covariance with covariance adjustments for age and body fat revealed that smokers who regularly exercise or consume alcohol had significantly lower HDL-C levels than nonsmokers with similar habits. Subjects who both exercise and consume alcohol demonstrated higher HDL-C levels than those who indulge in one or the other separately. Results suggest that cigarette smoking may attenuate the effects of chronic exercise or alcohol consumption, or of both, to raise HDL-C levels. Also, chronic exercise and alcohol consumption may exert an additive effect, raising HDL-C level.

  16. Method of Separating Oxygen From Spacecraft Cabin Air to Enable Extravehicular Activities

    NASA Technical Reports Server (NTRS)

    Graf, John C.

    2013-01-01

    Extravehicular activities (EVAs) require high-pressure, high-purity oxygen. Shuttle EVAs use oxygen that is stored and transported as a cryogenic fluid. EVAs on the International Space Station (ISS) presently use the Shuttle cryo O2, which is transported to the ISS using a transfer hose. The fluid is compressed to elevated pressures and stored as a high-pressure gas. With the retirement of the shuttle, NASA has been searching for ways to deliver oxygen to fill the highpressure oxygen tanks on the ISS. A method was developed using low-pressure oxygen generated onboard the ISS and released into ISS cabin air, filtering the oxygen from ISS cabin air using a pressure swing absorber to generate a low-pressure (high-purity) oxygen stream, compressing the oxygen with a mechanical compressor, and transferring the high-pressure, high-purity oxygen to ISS storage tanks. The pressure swing absorber (PSA) can be either a two-stage device, or a single-stage device, depending on the type of sorbent used. The key is to produce a stream with oxygen purity greater than 99.5 percent. The separator can be a PSA device, or a VPSA device (that uses both vacuum and pressure for the gas separation). The compressor is a multi-stage mechanical compressor. If the gas flow rates are on the order of 5 to 10 lb (.2.3 to 4.6 kg) per day, the compressor can be relatively small [3 16 16 in. (.8 41 41 cm)]. Any spacecraft system, or other remote location that has a supply of lowpressure oxygen, a method of separating oxygen from cabin air, and a method of compressing the enriched oxygen stream, has the possibility of having a regenerable supply of highpressure, high-purity oxygen that is compact, simple, and safe. If cabin air is modified so there is very little argon, the separator can be smaller, simpler, and use less power.

  17. Light pollution reduces activity, food consumption and growth rates in a sandy beach invertebrate.

    PubMed

    Luarte, T; Bonta, C C; Silva-Rodriguez, E A; Quijón, P A; Miranda, C; Farias, A A; Duarte, C

    2016-11-01

    The continued growth of human activity and infrastructure has translated into a widespread increase in light pollution. Natural daylight and moonlight cycles play a fundamental role for many organisms and ecological processes, so an increase in light pollution may have profound effects on communities and ecosystem services. Studies assessing ecological light pollution (ELP) effects on sandy beach organisms have lagged behind the study of other sources of disturbance. Hence, we assessed the influence of this stressor on locomotor activity, foraging behavior, absorption efficiency and growth rate of adults of the talitrid amphipod Orchestoidea tuberculata. In the field, an artificial light system was assembled to assess the local influence of artificial light conditions on the amphipod's locomotor activity and use of food patches in comparison to natural (ambient) conditions. Meanwhile in the laboratory, two experimental chambers were set to assess amphipod locomotor activity, consumption rates, absorption efficiency and growth under artificial light in comparison to natural light-dark cycles. Our results indicate that artificial light have significantly adverse effects on the activity patterns and foraging behavior of the amphipods, resulting on reduced consumption and growth rates. Given the steady increase in artificial light pollution here and elsewhere, sandy beach communities could be negatively affected, with unexpected consequences for the whole ecosystem.

  18. Consumption of oxygen and blood flow during exercise and recovery phase evaluated by near-infrared spectroscopy and its relationship to skin forehead, quadriceps, tympanic, and rectal temperatures

    NASA Astrophysics Data System (ADS)

    Verdaguer-Codina, Joan; Pujol, P.; Drobnic, F.; Galilea, P.; Riera, J.; Pons, V.; Banquells, M.; Ruiz, O.

    1995-12-01

    The availability of oxygen in the human vastus medialis muscle and the tympanic, skin forehead, quadriceps, and rectal temperatures has been investigated during exercise test and post-exercise with non-invasive near-infrared spectroscopy, infrared thermometer, and an array of four thermistors, respectively. During exercise time rectal temperature was not recorded, before exercise basal values were obtained, and after exercise all the data for two hours were recorded. The signals from near-infrared spectroscopy have been studied by analogy to forced vibration and viscously damped free vibration. Other models have been used to evaluate the temperatures. The time necessary for the reoxygenation signal to cross the baseline during the post exercise period was from 30 min to over 100 min. The peak of pH values was 5 min post-exercise and to arrive at basal levels needed 25 min to more than 40 min. The peak of rectal temperature starts around 20 - 30 min post-exercise remaining 25 - 40 min at the same value, starting to slip down slowly at variable intervals of several minutes requiring over two hours to arrive at basal levels. The data obtained by near-infrared spectroscopy and skin quadriceps, rectal temperatures confirm that the oxygen consumption remains after exercise in the muscle studied.

  19. Understanding the biological activity of high rate algae ponds through the calculation of oxygen balances.

    PubMed

    Arbib, Zouhayr; de Godos Crespo, Ignacio; Corona, Enrique Lara; Rogalla, Frank

    2017-03-24

    Microalgae culture in high rate algae ponds (HRAP) is an environmentally friendly technology for wastewater treatment. However, for the implementation of these systems, a better understanding of the oxygenation potential and the influence of climate conditions is required. In this work, the rates of oxygen production, consumption, and exchange with the atmosphere were calculated under varying conditions of solar irradiance and dilution rate during six months of operation in a real scale unit. This analysis allowed determining the biological response of these dynamic systems. The rates of oxygen consumption measured were considerably higher than the values calculated based on the organic loading rate. The response to light intensity in terms of oxygen production in the bioreactor was described with one of the models proposed for microalgae culture in dense concentrations. This model is based on the availability of light inside the culture and the specific response of microalgae to this parameter. The specific response to solar radiation intensity showed a reasonable stability in spite of the fluctuations due to meteorological conditions. The methodology developed is a useful tool for optimization and prediction of the performance of these systems.

  20. The Effect of 30% Oxygen on Visuospatial Performance and Brain Activation: An Fmri Study

    ERIC Educational Resources Information Center

    Chung, S.C.; Tack, G.R.; Lee, B.; Eom, G.M.; Lee, S.Y.; Sohn, J.H.

    2004-01-01

    This study aimed to investigate the hypothesis that administration of the air with 30% oxygen compared with normal air (21% oxygen) enhances cognitive functioning through increased activation in the brain. A visuospatial task was presented while brain images were scanned by a 3 T fMRI system. The results showed that there was an improvement in…

  1. Effects of exercise-induced muscle damage on resting metabolic rate, sub-maximal running and post-exercise oxygen consumption.

    PubMed

    Burt, Dean Gareth; Lamb, Kevin; Nicholas, Ceri; Twist, Craig

    2014-01-01

    Exercise-induced muscle damage (EIMD), described as the acute weakness of the musculature after unaccustomed eccentric exercise, increases oxidative metabolism at rest and during endurance exercise. However, it is not known whether oxygen uptake during recovery from endurance exercise is increased when experiencing symptoms of EIMD. Therefore, the purpose of this study was to investigate the effects of EIMD on physiological and metabolic responses before, during and after sub-maximal running. After a 12 h fast, eight healthy male participants completed baseline measurements comprising resting metabolic rate (RMR), indirect markers of EIMD, 10 min of sub-maximal running and 30 min of recovery to ascertain excess post-exercise oxygen consumption (EPOC). Measurements were then repeated at 24 and 48 h after 100 Smith-machine squats. Data analysis revealed significant (P<0.05) increases in muscle soreness and creatine kinase (CK) and decreases in peak knee extensor torque at 24 and 48 h after squatting exercise. Moreover, RMR, physiological, metabolic and perceptual responses during sub-maximal running and EPOC were increased in the two days after squatting exercise (P<0.05). It is suggested that the elevated RMR was a consequence of a raised energy requirement for the degradation and resynthesis of damaged muscle fibres. The increased oxygen demand during sub-maximal running after muscle damage was responsible for the increase in EPOC. Individuals engaging in unaccustomed resistance exercise that results in muscle damage should be mindful of the increases in resting energy expenditure and increased metabolic demand to exercise in the days that follow.

  2. Design of high pressure oxygen filter for extravehicular activity life support system, volume 1

    NASA Technical Reports Server (NTRS)

    Wilson, B. A.

    1977-01-01

    The experience of the National Aeronautics and Space Administration (NASA) with extravehicular activity life support emergency oxygen supply subsystems has shown a large number of problems associated with particulate contamination. These problems have resulted in failures of high pressure oxygen component sealing surfaces. A high pressure oxygen filter was designed which would (a) control the particulate contamination level in the oxygen system to a five-micron glass bead rating, ten-micron absolute condition (b) withstand the dynamic shock condition resulting from the sudden opening of 8000 psi oxygen system shutoff valve. Results of the following program tasks are reported: (1) contaminant source identification tests, (2) dynamic system tests, (3) high pressure oxygen filter concept evaluation, (4) design, (5) fabrication, (6) test, and (7) application demonstration.

  3. Forearm blood flow and oxygen consumption in patients with bilateral repetitive strain injury measured by near-infrared spectroscopy.

    PubMed

    Brunnekreef, Jaap J; Oosterhof, Jan; Thijssen, Dick H J; Colier, Willy N J M; van Uden, Caro J T

    2006-05-01

    Despite the social impact of repetitive strain injury (RSI), little is known about its pathophysiological mechanism. The main objective of this study was to assess the local muscle oxygenation (mVO2) and blood flow (mBF) of the forearm in individuals with RSI during isometric contractions of the forearm. We employed the non-invasive optical technique near-infrared spectroscopy to assess forearm VO2 and BF. These variables were assessed at 10%, 20%, and 40% of their individual maximal voluntary strength. Twenty-two patients with RSI symptoms in both arms (bilateral RSI) and 30 healthy age-matched subjects participated in this cross-sectional study. The results showed lower mVO2 during exercise and a reduced mBF after exercise. The results suggest that mVO2 and mVO2 are lower in the forearms of individuals with RSI compared with their controls at similar working intensities. This finding indicates that the underlying vasculature may be impaired. Although these findings contribute to the understanding of RSI, future research is necessary to further unravel the mechanisms of this area.

  4. The Effect of Cadence on Shank Muscle Oxygen Consumption and Deoxygenation in Relation to Joint Specific Power and Cycling Kinematics

    PubMed Central

    Ettema, Gertjan; van Beekvelt, Mireille

    2017-01-01

    The purpose of the present study was to investigate the effect of cadence on joint specific power and cycling kinematics in the ankle joint in addition to muscle oxygenation and muscle VO2 in the gastrocnemius and tibialis anterior. Thirteen cyclists cycled at a cadence of 60, 70, 80, 90, 100 and 110 rpm at a constant external work rate of 160.1 ± 21.3 W. Increasing cadence led to a decrease in ankle power in the dorsal flexion phase and to an increase in ankle joint angular velocity above 80 rpm. In addition, increasing cadence increased deoxygenation and desaturation for both the gastrocnemius and tibialis anterior muscles. Muscle VO2 increased following increased cadence but only in the tibialis anterior and only at cadences above 80 rpm, thus coinciding with the increase in ankle joint angular velocity. There was no effect of cadence in the gastrocnemius. This study demonstrates that high cadences lead to increased mVO2 in the TA muscles that cannot be explained by power in the dorsal flexion phase. PMID:28060894

  5. Effects of carbohydrate on the internal oxygen concentration, oxygen uptake, and nitrogenase activity in detached pea nodules

    SciTech Connect

    Monroe, J.D. ); LaRue, T.A. )

    1989-10-01

    The interaction between carbon substrates and O{sub 2} and their effects on nitrogenase activity (C{sub 2}H{sub 2}) were examined in detached nodules of pea (Pisum sativum L. cv Sparkle). The internal O{sub 2} concentration was estimated from the fractional oxygenation of leghemoglobin measured by reflectance spectroscopy. Lowering the endogenous carbohydrate content of nodules by excising the shoots 16 hours before nodule harvest or by incubating detached nodules at 100 kPa O{sub 2} for 2 hours resulted in a 2- to 10-fold increase in internal O{sub 2}, and a decline in nitrogenase activity. Conversely, when detached nodules were supplied with 100 millimolar succinate, the internal O{sub 2} was lowered. Nitrogenase activity was stimulated by succinate but only at high external O{sub 2}. Oxygen uptake increased linearly with external O{sub 2} but was affected only slightly by the carbon treatments. The apparent diffusion resistance in the nodule cortex was similar in all of the treatments. Carbon substrates can thus affect nitrogenase activity indirectly by affecting the O{sub 2} concentration within detached nodules.

  6. Reactive oxygen scavenging activity of matured whiskey and its active polyphenols.

    PubMed

    Koga, K; Taguchi, A; Koshimizu, S; Suwa, Y; Yamada, Y; Shirasaka, N; Yoshizumi, H

    2007-04-01

    The quality of whiskey is known to improve remarkably by its storage over many years. This process is commonly termed "maturing." In this process, polyphenols derived from lignin and tannin of the barrel have an important role in not only forming the matured flavor and taste but also contributing to the advance of clustering ethanol and water in whiskey. It is also likely that polyphenols generally possess reactive oxygen (RO) scavenging activity. The present study evaluated the RO scavenging activity (free-radical scavenging activity, H(2)O(2) reduction activity under peroxidase coculture, and H(2)O(2)scavenging activity) of 24 single malt whiskeys with a maturation age of 10 to 30 y produced in Japanese, Scotch (Islay), or Scotch (Speyside and Highland) regions. Single malt whiskey not only showed RO scavenging activity but there was also a positive correlation between this activity and the maturation age of whiskey exceeding the difference resulting from the manufacturing region. A nonvolatile fraction derived from the barrel was responsible for RO scavenging activity. In particular, the contents of ellagic and gallic acids and lyoniresinol, the main polyphenolic compounds in whiskey, increased with maturation age. For the free-radical scavenging activity per molecule, each compound was 1.68 to 3.14 times that of trolox (a water-soluble vitamin E). The activities of ellagic acid, gallic acid, and lyoniresinol in the whiskey (Yamazaki 18) were equivalent to that of 80.3, 31.2, and 11.1 ppm trolox, respectively. Accordingly, the total activity of these 3 compounds accounted for about 20% of the activity of the whiskey (630.7 ppm trolox).

  7. Iridium Oxide Coatings with Templated Porosity as Highly Active Oxygen Evolution Catalysts: Structure-Activity Relationships.

    PubMed

    Bernicke, Michael; Ortel, Erik; Reier, Tobias; Bergmann, Arno; Ferreira de Araujo, Jorge; Strasser, Peter; Kraehnert, Ralph

    2015-06-08

    Iridium oxide is the catalytic material with the highest stability in the oxygen evolution reaction (OER) performed under acidic conditions. However, its high cost and limited availability demand that IrO2 is utilized as efficiently as possible. We report the synthesis and OER performance of highly active mesoporous IrO2 catalysts with optimized surface area, intrinsic activity, and pore accessibility. Catalytic layers with controlled pore size were obtained by soft-templating with micelles formed from amphiphilic block copolymers poly(ethylene oxide)-b-poly(butadiene)-b-poly(ethylene oxide). A systematic study on the influence of the calcination temperature and film thickness on the morphology, phase composition, accessible surface area, and OER activity reveals that the catalytic performance is controlled by at least two independent factors, that is, accessible surface area and intrinsic activity per accessible site. Catalysts with lower crystallinity show higher intrinsic activity. The catalyst surface area increases linearly with film thickness. As a result of the templated mesopores, the pore surface remains fully active and accessible even for thick IrO2 films. Even the most active multilayer catalyst does not show signs of transport limitations at current densities as high as 75 mA cm(-2) .

  8. Effect of different levels of alcohol consumption on natural killer and lymphokine activated killer cells

    SciTech Connect

    Klassen, L.W.; DeVasure, J.M.; Lemley-Gillespie, S.D.; Thiele, G.M. Omaha VA Hospital, NE )

    1991-03-11

    The effect of alcohol consumption on natural killer (NK) cell activity is controversial as both increased and decreased levels have been reported. It was the purpose of this study to determine the effects of feeding BDF1 mice different levels of alcohol on NK and lymphokine activated killer (LAK) cell activity. After four-six weeks of chronic alcohol feeding, mice were sacrificed, spleen cells obtained and assayed for NK and IL-2 boosted NK activity against YAC-1 cells in a traditional {sup 51}chromium release assay. Cells were also cultured in the presence of IL-2 for five days and tested for cytolytic activity using P815 cells as targets. Cells from each group were passed over a nylon wool column and the adherent (AD) and nonadherent (NAD) populations collected and tested as above. Increased NK, 24 hour IL-2 boosted NK and 5 day LAK activity were observed only in the spleen cells obtained from mice on 20% alcohol. Also, NAD populations had a 2-4 fold higher lytic unit values (LU{sub 20}) at all levels of alcohol consumption and in all assays, as compared with the unseparated spleen cells. Analysis of cell surface markers on these three populations of cells show that there were differences in MAC-2, Asialo GM-1, Thy 1.2, B220 and NK 1.1 that may correlate with the differences observed in the cytolytic assays. These data suggest that different levels of alcohol affect the cytolytic activity of NK and LAK cells and may result from alterations in the cell subset populations.

  9. Physique, body composition and maximum oxygen consumption of selected soccer players of Kunimi High School, Nagasaki, Japan.

    PubMed

    Tahara, Yasuaki; Moji, Kazuhiko; Tsunawake, Noriaki; Fukuda, Rika; Nakayama, Masao; Nakagaichi, Masaki; Komine, Tadatoshi; Kusano, Yosuke; Aoyagi, Kiyoshi

    2006-07-01

    This study evaluates the physical and physiological ability of selected soccer players of Kunimi High School in Nagasaki Prefecture, Japan. The Kunimi team is famous for its intensive training, and had won the championship of the All Japan High School Soccer Tournament six times by 2003. We measured physique, body composition, and maximal oxygen uptake of 72 members aged between 16 and 18 years old between 1986 and 1994. They consisted of 66 outfield players (12 forward players, 23 midfielders, 31 defenders) and 6 goalkeepers. Body density was measured by the under-water weighing method, and Brozek's equation was applied to calculate percentage body fat (%Fat, %), fat-free mass (FFM, kg), FFM/height (FFM/Ht, kg.m(-1)), and FFM index (FFM/Ht(3), kg.m(-3)). The following results were obtained: 1. The average of 66 outfield players was 172.7 cm of height, 64.6 kg of weight, 54.0 cm of girth of thigh, and 90.0 cm of girth of hip, 9.3% of %Fat, 58.6 kg of FFM, 33.9 kg.m(-1) of FFM/Ht and 113.8 kg.m(-3) of FFM index. The mean vital capacity was 4.25 L and total lung capacity was 5.58 L. The mean maximal ventilation was 138.7 L.min(-1), VO(2)max was 3.95 L.min(-1), and VO(2)max/Wt was 61.4 ml.kg(-1).min(-1). 2. Goalkeepers were taller and heavier than outfielders, and had a smaller mean value of VO(2)max/Wt than outfielders (p<0.01). 3. For 23 out of the 72 players measured twice with an interval of about one year, FFM increased and %Fat reduced significantly, while V(E)max, VO(2)max and VO(2)max/Wt did not change. Kunimi players of the present study had as large a VO(2)max/Wt as local players, and a similar or slightly smaller VO(2)max/Wt than national-level players. They had similar %Fat and a similar VO(2)max/Wt with professional soccer players in England (Davis et al., 1992) while they had much smaller physiques.

  10. Study of oxygen scavenging PET-based films activated by water

    NASA Astrophysics Data System (ADS)

    Rossi, Gabriella; Scarfato, Paola; Incarnato, Loredana

    2016-05-01

    In this work an active barrier system consisting of a thin and transparent film based on polyethylene terephthalate (PET) was studied. Dynamic oxygen absorption measurements were performed at different values of relative humidity and temperature, pointing out that humidity is a key factor in activating the oxidation of the polymer sample. Moreover, the thermal and optical properties of the films were investigated and a good correlation was found between the crystallinity increase and the consequent transparency reduction occurring after the oxygen absorption.

  11. Oxygen requirements for formation and activity of the squalene expoxidase in Saccharomyces cerevisiae

    NASA Technical Reports Server (NTRS)

    Jahnke, L.; Klein, H. P.

    1983-01-01

    The effect of oxygen on squalene epoxidase activity in Saccharomyces cerevisiae was investigated. In cells grown in standing cultures, the epoxidase was localized mainly in the 'mitochondrial' fraction. Upon aeration, enzyme activity increased and the newly formed enzyme was associated with the 'microsomal' fraction. At 0.03 percent (vol/vol) oxygen, epoxidase levels doubled, whereas the ergosterol level was only slightly increased. Cycloheximide inhibited the increase in epoxidase under these conditions. An apparent K sub m for oxygen of 0.38 percent (vol/vol) was determined from a crude particulate preparation for the epoxidase.

  12. Protective activity of propofol, Diprivan and intralipid against active oxygen species.

    PubMed Central

    Mathy-Hartert, M; Deby-Dupont, G; Hans, P; Deby, C; Lamy, M

    1998-01-01

    We separately studied the antioxidant properties of propofol (PPF), Diprivan (the commercial form of PPF) and intralipid (IL) (the vehicle solution of PPF in Diprivan) on active oxygen species produced by phorbol myristate acetate (10(-6) M)-stimulated human polymorphonuclear leukocytes (PMN: 5 x 10(5) cells/assay), human endothelial cells (5 x 10(5) cells/assay) or cell-free systems (NaOCl or H2O2/peroxidase systems), using luminol (10(-4) M)-enhanced chemiluminescence (CL). We also studied the protective effects of Diprivan on endothelial cells submitted to an oxidant stress induced by H2O2/MPO system: cytotoxicity was assessed by the release of preincorporated 51Cr. Propofol inhibited the CL produced by stimulated PMN in a dose dependent manner (until 5 x 10(-5) M, a clinically relevant concentration), while Diprivan and IL were not dose-dependent inhibitors. The CL produced by endothelial cells was dose-dependently inhibited by Diprivan and PPF, and weakly by IL (not dose-dependent). In cell free systems, dose-dependent inhibitions were obtained for the three products with a lower effect for IL. Diprivan efficaciously protected endothelial cells submitted to an oxidant stress, while IL was ineffective. By HPLC, we demonstrated that PPF was not incorporated into the cells. The drug thus acted by scavenging the active oxygen species released in the extracellular medium. IL acted in the same manner, but was a less powerful antioxidant. PMID:9883967

  13. Single Silver Adatoms on Nanostructured Manganese Oxide Surfaces: Boosting Oxygen Activation for Benzene Abatement.

    PubMed

    Chen, Yaxin; Huang, Zhiwei; Zhou, Meijuan; Ma, Zhen; Chen, Jianmin; Tang, Xingfu

    2017-02-21

    The involvement of a great amount of active oxygen species is a crucial requirement for catalytic oxidation of benzene, because complete mineralization of one benzene molecule needs 15 oxygen atoms. Here, we disperse single silver adatoms on nanostructured hollandite manganese oxide (HMO) surfaces by using a thermal diffusion method. The single-atom silver catalyst (Ag1/HMO) shows high catalytic activity in benzene oxidation, and 100% conversion is achieved at 220 °C at a high space velocity of 23 000 h(-1). The Mars-van Krevelen mechanism is valid in our case as the reaction orders for both benzene and O2 approach one, according to reaction kinetics data. Data from H2 temperature-programmed reduction and O core-level X-ray photoelectron spectra (XPS) reveal that Ag1/HMO possesses a great amount of active surface lattice oxygen available for benzene oxidation. Valence-band XPS and density functional theoretical calculations demonstrate that the single Ag adatoms have the upshifted 4d orbitals, thus facilitating the activation of gaseous oxygen. Therefore, the excellent activation abilities of Ag1/HMO toward both surface lattice oxygen and gaseous oxygen account for its high catalytic activity in benzene oxidation. This work may assist with the rational design of efficient metal-oxide catalysts for the abatement of volatile organic compounds such as benzene.

  14. Modeling of moisture diffusivity, activation energy and energy consumption in fluidized bed drying of rough rice

    NASA Astrophysics Data System (ADS)

    Khanali, Majid; Banisharif, Alireza; Rafiee, Shahin

    2016-11-01

    The present work was an attempt to assess the effective moisture diffusivity, activation energy, and energy consumption of rough rice in a batch fluidized bed dryer. Drying experiments were conducted at drying air temperatures of 50, 60, and 70 °C, superficial fluidization velocities of 2.3, 2.5, and 2.8 m/s, and solids holdup of 1.32 kg. Drying kinetics showed that the whole fluidized bed drying of rough rice occurred in the falling rate period. The effective moisture diffusivity was described by an Arrhenius equation. The evaluated effective moisture diffusivity increased with drying air temperature and superficial fluidization velocity and was found to vary from 4.78 × 10-11 to 1.364 × 10-10 m2/s with R2 higher than 0.9643. The activation energy and the pre-exponential factor of Arrhenius equation were found to be in the range of 36.59-44.31 kJ/mol and 4.71 × 10-5-7.15 × 10-4 m2/s, respectively. Both maximum values of the specific energy consumption of 74.73 MJ/kg and the total energy need of 12.43 MJ were obtained at 60 °C drying air temperature and 2.8 m/s superficial fluidization velocity. Both minimum values of the specific energy consumption of 29.98 MJ/kg and the total energy need of 4.85 MJ were obtained under drying air temperature of 70 °C and superficial fluidization velocity of 2.3 m/s.

  15. Joint associations of alcohol consumption and physical activity with all-cause and cardiovascular mortality.

    PubMed

    Soedamah-Muthu, Sabita S; De Neve, Melissa; Shelton, Nicola J; Tielemans, Susanne M A J; Stamatakis, Emmanuel

    2013-08-01

    Individual associations of alcohol consumption and physical activity with cardiovascular disease are relatively established, but the joint associations are not clear. Therefore, the aim of this study was to examine prospectively the joint associations between alcohol consumption and physical activity with cardiovascular mortality (CVM) and all-cause mortality. Four population-based studies in the United Kingdom were included, the 1997 and 1998 Health Surveys for England and the 1998 and 2003 Scottish Health Surveys. In men and women, respectively, low physical activity was defined as 0.1 to 5 and 0.1 to 4 MET-hours/week and high physical activity as ≥5 and ≥4 MET-hours/week. Moderate or moderately high alcohol intake was defined as >0 to 35 and >0 to 21 units/week and high levels of alcohol intake as >35 and >21 units/week. In total, there were 17,410 adults without prevalent cardiovascular diseases and complete data on alcohol and physical activity (43% men, median age 55 years). During a median follow-up period of 9.7 years, 2,204 adults (12.7%) died, 638 (3.7%) with CVM. Cox proportional-hazards models were adjusted for potential confounders such as marital status, social class, education, ethnicity, and longstanding illness. In the joint associations analysis, low activity combined with high levels of alcohol (CVM: hazard ratio [HR] 1.95, 95% confidence interval [CI] 1.28 to 2.96, p = 0.002; all-cause mortality: HR 1.64, 95% CI 1.32 to 2.03, p <0.001) and low activity combined with no alcohol (CVM: HR 1.93, 95% CI 1.35 to 2.76, p <0.001; all-cause mortality: HR 1.50, 95% CI 1.24 to 1.81, p <0.001) were linked to the highest risk, compared with moderate drinking and higher levels of physical activity. Within each given alcohol group, low activity was linked to increased CVM risk (e.g., HR 1.48, 95% CI 1.08 to 2.03, p = 0.014, for the moderate drinking group), but in the presence of high physical activity, high alcohol intake was not linked to increased CVM

  16. Activation processes on GaAs photocathode by different currents of oxygen source

    NASA Astrophysics Data System (ADS)

    Miao, Zhuang; Shi, Feng; Cheng, Hongchang; Wang, Shufei; Zhang, Xiaohui; Yuan, Yuan; Chen, Chang

    2015-04-01

    In order to know the influence of activation processes on GaAs photocathodes, three GaAs samples were activated by a fixed current of cesium source and different currents of oxygen source. The current of caesium source is same during activation to ensure initial adsorption of caesium quantum is similar, which is the base to show the difference during alternation activation of caesium and oxygen. Analysed with the activation data, it is indicated that Cs-to-O current ratio of 1.07 is the optimum ratio to obtain higher sensitivity and better stability. According to double dipole model, stable and uniform double dipole layers of GaAs-O-Cs:Cs-O-Cs are formed and negative electron affinity is achieved on GaAs surface by activation with cesium and oxygen. The analytical result is just coincident with the model. Thus there is an efficient technological method to improve sensitivity and stability of GaAs photocathode.

  17. The relationship between electrocerebral activity and cerebral fractional tissue oxygen extraction in preterm infants.

    PubMed

    ter Horst, Hendrik J; Verhagen, Elise A; Keating, Paul; Bos, Arend F

    2011-10-01

    Impaired cerebral oxygen delivery may cause cerebral damage in preterm infants. At lower levels of cerebral perfusion and oxygen concentration, electrocerebral activity is disturbed. The balance between cerebral oxygen delivery and oxygen use can be measured by near-infrared spectroscopy (NIRS), and electrocerebral activity can be measured by amplitude-integrated EEG (aEEG). Our aim was to determine the relationship between regional cerebral tissue oxygen saturation (rcSO2), fractional tissue oxygen extraction (FTOE), and aEEG. We recorded longitudinal digital aEEG and rcSO2 prospectively in 46 preterm infants (mean GA 29.5 wk, SD 1.7) for 2 hr on the 1st to 5th, 8th, and 15th d after birth. We excluded infants with germinal matrix hemorrhage exceeding grade I and recordings of infants receiving inotropes. FTOE was calculated using transcutaneous arterial oxygen saturation (tcSaO2) and rcSO2 values: (tcSaO2 - rcSO2)/tcSaO2. aEEG was assessed by calculating the mean values of the 5th, 50th, and 95th centiles of the aEEG amplitudes. The aEEG amplitude centiles changed with increasing GA. FTOE and aEEG amplitude centiles increased significantly with postnatal age. More mature electrocerebral activity was accompanied by increased FTOE. FTOE also increased with increasing postnatal age and decreasing Hb levels.

  18. Expression of a mitochondrial gene orfH79 from CMS-Honglian rice inhibits Escherichia coli growth via deficient oxygen consumption.

    PubMed

    Ding, Xia; Chen, Qiusheng; Bao, Canming; Ai, Aihua; Zhou, Ying; Li, Shaobo; Xie, Hongwei; Zhu, Youlin; Cai, Yaohui; Peng, Xiaojue

    2016-01-01

    Cytoplasmic male sterility (CMS) has often been associated with abnormal mitochondrial open frames (ORF), orfH79 is a mitochondrial chimeric gene responsible for the CMS trait in Honglian (HL) rice. In this study, the weakly produced ORFH79 protein significantly inhibited the growth of E. coli in an oxygen culture, however, the growth of the transformants producing ORFH79 was indistinguishable from the control under anaerobic incubation conditions. In addition, a lower respiration rate, wrinkled bacterial surfaces, and decreased pyruvate kinase and α-ketoglutarate dehydrogenase activities were observed in the ORFH79 produced E. coli. These results indicate that ORFH79 impairs the oxygen respiration of E. coli, which may inhibit E. coli growth.

  19. Systems analysis of transcription factor activities in environments with stable and dynamic oxygen concentrations.

    PubMed

    Rolfe, Matthew D; Ocone, Andrea; Stapleton, Melanie R; Hall, Simon; Trotter, Eleanor W; Poole, Robert K; Sanguinetti, Guido; Green, Jeffrey

    2012-07-01

    Understanding gene regulation requires knowledge of changes in transcription factor (TF) activities. Simultaneous direct measurement of numerous TF activities is currently impossible. Nevertheless, statistical approaches to infer TF activities have yielded non-trivial and verifiable predictions for individual TFs. Here, global statistical modelling identifies changes in TF activities from transcript profiles of Escherichia coli growing in stable (fixed oxygen availabilities) and dynamic (changing oxygen availability) environments. A core oxygen-responsive TF network, supplemented by additional TFs acting under specific conditions, was identified. The activities of the cytoplasmic oxygen-responsive TF, FNR, and the membrane-bound terminal oxidases implied that, even on the scale of the bacterial cell, spatial effects significantly influence oxygen-sensing. Several transcripts exhibited asymmetrical patterns of abundance in aerobic to anaerobic and anaerobic to aerobic transitions. One of these transcripts, ndh, encodes a major component of the aerobic respiratory chain and is regulated by oxygen-responsive TFs ArcA and FNR. Kinetic modelling indicated that ArcA and FNR behaviour could not explain the ndh transcript profile, leading to the identification of another TF, PdhR, as the source of the asymmetry. Thus, this approach illustrates how systematic examination of regulatory responses in stable and dynamic environments yields new mechanistic insights into adaptive processes.

  20. Chronic ethanol consumption inhibits glucokinase transcriptional activity by Atf3 and triggers metabolic syndrome in vivo.

    PubMed

    Kim, Ji Yeon; Hwang, Joo-Yeon; Lee, Dae Yeon; Song, Eun Hyun; Park, Keon Jae; Kim, Gyu Hee; Jeong, Eun Ae; Lee, Yoo Jeong; Go, Min Jin; Kim, Dae Jin; Lee, Seong Su; Kim, Bong-Jo; Song, Jihyun; Roh, Gu Seob; Gao, Bin; Kim, Won-Ho

    2014-09-26

    Chronic ethanol consumption induces pancreatic β-cell dysfunction through glucokinase (Gck) nitration and down-regulation, leading to impaired glucose tolerance and insulin resistance, but the underlying mechanism remains largely unknown. Here, we demonstrate that Gck gene expression and promoter activity in pancreatic β-cells were suppressed by chronic ethanol exposure in vivo and in vitro, whereas expression of activating transcription factor 3 (Atf3) and its binding to the putative Atf/Creb site (from -287 to -158 bp) on the Gck promoter were up-regulated. Furthermore, in vitro ethanol-induced Atf3 inhibited the positive effect of Pdx-1 on Gck transcriptional regulation, enhanced recruitment of Hdac1/2 and histone H3 deacetylation, and subsequently augmented the interaction of Hdac1/Pdx-1 on the Gck promoter, which were diminished by Atf3 siRNA. In vivo Atf3-silencing reversed ethanol-mediated Gck down-regulation and β-cell dysfunction, followed by the amelioration of impaired glucose tolerance and insulin resistance. Together, we identified that ethanol-induced Atf3 fosters β-cell dysfunction via Gck down-regulation and that its loss ameliorates metabolic syndrome and could be a potential therapeutic target in treating type 2 diabetes. The Atf3 gene is associated with the induction of type 2 diabetes and alcohol consumption-induced metabolic impairment and thus may be the major negative regulator for glucose homeostasis.

  1. Body mass scaling of passive oxygen diffusion in endotherms and ectotherms

    PubMed Central

    Gillooly, James F.; Gomez, Juan Pablo; Mavrodiev, Evgeny V.; Rong, Yue; McLamore, Eric S.

    2016-01-01

    The area and thickness of respiratory surfaces, and the constraints they impose on passive oxygen diffusion, have been linked to differences in oxygen consumption rates and/or aerobic activity levels in vertebrates. However, it remains unclear how respiratory surfaces and associated diffusion rates vary with body mass across vertebrates, particularly in relation to the body mass scaling of oxygen consumption rates. Here we address these issues by first quantifying the body mass dependence of respiratory surface area and respiratory barrier thickness for a diversity of endotherms (birds and mammals) and ectotherms (fishes, amphibians, and reptiles). Based on these findings, we then use Fick’s law to predict the body mass scaling of oxygen diffusion for each group. Finally, we compare the predicted body mass dependence of oxygen diffusion to that of oxygen consumption in endotherms and ectotherms. We find that the slopes and intercepts of the relationships describing the body mass dependence of passive oxygen diffusion in these two groups are statistically indistinguishable from those describing the body mass dependence of oxygen consumption. Thus, the area and thickness of respiratory surfaces combine to match oxygen diffusion capacity to oxygen consumption rates in both air- and water-breathing vertebrates. In particular, the substantially lower oxygen consumption rates of ectotherms of a given body mass relative to those of endotherms correspond to differences in oxygen diffusion capacity. These results provide insights into the long-standing effort to understand the structural attributes of organisms that underlie the body mass scaling of oxygen consumption. PMID:27118837

  2. Body mass scaling of passive oxygen diffusion in endotherms and ectotherms.

    PubMed

    Gillooly, James F; Gomez, Juan Pablo; Mavrodiev, Evgeny V; Rong, Yue; McLamore, Eric S

    2016-05-10

    The area and thickness of respiratory surfaces, and the constraints they impose on passive oxygen diffusion, have been linked to differences in oxygen consumption rates and/or aerobic activity levels in vertebrates. However, it remains unclear how respiratory surfaces and associated diffusion rates vary with body mass across vertebrates, particularly in relation to the body mass scaling of oxygen consumption rates. Here we address these issues by first quantifying the body mass dependence of respiratory surface area and respiratory barrier thickness for a diversity of endotherms (birds and mammals) and ectotherms (fishes, amphibians, and reptiles). Based on these findings, we then use Fick's law to predict the body mass scaling of oxygen diffusion for each group. Finally, we compare the predicted body mass dependence of oxygen diffusion to that of oxygen consumption in endotherms and ectotherms. We find that the slopes and intercepts of the relationships describing the body mass dependence of passive oxygen diffusion in these two groups are statistically indistinguishable from those describing the body mass dependence of oxygen consumption. Thus, the area and thickness of respiratory surfaces combine to match oxygen diffusion capacity to oxygen consumption rates in both air- and water-breathing vertebrates. In particular, the substantially lower oxygen consumption rates of ectotherms of a given body mass relative to those of endotherms correspond to differences in oxygen diffusion capacity. These results provide insights into the long-standing effort to understand the structural attributes of organisms that underlie the body mass scaling of oxygen consumption.

  3. The effect of mayfly (Hexagenia spp.) burrowing activity on sediment oxygen demand in western Lake Erie

    USGS Publications Warehouse

    Edwards, William J.; Soster, Frederick M.; Matisoff, Gerald; Schloesser, Donald W.

    2009-01-01

    Previous studies support the hypothesis that large numbers of infaunal burrow-irrigating organisms in the western basin of Lake Erie may increase significantly the sediment oxygen demand, thus enhancing the rate of hypolimnetic oxygen depletion. We conducted laboratory experiments to quantify burrow oxygen dynamics and increased oxygen demand resulting from burrow irrigation using two different year classes of Hexagenia spp. nymphs from western Lake Erie during summer, 2006. Using oxygen microelectrodes and hot film anemometry, we simultaneously determined oxygen concentrations and burrow water flow velocities. Burrow oxygen depletion rates ranged from 21.7 mg/nymph/mo for 15 mm nymphs at 23 °C to 240.7 mg/nymph