Science.gov

Sample records for activity p53 expression

  1. MIF family members cooperatively inhibit p53 expression and activity.

    PubMed

    Brock, Stephanie E; Rendon, Beatriz E; Xin, Dan; Yaddanapudi, Kavitha; Mitchell, Robert A

    2014-01-01

    The tumor suppressor p53 is induced by genotoxic stress in both normal and transformed cells and serves to transcriptionally coordinate cell cycle checkpoint control and programmed cell death responses. Macrophage migration inhibitory factor (MIF) is an autocrine and paracrine acting cytokine/growth factor that promotes lung adenocarcinoma cell motility, anchorage-independence and neo-angiogenic potential. Several recent studies indicate that the only known homolog of MIF, D-dopachrome tautomerase (D-DT - also referred to as MIF-2), has functionally redundant activities with MIF and cooperatively promotes MIF-dependent pro-tumorigenic phenotypes. We now report that MIF and D-DT synergistically inhibit steady state p53 phosphorylation, stabilization and transcriptional activity in human lung adenocarcinoma cell lines. The combined loss of MIF and D-DT by siRNA leads to dramatically reduced cell cycle progression, anchorage independence, focus formation and increased programmed cell death when compared to individual loss of MIF or D-DT. Importantly, p53 mutant and p53 null lung adenocarcinoma cell lines were only nominally rescued from the cell growth effects of MIF/D-DT combined deficiency suggesting only a minor role for p53 in these transformed cell growth phenotypes. Finally, increased p53 activation was found to be independent of aberrantly activated AMP-activated protein kinase (AMPK) that occurs in response to MIF/D-DT-deficiency but is dependent on reactive oxygen species (ROS) that mediate aberrant AMPK activation in these cells. Combined, these findings suggest that both p53 wildtype and mutant human lung adenocarcinoma tumors rely on MIF family members for maximal cell growth and survival.

  2. Substrate Stiffness Influences Doxorubicin-Induced p53 Activation via ROCK2 Expression

    PubMed Central

    Ebata, Takahiro; Mitsui, Yasumasa; Sugimoto, Wataru; Maeda, Miho; Machiyama, Hiroaki; Harada, Ichiro; Sawada, Yasuhiro; Fujita, Hideaki; Hirata, Hiroaki

    2017-01-01

    The physical properties of the extracellular matrix (ECM), such as stiffness, are involved in the determination of the characteristics of cancer cells, including chemotherapy sensitivity. Resistance to chemotherapy is often linked to dysfunction of tumor suppressor p53; however, it remains elusive whether the ECM microenvironment interferes with p53 activation in cancer cells. Here, we show that, in MCF-7 breast cancer cells, extracellular stiffness influences p53 activation induced by the antitumor drug doxorubicin. Cell growth inhibition by doxorubicin was increased in response to ECM rigidity in a p53-dependent manner. The expression of Rho-associated coiled coil-containing protein kinase (ROCK) 2, which induces the activation of myosin II, was significantly higher when cells were cultured on stiffer ECM substrates. Knockdown of ROCK2 expression or pharmacological inhibition of ROCK decreased doxorubicin-induced p53 activation. Our results suggest that a soft ECM causes downregulation of ROCK2 expression, which drives resistance to chemotherapy by repressing p53 activation. PMID:28191463

  3. p53/PUMA expression in human pulmonary fibroblasts mediates cell activation and migration in silicosis

    PubMed Central

    Wang, Wei; Liu, Haijun; Dai, Xiaoniu; Fang, Shencun; Wang, Xingang; Zhang, Yingming; Yao, Honghong; Zhang, Xilong; Chao, Jie

    2015-01-01

    Phagocytosis of SiO2 into the lung causes an inflammatory cascade that results in fibroblast proliferation and migration, followed by fibrosis. Clinical evidence has indicated that the activation of alveolar macrophages by SiO2 produces rapid and sustained inflammation characterized by the generation of monocyte chemotactic protein 1, which, in turn, induces fibrosis. However, the details of events downstream of monocyte chemotactic protein 1 activity in pulmonary fibroblasts remain unclear. Here, to elucidate the role of p53 in fibrosis induced by silica, both the upstream molecular mechanisms and the functional effects on cell proliferation and migration were investigated. Experiments using primary cultured adult human pulmonary fibroblasts led to the following results: 1) SiO2 treatment resulted in a rapid and sustained increase in p53 and PUMA protein levels; 2) the MAPK and PI3K pathways were involved in the SiO2-induced alteration of p53 and PUMA expression; and 3) RNA interference targeting p53 and PUMA prevented the SiO2-induced increases in fibroblast activation and migration. Our study elucidated a link between SiO2-induced p53/PUMA expression in fibroblasts and cell migration, thereby providing novel insight into the potential use of p53/PUMA in the development of novel therapeutic strategies for silicosis treatment. PMID:26576741

  4. Exploiting tyrosinase expression and activity in melanocytic tumors: quercetin and the central role of p53.

    PubMed

    Vargas, Ashley J; Sittadjody, Sivanandane; Thangasamy, Thilakavathy; Mendoza, Erin E; Limesand, Kirsten H; Burd, Randy

    2011-12-01

    Melanoma is an aggressive tumor that expresses the pigmentation enzyme tyrosinase. Tyrosinase expression increases during tumorigenesis, which could allow for selective treatment of this tumor type by strategies that use tyrosinase activity. Approaches targeting tyrosinase would involve gene transcription or signal transduction pathways mediated by p53 in a direct or indirect manner. Two pathways are proposed for exploiting tyrosinase expression: (a) a p53-dependent pathway leading to apoptosis or arrest and (b) a reactive oxygen species-mediated induction of endoplasmic reticulum stress in p53 mutant tumors. Both strategies could use tyrosinase-mediated activation of quercetin, a dietary polyphenol that induces the expression of p53 and modulates reactive oxygen species. In addition to antitumor signaling properties, activation of quercetin could complement conventional cancer therapy by the induction of phase II detoxification enzymes resulting in p53 stabilization and transduction of its downstream targets. In conclusion, recent advances in tyrosinase enzymology, prodrug chemistry, and modern chemotherapeutics present an intriguing and selective multitherapy targeting system where dietary bioflavonoids could be used to complement conventional cancer treatments.

  5. ATF3 activates Stat3 phosphorylation through inhibition of p53 expression in skin cancer cells.

    PubMed

    Hao, Zhen-Feng; Ao, Jun-Hong; Zhang, Jie; Su, You-Ming; Yang, Rong-Ya

    2013-01-01

    ATF3, a member of the ATF/CREB family of transcription factors, has been found to be selectively induced by calcineurin/NFAT inhibition and to enhance keratinocyte tumor formation, although the precise role of ATF3 in human skin cancer and possible mechanisms remain unknown. In this study, clinical analysis of 30 skin cancer patients and 30 normal donors revealed that ATF3 was accumulated in skin cancer tissues. Functional assays demonstrated that ATF3 significantly promoted skin cancer cell proliferation. Mechanically, ATF3 activated Stat3 phosphorylation in skin cancer cell through regulation of p53 expression. Moreover, the promotion effect of ATF3 on skin cancer cell proliferation was dependent on the p53-Stat3 signaling cascade. Together, the results indicate that ATF3 might promote skin cancer cell proliferation and enhance skin keratinocyte tumor development through inhibiting p53 expression and then activating Stat3 phosphorylation.

  6. Apoptosis in experimental NASH is associated with p53 activation and TRAIL receptor expression.

    PubMed

    Farrell, Geoffrey C; Larter, Claire Z; Hou, Jing Yun; Zhang, Rena H; Yeh, Matthew M; Williams, Jacqueline; dela Pena, Aileen; Francisco, Rona; Osvath, Sarah R; Brooling, John; Teoh, Narcissus; Sedger, Lisa M

    2009-03-01

    We examined extrinsic and intrinsic (endogenous) mitochondrial apoptosis pathways in experimental non-alcoholic steatohepatitis (NASH). To assess extrinsic pathways, we measured hepatic expression of death-inducing cytokine receptors (tumor necrosis factor-alpha-receptor (TNF-R)1, TNF-R2, Fas, and TNFalpha-related apoptosis-inducing ligand-receptor (TRAIL-R) mRNA, TUNEL, caspase 3 activation, liver injury and liver pathology in mice fed a methionine and choline deficient (MCD) diet. For endogenous stress pathways, we determined serum insulin-like growth factor-1 (IGF-1), hepatic p53, Bcl-XL, tBid and p21 expression. Methionine and choline deficient feeding increased alanine aminotransferase (ALT) and apoptosis from day 10, without increases in TNF-R1, TNF-R2, and Fas. However, murine TRAIL receptors, particularly decoyTRAIL-R1/TNFRSFH23 and Killer/DR5 mRNA increased. MCD feeding enhanced hepatic p53 expression, corresponding to approximately 50% fall in serum IGF-1, decreased Bcl-XL, enhanced Bid cleavage to tBid, and up-regulation of p21. Nutritional restitution experiments showed that correcting either methionine or choline deficiency suppressed liver inflammation (extrinsic pathway), but failed to correct apoptosis, IGF-1 or p53. Methionine and choline deficiency lower IGF-1 to de-repress p53 during induction of steatohepatitis. The p53 induced by nutritional stress is biologically active in mediating mitochondrial cell death pathways, but may also be responsible for TRAIL receptor expression, thereby linking intrinsic and exogenous apoptosis pathways in NASH.

  7. Influenza A Viruses Control Expression of Proviral Human p53 Isoforms p53β and Δ133p53α

    PubMed Central

    Marcel, Virginie; Cartet, Gaëlle; Lane, David P.; Lina, Bruno; Rosa-Calatrava, Manuel

    2012-01-01

    Previous studies have described the role of p53 isoforms, including p53β and Δ133p53α, in the modulation of the activity of full-length p53, which regulates cell fate. In the context of influenza virus infection, an interplay between influenza viruses and p53 has been described, with p53 being involved in the antiviral response. However, the role of physiological p53 isoforms has never been explored in this context. Here, we demonstrate that p53 isoforms play a role in influenza A virus infection by using silencing and transient expression strategies in human lung epithelial cells. In addition, with the help of a panel of different influenza viruses from different subtypes, we also show that infection differentially regulates the expressions of p53β and Δ133p53α. Altogether, our results highlight the role of p53 isoforms in the viral cycle of influenza A viruses, with p53β and Δ133p53α acting as regulators of viral production in a p53-dependent manner. PMID:22647703

  8. Interleukin-13 interferes with activation-induced t-cell apoptosis by repressing p53 expression

    PubMed Central

    Yang, Li; Xu, Ling-Zhi; Liu, Zhi-Qiang; Yang, Gui; Geng, Xiao-Rui; Mo, Li-Hua; Liu, Zhi-Gang; Zheng, Peng-Yuan; Yang, Ping-Chang

    2016-01-01

    The etiology and the underlying mechanism of CD4+ T-cell polarization are unclear. This study sought to investigate the mechanism by which interleukin (IL)-13 prevents the activation-induced apoptosis of CD4+ T cells. Here we report that CD4+ T cells expressed IL-13 receptor α2 in the intestine of sensitized mice. IL-13 suppressed both the activation-induced apoptosis of CD4+ T cells and the expression of p53 and FasL. Exposure to recombinant IL-13 inhibited activation-induced cell death (AICD) along with the expression of p53, caspase 3, and tumor necrosis factor-α in CD4+ T cells. Administration of an anti-IL-13 antibody enhanced the effect of specific immunotherapy on allergic inflammation in the mouse intestine, enforced the expression of p53 in intestinal CD4+ T cells, and enhanced the frequency of CD4+ T-cell apoptosis upon challenge with specific antigens. In summary, blocking IL-13 enhances the therapeutic effect of antigen-specific immunotherapy by regulating apoptosis and thereby enforcing AICD in CD4+ T cells. PMID:26189367

  9. Decreasing CNPY2 Expression Diminishes Colorectal Tumor Growth and Development through Activation of p53 Pathway.

    PubMed

    Yan, Ping; Gong, Hui; Zhai, Xiaoyan; Feng, Yi; Wu, Jun; He, Sheng; Guo, Jian; Wang, Xiaoxia; Guo, Rui; Xie, Jun; Li, Ren-Ke

    2016-04-01

    Neovascularization drives tumor development, and angiogenic factors are important neovascularization initiators. We recently identified the secreted angiogenic factor CNPY2, but its involvement in cancer has not been explored. Herein, we investigate CNPY2's role in human colorectal cancer (CRC) development. Tumor samples were obtained from CRC patients undergoing surgery. Canopy 2 (CNPY2) expression was analyzed in tumor and adjacent normal tissue. Stable lines of human HCT116 cells expressing CNPY2 shRNA or control shRNA were established. To determine CNPY2's effects on tumor xenografts in vivo, human CNPY2 shRNA HCT116 cells and controls were injected into nude mice, separately. Cellular apoptosis, growth, and angiogenesis in the xenografts were evaluated. CNPY2 expression was significantly higher in CRC tissues. CNPY2 knockdown in HCT116 cells inhibited growth and migration and promoted apoptosis. In xenografts, CNPY2 knockdown prevented tumor growth and angiogenesis and promoted apoptosis. Knockdown of CNPY2 in the HCT116 CRC cell line reversibly increased p53 activity. The p53 activation increased cyclin-dependent kinase inhibitor p21 and decreased cyclin-dependent kinase 2, thereby inhibiting tumor cell growth, inducing cell apoptosis, and reducing angiogenesis both in vitro and in vivo. CNPY2 may play a critical role in CRC development by enhancing cell proliferation, migration, and angiogenesis and by inhibiting apoptosis through negative regulation of the p53 pathway. Therefore, CNPY2 may represent a novel CRC therapeutic target and prognostic indicator.

  10. HDMX-L is expressed from a functional p53-responsive promoter in the first intron of the HDMX gene and participates in an autoregulatory feedback loop to control p53 activity.

    PubMed

    Phillips, Anna; Teunisse, Amina; Lam, Suzanne; Lodder, Kirsten; Darley, Matthew; Emaduddin, Muhammad; Wolf, Anja; Richter, Julia; de Lange, Job; Verlaan-de Vries, Matty; Lenos, Kristiaan; Böhnke, Anja; Bartel, Frank; Blaydes, Jeremy P; Jochemsen, Aart G

    2010-09-17

    The p53 regulatory network is critically involved in preventing the initiation of cancer. In unstressed cells, p53 is maintained at low levels and is largely inactive, mainly through the action of its two essential negative regulators, HDM2 and HDMX. p53 abundance and activity are up-regulated in response to various stresses, including DNA damage and oncogene activation. Active p53 initiates transcriptional and transcription-independent programs that result in cell cycle arrest, cellular senescence, or apoptosis. p53 also activates transcription of HDM2, which initially leads to the degradation of HDMX, creating a positive feedback loop to obtain maximal activation of p53. Subsequently, when stress-induced post-translational modifications start to decline, HDM2 becomes effective in targeting p53 for degradation, thus attenuating the p53 response. To date, no clear function for HDMX in this critical attenuation phase has been demonstrated experimentally. Like HDM2, the HDMX gene contains a promoter (P2) in its first intron that is potentially inducible by p53. We show that p53 activation in response to a plethora of p53-activating agents induces the transcription of a novel HDMX mRNA transcript from the HDMX-P2 promoter. This mRNA is more efficiently translated than that expressed from the constitutive HDMX-P1 promoter, and it encodes a long form of HDMX protein, HDMX-L. Importantly, we demonstrate that HDMX-L cooperates with HDM2 to promote the ubiquitination of p53 and that p53-induced HDMX transcription from the P2 promoter can play a key role in the attenuation phase of the p53 response, to effectively diminish p53 abundance as cells recover from stress.

  11. p53 isoforms - a conspiracy to kidnap p53 tumor suppressor activity?

    PubMed

    Marcel, V; Hainaut, P

    2009-02-01

    For 25 years, the p53 tumor suppressor protein was considered the only protein expressed by the (TP53) gene. However, in several studies the existence of p53 alternative transcripts in mouse and human cells has been documented, while their expression patterns and functions remained a mystery. Since 2002, several groups have identified and described the existence of up to 10 p53 isoforms and have demonstrated their roles in modulation of p53 suppressive activity. It is now clear that the patterns of p53 expression are much more complex than previously recognized and that these isoforms have the potential to act either synergistically or antagonistically, depending on their structure and mechanism of production. This review focuses on the different ways to produce p53 isoforms, on their specific properties, on their effect on p53 suppressive activity as well as on their implication in a new potential mechanism involved in p53 deregulation in cancer.

  12. p53 Degradation Activity, Expression, and Subcellular Localization of E6 Proteins from 29 Human Papillomavirus Genotypes

    PubMed Central

    Mesplède, Thibault; Gagnon, David; Bergeron-Labrecque, Fanny; Azar, Ibrahim; Sénéchal, Hélène; Coutlée, François

    2012-01-01

    Human papillomaviruses (HPVs) are the etiological agents of cervical cancer and other human malignancies. HPVs are classified into high- and low-risk genotypes according to their association with cancer. Host cell transformation by high-risk HPVs relies in part on the ability of the viral E6 protein to induce the degradation of p53. We report the development of a cellular assay that accurately quantifies the p53 degradation activity of E6 in vivo, based on the fusion of p53 to Renilla luciferase (RLuc-p53). This assay was used to measure the p53 degradation activities of E6 proteins from 29 prevalent HPV types and variants of HPV type 16 (HPV16) and HPV33 by determining the amount of E6 expression vector required to reduce by half the levels of RLuc-p53 (50% effective concentration [EC50]). These studies revealed an unexpected variability in the p53 degradation activities of different E6 proteins, even among active types whose EC50s span more than 2 log units. Differences in activity were greater between types than between variants and did not correlate with differences in the intracellular localization of E6, with most being predominantly nuclear. Protein and mRNA expression of the 29 E6 proteins was also examined. For 16 high-risk types, spliced transcripts that encode shorter E6*I proteins of variable sizes and abundances were detected. Mutation of the splice donor site in five different E6 proteins increased their p53 degradation activity, suggesting that mRNA splicing can limit the activity of some high-risk E6 types. The quantification of p53 degradation in vivo represents a novel tool to systematically compare the oncogenic potentials of E6 proteins from different HPV types and variants. PMID:22013048

  13. p53 regulates thymic Notch1 activation.

    PubMed

    Laws, Amy M; Osborne, Barbara A

    2004-03-01

    Notch is crucial for multiple stages of T cell development, including the CD4+CD8+ double positive (DP)/CD8+ single positive (SP) transition, but regulation of Notchactivation is not well understood. p53 regulates Presenilin1 (PS1) expression, and PS1 cleaves Notch, releasing its intracellular domain (NIC), leading to the expression of downstream targets, e.g. the HES1 gene. We hypothesize that p53 regulates Notch activity during T cell development. We found that Notch1 expression and activation were negatively regulated by p53in several thymoma lines. Additionally, NIC was elevated in Trp53(-/-) thymocytes as compared to Trp53(+/+) thymocytes. To determine if elevated Notch1 activation in Trp53(-/-) thymocytes had an effect on T cell development, CD4 and CD8 expression were analyzed. The CD4+ SP/CD8+ SP T cell ratio was decreased in Trp53(-/-) splenocytes and thymocytes. This alteration in T cell development correlated with the increased Notch1 activation observed in the absence of p53. These data indicate that p53 negatively regulates Notch1 activation during T cell development. Skewing of T cell development toward CD8+SP T cells in Trp53(-/-) mice is reminiscent of the phenotype of NIC-overexpressing mice. Thus, we suggest that p53 plays a role in T cell development, in part by regulating Notch1 activation.

  14. Regulation of Mutant p53 Protein Expression.

    PubMed

    Vijayakumaran, Reshma; Tan, Kah Hin; Miranda, Panimaya Jeffreena; Haupt, Sue; Haupt, Ygal

    2015-01-01

    For several decades, p53 has been detected in cancer biopsies by virtue of its high protein expression level which is considered indicative of mutation. Surprisingly, however, mouse genetic studies revealed that mutant p53 is inherently labile, similar to its wild type (wt) counterpart. Consistently, in response to stress conditions, both wt and mutant p53 accumulate in cells. While wt p53 returns to basal level following recovery from stress, mutant p53 remains stable. In part, this can be explained in mutant p53-expressing cells by the lack of an auto-regulatory loop with Mdm2 and other negative regulators, which are pivotal for wt p53 regulation. Further, additional protective mechanisms are acquired by mutant p53, largely mediated by the co-chaperones and their paralogs, the stress-induced heat shock proteins. Consequently, mutant p53 is accumulated in cancer cells in response to chronic stress and this accumulation is critical for its oncogenic gain of functions (GOF). Building on the extensive knowledge regarding wt p53, the regulation of mutant p53 is unraveling. In this review, we describe the current understanding on the major levels at which mutant p53 is regulated. These include the regulation of p53 protein levels by microRNA and by enzymes controlling p53 proteasomal degradation.

  15. Loss of VHL promotes progerin expression, leading to impaired p14/ARF function and suppression of p53 activity

    PubMed Central

    Jung, Youn-Sang; Lee, Su-Jin; Lee, Sun-Hye; Chung, Ji-Yun; Jung, Youn Jin; Hwang, Sang Hyun; Ha, Nam-Chul; Park, Bum-Joon

    2013-01-01

    Renal cell carcinomas (RCCs) are frequently occurring genitourinary malignancies in the aged population. A morphological characteristic of RCCs is an irregular nuclear shape, which is used to index cancer grades. Other features of RCCs include the genetic inactivation of the von Hippel-Lindau gene, VHL, and p53 genetic-independent inactivation. An aberrant nuclear shape or p53 suppression has not yet been demonstrated. We examined the effect of progerin (an altered splicing product of the LMNA gene linked to Hutchinson Gilford progeria syndrome; HGPS) on the nuclear deformation of RCCs in comparison to that of HGPS cells. In this study, we showed that progerin was suppressed by pVHL and was responsible for nuclear irregularities as well as p53 inactivation. Thus, progerin suppression can ameliorate nuclear abnormalities and reactivate p53 in response to genotoxic addition. Furthermore, we found that progerin was a target of pVHL E3 ligase and suppressed p53 activity by p14/ARF inhibition. Our findings indicate that the elevated expression of progerin in RCCs results from the loss of pVHL and leads to p53 inactivation through p14/ARF suppression. Interestingly, we showed that progerin was expressed in human leukemia and primary cell lines, raising the possibility that the expression of this LMNA variant may be a common event in age-related cancer progression. PMID:24067370

  16. CONVERGENCE OF P53 AND TGFβ SIGNALING ON ACTIVATING EXPRESSION OF THE TUMOR SUPPRESSOR GENE MASPIN IN MAMMARY EPITHELIAL CELLS

    PubMed Central

    Wang, Shizhen Emily; Narasanna, Archana; Whitell, Corbin W.; Wu, Frederick Y.; Friedman, David B.; Arteaga, Carlos L.

    2014-01-01

    Using two-dimensional difference gel electrophoresis, we identified the tumor suppressor gene maspin as a TGFβ target gene in human mammary epithelial cells. TGFβ upregulates maspin expression both at the RNA and protein levels. This upregulation required Smad2/3 function and intact p53 binding elements in the maspin promoter. DNA affinity immunoblot and chromatin immunoprecipitation (ChIP) revealed the presence of both Smads and p53 at the maspin promoter in TGFβ-treated cells, suggesting that both transcription factors cooperate to induce maspin transcription. TGFβ did not activate maspin-luciferase reporter in p53-mutant MDA-MB-231 breast cancer cells, which exhibit methylation of the endogenous maspin promoter. Expression of ectopic p53, however, restored ligand-induced association of Smad2/3 with a transfected maspin promoter. Stable transfection of maspin inhibited basal and TGFβ-stimulated MDA-MB-231 cell motility. Finally, knockdown of endogenous maspin in p53 wild-type MCF10A/HER2 cells enhanced basal and TGFβ-stimulated motility. Taken together, these data support cooperation between the p53 and TGFβ tumor suppressor pathways in the induction of maspin expression, thus leading to inhibition of cell migration. PMID:17204482

  17. p53 mutations promote proteasomal activity.

    PubMed

    Oren, Moshe; Kotler, Eran

    2016-07-27

    p53 mutations occur very frequently in human cancer. Besides abrogating the tumour suppressive functions of wild-type p53, many of those mutations also acquire oncogenic gain-of-function activities. Augmentation of proteasome activity is now reported as a common gain-of-function mechanism shared by different p53 mutants, which promotes cancer resistance to proteasome inhibitors.

  18. Endogenous Human MDM2-C Is Highly Expressed in Human Cancers and Functions as a p53-Independent Growth Activator

    PubMed Central

    Okoro, Danielle R.; Arva, Nicoleta; Gao, Chong; Polotskaia, Alla; Puente, Cindy; Rosso, Melissa; Bargonetti, Jill

    2013-01-01

    Human cancers over-expressing mdm2, through a T to G variation at a single nucleotide polymorphism at position 309 (mdm2 SNP309), have functionally inactivated p53 that is not effectively degraded. They also have high expression of the alternatively spliced transcript, mdm2-C. Alternatively spliced mdm2 transcripts are expressed in many forms of human cancer and when they are exogenously expressed they transform human cells. However no study to date has detected endogenous MDM2 protein isoforms. Studies with exogenous expression of splice variants have been carried out with mdm2-A and mdm2-B, but the mdm2-C isoform has remained virtually unexplored. We addressed the cellular influence of exogenously expressed MDM2-C, and asked if endogenous MDM2-C protein was present in human cancers. To detect endogenous MDM2-C protein, we created a human MDM2-C antibody to the splice junction epitope of exons four and ten (MDM2 C410) and validated the antibody with in vitro translated full length MDM2 compared to MDM2-C. Interestingly, we discovered that MDM2-C co-migrates with MDM2-FL at approximately 98 kDa. Using the validated C410 antibody, we detected high expression of endogenous MDM2-C in human cancer cell lines and human cancer tissues. In the estrogen receptor positive (ER+) mdm2 G/G SNP309 breast cancer cell line, T47D, we observed an increase in endogenous MDM2-C protein with estrogen treatment. MDM2-C localized to the nucleus and the cytoplasm. We examined the biological activity of MDM2-C by exogenously expressing the protein and observed that MDM2-C did not efficiently target p53 for degradation or reduce p53 transcriptional activity. Exogenous expression of MDM2-C in p53-null human cancer cells increased colony formation, indicating p53-independent tumorigenic properties. Our data indicate a role for MDM2-C that does not require the inhibition of p53 for increasing cancer cell proliferation and survival. PMID:24147044

  19. Endogenous human MDM2-C is highly expressed in human cancers and functions as a p53-independent growth activator.

    PubMed

    Okoro, Danielle R; Arva, Nicoleta; Gao, Chong; Polotskaia, Alla; Puente, Cindy; Rosso, Melissa; Bargonetti, Jill

    2013-01-01

    Human cancers over-expressing mdm2, through a T to G variation at a single nucleotide polymorphism at position 309 (mdm2 SNP309), have functionally inactivated p53 that is not effectively degraded. They also have high expression of the alternatively spliced transcript, mdm2-C. Alternatively spliced mdm2 transcripts are expressed in many forms of human cancer and when they are exogenously expressed they transform human cells. However no study to date has detected endogenous MDM2 protein isoforms. Studies with exogenous expression of splice variants have been carried out with mdm2-A and mdm2-B, but the mdm2-C isoform has remained virtually unexplored. We addressed the cellular influence of exogenously expressed MDM2-C, and asked if endogenous MDM2-C protein was present in human cancers. To detect endogenous MDM2-C protein, we created a human MDM2-C antibody to the splice junction epitope of exons four and ten (MDM2 C410) and validated the antibody with in vitro translated full length MDM2 compared to MDM2-C. Interestingly, we discovered that MDM2-C co-migrates with MDM2-FL at approximately 98 kDa. Using the validated C410 antibody, we detected high expression of endogenous MDM2-C in human cancer cell lines and human cancer tissues. In the estrogen receptor positive (ER+) mdm2 G/G SNP309 breast cancer cell line, T47D, we observed an increase in endogenous MDM2-C protein with estrogen treatment. MDM2-C localized to the nucleus and the cytoplasm. We examined the biological activity of MDM2-C by exogenously expressing the protein and observed that MDM2-C did not efficiently target p53 for degradation or reduce p53 transcriptional activity. Exogenous expression of MDM2-C in p53-null human cancer cells increased colony formation, indicating p53-independent tumorigenic properties. Our data indicate a role for MDM2-C that does not require the inhibition of p53 for increasing cancer cell proliferation and survival.

  20. Multiple stress signals activate mutant p53 in vivo

    PubMed Central

    Suh, Young-Ah; Post, Sean M.; Elizondo-Fraire, Ana C.; Maccio, Danela R.; Jackson, James G.; El-Naggar, Adel K.; Van Pelt, Carolyn; Terzian, Tamara; Lozano, Guillermina

    2012-01-01

    p53 levels are tightly regulated in normal cells, and thus the wild-type p53 protein is nearly undetectable until stimulated through a variety of stresses. In response to stress, p53 is released from its negative regulators, mainly Mdm2, allowing p53 to be stabilized to activate cell cycle arrest, senescence, and apoptosis programs. Many of the upstream signals that regulate wild type p53 are known; however, limited information for the regulation of mutant p53 exists. Previously, we demonstrated that wild-type and mutant p53R172H are regulated in a similar manner in the absence of Mdm2 or p16. Additionally, this stabilization of mutant p53 is responsible for the gain-of-function metastatic phenotype observed in the mouse. In this report, we examined the role of oncogenes, DNA damage, and reactive oxygen species, signals that stabilize wild type p53, on the stabilization of mutant p53 in vivo and the consequences of this expression on tumor formation and survival. These factors stabilized mutant p53 protein which often times contributed to exacerbated tumor phenotypes. These findings, coupled with the fact that patients carry p53 mutations without stabilization of p53, suggest that personalized therapeutic schemes may be needed for individual patients depending on their p53 status. PMID:21983037

  1. Abrogation of Gli3 expression suppresses the growth of colon cancer cells via activation of p53

    SciTech Connect

    Kang, Han Na; Oh, Sang Cheul; Kim, Jun Suk

    2012-03-10

    p53, the major human tumor suppressor, appears to be related to sonic hedgehog (Shh)-Gli-mediated tumorigenesis. However, the role of p53 in tumor progression by the Shh-Gli signaling pathway is poorly understood. Herein we investigated the critical regulation of Gli3-p53 in tumorigenesis of colon cancer cells and the molecular mechanisms underlying these effects. RT-PCR analysis indicated that the mRNA level of Shh and Gli3 in colon tumor tissues was significantly higher than corresponding normal tissues (P < 0.001). The inhibition of Gli3 by treatment with Gli3 siRNA resulted in a clear decrease in cell proliferation and enhanced the level of expression of p53 proteins compared to treatment with control siRNA. The half-life of p53 was dramatically increased by treatment with Gli3 siRNA. In addition, treatment with MG132 blocked MDM2-mediated p53 ubiquitination and degradation, and led to accumulation of p53 in Gli3 siRNA-overexpressing cells. Importantly, ectopic expression of p53 siRNA reduced the ability of Gli3 siRNA to suppress proliferation of those cells compared with the cells treated with Gli3 siRNA alone. Moreover, Gli3 siRNA sensitized colon cancer cells to treatment with anti-cancer agents (5-FU and bevacizumab). Taken together, our studies demonstrate that loss of Gli3 signaling leads to disruption of the MDM2-p53 interaction and strongly potentiate p53-dependent cell growth inhibition in colon cancer cells, indicating a basis for the rational use of Gli3 antagonists as a novel treatment option for colon cancer.

  2. Lysine methylation represses p53 activity in teratocarcinoma cancer cells

    PubMed Central

    Zhu, Jiajun; Dou, Zhixun; Sammons, Morgan A.; Levine, Arnold J.; Berger, Shelley L.

    2016-01-01

    TP53 (which encodes the p53 protein) is the most frequently mutated gene among all human cancers, whereas tumors that retain the wild-type TP53 gene often use alternative mechanisms to repress the p53 tumor-suppressive function. Testicular teratocarcinoma cells rarely contain mutations in TP53, yet the transcriptional activity of wild-type p53 is compromised, despite its high expression level. Here we report that in the teratocarcinoma cell line NTera2, p53 is subject to lysine methylation at its carboxyl terminus, which has been shown to repress p53’s transcriptional activity. We show that reduction of the cognate methyltransferases reactivates p53 and promotes differentiation of the NTera2 cells. Furthermore, reconstitution of methylation-deficient p53 mutants into p53-depleted NTera2 cells results in elevated expression of p53 downstream targets and precocious loss of pluripotent gene expression compared with re-expression of wild-type p53. Our results provide evidence that lysine methylation of endogenous wild-type p53 represses its activity in cancer cells and suggest new therapeutic possibilities of targeting testicular teratocarcinoma. PMID:27535933

  3. MG132 plus apoptosis antigen-1 (APO-1) antibody cooperate to restore p53 activity inducing autophagy and p53-dependent apoptosis in HPV16 E6-expressing keratinocytes.

    PubMed

    Lagunas-Martínez, Alfredo; García-Villa, Enrique; Arellano-Gaytán, Magaly; Contreras-Ochoa, Carla O; Dimas-González, Jisela; López-Arellano, María E; Madrid-Marina, Vicente; Gariglio, Patricio

    2017-01-01

    The E6 oncoprotein can interfere with the ability of infected cells to undergo programmed cell death through the proteolytic degradation of proapoptotic proteins such as p53, employing the proteasome pathway. Therefore, inactivation of the proteasome through MG132 should restore the activity of several proapoptotic proteins. We investigated whether in HPV16 E6-expressing keratinocytes (KE6 cells), the restoration of p53 levels mediated by MG132 and/or activation of the CD95 pathway through apoptosis antigen-1 (APO-1) antibody are responsible for the induction of apoptosis. We found that KE6 cells underwent apoptosis mainly after incubation for 24 h with MG132 alone or APO-1 plus MG132. Both treatments activated the extrinsic and intrinsic apoptosis pathways. Autophagy was also activated, principally by APO-1 plus MG132. Inhibition of E6-mediated p53 proteasomal degradation by MG132 resulted in the elevation of p53 protein levels and its phosphorylation in Ser46 and Ser20; the p53 protein was localized mainly at nucleus after treatment with MG132 or APO-1 plus MG132. In addition, induction of its transcriptional target genes such as p21, Bax and TP53INP was observed 3 and 6 h after treatment. Also, LC3 mRNA was induced after 3 and 6 h, which correlates with lipidation of LC3B protein and induction of autophagy. Finally, using pifithrin alpha we observed a decrease in apoptosis induced by MG132, and by APO-1 plus MG132, suggesting that restoration of APO-1 sensitivity occurs in part through an increase in both the levels and the activity of p53. The use of small molecules to inhibit the proteasome pathway might permit the activation of cell death, providing new opportunities for CC treatment.

  4. Quercetin Enhances the Antitumor Activity of Trichostatin A through Upregulation of p53 Protein Expression In Vitro and In Vivo

    PubMed Central

    Chan, Shu-Ting; Yang, Nae-Cherng; Huang, Chin-Shiu; Liao, Jiunn-Wang; Yeh, Shu-Lan

    2013-01-01

    This study investigated the effects of quercetin on the anti-tumor effect of trichostatin A (TSA), a novel anticancer drug, in vitro and in vivo and the possible mechanisms of these effects in human lung cancer cells. We first showed that quercetin (5 µM) significantly increased the growth arrest and apoptosis in A549 cells (expressing wild-type p53) induced by 25 ng/mL of (82.5 nM) TSA at 48 h by about 25% and 101%, respectively. However, such enhancing effects of quercetin (5 µM) were not significant in TSA-exposed H1299 cells (a p53 null mutant) or were much lower than in A549 cells. In addition, quercetin significantly increased TSA-induced p53 expression in A549 cells. Transfection of p53 siRNA into A549 cells significantly but not completely diminished the enhancing effects of quercetin on TSA-induced apoptosis. Furthermore, we demonstrated that quercetin enhanced TSA-induced apoptosis through the mitochondrial pathway. Transfection of p53 siRNA abolished such enhancing effects of quercetin. However, quercetin increased the acetylation of histones H3 and H4 induced by TSA in A549 cells, even with p53 siRNA transfection as well as in H1299 cells. In a xenograft mouse model of lung cancer, quercetin enhanced the antitumor effect of TSA. Tumors from mice treated with TSA in combination with quercetin had higher p53 and apoptosis levels than did those from control and TSA-treated mice. These data indicate that regulation of the expression of p53 by quercetin plays an important role in enhancing TSA-induced apoptosis in A549 cells. However, p53-independent mechanisms may also contribute to the enhancing effect of quercetin. PMID:23342112

  5. Acquisition of p53 mutations in response to the non-genotoxic p53 activator Nutlin-3.

    PubMed

    Aziz, M H; Shen, H; Maki, C G

    2011-11-17

    Wild-type p53 is a stress-responsive tumor suppressor and potent growth inhibitor. Genotoxic stresses (for example, ionizing and ultraviolet radiation or chemotherapeutic drug treatment) can activate p53, but also induce mutations in the P53 gene, and thus select for p53-mutated cells. Nutlin-3a (Nutlin) is pre-clinical drug that activates p53 in a non-genotoxic manner. Nutlin occupies the p53-binding pocket of murine double minute 2 (MDM2), activating p53 by blocking the p53-MDM2 interaction. Because Nutlin neither binds p53 directly nor introduces DNA damage, we hypothesized Nutlin would not induce P53 mutations, and, therefore, not select for p53-mutated cells. To test this, populations of SJSA-1 (p53 wild-type) cancer cells were expanded that survived repeated Nutlin exposures, and individual clones were isolated. Group 1 clones were resistant to Nutlin-induced apoptosis, but still underwent growth arrest. Surprisingly, while some Group 1 clones retained wild-type p53, others acquired a heterozygous p53 mutation. Apoptosis resistance in Group 1 clones was associated with decreased PUMA induction and decreased caspase 3/7 activation. Group 2 clones were resistant to both apoptosis and growth arrest induced by Nutlin. Group 2 clones had acquired mutations in the p53-DNA-binding domain and expressed only mutant p53s that were induced by Nutlin treatment, but were unable to bind the P21 and PUMA gene promoters, and unable to activate transcription. These results demonstrate that non-genotoxic p53 activation (for example, by Nutlin treatment) can lead to the acquisition of somatic mutations in p53 and select for p53-mutated cells. These findings have implications for the potential clinical use of Nutlin and other small molecule MDM2 antagonists.

  6. SUMOylation of p53 mediates interferon activities

    PubMed Central

    Marcos-Villar, Laura; Pérez-Girón, José V; Vilas, Jéssica M; Soto, Atenea; de la Cruz-Hererra, Carlos F; Lang, Valerie; Collado, Manuel; Vidal, Anxo; Rodríguez, Manuel S; Muñoz-Fontela, César; Rivas, Carmen

    2013-01-01

    There is growing evidence that many host proteins involved in innate and intrinsic immunity are regulated by SUMOylation, and that SUMO contributes to the regulatory process that governs the initiation of the type I interferon (IFN) response. The tumor suppressor p53 is a modulator of the IFN response that plays a role in virus-induced apoptosis and in IFN-induced senescence. Here we demonstrate that IFN treatment increases the levels of SUMOylated p53 and induces cellular senescence through a process that is partially dependent upon SUMOylation of p53. Similarly, we show that vesicular stomatitis virus (VSV) infection induces p53 SUMOylation, and that this modification favors the control of VSV replication. Thus, our study provides evidence that IFN signaling induces p53 SUMOylation, which results in the activation of a cellular senescence program and contributes to the antiviral functions of interferon. PMID:23966171

  7. All-trans retinoic acid induces p53-depenent apoptosis in human hepatocytes by activating p14 expression via promoter hypomethylation.

    PubMed

    Heo, Shin-Hee; Kwak, Juri; Jang, Kyung Lib

    2015-06-28

    All-trans retinoic acid (ATRA), the most biologically active metabolite of vitamin A, has been extensively studied for the prevention and treatment of cancer; however, the underlying mechanism of its anti-cancer potential is still unclear. Here we found that ATRA induces apoptosis in p53-positive HepG2 cells, but not in p53-negative Hep3B cells. For this effect, ATRA activated p14 expression via promoter hypomethylation, resulting in ubiquitin-dependent degradation of mouse double minute 2 (MDM2) and subsequent stabilization of p53. The potential of ATRA to stabilize p53 was almost completely abolished by knock-down of p14 in HepG2 cells and was not observed in p14-negative A549 cells. Upregulation of p14 also abolished the self-regulatory potential of p53 to repress p14 expression via DNA methylation and transcriptionally activate MDM2 expression. The accumulated p53 then activated several apoptosis-related molecules, including Bax, PUMA, caspase-9, Bid, caspase-8, caspase-3, and PARP. Ectopic expression of DNA methyltransferase 1 almost completely abolished the potential of ATRA to activate the p14-MDM2-p53 pathway and induce p53-dependent apoptosis. Therefore, we conclude that ATRA induces p14 promoter hypomethylation to trigger apoptosis. Copyright © 2015 Elsevier Ireland Ltd. All rights reserved.

  8. The Transcription Factor p53 Influences Microglial Activation Phenotype

    PubMed Central

    Jayadev, Suman; Nesser, Nicole K.; Hopkins, Stephanie; Myers, Scott J.; Case, Amanda; Lee, Rona J.; Seaburg, Luke A.; Uo, Takuma; Murphy, Sean P.; Morrison, Richard S.; Garden, Gwenn A.

    2011-01-01

    Several neurodegenerative diseases are influenced by the innate immune response in the central nervous system (CNS). Microglia, have pro-inflammatory and subsequently neurotoxic actions as well as anti-inflammatory functions that promote recovery and repair. Very little is known about the transcriptional control of these specific microglial behaviors. We have previously shown that in HIV associated neurocognitive disorders (HAND), the transcription factor p53 accumulates in microglia and that microglial p53 expression is required for the in vitro neurotoxicity of the HIV coat glycoprotein gp120. These findings suggested a novel function for p53 in regulating microglial activation. Here we report that in the absence of p53, microglia demonstrate a blunted response to interferon-γ, failing to increase expression of genes associated with classical macrophage activation or secrete pro-inflammatory cytokines. Microarray analysis of global gene expression profiles revealed increased expression of genes associated with anti-inflammatory functions, phagocytosis and tissue repair in p53 knockout (p53−/−) microglia compared with those cultured from strain matched p53 expressing (p53+/+) mice. We further observed that p53−/− microglia demonstrate increased phagocytic activity in vitro and expression of markers for alternative macrophage activation both in vitro and in vivo. In HAND brain tissue, the alternative activation marker CD163 was expressed in a separate subset of microglia than those demonstrating p53 accumulation. These data suggest that p53 influences microglial behavior, supporting the adoption of a pro-inflammatory phenotype, while p53 deficiency promotes phagocytosis and gene expression associated with alternative activation and anti-inflammatory functions. PMID:21598312

  9. Restoring expression of wild-type p53 suppresses tumor growth but does not cause tumor regression in mice with a p53 missense mutation

    PubMed Central

    Wang, Yongxing; Suh, Young-Ah; Fuller, Maren Y.; Jackson, James G.; Xiong, Shunbin; Terzian, Tamara; Quintás-Cardama, Alfonso; Bankson, James A.; El-Naggar, Adel K.; Lozano, Guillermina

    2011-01-01

    The transcription factor p53 is a tumor suppressor. As such, the P53 gene is frequently altered in human cancers. However, over 80% of the P53 mutations found in human cancers are missense mutations that lead to expression of mutant proteins that not only lack p53 transcriptional activity but exhibit new functions as well. Recent studies show that restoration of p53 expression leads to tumor regression in mice carrying p53 deletions. However, the therapeutic efficacy of restoring p53 expression in tumors containing p53 missense mutations has not been evaluated. Here we demonstrate that restoring wild-type p53 expression halted tumor growth in mice inheriting a p53R172H missense mutation that is equivalent to a P53 missense mutation detected in approximately 6% of human cancers. However, it did not lead to tumor regression, as was observed in mice lacking p53. We further showed that the dominant-negative effect of the mutant p53 encoded by p53R172H dampened the activity of the restored wild-type p53. We therefore conclude that in a mutant p53 background, p53 restoration has the therapeutic potential to suppress tumor progression. Our findings support using p53 restoration as a strategy to treat human cancers with P53 missense mutations and provide direction for optimizing p53 restoration in cancer therapy. PMID:21285512

  10. Restoring expression of wild-type p53 suppresses tumor growth but does not cause tumor regression in mice with a p53 missense mutation.

    PubMed

    Wang, Yongxing; Suh, Young-Ah; Fuller, Maren Y; Jackson, James G; Xiong, Shunbin; Terzian, Tamara; Quintás-Cardama, Alfonso; Bankson, James A; El-Naggar, Adel K; Lozano, Guillermina

    2011-03-01

    The transcription factor p53 is a tumor suppressor. As such, the P53 gene is frequently altered in human cancers. However, over 80% of the P53 mutations found in human cancers are missense mutations that lead to expression of mutant proteins that not only lack p53 transcriptional activity but exhibit new functions as well. Recent studies show that restoration of p53 expression leads to tumor regression in mice carrying p53 deletions. However, the therapeutic efficacy of restoring p53 expression in tumors containing p53 missense mutations has not been evaluated. Here we demonstrate that restoring wild-type p53 expression halted tumor growth in mice inheriting a p53(R172H) missense mutation that is equivalent to a P53 missense mutation detected in approximately 6% of human cancers. However, it did not lead to tumor regression, as was observed in mice lacking p53. We further showed that the dominant-negative effect of the mutant p53 encoded by p53(R172H) dampened the activity of the restored wild-type p53. We therefore conclude that in a mutant p53 background, p53 restoration has the therapeutic potential to suppress tumor progression. Our findings support using p53 restoration as a strategy to treat human cancers with P53 missense mutations and provide direction for optimizing p53 restoration in cancer therapy.

  11. Regulation of neuronal P53 activity by CXCR4

    PubMed Central

    Khan, Muhammad Z.; Shimizu, Saori; Patel, Jeegar P.; Nelson, Autumn; Le, My-Thao; Mullen-Przeworski, Anna; Brandimarti, Renato; Fatatis, Alessandro; Meucci, Olimpia

    2009-01-01

    Abnormal activation of CXCR4 during inflammatory/infectious states may lead to neuronal dysfunction or damage. The major goal of this study was to determine the coupling of CXCR4 to p53-dependent survival pathways in primary neurons. Neurons were stimulated with the HIV envelope protein gp120IIIB or the endogenous CXCR4 agonist, SDF-1α. We found that gp120 stimulates p53 activity and induces expression of the p53 pro-apoptotic target Apaf-1 in cultured neurons. Inhibition of CXCR4 by AMD3100 abrogates the effect of gp120 on both p53 and Apaf-1. Moreover, gp120 neurotoxicity is markedly reduced by the p53-inhibitor, pifithrin-α. The viral protein also regulates p53 phosphorylation and expression of other p53-responsive genes, such as MDM2 and p21. Conversely, SDF-1α, which can promote neuronal survival, increases p53 acetylation and p21 expression in neurons. Thus, the stimulation of different p53 targets could be instrumental in determining the outcome of CXCR4 activation on neuronal survival in neuroinflammatory disorders. PMID:16005638

  12. Dial 9-1-1 for p53: Mechanisms of p53 Activation by Cellular Stress

    PubMed Central

    Ljungman, Mats

    2000-01-01

    Abstract The tumor suppressor protein, p53, is part of the cell's emergency team that is called upon following cellular insult. How do cells sense DNA damage and other cellular stresses and what signal transduction pathways are used to alert p53? How is the resulting nuclear accumulation of p53 accomplished and what determines the outcome of p53 induction? Many posttranslational modifications of p53, such as phosphorylation, dephosphorylation, acetylation and ribosylation, have been shown to occur following cellular stress. Some of these modifications may activate the p53 protein, interfere with MDM2 binding and/or dictate cellular localization of p53. This review will focus on recent findings about how the p53 response may be activated following cellular stress. PMID:10935507

  13. 11R-P53 and GM-CSF Expressing Oncolytic Adenovirus Target Cancer Stem Cells with Enhanced Synergistic Activity

    PubMed Central

    Lv, Sai-qun; Ye, Zhen-long; Liu, Pin-yi; Huang, Yao; Li, Lin-fang; Liu, Hui; Zhu, Hai-li; Jin, Hua-jun; Qian, Qi-jun

    2017-01-01

    Targeting cancer stem cells with oncolytic virus (OV) holds great potential for thorough elimination of cancer cells. Based on our previous studies, we here established 11R-P53 and mGM-CSF carrying oncolytic adenovirus (OAV) SG655-mGMP and investigated its therapeutic effect on hepatocellular carcinoma stem cells Hep3B-C and teratoma stem cells ECCG5. Firstly, the augmenting effect of 11R in our construct was tested and confirmed by examining the expression of EGFP with Fluorescence and FCM assays after transfecting Hep3B-C and ECCG5 cells with OVA SG7605-EGFP and SG7605-11R-EGFP. Secondly, the expressions of 11R-P53 and GM-CSF in Hep3B-C and ECCG5 cells after transfection with OAV SG655-mGMP were detected by Western blot and Elisa assays, respectively. Thirdly, the enhanced growth inhibitory and augmented apoptosis inducing effects of OAV SG655-mGMP on Hep3B-C and ECCG5 cells were tested with FCM assays by comparing with the control, wild type 5 adenovirus, 11R-P53 carrying OVA in vitro. Lastly, the in vivo therapeutic effect of OAV SG655-mGMP toward ECCG5 cell-formed xenografts was studied by measuring tumor volumes post different treatments with PBS, OAV SG655-11R-P53, OAV SG655-mGM-CSF and OAV SG655-mGMP. Treatment with OAV SG655-mGMP induced significant xenograft growth inhibition, inflammation factor AIF1 expression and immune cells infiltration. Therefore, our OAV SG655-mGMP provides a novel platform to arm OVs to target cancer stem cells. PMID:28243324

  14. p53 inhibits the expression of p125 and the methylation of POLD1 gene promoter by downregulating the Sp1-induced DNMT1 activities in breast cancer

    PubMed Central

    Zhang, Liang; Yang, Weiping; Zhu, Xiao; Wei, Changyuan

    2016-01-01

    p125 is one of four subunits of human DNA polymerases – DNA Pol δ as well as one of p53 target protein encoded by POLD1. However, the function and significance of p125 and the role that p53 plays in regulating p125 expression are not fully understood in breast cancer. Tissue sections of human breast cancer obtained from 70 patients whose median age was 47.6 years (range: 38–69 years) with stage II–III breast cancer were studied with normal breast tissue from the same patients and two human breast cell lines (MCF-7 and MCF-10A). p53 expression levels were reduced, while p125 protein expression was increased in human breast cancer tissues and cell line detected by Western blot and quantitative reverse transcriptase-polymerase chain reaction. The methylation level of the POLD1 gene promoter was greater in breast cancer tissues and cells when compared with normal tissues and cells. In MCF-7 cell model, p53 overexpression caused a decrease in the level of p125 protein, while the methylation level of the p125 gene promoter was also inhibited by p53 overexpression. To further investigate the regulating mechanism of p53 on p125 expression, our study focused on DNA methyltransferase 1 (DNMT1) and transcription factor Sp1. Both DNMT1 and Sp1 protein expression were reduced when p53 was overexpressed in MCF-7 cells. The Sp1 binding site appears to be important for DNMT1 gene transcription; Sp1 and p53 can bind together, which means that DNMT1 gene expression may be downregulated by p53 through binding to Sp1. Because DNMT1 methylation level of the p125 gene promoter can affect p125 gene transcription, we propose that p53 may indirectly regulate p125 gene promoter expression through the control of DNMT1 gene transcription. In conclusion, the data from this preliminary study have shown that p53 inhibits the methylation of p125 gene promoter by downregulating the activities of Sp1 and DNMT1 in breast cancer. PMID:27022290

  15. Activated p53 with Histone Deacetylase Inhibitor Enhances L-Fucose-Mediated Drug Delivery through Induction of Fucosyltransferase 8 Expression in Hepatocellular Carcinoma Cells

    PubMed Central

    Arihara, Yohei; Kikuchi, Shohei; Osuga, Takahiro; Nakamura, Hajime; Kamihara, Yusuke; Hayasaka, Naotaka; Usami, Makoto; Murase, Kazuyuki; Miyanishi, Koji; Kobune, Masayoshi; Kato, Junji

    2016-01-01

    Background The prognosis of advanced hepatocellular carcinoma (HCC) is dismal, underscoring the need for novel effective treatments. The α1,6-fucosyltransferase (fucosyltransferase 8, FUT8) has been reported to accelerate malignant potential in HCC. Our study aimed to investigate the regulation of FUT8 expression by p53 and develop a novel therapeutic strategy for targeting HCC cells using L-fucose-mediated drug delivery. Methods Binding sites for p53 were searched for within the FUT8 promoter region. FUT8 expression was assessed by immunoblotting. Chromatin immunoprecipitation (ChIP) assays were performed to analyze p53 binding to the FUT8 promoter. The delivery of Cy5.5-encapsulated L-fucose-liposomes (Fuc-Lip-Cy5.5) to a Lens Culinaris agglutinin-reactive fraction of α-fetoprotein (AFP-L3)-expressing HCC cells was analyzed by flow cytometry. The induction of FUT8 by histone deacetylase inhibitor (HDACi) -inducing acetylated -p53 was evaluated by immunoblotting. Flow cytometric analysis was performed to assess whether the activation of p53 by HDACi affected the uptake of Fuc-Lip-Cy5.5 by HCC cells. The cytotoxicity of an L-fucose-bound liposome carrying sorafenib (Fuc-Lip-sorafenib) with HDACi was assessed in vivo and in vitro. Results The knock down of p53 with siRNA led to decreased FUT8 expression. ChIP assays revealed p53 binds to the FUT8 promoter region. Flow cytometric analyses demonstrated the specific uptake of Fuc-Lip-Cy5.5 into AFP-L3-expressing HCC cells in a p53- and FUT8-dependent manner. HDACi upregulated the uptake of Fuc-Lip-Cy5.5 by HCC cells by increasing FUT8 via acetylated -p53. The addition of a HDACi increased apoptosis induced by Fuc-Lip-sorafenib in HCC cells. Conclusions Our findings reveal that FUT8 is a p53 target gene and suggest that p53 activated by HDACi induces Fuc-Lip-sorafenib uptake by HCC cells, highlighting this pathway as a promising therapeutic intervention for HCC. PMID:27977808

  16. p53-Dependent Activation of microRNA-34a in Response to Etoposide-Induced DNA Damage in Osteosarcoma Cell Lines Not Impaired by Dominant Negative p53 Expression

    PubMed Central

    Novello, Chiara; Pazzaglia, Laura; Conti, Amalia; Quattrini, Irene; Pollino, Serena; Perego, Paola; Picci, Piero; Benassi, Maria Serena

    2014-01-01

    Osteosarcoma (OS) is the most common primary malignant bone tumor and prevalently occurs in the second decade of life. Etoposide, a chemotherapeutic agent used in combined treatments of recurrent human OS, belongs to the topoisomerase inhibitor family and causes DNA breakage. In this study we evaluated the cascade of events determined by etoposide-induced DNA damage in OS cell lines with different p53 status focusing on methylation status and expression of miR-34a that modulate tumor cell growth and cell cycle progression. Wild-type p53 U2-OS cells and U2-OS cells expressing dominant-negative form of p53 (U2- OS175) were more sensitive to etoposide than p53-deficient MG63 and Saos-2 cells, showing increased levels of unmethylated miR-34a, reduced expression of CDK4 and cell cycle arrest in G1 phase. In contrast, MG63 and Saos-2 cell lines presented aberrant methylation of miR-34a promoter gene with no miR-34a induction after etoposide treatment, underlining the close connection between p53 expression and miR-34a methylation status. Consistently, in p53siRNA transfected U2-OS cells we observed loss of miR-34a induction after etoposide exposure associated with a partial gain of gene methylation and cell cycle progress towards G2/M phase. Our results suggest that the open and unmethylated conformation of the miR-34a gene may be regulated by p53 able to bind the gene promoter. In conclusion, cell response to etoposide-induced DNA damage was not compromised in cells with dominant-negative p53 expression. PMID:25490093

  17. Ectopic AP4 expression induces cellular senescence via activation of p53 in long-term confluent retinal pigment epithelial cells.

    PubMed

    Wang, Yiping; Wong, Matthew Man-Kin; Zhang, Xiaojian; Chiu, Sung-Kay

    2015-11-15

    When cells are grown to confluence, cell-cell contact inhibition occurs and drives the cells to enter reversible quiescence rather than senescence. Confluent retinal pigment epithelial (RPE) cells exhibiting contact inhibition was used as a model in this study to examine the role of overexpression of transcription factor AP4, a highly expressed transcription factor in many types of cancer, in these cells during long-term culture. We generated stable inducible RPE cell clones expressing AP4 or AP4 without the DNA binding domain (DN-AP4) and observed that, when cultured for 24 days, RPE cells with a high level of AP4 exhibit a large, flattened morphology and even cease proliferating; these changes were not observed in DN-AP4-expressing cells or non-induced cells. In addition, AP4-expressing cells exhibited senescence-associated β-galactosidase activity and the senescence-associated secretory phenotype. We demonstrated that the induced cellular senescence was mediated by enhanced p53 expression and that AP4 regulates the p53 gene by binding directly to two of the three E-boxes present on the promoter of the p53 gene. Moreover, we showed that serum is essential for AP4 in inducing p53-associated cellular senescence. Collectively, we showed that overexpression of AP4 mediates cellular senescence involving in activation of p53 in long-term post-confluent RPE cells.

  18. Ferroptosis as a p53-mediated activity during tumour suppression.

    PubMed

    Jiang, Le; Kon, Ning; Li, Tongyuan; Wang, Shang-Jui; Su, Tao; Hibshoosh, Hanina; Baer, Richard; Gu, Wei

    2015-04-02

    Although p53-mediated cell-cycle arrest, senescence and apoptosis serve as critical barriers to cancer development, emerging evidence suggests that the metabolic activities of p53 are also important. Here we show that p53 inhibits cystine uptake and sensitizes cells to ferroptosis, a non-apoptotic form of cell death, by repressing expression of SLC7A11, a key component of the cystine/glutamate antiporter. Notably, p53(3KR), an acetylation-defective mutant that fails to induce cell-cycle arrest, senescence and apoptosis, fully retains the ability to regulate SLC7A11 expression and induce ferroptosis upon reactive oxygen species (ROS)-induced stress. Analysis of mutant mice shows that these non-canonical p53 activities contribute to embryonic development and the lethality associated with loss of Mdm2. Moreover, SLC7A11 is highly expressed in human tumours, and its overexpression inhibits ROS-induced ferroptosis and abrogates p53(3KR)-mediated tumour growth suppression in xenograft models. Our findings uncover a new mode of tumour suppression based on p53 regulation of cystine metabolism, ROS responses and ferroptosis.

  19. p53 facilitates pRb cleavage in IL-3-deprived cells: novel pro-apoptotic activity of p53.

    PubMed Central

    Gottlieb, E; Oren, M

    1998-01-01

    In the interleukin-3 (IL-3)-dependent lymphoid cell line DA-1, functional p53 is required for efficient apoptosis in response to IL-3 withdrawal. Activation of p53 in these cells, by either DNA damage or p53 overexpression, results in a vital growth arrest in the presence of IL-3 and in accelerated apoptosis in its absence. Thus, IL-3 can control the choice between p53-dependent cell-cycle arrest and apoptosis. Here we report that the cross-talk between p53 and IL-3 involves joint control of pRb cleavage and degradation. Depletion of IL-3 results in caspase-mediated pRb cleavage, occurring preferentially within cells which express functional p53. Moreover, pRb can be cleaved efficiently by extracts prepared from DA-1 cells but not from their derivatives which lack p53 function. Inactivation of pRb through expression of the human papillomavirus (HPV) E7 oncogene overrides the effect of IL-3 in a p53-dependent manner. Our data suggest a novel role for p53 in the regulation of cell death and a novel mechanism for the cooperation between p53 and survival factor deprivation. Thus, p53 makes cells permissive to pRb cleavage, probably by controlling the potential activity of a pRb-cleaving caspase, whereas IL-3 withdrawal provides signals that turn on this potential activity and lead to the actual cleavage and subsequent degradation of pRb. Elimination of a presumptive anti-apoptotic effect of pRb may then facilitate conversion of p53-mediated growth arrest into apoptosis. PMID:9649429

  20. Isolation of 10 differentially expressed cDNAs in p53-induced apoptosis: activation of the vertebrate homologue of the drosophila seven in absentia gene.

    PubMed Central

    Amson, R B; Nemani, M; Roperch, J P; Israeli, D; Bougueleret, L; Le Gall, I; Medhioub, M; Linares-Cruz, G; Lethrosne, F; Pasturaud, P; Piouffre, L; Prieur, S; Susini, L; Alvaro, V; Millasseau, P; Guidicelli, C; Bui, H; Massart, C; Cazes, L; Dufour, F; Bruzzoni-Giovanelli, H; Owadi, H; Hennion, C; Charpak, G; Telerman, A

    1996-01-01

    We report the isolation of 10 differentially expressed cDNAs in the process of apoptosis induced by the p53 tamor suppressor. As a global analytical method, we performed a differential display of mRNA between mouse M1 myeloid leukemia cells and derived clone LTR6 cells, which contain a stably transfected temperature-sensitive mutant of p53. At 32 degrees C wild-type p53 function is activated in LTR6 cells, resulting in programmed cell death. Eight genes are activated (TSAP; tumor suppressor activated pathway), and two are inhibited (TSIP, tumor suppressor inhibited pathway) in their expression. None of the 10 sequences has hitherto been recognized as part of the p53 signaling pathway. Three TSAPs are homologous to known genes. TSAP1 corresponds to phospholipase C beta 4. TSAP2 has a conserved domain homologous to a multiple endocrine neoplasia I (ZFM1) candidate gene. TSAP3 is the mouse homologue of the Drosophila seven in absentia gene. These data provide novel molecules involved in the pathway of wild-type p53 activation. They establish a functional link between a homologue of a conserved developmental Drosophila gene and signal transduction in tumor suppression leading to programmed cell death. Images Fig. 2 Fig. 3 PMID:8632996

  1. DJ-1 restores p53 transcription activity inhibited by Topors/p53BP3.

    PubMed

    Shinbo, Yumi; Taira, Takahiro; Niki, Takeshi; Iguchi-Ariga, Sanae M M; Ariga, Hiroyoshi

    2005-03-01

    DJ-1 is a multi-functional protein that plays roles in transcriptional regulation and anti-oxidative stress, and loss of its function is thought to result in onset of Parkinson's disease. Here, we report that DJ-1 bound to Topors/p53BP3, a ring finger protein binding to both topoisomerase I and p53, in vitro and in vivo and that both proteins were colocalized in cells. DJ-1 and p53 were then found to be sumoylated by Topors in cells. It was also found that DJ-1 bound to p53 in vitro and in vivo and that colocalization with and its binding to p53 were stimulated by UV irradiation of cells. Transcription activity of p53 was found to be abrogated by Topors concomitant with sumoylation of p53 in a dose-dependent manner, and DJ-1 restored its repressed activity by releasing the sumoylated form of p53. These findings suggest that DJ-1 positively regulates p53 through Topors-mediated sumoylation.

  2. The structure formed by inverted repeats in p53 response elements determines the transactivation activity of p53 protein.

    PubMed

    Brázda, Václav; Čechová, Jana; Battistin, Michele; Coufal, Jan; Jagelská, Eva B; Raimondi, Ivan; Inga, Alberto

    2017-01-29

    The TP53 gene is the most frequently mutated gene in human cancer and p53 protein plays a crucial role in gene expression and cancer protection. Its role is manifested by interactions with other proteins and DNA. p53 is a transcription factor that binds to DNA response elements (REs). Due to the palindromic nature of the consensus binding site, several p53-REs have the potential to form cruciform structures. However, the influence of cruciform formation on the activity of p53-REs has not been evaluated. Therefore, we prepared sets of p53-REs with identical theoretical binding affinity in their linear state, but different probabilities to form extra helical structures, for in vitro and in vivo analyses. Then we evaluated the presence of cruciform structures when inserted into plasmid DNA and employed a yeast-based assay to measure transactivation potential of these p53-REs cloned at a chromosomal locus in isogenic strains. We show that transactivation in vivo correlated more with relative propensity of an RE to form cruciforms than to its predicted in vitro DNA binding affinity for wild type p53. Structural features of p53-REs could therefore be an important determinant of p53 transactivation function. Copyright © 2016 Elsevier Inc. All rights reserved.

  3. Activation and activities of the p53 tumour suppressor protein

    PubMed Central

    Bálint, É; Vousden, K H

    2001-01-01

    The p53 tumour suppressor protein inhibits malignant progression by mediating cell cycle arrest, apoptosis or repair following cellular stress. One of the major regulators of p53 function is the MDM2 protein, and multiple forms of cellular stress activate p53 by inhibiting the MDM2-mediated degradation of p53. Mutations in p53, or disruption of the pathways that allow activation of p53, seem to be a general feature of all cancers. Here we review recent advances in our understanding of the pathways that regulate p53 and the pathways that are induced by p53, as well as their implications for cancer therapy. © 2001 Cancer Research Campaign http://www.bjcancer.com PMID:11747320

  4. Mutant p53: Multiple Mechanisms Define Biologic Activity in Cancer.

    PubMed

    Kim, Michael Paul; Zhang, Yun; Lozano, Guillermina

    2015-01-01

    The functional importance of p53 as a tumor suppressor gene is evident through its pervasiveness in cancer biology. The p53 gene is the most commonly altered gene in human cancer; however, not all genetic alterations are biologically equivalent. The majority of alterations involve p53 missense mutations that result in the production of mutant p53 proteins. Such mutant p53 proteins lack normal p53 function and may concomitantly gain novel functions, often with deleterious effects. Here, we review characterized mechanisms of mutant p53 gain of function in various model systems. In addition, we review mutant p53 addiction as emerging evidence suggests that tumors may depend on sustained mutant p53 activity for continued growth. We also discuss the role of p53 in stromal elements and their contribution to tumor initiation and progression. Lastly, current genetic mouse models of mutant p53 in various organ systems are reviewed and their limitations discussed.

  5. Mutant p53: Multiple Mechanisms Define Biologic Activity in Cancer

    PubMed Central

    Kim, Michael Paul; Zhang, Yun; Lozano, Guillermina

    2015-01-01

    The functional importance of p53 as a tumor suppressor gene is evident through its pervasiveness in cancer biology. The p53 gene is the most commonly altered gene in human cancer; however, not all genetic alterations are biologically equivalent. The majority of alterations involve p53 missense mutations that result in the production of mutant p53 proteins. Such mutant p53 proteins lack normal p53 function and may concomitantly gain novel functions, often with deleterious effects. Here, we review characterized mechanisms of mutant p53 gain of function in various model systems. In addition, we review mutant p53 addiction as emerging evidence suggests that tumors may depend on sustained mutant p53 activity for continued growth. We also discuss the role of p53 in stromal elements and their contribution to tumor initiation and progression. Lastly, current genetic mouse models of mutant p53 in various organ systems are reviewed and their limitations discussed. PMID:26618142

  6. Apoptosis and p53 expression in rat adjuvant arthritis

    PubMed Central

    Tak, Paul P; Klapwijk, Maartje S; Broersen, Sophie FM; van de Geest, Deliana A; Overbeek, Marieke; Firestein, Gary S

    2000-01-01

    of the cells were positive, whereas control sections were negative. Discussion: The results presented here reveal that the number of TUNEL-positive cells remained very low until chronic arthritis developed. This indicates that, although there was sufficient DNA damage to cause an increment in p53 expression in the early phases, DNA strand breaks that can be detected by TUNEL assays only occurred in chronic AA. The observation that TUNEL-positive cells were nearly absent in early AA clearly indicates that only very few cells were undergoing programmed cell death. This is an important observation, which makes it possible to study the effects of apoptosis-inducing therapies in situ in early and accelerating AA. An effective therapy would obviously increase the number of TUNEL-positive cells. There is already some overexpression of p53 in the preclinical phase and during the onset of the arthritis, with an additional increment in p53 expression during accelerating and chronic arthritis. Presumably, this is wild-type p53, because the disease duration is likely too short to allow for the development of p53 mutations. Transcription of p53 is probably increased in response to the toxic environment of the inflamed joint. The increased expression of p53 in the joints of rats with chronic AA was even greater than that observed in synovial tissue of RA patients with long-standing disease. Overexpression of p53 and increased numbers of apoptotic cells did not occur simultaneously in this model; rather p53 overexpression preceded increased apoptosis. Activation of p53 leads to induction of cell growth arrest, allowing time for DNA repair. It appears that DNA damage is only extensive enough to induce apoptosis in the latter stages of AA. Factors other than p53 may also play an important role in the actual induction of apoptosis Taken together, significant apoptosis only occurs late in AA and it follows marked p53 overexpression, making it a useful model for testing proapoptotic

  7. p53 is an Important Regulator of CCL2 Gene Expression

    PubMed Central

    Tang, X.; Asano, M.; O’Reilly, A.; Farquhar, A.; Yang, Y.; Amar, S.

    2013-01-01

    The p53 protein is a sequence-specific DNA-binding factor that regulates inflammatory genes such as CCL2/MCP-1 that may play a role in various diseases. A recent study has indicated that the knockdown of human p53 leads to a strong negative regulation of CCL2 induction. We are therefore interested in how p53 regulates CCL2 gene expression. In the following study, our findings indicate that UV-induced p53 accumulation in mouse macrophages significantly decreases LPS-induced CCL2 production, and that p53 binds to CCL2 5’UTR in the region (16-35). We also found that a p53 domain (p53pep170) mimics full length p53 to down-regulate CCL2 promoter activity. Treatment of p53-deficient mouse primary macrophages with synthetic p53pep170 was found to decrease LPS-induced production of CCL2 without association with cellular endogenous p53. CCL2 production induced by lentiCLG in human monocytes or mouse primary macrophages was blocked in the presence of p53pep170. Overall, these results demonstrate that p53 or its derived peptide (p53pep170) is an important regulator of CCL2 gene expression via its binding activity, and acts as a novel model for future studies linking p53 and its short peptide to pave the way to possible pharmaceutical intervention of CCL2-mediated inflammatory and cancer diseases. PMID:22804246

  8. Glioblastoma cells inhibit astrocytic p53-expression favoring cancer malignancy

    PubMed Central

    Biasoli, D; Sobrinho, M F; da Fonseca, A C C; de Matos, D G; Romão, L; de Moraes Maciel, R; Rehen, S K; Moura-Neto, V; Borges, H L; Lima, F R S

    2014-01-01

    The tumor microenvironment has a dynamic and usually cancer-promoting function during all tumorigenic steps. Glioblastoma (GBM) is a fatal tumor of the central nervous system, in which a substantial number of non-tumoral infiltrated cells can be found. Astrocytes neighboring these tumor cells have a particular reactive phenotype and can enhance GBM malignancy by inducing aberrant cell proliferation and invasion. The tumor suppressor p53 has a potential non-cell autonomous function by modulating the expression of secreted proteins that influence neighbor cells. In this work, we investigated the role of p53 on the crosstalk between GBM cells and astrocytes. We show that extracellular matrix (ECM) from p53+/− astrocytes is richer in laminin and fibronectin, compared with ECM from p53+/+ astrocytes. In addition, ECM from p53+/− astrocytes increases the survival and the expression of mesenchymal markers in GBM cells, which suggests haploinsufficient phenotype of the p53+/– microenvironment. Importantly, conditioned medium from GBM cells blocks the expression of p53 in p53+/+ astrocytes, even when DNA was damaged. These results suggest that GBM cells create a dysfunctional microenvironment based on the impairment of p53 expression that in turns exacerbates tumor endurance. PMID:25329722

  9. Knockdown of p53 suppresses Nanog expression in embryonic stem cells

    SciTech Connect

    Abdelalim, Essam Mohamed; Tooyama, Ikuo

    2014-01-10

    Highlights: •We investigate the role of p53 in ESCs in the absence of DNA damage. •p53 knockdown suppresses ESC proliferation. •p53 knockdown downregulates Nanog expression. •p53 is essential for mouse ESC self-renewal. -- Abstract: Mouse embryonic stem cells (ESCs) express high levels of cytoplasmic p53. Exposure of mouse ESCs to DNA damage leads to activation of p53, inducing Nanog suppression. In contrast to earlier studies, we recently reported that chemical inhibition of p53 suppresses ESC proliferation. Here, we confirm that p53 signaling is involved in the maintenance of mouse ESC self-renewal. RNA interference-mediated knockdown of p53 induced downregulation of p21 and defects in ESC proliferation. Furthermore, p53 knockdown resulted in a significant downregulation in Nanog expression at 24 and 48 h post-transfection. p53 knockdown also caused a reduction in Oct4 expression at 48 h post-transfection. Conversely, exposure of ESCs to DNA damage caused a higher reduction of Nanog expression in control siRNA-treated cells than in p53 siRNA-treated cells. These data show that in the absence of DNA damage, p53 is required for the maintenance of mouse ESC self-renewal by regulating Nanog expression.

  10. The Telomerase Activity of Selenium-Induced Human Umbilical Cord Mesenchymal Stem Cells Is Associated with Different Levels of c-Myc and p53 Expression.

    PubMed

    Hosseinzadeh Anvar, Leila; Hosseini-Asl, Saeid; Mohammadzadeh-Vardin, Mohammad; Sagha, Mohsen

    2017-01-01

    Selenium-as a trace element-is nutritionally essential for humans. It prevents cancerous growth by inhibiting the telomerase activity but the mechanism involved in regulation of telomerase activity in normal telomerase-positive cells remains to be elucidated. Here, we find out whether the effect of sodium selenite and selenomethionine on telomerase activity in human umbilical cord-derived mesenchymal stem cells (hUCMSCs) is associated with different levels of c-Myc and p53 expression. The use of different staining methods including ethidium bromide/acridine orange and DAPI in addition to telomeric repeat amplification protocol assay and real-time PCR indicated that different forms of selenium have opposite impacts on c-Myc and p53 expressions in both hUCMSCs and AGS, a gastric adenocarcinoma cell line, as a positive control. Our findings suggest that the signaling pathways involved in the regulation of telomerase activity in malignant and normal telomerase-positive cell types are somewhat different, at least on the c-Myc and P53 expression levels.

  11. Over-expression of C/EBP-{alpha} induces apoptosis in cultured rat hepatic stellate cells depending on p53 and peroxisome proliferator-activated receptor-{gamma}

    SciTech Connect

    Wang Xueqing; Huang Guangcun; Mei Shuang; Qian Jin; Ji Juling; Zhang Jinsheng

    2009-03-06

    Hepatic stellate cells (HSCs) play a key role in the pathogenesis of hepatic fibrosis. In our previous studies, CCAAT enhancer binding protein-{alpha} (C/EBP-{alpha}) has been shown to be involved in the activation of HSCs and to have a repression effect on hepatic fibrosis in vivo. However, the mechanisms are largely unknown. In this study, we show that the infection of adenovirus vector expressing C/EBP-{alpha} gene (Ad-C/EBP-{alpha}) could induce HSCs apoptosis in a dose- and time-dependent manner by Annexin V/PI staining, caspase-3 activation assay, and flow cytometry. Also, over-expression of C/EBP-{alpha} resulted in the up-regulation of peroxisome proliferator-activated receptor-{gamma} (PPAR-{gamma}) and P53, while P53 expression was regulated by PPAR-{gamma}. In addition, Fas, FasL, DR4, DR5, and TRAIL were studied. The results indicated that the death receptor pathway was mainly involved and regulated by PPAR-{gamma} and p53 in the process of apoptosis triggered by C/EBP-{alpha} in HSCs.

  12. Over-expression of C/EBP-alpha induces apoptosis in cultured rat hepatic stellate cells depending on p53 and peroxisome proliferator-activated receptor-gamma.

    PubMed

    Wang, Xueqing; Huang, Guangcun; Mei, Shuang; Qian, Jin; Ji, Juling; Zhang, Jinsheng

    2009-03-06

    Hepatic stellate cells (HSCs) play a key role in the pathogenesis of hepatic fibrosis. In our previous studies, CCAAT enhancer binding protein-alpha (C/EBP-alpha) has been shown to be involved in the activation of HSCs and to have a repression effect on hepatic fibrosis in vivo. However, the mechanisms are largely unknown. In this study, we show that the infection of adenovirus vector expressing C/EBP-alpha gene (Ad-C/EBP-alpha) could induce HSCs apoptosis in a dose- and time-dependent manner by Annexin V/PI staining, caspase-3 activation assay, and flow cytometry. Also, over-expression of C/EBP-alpha resulted in the up-regulation of peroxisome proliferator-activated receptor-gamma (PPAR-gamma) and P53, while P53 expression was regulated by PPAR-gamma. In addition, Fas, FasL, DR4, DR5, and TRAIL were studied. The results indicated that the death receptor pathway was mainly involved and regulated by PPAR-gamma and p53 in the process of apoptosis triggered by C/EBP-alpha in HSCs.

  13. Regulation of Human p53 Activity and Cell Localization by Alternative Splicing

    PubMed Central

    Ghosh, Anirban; Stewart, Deborah; Matlashewski, Greg

    2004-01-01

    The development of cancer is a multistep process involving mutations in proto-oncogenes, tumor suppressor genes, and other genes which control cell proliferation, telomere stability, angiogenesis, and other complex traits. Despite this complexity, the cellular pathways controlled by the p53 tumor suppressor protein are compromised in most, if not all, cancers. In normal cells, p53 controls cell proliferation, senescence, and/or mediates apoptosis in response to stress, cell damage, or ectopic oncogene expression, properties which make p53 the prototype tumor suppressor gene. Defining the mechanisms of regulation of p53 activity in normal and tumor cells has therefore been a major priority in cell biology and cancer research. The present study reveals a novel and potent mechanism of p53 regulation originating through alternative splicing of the human p53 gene resulting in the expression of a novel p53 mRNA. This novel p53 mRNA encodes an N-terminally deleted isoform of p53 termed p47. As demonstrated within, p47 was able to effectively suppress p53-mediated transcriptional activity and impair p53-mediated growth suppression. It was possible to select for p53-null cells expressing p47 alone or coexpressing p53 in the presence of p47 but not cells expressing p53 alone. This showed that p47 itself does not suppress cell viability but could control p53-mediated growth suppression. Interestingly, p47 was monoubiquitinated in an Mdm2-independent manner, and this was associated with its export out of the nucleus. In the presence of p47, there was a reduction in Mdm2-mediated polyubiquitination and degradation of p53, and this was also associated with increased monoubiquitination and nuclear export of p53. The expression of p47 through alternative splicing of the p53 gene thus has a major influence over p53 activity at least in part through controlling p53 ubiquitination and cell localization. PMID:15340061

  14. Assessment of p21, p53 expression, and Ki-67 proliferative activities in the gastric mucosa of children with Helicobacter pylori gastritis.

    PubMed

    Saf, Coskun; Gulcan, Enver Mahir; Ozkan, Ferda; Cobanoglu Saf, Seyhan Perihan; Vitrinel, Ayca

    2015-02-01

    Helicobacter pylori that is generally acquired in childhood and infects the gastric mucosa is considered to be responsible for many pathobiological changes that are linked to the pathogenesis of gastric cancer. Although the majority of studies on the subject have been carried out in adults, there are a limited number of studies on children that reflect the early period of infection and may be of greater significance. We aimed to determine the role of H. pylori infection and/or gastritis in several histopathological changes, p53, p21, and cell proliferation-associated Ki-67 antigen expression in the gastric mucosa. We studied 60 patients with a mean age of 7.5 ± 4.5 years at referral. On the basis of endoscopic appearance and the evaluation of the gastric antral specimens, the patients were divided into three groups: patients without gastritis, patients with H. pylori-positive gastritis, and patients with H. pylori-negative gastritis. To determine the expression of p53, Ki-67, and p21 in gastric biopsy specimens, immunohistochemical stains were performed. The incidence of neutrophil activity, which was one of our histopathologic parameters, was significantly higher in the H. pylori-positive gastritis group than the other two groups. The presence of lymphoid aggregate was more frequent in H. pylori ± gastritis groups than the nongastritis group. p53 expression was found to be significantly higher in the H. pylori-positive gastritis group than the nongastritis group. Ki-67 and p21 expressions were significantly more frequent in the H. pylori-positive gastritis group than the other two groups. When we evaluated the density of H. pylori, as the density of bacteria increases, we found that the expressions of p53, p21, and Ki-67 increased significantly. Expression of the studied precancerous markers in significant amounts indicates the importance of childhood H. pylori infection in the constitution of gastric cancer in adulthood.

  15. Activation of p53-dependent responses in tumor cells treated with a PARC-interacting peptide

    SciTech Connect

    Vitali, Roberta; Cesi, Vincenzo; Tanno, Barbara; Ferrari-Amorotti, Giovanna; Dominici, Carlo; Calabretta, Bruno; Raschella, Giuseppe

    2008-04-04

    We tested the activity of a p53 carboxy-terminal peptide containing the PARC-interacting region in cancer cells with wild type cytoplasmic p53. Peptide delivery was achieved by fusing it to the TAT transduction domain (TAT-p53-C-ter peptide). In a two-hybrid assay, the tetramerization domain (TD) of p53 was necessary and sufficient to bind PARC. The TAT-p53-C-ter peptide disrupted the PARC-p53 complex. Peptide treatment caused p53 nuclear relocation, p53-dependent changes in gene expression and enhancement of etoposide-induced apoptosis. These studies suggest that PARC-interacting peptides are promising candidates for the enhancement of p53-dependent apoptosis in tumors with wt cytoplasmic p53.

  16. BAC transgenic mice provide evidence that p53 expression is highly regulated in vivo.

    PubMed

    Chen, L; Zhang, G X; Zhou, Y; Zhang, C X; Xie, Y Y; Xiang, C; He, X Y; Zhang, Q; Liu, G

    2015-09-17

    p53 is an important tumor suppressor and stress response mediator. Proper control of p53 level and activity is tightly associated with its function. Posttranslational modifications and the interactions with Mdm2 and Mdm4 are major mechanisms controlling p53 activity and stability. As p53 protein is short-lived and hardly detectable in unstressed situations, less is known on its basal level expression and the corresponding controlling mechanisms in vivo. In addition, it also remains obscure how p53 expression might contribute to its functional regulation. In this study, we established bacterial artificial chromosome transgenic E.coli β-galactosidase Z gene reporter mice to monitor p53 expression in mouse tissues and identify important regulatory elements critical for the expression in vivo. We revealed preferentially high level of p53 reporter expressions in the proliferating, but not the differentiated compartments of the majority of tissues during development and tissue homeostasis. In addition, tumors as well as regenerating tissues in the p53 reporter mice also expressed high level of β-gal. Furthermore, both the enhancer box sequence (CANNTG) in the p53 promoter and the 3' terminal untranslated region element were critical in mediating the high-level expression of the reporter. We also provided evidence that cellular myelocytomatosis oncogene was a critical player regulating p53 mRNA expression in proliferating cells and tissues. Finally, we found robust p53 activation preferentially in the proliferating compartment of mouse tissues upon DNA damage and the proliferating cells exhibited an enhanced p53 response as compared with cells in a quiescent state. Together, these results suggested a highly regulated expression pattern of p53 in the proliferating compartment controlled by both transcriptional and posttranscriptional mechanisms, and such regulated p53 expression may impose functional significance upon stress by setting up a precautionary mode in defense

  17. Oxazoloisoindolinones with in vitro antitumor activity selectively activate a p53-pathway through potential inhibition of the p53-MDM2 interaction.

    PubMed

    Soares, Joana; Pereira, Nuno A L; Monteiro, Ângelo; Leão, Mariana; Bessa, Cláudia; Dos Santos, Daniel J V A; Raimundo, Liliana; Queiroz, Glória; Bisio, Alessandra; Inga, Alberto; Pereira, Clara; Santos, Maria M M; Saraiva, Lucília

    2015-01-23

    One of the most appealing targets for anticancer treatment is the p53 tumor suppressor protein. In half of human cancers, this protein is inactivated due to endogenous negative regulators such as MDM2. Actually, restoring the p53 activity, particularly through the inhibition of its interaction with MDM2, is considered a valuable therapeutic strategy against cancers with a wild-type p53 status. In this work, we report the synthesis of nine enantiopure phenylalaninol-derived oxazolopyrrolidone lactams and the evaluation of their biological effects as p53-MDM2 interaction inhibitors. Using a yeast-based screening assay, two oxazoloisoindolinones, compounds 1b and 3a, were identified as potential p53-MDM2 interaction inhibitors. The molecular mechanism of oxazoloisoindolinone 3a was further validated in human colon adenocarcinoma HCT116 cells with wild-type p53 (HCT116 p53(+/+)) and in its isogenic derivative without p53 (HCT116 p53(-/-)). Indeed, using these cells, we demonstrated that oxazoloisoindolinone 3a exhibited a p53-dependent in vitro antitumor activity through induction of G0/G1-phase cell cycle arrest and apoptosis. The selective activation of a p53-apoptotic pathway by oxazoloisoindolinone 3a was further supported by the occurrence of PARP cleavage only in p53-expressing HCT116 cells. Moreover, oxazoloisoindolinone 3a led to p53 protein stabilization and to the up-regulation of p53 transcriptional activity with increased expression levels of several p53 target genes, as p21(WAF1/CIP1), MDM2, BAX and PUMA, in p53(+/+) but not in p53(-/-) HCT116 cells. Additionally, the ability of oxazoloisoindolinone 3a to block the p53-MDM2 interaction in HCT116 p53(+/+) cells was confirmed by co-immunoprecipitation. Finally, the molecular docking analysis of the interactions between the synthesized compounds and MDM2 revealed that oxazoloisoindolinone 3a binds to MDM2. Altogether, this work adds, for the first time, the oxazoloisoindolinone scaffold to the list of

  18. Expression of P53 protein after exposure to ionizing radiation

    NASA Astrophysics Data System (ADS)

    Salazar, A. M.; Salvador, C.; Ruiz-Trejo, C.; Ostrosky, P.; Brandan, M. E.

    2001-10-01

    One of the most important tumor suppressor genes is p53 gene, which is involved in apoptotic cell death, cell differentiation and cell cycle arrest. The expression of p53 gene can be evaluated by determining the presence of P53 protein in cells using Western Blot assay with a chemiluminescent method. This technique has shown variabilities that are due to biological factors. Film developing process can influence the quality of the p53 bands obtained. We irradiated tumor cell lines and human peripheral lymphocytes with 137Cs and 60Co gamma rays to standardize irradiation conditions, to compare ionizing radiation with actinomycin D and to reduce the observed variability of P53 protein induction levels. We found that increasing radiation doses increase P53 protein induction while it decreases viability. We also conclude that ionizing radiation could serve as a positive control for Western Blot analysis of protein P53. In addition, our results show that the developing process may play an important role in the quality of P53 protein bands and data interpretation.

  19. Benzyl Isothiocyanate potentiates p53 signaling and antitumor effects against breast cancer through activation of p53-LKB1 and p73-LKB1 axes

    PubMed Central

    Xie, Bei; Nagalingam, Arumugam; Kuppusamy, Panjamurthy; Muniraj, Nethaji; Langford, Peter; Győrffy, Balázs; Saxena, Neeraj K.; Sharma, Dipali

    2017-01-01

    Functional reactivation of p53 pathway, although arduous, can potentially provide a broad-based strategy for cancer therapy owing to frequent p53 inactivation in human cancer. Using a phosphoprotein-screening array, we found that Benzyl Isothiocynate, (BITC) increases p53 phosphorylation in breast cancer cells and reveal an important role of ERK and PRAS40/MDM2 in BITC-mediated p53 activation. We show that BITC rescues and activates p53-signaling network and inhibits growth of p53-mutant cells. Mechanistically, BITC induces p73 expression in p53-mutant cells, disrupts the interaction of p73 and mutant-p53, thereby releasing p73 from sequestration and allowing it to be transcriptionally active. Furthermore, BITC-induced p53 and p73 axes converge on tumor-suppressor LKB1 which is transcriptionally upregulated by p53 and p73 in p53-wild-type and p53-mutant cells respectively; and in a feed-forward mechanism, LKB1 tethers with p53 and p73 to get recruited to p53-responsive promoters. Analyses of BITC-treated xenografts using LKB1-null cells corroborate in vitro mechanistic findings and establish LKB1 as the key node whereby BITC potentiates as well as rescues p53-pathway in p53-wild-type as well as p53-mutant cells. These data provide first in vitro and in vivo evidence of the integral role of previously unrecognized crosstalk between BITC, p53/LKB1 and p73/LKB1 axes in breast tumor growth-inhibition. PMID:28071670

  20. p53 Suppresses E2F1-dependent PLK1 expression upon DNA damage by forming p53-E2F1-DNA complex.

    PubMed

    Zhou, Zhe; Cao, Ji-Xiang; Li, Shu-Yan; An, Guo-Shun; Ni, Ju-Hua; Jia, Hong-Ti

    2013-12-10

    E2F1 is implicated in transcriptional activation of polo-like kinase-1 (PLK1), but yet the mechanism is not fully understood. PLK1 suppression plays an important checkpoint role in response to DNA damage. Suppression of the PLK1 gene by binding of p53 to upstream p53RE2 element in the promoter has been recently revealed. Here we report another mechanism, in which p53 interacts with E2F1 to form p53-E2F1-DNA complex repressing E2F1-dependent PLK1 expression. PLK1 was downregulated in cisplatin exposed HCT116p53(+/+) but not HCT116p53(-/-) cells, indicating p53-suppressed PLK1 upon DNA damage. Co-transfection and reporter enzyme assays revealed that p53 suppressed but E2F1 promoted PLK1 gene activation. 5'-Deletion and substitution mutations showed multiple positive cis-elements residing in the PLK1 promoter, of which at least two E2F1 sites at positions -75/-68 and -40/-32 were required for the full activity of the promoter. Combination of 5'-deletion and substitution mutations with over-expression of p53 showed that suppression of the PLK1 gene by p53 was E2F1-dependent: mutation of the E2F1 site at position -75/-68 partially abrogated suppression activity of p53; mutation of E2F1 site at position -40/-32 released from p53 suppression of PLK1 gene completely. Co-immunoprecipitation and electrophoretic mobility shift assay showed that DNA damage promoted p53-E2F1 interaction, thereby creating a p53-E2F1 complex assembly on the PLK1 promoter in vitro. The in vivo formation of p53-E2F1-PLK1 promoter complex upon DNA damage was further evidenced by chromatin immunoprecipitation (ChIP) and re-ChIP. In addition, we showed that suppression of PLK1 by p53 promoted apoptosis. Our data suggest that p53 may interact with E2F1 to form p53-E2F1-DNA complex suppressing E2F1-dependent PLK1 expression. The model of p53 action on E2F1-activated PLK1 gene may explain at least partly how p53 as a suppressor regulates the downstream effects of E2F1 in cellular stresses including DNA

  1. SCH529074, a small molecule activator of mutant p53, which binds p53 DNA binding domain (DBD), restores growth-suppressive function to mutant p53 and interrupts HDM2-mediated ubiquitination of wild type p53.

    PubMed

    Demma, Mark; Maxwell, Eugene; Ramos, Robert; Liang, Lianzhu; Li, Cheng; Hesk, David; Rossman, Randall; Mallams, Alan; Doll, Ronald; Liu, Ming; Seidel-Dugan, Cynthia; Bishop, W Robert; Dasmahapatra, Bimalendu

    2010-04-02

    Abrogation of p53 function occurs in almost all human cancers, with more than 50% of cancers harboring inactivating mutations in p53 itself. Mutation of p53 is indicative of highly aggressive cancers and poor prognosis. The vast majority of mutations in p53 occur in its core DNA binding domain (DBD) and result in inactivation of p53 by reducing its thermodynamic stability at physiological temperature. Here, we report a small molecule, SCH529074, that binds specifically to the p53 DBD in a saturable manner with an affinity of 1-2 microm. Binding restores wild type function to many oncogenic mutant forms of p53. This small molecule reactivates mutant p53 by acting as a chaperone, in a manner similar to that previously reported for the peptide CDB3. Binding of SCH529074 to the p53 DBD is specifically displaced by an oligonucleotide with a sequence derived from the p53-response element. In addition to reactivating mutant p53, SCH529074 binding inhibits ubiquitination of p53 by HDM2. We have also developed a novel variant of p53 by changing a single amino acid in the core domain of p53 (N268R), which abolishes binding of SCH529074. This amino acid change also inhibits HDM2-mediated ubiquitination of p53. Our novel findings indicate that through its interaction with p53 DBD, SCH529074 restores DNA binding activity to mutant p53 and inhibits HDM2-mediated ubiquitination.

  2. p53 and MDM2 protein expression in actinic cheilitis.

    PubMed

    de Freitas, Maria da Conceição Andrade; Ramalho, Luciana Maria Pedreira; Xavier, Flávia Caló Aquino; Moreira, André Luis Gomes; Reis, Sílvia Regina Almeida

    2008-01-01

    Actinic cheilitis is a potentially malignant lip lesion caused by excessive and prolonged exposure to ultraviolet radiation, which can lead to histomorphological alterations indicative of abnormal cell differentiation. In this pathology, varying degrees of epithelial dysplasia may be found. There are few published studies regarding the p53 and MDM2 proteins in actinic cheilitis. Fifty-eight cases diagnosed with actinic cheilitis were histologically evaluated using Banóczy and Csiba (1976) parameters, and were subjected to immunohistochemical analysis using the streptavidin-biotin method in order to assess p53 and MDM2 protein expression. All studied cases expressed p53 proteins in basal and suprabasal layers. In the basal layer, the nuclei testing positive for p53 were stained intensely, while in the suprabasal layer, cells with slightly stained nuclei were predominant. All cases also tested positive for the MDM2 protein, but with varying degrees of nuclear expression and a predominance of slightly stained cells. A statistically significant correlation between the percentage of p53 and MDM2-positive cells was established, regardless of the degree of epithelial dysplasia. The expression of p53 and MDM2 proteins in actinic cheilitis can be an important indicator in lip carcinogenesis, regardless of the degree of epithelial dysplasia.

  3. C23 promotes tumorigenesis via suppressing p53 activity

    PubMed Central

    Wang, Juan; Hu, Guilin; Fang, Xing; Hu, Yamin; Tao, Tingting; Wei, Xin; Tang, Haitao; Huang, Baojun; Hu, Wanglai

    2016-01-01

    C23 is an abundant and multi-functional protein, which plays an important role in various biological processes, including ribosome biogenesis and maturation, cell cycle checkpoints and transcriptional regulation [1, 2]. However, the role of C23 in controlling tumorigenesis has not been well defined. Here we report that C23 is highly expressed in cancer cells and the elevated expression of C23 facilitates cancer cell proliferation in vitro and tumor xenograft growth in vivo. Notably, C23 binds to p53 through its GAR domain and suppresses the transcriptional activity of p53 under DNA damage and hypoxia. Moreover, the GAR domain is critical for C23-mediated tumor cell proliferation both in vitro and in vivo. Our findings reveal a novel role of C23 in tumorigenesis and suggest that C23 may represent a potential therapeutic target for treating malignancy. PMID:27506938

  4. 1800MHz Microwave Induces p53 and p53-Mediated Caspase-3 Activation Leading to Cell Apoptosis In Vitro

    PubMed Central

    Xing, Fuqiang; Zhan, Qiuqiang; He, Yiduo; Cui, Jiesheng; He, Sailing; Wang, Guanyu

    2016-01-01

    Recent studies have reported that exposure of mammalian cells to microwave radiation may have adverse effects such as induction of cell apoptosis. However, the molecular mechanisms underlying microwave induced mammalian cell apoptosis are not fully understood. Here, we report a novel mechanism: exposure to 1800MHz microwave radiation induces p53-dependent cell apoptosis through cytochrome c-mediated caspase-3 activation pathway. We first measured intensity of microwave radiation from several electronic devices with an irradiation detector. Mouse NIH/3T3 and human U-87 MG cells were then used as receivers of 1800MHz electromagnetic radiation (EMR) at a power density of 1209 mW/m2. Following EMR exposure, cells were analyzed for viability, intracellular reactive oxygen species (ROS) generation, DNA damage, p53 expression, and caspase-3 activity. Our analysis revealed that EMR exposure significantly decreased viability of NIH/3T3 and U-87 MG cells, and increased caspase-3 activity. ROS burst was observed at 6 h and 48 h in NIH/3T3 cells, while at 3 h in U-87 MG cells. Hoechst 33258 staining and in situ TUNEL assay detected that EMR exposure increased DNA damage, which was significantly restrained in the presence of N-acetyl-L-cysteine (NAC, an antioxidant). Moreover, EMR exposure increased the levels of p53 protein and p53 target gene expression, promoted cytochrome c release from mitochondrion, and increased caspase-3 activity. These events were inhibited by pretreatment with NAC, pifithrin-α (a p53 inhibitor) and caspase inhibitor. Collectively, our findings demonstrate, for the first time, that 1800MHz EMR induces apoptosis-related events such as ROS burst and more oxidative DNA damage, which in turn promote p53-dependent caspase-3 activation through release of cytochrome c from mitochondrion. These findings thus provide new insights into physiological mechanisms underlying microwave-induced cell apoptosis. PMID:27689798

  5. 1800MHz Microwave Induces p53 and p53-Mediated Caspase-3 Activation Leading to Cell Apoptosis In Vitro.

    PubMed

    Xing, Fuqiang; Zhan, Qiuqiang; He, Yiduo; Cui, Jiesheng; He, Sailing; Wang, Guanyu

    Recent studies have reported that exposure of mammalian cells to microwave radiation may have adverse effects such as induction of cell apoptosis. However, the molecular mechanisms underlying microwave induced mammalian cell apoptosis are not fully understood. Here, we report a novel mechanism: exposure to 1800MHz microwave radiation induces p53-dependent cell apoptosis through cytochrome c-mediated caspase-3 activation pathway. We first measured intensity of microwave radiation from several electronic devices with an irradiation detector. Mouse NIH/3T3 and human U-87 MG cells were then used as receivers of 1800MHz electromagnetic radiation (EMR) at a power density of 1209 mW/m2. Following EMR exposure, cells were analyzed for viability, intracellular reactive oxygen species (ROS) generation, DNA damage, p53 expression, and caspase-3 activity. Our analysis revealed that EMR exposure significantly decreased viability of NIH/3T3 and U-87 MG cells, and increased caspase-3 activity. ROS burst was observed at 6 h and 48 h in NIH/3T3 cells, while at 3 h in U-87 MG cells. Hoechst 33258 staining and in situ TUNEL assay detected that EMR exposure increased DNA damage, which was significantly restrained in the presence of N-acetyl-L-cysteine (NAC, an antioxidant). Moreover, EMR exposure increased the levels of p53 protein and p53 target gene expression, promoted cytochrome c release from mitochondrion, and increased caspase-3 activity. These events were inhibited by pretreatment with NAC, pifithrin-α (a p53 inhibitor) and caspase inhibitor. Collectively, our findings demonstrate, for the first time, that 1800MHz EMR induces apoptosis-related events such as ROS burst and more oxidative DNA damage, which in turn promote p53-dependent caspase-3 activation through release of cytochrome c from mitochondrion. These findings thus provide new insights into physiological mechanisms underlying microwave-induced cell apoptosis.

  6. The long non-coding RNA maternally expressed gene 3 activates p53 and is downregulated in esophageal squamous cell cancer.

    PubMed

    Lv, Desheng; Sun, Run; Yu, Qian; Zhang, Xuefei

    2016-10-24

    Esophageal squamous cell cancer (ESCC) is an aggressive malignancy with poor survival. Long non-coding RNAs (lncRNAs) play important roles in tumorigenesis and cancer progression; hence, lncRNAs are also involved in the development and progression of ESCC. In this study, we used quantitative real-time polymerase chain reaction (qRT-PCR) to investigate expression of lncRNA, maternally expressed gene 3 (MEG3) in ESCC. Ectopic expression of MEG3 was performed in ESCC cell lines. Proliferation and apoptosis of ESCC cell lines were analyzed after ectopic expression of MEG3. We found MEG3 was significantly downregulated in ESCC tissues compared with normal tissues by qRT-PCR. Low expression of MEG3 was correlated with lymph node metastasis and advanced TNM stages of ESCC patients and indicated shorter survival (HR = 0.471, 95 % CI 0.234-0.950, P = 0.035), which was confirmed by The Cancer Genome Atlas (TCGA) esophageal cancer dataset. DNA-demethylating agent (5-aza-2-deoxy-cytidine (5-aza-CdR)) treatment significantly increased MEG3 expression level in ESCC cells, and TCGA esophageal cancer dataset also showed that DNA methylation of MEG3 predicted survival. Ectopic expression of MEG3 in ESCC cells inhibited cell proliferation, promoted apoptosis, and suppressed metastasis. Further investigation showed enforced expression of MEG3 activated p53 and its target genes by downregulation of mouse double minute 2 homolog (MDM2). Overall, our study indicated that MEG3 expression loss is common in ESCC and MEG3 could activate p53 and predict prognosis in ESCC.

  7. Cell cycle regulation and p53 activation by protein phosphatase 2C alpha.

    PubMed

    Ofek, Paula; Ben-Meir, Daniella; Kariv-Inbal, Zehavit; Oren, Moshe; Lavi, Sara

    2003-04-18

    Protein phosphatase 2C (PP2C) dephosphorylates a broad range of substrates, regulating stress response and growth-related pathways in both prokaryotes and eukaryotes. We now demonstrate that PP2C alpha, a major mammalian isoform, inhibits cell growth and activates the p53 pathway. In 293 cell clones, in which PP2C alpha expression is regulated by a tetracycline-inducible promoter, PP2C alpha overexpression led to G(2)/M cell cycle arrest and apoptosis. Furthermore, PP2C alpha induced the expression of endogenous p53 and the p53-responsive gene p21. Activation of the p53 pathway by PP2C alpha took place both in cells harboring endogenous p53, as well as in p53-null cells transfected with exogenous p53. Induction of PP2C alpha resulted in an increase in the overall levels of p53 protein as well as an augmentation of p53 transcription activity. The dephosphorylation activity of PP2C alpha is essential to the described phenomena, as none of these effects was detected when an enzymatically inactive PP2C alpha mutant was overexpressed. p53 plays an important role in PP2C alpha-directed cell cycle arrest and apoptosis because perturbation of p53 expression in human 293 cells by human papillomavirus E6 led to a significant increase in cell survival. The role of PP2C alpha in p53 activation is discussed.

  8. Regulation of p53 and MDM2 activity by MTBP.

    PubMed

    Brady, Mark; Vlatkovic, Nikolina; Boyd, Mark T

    2005-01-01

    p53 is a critical coordinator of a wide range of stress responses. To facilitate a rapid response to stress, p53 is produced constitutively but is negatively regulated by MDM2. MDM2 can inhibit p53 in multiple independent ways: by binding to its transcription activation domain, inhibiting p53 acetylation, promoting nuclear export, and probably most importantly by promoting proteasomal degradation of p53. The latter is achieved via MDM2's E3 ubiquitin ligase activity harbored within the MDM2 RING finger domain. We have discovered that MTBP promotes MDM2-mediated ubiquitination and degradation of p53 and also MDM2 stabilization in an MDM2 RING finger-dependent manner. Moreover, using small interfering RNA to down-regulate endogenous MTBP in unstressed cells, we have found that MTBP significantly contributes to MDM2-mediated regulation of p53 levels and activity. However, following exposure of cells to UV, but not gamma-irradiation, MTBP is destabilized as part of the coordinated cellular response. Our findings suggest that MTBP differentially regulates the E3 ubiquitin ligase activity of MDM2 towards two of its most critical targets (itself and p53) and in doing so significantly contributes to MDM2-dependent p53 homeostasis in unstressed cells.

  9. Expression of the human tumor suppressor p53 induces cell death in Pichia pastoris.

    PubMed

    Abdelmoula-Souissi, Salma; Mabrouk, Imed; Gargouri, Ali; Mokdad-Gargouri, Raja

    2012-02-01

    The human tumor suppressor p53 is known as guardian of genome because of its involvement in many signals related to cell life or death. In this work, we report that human p53 induces cell death in the yeast Pichia pastoris. We showed a growth inhibition effect, which increased with the p53 protein expression level in recombinant Mut(s) (methanol utilization slow) strain of Pichia. However, no effect of p53 was observed in recombinant strain of Mut(+) (methanol utilization plus) phenotype. Interestingly, human p53 induces cell death in recombinant strains Mut(s) with characteristic markers of apoptosis such as DNA fragmentation, exposure of phosphatidylserine, and reactive oxygen species generation. Taken together, our results strongly suggest that human p53 is biologically active in this heterologous context. Thus, we propose that P. pastoris could be a useful tool to better understand the biological function of human p53.

  10. Development of an adenoviral vector with robust expression driven by p53

    SciTech Connect

    Bajgelman, Marcio C.; Strauss, Bryan E.

    2008-02-05

    Here we introduce a new adenoviral vector where transgene expression is driven by p53. We first developed a synthetic promoter, referred to as PGTx{beta}, containing a p53-responsive element, a minimal promoter and the first intron of the rabbit {beta}-globin gene. Initial assays using plasmid-based vectors indicated that expression was tightly controlled by p53 and was 5-fold stronger than the constitutive CMV immediate early promoter/enhancer. The adenoviral vector, AdPG, was also shown to offer p53-responsive expression in prostate carcinoma cells LNCaP (wt p53), DU-145 (temperature sensitive mutant of p53) and PC3 (p53-null, but engineered to express temperature-sensitive p53 mutants). AdPG served as a sensor of p53 activity in LNCaP cells treated with chemotherapeutic agents. Since p53 can be induced by radiotherapy and chemotherapy, this new vector could be further developed for use in combination with conventional therapies to bring about cooperation between the genetic and pharmacologic treatment modalities.

  11. REGgamma modulates p53 activity by regulating its cellular localization.

    PubMed

    Liu, Jian; Yu, Guowu; Zhao, Yanyan; Zhao, Dengpan; Wang, Ying; Wang, Lu; Liu, Jiang; Li, Lei; Zeng, Yu; Dang, Yongyan; Wang, Chuangui; Gao, Guang; Long, Weiwen; Lonard, David M; Qiao, Shanlou; Tsai, Ming-Jer; Zhang, Bianhong; Luo, Honglin; Li, Xiaotao

    2010-12-01

    The proteasome activator REGγ mediates a shortcut for the destruction of intact mammalian proteins. The biological roles of REGγ and the underlying mechanisms are not fully understood. Here we provide evidence that REGγ regulates cellular distribution of p53 by facilitating its multiple monoubiquitylation and subsequent nuclear export and degradation. We also show that inhibition of p53 tetramerization by REGγ might further enhance cytoplasmic relocation of p53 and reduce active p53 in the nucleus. Furthermore, multiple monoubiquitylation of p53 enhances its physical interaction with HDM2 and probably facilitates subsequent polyubiquitylation of p53, suggesting that monoubiquitylation can act as a signal for p53 degradation. Depletion of REGγ sensitizes cells to stress-induced apoptosis, validating its crucial role in the control of apoptosis, probably through regulation of p53 function. Using a mouse xenograft model, we show that REGγ knockdown results in a significant reduction of tumor growth, suggesting an important role for REGγ in tumor development. Our study therefore demonstrates that REGγ-mediated inactivation of p53 is one of the mechanisms involved in cancer progression.

  12. Mdm2 and Mdm4 Loss Regulates Distinct p53 Activities

    PubMed Central

    Barboza, Juan A.; Iwakuma, Tomoo; Terzian, Tamara; El-Naggar, Adel K.; Lozano, Guillermina

    2009-01-01

    Mutational inactivation of p53 is a hallmark of most human tumors. Loss of p53 function also occurs by overexpression of negative regulators such as MDM2 and MDM4. Deletion of Mdm2 or Mdm4 in mice results in p53-dependent embryo lethality due to constitutive p53 activity. However, Mdm2−/− and Mdm4−/− embryos display divergent phenotypes, suggesting that Mdm2 and Mdm4 exert distinct control over p53. To explore the interaction between Mdm2 and Mdm4 in p53 regulation, we first generated mice and cells that are triple null for p53, Mdm2, and Mdm4. These mice had identical survival curves and tumor spectrum as p53−/− mice, substantiating the principal role of Mdm2 and Mdm4 as negative p53 regulators. We next generated mouse embryo fibroblasts null for p53 with deletions of Mdm2, Mdm4, or both; introduced a retrovirus expressing a temperature-sensitive p53 mutant, p53A135V; and examined p53 stability and activity. In this system, p53 activated distinct target genes, leading to apoptosis in cells lacking Mdm2 and a cell cycle arrest in cells lacking Mdm4. Cells lacking both Mdm2 and Mdm4 had a stable p53 that initiated apoptosis similar to Mdm2-null cells. Additionally, stabilization of p53 in cells lacking Mdm4 with the Mdm2 antagonist nutlin-3 was sufficient to induce a cell death response. These data further differentiate the roles of Mdm2 and Mdm4 in the regulation of p53 activities. PMID:18567799

  13. Prognostic Value of p53 Expression Intensity in Urothelial Cancers.

    PubMed

    Qamar, Samina; Inam, Qazi Adil; Ashraf, Sobia; Khan, M Safdar; Khokhar, M Abbas; Awan, Nukhbatullah

    2017-04-01

    To determine association of immunohistochemical expression intensity of p53 with grade and stage of urothelial cancers. Descriptive cross-sectional analytical study. Pathology Department, King Edward Medical University, Lahore, from January to December 2016. Data of transurethral resection/radical cystesctomy urinary bladder biopsies was collected. Clinical, radiological and cystoscopic findings of patients were noted from patients' charts in the Urology Ward. Biopsies were graded histologically according to WHO 2004 grading system. TNM system was used for pathological staging. On selected slides, immunoshistochemistry for p53 was applied. Nuclear immunoreactivity was considered positive if present in >10% of tumor cells and negative if <10% of tumor cells. Intensity was considered weak (less than 15% cells) and strong (more than 15% cells). Data was analyzed by SPSS version 21. Linear-by-linear association was calculated between p53 expression and stage of urothelial tumors, Chi-Square test was used to see association between grade and intensity of p53. Qualitative variables, like grade and stage of carcinoma along with p53 expression, were calculated in terms of frequencies and percentages. P ≤ 0.05 was taken as significant. Out of the 70 patients, 61 (87%) were males and 9 (13%) females. Out of 25 low grade lesions, 4 (16%) cases were p53 positive; and out of 45 high grade lesions, 41 (91%) cases were p53 positive. There was 33% (2/6 cases) positivity in Tis, 55% (16/29 cases) in T1, 72% in T2 (21/29), and 100% in T3a (5/5 cases) and T3b (1/1 case). Strong intensity of p53 staining was noted to be 5.4% (n=25) of low grade and 94.6% (n=45) of high grade tumors. p53 expression was greater and more frequently strong in higher grade and stage of urothelial carcinoma. It can be used as a prognostic marker in predicting higher grade and stage of bladder cancer.

  14. p53 tumour suppressor gene expression in pancreatic neuroendocrine tumour cells.

    PubMed Central

    Bartz, C; Ziske, C; Wiedenmann, B; Moelling, K

    1996-01-01

    Neuroendocrine pancreatic tumours grow slower and metastasise later than ductal and acinar carcinomas. The expression of the p53 tumour suppressor gene in pancreatic neuroendocrine tumour cells is unknown. Pancreatic neuroendocrine cell lines (n = 5) and human tumour tissues (n = 19) were studied for changed p53 coding sequence, transcription, and translation. Proliferative activity of tumour cells was determined analysing Ki-67 expression. No mutation in the p53 nucleotide sequence of neuroendocrine tumour cell was found. However, an overexpression of p53 could be detected in neuroendocrine pancreatic tumour cell lines at a protein level. As no p53 mutations were seen, it is suggested that post-translational events can also lead to an overexpression of p53. Images Figure 2 Figure 3 Figure 4 Figure 5 Figure 6 Figure 7 PMID:8675094

  15. Nuclear interactor of ARF and Mdm2 regulates multiple pathways to activate p53

    PubMed Central

    Reed, Sara M; Hagen, Jussara; Tompkins, Van S; Thies, Katie; Quelle, Frederick W; Quelle, Dawn E

    2014-01-01

    The p53 tumor suppressor is controlled by an interactive network of factors that stimulate or inhibit its transcriptional activity. Within that network, Mdm2 functions as the major antagonist of p53 by promoting its ubiquitylation and degradation. Conversely, Tip60 activates p53 through direct association on target promoters as well as acetylation of p53 at lysine 120 (K120). This study examines the functional relationship between Mdm2 and Tip60 with a novel p53 regulator, NIAM (nuclear interactor of ARF and Mdm2). Previous work showed NIAM can suppress proliferation and activate p53 independently of ARF, indicating that other factors mediate those activities. Here, we demonstrate that NIAM is a chromatin-associated protein that binds Tip60. NIAM can promote p53 K120 acetylation, although that modification is not required for NIAM to inhibit proliferation or induce p53 transactivation of the p21 promoter. Notably, Tip60 silencing showed it contributes to but is not sufficient for NIAM-mediated p53 activation, suggesting other mechanisms are involved. Indeed, growth-inhibitory forms of NIAM also bind to Mdm2, and increased NIAM expression levels disrupt p53–Mdm2 association, inhibit p53 polyubiquitylation, and prevent Mdm2-mediated inhibition of p53 transcriptional activity. Importantly, loss of NIAM significantly impairs p53 activation. Together, these results show that NIAM activates p53 through multiple mechanisms involving Tip60 association and Mdm2 inhibition. Thus, NIAM regulates 2 critical pathways that control p53 function and are altered in human cancers, implying an important role for NIAM in tumorigenesis. PMID:24621507

  16. Mutant p53 expression in fallopian tube epithelium drives cell migration.

    PubMed

    Quartuccio, Suzanne M; Karthikeyan, Subbulakshmi; Eddie, Sharon L; Lantvit, Daniel D; Ó hAinmhire, Eoghainín; Modi, Dimple A; Wei, Jian-Jun; Burdette, Joanna E

    2015-10-01

    Ovarian cancer is the fifth leading cause of cancer death among US women. Evidence supports the hypothesis that high-grade serous ovarian cancers (HGSC) may originate in the distal end of the fallopian tube. Although a heterogeneous disease, 96% of HGSC contain mutations in p53. In addition, the "p53 signature," or overexpression of p53 protein (usually associated with mutation), is a potential precursor lesion of fallopian tube derived HGSC suggesting an essential role for p53 mutation in early serous tumorigenesis. To further clarify p53-mutation dependent effects on cells, murine oviductal epithelial cells (MOE) were stably transfected with a construct encoding for the R273H DNA binding domain mutation in p53, the most common mutation in HGSC. Mutation in p53 was not sufficient to transform MOE cells but did significantly increase cell migration. A similar p53 mutation in murine ovarian surface epithelium (MOSE), another potential progenitor cell for serous cancer, was not sufficient to transform the cells nor change migration suggesting tissue specific effects of p53 mutation. Microarray data confirmed expression changes of pro-migratory genes in p53(R273H) MOE compared to parental cells, which could be reversed by suppressing Slug expression. Combining p53(R273H) with KRAS(G12V) activation caused transformation of MOE into high-grade sarcomatoid carcinoma when xenografted into nude mice. Elucidating the specific role of p53(R273H) in the fallopian tube will improve understanding of changes at the earliest stage of transformation. This information can help develop chemopreventative strategies to prevent the accumulation of additional mutations and reverse progression of the "p53 signature" thereby, improving survival rates. © 2015 UICC.

  17. Genotoxic stress-induced expression of p53 and apoptosis in leukemic clam hemocytes with cytoplasmically sequestered p53.

    PubMed

    Böttger, Stefanie; Jerszyk, Emily; Low, Ben; Walker, Charles

    2008-02-01

    In nature, the soft shell clam, Mya arenaria, develops a fatal blood cancer in which a highly conserved homologue for wild-type human p53 protein is rendered nonfunctional by cytoplasmic sequestration. In untreated leukemic clam hemocytes, p53 is complexed throughout the cytoplasm with overexpressed variants for both clam homologues (full-length variant, 1,200-fold and truncated variant, 620-fold above normal clam hemocytes) of human mortalin, an Hsp70 family protein. In vitro treatment with etoposide only and in vivo treatment with either etoposide or mitoxantrone induces DNA damage, elevates expression (600-fold) and promotes nuclear translocation of p53, and results in apoptosis of leukemic clam hemocytes. Pretreatment with wheat germ agglutinin followed by etoposide treatment induces DNA damage and elevates p53 expression (893-fold) but does not overcome cytoplasmic sequestration of p53 or induce apoptosis. We show that leukemic clam hemocytes have an intact p53 pathway, and that maintenance of this tumor phenotype requires nuclear absence of p53, resulting from its localization in the cytoplasm of leukemic clam hemocytes. The effects of these topoisomerase II poisons may result as mortalin-based cytoplasmic tethering is overwhelmed by de novo expression of p53 protein after DNA damage induced by genotoxic stress. Soft shell clam leukemia provides excellent in vivo and in vitro models for developing genotoxic and nongenotoxic cancer therapies for reactivating p53 transcription in human and other animal cancers displaying mortalin-based cytoplasmic sequestration of the p53 tumor suppressor, such as colorectal cancers and primary and secondary glioblastomas, though not apparently leukemias or lymphomas.

  18. p53 elevation in human cells halt SV40 infection by inhibiting T-ag expression

    PubMed Central

    Drayman, Nir; Ben-nun-Shaul, Orly; Butin-Israeli, Veronika; Srivastava, Rohit; Rubinstein, Ariel M.; Mock, Caroline S.; Elyada, Ela; Ben-Neriah, Yinon; Lahav, Galit; Oppenheim, Ariella

    2016-01-01

    SV40 large T-antigen (T-ag) has been known for decades to inactivate the tumor suppressor p53 by sequestration and additional mechanisms. Our present study revealed that the struggle between p53 and T-ag begins very early in the infection cycle. We found that p53 is activated early after SV40 infection and defends the host against the infection. Using live cell imaging and single cell analyses we found that p53 dynamics are variable among individual cells, with only a subset of cells activating p53 immediately after SV40 infection. This cell-to-cell variabilty had clear consequences on the outcome of the infection. None of the cells with elevated p53 at the beginning of the infection proceeded to express T-ag, suggesting a p53-dependent decision between abortive and productive infection. In addition, we show that artificial elevation of p53 levels prior to the infection reduces infection efficiency, supporting a role for p53 in defending against SV40. We further found that the p53-mediated host defense mechanism against SV40 is not facilitated by apoptosis nor via interferon-stimulated genes. Instead p53 binds to the viral DNA at the T-ag promoter region, prevents its transcriptional activation by Sp1, and halts the progress of the infection. These findings shed new light on the long studied struggle between SV40 T-ag and p53, as developed during virus-host coevolution. Our studies indicate that the fate of SV40 infection is determined as soon as the viral DNA enters the nucleus, before the onset of viral gene expression. PMID:27462916

  19. Concurrent expression of heme oxygenase-1 and p53 in human retinal pigment epithelial cell line

    SciTech Connect

    Lee, Sang Yull; Jo, Hong Jae; Kim, Kang Mi; Song, Ju Dong; Chung, Hun Taeg; Park, Young Chul

    2008-01-25

    Heme oxygenase-1 (HO-1) is a stress-responsive protein that is known to regulate cellular functions such as cell proliferation, inflammation, and apoptosis. Here, we investigated the effects of HO activity on the expression of p53 in the human retinal pigment epithelium (RPE) cell line ARPE-19. Cobalt protoporphyrin (CoPP) induced the expression of both HO-1 and p53 without significant toxicity to the cells. In addition, the blockage of HO activity with the iron chelator DFO or with HO-1 siRNA inhibited the CoPP-induced expression of p53. Similarly, zinc protoporphyrin (ZnPP), an inhibitor of HO, suppressed p53 expression in ARPE-19 cells, although ZnPP increased the level of HO-1 protein while inhibiting HO activity. Also, CoPP-induced p53 expression was not affected by the formation of reactive oxygen species (ROS). Based on these results, we conclude that HO activity is involved in the regulation of p53 expression in a ROS-independent mechanism, and also suggest that the expression of p53 in ARPE-19 cells is associated with heme metabolites such as biliverdin/bilirubin, carbon monoxide, and iron produced by the activity of HO.

  20. PML IV/ARF interaction enhances p53 SUMO-1 conjugation, activation, and senescence

    PubMed Central

    Ivanschitz, Lisa; Takahashi, Yuki; Jollivet, Florence; Ayrault, Olivier; Le Bras, Morgane; de Thé, Hugues

    2015-01-01

    Promyelocytic leukemia protein (PML) nuclear bodies (NBs) recruit multiple partners, including p53 and many of its regulators. NBs are believed to facilitate several posttranslational modifications and are key regulators of senescence. PML, the organizer of NBs, is expressed as a number of splice variants that all efficiently recruit p53 partners. However, overexpression of only one of them, PML IV, triggers p53-driven senescence. Here, we show that PML IV specifically binds ARF, a key p53 regulator. Similar to ARF, PML IV enhances global SUMO-1 conjugation, particularly that of p53, resulting in p53 stabilization and activation. ARF interacts with and stabilizes the NB-associated UBC9 SUMO-conjugating enzyme, possibly explaining PML IV-enhanced SUMOylation. These results unexpectedly link two key tumor suppressors, highlighting their convergence for global control of SUMO conjugation, p53 activation, and senescence induction. PMID:26578773

  1. PML IV/ARF interaction enhances p53 SUMO-1 conjugation, activation, and senescence.

    PubMed

    Ivanschitz, Lisa; Takahashi, Yuki; Jollivet, Florence; Ayrault, Olivier; Le Bras, Morgane; de Thé, Hugues

    2015-11-17

    Promyelocytic leukemia protein (PML) nuclear bodies (NBs) recruit multiple partners, including p53 and many of its regulators. NBs are believed to facilitate several posttranslational modifications and are key regulators of senescence. PML, the organizer of NBs, is expressed as a number of splice variants that all efficiently recruit p53 partners. However, overexpression of only one of them, PML IV, triggers p53-driven senescence. Here, we show that PML IV specifically binds ARF, a key p53 regulator. Similar to ARF, PML IV enhances global SUMO-1 conjugation, particularly that of p53, resulting in p53 stabilization and activation. ARF interacts with and stabilizes the NB-associated UBC9 SUMO-conjugating enzyme, possibly explaining PML IV-enhanced SUMOylation. These results unexpectedly link two key tumor suppressors, highlighting their convergence for global control of SUMO conjugation, p53 activation, and senescence induction.

  2. ID4 regulates transcriptional activity of wild type and mutant p53 via K373 acetylation.

    PubMed

    Morton, Derrick J; Patel, Divya; Joshi, Jugal; Hunt, Aisha; Knowell, Ashley E; Chaudhary, Jaideep

    2017-01-10

    Given that mutated p53 (50% of all human cancers) is over-expressed in many cancers, restoration of mutant p53 to its wild type biological function has been sought after as cancer therapy. The conformational flexibility has allowed to restore the normal biological function of mutant p53 by short peptides and small molecule compounds. Recently, studies have focused on physiological mechanisms such as acetylation of lysine residues to rescue the wild type activity of mutant p53. Using p53 null prostate cancer cell line we show that ID4 dependent acetylation promotes mutant p53 DNA-binding capabilities to its wild type consensus sequence, thus regulating p53-dependent target genes leading to subsequent cell cycle arrest and apoptosis. Specifically, by using wild type, mutant (P223L, V274F, R175H, R273H), acetylation mimics (K320Q and K373Q) and non-acetylation mimics (K320R and K373R) of p53, we identify that ID4 promotes acetylation of K373 and to a lesser extent K320, in turn restoring p53-dependent biological activities. Together, our data provides a molecular understanding of ID4 dependent acetylation that suggests a strategy of enhancing p53 acetylation at sites K373 and K320 that may serve as a viable mechanism of physiological restoration of mutant p53 to its wild type biological function.

  3. USP7/HAUSP promotes the sequence-specific DNA binding activity of p53.

    PubMed

    Sarkari, Feroz; Sheng, Yi; Frappier, Lori

    2010-09-27

    The p53 tumor suppressor invokes cellular responses to stressful stimuli by coordinating distinct gene expression programs. This function relies heavily on the ability of p53 to function as a transcription factor by binding promoters of target genes in a sequence specific manner. The DNA binding activity of the core domain of p53 is subject to regulation via post-translational modifications of the C-terminal region. Here we show that the ubiquitin specific protease, USP7 or HAUSP, known to stabilize p53, also regulates the sequence-specific DNA binding mediated by the core domain of p53 in vitro. This regulation is contingent upon interaction between USP7 and the C-terminal regulatory region of p53. However, our data suggest that this effect is not mediated through the N-terminal domain of USP7 previously shown to bind p53, but rather involves the USP7 C-terminal domain and is independent of the deubiquitylation activity of USP7. Consistent with our in vitro observations, we found that overexpression of catalytically inactive USP7 in cells promotes p53 binding to its target sequences and p21 expression, without increasing the levels of p53 protein. We also found that the USP7 C-terminal domain was sufficient for p21 induction. Our results suggest a novel mode of regulation of p53 function by USP7, which is independent of USP7 deubiquitylating activity.

  4. USP7/HAUSP Promotes the Sequence-Specific DNA Binding Activity of p53

    PubMed Central

    Sarkari, Feroz; Sheng, Yi; Frappier, Lori

    2010-01-01

    The p53 tumor suppressor invokes cellular responses to stressful stimuli by coordinating distinct gene expression programs. This function relies heavily on the ability of p53 to function as a transcription factor by binding promoters of target genes in a sequence specific manner. The DNA binding activity of the core domain of p53 is subject to regulation via post-translational modifications of the C-terminal region. Here we show that the ubiquitin specific protease, USP7 or HAUSP, known to stabilize p53, also regulates the sequence-specific DNA binding mediated by the core domain of p53 in vitro. This regulation is contingent upon interaction between USP7 and the C-terminal regulatory region of p53. However, our data suggest that this effect is not mediated through the N-terminal domain of USP7 previously shown to bind p53, but rather involves the USP7 C-terminal domain and is independent of the deubiquitylation activity of USP7. Consistent with our in vitro observations, we found that overexpression of catalytically inactive USP7 in cells promotes p53 binding to its target sequences and p21 expression, without increasing the levels of p53 protein. We also found that the USP7 C-terminal domain was sufficient for p21 induction. Our results suggest a novel mode of regulation of p53 function by USP7, which is independent of USP7 deubiquitylating activity. PMID:20885946

  5. The proteasome activator PA28γ, a negative regulator of p53, is transcriptionally up-regulated by p53.

    PubMed

    Wan, Zhen-Xing; Yuan, Dong-Mei; Zhuo, Yi-Ming; Yi, Xin; Zhou, Ji; Xu, Zao-Xu; Zhou, Jian-Lin

    2014-02-13

    PA28γ (also called REGγ, 11Sγ or PSME3) negatively regulates p53 activity by promoting its nuclear export and/or degradation. Here, using the RNA ligase-mediated rapid amplification of cDNA ends (RLM-RACE) method, we identified the transcription start site of the PA28γ gene. Assessment with the luciferase assay demonstrated that the sequence -193 to +16 is the basal promoter. Three p53 binding sites were found within the PA28γ promoter utilizing a bioinformatics approach and were confirmed by chromatin immunoprecipitation and biotinylated DNA affinity precipitation experiments. The p53 protein promotes PA28γ transcription, and p53-stimulated transcription of PA28γ can be inhibited by PA28γ itself. Our results suggest that PA28γ and p53 form a negative feedback loop, which maintains the balance of p53 and PA28γ in cells.

  6. The Proteasome Activator PA28γ, a Negative Regulator of p53, Is Transcriptionally Up-Regulated by p53

    PubMed Central

    Wan, Zhen-Xing; Yuan, Dong-Mei; Zhuo, Yi-Ming; Yi, Xin; Zhou, Ji; Xu, Zao-Xu; Zhou, Jian-Lin

    2014-01-01

    PA28γ (also called REGγ, 11Sγ or PSME3) negatively regulates p53 activity by promoting its nuclear export and/or degradation. Here, using the RNA ligase-mediated rapid amplification of cDNA ends (RLM-RACE) method, we identified the transcription start site of the PA28γ gene. Assessment with the luciferase assay demonstrated that the sequence −193 to +16 is the basal promoter. Three p53 binding sites were found within the PA28γ promoter utilizing a bioinformatics approach and were confirmed by chromatin immunoprecipitation and biotinylated DNA affinity precipitation experiments. The p53 protein promotes PA28γ transcription, and p53-stimulated transcription of PA28γ can be inhibited by PA28γ itself. Our results suggest that PA28γ and p53 form a negative feedback loop, which maintains the balance of p53 and PA28γ in cells. PMID:24531141

  7. Functional activation of p53 via phosphorylation following DNA damage by UV but not gamma radiation.

    PubMed

    Kapoor, M; Lozano, G

    1998-03-17

    The tumor suppressor p53 is a nuclear phosphoprotein in which DNA-binding activity is increased on exposure to DNA-damaging agents such as UV or gamma radiation by unknown mechanisms. Because phosphorylation of p53 at the casein kinase (CK) II site activates p53 for DNA-binding function in vitro, we sought to determine the in vivo relevance of phosphorylation at this site after UV and gamma radiation. A polyclonal antibody was generated that binds to bacterially expressed p53 only when phosphorylated in vitro by CK II. Using this antibody, we showed that p53 is phosphorylated at the CK II site upon UV treatment of early passage rat embryo fibroblasts and RKO cells. In addition, DNA-binding assays indicated that phosphorylated p53 bound to a p53-responsive element, suggesting functional activation. However, gamma radiation, which also stabilizes p53, did not result in phosphorylation at the CK II site. These results indicate that phosphorylation at the CK II site is one of the post-translational mechanisms through which p53 is activated in response to UV radiation and that different mechanisms activate p53 after DNA damage by gamma radiation.

  8. 15-Lipoxygenase-1 Activates Tumor Suppressor p53 Independent of Enzymatic Activity

    PubMed Central

    Zhu, Hong; Glasgow, Wayne; George, Margaret D.; Chrysovergis, Kali; Olden, Kenneth; Roberts, John D.; Eling, Thomas

    2008-01-01

    15-LOX-1 and its metabolites are involved in colorectal cancer. Recently, we reported that 15-LOX-1 overexpression in HCT-116 human colorectal cancer cells inhibited cell growth by induction of p53 phosphorylation (4). To determine whether the 15-LOX-1 protein or its metabolites are responsible for phosphorylation of p53 in HCT-116 cells, we used HCT-116 cells that expressed a mutant 15-LOX-1. The mutant 15-LOX-1 enzyme, with a substitution of Leu at residue His361, was devoid of enzymatic activity. HCT-116 cells transiently transfected with either native or mutant 15-LOX-1 showed an increase in p53 phosphorylation and an increase in the expression of downstream genes. Thus 15-LOX-1 induces p53 phosphorylation independent of enzymatic activity. Treatment of A549 human lung carcinoma cells with IL-4 increased the expression of 15-LOX-1 and also increased the expression of downstream targets of p53. This confirmed that the activation of p53 was also observed in wild type cells expressing physiological 15-LOX-1. Immunoprecipitation experiments revealed that 15-LOX-1 interacts with, and binds to, DNA-dependent protein kinase (DNA-PK). The binding of 15-LOX-1 to DNA-PK caused an approximate 3.0 fold enhancement in kinase activity, resulting in increased p53 phosphorylation at Ser15. Knockdown of DNA-PK by small interfering RNA (siRNA) significantly reduced p53 phosphorylation. Furthermore, confocal microscopy demonstrated a co-localization of 15-LOX and DNA-PK in the cells. We propose that the 15-LOX-1 protein binds to DNA-PK, increasing its kinase activity, and results in downstream activation of the tumor suppressor p53, thus revealing a new mechanism by which lipoxygenases may influence the phenotype of tumor cells. PMID:18785202

  9. p53-dependent and p53-independent anticancer activity of a new indole derivative in human osteosarcoma cells

    SciTech Connect

    Cappadone, C.; Stefanelli, C.; Malucelli, E.; Zini, M.; Onofrillo, C.; Locatelli, A.; Rambaldi, M.; Sargenti, A.; Merolle, L.; Farruggia, G.; Graziadio, A.; Montanaro, L.; Iotti, S.

    2015-11-13

    Osteosarcoma (OS) is the most common primary malignant tumor of bone, occurring most frequently in children and adolescents. The mechanism of formation and development of OS have been studied for a long time. Tumor suppressor pathway governed by p53 gene are known to be involved in the pathogenesis of osteosarcoma. Moreover, loss of wild-type p53 activity is thought to be a major predictor of failure to respond to chemotherapy in various human cancers. In previous studies, we described the activity of a new indole derivative, NSC743420, belonging to the tubulin inhibitors family, capable to induce apoptosis and arrest of the cell cycle in the G2/M phase of various cancer cell lines. However, this molecule has never been tested on OS cell line. Here we address the activity of NSC743420 by examine whether differences in the p53 status could influence its effects on cell proliferation and death of OS cells. In particular, we compared the effect of the tested molecule on p53-wild type and p53-silenced U2OS cells, and on SaOS2 cell line, which is null for p53. Our results demonstrated that NSC743420 reduces OS cell proliferation by p53-dependent and p53-independent mechanisms. In particular, the molecule induces proliferative arrest that culminate to apoptosis in SaOS2 p53-null cells, while it brings a cytostatic and differentiating effect in U2OS cells, characterized by the cell cycle arrest in G0/G1 phase and increased alkaline phosphatase activity. - Highlights: • The indole derivative NSC743420 induces antitumor effects on osteosarcoma cells. • p53 status could drive the activity of antitumor agents on osteosarcoma cells. • NSC743420 induces cytostatic and differentiating effects on U2OS cells. • NSC743420 causes apoptosis on p53-null SaOS2 cells.

  10. Regulation of p53 by metal ions and by antioxidants: dithiocarbamate down-regulates p53 DNA-binding activity by increasing the intracellular level of copper.

    PubMed Central

    Verhaegh, G W; Richard, M J; Hainaut, P

    1997-01-01

    Mutations in the p53 tumor suppressor gene frequently fall within the specific DNA-binding domain and prevent the molecule from transactivating normal targets. DNA-binding activity is regulated in vitro by metal ions and by redox conditions, but whether these factors also regulate p53 in vivo is unclear. To address this question, we have analyzed the effect of pyrrolidine dithiocarbamate (PDTC) on p53 DNA-binding activity in cell lines expressing wild-type p53. PDTC is commonly regarded as an antioxidant, but it can also bind and transport external copper ions into cells and thus exert either pro- or antioxidant effects in different situations. We report that PDTC, but not N-acetyl-L-cysteine, down-regulated the specific DNA-binding activity of p53. Loss of DNA binding correlated with disruption of the immunologically "wild-type" p53 conformation. Using different chelators to interfere with copper transport by PDTC, we found that bathocuproinedisulfonic acid (BCS), a non-cell-permeable chelator of Cu1+, prevented both copper import and p53 down-regulation. In contrast, 1,10-orthophenanthroline, a cell-permeable chelator of Cu2+, promoted the redox activity of copper and up-regulated p53 DNA-binding activity through a DNA damage-dependent pathway. We have previously reported that p53 protein binds copper in vitro in the form of Cu1+ (P. Hainaut, N. Rolley, M. Davies, and J. Milner, Oncogene 10:27-32, 1995). The data reported here indicate that intracellular levels and redox activity of copper are critical for p53 protein conformation and DNA-binding activity and suggest that copper ions may participate in the physiological control of p53 function. PMID:9315628

  11. Immunohistochemical expression of protein p53 in neoplasms of the mammary gland in bitches.

    PubMed

    Rodo, A; Malicka, E

    2008-01-01

    The aim of the study was to investigate the presence of protein p53 in correlation with other tumor traits: histological type, tumor grade and proliferative activity. Material for the investigation comprised mammary gland tumours collected from dogs, the patients of veterinary clinics, during surgical procedures, and archival samples. Alltogether 21 adenomas, 31 complex carcinomas, 35 simple carcinomas and 12 solid carcinomas were qualified for further investigation. No protein p53 expression was found in adenomas. Cancers show positive reaction in 32.5%. The highest percent of p53 positive neoplasms was observed in solid carcinomas and neoplasms with the highest degree of histological malignancy. The smallest number showing this expression was observed in adenomas and the highest was characteristic for solid carcinomas. Considering the tumour grading, it was found that an increase in neoplasm malignancy was positively correlated with the number of the cells showing the expression of protein p53. The differences were statistically significant. Statistically significant positive correlations were observed between the proliferative activity and protein p53 expression. Higher accumulation of protein p53 in more malignant neoplasms suggests that mutations of protein p53 can be responsible for higher proliferation in neoplasms with advanced progression of malignancy.

  12. Regulation of p53, nuclear factor {kappa}B and cyclooxygenase-2 expression by bromelain through targeting mitogen-activated protein kinase pathway in mouse skin

    SciTech Connect

    Kalra, Neetu; Bhui, Kulpreet; Roy, Preeti; Srivastava, Smita; George, Jasmine; Prasad, Sahdeo; Shukla, Yogeshwer

    2008-01-01

    Bromelain is a pharmacologically active compound, present in stems and immature fruits of pineapples (Ananas cosmosus), which has been shown to have anti-edematous, anti-inflammatory, anti-thrombotic and anti-metastatic properties. In the present study, antitumorigenic activity of bromelain was recorded in 7,12-dimethylbenz(a)anthracene (DMBA)-initiated and 12-O-tetradecanoylphorbol-13-acetate (TPA)-promoted 2-stage mouse skin model. Results showed that bromelain application delayed the onset of tumorigenesis and reduced the cumulative number of tumors, tumor volume and the average number of tumors/mouse. To establish a cause and effect relationship, we targeted the proteins involved in the cell death pathway. Bromelain treatment resulted in upregulation of p53 and Bax and subsequent activation of caspase 3 and caspase 9 with concomitant decrease in antiapoptotic protein Bcl-2 in mouse skin. Since persistent induction of cyclooxygenase-2 (Cox-2) is frequently implicated in tumorigenesis and is regulated by nuclear factor-kappa B (NF-{kappa}B), we also investigated the effect of bromelain on Cox-2 and NF-{kappa}B expression. Results showed that bromelain application significantly inhibited Cox-2 and inactivated NF-{kappa}B by blocking phosphorylation and subsequent degradation of I{kappa}B{alpha}. In addition, bromelain treatment attenuated DMBA-TPA-induced phosphorylation of extracellular signal-regulated protein kinase (ERK1/2), mitogen-activated protein kinase (MAPK) and Akt. Taken together, we conclude that bromelain induces apoptosis-related proteins along with inhibition of NF-{kappa}B-driven Cox-2 expression by blocking the MAPK and Akt/protein kinase B signaling in DMBA-TPA-induced mouse skin tumors, which may account for its anti-tumorigenic effects.

  13. Regulation of p53, nuclear factor kappaB and cyclooxygenase-2 expression by bromelain through targeting mitogen-activated protein kinase pathway in mouse skin.

    PubMed

    Kalra, Neetu; Bhui, Kulpreet; Roy, Preeti; Srivastava, Smita; George, Jasmine; Prasad, Sahdeo; Shukla, Yogeshwer

    2008-01-01

    Bromelain is a pharmacologically active compound, present in stems and immature fruits of pineapples (Ananas cosmosus), which has been shown to have anti-edematous, anti-inflammatory, anti-thrombotic and anti-metastatic properties. In the present study, antitumorigenic activity of bromelain was recorded in 7,12-dimethylbenz(a)anthracene (DMBA)-initiated and 12-O-tetradecanoylphorbol-13-acetate (TPA)-promoted 2-stage mouse skin model. Results showed that bromelain application delayed the onset of tumorigenesis and reduced the cumulative number of tumors, tumor volume and the average number of tumors/mouse. To establish a cause and effect relationship, we targeted the proteins involved in the cell death pathway. Bromelain treatment resulted in upregulation of p53 and Bax and subsequent activation of caspase 3 and caspase 9 with concomitant decrease in antiapoptotic protein Bcl-2 in mouse skin. Since persistent induction of cyclooxygenase-2 (Cox-2) is frequently implicated in tumorigenesis and is regulated by nuclear factor-kappa B (NF-kappaB), we also investigated the effect of bromelain on Cox-2 and NF-kappaB expression. Results showed that bromelain application significantly inhibited Cox-2 and inactivated NF-kappaB by blocking phosphorylation and subsequent degradation of IkappaBalpha. In addition, bromelain treatment attenuated DMBA-TPA-induced phosphorylation of extracellular signal-regulated protein kinase (ERK1/2), mitogen-activated protein kinase (MAPK) and Akt. Taken together, we conclude that bromelain induces apoptosis-related proteins along with inhibition of NF-kappaB-driven Cox-2 expression by blocking the MAPK and Akt/protein kinase B signaling in DMBA-TPA-induced mouse skin tumors, which may account for its anti-tumorigenic effects.

  14. Activation of p53 by MEG3 non-coding RNA.

    PubMed

    Zhou, Yunli; Zhong, Ying; Wang, Yingying; Zhang, Xun; Batista, Dalia L; Gejman, Roger; Ansell, Peter J; Zhao, Jing; Weng, Catherine; Klibanski, Anne

    2007-08-24

    MEG3 is a maternally expressed imprinted gene suggested to function as a non-coding RNA. Our previous studies suggest that MEG3 has a function of tumor suppression. The tumor suppressor p53 plays a central role in tumor suppression and mediates the functions of many other tumor suppressors. Therefore, we hypothesized that MEG3 functions through activation of p53. We found that transfection of expression constructs for MEG3 and its isoforms results in a significant increase in p53 protein levels and dramatically stimulates p53-dependent transcription from a p53-responsive promoter. Using this as the functional assay, we demonstrated that the open reading frames encoded by MEG3 transcripts are not required for MEG3 function, and the folding of MEG3 RNA is critical to its function, supporting the concept that MEG3 functions as a non-coding RNA. We further found that MEG3 stimulates expression of the growth differentiation factor 15 (GDF15) by enhancing p53 binding to the GDF15 gene promoter. Interestingly, MEG3 does not stimulate p21(CIP1) expression, suggesting that MEG3 can regulate the specificity of p53 transcriptional activation. p53 degradation is mainly mediated by the mouse double minute 2 homolog (MDM2). We found that MDM2 levels were down-regulated in cells transfected with MEG3, suggesting that MDM2 suppression contributes at least in part to p53 accumulation induced by MEG3. Finally, we found that MEG3 is able to inhibit cell proliferation in the absence of p53. These data suggest that MEG3 non-coding RNA may function as a tumor suppressor, whose action is mediated by both p53-dependent and p53-independent pathways.

  15. Oxidative stress activates a specific p53 transcriptional response that regulates cellular senescence and aging

    PubMed Central

    Gambino, Valentina; De Michele, Giulia; Venezia, Oriella; Migliaccio, Pierluigi; Dall'Olio, Valentina; Bernard, Loris; Minardi, Simone Paolo; Fazia, Maria Agnese Della; Bartoli, Daniela; Servillo, Giuseppe; Alcalay, Myriam; Luzi, Lucilla; Giorgio, Marco; Scrable, Heidi; Pelicci, Pier Giuseppe; Migliaccio, Enrica

    2013-01-01

    Oxidative stress is a determining factor of cellular senescence and aging and a potent inducer of the tumour-suppressor p53. Resistance to oxidative stress correlates with delayed aging in mammals, in the absence of accelerated tumorigenesis, suggesting inactivation of selected p53-downstream pathways. We investigated p53 regulation in mice carrying deletion of p66, a mutation that retards aging and confers cellular resistance and systemic resistance to oxidative stress. We identified a transcriptional network of ∼200 genes that are repressed by p53 and encode for determinants of progression through mitosis or suppression of senescence. They are selectively down-regulated in cultured fibroblasts after oxidative stress, and, in vivo, in proliferating tissues and during physiological aging. Selectivity is imposed by p66 expression and activation of p44/p53 (also named Delta40p53), a p53 isoform that accelerates aging and prevents mitosis after protein damage. p66 deletion retards aging and increases longevity of p44/p53 transgenic mice. Thus, oxidative stress activates a specific p53 transcriptional response, mediated by p44/p53 and p66, which regulates cellular senescence and aging. PMID:23448364

  16. p53 activates miR-192-5p to mediate vancomycin induced AKI

    PubMed Central

    Chen, Jinwen; Wang, Juan; Li, Huiling; Wang, Shixuan; Xiang, Xudong; Zhang, Dongshan

    2016-01-01

    Pathogenic role of p53 in AKI remains controversial and the underlying mechanism is unclear. Here, we tested whether the inhibition of p53 may ameliorate vancomycin (VAN) induced acute kidney injury (AKI). Mice with p53 knock out (p53-KO) were resistant to VAN induced AKI, indicated by the analysis of renal function, histology, and apoptosis. Mechanistically, AKI was associated with the upregulation of several known p53 target genes, including Bax and p21, and this association was attenuated in p53-KO mice. Furthermore, the expression of miR-192-5p was significantly decreased in the p53-KO kidney tissues. In human renal tubular epithelial cell line (HK-2), VAN induced p53 accumulation and miR-192-5p expression. Both apoptosis of HK-2 cells and expression of miR-192-5p were also suppressed by pifithrin-α. Anti-miR-192-5p significantly blocked VAN-induced apoptosis and caspase activity in HK-2 cells. Consistently, in vivo inhibition of miR-192-5p also suppressed VAN induced AKI. Thus, we provided clinical and genetic evidence that p53 was associated with the development of VAN induced AKI through upregulation of miR-192-5p. PMID:27941921

  17. AAVPG: A vigilant vector where transgene expression is induced by p53

    SciTech Connect

    Bajgelman, Marcio C.; Medrano, Ruan F.V.; Carvalho, Anna Carolina P.V.; Strauss, Bryan E.

    2013-12-15

    Using p53 to drive transgene expression from viral vectors may provide on demand expression in response to physiologic stress, such as hypoxia or DNA damage. Here we introduce AAVPG, an adeno-associated viral (AAV) vector where a p53-responsive promoter, termed PG, is used to control transgene expression. In vitro assays show that expression from the AAVPG-luc vector was induced specifically in the presence of functional p53 (1038±202 fold increase, p<0.001). The AAVPG-luc vector was an effective biosensor of p53 activation in response to hypoxia (4.48±0.6 fold increase in the presence of 250 µM CoCl{sub 2}, p<0.001) and biomechanical stress (2.53±0.4 fold increase with stretching, p<0.05). In vivo, the vigilant nature of the AAVPG-luc vector was revealed after treatment of tumor-bearing mice with doxorubicin (pre-treatment, 3.4×10{sup 5}±0.43×10{sup 5} photons/s; post-treatment, 6.6×10{sup 5}±2.1×10{sup 5} photons/s, p<0.05). These results indicate that the AAVPG vector is an interesting option for detecting p53 activity both in vitro and in vivo. - Highlights: • AAV vector where transgene expression is controlled by the tumor suppressor p53. • The new vector, AAVPG, shown to function as a biosensor of p53 activity, in vitro and in vivo. • The p53 activity monitored by the AAVPG vector is relevant to cancer and other diseases. • AAVPG reporter gene expression was activated upon DNA damage, hypoxia and mechanical stress.

  18. Lack of p53 Affects the Expression of Several Brain Mitochondrial Proteins: Insights from Proteomics into Important Pathways Regulated by p53

    PubMed Central

    Fiorini, Ada; Sultana, Rukhsana; Barone, Eugenio; Cenini, Giovanna; Perluigi, Marzia; Mancuso, Cesare; Cai, Jian; Klein, Jon B.; St. Clair, Daret; Butterfield, D. Allan

    2012-01-01

    The tumor suppressor protein p53 has been described “as the guardian of the genome” for its crucial role in regulating the transcription of numerous genes responsible for cells cycle arrest, senescence, or apoptosis in response to various stress signals. Although p53 promotes longevity by decreasing the risk of cancer through activation of apoptosis or cellular senescence, several findings suggest that an increase of its activity may have deleterious effects leading to selected aspects of the aging phenotype and neurodegenerative diseases. There is the link between p53 and oxidative stress, the latter a crucial factor that contributes to neurodegenerative processes like Alzheimer disease (AD). In the present study, using a proteomics approach, we analyzed the impact of lack of p53 on the expression of several brain mitochondrial proteins involved in different pathways, and how lack of p53 may present a target to restore neuronal impairments. Our investigation on isolated brain mitochondria from p53(−/−) mice also provides a better understanding of the p53-mitochondria relationship and its involvement in the development of many diseases. PMID:23209608

  19. Endopolyploidy in irradiated p53-deficient tumour cell lines: Persistence of cell division activity in giant cells expressing Aurora B- kinase

    PubMed Central

    Erenpreisa, Jekaterina; Ivanov, Andrei; Wheatley, Sally P; Kosmacek, Elizabeth A; Ianzini, Fiorenza; Anisimov, Alim P; Mackey, Michael; Davis, Paul J; Plakhins, Grigorijs; Illidge, Timothy M

    2008-01-01

    Recent findings including computerized live imaging suggest that polyploidy cells transiently emerging after severe genotoxic stress (and named ‘endopolyploid cells’) may have a role in tumour regrowth after anti-cancer treatment. Until now, mostly the factors enabling metaphase were studied in them. Here we investigate the mitotic activities and the role of Aurora B, in view of potential de-polyploidisation of these cells, because Aurora B- kinase is responsible for coordination and completion of mitosis. We observed that endopolyploid giant cells are formed in irradiated p53 tumours in several ways: (1) by division/fusion of daughter cells creating early multi-nucleated cells; (2) by asynchronous division/fusion of sub-nuclei of these multinucleated cells; (3) by a series of polyploidising mitoses reverting replicative interphase from aborted metaphase and forming giant cells with a single nucleus; (4) by micronucleation of arrested metaphases enclosing genome fragments; or (5) by incomplete division in the multipolar mitoses forming late multi-nucleated giant cells. We also observed that these activities are able to release para-diploid cells, although they do so infrequently. Although after a substantial delay, apoptosis typically occurs in these cells, we also found that roughly 2% of endopolyploid cells evade apoptosis and senescence arrest and continue mitotic activities. In this article we describe that catalytically active aurora B-kinase is expressed in the nuclei of many interphase endopolyploid cells, as well as being present at the centromeres, mitotic spindle and cleavage furrow during their mitotic efforts. The totally micronucleated giant cells (containing subgenomic fragments in multiple micronuclei) represented the only minor fraction, which failed to undergo mitosis and Aurora B was absent from it. These observations suggest that most endopolyploid tumour cells are not reproductively inert and that aurora B may contribute to the establishment

  20. The PIDDosome activates p53 in response to supernumerary centrosomes

    PubMed Central

    Fava, Luca L.; Schuler, Fabian; Sladky, Valentina; Haschka, Manuel D.; Soratroi, Claudia; Eiterer, Lisa; Demetz, Egon; Weiss, Guenter; Geley, Stephan; Nigg, Erich A.; Villunger, Andreas

    2017-01-01

    Centrosomes, the main microtubule-organizing centers in animal cells, are replicated exactly once during the cell division cycle to form the poles of the mitotic spindle. Supernumerary centrosomes can lead to aberrant cell division and have been causally linked to chromosomal instability and cancer. Here, we report that an increase in the number of mature centrosomes, generated by disrupting cytokinesis or forcing centrosome overduplication, triggers the activation of the PIDDosome multiprotein complex, leading to Caspase-2-mediated MDM2 cleavage, p53 stabilization, and p21-dependent cell cycle arrest. This pathway also restrains the extent of developmentally scheduled polyploidization by regulating p53 levels in hepatocytes during liver organogenesis. Taken together, the PIDDosome acts as a first barrier, engaging p53 to halt the proliferation of cells carrying more than one mature centrosome to maintain genome integrity. PMID:28130345

  1. p53-dependent expression of CXCR5 chemokine receptor in MCF-7 breast cancer cells.

    PubMed

    Mitkin, Nikita A; Hook, Christina D; Schwartz, Anton M; Biswas, Subir; Kochetkov, Dmitry V; Muratova, Alisa M; Afanasyeva, Marina A; Kravchenko, Julia E; Bhattacharyya, Arindam; Kuprash, Dmitry V

    2015-03-19

    Elevated expression of chemokine receptors in tumors has been reported in many instances and is related to a number of survival advantages for tumor cells including abnormal activation of prosurvival intracellular pathways. In this work we demonstrated an inverse correlation between expression levels of p53 tumor suppressor and CXCR5 chemokine receptor in MCF-7 human breast cancer cell line. Lentiviral transduction of MCF-7 cells with p53 shRNA led to elevated CXCR5 at both mRNA and protein levels. Functional activity of CXCR5 in p53-knockdown MCF-7 cells was also increased as shown by activation of target gene expression and chemotaxis in response to B-lymphocyte chemoattractant CXCL13. Using deletion analysis and site-directed mutagenesis of the cxcr5 gene promoter and enhancer elements, we demonstrated that p53 appears to act upon cxcr5 promoter indirectly, by repressing the activity of NFκB transcription factors. Using chromatin immunoprecipitation and reporter gene analysis, we further demonstrated that p65/RelA was able to bind the cxcr5 promoter in p53-dependent manner and to directly transactivate it when overexpressed. Through the described mechanism, elevated CXCR5 expression may contribute to abnormal cell survival and migration in breast tumors that lack functional p53.

  2. TP53 drives invasion through expression of its Δ133p53β variant

    PubMed Central

    Gadea, Gilles; Arsic, Nikola; Fernandes, Kenneth; Diot, Alexandra; Joruiz, Sébastien M; Abdallah, Samer; Meuray, Valerie; Vinot, Stéphanie; Anguille, Christelle; Remenyi, Judit; Khoury, Marie P; Quinlan, Philip R; Purdie, Colin A; Jordan, Lee B; Fuller-Pace, Frances V; de Toledo, Marion; Cren, Maïlys; Thompson, Alastair M

    2016-01-01

    TP53 is conventionally thought to prevent cancer formation and progression to metastasis, while mutant TP53 has transforming activities. However, in the clinic, TP53 mutation status does not accurately predict cancer progression. Here we report, based on clinical analysis corroborated with experimental data, that the p53 isoform Δ133p53β promotes cancer cell invasion, regardless of TP53 mutation status. Δ133p53β increases risk of cancer recurrence and death in breast cancer patients. Furthermore Δ133p53β is critical to define invasiveness in a panel of breast and colon cell lines, expressing WT or mutant TP53. Endogenous mutant Δ133p53β depletion prevents invasiveness without affecting mutant full-length p53 protein expression. Mechanistically WT and mutant Δ133p53β induces EMT. Our findings provide explanations to 2 long-lasting and important clinical conundrums: how WT TP53 can promote cancer cell invasion and reciprocally why mutant TP53 gene does not systematically induce cancer progression. DOI: http://dx.doi.org/10.7554/eLife.14734.001 PMID:27630122

  3. Effect of topical tretinoin, chemical peeling and dermabrasion on p53 expression in facial skin.

    PubMed

    El-Domyati, Moetaz M; Attia, Sameh K; Saleh, Fatma Y; Ahmad, Hesham M; Gasparro, Frances P; Uitto, Jouni J

    2003-01-01

    The tumour suppressor protein p53 is a phosphoprotein that is activated by DNA damage. It is involved in the decision whether the cells should stop replication and proceed to repair their DNA, or to die by apoptosis. In the present study, we evaluate the effect of some treatment modalities on the expression of p53 in facial skin. Biopsy specimens were obtained from the facial skin of 20 patients before and after treatment using topical tretinoin (11 cases), TCA chemical peeling (5 cases) and dermabrasion (4 cases). Biopsy specimens were also obtained from 12 control subjects representing the same age groups of the patients. Topical tretinoin therapy was found to induce a significant decrease in the expression of p53 up to 6 months of therapy followed by a significant increase after 10 months of therapy. On the contrary, superficial TCA peeling did not induce any statistically significant change in the expression of p53. On the other hand dermabrasion was found to induce a significant decrease in the level of expression of p53 in biopsies obtained after complete re-epithelialization followed by a significant increase. These changes in the expression of p53 may play a role in mediating the effects of such treatment modalities on the epidermis, as well as prevention of actinic neoplasia by adjusting any disturbance in the proliferation/apoptosis balance observed in photoaged facial skin.

  4. Expression of survivin and p53 modulates honokiol-induced apoptosis in colorectal cancer cells.

    PubMed

    Lai, Ying-Jiun; Lin, Chien-I; Wang, Chia-Lin; Chao, Jui-I

    2014-11-01

    Honokiol is a small biphenolic compound, which exerts antitumor activities; however, the precise mechanism of honokiol-induced apoptosis in the human colorectal cancer cells remains unclear. Here, we show that survivin and p53 display the opposite role on the regulation of honokiol-induced apoptosis in the human colorectal cancer cells. Honokiol induced the cell death and apoptosis in various colorectal cancer cell lines. Moreover, honokiol elicited the extrinsic death receptor pathway of DR5 and caspase 8 and the intrinsic pathway of caspase 9. The common intrinsic and extrinsic downstream targets of activated caspase 3 and PARP protein cleavage were induced by honokiol. Interestingly, honokiol reduced anti-apoptotic survivin protein and gene expression. Transfection with a green fluorescent protein (GFP)-survivin-expressed vector increased the colorectal cancer cell viability and resisted the honokiol-induced apoptosis. Meantime, honokiol increased total p53 and the phosphorylated p53 proteins at Ser15 and Ser46. The p53-wild type colorectal cancer cells were exhibited greater cytotoxicity, apoptosis and survivin reduction than the p53-null cancer cells after treatment with honokiol. Together, these findings demonstrate that the existence of survivin and p53 can modulate the honokiol-induced apoptosis in the human colorectal cancer cells. © 2014 Wiley Periodicals, Inc.

  5. p53 inhibits the upregulation of sirtuin 1 expression induced by c-Myc.

    PubMed

    Yuan, Fang; Liu, Lu; Lei, Yonghong; Tang, Peifu

    2017-10-01

    Sirtuin 1 (Sirt1), a conserved NAD(+) dependent deacetylase, is a mediator of life span by calorie restriction. However, Sirt1 may paradoxically increase the risk of cancer. Accordingly, the expression level of Sirt1 is selectively elevated in numerous types of cancer cell; however, the mechanisms underlying the differential regulation remain largely unknown. The present study demonstrated that oncoprotein c-Myc was a direct regulator of Sirt1, which accounts for the upregulation of Sirt1 expression only in the cells without functional p53. In p53 deficient cells, the overexpression of c-Myc increased Sirt1 mRNA and protein expression levels as well as its promoter activity, whereas the inhibitor of c-Myc, 10058-F4, induced decreased Sirt1 basal mRNA and protein expression levels. Deletion/mutation mapping analyses revealed that c-Myc bound to the conserved E-box[-189 to -183 base pair (bp)] of the Sirt1 promoter. In addition, p53 and c-Myc shared at least response element and the presence of p53 may block the binding of c-Myc to the Sirt1 promoter, thus inhibit the c-Myc mediated upregulation of Sirt1 promoter activity. The present study indicated that the expression level of Sirt1 was tightly regulated by oncoprotein c-Myc and tumor suppressor p53, which aids an improved understanding of its expression regulation and tumor promoter role in certain conditions.

  6. ATM/CHK/p53 Pathway Dependent Chemopreventive and Therapeutic Activity on Lung Cancer by Pterostilbene.

    PubMed

    Lee, Hani; Kim, Yonghwan; Jeong, Ji Hye; Ryu, Jae-Ha; Kim, Woo-Young

    2016-01-01

    Among the many stilbenoids found in a variety of berries, resveratrol and pterostilbene are of particular interest given their potential for use in cancer therapeutics and prevention. We purified four stilbenoids from R. undulatum and found that pterostilbene inhibits cancer cell proliferation more efficiently than rhapontigenin, piceatannol and resveratrol. To investigate the underlying mechanism of this superior action of pterostilbene on cancer cells, we utilized a reverse-phase protein array followed by bioinformatic analysis and found that the ATM/CHK pathway is modified by pterostilbene in a lung cancer cell line. Given that ATM/CHK signaling requires p53 for its biological effects, we hypothesized that p53 is required for the anticancer effect of pterostilbene. To test this hypothesis, we used two molecularly defined precancerous human bronchial epithelial cell lines, HBECR and HBECR/p53i, with normal p53 and suppressed p53 expression, respectively, to represent premalignant states of squamous lung carcinogenesis. Pterostilbene inhibited the cell cycle more efficiently in HBECR cells compared to HBECR/p53i cells, suggesting that the presence of p53 is required for the action of pterostilbene. Pterostilbene also activated ATM and CHK1/2, which are upstream of p53, in both cell lines, though pterostilbene-induced senescence was dependent on the presence of p53. Finally, pterostilbene more effectively inhibited p53-dependent cell proliferation compared to the other three stilbenoids. These results strongly support the potential chemopreventive effect of pterostilbene on p53-positive cells during early carcinogenesis.

  7. ATM/CHK/p53 Pathway Dependent Chemopreventive and Therapeutic Activity on Lung Cancer by Pterostilbene

    PubMed Central

    Lee, Hani; Kim, Yonghwan; Jeong, Ji Hye; Ryu, Jae-Ha

    2016-01-01

    Among the many stilbenoids found in a variety of berries, resveratrol and pterostilbene are of particular interest given their potential for use in cancer therapeutics and prevention. We purified four stilbenoids from R. undulatum and found that pterostilbene inhibits cancer cell proliferation more efficiently than rhapontigenin, piceatannol and resveratrol. To investigate the underlying mechanism of this superior action of pterostilbene on cancer cells, we utilized a reverse-phase protein array followed by bioinformatic analysis and found that the ATM/CHK pathway is modified by pterostilbene in a lung cancer cell line. Given that ATM/CHK signaling requires p53 for its biological effects, we hypothesized that p53 is required for the anticancer effect of pterostilbene. To test this hypothesis, we used two molecularly defined precancerous human bronchial epithelial cell lines, HBECR and HBECR/p53i, with normal p53 and suppressed p53 expression, respectively, to represent premalignant states of squamous lung carcinogenesis. Pterostilbene inhibited the cell cycle more efficiently in HBECR cells compared to HBECR/p53i cells, suggesting that the presence of p53 is required for the action of pterostilbene. Pterostilbene also activated ATM and CHK1/2, which are upstream of p53, in both cell lines, though pterostilbene-induced senescence was dependent on the presence of p53. Finally, pterostilbene more effectively inhibited p53-dependent cell proliferation compared to the other three stilbenoids. These results strongly support the potential chemopreventive effect of pterostilbene on p53-positive cells during early carcinogenesis. PMID:27612029

  8. Loss of p53 expression is accompanied by upregulation of beta-catenin in meningiomas: a concomitant reciprocal expression.

    PubMed

    Pećina-Šlaus, Nives; Kafka, Anja; Vladušić, Tomislav; Tomas, Davor; Logara, Monika; Skoko, Josip; Hrašćan, Reno

    2016-04-01

    Crosstalk between Wnt and p53 signalling pathways in cancer has long been suggested. Therefore in this study we have investigated the involvement of these pathways in meningiomas by analysing their main effector molecules, beta-catenin and p53. Cellular expression of p53 and beta-catenin proteins and genetic changes in TP53 were analysed by immunohistochemistry, PCR/RFLP and direct sequencing of TP53 exon 4. All the findings were analysed statistically. Our analysis showed that 47.5% of the 59 meningiomas demonstrated loss of expression of p53 protein. Moderate and strong p53 expression in the nuclei was observed in 8.5% and 6.8% of meningiomas respectively. Gross deletion of TP53 gene was observed in one meningioma, but nucleotide alterations were observed in 35.7% of meningiomas. In contrast, beta-catenin, the main Wnt signalling molecule, was upregulated in 71.2%, while strong expression was observed in 28.8% of meningiomas. The concomitant expressions of p53 and beta-catenin were investigated in the same patients. In the analysed meningiomas, the levels of the two proteins were significantly negatively correlated (P = 0.002). This indicates that meningiomas with lost p53 upregulate beta-catenin and activate Wnt signalling. Besides showing the reciprocal relationship between proteins, we also showed that the expression of p53 was significantly (P = 0.021) associated with higher meningioma grades (II and III), while beta-catenin upregulation was not associated with malignancy grades. Additionally, women exhibited significantly higher values of p53 loss when compared to males (P = 0.005). Our findings provide novel information about p53 involvement in meningeal brain tumours and reveal the complex relationship between Wnt and p53 signalling, they suggest an important role for beta-catenin in these tumours.

  9. Prevention of mammalian DNA reduplication, following the release from the mitotic spindle checkpoint, requires p53 protein, but not p53-mediated transcriptional activity.

    PubMed

    Notterman, D; Young, S; Wainger, B; Levine, A J

    1998-11-26

    The tumor suppressor p53 has been identified as a component of a mitotic spindle checkpoint. When exposed to a spindle-disrupting drug such as nocodazole, fibroblasts derived from mice having wild-type p53 are blocked with a 4N content of DNA. Conversely, fibroblasts from p53-deficient mice become polyploid. To learn if transcriptional activation of downstream genes by p53 plays a role in this putative checkpoint, three cell lines were exposed to nocodazole. In one line, p53 protein is not expressed, while the other two cell lines over-express p53. In one of these two lines, the N-terminal transactivation domain is wild-type and in the second, this region contains a mutation that eliminates the ability of the protein to act as a transcription factor. Incubation with nocodazole of cells containing wild-type p53 results in accumulation of both 2N and 4N populations of cells. Under the same conditions, cells containing a transactivation-deficient mutant of p53 accumulate a 4N population of cells, but not a 2N population of cells. Cells entirely deficient in p53 protein become hyperdiploid, and display 8N to 16N DNA content. In all three cell lines, nocodazole elicited an initial increase in mitotic cells, but within 24 h the mitotic index returned to baseline. Expression patterns of cyclins B and D indicated that following entry into mitosis, the cells returned to a G1 state but with 4N DNA content. Subsequent re-duplication of DNA beyond 4N is prevented in cells containing either wild-type or transcriptionally inactive p53 protein. In cells entirely lacking p53 protein, DNA is re-duplicated (without an intervening mitosis) and the cells become hyperdiploid. These experiments indicate that p53 does not participate in the transient mitotic arrest that follows spindle disruption, but is essential to prevent subsequent reduplication of DNA and the resulting hyperdiploid state. This function is intact in a mutant that is transcriptionally inactive.

  10. Activation of p53 by spermine mediates induction of autophagy in HT1080 cells.

    PubMed

    Chae, Yong-Byung; Kim, Moon-Moo

    2014-02-01

    The recent evidences indicate that autophagy is associated with a number of pathological processes including cancer, muscular disorder and neurodegeneration in addition to longevity. The efficacy of spermine was investigated on induction of autophagy through histone deacetylation and p53 activation in human fibrosarcoma cell line, HT1080. In this study, it was discovered that spermine increases the activity of HAT and autophagy. It was also identified that the transcriptional activation of p53 and the activation of p21 promoter by spermine are related to the induction of autophagy in reporter gene assay. Furthermore, western blot analyses demonstrated that spermine modulates the expression of proteins related to autophagy and apoptosis. The expression levels of Ac-histone H3, HDAC1, HAT1, p300 and SIRT1 were increased in HT1080 cells treated with spermine. In addition, the expression levels of protein such as acetyl-p53, p-p53, Bcl-2 and caspase-9 inducing apoptosis were increased in the presence of spermine. Moreover, the levels of Mdm2 and caspase-3 expression were reduced in the cells exposed to spermine compared to blank group. These results suggest that activation of HAT in the presence of spermine promotes the induction of autophagy in HT1080 cells through the enhanced activity of p-p53 and acetyl p53. Copyright © 2013 Elsevier B.V. All rights reserved.

  11. Imiquimod activates p53-dependent apoptosis in a human basal cell carcinoma cell line.

    PubMed

    Huang, Shi-Wei; Chang, Shu-Hao; Mu, Szu-Wei; Jiang, Hsin-Yi; Wang, Sin-Ting; Kao, Jun-Kai; Huang, Jau-Ling; Wu, Chun-Ying; Chen, Yi-Ju; Shieh, Jeng-Jer

    2016-03-01

    The tumor suppressor p53 controls DNA repair, cell cycle, apoptosis, autophagy and numerous other cellular processes. Imiquimod (IMQ), a synthetic toll-like receptor (TLR) 7 ligand for the treatment of superficial basal cell carcinoma (BCC), eliminates cancer cells by activating cell-mediated immunity and directly inducing apoptosis and autophagy in cancer cells. To evaluate the role of p53 in IMQ-induced cell death in skin cancer cells. The expression, phosphorylation and subcellular localization of p53 were detected by real-time PCR, luciferase reporter assay, cycloheximide chase analysis, immunoblotting and immunocytochemistry. Using BCC/KMC1 cell line as a model, the upstream signaling of p53 activation was dissected by over-expression of TLR7/8, the addition of ROS scavenger, ATM/ATR inhibitors and pan-caspase inhibitor. The role of p53 in IMQ-induced apoptosis and autophagy was assessed by genetically silencing p53 and evaluated by a DNA content assay, immunoblotting, LC3 puncta detection and acridine orange staining. IMQ induced p53 mRNA expression and protein accumulation, increased Ser15 phosphorylation, promoted nuclear translocation and up-regulated its target genes in skin cancer cells in a TLR7/8-independent manner. In BCC/KMC1 cells, the induction of p53 by IMQ was achieved through increased ROS production to stimulate the ATM/ATR-Chk1/Chk2 axis but was not mediated by inducing DNA damage. The pharmacological inhibition of ATM/ATR significantly suppressed IMQ-induced p53 activation and apoptosis. Silencing of p53 significantly decreased the IMQ-induced caspase cascade activation and apoptosis but enhanced autophagy. Mutant p53 skin cancer cell lines were more resistant to IMQ-induced apoptosis than wildtype p53 skin cancer cell lines. IMQ induced ROS production to stimulate ATM/ATR pathways and contributed to p53-dependent apoptosis in a skin basal cell carcinoma cell line BCC/KMC1. Copyright © 2015 Japanese Society for Investigative Dermatology

  12. Excess beta-catenin promotes accumulation of transcriptionally active p53.

    PubMed Central

    Damalas, A; Ben-Ze'ev, A; Simcha, I; Shtutman, M; Leal, J F; Zhurinsky, J; Geiger, B; Oren, M

    1999-01-01

    beta-catenin is a multifunctional protein, acting both as a structural component of the cell adhesion machinery and as a transducer of extracellular signals. Deregulated beta-catenin protein expression, due to mutations in the beta-catenin gene itself or in its upstream regulator, the adenomatous polyposis coli (APC) gene, is prevalent in colorectal cancer and in several other tumor types, and attests to the potential oncogenic activity of this protein. Increased expression of beta-catenin is an early event in colorectal carcinogenesis, and is usually followed by a later mutational inactivation of the p53 tumor suppressor. To examine whether these two key steps in carcinogenesis are interrelated, we studied the effect of excess beta-catenin on p53. We report here that overexpression of beta-catenin results in accumulation of p53, apparently through interference with its proteolytic degradation. This effect involves both Mdm2-dependent and -independent p53 degradation pathways, and is accompanied by augmented transcriptional activity of p53 in the affected cells. Increased p53 activity may provide a safeguard against oncogenic deregulation of beta-catenin, and thus impose a pressure for mutational inactivation of p53 during the later stages of tumor progression. PMID:10357817

  13. c-Abl inhibits breast cancer tumorigenesis through reactivation of p53-mediated p21 expression

    PubMed Central

    Thompson, Cheryl L.; Gilmore, Hannah L.; Chang, Jenny C.; Keri, Ruth A.; Schiemann, William P.

    2016-01-01

    We previously reported that constitutive c-Abl activity (CST-Abl) abrogates the tumorigenicity of triple-negative breast cancer cells through the combined actions of two cellular events: downregulated matrix metalloproteinase (MMP) and upregulated p21Waf1/Cip1 expression. We now find decreased c-Abl expression to be significantly associated with diminished relapse-fee survival in breast cancer patients, particularly those exhibiting invasive and basal phenotypes. Moreover, CST-Abl expression enabled 4T1 cells to persist innocuously in the mammary glands of mice, doing so by exhausting their supply of cancer stem cells. Restoring MMP-9 expression and activity in CST-Abl-expressing 4T1 cells failed to rescue their malignant phenotypes; however, rendering these same cells deficient in p21 expression not only delayed their acquisition of senescent phenotypes, but also partially restored their tumorigenicity in mice. Although 4T1 cells lacked detectable expression of p53, those engineered to express CST-Abl exhibited robust production and secretion of TGF-β1 that engendered the reactivated expression of p53. Mechanistically, TGF-β-mediated p53 expression transpired through the combined actions of Smad1/5/8 and Smad2, leading to the dramatic upregulation of p21 and its stimulation of TNBC senescence. Collectively, we identified a novel c-Abl:p53:p21 signaling axis that functions as a powerful suppressor of mammary tumorigenesis and metastatic progression. PMID:27626309

  14. The absence of Ser389 phosphorylation in p53 affects the basal gene expression level of many p53-dependent genes and alters the biphasic response to UV exposure in mouse embryonic fibroblasts.

    PubMed

    Bruins, Wendy; Bruning, Oskar; Jonker, Martijs J; Zwart, Edwin; van der Hoeven, Tessa V; Pennings, Jeroen L A; Rauwerda, Han; de Vries, Annemieke; Breit, Timo M

    2008-03-01

    Phosphorylation is important in p53-mediated DNA damage responses. After UV irradiation, p53 is phosphorylated specifically at murine residue Ser389. Phosphorylation mutant p53.S389A cells and mice show reduced apoptosis and compromised tumor suppression after UV irradiation. We investigated the underlying cellular processes by time-series analysis of UV-induced gene expression responses in wild-type, p53.S389A, and p53(-/-) mouse embryonic fibroblasts. The absence of p53.S389 phosphorylation already causes small endogenous gene expression changes for 2,253, mostly p53-dependent, genes. These genes showed basal gene expression levels intermediate to the wild type and p53(-/-), possibly to readjust the p53 network. Overall, the p53.S389A mutation lifts p53-dependent gene repression to a level similar to that of p53(-/-) but has lesser effect on p53-dependently induced genes. In the wild type, the response of 6,058 genes to UV irradiation was strictly biphasic. The early stress response, from 0 to 3 h, results in the activation of processes to prevent the accumulation of DNA damage in cells, whereas the late response, from 12 to 24 h, relates more to reentering the cell cycle. Although the p53.S389A UV gene response was only subtly changed, many cellular processes were significantly affected. The early response was affected the most, and many cellular processes were phase-specifically lost, gained, or altered, e.g., induction of apoptosis, cell division, and DNA repair, respectively. Altogether, p53.S389 phosphorylation seems essential for many p53 target genes and p53-dependent processes.

  15. ATM and MET kinases are synthetic lethal with non-genotoxic activation of p53

    PubMed Central

    Sullivan, Kelly D.; Padilla-Just, Nuria; Henry, Ryan E.; Porter, Christopher C.; Kim, Jihye; Tentler, John J.; Eckhardt, S. Gail; Tan, Aik Choon; DeGregori, James; Espinosa, Joaquín M.

    2012-01-01

    The p53 tumor suppressor orchestrates alternative stress responses including cell cycle arrest and apoptosis, but the mechanisms defining cell fate upon p53 activation are poorly understood. Several small molecule activators of p53 have been developed, including Nutlin-3, but their therapeutic potential is limited by the fact that they induce reversible cell cycle arrest in most cancer cell types. We report here the results of a ‘Synthetic Lethal with Nutlin-3’ genome-wide shRNA screen, which revealed that the ATM and MET kinases govern cell fate choice upon p53 activation. Genetic or pharmacological interference with ATM or MET activity converts the cellular response from cell cycle arrest into apoptosis in diverse cancer cell types without affecting expression of key p53 target genes. ATM and MET inhibitors enable Nutlin-3 to kill tumor spheroids. These results identify novel pathways controlling the cellular response to p53 activation and aid in the design of p53-based therapies. PMID:22660439

  16. Borna Disease Virus Phosphoprotein Represses p53-Mediated Transcriptional Activity by Interference with HMGB1

    PubMed Central

    Zhang, Guoqi; Kobayashi, Takeshi; Kamitani, Wataru; Komoto, Satoshi; Yamashita, Makiko; Baba, Satoko; Yanai, Hideyuki; Ikuta, Kazuyoshi; Tomonaga, Keizo

    2003-01-01

    Borna disease virus (BDV) is a noncytolytic, neurotropic RNA virus that has a broad host range in warm-blooded animals, probably including humans. Recently, it was demonstrated that a 24-kDa phosphoprotein (P) of BDV directly binds to a multifunctional protein, amphoterin-HMGB1, and inhibits its function in cultured neural cells (W. Kamitani, Y. Shoya, T. Kobayashi, M. Watanabe, B. J. Lee, G. Zhang, K. Tomonaga, and K. Ikuta, J. Virol. 75:8742-8751, 2001). This observation suggested that expression of BDV P may cause deleterious effects in cellular functions by interference with HMGB1. In this study, we further investigated the significance of the binding between P and HMGB1. We demonstrated that P directly binds to the A-box domain on HMGB1, which is also responsible for interaction with a tumor suppression factor, p53. Recent works have demonstrated that binding between HMGB1 and p53 enhances p53-mediated transcriptional activity. Thus, we examined whether BDV P affects the transcriptional activity of p53 by interference with HMGB1. Mammalian two-hybrid analysis revealed that p53 and P competitively interfere with the binding of each protein to HMGB1 in a p53-deficient cell line, NCI-H1299. In addition, P was able to significantly decrease p53-mediated transcriptional activation of the cyclin G promoter. Furthermore, we showed that activation of p21waf1 expression was repressed in cyclosporine-treated BDV-infected cells, as well as p53-transduced NCI-H1299 cells. These results suggested that BDV P may be a unique inhibitor of p53 activity via binding to HMGB1. PMID:14581561

  17. Acute DNA damage activates the tumour suppressor p53 to promote radiation-induced lymphoma

    PubMed Central

    Lee, Chang-Lung; Castle, Katherine D.; Moding, Everett J.; Blum, Jordan M.; Williams, Nerissa; Luo, Lixia; Ma, Yan; Borst, Luke B.; Kim, Yongbaek; Kirsch, David G.

    2015-01-01

    Genotoxic cancer therapies, such as chemoradiation, cause haematological toxicity primarily by activating the tumour suppressor p53. While inhibiting p53-mediated cell death during cancer therapy ameliorates haematologic toxicity, whether it also impacts carcinogenesis remains unclear. Here we utilize a mouse model of inducible p53 short hairpin RNA (shRNA) to show that temporarily blocking p53 during total-body irradiation (TBI) not only ameliorates acute toxicity, but also improves long-term survival by preventing lymphoma development. Using KrasLA1 mice, we show that TBI promotes the expansion of a rare population of thymocytes that express oncogenic KrasG12D. However, blocking p53 during TBI significantly suppresses the expansion of KrasG12D-expressing thymocytes. Mechanistically, bone marrow transplant experiments demonstrate that TBI activates p53 to decrease the ability of bone marrow cells to suppress lymphoma development through a non-cell-autonomous mechanism. Together, our results demonstrate that the p53 response to acute DNA damage promotes the development of radiation-induced lymphoma. PMID:26399548

  18. Quercetin induces gadd45 expression through a p53-independent pathway.

    PubMed

    Yoshida, Tatsushi; Maeda, Ayaka; Horinaka, Mano; Shiraishi, Takumi; Nakata, Susumu; Wakada, Miki; Yogosawa, Shingo; Sakai, Toshiyuki

    2005-11-01

    Quercetin, a kind of flavonoid, is found in edible fruits and vegetables and has anti-tumorigenic activity. However, the mechanism of activity has not been elucidated. We show for the first time that gadd45 is a molecular target of quercetin, which inhibits growth of human cervical cancer HeLa cells. Apoptosis was detected in HeLa cells treated with quercetin. At the concentration inducing apoptosis, quercetin also increased gadd45 expression at the mRNA and protein level, however, the 5'-promoter region of the gadd45 gene was not activated by quercetin. Since gadd45 is known to be a downstream gene of the tumor suppressor p53, we examined whether or not quercetin regulates gadd45 induction via a p53 pathway. Quercetin did not activate transcription through p53-binding sites in HeLa cells, although it up-regulated gadd45 in p53-inactivated tumor cells. These results indicate that quercetin induces gadd45 expression in a p53-independent manner.

  19. ZIKA virus elicits P53 activation and genotoxic stress in human neural progenitors similar to mutations involved in severe forms of genetic microcephaly and p53

    PubMed Central

    Ghouzzi, Vincent El; Bianchi, Federico T; Molineris, Ivan; Mounce, Bryan C; Berto, Gaia E; Rak, Malgorzata; Lebon, Sophie; Aubry, Laetitia; Tocco, Chiara; Gai, Marta; Chiotto, Alessandra MA; Sgrò, Francesco; Pallavicini, Gianmarco; Simon-Loriere, Etienne; Passemard, Sandrine; Vignuzzi, Marco; Gressens, Pierre; Di Cunto, Ferdinando

    2016-01-01

    Epidemiological evidence from the current outbreak of Zika virus (ZIKV) and recent studies in animal models indicate a strong causal link between ZIKV and microcephaly. ZIKV infection induces cell-cycle arrest and apoptosis in proliferating neural progenitors. However, the mechanisms leading to these phenotypes are still largely obscure. In this report, we explored the possible similarities between transcriptional responses induced by ZIKV in human neural progenitors and those elicited by three different genetic mutations leading to severe forms of microcephaly in mice. We found that the strongest similarity between all these conditions is the activation of common P53 downstream genes. In agreement with these observations, we report that ZIKV infection increases total P53 levels and nuclear accumulation, as well as P53 Ser15 phosphorylation, correlated with genotoxic stress and apoptosis induction. Interestingly, increased P53 activation and apoptosis are induced not only in cells expressing high levels of viral antigens but also in cells showing low or undetectable levels of the same proteins. These results indicate that P53 activation is an early and specific event in ZIKV-infected cells, which could result from cell-autonomous and/or non-cell-autonomous mechanisms. Moreover, we highlight a small group of P53 effector proteins that could act as critical mediators, not only in ZIKV-induced microcephaly but also in many genetic microcephaly syndromes. PMID:27787521

  20. Activation of p53 Transcriptional Activity by SMRT: a Histone Deacetylase 3-Independent Function of a Transcriptional Corepressor

    PubMed Central

    Adikesavan, Anbu Karani; Karmakar, Sudipan; Pardo, Patricia; Wang, Liguo; Liu, Shuang; Li, Wei

    2014-01-01

    The silencing mediator of retinoic acid and thyroid hormone receptors (SMRT) is an established histone deacetylase 3 (HDAC3)-dependent transcriptional corepressor. Microarray analyses of MCF-7 cells transfected with control or SMRT small interfering RNA revealed SMRT regulation of genes involved in DNA damage responses, and the levels of the DNA damage marker γH2AX as well as poly(ADP-ribose) polymerase cleavage were elevated in SMRT-depleted cells treated with doxorubicin. A number of these genes are established p53 targets. SMRT knockdown decreased the activity of two p53-dependent reporter genes as well as the expression of p53 target genes, such as CDKN1A (which encodes p21). SMRT bound directly to p53 and was recruited to p53 binding sites within the p21 promoter. Depletion of GPS2 and TBL1, components of the SMRT corepressor complex, but not histone deacetylase 3 (HDAC3) decreased p21-luciferase activity. p53 bound to the SMRT deacetylase activation domain (DAD), which mediates HDAC3 binding and activation, and HDAC3 could attenuate p53 binding to the DAD region of SMRT. Moreover, an HDAC3 binding-deficient SMRT DAD mutant coactivated p53 transcriptional activity. Collectively, these data highlight a biological role for SMRT in mediating DNA damage responses and suggest a model where p53 binding to the DAD limits HDAC3 interaction with this coregulator, thereby facilitating SMRT coactivation of p53-dependent gene expression. PMID:24449765

  1. TAF6δ Controls Apoptosis and Gene Expression in the Absence of p53

    PubMed Central

    Wilhelm, Emmanuelle; Pellay, François-Xavier; Benecke, Arndt; Bell, Brendan

    2008-01-01

    Background Life and death decisions of metazoan cells hinge on the balance between the expression of pro- versus anti-apoptotic gene products. The general RNA polymerase II transcription factor, TFIID, plays a central role in the regulation of gene expression through its core promoter recognition and co-activator functions. The core TFIID subunit TAF6 acts in vitro as an essential co-activator of transcription for the p53 tumor suppressor protein. We previously identified a splice variant of TAF6, termed TAF6δ that can be induced during apoptosis. Methodology/Principal Findings To elucidate the impact of TAF6δ on cell death and gene expression, we have employed modified antisense oligonucleotides to enforce expression of endogenous TAF6δ. The induction of endogenous TAF6δ triggered apoptosis in tumor cell lines, including cells devoid of p53. Microarray experiments revealed that TAF6δ activates gene expression independently of cellular p53 status. Conclusions Our data define TAF6δ as a pivotal node in a signaling pathway that controls gene expression programs and apoptosis in the absence of p53. PMID:18628956

  2. Activation of SAT1 engages polyamine metabolism with p53-mediated ferroptotic responses.

    PubMed

    Ou, Yang; Wang, Shang-Jui; Li, Dawei; Chu, Bo; Gu, Wei

    2016-11-01

    Although p53-mediated cell-cycle arrest, senescence, and apoptosis remain critical barriers to cancer development, the emerging role of p53 in cell metabolism, oxidative responses, and ferroptotic cell death has been a topic of great interest. Nevertheless, it is unclear how p53 orchestrates its activities in multiple metabolic pathways into tumor suppressive effects. Here, we identified the SAT1 (spermidine/spermine N(1)-acetyltransferase 1) gene as a transcription target of p53. SAT1 is a rate-limiting enzyme in polyamine catabolism critically involved in the conversion of spermidine and spermine back to putrescine. Surprisingly, we found that activation of SAT1 expression induces lipid peroxidation and sensitizes cells to undergo ferroptosis upon reactive oxygen species (ROS)-induced stress, which also leads to suppression of tumor growth in xenograft tumor models. Notably, SAT1 expression is down-regulated in human tumors, and CRISPR-cas9-mediated knockout of SAT1 expression partially abrogates p53-mediated ferroptosis. Moreover, SAT1 induction is correlated with the expression levels of arachidonate 15-lipoxygenase (ALOX15), and SAT1-induced ferroptosis is significantly abrogated in the presence of PD146176, a specific inhibitor of ALOX15. Thus, our findings uncover a metabolic target of p53 involved in ferroptotic cell death and provide insight into the regulation of polyamine metabolism and ferroptosis-mediated tumor suppression.

  3. NIR is a novel INHAT repressor that modulates the transcriptional activity of p53

    PubMed Central

    Hublitz, Philip; Kunowska, Natalia; Mayer, Ulrich P.; Müller, Judith M.; Heyne, Kristina; Yin, Na; Fritzsche, Claudia; Poli, Cecilia; Miguet, Laurent; Schupp, Ingo W.; van Grunsven, Leo A.; Potiers, Noëlle; van Dorsselaer, Alain; Metzger, Eric; Roemer, Klaus; Schüle, Roland

    2005-01-01

    Most transcriptional repression pathways depend on the targeted deacetylation of histone tails. In this report, we characterize NIR, a novel transcriptional corepressor with inhibitor of histone acetyltransferase (INHAT) activity. NIR (Novel INHAT Repressor) is ubiquitously expressed throughout embryonic development and adulthood. NIR is a potent transcriptional corepressor that is not blocked by histone deacetylase inhibitors and is capable of silencing both basal and activator-driven transcription. NIR directly binds to nucleosomes and core histones and prevents acetylation by histone acetyltransferases, thus acting as a bona fide INHAT. Using a tandem affinity purification approach, we identified the tumor suppressor p53 as a NIR-interacting partner. Association of p53 and NIR was verified in vitro and in vivo. Upon recruitment by p53, NIR represses transcription of both p53-dependent reporters and endogenous target genes. Knock-down of NIR by RNA interference significantly enhances histone acetylation at p53-regulated promoters. Moreover, p53-dependent apoptosis is robustly increased upon depletion of NIR. In summary, our findings describe NIR as a novel INHAT that plays an important role in the control of p53 function. PMID:16322561

  4. Cellular localization of human p53 expressed in the yeast Saccharomyces cerevisiae: effect of NLSI deletion.

    PubMed

    Abdelmoula-Souissi, Salma; Delahodde, Agnès; Bolotin-Fukuhara, Monique; Gargouri, Ali; Mokdad-Gargouri, Raja

    2011-07-01

    The tumor suppressor p53 plays a central role in the regulation of cellular growth and apoptosis. In Saccharomyces cerevisiae, over-expression of the human wtp53 leads to growth inhibition and cell death on minimal medium. In the present work, we showed that deletion of the nuclear localization signal (NLSI) of p53 restores the yeast growth. In this heterologous context, the level of p53∆NLSI was low and the protein mainly located in the cytoplasm while the wtp53 was observed in both the cytoplasmic and nuclear compartments. Interestingly, the wtp53 protein was observed in the mitochondria, whereas the p53∆NLSI protein failed to localize in mitochondria. Moreover, mitochondrial morphology defect and release of cytochrome c in the cytosol were noticed only in the yeast strain expressing the wtp53. In conclusion, our results provide evidence that the human wtp53 is active in S. cerevisiae probably through dependent and independent transcriptional mechanisms leading to cell death. The deletion of the NLSI sequence decreases p53 nuclear translocation as well as its mitochondrial localization and consequently its effect on yeast growth.

  5. Clinical and pathological correlations of marrow PUMA and P53 expressions in myelodysplastic syndromes.

    PubMed

    Bektas, Ozlen; Uner, Aysegul; Buyukasik, Yahya; Uz, Burak; Bozkurt, Sureyya; Eliacik, Eylem; Işik, Ayse; Haznedaroglu, Ibrahim Celalettin; Goker, Hakan; Demiroglu, Haluk; Aksu, Salih; Ozcebe, Osman Ilhami; Sayinalp, Nilgun

    2015-05-01

    p53 is a key regulator of apoptosis. p53 upregulated modulator of apoptosis (PUMA) is a critical mediator of p53-dependent and independent apoptosis. The objective of this study was to evaluate the relationship of p53 and PUMA to the prognosis of MDS. Bone marrow biopsies of MDS patients at the time of diagnosis (n = 76) and at the time of transformation (n = 19) were included in the study group. The expression of p53 and PUMA was evaluated using immunohistochemistry. When compared to the control group, both p53 (p < 0.001) and PUMA (p = 0.012) expression levels were significantly higher in MDS group. In MDS group, there was a moderate positive correlation between p53 and PUMA expressions. PUMA expression was not correlated with event free and overall survival. However, overall survival was significantly lower in cases with p53 expression in more than 50% of the cells. There was an increase in PUMA expression in cases that showed transformation as compared to the initial diagnostic bone marrows but was not statistically significant. The correlation that existed between p53 and PUMA was lost in transformed cases. Our results showed that PUMA and p53 expressions are increased in MDS marrows compared to normal marrows. PUMA expression increases further during transformation while the expression of p53 is not significantly altered which suggests that PUMA alterations might be a late event during the evolution of MDS.

  6. p53 controls colorectal cancer cell invasion by inhibiting the NF-κB-mediated activation of Fascin

    PubMed Central

    Tang, Haimei; Wang, Chan; Zhou, Jichun; Han, Weidong; Wang, Xian; Fang, Yong; Xu, Yinghua; Li, Da; Chen, Rui; Ma, Junhong; Jing, Zhao; Gu, Xidong; Pan, Hongming; He, Chao

    2015-01-01

    p53 mutation is known to contribute to cancer progression. Fascin is an actin-bundling protein and has been recently identified to promote cancer cell migration and invasion through its role in formation of cellular protrusions such as filopodia and invadopodia. However, the relationship between p53 and Fascin is not understood. Here, we have found a new link between them. In colorectal adenocarcinomas, p53 mutation correlated with high NF-κB, Fascin and low E-cadherin expression. Moreover, this expression profile was shown to contribute to poor overall survival in patients with colorectal cancer. Wild-type p53 could inhibit NF-κB activity that repressed the expression of Fascin and cancer cell invasiveness. In contrast, in p53-deficient primary cultured cells, NF-κB activity was enhanced and then activation of NF-κB increased the expression of Fascin. In further analysis, we showed that NF-κB was a key determinant for p53 deletion-stimulated Fascin expression. Inhibition of NF-κB /p65 expression by pharmacological compound or p65 siRNA suppressed Fascin activity in p53-deficient cells. Moreover, restoration of p53 expression decreased the activation of Fascin through suppression of the NF-κB pathway. Taken together, these data suggest that a negative-feedback loop exists, whereby p53 can suppress colorectal cancer cell invasion by inhibiting the NF-κB-mediated activation of Fascin. PMID:26362504

  7. Wild-type and mutant p53 mediate cisplatin resistance through interaction and inhibition of active caspase-9.

    PubMed

    Chee, Jacqueline L Y; Saidin, Suzan; Lane, David P; Leong, Sai Mun; Noll, Jacqueline E; Neilsen, Paul M; Phua, Yi Ting; Gabra, Hani; Lim, Tit Meng

    2013-01-15

    The p53 gene has been implicated in many cancers due to its frequent mutations as well as mutations in other genes whose proteins directly affect p53's functions. In addition, high expression of p53 [wild-type (WT) or mutant] has been found in the cytoplasm of many tumor cells, and studies have associated these observations with more aggressive tumors and poor prognosis. Cytoplasmic mis-localization of p53 subsequently reduced its transcriptional activity and this loss-of-function (LOF) was used to explain the lack of response to chemotherapeutic agents. However, this hypothesis seemed inadequate in explaining the apparent selection for tumor cells with high levels of p53 protein, a phenomenon that suggests a gain-of-function (GOF) of these mis-localized p53 proteins. In this study, we explored whether the direct involvement of p53 in the apoptotic response is via regulation of the caspase pathway in the cytoplasm. We demonstrate that p53, when present at high levels in the cytoplasm, has an inhibitory effect on caspase-9. Concurrently, knockdown of endogenous p53 caused an increase in the activity of caspase-9. p53 was found to interact with the p35 fragment of caspase-9, and this interaction inhibits the caspase-9 activity. In a p53-null background, the high-level expression of both exogenous WT and mutant p53 increased the resistance of these cells to cisplatin, and the data showed a correlation between high p53 expression and caspase-9 inhibition. These results suggest the inhibition of caspase-9 as a potential mechanism in evading apoptosis in tumors with high-level p53 expression that is cytoplasmically localized.

  8. Wild-type and mutant p53 mediate cisplatin resistance through interaction and inhibition of active caspase-9

    PubMed Central

    Chee, Jacqueline L.Y.; Saidin, Suzan; Lane, David P.; Leong, Sai Mun; Noll, Jacqueline E.; Neilsen, Paul M.; Phua, Yi Ting; Gabra, Hani; Lim, Tit Meng

    2013-01-01

    The p53 gene has been implicated in many cancers due to its frequent mutations as well as mutations in other genes whose proteins directly affect p53’s functions. In addition, high expression of p53 [wild-type (WT) or mutant] has been found in the cytoplasm of many tumor cells, and studies have associated these observations with more aggressive tumors and poor prognosis. Cytoplasmic mis-localization of p53 subsequently reduced its transcriptional activity and this loss-of-function (LOF) was used to explain the lack of response to chemotherapeutic agents. However, this hypothesis seemed inadequate in explaining the apparent selection for tumor cells with high levels of p53 protein, a phenomenon that suggests a gain-of-function (GOF) of these mis-localized p53 proteins. In this study, we explored whether the direct involvement of p53 in the apoptotic response is via regulation of the caspase pathway in the cytoplasm. We demonstrate that p53, when present at high levels in the cytoplasm, has an inhibitory effect on caspase-9. Concurrently, knockdown of endogenous p53 caused an increase in the activity of caspase-9. p53 was found to interact with the p35 fragment of caspase-9, and this interaction inhibits the caspase-9 activity. In a p53-null background, the high-level expression of both exogenous WT and mutant p53 increased the resistance of these cells to cisplatin, and the data showed a correlation between high p53 expression and caspase-9 inhibition. These results suggest the inhibition of caspase-9 as a potential mechanism in evading apoptosis in tumors with high-level p53 expression that is cytoplasmically localized. PMID:23255126

  9. Teroxirone inhibited growth of human non-small cell lung cancer cells by activating p53

    SciTech Connect

    Wang, Jing-Ping; Lin, Kai-Han; Liu, Chun-Yen; Yu, Ya-Chu; Wu, Pei-Tsun; Chiu, Chien-Chih; Su, Chun-Li; Chen, Kwun-Min; Fang, Kang

    2013-11-15

    In this work, we demonstrated that the growth of human non-small-cell-lung-cancer cells H460 and A549 cells can be inhibited by low concentrations of an epoxide derivative, teroxirone, in both in vitro and in vivo models. The cytotoxicity was mediated by apoptotic cell death through DNA damage. The onset of ultimate apoptosis is dependent on the status of p53. Teroxirone caused transient elevation of p53 that activates downstream p21 and procaspase-3 cleavage. The presence of caspase-3 inhibitor reverted apoptotic phenotype. Furthermore, we showed the cytotoxicity of teroxirone in H1299 cells with stable ectopic expression of p53, but not those of mutant p53. A siRNA-mediated knockdown of p53 expression attenuated drug sensitivity. The in vivo experiments demonstrated that teroxirone suppressed growth of xenograft tumors in nude mice. Being a potential therapeutic agent by restraining cell growth through apoptotic death at low concentrations, teroxirone provides a feasible perspective in reversing tumorigenic phenotype of human lung cancer cells. - Highlights: • Teroxirone repressed tumor cell growth in nude mice of human lung cancer cells. • The apoptotic cell death reverted by caspase-3 inhibitor is related to p53 status. • Teroxirone provides a good candidate for lung cancer treatment.

  10. Regulation of p53 Activity by Reversible-Acetylation in Prostate Tumor Suppression

    DTIC Science & Technology

    2006-01-01

    localization of HDAC1. A. The subcellular localization of endogenous HDAC1 was determined in p300 expressing H1299 cells by immunostaining with an antibody...p53 following transfection into p53 (-/-) H1299 cells. Cells were transfected with p53wt alone (a, g, m), p53wt and myc-p300 (b, d, h, j, n, p), p53wt...signal that promotes p53 export to the cytoplasm. Materials and Methods Cell lines and transfection - H1299 human cells, p53(-/-), MDM2(-/-) mouse

  11. p53-dependent NDRG1 expression induces inhibition of intestinal epithelial cell proliferation but not apoptosis after polyamine depletion.

    PubMed

    Zhang, Ai-Hong; Rao, Jaladanki N; Zou, Tongtong; Liu, Lan; Marasa, Bernard S; Xiao, Lan; Chen, Jie; Turner, Douglas J; Wang, Jian-Ying

    2007-07-01

    Normal intestinal mucosal growth requires polyamines that regulate expression of various genes involved in cell proliferation, growth arrest, and apoptosis. Our previous studies have shown that polyamine depletion stabilizes p53, resulting in inhibition of intestinal epithelial cell (IEC) proliferation, but the exact downstream targets of induced p53 are still unclear. The NDRG1 (N-myc downregulated gene-1) gene encodes a growth-related protein, and its transcription can be induced in response to stress. The current study tests the hypothesis that induced p53 inhibits IEC proliferation by upregulating NDRG1 expression following polyamine depletion. Depletion of cellular polyamines by inhibiting ornithine decarboxylase (ODC) with alpha-difluoromethylornithine not only induced p53 but also increased NDRG1 transcription as indicated by induction of the NDRG1 promoter activity and increased levels of NDRG1 mRNA and protein, all of which were prevented by using specific p53 siRNA and in cells with a targeted deletion of p53. In contrast, increased levels of cellular polyamines by ectopic expression of the ODC gene decreased p53 and repressed expression of NDRG1. Consistently, polyamine depletion-induced activation of the NDRG1-promoter was decreased when p53-binding sites within the NDRG1 proximal promoter region were deleted. Ectopic expression of the wild-type NDRG1 gene inhibited DNA synthesis and decreased final cell numbers regardless of the presence or absence of endogenous p53, whereas silencing NDRG1 promoted cell growth. However, overexpression of NDRG1 failed to directly induce cell death and to alter susceptibility to apoptosis induced by tumor necrosis factor-alpha/cycloheximide. These results indicate that NDRG1 is one of the direct mediators of induced p53 following polyamine depletion and that p53-dependent NDRG1 expression plays a critical role in the negative control of IEC proliferation.

  12. p53 directly suppresses BNIP3 expression to protect against hypoxia-induced cell death

    PubMed Central

    Feng, Xi; Liu, Xing; Zhang, Wei; Xiao, Wuhan

    2011-01-01

    Hypoxia stabilizes the tumour suppressor p53, allowing it to function primarily as a transrepressor; however, the function of p53 during hypoxia remains unclear. In this study, we showed that p53 suppressed BNIP3 expression by directly binding to the p53-response element motif and recruiting corepressor mSin3a to the BNIP3 promoter. The DNA-binding site of p53 must remain intact for the protein to suppress the BNIP3 promoter. In addition, taking advantage of zebrafish as an in vivo model, we confirmed that zebrafish nip3a, a homologous gene of mammalian BNIP3, was indeed induced by hypoxia and p53 mutation/knockdown enhanced nip3a expression under hypoxia resulted in cell death enhancement in p53 mutant embryos. Furthermore, p53 protected against hypoxia-induced cell death mediated by p53 suppression of BNIP3 as illustrated by p53 knockdown/loss assays in both human cell lines and zebrafish model, which is in contrast to the traditional pro-apoptotic role of p53. Our results suggest a novel function of p53 in hypoxia-induced cell death, leading to the development of new treatments for ischaemic heart disease and cerebral stoke. PMID:21792176

  13. Tetramerization-defects of p53 result in aberrant ubiquitylation and transcriptional activity.

    PubMed

    Lang, Valérie; Pallara, Chiara; Zabala, Amaia; Lobato-Gil, Sofia; Lopitz-Otsoa, Fernando; Farrás, Rosa; Hjerpe, Roland; Torres-Ramos, Monica; Zabaleta, Lorea; Blattner, Christine; Hay, Ronald T; Barrio, Rosa; Carracedo, Arkaitz; Fernandez-Recio, Juan; Rodríguez, Manuel S; Aillet, Fabienne

    2014-07-01

    The tumor suppressor p53 regulates the expression of genes involved in cell cycle progression, senescence and apoptosis. Here, we investigated the effect of single point mutations in the oligomerization domain (OD) on tetramerization, transcription, ubiquitylation and stability of p53. As predicted by docking and molecular dynamics simulations, p53 OD mutants show functional defects on transcription, Mdm2-dependent ubiquitylation and 26S proteasome-mediated degradation. However, mutants unable to form tetramers are well degraded by the 20S proteasome. Unexpectedly, despite the lower structural stability compared to WT p53, p53 OD mutants form heterotetramers with WT p53 when expressed transiently or stably in cells wild type or null for p53. In consequence, p53 OD mutants interfere with the capacity of WT p53 tetramers to be properly ubiquitylated and result in changes of p53-dependent protein expression patterns, including the pro-apoptotic proteins Bax and PUMA under basal and adriamycin-induced conditions. Importantly, the patient derived p53 OD mutant L330R (OD1) showed the more severe changes in p53-dependent gene expression. Thus, in addition to the well-known effects on p53 stability, ubiquitylation defects promote changes in p53-dependent gene expression with implications on some of its functions.

  14. Effect of Thymoquinone on P53 Gene Expression and Consequence Apoptosis in Breast Cancer Cell Line

    PubMed Central

    Dastjerdi, Mehdi Nikbakht; Mehdiabady, Ebrahim Momeni; Iranpour, Farhad Golshan; Bahramian, Hamid

    2016-01-01

    Background: Nigella sativa has been a nutritional flavoring factor and natural treatment for many ailments for so many years in medical science. Earlier studies have been reported that thymoquinone (TQ), an active compound of its seed, contains anticancer properties. Previous studies have shown that TQ induces apoptosis in breast cancer cells but it is unclear the role of P53 in the apoptotic pathway. Hereby, this study reports the potency of TQ on expression of tumor suppressor gene P53 and apoptosis induction in breast cancer cell line Michigan Cancer Foundation-7 (MCF-7). Methods: MCF-7 cell line was cultured and treated with TQ, and 3-(4,5-dimethylthiazol-2-yl)-2,5-diphenyltetrazolium bromide (MTT) assay was carried out for evaluating the half-maximal inhibitory concentration (IC50) values after 24 h of treatment. The percentage of apoptotic cells was measured by flow cytometry. Real-time polymerase chain reaction (PCR) was performed to estimate the messenger RNA expression of P53 in MCF-7 cell line at different times. Results: The IC50 value for the TQ in MCF-7 cells was 25 μM that determined using MTT assay. The flow cytometry and real-time PCR results showed that TQ could induce apoptosis in MCF-7 cells, and the P53 gene expression was dramatically up-regulated by ascending time, respectively. Hence, there was significant difference in 48 and 72 h. Conclusions: Our results demonstrated that TQ could induce apoptosis in MCF-7 cells through up-regulation of P53 expression in breast cancer cell line (MCF-7) by time-dependent manner. PMID:27141285

  15. Liver p53 expression in patients with HCV-related chronic hepatitis.

    PubMed

    Loguercio, C; Cuomo, A; Tuccillo, C; Gazzerro, P; Cioffi, M; Molinari, A M; Del Vecchio Blanco, C

    2003-07-01

    Mutated p53 acts as a dominant oncogene and alterations in the p53 gene are described in a large number of patients with hepatocellular carcinoma (HCC). It has been demonstrated that hepatitis C virus (HCV)-core protein regulates transcriptionally cellular genes, as well as cell growth and apoptosis. This study was undertaken to evaluate whether p53 may be expressed also in a precocious stage of HCV-related liver damage. We studied p53 expression by immunoluminometric assay on liver samples from 40 patients (M/F 18/ 22, median age 44 years, range 13-64 years) with biopsy-proven HCV-related chronic hepatitis. We considered the following factors: degree of liver damage, liver iron content and HCV-RNA titre. We also evaluated as possible co-factors alcohol and food intake in the last 3 years. p53 was over-expressed in seven of 40 (17.5%) patients. Liver histology documented the presence of unexpected cirrhosis in two patients among the p53 positive subjects. The p53 positive group had a daily ethanol intake significantly higher in respect to that of the p53 negative group (P < 0.05). Alimentary history documented that patients with a p53 over-expression had a lower intake of total calories, monounsaturated fatty acids, vitamin C and riboflavin. Data indicate that p53 over-expression can occur even in initial stages of HCV-related liver disease.

  16. Downregulation of LRRC8A protects human ovarian and alveolar carcinoma cells against Cisplatin-induced expression of p53, MDM2, p21Waf1/Cip1, and Caspase-9/-3 activation

    PubMed Central

    Sørensen, Belinda Halling; Nielsen, Dorthe; Thorsteinsdottir, Unnur Arna; Hoffmann, Else Kay

    2016-01-01

    The leucine-rich repeat containing 8A (LRRC8A) protein is an essential component of the volume-sensitive organic anion channel (VSOAC), and using pharmacological anion channel inhibitors (NS3728, DIDS) and LRRC8A siRNA we have investigated its role in development of Cisplatin resistance in human ovarian (A2780) and alveolar (A549) carcinoma cells. In Cisplatin-sensitive cells Cisplatin treatment increases p53-protein level as well as downstream signaling, e.g., expression of p21Waf1/Cip1, Bax, Noxa, MDM2, and activation of Caspase-9/-3. In contrast, Cisplatin-resistant cells do not enter apoptosis, i.e., their p53 and downstream signaling are reduced and caspase activity unaltered following Cisplatin exposure. Reduced LRRC8A expression and VSOAC activity are previously shown to correlate with Cisplatin resistance, and here we demonstrate that pharmacological inhibition and transient knockdown of LRRC8A reduce the protein level of p53, MDM2, and p21Waf1/Cip1 as well as Caspase-9/-3 activation in Cisplatin-sensitive cells. Cisplatin resistance is accompanied by reduction in total LRRC8A expression (A2780) or LRRC8A expression in the plasma membrane (A549). Activation of Caspase-3 dependent apoptosis by TNFα-exposure or hyperosmotic cell shrinkage is almost unaffected by pharmacological anion channel inhibition. Our data indicate 1) that expression/activity of LRRC8A is essential for Cisplatin-induced increase in p53 protein level and its downstream signaling, i.e., Caspase-9/-3 activation, expression of p21Waf1/Cip1 and MDM2; and 2) that downregulation of LRRC8A-dependent osmolyte transporters contributes to acquirement of Cisplatin resistance in ovarian and lung carcinoma cells. Activation of LRRC8A-containing channels is upstream to apoptotic volume decrease as hypertonic cell shrinkage induces apoptosis independent of the presence of LRRC8A. PMID:26984736

  17. Selective inhibition of microRNA accessibility by RBM38 is required for p53 activity

    PubMed Central

    Léveillé, Nicolas; Elkon, Ran; Davalos, Veronica; Manoharan, Vijayalaxmi; Hollingworth, Dave; Vrielink, Joachim Oude; le Sage, Carlos; Melo, Carlos A.; Horlings, Hugo M.; Wesseling, Jelle; Ule, Jernej; Esteller, Manel; Ramos, Andres; Agami, Reuven

    2011-01-01

    MicroRNAs (miRNAs) interact with 3′-untranslated regions of messenger RNAs to restrict expression of most protein-coding genes during normal development and cancer. RNA-binding proteins (RBPs) can control the biogenesis, stability and activity of miRNAs. Here we identify RBM38 in a genetic screen for RBPs whose expression controls miRNA access to target mRNAs. RBM38 is induced by p53 and its ability to modulate miRNA-mediated repression is required for proper p53 function. In contrast, RBM38 shows lower propensity to block the action of the p53-controlled miR-34a on SIRT1. Target selectivity is determined by the interaction of RBM38 with uridine-rich regions near miRNA target sequences. Furthermore, in large cohorts of human breast cancer, reduced RBM38 expression by promoter hypermethylation correlates with wild-type p53 status. Thus, our results indicate a novel layer of p53 gene regulation, which is required for its tumour suppressive function. PMID:22027593

  18. Profiling dose-dependent activation of p53-mediated signaling pathways by chemicals with distinct mechanisms of DNA damage.

    PubMed

    Clewell, Rebecca A; Sun, Bin; Adeleye, Yeyejide; Carmichael, Paul; Efremenko, Alina; McMullen, Patrick D; Pendse, Salil; Trask, O J; White, Andy; Andersen, Melvin E

    2014-11-01

    As part of a larger effort to provide proof-of-concept in vitro-only risk assessments, we have developed a suite of high-throughput assays for key readouts in the p53 DNA damage response toxicity pathway: double-strand break DNA damage (p-H2AX), permanent chromosomal damage (micronuclei), p53 activation, p53 transcriptional activity, and cell fate (cell cycle arrest, apoptosis, micronuclei). Dose-response studies were performed with these protein and cell fate assays, together with whole genome transcriptomics, for three prototype chemicals: etoposide, quercetin, and methyl methanesulfonate. Data were collected in a human cell line expressing wild-type p53 (HT1080) and results were confirmed in a second p53 competent cell line (HCT 116). At chemical concentrations causing similar increases in p53 protein expression, p53-mediated protein expression and cellular processes showed substantial chemical-specific differences. These chemical-specific differences in the p53 transcriptional response appear to be determined by augmentation of the p53 response by co-regulators. More importantly, dose-response data for each of the chemicals indicate that the p53 transcriptional response does not prevent micronuclei induction at low concentrations. In fact, the no observed effect levels and benchmark doses for micronuclei induction were less than or equal to those for p53-mediated gene transcription regardless of the test chemical, indicating that p53's post-translational responses may be more important than transcriptional activation in the response to low dose DNA damage. This effort demonstrates the process of defining key assays required for a pathway-based, in vitro-only risk assessment, using the p53-mediated DNA damage response pathway as a prototype.

  19. Transgenic mouse with human mutant p53 expression in the prostate epithelium.

    PubMed

    Elgavish, Ada; Wood, Philip A; Pinkert, Carl A; Eltoum, Isam-Eldin; Cartee, Todd; Wilbanks, John; Mentor-Marcel, Roycelynn; Tian, Liqun; Scroggins, Samuel E

    2004-09-15

    Apoptosis is disrupted in prostate tumor cells, conferring a survival advantage. p53 is a nuclear protein believed to regulate cancer progression, in part by inducing apoptosis. To test this possibility in future studies, the objective of the present study was to generate a transgenic mouse model expressing mutant p53 in the prostate (PR). Transgene incorporation was tested using Southern analysis. Expression of mutant p53 protein was examined using immunofluorescence microscopy. Apoptosis in the PR was evaluated using the Tunnel method. A construct, consisting of the rat probasin promoter and a mutant human p53 fragment, was prepared and used to generate transgenic mice. rPB-mutant p53 transgene incorporation, as well as nuclear accumulation of mutant human p53 protein, was demonstrated. Prostatic intraepithelial neoplasia (PIN) III and IV were found in PR of 52-week old transgenic mice, whereas no pathological changes were found in the other organs examined. PR ability to undergo apoptosis following castration was reduced in rPB-mutant p53 mice as compared to non transgenic littermates. Transgenic rPB-mutant p53 mice accumulate mutant p53 protein in PR, resulting in neoplastic lesions and reduced apoptotic potential in the PR. Breeding rPB-mutant p53 mice with mice expressing an oncogene in their PR will be useful in examining interactions of multiple genes that result in progression of slow growing prostate tumors expressing oncogenes alone to metastatic cancer. Copyright 2004 Wiley-Liss, Inc.

  20. Akt phosphorylates myc-associated zinc finger protein (MAZ), releases P-MAZ from the p53 promoter, and activates p53 transcription.

    PubMed

    Lee, Wei-Ping; Lan, Keng-Hsin; Li, Chung-Pin; Chao, Yee; Lin, Han-Chieh; Lee, Shou-Dong

    2016-05-28

    The p53 protein is a cell cycle regulator. When the cell cycle progresses, p53 plays an important role in putting a brake on the G1 phase to prevent unwanted errors during cell division. Akt is a downstream kinase of receptor tyrosine kinase. Upon activation, Akt phorphorylates IKK that then phosphorylates IκB and releases NF-κB, leading to transcriptional activation of Dmp1. Dmp1 is a transcriptional activator of Arf. It has been known that oncogene activation stabilizes p53 through transcriptional activation of Arf, which then binds and inhibits Mdm2. In the current study, we show that myc-associated zinc finger protein (MAZ) is a transcriptional repressor of the p53 promoter. Akt phosphorylates MAZ at Thr385, and the phosphorylated MAZ is released from the p53 promoter, leading to transcriptional activation of p53, a new mechanism that contributes to increased p53 protein pool during oncogene activation.

  1. Inhibition of Wild-Type p53-Expressing AML by the Novel Small Molecule HDM2 Inhibitor CGM097.

    PubMed

    Weisberg, Ellen; Halilovic, Ensar; Cooke, Vesselina G; Nonami, Atsushi; Ren, Tao; Sanda, Takaomi; Simkin, Irene; Yuan, Jing; Antonakos, Brandon; Barys, Louise; Ito, Moriko; Stone, Richard; Galinsky, Ilene; Cowens, Kristen; Nelson, Erik; Sattler, Martin; Jeay, Sebastien; Wuerthner, Jens U; McDonough, Sean M; Wiesmann, Marion; Griffin, James D

    2015-10-01

    The tumor suppressor p53 is a key regulator of apoptosis and functions upstream in the apoptotic cascade by both indirectly and directly regulating Bcl-2 family proteins. In cells expressing wild-type (WT) p53, the HDM2 protein binds to p53 and blocks its activity. Inhibition of HDM2:p53 interaction activates p53 and causes apoptosis or cell-cycle arrest. Here, we investigated the ability of the novel HDM2 inhibitor CGM097 to potently and selectively kill WT p53-expressing AML cells. The antileukemic effects of CGM097 were studied using cell-based proliferation assays (human AML cell lines, primary AML patient cells, and normal bone marrow samples), apoptosis, and cell-cycle assays, ELISA, immunoblotting, and an AML patient-derived in vivo mouse model. CGM097 potently and selectively inhibited the proliferation of human AML cell lines and the majority of primary AML cells expressing WT p53, but not mutant p53, in a target-specific manner. Several patient samples that harbored mutant p53 were comparatively unresponsive to CGM097. Synergy was observed when CGM097 was combined with FLT3 inhibition against oncogenic FLT3-expressing cells cultured both in the absence as well as the presence of cytoprotective stromal-secreted cytokines, as well as when combined with MEK inhibition in cells with activated MAPK signaling. Finally, CGM097 was effective in reducing leukemia burden in vivo. These data suggest that CGM097 is a promising treatment for AML characterized as harboring WT p53 as a single agent, as well as in combination with other therapies targeting oncogene-activated pathways that drive AML.

  2. p53 coordinates DNA repair with nucleotide synthesis by suppressing PFKFB3 expression and promoting the pentose phosphate pathway

    PubMed Central

    Franklin, Derek A.; He, Yizhou; Leslie, Patrick L.; Tikunov, Andrey P.; Fenger, Nick; Macdonald, Jeffrey M.; Zhang, Yanping

    2016-01-01

    Activation of p53 in response to DNA damage is essential for tumor suppression. Although previous studies have emphasized the importance of p53-dependent cell cycle arrest and apoptosis for tumor suppression, recent studies have suggested that other areas of p53 regulation, such as metabolism and DNA damage repair (DDR), are also essential for p53-dependent tumor suppression. However, the intrinsic connections between p53-mediated DDR and metabolic regulation remain incompletely understood. Here, we present data suggesting that p53 promotes nucleotide biosynthesis in response to DNA damage by repressing the expression of the phosphofructokinase-2 (PFK2) isoform 6-phosphofructo-2-kinase/fructose-2,6-biphosphatase 3 (PFKFB3), a rate-limiting enzyme that promotes glycolysis. PFKFB3 suppression increases the flux of glucose through the pentose phosphate pathway (PPP) to increase nucleotide production, which results in more efficient DNA damage repair and increased cell survival. Interestingly, although p53-mediated suppression of PFKFB3 could increase the two major PPP products, NADPH and nucleotides, only nucleotide production was essential to promote DDR. By identifying the novel p53 target PFKFB3, we report an important mechanistic connection between p53-regulated metabolism and DDR, both of which play crucial roles in tumor suppression. PMID:27901115

  3. Tumor suppressor protein p53 exerts negative transcriptional regulation on human sodium iodide symporter gene expression in breast cancer.

    PubMed

    Kelkar, Madhura G; Thakur, Bhushan; Derle, Abhishek; Chatterjee, Sushmita; Ray, Pritha; De, Abhijit

    2017-08-01

    Aberrant expression of human sodium iodide symporter (NIS) in breast cancer (BC) is well documented but the transcription factors (TF) regulating its aberrant expression is poorly known. We identify the presence of three p53 binding sites on the human NIS promoter sequence by conducting genome-wide TF analysis, and further investigate their regulatory role. The differences in transcription and translation were measured by real-time PCR, luciferase reporter assay, site-directed mutagenesis, in vivo optical imaging, and chromatin immunoprecipitation. The relation of NIS and p53 in clinical samples was judged by TCGA data analysis and immunohistochemistry. Overexpression of wild-type p53 as a transgene or pharmacological activation by doxorubicin drug treatment shows significant suppression of NIS transcription in multiple BC cell types which also results in lowered NIS protein content and cellular iodide intake. NIS repression by activated p53 is further confirmed by non-invasive bioluminescence imaging in live cell and orthotropic tumor model. Abrogation of p53-binding sites by directional mutagenesis confirms reversal of transcriptional activity in wild-type p53-positive BC cells. We also observe direct binding of p53 to these sites on the human NIS promoter. Importantly, TCGA data analysis of NIS and p53 co-expression registers an inverse relationship between the two candidates. Our data for the first time highlight the role of p53 as a negative regulator of functional NIS expression in BC, where the latter is a potential targeted radioiodine therapy candidate. Thus, the study provides an important insight into prospective clinical application of this approach that may significantly impact the patient with mutant versus wild-type p53 profile.

  4. p53 non-genotoxic activation and mTORC1 inhibition lead to effective combination for neuroblastoma therapy.

    PubMed

    Moreno-Smith, Myrthala; Lakoma, Anna; Chen, Zaowen; Tao, Ling; Scorsone, Kathleen A; Schild, Linda; Aviles-Padilla, Kevin; Nikzad, Rana; Zhang, Yankai; Chakraborty, Rikhia; Molenaar, Jan J; Vasudevan, Sanjeev; Sheehan, Vivien; Kim, Eugene S; Paust, Silke; Shohet, Jason M; Barbieri, Eveline

    2017-08-18

    mTORC1 inhibitors are promising agents for neuroblastoma therapy, however they have shown limited clinical activity as monotherapy, thus rational drug combinations need to be explored to improve efficacy. Importantly, neuroblastoma maintains both an active p53 and an aberrant mTOR signaling. Experimental Design: Using an orthotopic xenograft model and modulating p53 levels, we investigated the anti-tumor effects of the mTORC1 inhibitor temsirolimus in neuroblastoma expressing normal, decreased, or mutant p53, both as single agent and in combination with first and second generation MDM2 inhibitors to reactivate p53.  Non-genotoxic p53 activation suppresses mTOR activity. Moreover, p53 reactivation via RG7388, a second generation MDM2 inhibitor, strongly enhances the in vivo anti-tumor activity of temsirolimus. Single agent temsirolimus does not elicit apoptosis, and tumors rapidly re-grow after treatment suspension. In contrast, our combination therapy triggers a potent apoptotic response in wild-type p53 xenografts and efficiently blocks tumor re-growth after treatment completion. We also found that this combination uniquely led to p53-dependent suppression of survivin whose ectopic expression is sufficient to rescue the apoptosis induced by our combination. Our study supports a novel highly effective strategy that combines RG7388 and temsirolimus in wild-type p53 neuroblastoma, which warrants testing in early-phase clinical trials. Copyright ©2017, American Association for Cancer Research.

  5. Immunohistochemical expression of p53 and its clinicopathological correlation with modified Anneroth's histological grading system

    PubMed Central

    Dave, Kajal V; Chalishazar, Monali; Dave, Vishal R; Panja, Pritam; Singh, Manisha; Modi, Tapan G

    2016-01-01

    Introduction and Objectives: Oral squamous cell carcinoma (OSCC) is an epithelial neoplasm generally beginning as focal overgrowth of altered stem cells near the basement membrane, moving upward and laterally, replacing the normal epithelium. Histopathological grading has been used for many decades in an attempt to predict the clinical behavior of oral squamous cell carcinoma. In the present study, Forty biopsies were studied for histological grading and p53 expression. The p53 expression was studied in relation to clinical parameters such as age, sex of patient and site of tumors. Relation between histological grade of malignancy and p53 protein expression was analysed. All cases were classified according to Anneroth's histological malignancy grading system (1987). Materials and Methods: 40 cases of OSCC were assessed for clinical parameters, Anneroth's histological grading and immunohistochemically stained with p53 protien. Statistical Analysis: The results obtained were analyzed using Spearman's Co-relation. Observations and Results: The positive expression of p53 was found in 62% of carcinomas studied. Positivity of p53 showed correlation with histological grade of malignancy and with individual parameters like degree of keratinization, nuclear polymorphism, number of mitoses and lymphoplasmacytic infiltration while showed a negative correlation with pattern of invasion. Conclusion: Our study showed a significant correlation between parameters of tumor cell population, lymphoplasmacytic infiltration and p53 expression. A significant association between high grade of malignancy and p53 overexpression and insignificant correlation of p53 with age, sex of the patient and site of the tumor was found. PMID:27194859

  6. Immunohistochemically detectable p53 and mdm-2 oncoprotein expression in colorectal carcinoma: prognostic significance

    PubMed Central

    Öfner, D; Maier, H; Riedmann, B; Holzberger, P; Nogler, M; Tötsch, M; Bankfalvi, A; Winde, G; Böcker, W; Schmid, K W

    1995-01-01

    Aims—To investigate the correlation between the expression of the p53 and mdm-2 oncoproteins and to assess their prognostic value in colorectal cancer. Methods—Using a polyclonal (CM1) and a monoclonal antibody directed against p53 and mdm-2, respectively, these oncoproteins were stained immunohistochemically in 109 colorectal adenocarcinomas. Results—p53 was detected in less than 10% of tumour cells in 11 of 109 adenocarcinomas, in 10-50% of tumour cells, in 17 of 109 adenocarcinomas, and in more than 50% of tumour cells in 32 of 109 adenocarcinomas. Expression of mdm-2 was detected in 22 of 109 (20%) cases investigated, of which 19 showed concomitant p53 expression. In most cases mdm-2 immunoreactivity was strongly associated with a small proportion of p53 positive tumour cells. Both p53 and mdm-2 expression lacked statistical significance when correlated with common staging and grading parameters. Conclusions—Detection of p53 and mdm-2 oncoprotein expression, detected using immunohistochemistry, is of no prognostic value in colorectal cancer. However, the close correlation between mdm-2 immunoreactivity and the proportion of p53 positive cells provides further evidence that the mdm-2 gene product interacts with p53 protein. PMID:16695968

  7. Wild-type p53 controls cell motility and invasion by dual regulation of MET expression

    PubMed Central

    Hwang, Chang-Il; Matoso, Andres; Corney, David C.; Flesken-Nikitin, Andrea; Körner, Stefanie; Wang, Wei; Boccaccio, Carla; Thorgeirsson, Snorri S.; Comoglio, Paolo M.; Hermeking, Heiko; Nikitin, Alexander Yu.

    2011-01-01

    Recent observations suggest that p53 mutations are responsible not only for growth of primary tumors but also for their dissemination. However, mechanisms involved in p53-mediated control of cell motility and invasion remain poorly understood. By using the primary ovarian surface epithelium cell culture, we show that conditional inactivation of p53 or expression of its mutant forms results in overexpression of MET receptor tyrosine kinase, a crucial regulator of invasive growth. At the same time, cells acquire increased MET-dependent motility and invasion. Wild-type p53 negatively regulates MET expression by two mechanisms: (i) transactivation of MET-targeting miR-34, and (ii) inhibition of SP1 binding to MET promoter. Both mechanisms are not functional in p53 absence, but mutant p53 proteins retain partial MET promoter suppression. Accordingly, MET overexpression, cell motility, and invasion are particularly high in p53-null cells. These results identify MET as a critical effector of p53 and suggest that inhibition of MET may be an effective antimetastatic approach to treat cancers with p53 mutations. These results also show that the extent of advanced cancer traits, such as invasion, may be determined by alterations in individual components of p53/MET regulatory network. PMID:21831840

  8. PML is a ROS sensor activating p53 upon oxidative stress.

    PubMed

    Niwa-Kawakita, Michiko; Ferhi, Omar; Soilihi, Hassane; Le Bras, Morgane; Lallemand-Breitenbach, Valérie; de Thé, Hugues

    2017-09-20

    Promyelocytic leukemia (PML) nuclear bodies (NBs) recruit partner proteins, including p53 and its regulators, thereby controlling their abundance or function. Investigating arsenic sensitivity of acute promyelocytic leukemia, we proposed that PML oxidation promotes NB biogenesis. However, physiological links between PML and oxidative stress response in vivo remain unexplored. Here, we identify PML as a reactive oxygen species (ROS) sensor. Pml(-/-) cells accumulate ROS, whereas PML expression decreases ROS levels. Unexpectedly, Pml(-/-) embryos survive acute glutathione depletion. Moreover, Pml(-/-) animals are resistant to acetaminophen hepatotoxicity or fasting-induced steatosis. Molecularly, Pml(-/-) animals fail to properly activate oxidative stress-responsive p53 targets, whereas the NRF2 response is amplified and accelerated. Finally, in an oxidative stress-prone background, Pml(-/-) animals display a longevity phenotype, likely reflecting decreased basal p53 activation. Thus, similar to p53, PML exerts basal antioxidant properties but also drives oxidative stress-induced changes in cell survival/proliferation or metabolism in vivo. Through NB biogenesis, PML therefore couples ROS sensing to p53 responses, shedding a new light on the role of PML in senescence or stem cell biology. © 2017 Niwa-Kawakita et al.

  9. Temperature sensitivity of human wild-type and mutant p53 proteins expressed in vivo.

    PubMed Central

    Ponchel, F.; Milner, J.

    1998-01-01

    p53 is activated in response to DNA damage and functions in the maintenance of genetic integrity. Loss of p53 function because of mutation of the p53 gene is associated with over half all human cancers. Certain human p53 mutants are conformationally flexible in vitro and are temperature sensitive, with partial or complete recovery of wild-type (wt) properties at 32 degrees C. We have now tested the functional capacities of selected p53 mutants in vivo, by transfection into established human cell lines. Unexpectedly, we found that wt p53 can be temperature sensitive for transactivation of a co-transfected target gene in vivo. Flexible mutants retained varying degrees of functional capacity in transfected cells, and the recipient cell line appeared to be a significant determinant of both wt and mutant p53 function; importantly, two p53 null cell lines commonly used to study p53 function (Saos-2 and Hep3B) differed markedly in this latter respect. We also show that the p53 mutant V272M, which exhibits sequence-specific DNA binding in vitro, is nonetheless defective for transactivation and is unable to induce apoptosis in vivo. The valine 272 residue may thus be crucial for properties (other than sequence-specific DNA binding) that are important for p53 function(s) in vivo. Images Figure 4 PMID:9635828

  10. Jasmonates induce nonapoptotic death in high-resistance mutant p53-expressing B-lymphoma cells

    PubMed Central

    Fingrut, Orit; Reischer, Dorit; Rotem, Ronit; Goldin, Natalia; Altboum, Irit; Zan-Bar, Israel; Flescher, Eliezer

    2005-01-01

    Mutations in p53, a tumor suppressor gene, occur in more than half of human cancers. Therefore, we tested the hypothesis that jasmonates (novel anticancer agents) can induce death in mutated p53-expressing cells. Two clones of B-lymphoma cells were studied, one expressing wild-type (wt) p53 and the other expressing mutated p53. Jasmonic acid and methyl jasmonate (0.25–3 mM) were each equally cytotoxic to both clones, whereas mutant p53-expressing cells were resistant to treatment with the radiomimetic agent neocarzinostatin and the chemotherapeutic agent bleomycin. Neocarzinostatin and bleomycin induced an elevation in the p53 levels in wt p53-expressing cells, whereas methyl jasmonate did not. Methyl jasmonate induced mostly apoptotic death in the wt p53-expressing cells, while no signs of early apoptosis were detected in mutant p53-expressing cells. In contrast, neocarzinostatin and bleomycin induced death only in wt p53-expressing cells, in an apoptotic mode. Methyl jasmonate induced a rapid depletion of ATP in both clones. In both clones, oligomycin (a mitochondrial ATP synthase inhibitor) did not increase ATP depletion induced by methyl jasmonate, whereas inhibition of glycolysis with 2-deoxyglucose did. High glucose levels protected both clones from methyl jasmonate-induced ATP depletion (and reduced methyl jasmonate-induced cytotoxicity), whereas high levels of pyruvate did not. These results suggest that methyl jasmonate induces ATP depletion mostly by compromising oxidative phosphorylation in the mitochondria. In conclusion, jasmonates can circumvent the resistance of mutant p53-expressing cells towards chemotherapy by inducing a nonapoptotic cell death. PMID:16170329

  11. Y14 governs p53 expression and modulates DNA damage sensitivity

    PubMed Central

    Lu, Chia-Chen; Lee, Chi-Chieh; Tseng, Ching-Tzu; Tarn, Woan-Yuh

    2017-01-01

    Y14 is a core component of the exon junction complex (EJC), while it also exerts cellular functions independent of the EJC. Depletion of Y14 causes G2/M arrest, DNA damage and apoptosis. Here we show that knockdown of Y14 induces the expression of an alternative spliced isoform of p53, namely p53β, in human cells. Y14, in the context of the EJC, inhibited aberrant exon inclusion during the splicing of p53 pre-mRNA, and thus prevent p53β expression. The anti-cancer agent camptothecin specifically suppressed p53β induction. Intriguingly, both depletion and overexpression of Y14 increased overall p53 protein levels, suggesting that Y14 governs the quality and quantity control of p53. Moreover, Y14 depletion unexpectedly reduced p21 protein levels, which in conjunction with aberrant p53 expression accordingly increased cell sensitivity to genotoxic agents. This study establishes a direct link between Y14 and p53 expression and suggests a function for Y14 in DNA damage signaling. PMID:28361991

  12. Gene expression profiling analysis reveals arsenic-induced cell cycle arrest and apoptosis in p53-proficient and p53-deficient cells through differential gene pathways

    SciTech Connect

    Yu Xiaozhong Robinson, Joshua F.; Gribble, Elizabeth; Hong, Sung Woo; Sidhu, Jaspreet S.; Faustman, Elaine M.

    2008-12-15

    Arsenic (As) is a well-known environmental toxicant and carcinogen as well as an effective chemotherapeutic agent. The underlying mechanism of this dual capability, however, is not fully understood. Tumor suppressor gene p53, a pivotal cell cycle checkpoint signaling protein, has been hypothesized to play a possible role in mediating As-induced toxicity and therapeutic efficiency. In this study, we found that arsenite (As{sup 3+}) induced apoptosis and cell cycle arrest in a dose-dependent manner in both p53{sup +/+} and p53{sup -/-} mouse embryonic fibroblasts (MEFs). There was, however, a distinction between genotypes in the apoptotic response, with a more prominent induction of caspase-3 in the p53{sup -/-} cells than in the p53{sup +/+} cells. To examine this difference further, a systems-based genomic analysis was conducted comparing the critical molecular mechanisms between the p53 genotypes in response to As{sup 3+}. A significant alteration in the Nrf2-mediated oxidative stress response pathway was found in both genotypes. In p53{sup +/+} MEFs, As{sup 3+} induced p53-dependent gene expression alterations in DNA damage and cell cycle regulation genes. However, in the p53{sup -/-} MEFs, As{sup 3+} induced a significant up-regulation of pro-apoptotic genes (Noxa) and down-regulation of genes in immune modulation. Our findings demonstrate that As-induced cell death occurs through a p53-independent pathway in p53 deficient cells while apoptosis induction occurs through p53-dependent pathway in normal tissue. This difference in the mechanism of apoptotic responses between the genotypes provides important information regarding the apparent dichotomy of arsenic's dual mechanisms, and potentially leads to further advancement of its utility as a chemotherapeutic agent.

  13. Regulation of GAD65 expression by SMAR1 and p53 upon Streptozotocin treatment

    PubMed Central

    2012-01-01

    Background GAD65 (Glutamic acid decarboxylase 65 KDa isoform) is one of the most important auto-antigens involved in Type 1 diabetes induction. Although it serves as one of the first injury markers of β-islets, the mechanisms governing GAD65 expression remain poorly understood. Since the regulation of GAD65 is crucial for the proper functioning of insulin secreting cells, we investigated the stress induced regulation of GAD65 transcription. Results The present study shows that SMAR1 regulates GAD65 expression at the transcription level. Using a novel protein-DNA pull-down assay, we show that SMAR1 binding is very specific to GAD65 promoter but not to the other isoform, GAD67. We show that Streptozotocin (STZ) mediated DNA damage leads to upregulation of SMAR1 and p53 expression, resulting in elevated levels of GAD65, in both cell lines as well as mouse β-islets. SMAR1 and p53 act synergistically to up-regulate GAD65 expression upon STZ treatment. Conclusion We propose a novel mechanism of GAD65 regulation by synergistic activities of SMAR1 and p53. PMID:22978699

  14. Gene expression in the lung of p53 mutant mice exposed to cigarette smoke.

    PubMed

    Izzotti, Alberto; Cartiglia, Cristina; Longobardi, Mariagrazia; Bagnasco, Maria; Merello, Andrea; You, Ming; Lubet, Ronald A; De Flora, Silvio

    2004-12-01

    We showed previously that p53 mutations play a role in cigarette smoke-related carcinogenesis not only in humans but also in A/J mice. In fact, (UL53-3 x A/J)F(1) mice, carrying a dominant-negative germ-line p53 mutation, responded to exposure to environmental cigarette smoke more efficiently than their wild-type (wt) littermate controls in terms of molecular alterations, cytogenetic damage, and lung tumor yield. To clarify the mechanisms involved, we analyzed by cDNA array the expression of 1,185 cancer-related genes in the lung of the same mice. Neither environmental cigarette smoke nor the p53 status affected the expression of the p53 gene, but the p53 mutation strikingly increased the basal levels of p53 nuclear protein in the lung. Environmental cigarette smoke increased p53 protein levels in wt mice only. The p53 mutation enhanced the expression of positive cell cycle regulators in sham-exposed mice, which suggests a physiologic protective role of p53. In environmental cigarette smoke-exposed mice, the p53 mutation resulted in a lack of induction of proapoptotic genes and in overexpression of genes involved in cell proliferation, signal transduction, angiogenesis, inflammation, and immune response. Mutant mice and wt mice reacted to environmental cigarette smoke in a similar manner regarding genes involved in metabolism of xenobiotics, multidrug resistance, and protein repair. Irrespective of the p53 status, environmental cigarette smoke poorly affected the expression of oncogenes, tumor suppressor genes, and DNA repair genes. Taken together, these findings may explain the increased susceptibility of p53 mutant mice to smoke-related alterations of intermediate biomarkers and lung carcinogenesis.

  15. Comparative study of p63 and p53 expression in tissue microarrays of malignant melanomas.

    PubMed

    Brinck, Ulrich; Ruschenburg, Ilka; Di Como, Charles J; Buschmann, Nadine; Betke, Herbert; Stachura, Jerzy; Cordon-Cardo, Carlos; Korabiowska, Monika

    2002-12-01

    p63 is a known homologue of p53. In contrast to p53, however, p63 mutations are rarely seen in tumours. There have been several reports that p63 plays a regulatory role in the normal differentiation of cells, whereas its role in tumour biology must still be elucidated. The main aim of this study was to compare p63 and p53 expression in tissue microarrays of malignant melanomas and to establish any prognostic significance. p63 expression was found in 2 out of 59 tumours, both pT4. The p63 index did not exceed 30%. p53 expression was found in 27 out of 59 melanomas, with maximal expression in up to 80% of tumour cells. There were no correlations observed between the two markers. Multivariate analysis confirmed the prognostically independent role of p53. This study also confirmed that tissue microarrays can be used effectively for evaluation of the expression of certain tumour markers.

  16. DNA intercalator korkormicin A preferentially kills tumor cells expressing wild type p53.

    PubMed

    Kitagaki, Jirouta; Yang, Yili

    2011-10-14

    Korkormicin A belongs to a family of nature-produced cyclic depsipeptides. It has potent antitumor activity against both leukemia cell P388 and carcinoma cell M109. To further explore its potential as a cancer therapeutic, the mechanism of its antitumor activity was investigated. We found that korkormicin A can bind to DNA through intercalation. It also induces p53 phosphorylation, which leads to inhibition of p53 degradation and activation of p53-dependent transcription. Furthermore, korkormicin A preferentially induces apoptosis in transformed cells retaining wild type p53. As it has been shown that p53 usually induces apoptosis in transformed cells, but only growth arrest in untransformed cells, these results indicate that korkormicin A is a potential antitumor agent for cancers with wild type p53. Published by Elsevier Inc.

  17. p53 and beta-catenin expression in gallbladder tissues and correlation with tumor progression in gallbladder cancer.

    PubMed

    Ghosh, Mila; Sakhuja, Puja; Singh, Shivendra; Agarwal, Anil K

    2013-01-01

    The inactivation of the tumor suppressor gene and activation of the proto-oncogene are key steps in the development of human cancer. p53 and beta-catenin are examples of such genes, respectively. In the present study, our aim was to determine the role of these genes in the carcinogenesis of the gallbladder by immunohistochemistry. Sections from paraffin-embedded blocks of surgically resected specimens of gallbladder cancer (GBC) (80 cases), chronic cholecystitis (60 cases), and control gallbladders (10 cases) were stained with the monoclonal antibody p53, and polyclonal antibody beta-catenin. Results were scored semiquantitatively and statistical analysis performed. p53 expression was scored as percentage of the nuclei stained. Beta-catenin expression was scored as type of expression-membranous, cytoplasmic, and nuclear staining. Beta-catenin expression was correlated with tumor invasiveness, differentiation, and stage. Over-expression of p53 was seen in 56.25% of GBC cases and was not seen in chronic cholecystitis or in control gallbladders. p53 expression in gallbladder cancer was significantly higher than in inflammatory or control gallbladders (P < 0.0001). p53 expression increased with increasing tumor grade (P = 0.039). Beta-catenin nuclear expression was seen in 75% cases of gallbladder cancer and in no case of chronic cholecystitis and control gallbladder. Beta-catenin nuclear expression increased with tumor depth invasiveness, and grade (P = 0.028 and P = 0.0152, respectively). p53 and beta-catenin nuclear expression is significantly higher in GBC. p53 expression correlates with increasing tumor grade while beta-catenin nuclear expression correlates with tumor grade and depth of invasion, thus suggesting a role for these genes in tumor progression of GBC.

  18. Immunohistochemical study of p53 and proliferating cell nuclear antigen expression in odontogenic keratocyst and periapical cyst.

    PubMed

    Sajeevan, Thara Purath; Saraswathi, Tillai Rajasekaran; Ranganathan, Kannan; Joshua, Elizabeth; Rao, Uma Devi K

    2014-07-01

    p53 protein is a product of p53 gene, which is now classified as a tumor suppressor gene. The gene is a frequent target for mutation, being seen as a common step in the pathogenesis of many human cancers. Proliferating cell nuclear antigen (PCNA) is an auxiliary protein of DNA polymerase delta and plays a critical role in initiation of cell proliferation. The aim of this study is to assess and compare the expression of p53 and PCNA in lining epithelium of odontogenic keratocyst (OKC) and periapical cyst (PA). A total of 20 cases comprising 10 OKC and 10 PA were included in retrospective study. Three paraffin section of 4 μm were cut, one was used for routine hematoxylin and eosin stain, while the other two were used for immunohistochemistry. Statistical analysis was performed using Chi-square test. The level of staining and intensity were assessed in all these cases. OKC showed PCNA expression in all cases (100%), whereas in perapical cyst only 60% of cases exhibited PCNA staining. (1) OKC showed p53 expression in 6 cases (60%) whereas in PA only 10% of the cases exhibited p53 staining. Chi-square test showed PCNA staining intensity was more significant than p53 in OKC. (2) The staining intensity of PA using p53, PCNA revealed that PCNA stating intensity was more significant than p53. OKC shows significant proliferative activity than PA using PCNA and p53. PCNA staining was more intense when compared with p53 in both OKC and PA.

  19. p53 and Beta-Catenin Expression in Gallbladder Tissues and Correlation with Tumor Progression in Gallbladder Cancer

    PubMed Central

    Ghosh, Mila; Sakhuja, Puja; Singh, Shivendra; Agarwal, Anil K.

    2013-01-01

    Background/Aim: The inactivation of the tumor suppressor gene and activation of the proto-oncogene are key steps in the development of human cancer. p53 and beta-catenin are examples of such genes, respectively. In the present study, our aim was to determine the role of these genes in the carcinogenesis of the gallbladder by immunohistochemistry. Patients and Methods: Sections from paraffin-embedded blocks of surgically resected specimens of gallbladder cancer (GBC) (80 cases), chronic cholecystitis (60 cases), and control gallbladders (10 cases) were stained with the monoclonal antibody p53, and polyclonal antibody beta-catenin. Results were scored semiquantitatively and statistical analysis performed. p53 expression was scored as percentage of the nuclei stained. Beta-catenin expression was scored as type of expression–membranous, cytoplasmic, and nuclear staining. Beta-catenin expression was correlated with tumor invasiveness, differentiation, and stage. Results: Over-expression of p53 was seen in 56.25% of GBC cases and was not seen in chronic cholecystitis or in control gallbladders. p53 expression in gallbladder cancer was significantly higher than in inflammatory or control gallbladders (P < 0.0001). p53 expression increased with increasing tumor grade (P = 0.039). Beta-catenin nuclear expression was seen in 75% cases of gallbladder cancer and in no case of chronic cholecystitis and control gallbladder. Beta-catenin nuclear expression increased with tumor depth invasiveness, and grade (P = 0.028 and P = 0.0152, respectively). Conclusion: p53 and beta-catenin nuclear expression is significantly higher in GBC. p53 expression correlates with increasing tumor grade while beta-catenin nuclear expression correlates with tumor grade and depth of invasion, thus suggesting a role for these genes in tumor progression of GBC. PMID:23319036

  20. Residues in the alternative reading frame tumor suppressor that influence its stability and p53-independent activities

    SciTech Connect

    Tommaso, Anne di; Hagen, Jussara; Tompkins, Van; Muniz, Viviane; Dudakovic, Amel; Kitzis, Alain; Ladeveze, Veronique; Quelle, Dawn E.

    2009-04-15

    The Alternative Reading Frame (ARF) protein suppresses tumorigenesis through p53-dependent and p53-independent pathways. Most of ARF's anti-proliferative activity is conferred by sequences in its first exon. Previous work showed specific amino acid changes occurred in that region during primate evolution, so we programmed those changes into human p14ARF to assay their functional impact. Two human p14ARF residues (Ala{sup 14} and Thr{sup 31}) were found to destabilize the protein while two others (Val{sup 24} and Ala{sup 41}) promoted more efficient p53 stabilization and activation. Despite those effects, all modified p14ARF forms displayed robust p53-dependent anti-proliferative activity demonstrating there are no significant biological differences in p53-mediated growth suppression associated with simian versus human p14ARF residues. In contrast, p53-independent p14ARF function was considerably altered by several residue changes. Val{sup 24} was required for p53-independent growth suppression whereas multiple residues (Val{sup 24}, Thr{sup 31}, Ala{sup 41} and His{sup 60}) enabled p14ARF to block or reverse the inherent chromosomal instability of p53-null MEFs. Together, these data pinpoint specific residues outside of established p14ARF functional domains that influence its expression and signaling activities. Most intriguingly, this work reveals a novel and direct role for p14ARF in the p53-independent maintenance of genomic stability.

  1. Combined CSL and p53 downregulation promotes cancer-associated fibroblast activation

    PubMed Central

    Procopio, Maria-Giuseppina; Laszlo, Csaba; Labban, Dania Al; Kim, Dong Eun; Bordignon, Pino; Jo, Seunghee; Goruppi, Sandro; Menietti, Elena; Ostano, Paola; Ala, Ugo; Provero, Paolo; Hoetzenecker, Wolfram; Neel, Victor; Kilarski, Witek; Swartz, Melody A.; Brisken, Cathrin; Lefort, Karine; Dotto, G. Paolo

    2015-01-01

    Stromal fibroblast senescence has been linked to aging-associated cancer risk. However, density and proliferation of cancer-associated fibroblasts (CAF) are frequently increased. Loss or down-modulation of the Notch effector CSL/RBP-Jκ in dermal fibroblasts is sufficient for CAF activation and ensuing keratinocyte-derived tumors. We report that CSL silencing induces senescence of primary fibroblasts from dermis, oral mucosa, breast and lung. CSL functions in these cells as direct repressor of multiple senescence- and CAF-effector genes. It also physically interacts with p53, repressing its activity. CSL is down-modulated in stromal fibroblasts of premalignant skin actinic keratosis lesions and squamous cell carcinomas (SCC), while p53 expression and function is down-modulated only in the latter, with paracrine FGF signaling as likely culprit. Concomitant loss of CSL and p53 overcomes fibroblast senescence, enhances expression of CAF effectors and promotes stromal and cancer cell expansion. The findings support a CAF activation/stromal co-evolution model under convergent CSL/p53 control. PMID:26302407

  2. TGEV nucleocapsid protein induces cell cycle arrest and apoptosis through activation of p53 signaling

    SciTech Connect

    Ding, Li; Huang, Yong; Du, Qian; Dong, Feng; Zhao, Xiaomin; Zhang, Wenlong; Xu, Xingang; Tong, Dewen

    2014-03-07

    Highlights: • TGEV N protein reduces cell viability by inducing cell cycle arrest and apoptosis. • TGEV N protein induces cell cycle arrest and apoptosis by regulating p53 signaling. • TGEV N protein plays important roles in TGEV-induced cell cycle arrest and apoptosis. - Abstract: Our previous studies showed that TGEV infection could induce cell cycle arrest and apoptosis via activation of p53 signaling in cultured host cells. However, it is unclear which viral gene causes these effects. In this study, we investigated the effects of TGEV nucleocapsid (N) protein on PK-15 cells. We found that TGEV N protein suppressed cell proliferation by causing cell cycle arrest at the S and G2/M phases and apoptosis. Characterization of various cellular proteins that are involved in regulating cell cycle progression demonstrated that the expression of N gene resulted in an accumulation of p53 and p21, which suppressed cyclin B1, cdc2 and cdk2 expression. Moreover, the expression of TGEV N gene promoted translocation of Bax to mitochondria, which in turn caused the release of cytochrome c, followed by activation of caspase-3, resulting in cell apoptosis in the transfected PK-15 cells following cell cycle arrest. Further studies showed that p53 inhibitor attenuated TGEV N protein induced cell cycle arrest at S and G2/M phases and apoptosis through reversing the expression changes of cdc2, cdk2 and cyclin B1 and the translocation changes of Bax and cytochrome c induced by TGEV N protein. Taken together, these results demonstrated that TGEV N protein might play an important role in TGEV infection-induced p53 activation and cell cycle arrest at the S and G2/M phases and apoptosis occurrence.

  3. p53, p63 and p73 expression and angiogenesis in keratocystic odontogenic tumors

    PubMed Central

    Chandrangsu, Soranun

    2016-01-01

    Background Keratocystic odontogenic tumors (KCOTSs) are odontogenic tumors previously referred to as odontogenic keratocysts. Several studies have reported that KCOT behavior is more like that of a benign neoplasm than a cyst. KCOTs are locally destructive and exhibit a high recurrence rate. The objective of this study is to characterize the expression of p53, p63 and p73 in KCOTs together with the relationship between their expression and KCOT angiogenesis and recurrence. Material and Methods Standard indirect immunohistochemistry using monoclonal antibodies specific to human p53, p63, p73 and CD105 was performed in formalin-fixed paraffin-embedded tissue sections of 39 KCOT samples. Grading of p53, p63 and p73 immunohistochemical staining was divided into three groups, whereas microvessel density (MVD) was presented as the mean +/- standard deviation. Associations between p53, p63 and p73 expression and clinical-pathological parameters were analyzed by Fisher’s exact test, whereas associations among MVD levels, clinical and pathological parameters and p53, p63 and p73 expression were analyzed by the Mann-Whitney U test. Correlations among p53, p63, p73 and MVD levels were analyzed using Spearman’s correlation coefficients. For all analyses, p< 0.05 was considered to indicate statistical significance. Results p53, p63 and p73 expression was noted in 23, 32 and 26 of 39 KCOT cases, respectively. The mean MVD was 26.7 ± 15.8 per high-power field. In addition, correlations between the expression levels of p53, p63, p73 and MVD in KCOT were examined. Statistically significant positive relationships were noted for all proteins (p<0.001). Conclusions Three members of the p53 protein family are expressed in KCOTs, and their expression relates to angiogenesis in these tumors. Key words:p53, p63, p73, angiogenesis, keratocystic odontogenic tumors. PMID:27957261

  4. Reverting p53 activation after recovery of cellular stress to resume with cell cycle progression.

    PubMed

    Lazo, Pedro A

    2017-05-01

    The activation of p53 in response to different types of cellular stress induces several protective reactions including cell cycle arrest, senescence or cell death. These protective effects are a consequence of the activation of p53 by specific phosphorylation performed by several kinases. The reversion of the cell cycle arrest, induced by p53, is a consequence of the phosphorylated and activated p53, which triggers its own downregulation and that of its positive regulators. The different down-regulatory processes have a sequential and temporal order of events. The mechanisms implicated in p53 down-regulation include phosphatases, deacetylases, and protein degradation by the proteasome or autophagy, which also affect different p53 protein targets and functions. The necessary first step is the dephosphorylation of p53 to make it available for interaction with mdm2 ubiquitin-ligase, which requires the activation of phosphatases targeting both p53 and p53-activating kinases. In addition, deacetylation of p53 is required to make lysine residues accessible to ubiquitin ligases. The combined action of these downregulatory mechanisms brings p53 protein back to its basal levels, and cell cycle progression can resume if cells have overcome the stress or damage situation. The specific targeting of these down-regulatory mechanisms can be exploited for therapeutic purposes in cancers harbouring wild-type p53.

  5. Mutant p53 upregulates alpha-1 antitrypsin expression and promotes invasion in lung cancer.

    PubMed

    Shakya, R; Tarulli, G A; Sheng, L; Lokman, N A; Ricciardelli, C; Pishas, K I; Selinger, C I; Kohonen-Corish, M R J; Cooper, W A; Turner, A G; Neilsen, P M; Callen, D F

    2017-04-03

    Missense mutations in the TP53 tumor-suppressor gene inactivate its antitumorigenic properties and endow the incipient cells with newly acquired oncogenic properties that drive invasion and metastasis. Although the oncogenic effect of mutant p53 transcriptome has been widely acknowledged, the global influence of mutant p53 on cancer cell proteome remains to be fully elucidated. Here, we show that mutant p53 drives the release of invasive extracellular factors (the ‘secretome’) that facilitates the invasion of lung cancer cell lines. Proteomic characterization of the secretome from mutant p53-inducible H1299 human non-small cell lung cancer cell line discovered that the mutant p53 drives its oncogenic pathways through modulating the gene expression of numerous targets that are subsequently secreted from the cells. Of these genes, alpha-1 antitrypsin (A1AT) was identified as a critical effector of mutant p53 that drives invasion in vitro and in vivo, together with induction of epithelial–mesenchymal transition markers expression. Mutant p53 upregulated A1AT transcriptionally through the involvement with its family member p63. Conditioned medium containing secreted A1AT enhanced cell invasion, while an A1AT-blocking antibody attenuated the mutant p53-driven migration and invasion. Importantly, high A1AT expression correlated with increased tumor stage, elevated p53 staining and shorter overall survival in lung adenocarcinoma patients. Collectively, these findings suggest that A1AT is an indispensable target of mutant p53 with prognostic and therapeutic potential in mutant p53-expressing tumors. Oncogene advance online publication, 3 April 2017; doi:10.1038/onc.2017.66.

  6. Analysis of p53 mutations and the expression of p53 and p21WAF1/CIP1 protein in 15 cases of sebaceous carcinoma of the eyelid.

    PubMed

    Kiyosaki, Kunihiro; Nakada, Chisato; Hijiya, Naoki; Tsukamoto, Yoshiyuki; Matsuura, Keiko; Nakatsuka, Kazuo; Daa, Tsutomu; Yokoyama, Shigeo; Imaizumi, Masamoto; Moriyama, Masatsugu

    2010-01-01

    The purpose of this study was to detect mutation of the p53 gene, to assess its relationship with p53 or p21(WAF1/CIP1) expression, and to evaluate the correlation between p53 mutation or p21(WAF1/CIP1) expression and clinicopathologic findings in sebaceous carcinoma of the eyelid. Fifteen conventional paraffin-embedded samples of sebaceous carcinoma of the eyelid were analyzed. Using the single-strand conformation polymorphism technique, the authors sequenced coding exons 5-8 of the p53 gene. The expression of p53 and p21(WAF1/CIP1) protein was analyzed by immunohistochemistry. In 10 of the 15 cases (66.7%), point mutations were detected in the p53 gene. CC to TT double-base changes (tandem mutations), which are known to be induced only by UV, were not detected in any of the mutations. Correlations between p53 mutation and expression were found to be statistically significant (P = 0.007). There was no significant correlation between p53 mutation and clinicopathologic findings or p21(WAF1/CIP1) expression. However, there was a significant inverse correlation between p21(WAF1/CIP1) expression and presence of lymph node metastasis (P = 0.007). Among human cancers, sebaceous carcinoma of the eyelid may be one of those showing most frequent mutation of the p53 gene, which may not be caused by exposure to UV. p21(WAF1/CIP1) downregulation may be associated with lymph node metastasis.

  7. Inactivation of p53 by HTLV type 1 and HTLV type 2 Tax trans-activators.

    PubMed

    Mahieux, R; Pise-Masison, C A; Nicot, C; Green, P; Hall, W W; Brady, J N

    2000-11-01

    Human T cell lymphotropic virus type II (HTLV-2) was originally isolated from a patient with a hairy T cell leukemia. It has been associated with rare cases of CD8(+) T lymphoproliferative disorders, and has a controversial role as a pathogen. The loss of p53 function, as a consequence of mutation or inactivation, increases the chances of genetic damage. Indeed, the importance of p53 as a tumor suppressor is evident from the fact that over 60% of all human cancers have a mutant or inactive p53. p53 status has been extensively studied in HTLV-1-infected cell lines. Interestingly, despite the fact that p53 mutations have been found in only a minority of cells, the p53 functions were found to be impaired. We have analyzed the functional activity of the p53 tumor suppressor in cells transformed with HTLV-2 subtypes A and B. As with HTLV-1-infected cells, abundant levels of the p53 protein are detected in HTLV-2 virus-infected cell lines. Using p53 reporter plasmid or induction of p53-responsive genes in response to gamma-irradiation, the p53 was found to be transcriptionally inhibited in HTLV-2-infected cells. Interestingly, although Tax-2A and-2B inactivate p53, the Tax-2A protein appears to inhibit p53 function less efficiently than either Tax-1 or Tax-2B in T cells, but not in fibroblasts.

  8. Activation of p53 Facilitates the Target Search in DNA by Enhancing the Target Recognition Probability.

    PubMed

    Itoh, Yuji; Murata, Agato; Sakamoto, Seiji; Nanatani, Kei; Wada, Takehiko; Takahashi, Satoshi; Kamagata, Kiyoto

    2016-07-17

    Tumor suppressor p53 binds to the target in a genome and regulates the expression of downstream genes. p53 searches for the target by combining three-dimensional diffusion and one-dimensional sliding along the DNA. To examine the regulation mechanism of the target binding, we constructed the pseudo-wild type (pseudo-WT), activated (S392E), and inactive (R248Q) mutants of p53 and observed their target binding in long DNA using single-molecule fluorescence imaging. The pseudo-WT sliding along the DNA showed many pass events over the target and possessed target recognition probability (TRP) of 7±2%. The TRP increased to 18±2% for the activated mutant but decreased to 0% for the inactive mutant. Furthermore, the fraction of the target binding by the one-dimensional sliding among the total binding events increased from 63±9% for the pseudo-WT to 87±2% for the activated mutant. Control of TRP upon activation, as demonstrated here for p53, might be a general activation mechanism of transcription factors. Copyright © 2016 Elsevier Ltd. All rights reserved.

  9. Mdm2 is a novel activator of ApoCIII promoter which is antagonized by p53 and SHP inhibition

    SciTech Connect

    Yang, Zhihong; Zhang, Yuxia; Wang, Li

    2012-01-13

    Highlights: Black-Right-Pointing-Pointer Mdm2 enhances HNF4{alpha} activation of the ApoCIII promoter via interaction with HNF4{alpha}. Black-Right-Pointing-Pointer p53 antagonizes the effect of Mdm2 activation of the ApoCIII promoter. Black-Right-Pointing-Pointer SHP strengthens p53 inhibition but abolishes Mdm2 activation of the ApoCIII promoter. Black-Right-Pointing-Pointer Mdm2 alters the enrichment of HNF4{alpha}, p53 and SHP to the ApoCIII promoter. -- Abstract: We examined the effect of Mdm2 on regulation of the ApoCIII promoter and its cross-talk with p53 and nuclear receptor SHP. Overexpression of Mdm2 markedly enhanced ApoCIII promoter activity by HNF4{alpha}. A direct association of Mdm2 protein with the HNF4{alpha} protein was observed by co-immunoprecipitation. Ectopic expression of p53 decreased HNF4{alpha} activation of the ApoCIII promoter and antagonized the effect of Mdm2. Co-expression of SHP further strengthened p53 inhibition and abolished Mdm2 activation of the ApoCIII promoter. Mdm2 inhibited p53-mediated enrichment of HNF4{alpha} to the ApoCIII promoter while simultaneously reducing p53 binding and increasing recruitment of SHP to the ApoCIII promoter. The results from this study implicate a potentially important function of Mdm2 in regulation of lipoprotein metabolism.

  10. Major deletions in the gene encoding the p53 tumor antigen cause lack of p53 expression in HL-60 cells.

    PubMed Central

    Wolf, D; Rotter, V

    1985-01-01

    The tumor antigen p53 is overproduced in transformed cells of various species, including man. HL-60 is an exceptional human tumor cell line that does not express this protein. Hybridization of polyadenylylated mRNA of these cells with a human p53 cDNA probe (p53-H14), which we cloned, had indicated a total absence of the mature-size (3.0 kilobases) or any aberrant p53 mRNA species. Analysis of the genomic HL-60 DNA indicated that the p53 gene in these cells was significantly altered. Most of the gene was deleted, and the residual p53 sequences of these cells, which show weak homology, mapped to the corresponding 5' region of the p53 gene. In agreement with previously documented results, we found that HL-60 cells have an amplified c-myc gene. We suggest that the deficiency of the p53 protein in HL-60 cells could have been overcome by using an alternative metabolic pathway. The c-myc product is a candidate for such an alternative protein. Images PMID:2858093

  11. Suppression of p53 activity through the cooperative action of Ski and histone deacetylase SIRT1.

    PubMed

    Inoue, Yasumichi; Iemura, Shun-ichiro; Natsume, Tohru; Miyazawa, Keiji; Imamura, Takeshi

    2011-02-25

    Ski was originally identified as an oncogene based on the fact that Ski overexpression transformed chicken and quail embryo fibroblasts. Consistent with these proposed oncogenic roles, Ski is overexpressed in various human tumors. However, whether and how Ski functions in mammalian tumorigenesis has not been fully investigated. Here, we show that Ski interacts with p53 and attenuates the biological functions of p53. Ski overexpression attenuated p53-dependent transactivation, whereas Ski knockdown enhanced the transcriptional activity of p53. Interestingly, Ski bound to the histone deacetylase SIRT1 and stabilized p53-SIRT1 interaction to promote p53 deacetylation, which subsequently decreased the DNA binding activity of p53. Consistent with the ability of Ski to inactivate p53, overexpressing Ski desensitized cells to genotoxic drugs and Nutlin-3, a small-molecule antagonist of Mdm2 that stabilizes p53 and activates the p53 pathway, whereas knocking down Ski increased the cellular sensitivity to these agents. These results indicate that Ski negatively regulates p53 and suggest that the p53-Ski-SIRT1 axis is an attractive target for cancer therapy.

  12. Nitric oxide-induced p53 accumulation and regulation of inducible nitric oxide synthase expression by wild-type p53.

    PubMed Central

    Forrester, K; Ambs, S; Lupold, S E; Kapust, R B; Spillare, E A; Weinberg, W C; Felley-Bosco, E; Wang, X W; Geller, D A; Tzeng, E; Billiar, T R; Harris, C C

    1996-01-01

    The tumor suppressor gene product p53 plays an important role in the cellular response to DNA damage from exogenous chemical and physical mutagens. Therefore, we hypothesized that p53 performs a similar role in response to putative endogenous mutagens, such as nitric oxide (NO). We report here that exposure of human cells to NO generated from an NO donor or from overexpression of inducible nitric oxide synthase (NOS2) results in p53 protein accumulation. In addition, expression of wild-type (WT) p53 in a variety of human tumor cell lines, as well as murine fibroblasts, results in down-regulation of NOS2 expression through inhibition of the NOS2 promoter. These data are consistent with the hypothesis of a negative feedback loop in which endogenous NO-induced DNA damage results in WT p53 accumulation and provides a novel mechanism by which p53 safeguards against DNA damage through p53-mediated transrepression of NOS2 gene expression, thus reducing the potential for NO-induced DNA damage. Images Fig. 1 Fig. 2 Fig. 3 PMID:8637893

  13. Inhibition of SIRT1 Catalytic Activity Increases p53 Acetylation but Does Not Alter Cell Survival following DNA Damage

    PubMed Central

    Solomon, Jonathan M.; Pasupuleti, Rao; Xu, Lei; McDonagh, Thomas; Curtis, Rory; DiStefano, Peter S.; Huber, L. Julie

    2006-01-01

    Human SIRT1 is an enzyme that deacetylates the p53 tumor suppressor protein and has been suggested to modulate p53-dependent functions including DNA damage-induced cell death. In this report, we used EX-527, a novel, potent, and specific small-molecule inhibitor of SIRT1 catalytic activity to examine the role of SIRT1 in p53 acetylation and cell survival after DNA damage. Treatment with EX-527 dramatically increased acetylation at lysine 382 of p53 after different types of DNA damage in primary human mammary epithelial cells and several cell lines. Significantly, inhibition of SIRT1 catalytic activity by EX-527 had no effect on cell growth, viability, or p53-controlled gene expression in cells treated with etoposide. Acetyl-p53 was also increased by the histone deacetylase (HDAC) class I/II inhibitor trichostatin A (TSA). EX-527 and TSA acted synergistically to increase acetyl-p53 levels, confirming that p53 acetylation is regulated by both SIRT1 and HDACs. While TSA alone reduced cell survival after DNA damage, the combination of EX-527 and TSA had no further effect on cell viability and growth. These results show that, although SIRT1 deacetylates p53, this does not play a role in cell survival following DNA damage in certain cell lines and primary human mammary epithelial cells. PMID:16354677

  14. Molecular Signature of HPV-Induced Carcinogenesis: pRb, p53 and Gene Expression Profiling

    PubMed Central

    Buitrago-Pérez, Águeda; Garaulet, Guillermo; Vázquez-Carballo, Ana; Paramio, Jesús M; García-Escudero, Ramón

    2009-01-01

    The infection by mucosal human papillomavirus (HPV) is causally associated with tumor development in cervix and oropharynx. The mechanisms responsible for this oncogenic potential are mainly due to the product activities of two early viral oncogenes: E6 and E7. Although a large number of cellular targets have been described for both oncoproteins, the interaction with tumor suppressors p53 and retinoblastoma protein (pRb) emerged as the key functional activities. E6 degrades tumor suppressor p53, thus inhibiting p53-dependent functions, whereas E7 binds and degrades pRb, allowing the transcription of E2F-dependent genes. Since these two tumor suppressors exert their actions through transcriptional modulation, functional genomics has provided a large body of data that reflects the altered gene expression of HPVinfected cells or tissues. Here we will review the similarities and differences of these findings, and we also compare them with those obtained with transgenic mouse models bearing the deletion of some of the viral oncogene targets. The comparative analysis supports molecular evidences about the role of oncogenes E6 and E7 in the interference with the mentioned cellular functions, and also suggests that the mentioned transgenic mice can be used as models for HPV-associated diseases such as human cervical, oropharynx, and skin carcinomas. PMID:19721808

  15. Molecular Signature of HPV-Induced Carcinogenesis: pRb, p53 and Gene Expression Profiling.

    PubMed

    Buitrago-Pérez, Agueda; Garaulet, Guillermo; Vázquez-Carballo, Ana; Paramio, Jesús M; García-Escudero, Ramón

    2009-03-01

    The infection by mucosal human papillomavirus (HPV) is causally associated with tumor development in cervix and oropharynx. The mechanisms responsible for this oncogenic potential are mainly due to the product activities of two early viral oncogenes: E6 and E7. Although a large number of cellular targets have been described for both oncoproteins, the interaction with tumor suppressors p53 and retinoblastoma protein (pRb) emerged as the key functional activities. E6 degrades tumor suppressor p53, thus inhibiting p53-dependent functions, whereas E7 binds and degrades pRb, allowing the transcription of E2F-dependent genes. Since these two tumor suppressors exert their actions through transcriptional modulation, functional genomics has provided a large body of data that reflects the altered gene expression of HPVinfected cells or tissues. Here we will review the similarities and differences of these findings, and we also compare them with those obtained with transgenic mouse models bearing the deletion of some of the viral oncogene targets. The comparative analysis supports molecular evidences about the role of oncogenes E6 and E7 in the interference with the mentioned cellular functions, and also suggests that the mentioned transgenic mice can be used as models for HPV-associated diseases such as human cervical, oropharynx, and skin carcinomas.

  16. Construction and expression of a bispecific single-chain antibody that penetrates mutant p53 colon cancer cells and binds p53.

    PubMed

    Weisbart, Richard H; Wakelin, Rika; Chan, Grace; Miller, Carl W; Koeffler, Phillip H

    2004-10-01

    A bispecific, single-chain antibody Fv fragment (Bs-scFv) was constructed from a single-chain Fv fragment of mAb 3E10 that penetrates living cells and localizes in the nucleus, and a single-chain Fv fragment of a non-penetrating antibody, mAb PAb421 that binds the C-terminal of p53. PAb421 binding restores wild-type functions of some p53 mutants, including those of SW480 human colon cancer cells. The Bs-scFv penetrated SW480 cells and was cytotoxic, suggesting an ability to restore activity to mutant p53. COS-7 cells (monkey kidney cells with wild-type p53) served as a control since they are unresponsive to PAb421 due to the presence of SV40 large T antigen that inhibits binding of PAb421 to p53. Bs-scFv penetrated COS-7 cells but was not cytotoxic, thereby eliminating non-specific toxicity of Bs-scFv unrelated to binding p53. A single mutation in CDR1 of PAb421 VH eliminated binding of the Bs-scFv to p53 and abrogated cytotoxicity for SW480 cells without altering cellular penetration, further supporting the requirement of PAb421 binding to p53 for cytotoxicity. Our study demonstrates the use of an antibody that penetrates living cells in the design of a bispecific single chain antibody to target and restore the function of an intracellular protein.

  17. Ki67, p27 and p53 Expression in Squamous Epithelial Lesions of Larynx.

    PubMed

    Mondal, Debashri; Saha, Kaushik; Datta, Chhanda; Chatterjee, Uttara; Sengupta, Arunabho

    2013-04-01

    Precise assessment of the biological behavior and progression of squamous epithelial lesions of the larynx with a view to predict the prognosis and therapeutic challenges remains an elusive goal. The knowledge and data regarding the expression of proliferative markers indicating the biological activity in different histological grades of squamous epithelial lesions are lacking till date. To evaluate the relationship between Ki67, p27 and p53 expression as well as topographic distribution of Ki67 with the histological subtypes or grades of laryngeal squamous intraepithelial and invasive lesions. Sixty-two consecutive cases with histologically documented intraepithelial and invasive squamous lesion were studied for Ki67, p27 and p53 expression. Mann-Whitney U, Kruskal-Wallis and Spearman's correlation tests were used for statistical analysis. The mean Ki67 labeling index in hyperplasia, dysplasia and carcinoma were 12.15, 22.03 and 35.53 % respectively and this difference was statistically significant (P < 0.05). There was strong positive correlation between Ki67 labeling index and increasing grades of squamous lesions. p27 expression was progressively decreased and p53 expression was progressively increased as the lesions progressed from hyperplasia to dysplasia and dysplasia to carcinoma. The topographic distribution of Ki67 positive cells increased with progressive grades of dysplasia. The Ki67 labeling index correlates well with the histological grade of both intraepithelial and invasive lesions of the larynx. And the topographic distribution of Ki67 expression depends on the grade of the dysplasia. Hence, Ki67 expression has a definite role in predicting the biological behavior of the lesions.

  18. The maternal genes Ci-p53/p73-a and Ci-p53/p73-b regulate zygotic ZicL expression and notochord differentiation in Ciona intestinalis embryos.

    PubMed

    Noda, Takeshi

    2011-12-01

    I isolated a Ciona intestinalis homolog of p53, Ci-p53/p73-a, in a microarray screen of rapidly degraded maternal mRNA by comparing the transcriptomes of unfertilized eggs and 32-cell stage embryos. Higher expression of the gene in eggs and lower expression in later embryonic stages were confirmed by whole-mount in situ hybridization (WISH) and quantitative reverse transcription-PCR (qRT-PCR); expression was ubiquitous in eggs and early embryos. Knockdown of Ci-p53/p73-a by injection of antisense morpholino oligonucleotides (MOs) severely perturbed gastrulation cell movements and expression of notochord marker genes. A key regulator of notochord differentiation in Ciona embryos is Brachyury (Ci-Bra), which is directly activated by a zic-like gene (Ci-ZicL). The expression of Ci-ZicL and Ci-Bra in A-line notochord precursors was downregulated in Ci-p53/p73-a knockdown embryos. Maternal expression of Ci-p53/p73-b, a homolog of Ci-p53/p73-a, was also detected. In Ci-p53/p73-b knockdown embryos, gastrulation cell movements, expression of Ci-ZicL and Ci-Bra in A-line notochord precursors, and expression of notochord marker gene at later stages were perturbed. The upstream region of Ci-ZicL contains putative p53-binding sites. Cis-regulatory analysis of Ci-ZicL showed that these sites are involved in expression of Ci-ZicL in A-line notochord precursors at the 32-cell and early gastrula stages. These results suggest that p53 genes are maternal factors that play a crucial role in A-line notochord differentiation in C. intestinalis embryos by regulating Ci-ZicL expression.

  19. Activated AKT regulates NF-kappaB activation, p53 inhibition and cell survival in HTLV-1-transformed cells.

    PubMed

    Jeong, Soo-Jin; Pise-Masison, Cynthia A; Radonovich, Michael F; Park, Hyeon Ung; Brady, John N

    2005-10-06

    AKT activation enhances resistance to apoptosis and induces cell survival signaling through multiple downstream pathways. We now present evidence that AKT is activated in HTLV-1-transformed cells and that Tax activation of AKT is linked to NF-kappaB activation, p53 inhibition and cell survival. Overexpression of AKT wild type (WT), but not a kinase dead (KD) mutant, resulted in increased Tax-mediated NF-kappaB activation. Blocking AKT with the PI3K/AKT inhibitor LY294002 or AKT SiRNA prevented NF-kappaB activation and inhibition of p53. Treatment of C81 cells with LY294002 resulted in an increase in the p53-responsive gene MDM2, suggesting a role for AKT in the Tax-mediated regulation of p53 transcriptional activity. Further, we show that LY294002 treatment of C81 cells abrogates in vitro IKKbeta phosphorylation of p65 and causes a reduction of p65 Ser-536 phosphorylation in vivo, steps critical to p53 inhibition. Interestingly, blockage of AKT function did not affect IKKbeta phosphorylation of IkappaBalpha in vitro suggesting selective activity of AKT on the IKKbeta complex. Finally, AKT prosurvival function in HTLV-1-transformed cells is linked to expression of Bcl-xL. We suggest that AKT plays a role in the activation of prosurvival pathways in HTLV-1-transformed cells, possibly through NF-kappaB activation and inhibition of p53 transcription activity.

  20. TAp73 promotes cell survival upon genotoxic stress by inhibiting p53 activity

    PubMed Central

    Chen, Dongshi; Ming, Lihua; Zou, Fangdong; Peng, Ye; Houten, Bennett Van; Yu, Jian; Zhang, Lin

    2014-01-01

    p53 plays a key role in regulating DNA damage response by suppressing cell cycle progression or inducing apoptosis depending on extent of DNA damage. However, it is not clear why mild genotoxic stress favors growth arrest, whereas excessive lesions signal cells to die. Here we showed that TAp73, a p53 homologue thought to have a similar function as p53, restrains the transcriptional activity of p53 and prevents excessive activation of its downstream targets upon low levels of DNA damage, which results in cell cycle arrest. Extensive DNA damage triggers TAp73 depletion through ubiquitin/proteasome-mediated degradation of E2F1, leading to enhanced transcriptional activation by p53 and subsequent induction of apoptosis. These findings provide novel insights into the regulation of p53 function and suggest that TAp73 keeps p53 activity in check in regulating cell fate decisions upon genotoxic stress. PMID:25237903

  1. CerS6 Is a Novel Transcriptional Target of p53 Protein Activated by Non-genotoxic Stress.

    PubMed

    Fekry, Baharan; Jeffries, Kristen A; Esmaeilniakooshkghazi, Amin; Ogretmen, Besim; Krupenko, Sergey A; Krupenko, Natalia I

    2016-08-05

    Our previous study suggested that ceramide synthase 6 (CerS6), an enzyme in sphingolipid biosynthesis, is regulated by p53: CerS6 was elevated in several cell lines in response to transient expression of p53 or in response to folate stress, which is known to activate p53. It was not clear, however, whether CerS6 gene is a direct transcriptional target of p53 or whether this was an indirect effect through additional regulatory factors. In the present study, we have shown that the CerS6 promoter is activated by p53 in luciferase assays, whereas transcriptionally inactive R175H p53 mutant failed to induce the luciferase expression from this promoter. In vitro immunoprecipitation assays and gel shift analyses have further demonstrated that purified p53 binds within the CerS6 promoter sequence spanning 91 bp upstream and 60 bp downstream of the transcription start site. The Promo 3.0.2 online tool for the prediction of transcription factor binding sites indicated the presence of numerous putative non-canonical p53 binding motifs in the CerS6 promoter. Luciferase assays and gel shift analysis have identified a single motif upstream of the transcription start as a key p53 response element. Treatment of cells with Nutlin-3 or low concentrations of actinomycin D resulted in a strong elevation of CerS6 mRNA and protein, thus demonstrating that CerS6 is a component of the non-genotoxic p53-dependent cellular stress response. This study has shown that by direct transcriptional activation of CerS6, p53 can regulate specific ceramide biosynthesis, which contributes to the pro-apoptotic cellular response.

  2. Magnetite Nanoparticles Inhibit Tumor Growth and Upregulate the Expression of P53/P16 in Ehrlich Solid Carcinoma Bearing Mice

    PubMed Central

    Bassiony, Heba; Sabet, Salwa; Salah El-Din, Taher A.; Mohamed, Mona M.; El-Ghor, Akmal A.

    2014-01-01

    Background Magnetite nanoparticles (MNPs) have been widely used as contrast agents and have promising approaches in cancer treatment. In the present study we used Ehrlich solid carcinoma (ESC) bearing mice as a model to investigate MNPs antitumor activity, their effect on expression of p53 and p16 genes as an indicator for apoptotic induction in tumor tissues. Method MNPs coated with ascorbic acid (size: 25.0±5.0 nm) were synthesized by co-precipitation method and characterized. Ehrlich mice model were treated with MNPs using 60 mg/Kg day by day for 14 injections; intratumorally (IT) or intraperitoneally (IP). Tumor size, pathological changes and iron content in tumor and normal muscle tissues were assessed. We also assessed changes in expression levels of p53 and p16 genes in addition to p53 protein level by immunohistochemistry. Results Our results revealed that tumor growth was significantly reduced by IT and IP MNPs injection compared to untreated tumor. A significant increase in p53 and p16 mRNA expression was detected in Ehrlich solid tumors of IT and IP treated groups compared to untreated Ehrlich solid tumor. This increase was accompanied with increase in p53 protein expression. It is worth mentioning that no significant difference in expression of p53 and p16 could be detected between IT ESC and control group. Conclusion MNPs might be more effective in breast cancer treatment if injected intratumorally to be directed to the tumor tissues. PMID:25375144

  3. Magnetite nanoparticles inhibit tumor growth and upregulate the expression of p53/p16 in Ehrlich solid carcinoma bearing mice.

    PubMed

    Bassiony, Heba; Sabet, Salwa; Salah El-Din, Taher A; Mohamed, Mona M; El-Ghor, Akmal A

    2014-01-01

    Magnetite nanoparticles (MNPs) have been widely used as contrast agents and have promising approaches in cancer treatment. In the present study we used Ehrlich solid carcinoma (ESC) bearing mice as a model to investigate MNPs antitumor activity, their effect on expression of p53 and p16 genes as an indicator for apoptotic induction in tumor tissues. MNPs coated with ascorbic acid (size: 25.0±5.0 nm) were synthesized by co-precipitation method and characterized. Ehrlich mice model were treated with MNPs using 60 mg/Kg day by day for 14 injections; intratumorally (IT) or intraperitoneally (IP). Tumor size, pathological changes and iron content in tumor and normal muscle tissues were assessed. We also assessed changes in expression levels of p53 and p16 genes in addition to p53 protein level by immunohistochemistry. Our results revealed that tumor growth was significantly reduced by IT and IP MNPs injection compared to untreated tumor. A significant increase in p53 and p16 mRNA expression was detected in Ehrlich solid tumors of IT and IP treated groups compared to untreated Ehrlich solid tumor. This increase was accompanied with increase in p53 protein expression. It is worth mentioning that no significant difference in expression of p53 and p16 could be detected between IT ESC and control group. MNPs might be more effective in breast cancer treatment if injected intratumorally to be directed to the tumor tissues.

  4. Epstein-Barr virus nuclear antigen 3C targets p53 and modulates its transcriptional and apoptotic activities

    SciTech Connect

    Yi Fuming; Saha, Abhik; Murakami, Masanao; Kumar, Pankaj; Knight, Jason S.; Cai Qiliang; Choudhuri, Tathagata; Robertson, Erle S.

    2009-06-05

    The p53 tumor suppressor gene is one of the most commonly mutated genes in human cancers and the corresponding encoded protein induces apoptosis or cell-cycle arrest at the G1/S checkpoint in response to DNA damage. To date, previous studies have shown that antigens encoded by human tumor viruses such as SV40 large T antigen, adenovirus E1A and HPV E6 interact with p53 and disrupt its functional activity. In a similar fashion, we now show that EBNA3C, one of the EBV latent antigens essential for the B-cell immortalization in vitro, interacts directly with p53. Additionally, we mapped the interaction of EBNA3C with p53 to the C-terminal DNA-binding and the tetramerization domain of p53, and the region of EBNA3C responsible for binding to p53 was mapped to the N-terminal domain of EBNA3C (residues 130-190), previously shown to interact with a number of important cell-cycle components, specifically SCF{sup Skp2}, cyclin A, and cMyc. Furthermore, we demonstrate that EBNA3C substantially represses the transcriptional activity of p53 in luciferase based reporter assays, and rescues apoptosis induced by ectopic p53 expression in SAOS-2 (p53{sup -/-}) cells. Interestingly, we also show that the DNA-binding ability of p53 is diminished in the presence of EBNA3C. Thus, the interaction between the p53 and EBNA3C provides new insights into the mechanism(s) by which the EBNA3C oncoprotein can alter cellular gene expression in EBV associated human cancers.

  5. Evaluation of p53 protein expression as a marker for long-term prognosis in colorectal carcinoma.

    PubMed Central

    Mulder, J. W.; Baas, I. O.; Polak, M. M.; Goodman, S. N.; Offerhaus, G. J.

    1995-01-01

    Mutation of the p53 gene is reported to be of prognostic importance in colorectal carcinomas. Immunohistochemical staining of the accumulated p53 gene product may be a simple alternative for p53 mutation analysis. Previous studies addressing the prognostic importance of p53 expression, however, yielded contradictory results. Therefore, we evaluated the importance of p53 expression as a marker for long-term prognosis in a well-characterised study population of 109 colorectal carcinomas. After antigen retrieval with target unmasking fluid (TUF), immunostaining of p53 was performed with both monoclonal antibody DO7 and polyclonal antibody CM1. Objective quantification of the p53 signal was assessed by a computerised image analyser. p53 expression was higher in non-mucinous tumours than in mucinous tumours (p53 labelling index = 30% and 17% respectively, P = 0.05), and in metastatic tumours compared with non-metastatic tumours (p53 labelling index = 37% and 22% respectively, P = 0.05). Other histopathological features were not related to p53 expression. In multivariate analysis, Dukes' stage (P = 0.02) and histological grade (P = 0.05) stood out as independent markers for prognosis. p53 expression was not an independent marker for prognosis. At present, p53 expression is not a useful marker for long-term prognosis. Further insight into the relationship between p53 mutations and p53 expression is needed to elucidate more precisely the clinical relevance of p53 alterations. PMID:7779721

  6. Expression of Ki67 and P53 in primary squamous cell carcinoma of the larynx.

    PubMed

    Ashraf, Mohamad Javad; Maghbul, Maryam; Azarpira, Negar; Khademi, Bighan

    2010-01-01

    We studied a series of untreated laryngeal carcinomas in an attempt to determine the relationship between Ki67 and p53 expression and clinicopathological findings. The relationship between expression of these markers in non-tumoral tissue was also evaluated in order to investigate the possible role of immunohistochemistry as a diagnostic aid in evaluating laryngeal biopsies. Samples from 54 patients with laryngeal squamous cell carcinoma (SCC) were analyzed retrospectively. The uninvolved vocal cord was evaluated as a non-tumoral sample. Paraffin sections of tumors were immunohistochemically stained for p53 and Ki67 expression. Overall, p53 expression was found in 35 (64.8%) of the patients. There was a significant correlation among tumoral p53 expression and tumor location, tumor stage and lymph node involvement. Most grade I tumors had a Ki67 labeling index <50% and a labeling index ≥ 50 was found mainly in high-grade tumors. Tumoral Ki67 expression correlated significantly with tumor grade and mitotic count. There was no correlation between Ki67 labeling index and tumor region. In non-tumoral tissue, 95% of high-grade pre-neoplastic lesions revealed a high expression of Ki67. Non-tumoral p53 expression did not correlate with histological findings. p53 and Ki67 expression in tumoral tissue may be a prognostic marker in patients with laryngeal SCC. Evaluation of the proliferative index in biopsy samples of dysplastic laryngeal mucosa is potentially useful for predicting the progression toward carcinoma.

  7. Increases in apoptosis, caspase activity and expression of p53 and bax, and the transition between two types of mitochondrion-rich cells, in the gills of the climbing perch, Anabas testudineus, during a progressive acclimation from freshwater to seawater

    PubMed Central

    Ching, Biyun; Chen, Xiu L.; Yong, Jing H. A.; Wilson, Jonathan M.; Hiong, Kum C.; Sim, Eugene W. L.; Wong, Wai P.; Lam, Siew H.; Chew, Shit F.; Ip, Yuen K.

    2013-01-01

    This study aimed to test the hypothesis that branchial osmoregulatory acclimation involved increased apoptosis and replacement of mitochdonrion-rich cells (MRCs) in the climbing perch, Anabas testudineus, during a progressive acclimation from freshwater to seawater. A significant increase in branchial caspase-3/-7 activity was observed on day 4 (salinity 20), and an extensive TUNEL-positive apoptosis was detected on day 5 (salinity 25), indicating salinity-induced apoptosis had occurred. This was further supported by an up-regulation of branchial mRNA expression of p53, a key regulator of cell cycle arrest and apoptosis, between day 2 (salinity 10) and day 6 (seawater), and an increase in branchial p53 protein abundance on day 6. Seawater acclimation apparently activated both the extrinsic and intrinsic pathways, as reflected by significant increases in branchial caspase-8 and caspase-9 activities. The involvement of the intrinsic pathway was confirmed by the significant increase in branchial mRNA expression of bax between day 4 (salinity 20) and day 6 (seawater). Western blotting results revealed the presence of a freshwater Na+/K+-ATPase (Nka) α-isoform, Nka α1a, and a seawater isoform, Nka α1b, the protein abundance of which decreased and increased, respectively, during seawater acclimation. Immunofluorescence microscopy revealed the presence of two types of MRCs distinctly different in sizes, and confirmed that the reduction in Nka α1a expression, and the prominent increases in expression of Nka α1b, Na+:K+:2Cl− cotransporter 1, and cystic fibrosis transmembrane conductance regulator Cl− channel coincided with the salinity-induced apoptotic event. Since modulation of existing MRCs alone could not have led to extensive salinity-induced apoptosis, it is probable that some, if not all, freshwater-type MRCs could have been removed through increased apoptosis and subsequently replaced by seawater-type MRCs in the gills of A. testudineus during seawater

  8. Induction of proapoptotic gene expression and recruitment of p53 herald ovarian follicle loss caused by polycyclic aromatic hydrocarbons.

    PubMed

    Pru, James K; Kaneko-Tarui, Tomoko; Jurisicova, Andrea; Kashiwagi, Aki; Selesniemi, Kaisa; Tilly, Jonathan L

    2009-04-01

    Activation of the aryl hydrocarbon receptor (AHR) by polycyclic aromatic hydrocarbons (PAH), a ubiquitous class of environmental and occupational biohazards, accelerates germ cell depletion in female mice during prenatal and postnatal life. Like AHR, BAX is also functionally required for PAH to kill oocytes. Here, we show that PAH upregulates ovarian expression of not just Bax but a large cassette of proapoptotic genes that function at multiple steps of the cell death signaling pathway. We further show that ovarian expression of p53 and several proapoptotic genes that are known transcriptional targets of p53 are increased by PAH treatment, and that mice lacking functional p53 are resistant to the ovotoxic effects of in vivo PAH exposure. This study provides further mechanistic insights into how PAH accelerate oocyte depletion in females and adds p53 to the list of genes whose functional importance to PAH-induced ovotoxicity has been demonstrated by gene knockout technology.

  9. p53 Expression in rheumatoid and psoriatic arthritis synovial tissue and association with joint damage

    PubMed Central

    Salvador, G; Sanmarti, R; Garcia-Peiro, A; Rodriguez-Cros, J; Munoz-Gomez, J; Canete, J

    2005-01-01

    Background: Overexpression and functional mutations of p53 have been found in the synovial tissue (ST) of patients with rheumatoid arthritis (RA), but their clinical significance remains unclear. Objective: To analyse p53 expression in the ST of patients with RA and psoriatic arthritis (PsA) and its association with joint damage. Methods: Synovial biopsy specimens were obtained by arthroscopy in 45 patients (27 RA, 18 PsA). Radiographs of hands, feet, and the joint undergoing arthroscopy were obtained to evaluate the presence of erosive disease. Synovial cell populations were analysed using CD4, CD8, CD138, CD20, and CD68 monoclonal antibodies (mAbs). The p53 protein was determined by immunohistology using DO7 mAb in 34 patients (18 RA, 16 PsA). In 11 patients with early RA, the association between p53 and 1 year progression of radiographic damage was analysed using the Larsen-Scott method. Results: The p53 protein was detected in 16/18 (89%) patients with RA and in 9/16 (56%) patients with PsA, but its expression in RA was significantly higher than in PsA. In RA, p53 expression was significantly associated with erosive disease, and its scores were higher in patients with radiological progression. CD68 expression was also associated with erosions and radiological progression in RA. No association was found between either p53 or CD68 and erosive disease in PsA. Conclusions: These results suggest that p53 ST overexpression and association with joint damage is characteristic of RA rather than PsA, and that p53 ST expression might be a prognostic marker of joint damage in RA. PMID:15647425

  10. p53 protein expression in patients with myelodysplasia treated with allogeneic bone marrow transplantation.

    PubMed

    Pich, Achille; Godio, Laura; Davico Bonino, Laura

    2017-06-01

    Tumor protein 53 mutations adversely affect the prognosis of myelodysplastic syndromes (MDS); however, few studies have reported on the prognostic significance of the expression of p53 protein in MDS. The current study investigated p53 immunoreactivity (p53-IR) in bone marrow biopsies (BMBs) obtained at diagnosis from 18 patients (6 females and 12 males; mean age, 50.5 years) with MDS that underwent bone marrow transplantation (BMT) to determine the associations between clinical and histopathological data and outcome. There were 5 refractory cytopenia with multilineage dysplasia (RCMD) and 13 refractory anemia with excess blasts, type 2 (RAEB-2) cases. p53-IR was assessed as the percentage of hematopoietic cells exhibiting intense nuclear staining. The cut off for positivity was 5% of stained cells. A positive p53-IR was detected in 7 patients (38.9%) and was associated with age (P=0.005) and pattern of BM fibrosis (P=0.03). A positive p53-IR was more frequent in females, in highly cellular BMBs and in RAEB-2 cases. Overall survival (OS) was associated with patients' age (P=0.01), hemoglobin level (P=0.04), type of MDS (P=0.05), degree of BM fibrosis (P=0.006) and number of BM blasts (P=0.05). The OS of patients with negative p53-IR tended to be longer compared with that of patients with positive p53-IR, although this difference was not statistically significant (P=0.1). Despite the limitation of the low number of cases, the present results indicate that a positive p53-IR at diagnosis is associated with clinically more aggressive MDS subtypes and adverse histological prognostic factors, such as BM fibrosis. Therefore, the evaluation of p53 expression of BMBs of patients with MDS may be introduced in the histopathological work-up of the disease.

  11. p53 protein expression in patients with myelodysplasia treated with allogeneic bone marrow transplantation

    PubMed Central

    Pich, Achille; Godio, Laura; Davico Bonino, Laura

    2017-01-01

    Tumor protein 53 mutations adversely affect the prognosis of myelodysplastic syndromes (MDS); however, few studies have reported on the prognostic significance of the expression of p53 protein in MDS. The current study investigated p53 immunoreactivity (p53-IR) in bone marrow biopsies (BMBs) obtained at diagnosis from 18 patients (6 females and 12 males; mean age, 50.5 years) with MDS that underwent bone marrow transplantation (BMT) to determine the associations between clinical and histopathological data and outcome. There were 5 refractory cytopenia with multilineage dysplasia (RCMD) and 13 refractory anemia with excess blasts, type 2 (RAEB-2) cases. p53-IR was assessed as the percentage of hematopoietic cells exhibiting intense nuclear staining. The cut off for positivity was 5% of stained cells. A positive p53-IR was detected in 7 patients (38.9%) and was associated with age (P=0.005) and pattern of BM fibrosis (P=0.03). A positive p53-IR was more frequent in females, in highly cellular BMBs and in RAEB-2 cases. Overall survival (OS) was associated with patients' age (P=0.01), hemoglobin level (P=0.04), type of MDS (P=0.05), degree of BM fibrosis (P=0.006) and number of BM blasts (P=0.05). The OS of patients with negative p53-IR tended to be longer compared with that of patients with positive p53-IR, although this difference was not statistically significant (P=0.1). Despite the limitation of the low number of cases, the present results indicate that a positive p53-IR at diagnosis is associated with clinically more aggressive MDS subtypes and adverse histological prognostic factors, such as BM fibrosis. Therefore, the evaluation of p53 expression of BMBs of patients with MDS may be introduced in the histopathological work-up of the disease. PMID:28588781

  12. Characterization and expression pattern of p53 during spermatogenesis in the Chinese mitten crab Eriocheir sinensis.

    PubMed

    Hou, Cong-Cong; Yang, Wan-Xi

    2013-02-01

    p53, as a "Guardian of the Genome", plays an important role in cell cycle arrest, apoptosis, DNA repair and inhibition of angiogenesis in different tissues including testis. p53 gene and its protein perform many essential roles for mammalian spermatogenesis. To explore its functions during spermatogenesis in Eriocheir sinensis, we have cloned and sequenced the cDNA (1,218 bp) of p53 from the testis by degenerating primer PCR and rapid-amplification of cDNA ends. The protein alignment of p53 shows the conserved DNA binding domain, dimerization site and zinc binding site consisted of the predicted structures. Phylogenetic analysis revealed that p53 was more closer to Marsupenaeus japonicus and Tigriopus japonicus than other examined species. Tissue expression analysis of p53 mRNA showed p53 was distinctly expressed in accessory sexual gland, muscle, gill, heart, hepatopancreas and testis. In situ hybridization revealed that the p53 mRNA was weakly distributed around the nucleus, but stronger in the invaginated acrosomal tubule at the early stage. At the middle stage, p53 mRNA signal was increased than the early stage and the signal displayed dot-like pattern on the surface of cup-like nucleus. The signal on acrosomal cap is stronger than on the acrosomal tubule, despite acrosomal tubule signal was also distinct. At the late stage, the signal was still mainly located in acrosomal cap and acrosomal tubule. Sporadic signal were found surrounding the cup-like nucleus, but they were very weak. In the mature sperm, the signal was dramatically decreased. Even though the signal on cup-like nucleus and acrosomal tubule were distinct, they were weaker than those in middle stage. Based on these results, we concluded that p53 may play an important role in formation of acrosome biogenesis and nuclear shaping during spermiogenesis of E. sinensis.

  13. 2-Sulfonylpyrimidines: Mild alkylating agents with anticancer activity toward p53-compromised cells

    PubMed Central

    Bauer, Matthias R.; Joerger, Andreas C.; Fersht, Alan R.

    2016-01-01

    The tumor suppressor p53 has the most frequently mutated gene in human cancers. Many of p53’s oncogenic mutants are just destabilized and rapidly aggregate, and are targets for stabilization by drugs. We found certain 2-sulfonylpyrimidines, including one named PK11007, to be mild thiol alkylators with anticancer activity in several cell lines, especially those with mutationally compromised p53. PK11007 acted by two routes: p53 dependent and p53 independent. PK11007 stabilized p53 in vitro via selective alkylation of two surface-exposed cysteines without compromising its DNA binding activity. Unstable p53 was reactivated by PK11007 in some cancer cell lines, leading to up-regulation of p53 target genes such as p21 and PUMA. More generally, there was cell death that was independent of p53 but dependent on glutathione depletion and associated with highly elevated levels of reactive oxygen species and induction of endoplasmic reticulum (ER) stress, as also found for the anticancer agent PRIMA-1MET(APR-246). PK11007 may be a lead for anticancer drugs that target cells with nonfunctional p53 or impaired reactive oxygen species (ROS) detoxification in a wide variety of mutant p53 cells. PMID:27551077

  14. 2-Sulfonylpyrimidines: Mild alkylating agents with anticancer activity toward p53-compromised cells.

    PubMed

    Bauer, Matthias R; Joerger, Andreas C; Fersht, Alan R

    2016-09-06

    The tumor suppressor p53 has the most frequently mutated gene in human cancers. Many of p53's oncogenic mutants are just destabilized and rapidly aggregate, and are targets for stabilization by drugs. We found certain 2-sulfonylpyrimidines, including one named PK11007, to be mild thiol alkylators with anticancer activity in several cell lines, especially those with mutationally compromised p53. PK11007 acted by two routes: p53 dependent and p53 independent. PK11007 stabilized p53 in vitro via selective alkylation of two surface-exposed cysteines without compromising its DNA binding activity. Unstable p53 was reactivated by PK11007 in some cancer cell lines, leading to up-regulation of p53 target genes such as p21 and PUMA. More generally, there was cell death that was independent of p53 but dependent on glutathione depletion and associated with highly elevated levels of reactive oxygen species and induction of endoplasmic reticulum (ER) stress, as also found for the anticancer agent PRIMA-1(MET)(APR-246). PK11007 may be a lead for anticancer drugs that target cells with nonfunctional p53 or impaired reactive oxygen species (ROS) detoxification in a wide variety of mutant p53 cells.

  15. Expression of high p53 levels in colorectal cancer: a favourable prognostic factor

    PubMed Central

    Adrover, E; Maestro, M L; Sanz-Casla, M T; Barco, V del; Cerdán, J; Fernández, C; Balibrea, J L

    1999-01-01

    The expression of p53 protein was examined in a series of 111 colorectal cancer adenocarcinomas with a long follow-up. A quantitative luminometric immunoassay (LIA) was used for the measurement of wild-type and mutant p53 protein in extracts from colorectal tumour cytosols, p53 being detected in 42% of the samples (range 0.0–52 ng mg−1). Using an arbitrary cut-off value of 2.7 ng mg−1, 25% of the tumours were classified as manifesting high p53 levels. There was no association of p53 expression with patient age, sex, serum preoperative carcinoembryonic antigen (CEA) levels, tumour site and size, nodal status or TNM stage. Significant and independent correlation was found to exist between high p53 levels and prolonged disease-free survival (P = 0.05) at a median follow-up of 60 months. This survival advantage was most apparent among stage III cancer patients. The results from this study would suggest that expression of high p53 levels appear to be useful in selecting a group of colorectal cancer patients with a better prognosis. © 1999 Cancer Research Campaign PMID:10487622

  16. p53 expression predicts progression and poor survival in T1 bladder tumours.

    PubMed

    Llopis, J; Alcaraz, A; Ribal, M J; Solé, M; Ventura, P J; Barranco, M A; Rodriguez, A; Corral, J M; Carretero, P

    2000-06-01

    Histological grade (G) is the only parameter proved to have prognostic value for progression in T1 transitional cell carcinoma (TCC) of the bladder, although it is considered inaccurate to make clinical decisions on individuals. The aim of the present study was to evaluate the prognostic relevance of p53 expression in T1 TCC of the bladder. Clinical records of 207 patients with T1 TCC of the bladder were reviewed for clinical parameters reported to influence the evolution of superficial bladder cancer. Among these 207 patients, 40 developed muscle-invasive disease (20 G2 and 20 G3). A retrospective case-control study was then carried out comparing the latter 40 tumours with 40 control tumours matched by grade, sex, age, number and size of the tumours, chemical exposure and presence of carcinoma in situ. p53 immunostaining with monoclonal antibody was performed in these two groups. Histological grade was the only clinical parameter that influenced evolution. p53 expression correlated with tumour progression, since it was observed in 21 out of 24 p53-positive tumours and in only 20 of 56 p53-negative tumours (p<0.0001), showing a specificity of 93. 5% and a sensitivity of 53%. p53 expression correlated as well with patient survival, being 39% in patients with p53-positive tumours and 80% in patients with p53-negative tumours at 60 months (p<0. 0001). p53 protein expression has prognostic value for survival and progression in T1 bladder tumours and can be used for early detection of poor-prognosis T1 bladder tumours.

  17. Pin1-Induced Proline Isomerization in Cytosolic p53 Mediates BAX Activation and Apoptosis.

    PubMed

    Follis, Ariele Viacava; Llambi, Fabien; Merritt, Parker; Chipuk, Jerry E; Green, Douglas R; Kriwacki, Richard W

    2015-08-20

    The cytosolic fraction of the tumor suppressor p53 activates the apoptotic effector protein BAX to trigger apoptosis. Here we report that p53 activates BAX through a mechanism different from that associated with activation by BH3 only proteins (BIM and BID). We observed that cis-trans isomerization of proline 47 (Pro47) within p53, an inherently rare molecular event, was required for BAX activation. The prolyl isomerase Pin1 enhanced p53-dependent BAX activation by catalyzing cis-trans interconversion of p53 Pro47. Our results reveal a signaling mechanism whereby proline cis-trans isomerization in one protein triggers conformational and functional changes in a downstream signaling partner. Activation of BAX through the concerted action of cytosolic p53 and Pin1 may integrate cell stress signals to induce a direct apoptotic response. Copyright © 2015 Elsevier Inc. All rights reserved.

  18. DN-R175H p53 mutation is more effective than p53 interference in inducing epithelial disorganization and activation of proliferation signals in human carcinoma cells: role of E-cadherin.

    PubMed

    Rieber, Manuel; Strasberg Rieber, Mary

    2009-10-01

    One of the hallmarks of carcinomas is epithelial disorganization, linked to overexpression of matrix metalloproteases (MMP) like MMP-9, loss of intercellular E-cadherin and activation of epidermal growth receptor (EGFR/erbB1). Since the p53 tumor suppressor pathway is inactivated in most human cancers due to gene mutations or defective wt p53 signaling, we now investigated in human wt p53 breast carcinoma MCF-7 cells, whether single treatment with the p53 transactivation pharmacological inhibitor pifithrin-alpha, transient p53 siRNA interference or stable insertion of a dominant-negative (DN) R175H p53 mutant increase: (i) EGFR/erbB1 activation, (ii) MMP-9 expression and (iii) loss of surface E-cadherin. Transient abrogation of wt p53 function increased phosphorylation of EGFR/erbB1 and MMP-9 expression. However, all these effects were much more pronounced in cells stably transduced with the dominant negative-Arg-175His mutant p53 (DN-R175H mutant p53), which also showed loss of epithelial cytoarchitecture and extensive E-cadherin downregulation. Collectively, these results support the notion that the DN-R175H mutant p53 exerts a gain of oncogenic function by promoting disruption of E-cadherin intercellular contacts and activation of proliferation signals. Our data suggests that epithelial shape and growth control are unequally affected depending on how wt p53 function is impaired and whether partial or full tumor suppressor activity is lost.

  19. Expression of p53 in preneoplastic and early neoplastic bronchial lesions.

    PubMed

    Martin, B; Verdebout, J-M; Mascaux, C; Paesmans, M; Rouas, G; Verhest, A; Ninane, V; Sculier, J-P

    2002-01-01

    p53 alteration has been reported to be an early event in bronchial carcinogenesis. Our study purpose was to determine the rate of p53 expression in the various preneoplastic and early neoplastic bronchial lesions obtained by biopsy during fluorescence bronchoscopy and to analyse its association with patients characteristics. Various stages of preneoplastic lesions as well as radio-occult lung cancer were studied in biopsies obtained by fluorescence bronchoscopy. We assessed the expression of p53 by immunohistochemistry using monoclonal antibody clone DO7. The p53 expression was considered as positive if > or = 1% of cells were positive and the level of positivity was expressed in percentage of positive cells. Fourteen patients were included in each category of preneoplastic lesions. At the threshold of 1% of positive cells p53 expression was observed in 28.5% of the patients with a histologically normal epithelium. This number of positive patients increased with the severity of preneoplastic lesions and reached 100% in the mild dysplasia. The mean rates of p53 positive cells for normal epithelium, hyperplasia, metaplasia, mild and severe dysplasia, carcinoma in situ and invasive radio-occult carcinoma were respectively 0.9, 3.4, 9.1, 20.5, 50.2, 34.7 and 42.5%. There was no statistically significant correlation between p53 expression and patient characteristics such as sex, age, smoking habits and indication for fluorescence bronchoscopy. The alteration of p53 expression in patients with high risk of lung cancer was an early event: this abnormality increased with the severity of the lesions, without significant correlation with patient characteristics.

  20. p53 Expression in a Malignant Mesothelioma Patient during Seven-Year Follow-up

    PubMed Central

    Koo, So-My; Kim, Dong Won; Kim, Ki-Up; Kim, Yang-Ki

    2014-01-01

    Malignant mesothelioma (MM) is the aggressive tumor of serosal surfaces. There are crude pathogenetic results regarding the biology of MM. Coordinated upregulations of p53 gene expression are shown in malignancies. We believed that there are changes in the p53 expression with transformation from reactive hyperplasia to MM. A 65-year-old male was admitted the hospital because of left pleuritic chest pains in 2004. Chest computed tomography (CT) results showed left pleural effusions with loculation and pleural thickening. Pathologic findings revealed reactive mesothelial hyperplasia. In 2008, the patient again felt left pleuritic chest pains. Chest CT showed progressive thickening of the left pleura. Pathologic diagnosis was atypical mesothelial hyperplasia. In 2011, chest CT showed progressive thickening of his left pleura. He was diagnosed with well-differentiated papillary mesothelioma. Serial change was analyzed by immunohistochemical staining for p53 of pleural tissues. There were no remarkable changes in p53 expressions during the transformation to MM. PMID:25024722

  1. Requirement for MLL3 in p53 regulation of hepatic expression of small heterodimer partner and bile acid homeostasis.

    PubMed

    Kim, Dae-Hwan; Kim, Juhee; Lee, Jae W

    2011-12-01

    The histone H3-lysine-4 methyltransferase mixed-lineage leukemia 3 (MLL3) belongs to a large complex that functions as a coactivator of multiple transcription factors, including the bile acid (BA)-activated nuclear receptor, farnesoid X receptor (FXR), a critical player in BA homeostasis. BA-activated FXR induces hepatic expression of small heterodimer partner (SHP), which in turn suppresses expression of BA synthesis genes, Cyp7a1 and Cyp8b1. Thus, MLL3(Δ/Δ) mice that express a catalytically inactive mutant form of MLL3 display increased BA levels. Recently, we have discovered a distinct regulatory pathway for BA homeostasis, in which p53 independently up-regulates SHP expression in the liver. Here, we show that the MLL3 complex is also essential for p53 transactivation of SHP. Although activated p53 signaling in MLL3(+/+) mice results in decreased BA levels through hepatic up-regulation of SHP, these changes are abolished in MLL3(Δ/Δ) mice. For both HepG2 cells and mouse liver, we also demonstrate that p53 directs the recruitment of different components of the MLL3 complex to the p53-response elements of SHP and that p53-dependent H3-lysine-4-trimethylation of SHP requires MLL3. From these results, we conclude that both FXR- and p53-dependent regulatory pathways for SHP expression in BA homeostasis require the MLL3 complex; thus, the MLL3 complex is likely a master regulator of BA homeostasis. Using a common coregulator complex for multiple transcription factors, which independently control expression of the same gene, might be a prevalent theme in gene regulation and may also play critical roles in assigning a specific biological function to a coregulator complex.

  2. A p53-independent role of Mdm2 in estrogen-mediated activation of breast cancer cell proliferation

    PubMed Central

    2011-01-01

    Introduction Estrogen receptor positive breast cancers often have high levels of Mdm2. We investigated if estrogen signaling in such breast cancers occurred through an Mdm2 mediated pathway with subsequent inactivation of p53. Methods We examined the effect of long-term 17β-estradiol (E2) treatment (five days) on the p53-Mdm2 pathway in estrogen receptor alpha (ERα) positive breast cancer cell lines that contain wild-type p53 (MCF-7 and ZR75-1). We assessed the influence of estrogen by examining cell proliferation changes, activation of transcription of p53 target genes, p53-chromatin interactions and cell cycle profile changes. To determine the effects of Mdm2 and p53 knockdown on the estrogen-mediated proliferation signals we generated MCF-7 cell lines with inducible shRNA for mdm2 or p53 and monitored their influence on estrogen-mediated outcomes. To further address the p53-independent effect of Mdm2 in ERα positive breast cancer we generated cell lines with inducible shRNA to mdm2 using the mutant p53 expressing cell line T-47D. Results Estrogen increased the Mdm2 protein level in MCF-7 cells without decreasing the p53 protein level. After estrogen treatment of MCF-7 cells, down-regulation of basal transcription of p53 target genes puma and p21 was observed. Estrogen treatment also down-regulated etoposide activated transcription of puma, but not p21. Mdm2 knockdown in MCF-7 cells increased p21 mRNA and protein, decreased cell growth in 3D matrigel and also decreased estrogen-induced cell proliferation in 2D culture. In contrast, knockdown of p53 had no effect on estrogen-induced cell proliferation. In T-47D cells with mutant p53, the knockdown of Mdm2 decreased estrogen-mediated cell proliferation but did not increase p21 protein. Conclusions Estrogen-induced breast cancer cell proliferation required a p53-independent role of Mdm2. The combined influence of genetic and environmental factors on the tumor promoting effects of estrogen implicated Mdm2 as a

  3. p53 expression and its relationship to DNA alterations in bone and soft tissue sarcomas.

    PubMed Central

    Wadayama, B.; Toguchida, J.; Yamaguchi, T.; Sasaki, M. S.; Yamamuro, T.

    1993-01-01

    The p53 gene is one of the best studied tumour suppressor genes. Recently we performed mutation analysis on the p53 gene in a large number of bone and soft tissue sarcomas, and found that approximately one-third of the sarcomas have some type of DNA alteration at the p53 locus (Toguchida et al., 1992). However, the expression of the p53 protein resulting from these alterations still remains to be clarified. In this study, p53 expression in the sarcoma tissues was analysed immunohistochemically using antibody PAb421 (Oncogene Science) and its relationship to DNA alterations was examined. Of 113 tumours, 29 (25.7%) showed positive staining for the p53 protein. These included 19 of 67 osteosarcomas, five of 20 chondrosarcomas, four of 11 malignant fibrous histiocytomas (MFHs) and one Ewing's sarcoma. In chondrosarcomas, most of the p53-positive tumours belonged to highly malignant and atypical tumour types (dedifferentiated or mesenchymal type), suggesting a role for p53 mutation in the progression of cartilaginous tumours. All the cases with a missense mutation showed strongly positive staining, while no immunoreactivity was observed in the remaining three-quarters with DNA alterations including gross rearrangement, frame-shift mutation, nonsense mutation or mutation at splicing site except in one case. These results demonstrated the dominance of the p53 mutations with null protein expression in bone and soft tissue sarcomas, showing a unique characteristic of these types of tumours compared with other malignancies such as colon carcinomas. Images Figure 1 Figure 2 Figure 3 PMID:8260365

  4. The transcription factor p53: Not a repressor, solely an activator

    PubMed Central

    Fischer, Martin; Steiner, Lydia; Engeland, Kurt

    2014-01-01

    The predominant function of the tumor suppressor p53 is transcriptional regulation. It is generally accepted that p53-dependent transcriptional activation occurs by binding to a specific recognition site in promoters of target genes. Additionally, several models for p53-dependent transcriptional repression have been postulated. Here, we evaluate these models based on a computational meta-analysis of genome-wide data. Surprisingly, several major models of p53-dependent gene regulation are implausible. Meta-analysis of large-scale data is unable to confirm reports on directly repressed p53 target genes and falsifies models of direct repression. This notion is supported by experimental re-analysis of representative genes reported as directly repressed by p53. Therefore, p53 is not a direct repressor of transcription, but solely activates its target genes. Moreover, models based on interference of p53 with activating transcription factors as well as models based on the function of ncRNAs are also not supported by the meta-analysis. As an alternative to models of direct repression, the meta-analysis leads to the conclusion that p53 represses transcription indirectly by activation of the p53-p21-DREAM/RB pathway. PMID:25486564

  5. Moderate dietary restriction reduces p53-mediated neurovascular damage and microglia activation after hypoxic ischemia in neonatal brain.

    PubMed

    Tu, Yi-Fang; Lu, Pei-Jung; Huang, Chao-Ching; Ho, Chien-Jung; Chou, Ya-Ping

    2012-02-01

    Neurovascular damage, including neuronal apoptosis and blood-brain barrier (BBB) damage, and microglia activation account for the hypoxic-ischemia (HI) susceptibility in neonatal brain. The p53 upregulation is involved in apoptosis, endothelial cell damage, and microglia activation. We hypothesized that underweight induced by dietary restriction (DR) protects against HI in rat pups by attenuating p53-mediated neurovascular damage. Male rat pups were grouped as normal litter (NL) size (12 pups/dam), DR (18 pups/dam), and extreme DR (24 pups/dam) from postnatal day 1 and subjected to HI on postnatal day 7. Immunohistochemistry and immunoblotting were used to determine p53, phospho-murine double minute-2, caspases, BBB damage and microglia activation, and immunofluorescence to determine the cellular distribution of p53. Pharmacological approaches were used to regulate p53. The NL, DR, and extreme DR pups had similar TUNEL-positive cells and caspases on postnatal day 7 and comparable learning performance at adulthood. After HI, the DR-HI, but not extreme DR-HI, pups had significantly lower p53, higher phospho-murine double minute-2, lower cleaved caspases, less BBB damage and microglia activation, and less brain volume loss than NL-HI pups. In NL-HI pups, p53 expression was located mainly in the neurons, endothelial cells, and microglia. The p53 blockage by pifithrin-α in NL-HI pups decreased apoptosis, BBB damage, and microglia activation, and was neuroprotective. In contrast, upregulating p53 by nutlin-3 in DR-HI pups increased apoptosis, BBB damage, and microglia activation, and worsened brain damage. Moderate DR, but not extreme DR, reduces p53-mediated neurovascular damage after HI and confers long-term protection in neonatal brain.

  6. LASS5 Interacts with SDHB and Synergistically Represses p53 and p21 Activity

    PubMed Central

    Jiang, Z.; Li, F.; Wan, Y.; Han, Z.; Yuan, W.; Cao, L.; Deng, Y.; Peng, X.; Chen, F.; Fan, X.; Liu, X.; Dai, G.; Wang, Y.; Zeng, Q.; Shi, Y.; Zhou, Z.; Chen, Y.; Xu, W.; Luo, S.; Chen, S.; Ye, X.; Mo, X.; Wu, X.; Li, Y.

    2017-01-01

    Longevity Assurance 5 (LASS5), a member of the LASS/Ceramide Synthases family, synthesizes C16-ceramide and is implicated in tumor biology. However, its precise role is not yet well understood. A yeast two-hybrid screen was performed using a human cDNA library to identify potential LASS5-interaction partners. One identified clone encodes succinate dehydrogenase subunit B (SDHB). Mammalian two-hybrid assays showed that LASS5 interacts with SDHB, and the result was also confirmed by GST pull-down and co-immunoprecipitation assays. The C-terminal fragment of SDHB was required for the interaction. LASS5 and SDHB were co-localized in COS-7 cells. LASS5 and SDHB expressions were found to be up-regulated in neuroglioma tissue. Transfection assays showed that LASS5 or SDHB expression repressed p53 or p21 reporter activity, respectively. Simultaneous LASS5 and SDHB expression resulted in stronger repression of p53 and p21 reporter activity, suggesting that LASS5 and SDHB interaction may synergistically affect transcriptional regulation of p53 and p21. Our data provide new molecular insights into potential roles of LASS5 and SDHB in tumor biology. PMID:27280497

  7. Discovery of new low-molecular-weight p53-Mdmx disruptors and their anti-cancer activities.

    PubMed

    Uesato, Shinichi; Matsuura, Yoshihiro; Matsue, Saki; Sumiyoshi, Takaaki; Hirata, Yoshiyuki; Takemoto, Suzuho; Kawaratani, Yasuyuki; Yamai, Yusuke; Ishida, Kyoji; Sasaki, Tsutomu; Enari, Masato

    2016-04-15

    Although several p53-Mdm2-binding disruptors have been identified to date, few studies have been published on p53-Mdmx-interaction inhibitors. In the present study, we demonstrated that o-aminothiophenol derivatives with molecular weights of 200-300 selectively inhibited the p53-Mdmx interaction. S-2-Isobutyramidophenyl 2-methylpropanethioate (K-178) (1c) activated p53, up-regulated the expression of its downstream genes such as p21 and Mdm2, and preferentially inhibited the growth of cancer cells with wild-type p53 over those with mutant p53. Furthermore, we found that the S-isobutyryl-deprotected forms 1b and 3b of 1c and S-2-benzamidophenyl 2-methylpropanethioate (K-181) (3c) preferentially inhibited the p53-Mdmx interaction over the p53-Mdm2 interaction, respectively, by using a Flag-p53 and glutathione S-transferase (GST)-fused protein complex (Mdm2, Mdmx, DAPK1, or PPID). In addition, the interaction of p53 with Mdmx was lost by replacing a sulfur atom with an oxygen atom in 1b and 1c. These results suggest that sulfides such as 1b, 3b, 4b, and 5b interfere with the binding of p53-Mdmx, resulting in the dissociation of the two proteins. Furthermore, the results of oral administration experiments using xenografts in nude mice indicated that 1c reduced the volume of tumor masses to 49.0% and 36.6% that of the control at 100 mg/kg and 150 mg/kg, respectively, in 40 days. Copyright © 2016 Elsevier Ltd. All rights reserved.

  8. Che-1 gene silencing induces osteosarcoma cell apoptosis by inhibiting mutant p53 expression

    SciTech Connect

    Liu, Ming; Wang, Dan Li, Ning

    2016-04-22

    The transcriptional cofactor Che-1 is an RNA polymerase II (Pol II) which is involved in tumorigenesis, such as breast cancer and multiple myeloma. Che-1 can also regulate mutant p53 expression, which plays roles in many types of cancer. In this study, we aimed to investigate the effects and specific mechanism of Che-1 in the regulation of osteosarcoma (OS) cell growth. We found that Che-1 is highly expressed in several kinds of OS cells compared with osteoblast hFOB1.19 cells. MTT and flow cytometry assays showed that Che-1 depletion by siRNA markedly suppressed MG-63 and U2OS cell proliferation and promoted apoptosis. The chromatin immunoprecipitation (ChIP) assay verified the presence of Che-1 on the p53 promoter in MG-63 and U2OS cells carrying mutant p53. Further studies showed that Che-1 depletion inhibited mutant p53 expression. Notably, our study showed that the loss of Che-1 inhibits proliferation and promotes apoptosis in MG-63 cells by decreasing the level of mutant p53. Therefore, these findings open the possibility that silencing of Che-1 will have therapeutic benefit in OS. - Highlights: • Che-1 is highly expressed in several kinds of OS cells. • Che-1 depletion suppressed MG-63 and U2OS cell growth. • Che-1 is existed in the p53 promoter in MG-63 and U2OS cells. • Che-1 depletion inhibited mutant p53 expression. • Che-1 depletion inhibits cell growth by decreasing the level of mutant p53.

  9. Extensive Post-translational Modification of Active and Inactivated Forms of Endogenous p53*

    PubMed Central

    DeHart, Caroline J.; Chahal, Jasdave S.; Flint, S. J.; Perlman, David H.

    2014-01-01

    The p53 tumor suppressor protein accumulates to very high concentrations in normal human fibroblasts infected by adenovirus type 5 mutants that cannot direct assembly of the viral E1B 55-kDa protein-containing E3 ubiquitin ligase that targets p53 for degradation. Despite high concentrations of nuclear p53, the p53 transcriptional program is not induced in these infected cells. We exploited this system to examine select post-translational modifications (PTMs) present on a transcriptionally inert population of endogenous human p53, as well as on p53 activated in response to etoposide treatment of normal human fibroblasts. These forms of p53 were purified from whole cell lysates by means of immunoaffinity chromatography and SDS-PAGE, and peptides derived from them were subjected to nano-ultra-high-performance LC-MS and MS/MS analyses on a high-resolution accurate-mass MS platform (data available via ProteomeXchange, PXD000464). We identified an unexpectedly large number of PTMs, comprising phosphorylation of Ser and Thr residues, methylation of Arg residues, and acetylation, ubiquitinylation, and methylation of Lys residues—for example, some 150 previously undescribed modifications of p53 isolated from infected cells. These modifications were distributed across all functional domains of both forms of the endogenous human p53 protein, as well as those of an orthologous population of p53 isolated from COS-1 cells. Despite the differences in activity, including greater in vitro sequence-specific DNA binding activity exhibited by p53 isolated from etoposide-treated cells, few differences were observed in the location, nature, or relative frequencies of PTMs on the two populations of human p53. Indeed, the wealth of PTMs that we have identified is consistent with a far greater degree of complex, combinatorial regulation of p53 by PTM than previously anticipated. PMID:24056736

  10. Increased Arf/p53 activity in stem cells, aging and cancer.

    PubMed

    Carrasco-Garcia, Estefania; Moreno, Manuel; Moreno-Cugnon, Leire; Matheu, Ander

    2017-04-01

    Arf/p53 pathway protects the cells against DNA damage induced by acute stress. This characteristic is the responsible for its tumor suppressor activity. Moreover, it regulates the chronic type of stress associated with aging. This is the basis of its anti-aging activity. Indeed, increased gene dosage of Arf/p53 displays elongated longevity and delayed aging. At a cellular level, it has been recently shown that increased dosage of Arf/p53 delays age-associated stem cell exhaustion and the subsequent decline in tissue homeostasis and regeneration. However, p53 can also promote aging if constitutively activated. In this context, p53 reduces tissue regeneration, which correlates with premature exhaustion of stem cells. We discuss here the current evidence linking the Arf/p53 pathway to the processes of aging and cancer through stem cell regulation. © 2017 The Authors. Aging Cell published by the Anatomical Society and John Wiley & Sons Ltd.

  11. Alpha-particle-induced p53 protein expression in a rat lung epithelial cell strain.

    PubMed

    Hickman, A W; Jaramillo, R J; Lechner, J F; Johnson, N F

    1994-11-15

    Other investigators have shown that both sparsely ionizing and UV radiation cause cell cycle arrest that is associated with increased expression of wild-type p53 protein. The effect of exposure to alpha-particles from 238Pu on the induction of the p53 protein has now been examined in cultured lung epithelial cells derived from male F344 rats. The number of cells having increased levels of p53 protein was determined by flow cytometry after the cells had been stained with a monoclonal antibody to p53. alpha-Particle irradiation caused a dose-dependent increase in p53 protein levels detectable at doses as low as 0.6 cGy, with no evidence of a threshold. An increase in p53 protein also occurred in X-irradiated cells. However, no increase was seen in cells exposed to less than 10 cGy of X-rays, indicating the existence of a relatively higher DNA damage threshold for sparsely ionizing radiation. In addition, more cells exposed to low doses of alpha radiation had increased p53 protein levels than would be predicted based on the number of nuclei expected to be traversed by an alpha-particle, suggesting that alpha-particles cause genetic damage by mechanisms in addition to direct interactions with DNA.

  12. Wild-type p53 induces diverse effects in 32D cells expressing different oncogenes.

    PubMed Central

    Soddu, S; Blandino, G; Scardigli, R; Martinelli, R; Rizzo, M G; Crescenzi, M; Sacchi, A

    1996-01-01

    Expression of exogenous wild-type (wt) p53 in different leukemia cell lines can induce growth arrest, apoptotic cell death, or cell differentiation. The hematopoietic cell lines that have been used so far to study wt p53 functions have in common the characteristic of not expressing endogenous p53. However, the mechanisms involved in the transformation of these cells are different, and the cells are at different stages of tumor progression. It can be postulated that each type of neoplastic cell offers a particular environment in which p53 might generate different effects. To test this hypothesis, we introduced individual oncogenes into untransformed, interleukin-3 (IL-3)-dependent myeloid precursor 32D cells to have a single transforming agent at a time. The effects induced by wt p53 overexpression were subsequently evaluated in each oncogene-expressing 32D derivative. We found that in not fully transformed, v-ras-expressing 32D cells, as already shown for the parental 32D cells, overexpression of the wt p53 gene caused no phenotypic changes and no reduction of the proliferative rate as long as the cells were maintained in their normal culture conditions (presence of IL-3 and serum). An accelerated rate of apoptosis was observed after IL-3 withdrawal. In contrast, in transformed, IL-3-independent 32D cells, wt p53 overexpression induced different effects. The v-abl-transformed cells manifested a reduction in growth rate, while the v-src-transformed cells underwent monocytic differentiation. These results show that the phenotype effects of wt p53 action(s) can vary as a function of the cellular environment. PMID:8552075

  13. Valproic Acid Induces the Hyperacetylation of P53, Expression of P53 Target Genes, and Markers of the Intrinsic Apoptotic Pathway in Midorganogenesis Murine Limbs.

    PubMed

    Paradis, France-Hélène; Hales, Barbara F

    2015-10-01

    In utero exposure to valproic acid (VPA), an anticonvulsant and histone deacetylase inhibitor (HDACi), increases the risk of congenital malformations. Although the mechanisms leading to the teratogenicity of VPA remain unsolved, several HDAC inhibitors increase cell death in cancer cell lines and embryonic tissues. Moreover, P53, the master regulator of apoptosis, is an established HDAC target. The purpose of this study was to investigate the effects of VPA on P53 signaling and markers of apoptosis during midorganogenesis in vitro limb development. Timed-pregnant CD1 mice (gestation day 12) were euthanized; embryonic forelimbs were excised and cultured in vitro for 3, 6, 12, or 24 hr in the presence or absence of VPA or valpromide (VPD), a non-HDACi analog of VPA. Quantitative RT-PCR and Western blots were used to assess the expression of candidate genes and proteins involved in P53 signaling and apoptosis. P53 hyperacetylation and a decrease (Survivin/Birc5 and Bcl2) or an increase (p21/Cdkn1a) in the expression of p53 target genes was observed only in VPA-exposed limbs. VPA exposure also triggered an increase in markers of apoptosis and DNA damage; the concentrations of cleaved caspase 9 and caspase 3, cleaved-poly (ADP-ribose) polymerase, and γ-H2AX were increased in VPA-exposed limbs. VPD treatment caused a small but significant increase in cleaved caspase 3. Thus, in vitro exposure to an HDACi such as VPA leads to P53 hyperacetylation, enhances the expression of P53 target genes, and triggers an increase in apoptosis that may contribute to teratogenicity. © 2015 Wiley Periodicals, Inc.

  14. Dynamic roles of p53-mediated metabolic activities in ROS-induced stress responses.

    PubMed

    Jiang, Le; Hickman, Justin H; Wang, Shang-Jui; Gu, Wei

    2015-01-01

    The p53 tumor suppressor is a multifaceted polypeptide that impedes tumorigenesis by regulating a diverse array of cellular processes. Triggered by a wide variety of stress stimuli, p53 transcriptionally regulates genes involved in the canonical tumor suppression pathways of apoptosis, cell-cycle arrest, and senescence. We recently discovered a novel mechanism whereby p53 inhibits cystine uptake through repression of the SLC7A11 gene to mediate ferroptosis. Importantly, this p53-SLC7A11 axis is preserved in the p53(3KR) mutant, and contributes to its ability to suppress tumorigenesis in the absence of the classical tumor suppression mechanisms. Here, we report that wild type p53 can induce both apoptosis and ferroptosis upon reactive oxygen species (ROS)-induced stress. Furthermore, we demonstrate that p53's functional N-terminal domain is required for its capacity to regulate oxidative stress responses and ferroptosis. Notably, activated p53 dynamically modulates intracellular ROS, causing an initial reduction and a subsequent increase of ROS levels. Taken together, these data implicate ferroptosis as an additional component of the cell death program induced by wild type p53 in human cancer cells, and reveal a complex and dynamic role of p53 in oxidative stress responses.

  15. [Expression of protein p53 in workers occupationally exposed to benzidine and bladder cancer patients.].

    PubMed

    Shen, Chun-lin; Xiang, Cui-qin; Zhang, Yun-ying; Qin, Yi-qiu; Liu, Cha-qin; Chen, Ji-gang; Zhang, Sheng-nian

    2005-02-01

    To study expression of mutant p53 protein in workers occupationally exposed to benzidine and bladder cancer patients. Mutant p53 protein in serum from the workers occupationally exposed to benzidine and bladder cancer patients were determined with Immuno-PCR, while exfoliated urothelial cells in the urine samples were classified with Papanicolau grading. Positive rate of mutant p53 protein increased with the exposed intensity index in workers occupationally exposed to benzidine. The positive rate of mutant p53 protein in bladder cancer patients (83.3%) was significantly higher than that in the group 1 of exposed intensity index. The average scanning integrals of PCR amplified band in the group of bladder cancer patients and group 2 of exposed intensity index were both higher than that in the group 1 significantly. Workers in the groups of different exposed intensity indices were further stratified according to Papanicolau grades. In the group 2 of exposed intensity index, the average scanning integrals of PCR amplified band in the stratum of Papanicolau grade II and III were significantly higher than that in the strata of Papanicolau grade I. And in the group 3 of exposed intensity index, the positive rate of mutant p53 protein in the strata of Papanicolau grade III was higher than that in the strata of Papanicolau grade I significantly. The increase of exposed intensity may not only result in the positive rate of mutant p53 protein, but also the quantity of mutant p53 protein in serum within the low range of benzidine exposure. Once the exposed intensity was beyond that spectrum, the positive rate of mutant p53 protein in serum and the average scanning integrals of PCR amplified band were no longer enhanced with the increase of exposed intensity. There was tight correlation between Papanicolau grade of exfoliated urothelial cells and the positive rate or the quantity of mutant p53 protein for the higher benzidine exposure intensity.

  16. What's new in p53

    PubMed Central

    Maritsi, D; Stagikas, D; Charalabopoulos, K; Batistatou, A

    2006-01-01

    p53 is the main intrinsic factor inducing apoptosis by recognizing the external stimuli and activating the p53 responsive genes to an irreversible series of events. P53 activates the transcription of specific proapoptotic genes called p53 target genes. A growing number of p53 responsive genes have been identified and numerous studies have demonstrated that p53 proapoptotic factors such as Noxa, Puma and Perp play cell type specific roles in p53's mediated response to certain stimuli. Perp (p53 apoptosis effector related to PMP-22) is a direct proapoptotic target gene encoding a tetraspan protein. Perp is highly expressed in cells undergoing apoptosis compared to cells under G1 arrest and its overexpression is sufficient to cause cell death in fibroblasts. Noxa is another member of the preapoptotic p53 genes family. When expressed Noxa acts in a BH3 motif-dependent localization to mitochondria, causing structural changes, activation of caspase 9 and release of cytochrome c from mitochondria to cytosol. Puma (p53 mutant of apoptosis) is another critical mediator of p53-dependent apoptosis. P53 binds to Puma-promoter gene sites, leading to puma production. The mtCLIC, a member of intracellular chloride channels, is a cytoplasmic and mitochondrial protein positively regulated by p53. Caspase 10 is induced in p53-dependent manner leading to cellular apoptosis. Other newly announced factors are also involved in p53-regulated apoptosis such as brain-specific angiogenesis inhibitor - 1 (BSAI1), MSOD and GPX genes. A global discussion on this topic is attempted in the present review article. PMID:20351806

  17. What's new in p53?

    PubMed

    Maritsi, D; Stagikas, D; Charalabopoulos, K; Batistatou, A

    2006-07-01

    p53 is the main intrinsic factor inducing apoptosis by recognizing the external stimuli and activating the p53 responsive genes to an irreversible series of events. P53 activates the transcription of specific proapoptotic genes called p53 target genes. A growing number of p53 responsive genes have been identified and numerous studies have demonstrated that p53 proapoptotic factors such as Noxa, Puma and Perp play cell type specific roles in p53's mediated response to certain stimuli. Perp (p53 apoptosis effector related to PMP-22) is a direct proapoptotic target gene encoding a tetraspan protein. Perp is highly expressed in cells undergoing apoptosis compared to cells under G1 arrest and its overexpression is sufficient to cause cell death in fibroblasts. Noxa is another member of the preapoptotic p53 genes family. When expressed Noxa acts in a BH3 motif-dependent localization to mitochondria, causing structural changes, activation of caspase 9 and release of cytochrome c from mitochondria to cytosol. Puma (p53 mutant of apoptosis) is another critical mediator of p53-dependent apoptosis. P53 binds to Puma-promoter gene sites, leading to puma production. The mtCLIC, a member of intracellular chloride channels, is a cytoplasmic and mitochondrial protein positively regulated by p53. Caspase 10 is induced in p53-dependent manner leading to cellular apoptosis. Other newly announced factors are also involved in p53-regulated apoptosis such as brain-specific angiogenesis inhibitor-1 (BSAI1), MSOD and GPX genes. A global discussion on this topic is attempted in the present review article.

  18. Immunohistochemical study of cyclooxygenase-2 and p53 expression in skin tumors.

    PubMed

    Kim, Kwang Ho; Park, Eun Joo; Seo, Young Ju; Cho, Han Suk; Kim, Chul Woo; Kim, Kwang Joong; Park, Hye Rim

    2006-05-01

    Overexpression of cyclooxygenase-2 (COX-2) has been demonstrated in various cancers, including experimentally promoted tumors, gastrointestinal cancers, breast tumors and skin tumors. The mechanism that controls COX-2 expression is not yet clear. Currently, it is reported that COX-2 expression is frequently associated with mutated p53 genes. The goal of this study was to evaluate the expression patterns of COX-2 and p53 in several skin tumors and their correlation. An immunohistochemical method was used to investigate the expression of COX-2 and p53 proteins on formalin-fixed, paraffin-embedded tissue specimens of squamous cell carcinomas (SCC), basal cell carcinomas (BCC), Bowen's disease (BD), actinic keratosis (AK) and porokeratosis. The expression of COX-2 increased in 50% (5/10) of SCC, 80% (8/10) of BCC, 40% (4/10) of BD, 50% (5/10) of AK, and 20% (2/10) of porokeratosis cases. The expression of p53 increased in 90% (9/10) of SCC, 70% (7/10) of BCC, 70% (7/10) of BD, 50% (5/10) of AK, and 40% (4/10) of porokeratosis cases. COX-2 positivity rates of the p53-positive skin tumors were 56%, 100%, 57%, 80% and 25% in SCC, BCC, BD, AK and porokeratosis, respectively. However, the correlation between p53 and COX-2 expression in skin tumors was not statistically significant (P > 0.05). Our results indicate that skin COX-2 and p53 may play roles in skin tumors, but that there is no apparent correlation between the two markers.

  19. Unequal prognostic potentials of p53 gain-of-function mutations in human cancers associate with drug-metabolizing activity.

    PubMed

    Xu, J; Wang, J; Hu, Y; Qian, J; Xu, B; Chen, H; Zou, W; Fang, J-Y

    2014-03-06

    Mutation of p53 is the most common genetic change in human cancer, causing complex effects including not only loss of wild-type function but also gain of novel oncogenic functions (GOF). It is increasingly likely that p53-hotspot mutations may confer different types and magnitudes of GOF, but the evidences are mainly supported by cellular and transgenic animal models. Here we combine large-scale cancer genomic data to characterize the prognostic significance of different p53 mutations in human cancers. Unexpectedly, only mutations on the Arg248 and Arg282 positions displayed significant association with shorter patient survival, but such association was not evident for other hotspot GOF mutations. Gene set enrichment analysis on these mutations revealed higher activity of drug-metabolizing enzymes, including the CYP3A4 cytochrome P450. Ectopic expression of p53 mutant R282W in H1299 and SaOS2 cells significantly upregulated CYP3A4 mRNA and protein levels, and cancer cell lines bearing mortality-associated p53 mutations display higher CYP3A4 expression and resistance to several CYP3A4-metabolized chemotherapeutic drugs. Our results suggest that p53 mutations have unequal GOF activities in human cancers, and future evaluation of p53 as a cancer biomarker should consider which mutation is present in the tumor, rather than having comparison between wild-type and mutant genotypes.

  20. A novel anticancer therapy that simultaneously targets aberrant p53 and Notch activities in tumors.

    PubMed

    Yao, Yuting; Wang, Li; Zhang, He; Wang, Haibo; Zhao, Xiaoping; Zhang, Yidan; Zhang, Leilei; Fan, Xianqun; Qian, Guanxiang; Hu, Ji-Fan; Ge, Shengfang

    2012-01-01

    Notch signaling pathway plays an important role in tumorigenesis by maintaining the activity of self-renewal of cancer stem cells, and therefore, it is hypothesized that interference of Notch signaling may inhibit tumor formation and progression. H101 is a recombinant oncolytic adenovirus that is cytolytic in cells lacking intact p53, but it is unable to eradicate caner stem cells. In this study, we tested a new strategy of tumor gene therapy by combining a Notch1-siRNA with H101 oncolytic adenovirus. In HeLa-S3 tumor cells, the combined therapy blocked the Notch pathway and induced apoptosis in tumors that are p53-inactive. In nude mice bearing xenograft tumors derived from HeLa-S3 cells, the combination of H101/Notch1-siRNA therapies inhibited tumor growth. Moreover, Notch1-siRNA increased Hexon gene expression at both the transcriptional and the translational levels, and promoted H101 replication in tumors, thereby enhancing the oncolytic activity of H101. These data demonstrate the feasibility to combine H101 p53-targted oncolysis and anti-Notch siRNA activities as a novel anti-cancer therapy.

  1. Expression of VEGF-A, Otx Homeobox and p53 Family Genes in Proliferative Vitreoretinopathy

    PubMed Central

    Azzolini, Claudio; Pagani, Ilaria Stefania; Pirrone, Cristina; Al Oum, Muna; Pigni, Diana; Chiaravalli, Anna Maria; Vinciguerra, Riccardo; Simonelli, Francesca; Porta, Giovanni

    2013-01-01

    Introduction. Proliferative vitreoretinopathy (PVR) is a severe inflammatory complication of retinal detachment. Pathological epiretinal membranes grow on the retina surface leading to contraction, and surgery fails in 5% to 10% of the cases. We evaluated the expression of VEGF-A, Otx1, Otx2, Otx3, and p53 family members from PVR specimens to correlate their role in inducing or preventing the pathology. Methods. Twelve retinal samples were taken from patients affected by PVR during therapeutic retinectomies in vitreoretinal surgery. Gene expression was evaluated using quantitative real-time reverse transcriptase PCR analysis and immunohistochemistry, using four healthy human retinae as control. Result. Controls showed basal expression of all genes. PVR samples showed little or no expression of Otx1 and variable expression of VEGF-A, Otx2, Otx3, p53, and p63 genes. Significant correlation was found among VEGF-A, Otx2, p53, and p63 and between Otx1 and Otx3. Conclusions. Otx homeobox, p53 family, and VEGF-A genes are expressed in PVR human retina. We individuated two possible pathways (VEGF-A, Otx2, p53, p63 and Otx1 and Otx3) involved in PVR progression that could influence in different manners the course of the pathology. Individuating the genetic pathways of PVR represents a novel approach to PVR therapies. PMID:24227910

  2. Senescence Process in Primary Wilms' Tumor Cell Culture Induced by p53 Independent p21 Expression.

    PubMed

    Theerakitthanakul, Korkiat; Khrueathong, Jeerasak; Kruatong, Jirasak; Graidist, Potchanapond; Raungrut, Pritsana; Kayasut, Kanita; Sangkhathat, Surasak

    2016-01-01

    Wilms tumor (WT) is an embryonal tumor occurring in developing kidney tissue. WT cells showing invasive cancer characteristics, also retain renal stem cell behaviours. In-vitro culture of WT is hampered by limited replicative potential. This study aimed to establish a longterm culture of WT cells to enable the study of molecular events to attempt to explain its cellular senescence. Primary cell cultures from fresh WT tumor specimen were established. Of 5 cultures tried, only 1 could be propagated for more than 7 passages. One culture, identified as PSU-SK-1, could be maintained > 35 passages and was then subjected to molecular characterization and evaluation for cancer characteristics. The cells consistently harbored concomitant mutations of CTNNB1 (Ser45Pro) and WT1 (Arg413Stop) thorough the cultivation. On Transwell invasion assays, the cells exhibited migration and invasion at 55% and 27% capability of the lung cancer cells, A549. On gelatin zymography, PSU-SK-1 showed high expression of the matrix metaloproteinase. The cells exhibited continuous proliferation with 24-hour doubling time until passages 28-30 when the growth slowed, showing increased cell size, retention of cells in G1/S proportion and positive β-galactosidase staining. As with those evidence of senescence in advanced cell passages, expression of p21 and cyclin D1 increased when the expression of β-catenin and its downstream protein, TCF, declined. There was also loss-of-expression of p53 in this cell line. In conclusion, cellular senescence was responsible for limited proliferation in the primary culture of WT, which was also associated with increased expression of p21 and was independent of p53 expression. Decreased activation of the Wnt signalling might explain the induction of p21 expression.

  3. Senescence Process in Primary Wilms' Tumor Cell Culture Induced by p53 Independent p21 Expression

    PubMed Central

    Theerakitthanakul, Korkiat; Saetang, Jirakrit; Kruatong, Jirasak; Graidist, Potchanapond; Raungrut, Pritsana; Kayasut, Kanita; Sangkhathat, Surasak

    2016-01-01

    Wilms tumor (WT) is an embryonal tumor occurring in developing kidney tissue. WT cells showing invasive cancer characteristics, also retain renal stem cell behaviours. In-vitro culture of WT is hampered by limited replicative potential. This study aimed to establish a longterm culture of WT cells to enable the study of molecular events to attempt to explain its cellular senescence. Methods: Primary cell cultures from fresh WT tumor specimen were established. Of 5 cultures tried, only 1 could be propagated for more than 7 passages. One culture, identified as PSU-SK-1, could be maintained > 35 passages and was then subjected to molecular characterization and evaluation for cancer characteristics. The cells consistently harbored concomitant mutations of CTNNB1 (Ser45Pro) and WT1 (Arg413Stop) thorough the cultivation. On Transwell invasion assays, the cells exhibited migration and invasion at 55% and 27% capability of the lung cancer cells, A549. On gelatin zymography, PSU-SK-1 showed high expression of the matrix metaloproteinase. The cells exhibited continuous proliferation with 24-hour doubling time until passages 28-30 when the growth slowed, showing increased cell size, retention of cells in G1/S proportion and positive β-galactosidase staining. As with those evidence of senescence in advanced cell passages, expression of p21 and cyclin D1 increased when the expression of β-catenin and its downstream protein, TCF, declined. There was also loss-of-expression of p53 in this cell line. In conclusion, cellular senescence was responsible for limited proliferation in the primary culture of WT, which was also associated with increased expression of p21 and was independent of p53 expression. Decreased activation of the Wnt signalling might explain the induction of p21 expression. PMID:27698927

  4. Human papillomavirus, p16 and p53 expression associated with survival of head and neck cancer

    PubMed Central

    2010-01-01

    Background P16 and p53 protein expression, and high-risk human papillomavirus (HPV-HR) types have been associated with survival in head and neck cancer (HNC). Evidence suggests that multiple molecular pathways need to be targeted to improve the poor prognosis of HNC. This study examined the individual and joint effects of tumor markers for differences in predicting HNC survival. P16 and p53 expression were detected from formalin-fixed, paraffin-embedded tissues by immunohistochemical staining. HPV DNA was detected by PCR and DNA sequencing in 237 histologically confirmed HNC patients. Results Overexpression of p16 (p16+) and p53 (p53+) occurred in 38% and 48% of HNC tumors, respectively. HPV-HR was detected in 28% of tumors. Worse prognosis was found in tumors that were p53+ (disease-specific mortality: adjusted hazard ratios, HR = 1.9, 95% CI: 1.04-3.4) or HPV- (overall survival: adj. HR = 2.1, 1.1-4.3) but no association in survival was found by p16 status. Compared to the molecular marker group with the best prognosis (p16+/p53-/HPV-HR: referent), the p16-/p53+/HPV- group had the lowest overall survival (84% vs. 60%, p < 0.01; HR = 4.1, 1.7-9.9) and disease-specific survival (86% vs. 66%, p < 0.01; HR = 4.0, 1.5-10.7). Compared to the referent, the HRs of the other six joint biomarker groups ranged from 1.6-3.4 for overall mortality and 0.9-3.9 for disease-specific mortality. Conclusion The p16/p53/HPV joint groups showed greater distinction in clinical outcomes compared to results based on the individual biomarkers alone. This finding suggests that assessing multiple molecular markers in HNC patients will better predict the diverse outcomes and potentially the type of treatment targeted to those markers. PMID:20181227

  5. p53 protein expression and gene mutation in phyllodes tumors of the breast.

    PubMed

    Gatalica, Z; Finkelstein, S; Lucio, E; Tawfik, O; Palazzo, J; Hightower, B; Eyzaguirre, E

    2001-01-01

    The malignant potential of mammary phyllodes tumors is difficult to assess on initial pathologic examination. Studies on the p53 tumor suppressor gene have shown that it has an important role in the development of a variety of malignancies, yet the specific contribution to the pathogenesis and development of the malignant potential of phyllodes tumor is largely unknown. We studied p53 protein expression in 25 cases of phyllodes tumors histologically classified as either malignant (12 cases) or benign (13 cases). Using microdissection approach, we also analyzed the p53 gene sequence in a case that demonstrated progression from benign to malignant phenotype. Nuclear p53 staining was detected in various proportions (1-90%) of neoplastic stromal cells of malignant tumors. No staining was found in benign tumors. Progression from benign to malignant phenotype was associated with a significant increase in the accumulation of p53 (more than 20 times). This was caused by an underlying missense mutation in exon 7, resulting in a change from Arg248 to Trp248 in the malignant component of the tumor. Stromal p53 over-expression was observed only in neoplasms histologically classified as malignant and was associated with an increased proliferation index (MIB-1 staining). These two markers may be used as useful adjuncts in the diagnosis of malignancy in difficult cases or when only a limited sample size is available. Somatic mutation in exon 7 of p53 gene in malignant phyllodes tumor points toward the importance of p53 in the malignant transformation of phyllodes tumors.

  6. Exercise Activates p53 and Negatively Regulates IGF-1 Pathway in Epidermis within a Skin Cancer Model.

    PubMed

    Yu, Miao; King, Brenee; Ewert, Emily; Su, Xiaoyu; Mardiyati, Nur; Zhao, Zhihui; Wang, Weiqun

    2016-01-01

    Exercise has been previously reported to lower cancer risk through reducing circulating IGF-1 and IGF-1-dependent signaling in a mouse skin cancer model. This study aims to investigate the underlying mechanisms by which exercise may down-regulate the IGF-1 pathway via p53 and p53-related regulators in the skin epidermis. Female SENCAR mice were pair-fed an AIN-93 diet with or without 10-week treadmill exercise at 20 m/min, 60 min/day and 5 days/week. Animals were topically treated with TPA 2 hours before sacrifice and the target proteins in the epidermis were analyzed by both immunohistochemistry and Western blot. Under TPA or vehicle treatment, MDM2 expression was significantly reduced in exercised mice when compared with sedentary control. Meanwhile, p53 was significantly elevated. In addition, p53-transcriptioned proteins, i.e., p21, IGFBP-3, and PTEN, increased in response to exercise. There was a synergy effect between exercise and TPA on the decreased MDM2 and increased p53, but not p53-transcripted proteins. Taken together, exercise appeared to activate p53, resulting in enhanced expression of p21, IGFBP-3, and PTEN that might induce a negative regulation of IGF-1 pathway and thus contribute to the observed cancer prevention by exercise in this skin cancer model.

  7. Exercise Activates p53 and Negatively Regulates IGF-1 Pathway in Epidermis within a Skin Cancer Model

    PubMed Central

    Yu, Miao; King, Brenee; Ewert, Emily; Su, Xiaoyu; Mardiyati, Nur; Zhao, Zhihui; Wang, Weiqun

    2016-01-01

    Exercise has been previously reported to lower cancer risk through reducing circulating IGF-1 and IGF-1-dependent signaling in a mouse skin cancer model. This study aims to investigate the underlying mechanisms by which exercise may down-regulate the IGF-1 pathway via p53 and p53-related regulators in the skin epidermis. Female SENCAR mice were pair-fed an AIN-93 diet with or without 10-week treadmill exercise at 20 m/min, 60 min/day and 5 days/week. Animals were topically treated with TPA 2 hours before sacrifice and the target proteins in the epidermis were analyzed by both immunohistochemistry and Western blot. Under TPA or vehicle treatment, MDM2 expression was significantly reduced in exercised mice when compared with sedentary control. Meanwhile, p53 was significantly elevated. In addition, p53-transcriptioned proteins, i.e., p21, IGFBP-3, and PTEN, increased in response to exercise. There was a synergy effect between exercise and TPA on the decreased MDM2 and increased p53, but not p53-transcripted proteins. Taken together, exercise appeared to activate p53, resulting in enhanced expression of p21, IGFBP-3, and PTEN that might induce a negative regulation of IGF-1 pathway and thus contribute to the observed cancer prevention by exercise in this skin cancer model. PMID:27509024

  8. Gastrointestinal stromal tumors: clinical significance of p53 expression, MDM2 amplification, and KIT mutation status.

    PubMed

    Wallander, Michelle L; Layfield, Lester J; Tripp, Sheryl R; Schmidt, Robert L

    2013-07-01

    Gastrointestinal stromal tumor (GIST) is the most common mesenchymal tumor of the gastrointestinal tract. Clinical behavior is best predicted by size and mitotic count (risk index). KIT and platelet-derived growth factor receptor α (PDGFRA) mutations have therapeutic and prognostic value but few other prognostically significant molecular markers have been identified. We investigated the prognostic value of p53 protein expression and MDM2 gene amplification in a series of GISTs. Thirty-five GISTs were tested for KIT and PDGFRA mutations, p53 protein expression (high >10% positive by immunohistochemistry) and MDM2 gene amplification (ratio >1.8). Mitotic index (>5/50 HPF), MDM2 amplification status, p53 protein expression, tumor size, and KIT/PDGFRA mutational status were correlated with clinical outcome. Only a single (3%) GIST was amplified for MDM2. p53 protein expression, mitotic index, and KIT/PDGFRA mutations did not correlate with recurrence or metastasis (P=0.20, 0.50, and 0.08, respectively) but tumor size did (P=0.04). Risk assessment (size and mitotic index) showed a weak association with clinical behavior (P=0.19). MDM2 amplification is uncommon in GISTs. Although high p53 expression occurred in 35% of cases, it did not correlate with clinical behavior. Only GIST size predicted clinical outcome.

  9. Clinicopathologic significance of histologic grade, pgp, and p53 expression in canine lymphoma.

    PubMed

    Dhaliwal, Ravinder S; Kitchell, Barbara E; Ehrhart, Ej; Valli, Victor E; Dervisis, Nikolaos G

    2013-01-01

    To characterize the expression of P-glycoprotein (Pgp) and p53 in different histologic grades of canine multicentric lymphosarcoma (LSA), 31 cases of LSA without prior treatment were studied. The expression levels of the Pgp and p53 proteins were evaluated for their clinicopathologic significance among standard histologic evaluation. Immunohistochemistry (IHC) was performed on formalin-fixed, paraffin-embedded archival samples of 31 previously untreated LSA cases to detect the expression of Pgp and p53. All dogs were subsequently treated with a combination chemotherapy protocol. Remission and survival durations were evaluated for correlation with histologic grade and presence of drug resistance markers. Of the 31 cases, 24 (80%) and 7 (22%) were positive for Pgp and p53, respectively. Overall, the median survival and duration of remission in the study was 246 days and 137 days, respectively. The National Cancer Institute working formulation histologic grade was not associated with either survival or duration of first remission (DOR). The Pgp protein expression and DOR and survival was not statistically significant. Expression of p53 was statistically correlated with survival.

  10. Suppressing activity of tributyrin on hepatocarcinogenesis is associated with inhibiting the p53-CRM1 interaction and changing the cellular compartmentalization of p53 protein.

    PubMed

    Ortega, Juliana F; de Conti, Aline; Tryndyak, Volodymyr; Furtado, Kelly S; Heidor, Renato; Horst, Maria Aderuza; Fernandes, Laura Helena Gasparini; Tavares, Paulo Eduardo Latorre Martins; Pogribna, Marta; Shpyleva, Svitlana; Beland, Frederick A; Pogribny, Igor P; Moreno, Fernando Salvador

    2016-04-26

    Hepatocellular carcinoma (HCC), an aggressive and the fastest growing life-threatening cancer worldwide, is often diagnosed at intermediate or advanced stages of the disease, which substantially limits therapeutic approaches for its successful treatment. This indicates that the prevention of hepatocarcinogenesis is probably the most promising approach to reduce both the HCC incidence and cancer-related mortality. In previous studies, we demonstrated a potent chemopreventive effect of tributyrin, a butyric acid prodrug, on experimental hepatocarcinogenesis. The cancer-inhibitory effect of tributyrin was linked to the suppression of sustained cell proliferation and induction of apoptotic cell death driven by an activation of the p53 apoptotic signaling pathway. The goal of the present study was to investigate the underlying molecular mechanisms linked to tributyrin-mediated p53 activation. Using in vivo and in vitro models of liver cancer, we demonstrate that an increase in the level of p53 protein in nuclei, a decrease in the level of cytoplasmic p53, and, consequently, an increase in the ratio of nuclear/cytoplasmic p53 in rat preneoplastic livers and in rat and human HCC cell lines caused by tributyrin or sodium butyrate treatments was associated with a marked increase in the level of nuclear chromosome region maintenance 1 (CRM1) protein. Mechanistically, the increase in the level of nuclear p53 protein was associated with a substantially reduced binding interaction between CRM1 and p53. The results demonstrate that the cancer-inhibitory activity of sodium butyrate and its derivatives on liver carcinogenesis may be attributed to retention of p53 and CRM1 proteins in the nucleus, an event that may trigger activation of p53-mediated apoptotic cell death in neoplastic cells.

  11. Suppressing activity of tributyrin on hepatocarcinogenesis is associated with inhibiting the p53-CRM1 interaction and changing the cellular compartmentalization of p53 protein

    PubMed Central

    Ortega, Juliana F.; de Conti, Aline; Tryndyak, Volodymyr; Furtado, Kelly S.; Heidor, Renato; Horst, Maria Aderuza; Fernandes, Laura Helena Gasparini; Tavares, Paulo Eduardo Latorre Martins; Pogribna, Marta; Shpyleva, Svitlana; Beland, Frederick A.; Pogribny, Igor P.; Moreno, Fernando Salvador

    2016-01-01

    Hepatocellular carcinoma (HCC), an aggressive and the fastest growing life-threatening cancer worldwide, is often diagnosed at intermediate or advanced stages of the disease, which substantially limits therapeutic approaches for its successful treatment. This indicates that the prevention of hepatocarcinogenesis is probably the most promising approach to reduce both the HCC incidence and cancer-related mortality. In previous studies, we demonstrated a potent chemopreventive effect of tributyrin, a butyric acid prodrug, on experimental hepatocarcinogenesis. The cancer-inhibitory effect of tributyrin was linked to the suppression of sustained cell proliferation and induction of apoptotic cell death driven by an activation of the p53 apoptotic signaling pathway. The goal of the present study was to investigate the underlying molecular mechanisms linked to tributyrin-mediated p53 activation. Using in vivo and in vitro models of liver cancer, we demonstrate that an increase in the level of p53 protein in nuclei, a decrease in the level of cytoplasmic p53, and, consequently, an increase in the ratio of nuclear/cytoplasmic p53 in rat preneoplastic livers and in rat and human HCC cell lines caused by tributyrin or sodium butyrate treatments was associated with a marked increase in the level of nuclear chromosome region maintenance 1 (CRM1) protein. Mechanistically, the increase in the level of nuclear p53 protein was associated with a substantially reduced binding interaction between CRM1 and p53. The results demonstrate that the cancer-inhibitory activity of sodium butyrate and its derivatives on liver carcinogenesis may be attributed to retention of p53 and CRM1 proteins in the nucleus, an event that may trigger activation of p53-mediated apoptotic cell death in neoplastic cells. PMID:27013579

  12. Expression profiling of cutaneous squamous cell carcinoma with perineural invasion implicates the p53 pathway in the process

    PubMed Central

    Warren, Timothy A.; Broit, Natasa; Simmons, Jacinta L.; Pierce, Carly J.; Chawla, Sharad; Lambie, Duncan L. J.; Quagliotto, Gary; Brown, Ian S.; Parsons, Peter G.; Panizza, Benedict J.; Boyle, Glen M.

    2016-01-01

    Squamous cell carcinoma (SCC) is the second most common cancer worldwide and accounts for approximately 30% of all keratinocyte cancers. The vast majority of cutaneous SCCs of the head and neck (cSCCHN) are readily curable with surgery and/or radiotherapy unless high-risk features are present. Perineural invasion (PNI) is recognized as one of these high-risk features. The molecular changes during clinical PNI in cSCCHN have not been previously investigated. In this study, we assessed the global gene expression differences between cSCCHN with or without incidental or clinical PNI. The results of the analysis showed signatures of gene expression representative of activation of p53 in tumors with PNI compared to tumors without, amongst other alterations. Immunohistochemical staining of p53 showed cSCCHN with clinical PNI to be more likely to exhibit a diffuse over-expression pattern, with no tumors showing normal p53 staining. DNA sequencing of cSCCHN samples with clinical PNI showed no difference in mutation number or position with samples without PNI, however a significant difference was observed in regulators of p53 degradation, stability and activity. Our results therefore suggest that cSCCHN with clinical PNI may be more likely to contain alterations in the p53 pathway, compared to cSCCHN without PNI. PMID:27665737

  13. Distinctive patterns of p53 protein expression and microsatellite instability in human colorectal cancer.

    PubMed

    Nyiraneza, Christine; Jouret-Mourin, Anne; Kartheuser, Alex; Camby, Philippe; Plomteux, Olivier; Detry, Roger; Dahan, Karin; Sempoux, Christine

    2011-12-01

    Although evidence suggests an inverse relationship between microsatellite instability and p53 alterations in colorectal cancer, no study has thoroughly examined the use of p53 immunohistochemistry in phenotyping colorectal cancers. We investigated the value of p53 immunohistochemistry in microsatellite instability-positive colorectal cancers prescreening and attempted to clarify the relationship between DNA mismatch repair system and p53 pathway. In a series of 104 consecutive colorectal cancers, we performed p53 immunohistochemistry, TP53 mutational analysis, DNA mismatch repair system efficiency evaluation (DNA mismatch repair system immunohistochemistry, microsatellite instability status, MLH1/MSH2 germ line, and BRAF, murine double minute 2, and p21 immunohistochemistry. Microsatellite instability high was observed in 25 of 104 colorectal cancers, with DNA mismatch repair system protein loss (24/25) and germ line (8/25) or BRAF mutations (8/25). p53 immunohistochemistry revealed 3 distinct patterns of expression: complete negative immunostaining associated with truncating TP53 mutations (P < .0001), diffuse overexpression associated with missense TP53 mutations (P < .0001), and restricted overexpression characterized by a limited number of homogenously scattered strongly positive tumor cells in 36.5% of colorectal cancers. This latest pattern was associated with wild-type TP53 and microsatellite instability high colorectal cancers (P < .0001) including all Lynch tumors (8/8), but its presence among 22% of DNA mismatch repair system-competent colorectal cancers decreased its positive predictive value (55.2% [95% confidence interval, 45%-65%]). It was also correlated with murine double minute 2 overexpression (P < .0001) and inversely with p21 loss (P = .0002), independently of microsatellite instability status. In conclusion, a restricted pattern of p53 overexpression is preferentially associated with microsatellite instability high phenotype and could

  14. p53 Activity Dominates that of p73 upon Mdm4 Loss in Development and Tumorigenesis

    PubMed Central

    Tashakori, Mehrnoosh; Zhang, Yun; Xiong, Shunbin; You, M. James; Lozano, Guillermina

    2015-01-01

    Mdm4 negatively regulates the p53 tumor suppressor. Mdm4 loss in mice leads to an embryonic lethal phenotype that is p53-dependent. Biochemical studies indicate that Mdm4 also binds p73, a member of the p53 family, with higher affinity than p53. In this study, the significance of the Mdm4 and p73 interaction in vivo during embryogenesis and tumorigenesis was examined. The data revealed that p73 loss does not rescue either the early Mdm4-deficient embryonic lethality or the runted phenotype of Mdm4Δ2/Δ2 p53+/− embryos. Furthermore, studies in the developing central nervous system (CNS) wherein both genes have prominent roles indicated that loss of p73 also did not rescue the Mdm4-null brain phenotype as does p53 loss. This p53 dependency occurred despite evidence for p73-specific transcriptional activity. In tumor studies, the combination of Mdm4 overexpression and p73 loss did not alter survival of mice or the tumor spectrum as compared to Mdm4 overexpression alone. In summary, these data demonstrate that the Mdm4-p73 axis cannot override the dominant role of p53 in development and tumorigenesis. Implications Genetic characterization of the Mdm4 and p73 interaction during development and tumorigenesis suggests new insight into the role of p53 family members, which may influence treatment options for patients. PMID:26527653

  15. MDM2 expression during mouse embryogenesis and the requirement of p53.

    PubMed

    Léveillard, T; Gorry, P; Niederreither, K; Wasylyk, B

    1998-06-01

    We compared mouse embryonic expression of the MDM2 proto-oncogene, p21WAF1/CIP1 and their transcriptional regulator, p53. MDM2 expression is ubiquitous from 7.5 to 11.5 days post coitum (dpc) and more restricted from 12.5 dpc, with the highest levels in the testes and neural tube. From 14.5 to 18.5 dpc, the nasal respiratory epithelium expresses high levels of MDM2 RNA and protein and p21WAF1/CIP1 RNA, in both wild type and p53 null embryos. MDM2 expression during development is tissue-specific and, like p21WAF1/CIP1, is independent of p53. MDM2 may have a developmental role after 6.5 dpc, when MDM2 null mice die (Jones, S.N., Roe, A.E., Donehower, L.A., Bradley, A., 1995. Rescue of embryonic lethality in Mdm2-deficient mice by absence of p53. Nature 378, 206-208; Montes de Oca Luna, R., Wagner, D.S., Lozano, G., 1995. Rescue of early embryonic lethality in mdm2-deficient mice by deletion of p53. Nature 378, 203-206).

  16. Altered expression of p53, but not Rb, is involved in canine prostatic carcinogenesis.

    PubMed

    Pagliarone, Simone; Frattone, Luca; Pirocchi, Valeria; Della Salda, Leonardo; Palmieri, Chiara

    2016-04-01

    Abnormalities in the retinoblastoma (Rb) and p53 tumour suppressor gene have been frequently detected in human and canine cancers, but never investigated in canine prostate cancer, considered a good model for the advanced and aggressive androgen-resistant prostate cancer in men. Therefore, the aim of this study was to evaluate the immunohistochemical expression of Rb and p53 in 6 normal canine prostates, 15 canine prostates with benign prostatic hyperplasia (BPH) and 10 prostatic carcinomas (PCs). In all normal samples, p53 was expressed in low number of epithelial cells, while a greater number of positive cells were observed in BPH and PC. The mean number of positive cells was statistically significantly higher in PCs than normal and hyperplastic prostates. A cytoplasmic or nucleo-cytoplasmic staining was observed in 5 out of 10 PCs. Rb protein was expressed in high number of normal, hyperplastic and neoplastic cells without a statistically significant differences. Considering that Rb is frequently lost in human prostate cancer, we suggest that Rb is not involved in canine prostatic carcinogenesis. On the other hand, the increased expression of p53 that corresponds to genetic defects in the p53 gene may be associated with the malignant growth of canine prostate cancer, conferring an apoptosis-resistant phenotype.

  17. The expression of p73 is increased in lung cancer, independent of p53 gene alteration

    PubMed Central

    Tokuchi, Y; Hashimoto, T; Kobayashi, Y; Hayashi, M; Nishida, K; Hayashi, S; Imai, K; Nakachi, K; Ishikawa, Y; Nakagawa, K; Kawakami, Y; Tsuchiya, E

    1999-01-01

    p73 gene, a new p53 homologue, has been identified: it supposedly acts as tumour suppressor gene in neuroblastoma. To clarify whether p73 might be involved in lung carcinogenesis, we examined p73 expression in resected lung cancer and paired normal lung in 60 cases using semi-quantitative reverse transcription-polymerase chain reaction (RT-PCR). We also examined p73 gene status in three representative cases using Southern blot, and p53 gene alteration in 49 cases using PCR-single-strand conformation polymorphism (PCR-SSCP) and direct sequence. In 87% of the cases (52/60) p73 expression in tumour was more than twice as high as that in paired normal lung tissues, and the difference between p73 expression in tumour and normal lung tissue was significant (P < 0.0001). However, Southern blot analysis revealed that none of the cases showed p73 gene amplification. Compared with clinicopathological characteristics, p73 expression correlates significantly with histological differences and age of patient, independently (P < 0.05). Concerning p53 gene status, 43% (21/49) showed p53 gene alteration, but there was no correlation between p73 overexpression and p53 gene alteration. Our results suggest that need for further functional analysis of the role of p73 in lung carcinogenesis. © 1999 Cancer Research Campaign PMID:10408409

  18. ATM and p53 regulate FOXM1 expression via E2F in breast cancer epirubicin treatment and resistance.

    PubMed

    Millour, Julie; de Olano, Natalia; Horimoto, Yoshiya; Monteiro, Lara J; Langer, Julia K; Aligue, Rosa; Hajji, Nabil; Lam, Eric W F

    2011-06-01

    In this report, we investigated the role and regulation of forkhead box M1 (FOXM1) in breast cancer and epirubicin resistance. We generated epirubicin-resistant MCF-7 breast carcinoma (MCF-7-EPI(R)) cells and found FOXM1 protein levels to be higher in MCF-7-EPI(R) than in MCF-7 cells and that FOXM1 expression is downregulated by epirubicin in MCF-7 but not in MCF-7-EPI(R) cells. We also established that there is a loss of p53 function in MCF-7-EPI(R) cells and that epirubicin represses FOXM1 expression at transcription and gene promoter levels through activation of p53 and repression of E2F activity in MCF-7 cells. Using p53(-/-) mouse embryo fibroblasts, we showed that p53 is important for epirubicin sensitivity. Moreover, transient promoter transfection assays showed that epirubicin and its cellular effectors p53 and E2F1 modulate FOXM1 transcription through an E2F-binding site located within the proximal promoter region. Chromatin immunoprecipitation analysis also revealed that epirubicin treatment increases pRB (retinoblastoma protein) and decreases E2F1 recruitment to the FOXM1 promoter region containing the E2F site. We also found ataxia-telangiectasia mutated (ATM) protein and mRNA to be overexpressed in the resistant MCF-7-EPI(R) cells compared with MCF-7 cells and that epirubicin could activate ATM to promote E2F activity and FOXM1 expression. Furthermore, inhibition of ATM in U2OS cells with caffeine or depletion of ATM in MCF-7-EPI(R) with short interfering RNAs can resensitize these resistant cells to epirubicin, resulting in downregulation of E2F1 and FOXM1 expression and cell death. In summary, our data show that ATM and p53 coordinately regulate FOXM1 via E2F to modulate epirubicin response and resistance in breast cancer.

  19. A DNA damage signal is required for p53 to activate gadd45.

    PubMed

    Xiao, G; Chicas, A; Olivier, M; Taya, Y; Tyagi, S; Kramer, F R; Bargonetti, J

    2000-03-15

    We provide direct evidence that overexpression of p53 is not sufficient for robust p53-dependent activation of the endogenous gadd45 gene. When p53 was induced in TR9-7 cells in the absence of DNA damage, waf1/p21 and mdm2 mRNA levels were increased, but a change in gadd45 mRNA was barely detectable. Activation of the gadd45 gene was observed when camptothecin was added to cells containing p53 in the absence of a further increase in the p53 level. Phosphorylation of p53 at serine 15 and acetylation at lysine 382 were detected after drug treatment. It has been suggested that p53 posttranslational modification is critical during activation. However, inhibition of these modifications by wortmannin was not sufficient to block the transactivation of gadd45. Interestingly, after camptothecin treatment, increased DNase I sensitivity was detected at the gadd45 promoter, suggesting that an undetermined DNA damage signal is involved in inducing chromatin remodeling at the gadd45 promoter while cooperating with p53 to activate gadd45 transcription.

  20. Cisplatin induced apoptosis of ovarian cancer A2780s cells by activation of ERK/p53/PUMA signals.

    PubMed

    Song, Hao; Wei, Mei; Liu, Wenfen; Shen, Shulin; Li, Jiaqun; Wang, Liming

    2017-03-13

    Cisplatin (CDDP) is one of the most effective anticancer agents widely used in the treatment of solid tumors, including ovarian cancer. It is generally considered as a cytotoxic drug which kills cancer cells by causing DNA damage, and subsequently inducing apoptosis in cancer cells. However, the underlying mechanisms leading to cell apoptosis remain obscure. In this study, the signaling pathways involved in CDDP -induced apoptosis were examined using CDDP-sensitive ovarian cancer A2780s cells. A2780s cells were treated with CDDP (1.5-3 μg/ml) for 6 h, 12 h and 24 h. Using siRNA targeting P53 and PUMA, and a selective MEK inhibitor, PD98059 to examine the relation between ERK1/2 activation, p53 and PUMA expression after exposure to CDDP, and the effect on CDDP-induced apoptosis. The results shown that treatment of A2780s cells with CDDP (3 μg/ml) for 6-24 h induced apoptosis, resulting in the activation of extracellular signal-regulated kinase 1/2 (ERK1/2) and accumulation of p53 and PUMA (p53 upregulated modulator of apoptosis) protein. Knockdown of P53 or PUMA by siRNA transfection blocked CDDP-induced apoptosis. Inhibition of ERK1/2 using PD98059, a selective MEK inhibitor, blocked the apoptotic cell death but prevented CDDP-induced accumulation of p53 and PUMA. Knockdown of P53 by siRNA transfection also blocked CDDP-induced accumulation of PUMA. We therefore concluded that CDDP activated ERK1/2 and induced-p53-dependent PUMA upregulation, resulting in triggering apoptosis in A2780s cells. Our study clearly demonstrates that the ERK1/2/p53/PUMA axis is related to CDDP-induced cell death in A2780s cells.

  1. Che-1 gene silencing induces osteosarcoma cell apoptosis by inhibiting mutant p53 expression.

    PubMed

    Liu, Ming; Wang, Dan; Li, Ning

    2016-04-22

    The transcriptional cofactor Che-1 is an RNA polymerase II (Pol II) which is involved in tumorigenesis, such as breast cancer and multiple myeloma. Che-1 can also regulate mutant p53 expression, which plays roles in many types of cancer. In this study, we aimed to investigate the effects and specific mechanism of Che-1 in the regulation of osteosarcoma (OS) cell growth. We found that Che-1 is highly expressed in several kinds of OS cells compared with osteoblast hFOB1.19 cells. MTT and flow cytometry assays showed that Che-1 depletion by siRNA markedly suppressed MG-63 and U2OS cell proliferation and promoted apoptosis. The chromatin immunoprecipitation (ChIP) assay verified the presence of Che-1 on the p53 promoter in MG-63 and U2OS cells carrying mutant p53. Further studies showed that Che-1 depletion inhibited mutant p53 expression. Notably, our study showed that the loss of Che-1 inhibits proliferation and promotes apoptosis in MG-63 cells by decreasing the level of mutant p53. Therefore, these findings open the possibility that silencing of Che-1 will have therapeutic benefit in OS.

  2. The adenoviral E1B 55-kilodalton protein controls expression of immune response genes but not p53-dependent transcription.

    PubMed

    Miller, Daniel L; Rickards, Brenden; Mashiba, Michael; Huang, Wenying; Flint, S J

    2009-04-01

    The human adenovirus type 5 (Ad5) E1B 55-kDa protein modulates several cellular processes, including activation of the tumor suppressor p53. Binding of the E1B protein to the activation domain of p53 inhibits p53-dependent transcription. This activity has been correlated with the transforming activity of the E1B protein, but its contribution to viral replication is not well understood. To address this issue, we used microarray hybridization methods to examine cellular gene expression in normal human fibroblasts (HFFs) infected by Ad5, the E1B 55-kDa-protein-null mutant Hr6, or a mutant carrying substitutions that impair repression of p53-dependent transcription. Comparison of the changes in cellular gene expression observed in these and our previous experiments (D. L. Miller et al., Genome Biol. 8:R58, 2007) by significance analysis of microarrays indicated excellent reproducibility. Furthermore, we again observed that Ad5 infection led to efficient reversal of the p53-dependent transcriptional program. As this same response was also induced in cells infected by the two mutants, we conclude that the E1B 55-kDa protein is not necessary to block activation of p53 in Ad5-infected cells. However, groups of cellular genes that were altered in expression specifically in the absence of the E1B protein were identified by consensus k-means clustering of the hybridization data. Statistical analysis of the enrichment of genes associated with specific functions in these clusters established that the E1B 55-kDa protein is necessary for repression of genes encoding proteins that mediate antiviral and immune defenses.

  3. p53 and tumor necrosis factor alpha regulate the expression of a mitochondrial chloride channel protein.

    PubMed

    Fernández-Salas, E; Sagar, M; Cheng, C; Yuspa, S H; Weinberg, W C

    1999-12-17

    A novel chloride intracellular channel (CLIC) gene, clone mc3s5/mtCLIC, has been identified from differential display analysis of differentiating mouse keratinocytes from p53+/+ and p53-/- mice. The 4.2-kilobase pair cDNA contains an open reading frame of 762 base pairs encoding a 253-amino acid protein with two putative transmembrane domains. mc3s5/mtCLIC protein shares extensive homology with a family of intracellular organelle chloride channels but is the first shown to be differentially regulated. mc3s5/mtCLIC mRNA is expressed to the greatest extent in vivo in heart, lung, liver, kidney, and skin, with reduced levels in some organs from p53-/- mice. mc3s5/mtCLIC mRNA and protein are higher in p53+/+ compared with p53-/- basal keratinocytes in culture, and both increase in differentiating keratinocytes independent of genotype. Overexpression of p53 in keratinocytes induces mc3s5/mtCLIC mRNA and protein. Exogenous human recombinant tumor necrosis factor alpha also up-regulates mc3s5/mtCLIC mRNA and protein in keratinocytes. Subcellular fractionation of keratinocytes indicates that both the green fluorescent protein-mc3s5 fusion protein and the endogenous mc3s5/mtCLIC are localized to the cytoplasm and mitochondria. Similarly, mc3s5/mtCLIC was localized to mitochondria and cytoplasmic fractions of rat liver homogenates. Furthermore, mc3s5/mtCLIC colocalized with cytochrome oxidase in keratinocyte mitochondria by immunofluorescence and was also detected in the cytoplasmic compartment. Sucrose gradient-purified mitochondria from rat liver confirmed this mitochondrial localization. This represents the first report of localization of a CLIC type chloride channel in mitochondria and the first indication that expression of an organellular chloride channel can be regulated by p53 and tumor necrosis factor alpha.

  4. p53 oligomerization and DNA looping are linked with transcriptional activation.

    PubMed Central

    Stenger, J E; Tegtmeyer, P; Mayr, G A; Reed, M; Wang, Y; Wang, P; Hough, P V; Mastrangelo, I A

    1994-01-01

    We examined the role of p53 oligomerization in DNA binding and in transactivation. By conventional electron microscopy (EM) and scanning transmission EM, we find that wild-type tetramers contact 18-20 bp at single or tandem 19 bp consensus sequences and also stack in apparent register, tetramer on top of tetramer. Stacked tetramers link separated DNA binding sites with DNA loops. Interestingly, the p53(1-320) segment, which lacks the C-terminal tetramerization domain, binds DNA consensus sites as stacked oligomers. Although the truncated protein binds DNA with reduced efficiency, it nevertheless induces DNA looping by self-association. p53, therefore, has a C-terminal tetramerization domain that enhances DNA binding and a non-tetrameric oligomerization domain that stacks p53 at consensus sites and loops separated consensus sites via protein-protein interactions. Using model promoters, we demonstrate that wild-type and tetramerization-deficient p53s activate transcription well when tandem consensus sites are proximal to TATA sequences and poorly when tandem sites are distal. In the presence of proximal sites, however, stimulation by distal sites increases 25-fold. Tetramerization and stacking of tetramers, therefore, provide dual mechanisms to augment the number of p53 molecules available for activation through p53 response elements. DNA looping between separated response elements further increases the concentration of local p53 by translocating distally bound protein to the promoter. Images PMID:7813439

  5. RAG-induced DNA lesions activate proapoptotic BIM to suppress lymphomagenesis in p53-deficient mice

    PubMed Central

    Herold, Marco J.

    2016-01-01

    Neoplastic transformation is driven by oncogenic lesions that facilitate unrestrained cell expansion and resistance to antiproliferative signals. These oncogenic DNA lesions, acquired through errors in DNA replication, gene recombination, or extrinsically imposed damage, are thought to activate multiple tumor suppressive pathways, particularly apoptotic cell death. DNA damage induces apoptosis through well-described p53-mediated induction of PUMA and NOXA. However, loss of both these mediators (even together with defects in p53-mediated induction of cell cycle arrest and cell senescence) does not recapitulate the tumor susceptibility observed in p53−/− mice. Thus, potentially oncogenic DNA lesions are likely to also trigger apoptosis through additional, p53-independent processes. We found that loss of the BH3-only protein BIM accelerated lymphoma development in p53-deficient mice. This process was negated by concomitant loss of RAG1/2-mediated antigen receptor gene rearrangement. This demonstrates that BIM is critical for the induction of apoptosis caused by potentially oncogenic DNA lesions elicited by RAG1/2-induced gene rearrangement. Furthermore, this highlights the role of a BIM-mediated tumor suppressor pathway that acts in parallel to the p53 pathway and remains active even in the absence of wild-type p53 function, suggesting this may be exploited in the treatment of p53-deficient cancers. PMID:27621418

  6. Detection of p53 and Bcl-2 expression in cutaneous hemangioma through the quantum dot technique.

    PubMed

    Tang, Tian; Zhang, Duan-Lian

    2017-05-01

    Hemangioma is one of the most common types of infantile vascular benign tumor. The aim of the present study was to investigate the role of B-cell lymphoma 2 (Bcl-2) and tumor protein p53 (p53) in the proliferation and apoptosis of hemangioma cells. A total of 38 paraffin-embedded hemangioma specimens (16 males and 22 females) and another 5 paraffin-embedded healthy surrounding tissue samples, collected between January 2007 and December 2010, were obtained from the Department of Pathology at Renmin Hospital of Wuhan University (Wuhan, China). Immunohistochemistry, hematoxylin and eosin staining, and quantum dot double staining were used to detect the expression of proliferating cell nuclear antigen (PCNA), Bcl-2 and p53 in hemangioma and healthy surrounding skin tissue samples. All hemangioma specimens were classified into proliferative or the involuting stage hemangioma according to Mulliken's criteria and their expression of PCNA. The results of the quantum dot double staining were analyzed using a multi-spectral imaging system. One-way analysis of the variance and the Student-Newman-Keuls q test were performed to statistically analyze the data. There were 24 cases of proliferative stage and 14 cases of involuting stage hemangioma among the specimens. Immunohistochemical analysis results indicated a high expression of Bcl-2 and p53 in proliferative stage hemangioma tissue samples, and low expression in involuting stage hemangioma and healthy tissue samples. Statistical analysis of the results from quantum dot double staining demonstrated that the expression of Bcl-2 and p53 in proliferative hemangioma was significantly increased compared with that in involuting stage specimens (P<0.05) and healthy tissue samples (P<0.05). No significant difference in Bcl-2 and p53 expression was identified between the involuting hemangioma and healthy surrounding tissue samples. The higher expression of Bcl-2 and p53 in proliferative hemangioma suggests that Bcl-2 may cause an

  7. A Small Ras-like protein Ray/Rab1c modulates the p53-regulating activity of PRPK

    SciTech Connect

    Abe, Yasuhito . E-mail: yasuhito@m.ehime-u.ac.jp; Takeuchi, Takashi; Imai, Yoshinori; Murase, Ryuichi; Kamei, Yoshiaki; Fujibuchi, Taketsugu; Matsumoto, Suguru; Ueda, Norifumi; Kito, Katsumi; Ogasawara, Masahito; Shigemoto, Kazuhiro

    2006-05-26

    PRPK phosphorylates serine-15 residue of p53 and enhances transcriptional activity. PRPK possesses a bipartite nuclear localization signal and localizes in nucleus when over-expressed in cells. However, intrinsic PRPK localizes mainly in the cytosol in situ. While studying the mechanisms in the distribution of intrinsic PRPK, we identified a PRPK binding protein, an ubiquitously expressed Small Ras-like GTPase, Rab1c, also named Ray or Rab35. The over-expressed Ray was distributed in the nucleus, cytosol, and cell membrane. Both Ray wild type and GTP-restrictively binding mutant Ray-Q67L, but not guanine nucleotide unstable binding mutant Ray-N120I, partially distributed the over-expressed PRPK to the cytosol and also suppressed the PRPK-induced p53-transcriptional activity profoundly. A Small Ras-like GTPase protein Ray was thus indicated to modulate p53 transcriptional activity of PRPK.

  8. Evaluation of microvessel density and p53 expression in pancreatic adenocarcinoma

    PubMed Central

    Jureidini, Ricardo; da Cunha, José Eduardo Monteiro; Takeda, Flavio; Namur, Guilherme Naccache; Ribeiro, Thiago Costa; Patzina, Rosely; Figueira, Estela RR; Ribeiro, Ulysses; Bacchella, Telesforo; Cecconello, Ivan

    2016-01-01

    OBJECTIVE: To evaluate the prognostic significance of microvessel density and p53 expression in pancreatic cancer. METHODS: Between 2008 and 2012, 49 patients with pancreatic adenocarcinoma underwent resection with curative intention. The resected specimens were immunohistochemically stained with anti-p53 and anti-CD34 antibodies. Microvessel density was assessed by counting vessels within ten areas of each tumoral section a highpower microscope. RESULTS: The microvessel density ranged from 21.2 to 54.2 vessels/mm2. Positive nuclear staining for p53 was found in 20 patients (40.6%). The overall median survival rate after resection was 24.1 months and there were no differences in survival rates related to microvessel density or p53 positivity. Microvessel density was associated with tumor diameter greater than 3.0 cm and with R0 resection failure. CONCLUSIONS: Microvessel density was associated with R1 resection and with larger tumors. p53 expression was not correlated with intratumoral microvessel density in pancreatic adenocarcinoma. PMID:27438564

  9. Expression of p16 and p53 in Intraepithelial Periocular Sebaceous Carcinoma

    PubMed Central

    Bell, W. Robert; Singh, Kamaljeet; Rajan KD, Anand; Eberhart, Charles G.

    2015-01-01

    Purpose Identifying intraepithelial sebaceous carcinoma cells in small periocular biopsies can be difficult, particularly in the conjunctiva. The goal of this study was to evaluate p53 and p16 immunohistochemistry as potential markers of intraepithelial sebaceous carcinoma. Procedures A total of 25 tumors, including 4 recurrent lesions, were stained for p16 and p53, with intensity scored as negative, weak, moderate or strong. Results Expression of p16 was detected in intraepithelial sebaceous carcinoma cells in 24 of the 25 cases (96%), with only 1 case showing weak immunoreactivity. Intraepithelial p53 immunoreactivity was present in 17 of 25 tumors (68%), but was weak in 3 cases. Expression levels remained relatively stable in primary and recurrent tumors, but varied in a few cases between intraepithelial and subepithelial sites. Conclusions Intraepithelial sebaceous carcinomas stained for p53 and p16 demonstrated moderate to strong immunoreactivity in 100% of cases for at least one of these proteins, suggesting that together they are useful markers for determining the extent of tumor spread. Of the two, p16 was immunoreactive in more cases than p53. PMID:27171611

  10. Stress-mediated Sin3B activation leads to negative regulation of subset of p53 target genes

    PubMed Central

    Kadamb, Rama; Mittal, Shilpi; Bansal, Nidhi; Saluja, Daman

    2015-01-01

    The multiprotein SWI-independent 3 (Sin3)–HDAC (histone deacetylase) corepressor complex mediates gene repression through its interaction with DNA-binding factors and recruitment of chromatin-modifying proteins on to the promoters of target gene. Previously, an increased expression of Sin3B and tumour suppressor protein, p53 has been established upon adriamycin treatment. We, now provide evidence that Sin3B expression is significantly up-regulated under variety of stress conditions and this response is not stress-type specific. We observed that Sin3B expression is significantly up-regulated both at transcript and at protein level upon DNA damage induced by bleomycin drug, a radiomimetic agent. This increase in Sin3B expression upon stress is found to be p53-dependent and is associated with enhanced interaction of Sin3B with Ser15 phosphorylated p53. Binding of Sin3–HDAC repressor complex on to the promoters of p53 target genes influences gene regulation by altering histone modifications (H3K9me3 and H3K27me3) at target genes. Furthermore, knockdown of Sin3B by shRNA severely compromises p53-mediated gene repression under stress conditions. Taken together, these results suggest that stress-induced Sin3B activation is p53-dependent and is essential for p53-mediated repression of its selective target genes. The present study has an implication in understanding the transrepression mechanism of p53 under DNA damaging conditions. PMID:26181367

  11. Cyclopentenyl cytosine induces senescence in breast cancer cells through the nucleolar stress response and activation of p53.

    PubMed

    Huang, Min; Whang, Patrick; Lewicki, Patrick; Mitchell, Beverly S

    2011-07-01

    The induction of senescence has emerged as a potentially important contributor to the effects of chemotherapeutic agents against tumors. We have demonstrated that depletion of CTP induced by cyclopentenyl cytosine (CPEC; NSC 375575), a specific inhibitor of the enzyme CTP synthetase, induces irreversible growth arrest and senescence characterized by altered morphology and expression of senescence-associated β-galactosidase activity in MCF-7 breast cancer cells expressing wild-type p53. In contrast, differentiation in the absence of senescence resulted from CPEC treatment in MDA-MB-231 breast cancer cells that express a mutated p53. Both senescence of MCF-7 cells and differentiation of MDA-MB-231 cells were prevented by repletion of CTP through the cytidine salvage pathway. Senescence in MCF-7 cells was associated with a G(2)- and S-phase arrest, whereas differentiation in MDA-MB-231 cells was associated with arrest in G(1) phase at 5 days. Mechanistic studies revealed that CTP depletion induced a rapid translocation of nucleolar proteins, including nucleostemin and nucleolin into the nucleoplasm. This nucleolar stress response resulted in a sustained elevation of p53 and the p53 target genes, p21 and Mdm2, in cells with wild-type p53. Furthermore, short interfering RNA-induced knockdown of p53 in MCF-7 cells treated with CPEC prevented cellular senescence and increased apoptotic cell death. We conclude that CTP depletion and the resulting nucleolar stress response results in a senescence-like growth arrest through activation of p53, whereas cells with mutated p53 undergo differentiation or apoptotic cell death.

  12. Proteic expression of p53 and cellular proliferation in oral leukoplakias.

    PubMed

    Santos-García, Antonio; Abad-Hernández, M Mar; Fonseca-Sánchez, Emilio; Cruz-Hernández, Juan Jesús; Bullón-Sopelana, Agustín

    2005-01-01

    We intend to know the protein expression of genetic alterations that take place in the early stages in the field cancerization of oral cavity in our means as well as to study the cellular proliferation by means of Ki-67 and the protein product expression of p53 to value if the alterations in the protein products expression of these markers happen in a sequential pathway through the different stages in the field cancerization of oral cavity. A study was made by immunohistochemistry on 53 patients that presented lesions of oral leukoplaquia, assisted by the ENT service at University Hospital of Salamanca, from 1.990 up to 2000. 11 samples of normal epithelium, 15 mild to moderate dysplasias, 15 in situ carcinomas and 12 microinvasive carcinomas are included in the study. we find an increased cellular proliferation and p53 over-expression as we advance in the grade of severity histopathologic of these lesions. The most early alterations are a significant increase of cell proliferation in mild and moderate dysplasias and an increased p53 over-expression. Oral leukoplaquia is a precancerous stage that constitutes a cancerisable lesion due to the genetic alterations that mediate in the evolution of lesion. Routine Immunohistochemical and molecular study of these lesions allow us to know the protein expression of genetic alterations that can help in the early diagnosis and treatment of this pathology, having special relevance the study of Ki-67 in early stages and p53 in advanced lesions.

  13. CMV promoter is repressed by p53 and activated by JNK pathway

    PubMed Central

    Rodova, Marianna; Jayini, Renuka; Singasani, Reddy; Chipps, Elizabeth; Islam, M. Rafiq

    2013-01-01

    Viral promoters are widely utilized in commercial and customized vectors to drive expression of genes of interest including reporter, effector and transfection control, because of their high transcription efficiency in a variety of primary and transformed cell lines. However, we observed altered rate of transcription for these promoters under conditions such as presence of an effector protein. These variations in viral promoter driven expressions can potentially lead to incorrect conclusion, especially in comparative and quantitative experiments. We found significantly reduced viral promoter activity in cells overexpressing tumor suppressor protein p53, whereas markedly induced transcription in cells overexpressing MAP/ERK kinase kinase 1 (Mekk 1). Using deletion constructs generated from the CMV promoter, we found the transcription reduction by p53 is possibly mediated through the TATA motif present in proximal CMV promoter. The activation of the CMV promoter by Mekk1, on the other hand, is attributed to the proximal CRE binding site in the promoter. These findings may be of interest to investigators who use CMV (or other viral) promoter driven vectors for either comparative or quantitative gene expression, or effect on promoter activity. PMID:23376463

  14. CMV promoter is repressed by p53 and activated by JNK pathway.

    PubMed

    Rodova, Marianna; Jayini, Renuka; Singasani, Reddy; Chipps, Elizabeth; Islam, M Rafiq

    2013-05-01

    Viral promoters are widely utilized in commercial and customized vectors to drive expression of genes of interest including reporter, effector and transfection control, because of their high transcription efficiency in a variety of primary and transformed cell lines. However, we observed altered rate of transcription for these promoters under conditions such as presence of an effector protein. These variations in viral promoter driven expressions can potentially lead to incorrect conclusion, especially in comparative and quantitative experiments. We found significantly reduced viral promoter activity in cells overexpressing tumor suppressor protein p53, whereas markedly induced transcription in cells overexpressing MAP/ERK kinase kinase 1 (Mekk 1). Using deletion constructs generated from the CMV promoter, we found the transcription reduction by p53 is possibly mediated through the TATA motif present in proximal CMV promoter. The activation of the CMV promoter by Mekk 1, on the other hand, is attributed to the proximal CRE binding site in the promoter. These findings may be of interest to investigators who use CMV (or other viral) promoter driven vectors for either comparative or quantitative gene expression, or effect on promoter activity. Copyright © 2013 Elsevier Inc. All rights reserved.

  15. Importance of P53, Ki-67 expression in the differential diagnosis of benign/malignant phyllodes tumors of the breast.

    PubMed

    Kucuk, Ulku; Bayol, Umit; Pala, Emel Ebru; Cumurcu, Suheyla

    2013-01-01

    Conventionally growth pattern, stromal overgrowth, stromal cellularity and stromal mitotic activity are the main parameters in the grading of phyllodes tumors (PTs). Recent studies revealed that both p53 and Ki-67 expressions are correlated with grade of PTs of the breast. Expression of hormone receptors and overexpression/amplification of HER2 has been studied in PTs to discover the roles of these markers as new treatment modalities. We studied 26 PT cases. Seventeen benign and nine malignant PTs were re-evaluated as regards stromal cellularity mitotic activity, p53/Ki-67 expression rates and the relation between these parameters. Estrogen receptor and progesterone receptor (ER, PR) positivity were determined by counting nuclear staining in five high-power fields. Also, the presence of any HER2 staining and staining patterns were documanted. Stromal cellularity, mitotic rate, p53 and Ki-67 expression rates were all correlated with benign and malignant histologic subgroups (P = 0.000-0.001). Ki-67 and p53 expressions were statistically significantly correlated with histologic subgroups, stromal cellularity and mitotic rate (P < 0.005). ER and PR expressions in the epithelial component were not statistically significant between the two groups. HER2 showed different staining patterns in the epithelial component, and there was no staining in the stromal component. Ki-67 and p53 expression rates were statistically significantly correlated with grade of mammary PTs; therefore, they can be used in the determination of tumor grade, especially for the differential diagnosis of benign and malignant tumors. Malignant and benign tumors did not differ significantly in terms of hormone receptor and HER2 expression. HER2 expression showed different patterns in the epithelial component of the PTs.

  16. Chemotherapy-induced Dkk-1 expression by primary human mesenchymal stem cells is p53 dependent.

    PubMed

    Hare, Ian; Evans, Rebecca; Fortney, James; Moses, Blake; Piktel, Debbie; Slone, William; Gibson, Laura F

    2016-10-01

    Mesenchymal stem cells (MSCs) are abundant throughout the body and regulate signaling within tumor microenvironments. Wnt signaling is an extrinsically regulated pathway that has been shown to regulate tumorigenesis in many types of cancer. After evaluating a panel of Wnt activating and inhibiting molecules, we show that primary human MSCs increase the expression of Dkk-1, an inhibitor of Wnt signaling, into the extracellular environment following chemotherapy exposure in a p53-dependent manner. Dkk-1 has been shown to promote tumor growth in several models of malignancy, suggesting that MSC-derived Dkk-1 could counteract the intent of cytotoxic chemotherapy, and that pharmacologic inhibition of Dkk-1 in patients receiving chemotherapy treatment for certain malignancies may be warranted.

  17. A High-Throughput Cell-Based Screen Identified a 2-[(E)-2-Phenylvinyl]-8-Quinolinol Core Structure That Activates p53.

    PubMed

    Bechill, John; Zhong, Rong; Zhang, Chen; Solomaha, Elena; Spiotto, Michael T

    2016-01-01

    p53 function is frequently inhibited in cancer either through mutations or by increased degradation via MDM2 and/or E6AP E3-ubiquitin ligases. Most agents that restore p53 expression act by binding MDM2 or E6AP to prevent p53 degradation. However, fewer compounds directly bind to and activate p53. Here, we identified compounds that shared a core structure that bound p53, caused nuclear localization of p53 and caused cell death. To identify these compounds, we developed a novel cell-based screen to redirect p53 degradation to the Skip-Cullin-F-box (SCF) ubiquitin ligase complex in cells expressing high levels of p53. In a multiplexed assay, we coupled p53 targeted degradation with Rb1 targeted degradation in order to identify compounds that prevented p53 degradation while not inhibiting degradation through the SCF complex or other proteolytic machinery. High-throughput screening identified several leads that shared a common 2-[(E)-2-phenylvinyl]-8-quinolinol core structure that stabilized p53. Surface plasmon resonance analysis indicated that these compounds bound p53 with a KD of 200 ± 52 nM. Furthermore, these compounds increased p53 nuclear localization and transcription of the p53 target genes PUMA, BAX, p21 and FAS in cancer cells. Although p53-null cells had a 2.5±0.5-fold greater viability compared to p53 wild type cells after treatment with core compounds, loss of p53 did not completely rescue cell viability suggesting that compounds may target both p53-dependent and p53-independent pathways to inhibit cell proliferation. Thus, we present a novel, cell-based high-throughput screen to identify a 2-[(E)-2-phenylvinyl]-8-quinolinol core structure that bound to p53 and increased p53 activity in cancer cells. These compounds may serve as anti-neoplastic agents in part by targeting p53 as well as other potential pathways.

  18. A High-Throughput Cell-Based Screen Identified a 2-[(E)-2-Phenylvinyl]-8-Quinolinol Core Structure That Activates p53

    PubMed Central

    Bechill, John; Zhong, Rong; Zhang, Chen; Solomaha, Elena

    2016-01-01

    p53 function is frequently inhibited in cancer either through mutations or by increased degradation via MDM2 and/or E6AP E3-ubiquitin ligases. Most agents that restore p53 expression act by binding MDM2 or E6AP to prevent p53 degradation. However, fewer compounds directly bind to and activate p53. Here, we identified compounds that shared a core structure that bound p53, caused nuclear localization of p53 and caused cell death. To identify these compounds, we developed a novel cell-based screen to redirect p53 degradation to the Skip-Cullin-F-box (SCF) ubiquitin ligase complex in cells expressing high levels of p53. In a multiplexed assay, we coupled p53 targeted degradation with Rb1 targeted degradation in order to identify compounds that prevented p53 degradation while not inhibiting degradation through the SCF complex or other proteolytic machinery. High-throughput screening identified several leads that shared a common 2-[(E)-2-phenylvinyl]-8-quinolinol core structure that stabilized p53. Surface plasmon resonance analysis indicated that these compounds bound p53 with a KD of 200 ± 52 nM. Furthermore, these compounds increased p53 nuclear localization and transcription of the p53 target genes PUMA, BAX, p21 and FAS in cancer cells. Although p53-null cells had a 2.5±0.5-fold greater viability compared to p53 wild type cells after treatment with core compounds, loss of p53 did not completely rescue cell viability suggesting that compounds may target both p53-dependent and p53-independent pathways to inhibit cell proliferation. Thus, we present a novel, cell-based high-throughput screen to identify a 2-[(E)-2-phenylvinyl]-8-quinolinol core structure that bound to p53 and increased p53 activity in cancer cells. These compounds may serve as anti-neoplastic agents in part by targeting p53 as well as other potential pathways. PMID:27124407

  19. Sirt 1 activator inhibits the AGE-induced apoptosis and p53 acetylation in human vascular endothelial cells.

    PubMed

    Li, Peng; Zhang, Lina; Zhou, Changyong; Lin, Nan; Liu, Aiguo

    2015-01-01

    Advanced glycation end products (AGEs) by nonenzymatic glycation reactions are extremely accumulated in the diabetic vascular cells, neurons, and glia, and are confirmed to play important role in the pathogenesis of diabetes mellitus -induced cardiovascular complications. Sirt 1, known as mammalian sirtuin, has been recognized to regulate insulin secretion and protect cells against oxidative stress, which is promoted by the accumulated AGEs in cardiovascular cells. In the present study, we treated human endothelial Eahy926 cells with AGEs, and determined the apoptosis induction, caspase activation, the Sirt 1 activity, the expression and acetylation of p53. Then we manipulated Sirt 1 activity with a Sirt 1 activator, Resveratrol (RSV), and a Sirt 1 inhibitor, sirtinol, in the AGE-BSA-treated Eahy926 cells, and then re-evaluated the apoptosis induction, caspase activation, the expression and acetylation of p53. Results demonstrated that AGEs induced apoptosis in the human endothelial Eahy926 cells, by promoting the cytochrome c release, activation of caspase 9/3. Also, the AGE-BSA treatment promoted the total p53 level and acetylated (Ac) p53, but reduced the Sirt 1 level and activity. On the other hand, the Sirt 1 inhibitor/activator not only deteriorated/ameliorated the promotion to p53 level and Ac p53, but also aggravated/inhibited the AGE-induced apoptosis and the promotion to apoptosis-associated signaling molecules. In conclusion, the present study confirmed the apoptosis promotion by AGEs in endothelial Eahy926 cells, by regulating the Sirt 1 activity and p53 signaling, it also implies the protective role of Sirt 1 activator against the AGE-induced apoptosis.

  20. p53 Activation following Rift Valley Fever Virus Infection Contributes to Cell Death and Viral Production

    PubMed Central

    Lundberg, Lindsay; Shafagati, Nazly; Schoonmaker, Annalise; Narayanan, Aarthi; Popova, Taissia; Panthier, Jean Jacques; Kashanchi, Fatah; Bailey, Charles; Kehn-Hall, Kylene

    2012-01-01

    Rift Valley fever virus (RVFV) is an emerging viral zoonosis that is responsible for devastating outbreaks among livestock and is capable of causing potentially fatal disease in humans. Studies have shown that upon infection, certain viruses have the capability of utilizing particular cellular signaling pathways to propagate viral infection. Activation of p53 is important for the DNA damage signaling cascade, initiation of apoptosis, cell cycle arrest and transcriptional regulation of multiple genes. The current study focuses on the role of p53 signaling in RVFV infection and viral replication. These results show an up-regulation of p53 phosphorylation at several serine sites after RVFV MP-12 infection that is highly dependent on the viral protein NSs. qRT-PCR data showed a transcriptional up-regulation of several p53 targeted genes involved in cell cycle and apoptosis regulation following RVFV infection. Cell viability assays demonstrate that loss of p53 results in less RVFV induced cell death. Furthermore, decreased viral titers in p53 null cells indicate that RVFV utilizes p53 to enhance viral production. Collectively, these experiments indicate that the p53 signaling pathway is utilized during RVFV infection to induce cell death and increase viral production. PMID:22574148

  1. p53 Activation following Rift Valley fever virus infection contributes to cell death and viral production.

    PubMed

    Austin, Dana; Baer, Alan; Lundberg, Lindsay; Shafagati, Nazly; Schoonmaker, Annalise; Narayanan, Aarthi; Popova, Taissia; Panthier, Jean Jacques; Kashanchi, Fatah; Bailey, Charles; Kehn-Hall, Kylene

    2012-01-01

    Rift Valley fever virus (RVFV) is an emerging viral zoonosis that is responsible for devastating outbreaks among livestock and is capable of causing potentially fatal disease in humans. Studies have shown that upon infection, certain viruses have the capability of utilizing particular cellular signaling pathways to propagate viral infection. Activation of p53 is important for the DNA damage signaling cascade, initiation of apoptosis, cell cycle arrest and transcriptional regulation of multiple genes. The current study focuses on the role of p53 signaling in RVFV infection and viral replication. These results show an up-regulation of p53 phosphorylation at several serine sites after RVFV MP-12 infection that is highly dependent on the viral protein NSs. qRT-PCR data showed a transcriptional up-regulation of several p53 targeted genes involved in cell cycle and apoptosis regulation following RVFV infection. Cell viability assays demonstrate that loss of p53 results in less RVFV induced cell death. Furthermore, decreased viral titers in p53 null cells indicate that RVFV utilizes p53 to enhance viral production. Collectively, these experiments indicate that the p53 signaling pathway is utilized during RVFV infection to induce cell death and increase viral production.

  2. p53 modulation of TFIIH-associated nucleotide excision repair activity.

    PubMed

    Wang, X W; Yeh, H; Schaeffer, L; Roy, R; Moncollin, V; Egly, J M; Wang, Z; Freidberg, E C; Evans, M K; Taffe, B G

    1995-06-01

    p53 has pleiotropic functions including control of genomic plasticity and integrity. Here we report that p53 can bind to several transcription factor IIH-associated factors, including transcription-repair factors, XPD (Rad3) and XPB, as well as CSB involved in strand-specific DNA repair, via its C-terminal domain. We also found that wild-type, but not Arg273His mutant p53 inhibits XPD (Rad3) and XPB DNA helicase activities. Moreover, repair of UV-induced dimers is slower in Li-Fraumeni syndrome cells (heterozygote p53 mutant) than in normal human cells. Our findings indicate that p53 may play a direct role in modulating nucleotide excision repair pathways.

  3. Restoration of DNA-Binding and Growth-Suppressive Activity of Mutant Forms of p53 Via a PCAF-Mediated Acetylation Pathway

    PubMed Central

    PEREZ, RICARDO E.; KNIGHTS, CHAD D.; SAHU, GEETARAM; CATANIA, JASON; KOLUKULA, VAMSI K.; STOLER, DANIEL; GRAESSMANN, ADOLF; OGRYZKO, VASILY; PISHVAIAN, MICHAEL; ALBANESE, CHRISTOPHER; AVANTAGGIATI, MARIA LAURA

    2013-01-01

    Tumor-derived mutant forms of p53 compromise its DNA binding, transcriptional, and growth regulatory activity in a manner that is dependent upon the cell-type and the type of mutation. Given the high frequency of p53 mutations in human tumors, reactivation of the p53 pathway has been widely proposed as beneficial for cancer therapy. In support of this possibility p53 mutants possess a certain degree of conformational flexibility that allows for re-induction of function by a number of structurally different artificial compounds or by short peptides. This raises the question of whether physiological pathways for p53 mutant reactivation also exist and can be exploited therapeutically. The activity of wild-type p53 is modulated by various acetyl-transferases and deacetylases, but whether acetylation influences signaling by p53 mutant is still unknown. Here, we show that the PCAF acetyl-transferase is down-regulated in tumors harboring p53 mutants, where its re-expression leads to p53 acetylation and to cell death. Furthermore, acetylation restores the DNA-binding ability of p53 mutants in vitro and expression of PCAF, or treatment with deacetylase inhibitors, promotes their binding to p53-regulated promoters and transcriptional activity in vivo. These data suggest that PCAF-mediated acetylation rescues activity of at least a set of p53 mutations. Therefore, we propose that dis-regulation of PCAF activity is a pre-requisite for p53 mutant loss of function and for the oncogenic potential acquired by neoplastic cells expressing these proteins. Our findings offer a new rationale for therapeutic targeting of PCAF activity in tumors harboring oncogenic versions of p53. PMID:20589832

  4. Inhaled asbestos fibers induce p53 expression in the rat lung.

    PubMed

    Mishra, A; Liu, J Y; Brody, A R; Morris, G F

    1997-04-01

    Humans and rodents exposed to an aerosol of asbestos fibers develop lung injury that can lead to a fibroproliferative response culminating in excessive scarring and impaired lung function. To define the early events that precede asbestos-induced fibrotic lung disease, rats were exposed to an aerosol of chrysotile asbestos fibers for 5 h. At various times after exposure, the lungs of the asbestos-exposed animals were evaluated immunohistochemically for expression of the p53 tumor suppressor protein, a growth regulatory protein. p53 became detectable by immunostaining at the predicted sites of fiber deposition (the bronchiolar-alveolar duct bifurcations) by 24 h after exposure. The number of cells positive for p53 immunostaining increased to a maximal level at 8 days after exposure, decreased by 14 days and returned to a low basal level at the 30-day time point. Control groups of rats that were unexposed or exposed to an aerosol of iron beads were negative for p53 immunostaining throughout the 30-day assessment period. Simultaneous detection of the proliferating cell nuclear antigen (PCNA) at the sites of fiber deposition in the asbestos-exposed animals agrees with our previous finding that p53 binds and regulates the PCNA promoter.

  5. p53 expression in oral lichenoid lesions and oral lichen planus.

    PubMed

    Arreaza, A; Rivera, H; Correnti, M

    2015-01-01

    The aim of this article was to compare the expression of p53 protein in oral lichen planus (OLP) and oral lichenoid reaction (OLR). The study population consisted of 65 patients--31 diagnosed with OLP and 34 with OLR. The results showed more p53 positive cases in the OLP group than in the OLR group. However, the difference between the 2 groups was not statistically significant (P = 0.114). The most common immunolocalization was observed at the basal cell layer. Due to the chance of potential future malignancy, follow-up for all cases is recommended.

  6. Lack of association between p53 expression and betel nut chewing in oral cancers from Thailand.

    PubMed

    Thongsuksai, P; Boonyaphiphat, P

    2001-04-01

    To elucidate whether betel-associated oral squamous cell carcinoma is associated with p53 protein expression, tumor samples from 156 patients with detailed histories of exposures were investigated immunohistochemically using CM1 antibody. The expression of p53 (>10% positive cells) was found in 38.5% of the cases. The frequency of expression in betel chewers alone and betel chewer with tobacco use were 37.9% (11/29) and 25%(9/36), respectively, whereas that in betel chewers with smoking/drinking it was 47.2%(17/36) and in smokers or drinkers without chewing was 42.0% (21/50). However, the differences were not statistically significant. Multivariate analysis also revealed with the no independent association of betel chewing with p53 expression (odds ratio [OR] 1.81, 95% confidence interval 0.50-6.49), whereas alcohol drinking and smokeless tobacco use were significant (OR 7.58, 2.01-28.53 and 0.39, 0.16-0.98, respectively). These results suggested that betel chewing with or without smokeless tobacco use may not induce oral cancers via a p53-dependent pathway. However, since this is an immunohistochemical study, further molecular analysis is needed.

  7. Over-expression of p53/BAK in aseptic loosening after total hip replacement.

    PubMed

    Landgraeber, Stefan; Toetsch, Martin; Wedemeyer, Christian; Saxler, Guido; Tsokos, Michael; von Knoch, Fabian; Neuhäuser, Markus; Löer, Franz; von Knoch, Marius

    2006-05-01

    Particle-induced osteolysis is a major cause of aseptic loosening after total joint replacement. The possible induction of apoptosis has not been addressed in great detail. Thus far, it has been shown that ceramic and polyethylene particles can induce apoptosis of macrophages in vitro. The purpose of this study was to test the hypothesis that wears debris generated from total hip arthroplasty could induce cellular damage and apoptosis in vivo. We therefore determined by immunohistochemical methods if increased expression of p53, an important transcription factor, and BAK and Bcl-2, two important regulators of apoptosis, can be found in interface membranes and capsules of hips with aseptically loose implants. Strongly positive immunohistochemical staining for p53 and BAK was found in peri-implant tissues from patients with aseptic hip implant loosening. Differentiation of various cell types showed that macrophages stained positive for p53 in all capsule and interface specimens. p53 was frequently detected in giant cells. Positive staining of BAK in macrophages and giant cells was seen in all specimens. Some positive reactions were observed in fibroblasts, only two of 19 cases stained for p53 and three cases for BAK within synovial cells. Positive macrophages and giant cells were localized around polyethylene particles. While T-lymphocytes showed a regular BAK-staining, the other leukocytes were negative. Statistical analyses showed significant positive correlations (p < 0.001) between the presence of polyethylene and metal debris and the expression of BAK and p53. Polyethylene particles were surrounded by more positive macrophages and giant cells than were metal particles, indicating that polyethylene debris may be a stronger inductor of cell cycle arrest and apoptosis than metal debris. In this study apoptosis of macrophages, giant cells and T-lymphocytes in capsules and interface membranes of patients with aseptic hip implant loosening has been demonstrated in

  8. Diagnostic utility of p53 and CK20 immunohistochemical expression grading urothelial malignancies

    PubMed Central

    2014-01-01

    Introduction Current grading system in application by WHO/ISUP divides urothelial malignancies in low and high grade by morphologic criteria while strict segregation may become cumbersome in limited tissue specimens. As grading these carcinomas are of utmost prognostic significance after depth of invasion, therefore we evaluated the role of immunohistochemical expression of p53 and cytokeratin 20 as an adjuctive tool in grading urothelial carcinoma. Methods The study was conducted in Aga khan university hospital, Histopathology section from December 2010 till June 2011 for duration of six months. It involved 95 cases of urothelial carcinomas diagnosed on trans-uretheral resection specimens of bladder growth. Immunohistochemical expression of p53 and cytokeratin 20 was performed according to standard protocols and correlated with grade and depth of invasion. Results There were 48 cases (50.5%) of low grade and 47 cases (49.5%) of high grade urothelial carcinoma included in the study. Male to female ratio was 4.3:1. Majority of patients (80%) were seen in 45 to 90 years age group. Diffuse positive expression of cytokerain 20 was noted in 33 cases (68.8%) of high grade and 19 (40.4%) low grade tumors. Strong positive expression of p53 was seen in 35 cases (72.9%) of high grade while only 17 cases (36.2%) of low grade tumors showed strong p53 expression. Conclusion Significant difference in expression of Cytokeratin 20 and p53 was found between low and high grade urothelial carcinoma. Therefore we suggest combined use of these markers may be helpful in assigning grade to urothelial carcinoma especially when histologic features are borderline. PMID:25089155

  9. Co-expression of p16 and p53 characterizes aggressive subtypes of ductal intraepithelial neoplasia.

    PubMed

    Bechert, Charles; Kim, Jee-Yeon; Tramm, Trine; Tavassoli, Fattaneh A

    2016-12-01

    In the USA alone, approximately 61,000 new diagnoses of ductal intraepithelial neoplasia 1c-3 (DIN) are made each year. Around 10-20 % of the patients develop a recurrence, about 50 % of which are invasive. Prior studies have shown that invasive breast carcinomas positive for p16 or p53 have a higher frequency of recurrence and a more aggressive course; however, the co-expression of these markers across the entire spectrum of DIN and its potential correlation with grade of the lesions has not been studied previously. Immunohistochemical staining for p16 and p53 was evaluated on 262 DIN lesions from 211 cases diagnosed between 1991 and 2008. The lesions ranged from DIN1b (atypical intraductal hyperplasia) to DIN3 (DCIS, grade 3) and included 45 cases with associated invasive carcinoma. Frequency of staining for both p16 and p53 increased with increasing grade of DIN. Strong co-expression was found exclusively in higher grade DIN lesions (DIN2 and DIN3) particularly those associated with periductal stromal fibrosis and lymphocytic infiltrate. Strong co-expression was seen in 8 of 12 DIN3 lesions (67 %) associated with invasive carcinoma. In conclusion, co-expression of p16 and p53 increases with advancing grade of DIN and is maximal in high grade DIN lesions associated with invasive carcinoma, indicating a more aggressive phenotype. A distinctive variant of DIN with periductal fibrosis and lymphocytic infiltrate invariably falls into the high-grade category, based on either morphology or marker expression. Co-expression of p16/p53 may be of help in distinguishing between high-grade and low-grade DIN lesions.

  10. p53 promotes cellular survival in a context-dependent manner by directly inducing the expression of haeme-oxygenase-1.

    PubMed

    Nam, S Y; Sabapathy, K

    2011-11-03

    A variety of cellular insults activate the tumour suppressor p53, leading generally to cell-cycle arrest or apoptosis. However, it is not inconceivable that cellular protective mechanisms may be required to keep cells alive while cell-fate decisions are made. In this respect, p53 has been suggested to perform functions that allow cells to survive, by halting of the cell-cycle, and thus preventing immediate cell death. Nonetheless, the existence of direct pro-survival p53 target genes regulating cellular survival is lacking. We show here evidence for p53-dependent cellular survival in a context-dependent manner. Both mouse and human cells lacking p53 are hypersensitive to hydrogen peroxide (H(2)O(2))-induced cell death compared with their isogenic wild-type counterparts. By contrast, p53(-/-) cells are expectedly resistant to cell death upon exposure to DNA-damaging agents such as cisplatin (CDDP) and etoposide. Although p53 and its classical targets such as p21 and Mdm2 are activated by both H(2)O(2) and CDDP, we found that the expression of haeme-oxygenase-1 (HO-1)-an antioxidant and antiapoptotic protein-was directly induced only upon H(2)O(2) treatment in a p53-dependent manner. Consistently, p53, but not its homologue p73, activated HO-1 expression and was bound to the HO-1 promoter specifically only upon H(2)O(2) treatment. Moreover, silencing HO-1 expression enhanced cell death upon H(2)O(2) treatment only in p53-proficient cells. Finally, H(2)O(2)-mediated cell death was rescued significantly in p53-deficient cells by antioxidant treatment, as well as by bilirubin, a by-product of HO-1 metabolism. Taken together, these data demonstrate a direct role for p53 in promoting cellular survival in a context-specific manner through the activation of a direct transcriptional target, HO-1.

  11. Rotenone affects p53 transcriptional activity and apoptosis via targeting SIRT1 and H3K9 acetylation in SH-SY5Y cells.

    PubMed

    Feng, Ya; Liu, Te; Dong, Su-Yan; Guo, Yan-Jie; Jankovic, Joseph; Xu, Huaxi; Wu, Yun-Cheng

    2015-08-01

    The protein deacetylase SIRT1 has been recognized to exert its protective effect by directly deacetylasing histone and many other transcriptional factors including p53. However, the effect of SIRT1 on p53 expression at the transcriptional level still remains to be elucidated. In this study, we found that rotenone treatment decreased cell viability, induced apoptosis, reduced SIRT1 level, and promoted p53 expression. Pre-treatment with resveratrol, a SIRT1 activator, could attenuate rotenone-induced cell injury and p53 expression, whereas down-regulation of SIRT1 directly increased p53 expression. Moreover, chromatin immunoprecipitation experiments showed that SIRT1 bound to H3K9 within the p53 promoter region, and this binding resulted in decreased H3K9 acetylation and increased H3K9 tri-methylation, thereby inhibiting p53 gene transcription. In conclusion, our data indicate that rotenone promotes p53 transcription and apoptosis through targeting SIRT1 and H3K9. This leads to nigrostriatal degeneration, the main pathogenic mechanism of motor features of Parkinson's disease. SIRT1, a deacetylase enzyme, has neuroprotective effects for Parkinson's disease via targeting various factors. Resveratrol activated SIRT1 can target H3K9 and regulate p53 gene expression at the transcriptional level, thus inhibiting p53 transcription to enhance neuroprotection, alleviating rotenone induced dopaminergic neurodegeneration. We think these findings should provide a new strategy for the treatment of Parkinson's disease. © 2015 International Society for Neurochemistry.

  12. P53 Modulates The Activity Of The GLI1 Oncogene Through Interactions With The Shared Coactivator TAF9

    PubMed Central

    Yoon, Joon Won; Lamm, Marilyn; Iannaccone, Stephen; Higashiyama, Nicole; Leong, King Fu; Iannaccone, Philip; Walterhouse, David

    2015-01-01

    The GLI1 oncogene and p53 tumor suppressor gene function in an inhibitory loop that controls stem cell and tumor cell numbers. Since GLI1 and p53 both interact with the coactivator TATA Binding Protein Associated Factor 9 (TAF9), we hypothesized that competition between these transcription factors for TAF9 in cancer cells may contribute to the inhibitory loop and directly affect GLI1 function and cellular phenotype. We showed that TAF9 interacts with the oncogenic GLI family members GLI1 and GLI2 but not GLI3 in cell-free pull-down assays and with GLI1 in rhabdomyosarcoma and osteosarcoma cell lines. Removal of the TAF9-binding acidic alpha helical transactivation domain of GLI1 produced a significant reduction in the ability of GLI1 to transform cells. We then introduced a point mutation into GLI1 (L1052I) that eliminates TAF9 binding and a point mutation into GLI3 (I1510L) that establishes binding. Wild-type and mutant GLI proteins that bind TAF9 showed enhanced transactivating and cell transforming activity compared with those that did not. Therefore, GLI-TAF9 binding appears important for oncogenic activity. We then determined whether wild-type p53 down-regulates GLI function by sequestering TAF9. We showed that p53 binds TAF9 with greater affinity than does GLI1 and that co-expression of p53 with GLI1 or GLI2 down-regulated GLI-induced transactivation, which could be abrogated using mutant forms of GLI1 or p53. This suggests that p53 sequesters TAF9 from GLI1, which may contribute to inhibition of GLI1 activity by p53 and potentially impact therapeutic success of agents targeting GLI-TAF9 interactions in cancer. PMID:26282181

  13. Human T-cell leukemia virus type-1-encoded protein HBZ represses p53 function by inhibiting the acetyltransferase activity of p300/CBP and HBO1.

    PubMed

    Wright, Diana G; Marchal, Claire; Hoang, Kimson; Ankney, John A; Nguyen, Stephanie T; Rushing, Amanda W; Polakowski, Nicholas; Miotto, Benoit; Lemasson, Isabelle

    2016-01-12

    Adult T-cell leukemia (ATL) is an often fatal malignancy caused by infection with the complex retrovirus, human T-cell Leukemia Virus, type 1 (HTLV-1). In ATL patient samples, the tumor suppressor, p53, is infrequently mutated; however, it has been shown to be inactivated by the viral protein, Tax. Here, we show that another HTLV-1 protein, HBZ, represses p53 activity. In HCT116 p53+/+ cells treated with the DNA-damaging agent, etoposide, HBZ reduced p53-mediated activation of p21/CDKN1A and GADD45A expression, which was associated with a delay in G2 phase-arrest. These effects were attributed to direct inhibition of the histone acetyltransferase (HAT) activity of p300/CBP by HBZ, causing a reduction in p53 acetylation, which has be linked to decreased p53 activity. In addition, HBZ bound to, and inhibited the HAT activity of HBO1. Although HBO1 did not acetylate p53, it acted as a coactivator for p53 at the p21/CDKN1A promoter. Therefore, through interactions with two separate HAT proteins, HBZ impairs the ability of p53 to activate transcription. This mechanism may explain how p53 activity is restricted in ATL cells that do not express Tax due to modifications of the HTLV-1 provirus, which accounts for a majority of patient samples.

  14. p53 activation contributes to patulin-induced nephrotoxicity via modulation of reactive oxygen species generation

    PubMed Central

    Jin, Huan; Yin, Shutao; Song, Xinhua; Zhang, Enxiang; Fan, Lihong; Hu, Hongbo

    2016-01-01

    Patulin is a major mycotoxin found in fungal contaminated fruits and their derivative products. Previous studies showed that patulin was able to induce increase of reactive oxygen species (ROS) generation and oxidative stress was suggested to play a pivotal role in patulin-induced multiple toxic signaling. The objective of the present study was to investigate the functional role of p53 in patulin-induced oxidative stress. Our study demonstrated that higher levels of ROS generation and DNA damage were induced in wild-type p53 cell lines than that found in either knockdown or knockout p53 cell lines in response to patulin exposure, suggesting p53 activation contributed to patulin-induced ROS generation. Mechanistically, we revealed that the pro-oxidant role of p53 in response to patulin was attributed to its ability to suppress catalase activity through up-regulation of PIG3. Moreover, these in vitro findings were further validated in the p53 wild-type/knockout mouse model. To the best of our knowledge, this is the first report addressing the functional role of p53 in patulin-induced oxidative stress. The findings of the present study provided novel insights into understanding mechanisms behind oxidative stress in response to patulin exposure. PMID:27071452

  15. Prognostic significance of survivin, β-catenin and p53 expression in urothelial carcinoma

    PubMed Central

    Senol, Serkan; Yildirim, Asif; Ceyran, Bahar; Uruc, Fatih; Zemheri, Ebru; Ozkanli, Seyma; Akalin, Ibrahim; Ulus, Ismail; Caskurlu, Turhan; Aydin, Abdullah

    2015-01-01

    Survivin, β-catenin, and p53 are well-known cell-cycle and apoptosis regulators. Urothelial carcinomas (UCs) are common, taking fourth place in men and ninth place in women. Compared to superficial tumors (Ta, CIS, or T1), invasive UCs are important with regard to recurrence, progression, and mortality. We tested the utility of the survivin, β-catenin, and p53 as biomarkers for early prediction of the invasiveness of UCs and the overall survival of the patients. We investigated high stage UC (n=147) and non-muscle invasive UC (NMI-UC) (n=113), using tissue microarray and immunohistochemistry. Spearman’s correlation and multivariate Cox regression were used for statistical processing of the data. High expressions of β-catenin, survivin, and p53 were associated with high T stage, recurrence, progression, mortality, low recurrence-free survival, low progression-free survival and low overall survival (p < 0.01). Similar findings were achieved for recurrence and progression in the NMI-UC group, except for mortality. Moreover, a positive correlation was shown between p53 and β-catenin and between p53 and survivin (r=0.221, p < 0.01; r=0.236, p < 0.01, respectively). Survivin, p53, and β-catenin overexpression may have prognostic significance, indicating the aggressive behavior and poor prognosis of UCs. Dysregulation of those these cell-cycle and apoptosis regulators in bladder carcinoma could be used as a molecular marker to determine the best treatment strategy and could contribute to the development of targeted therapies. PMID:26614845

  16. Topical formulation engendered alteration in p53 and cyclobutane pyrimidine dimer expression in chronic photodamaged patients.

    PubMed

    Spencer, James M; Morgan, Michael B; Trapp, Kara M; Moon, Summer D

    2013-03-01

    While the clinical attributes of photoaging are well characterized in the literature, the pathogenic mechanisms that underlie these changes are incompletely elucidated. At the molecular level, p53 tumor-suppressor gene product mediated excision repair of ultraviolet (UV)-induced DNA damage is a critical effector in xeroderma pigmentosum (XP) and potentially in conventional photoaging. We examined p53 activity and measured UV-induced DNA damage via cyclobutane pyrimidine dimers (CPDs) quantitatively in 20 volunteers before and after an 8-week, open-label prospective topical application of a proprietary DNA recovery serum (Celfix). There was a statistically significant decrease in immunohistochemically determined p53 and CPD levels. While these data are preliminary, the findings lend support to the theoretical possibility of a topical agent reversing the effects of photodamage at the molecular level and, potentially, an ameliorative outcome clinically.

  17. Impact of the Adenoviral E4 Orf3 Protein on the Activity and Posttranslational Modification of p53

    PubMed Central

    DeHart, Caroline J.; Perlman, David H.

    2015-01-01

    ABSTRACT Our previous studies have established that the p53 populations that accumulate in normal human cells exposed to etoposide or infected by an E1B 55-kDa protein-null mutant of human adenovirus type 5 carry a large number of posttranslational modifications at numerous residues (C. J. DeHart, J. S. Chahal, S. J. Flint, and D. H. Perlman, Mol Cell Proteomics 13:1–17, 2014, http://dx.doi.org/10.1074/mcp.M113.030254). In the absence of this E1B protein, the p53 transcriptional program is not induced, and it has been reported that the viral E4 Orf3 protein inactivates p53 (C. Soria, F. E. Estermann, K. C. Espantman, and C. C. O'Shea, Nature 466:1076–1081, 2010, http://dx.doi.org/10.1038/nature09307). As the latter protein disrupts nuclear Pml bodies, sites at which p53 is modified, we used mass spectrometry to catalogue the posttranscriptional modifications of the p53 population that accumulates when neither the E1B 55-kDa nor the E4 Orf3 protein is made in infected cells. Eighty-five residues carrying 163 modifications were identified. The overall patterns of posttranslational modification of this population and p53 present in cells infected by an E1B 55-kDa-null mutant were similar. The efficiencies with which the two forms of p53 bound to a consensus DNA recognition sequence could not be distinguished and were lower than that of transcriptionally active p53. The absence of the E4 Orf3 protein increased expression of several p53-responsive genes when the E1B protein was also absent from infected cells. However, expression of these genes did not attain the levels observed when p53 was activated in response to etoposide treatment and remained lower than those measured in mock-infected cells. IMPORTANCE The tumor suppressor p53, a master regulator of cellular responses to stress, is inactivated and destroyed in cells infected by species C human adenoviruses, such as type 5. It is targeted for proteasomal degradation by the action of a virus-specific E3

  18. Evidence for activation of mutated p53 by apigenin in human pancreatic cancer

    PubMed Central

    King, Jonathan C; Lu, Qing-Yi; Li, Gang; Moro, Aune; Takahashi, Hiroki; Chen, Monica; Go, Vay Liang W; Reber, Howard A; Eibl, Guido; Hines, O. Joe

    2012-01-01

    Pancreatic cancer is an exceedingly lethal disease with a five-year survival that ranks among the lowest of gastrointestinal malignancies. Part of its lethality is attributable to a generally poor response to existing chemotherapeutic regimens. New therapeutic approaches are urgently needed. We aimed to elucidate the anti-neoplastic mechanisms of apigenin-an abundant, naturally-occurring plant flavonoid-with a particular focus on p53 function. Pancreatic cancer cells (BxPC-3, MiaPaCa-2) experienced dose and time-dependent growth inhibition and increased apoptosis with apigenin treatment. p53 post-translational modification, nuclear translocation, DNA binding, and upregulation of p21 and PUMA were all enhanced by apigenin treatment despite mutated p53 in both cell lines. Transcription-dependent p53 activity was reversed by pifithrin-α, a specific DNA binding inhibitor of p53, but not growth inhibition or apoptosis suggesting transcription-independent p53 activity. This was supported by immunoprecipitation assays which demonstrated disassociation of p53/BclXL and PUMA/BclXL and formation of complexes with Bak followed by Cytochrome c release. Treated animals grew smaller tumors with increased cellular apoptosis than those fed control diet. These results suggest that despite deactivating mutation, p53 retains some of its function which is augmented following treatment with apigenin. Cell cycle arrest and apoptosis induction may be mediated by transcription-independent p53 function via interactions with BclXL and PUMA. Further study of flavonoids as chemotherapeutics is warranted PMID:22227579

  19. Effect of Mir-122 on Human Cholangiocarcinoma Proliferation, Invasion, and Apoptosis Through P53 Expression

    PubMed Central

    Wu, Cuiping; Zhang, Jinmei; Cao, Xiangang; Yang, Qian; Xia, Dequan

    2016-01-01

    Background Bile duct carcinoma is a common digestive tract tumor with high morbidity and mortality. As a kind of important non-coding RNA, microRNA (miR) plays an important role in post-transcriptional regulation. MiR-122 is the most abundant miR in the liver. Multiple studies have shown that miR-122 level is reduced in a variety of liver tumors and can be used as a specific marker for liver injury. P53 is a classic tumor suppressor gene that can induce tumor cell apoptosis through various pathways. Whether miR-122 affects p53 in bile duct carcinoma still needs investigation. Material/Methods miR inhibitor or mimics was transfected to bile duct carcinoma cells to evaluate its function on proliferation, invasion, apoptosis, and p53 expression. Results MiR-122 overexpression reduced cell invasion and migration ability, and inhibited cell apoptosis and p53 expression. Inhibiting miR-122 caused the opposite results. Conclusions Upregulating miR-122 can suppress bile duct carcinoma cell proliferation and induce apoptosis. MiR-122 could be used as a target for bile duct carcinoma treatment, which provides a new strategy for cholangiocarcinoma patients. PMID:27472451

  20. DNA Damage-induced Heterogeneous Nuclear Ribonucleoprotein K SUMOylation Regulates p53 Transcriptional Activation*

    PubMed Central

    Pelisch, Federico; Pozzi, Berta; Risso, Guillermo; Muñoz, Manuel Javier; Srebrow, Anabella

    2012-01-01

    Heterogeneous nuclear ribonucleoprotein (hnRNP) K is a nucleocytoplasmic shuttling protein that is a key player in the p53-triggered DNA damage response, acting as a cofactor for p53 in response to DNA damage. hnRNP K is a substrate of the ubiquitin E3 ligase MDM2 and, upon DNA damage, is de-ubiquitylated. In sharp contrast with the role and consequences of the other post-translational modifications, nothing is known about the role of SUMO conjugation to hnRNP K in p53 transcriptional co-activation. In the present work, we show that hnRNP K is modified by SUMO in lysine 422 within its KH3 domain, and sumoylation is regulated by the E3 ligase Pc2/CBX4. Most interestingly, DNA damage stimulates hnRNP K sumoylation through Pc2 E3 activity, and this modification is required for p53 transcriptional activation. Abrogation of hnRNP K sumoylation leads to an aberrant regulation of the p53 target gene p21. Our findings link the DNA damage-induced Pc2 activation to the p53 transcriptional co-activation through hnRNP K sumoylation. PMID:22825850

  1. Expression of p53, Bax and Bcl-2 proteins in hepatocytes in non-alcoholic fatty liver disease

    PubMed Central

    Panasiuk, Anatol; Dzieciol, Janusz; Panasiuk, Bozena; Prokopowicz, Danuta

    2006-01-01

    AIM: To analyze the protein expression essential for apoptosis in liver steatosis. METHODS: The expression of proapoptotic proteins p53, Bax, and antiapoptotic Bcl-2 in hepatocytes with steatosis (SH) and without steatosis (NSH) was evaluated in 84 patients at various stages of non-alcoholic fatty liver disease (NAFLD). RESULTS: Immunohistochemical staining of liver tissue showed the activation of p53 protein in SH and NSH with increased liver steatosis, diminished Bcl-2 and slightly decreased Bax protein. Positive correlation was found between the stage of liver steatosis with p53 expression in SH (r = 0.54, P < 0.01) and NSH (r = 0.49, P < 0.01). The antiapoptotic protein Bcl-2 was diminished together with the advancement of liver steatosis, especially in non-steatosed hepatocytes (r =0.43, P < 001). CONCLUSION: Apoptosis is one of the most important mechanisms leading to hepatocyte elimination in NAFLD. The intensification of inflammation in NAFLD induces proapoptotic protein p53 with the inhibition of antiapoptotic Bcl-2. PMID:17036395

  2. p63 expression confers significantly better survival outcomes in high-risk diffuse large B-cell lymphoma and demonstrates p53-like and p53-independent tumor suppressor function

    PubMed Central

    Manyam, Ganiraju C.; Wang, Xiao-xiao; Xia, Yi; Visco, Carlo; Tzankov, Alexandar; Zhang, Li; Montes-Moreno, Santiago; Dybkaer, Karen; Chiu, April; Orazi, Attilio; Zu, Youli; Bhagat, Govind; Richards, Kristy L.; Hsi, Eric D.; Choi, William W.L.; van Krieken, J. Han; Huh, Jooryung; Ponzoni, Maurilio; Ferreri, Andrés J.M.; Zhao, Xiaoying; Møller, Michael B.; Parsons, Ben M.; Winter, Jane N.; Piris, Miguel A.; Medeiros, L. Jeffrey; Young, Ken H.

    2016-01-01

    The role of p53 family member, p63 in oncogenesis is the subject of controversy. Limited research has been done on the clinical implications of p63 expression in diffuse large B-cell lymphoma (DLBCL). In this study, we assessed p63 expression in de novo DLBCL samples (n=795) by immunohistochemistry with a pan-p63-monoclonal antibody and correlated it with other clinicopathologic factors and clinical outcomes. p63 expression was observed in 42.5% of DLBCL, did not correlate with p53 levels, but correlated with p21, MDM2, p16INK4A, Ki-67, Bcl-6, IRF4/MUM-1 and CD30 expression, REL gains, and BCL6 translocation. p63 was an independent favorable prognostic factor in DLBCL, which was most significant in patients with International Prognostic Index (IPI) >2, and in activated-B-cell–like DLBCL patients with wide-type TP53. The prognostic impact in germinal-center-B-cell–like DLBCL was not apparent, which was likely due to the association of p63 expression with high-risk IPI, and potential presence of ∆Np63 isoform in TP63 rearranged patients (a mere speculation). Gene expression profiling suggested that p63 has both overlapping and distinct functions compared with p53, and that p63 and mutated p53 antagonize each other. In summary, p63 has p53-like and p53-independent functions and favorable prognostic impact, however this protective effect can be abolished by TP53 mutations. PMID:26878872

  3. Phosphorylation of Daxx by ATM Contributes to DNA Damage-Induced p53 Activation

    PubMed Central

    Cheng, Qian; Qu, Like; Brewer, Michael D.; Chen, Jiandong; Yang, Xiaolu

    2013-01-01

    p53 plays a central role in tumor suppression. It does so by inducing anti-proliferative processes as a response to various tumor-promoting stresses. p53 is regulated by the ubiquitin ligase Mdm2. The optimal function of Mdm2 requires Daxx, which stabilizes Mdm2 through the deubiquitinase Hausp/USP7 and also directly promotes Mdm2’s ubiquitin ligase activity towards p53. The Daxx-Mdm2 interaction is disrupted upon DNA damage. However, both the mechanisms and the consequence of the Daxx-Mdm2 dissociation are not understood. Here we show that upon DNA damage Daxx is phosphorylated in a manner that is dependent on ATM, a member of the PI 3-kinase family that orchestrates the DNA damage response. The main phosphorylation site of Daxx is identified to be Ser564, which is a direct target of ATM. Phosphorylation of endogenous Daxx at Ser564 occurs rapidly during the DNA damage response and precedes p53 activation. Blockage of this phosphorylation event prevents the separation of Daxx from Mdm2, stabilizes Mdm2, and inhibits DNA damage-induced p53 activation. These results suggest that phosphorylation of Daxx by ATM upon DNA damage disrupts the Daxx-Mdm2 interaction and facilitates p53 activation. PMID:23405218

  4. Apoptosis, proliferation and p53 gene expression of H. pylori associated gastric epithelial lesions

    PubMed Central

    Zhang, Zhong; Yuan, Yuan; Gao, Hua; Dong, Ming; Wang, Lan; Gong, Yue-Hua

    2001-01-01

    AIM: To study the relationship between Helicobacter pylori (H. pylori) and gastric carcinoma and its possible pathogenesis by H. pylori. METHODS: DNEL technique and immunohistochemical technique were used to study the state of apoptosis, proliferation and p53 gene expression. A total of 100 gastric mucosal biopsy specimens, including 20 normal mucosa, 30 H. pylori-negative and 30 H. pylori-positive gastric precancerous lesions along with 20 gastric carcinomas were studied. RESULTS: There were several apoptotic cells in the superficial epithelium and a few proliferative cells within the neck of gastric glands, and no p53 protein expression in normal mucosa. In gastric carcinoma, there were few apoptotic cells, while there were a large number of proliferative cells, and expression of p53 protein significantly was increased. In the phase of metaplasia, the apoptotic index (AI, 4.36% ± 1.95%), proliferative index (PI, 19.11% ± 6. 79%) and positivity of p53 expression (46.7%) in H. pylori-positive group were higher than those in normal mucosa (P < 0.01). AI in H. pylori-positive group was higher than that in H. pylori-negative group (3.81% ± 1.76%), PI in H. pylori-positive group was higher than that in H. pylori-negative group (12.25% ± 5.63%, P < 0.01). In the phase of dysplasia, AI (2.31% ± 1.10%) in H. pylori-positive group was lower (3.05% ± 1.29%) than that in H. pylori-negative group, but PI (33.89% ± 11.65%) was significantly higher (22.09% ± 80.18%, P < 0.01). In phases of metaplasia, dysplasia and gastric cancer in the H. pylori-positive group, AIs had an evidently graduall decreasing trend (P < 0.01), while PIs had an evidently gradual increasing trend (P < 0.05 or P < 0.01), and there was also a trend of gradual increase in the expression of p53 gene. CONCLUSION: In the course of the formation of gastric carcinoma, proliferation of gastric mucosa can be greatly increased by H. pylori, and H. pylori can induce apoptosis in the phase of metaplasia, but

  5. Activation of endogenous p53 by combined p19Arf gene transfer and nutlin-3 drug treatment modalities in the murine cell lines B16 and C6

    PubMed Central

    2010-01-01

    Background Reactivation of p53 by either gene transfer or pharmacologic approaches may compensate for loss of p19Arf or excess mdm2 expression, common events in melanoma and glioma. In our previous work, we constructed the pCLPG retroviral vector where transgene expression is controlled by p53 through a p53-responsive promoter. The use of this vector to introduce p19Arf into tumor cells that harbor p53wt should yield viral expression of p19Arf which, in turn, would activate the endogenous p53 and result in enhanced vector expression and tumor suppression. Since nutlin-3 can activate p53 by blocking its interaction with mdm2, we explored the possibility that the combination of p19Arf gene transfer and nutlin-3 drug treatment may provide an additive benefit in stimulating p53 function. Methods B16 (mouse melanoma) and C6 (rat glioma) cell lines, which harbor p53wt, were transduced with pCLPGp19 and these were additionally treated with nutlin-3 or the DNA damaging agent, doxorubicin. Viral expression was confirmed by Western, Northern and immunofluorescence assays. p53 function was assessed by reporter gene activity provided by a p53-responsive construct. Alterations in proliferation and viability were measured by colony formation, growth curve, cell cycle and MTT assays. In an animal model, B16 cells were treated with the pCLPGp19 virus and/or drugs before subcutaneous injection in C57BL/6 mice, observation of tumor progression and histopathologic analyses. Results Here we show that the functional activation of endogenous p53wt in B16 was particularly challenging, but accomplished when combined gene transfer and drug treatments were applied, resulting in increased transactivation by p53, marked cell cycle alteration and reduced viability in culture. In an animal model, B16 cells treated with both p19Arf and nutlin-3 yielded increased necrosis and decreased BrdU marking. In comparison, C6 cells were quite susceptible to either treatment, yet p53 was further activated

  6. Adjuvant chemotherapy, p53, carcinoembryonic antigen expression and prognosis after D2 gastrectomy for gastric adenocarcinoma

    PubMed Central

    He, Ming-Ming; Zhang, Dong-Sheng; Wang, Feng; Wang, Zhi-Qiang; Luo, Hui-Yan; Ren, Chao; Jin, Ying; Chen, Dong-Liang; Xu, Rui-Hua

    2014-01-01

    AIM: To investigate adjuvant chemotherapy, p53 and carcinoembryonic antigen (CEA) expression and prognosis after D2 gastrectomy for stage II/III gastric adenocarcinoma. METHODS: A total of 286 patients with stage II or III gastric adenocarcinoma who underwent D2 radical gastrectomy between May 2007 and December 2010 were enrolled into this study. One hundred and sixty-nine of these patients received surgery plus adjuvant chemotherapy, and 117 patients received surgery alone. Tumor expression of p53 and CEA proteins in all patients was evaluated immunohistochemically and correlated with clinicopathological parameters. The Kaplan-Meier curves for overall survival (OS) and disease-free survival (DFS) with log-rank testing were used to compare the survival difference. A Cox proportional hazard regression model was used for multivariate analysis. RESULTS: Patients with adjuvant chemotherapy had a significantly better median OS (50.87 mo vs 30.73 mo, P = 0.000) and median DFS (36.30 mo vs 25.60 mo, P = 0.001) than patients with surgery alone in the entire cohort. Consistent results with the entire cohort were found in stage II (P = 0.006 and P = 0.047), stage III (P = 0.005 and P = 0.030), and stage IIIB/IIIC patients (P = 0.000 and P = 0.001). The median OS and DFS advantages were confirmed by multivariate analysis (P = 0.000 and P = 0.008) and maintained when the analyses were restricted to fluoropyrimidine monotherapy (P = 0.003 and P = 0.001) and fluoropyrimidine plus platinum regimen (P = 0.001 and P = 0.007), however, not the fluoropyrimidine plus taxane (P = 0.198 and P = 0.777) or platinum plus taxane (P = 0.666 and P = 0.687) regimens. Median OS and median DFS did not differ significantly between the patients with p53(+) and p53(-) tumors (P = 0.608 and P = 0.064), or between patients with CEA(+) and CEA(-) tumors (P = 0.052 and P = 0.989), which were maintained when the analyses were restricted to surgery alone (p53: P = 0.864 and P = 0.431; CEA: P = 0.142 and

  7. ASPP1/2 regulate p53-dependent death of retinal ganglion cells through PUMA and Fas/CD95 activation in vivo.

    PubMed

    Wilson, Ariel M; Morquette, Barbara; Abdouh, Mohamed; Unsain, Nicolás; Barker, Philip A; Feinstein, Elena; Bernier, Gilbert; Di Polo, Adriana

    2013-01-30

    The transcription factor p53 mediates neuronal death in a variety of stress-related and neurodegenerative conditions. The proapoptotic activity of p53 is tightly regulated by the apoptosis-stimulating proteins of p53 (ASPP) family members: ASPP1 and ASPP2. However, whether ASPP1/2 play a role in the regulation of p53-dependent neuronal death in the CNS is currently unknown. To address this, we asked whether ASPP1/2 contribute to the death of retinal ganglion cells (RGCs) using in vivo models of acute optic nerve damage in mice and rats. Here, we show that p53 is activated in RGCs soon after injury and that axotomy-induced RGC death is attenuated in p53 heterozygote and null mice. We demonstrate that ASPP1/2 proteins are abundantly expressed by injured RGCs, and that short interfering (si)RNA-based ASPP1 or ASPP2 knockdown promotes robust RGC survival. Comparative gene expression analysis revealed that siASPP-mediated downregulation of p53-upregulated-modulator-of-apoptosis (PUMA), Fas/CD95, and Noxa depends on p53 transcriptional activity. Furthermore, siRNA against PUMA or Fas/CD95 confers neuroprotection, demonstrating a functional role for these p53 targets in RGC death. Our study demonstrates a novel role for ASPP1 and ASPP2 in the death of RGCs and provides evidence that blockade of the ASPP-p53 pathway is beneficial for central neuron survival after axonal injury.

  8. Molecular characterization and expression pattern of tumor suppressor protein p53 in mandarin fish, Siniperca chuatsi following virus challenge.

    PubMed

    Guo, Huizhi; Fu, Xiaozhe; Li, Ningqiu; Lin, Qiang; Liu, Lihui; Wu, Shuqin

    2016-04-01

    In recent years, the tumor suppressor protein p53, which is crucial for cellular defense against tumor development, has also been implicated in host antiviral defense. In the present study, a 1555 bp full-length cDNA of p53 from mandarin fish (Siniperca chuatsi) (Sc-p53) was cloned and characterized. Quantitative real-time PCR assays revealed that Sc-p53 was expressed in all tissues examined, and it was most abundant in the gill and kidney. Recombinant Sc-p53 fused with a His·Tag was expressed in Escherichia coli BL21 (DE3) cells and a rabbit polyclonal antibody was raised against recombinant Sc-p53. In addition, the regulation of Sc-p53 gene expression after experimental viral infection was determined and characterized. The mRNA and protein expression of Sc-p53 were significantly up-regulated in the Chinese perch brain (CPB) cell line and mandarin fish after infection with infectious kidney and spleen necrosis virus (ISKNV). The results showed a biphasic expression pattern of Sc-p53 protein in CPB. However, a different expression pattern of Sc-p53 in response to S. chuatsi rhabdovirus (SCRV) infection was found. The mRNA expression of Sc-p53 was significantly up-regulated in CPB at 6 h and spleen of mandarin fish at 24 h post-infection. The protein expression of Sc-p53 was significantly up-regulated in CPB at 1 h, remained elevated at 4 h, and then decreased to control level at 8 h post-infection by SCRV. All of these data suggested that Sc-p53 plays a critical role in immune defense and antiviral responses. Copyright © 2016 Elsevier Ltd. All rights reserved.

  9. Arecoline-induced growth arrest and p21WAF1 expression are dependent on p53 in rat hepatocytes.

    PubMed

    Chou, Wen-Wen; Guh, Jinn-Yuh; Tsai, Jung-Fa; Hwang, Chi-Ching; Chen, Hung-Chun; Huang, Jau-Shyang; Yang, Yu-Lin; Hung, Wen-Chun; Chuang, Lea-Yea

    2008-01-14

    Betel-quid use is associated with the risk of liver cirrhosis and hepatocellular carcinoma and arecoline, the major alkaloid of betel-quid, is hepatotoxic in mice. Therefore, we studied the cytotoxic and genotoxic effects of arecoline in normal rat hepatocytes (Clone-9 cells). Arecoline dose-dependently (0.1-1mM) decreased cell cycle-dependent proliferation while inducing DNA damage at 24h. Moreover, arecoline (1mM)-induced apoptosis and necrosis at 24h. Arecoline dose-dependently (0.1-0.5mM) increased transforming growth factor-beta (TGF-beta) mRNA, gene transcription and bioactivity and neutralizing TGF-beta antibody attenuated arecoline (0.5mM)-inhibited cell proliferation at 24h. Arecoline (0.5mM) also increased p21(WAF1) protein expression and p21(WAF1) gene transcription. Moreover, arecoline (0.5mM) time-dependently (8-24h) increased p53 serine 15 phosphorylation. Pifithrin-alpha (p53 inhibitor) and the loss of the two p53-binding elements in the p21(WAF1) gene promoter attenuated arecoline-induced p21(WAF1) gene transcription at 24h. Pifithrin-alpha also attenuated arecoline (0.5mM)-inhibited cell proliferation at 24h. We concluded that arecoline induces cytotoxicity, DNA damage, G(0)/G(1) cell cycle arrest, TGF-beta1, p21(WAF1) and activates p53 in Clone-9 cells. Moreover, arecoline-induced p21(WAF1) is dependent on p53 while arecoline-inhibited growth is dependent on both TGF-beta and p53.

  10. β2-AR activation induces chemoresistance by modulating p53 acetylation through upregulating Sirt1 in cervical cancer cells.

    PubMed

    Chen, Hongyu; Zhang, Wei; Cheng, Xiang; Guo, Liang; Xie, Shuai; Ma, Yuanfang; Guo, Ning; Shi, Ming

    2017-07-01

    It has been suggested that β2-adrenergic receptor (β2-AR)-mediated signaling induced by catecholamines regulates the degradation of p53. However, the underlying molecular mechanisms were not known. In the present study, we demonstrated that catecholamines upregulated the expression of silent information regulator 1 (Sirt1) through activating β2-AR-mediated signaling pathway, since selective β2-AR antagonist ICI 118, 551 and non-selective β-blocker proprenolol effectively repressed isoproterenol (ISO)-induced Sirt1 expression. Catecholamines inhibited doxorubicin (DOX)-induced p53 acetylation and transcription-activation activities by inducing the expression of Sirt1. Knockdown of the Sirt1 expression by the specific siRNA remarkably blocked the inhibitory effects of ISO on DOX-induced p53 acetylation. In addition, we demonstrated that catecholamines induced resistance of cervical cancer cells to chemotherapeutics both in vitro and in vivo and that β2-AR was overexpressed in cervical cancer tissues. Our data suggest that the p53-dependent, chemotherapeutics-induced cytotoxicity in cervical cancer cells may be compromised by catecholamines-induced upregulation of the Sirt1 expression through activating the β2-AR signaling. © 2017 The Authors. Cancer Science published by John Wiley & Sons Australia, Ltd on behalf of Japanese Cancer Association.

  11. Influence of the RNA-binding protein HuR in pVHL-regulated p53 expression in renal carcinoma cells.

    PubMed

    Galbán, Stefanie; Martindale, Jennifer L; Mazan-Mamczarz, Krystyna; López de Silanes, Isabel; Fan, Jinshui; Wang, Wengong; Decker, Jochen; Gorospe, Myriam

    2003-10-01

    A recent analysis of gene expression in renal cell carcinoma cells led to the identification of mRNAs whose translation was dependent on the presence of the von Hippel-Lindau (VHL) tumor suppressor gene product, pVHL. Here, we investigate the finding that pVHL-expressing RCC cells (VHL(+)) exhibited elevated levels of polysome-associated p53 mRNA and increased p53 protein levels compared with VHL-defective (VHL(-)) cells. Our findings indicate that p53 translation is specifically heightened in VHL(+) cells, given that (i) p53 mRNA abundance in VHL(+) and VHL(-) cells was comparable, (ii) p53 degradation did not significantly influence p53 expression, and (iii) p53 synthesis was markedly induced in VHL(+) cells. Electrophoretic mobility shift and immunoprecipitation assays to detect endogenous and radiolabeled p53 transcripts revealed that the RNA-binding protein HuR, previously shown to regulate mRNA turnover and translation, was capable of binding to the 3' untranslated region of the p53 mRNA in a VHL-dependent fashion. Interestingly, while whole-cell levels of HuR in VHL(+) and VHL(-) cells were comparable, HuR was markedly more abundant in the cytoplasmic and polysome-associated fractions of VHL(+) cells. In keeping with earlier reports, the elevated cytoplasmic HuR in VHL(+) cells was likely due to the reduced AMP-activated kinase activity in these cells. Demonstration that HuR indeed contributed to the increased expression of p53 in VHL(+) cells was obtained through use of RNA interference, which effectively reduced HuR expression and in turn caused marked decreases in p53 translation and p53 abundance. Taken together, our findings support a role for pVHL in elevating p53 expression, implicate HuR in enhancing VHL-mediated p53 translation, and suggest that VHL-mediated p53 upregulation may contribute to pVHL's tumor suppressive functions in renal cell carcinoma.

  12. Proteasome inhibition mediates p53 reactivation and anti-cancer activity of 6-Gingerol in cervical cancer cells

    PubMed Central

    Rastogi, Namrata; Duggal, Shivali; Singh, Shailendra Kumar; Porwal, Konica; Srivastava, Vikas Kumar; Maurya, Rakesh; Bhatt, Madan L.B.; Mishra, Durga Prasad

    2015-01-01

    Human papilloma virus (HPV) expressing E6 and E7 oncoproteins, is known to inactivate the tumor suppressor p53 through proteasomal degradation in cervical cancers. Therefore, use of small molecules for inhibition of proteasome function and induction of p53 reactivation is a promising strategy for induction of apoptosis in cervical cancer cells. The polyphenolic alkanone, 6-Gingerol (6G), present in the pungent extracts of ginger (Zingiber officinale Roscoe) has shown potent anti-tumorigenic and pro-apoptotic activities against a variety of cancers. In this study we explored the molecular mechanism of action of 6G in human cervical cancer cells in vitro and in vivo. 6G potently inhibited proliferation of the HPV positive cervical cancer cells. 6G was found to: (i) inhibit the chymotrypsin activity of proteasomes, (ii) induce reactivation of p53, (iii) increase levels of p21, (iv) induce DNA damage and G2/M cell cycle arrest, (v) alter expression levels of p53-associated apoptotic markers like, cleaved caspase-3 and PARP, and (vi) potentiate the cytotoxicity of cisplatin. 6G treatment induced significant reduction of tumor volume, tumor weight, proteasome inhibition and p53 accumulation in HeLa xenograft tumor cells in vivo. The 6G treatment was devoid of toxic effects as it did not affect body weights, hematological and osteogenic parameters. Taken together, our data underscores the therapeutic and chemosensitizing effects of 6G in the management and treatment of cervical cancer. PMID:26621832

  13. Nitric Oxide–Dependent Activation of P53 Suppresses Bleomycin-Induced Apoptosis in the Lung

    PubMed Central

    Davis, Darren W.; Weidner, Douglas A.; Holian, Andrij; McConkey, David J.

    2000-01-01

    Chronic inflammation leading to pulmonary fibrosis develops in response to environmental pollutants, radiotherapy, or certain cancer chemotherapeutic agents. We speculated that lung injury might be mediated by p53, a proapoptotic transcription factor widely implicated in the response of cells to DNA damage. Intratracheal administration of bleomycin led to caspase-mediated DNA fragmentation characteristic of apoptosis. The effects of bleomycin were associated with translocation of p53 from the cytosol to the nucleus only in alveolar macrophages that had been exposed to the drug in vivo, suggesting that the lung microenvironment regulated p53 activation. Experiments with a thiol antioxidant (N-acetylcysteine) in vivo and nitric oxide (NO) donors in vitro confirmed that reactive oxygen species were required for p53 activation. A specific role for NO was demonstrated in experiments with inducible nitric oxide synthase (iNOS)−/− macrophages, which failed to demonstrate nuclear p53 localization after in vivo bleomycin exposure. Strikingly, rates of bleomycin-induced apoptosis were at least twofold higher in p53−/− C57BL/6 mice compared with heterozygous or wild-type littermates. Similarly, levels of apoptosis were also twofold higher in the lungs of iNOS−/− mice than were observed in wild-type controls. Consistent with a role for apoptosis in chronic lung injury, levels of bleomycin-induced inflammation were substantially higher in iNOS−/− and p53−/− mice compared with wild-type controls. Together, our results demonstrate that iNOS and p53 mediate a novel apoptosis-suppressing pathway in the lung. PMID:10993916

  14. The activating transcription factor 3 protein suppresses the oncogenic function of mutant p53 proteins.

    PubMed

    Wei, Saisai; Wang, Hongbo; Lu, Chunwan; Malmut, Sarah; Zhang, Jianqiao; Ren, Shumei; Yu, Guohua; Wang, Wei; Tang, Dale D; Yan, Chunhong

    2014-03-28

    Mutant p53 proteins (mutp53) often acquire oncogenic activities, conferring drug resistance and/or promoting cancer cell migration and invasion. Although it has been well established that such a gain of function is mainly achieved through interaction with transcriptional regulators, thereby modulating cancer-associated gene expression, how the mutp53 function is regulated remains elusive. Here we report that activating transcription factor 3 (ATF3) bound common mutp53 (e.g. R175H and R273H) and, subsequently, suppressed their oncogenic activities. ATF3 repressed mutp53-induced NFKB2 expression and sensitized R175H-expressing cancer cells to cisplatin and etoposide treatments. Moreover, ATF3 appeared to suppress R175H- and R273H-mediated cancer cell migration and invasion as a consequence of preventing the transcription factor p63 from inactivation by mutp53. Accordingly, ATF3 promoted the expression of the metastasis suppressor SHARP1 in mutp53-expressing cells. An ATF3 mutant devoid of the mutp53-binding domain failed to disrupt the mutp53-p63 binding and, thus, lost the activity to suppress mutp53-mediated migration, suggesting that ATF3 binds to mutp53 to suppress its oncogenic function. In line with these results, we found that down-regulation of ATF3 expression correlated with lymph node metastasis in TP53-mutated human lung cancer. We conclude that ATF3 can suppress mutp53 oncogenic function, thereby contributing to tumor suppression in TP53-mutated cancer.

  15. Expression of mouse Fbxw7 isoforms is regulated in a cell cycle- or p53-dependent manner

    SciTech Connect

    Matsumoto, Akinobu; Onoyama, Ichiro; Nakayama, Keiichi I. . E-mail: nakayak1@bioreg.kyushu-u.ac.jp

    2006-11-10

    Fbxw7 is the F-box protein component of an SCF-type ubiquitin ligase that contributes to the ubiquitin-dependent degradation of cell cycle activators and oncoproteins. Three isoforms ({alpha}, {beta}, and {gamma}) of Fbxw7 are produced from mRNAs with distinct 5' exons. We have now investigated regulation of Fbxw7 expression in mouse tissues. Fbxw7{alpha} mRNA was present in all tissues examined, whereas Fbxw7{beta} mRNA was detected only in brain and testis, and Fbxw7{gamma} mRNA in heart and skeletal muscle. The amount of Fbxw7{alpha} mRNA was high during quiescence (G phase) in mouse embryonic fibroblasts (MEFs) and T cells, but it decreased markedly as these cells entered the cell cycle. The abundance of Fbxw7{alpha} mRNA was unaffected by cell irradiation or p53 status. In contrast, X-irradiation increased the amount of Fbxw7{beta} mRNA in wild-type MEFs but not in those from p53-deficient mice, suggesting that radiation-induced up-regulation of p53 leads to production of Fbxw7{beta} mRNA. Our results thus indicate that expression of Fbxw7 isoforms is differentially regulated in a cell cycle- or p53-dependent manner.

  16. Mutant p53 (G199V) gains antiapoptotic function through signal transducer and activator of transcription 3 in anaplastic thyroid cancer cells.

    PubMed

    Kim, Tae-Hyun; Lee, Sang Yull; Rho, Jee Hyun; Jeong, Na Young; Soung, Young Hwa; Jo, Wol Soon; Kang, Do-Young; Kim, Sung-Heun; Yoo, Young Hyun

    2009-10-01

    In the present study, we identified a missense mutation (G199V) in KAT-18 cell line established from primary cultures of anaplastic thyroid cancer (ATC). Notably, knockdown of this mutant (mt) p53 reduced cell viability and exerted antitumor activity equivalent to high doses of several chemotherapeutic agents. We showed that p53 knockdown had an antitumor effect via the induction of apoptosis. We further examined the underlying mechanism by which mt p53 (G199V) gains antiapoptotic function in KAT-18 cells. Microarray analysis revealed that p53 knockdown modified the expression of numerous apoptosis-related genes. Importantly, p53 knockdown led to downregulation of signal transducer and activator of transcription-3 (STAT3) gene expression. We further observed that p53 knockdown induced the downregulation of STAT3 protein. We also observed that a STAT3 inhibitor augmented the reduction of cell viability induced by p53 knockdown, whereas interleukin-6 treatment alleviated this effect. In addition, overexpression of STAT3 protected ATC cells against cell death induced by p53 knockdown. Taken together, these data show that mt p53 (G199V) gains antiapoptotic function mediated by STAT3 in ATC cells. Inhibition of the function of mt p53 (G199V) could be a novel and useful therapeutic strategy for decreasing the extent and severity of toxicity due to chemotherapeutic agents.

  17. Fenofibrate inhibited pancreatic cancer cells proliferation via activation of p53 mediated by upregulation of LncRNA MEG3

    SciTech Connect

    Hu, Duanmin; Su, Cunjin; Jiang, Min; Shen, Yating; Shi, Aiming; Zhao, Fenglun; Chen, Ruidong; Shen, Zhu; Bao, Junjie; Tang, Wen

    2016-03-04

    There is still no suitable drug for pancreatic cancer treatment, which is one of the most aggressive human tumors. Maternally expressed gene 3 (MEG3), a LncRNA, has been suggested as a tumor suppressor in a range of human tumors. Studies found fenofibrate exerted anti-tumor roles in various human cancer cell lines. However, its role in pancreatic cancer remains unknown. The present study aimed to explore the impacts of fenofibrate on pancreatic cancer cell lines, and to investigate MEG3 role in its anti-tumor mechanisms. We used MTT assay to determine cells proliferation, genome-wide LncRNA microarray analysis to identify differently expressed LncRNAs, siRNA or pCDNA-MEG3 transfection to interfere or upregulate MEG3 expression, western blot to detect protein levels, real-time PCR to determine MEG3 level. Fenofibrate significantly inhibited proliferation of pancreatic cancer cells, increased MEG3 expression and p53 levels. Moreover, knockdown of MEG3 attenuated cytotoxicity induced by fenofibrate. Furthermore, overexpression of MEG3 induced cells death and increased p53 expression. Our results indicated fenofibrate inhibited pancreatic cancer cells proliferation via activation of p53 mediated by upregulation of MEG3. - Highlights: • We found that fenofibrate suppressed proliferation of pancreatic cancer cells. • We found fenofibrate increased LncRNA-MEG3 expression and p53 level in PANC-1 cells. • Inhibition of MEG3 expression attenuated anti-tumor effects of fenofibrate.

  18. In vivo activation of the p53 tumor suppressor pathway by an engineered cyclotide

    PubMed Central

    Neamati, Nouri; Shekhtman, Alexander; Camarero, Julio A.

    2013-01-01

    The overexpression of Hdm2 and HdmX is a common mechanism used by many tumor cells to inactive the p53 tumor suppressor pathway promoting cell survival. Targeting Hdm2 and HdmX has emerged as a validated therapeutic strategy for treating cancers with wild-type p53. Small linear peptides mimicking the N-terminal fragment of p53 have been shown to be potent Hdm2/HdmX antagonists. The potential therapeutic use of these peptides, however, is limited by their poor stability and bioavailability. Here, we report the engineering of the cyclotide MCoTI-I to efficiently antagonize intracellular p53 degradation. The resulting cyclotide MCo-PMI was able to bind with low nanomolar affinity to both Hdm2 and HdmX, showed high stability in human serum and was cytotoxic to wild-type p53 cancer cell lines by activating the p53 tumor suppressor pathway both in vitro and in vivo. These features make the cyclotide MCoTI-I an optimal scaffold for targeting intracellular protein-protein interactions. PMID:23848581

  19. Space experiment "Rad Gene"-report 1; p53-Dependent gene expression in human cultured cells exposed to space environment

    NASA Astrophysics Data System (ADS)

    Takahashi, Akihisa; Ohnishi, Takeo; Suzuki, Hiromi; Omori, Katsunori; Seki, Masaya; Hashizume, Toko; Shimazu, Toru; Ishioka, Noriaki

    The space environment contains two major biologically significant influences: space radiations and microgravity. A p53 tumor suppressor protein plays a role as a guardian of the genome through the activity of p53-centered signal transduction pathways. The aim of this study was to clarify the biological effects of space radiations, microgravity and a space environment on the gene and protein expression of p53-dependent regulated genes. Space experiments were performed with two human cultured lymphoblastoid cell lines: one cells line (TSCE5) bears a wild-type p53 gene status, and another cells line (WTK1) bears a mutated p53 gene status. Un-der one gravity or microgravity condition, the cells were grown in the cell biology experimental facility (CBEF) of the International Space Station (ISS) for 8 days without experiencing the stress during launching and landing because the cells were frozen during these periods. Ground control samples also were cultured for 8 days in the CBEF on the ground during the same periods as space flight. Gene and protein expression was analyzed by using DNA chip (a 44k whole human genome microarray, Agilent Technologies Inc.) and protein chip (PanoramaTM Ab MicroArray, Sigma-Aldrich Co.), respectively. In addition, we analyzed the gene expression in cultured cells after space flight during 133 days with frozen condition. We report the results and discussion from the viewpoint of the functions of the up-regulated and down-regulated genes after an exposure to space radiations and/or microgravity. The initial goal of this space experiment was completely achieved. It is expected that data from this type of work will be helpful in designing physical protection from the deleterious effects of space radiations during long term stays in space.

  20. A minimally invasive assay for individual assessment of the ATM/CHEK2/p53 pathway activity.

    PubMed

    Kabacik, Sylwia; Ortega-Molina, Ana; Efeyan, Alejo; Finnon, Paul; Bouffler, Simon; Serrano, Manuel; Badie, Christophe

    2011-04-01

    Ionizing radiation induces DNA Double-Strand Breaks (DSBs) which activate the ATM/CHEK2/p53 pathway leading to cell cycle arrest and apoptosis through transcription of genes including CDKN1A (p21) and BBC3 (PUMA). This pathway prevents genomic instability and tumorigenesis as demonstrated in heritable syndromes [e.g. Ataxia Telangiectasia (AT); Li-Fraumeni syndrome (LFS)]. Here, a simple assay based on gene expression in peripheral blood to measure accurately ATM/CHEK2/p53 pathway activity is described. The expression of p21, Puma and Sesn2 was determined in blood from mice with different gene copy numbers of Atm, Trp53 (p53), Chek2 or Arf and in human blood and mitogen stimulated T-lymphocyte (MSTL) cultures from AT, AT carriers, LFS patients, and controls, both before and after ex vivo ionizing irradiation. Mouse Atm/Chek2/p53 activity was highly dependent on the copy number of each gene except Arf. In human MSTL, an AT case, AT carriers and LFS patients showed responses distinct from healthy donors. The relationship between gene copy number and transcriptional induction upon radiation was linear for p21 and Puma and correlated well with cancer incidence in p53 variant mice. This reliable blood test provides an assay to determine ATM/CHEK2/p53 pathway activity and demonstrates the feasibility of assessing the activity of this essential cancer protection pathway in simple assays. These findings may have implications for the individualized prediction of cancer susceptibility.

  1. Immunohistochemical expression of p16, Ki-67 and p53 in cervical lesions - A systematic review.

    PubMed

    Silva, Daliana Caldas; Gonçalves, Ana Katherine; Cobucci, Ricardo Ney; Mendonça, Roberta Cecília; Lima, Paulo Henrique; Cavalcanti, Geraldo

    2017-07-01

    This study evaluated the immunohistochemical (IHC) expression of p16, p53 and Ki-67 in precancerous lesions and in cervical cancer (CC). Identification and review of publications assessing IHC expression in cervical intraepithelial neoplasia (CIN) and CC until February 15, 2017. Systematic review of studies in women with and without cervical lesions in order to evaluate whether there is overexpression of these biomarkers. A total of 28 publications met the criteria which included 6005 patients. The analysis showed that there is higher IHC expression of these biomarkers associated with the more severe lesions. Nineteen out of 22 evaluated studies have shown that there is a higher p16 expression in more severe lesions (CC), while in p53 expression only 4 out of the 9 studies showed a higher expression among more severe cases. Regarding the Ki-67 expression, it was observed that 9 out of 14 studies showed higher expression in more severe lesions. A complete absence of or just minimal IHC expression was observed in the normal cervical epithelium, whilst a significant increase in the expression of these biomarkers was detected according to the severity of lesions. Results suggest that these biomarkers can be considered useful tools for discriminating between the stages of the progressive cervical disease. Copyright © 2017. Published by Elsevier GmbH.

  2. Aurora-A induces cell survival and chemoresistance by activation of Akt through a p53-dependent manner in ovarian cancer cells.

    PubMed

    Yang, Hua; He, Lili; Kruk, Patricia; Nicosia, Santo V; Cheng, Jin Q

    2006-11-15

    Aurora-A is frequently altered in epithelial malignancies. Overexpressing Aurora-A induces centrosome amplification and G2/M cell cycle progression. We have previously shown elevated level of Aurora-A in ovarian cancer and activation of telomerase by Aurora-A in human mammary and ovarian epithelia. Here we report that Aurora-A protects ovarian cancer cells from apoptosis induced by chemotherapeutic agent and activates Akt pathway in a p53-dependent manner. Ectopic expression of Aurora-A renders cells resistant to cisplatin (CDDP), etoposide and paclitaxel-induced apoptosis and stimulates Akt1 and Akt2 activity in wild-type p53 but not p53-null ovarian cancer cells. Aurora-A inhibits cytochrome C release and Bax conformational change induced by CDDP. Knockdown of Aurora-A by RNAi sensitizes cells to CDDP-induced apoptosis and decreases phospho-Akt level in wild-type p53 cells. Reintroduction of p53 decreases Akt1 and Akt2 activation and restores CDDP sensitivity in p53-null but not p53-null-Aurora-A cells. Inhibition of Akt by small molecule inhibitor, API-2, overcomes the effects of Aurora-A-on cell survival and Bax mitochondrial translocation. Taken collectively, these data indicate that Aurora-A activates Akt and induces chemoresistance in a p53-dependent manner and that inhibition of Akt may be an effective means of overcoming Aurora-A-associated chemoresistance in ovarian cancer cells expressing wild-type p53.

  3. Perturbation of ribosome biogenesis drives cells into senescence through 5S RNP-mediated p53 activation.

    PubMed

    Nishimura, Kazuho; Kumazawa, Takuya; Kuroda, Takao; Katagiri, Naohiro; Tsuchiya, Mai; Goto, Natsuka; Furumai, Ryohei; Murayama, Akiko; Yanagisawa, Junn; Kimura, Keiji

    2015-03-03

    The 5S ribonucleoprotein particle (RNP) complex, consisting of RPL11, RPL5, and 5S rRNA, is implicated in p53 regulation under ribotoxic stress. Here, we show that the 5S RNP contributes to p53 activation and promotes cellular senescence in response to oncogenic or replicative stress. Oncogenic stress accelerates rRNA transcription and replicative stress delays rRNA processing, resulting in RPL11 and RPL5 accumulation in the ribosome-free fraction, where they bind MDM2. Experimental upregulation of rRNA transcription or downregulation of rRNA processing, mimicking the nucleolus under oncogenic or replicative stress, respectively, also induces RPL11-mediated p53 activation and cellular senescence. We demonstrate that exogenous expression of certain rRNA-processing factors rescues the processing defect, attenuates p53 accumulation, and increases replicative lifespan. To summarize, the nucleolar-5S RNP-p53 pathway functions as a senescence inducer in response to oncogenic and replicative stresses. Copyright © 2015 The Authors. Published by Elsevier Inc. All rights reserved.

  4. p53 status is a major determinant of effects of decreasing peroxiredoxin I expression on tumor growth and response of lung cancer cells to treatment

    SciTech Connect

    Chen, M.-F. . E-mail: miaofen@adm.cgmh.org.tw; Chen, W.-C.; Wu, C.-T.; Lin, P.-Y.; Shau Hungyi; Liao, S.-K.; Yang, C.-T.; Lee, K.-D.

    2006-12-01

    Purpose: The potential roles of peroxiredoxin (Prx) I in carcinogenesis and treatment have been explored. Our previous study revealed differences between A549 (functional p53) and H1299 (null p53) Prx I antisense transfectants. The discrepancy might have resulted from the p53 status. In this study, we further investigated the role of Prx I and p53 on lung cancer growth and the response to treatment in vitro and in vivo. Methods: We established stable A549 and H1299 transfectants with Prx I antisense and p53, respectively. We then examined their characteristics in vitro and used nude mice xenografts of these cell lines to compare their capacity for tumor invasion and spontaneous metastasis and their sensitivity to radiotherapy. Results: Increased reactive oxygen species caused by lower Prx I activity induced p53 expression. In lethal stress, the augmentation of reactive oxygen species was partially reversed by blocking p53 in A549 with Prx I antisense. We demonstrated the potential contribution of p53-dependent mechanisms to inhibit lung tumor growth and increase radiosensitization using H1299 transfected with p53 in vitro and in vivo. An increased p53 level attenuated the capacity of the cells for metastasis by decreasing vascular endothelial growth factor and induced radiosensitization by increased apoptosis and cell senescence and by regulating intracellular reactive oxygen species. Conclusion: These results suggest that p53 status has an important role in the tumor-inhibiting and radiosensitizing effects of decreasing Prx I. Both Prx I and p53 may be powerful prognosticators for lung cancer.

  5. Expression of apoptosis regulatory proteins p53, bcl-2 and bax in recurrent aphthous ulceration.

    PubMed

    Pinto Rodrigues, J F N; Fujiyama Oshima, C T; Ribeiro Paiotti, A P; Franco, M; Miki Ihara, S S; Ribeiro, D A

    2012-10-01

    Recurrent aphthous ulceration (RAU) is considered to be an acute inflammatory disease of unknown pathogenesis. Apoptosis may represent an important event in the control of inflammation. The aim of this study was to investigate apoptosis process in RAU using immunohistochemistry. We studied the expression and location of p53, bcl-2 and bax in ulcerated lesions clinically diagnosed as RAU (n = 12) and compared it with that of oral clinically normal mucosa (n = 6) and of other inflammatory chronic disease such as oral fibrous inflammatory hyperplasia (FIH; n = 18). Significant statistically differences (n < 0.05) in p53 expression were noticed in RAU when compared with normal mucosa. No significant statistically differences (P > 0.05) were noticed between FIH and RAU. Bcl-2 and bax did not show remarkable differences between groups. Taken together, the data suggest that RAU induces p53 immunoexpression. Therefore, the protein might be related to the aetiopathogenesis of the ulcerated oral lesions. © 2011 The Authors. Journal of the European Academy of Dermatology and Venereology © 2011 European Academy of Dermatology and Venereology.

  6. The PTTG1-Binding Factor (PBF/PTTG1IP) regulates p53 activity in thyroid cells

    PubMed Central

    Read, Martin L.; Seed, Robert I.; Fong, Jim C.W.; Modasia, Bhavika; Ryan, Gavin A.; Watkins, Rachel J; Gagliano, Teresa; Smith, Vicki E.; Stratford, Anna L.; Kwan, Perkin K; Sharma, Neil; Dixon, Olivia M.; Watkinson, John C.; Boelaert, Kristien; Franklyn, Jayne A.; Turnell, Andrew S.; McCabe, Christopher J.

    2016-01-01

    The PTTG1-Binding Factor (PBF/PTTG1IP) has an emerging repertoire of roles, especially in thyroid biology, and functions as a proto-oncogene. High PBF expression is independently associated with poor prognosis and lower disease-specific survival in human thyroid cancer. However, the precise role of PBF in thyroid tumorigenesis is unclear. Here, we present extensive evidence demonstrating that PBF is a novel regulator of p53, a tumor suppressor protein with a key role in maintaining genetic stability, which is infrequently mutated in differentiated thyroid cancer. By coimmunoprecipitation and proximity ligation assays, we show that PBF binds specifically to p53 in thyroid cells, and significantly represses transactivation of responsive promoters. Further, we identify that PBF decreases p53 stability by enhancing ubiquitination, which appears dependent on the E3 ligase activity of Mdm2. Impaired p53 function was evident in a transgenic mouse model with thyroid-specific PBF over-expression (PBF-Tg), which had significantly increased genetic instability as indicated by FISSR-PCR analysis. Consistent with this, ~40% of all DNA repair genes examined were repressed in PBF-Tg primary cultures, including genes with critical roles in maintaining genomic integrity such as Mgmt, Rad51 and Xrcc3. Our data also revealed that PBF induction resulted in upregulation of the E2 enzyme Rad6 in murine thyrocytes, and was associated with Rad6 expression in human thyroid tumors. Overall, this work provides novel insights into the role of the proto-oncogene PBF as a negative regulator of p53 function in thyroid tumorigenesis, where PBF is generally over-expressed and p53 mutations are rare compared to other tumor types. PMID:24506068

  7. FHL2 mediates p53-induced transcriptional activation through a direct association with HIPK2

    SciTech Connect

    Lee, Sang-Wang . E-mail: umsj@sejong.ac.kr

    2006-01-27

    To understand the molecular mechanism underlying HIPK2 regulation of the transcriptional activation by p53, we sought to identify the protein that interacts with HIPK2. From our yeast two-hybrid screen, we found that four and a half LIM domains 2 (FHL2) could bind to the C-terminal half of HIPK2. Further assays in yeast mapped the minimal interaction domain to amino acids 812-907 in HIPK2. The interaction was confirmed using a GST pull-down assay in vitro, and an immunoprecipitation (IP) assay and fluorescence microscopy in vivo. FHL2 alone spread throughout both the cytoplasm and nucleus but was redistributed to dot-like structures in the nucleus when HIPK2 was coexpressed in HEK293 cells. When tethered to the Gal4-responsive promoter through the Gal4 DBD fusion, FHL2 showed autonomous transcriptional activity that was enhanced by wild-type HIPK2, but not by the kinase-defective mutant. In addition, FHL2 increased the p53-dependent transcriptional activation and had an additive effect on the activation when coexpressed with HIPK2, which was again not observed with the kinase-defective mutant of HIPK2. Finally, we found a ternary complex of p53, HIPK2, and FHL2 using IP, and their recruitment to the p53-responsive p21Waf1 promoter in chromatin IP assays. Overall, our findings indicate that FHL2 can also regulate p53 via a direct association with HIPK2.

  8. Conformational altered p53 affects neuronal function: relevance for the response to toxic insult and growth-associated protein 43 expression.

    PubMed

    Buizza, L; Prandelli, C; Bonini, S A; Delbarba, A; Cenini, G; Lanni, C; Buoso, E; Racchi, M; Govoni, S; Memo, M; Uberti, D

    2013-02-07

    The role of p53 in neurodegenerative diseases is essentially associated with neuronal death. Recently an alternative point of view is emerging, as altered p53 conformation and impaired protein function have been found in fibroblasts and blood cells derived from Alzheimer's disease patients. Here, using stable transfected SH-SY5Y cells overexpressing APP751wt (SY5Y-APP) we demonstrated that the expression of an unfolded p53 conformation compromised neuronal functionality. In particular, these cells showed (i) augmented expression of amyloid precursor protein (APP) and its metabolites, including the C-terminal fragments C99 and C83 and β-amyloid peptide (ii) high levels of oxidative markers, such as 4-hydroxy-2-nonenal Michael-adducts and 3-nitro-tyrosine and (iii) altered p53 conformation, mainly due to nitration of its tyrosine residues. The consequences of high-unfolded p53 expression resulted in loss of p53 pro-apoptotic activity, and reduction of growth-associated protein 43 (GAP-43) mRNA and protein levels. The role of unfolded p53 in cell death resistance and lack of GAP-43 transcription was demonstrated by ZnCl(2) treatment. Zinc supplementation reverted p53 wild-type tertiary structure, increased cells sensitivity to acute cytotoxic injury and GAP-43 levels in SY5Y-APP clone.

  9. Study of Arsenic Sulfide in Solid Tumor Cells Reveals Regulation of Nuclear Factors of Activated T-cells by PML and p53

    PubMed Central

    Ding, Wenping; Tong, Yingying; Zhang, Xiuli; Pan, Minggui; Chen, Siyu

    2016-01-01

    Arsenic sulfide (AS) has excellent cytotoxic activity in acute promyelocytic leukemia (APL) but its activity in solid tumors remains to be explored. Here we show that AS and cyclosporine A (CsA) exerted synergistic inhibitory effect on cell growth and c-Myc expression in HCT116 cells. AS inhibited the expression of PML, c-Myc, NFATc1, NFATc3, and NFATc4, while stimulating the expression of p53 and NFATc2. Knockdown of PML reduced NFATc1, NFATc2, NFATc3 and NFATc4 expression while overexpression of p53 stimulated NFATc2-luciferase activity that was further augmented by AS by binding to a set of p53 responsive elements (PREs) on the NFATc2 promoter. Additionally, overexpression of p53 suppressed NFATc3 and NFATc4. Reciprocally, NFATc3 knockdown enhanced p53 while reducing MDM2 expression indicating that NFATc3 is a negative regulator of p53 while a positive regulator of MDM2, consistent with its tumor-promoting property as knockdown of NFATc3 retarded cell growth in vitro and tumor growth in xenograft. In patients with colon cancer, tumor expression of NFATc2 correlated with superior survival, while nuclear NFATc1 with inferior survival. These results indicate that AS differentially regulates NFAT pathway through PML and p53 and reveal an intricate reciprocal regulatory relationship between NFAT proteins and p53 pathway. PMID:26795951

  10. A Novel Sirtuin 2 (SIRT2) Inhibitor with p53-dependent Pro-apoptotic Activity in Non-small Cell Lung Cancer*

    PubMed Central

    Hoffmann, Gesine; Breitenbücher, Frank; Schuler, Martin; Ehrenhofer-Murray, Ann E.

    2014-01-01

    Sirtuin 2 (SIRT2) is an NAD+-dependent protein deacetylase whose targets include histone H4 lysine 16, p53, and α-tubulin. Because deacetylation of p53 regulates its effect on apoptosis, pharmacological inhibition of SIRT2-dependent p53 deacetylation is of great therapeutic interest for the treatment of cancer. Here, we have identified two structurally related compounds, AEM1 and AEM2, which are selective inhibitors of SIRT2 (IC50 values of 18.5 and 3.8 μm, respectively), but show only weak effects on other sirtuins such as SIRT1, SIRT3, and yeast Sir2. Interestingly, both compounds sensitized non-small cell lung cancer cell lines toward the induction of apoptosis by the DNA-damaging agent etoposide. Importantly, this sensitization was dependent on the presence of functional p53, thus establishing a link between SIRT2 inhibition by these compounds and p53 activation. Further, treatment with AEM1 and AEM2 led to elevated levels of p53 acetylation and to increased expression of CDKN1A, which encodes the cell cycle regulator p21WAF1, as well as the pro-apoptotic genes PUMA and NOXA, three transcriptional targets of p53. Altogether, our data suggest that inhibition of SIRT2 by these compounds causes increased activation of p53 by decreasing SIRT2-dependent p53 deacetylation. These compounds thus provide a good opportunity for lead optimization and drug development to target p53-proficient cancers. PMID:24379401

  11. Arecoline-induced phosphorylated p53 and p21(WAF1) protein expression is dependent on ATM/ATR and phosphatidylinositol-3-kinase in clone-9 cells.

    PubMed

    Chou, Wen-Wen; Guh, Jinn-Yuh; Tsai, Jung-Fa; Hwang, Chi-Ching; Chiou, Shean-Jaw; Chuang, Lea-Yea

    2009-06-01

    Betel-quid use is associated with liver cancer whereas its constituent arecoline is cytotoxic, genotoxic, and induces p53-dependent p21(WAF1) protein expression in Clone-9 cells (rat hepatocytes). The ataxia telangiectasia mutated (ATM)/rad3-related (ATR)-p53-p21(WAF1) and the phosphatidylinositol-3-kinase (PI3K)-mammalian target of rapamycin (mTOR) pathways are involved in the DNA damage response and the pathogenesis of cancers. Thus, we studied the role of ATM/ATR and PI3K in arecoline-induced p53 and p21(WAF1) protein expression in Clone-9 cells. We found that arecoline (0.5 mM) activated the ATM/ATR kinase at 30 min. The arecoline-activated ATM/ATR substrate contained p-p53Ser15. Moreover, arecoline only increased the levels of the p-p53Ser6, p-p53Ser15, and p-p53Ser392 phosphorylated p53 isoforms among the known isoforms. ATM shRNA attenuated arecoline-induced p-p53Ser15 and p21(WAF1) at 24 h. Arecoline (0.5 mM) increased phosphorylation levels of p-AktSer473 and p-mTORSer2448 at 30-60 min. Dominant-negative PI3K plasmids attenuated arecoline-induced p21(WAF1), but not p-p53Ser15, at 24 h. Rapamycin attenuated arecoline-induced phosphrylated p-p53Ser15, but not p21(WAF1), at 24 h. ATM shRNA, but not dominant-negative PI3K plasmids, attenuated arecoline-induced p21(WAF1) gene transcription. We conclude that arecoline activates the ATM/ATR-p53-p21(WAF1) and the PI3K/Akt-mTOR-p53 pathways in Clone-9 cells. Arecoline-induced phosphorylated p-p53Ser15 expression is dependent on ATM whereas arecoline-induced p21(WAF1) protein expression is dependent on ATM and PI3K. Moreover, p21(WAF1) gene is transcriptionally induced by arecoline-activated ATM. (c) 2009 Wiley-Liss, Inc.

  12. Fisetin Induces Apoptosis Through p53-Mediated Up-Regulation of DR5 Expression in Human Renal Carcinoma Caki Cells.

    PubMed

    Min, Kyoung-Jin; Nam, Ju-Ock; Kwon, Taeg Kyu

    2017-08-02

    Fisetin is a natural compound found in fruits and vegetables such as strawberries, apples, cucumbers, and onions. Since fisetin can elicit anti-cancer effects, including anti-proliferation and anti-migration, we investigated whether fisetin induced apoptosis in human renal carcinoma (Caki) cells. Fisetin markedly induced sub-G1 population and cleavage of poly (ADP-ribose) polymerase (PARP), which is a marker of apoptosis, and increased caspase activation. We found that pan-caspase inhibitor (z-VAD-fmk) inhibited fisetin-induced apoptosis. In addition, fisetin induced death receptor 5 (DR5) expression at the transcriptional level, and down-regulation of DR5 by siRNA blocked fisetin-induced apoptosis. Furthermore, fisetin induced p53 protein expression through up-regulation of protein stability, whereas down-regulation of p53 by siRNA markedly inhibited fisetin-induced DR5 expression. In contrast, fisetin induced up-regulation of CHOP expression and reactive oxygen species production, which had no effect on fisetin-induced apoptosis. Taken together, our study demonstrates that fisetin induced apoptosis through p53 mediated up-regulation of DR5 expression at the transcriptional level.

  13. Cell cycle aberration in ameloblastoma and adenomatoid odontogenic tumor: As evidenced by the expression of p53 and survivin.

    PubMed

    Shaikh, Zulfin; Niranjan, K C

    2015-01-01

    p53 and survivin are involved in cell cycle progression and inhibition of apoptosis, respectively. Survivin is a unique protein which functions in progression of cell division and inhibits apoptosis leading to cell proliferation and cell survival. According to the literature, mutation of p53 leads to promotion of survivin function. Thus, the importance of cell cycle aberration and uncontrolled proliferation resulting from mutation of p53 and up-regulation of survivin is discussed. To assess the role of p53 and survivin in ameloblastoma and adenomatoid odontogenic tumor (AOT). The percentages of positive tumor cells were considered for statistical evaluation. Nuclear labeling index for p53 and nuclear, cytoplasmic and combined labeling index for survivin was obtained from the stained slides. Immunohistochemical expression of p53 and survivin was done qualitatively and quantitatively in 25 cases each of ameloblastoma and AOT. Mann-Whitney U-test, Wilcoxon signed ranks test and Pearson's correlation test. Quantitatively, p53 and survivin expression was statistically significant in AOT (P = 0.003) and qualitatively, in ameloblastoma (P = 0.004). Survivin expression was significant (P = 0.002) between the study groups unlike that of p53 (P = 0.554). There was no much difference in p53 expression in ameloblastoma and AOT suggestive of cell cycle aberration in both the odontogenic tumors, but significant difference in survivin expression in ameloblastoma and AOT with higher percentage of positive cells in ameloblastoma may be indicative of an aggressive behavior of ameloblastoma.

  14. Aerobic glycolysis suppresses p53 activity to provide selective protection from apoptosis upon loss of growth signals or inhibition of BCR-Abl

    PubMed Central

    Mason, Emily F.; Zhao, Yuxing; Goraksha-Hicks, Pankuri; Coloff, Jonathan L.; Gannon, Hugh; Jones, Stephen N.; Rathmell, Jeffrey C.

    2010-01-01

    Unlike the growth factor-dependence of normal cells, cancer cells can maintain growth factor-independent glycolysis and survival through expression of oncogenic kinases, such as BCR-Abl. While targeted kinase inhibition can promote cancer cell death, therapeutic resistance develops frequently and further mechanistic understanding is needed. Cell metabolism may be central to this cell death pathway, as we have shown that growth factor deprivation leads to decreased glycolysis that promotes apoptosis via p53 activation and induction of the pro-apoptotic protein Puma. Here, we extend these findings to demonstrate that elevated glucose metabolism, characteristic of cancer cells, can suppress PKCδ-dependent p53 activation to maintain cell survival after growth factor withdrawal. In contrast, DNA damage-induced p53 activation was PKCδ-independent and was not metabolically sensitive. Both stresses required p53 serine 18 phosphorylation for maximal activity but led to unique patterns of p53 target gene expression, demonstrating distinct activation and response pathways for p53 that were differentially regulated by metabolism. Consistent with oncogenic kinases acting to replace growth factors, treatment of BCR-Abl-expressing cells with the kinase inhibitor imatinib led to reduced metabolism and p53- and Puma-dependent cell death. Accordingly, maintenance of glucose uptake inhibited p53 activation and promoted imatinib resistance. Furthermore, inhibition of glycolysis enhanced imatinib sensitivity in BCR-Abl-expressing cells with wild type p53 but had little effect on p53 null cells. These data demonstrate that distinct pathways regulate p53 after DNA damage and metabolic stress and that inhibiting glucose metabolism may enhance the efficacy of and overcome resistance to targeted molecular cancer therapies. PMID:20876800

  15. Expression of p53 protein related to the presence of human papillomavirus infection in precancer lesions of the larynx.

    PubMed Central

    Fouret, P.; Dabit, D.; Sibony, M.; Alili, D.; Commo, F.; Saint-Guily, J. L.; Callard, P.

    1995-01-01

    The aim of this study was to gain some insight into the relationship of human papillomavirus (HPV) infection to p53 expression and to some pathological parameters in precancerous lesions of the larynx. Formalin-fixed paraffin-embedded tissue sections containing human laryngeal precancerous lesions were screened for p53 protein by immunohistochemistry with the monoclonal antibody DO7 and for the presence of HPV infection by polymerase chain reaction with consensus primers directed against the E6 gene. The presence of p53 protein was detected in 31 of 57 specimens (54.4%) including 7 of 9 cases with mild dysplasia (78%), in 4 of 9 cases with moderate dysplasia (44%), and in 15 of 23 cases with severe dysplasia (65%). Of 16 samples with keratotic benign squamous metaplasia, 5 were also p53 positive (31%). Of 6 samples that were HPV positive, all were of type 16. Interestingly, 3 of the 6 HPV-positive samples were p53 negative. There was 1 HPV-positive case with strong p53 staining and 2 HPV-positive cases with minimal p53 staining. The 2 HPV-positive cases with minimal p53 staining had mild dysplasia. The HPV-positive case with strong p53 staining displayed severe dysplasia. Of 23 cases that were both HPV and p53 negative, 11 presented with keratosis and no dysplasia, 5 with moderate dysplasia, and 7 with severe dysplasia. Our data indicate that nuclear accumulation of p53 protein, presumably resulting from p53 gene mutation, may occur in HPV-infected epithelial tissues. On the other hand, there are many precancer lesions, some exhibiting moderate or severe dysplasia, that are both HPV negative and p53 unreactive, suggesting that alterations of genes other than the E6 oncogene and the p53 tumor suppressor gene play a role in early laryngeal carcinogenesis. Images Figure 1 PMID:7887442

  16. Bcl-2, Bax and p53 expression in B-CLL in relation to in vitro survival and clinical progression.

    PubMed

    Aguilar-Santelises, M; Rottenberg, M E; Lewin, N; Mellstedt, H; Jondal, M

    1996-04-22

    Our previous data have shown that isolated leukemic cells from progressive chronic lymphocytic leukemia (B-CLL) patients respond to growth stimulation in vitro and express high levels of p53, immunoreactive with the configuration-specific antibody PAb 240. We have now analyzed the in vitro survival of B-CLL cells in relation to Bcl-2, Bax alpha and p53 expression and compared this with the clinical progression of the disease. Leukemic cells from patients with progressive disease demonstrated higher in vitro survival, compared with non-progressive B-CLL and normal B cells. All cells were sensitive to treatment with a combination of glucocorticoid and cAMP. Bcl-2 protein levels were not related to clinical progression, as measured by flow cytometry. Competitive PCR showed that Bcl-2 mRNA was over-expressed in most of the B-CLL samples and that p53 mRNA expression was similar between B-CLL groups and normal values and thus not related to clinical progression. However, since Bax alpha expression was lower in progressive than in non-progressive patients, the Bcl-2/Bax alpha ratio at the mRNA level was significantly higher in the progressive group. Our data suggest that the Bcl-2/Bax alpha ratio is important for the regulation of B-CLL cell survival, that p53 over-expression in progressive B-CLL is the result of post-transcriptional modifications and that a directed PKA activation may potentiate the cytolytic effect of glucocorticoids in vivo.

  17. Immunohistochemical Assessment of O(6)-Methylguanine-DNA Methyltransferase (MGMT) and Its Relationship with p53 Expression in Endometrial Cancers.

    PubMed

    Lee, Kyung Eun

    2013-12-01

    O(6)-Methylguanine-DNA methyltransferase (MGMT) is a DNA repair protein, the loss of MGMT expression was commonly known due to hypermethylation of CpG islands in its promoter region. Overexpression of p53 protein may be associated with downregulated MGMT expression in brain tumors. The aims of this study were to investigate the role of MGMT expression loss and its correlation with p53 overexpression in endometrial cancers. MGMT and p53 expression was examined in formalin-fixed, paraffin-embedded tissues from 36 endometrial cancer cases using immnunohistochemical staining. The loss of MGMT expression was detected in 11 (30.6%) out of the 36 endometrial cancers and p53 immunoreactivity was detected in 23 (63.9%) out of the 36 endometrial cancers. Ten (90.9%) of the 11 cases with negative MGMT immunoreactivity showed positive p53 expression, so the loss of MGMT expression was significantly associated with the p53 overexpression (P=0.03). These findings suggest that the loss of MGMT expression may be one of factors capable of p53 overexpression in endometrial cancer. Further studies are needed to define the relation between MGMT and p53 for examining the mechanisms of tissue-specific MGMT expression.

  18. UVB-mediated activation of p38 mitogen-activated protein kinase enhances resistance of normal human keratinocytes to apoptosis by stabilizing cytoplasmic p53.

    PubMed

    Chouinard, Nadine; Valerie, Kristoffer; Rouabhia, Mahmoud; Huot, Jacques

    2002-07-01

    Human keratinocytes respond to UV rays by developing a fast adaptive response that contributes to maintaining their functions and survival. We investigated the role of the mitogen-activated protein kinase pathways in transducing the UV signals in normal human keratinocytes. We found that UVA, UVB or UVC induced a marked and persistent activation of p38, whereas c-Jun N-terminal kinase or extracellular signal-regulated kinase were less or not activated respectively. Inhibition of p38 activity by expression of a dominant-negative mutant of p38 or with SB203580 impaired cell viability and led to an increase in UVB-induced apoptosis. This sensitization to apoptosis was independent of caspase activities. Inhibition of p38 did not sensitize transformed HaCaT keratinocytes to UVB-induced apoptosis. In normal keratinocytes, expression of a dominant-negative mutant of p53 increased UVB-induced cell death, pointing to a role for p53. In these cells, UVB triggered a p38-dependent phosphorylation of p53 on Ser-15. This phosphorylation was associated with an SB203580-sensitive accumulation of p53, even in the presence of a serine phosphatase inhibitor. Accumulated p53 was localized mainly in the cytoplasm, independently of CRM1 nuclear export. In HaCaT cells, p53 was localized exclusively in the nucleus and its distribution and level were not affected by UVB or p38 inhibition. However, UVB induced an SB203580-insensitive phosphorylation on Ser-15 of mutated p53. Overall, our results suggest that, in normal human keratinocytes, protection against UVB depends on p38-mediated phosphorylation and stabilization of p53 and is tightly associated with the cytoplasmic sequestration of wild-type p53. We conclude that the p38/p53 pathway plays a key role in the adaptive response of normal human keratinocytes against UV stress.

  19. Characterization, expression and silencing by RNAi of p53 from Penaeus monodon.

    PubMed

    Dai, Wenting; Qiu, Lihua; Zhao, Chao; Fu, Mingjun; Ma, Zhenhua; Zhou, Falin; Yang, Qibin

    2016-06-01

    The tumor suppressor p53 is a sequence-specific transcription factor, whose target genes can regulate genomic stability, the cellular response to DNA damage and cell-cycle progression. In the present study, the full-length complementary DNA (cDNA) sequence of p53 gene from Penaeus monodon (Pmp53) was cloned by the technology of rapid amplification of cDNA ends (RACE). The cDNA of Pmp53 was 2239 bp, encoding a protein of 450 amino acids with calculated molecular weight of 50.62 kDa. The temporal expression of Pmp53 in different tissues (ovary, heart, intestine, brain, muscles, stomach and gills) and different developmental stages of ovary was investigated by real-time quantitative PCR (RT-qPCR). The lowest expression level of Pmp53 was observed in the stomach, while the highest expression level was detected in the brain. During the ovary development stages, the expression level of Pmp53 reached the peak at stage III. RNA interference (RNAi) and serotonin (5-hydroxytryptamine, 5-HT) injection experiments were conducted to study the expression profile of Pmp53 and PmCDK2 (cyclin-dependent kinase 2, CDK2). Knocked down of Pmp53 by dsRNA-p53 was sequence-specific and successful. Expression levels of Pmp53 and PmCDK2 in ovary of P. monodon were significantly increased at 12-96 h post 5-HT injection. These results indicate that Pmp53 may be involved in the regulation of ovarian development of P. monodon.

  20. [Association of p53, PCNA expression and trace element content in esophageal mucosa].

    PubMed

    Zhao, Wei-xing; Shi, Tai-xin; Gao, Xin-ping; Zhang, He-xi; Li, Sheng-lei

    2002-07-01

    There were abnormal changes of trace element in esophageal cancer patient's hair and serum in the high risk area. But it was still unknown that the relationship between p53 and proliferating cell nuclear antigen(PCNA) expression and the trace element content in varied esophageal mucosa. This study was designed to probe the relationship of trace element content and p53 mutation, PCNA expression in esophgeal mucosa. Esophageal biopsy specimen of 151 cases were divided into four groups (normal, esophagitis, dysplasia, and early carcinoma). The quantitative determination of trace element was performed was performed by using X-ray energy spectrometry and the detection of PCNA expression and p53 mutation was performed by using S-P immunohistochemistry method. The contents of Zn, Se, Mo, were 1.74 +/- 0.32, 1.53 +/- 0.64, 0.58 +/- 0.21, 0.20 +/- 0.08; 0.15 +/- 0.06, 0.10 +/- 0.03, 0.04 +/- 0.02, 0; 4.73 +/- 1.31, 3.45 +/- 1.19, 3.51 +/- 1.32, 2.51 +/- 1.04; respectively in four groups. There was a significant difference in varied histological typies(P < 0.05). The contents of Cu/Zn, Ni were 0.57 +/- 0.17, 0.89 +/- 0.18, 2.45 +/- 0.48, 2.92 +/- 1.08; 0.45 +/- 0.05, 1.27 +/- 0.11, 2.46 +/- 0.24, 2.58 +/- 0.33; respectively, which increased gradually in pace with upgrade of esophageal lesions, with significant difference (P < 0.05). The postive rates of p53 and PCNA were 0, 46.15%, 100%; 31.19%, 84.62%, 100% respectively in normal esophageal epithelium, dysplasia, and early carcinoma, with significant difference (P < 0.01), and had significant correlation to trace element. The content variation of Zn, Se, Mo, Cu, Ni could be possessed of certain effect on p53 mutation and PCNA overexpression of esophageal epithelium in the high risk area.

  1. Activation of the tumor suppressor p53 upon impairment of ribosome biogenesis.

    PubMed

    Bursac, Sladana; Brdovcak, Maja Cokaric; Donati, Giulio; Volarevic, Sinisa

    2014-06-01

    Errors in ribosome biogenesis can result in quantitative or qualitative defects in protein synthesis and consequently lead to improper execution of the genetic program and the development of specific diseases. Evidence has accumulated over the last decade suggesting that perturbation of ribosome biogenesis triggers a p53-activating checkpoint signaling pathway, often referred to as the ribosome biogenesis stress checkpoint pathway. Although it was originally suggested that p53 has a prominent role in preventing diseases by monitoring the fidelity of ribosome biogenesis, recent work has demonstrated that p53 activation upon impairment of ribosome biogenesis also mediates pathological manifestations in humans. Perturbations of ribosome biogenesis can trigger a p53-dependent checkpoint signaling pathway independent of DNA damage and the tumor suppressor ARF through inhibitory interactions of specific ribosomal components with the p53 negative regulator, Mdm2. Here we review the recent advances made toward understanding of this newly-recognized checkpoint signaling pathway, its role in health and disease, and discuss possible future directions in this exciting research field. This article is part of a Special Issue entitled: Role of the Nucleolus in Human Disease. © 2013.

  2. A p53/ARF-dependent anticancer barrier activates senescence and blocks tumorigenesis without impacting apoptosis.

    PubMed

    Sinha, Vidya C; Qin, Lan; Li, Yi

    2015-02-01

    In response to oncogene activation and oncogene-induced aberrant proliferation, mammalian cells activate apoptosis and senescence, usually via the p53-ARF tumor-suppressor pathway. Apoptosis is a known barrier to cancer and is usually downregulated before full malignancy, but senescence as an anticancer barrier is controversial due to its presence in the tumor environment. In addition, senescence may aid cancer progression via releasing senescence-associated factors that instigate neighboring tumor cells. Here, it is demonstrated that apoptosis unexpectedly remains robust in ErbB2 (ERBB2/HER2)-initiated mammary early lesions arising in adult mice null for either p53 or ARF. These early lesions, however, downregulate senescence significantly. This diminished senescence response is associated with accelerated progression to cancer in ARF-null mice compared with ARF-wild-type mice. Thus, the ARF-p53 pathway is dispensable for the apoptosis anticancer barrier in the initiation of ErbB2 breast cancer, the apoptosis barrier alone cannot halt mammary tumorigenesis, and senescence is a key barrier against carcinogenesis. Findings in this relevant mouse model of HER2-driven breast cancer suggest that effective prevention relies upon preserving both ARF/p53-independent apoptosis and ARF/p53-dependent senescence. ©2014 American Association for Cancer Research.

  3. Chk1 inhibition activates p53 through p38 MAPK in tetraploid cancer cells.

    PubMed

    Vitale, Ilio; Senovilla, Laura; Galluzzi, Lorenzo; Criollo, Alfredo; Vivet, Sonia; Castedo, Maria; Kroemer, Guido

    2008-07-01

    We have previously shown that tetraploid cancer cells succumb through a p53-dependent apoptotic pathway when checkpoint kinase 1 (Chk1) is depleted by small interfering RNAs (siRNAs) or inhibited with 7-hydroxystaurosporine (UCN-01). Here, we demonstrate that Chk1 inhibition results in the activating phosphorylation of p38 mitogen-activated protein kinase (p38 MAPK). Depletion of p38 MAPK by transfection with a siRNA targeting the alpha isoform of p38 MAPK (p38alpha MAPK) abolishes the phosphorylation of p53 on serines 15 and 46 that is induced by Chk1 knockdown. The siRNA-mediated downregulation and pharmacological inhibition of p38alpha MAPK (with SB 203580) also reduces cell death induced by Chk1 knockdown or UCN-01. These results underscore the role of p38 MAPK as a pro-apoptotic kinase in the p53-dependant pathway for the therapeutic elimination of polyploidy cells.

  4. Tia1 dependent regulation of mRNA subcellular location and translation controls p53 expression in B cells.

    PubMed

    Díaz-Muñoz, Manuel D; Kiselev, Vladimir Yu; Novère, Nicolas Le; Curk, Tomaz; Ule, Jernej; Turner, Martin

    2017-09-13

    Post-transcriptional regulation of cellular mRNA is essential for protein synthesis. Here we describe the importance of mRNA translational repression and mRNA subcellular location for protein expression during B lymphocyte activation and the DNA damage response. Cytoplasmic RNA granules are formed upon cell activation with mitogens, including stress granules that contain the RNA binding protein Tia1. Tia1 binds to a subset of transcripts involved in cell stress, including p53 mRNA, and controls translational silencing and RNA granule localization. DNA damage promotes mRNA relocation and translation in part due to dissociation of Tia1 from its mRNA targets. Upon DNA damage, p53 mRNA is released from stress granules and associates with polyribosomes to increase protein synthesis in a CAP-independent manner. Global analysis of cellular mRNA abundance and translation indicates that this is an extended ATM-dependent mechanism to increase protein expression of key modulators of the DNA damage response.Sequestering mRNA in cytoplasmic stress granules is a mechanism for translational repression. Here the authors find that p53 mRNA, present in stress granules in activated B lymphocytes, is released upon DNA damage and is translated in a CAP-independent manner.

  5. Olaquindox induces DNA damage via the lysosomal and mitochondrial pathway involving ROS production and p53 activation in HEK293 cells.

    PubMed

    Yang, Yang; Jiang, Liping; She, Yan; Chen, Min; Li, Qiujuan; Yang, Guang; Geng, Chengyan; Tang, Liyun; Zhong, Laifu; Jiang, Lijie; Liu, Xiaofang

    2015-11-01

    Olaquindox (OLA) is a potent antibacterial agent used as a feed additive and growth promoter. In this study, the genotoxic potential of OLA was investigated in the human embryonic kidney cell line 293 (HEK293). Results showed that OLA caused significant increases of DNA migration. Lysosomal membrane permeability and mitochondrial membrane potential were reduced after treatment with OLA. OLA was shown to induce ROS production and GSH depletion. The expression of p53 protein is increased in cells incubated with OLA. The activation of p53 and ATM gene was assessed by exposure to OLA. Furthermore, NAC reduced DNA migration, ROS formation, GSH depletion and the expression of the p53 protein and gene. And desipramine significantly decreased AO fluorescence intensity and the expression of the p53 protein and gene. These results support the assumption that OLA exerted genotoxic effects and induced DNA strand breaks in HEK293 cells, possibly through lysosomal-mitochondrial pathway involving ROS production and p53 activation.

  6. p53 activation by Ni(II) is a HIF-1α independent response causing caspases 9/3-mediated apoptosis in human lung cells

    SciTech Connect

    Wong, Victor C.; Morse, Jessica L.; Zhitkovich, Anatoly

    2013-06-15

    Hypoxia mimic nickel(II) is a human respiratory carcinogen with a suspected epigenetic mode of action. We examined whether Ni(II) elicits a toxicologically significant activation of the tumor suppressor p53, which is typically associated with genotoxic responses. We found that treatments of H460 human lung epithelial cells with NiCl{sub 2} caused activating phosphorylation at p53-Ser15, accumulation of p53 protein and depletion of its inhibitor MDM4 (HDMX). Confirming the activation of p53, its knockdown suppressed the ability of Ni(II) to upregulate MDM2 and p21 (CDKN1A). Unlike DNA damage, induction of GADD45A by Ni(II) was p53-independent. Ni(II) also increased p53-Ser15 phosphorylation and p21 expression in normal human lung fibroblasts. Although Ni(II)-induced stabilization of HIF-1α occurred earlier, it had no effect on p53 accumulation and Ser15 phosphorylation. Ni(II)-treated H460 cells showed no evidence of necrosis and their apoptosis and clonogenic death were suppressed by p53 knockdown. The apoptotic role of p53 involved a transcription-dependent program triggering the initiator caspase 9 and its downstream executioner caspase 3. Two most prominently upregulated proapoptotic genes by Ni(II) were PUMA and NOXA but only PUMA induction required p53. Knockdown of p53 also led to derepression of antiapoptotic MCL1 in Ni(II)-treated cells. Overall, our results indicate that p53 plays a major role in apoptotic death of human lung cells by Ni(II). Chronic exposure to Ni(II) may promote selection of resistant cells with inactivated p53, providing an explanation for the origin of p53 mutations by this epigenetic carcinogen. - Highlights: • Ni(II) is a strong activator of the transcription factor p53. • Apoptosis is a principal form of death by Ni(II) in human lung epithelial cells. • Ni(II)-activated p53 triggers caspases 9/3-mediated apoptotic program. • NOXA and PUMA are two main proapoptotic genes induced by Ni(II). • HIF-1α and p53 are independent

  7. The PTTG1-binding factor (PBF/PTTG1IP) regulates p53 activity in thyroid cells.

    PubMed

    Read, Martin L; Seed, Robert I; Fong, Jim C W; Modasia, Bhavika; Ryan, Gavin A; Watkins, Rachel J; Gagliano, Teresa; Smith, Vicki E; Stratford, Anna L; Kwan, Perkin K; Sharma, Neil; Dixon, Olivia M; Watkinson, John C; Boelaert, Kristien; Franklyn, Jayne A; Turnell, Andrew S; McCabe, Christopher J

    2014-04-01

    The PTTG1-binding factor (PBF/PTTG1IP) has an emerging repertoire of roles, especially in thyroid biology, and functions as a protooncogene. High PBF expression is independently associated with poor prognosis and lower disease-specific survival in human thyroid cancer. However, the precise role of PBF in thyroid tumorigenesis is unclear. Here, we present extensive evidence demonstrating that PBF is a novel regulator of p53, a tumor suppressor protein with a key role in maintaining genetic stability, which is infrequently mutated in differentiated thyroid cancer. By coimmunoprecipitation and proximity-ligation assays, we show that PBF binds specifically to p53 in thyroid cells and significantly represses transactivation of responsive promoters. Further, we identify that PBF decreases p53 stability by enhancing ubiquitination, which appears dependent on the E3 ligase activity of Mdm2. Impaired p53 function was evident in a transgenic mouse model with thyroid-specific PBF overexpression (transgenic PBF mice), which had significantly increased genetic instability as indicated by fluorescent inter simple sequence repeat-PCR analysis. Consistent with this, approximately 40% of all DNA repair genes examined were repressed in transgenic PBF primary cultures, including genes with critical roles in maintaining genomic integrity such as Mgmt, Rad51, and Xrcc3. Our data also revealed that PBF induction resulted in up-regulation of the E2 enzyme Rad6 in murine thyrocytes and was associated with Rad6 expression in human thyroid tumors. Overall, this work provides novel insights into the role of the protooncogene PBF as a negative regulator of p53 function in thyroid tumorigenesis, in which PBF is generally overexpressed and p53 mutations are rare compared with other tumor types.

  8. Prognostic significance of p53 immunohistochemical expression in adenoid cystic carcinoma of the salivary glands: a meta-analysis.

    PubMed

    Li, Qinglin; Huang, Ping; Zheng, Chuanming; Wang, Jiafeng; Ge, Minghua

    2017-04-25

    Adenoid cystic carcinoma of salivary glands is a rare adenocarcinoma and has been placed in "high-risk" category as poor long-term prognosis. The purpose of this study was to investigate p53 protein expression in adenoid cystic carcinoma of salivary glands and its correlation with clinicopathological parameters and prognosis. Literatures were searched from PubMed, Embase, Cochrane Library and Web of Science, which investigated the relationships between p53 expression and pathological type, clinical stage, local recurrence, metastasis, nerve infiltration and overall survival. A total of 1,608 patients from 36 studies were included in the analysis. The results showed that p53-postive expression rate was 49% in adenoid cystic carcinoma of salivary glands (OR=10.34, 95%CI: 4.93-21.71, P < 0.0001). The p53-postive expression was closely related to tumor types (OR=0.30, 95%CI: 0.14-0.65, P < 0.0001). The tumor with solid histological subtype had a strong positive correlation with p53 expression. The combined analysis revealed that the p53-positive expression rate among patients in T1and T2 stage was 41.4%, compared to 53.2% among those in T3 and T4 stage. However, there was no significant correlation between tumor stage and p53 expression (OR=0.47, 95% CI: 0.17-1.29, P = 0.14). Besides, compared to patients with p53-negative expression, those with p53-positive expression had a greater chance of developing metastasis, local recurrence and nerve infiltration as well as poorer 5-year overall survival (P < 0.01).In conclusion, the p53 expression is related to the survival of adenoid cystic carcinoma of salivary glands. It can be considered as the auxiliary detection index in treatment and prognosis of adenoid cystic carcinoma of salivary glands.

  9. Regulation of p53 expression and apoptosis by vault RNA2-1-5p in cervical cancer cells

    PubMed Central

    Kong, Lu; Hao, Qi; Wang, Ying; Zhou, Ping; Zou, Binbin; Zhang, Yu-xiang

    2015-01-01

    nc886 or VRNA2-1 has recently been identified as a noncoding RNA instead of a vault RNA or a pre-microRNA. Several studies have reported that pre-miR-886 plays a tumor-suppressive role in a wide range of cancer cells through its activity as a cellular protein kinase RNA-activated (PKR) ligand and repressor. However, by sequencing stem-PCR products, we found that a microRNA originating from this precursor, vault RNA2-1-5p (VTRNA2-1-5p), occurs in cervical cancer cells. The expression levels of the predicted targets of VTRNA2-1-5p are negatively correlated with VTRNA2-1-5p levels by quantitative reversion transcription PCR (qRT-PCR). Previous results have shown that VTRNA2-1-5p is overexpressed in human cervical squamous cell carcinomas (CSCCs) compared with adjacent healthy tissues. Inhibition of VTRNA2-1-5p increases Bax protein expression and apoptotic cell death in cervical cancer cells. Our findings suggest that VTRNA2-1-5p has oncogenic activity related to the progression of cervical cancer. Here, we report that VTRNA2-1-5p directly targeted p53 expression and functioned as an oncomir in cervical cancer. VTRNA2-1-5p inhibition decreased cervical cancer cell invasion, proliferation, and tumorigenicity while increasing apoptosis and p53 expression. Interestingly, VTRNA2-1-5p inhibition also increased cisplatin-induced apoptosis of HeLa and SiHa cells. In human clinical cervical cancer specimens, low p53 expression and high VTRNA2-1-5p expression were positively associated. In addition, VTRNA2-1-5p was found to directly target the 5′ and 3′ untranslated regions (UTRs) of p53. We propose that VTRNA2-1-5p is a direct regulator of p53 and suggest that it plays an essential role in the apoptosis and proliferation of cervical cancer cells. PMID:26318295

  10. Low ATM protein expression and depletion of p53 correlates with olaparib sensitivity in gastric cancer cell lines.

    PubMed

    Kubota, Eiji; Williamson, Christopher T; Ye, Ruiqiong; Elegbede, Anifat; Peterson, Lars; Lees-Miller, Susan P; Bebb, D Gwyn

    2014-01-01

    Small-molecule inhibitors of poly (ADP-ribose) polymerase (PARP) have shown considerable promise in the treatment of homologous recombination (HR)-defective tumors, such as BRCA1- and BRCA2-deficient breast and ovarian cancers. We previously reported that mantle cell lymphoma cells with deficiency in ataxia telangiectasia mutated (ATM) are sensitive to PARP-1 inhibitors in vitro and in vivo. Here, we report that PARP inhibitors can potentially target ATM deficiency arising in a solid malignancy. We show that ATM protein expression varies between gastric cancer cell lines, with NUGC4 having significantly reduced protein levels. Significant correlation was found between ATM protein expression and sensitivity to the PARP inhibitor olaparib, with NUGC4 being the most sensitive. Moreover, reducing ATM kinase activity using a small-molecule inhibitor (KU55933) or shRNA-mediated depletion of ATM protein enhanced olaparib sensitivity in gastric cancer cell lines with depletion or inactivation of p53. Our results demonstrate that ATM is a potential predictive biomarker for PARP-1 inhibitor activity in gastric cancer harboring disruption of p53, and that combined inhibition of ATM and PARP-1 is a rational strategy for expanding the utility of PARP-1 inhibitors to gastric cancer with p53 disruption.

  11. Low ATM protein expression and depletion of p53 correlates with olaparib sensitivity in gastric cancer cell lines

    PubMed Central

    Kubota, Eiji; Williamson, Christopher T; Ye, Ruiqiong; Elegbede, Anifat; Peterson, Lars; Lees-Miller, Susan P; Bebb, D Gwyn

    2014-01-01

    Small-molecule inhibitors of poly (ADP-ribose) polymerase (PARP) have shown considerable promise in the treatment of homologous recombination (HR)-defective tumors, such as BRCA1- and BRCA2-deficient breast and ovarian cancers. We previously reported that mantle cell lymphoma cells with deficiency in ataxia telangiectasia mutated (ATM) are sensitive to PARP-1 inhibitors in vitro and in vivo. Here, we report that PARP inhibitors can potentially target ATM deficiency arising in a solid malignancy. We show that ATM protein expression varies between gastric cancer cell lines, with NUGC4 having significantly reduced protein levels. Significant correlation was found between ATM protein expression and sensitivity to the PARP inhibitor olaparib, with NUGC4 being the most sensitive. Moreover, reducing ATM kinase activity using a small-molecule inhibitor (KU55933) or shRNA-mediated depletion of ATM protein enhanced olaparib sensitivity in gastric cancer cell lines with depletion or inactivation of p53. Our results demonstrate that ATM is a potential predictive biomarker for PARP-1 inhibitor activity in gastric cancer harboring disruption of p53, and that combined inhibition of ATM and PARP-1 is a rational strategy for expanding the utility of PARP-1 inhibitors to gastric cancer with p53 disruption. PMID:24841718

  12. No Influence of bcl-2, p53, and p21waf1 protein expression on the outcome of pediatric Hodgkin lymphomas.

    PubMed

    Chabay, Paola; Pesce, Pablo; De Matteo, Elena; Lombardi, Mercedes García; Rey, Guadalupe; Preciado, María Victoria

    2006-09-01

    In Argentina, lymphomas account for 13.6% of all pediatric tumors and 47% of them are Hodgkin lymphoma. Previous studies of lymphoma series have reported the expression of apoptotic and cell cycle proteins. Our aim was to study these markers in our pediatric patients and correlate them with their outcome. Immunohistochemical staining with monoclonal antibodies anti-p53, bcl-2, p21, and mdm2 were performed on formalin-fixed paraffin-embedded Hodgkin lymphoma lymph node biopsies from 54 pediatric patients. The analyzed oncogenes p53, bcl-2, p21, and mdm2 exhibited 81%, 44%, 76%, and 90% positive staining, respectively. The most prevalent p53/p21 expression pattern was p53+/p21+, in 57% of cases, whereas concerning p53/mdm2 expression pattern p53+/mdm2+ was observed in 61% of cases. We failed to find any statistically significant correlation between oncogene expression and patient's survival. It seems that p53 plays an important role in lymphomagenesis in our studied population, because it is overexpressed in 81% of Hodgkin lymphoma cases and in more than 50% of cases, it might be able to activate its cellular effectors. Bcl-2 staining observed in 44% of our cases could represent a failure in bcl-2 down-regulation that leads to a rescue event in defective germinal center B-cells, that allows them to develop into Reed-Sternberg and Hodgkin cells.

  13. A new invertebrate member of the p53 gene family is developmentally expressed and responds to polychlorinated biphenyls.

    PubMed Central

    Jessen-Eller, Kathryn; Kreiling, Jill A; Begley, Gail S; Steele, Marjorie E; Walker, Charles W; Stephens, Raymond E; Reinisch, Carol L

    2002-01-01

    The cell-cycle checkpoint protein p53 both directs terminal differentiation and protects embryos from DNA damage. To study invertebrate p53 during early development, we identified three differentially expressed p53 family members (p53, p97, p120) in the surf clam, Spisula solidissima. In these mollusks, p53 and p97 occur in both embryonic and adult tissue, whereas p120 is exclusively embryonic. We sequenced, cloned, and characterized p120 cDNA. The predicted protein, p120, resembles p53 across all evolutionarily conserved regions and contains a C-terminal extension with a sterile alpha motif (SAM) as in p63 and p73. These vertebrate forms of p53 are required for normal inflammatory, epithelial, and neuronal development. Unlike clam p53 and p97, p120 mRNA and protein levels are temporally expressed in embryos, with mRNA levels decreasing with increasing p120 protein (R(2) = 0.97). Highest surf clam p120 mRNA levels coincide with the onset of neuronal growth. In earlier work we have shown that neuronal development is altered by exposure to polychlorinated biphenyls (PCBs), a neurotoxic environmental contaminant. In this study we show that PCBs differentially affect expression of the three surf clam p53 family members. p120 mRNA and protein are reduced the most and earliest in development, p97 protein shows a smaller and later reduction, and p53 protein levels do not change. For the first time we report that unlike p53 and p97, p120 is specifically embryonic and expressed in a time-dependent manner. Furthermore, p120 responds to PCBs by 48 hr when PCB-induced suppression of the serotonergic nervous system occurs. PMID:11940455

  14. MicroRNA 203 expression in keratinocytes is dependent on regulation of p53 levels by E6.

    PubMed

    McKenna, Declan J; McDade, Simon S; Patel, Daksha; McCance, Dennis J

    2010-10-01

    A screen of microRNA (miRNA) expression following differentiation in human foreskin keratinocytes (HFKs) identified changes in several miRNAs, including miRNA 203 (miR-203), which has previously been shown to play an important role in epithelial cell biology by regulating p63 levels. We investigated how expression of human papillomavirus type 16 (HPV16) oncoproteins E6 and E7 affected miR-203 expression during proliferation and differentiation of HFKs. We demonstrated that miR-203 expression is reduced in HFKs where p53 function is compromised, either by the viral oncoprotein E6 or by knockout of p53 using short hairpin RNAs (p53i). We show that the induction of miR-203 observed during calcium-induced differentiation of HFKs is significantly reduced in HFKs expressing E6 and in p53i HFKs. Induction of miR-203 in response to DNA damage is also reduced in the absence of p53. We report that proliferation of HFKs is dependent on the level of miR-203 expression and that overexpression of miR-203 can reduce overproliferation in E6/E7-expressing and p53i HFKs. In summary, these results indicate that expression of miR-203 is dependent on p53, which may explain how expression of HPV16 E6 can disrupt the balance between proliferation and differentiation, as well as the response to DNA damage, in keratinocytes.

  15. N-acetylcysteine potentiates doxorubicin-induced ATM and p53 activation in ovarian cancer cells.

    PubMed

    Brum, Gabriella; Carbone, Thomas; Still, Eric; Correia, Vendita; Szulak, Kevin; Calianese, David; Best, Charles; Cammarata, Garret; Higgins, Katelyn; Ji, Fang; Di, Wen; Wan, Yinsheng

    2013-01-01

    Doxorubicin has been used clinically to treat various types of cancer, and yet the molecular mode of actions of doxorubicin remains to be fully unraveled. In this study, we investigated the effect of doxorubicin on cultured ovarian cancer cells (CaOV3). MTT assay data showed that doxorubicin inhibits cell proliferation in a time- and dose-dependent manner. Phagokinetic cell motility assay data indicated that doxorubicin inhibits both basal level and EGF-induced cell migration in CaOV3 cells. Confocal microscopic data revealed that doxorubicin induces reorganization of cytoskeletal proteins including actin, tubulin and vimentin. Doxorubicin induces phosphorylation of p53 at Ser15 and 20, acetylation of p53 and ATM activation. Doxorubicin also induces phosphorylation of histone H2AX at Ser139. Interestingly, doxorubicin also inhibits mTOR activity, measured by phosphorylation of S6 ribosomal protein. Pretreatment of CaOV3 cells with antioxidant N-acetylcysteine (NAC), but not pyrrolidine dithiocarbamate (PDTC) potentiates doxorubicin-induced phosphorylation of p53 and ATM. Collectively, we conclude that doxorubicin induces ATM/p53 activation leading to reorganization of cytoskeletal networks, inhibition of mTOR activity, and inhibition of cell proliferation and migration. Our data also suggest that removal of oxidants by antioxidants such as NAC may enhance the efficacy of doxorubicin in vivo.

  16. Activation of PPARγ/P53 signaling is required for curcumin to induce hepatic stellate cell senescence

    PubMed Central

    Jin, H; Lian, N; Zhang, F; Chen, L; Chen, Q; Lu, C; Bian, M; Shao, J; Wu, L; Zheng, S

    2016-01-01

    Activation of quiescent hepatic stellate cells (HSCs) is the major event in hepatic fibrogenesis, along with enhancement of cell proliferation and overproduction of extracellular matrix. Although inhibition of cell proliferation and induction of apoptosis are potential strategies to block the activation of HSCs, a better understanding of the senescence of activated HSCs can provide a new therapeutic strategy for prevention and treatment of liver fibrosis. The antioxidant curcumin, a phytochemical from turmeric, has been shown to suppress HSC activation in vitro and in vivo. The current work was aimed to evaluate the effect of curcumin on senescence of activated HSCs and to elucidate the underlying mechanisms. In this study, curcumin promoted the expression of senescence marker Hmga1 in rat fibrotic liver. In addition, curcumin increased the number of senescence-associated β-galactosidase-positive HSCs in vitro. At the same time, curcumin induced HSC senescence by elevating the expression of senescence markers P16, P21 and Hmga1, concomitant with reduced abundance of HSC activation markers α-smooth muscle actin and α1(I)-procollagen in cultured HSCs. Moreover, curcumin affected the cell cycle and telomerase activity. We further demonstrated that P53 pharmacological inhibitor pifithrin-α (PFT-α) or transfection with P53 siRNA abrogated the curcumin-induced HSC senescence in vitro. Meanwhile, curcumin disruption of P53 leading to increased senescence of activated HSCs was further verified in vivo. Further studies indicated that curcumin promoted the expression of P53 through a PPARγ activation-dependent mechanism. Moreover, promoting PPARγ transactivating activity by a PPARγ agonist 15d-PGJ2 markedly enhanced curcumin induction of senescence of activated HSCs. However, the PPARγ antagonist PD68235 eliminated curcumin induction of HSC senescence. Taken together, our results provided a novel insight into the mechanisms underlying curcumin inhibition of HSC

  17. Linking polymorphic p53 response elements with gene expression in airway epithelial cells of smokers and cancer risk.

    PubMed

    Wang, Xuting; Pittman, Gary S; Bandele, Omari J; Bischof, Jason J; Liu, Gang; Brothers, John F; Spira, Avrum; Bell, Douglas A

    2014-12-01

    Chronic cigarette smoking exposes airway epithelial cells to thousands of carcinogens, oxidants and DNA-damaging agents, creating a field of molecular injury in the airway and altering gene expression. Studies of cytologically normal bronchial epithelial cells from smokers have identified transcription-based biomarkers that may prove useful in early diagnosis of lung cancer, including a number of p53-regulated genes. The ability of p53 to regulate transcription is critical for tumor suppression, and this suggests that single-nucleotide polymorphisms (SNPs) in functional p53 binding sites (p53 response elements, or p53REs) that affect gene expression could influence susceptibility to cancer. To connect p53RE SNP genotype with gene expression and cancer risk, we identified a set of 204 SNPs in putative p53REs, and performed cis expression quantitative trait loci (eQTL) analysis, assessing associations between SNP genotypes and mRNA levels of adjacent genes in bronchial epithelial cells obtained from 44 cigarette smokers. To further test and validate these genotype-expression associations, we searched published eQTL studies from independent populations and determined that 53% (39/74) of the bronchial epithelial eQTLs were observed in at least one of other studies. SNPs in p53REs were also evaluated for effects on p53-DNA binding using a quantitative in vitro protein-DNA binding assay. Last, based on linkage disequilibrium, we found 6 p53RE SNPs associated with gene expression were identified as cancer risk SNPs by either genome-wide association studies or candidate gene studies. We provide an approach for identifying and evaluating potentially functional SNPs that may modulate the airway gene expression response to smoking and may influence susceptibility to cancers.

  18. Characterization of gene expression of a p53 homologue in the soft-shell clam (Mya arenaria).

    PubMed

    Van Beneden, R J; Walker, C W; Laughner, E S

    1997-06-01

    Expression of a clam p53 homologue was examined in tissues of the soft-shell clam, Mya arenaria, from Beal's Island, Maine. Southern analysis reveals that p53, in this population, is a single copy gene. A 1.7 to 1.9-kb p53 mRNA was detected at very low levels in normal adult gonadal tissue. This transcript is similar in size to that of vertebrate p53 genes. RNAs were harvested from several tissues, including individual clam gonads during gametogenesis. These were hybridized in ribonuclease (RNase) protection assays to a p53 antisense probe designed from the clam p53 cDNA sequence. RNase protection profiles indicate that p53 mRNA is expressed in adductor muscle, gill, and gonads of both sexes. Although p53 mRNA is expressed throughout gametogenesis in mature male and female gonads, ovaries have significantly higher levels of expression. The significance of our findings to the study of normal clam gametogenesis and to etiology of gonadal tumors is discussed.

  19. Mitochondrial STAT3 contributes to transformation of Barrett's epithelial cells that express oncogenic Ras in a p53-independent fashion.

    PubMed

    Yu, Chunhua; Huo, Xiaofang; Agoston, Agoston T; Zhang, Xi; Theiss, Arianne L; Cheng, Edaire; Zhang, Qiuyang; Zaika, Alexander; Pham, Thai H; Wang, David H; Lobie, Peter E; Odze, Robert D; Spechler, Stuart J; Souza, Rhonda F

    2015-08-01

    Metaplastic epithelial cells of Barrett's esophagus transformed by the combination of p53-knockdown and oncogenic Ras expression are known to activate signal transducer and activator of transcription 3 (STAT3). When phosphorylated at tyrosine 705 (Tyr705), STAT3 functions as a nuclear transcription factor that can contribute to oncogenesis. STAT3 phosphorylated at serine 727 (Ser727) localizes in mitochondria, but little is known about mitochondrial STAT3's contribution to carcinogenesis in Barrett's esophagus, which is the focus of this study. We introduced a constitutively active variant of human STAT3 (STAT3CA) into the following: 1) non-neoplastic Barrett's (BAR-T) cells; 2) BAR-T cells with p53 knockdown; and 3) BAR-T cells that express oncogenic H-Ras(G12V). STAT3CA transformed only the H-Ras(G12V)-expressing BAR-T cells (evidenced by loss of contact inhibition, formation of colonies in soft agar, and generation of tumors in immunodeficient mice), and did so in a p53-independent fashion. The transformed cells had elevated levels of both mitochondrial (Ser727) and nuclear (Tyr705) phospho-STAT3. Introduction of a STAT3CA construct with a mutated tyrosine phosphorylation site into H-Ras(G12V)-expressing Barrett's cells resulted in high levels of mitochondrial phospho-STAT3 (Ser727) with little or no nuclear phospho-STAT3 (Tyr705), and the cells still formed tumors in immunodeficient mice. Thus tyrosine phosphorylation of STAT3 is not required for tumor formation in Ras-expressing Barrett's cells. We conclude that mitochondrial STAT3 (Ser727) can contribute to oncogenesis in Barrett's cells that express oncogenic Ras. These findings suggest that agents targeting STAT3 might be useful for chemoprevention in patients with Barrett's esophagus.

  20. Inhibition of NAMPT pathway by FK866 activates the function of p53 in HEK293T cells

    SciTech Connect

    Thakur, Basant Kumar; Dittrich, Tino; Chandra, Prakash; Becker, Annette; Lippka, Yannick; Selvakumar, Divakarvel; Klusmann, Jan-Henning; Reinhardt, Dirk; Welte, Karl

    2012-08-03

    Highlights: Black-Right-Pointing-Pointer In 293T cells, p53 is considered to be inactive due to its interaction with the large T-antigen. Black-Right-Pointing-Pointer Acetylation of p53 at lysine 382 is important for its functional activation. Black-Right-Pointing-Pointer First evidence to document the presence of a functional p53 in 293T cells. Black-Right-Pointing-Pointer Inhibition of NAMPT/SIRT pathway by FK866 in 293T cells increases the functional activity of p53. Black-Right-Pointing-Pointer This activation of p53 involves reversible acetylation of p53 at lysine 382. -- Abstract: Inactivation of p53 protein by endogenous and exogenous carcinogens is involved in the pathogenesis of different human malignancies. In cancer associated with SV-40 DNA tumor virus, p53 is considered to be non-functional mainly due to its interaction with the large T-antigen. Using the 293T cell line (HEK293 cells transformed with large T antigen) as a model, we provide evidence that p53 is one of the critical downstream targets involved in FK866-mediated killing of 293T cells. A reduced rate of apoptosis and an increased number of cells in S-phase was accompanied after knockdown of p53 in these cells. Inhibition of NAMPT by FK866, or inhibition of SIRT by nicotinamide decreased proliferation and triggered death of 293T cells involving the p53 acetylation pathway. Additionally, knockdown of p53 attenuated the effect of FK866 on cell proliferation, apoptosis, and cell cycle arrest. The data presented here shed light on two important facts: (1) that p53 in 293T cells is active in the presence of FK866, an inhibitor of NAMPT pathway; (2) the apoptosis induced by FK866 in 293T cells is associated with increased acetylation of p53 at Lys382, which is required for the functional activity of p53.

  1. SOX30, a novel epigenetic silenced tumor suppressor, promotes tumor cell apoptosis by transcriptional activating p53 in lung cancer

    PubMed Central

    Han, F; Liu, W; Jiang, X; Shi, X; Yin, L; Ao, L; Cui, Z; Li, Y; Huang, C; Cao, J; Liu, J

    2015-01-01

    Although members of SOX family have been well documented for their essential roles in embryonic development, cell proliferation and disease, the functional role and molecular mechanism of SOX30 in cancer are largely unexplored. Here, we first identified SRY-box containing gene 30 (SOX30) as a novel preferentially methylated gene using genome-wide methylation screening. SOX30 hypermethylation was detected in 100% of lung cancer cell lines (9/9) and 70.83% (85/120) of primary lung tumor tissues compared with none (0/20) of normal and 8.0% (2/25) of peri-tumoral lung tissues (P<0.01). SOX30 was expressed in normal and peri-tumoral lung tissues in which SOX30 was unmethylated, but was silenced or downregulated in lung cancer cell lines and primary lung tumor tissues harboring a hypermethylated SOX30. De-methylation experiments further confirmed that silence of SOX30 was regulated by its hypermethylation. Ectopic expression of SOX30 induces cancer cell apoptosis with inhibiting proliferation in vitro and represses tumor formation in vivo, whereas knockdown of SOX30 demonstrates a reversed effect both in vitro and in vivo. At the molecular level, the antitumorigenic effect of SOX30 is mediated by directly binding to CACTTTG (+115 to +121) of p53 promoter region and activating p53 transcription, suggesting that SOX30 is a novel transcriptional activating factor of p53. Indeed, blockade of p53 attenuates the tumor inhibition of SOX30. Overall, these findings demonstrate that SOX30 is a novel epigenetic silenced tumor suppressor acting through direct regulation of p53 transcription and expression. This study provides novel insights on the mechanism of tumorigenesis in lung cancer. PMID:25435374

  2. Genome-Wide Expression Analysis Identifies a Modulator of Ionizing Radiation-Induced p53-Independent Apoptosis in Drosophila melanogaster

    PubMed Central

    van Bergeijk, Petra; Heimiller, Joseph; Uyetake, Lyle; Su, Tin Tin

    2012-01-01

    Tumor suppressor p53 plays a key role in DNA damage responses in metazoa, yet more than half of human tumors show p53 deficiencies. Therefore, understanding how therapeutic genotoxins such as ionizing radiation (IR) can elicit DNA damage responses in a p53-independent manner is of clinical importance. Drosophila has been a good model to study the effects of IR because DNA damage responses as well as underlying genes are conserved in this model, and because streamlined gene families make loss-of-function analyses feasible. Indeed, Drosophila is the only genetically tractable model for IR-induced, p53-independent apoptosis and for tissue regeneration and homeostasis after radiation damage. While these phenomenon occur only in the larvae, all genome-wide gene expression analyses after irradiation to date have been in embryos. We report here the first analysis of IR-induced, genome-wide gene expression changes in wild type and p53 mutant Drosophila larvae. Key data from microarrays were confirmed by quantitative RT-PCR. The results solidify the central role of p53 in IR-induced transcriptome changes, but also show that nearly all changes are made of both p53-dependent and p53-independent components. p53 is found to be necessary not just for the induction of but also for the repression of transcript levels for many genes in response to IR. Furthermore, Functional analysis of one of the top-changing genes, EF1a-100E, implicates it in repression of IR-induced p53-independent apoptosis. These and other results support the emerging notion that there is not a single dominant mechanism but that both positive and negative inputs collaborate to induce p53-independent apoptosis in response to IR in Drosophila larvae. PMID:22666323

  3. FGF1 nuclear translocation is required for both its neurotrophic activity and its p53-dependent apoptosis protection.

    PubMed

    Rodriguez-Enfedaque, Aida; Bouleau, Sylvina; Laurent, Maryvonne; Courtois, Yves; Mignotte, Bernard; Vayssière, Jean-Luc; Renaud, Flore

    2009-11-01

    Fibroblast growth factor 1 (FGF1) is a differentiation and survival factor for neuronal cells both in vitro and in vivo. FGF1 activities can be mediated not only by paracrine and autocrine pathways involving FGF receptors but also by an intracrine pathway, which is an underestimated mode of action. Indeed, FGF1 lacks a secretion signal peptide and contains a nuclear localization sequence (NLS), which is consistent with its usual intracellular and nuclear localization. To progress in the comprehension of the FGF1 intracrine pathway in neuronal cells, we examined the role of the nuclear translocation of FGF1 for its neurotrophic activity as well as for its protective activity against p53-dependent apoptosis. Thus, we have transfected PC12 cells with different FGF1 expression vectors encoding wild type or mutant (Delta NLS) FGF1. This deletion inhibited both FGF1 nuclear translocation and FGF1 neurotrophic activity (including differentiation and serum-free cell survival). We also show that endogenous FGF1 protection of PC12 cells against p53-dependent cell death requires FGF1 nuclear translocation. Strikingly, wild type FGF1 is found interacting with p53, in contrast to the mutant FGF1 deleted of its NLS, suggesting the presence of direct and/or indirect interactions between FGF1 and p53 pathways. Thus, we present evidences that FGF1 may act by a nuclear pathway to induce neuronal differentiation and to protect the cells from apoptosis whether cell death is induced by serum depletion or p53 activation.

  4. P53 and Murine Double Mimute 2 (MDM2) Expression Changes and Significance in Different Types of Endometrial Lesions

    PubMed Central

    Jiang, Zhongyong; Xu, Wanqing; Dan, Gang; Liu, Yuan; Xiong, Jie

    2016-01-01

    Background Endometrial lesions are common in obstetrics and gynecology, including endometrial polyps, uterine adenomyosis, and malignant endometrial adenocarcinoma. Endometrial lesions seriously affect women’s health, fertility, quality of life, and life safety. As a pro-apoptosis gene, p53 is considered to be closely related with human tumors. Murine double mimute 2 (MDM2) is an oncogene that can promote tumor occurrence and development. P53 and MDM2 expression and significance in different types of endometrial lesions have not been fully elucidated. Material/Methods Normal endometrium, endometrial polyps, uterine adenomyosis, and endometrial adenocarcinoma tissue samples were collected. Real-time PCR was used to detect p53 and MDM2 mRNA expression. Immunohistochemical staining and Western blot analysis were applied to test p53 and MDM2 protein expression. Their correlation with clinical staging of endometrial adenocarcinoma was analyzed. Results P53 and MDM2 mRNA and protein expression were significantly elevated in the endometrial polyps group and the endometrial adenocarcinoma group compared with the normal control group (P<0.05). Their levels increased more obviously in endometrial adenocarcinoma compared with endometrial polyps (P<0.05). P53 and MDM2 mRNA and protein expression were slightly enhanced in uterine adenomyosis compared with normal controls, but this difference lacked statistical significance (P>0.05). P53 and MDM2 mRNA and protein level showed a positive correlation. Significantly higher expression of p53 or MDM2 was observed in patients with stage III compared to those in patients with stage II. Higher expression was also observed in patients with stage II than in patients with stage I. Conclusions P53 and MDM2 mRNA and protein were elevated in endometrial polyps and endometrial adenocarcinoma and their expressions were correlated with clinical staging of endometrial adenocarcinoma. They can promote cancer occurrence and development, and can

  5. Concordant p53 and mdm-2 protein expression in vulvar squamous cell carcinoma and adjacent lichen sclerosus.

    PubMed

    Carlson, J A; Amin, S; Malfetano, J; Tien, A T; Selkin, B; Hou, J; Goncharuk, V; Wilson, V L; Rohwedder, A; Ambros, R; Ross, J S

    2001-06-01

    To determine if carcinogenic events in vulvar skin precede the onset of morphologic atypia, the authors investigated for derangements in DNA content, cell proliferation, and cell death in vulvar carcinomas and surrounding skin in 140 samples of tumor and surrounding skin collected from 35 consecutive vulvectomy specimen for squamous cell carcinoma (SCC) or vulvar intraepithelial neoplasia (VIN) 3. Vulvar non-cancer excisions were used as controls. Investigations consisted of histologic classification and measurement of 9 variables--epidermal thickness (acanthosis and rete ridge length), immunolabeling index (LI) for 3 proteins (p53 protein, Ki-67, and mdm-2), pattern of p53 expression (dispersed vs. compact), DNA content index, and presence of aneuploidy by image analysis and apoptotic rate by Apotag labeling. Significant positive correlations were found for all nine variables studied versus increasing histologic severity in two proposed histologic stepwise models of vulvar carcinogenesis (lichen sclerosus (LS) and VIN 3 undifferentiated associated SCC groups). High p53 LI (>25) and the compact pattern of p53 expression (suspected oncoprotein) significantly correlated with LS and its associated vulvar samples compared with samples not associated with LS (P < or = 0.001). Furthermore, p53 LI, mdm-2 LI, and pattern of p53 expression were concordant between patient matched samples of LS and SCC. In addition, mdm-2 LI significantly correlated with dispersed pattern p53 LI suggesting a response to wild-type p53 protein accumulation. These findings support the hypothesis that neoplastic transformation occurs in sequential steps and compromises proteins involved in the cell cycle control. Concordance of p53 and mdm-2 protein expression in LS and adjacent SCC provides evidence that LS can act as a precursor lesion in the absence of morphologic atypia. Overexpression of mdm-2 with stabilization and inactivation of p53 protein may provide an alternate pathway for vulvar

  6. Epigenetic identification of ZNF545 as a functional tumor suppressor in multiple myeloma via activation of p53 signaling pathway

    SciTech Connect

    Fan, Yu; Zhan, Qian; Xu, Hongying; Li, Lili; Li, Chen; Xiao, Qian; Xiang, Shili; Hui, Tianli; Xiang, Tingxiu; Ren, Guosheng

    2016-06-10

    The KRAB–zinc-finger protein ZNF545 was recently identified as a potential suppressor gene in several tumors. However, the regulatory mechanisms of ZNF545 in tumorigenesis remain unclear. In this study, we investigated the expression and roles of ZNF545 in multiple myeloma (MM). ZNF545 was frequently downregulated in MM tissues compared with non-tumor bone marrow tissues. ZNF545 expression was silenced by promoter methylation in MM cell lines, and could be restored by demethylation treatment. ZNF545 methylation was detected in 28.3% of MM tissues, compared with 4.3% of normal bone marrow tissues. ZNF545 transcriptionally activated the p53 signaling pathway but had no effect on Akt in MM, whereas ectopic expression of ZNF545 in silenced cells suppressed their proliferation and induced apoptosis. We therefore identified ZNF545 as a novel tumor suppressor inhibiting tumor growth through activation of the p53 pathway in MM. Moreover, tumor-specific methylation of ZNF545 may represent an epigenetic biomarker for MM diagnosis, and a potential target for specific therapy. -- Highlights: •Downregulated ZNF545 in MM tissues and cell lines and ectopic expression of ZNF545 suppresses tumor growth. •Tumor-specific methylation of ZNF545 represents an epigenetic biomarker for MM diagnosis, and a potential target for specific therapy. •ZNF545 exerts its tumor suppressive effects via transcriptional activating p53 pathway.

  7. p53 directly activates cystatin D/CST5 to mediate mesenchymal-epithelial transition: a possible link to tumor suppression by vitamin D3

    PubMed Central

    Hünten, Sabine; Hermeking, Heiko

    2015-01-01

    Cystatin D (CST5) encodes an inhibitor of cysteine proteases of the cathepsin family and is directly induced by the vitamin D receptor (VDR). Interestingly, vitamin D3 exerts tumor suppressive effects in a variety of tumor types. In colorectal cancer (CRC) cells CST5 was shown to mediate mesenchymal-epithelial transition (MET). We recently performed an integrated genomic and proteomic screen to identify targets of the p53 tumor suppressor in CRC cells. Thereby, we identified CST5 as a putative p53 target gene. Here, we validated and characterized CST5 as a direct p53 target gene. After activation of a conditional p53 allele, CST5 was upregulated on mRNA and protein levels. Treatment with nutlin-3a or etoposide induced CST5 in a p53-dependent manner. These regulations were direct, since ectopic and endogenous p53 occupied a conserved binding site in the CST5 promoter region. In addition, treatment with calcitriol, the active vitamin D3 metabolite, and simultaneous activation of p53 resulted in enhanced CST5 induction and increased repression of SNAIL, an epithelial-mesenchymal transition (EMT) inducing transcription factor. Furthermore, CST5 inactivation decreased p53-induced mesenchymal-epithelial transition (MET) as evidenced by decreased inhibition of SNAIL and of migration by p53. Furthermore, CST5 expression was directly repressed by SNAIL. In summary, these results imply CST5 as an important mediator of tumor suppression by p53 in colorectal cancer. In addition, they suggest that a combined treatment activating p53 and the vitamin D3 pathway may function via induction of CST5. PMID:26158294

  8. Targeting RING domains of Mdm2-MdmX E3 complex activates apoptotic arm of the p53 pathway in leukemia/lymphoma cells.

    PubMed

    Wu, W; Xu, C; Ling, X; Fan, C; Buckley, B P; Chernov, M V; Ellis, L; Li, F; Muñoz, I G; Wang, X

    2015-12-31

    Reactivation of tumor-suppressor p53 for targeted cancer therapy is an attractive strategy for cancers bearing wild-type (WT) p53. Targeting the Mdm2-p53 interface or MdmX ((MDM4), mouse double minute 4)-p53 interface or both has been a focus in the field. However, targeting the E3 ligase activity of Mdm2-MdmX really interesting new gene (RING)-RING interaction as a novel anticancer strategy has never been explored. In this report, we describe the identification and characterization of small molecule inhibitors targeting Mdm2-MdmX RING-RING interaction as a new class of E3 ligase inhibitors. With a fluorescence resonance energy transfer-based E3 activity assay in high-throughput screening of a chemical library, we identified inhibitors (designated as MMRis (Mdm2-MdmX RING domain inhibitors)) that specifically inhibit Mdm2-MdmX E3 ligase activity toward Mdm2 and p53 substrates. MMRi6 and its analog MMRi64 are capable of disrupting Mdm2-MdmX interactions in vitro and activating p53 in cells. In leukemia cells, MMRi64 potently induces downregulation of Mdm2 and MdmX. In contrast to Nutlin3a, MMRi64 only induces the expression of pro-apoptotic gene PUMA (p53 upregulated modulator of apoptosis) with minimal induction of growth-arresting gene p21. Consequently, MMRi64 selectively induces the apoptotic arm of the p53 pathway in leukemia/lymphoma cells. Owing to the distinct mechanisms of action of MMRi64 and Nutlin3a, their combination synergistically induces p53 and apoptosis. Taken together, this study reveals that Mdm2-MdmX has a critical role in apoptotic response of the p53 pathway and MMRi64 may serve as a new pharmacological tool for p53 studies and a platform for cancer drug development.

  9. Malignant transformation rate and p53, and p16 expression in teratomatous skin of ovarian mature cystic teratoma.

    PubMed

    Zhu, Hai-Li; Zou, Zhen-Ning; Lin, Pei-Xin; Li, Wen-Xia; Huang, Ye-En; Shi, Xiao-Xin; Shen, Hong

    2015-01-01

    To investigate the incidence of malignant transformation and P53 and P16 expression in teratomatous skin of ovarian mature cystic teratoma. Data on ovarian teratoma specimens in nearly 10 years were reviewed. P53 and P16 expression were detected by immunohistochemistry in 25 cases of teratomatous skin of ovarian mature cystic teratoma, 20 cases of squamous cell carcinoma and 2 cases of squamous cell carcinoma originated from teratomatous skin. Of 1913 cases of ovarian mature cystic teratoma in nearly 10 years, only two cases of squamous cell carcinoma were found in teratomatous skin, with malignant transformation rate of 0.1045%. P53 expression was detected in 2 cases squamous cell carcinoma originated from teratomatous skin and P16 overexpression in one. There were no expressions of P53 and P16 in 25 cases of teratomatous skin of ovarian mature cystic teratoma. Of 20 cases of squamous cell carcinoma P53 overexpression (positive rate of 55%) was detected in 11 cases, P16 overexpression (positive rate of 35%) in 7 cases. The positive rates of P53 and P16 expression in squamous cell carcinomas were significantly higher than that in the teratomatous skins (p< 0.001, p= 0.002). There was low risk of malignant transformation in teratomatous skin of ovarian mature cystic teratoma which can be explained by lower P53 and P16 expressionin teratomas than that in squamous cell carcinoma.

  10. p53 induces miR199a-3p to suppress SOCS7 for STAT3 activation and renal fibrosis in UUO

    PubMed Central

    Yang, Ruhao; Xu, Xuan; Li, Huiling; Chen, Jinwen; Xiang, Xudong; Dong, Zheng; Zhang, Dongshan

    2017-01-01

    The role of p53 in renal fibrosis has recently been suggested, however, its function remains controversial and the underlying mechanism is unclear. Here, we show that pharmacological and genetic blockade of p53 attenuated renal interstitial fibrosis, apoptosis, and inflammation in mice with unilateral urethral obstruction (UUO). Interestingly, p53 blockade was associated with the suppression of miR-215-5p, miR-199a-5p&3p, and STAT3. In cultured human kidney tubular epithelial cells (HK-2), TGF-β1 treatment induced fibrotic changes, including collagen I and vimentin expression, being associated with p53 accumulation, p53 Ser15 phosphorylation, and miR-199a-3p expression. Inhibition of p53 by pifithrin-α blocked STAT3 activation and the expression of miR-199a-3p, collagen I, and vimentin during TGF-β1 treatment. Over-expression of miR-199a-3p increased TGFβ1-induced collagen I and vimentin expression and restored SOCS7 expression. Furthermore, SOCS7 was identified as a target gene of miR-199a-3p, and silencing of SOCS7 promoted STAT3 activation. ChIp analyses indicated the binding of p53 to the promoter region of miR-199a-3p. Consistently, kidney biopsies from patients with IgA nephropathy and diabetic nephropathy exhibited substantial activation of p53 and STAT3, decreased expression of SOCS7, and increase in profibrotic proteins and miR-199a-3p. Together, these results demonstrate the novel p53/miR-199a-3p/SOCS7/STAT3 pathway in renal interstitial fibrosis. PMID:28240316

  11. Hepatitis B virus X protein inhibits p53 sequence-specific DNA binding, transcriptional activity, and association with transcription factor ERCC3.

    PubMed Central

    Wang, X W; Forrester, K; Yeh, H; Feitelson, M A; Gu, J R; Harris, C C

    1994-01-01

    Chronic active hepatitis caused by infection with hepatitis B virus, a DNA virus, is a major risk factor for human hepatocellular carcinoma. Since the oncogenicity of several DNA viruses is dependent on the interaction of their viral oncoproteins with cellular tumor-suppressor gene products, we investigated the interaction between hepatitis B virus X protein (HBX) and human wild-type p53 protein. HBX complexes with the wild-type p53 protein and inhibits its sequence-specific DNA binding in vitro. HBX expression also inhibits p53-mediated transcriptional activation in vivo and the in vitro association of p53 and ERCC3, a general transcription factor involved in nucleotide excision repair. Therefore, HBX may affect a wide range of p53 functions and contribute to the molecular pathogenesis of human hepatocellular carcinoma. Images PMID:8134379

  12. Changes in O-Linked N-Acetylglucosamine (O-GlcNAc) Homeostasis Activate the p53 Pathway in Ovarian Cancer Cells.

    PubMed

    de Queiroz, Rafaela Muniz; Madan, Rashna; Chien, Jeremy; Dias, Wagner Barbosa; Slawson, Chad

    2016-09-02

    O-GlcNAcylation is a dynamic post-translational modification consisting of the addition of a single N-acetylglucosamine sugar to serine and threonine residues in proteins by the enzyme O-linked β-N-acetylglucosamine transferase (OGT), whereas the enzyme O-GlcNAcase (OGA) removes the modification. In cancer, tumor samples present with altered O-GlcNAcylation; however, changes in O-GlcNAcylation are not consistent between tumor types. Interestingly, the tumor suppressor p53 is modified by O-GlcNAc, and most solid tumors contain mutations in p53 leading to the loss of p53 function. Because ovarian cancer has a high frequency of p53 mutation rates, we decided to investigate the relationship between O-GlcNAcylation and p53 function in ovarian cancer. We measured a significant decrease in O-GlcNAcylation of tumor tissue in an ovarian tumor microarray. Furthermore, O-GlcNAcylation was increased, and OGA protein and mRNA levels were decreased in ovarian tumor cell lines not expressing the protein p53. Treatment with the OGA inhibitor Thiamet-G (TMG), silencing of OGA, or overexpression of OGA and OGT led to p53 stabilization, increased nuclear localization, and increased protein and mRNA levels of p53 target genes. These data suggest that changes in O-GlcNAc homeostasis activate the p53 pathway. Combination treatment of the chemotherapeutic cisplatin with TMG decreased tumor cell growth and enhanced cell cycle arrest without impairing cytotoxicity. The effects of TMG on tumor cell growth were partially dependent on wild type p53 activation. In conclusion, changes in O-GlcNAc homeostasis activate the wild type p53 pathway in ovarian cancer cells, and OGA inhibition has the potential as an adjuvant treatment for ovarian carcinoma.

  13. Abrogation of p53 by its antisense in MCF-7 breast carcinoma cells increases cyclin D1 via activation of Akt and promotion of cell proliferation

    SciTech Connect

    Chhipa, Rishi Raj; Kumari, Ratna; Upadhyay, Ankur Kumar; Bhat, Manoj Kumar

    2007-11-15

    The p53 protein has been a subject of intense research interest since its discovery as about 50% of human cancers carry p53 mutations. Mutations in the p53 gene are the most frequent genetic lesions in breast cancers suggesting a critical role of p53 in breast cancer development, growth and chemosensitivity. This report describes the derivation and characterization of MCF-7As53, an isogenic cell line derived from MCF-7 breast carcinoma cells in which p53 was abrogated by antisense p53 cDNA. Similar to MCF-7 and simultaneously selected hygromycin resistant MCF-7H cells, MCF-7As53 cells have consistent basal epithelial phenotype, morphology, and estrogen receptor expression levels at normal growth conditions. Present work documents investigation of molecular variations, growth kinetics, and cell cycle related studies in relation to absence of wild-type p53 protein and its transactivation potential as well. Even though wild-type tumor suppressor p53 is an activator of cell growth arrest and apoptosis-mediator genes such as p21, Bax, and GADD45 in MCF-7As53 cells, no alterations in expression levels of these genes were detected. The doubling time of these cells decreased due to depletion of G0/G1 cell phase because of constitutive activation of Akt and increase in cyclin D1 protein levels. This proliferative property was abrogated by wortmannin, an inhibitor of PI3-K/Akt signaling pathway. Therefore this p53 null cell line indicates that p53 is an indispensable component of cellular signaling system which is regulated by caveolin-1 expression, involving Akt activation and increase in cyclin D1, thereby promoting proliferation of breast cancer cells.

  14. Fenofibrate inhibited pancreatic cancer cells proliferation via activation of p53 mediated by upregulation of LncRNA MEG3.

    PubMed

    Hu, Duanmin; Su, Cunjin; Jiang, Min; Shen, Yating; Shi, Aiming; Zhao, Fenglun; Chen, Ruidong; Shen, Zhu; Bao, Junjie; Tang, Wen

    2016-03-04

    There is still no suitable drug for pancreatic cancer treatment, which is one of the most aggressive human tumors. Maternally expressed gene 3 (MEG3), a LncRNA, has been suggested as a tumor suppressor in a range of human tumors. Studies found fenofibrate exerted anti-tumor roles in various human cancer cell lines. However, its role in pancreatic cancer remains unknown. The present study aimed to explore the impacts of fenofibrate on pancreatic cancer cell lines, and to investigate MEG3 role in its anti-tumor mechanisms. We used MTT assay to determine cells proliferation, genome-wide LncRNA microarray analysis to identify differently expressed LncRNAs, siRNA or pCDNA-MEG3 transfection to interfere or upregulate MEG3 expression, western blot to detect protein levels, real-time PCR to determine MEG3 level. Fenofibrate significantly inhibited proliferation of pancreatic cancer cells, increased MEG3 expression and p53 levels. Moreover, knockdown of MEG3 attenuated cytotoxicity induced by fenofibrate. Furthermore, overexpression of MEG3 induced cells death and increased p53 expression. Our results indicated fenofibrate inhibited pancreatic cancer cells proliferation via activation of p53 mediated by upregulation of MEG3. Copyright © 2016 Elsevier Inc. All rights reserved.

  15. P53 tumor suppressor gene and protein expression is altered in cell lines derived from spontaneous and alpha-radiation-induced canine lung tumors

    SciTech Connect

    Tierney, L.A.; Johnson, N.F.; Lechner, J.F.

    1994-11-01

    Mutations in the p53 tumor suppressor gene are the most frequently occurring gene alterations in malignant human cancers, including lung cancer. In lung cancer, common point mutations within conserved exons of the p53 gene result in a stabilized form of mutant protein which is detectable in most cases by immunohistochemistry. In addition to point mutations, allelic loss, rearrangements, and deletions of the p53 gene have also been detected in both human and rodent tumors. It has been suggested that for at least some epithelial neoplasms, the loss of expression of wild-type p53 protein may be more important for malignant transformation than the acquisition of activating mutations. Mechanisms responsible for the loss of expression of wild-type protein include gene deletion or rearrangement, nonsense or stop mutations, mutations within introns or upstream regulatory regions of the gene, and accelerated rates of degradation of the protein by DNA viral oncoproteins.

  16. Dihydromyricetin promotes hepatocellular carcinoma regression via a p53 activation-dependent mechanism

    NASA Astrophysics Data System (ADS)

    Zhang, Qingyu; Liu, Jie; Liu, Bin; Xia, Juan; Chen, Nianping; Chen, Xiaofeng; Cao, Yi; Zhang, Chen; Lu, Caijie; Li, Mingyi; Zhu, Runzhi

    2014-04-01

    The development of antitumor chemotherapy drugs remains a key goal for oncologists, and natural products provide a vast resource for anti-cancer drug discovery. In the current study, we found that the flavonoid dihydromyricetin (DHM) exhibited antitumor activity against liver cancer cells, including primary cells obtained from hepatocellular carcinoma (HCC) patients. In contrast, DHM was not cytotoxic to immortalized normal liver cells. Furthermore, DHM treatment resulted in the growth inhibition and remission of xenotransplanted tumors in nude mice. Our results further demonstrated that this antitumor activity was caused by the activation of the p53-dependent apoptosis pathway via p53 phosphorylation at serine (15Ser). Moreover, our results showed that DHM plays a dual role in the induction of cell death when administered in combination with cisplatin, a common clinical drug that kills primary hepatoma cells but not normal liver cells.

  17. Dihydromyricetin promotes hepatocellular carcinoma regression via a p53 activation-dependent mechanism

    PubMed Central

    Zhang, Qingyu; Liu, Jie; Liu, Bin; Xia, Juan; Chen, Nianping; Chen, Xiaofeng; Cao, Yi; Zhang, Chen; Lu, CaiJie; Li, Mingyi; Zhu, Runzhi

    2014-01-01

    The development of antitumor chemotherapy drugs remains a key goal for oncologists, and natural products provide a vast resource for anti-cancer drug discovery. In the current study, we found that the flavonoid dihydromyricetin (DHM) exhibited antitumor activity against liver cancer cells, including primary cells obtained from hepatocellular carcinoma (HCC) patients. In contrast, DHM was not cytotoxic to immortalized normal liver cells. Furthermore, DHM treatment resulted in the growth inhibition and remission of xenotransplanted tumors in nude mice. Our results further demonstrated that this antitumor activity was caused by the activation of the p53-dependent apoptosis pathway via p53 phosphorylation at serine (15Ser). Moreover, our results showed that DHM plays a dual role in the induction of cell death when administered in combination with cisplatin, a common clinical drug that kills primary hepatoma cells but not normal liver cells. PMID:24717393

  18. Phosphorylation of p53 on Ser15 during cell cycle caused by Topo I and Topo II inhibitors in relation to ATM and Chk2 activation.

    PubMed

    Zhao, Hong; Traganos, Frank; Darzynkiewicz, Zbigniew

    2008-10-01

    The DNA topoisomerase I (topo1) inhibitor topotecan (TPT) and topo2 inhibitor mitoxantrone (MXT) damage DNA inducing formation of DNA double-strand breaks (DSBs). We have recently examined the kinetics of ATM and Chk2 activation as well as histone H2AX phosphorylation, the reporters of DNA damage, in individual human lung adenocarcinoma A549 cells treated with these drugs. Using a phospho-specific Ab to tumor suppressor protein p53 phosphorylated on Ser15 (p53-Ser15(P)) combined with an Ab that detects p53 regardless of the phosphorylation status and multiparameter cytometry we correlated the TPT- and MXT-induced p53-Ser15(P) with ATM and Chk2 activation as well as with H2AX phosphorylation in relation to the cell cycle phase. In untreated interphase cells, p53-Ser15(P) had "patchy" localization throughout the nucleoplasm while mitotic cells showed strong p53-Ser15(P) cytoplasmic immunofluorescence (IF). The intense phosphorylation of p53-Ser15, combined with activation of ATM and Chk2 (involving centrioles) as well as phosphorylation of H2AX seen in the untreated mitotic cells, suggest mobilization of the DNA damage detection/repair machinery in controlling cytokinesis. In the nuclei of cells treated with TPT or MXT, the expression of p53-Ser15(P) appeared as closely packed foci of intense IF. Following TPT treatment, the induction of p53-Ser15(P) was most pronounced in S-phase cells while no significant cell cycle phase differences were seen in cells treated with MXT. The maximal increase in p53-Ser15(P) expression, rising up to 2.5-fold above the level of its constitutive expression, was observed in cells treated with TPT or MXT for 4-6 h. This maximum expression of p53-Ser15(P) coincided in time with the peak of Chk2 activation but not with ATM activation and H2AX phosphorylation, both of which crested 1-2 h after the treatment with TPT or MXT. The respective kinetics of p53-Ser15 phosphorylation versus ATM and Chk2 activation suggest that in response to DNA

  19. Phosphorylation of p53 on Ser15 during cell cycle caused by Topo I and Topo II inhibitors in relation to ATM and Chk2 activation

    PubMed Central

    Zhao, Hong; Traganos, Frank; Darzynkiewicz, Zbigniew

    2008-01-01

    The DNA topoisomerase I (topo1) inhibitor topotecan (TPT) and topo2 inhibitor mitoxantrone (MXT) damage DNA inducing formation of DNA double-strand breaks (DSBs). We have recently examined the kinetics of ATM and Chk2 activation as well as histone H2AX phosphorylation, the reporters of DNA damage, in individual human lung adenocarcinoma A549 cells treated with these drugs. Using a phospho-specific Ab to tumor suppressor protein p53 phosphorylated on Ser15 (p53-Ser15P) combined with an Ab that detects p53 regardless of the phosphorylation status and multiparameter cytometry we correlated the TPT- and MXT- induced p53-Ser15P with ATM and Chk2 activation as well as with H2AX phosphorylation in relation to the cell cycle phase. In untreated interphase cells, p53-Ser15P had “patchy” localization throughout the nucleoplasm while mitotic cells showed strong p53-Ser15P cytoplasmic immunofluorescence (IF). The intense phosphorylation of p53-Ser15, combined with activation of ATM and Chk2 (involving centrioles) as well as phosphorylation of H2AX seen in the untreated mitotic cells, suggest mobilization of the DNA damage detection/repair machinery in controlling cytokinesis. In the nuclei of cells treated with TPT or MXT, the expression of p53-Ser15P appeared as closely packed foci of intense IF. Following TPT treatment, the induction of p53-Ser15P was most pronounced in S-phase cells while no significant cell cycle phase differences were seen in cells treated with MXT. The maximal increase in p53-Ser15P expression, rising up to 2.5-fold above the level of its constitutive expression, was observed in cells treated with TPT or MXT for 4–6 h. This maximum expression of p53-Ser15P coincided in time with the peak of Chk2 activation but not with ATM activation and H2AX phosphorylation, both of which crested 1–2 h after the treatment with TPT or MXT. The respective kinetics of p53-Ser15 phosphorylation versus ATM and Chk2 activation suggest that in response to DNA damage by

  20. Methylseleninic acid super-activates p53-senescence cancer progression barrier in prostate lesions of Pten-knockout mouse

    PubMed Central

    Wang, Lei; Guo, Xiaolan; Wang, Ji; Jiang, Cheng; Bosland, Maarten C.; Lü, Junxuan; Deng, Yibin

    2015-01-01

    Monomethylated selenium (MM-Se) forms that are precursors of methylselenol such as methylseleninic acid (MSeA) differ in metabolism and anti-cancer activities in preclinical cell and animal models from seleno-methionine that had failed to exert preventive efficacy against prostate cancer (PCa) in North American men. Given that human PCa arises from precancerous lesions such as high-grade prostatic intraepithelial neoplasia (HG-PIN) which frequently have lost PTEN tumor suppressor permitting AKT oncogenic signaling, we tested the efficacy of MSeA to inhibit HG-PIN progression in Pten prostate specific knockout (KO) mice and assessed the mechanistic involvement of p53-mediated cellular senescence and of the androgen receptor (AR). We observed that short-term (4 weeks) oral MSeA treatment significantly increased expression of P53 and P21Cip1 proteins and senescence-associated-β-galactosidase staining, and reduced Ki-67 cell proliferation index in Pten KO prostate epithelium. Long-term (25 weeks) MSeA administration significantly suppressed HG-PIN phenotype, tumor weight, and prevented emergence of invasive carcinoma in Pten KO mice. Mechanistically, the long-term MSeA treatment not only sustained P53-mediated senescence, but also markedly reduced AKT phosphorylation and AR abundance in the Pten KO prostate. Importantly, these cellular and molecular changes were not observed in the prostate of wild type littermates which were similarly treated with MSeA. Since p53 signaling is likely to be intact in HG-PIN compared to advanced PCa, the selective super-activation of p53-mediated senescence by MSeA suggests a new paradigm of cancer chemoprevention by strengthening a cancer progression barrier through induction of irreversible senescence with additional suppression of AR and AKT oncogenic signaling. PMID:26511486

  1. [Expressions of SMG-1, ATM and P53 in laryngeal squamous cell carcinoma and their clinical significance].

    PubMed

    Zhou, Xuejun; Wang, Xiaofeng; Feng, Yongjun; Xie, Minqiang

    2016-01-01

    To detect the expression of SMG-1, ATM and P53 in laryngeal squamous cell carcinoma (LSCC) and their correlation with the clinicopathological features and outcomes of the patients. Sixty-three specimens of surgically resected LSCC tissues and 30 specimens of adjacent normal tissue were examined for the expressions of ATM, SMG-1 and P53 using immunohistochemistry. The correlation of ATM, SMG-1 and P53 expressions with the clinicopathological factors and their interactions were analyzed. The positive expression rates of SMG-1, ATM and P53 in LSCC were 36.5% (23/63) , 41.3% (26/63) and 57.1% (36/63) respectively, significantly different from those in the adjacent tissue (73.3%, 83.3% and 20.0%, respectively; P<0.05). The expression of SMG-1 in LSCC was positively correlated with the pathological grade and T stage of the tumors (P<0.05), and ATM and P53 were not related to the clinicopathological factors (P>0.05). The 5-year survival rate of patients negative for SMG-1 expression was significantly higher than that of SMG-1-positive patients (P<0.05). The expression of SMG-1 was negatively correlated with that of P53 (r=-0.476, P<0.01). SMG-1, ATM and P53 are closely related to the occurrence of LSCC. SMG-1 expression is an important factor associated with the clinicopathological features and prognosis of LSCC patients, and may play an important role in the development of LSCC by regulating P53 expression.

  2. Glucocorticoid receptor activation inhibits p53-induced apoptosis of MCF10Amyc cells via induction of protein kinase Cε.

    PubMed

    Aziz, Moammir H; Shen, Hong; Maki, Carl G

    2012-08-24

    Glucocorticoid receptor (GR) is a ligand-dependent transcription factor that can promote apoptosis or survival in a cell-specific manner. Activated GR has been reported to inhibit apoptosis in mammary epithelial cells and breast cancer cells by increasing pro-survival gene expression. In this study, activated GR inhibited p53-dependent apoptosis in MCF10A cells and human mammary epithelial cells that overexpress the MYC oncogene. Specifically, GR agonists hydrocortisone or dexamethasone inhibited p53-dependent apoptosis induced by cisplatin, ionizing radiation, or the MDM2 antagonist Nutlin-3. In contrast, the GR antagonist RU486 sensitized the cells to apoptosis by these agents. Apoptosis inhibition was associated with maintenance of mitochondrial membrane potential, diminished caspase-3 and -7 activation, and increased expression at both the mRNA and protein level of the anti-apoptotic PKC family member PKCε. Knockdown of PKCε via siRNA targeting reversed the protective effect of dexamethasone and restored apoptosis sensitivity. These data provide evidence that activated GR can inhibit p53-dependent apoptosis through induction of the anti-apoptotic factor PKCε.

  3. A leucine-rich nuclear export signal in the p53 tetramerization domain: regulation of subcellular localization and p53 activity by NES masking.

    PubMed Central

    Stommel, J M; Marchenko, N D; Jimenez, G S; Moll, U M; Hope, T J; Wahl, G M

    1999-01-01

    Appropriate subcellular localization is crucial for regulating p53 function. We show that p53 export is mediated by a highly conserved leucine-rich nuclear export signal (NES) located in its tetramerization domain. Mutation of NES residues prevented p53 export and hampered tetramer formation. Although the p53-binding protein MDM2 has an NES and has been proposed to mediate p53 export, we show that the intrinsic p53