Science.gov

Sample records for activity p53 expression

  1. Genome-scale functional analysis of the human genes modulating p53 activity by regulating MDM2 expression in a p53-independent manner.

    PubMed

    Kim, Dong Min; Choi, Seung-Hyun; Yeom, Young Il; Min, Sang-Hyun; Kim, Il-Chul

    2016-09-16

    MDM2, a critical negative regulator of p53, is often overexpressed in leukemia, but few p53 mutations are found, suggesting that p53-independent MDM2 expression occurs due to alterations in MDM2 upstream regulators. In this study, a high MDM2 transcription level was observed (41.17%) regardless of p53 expression in patient with acute myeloid leukemia (AML). Therefore, we performed genome-scale functional screening of the human genes modulating MDM2 expression in a p53-independent manner. We searched co-expression profiles of genes showing a positive or negative pattern with MDM2 expression in a DNA microarray database, selected1089 links, and composed a screening library of 368 genes. Using MDM2 P1 and P2 promoter-reporter systems, we screened clones regulating MDM2 transcriptions in a p53-independent manner by overexpression. Nine clones from the screening library showed enhanced MDM2 promoter activity and MDM2 expression in p53-deficient HCT116 cells. Among them, six clones, including NTRK2, GNA15, SFRS2, EIF5A, ELAVL1, and YWHAB mediated MAPK signaling for expressing MDM2. These results indicate that p53-independent upregulation of MDM2 by increasing selected clones may lead to oncogenesis in AML and that MDM2-modulating genes are novel potential targets for AML treatment. PMID:27524244

  2. Genome-scale functional analysis of the human genes modulating p53 activity by regulating MDM2 expression in a p53-independent manner.

    PubMed

    Kim, Dong Min; Choi, Seung-Hyun; Yeom, Young Il; Min, Sang-Hyun; Kim, Il-Chul

    2016-09-16

    MDM2, a critical negative regulator of p53, is often overexpressed in leukemia, but few p53 mutations are found, suggesting that p53-independent MDM2 expression occurs due to alterations in MDM2 upstream regulators. In this study, a high MDM2 transcription level was observed (41.17%) regardless of p53 expression in patient with acute myeloid leukemia (AML). Therefore, we performed genome-scale functional screening of the human genes modulating MDM2 expression in a p53-independent manner. We searched co-expression profiles of genes showing a positive or negative pattern with MDM2 expression in a DNA microarray database, selected1089 links, and composed a screening library of 368 genes. Using MDM2 P1 and P2 promoter-reporter systems, we screened clones regulating MDM2 transcriptions in a p53-independent manner by overexpression. Nine clones from the screening library showed enhanced MDM2 promoter activity and MDM2 expression in p53-deficient HCT116 cells. Among them, six clones, including NTRK2, GNA15, SFRS2, EIF5A, ELAVL1, and YWHAB mediated MAPK signaling for expressing MDM2. These results indicate that p53-independent upregulation of MDM2 by increasing selected clones may lead to oncogenesis in AML and that MDM2-modulating genes are novel potential targets for AML treatment.

  3. p53/PUMA expression in human pulmonary fibroblasts mediates cell activation and migration in silicosis.

    PubMed

    Wang, Wei; Liu, Haijun; Dai, Xiaoniu; Fang, Shencun; Wang, Xingang; Zhang, Yingming; Yao, Honghong; Zhang, Xilong; Chao, Jie

    2015-01-01

    Phagocytosis of SiO2 into the lung causes an inflammatory cascade that results in fibroblast proliferation and migration, followed by fibrosis. Clinical evidence has indicated that the activation of alveolar macrophages by SiO2 produces rapid and sustained inflammation characterized by the generation of monocyte chemotactic protein 1, which, in turn, induces fibrosis. However, the details of events downstream of monocyte chemotactic protein 1 activity in pulmonary fibroblasts remain unclear. Here, to elucidate the role of p53 in fibrosis induced by silica, both the upstream molecular mechanisms and the functional effects on cell proliferation and migration were investigated. Experiments using primary cultured adult human pulmonary fibroblasts led to the following results: 1) SiO2 treatment resulted in a rapid and sustained increase in p53 and PUMA protein levels; 2) the MAPK and PI3K pathways were involved in the SiO2-induced alteration of p53 and PUMA expression; and 3) RNA interference targeting p53 and PUMA prevented the SiO2-induced increases in fibroblast activation and migration. Our study elucidated a link between SiO2-induced p53/PUMA expression in fibroblasts and cell migration, thereby providing novel insight into the potential use of p53/PUMA in the development of novel therapeutic strategies for silicosis treatment. PMID:26576741

  4. p53/PUMA expression in human pulmonary fibroblasts mediates cell activation and migration in silicosis.

    PubMed

    Wang, Wei; Liu, Haijun; Dai, Xiaoniu; Fang, Shencun; Wang, Xingang; Zhang, Yingming; Yao, Honghong; Zhang, Xilong; Chao, Jie

    2015-11-18

    Phagocytosis of SiO2 into the lung causes an inflammatory cascade that results in fibroblast proliferation and migration, followed by fibrosis. Clinical evidence has indicated that the activation of alveolar macrophages by SiO2 produces rapid and sustained inflammation characterized by the generation of monocyte chemotactic protein 1, which, in turn, induces fibrosis. However, the details of events downstream of monocyte chemotactic protein 1 activity in pulmonary fibroblasts remain unclear. Here, to elucidate the role of p53 in fibrosis induced by silica, both the upstream molecular mechanisms and the functional effects on cell proliferation and migration were investigated. Experiments using primary cultured adult human pulmonary fibroblasts led to the following results: 1) SiO2 treatment resulted in a rapid and sustained increase in p53 and PUMA protein levels; 2) the MAPK and PI3K pathways were involved in the SiO2-induced alteration of p53 and PUMA expression; and 3) RNA interference targeting p53 and PUMA prevented the SiO2-induced increases in fibroblast activation and migration. Our study elucidated a link between SiO2-induced p53/PUMA expression in fibroblasts and cell migration, thereby providing novel insight into the potential use of p53/PUMA in the development of novel therapeutic strategies for silicosis treatment.

  5. Interleukin-13 interferes with activation-induced t-cell apoptosis by repressing p53 expression

    PubMed Central

    Yang, Li; Xu, Ling-Zhi; Liu, Zhi-Qiang; Yang, Gui; Geng, Xiao-Rui; Mo, Li-Hua; Liu, Zhi-Gang; Zheng, Peng-Yuan; Yang, Ping-Chang

    2016-01-01

    The etiology and the underlying mechanism of CD4+ T-cell polarization are unclear. This study sought to investigate the mechanism by which interleukin (IL)-13 prevents the activation-induced apoptosis of CD4+ T cells. Here we report that CD4+ T cells expressed IL-13 receptor α2 in the intestine of sensitized mice. IL-13 suppressed both the activation-induced apoptosis of CD4+ T cells and the expression of p53 and FasL. Exposure to recombinant IL-13 inhibited activation-induced cell death (AICD) along with the expression of p53, caspase 3, and tumor necrosis factor-α in CD4+ T cells. Administration of an anti-IL-13 antibody enhanced the effect of specific immunotherapy on allergic inflammation in the mouse intestine, enforced the expression of p53 in intestinal CD4+ T cells, and enhanced the frequency of CD4+ T-cell apoptosis upon challenge with specific antigens. In summary, blocking IL-13 enhances the therapeutic effect of antigen-specific immunotherapy by regulating apoptosis and thereby enforcing AICD in CD4+ T cells. PMID:26189367

  6. Decreasing CNPY2 Expression Diminishes Colorectal Tumor Growth and Development through Activation of p53 Pathway.

    PubMed

    Yan, Ping; Gong, Hui; Zhai, Xiaoyan; Feng, Yi; Wu, Jun; He, Sheng; Guo, Jian; Wang, Xiaoxia; Guo, Rui; Xie, Jun; Li, Ren-Ke

    2016-04-01

    Neovascularization drives tumor development, and angiogenic factors are important neovascularization initiators. We recently identified the secreted angiogenic factor CNPY2, but its involvement in cancer has not been explored. Herein, we investigate CNPY2's role in human colorectal cancer (CRC) development. Tumor samples were obtained from CRC patients undergoing surgery. Canopy 2 (CNPY2) expression was analyzed in tumor and adjacent normal tissue. Stable lines of human HCT116 cells expressing CNPY2 shRNA or control shRNA were established. To determine CNPY2's effects on tumor xenografts in vivo, human CNPY2 shRNA HCT116 cells and controls were injected into nude mice, separately. Cellular apoptosis, growth, and angiogenesis in the xenografts were evaluated. CNPY2 expression was significantly higher in CRC tissues. CNPY2 knockdown in HCT116 cells inhibited growth and migration and promoted apoptosis. In xenografts, CNPY2 knockdown prevented tumor growth and angiogenesis and promoted apoptosis. Knockdown of CNPY2 in the HCT116 CRC cell line reversibly increased p53 activity. The p53 activation increased cyclin-dependent kinase inhibitor p21 and decreased cyclin-dependent kinase 2, thereby inhibiting tumor cell growth, inducing cell apoptosis, and reducing angiogenesis both in vitro and in vivo. CNPY2 may play a critical role in CRC development by enhancing cell proliferation, migration, and angiogenesis and by inhibiting apoptosis through negative regulation of the p53 pathway. Therefore, CNPY2 may represent a novel CRC therapeutic target and prognostic indicator. PMID:26835537

  7. Constitutive activation of gene expression by thyroid hormone receptor results from reversal of p53-mediated repression.

    PubMed Central

    Qi, J S; Desai-Yajnik, V; Yuan, Y; Samuels, H H

    1997-01-01

    Thyroid hormone receptor (T3R) is a member of the steroid hormone receptor gene family of nuclear hormone receptors. In most cells T3R activates gene expression only in the presence of its ligand, L-triiodothyronine (T3). However, in certain cell types (e.g., GH4C1 cells) expression of T3R leads to hormone-independent constitutive activation. This activation by unliganded T3R occurs with a variety of gene promoters and appears to be independent of the binding of T3R to specific thyroid hormone response elements (TREs). Previous studies indicate that this constitutive activation results from the titration of an inhibitor of transcription. Since the tumor suppresser p53 is capable of repressing a wide variety of gene promoters, we considered the possibility that the inhibitor is p53. Evidence to support this comes from studies indicating that expression of p53 blocks T3R-mediated constitutive activation in GH4C1 cells. In contrast with hormone-independent activation by T3R, p53 had little or no effect on T3-dependent stimulation which requires TREs. In addition, p53 mutants which oligomerize with wild-type p53 and interfere with its function also increase promoter activity. This enhancement is of similar magnitude to but is not additive with the stimulation mediated by unliganded T3R, suggesting that they target the same factor. Since p53 mutants are known to target wild-type p53 in the cell, this suggests that T3R also interacts with p53 in vivo and that endogenous levels of p53 act to suppress promoter activity. Evidence supporting both functional and physical interactions of T3R and p53 in the cell is presented. The DNA binding domain (DBD) of T3R is important in mediating constitutive activation, and the receptor DBD appears to functionally interact with the N terminus of p53 in the cell. In vitro binding studies indicate that the T3R DBD is important for interaction of T3R with p53 and that this interaction is reduced by T3. These findings are consistent with

  8. Anticancer Activities of Medicinal Plants: Modulation of p53 Expression and Induction of Apoptosis.

    PubMed

    Parveen, Amna; Akash, Muhammad Sajid Hamid; Rehman, Kanwal; Kyunn, Whang Wan

    2016-01-01

    For the treatment of several types of cancers, tumors and malignancies, scientists are investigating natural sources to discover novel therapeutic agents from medicinal plants having diverse anticancer properties. Research on natural products is being conducted to identify unexplored phytochemical constituents that have been proven to have diverse pharmacological activities. Several medicinal plants have been reported to regulate the progression of different types of cancers, tumors, and malignancies. In this article, we briefly summarize the recent progress in exploring the anticancer properties of various medicinal plants reported to modulate the expression of p53 and the induction of apoptosis. These plants provide a rich source of chemo-protective agents that can ultimately be used to manage cancer progression. PMID:27650989

  9. Regulation of Mutant p53 Protein Expression

    PubMed Central

    Vijayakumaran, Reshma; Tan, Kah Hin; Miranda, Panimaya Jeffreena; Haupt, Sue; Haupt, Ygal

    2015-01-01

    For several decades, p53 has been detected in cancer biopsies by virtue of its high protein expression level which is considered indicative of mutation. Surprisingly, however, mouse genetic studies revealed that mutant p53 is inherently labile, similar to its wild type (wt) counterpart. Consistently, in response to stress conditions, both wt and mutant p53 accumulate in cells. While wt p53 returns to basal level following recovery from stress, mutant p53 remains stable. In part, this can be explained in mutant p53-expressing cells by the lack of an auto-regulatory loop with Mdm2 and other negative regulators, which are pivotal for wt p53 regulation. Further, additional protective mechanisms are acquired by mutant p53, largely mediated by the co-chaperones and their paralogs, the stress-induced heat shock proteins. Consequently, mutant p53 is accumulated in cancer cells in response to chronic stress and this accumulation is critical for its oncogenic gain of functions (GOF). Building on the extensive knowledge regarding wt p53, the regulation of mutant p53 is unraveling. In this review, we describe the current understanding on the major levels at which mutant p53 is regulated. These include the regulation of p53 protein levels by microRNA and by enzymes controlling p53 proteasomal degradation. PMID:26734569

  10. Activation of tumor suppressor p53 gene expression by magnetic thymine-imprinted chitosan nanoparticles.

    PubMed

    Lee, Mei-Hwa; Thomas, James L; Chen, Jian-Zhou; Jan, Jeng-Shiung; Lin, Hung-Yin

    2016-02-01

    Chitosan is a natural biodegradable polysaccharide that has been used to enhance gene delivery, owing to the ease with which chitosan nanoparticles enter the nucleus of cells. To study the effects of nuclear delivery of telomeric gene sequences, which contain thymine, we formed magnetic thymine-imprinted chitosan nanoparticles (TIPs) by the precipitation of chitosan, mixed with thymine and magnetic nanoparticles (to aid in separations). The mean size of the TIPS was 116 ± 18 nm; the dissociation constant for thymine was 21.8 mg mL(-1). We then treated human hepatocellular carcinoma (HepG2) with TIPs nanoparticles bearing bound thymine or a bound telomeric DNA sequence. The expression of the tumor suppressor p53 gene increased when TIPs were applied and decreased when telomere-bound TIPs were applied.

  11. Analysis of p53 mutants for transcriptional activity.

    PubMed Central

    Raycroft, L; Schmidt, J R; Yoas, K; Hao, M M; Lozano, G

    1991-01-01

    The wild-type p53 protein functions to suppress transformation, but numerous mutant p53 proteins are transformation competent. To examine the role of p53 as a transcription factor, we made fusion proteins containing human or mouse p53 sequences fused to the DNA binding domain of a known transcription factor, GAL4. Human and mouse wild-type p53/GAL4 specifically transactivated expression of a chloramphenicol acetyltransferase reporter in HeLa, CHO, and NIH 3T3 cells. Several mutant p53 proteins, including a mouse p53 mutant which is temperature sensitive for suppression, were also analyzed. A p53/GAL4 fusion protein with this mutation was also transcriptionally active only at the permissive temperature. Another mutant p53/GAL4 fusion protein analyzed mimics the mutation inherited in Li-Fraumeni patients. This fusion protein was as active as wild-type p53/GAL4 in our assay. Two human p53 mutants that arose from alterations of the p53 gene in colorectal carcinomas were 30- to 40-fold less effective at activating transcription than wild-type p53/GAL4 fusion proteins. Thus, functional wild-type p53/GAL4 fusion proteins activate transcription, while several transformation competent mutants do so poorly or not at all. Only one mutant p53/GAL4 fusion protein remained transcriptionally active. Images PMID:1944276

  12. Proteasome inhibitors suppress the protein expression of mutant p53.

    PubMed

    Halasi, Marianna; Pandit, Bulbul; Gartel, Andrei L

    2014-01-01

    Tumor suppressor p53 is one of the most frequently mutated genes in cancer, with almost 50% of all types of cancer expressing a mutant form of p53. p53 transactivates the expression of its primary negative regulator, HDM2. HDM2 is a ubiquitin ligase, which initiates the proteasomal degradation of p53 following ubiquitination. Proteasome inhibitors, by targeting the ubiquitin proteasome pathway inhibit the degradation of the majority of cellular proteins including wild-type p53. In contrast, in this study we found that the protein expression of mutant p53 was suppressed following treatment with established or novel proteasome inhibitors. Furthermore, for the first time we demonstrated that Arsenic trioxide, which was previously shown to suppress mutant p53 protein level, exhibits proteasome inhibitory activity. Proteasome inhibitor-mediated suppression of mutant p53 was partially rescued by the knockdown of HDM2, suggesting that the stabilization of HDM2 by proteasome inhibitors might be responsible for mutant p53 suppression to some extent. This study suggests that suppression of mutant p53 is a general property of proteasome inhibitors and it provides additional rationale to use proteasome inhibitors for the treatment of tumors with mutant p53.

  13. Proteasome inhibitors suppress the protein expression of mutant p53

    PubMed Central

    Halasi, Marianna; Pandit, Bulbul; Gartel, Andrei L

    2014-01-01

    Tumor suppressor p53 is one of the most frequently mutated genes in cancer, with almost 50% of all types of cancer expressing a mutant form of p53. p53 transactivates the expression of its primary negative regulator, HDM2. HDM2 is a ubiquitin ligase, which initiates the proteasomal degradation of p53 following ubiquitination. Proteasome inhibitors, by targeting the ubiquitin proteasome pathway inhibit the degradation of the majority of cellular proteins including wild-type p53. In contrast, in this study we found that the protein expression of mutant p53 was suppressed following treatment with established or novel proteasome inhibitors. Furthermore, for the first time we demonstrated that Arsenic trioxide, which was previously shown to suppress mutant p53 protein level, exhibits proteasome inhibitory activity. Proteasome inhibitor-mediated suppression of mutant p53 was partially rescued by the knockdown of HDM2, suggesting that the stabilization of HDM2 by proteasome inhibitors might be responsible for mutant p53 suppression to some extent. This study suggests that suppression of mutant p53 is a general property of proteasome inhibitors and it provides additional rationale to use proteasome inhibitors for the treatment of tumors with mutant p53. PMID:25485499

  14. Elevated expression of mechanosensory polycystins in human carotid atherosclerotic plaques: association with p53 activation and disease severity

    PubMed Central

    Varela, Aimilia; Piperi, Christina; Sigala, Fragiska; Agrogiannis, George; Davos, Constantinos H.; Andri, Maria-Anastasia; Manopoulos, Christos; Tsangaris, Sokrates; Basdra, Efthimia K.; Papavassiliou, Athanasios G.

    2015-01-01

    Atherosclerotic plaque formation is associated with irregular distribution of wall shear stress (WSS) that modulates endothelial function and integrity. Polycystins (PC)-1/-2 constitute a flow-sensing protein complex in endothelial cells, able to respond to WSS and induce cell-proliferation changes leading to atherosclerosis. An endothelial cell-culture system of measurable WSS was established to detect alterations in PCs expression under conditions of low- and high-oscillatory shear stress in vitro. PCs expression and p53 activation as a regulator of cell proliferation were further evaluated in vivo and in 69 advanced human carotid atherosclerotic plaques (AAPs). Increased PC-1/PC-2 expression was observed at 30–60 min of low shear stress (LSS) in endothelial cells. Elevated PC-1 expression at LSS was followed by p53 potentiation. PCs immunoreactivity localizes in areas with macrophage infiltration and neovascularization. PC-1 mRNA and protein levels were significantly higher than PC-2 in stable fibroatherotic (V) and unstable/complicated (VI) AAPs. Elevated PC-1 immunostaining was detected in AAPs from patients with diabetes mellitus, dyslipidemia, hypertension and carotid stenosis, at both arteries (50%) or in one artery (90%). PCs seem to participate in plaque formation and progression. Since PC-1 upregulation coincides with p38 and p53 activation, a potential interplay of these molecules in atherosclerosis induction is posed. PMID:26286632

  15. Vitamin B₆ activates p53 and elevates p21 gene expression in cancer cells and the mouse colon.

    PubMed

    Zhang, Peipei; Suidasari, Sofya; Hasegawa, Tomomi; Yanaka, Noriyuki; Kato, Norihisa

    2014-05-01

    Increasing evidence indicates vitamin B6 acts as a protective factor against colon cancer. However, the mechanisms of the effect of vitamin B6 are poorly understood. The present preliminary study using DNA microarray and real-time PCR indicates p21 mRNA is upregulated in human colon carcinoma (HT29) cells exposed to pyridoxal (PL, 500 µM). A similar effect was observed in human epithelial colorectal adenocarcinoma (Caco2) cells, human colon adenocarcinoma (LoVo) cells, human embryonic kidney (HEK293T) cells, and human hepatoma (HepG2) cells. Adding other B6-vitamers such as pyridoxal 5'-phosphate (PLP), pyridoxine (PN), and pyridoxamine (PM) caused no such effect. In order to understand the mechanism of higher mRNA expression of p21 by PL, effect of PL on the p53 activation was examined (the upstream factor for p21 mRNA transcription) in HT29 cells, LoVo cells, and HepG2 cells. PL increased the phosphorylated p53 protein levels (active form) in whole-cell lysates and the nuclei of the cells. Noteworthy, the consumption of a vitamin B6-deficient diet for 5 weeks significantly reduced p21 mRNA levels and tended to reduce phosphorylated p53 protein levels (P=0.053) in the colons of mice compared to a diet with adequate vitamin B6. Thus, these results suggest vitamin B6 plays a role in increasing p21 gene expression via p53 activation in several cancer cells and the mouse colon.

  16. The combination of 5-fluorouracil plus p53 pathway restoration is associated with depletion of p53-deficient or mutant p53-expressing putative colon cancer stem cells.

    PubMed

    Huang, Catherine; Zhang, Xiang M; Tavaluc, Raluca T; Hart, Lori S; Dicker, David T; Wang, Wenge; El-Deiry, Wafik S

    2009-11-01

    The cancer stem cell hypothesis suggests that rare populations of tumor-initiating cells may be resistant to therapy, lead to tumor relapse and contribute to poor prognosis for cancer patients. We previously demonstrated the feasibility of p53 pathway restoration in p53-deficient tumor cell populations using small molecules including ellipticine or its derivatives. We now establish a single cell p53-regulated green fluorescent protein (EGFP)-reporter system in human DLD1 colon tumor cells expressing mutant p53 protein. We use these p53-EGFP reporter DLD1 cells to investigate the status of p53 transcriptional activity in putative colon cancer stem cell populations following exposure to p53 pathway-restoring drugs and/or classical chemotherapy. We demonstrate induction of p53-specific EGFP reporter fluorescence following overexpression of p53 family member p73 by an Adenovirus vector. We further show that p53-reporter activity is induced in DLD1 putative cancer stem cell side-populations analyzed by their Hoechst dye efflux properties following treatment with the p53 pathway restoring drug ellipticine. Combination of ellipticine with the cytotoxic agent 5-fluorouracil resulted in increased cytotoxicity as compared to either agent alone and this was associated with depletion of putative cancer stem cell populations as compared with 5-FU alone treatment. Our results support the feasibility of therapeutic targeting of mutant p53 in putative cancer stem cells as well as the potential to enhance cytotoxic chemotherapy. PMID:19923910

  17. Lysine methylation represses p53 activity in teratocarcinoma cancer cells.

    PubMed

    Zhu, Jiajun; Dou, Zhixun; Sammons, Morgan A; Levine, Arnold J; Berger, Shelley L

    2016-08-30

    TP53 (which encodes the p53 protein) is the most frequently mutated gene among all human cancers, whereas tumors that retain the wild-type TP53 gene often use alternative mechanisms to repress the p53 tumor-suppressive function. Testicular teratocarcinoma cells rarely contain mutations in TP53, yet the transcriptional activity of wild-type p53 is compromised, despite its high expression level. Here we report that in the teratocarcinoma cell line NTera2, p53 is subject to lysine methylation at its carboxyl terminus, which has been shown to repress p53's transcriptional activity. We show that reduction of the cognate methyltransferases reactivates p53 and promotes differentiation of the NTera2 cells. Furthermore, reconstitution of methylation-deficient p53 mutants into p53-depleted NTera2 cells results in elevated expression of p53 downstream targets and precocious loss of pluripotent gene expression compared with re-expression of wild-type p53. Our results provide evidence that lysine methylation of endogenous wild-type p53 represses its activity in cancer cells and suggest new therapeutic possibilities of targeting testicular teratocarcinoma. PMID:27535933

  18. Lysine methylation represses p53 activity in teratocarcinoma cancer cells.

    PubMed

    Zhu, Jiajun; Dou, Zhixun; Sammons, Morgan A; Levine, Arnold J; Berger, Shelley L

    2016-08-30

    TP53 (which encodes the p53 protein) is the most frequently mutated gene among all human cancers, whereas tumors that retain the wild-type TP53 gene often use alternative mechanisms to repress the p53 tumor-suppressive function. Testicular teratocarcinoma cells rarely contain mutations in TP53, yet the transcriptional activity of wild-type p53 is compromised, despite its high expression level. Here we report that in the teratocarcinoma cell line NTera2, p53 is subject to lysine methylation at its carboxyl terminus, which has been shown to repress p53's transcriptional activity. We show that reduction of the cognate methyltransferases reactivates p53 and promotes differentiation of the NTera2 cells. Furthermore, reconstitution of methylation-deficient p53 mutants into p53-depleted NTera2 cells results in elevated expression of p53 downstream targets and precocious loss of pluripotent gene expression compared with re-expression of wild-type p53. Our results provide evidence that lysine methylation of endogenous wild-type p53 represses its activity in cancer cells and suggest new therapeutic possibilities of targeting testicular teratocarcinoma.

  19. Abrogation of Gli3 expression suppresses the growth of colon cancer cells via activation of p53

    SciTech Connect

    Kang, Han Na; Oh, Sang Cheul; Kim, Jun Suk

    2012-03-10

    p53, the major human tumor suppressor, appears to be related to sonic hedgehog (Shh)-Gli-mediated tumorigenesis. However, the role of p53 in tumor progression by the Shh-Gli signaling pathway is poorly understood. Herein we investigated the critical regulation of Gli3-p53 in tumorigenesis of colon cancer cells and the molecular mechanisms underlying these effects. RT-PCR analysis indicated that the mRNA level of Shh and Gli3 in colon tumor tissues was significantly higher than corresponding normal tissues (P < 0.001). The inhibition of Gli3 by treatment with Gli3 siRNA resulted in a clear decrease in cell proliferation and enhanced the level of expression of p53 proteins compared to treatment with control siRNA. The half-life of p53 was dramatically increased by treatment with Gli3 siRNA. In addition, treatment with MG132 blocked MDM2-mediated p53 ubiquitination and degradation, and led to accumulation of p53 in Gli3 siRNA-overexpressing cells. Importantly, ectopic expression of p53 siRNA reduced the ability of Gli3 siRNA to suppress proliferation of those cells compared with the cells treated with Gli3 siRNA alone. Moreover, Gli3 siRNA sensitized colon cancer cells to treatment with anti-cancer agents (5-FU and bevacizumab). Taken together, our studies demonstrate that loss of Gli3 signaling leads to disruption of the MDM2-p53 interaction and strongly potentiate p53-dependent cell growth inhibition in colon cancer cells, indicating a basis for the rational use of Gli3 antagonists as a novel treatment option for colon cancer.

  20. SUMOylation of p53 mediates interferon activities

    PubMed Central

    Marcos-Villar, Laura; Pérez-Girón, José V; Vilas, Jéssica M; Soto, Atenea; de la Cruz-Hererra, Carlos F; Lang, Valerie; Collado, Manuel; Vidal, Anxo; Rodríguez, Manuel S; Muñoz-Fontela, César; Rivas, Carmen

    2013-01-01

    There is growing evidence that many host proteins involved in innate and intrinsic immunity are regulated by SUMOylation, and that SUMO contributes to the regulatory process that governs the initiation of the type I interferon (IFN) response. The tumor suppressor p53 is a modulator of the IFN response that plays a role in virus-induced apoptosis and in IFN-induced senescence. Here we demonstrate that IFN treatment increases the levels of SUMOylated p53 and induces cellular senescence through a process that is partially dependent upon SUMOylation of p53. Similarly, we show that vesicular stomatitis virus (VSV) infection induces p53 SUMOylation, and that this modification favors the control of VSV replication. Thus, our study provides evidence that IFN signaling induces p53 SUMOylation, which results in the activation of a cellular senescence program and contributes to the antiviral functions of interferon. PMID:23966171

  1. SUMOylation of p53 mediates interferon activities.

    PubMed

    Marcos-Villar, Laura; Pérez-Girón, José V; Vilas, Jéssica M; Soto, Atenea; de la Cruz-Hererra, Carlos F; Lang, Valerie; Collado, Manuel; Vidal, Anxo; Rodríguez, Manuel S; Muñoz-Fontela, César; Rivas, Carmen

    2013-09-01

    There is growing evidence that many host proteins involved in innate and intrinsic immunity are regulated by SUMOylation, and that SUMO contributes to the regulatory process that governs the initiation of the type I interferon (IFN) response. The tumor suppressor p53 is a modulator of the IFN response that plays a role in virus-induced apoptosis and in IFN-induced senescence. Here we demonstrate that IFN treatment increases the levels of SUMOylated p53 and induces cellular senescence through a process that is partially dependent upon SUMOylation of p53. Similarly, we show that vesicular stomatitis virus (VSV) infection induces p53 SUMOylation, and that this modification favors the control of VSV replication. Thus, our study provides evidence that IFN signaling induces p53 SUMOylation, which results in the activation of a cellular senescence program and contributes to the antiviral functions of interferon.

  2. Expression of p53 in endometrial polyps with special reference to the p53 signature.

    PubMed

    Sho, Tomoko; Hachisuga, Toru; Kawagoe, Toshinori; Urabe, Rie; Kurita, Tomoko; Kagami, Seiji; Shimajiri, Shohei; Fujino, Yoshihisa

    2016-07-01

    We herein examined the significance of the p53 expression in endometrial polyps (EMPs). A total of 133 EMPs, including 62 premenopausal and 71 postmenopausal women with EMP, were immunohistochemically studied for the expression of estrogen receptor (ER)-alpha, Ki-67 and p53. Apoptotic cells were identified using a TUNEL assay. A DNA sequence analysis of TP53 exons 5 to 9 was performed. Among the premenopausal EMPs, a multivariate analysis showed the labeling index (LI) for Ki-67 to correlate significantly with that for p53 (P<0.001), but not that for apoptosis. On the contrary, among the postmenopausal EMPs, the LI for Ki-67 correlated significantly with that for apoptosis (P<0.001). The p53 signature (p53S) was defined by endometrial epithelial cells, which are morphologically benign in appearance but display 12 or more consecutive epithelial cell nuclei with strong p53 immunostaining. The p53S was found in nine (12.7%) postmenopausal EMPs (mean age: 70.2 years). The median Ki-67 index for the p53S was 7%, with no significant difference from that of the glands of the postmenopausal EMPs without the p53S (P=0.058). The median apoptotic index for the p53S was 0%, which was significantly lower than that of the postmenopausal EMPs without the p53S (P=0.002). Two of four p53Ss showed TP53 mutations according to the DNA sequence analysis. The presence of the p53S is not rare in postmenopausal EMPs with an advanced age. Among postmenopausal EMPs, the LI of Ki-67 significantly correlates with that of apoptosis. However, such a positive correlation between the LI of Ki-67 and apoptosis is not observed in p53S. PMID:26727623

  3. NAT10 regulates p53 activation through acetylating p53 at K120 and ubiquitinating Mdm2.

    PubMed

    Liu, Xiaofeng; Tan, Yuqin; Zhang, Chunfeng; Zhang, Ying; Zhang, Liangliang; Ren, Pengwei; Deng, Hongkui; Luo, Jianyuan; Ke, Yang; Du, Xiaojuan

    2016-03-01

    As a genome guardian, p53 maintains genome stability by arresting cells for damage repair or inducing cell apoptosis to eliminate the damaged cells in stress response. Several nucleolar proteins stabilize p53 by interfering Mdm2-p53 interaction upon cellular stress, while other mechanisms by which nucleolar proteins activate p53 remain to be determined. Here, we identify NAT10 as a novel regulator for p53 activation. NAT10 acetylates p53 at K120 and stabilizes p53 by counteracting Mdm2 action. In addition, NAT10 promotes Mdm2 degradation with its intrinsic E3 ligase activity. After DNA damage, NAT10 translocates to nucleoplasm and activates p53-mediated cell cycle control and apoptosis. Finally, NAT10 inhibits cell proliferation and expression of NAT10 decreases in human colorectal carcinomas. Thus, our data demonstrate that NAT10 plays a critical role in p53 activation via acetylating p53 and counteracting Mdm2 action, providing a novel pathway by which nucleolar protein activates p53 as a cellular stress sensor. PMID:26882543

  4. p53 inhibits the expression of p125 and the methylation of POLD1 gene promoter by downregulating the Sp1-induced DNMT1 activities in breast cancer.

    PubMed

    Zhang, Liang; Yang, Weiping; Zhu, Xiao; Wei, Changyuan

    2016-01-01

    p125 is one of four subunits of human DNA polymerases - DNA Pol δ as well as one of p53 target protein encoded by POLD1. However, the function and significance of p125 and the role that p53 plays in regulating p125 expression are not fully understood in breast cancer. Tissue sections of human breast cancer obtained from 70 patients whose median age was 47.6 years (range: 38-69 years) with stage II-III breast cancer were studied with normal breast tissue from the same patients and two human breast cell lines (MCF-7 and MCF-10A). p53 expression levels were reduced, while p125 protein expression was increased in human breast cancer tissues and cell line detected by Western blot and quantitative reverse transcriptase-polymerase chain reaction. The methylation level of the POLD1 gene promoter was greater in breast cancer tissues and cells when compared with normal tissues and cells. In MCF-7 cell model, p53 overexpression caused a decrease in the level of p125 protein, while the methylation level of the p125 gene promoter was also inhibited by p53 overexpression. To further investigate the regulating mechanism of p53 on p125 expression, our study focused on DNA methyltransferase 1 (DNMT1) and transcription factor Sp1. Both DNMT1 and Sp1 protein expression were reduced when p53 was overexpressed in MCF-7 cells. The Sp1 binding site appears to be important for DNMT1 gene transcription; Sp1 and p53 can bind together, which means that DNMT1 gene expression may be downregulated by p53 through binding to Sp1. Because DNMT1 methylation level of the p125 gene promoter can affect p125 gene transcription, we propose that p53 may indirectly regulate p125 gene promoter expression through the control of DNMT1 gene transcription. In conclusion, the data from this preliminary study have shown that p53 inhibits the methylation of p125 gene promoter by downregulating the activities of Sp1 and DNMT1 in breast cancer.

  5. p53 inhibits the expression of p125 and the methylation of POLD1 gene promoter by downregulating the Sp1-induced DNMT1 activities in breast cancer

    PubMed Central

    Zhang, Liang; Yang, Weiping; Zhu, Xiao; Wei, Changyuan

    2016-01-01

    p125 is one of four subunits of human DNA polymerases – DNA Pol δ as well as one of p53 target protein encoded by POLD1. However, the function and significance of p125 and the role that p53 plays in regulating p125 expression are not fully understood in breast cancer. Tissue sections of human breast cancer obtained from 70 patients whose median age was 47.6 years (range: 38–69 years) with stage II–III breast cancer were studied with normal breast tissue from the same patients and two human breast cell lines (MCF-7 and MCF-10A). p53 expression levels were reduced, while p125 protein expression was increased in human breast cancer tissues and cell line detected by Western blot and quantitative reverse transcriptase-polymerase chain reaction. The methylation level of the POLD1 gene promoter was greater in breast cancer tissues and cells when compared with normal tissues and cells. In MCF-7 cell model, p53 overexpression caused a decrease in the level of p125 protein, while the methylation level of the p125 gene promoter was also inhibited by p53 overexpression. To further investigate the regulating mechanism of p53 on p125 expression, our study focused on DNA methyltransferase 1 (DNMT1) and transcription factor Sp1. Both DNMT1 and Sp1 protein expression were reduced when p53 was overexpressed in MCF-7 cells. The Sp1 binding site appears to be important for DNMT1 gene transcription; Sp1 and p53 can bind together, which means that DNMT1 gene expression may be downregulated by p53 through binding to Sp1. Because DNMT1 methylation level of the p125 gene promoter can affect p125 gene transcription, we propose that p53 may indirectly regulate p125 gene promoter expression through the control of DNMT1 gene transcription. In conclusion, the data from this preliminary study have shown that p53 inhibits the methylation of p125 gene promoter by downregulating the activities of Sp1 and DNMT1 in breast cancer. PMID:27022290

  6. Ectopic AP4 expression induces cellular senescence via activation of p53 in long-term confluent retinal pigment epithelial cells.

    PubMed

    Wang, Yiping; Wong, Matthew Man-Kin; Zhang, Xiaojian; Chiu, Sung-Kay

    2015-11-15

    When cells are grown to confluence, cell-cell contact inhibition occurs and drives the cells to enter reversible quiescence rather than senescence. Confluent retinal pigment epithelial (RPE) cells exhibiting contact inhibition was used as a model in this study to examine the role of overexpression of transcription factor AP4, a highly expressed transcription factor in many types of cancer, in these cells during long-term culture. We generated stable inducible RPE cell clones expressing AP4 or AP4 without the DNA binding domain (DN-AP4) and observed that, when cultured for 24 days, RPE cells with a high level of AP4 exhibit a large, flattened morphology and even cease proliferating; these changes were not observed in DN-AP4-expressing cells or non-induced cells. In addition, AP4-expressing cells exhibited senescence-associated β-galactosidase activity and the senescence-associated secretory phenotype. We demonstrated that the induced cellular senescence was mediated by enhanced p53 expression and that AP4 regulates the p53 gene by binding directly to two of the three E-boxes present on the promoter of the p53 gene. Moreover, we showed that serum is essential for AP4 in inducing p53-associated cellular senescence. Collectively, we showed that overexpression of AP4 mediates cellular senescence involving in activation of p53 in long-term post-confluent RPE cells.

  7. Isolation of 10 differentially expressed cDNAs in p53-induced apoptosis: activation of the vertebrate homologue of the drosophila seven in absentia gene.

    PubMed Central

    Amson, R B; Nemani, M; Roperch, J P; Israeli, D; Bougueleret, L; Le Gall, I; Medhioub, M; Linares-Cruz, G; Lethrosne, F; Pasturaud, P; Piouffre, L; Prieur, S; Susini, L; Alvaro, V; Millasseau, P; Guidicelli, C; Bui, H; Massart, C; Cazes, L; Dufour, F; Bruzzoni-Giovanelli, H; Owadi, H; Hennion, C; Charpak, G; Telerman, A

    1996-01-01

    We report the isolation of 10 differentially expressed cDNAs in the process of apoptosis induced by the p53 tamor suppressor. As a global analytical method, we performed a differential display of mRNA between mouse M1 myeloid leukemia cells and derived clone LTR6 cells, which contain a stably transfected temperature-sensitive mutant of p53. At 32 degrees C wild-type p53 function is activated in LTR6 cells, resulting in programmed cell death. Eight genes are activated (TSAP; tumor suppressor activated pathway), and two are inhibited (TSIP, tumor suppressor inhibited pathway) in their expression. None of the 10 sequences has hitherto been recognized as part of the p53 signaling pathway. Three TSAPs are homologous to known genes. TSAP1 corresponds to phospholipase C beta 4. TSAP2 has a conserved domain homologous to a multiple endocrine neoplasia I (ZFM1) candidate gene. TSAP3 is the mouse homologue of the Drosophila seven in absentia gene. These data provide novel molecules involved in the pathway of wild-type p53 activation. They establish a functional link between a homologue of a conserved developmental Drosophila gene and signal transduction in tumor suppression leading to programmed cell death. Images Fig. 2 Fig. 3 PMID:8632996

  8. Expression and mutations of p53 in salivary gland tumours.

    PubMed

    Kärjä, V J; Syrjänen, K J; Kurvinen, A K; Syrjänen, S M

    1997-05-01

    A series of 219 salivary gland tumours (103 carcinomas and 116 benign tumours) were analysed for p53 protein expression using immunohistochemistry, and for mutations in p53 gene using non-radioactive single strand conformation polymorphism (SSCP). p53 expression was present in 36% (42/116) of the benign tumours and in 54% (56/103) of the carcinomas. The highest prevalence of p53 expression was found in adenoid cystic carcinomas (69%), followed by mucoepidermoid carcinomas (67%). Of the benign tumours, pleomorphic adenomas showed the highest prevalence of p53 positivity (41%). In malignant tumours, expression of p53 bore no correlation to local recurrence, metastatic disease or survival of the patients. Exons 5 through 9 were analysed and four mutations were found in 20 cases of p53-immunopositive tumours and two in 20 p53-negative tumours. Each of the exons 5, 6 and 8/9 had two mutations, whereas no mutations were detected in exon 7.

  9. Cytoplasmic p53 and Activated Bax Regulate p53-dependent, Transcription-independent Neural Precursor Cell Apoptosis

    PubMed Central

    Geng, Ying; Walls, K.C.; Ghosh, Arindam P.; Akhtar, Rizwan S.; Klocke, Barbara J.; Roth, Kevin A.

    2010-01-01

    The prodeath effects of p53 are typically mediated via its transcriptional upregulation of proapoptotic Bcl-2 family members, including PUMA, Noxa, and/or Bax. We previously reported that staurosporine (STS), a broad-spectrum kinase inhibitor and prototypical apoptosis-inducing agent, produced p53-dependent, Bax-dependent, neural precursor cell (NPC) apoptosis, but that this effect occurred independently of new gene transcription and PUMA expression. To further characterize the mechanism by which p53 regulates NPC death, we used primary cerebellar NPCs derived from wild-type, p53-deficient, and Bax-deficient neonatal mice and the mouse cerebellar neural stem cell line, C17.2. We found that STS rapidly increased p53 cytoplasmic immunoreactivity in neuritic-like processes in C17.2 cells, which preceded Bax activation and caspase-3 cleavage. Confocal microscopy analysis of STS-treated cells revealed partial colocalization of p53 with the mitochondrial marker pyruvate dehydrogenase as well as with conformationally altered “activated” Bax, suggesting an interaction between these proapoptotic molecules in triggering apoptotic death. Nucleophosmin (NPM), a CRM1-dependent nuclear chaperone, also exhibited partial colocalization with both activated Bax and p53 following STS treatment. These observations suggest that cytoplasmic p53 can trigger transcription-independent NPC apoptosis through its potential interaction with NPM and activated Bax. (J Histochem Cytochem 58:265–275, 2010) PMID:19901272

  10. Transcriptional activation of the human epidermal growth factor receptor promoter by human p53.

    PubMed Central

    Ludes-Meyers, J H; Subler, M A; Shivakumar, C V; Munoz, R M; Jiang, P; Bigger, J E; Brown, D R; Deb, S P; Deb, S

    1996-01-01

    The human epidermal growth factor receptor (EGFR) promoter is activated by both wild-type and tumor-derived mutant p53. In this communication, we demonstrate that EGFR promoter sequence requirements for transactivation by wild-type and mutant p53 are different. Transient-expression assays with EGFR promoter deletions identified a wild-type human p53 response element, 5'-AGCTAGACGTCCGGGCAGCCCCCGGCG -3', from positions --265 to --239. Electrophoretic mobility shift analysis and DNase I footprinting assays indicated that wild-type p53 binds sequence specifically to the response element. Using circularly permuted DNA fragments containing the p53-binding site, we show that wild-type p53 binding induces DNA bending at this site. We further show that the EGFR promoter is also activated by tumor-derived p53 mutants p53-143A, p53-175H, p53-248W, p53-273H, and p53-281G. However, the transactivation by mutant p53 does not require the wild-type p53-binding site. The minimal EGFR promoter from positions --104 to --20 which does not contain the wild-type p53-binding site is transactivated by the p53 mutants but not by the wild-type protein, showing a difference in the mechanism of transactivation by wild-type and mutant p53. Transactivation of the EGFR promoter by p53 may represent a novel mechanism of cell growth regulation. PMID:8887630

  11. Introduction of mutant p53 into a wild-type p53-expressing glioma cell line confers sensitivity to Ad-p53-induced apoptosis.

    PubMed Central

    Cerrato, J. A.; Yung, W. K.; Liu, T. J.

    2001-01-01

    Transient expression of the tumor suppressor gene p53 via adenoviral-mediated gene transfer induces apoptosis in glioma cells expressing mutant p53, while causing cell cycle arrest in cells with wild-type p53. To determine whether a change in p53 status of a wild-type p53-expressing cell line such as U-87 MG would alter its apoptotic resistant phenotype in response to Ad-p53 infection, we generated cell lines U-87-175.4 and U-87-175.13 via retroviral-mediated gene transfer of the p53 (175H) mutant into the U-87 MG parental line. Control cell lines U-87-Lux.6 and U-87-Lux.8 were also generated and express the reporter gene luciferase. Both U-87-175.4 and U-87-175.13, but not control cell lines, exhibited morphology characteristic of apoptosis after Ad-p53 infection. Furthermore, expression of other p53 mutants (248W, 273H) in U-87 MG also sensitized cells to Ad-p53-induced apoptosis. Apoptosis was confirmed by TUNEL and cell cycle analysis. Several p53 response genes were examined in cells infected with Ad-p53, and among these, BCL2, p21WAF1/CIP1, CPP32/caspase 3, and PARP showed differences in expression between U87-175 and U87-Lux cell lines. Taken together, our data demonstrate that the introduction of p53 mutants in U-87 MG promotes an apoptotic response in association with adenoviral-mediated wild-type p53 gene transfer. These results underscore the importance of glioma p53 genotype for predicting tumor response to p53-based gene therapy. PMID:11296482

  12. Knockdown of p53 suppresses Nanog expression in embryonic stem cells

    SciTech Connect

    Abdelalim, Essam Mohamed; Tooyama, Ikuo

    2014-01-10

    Highlights: •We investigate the role of p53 in ESCs in the absence of DNA damage. •p53 knockdown suppresses ESC proliferation. •p53 knockdown downregulates Nanog expression. •p53 is essential for mouse ESC self-renewal. -- Abstract: Mouse embryonic stem cells (ESCs) express high levels of cytoplasmic p53. Exposure of mouse ESCs to DNA damage leads to activation of p53, inducing Nanog suppression. In contrast to earlier studies, we recently reported that chemical inhibition of p53 suppresses ESC proliferation. Here, we confirm that p53 signaling is involved in the maintenance of mouse ESC self-renewal. RNA interference-mediated knockdown of p53 induced downregulation of p21 and defects in ESC proliferation. Furthermore, p53 knockdown resulted in a significant downregulation in Nanog expression at 24 and 48 h post-transfection. p53 knockdown also caused a reduction in Oct4 expression at 48 h post-transfection. Conversely, exposure of ESCs to DNA damage caused a higher reduction of Nanog expression in control siRNA-treated cells than in p53 siRNA-treated cells. These data show that in the absence of DNA damage, p53 is required for the maintenance of mouse ESC self-renewal by regulating Nanog expression.

  13. The effect of p53-RNAi and p53 knockout on human 8-oxoguanine DNA glycosylase (hOgg1) activity.

    PubMed

    Chatterjee, Aditi; Mambo, Elizabeth; Osada, Motonobu; Upadhyay, Sunil; Sidransky, David

    2006-01-01

    Recent evidence indicates that in vitro p53 augments base excision repair (BER) activities in mammalian cells. To understand the role of p53 in BER, we analyzed the repair activity of hOgg1 in isogenic cell lines HCT116p53+/+ and HCT116p53-/-. We found that hOgg1 activity was significantly decreased in HCT116p53-/- cells as compared with HCT116p53+/+ cells, indicating a functional role for p53 in the regulation of hOGG1. Using gel-shift assays, we showed that p53 binds to its putative cis-elements within the hOGG1 promoter. In addition we demonstrated that supplementing p53 in HCT116p53-/- cells enhanced the transcription of hOGG1. To further strengthen our findings, we used p53-RNAi to study the effects of decreased p53 levels on hOgg1 activity. We observed that p53-RNAi resulted in decreased hOGG1 expression both at the mRNA and protein levels. This decrease in hOGG1 expression was associated with reduced cell viability upon oxidative damage and reduced hOgg1 activity as evidenced by the 8-oxoG incision assay. Taken together, our results indicate that loss of p53 function can lead to decreased hOgg1 repair activity.

  14. Expression of full-length p53 and its isoform Δp53 in breast carcinomas in relation to mutation status and clinical parameters

    PubMed Central

    Baumbusch, Lars O; Myhre, Simen; Langerød, Anita; Bergamaschi, Anna; Geisler, Stephanie B; Lønning, Per E; Deppert, Wolfgang; Dornreiter, Irene; Børresen-Dale, Anne-Lise

    2006-01-01

    Background The tumor suppressor gene p53 (TP53) controls numerous signaling pathways and is frequently mutated in human cancers. Novel p53 isoforms suggest alternative splicing as a regulatory feature of p53 activity. Results In this study we have analyzed mRNA expression of both wild-type and mutated p53 and its respective Δp53 isoform in 88 tumor samples from breast cancer in relation to clinical parameters and molecular subgroups. Three-dimensional structure differences for the novel internally deleted p53 isoform Δp53 have been predicted. We confirmed the expression of Δp53 mRNA in tumors using quantitative real-time PCR technique. The mRNA expression levels of the two isoforms were strongly correlated in both wild-type and p53-mutated tumors, with the level of the Δp53 isoform being approximately 1/3 of that of the full-length p53 mRNA. Patients expressing mutated full-length p53 and non-mutated (wild-type) Δp53, "mutational hybrids", showed a slightly higher frequency of patients with distant metastasis at time of diagnosis compared to other patients with p53 mutations, but otherwise did not differ significantly in any other clinical parameter. Interestingly, the p53 wild-type tumors showed a wide range of mRNA expression of both p53 isoforms. Tumors with mRNA expression levels in the upper or lower quartile were significantly associated with grade and molecular subtypes. In tumors with missense or in frame mutations the mRNA expression levels of both isoforms were significantly elevated, and in tumors with nonsense, frame shift or splice mutations the mRNA levels were significantly reduced compared to those expressing wild-type p53. Conclusion Expression of p53 is accompanied by the functionally different isoform Δp53 at the mRNA level in cell lines and human breast tumors. Investigations of "mutational hybrid" patients highlighted that wild-type Δp53 does not compensates for mutated p53, but rather may be associated with a worse prognosis. In tumors

  15. Over-expression of C/EBP-{alpha} induces apoptosis in cultured rat hepatic stellate cells depending on p53 and peroxisome proliferator-activated receptor-{gamma}

    SciTech Connect

    Wang Xueqing; Huang Guangcun; Mei Shuang; Qian Jin; Ji Juling; Zhang Jinsheng

    2009-03-06

    Hepatic stellate cells (HSCs) play a key role in the pathogenesis of hepatic fibrosis. In our previous studies, CCAAT enhancer binding protein-{alpha} (C/EBP-{alpha}) has been shown to be involved in the activation of HSCs and to have a repression effect on hepatic fibrosis in vivo. However, the mechanisms are largely unknown. In this study, we show that the infection of adenovirus vector expressing C/EBP-{alpha} gene (Ad-C/EBP-{alpha}) could induce HSCs apoptosis in a dose- and time-dependent manner by Annexin V/PI staining, caspase-3 activation assay, and flow cytometry. Also, over-expression of C/EBP-{alpha} resulted in the up-regulation of peroxisome proliferator-activated receptor-{gamma} (PPAR-{gamma}) and P53, while P53 expression was regulated by PPAR-{gamma}. In addition, Fas, FasL, DR4, DR5, and TRAIL were studied. The results indicated that the death receptor pathway was mainly involved and regulated by PPAR-{gamma} and p53 in the process of apoptosis triggered by C/EBP-{alpha} in HSCs.

  16. Activation of p53-dependent responses in tumor cells treated with a PARC-interacting peptide

    SciTech Connect

    Vitali, Roberta; Cesi, Vincenzo; Tanno, Barbara; Ferrari-Amorotti, Giovanna; Dominici, Carlo; Calabretta, Bruno; Raschella, Giuseppe

    2008-04-04

    We tested the activity of a p53 carboxy-terminal peptide containing the PARC-interacting region in cancer cells with wild type cytoplasmic p53. Peptide delivery was achieved by fusing it to the TAT transduction domain (TAT-p53-C-ter peptide). In a two-hybrid assay, the tetramerization domain (TD) of p53 was necessary and sufficient to bind PARC. The TAT-p53-C-ter peptide disrupted the PARC-p53 complex. Peptide treatment caused p53 nuclear relocation, p53-dependent changes in gene expression and enhancement of etoposide-induced apoptosis. These studies suggest that PARC-interacting peptides are promising candidates for the enhancement of p53-dependent apoptosis in tumors with wt cytoplasmic p53.

  17. Oxazoloisoindolinones with in vitro antitumor activity selectively activate a p53-pathway through potential inhibition of the p53-MDM2 interaction.

    PubMed

    Soares, Joana; Pereira, Nuno A L; Monteiro, Ângelo; Leão, Mariana; Bessa, Cláudia; Dos Santos, Daniel J V A; Raimundo, Liliana; Queiroz, Glória; Bisio, Alessandra; Inga, Alberto; Pereira, Clara; Santos, Maria M M; Saraiva, Lucília

    2015-01-23

    One of the most appealing targets for anticancer treatment is the p53 tumor suppressor protein. In half of human cancers, this protein is inactivated due to endogenous negative regulators such as MDM2. Actually, restoring the p53 activity, particularly through the inhibition of its interaction with MDM2, is considered a valuable therapeutic strategy against cancers with a wild-type p53 status. In this work, we report the synthesis of nine enantiopure phenylalaninol-derived oxazolopyrrolidone lactams and the evaluation of their biological effects as p53-MDM2 interaction inhibitors. Using a yeast-based screening assay, two oxazoloisoindolinones, compounds 1b and 3a, were identified as potential p53-MDM2 interaction inhibitors. The molecular mechanism of oxazoloisoindolinone 3a was further validated in human colon adenocarcinoma HCT116 cells with wild-type p53 (HCT116 p53(+/+)) and in its isogenic derivative without p53 (HCT116 p53(-/-)). Indeed, using these cells, we demonstrated that oxazoloisoindolinone 3a exhibited a p53-dependent in vitro antitumor activity through induction of G0/G1-phase cell cycle arrest and apoptosis. The selective activation of a p53-apoptotic pathway by oxazoloisoindolinone 3a was further supported by the occurrence of PARP cleavage only in p53-expressing HCT116 cells. Moreover, oxazoloisoindolinone 3a led to p53 protein stabilization and to the up-regulation of p53 transcriptional activity with increased expression levels of several p53 target genes, as p21(WAF1/CIP1), MDM2, BAX and PUMA, in p53(+/+) but not in p53(-/-) HCT116 cells. Additionally, the ability of oxazoloisoindolinone 3a to block the p53-MDM2 interaction in HCT116 p53(+/+) cells was confirmed by co-immunoprecipitation. Finally, the molecular docking analysis of the interactions between the synthesized compounds and MDM2 revealed that oxazoloisoindolinone 3a binds to MDM2. Altogether, this work adds, for the first time, the oxazoloisoindolinone scaffold to the list of

  18. Oxazoloisoindolinones with in vitro antitumor activity selectively activate a p53-pathway through potential inhibition of the p53-MDM2 interaction.

    PubMed

    Soares, Joana; Pereira, Nuno A L; Monteiro, Ângelo; Leão, Mariana; Bessa, Cláudia; Dos Santos, Daniel J V A; Raimundo, Liliana; Queiroz, Glória; Bisio, Alessandra; Inga, Alberto; Pereira, Clara; Santos, Maria M M; Saraiva, Lucília

    2015-01-23

    One of the most appealing targets for anticancer treatment is the p53 tumor suppressor protein. In half of human cancers, this protein is inactivated due to endogenous negative regulators such as MDM2. Actually, restoring the p53 activity, particularly through the inhibition of its interaction with MDM2, is considered a valuable therapeutic strategy against cancers with a wild-type p53 status. In this work, we report the synthesis of nine enantiopure phenylalaninol-derived oxazolopyrrolidone lactams and the evaluation of their biological effects as p53-MDM2 interaction inhibitors. Using a yeast-based screening assay, two oxazoloisoindolinones, compounds 1b and 3a, were identified as potential p53-MDM2 interaction inhibitors. The molecular mechanism of oxazoloisoindolinone 3a was further validated in human colon adenocarcinoma HCT116 cells with wild-type p53 (HCT116 p53(+/+)) and in its isogenic derivative without p53 (HCT116 p53(-/-)). Indeed, using these cells, we demonstrated that oxazoloisoindolinone 3a exhibited a p53-dependent in vitro antitumor activity through induction of G0/G1-phase cell cycle arrest and apoptosis. The selective activation of a p53-apoptotic pathway by oxazoloisoindolinone 3a was further supported by the occurrence of PARP cleavage only in p53-expressing HCT116 cells. Moreover, oxazoloisoindolinone 3a led to p53 protein stabilization and to the up-regulation of p53 transcriptional activity with increased expression levels of several p53 target genes, as p21(WAF1/CIP1), MDM2, BAX and PUMA, in p53(+/+) but not in p53(-/-) HCT116 cells. Additionally, the ability of oxazoloisoindolinone 3a to block the p53-MDM2 interaction in HCT116 p53(+/+) cells was confirmed by co-immunoprecipitation. Finally, the molecular docking analysis of the interactions between the synthesized compounds and MDM2 revealed that oxazoloisoindolinone 3a binds to MDM2. Altogether, this work adds, for the first time, the oxazoloisoindolinone scaffold to the list of

  19. Expression of P53 protein after exposure to ionizing radiation

    NASA Astrophysics Data System (ADS)

    Salazar, A. M.; Salvador, C.; Ruiz-Trejo, C.; Ostrosky, P.; Brandan, M. E.

    2001-10-01

    One of the most important tumor suppressor genes is p53 gene, which is involved in apoptotic cell death, cell differentiation and cell cycle arrest. The expression of p53 gene can be evaluated by determining the presence of P53 protein in cells using Western Blot assay with a chemiluminescent method. This technique has shown variabilities that are due to biological factors. Film developing process can influence the quality of the p53 bands obtained. We irradiated tumor cell lines and human peripheral lymphocytes with 137Cs and 60Co gamma rays to standardize irradiation conditions, to compare ionizing radiation with actinomycin D and to reduce the observed variability of P53 protein induction levels. We found that increasing radiation doses increase P53 protein induction while it decreases viability. We also conclude that ionizing radiation could serve as a positive control for Western Blot analysis of protein P53. In addition, our results show that the developing process may play an important role in the quality of P53 protein bands and data interpretation.

  20. p53-mediated control of gene expression via mRNA translation during Endoplasmic Reticulum stress.

    PubMed

    López, Ignacio; Tournillon, Anne-Sophie; Nylander, Karin; Fåhraeus, Robin

    2015-01-01

    p53 is activated by different stress and damage pathways and regulates cell biological responses including cell cycle arrest, repair pathways, apoptosis and senescence. Following DNA damage, the levels of p53 increase and via binding to target gene promoters, p53 induces expression of multiple genes including p21(CDKN1A) and mdm2. The effects of p53 on gene expression during the DNA damage response are well mimicked by overexpressing p53 under normal conditions. However, stress to the Endoplasmic Reticulum (ER) and the consequent Unfolded Protein Response (UPR) leads to the induction of the p53/47 isoform that lacks the first 40 aa of p53 and to an active suppression of p21(CDKN1A) transcription and mRNA translation. We now show that during ER stress p53 also suppresses MDM2 protein levels via a similar mechanism. These observations not only raise questions about the physiological role of MDM2 during ER stress but it also reveals a new facet of p53 as a repressor toward 2 of its major target genes during the UPR. As suppression of p21(CDKN1A) and MDM2 protein synthesis is mediated via their coding sequences, it raises the possibility that p53 controls mRNA translation via a common mechanism that might play an important role in how p53 regulates gene expression during the UPR, as compared to the transcription-dependent gene regulation taking place during the DNA damage response.

  1. Full p53 transcriptional activation potential is dispensable for tumor suppression in diverse lineages.

    PubMed

    Jiang, Dadi; Brady, Colleen A; Johnson, Thomas M; Lee, Eunice Y; Park, Eunice J; Scott, Matthew P; Attardi, Laura D

    2011-10-11

    Over half of all human cancers, of a wide variety of types, sustain mutations in the p53 tumor suppressor gene. Although p53 limits tumorigenesis through the induction of apoptosis or cell cycle arrest, its molecular mechanism of action in tumor suppression has been elusive. The best-characterized p53 activity in vitro is as a transcriptional activator, but the identification of numerous additional p53 biochemical activities in vitro has made it unclear which mechanism accounts for tumor suppression. Here, we assess the importance of transcriptional activation for p53 tumor suppression function in vivo in several tissues, using a knock-in mouse strain expressing a p53 mutant compromised for transcriptional activation, p53(25,26). p53(25,26) is severely impaired for the transactivation of numerous classical p53 target genes, including p21, Noxa, and Puma, but it retains the ability to activate a small subset of p53 target genes, including Bax. Surprisingly, p53(25,26) can nonetheless suppress tumor growth in cancers derived from the epithelial, mesenchymal, central nervous system, and lymphoid lineages. Therefore, full transactivation of most p53 target genes is dispensable for p53 tumor suppressor function in a range of tissue types. In contrast, a transcriptional activation mutant that is completely defective for transactivation, p53(25,26,53,54), fails to suppress tumor development. These findings demonstrate that transcriptional activation is indeed broadly critical for p53 tumor suppressor function, although this requirement reflects the limited transcriptional activity observed with p53(25,26) rather than robust transactivation of a full complement of p53 target genes.

  2. Cyclooxygenase-2 and p53 expressions in endometrial cancer.

    PubMed

    Jeon, Yong-Tark; Kang, Sokbom; Kang, Dae-Hee; Yoo, Keun-Young; Park, In-Ae; Bang, Yung-Jue; Kim, Jae Weon; Park, Noh-Hyun; Kang, Soon-Beom; Lee, Hyo-Pyo; Song, Yong-Sang

    2004-09-01

    Cyclooxygenase-2 (COX-2) has been known to be related with various types of carcinoma, but we have insufficient knowledge about the association between COX-2 and endometrial cancer. Many have reported a close relationship between p53 expression and a poor prognosis in endometrial cancer, but it is unclear whether p53 is an independent prognostic factor. To clarify these uncertainties, we examined the expressions of COX-2 and p53 in endometrial cancer tissues. The study was carried on 152 endometrial cancer patients who had operation at Seoul National University Hospital. Paraffin-embedded tissue blocks were sectioned and immunostained using monoclonal anti-COX-2 and anti-p53 antibodies. Twenty-seven (17.8%) specimens stained as COX-2 positive. COX-2 positivity was more frequently observed in postmenopausal patients than in premenopausal patients (8.8% versus 25.0%; P = 0.009). However, COX-2 positivity did not show a statistically significant association with any other clinicopathologic characteristic (parity, body mass index, histotype, International Federation of Gynecology and Obstetrics stage, grade, lymph node metastasis, deep myometrial invasion, or p53 overexpression). Thirty-one (20.4%) specimens showed p53 overexpression and this was significantly correlated with an advanced stage (P = 0.001), poor differentiation (P < 0.001), lymph node metastasis (P = 0.012), and deep myometrial invasion (P < 0.001). Multivariate Cox regression analysis showed that advanced stage was an independent prognostic factor of survival, but p53 overexpression was not. COX-2 may be associated with endometrial cancer carcinogenesis during the postmenopausal period but not with tumor aggressiveness and p53 overexpression. The p53 overexpression was found to be strongly associated with endometrial cancer aggressiveness.

  3. Plasma p53 protein and anti-p53 antibody expression in vinyl chloride monomer workers in Taiwan.

    PubMed

    Luo, J C; Liu, H T; Cheng, T J; Du, C L; Wang, J D

    1999-06-01

    Vinyl chloride (VC) workers are known to be at risk for development of angiosarcoma of the liver (ASL), a rare tumor. Previously, a study of p53 gene mutations in tumors of VC-exposed workers found that 50% of liver angiosarcomas contained such mutations. Mutant p53 oncoprotein and anti-p53 antibodies can also be found in the sera of ASL patients and VC-exposed workers without cancer. Workers in Taiwan have also been exposed to VC, and some have contracted liver tumors. In this study, we used enzyme-linked immunosorbent assays to detect mutant p53 protein and anti-p53 antibodies in the plasma of VC-exposed workers in Taiwan. Thirty-three of 251 (13.2%) VC-workers tested positive for the p53 overexpression (10% with positive mutant p53 protein and 3.6% with positive anti-p53) in their plasma, but only 2 of 36 controls (5.6%) tested positive (2.8% with positive mutant p53 protein and 2.8% with positive anti-p53). There was a significant association between cumulative VC exposure concentration and positive p53 expression (P = 0.032) among VC workers after we adjusted for age, hepatitis, drinking, and smoking status. In summary, P53 overexpression (mutant p53 protein or anti-p53 antibody) can be found in the plasma of VC workers in Taiwan, and a significant dose-response relationship exists between plasma p53 overexpression and VC cumulative exposure concentration.

  4. 1800MHz Microwave Induces p53 and p53-Mediated Caspase-3 Activation Leading to Cell Apoptosis In Vitro

    PubMed Central

    Xing, Fuqiang; Zhan, Qiuqiang; He, Yiduo; Cui, Jiesheng; He, Sailing; Wang, Guanyu

    2016-01-01

    Recent studies have reported that exposure of mammalian cells to microwave radiation may have adverse effects such as induction of cell apoptosis. However, the molecular mechanisms underlying microwave induced mammalian cell apoptosis are not fully understood. Here, we report a novel mechanism: exposure to 1800MHz microwave radiation induces p53-dependent cell apoptosis through cytochrome c-mediated caspase-3 activation pathway. We first measured intensity of microwave radiation from several electronic devices with an irradiation detector. Mouse NIH/3T3 and human U-87 MG cells were then used as receivers of 1800MHz electromagnetic radiation (EMR) at a power density of 1209 mW/m2. Following EMR exposure, cells were analyzed for viability, intracellular reactive oxygen species (ROS) generation, DNA damage, p53 expression, and caspase-3 activity. Our analysis revealed that EMR exposure significantly decreased viability of NIH/3T3 and U-87 MG cells, and increased caspase-3 activity. ROS burst was observed at 6 h and 48 h in NIH/3T3 cells, while at 3 h in U-87 MG cells. Hoechst 33258 staining and in situ TUNEL assay detected that EMR exposure increased DNA damage, which was significantly restrained in the presence of N-acetyl-L-cysteine (NAC, an antioxidant). Moreover, EMR exposure increased the levels of p53 protein and p53 target gene expression, promoted cytochrome c release from mitochondrion, and increased caspase-3 activity. These events were inhibited by pretreatment with NAC, pifithrin-α (a p53 inhibitor) and caspase inhibitor. Collectively, our findings demonstrate, for the first time, that 1800MHz EMR induces apoptosis-related events such as ROS burst and more oxidative DNA damage, which in turn promote p53-dependent caspase-3 activation through release of cytochrome c from mitochondrion. These findings thus provide new insights into physiological mechanisms underlying microwave-induced cell apoptosis. PMID:27689798

  5. Expression of the human tumor suppressor p53 induces cell death in Pichia pastoris.

    PubMed

    Abdelmoula-Souissi, Salma; Mabrouk, Imed; Gargouri, Ali; Mokdad-Gargouri, Raja

    2012-02-01

    The human tumor suppressor p53 is known as guardian of genome because of its involvement in many signals related to cell life or death. In this work, we report that human p53 induces cell death in the yeast Pichia pastoris. We showed a growth inhibition effect, which increased with the p53 protein expression level in recombinant Mut(s) (methanol utilization slow) strain of Pichia. However, no effect of p53 was observed in recombinant strain of Mut(+) (methanol utilization plus) phenotype. Interestingly, human p53 induces cell death in recombinant strains Mut(s) with characteristic markers of apoptosis such as DNA fragmentation, exposure of phosphatidylserine, and reactive oxygen species generation. Taken together, our results strongly suggest that human p53 is biologically active in this heterologous context. Thus, we propose that P. pastoris could be a useful tool to better understand the biological function of human p53.

  6. Development of an adenoviral vector with robust expression driven by p53

    SciTech Connect

    Bajgelman, Marcio C.; Strauss, Bryan E.

    2008-02-05

    Here we introduce a new adenoviral vector where transgene expression is driven by p53. We first developed a synthetic promoter, referred to as PGTx{beta}, containing a p53-responsive element, a minimal promoter and the first intron of the rabbit {beta}-globin gene. Initial assays using plasmid-based vectors indicated that expression was tightly controlled by p53 and was 5-fold stronger than the constitutive CMV immediate early promoter/enhancer. The adenoviral vector, AdPG, was also shown to offer p53-responsive expression in prostate carcinoma cells LNCaP (wt p53), DU-145 (temperature sensitive mutant of p53) and PC3 (p53-null, but engineered to express temperature-sensitive p53 mutants). AdPG served as a sensor of p53 activity in LNCaP cells treated with chemotherapeutic agents. Since p53 can be induced by radiotherapy and chemotherapy, this new vector could be further developed for use in combination with conventional therapies to bring about cooperation between the genetic and pharmacologic treatment modalities.

  7. Caveolin-1 expression is required for the development of pulmonary emphysema through activation of the ATM-p53-p21 pathway.

    PubMed

    Volonte, Daniela; Kahkonen, Beth; Shapiro, Steven; Di, Yuanpu; Galbiati, Ferruccio

    2009-02-27

    Free radicals play a role in aging and age-related human diseases, including pulmonary emphysema. Cigarette smoke represents a source of oxidants and is considered an environmental hazard that causes pulmonary emphysema. Here, we show that caveolin-1 activates ataxia telangiectasia-mutated (ATM) after oxidative stress by sequestering the ATM inhibitor, the catalytic subunit of protein phosphatase 2A, into caveolar membranes. We demonstrate that cigarette smoke extracts promote stress-induced premature senescence in wild type but not caveolin-1 null lung fibroblasts and that caveolin-1 expression is required for activation of the ATM-p53-p21(Waf1)(/)(Cip1) pathway following stimulation with cigarette smoke extracts in vitro. In vivo studies show that caveolin-1 expression is necessary for cigarette smoking-induced senescence of lung fibroblasts and pulmonary emphysema. These findings bring new insights into the molecular mechanism underlying free radical activation of the ATM-p53 pathway and indicate that caveolin-1 is a novel therapeutic target for the treatment and/or prevention of pulmonary emphysema.

  8. Activation of Toll-like receptor 7 regulates the expression of IFN-λ1, p53, PTEN, VEGF, TIMP-1 and MMP-9 in pancreatic cancer cells.

    PubMed

    Wang, Fang; Jin, Rui; Zou, Bing-Bing; Li, Lei; Cheng, Feng-Wei; Luo, Xin; Geng, Xiaoping; Zhang, Sheng-Quan

    2016-02-01

    Toll-like receptors (TLRs) are critical in the induction of the immune response in tumor development. TLR7 has previously been demonstrated to be associated with the development of pancreatic cancer, and the release of cytokines and chemokines from other types of cancer cell; however, the specific expression induced by TLR7 agonists in pancreatic cancer cells remains to be elucidated. The present study aimed to investigate the effects of the TLR7 agonist, gardiquimod, on ERK1/2 signaling pathway, and on the expression of genes involved in the pathogenesis of cancer, including phosphatase and tensin homolog deleted on chromosome 10 (PTEN), p53, type Ⅲ interferon (IFN-λ1), vascular endothelial growth factor (VEGF), matrix metalloproteinase 9 (MMP-9) and tissue inhibitor of metalloproteinase 1 (TIMP-1). The results demonstrated that activation of TLR7 upregulated the expression levels of certain genes to varying degrees; the expression levels of IFN-λ1 and MMP-9 were increased by ~3 fold, whereas other genes (p53, PTEN, TIMP-1) were upregulated by ~2 fold, and VEGF was marginally upregulated after 10 min. Furthermore, gardiquimod increased the expression levels of phosphorylated-extracellular signal-regulated kinase (ERK)1/2. In addition, PD98059, a specific inhibitor of ERK phosphorylation, inhibited the ability of gardiquimod to activate ERK1/2; consequently weakening the effect of gardiquimod on gene regulation. These findings indicated that the effect of TLR7 agonists, including gardiquimod, on gene expression in BxPC-3 pancreatic cancer cells was partly associated with the mitogen-activated protein kinase-ERK1/2 signaling pathway.

  9. Regulation of p53 and MDM2 Activity by MTBP

    PubMed Central

    Brady, Mark; Vlatković, Nikolina; Boyd, Mark T.

    2005-01-01

    p53 is a critical coordinator of a wide range of stress responses. To facilitate a rapid response to stress, p53 is produced constitutively but is negatively regulated by MDM2. MDM2 can inhibit p53 in multiple independent ways: by binding to its transcription activation domain, inhibiting p53 acetylation, promoting nuclear export, and probably most importantly by promoting proteasomal degradation of p53. The latter is achieved via MDM2's E3 ubiquitin ligase activity harbored within the MDM2 RING finger domain. We have discovered that MTBP promotes MDM2-mediated ubiquitination and degradation of p53 and also MDM2 stabilization in an MDM2 RING finger-dependent manner. Moreover, using small interfering RNA to down-regulate endogenous MTBP in unstressed cells, we have found that MTBP significantly contributes to MDM2-mediated regulation of p53 levels and activity. However, following exposure of cells to UV, but not γ-irradiation, MTBP is destabilized as part of the coordinated cellular response. Our findings suggest that MTBP differentially regulates the E3 ubiquitin ligase activity of MDM2 towards two of its most critical targets (itself and p53) and in doing so significantly contributes to MDM2-dependent p53 homeostasis in unstressed cells. PMID:15632057

  10. The viral non-structural protein 1 alpha (Nsp1α) inhibits p53 apoptosis activity by increasing murine double minute 2 (mdm2) expression in porcine reproductive and respiratory syndrome virus (PRRSV) early-infected cells.

    PubMed

    Wang, Xiaodu; Shao, Chunyan; Wang, Luyan; Li, Qunjing; Song, Houhui; Fang, Weihuan

    2016-02-29

    Apoptosis is one of the most important mechanisms of pathogenesis in porcine reproductive and respiratory syndrome virus (PRRSV)-infected cells. The tumor suppressor p53 plays a critical role in apoptotic induction in viral infections. In the present study, we found that p53 activity was inhibited at the early stage of PRRSV infection in both the highly pathogenic (HP) and lowly pathogenic (LP) PRRSV isolates. Bax expression showed a similar change pattern to that of p53. Murine double minute 2 (mdm2) expressed higher in PRRSV-infected cells than in uninfected cells at the early stage of infection and promoted p53 degradation. We show for the first time that the non-structural protein 1 alpha (Nsp1α) of PRRSV is a negative regulator of p53 activity through increasing mdm2 expression and p53 ubiquitination, while p53 is inhibitory to PRRSV replication at the early stage of infection. We conclude that PRRSV manipulates the host factors mdm2 and p53 via its Nsp1α for increased replication at the early stage of infection. These provide a novel perspective to understand the interaction between apoptosis and replication of PRRSV.

  11. MSK2 negatively regulates p53 activity in the absence of stress

    PubMed Central

    Llanos, Susana; Cuadrado, Ana; Serrano, Manuel

    2013-01-01

    Mitogen- and stress-activated kinase 2 (MSK2) is an inhibitor of the transcription factor p53; here, we investigate the mechanisms underlying this inhibition. In the absence of stress stimuli, MSK2 selectively suppressed the expression of a subset of p53 target genes. This basal inhibition of p53 by MSK2 occurred independently of its catalytic kinase activity and of upstream mitogen-activated protein kinase (MAPK) signaling to MSK2. Furthermore, MSK2 interacted with and inhibited the p53 coactivator p300, and associated with the Noxa promoter. Apoptotic stimuli promoted the degradation of MSK2, thus relieving its inhibitory activity towards p53 and allowing efficient p53-dependent transactivation of Noxa, which contributed to apoptosis. Together, these findings constitute a new mechanism of p53 activation in response to stress. PMID:19797274

  12. p53 tumour suppressor gene expression in pancreatic neuroendocrine tumour cells.

    PubMed Central

    Bartz, C; Ziske, C; Wiedenmann, B; Moelling, K

    1996-01-01

    Neuroendocrine pancreatic tumours grow slower and metastasise later than ductal and acinar carcinomas. The expression of the p53 tumour suppressor gene in pancreatic neuroendocrine tumour cells is unknown. Pancreatic neuroendocrine cell lines (n = 5) and human tumour tissues (n = 19) were studied for changed p53 coding sequence, transcription, and translation. Proliferative activity of tumour cells was determined analysing Ki-67 expression. No mutation in the p53 nucleotide sequence of neuroendocrine tumour cell was found. However, an overexpression of p53 could be detected in neuroendocrine pancreatic tumour cell lines at a protein level. As no p53 mutations were seen, it is suggested that post-translational events can also lead to an overexpression of p53. Images Figure 2 Figure 3 Figure 4 Figure 5 Figure 6 Figure 7 PMID:8675094

  13. Loss of p53 induces epidermal growth factor receptor promoter activity in normal human keratinocytes

    PubMed Central

    Bheda, A; Creek, KE; Pirisi, L

    2008-01-01

    Overexpression of the epidermal growth factor receptor (EGFR) in human papillomavirus type 16-immortalized human keratinocytes (HKc) is caused by the viral oncoprotein E6, which targets p53 for degradation. We have previously observed that expression of p53 RNAi in normal HKc is associated with an increase in EGFR mRNA and protein. We now report that p53 RNAi induces EGFR promoter activity up to approximately 10-fold in normal HKc, and this effect does not require intact p53 binding sites on the EGFR promoter. Exogenous wild-type p53 inhibits the EGFR promoter at low levels, and activates it at higher concentrations. Yin Yang 1 (YY1), which negatively regulates p53, induces EGFR promoter activity, and this effect is augmented by p53 RNAi. Intact p53 binding sites on the EGFR promoter are not required for activation by YY1. In addition, Sp1 and YY1 synergistically induce the EGFR promoter in normal HKc, indicating that Sp1 may recruit YY1 as a co-activator. Wild-type p53 suppressed Sp1- and YY1-mediated induction of the EGFR promoter. We conclude that acute loss of p53 in normal HKc induces EGFR expression bya mechanism that involves YY1 and Sp1 and does not require p53 binding to the EGFR promoter. PMID:18391986

  14. Mutant p53 expression in fallopian tube epithelium drives cell migration.

    PubMed

    Quartuccio, Suzanne M; Karthikeyan, Subbulakshmi; Eddie, Sharon L; Lantvit, Daniel D; Ó hAinmhire, Eoghainín; Modi, Dimple A; Wei, Jian-Jun; Burdette, Joanna E

    2015-10-01

    Ovarian cancer is the fifth leading cause of cancer death among US women. Evidence supports the hypothesis that high-grade serous ovarian cancers (HGSC) may originate in the distal end of the fallopian tube. Although a heterogeneous disease, 96% of HGSC contain mutations in p53. In addition, the "p53 signature," or overexpression of p53 protein (usually associated with mutation), is a potential precursor lesion of fallopian tube derived HGSC suggesting an essential role for p53 mutation in early serous tumorigenesis. To further clarify p53-mutation dependent effects on cells, murine oviductal epithelial cells (MOE) were stably transfected with a construct encoding for the R273H DNA binding domain mutation in p53, the most common mutation in HGSC. Mutation in p53 was not sufficient to transform MOE cells but did significantly increase cell migration. A similar p53 mutation in murine ovarian surface epithelium (MOSE), another potential progenitor cell for serous cancer, was not sufficient to transform the cells nor change migration suggesting tissue specific effects of p53 mutation. Microarray data confirmed expression changes of pro-migratory genes in p53(R273H) MOE compared to parental cells, which could be reversed by suppressing Slug expression. Combining p53(R273H) with KRAS(G12V) activation caused transformation of MOE into high-grade sarcomatoid carcinoma when xenografted into nude mice. Elucidating the specific role of p53(R273H) in the fallopian tube will improve understanding of changes at the earliest stage of transformation. This information can help develop chemopreventative strategies to prevent the accumulation of additional mutations and reverse progression of the "p53 signature" thereby, improving survival rates.

  15. Mutant p53 expression in fallopian tube epithelium drives cell migration

    PubMed Central

    Quartuccio, Suzanne M.; Karthikeyan, Subbulakshmi; Eddie, Sharon L.; Lantvit, Daniel D.; Ó hAinmhire, Eoghainín; Modi, Dimple A.; Wei, Jian-Jun; Burdette, Joanna E.

    2015-01-01

    Ovarian cancer is the fifth leading cause of cancer death among US women. Evidence supports the hypothesis that high-grade serous ovarian cancers (HGSC) may originate in the distal end of the fallopian tube. Although a heterogeneous disease, 96% of HGSC contain mutations in p53. In addition, the “p53 signature”, or overexpression of p53 protein (usually associated with mutation), is a potential precursor lesion of fallopian tube derived HGSC suggesting an essential role for p53 mutation in early serous tumorigenesis. To further clarify p53-mutation dependent effects on cells, murine oviductal epithelial cells (MOE) were stably transfected with a construct encoding for the R273H DNA binding domain mutation in p53, the most common mutation in HGSC. Mutation in p53 was not sufficient to transform MOE cells, but did significantly increase cell migration. A similar p53 mutation in murine ovarian surface epithelium (MOSE), another potential progenitor cell for serous cancer, was not sufficient to transform the cells nor change migration suggesting tissue specific effects of p53 mutation. Microarray data confirmed expression changes of pro-migratory genes in p53R273H MOE compared to parental cells, which could be reversed by suppressing Slug expression. Combining p53R273H with KRASG12V activation caused transformation of MOE into high-grade sarcomatoid carcinoma when xenografted into nude mice. Elucidating the specific role of p53R273H in the fallopian tube will improve understanding of changes at the earliest stage of transformation and could help develop chemopreventative strategies to prevent the accumulation of additional mutations and reverse progression of the “p53 signature” thereby, improving survival rates. PMID:25810107

  16. PML IV/ARF interaction enhances p53 SUMO-1 conjugation, activation, and senescence.

    PubMed

    Ivanschitz, Lisa; Takahashi, Yuki; Jollivet, Florence; Ayrault, Olivier; Le Bras, Morgane; de Thé, Hugues

    2015-11-17

    Promyelocytic leukemia protein (PML) nuclear bodies (NBs) recruit multiple partners, including p53 and many of its regulators. NBs are believed to facilitate several posttranslational modifications and are key regulators of senescence. PML, the organizer of NBs, is expressed as a number of splice variants that all efficiently recruit p53 partners. However, overexpression of only one of them, PML IV, triggers p53-driven senescence. Here, we show that PML IV specifically binds ARF, a key p53 regulator. Similar to ARF, PML IV enhances global SUMO-1 conjugation, particularly that of p53, resulting in p53 stabilization and activation. ARF interacts with and stabilizes the NB-associated UBC9 SUMO-conjugating enzyme, possibly explaining PML IV-enhanced SUMOylation. These results unexpectedly link two key tumor suppressors, highlighting their convergence for global control of SUMO conjugation, p53 activation, and senescence induction.

  17. Persistent STAT5 activation in myeloid neoplasms recruits p53 into gene regulation.

    PubMed

    Girardot, M; Pecquet, C; Chachoua, I; Van Hees, J; Guibert, S; Ferrant, A; Knoops, L; Baxter, E J; Beer, P A; Giraudier, S; Moriggl, R; Vainchenker, W; Green, A R; Constantinescu, S N

    2015-03-01

    STAT (Signal Transducer and Activator of Transcription) transcription factors are constitutively activated in most hematopoietic cancers. We previously identified a target gene, LPP/miR-28 (LIM domain containing preferred translocation partner in lipoma), induced by constitutive activation of STAT5, but not by transient cytokine-activated STAT5. miR-28 exerts negative effects on thrombopoietin receptor signaling and platelet formation. Here, we demonstrate that, in transformed hematopoietic cells, STAT5 and p53 must be synergistically bound to chromatin for induction of LPP/miR-28 transcription. Genome-wide association studies show that both STAT5 and p53 are co-localized on the chromatin at 463 genomic positions in proximal promoters. Chromatin binding of p53 is dependent on persistent STAT5 activation at these proximal promoters. The transcriptional activity of selected promoters bound by STAT5 and p53 was significantly changed upon STAT5 or p53 inhibition. Abnormal expression of several STAT5-p53 target genes (LEP, ATP5J, GTF2A2, VEGFC, NPY1R and NPY5R) is frequently detected in platelets of myeloproliferative neoplasm (MPN) patients, but not in platelets from healthy controls. In conclusion, persistently active STAT5 can recruit normal p53, like in the case of MPN cells, but also p53 mutants, such as p53 M133K in human erythroleukemia cells, leading to pathologic gene expression that differs from canonical STAT5 or p53 transcriptional programs.

  18. Mitochondrially targeted p53 has tumor suppressor activities in vivo.

    PubMed

    Talos, Flaminia; Petrenko, Oleksi; Mena, Patricio; Moll, Ute M

    2005-11-01

    Complex proapoptotic functions are essential for the tumor suppressor activity of p53. We recently described a novel transcription-independent mechanism that involves a rapid proapoptotic action of p53 at the mitochondria and executes the shortest known circuitry of p53 death signaling. Here, we examine if this p53-dependent mitochondrial program could be exploited for tumor suppression in vivo. To test this, we engage Emu-Myc transgenic mice, a well-established model of p53-dependent lymphomagenesis. We show that exclusive delivery of p53 to the outer mitochondrial membrane confers a significant growth disadvantage on Emu-Myc-transformed B-cells of p53-deficient or alternate reading frame-deficient genotypes, resulting in efficient induction of apoptosis and impinged proliferation. Conversely, normal cells from thymus, spleen, and bone marrow showed poor infectivity with these viruses. This proof-of-principle experiment shows that exclusive reliance on the direct mitochondrial program exerts a significant tumor suppressor activity in vivo. Our in vivo data on the direct mitochondrial apoptotic p53 program lays the groundwork to further investigate its efficacy and safety and to address its possible therapeutic value in the future.

  19. Concurrent expression of heme oxygenase-1 and p53 in human retinal pigment epithelial cell line

    SciTech Connect

    Lee, Sang Yull; Jo, Hong Jae; Kim, Kang Mi; Song, Ju Dong; Chung, Hun Taeg; Park, Young Chul

    2008-01-25

    Heme oxygenase-1 (HO-1) is a stress-responsive protein that is known to regulate cellular functions such as cell proliferation, inflammation, and apoptosis. Here, we investigated the effects of HO activity on the expression of p53 in the human retinal pigment epithelium (RPE) cell line ARPE-19. Cobalt protoporphyrin (CoPP) induced the expression of both HO-1 and p53 without significant toxicity to the cells. In addition, the blockage of HO activity with the iron chelator DFO or with HO-1 siRNA inhibited the CoPP-induced expression of p53. Similarly, zinc protoporphyrin (ZnPP), an inhibitor of HO, suppressed p53 expression in ARPE-19 cells, although ZnPP increased the level of HO-1 protein while inhibiting HO activity. Also, CoPP-induced p53 expression was not affected by the formation of reactive oxygen species (ROS). Based on these results, we conclude that HO activity is involved in the regulation of p53 expression in a ROS-independent mechanism, and also suggest that the expression of p53 in ARPE-19 cells is associated with heme metabolites such as biliverdin/bilirubin, carbon monoxide, and iron produced by the activity of HO.

  20. Loss of p53-regulatory protein IFI16 induces NBS1 leading to activation of p53-mediated checkpoint by phosphorylation of p53 SER37.

    PubMed

    Tawara, Hideyuki; Fujiuchi, Nobuko; Sironi, Juan; Martin, Sarah; Aglipay, Jason; Ouchi, Mutsuko; Taga, Makoto; Chen, Phang-Lang; Ouchi, Toru

    2008-01-01

    Our previous results that IFI16 is involved in p53 transcription activity under conditions of ionizing radiation (IR), and that the protein is frequently lost in human breast cancer cell lines and breast adenocarcinoma tissues suggesting that IFI16 plays a crucial role in controlling cell growth. Here, we show that loss of IFI16 by RNA interference in cell culture causes elevated phosphorylation of p53 Ser37 and accumulated NBS1 (nibrin) and p21WAF1, leading to growth retardation. Consistent with these observations, doxycyclin-induced NBS1 caused accumulation of p21WAF1 and increased phosphorylation of p53 Ser37, leading to cell cycle arrest in G1 phase. Wortmannin treatment was found to decrease p53 Ser37 phosphorylation in NBS-induced cells. These results suggest that loss of IFI16 activates p53 checkpoint through NBS1-DNA-PKcs pathway. PMID:17981542

  1. G alpha 12/13 basally regulates p53 through Mdm4 expression.

    PubMed

    Kim, Mi-Sung; Lee, Sang Min; Kim, Won Dong; Ki, Sung Hwan; Moon, Aree; Lee, Chang Ho; Kim, Sang Geon

    2007-05-01

    G alpha(12/13), which belongs to the G alpha(12) family, participates in the regulation of diverse physiologic processes. In view of the control of G alpha(12/13) in cell proliferation, this study investigated the role of G alpha(12/13) in the regulation of p53 and mdm4. Immunoblotting and immunocytochemistry revealed that p53 was expressed in control embryonic fibroblasts and was largely localized in the nuclei. G alpha(12) deficiency decreased p53 levels and its DNA binding activity, accompanying p21 repression with Bcl(2) induction, whereas G alpha(13) deficiency exerted weak effects. G alpha(12) or G alpha(13) deficiency did not change p53 mRNA expression. ERK1/2 or Akt was not responsible for p53 repression due to G alpha(12) deficiency. Mdm4, a p53-stabilizing protein, was repressed by G alpha(12) deficiency and to a lesser extent by G alpha(13) deficiency, whereas mdm2, PTEN, beta-catenin, ATM, and Chk2 were unaffected. p53 accumulation by proteasomal inhibition during G alpha(12) deficiency suggested the role of G alpha(12) in p53 stabilization. Constitutively active G alpha(12) (G alpha(12)QL) or G alpha(13) (G alpha(13)QL) promoted p53 accumulation with mdm4 induction in MCF10A cells. p53 accumulation by mdm4 overexpression, but no mdm4 induction by p53 overexpression, and small interfering RNA knockdown verified the regulatory role of mdm4 for p53 downstream of G alpha(12/13). In control or G alpha(12)/G alpha(13)-deficient cells, genotoxic stress led to p53 accumulation. At concentrations increasing the flow cytometric pre-G(1) phase, doxorubicin or etoposide treatment caused serine phosphorylations in G alpha(12)-/- or G alpha(12/13)-/- cells, but did not induce mdm4. G alpha(12/13)QL transfection failed to phosphorylate p53 at serines. Our results indicate that G alpha(12/13) regulate basal p53 levels via mdm4, which constitutes a cell signaling pathway distinct from p53 phosphorylations elicited by genotoxic stress.

  2. PNAS-4 expression and its relationship to p53 in colorectal cancer.

    PubMed

    Zhou, Bin; Yan, Hui; Li, Yuan; Wang, Rong; Chen, Keling; Zhou, Zongguang; Sun, Xiaofeng

    2012-01-01

    PNAS-4 is a novel pro-apoptotic protein activated during the early response to DNA damage; however, the molecular mechanisms and pathways regulating PNAS-4 expression in tumors are not well understood. We hypothesized that PNAS-4 is a p53 down-stream target gene and designed this study. We searched online for putative p53-binding sites in the entire PNAS-4 gene and did not find any corresponding information. In HCT116 colon cancer cells, after being transfected with small interfering RNA to silence p53, the expressions of PNAS-4 and other known p53 target gene (Apaf1, Bax, Fas and Dr5) were determined by real-time PCR. We found that PNAS-4 was up-regulated while Apaf1, Bax, Fas and Dr5 were down-regulated. We then examined the expression of PNAS-4 and p53 mutation in colorectal cancer patients. PNAS-4 expressed both in colorectal cancers and normal tissues, but compared with paired control, PNAS-4 was up-regulated in cancers (P=0.018). PNAS-4 overexpression ratios were correlated to the p53 mutant status (P=0.001). The mean PNAS-4 expression levels of p53 mutant homozygote group and heterozygote group were higher than that of p53 wild type group (P=0.013). The expression ratios of PNAS-4 (every sample in relative to its paired normal mucosa) were different between negative lymph node metastasis (66% up-regulated, 34% down-regulated) and positive metastasis (42% up-regulated, 58% down-regulated). Taken together, these findings suggested that PNAS-4 was not a p53 target, but overexpression of PNAS-4 was correlated to p53 inactivity in colorectal cancer.

  3. Expression pattern of the apoptosis-stimulating protein of p53 family in p53+ human breast cancer cell lines

    PubMed Central

    2013-01-01

    Background The apoptosis-stimulating protein of p53 (ASPP) family comprises three members, namely, ASPP1, ASPP2, and iASPP. They regulate the promotive effect of p53 on apoptosis. Breast cancer (BC) remains as one of the leading causes of cancer or cancer-related mortality among women. However, the relationship between the ASPP family members and p53, as well as the dissemination and expression pattern of ASPP family members in p53+ BC, has not been elucidated. Our objectives are to detect the expression of ASPP family members in p53+ BC cell lines and determine its significance in tumor cell apoptosis. Methods The mRNA expression of ASPP family members in five p53+ BC cell lines was detected through RT-PCR and assayed using Quality-one software. The p53 protein expression was detected by immunohistochemistry. Afterward, the apoptosis indices of the five BC cell lines were detected by flow cytometry. Results The iASPP mRNA was expressed in Bcap-37, MCF-7, and HBL-100. Compared with the human peripheral blood mononuclear cells, significant differences were found in the ASPP1 mRNA in Bcap-37, MDA-MB-231, MCF-7, and HBL-100 (p < 0.05), except that in ZR-75-30 (p > 0.05). The ASPP2 mRNA was expressed in MDA-MB-231, Bcap-37, and MCF-7, but not in HBL-100 and ZR-75-30. The p53 protein was expressed in five breast cancer cell lines. ZR-75-30 and MDA-MB-231 apoptosis indices were higher than those of other breast cancer cell line and peripheral blood mononuclear cells (p < 0.01). Conclusions The mRNA expression of ASPP family members varied in the five p53+ BC cell lines. The results also verified that the family members have an important function in apoptosis, which was promoted by p53 protein. ZR-75-30 BC showed high apoptosis index, without expression of any ASPP family members, indicating that the pathway of apoptosis in this cell line may be related to other cell transduction pathway. MDA-MB-231, Bcap37, and MCF-7 cell lines all expressed ASPP1/2. However, the

  4. A Temperature Sensitive Variant of p53 Drives p53-Dependent MicroRNA Expression without Evidence of Widespread Post-Transcriptional Gene Silencing.

    PubMed

    Cabrita, Miguel A; Vanzyl, Erin J; Hamill, Jeff D; Pan, Elysia; Marcellus, Kristen A; Tolls, Victoria J; Alonzi, Rhea C; Pastic, Alyssa; Rambo, Teeghan M E; Sayed, Hadil; McKay, Bruce C

    2016-01-01

    The p53 tumour suppressor is a transcription factor that can regulate the expression of numerous genes including many encoding proteins and microRNAs (miRNAs). The predominant outcomes of a typical p53 response are the initiation of apoptotic cascades and the activation of cell cycle checkpoints. HT29-tsp53 cells express a temperature sensitive variant of p53 and in the absence of exogenous DNA damage, these cells preferentially undergo G1 phase cell cycle arrest at the permissive temperature that correlates with increased expression of the cyclin-dependent kinase inhibitor p21WAF1. Recent evidence also suggests that a variety of miRNAs can induce G1 arrest by inhibiting the expression of proteins like CDK4 and CDK6. Here we used oligonucleotide microarrays to identify p53-regulated miRNAs that are induced in these cells undergoing G1 arrest. At the permissive temperature, the expression of several miRNAs was increased through a combination of either transcriptional or post-transcriptional regulation. In particular, miR-34a-5p, miR-143-3p and miR-145-5p were strongly induced and they reached levels comparable to that of reference miRNAs (miR-191 and miR-103). Importantly, miR-34a-5p and miR-145-5p are known to silence the Cdk4 and/or Cdk6 G1 cyclin-dependent kinases (cdks). Surprisingly, there was no p53-dependent decrease in the expression of either of these G1 cdks. To search for other potential targets of p53-regulated miRNAs, p53-downregulated mRNAs were identified through parallel microarray analysis of mRNA expression. Once again, there was no clear effect of p53 on the repression of mRNAs under these conditions despite a remarkable increase in p53-induced mRNA expression. Therefore, despite a strong p53 transcriptional response, there was no clear evidence that p53-responsive miRNA contributed to gene silencing. Taken together, the changes in cell cycle distribution in this cell line at the permissive temperature is likely attributable to transcriptional

  5. A Temperature Sensitive Variant of p53 Drives p53-Dependent MicroRNA Expression without Evidence of Widespread Post-Transcriptional Gene Silencing

    PubMed Central

    Cabrita, Miguel A.; Vanzyl, Erin J.; Hamill, Jeff D.; Pan, Elysia; Marcellus, Kristen A.; Tolls, Victoria J.; Alonzi, Rhea C.; Pastic, Alyssa; Rambo, Teeghan M. E.; Sayed, Hadil; McKay, Bruce C.

    2016-01-01

    The p53 tumour suppressor is a transcription factor that can regulate the expression of numerous genes including many encoding proteins and microRNAs (miRNAs). The predominant outcomes of a typical p53 response are the initiation of apoptotic cascades and the activation of cell cycle checkpoints. HT29-tsp53 cells express a temperature sensitive variant of p53 and in the absence of exogenous DNA damage, these cells preferentially undergo G1 phase cell cycle arrest at the permissive temperature that correlates with increased expression of the cyclin-dependent kinase inhibitor p21WAF1. Recent evidence also suggests that a variety of miRNAs can induce G1 arrest by inhibiting the expression of proteins like CDK4 and CDK6. Here we used oligonucleotide microarrays to identify p53-regulated miRNAs that are induced in these cells undergoing G1 arrest. At the permissive temperature, the expression of several miRNAs was increased through a combination of either transcriptional or post-transcriptional regulation. In particular, miR-34a-5p, miR-143-3p and miR-145-5p were strongly induced and they reached levels comparable to that of reference miRNAs (miR-191 and miR-103). Importantly, miR-34a-5p and miR-145-5p are known to silence the Cdk4 and/or Cdk6 G1 cyclin-dependent kinases (cdks). Surprisingly, there was no p53-dependent decrease in the expression of either of these G1 cdks. To search for other potential targets of p53-regulated miRNAs, p53-downregulated mRNAs were identified through parallel microarray analysis of mRNA expression. Once again, there was no clear effect of p53 on the repression of mRNAs under these conditions despite a remarkable increase in p53-induced mRNA expression. Therefore, despite a strong p53 transcriptional response, there was no clear evidence that p53-responsive miRNA contributed to gene silencing. Taken together, the changes in cell cycle distribution in this cell line at the permissive temperature is likely attributable to transcriptional

  6. AAVPG: A vigilant vector where transgene expression is induced by p53

    SciTech Connect

    Bajgelman, Marcio C.; Medrano, Ruan F.V.; Carvalho, Anna Carolina P.V.; Strauss, Bryan E.

    2013-12-15

    Using p53 to drive transgene expression from viral vectors may provide on demand expression in response to physiologic stress, such as hypoxia or DNA damage. Here we introduce AAVPG, an adeno-associated viral (AAV) vector where a p53-responsive promoter, termed PG, is used to control transgene expression. In vitro assays show that expression from the AAVPG-luc vector was induced specifically in the presence of functional p53 (1038±202 fold increase, p<0.001). The AAVPG-luc vector was an effective biosensor of p53 activation in response to hypoxia (4.48±0.6 fold increase in the presence of 250 µM CoCl{sub 2}, p<0.001) and biomechanical stress (2.53±0.4 fold increase with stretching, p<0.05). In vivo, the vigilant nature of the AAVPG-luc vector was revealed after treatment of tumor-bearing mice with doxorubicin (pre-treatment, 3.4×10{sup 5}±0.43×10{sup 5} photons/s; post-treatment, 6.6×10{sup 5}±2.1×10{sup 5} photons/s, p<0.05). These results indicate that the AAVPG vector is an interesting option for detecting p53 activity both in vitro and in vivo. - Highlights: • AAV vector where transgene expression is controlled by the tumor suppressor p53. • The new vector, AAVPG, shown to function as a biosensor of p53 activity, in vitro and in vivo. • The p53 activity monitored by the AAVPG vector is relevant to cancer and other diseases. • AAVPG reporter gene expression was activated upon DNA damage, hypoxia and mechanical stress.

  7. Lack of p53 Affects the Expression of Several Brain Mitochondrial Proteins: Insights from Proteomics into Important Pathways Regulated by p53

    PubMed Central

    Fiorini, Ada; Sultana, Rukhsana; Barone, Eugenio; Cenini, Giovanna; Perluigi, Marzia; Mancuso, Cesare; Cai, Jian; Klein, Jon B.; St. Clair, Daret; Butterfield, D. Allan

    2012-01-01

    The tumor suppressor protein p53 has been described “as the guardian of the genome” for its crucial role in regulating the transcription of numerous genes responsible for cells cycle arrest, senescence, or apoptosis in response to various stress signals. Although p53 promotes longevity by decreasing the risk of cancer through activation of apoptosis or cellular senescence, several findings suggest that an increase of its activity may have deleterious effects leading to selected aspects of the aging phenotype and neurodegenerative diseases. There is the link between p53 and oxidative stress, the latter a crucial factor that contributes to neurodegenerative processes like Alzheimer disease (AD). In the present study, using a proteomics approach, we analyzed the impact of lack of p53 on the expression of several brain mitochondrial proteins involved in different pathways, and how lack of p53 may present a target to restore neuronal impairments. Our investigation on isolated brain mitochondria from p53(−/−) mice also provides a better understanding of the p53-mitochondria relationship and its involvement in the development of many diseases. PMID:23209608

  8. Regulation of p53, nuclear factor {kappa}B and cyclooxygenase-2 expression by bromelain through targeting mitogen-activated protein kinase pathway in mouse skin

    SciTech Connect

    Kalra, Neetu; Bhui, Kulpreet; Roy, Preeti; Srivastava, Smita; George, Jasmine; Prasad, Sahdeo; Shukla, Yogeshwer

    2008-01-01

    Bromelain is a pharmacologically active compound, present in stems and immature fruits of pineapples (Ananas cosmosus), which has been shown to have anti-edematous, anti-inflammatory, anti-thrombotic and anti-metastatic properties. In the present study, antitumorigenic activity of bromelain was recorded in 7,12-dimethylbenz(a)anthracene (DMBA)-initiated and 12-O-tetradecanoylphorbol-13-acetate (TPA)-promoted 2-stage mouse skin model. Results showed that bromelain application delayed the onset of tumorigenesis and reduced the cumulative number of tumors, tumor volume and the average number of tumors/mouse. To establish a cause and effect relationship, we targeted the proteins involved in the cell death pathway. Bromelain treatment resulted in upregulation of p53 and Bax and subsequent activation of caspase 3 and caspase 9 with concomitant decrease in antiapoptotic protein Bcl-2 in mouse skin. Since persistent induction of cyclooxygenase-2 (Cox-2) is frequently implicated in tumorigenesis and is regulated by nuclear factor-kappa B (NF-{kappa}B), we also investigated the effect of bromelain on Cox-2 and NF-{kappa}B expression. Results showed that bromelain application significantly inhibited Cox-2 and inactivated NF-{kappa}B by blocking phosphorylation and subsequent degradation of I{kappa}B{alpha}. In addition, bromelain treatment attenuated DMBA-TPA-induced phosphorylation of extracellular signal-regulated protein kinase (ERK1/2), mitogen-activated protein kinase (MAPK) and Akt. Taken together, we conclude that bromelain induces apoptosis-related proteins along with inhibition of NF-{kappa}B-driven Cox-2 expression by blocking the MAPK and Akt/protein kinase B signaling in DMBA-TPA-induced mouse skin tumors, which may account for its anti-tumorigenic effects.

  9. Iron-Dependent Regulation of MDM2 Influences p53 Activity and Hepatic Carcinogenesis

    PubMed Central

    Dongiovanni, Paola; Fracanzani, Anna Ludovica; Cairo, Gaetano; Megazzini, Chiara Paola; Gatti, Stefano; Rametta, Raffaela; Fargion, Silvia; Valenti, Luca

    2010-01-01

    Iron overload is a risk factor for hepatocarcinoma, but the pathways involved are poorly characterized. Gene expression analysis in immortalized mouse hepatocytes exposed to iron or the iron chelator deferoxamine revealed that iron downregulated, whereas deferoxamine upregulated, mRNA levels of mouse double minute gene 2 (MDM2), the ubiquitin ligase involved in the degradation of the oncosuppressor p53. Regulation of MDM2 by iron status was observed at protein levels in mouse hepatocytes and rat liver, and was associated with specular changes in p53 expression. Iron dependent regulation of MDM2/p53 was confirmed ex-vivo in human monocytes, by manipulation of iron pool and in a genetic model of iron deficiency, leading to modulation of p53 target genes involved in the antioxidant response and apoptosis. Iron status influenced p53 ubiquitination and degradation rate, and the MDM2 inhibitor nutlin increased p53 levels in iron-depleted cells. Furthermore, nutlin enhanced the antiproliferative activity of deferoxamine in HepG2 hepatoblastoma cells. The MDM2 −309T > G promoter polymorphism, determining increased MDM2 and lower p53 activity, was associated with higher risk of hepatocarcinoma in cirrhotic patients with hemochromatosis, and with HFE mutations in patients with hepatocarcinoma without hemochromatosis, suggesting an interaction between MDM2 and iron in the pathogenesis of hepatocarcinoma. In conclusion, iron status influences p53 activity and antioxidant response by modulating MDM2 expression. MDM2 inhibitors may enhance the antiproliferative activity of iron chelators. PMID:20019189

  10. Transcriptional activation of APAF1 by KAISO (ZBTB33) and p53 is attenuated by RelA/p65.

    PubMed

    Koh, Dong-In; An, Haemin; Kim, Min-Young; Jeon, Bu-Nam; Choi, Seo-Hyun; Hur, Sujin Susanne; Hur, Man-Wook

    2015-09-01

    KAISO, a member of the POK protein family, is induced by DNA-damaging agents to enhance apoptosis in a p53-dependent manner. Previously, we found that p53 interacts with KAISO, and acetylation of p53 lysine residues by p300 is modulated by KAISO. APAF1, the core molecule of the apoptosome, is transcriptionally activated by KAISO only in cells expressing p53, which binds to APAF1 promoter p53-response elements (p53REs). APAF1 transcriptional upregulation is further enhanced by KAISO augmentation of p53 binding to the APAF1 promoter distal p53RE#1 (bp, -765 to -739). Interestingly, a NF-κB response element, located close to the p53RE#1, mediates APAF1 transcriptional repression by affecting interaction between KAISO and p53. Ectopic RelA/p65 expression led to depletion of nuclear KAISO, with KAISO being mainly detected in the cytoplasm. RelA/p65 cytoplasmic sequestration of KAISO prevents its nuclear interaction with p53, decreasing APAF1 transcriptional activation by a p53-KAISO-p300 complex in cells exposed to genotoxic stresses. While KAISO enhances p53-dependent apoptosis by increasing APAF1 gene expression, RelA/p65 decreases apoptosis by blocking interaction between KAISO and p53. These findings have relevance to the phenomenon of cancer cells' diminished apoptotic capacity and the onset of chemotherapy resistance.

  11. TP53 drives invasion through expression of its Δ133p53β variant

    PubMed Central

    Gadea, Gilles; Arsic, Nikola; Fernandes, Kenneth; Diot, Alexandra; Joruiz, Sébastien M; Abdallah, Samer; Meuray, Valerie; Vinot, Stéphanie; Anguille, Christelle; Remenyi, Judit; Khoury, Marie P; Quinlan, Philip R; Purdie, Colin A; Jordan, Lee B; Fuller-Pace, Frances V; de Toledo, Marion; Cren, Maïlys; Thompson, Alastair M

    2016-01-01

    TP53 is conventionally thought to prevent cancer formation and progression to metastasis, while mutant TP53 has transforming activities. However, in the clinic, TP53 mutation status does not accurately predict cancer progression. Here we report, based on clinical analysis corroborated with experimental data, that the p53 isoform Δ133p53β promotes cancer cell invasion, regardless of TP53 mutation status. Δ133p53β increases risk of cancer recurrence and death in breast cancer patients. Furthermore Δ133p53β is critical to define invasiveness in a panel of breast and colon cell lines, expressing WT or mutant TP53. Endogenous mutant Δ133p53β depletion prevents invasiveness without affecting mutant full-length p53 protein expression. Mechanistically WT and mutant Δ133p53β induces EMT. Our findings provide explanations to 2 long-lasting and important clinical conundrums: how WT TP53 can promote cancer cell invasion and reciprocally why mutant TP53 gene does not systematically induce cancer progression. DOI: http://dx.doi.org/10.7554/eLife.14734.001 PMID:27630122

  12. p53 expression and relationship with MDM2 amplification in breast carcinomas.

    PubMed

    Buyukpinarbasili, Nur; Gucin, Zuhal; Ersoy, Yeliz Emine; İlbak, Ayca; Kadioglu, Huseyin; Muslumanoglu, Mahmut

    2016-04-01

    Carcinoma of the breast, like other malignancies, is a genetic disease with multiple genetic events leading to the malignant phenotype. p53 mutations are the most common genetic events in human cancer. Inactivation of p53 can be a result of mutation in gene sequence. One of the main structures that regulate p53 stabilization is MDM2. It suppresses p53 transcriptional activation by recognizing transactivation domain of p53. The loss of MDM2 function on p53 regulation results in deprivation of p53 tumor suppressor ability. Single nucleotide polymorphisms (SNP309 T->G exchange) or MDM2 amplification has been proposed to play a role in this issue. In the present study, our aim is to analyze p53 and MDM2 status and investigate their interactions in human sporadic breast carcinoma. The study groups were separated according to their molecular classifications. In each group, histologic type of the tumor, conventional prognostic parameters, p53, and MDM2 interactions were compared statistically. Tumors are divided into 4 subtypes due to estrogen and progesterone receptor status, HER-2, and Ki-67 proliferation index results. According to this classification, 23 cases are in the luminal A, 32 cases are in the luminal B, 15 cases are in the HER-2 positive, and 22 cases are in the triple-negative group, with a total of 92 cases. p53 expression is low in luminal breast carcinomas than HER-2 and triple-negative subtypes. MDM2 amplification frequency was found to be 5.4% in total. MDM2 gene amplification does not have a significant role in breast carcinogenesis, but other possible mechanisms may play a role in its inactivation. PMID:27040927

  13. The anti-leukemic activity of sodium dichloroacetate in p53mutated/null cells is mediated by a p53-independent ILF3/p21 pathway

    PubMed Central

    Agnoletto, Chiara; Brunelli, Laura; Melloni, Elisabetta; Pastorelli, Roberta; Casciano, Fabio; Rimondi, Erika; Rigolin, Gian Matteo; Cuneo, Antonio; Secchiero, Paola; Zauli, Giorgio

    2015-01-01

    B-chronic lymphocytic leukemia (B-CLL) patients harboring p53 mutations are invariably refractory to therapies based on purine analogues and have limited treatment options and poor survival. Having recently demonstrated that the mitochondria-targeting small molecule sodium dichloroacetate (DCA) exhibits anti-leukemic activity in p53wild-type B-CLL cells, the aim of this study was to evaluate the effect of DCA in p53mutated B-CLL cells and in p53mutated/null leukemic cell lines. DCA exhibited comparable cytotoxicity in p53wild-type and p53mutated B-CLL patient cell cultures, as well as in p53mutated B leukemic cell lines (MAVER, MEC-1, MEC-2). At the molecular level, DCA promoted the transcriptional induction of p21 in all leukemic cell types investigated, including p53null HL-60. By using a proteomic approach, we demonstrated that DCA up-regulated the ILF3 transcription factor, which is a known regulator of p21 expression. The role of the ILF3/p21 axis in mediating the DCA anti-leukemic activity was underscored by knocking-down experiments. Indeed, transfection with ILF3 and p21 siRNAs significantly decreased both the DCA-induced p21 expression and the DCA-mediated cytotoxicity. Taken together, our results emphasize that DCA is a small molecule that merits further evaluation as a therapeutic agent also for p53mutated leukemic cells, by acting through the induction of a p53-independent pathway. PMID:25544776

  14. Up-regulation of inducible nitric oxide synthase expression in cancer-prone p53 knockout mice.

    PubMed

    Ambs, S; Ogunfusika, M O; Merriam, W G; Bennett, W P; Billiar, T R; Harris, C C

    1998-07-21

    High concentrations of nitric oxide (NO) cause DNA damage and apoptosis in many cell types. Thus, regulation of NO synthase (NOS) activity is essential for minimizing effects of cytotoxic and genotoxic nitrogen oxide species. We have shown previously that NO-induced p53 protein accumulation down-regulates basal and cytokine-modulated inducible NOS (NOS2) expression in human cells in vitro. To further characterize the feedback loop between NOS2 and p53, we have investigated NO production, i.e., urinary nitrate plus nitrite excretion, and NOS2 expression in homozygous p53 knockout (KO) mice. We report here that untreated p53 KO mice excreted 70% more nitrite plus nitrate than mice with wild-type (wt) p53. NOS2 protein expression was constitutively detected in the spleen of untreated p53 KO mice, whereas it was undetectable in the spleen of wt p53 controls. Upon treatment with heat-inactivated Corynebacterium parvum, urinary nitrite plus nitrate excretion of p53 KO mice exceeded that of wt controls by approximately 200%. C. parvum treatment also induced p53 accumulation in the liver. Splenectomy reduced the NO output of C. parvum-treated p53 KO mice but not of wt p53 controls. Although NO production and NOS2 protein expression were increased similarly in KO and wt p53 mice 10 days after injection of C. parvum, NOS2 expression returned to baseline levels only in wt p53 controls while remaining up-regulated in p53 KO mice. These genetic and functional data indicate that p53 is an important transrepressor of NOS2 expression in vivo and attenuates excessive NO production in a regulatory negative feedback loop. PMID:9671763

  15. Gene Expression Profiling Identifies Important Genes Affected by R2 Compound Disrupting FAK and P53 Complex.

    PubMed

    Golubovskaya, Vita M; Ho, Baotran; Conroy, Jeffrey; Liu, Song; Wang, Dan; Cance, William G

    2014-01-01

    Focal Adhesion Kinase (FAK) is a non-receptor kinase that plays an important role in many cellular processes: adhesion, proliferation, invasion, angiogenesis, metastasis and survival. Recently, we have shown that Roslin 2 or R2 (1-benzyl-15,3,5,7-tetraazatricyclo[3.3.1.1~3,7~]decane) compound disrupts FAK and p53 proteins, activates p53 transcriptional activity, and blocks tumor growth. In this report we performed a microarray gene expression analysis of R2-treated HCT116 p53+/+ and p53-/- cells and detected 1484 genes that were significantly up- or down-regulated (p < 0.05) in HCT116 p53+/+ cells but not in p53-/- cells. Among up-regulated genes in HCT p53+/+ cells we detected critical p53 targets: Mdm-2, Noxa-1, and RIP1. Among down-regulated genes, Met, PLK2, KIF14, BIRC2 and other genes were identified. In addition, a combination of R2 compound with M13 compound that disrupts FAK and Mmd-2 complex or R2 and Nutlin-1 that disrupts Mdm-2 and p53 decreased clonogenicity of HCT116 p53+/+ colon cancer cells more significantly than each agent alone in a p53-dependent manner. Thus, the report detects gene expression profile in response to R2 treatment and demonstrates that the combination of drugs targeting FAK, Mdm-2, and p53 can be a novel therapy approach.

  16. Role of p53β in the inhibition of proliferation of gastric cancer cells expressing wild-type or mutated p53.

    PubMed

    Ji, Wansheng; Ma, Jingrong; Zhang, Hongmei; Zhong, Hua; Li, Lei; Ding, Na; Jiao, Jianxin; Gao, Zhixing

    2015-07-01

    p53 is a tumor suppressor gene whose mutation is highly associated with tumorigenesis. The present study investigated the role of p53β in the inhibition of proliferation of gastric cancer cell lines expressing wild-type or mutated p53. Wild-type p53 is expressed in MKN45 cells, but deleted in KATOIII cells, whereas mutated p53 is expressed in SGC7901 cells. The mRNA expression levels of p53β and Δ133p53 were detected in MKN45, SGC-7901 and KATOIII gastric cancer cell lines using nested polymerase chain reaction (PCR). The mRNA expression levels of p53, p53β and B-cell lymphoma 2-associated X protein (Bax) were detected in the MKN45 and SGC-7901 cells following treatment with cisplatin by reverse transcription-PCR. The inhibition of cellular proliferation following treatment with cisplatin was measured by MTT assay. The results of the present study demonstrated that both p53β and Δ133p53 mRNA were expressed in the MKN45 cells, whereas only p53β mRNA was expressed in the SGC7901 cells. No expression of p53β or Δ133p53 mRNA was detected in the KATOIII cells. Following treatment with cisplatin, the number of both MKN45 and SGC-7901 cells was significantly reduced (P<0.001). In the MKN45 cells, p53β, p53 and Bax mRNA expression levels gradually increased with the dose of cisplatin, and the expression of p53β was positively correlated with the expression of p53 (tr=6.358, P<0.05) and Bax (tr=8.023, P<0.05). In the SGC-7901 cells, the expression levels of p53β, p53 and Bax mRNA did not alter with the dose of cisplatin, and the expression of p53β was positively correlated to the expression of p53 (tr=26.41, P<0.01) but not that of Bax. The present study identified the different roles of the p53β isoform in gastric cancer cells with different p53 backgrounds. Enhanced knowledge regarding the p53 status is required for the development of specific biological therapies against gastric cancer. PMID:25695150

  17. Mutant p53 protein expression and antioxidant status deficiency in breast cancer

    PubMed Central

    Milicevic, Zorka; Kasapovic, Jelena; Gavrilovic, Ljubica; Milovanovic, Zorka; Bajic, Vladan; Spremo-Potparevic, Biljana

    2014-01-01

    It is well recognized that cancers develop and grow as a result of disordered function of tumor suppressor genes and oncogenes, which may be exploited for screening purposes. Extensive evidence indicated tumor suppressor protein p53 as candidate marker for mutation identification. We have investigated mutant p53 protein expression in human breast tumors in relation to antioxidant status deficiency. The study included 100 breast cancer patients. p53 protein expression was evaluated by Western blot assay and immunostaining using a CM-1, DO-7 and Pab240 antibodies. Antioxidant parameters and lipid peroxidation were estimated by biochemical analyses. Western blotting with epitopespecific monoclonal antibody Pab240 strongly suggests that nuclear extracts from breast cancer cells express mutant forms of p53. It is of interest that the mutant forms of p53 overexpression in conjunction with the appearance of nuclear bodies are observed in highly aggressive carcinomas. Expression of isoform Δp53 (45 kDa) and isoform of ~ 29 kDa were more common in cases with LN metastasis. These studies point out the molecular consequences of oxidative stress (lipid peroxides, LP, p<0.001) and antioxidant status deficiency (copper, zinc superoxid dismutase, SOD, p<0.001; catalase, CAT, p<0.01; glutathione reductase, GR, p<0.001; glutathione, GSH, p<0.05) and indicate the importance of p53 mutation as the commonest genetic alteration detected in breast cancer cells. The expression of mutant p53 is correlated to increased lipid peroxides (0.346, p<0.05 ) and lowered antioxidant activity of CAT (- 0.437, p<0.01) in the breast cancer patients. PMID:26417293

  18. Loss of p53 expression is accompanied by upregulation of beta-catenin in meningiomas: a concomitant reciprocal expression.

    PubMed

    Pećina-Šlaus, Nives; Kafka, Anja; Vladušić, Tomislav; Tomas, Davor; Logara, Monika; Skoko, Josip; Hrašćan, Reno

    2016-04-01

    Crosstalk between Wnt and p53 signalling pathways in cancer has long been suggested. Therefore in this study we have investigated the involvement of these pathways in meningiomas by analysing their main effector molecules, beta-catenin and p53. Cellular expression of p53 and beta-catenin proteins and genetic changes in TP53 were analysed by immunohistochemistry, PCR/RFLP and direct sequencing of TP53 exon 4. All the findings were analysed statistically. Our analysis showed that 47.5% of the 59 meningiomas demonstrated loss of expression of p53 protein. Moderate and strong p53 expression in the nuclei was observed in 8.5% and 6.8% of meningiomas respectively. Gross deletion of TP53 gene was observed in one meningioma, but nucleotide alterations were observed in 35.7% of meningiomas. In contrast, beta-catenin, the main Wnt signalling molecule, was upregulated in 71.2%, while strong expression was observed in 28.8% of meningiomas. The concomitant expressions of p53 and beta-catenin were investigated in the same patients. In the analysed meningiomas, the levels of the two proteins were significantly negatively correlated (P = 0.002). This indicates that meningiomas with lost p53 upregulate beta-catenin and activate Wnt signalling. Besides showing the reciprocal relationship between proteins, we also showed that the expression of p53 was significantly (P = 0.021) associated with higher meningioma grades (II and III), while beta-catenin upregulation was not associated with malignancy grades. Additionally, women exhibited significantly higher values of p53 loss when compared to males (P = 0.005). Our findings provide novel information about p53 involvement in meningeal brain tumours and reveal the complex relationship between Wnt and p53 signalling, they suggest an important role for beta-catenin in these tumours.

  19. ATM/CHK/p53 Pathway Dependent Chemopreventive and Therapeutic Activity on Lung Cancer by Pterostilbene

    PubMed Central

    Lee, Hani; Kim, Yonghwan; Jeong, Ji Hye; Ryu, Jae-Ha

    2016-01-01

    Among the many stilbenoids found in a variety of berries, resveratrol and pterostilbene are of particular interest given their potential for use in cancer therapeutics and prevention. We purified four stilbenoids from R. undulatum and found that pterostilbene inhibits cancer cell proliferation more efficiently than rhapontigenin, piceatannol and resveratrol. To investigate the underlying mechanism of this superior action of pterostilbene on cancer cells, we utilized a reverse-phase protein array followed by bioinformatic analysis and found that the ATM/CHK pathway is modified by pterostilbene in a lung cancer cell line. Given that ATM/CHK signaling requires p53 for its biological effects, we hypothesized that p53 is required for the anticancer effect of pterostilbene. To test this hypothesis, we used two molecularly defined precancerous human bronchial epithelial cell lines, HBECR and HBECR/p53i, with normal p53 and suppressed p53 expression, respectively, to represent premalignant states of squamous lung carcinogenesis. Pterostilbene inhibited the cell cycle more efficiently in HBECR cells compared to HBECR/p53i cells, suggesting that the presence of p53 is required for the action of pterostilbene. Pterostilbene also activated ATM and CHK1/2, which are upstream of p53, in both cell lines, though pterostilbene-induced senescence was dependent on the presence of p53. Finally, pterostilbene more effectively inhibited p53-dependent cell proliferation compared to the other three stilbenoids. These results strongly support the potential chemopreventive effect of pterostilbene on p53-positive cells during early carcinogenesis. PMID:27612029

  20. ATM/CHK/p53 Pathway Dependent Chemopreventive and Therapeutic Activity on Lung Cancer by Pterostilbene.

    PubMed

    Lee, Hani; Kim, Yonghwan; Jeong, Ji Hye; Ryu, Jae-Ha; Kim, Woo-Young

    2016-01-01

    Among the many stilbenoids found in a variety of berries, resveratrol and pterostilbene are of particular interest given their potential for use in cancer therapeutics and prevention. We purified four stilbenoids from R. undulatum and found that pterostilbene inhibits cancer cell proliferation more efficiently than rhapontigenin, piceatannol and resveratrol. To investigate the underlying mechanism of this superior action of pterostilbene on cancer cells, we utilized a reverse-phase protein array followed by bioinformatic analysis and found that the ATM/CHK pathway is modified by pterostilbene in a lung cancer cell line. Given that ATM/CHK signaling requires p53 for its biological effects, we hypothesized that p53 is required for the anticancer effect of pterostilbene. To test this hypothesis, we used two molecularly defined precancerous human bronchial epithelial cell lines, HBECR and HBECR/p53i, with normal p53 and suppressed p53 expression, respectively, to represent premalignant states of squamous lung carcinogenesis. Pterostilbene inhibited the cell cycle more efficiently in HBECR cells compared to HBECR/p53i cells, suggesting that the presence of p53 is required for the action of pterostilbene. Pterostilbene also activated ATM and CHK1/2, which are upstream of p53, in both cell lines, though pterostilbene-induced senescence was dependent on the presence of p53. Finally, pterostilbene more effectively inhibited p53-dependent cell proliferation compared to the other three stilbenoids. These results strongly support the potential chemopreventive effect of pterostilbene on p53-positive cells during early carcinogenesis. PMID:27612029

  1. Excess beta-catenin promotes accumulation of transcriptionally active p53.

    PubMed Central

    Damalas, A; Ben-Ze'ev, A; Simcha, I; Shtutman, M; Leal, J F; Zhurinsky, J; Geiger, B; Oren, M

    1999-01-01

    beta-catenin is a multifunctional protein, acting both as a structural component of the cell adhesion machinery and as a transducer of extracellular signals. Deregulated beta-catenin protein expression, due to mutations in the beta-catenin gene itself or in its upstream regulator, the adenomatous polyposis coli (APC) gene, is prevalent in colorectal cancer and in several other tumor types, and attests to the potential oncogenic activity of this protein. Increased expression of beta-catenin is an early event in colorectal carcinogenesis, and is usually followed by a later mutational inactivation of the p53 tumor suppressor. To examine whether these two key steps in carcinogenesis are interrelated, we studied the effect of excess beta-catenin on p53. We report here that overexpression of beta-catenin results in accumulation of p53, apparently through interference with its proteolytic degradation. This effect involves both Mdm2-dependent and -independent p53 degradation pathways, and is accompanied by augmented transcriptional activity of p53 in the affected cells. Increased p53 activity may provide a safeguard against oncogenic deregulation of beta-catenin, and thus impose a pressure for mutational inactivation of p53 during the later stages of tumor progression. PMID:10357817

  2. Activation of p53 Transcriptional Activity by SMRT: a Histone Deacetylase 3-Independent Function of a Transcriptional Corepressor

    PubMed Central

    Adikesavan, Anbu Karani; Karmakar, Sudipan; Pardo, Patricia; Wang, Liguo; Liu, Shuang; Li, Wei

    2014-01-01

    The silencing mediator of retinoic acid and thyroid hormone receptors (SMRT) is an established histone deacetylase 3 (HDAC3)-dependent transcriptional corepressor. Microarray analyses of MCF-7 cells transfected with control or SMRT small interfering RNA revealed SMRT regulation of genes involved in DNA damage responses, and the levels of the DNA damage marker γH2AX as well as poly(ADP-ribose) polymerase cleavage were elevated in SMRT-depleted cells treated with doxorubicin. A number of these genes are established p53 targets. SMRT knockdown decreased the activity of two p53-dependent reporter genes as well as the expression of p53 target genes, such as CDKN1A (which encodes p21). SMRT bound directly to p53 and was recruited to p53 binding sites within the p21 promoter. Depletion of GPS2 and TBL1, components of the SMRT corepressor complex, but not histone deacetylase 3 (HDAC3) decreased p21-luciferase activity. p53 bound to the SMRT deacetylase activation domain (DAD), which mediates HDAC3 binding and activation, and HDAC3 could attenuate p53 binding to the DAD region of SMRT. Moreover, an HDAC3 binding-deficient SMRT DAD mutant coactivated p53 transcriptional activity. Collectively, these data highlight a biological role for SMRT in mediating DNA damage responses and suggest a model where p53 binding to the DAD limits HDAC3 interaction with this coregulator, thereby facilitating SMRT coactivation of p53-dependent gene expression. PMID:24449765

  3. Acute DNA damage activates the tumour suppressor p53 to promote radiation-induced lymphoma

    PubMed Central

    Lee, Chang-Lung; Castle, Katherine D.; Moding, Everett J.; Blum, Jordan M.; Williams, Nerissa; Luo, Lixia; Ma, Yan; Borst, Luke B.; Kim, Yongbaek; Kirsch, David G.

    2015-01-01

    Genotoxic cancer therapies, such as chemoradiation, cause haematological toxicity primarily by activating the tumour suppressor p53. While inhibiting p53-mediated cell death during cancer therapy ameliorates haematologic toxicity, whether it also impacts carcinogenesis remains unclear. Here we utilize a mouse model of inducible p53 short hairpin RNA (shRNA) to show that temporarily blocking p53 during total-body irradiation (TBI) not only ameliorates acute toxicity, but also improves long-term survival by preventing lymphoma development. Using KrasLA1 mice, we show that TBI promotes the expansion of a rare population of thymocytes that express oncogenic KrasG12D. However, blocking p53 during TBI significantly suppresses the expansion of KrasG12D-expressing thymocytes. Mechanistically, bone marrow transplant experiments demonstrate that TBI activates p53 to decrease the ability of bone marrow cells to suppress lymphoma development through a non-cell-autonomous mechanism. Together, our results demonstrate that the p53 response to acute DNA damage promotes the development of radiation-induced lymphoma. PMID:26399548

  4. The p53 activation domain binds the TATA box-binding polypeptide in Holo-TFIID, and a neighboring p53 domain inhibits transcription.

    PubMed Central

    Liu, X; Miller, C W; Koeffler, P H; Berk, A J

    1993-01-01

    Antioncogene product p53 is a transcriptional transactivator. To investigate how p53 stimulates transcription, we examined the interaction of p53 with general transcription factors in vitro. We found that p53 binds directly to the human TATA box-binding polypeptide (TBP). We also observed a direct interaction between p53 and purified holo-TFIID, a complex composed of TBP and a group of TBP-associated polypeptides known as TAFs. The p53 binding domain on TBP was mapped to the conserved region of TBP, including residues 220 to 271. The TBP binding domain on p53 was mapped to the p53 activation domain between residues 20 and 57. To analyze the significance of the p53-TBP interaction in p53 transactivation, we compared the ability of Gal4-p53 fusion proteins to bind to TBP in vitro and to activate transcription in transient transfection assays. Fusion proteins which bound to TBP activated transcription, and those that did not bind to TBP did not activate transcription to a detectable level, suggesting that a direct interaction between TBP and p53 is required for p53 transactivation. We also found that inclusion of residues 93 to 160 of p53 in a Gal4-p53 fusion repressed transcriptional activation 100-fold. Consequently, this region of p53 inhibits transcriptional activation by the minimal p53 activation domain. Highest levels of activation were observed with sequences 1 to 92 of p53 fused to Gal4, even though this construct bound to TBP in vitro with an affinity similar to that of other Gal4-p53 fusion proteins. We conclude that TBP binding is necessary for p53 transcriptional activation and that p53 sequences outside the TBP binding domain modulate the level of activation. Images PMID:8497252

  5. Methylation of WTH3, a possible drug resistant gene, inhibits p53 regulated expression

    PubMed Central

    Tian, Kegui; Wang, Yuezeng; Huang, Yu; Sun, Boqiao; Li, Yuxin; Xu, Haopeng

    2008-01-01

    Background Previous results showed that over-expression of the WTH3 gene in MDR cells reduced MDR1 gene expression and converted their resistance to sensitivity to various anticancer drugs. In addition, the WTH3 gene promoter was hypermethylated in the MCF7/AdrR cell line and primary drug resistant breast cancer epithelial cells. WTH3 was also found to be directly targeted and up regulated by the p53 gene. Furthermore, over expression of the WTH3 gene promoted the apoptotic phenotype in various host cells. Methods To further confirm WTH3's drug resistant related characteristics, we recently employed the small hairpin RNA (shRNA) strategy to knockdown its expression in HEK293 cells. In addition, since the WTH3 promoter's p53-binding site was located in a CpG island that was targeted by methylation, we were interested in testing the possible effect this epigenetic modification had on the p53 transcription factor relative to WTH3 expression. To do so, the in vitro methylation method was utilized to examine the p53 transgene's influence on either the methylated or non-methylated WTH3 promoter. Results The results generated from the gene knockdown strategy showed that reduction of WTH3 expression increased MDR1 expression and elevated resistance to Doxorubicin as compared to the original control cells. Data produced from the methylation studies demonstrated that DNA methylation adversely affected the positive impact of p53 on WTH3 promoter activity. Conclusion Taken together, our studies provided further evidence that WTH3 played an important role in MDR development and revealed one of its transcription regulatory mechanisms, DNA methylation, which antagonized p53's positive impact on WTH3 expression. PMID:18992151

  6. The E3 Ubiquitin Protein Ligase HERC2 Modulates the Activity of Tumor Protein p53 by Regulating Its Oligomerization*

    PubMed Central

    Cubillos-Rojas, Monica; Amair-Pinedo, Fabiola; Peiró-Jordán, Roser; Bartrons, Ramon; Ventura, Francesc; Rosa, Jose Luis

    2014-01-01

    The tumor suppressor p53 is a transcription factor that coordinates the cellular response to several kinds of stress. p53 inactivation is an important step in tumor progression. Oligomerization of p53 is critical for its posttranslational modification and its ability to regulate the transcription of target genes necessary to inhibit tumor growth. Here we report that the HECT E3 ubiquitin ligase HERC2 interacts with p53. This interaction involves the CPH domain of HERC2 (a conserved domain within Cul7, PARC, and HERC2 proteins) and the last 43 amino acid residues of p53. Through this interaction, HERC2 regulates p53 activity. RNA interference experiments showed how HERC2 depletion reduces the transcriptional activity of p53 without affecting its stability. This regulation of p53 activity by HERC2 is independent of proteasome or MDM2 activity. Under these conditions, up-regulation of cell growth and increased focus formation were observed, showing the functional relevance of the HERC2-p53 interaction. This interaction was maintained after DNA damage caused by the chemotherapeutic drug bleomycin. In these stressed cells, p53 phosphorylation was not impaired by HERC2 knockdown. Interestingly, p53 mutations that affect its tetramerization domain disrupted the HERC2-p53 interaction, suggesting a role for HERC2 in p53 oligomerization. This regulatory role was shown using cross-linking assays. Thus, the inhibition of p53 activity after HERC2 depletion can be attributed to a reduction in p53 oligomerization. Ectopic expression of HERC2 (residues 2292–2923) confirmed these observations. Together, these results identify HERC2 as a novel regulator of p53 signaling. PMID:24722987

  7. Differential regulation of plasminogen activator and inhibitor gene transcription by the tumor suppressor p53.

    PubMed Central

    Kunz, C; Pebler, S; Otte, J; von der Ahe, D

    1995-01-01

    The ability of p53 to activate or repress transcription suggests that its biological function as tumor suppressor is in part accomplished by regulating a number of genes including such required for inhibition of cell growth. We here give evidence that p53 also may regulate genes responsible for the proteolytic degradation of the extracellular matrix, which is considered a crucial feature for local invasion and metastasis of neoplastic cells. An important and highly regulated cascade of such proteolytic events involves the plasminogen activator system. We show that wild-type p53 represses transcription from the enhancer and promoter of the human urokinase-type (u-PA) and the tissue-type plasminogen activator (t-PA) gene through a non-DNA binding mechanism. Oncogenic mutants lost the repressing activity. In contrast, wild-type but not mutant p53 specifically binds to and activates the promoter of the plasminogen activator inhibitor type-1 (PAI-1) gene. Interestingly, one of the p53 mutants (273his) inhibited PAI-1 promoter activity. Our results suggest that altered function of oncogenic forms of p53 may lead to altered expression of the plasminogen activators and their inhibitor(s) and thus to altered activation of the plasminogen/plasmin system during tumor progression. Images PMID:7479001

  8. A PTCH1 homolog transcriptionally activated by p53 suppresses Hedgehog signaling.

    PubMed

    Chung, Jon H; Larsen, Andrew R; Chen, Evan; Bunz, Fred

    2014-11-21

    The p53-mediated responses to DNA damage and the Hedgehog (Hh) signaling pathway are each recurrently dysregulated in many types of human cancer. Here we describe PTCH53, a p53 target gene that is homologous to the tumor suppressor gene PTCH1 and can function as a repressor of Hh pathway activation. PTCH53 (previously designated PTCHD4) was highly responsive to p53 in vitro and was among a small number of genes that were consistently expressed at reduced levels in diverse TP53 mutant cell lines and human tumors. Increased expression of PTCH53 inhibited canonical Hh signaling by the G protein-coupled receptor SMO. PTCH53 thus delineates a novel, inducible pathway by which p53 can repress tumorigenic Hh signals. PMID:25296753

  9. A PTCH1 Homolog Transcriptionally Activated by p53 Suppresses Hedgehog Signaling*

    PubMed Central

    Chung, Jon H.; Larsen, Andrew R.; Chen, Evan; Bunz, Fred

    2014-01-01

    The p53-mediated responses to DNA damage and the Hedgehog (Hh) signaling pathway are each recurrently dysregulated in many types of human cancer. Here we describe PTCH53, a p53 target gene that is homologous to the tumor suppressor gene PTCH1 and can function as a repressor of Hh pathway activation. PTCH53 (previously designated PTCHD4) was highly responsive to p53 in vitro and was among a small number of genes that were consistently expressed at reduced levels in diverse TP53 mutant cell lines and human tumors. Increased expression of PTCH53 inhibited canonical Hh signaling by the G protein-coupled receptor SMO. PTCH53 thus delineates a novel, inducible pathway by which p53 can repress tumorigenic Hh signals. PMID:25296753

  10. Complete reduction of p53 expression by RNA interference following heterozygous knockout in porcine fibroblasts.

    PubMed

    Kim, Young June; Kim, Tae-Hyun; Kim, Minjeong; Kim, Min Ju; Kim, Hae-Won; Shim, Hosup

    2016-08-01

    Tumor suppressor p53 plays a critical role in the regulation of cell cycle and apoptosis in mammals. Mutations of p53 often cause various cancers. Murine models have improved our understanding on tumorigenesis associated with p53 mutations. However, mice and humans are different in many ways. For example, the short lifespans of mice limit the clinical application of the data obtained from this species. Porcine model could be an alternative as pigs share many anatomical and physiological similarities with humans. Here, we modified the expression levels of p53 messenger RNA (mRNA) and protein in porcine fetal fibroblasts using a combination of gene targeting and RNA interference. First, we disrupted the p53 gene to produce p53 knockout (KO) cells. Second, the p53 shRNA expression vector was introduced into fibroblasts to isolate p53 knockdown (KD) cells. We obtained p53 KO, KD, and KO + KD fibroblasts which involve p53 KO and KD either separately or simultaneously. The mRNA expression of p53 in p53 KO fibroblasts was similar to that in the wild-type control. However, the mRNA expression levels of p53 in KD and KO + KD cells were significantly decreased. The p53 protein level significant reduced in p53 KD. Interestingly, no p53 protein was detected in KO + KD, suggesting a complete reduction of the protein by synergistic effect of KO and KD. This study demonstrated that various expression levels of p53 in porcine fibroblasts could be achieved by gene targeting and RNA interference. Moreover, complete abolishment of protein expression is feasible using a combination of gene targeting and RNA interference.

  11. Complete reduction of p53 expression by RNA interference following heterozygous knockout in porcine fibroblasts.

    PubMed

    Kim, Young June; Kim, Tae-Hyun; Kim, Minjeong; Kim, Min Ju; Kim, Hae-Won; Shim, Hosup

    2016-08-01

    Tumor suppressor p53 plays a critical role in the regulation of cell cycle and apoptosis in mammals. Mutations of p53 often cause various cancers. Murine models have improved our understanding on tumorigenesis associated with p53 mutations. However, mice and humans are different in many ways. For example, the short lifespans of mice limit the clinical application of the data obtained from this species. Porcine model could be an alternative as pigs share many anatomical and physiological similarities with humans. Here, we modified the expression levels of p53 messenger RNA (mRNA) and protein in porcine fetal fibroblasts using a combination of gene targeting and RNA interference. First, we disrupted the p53 gene to produce p53 knockout (KO) cells. Second, the p53 shRNA expression vector was introduced into fibroblasts to isolate p53 knockdown (KD) cells. We obtained p53 KO, KD, and KO + KD fibroblasts which involve p53 KO and KD either separately or simultaneously. The mRNA expression of p53 in p53 KO fibroblasts was similar to that in the wild-type control. However, the mRNA expression levels of p53 in KD and KO + KD cells were significantly decreased. The p53 protein level significant reduced in p53 KD. Interestingly, no p53 protein was detected in KO + KD, suggesting a complete reduction of the protein by synergistic effect of KO and KD. This study demonstrated that various expression levels of p53 in porcine fibroblasts could be achieved by gene targeting and RNA interference. Moreover, complete abolishment of protein expression is feasible using a combination of gene targeting and RNA interference. PMID:27142766

  12. Cellular localization of human p53 expressed in the yeast Saccharomyces cerevisiae: effect of NLSI deletion.

    PubMed

    Abdelmoula-Souissi, Salma; Delahodde, Agnès; Bolotin-Fukuhara, Monique; Gargouri, Ali; Mokdad-Gargouri, Raja

    2011-07-01

    The tumor suppressor p53 plays a central role in the regulation of cellular growth and apoptosis. In Saccharomyces cerevisiae, over-expression of the human wtp53 leads to growth inhibition and cell death on minimal medium. In the present work, we showed that deletion of the nuclear localization signal (NLSI) of p53 restores the yeast growth. In this heterologous context, the level of p53∆NLSI was low and the protein mainly located in the cytoplasm while the wtp53 was observed in both the cytoplasmic and nuclear compartments. Interestingly, the wtp53 protein was observed in the mitochondria, whereas the p53∆NLSI protein failed to localize in mitochondria. Moreover, mitochondrial morphology defect and release of cytochrome c in the cytosol were noticed only in the yeast strain expressing the wtp53. In conclusion, our results provide evidence that the human wtp53 is active in S. cerevisiae probably through dependent and independent transcriptional mechanisms leading to cell death. The deletion of the NLSI sequence decreases p53 nuclear translocation as well as its mitochondrial localization and consequently its effect on yeast growth.

  13. p53 and P-glycoprotein are often co-expressed and are associated with poor prognosis in breast cancer.

    PubMed Central

    Linn, S. C.; Honkoop, A. H.; Hoekman, K.; van der Valk, P.; Pinedo, H. M.; Giaccone, G.

    1996-01-01

    Expression of both P-glycoprotein (P-gp) and mutant p53 have recently been reported to be associated with poor prognosis of breast cancer. The expression of P-gp is associated in vitro and in vivo with cross-resistance to several anti-cancer drugs. p53 plays a regulatory role in apoptosis, and mutant p53 has been suggested to be involved in drug resistance. Interestingly, in vitro experiments have shown that mutant p53 can activate the promoter of the MDR1 gene, which encodes P-gp. We investigated whether p53 and P-gp are simultaneously expressed in primary breast cancer cells and analysed the impact of the co-expression on patients prognosis. Immunohistochemistry was used to investigate P-gp expression (JSB-1, C219) and nuclear p53 accumulation (DO-7) in 20 operable chemotherapy untreated and 30 locally advanced breast cancers undergoing neoadjuvant chemotherapy with doxorubicin and cyclophosphamide. Double immunostaining showed that P-gp expression and nuclear p53 accumulation often occur concomitantly in the same tumour cells. A correlation between p53 and P-gp expression was found in all 50 breast cancers (P = 0.003; Fisher's exact test). P-gp expression, nuclear p53 accumulation, and co-expression of p53 and P-gp were more frequently observed in locally advanced breast cancers than in operable breast cancers (P = 0.0004, P = 0.048; P = 0.002 respectively. Fisher's exact test). Co-expression of p53 and P-gp was the strongest prognostic factor for shorter survival by multivariate analysis (P = 0.004) in the group of locally advanced breast cancers (univariate analysis: P = 0.0007). Only 3 out of 13 samples sequentially taken before and after chemotherapy displayed a change in P-gp or p53 staining. In conclusion, nuclear p53 accumulation is often associated with P-gp expression in primary breast cancer, and simultaneous expression of p53 and P-gp is associated with shorter survival in locally advanced breast cancer patients. Co-expression of P-gp and mutant p53

  14. Clinical and pathological correlations of marrow PUMA and P53 expressions in myelodysplastic syndromes.

    PubMed

    Bektas, Ozlen; Uner, Aysegul; Buyukasik, Yahya; Uz, Burak; Bozkurt, Sureyya; Eliacik, Eylem; Işik, Ayse; Haznedaroglu, Ibrahim Celalettin; Goker, Hakan; Demiroglu, Haluk; Aksu, Salih; Ozcebe, Osman Ilhami; Sayinalp, Nilgun

    2015-05-01

    p53 is a key regulator of apoptosis. p53 upregulated modulator of apoptosis (PUMA) is a critical mediator of p53-dependent and independent apoptosis. The objective of this study was to evaluate the relationship of p53 and PUMA to the prognosis of MDS. Bone marrow biopsies of MDS patients at the time of diagnosis (n = 76) and at the time of transformation (n = 19) were included in the study group. The expression of p53 and PUMA was evaluated using immunohistochemistry. When compared to the control group, both p53 (p < 0.001) and PUMA (p = 0.012) expression levels were significantly higher in MDS group. In MDS group, there was a moderate positive correlation between p53 and PUMA expressions. PUMA expression was not correlated with event free and overall survival. However, overall survival was significantly lower in cases with p53 expression in more than 50% of the cells. There was an increase in PUMA expression in cases that showed transformation as compared to the initial diagnostic bone marrows but was not statistically significant. The correlation that existed between p53 and PUMA was lost in transformed cases. Our results showed that PUMA and p53 expressions are increased in MDS marrows compared to normal marrows. PUMA expression increases further during transformation while the expression of p53 is not significantly altered which suggests that PUMA alterations might be a late event during the evolution of MDS.

  15. p53 expression in squamous dysplasia associated with carcinoma of the oesophagus: evidence for field carcinogenesis

    PubMed Central

    Yasuda, M; Kuwano, H; Watanabe, M; Toh, Y; Ohno, S; Sugimachi, K

    2000-01-01

    Squamous epithelial dysplasia is often observed multifocally in the cancerous oesophagus and is presumably considered to be a pre-cancerous lesion. A mutation of the p53 tumour suppressor gene is commonly identified in oesophageal cancer and dysplasia. p53 mutations can be anticipated immunohistochemically. In order to confirm the biological and clinical significance of p53 expressions in oesophageal field carcinogenesis, immunostaining for p53 in cancerous and multifocal precancerous lesions from resected human oesophagus was systematically investigated, while paying special attention to the contiguity of these lesions. Lesions expressing p53 were detected in 46.5% (20 of 43 lesions) of the invasive carcinoma, and in 51.0% (46 of 90 lesions) of the carcinoma in situ, and in 51.4% (92 of 179 lesions) of the dysplasia. Next, the p53 expression in dysplasia was compared with that in carcinoma for the same case. 37 of 39 (94.8%) dysplasias contiguous to p53-positive carcinomas also expressed p53 (P < 0.0001). On the other hand, the isolated dysplasias without contiguity to p53-positive carcinomas, only expressed p53 protein in 44.0% (11 of 25 lesions). No significant correlations were found between the p53 staining and either the clinicopathological features or prognosis. Discordant p53 alterations, such as those seen in cancerous and isolated precancerous lesions, may thus demonstrate further evidence for a multicentric or field carcinogenesis of the human oesophagus. © 2000 Cancer Research Campaign PMID:10993651

  16. P-Glycoprotein/MDR1 regulates pokemon gene transcription through p53 expression in human breast cancer cells.

    PubMed

    He, Shengnan; Liu, Feng; Xie, Zhenhua; Zu, Xuyu; Xu, Wei; Jiang, Yuyang

    2010-01-01

    P-glycoprotein (Pgp), encoded by the multidrug resistance 1 (MDR1) gene, is an efflux transporter and plays an important role in pharmacokinetics. In this study, we demonstrated that the pokemon promoter activity, the pokemon mRNA and protein expression can be significantly inhibited by Pgp. Chromatin immunoprecipitation assay showed that Pgp can bind the pokemon prompter to repress pokemon transcription activity. Furthermore, Pgp regulated pokemon transcription activity through expression of p53 as seen by use of p53 siRNA transfected MCF-7 cells or p53 mutated MDA-MB-231 cells. Moreover, p53 was detected to bind with Pgp in vivo using immunoprecipitation assay. Taken together, we conclude that Pgp can regulate the expression of pokemon through the presence of p53, suggesting that Pgp is a potent regulator and may offer an effective novel target for cancer therapy. PMID:20957096

  17. P-Glycoprotein/MDR1 regulates pokemon gene transcription through p53 expression in human breast cancer cells.

    PubMed

    He, Shengnan; Liu, Feng; Xie, Zhenhua; Zu, Xuyu; Xu, Wei; Jiang, Yuyang

    2010-01-01

    P-glycoprotein (Pgp), encoded by the multidrug resistance 1 (MDR1) gene, is an efflux transporter and plays an important role in pharmacokinetics. In this study, we demonstrated that the pokemon promoter activity, the pokemon mRNA and protein expression can be significantly inhibited by Pgp. Chromatin immunoprecipitation assay showed that Pgp can bind the pokemon prompter to repress pokemon transcription activity. Furthermore, Pgp regulated pokemon transcription activity through expression of p53 as seen by use of p53 siRNA transfected MCF-7 cells or p53 mutated MDA-MB-231 cells. Moreover, p53 was detected to bind with Pgp in vivo using immunoprecipitation assay. Taken together, we conclude that Pgp can regulate the expression of pokemon through the presence of p53, suggesting that Pgp is a potent regulator and may offer an effective novel target for cancer therapy.

  18. Retardation of cell growth by avian reovirus p17 through the activation of p53 pathway

    SciTech Connect

    Liu, H.-J.; Lin, P.-Y.; Lee, J.-W.; Hsu, H.-Y.; Shih, W.-L. . E-mail: shihwl@mail.tcu.edu.tw

    2005-10-21

    The second open reading frame of avian reovirus S1 gene segment encodes a 17 kDa non-structural protein, named p17. The biological role of p17 is fully unknown so far. Using trypan blue dye exclusion and MTT assay, we demonstrated that the ectopic expression of p17 results in the reduction of viable cell number and cell proliferation rate of Vero, BHK, 293, and HeLa cells. Measurement of LDH activity and DNA fragmentation analysis revealed that p17 expression did not cause cell death or apoptosis. These data indicated that the p17 possessed the growth retardation function. Semi-quantitative RT-PCR and Western blotting revealed that p17-expressing cells induced the expression of CDK inhibitor p21{sup cip1/waf1} in a time- and dose-dependent manner, but the transcripts of CDK inhibitor p15{sup INK4b}, p16{sup INK4a}, or p27{sup kip} were not altered. In the presence of p17, the p53 protein level and p53-driven reporter activity were elevated significantly. Dominant negative p53 alleviated the p21 accumulation, p53 activation, and growth inhibition effect induced by p17. Taken together, these studies revealed a possible intrinsic function of p17 in growth regulation through the activation of p53 and p21{sup cip1/waf1}.

  19. p53-Dependent activation of a molecular beacon in tumor cells following exposure to doxorubicin chemotherapy.

    PubMed

    Shah, Rishita; El-Deiry, Wafik S

    2004-09-01

    In an effort to begin developing a non-invasive strategy for in-vivo detection of the cellular DNA damage response, we engineered a molecular beacon to detect expression of p21(WAF1/CIP1), a gene whose transcription is directly activated by the p53 tumor suppressor protein. Introduction of a phosphorothioate-modified p21-beacon by transfection in human tumor cells led to a slight background signal that increased in a dose dependent manner between 50 and 400 nM beacon. Strong nuclear signal was observed following treatment of wild-type p53-expressing human H460 lung cancer cells for 8 hours with the chemotherapeutic agent doxorubicin (adriamycin). Similar induction was observed in wild-type p53-expressing HCT116 cells. Interestingly, following doxorubicin exposure, there was activation of the p21-beacon in p21-null HCT116 cells, which was not observed in p53-null HCT116, or mutant p53-expressing DLD1 cells that are either wild-type or p21-null. Increased signal from the phosphorothioate-modified p21-beacon in doxorubicin-treated cells likely resulted from sequence-specific hybridization as well as sequence-independent cleavage that may occur due to p53-dependent activation of endonucleases during apoptosis. We conclude that activation of p53 by chemotherapy leads to a strong signal from a p21-beacon that may be useful in further testing both in vitro and in vivo. Strategies need to be developed to optimize the gene or damage specificity as well as the sensitivity to therapeutic response of this non-invasive imaging approach.

  20. Teroxirone inhibited growth of human non-small cell lung cancer cells by activating p53

    SciTech Connect

    Wang, Jing-Ping; Lin, Kai-Han; Liu, Chun-Yen; Yu, Ya-Chu; Wu, Pei-Tsun; Chiu, Chien-Chih; Su, Chun-Li; Chen, Kwun-Min; Fang, Kang

    2013-11-15

    In this work, we demonstrated that the growth of human non-small-cell-lung-cancer cells H460 and A549 cells can be inhibited by low concentrations of an epoxide derivative, teroxirone, in both in vitro and in vivo models. The cytotoxicity was mediated by apoptotic cell death through DNA damage. The onset of ultimate apoptosis is dependent on the status of p53. Teroxirone caused transient elevation of p53 that activates downstream p21 and procaspase-3 cleavage. The presence of caspase-3 inhibitor reverted apoptotic phenotype. Furthermore, we showed the cytotoxicity of teroxirone in H1299 cells with stable ectopic expression of p53, but not those of mutant p53. A siRNA-mediated knockdown of p53 expression attenuated drug sensitivity. The in vivo experiments demonstrated that teroxirone suppressed growth of xenograft tumors in nude mice. Being a potential therapeutic agent by restraining cell growth through apoptotic death at low concentrations, teroxirone provides a feasible perspective in reversing tumorigenic phenotype of human lung cancer cells. - Highlights: • Teroxirone repressed tumor cell growth in nude mice of human lung cancer cells. • The apoptotic cell death reverted by caspase-3 inhibitor is related to p53 status. • Teroxirone provides a good candidate for lung cancer treatment.

  1. p53 directly suppresses BNIP3 expression to protect against hypoxia-induced cell death

    PubMed Central

    Feng, Xi; Liu, Xing; Zhang, Wei; Xiao, Wuhan

    2011-01-01

    Hypoxia stabilizes the tumour suppressor p53, allowing it to function primarily as a transrepressor; however, the function of p53 during hypoxia remains unclear. In this study, we showed that p53 suppressed BNIP3 expression by directly binding to the p53-response element motif and recruiting corepressor mSin3a to the BNIP3 promoter. The DNA-binding site of p53 must remain intact for the protein to suppress the BNIP3 promoter. In addition, taking advantage of zebrafish as an in vivo model, we confirmed that zebrafish nip3a, a homologous gene of mammalian BNIP3, was indeed induced by hypoxia and p53 mutation/knockdown enhanced nip3a expression under hypoxia resulted in cell death enhancement in p53 mutant embryos. Furthermore, p53 protected against hypoxia-induced cell death mediated by p53 suppression of BNIP3 as illustrated by p53 knockdown/loss assays in both human cell lines and zebrafish model, which is in contrast to the traditional pro-apoptotic role of p53. Our results suggest a novel function of p53 in hypoxia-induced cell death, leading to the development of new treatments for ischaemic heart disease and cerebral stoke. PMID:21792176

  2. DNA damage stress induces the expression of ribosomal protein S27a gene in a p53-dependent manner.

    PubMed

    Nosrati, Nagisa; Kapoor, Neetu Rohit; Kumar, Vijay

    2015-03-15

    The small ribosomal protein RPS27a is known to play a role in the activation of cellular checkpoints via p53 which links ribosome biogenesis to cell cycle progression. Here, we show that RPS27a gene is a direct transcriptional target of p53 and is overexpressed in response to DNA damage. Elevated RPS27a level was associated with increased expression of p53 and its target p21(Waf1) gene. The RPS27a activity was specifically inhibited in the presence of a dominant negative mutant of p53. Down-regulation of ectopically expressed RPS27a by RNA interference blocked the activation of p21(waf1) in response to DNA damage. Thus, RPS27a appears to be a novel stress sensor in the cell which amplifies p53 response to arrest cell cycle.

  3. DNA damage stress induces the expression of ribosomal protein S27a gene in a p53-dependent manner.

    PubMed

    Nosrati, Nagisa; Kapoor, Neetu Rohit; Kumar, Vijay

    2015-03-15

    The small ribosomal protein RPS27a is known to play a role in the activation of cellular checkpoints via p53 which links ribosome biogenesis to cell cycle progression. Here, we show that RPS27a gene is a direct transcriptional target of p53 and is overexpressed in response to DNA damage. Elevated RPS27a level was associated with increased expression of p53 and its target p21(Waf1) gene. The RPS27a activity was specifically inhibited in the presence of a dominant negative mutant of p53. Down-regulation of ectopically expressed RPS27a by RNA interference blocked the activation of p21(waf1) in response to DNA damage. Thus, RPS27a appears to be a novel stress sensor in the cell which amplifies p53 response to arrest cell cycle. PMID:25592822

  4. p53 Loses grip on PIK3CA expression leading to enhanced cell survival during platinum resistance.

    PubMed

    Thakur, Bhushan; Ray, Pritha

    2016-10-01

    Tumour suppressor p53, a master transcriptional regulator determines cell fate through preferential activation/repression of a myriad of genes during stress. Till date, activation and preferential binding of p53 on different promoters was reported to be influenced by the nature, strength and duration of stress which mediates its post translational modifications. Cisplatin, a widely used cytotoxic drug represses PIK3CA promoter activity and attenuates PI3K/AKT cell survival pathway through p53 activation in sensitive cells. However, very little is understood about the overall mechanism of p53-PIK3CA interaction and influence of p53 on the transcriptional status of PIK3CA during cisplatin resistance. Here we showed that cisplatin could dynamically alter p53 occupancy between the p53 binding sequences present in PIK3CA promoter in ovarian and breast cancer cells. This altered occupancy is dictated by higher acetylation and hyper-phosphorylation at serine 15, serine 20 and serine 46 residues. Interestingly, cisplatin resistant cells when challenged with cisplatin demonstrated abolished PIK3CA promoter attenuation, low level of p53 binding, and loss of p53 serine 46 phosphorylation. A phosphorylation deficient S46A mutant failed to repress PIK3CA in p53 deficient cells. Elevated expression of Bcl2, P27 and cFLIP indicated a pro-survival state in these resistant cells. Non-invasive real time imaging using two different luciferase reporters showed that cisplatin could simultaneously induce PIK3CA attenuation and p53 activation with growth regression in sensitive tumours but not in the resistant tumours where only low level of p53 activation and sustained growth was observed. This is the first report on phosphorylation of p53 serine 46 as a modulator of p53-PIK3CA promoter interaction which influences altered binding of p53 at different consensus sequences in the same promoter in response to chemotherapeutic stress. Absence of such modulation in resistant cellular milieu

  5. p53 Loses grip on PIK3CA expression leading to enhanced cell survival during platinum resistance.

    PubMed

    Thakur, Bhushan; Ray, Pritha

    2016-10-01

    Tumour suppressor p53, a master transcriptional regulator determines cell fate through preferential activation/repression of a myriad of genes during stress. Till date, activation and preferential binding of p53 on different promoters was reported to be influenced by the nature, strength and duration of stress which mediates its post translational modifications. Cisplatin, a widely used cytotoxic drug represses PIK3CA promoter activity and attenuates PI3K/AKT cell survival pathway through p53 activation in sensitive cells. However, very little is understood about the overall mechanism of p53-PIK3CA interaction and influence of p53 on the transcriptional status of PIK3CA during cisplatin resistance. Here we showed that cisplatin could dynamically alter p53 occupancy between the p53 binding sequences present in PIK3CA promoter in ovarian and breast cancer cells. This altered occupancy is dictated by higher acetylation and hyper-phosphorylation at serine 15, serine 20 and serine 46 residues. Interestingly, cisplatin resistant cells when challenged with cisplatin demonstrated abolished PIK3CA promoter attenuation, low level of p53 binding, and loss of p53 serine 46 phosphorylation. A phosphorylation deficient S46A mutant failed to repress PIK3CA in p53 deficient cells. Elevated expression of Bcl2, P27 and cFLIP indicated a pro-survival state in these resistant cells. Non-invasive real time imaging using two different luciferase reporters showed that cisplatin could simultaneously induce PIK3CA attenuation and p53 activation with growth regression in sensitive tumours but not in the resistant tumours where only low level of p53 activation and sustained growth was observed. This is the first report on phosphorylation of p53 serine 46 as a modulator of p53-PIK3CA promoter interaction which influences altered binding of p53 at different consensus sequences in the same promoter in response to chemotherapeutic stress. Absence of such modulation in resistant cellular milieu

  6. The Expression Levels of XLF and Mutant P53 Are Inversely Correlated in Head and Neck Cancer Cells.

    PubMed

    Feng, Sizhe; Rabii, Ramin; Liang, Guobiao; Song, Chenxi; Chen, Wei; Guo, Mian; Wei, Xuezhong; Messadi, Diana; Hu, Shen

    2016-01-01

    XRCC4-like factor (XLF), also known as Cernunnos, is a protein encoded by the human NHEJ1 gene and an important repair factor for DNA double-strand breaks. In this study, we have found that XLF is over-expressed in HPV(+) versus HPV(-) head and neck squamous cell carcinoma (HNSCC) and significantly down-regulated in the HNSCC cell lines expressing high level of mutant p53 protein versus those cell lines harboring wild-type TP53 gene with low p53 protein expression. We have also demonstrated that Werner syndrome protein (WRN), a member of the NHEJ repair pathway, binds to both mutant p53 protein and NHEJ1 gene promoter, and siRNA knockdown of WRN leads to the inhibition of XLF expression in the HNSCC cells. Collectively, these findings suggest that WRN and p53 are involved in the regulation of XLF expression and the activity of WRN might be affected by mutant p53 protein in the HNSCC cells with aberrant TP53 gene mutations, due to the interaction of mutant p53 with WRN. As a result, the expression of XLF in these cancer cells is significantly suppressed. Our study also suggests that XLF is over-expressed in HPV(+) HNSCC with low expression of wild type p53, and might serve as a potential biomarker for HPV(+) HNSCC. Further studies are warranted to investigate the mechanisms underlying the interactive role of WRN and XLF in NHEJ repair pathway. PMID:27471552

  7. The Expression Levels of XLF and Mutant P53 Are Inversely Correlated in Head and Neck Cancer Cells

    PubMed Central

    Feng, Sizhe; Rabii, Ramin; Liang, Guobiao; Song, Chenxi; Chen, Wei; Guo, Mian; Wei, Xuezhong; Messadi, Diana; Hu, Shen

    2016-01-01

    XRCC4-like factor (XLF), also known as Cernunnos, is a protein encoded by the human NHEJ1 gene and an important repair factor for DNA double-strand breaks. In this study, we have found that XLF is over-expressed in HPV(+) versus HPV(-) head and neck squamous cell carcinoma (HNSCC) and significantly down-regulated in the HNSCC cell lines expressing high level of mutant p53 protein versus those cell lines harboring wild-type TP53 gene with low p53 protein expression. We have also demonstrated that Werner syndrome protein (WRN), a member of the NHEJ repair pathway, binds to both mutant p53 protein and NHEJ1 gene promoter, and siRNA knockdown of WRN leads to the inhibition of XLF expression in the HNSCC cells. Collectively, these findings suggest that WRN and p53 are involved in the regulation of XLF expression and the activity of WRN might be affected by mutant p53 protein in the HNSCC cells with aberrant TP53 gene mutations, due to the interaction of mutant p53 with WRN. As a result, the expression of XLF in these cancer cells is significantly suppressed. Our study also suggests that XLF is over-expressed in HPV(+) HNSCC with low expression of wild type p53, and might serve as a potential biomarker for HPV(+) HNSCC. Further studies are warranted to investigate the mechanisms underlying the interactive role of WRN and XLF in NHEJ repair pathway. PMID:27471552

  8. Effect of Thymoquinone on P53 Gene Expression and Consequence Apoptosis in Breast Cancer Cell Line

    PubMed Central

    Dastjerdi, Mehdi Nikbakht; Mehdiabady, Ebrahim Momeni; Iranpour, Farhad Golshan; Bahramian, Hamid

    2016-01-01

    Background: Nigella sativa has been a nutritional flavoring factor and natural treatment for many ailments for so many years in medical science. Earlier studies have been reported that thymoquinone (TQ), an active compound of its seed, contains anticancer properties. Previous studies have shown that TQ induces apoptosis in breast cancer cells but it is unclear the role of P53 in the apoptotic pathway. Hereby, this study reports the potency of TQ on expression of tumor suppressor gene P53 and apoptosis induction in breast cancer cell line Michigan Cancer Foundation-7 (MCF-7). Methods: MCF-7 cell line was cultured and treated with TQ, and 3-(4,5-dimethylthiazol-2-yl)-2,5-diphenyltetrazolium bromide (MTT) assay was carried out for evaluating the half-maximal inhibitory concentration (IC50) values after 24 h of treatment. The percentage of apoptotic cells was measured by flow cytometry. Real-time polymerase chain reaction (PCR) was performed to estimate the messenger RNA expression of P53 in MCF-7 cell line at different times. Results: The IC50 value for the TQ in MCF-7 cells was 25 μM that determined using MTT assay. The flow cytometry and real-time PCR results showed that TQ could induce apoptosis in MCF-7 cells, and the P53 gene expression was dramatically up-regulated by ascending time, respectively. Hence, there was significant difference in 48 and 72 h. Conclusions: Our results demonstrated that TQ could induce apoptosis in MCF-7 cells through up-regulation of P53 expression in breast cancer cell line (MCF-7) by time-dependent manner. PMID:27141285

  9. Melatonin down-regulates MDM2 gene expression and enhances p53 acetylation in MCF-7 cells.

    PubMed

    Proietti, Sara; Cucina, Alessandra; Dobrowolny, Gabriella; D'Anselmi, Fabrizio; Dinicola, Simona; Masiello, Maria Grazia; Pasqualato, Alessia; Palombo, Alessandro; Morini, Veronica; Reiter, Russel J; Bizzarri, Mariano

    2014-08-01

    Compelling evidence demonstrated that melatonin increases p53 activity in cancer cells. p53 undergoes acetylation to be stabilized and activated for driving cells destined for apoptosis/growth inhibition. Over-expression of p300 induces p53 acetylation, leading to cell growth arrest by increasing p21 expression. In turn, p53 activation is mainly regulated in the nucleus by MDM2. MDM2 also acts as E3 ubiquitin ligase, promoting the proteasome-dependent p53 degradation. MDM2 entry into the nucleus is finely tuned by two different modulations: the ribosomal protein L11, acts by sequestering MDM2 in the cytosol, whereas the PI3K-AkT-dependent MDM2 phosphorylation is mandatory for MDM2 translocation across the nuclear membrane. In addition, MDM2-dependent targeting of p53 is regulated in a nonlinear fashion by MDM2/MDMX interplay. Melatonin induces both cell growth inhibition and apoptosis in MCF7 breast cancer cells. We previously reported that this effect is associated with reduced MDM2 levels and increased p53 activity. Herein, we demonstrated that melatonin drastically down-regulates MDM2 gene expression and inhibits MDM2 shuttling into the nucleus, given that melatonin increases L11 and inhibits Akt-PI3K-dependent MDM2 phosphorylation. Melatonin induces a 3-fold increase in both MDMX and p300 levels, decreasing simultaneously Sirt1, a specific inhibitor of p300 activity. Consequently, melatonin-treated cells display significantly higher values of both p53 and acetylated p53. Thus, a 15-fold increase in p21 levels was observed in melatonin-treated cancer cells. Our results provide evidence that melatonin enhances p53 acetylation by modulating the MDM2/MDMX/p300 pathway, disclosing new insights for understanding its anticancer effect. PMID:24920214

  10. Downregulation of LRRC8A protects human ovarian and alveolar carcinoma cells against Cisplatin-induced expression of p53, MDM2, p21Waf1/Cip1, and Caspase-9/-3 activation

    PubMed Central

    Sørensen, Belinda Halling; Nielsen, Dorthe; Thorsteinsdottir, Unnur Arna; Hoffmann, Else Kay

    2016-01-01

    The leucine-rich repeat containing 8A (LRRC8A) protein is an essential component of the volume-sensitive organic anion channel (VSOAC), and using pharmacological anion channel inhibitors (NS3728, DIDS) and LRRC8A siRNA we have investigated its role in development of Cisplatin resistance in human ovarian (A2780) and alveolar (A549) carcinoma cells. In Cisplatin-sensitive cells Cisplatin treatment increases p53-protein level as well as downstream signaling, e.g., expression of p21Waf1/Cip1, Bax, Noxa, MDM2, and activation of Caspase-9/-3. In contrast, Cisplatin-resistant cells do not enter apoptosis, i.e., their p53 and downstream signaling are reduced and caspase activity unaltered following Cisplatin exposure. Reduced LRRC8A expression and VSOAC activity are previously shown to correlate with Cisplatin resistance, and here we demonstrate that pharmacological inhibition and transient knockdown of LRRC8A reduce the protein level of p53, MDM2, and p21Waf1/Cip1 as well as Caspase-9/-3 activation in Cisplatin-sensitive cells. Cisplatin resistance is accompanied by reduction in total LRRC8A expression (A2780) or LRRC8A expression in the plasma membrane (A549). Activation of Caspase-3 dependent apoptosis by TNFα-exposure or hyperosmotic cell shrinkage is almost unaffected by pharmacological anion channel inhibition. Our data indicate 1) that expression/activity of LRRC8A is essential for Cisplatin-induced increase in p53 protein level and its downstream signaling, i.e., Caspase-9/-3 activation, expression of p21Waf1/Cip1 and MDM2; and 2) that downregulation of LRRC8A-dependent osmolyte transporters contributes to acquirement of Cisplatin resistance in ovarian and lung carcinoma cells. Activation of LRRC8A-containing channels is upstream to apoptotic volume decrease as hypertonic cell shrinkage induces apoptosis independent of the presence of LRRC8A. PMID:26984736

  11. An Efficient Light-Inducible P53 Expression System for Inhibiting Proliferation of Bladder Cancer Cell

    PubMed Central

    Lin, Fan; Dong, Liang; Wang, Weiming; Liu, Yuchen; Huang, Weiren; Cai, Zhiming

    2016-01-01

    Optogenetic gene expression systems enable spatial-temporal modulation of gene transcription and cell behavior. Although applications in biomedicine are emerging, the utility of optogenetic gene switches remains elusive in cancer research due to the relative low gene activation efficiency. Here, we present an optimized CRISPR-Cas9-based light-inducible gene expression device that controls gene transcription in a dose-dependent manner. To prove the potential utility of this device, P53 was tested as a functional target in the bladder cancer cell models. It was illustrated that the light-induced P53 inhibited proliferation of 5637 and UMUC-3 cell effectively. The “light-on” gene expression system may demonstrate a novel therapeutic strategy for bladder cancer intervention. PMID:27766041

  12. Low p53 protein expression in salivary gland tumours compared with lung carcinomas.

    PubMed

    Soini, Y; Kamel, D; Nuorva, K; Lane, D P; Vähäkangas, K; Pääkkö, P

    1992-01-01

    Fifty-one salivary gland tumours (23 pleomorphic adenomas, 5 Warthin's tumours, 12 mucoepidermoid carcinomas, 7 adenoid cystic carcinomas, 3 undifferentiated carcinomas and 1 acinic cell tumour) and 27 lung carcinomas (18 squamous cell carcinomas) were analysed immunohistochemically for the expression of p53 nuclear phosphoprotein. Eight out of 51 (16%) salivary gland tumours were p53 positive. Three of these were benign and 5 malignant. All 3 benign salivary gland tumours were pleomorphic adenomas and expressed only occasional nuclear positivity with less than 1% of tumour cells positive. Of the 5 p53-positive malignant tumours, 3 were mucoepidermoid carcinomas and 2 undifferentiated carcinomas. The malignant salivary gland tumours expressed more than 1% of positive nuclei in every case. Seventeen lung carcinomas were p53 positive (63%). Thirteen of these were squamous cell carcinomas, 3 were adenocarcinomas and 1 small cell lung carcinoma. The results show that mutations of the p53 gene may be infrequent in salivary gland tumours when compared with lung carcinomas. The relatively indolent course of some histological types of malignant salivary gland tumours could be associated with the preservation of the non-mutated p53 gene in most of these tumours. The presence of p53 positivity in some pleomorphic adenomas might, on one hand, suggest that p53 gene alterations are also present in these tumours; on the other hand, the accumulation of the p53 protein in these tumours might also be due to some unknown mechanism, not necessarily related to p53 gene mutation.

  13. Immunohistochemical expression of p53 and its clinicopathological correlation with modified Anneroth's histological grading system

    PubMed Central

    Dave, Kajal V; Chalishazar, Monali; Dave, Vishal R; Panja, Pritam; Singh, Manisha; Modi, Tapan G

    2016-01-01

    Introduction and Objectives: Oral squamous cell carcinoma (OSCC) is an epithelial neoplasm generally beginning as focal overgrowth of altered stem cells near the basement membrane, moving upward and laterally, replacing the normal epithelium. Histopathological grading has been used for many decades in an attempt to predict the clinical behavior of oral squamous cell carcinoma. In the present study, Forty biopsies were studied for histological grading and p53 expression. The p53 expression was studied in relation to clinical parameters such as age, sex of patient and site of tumors. Relation between histological grade of malignancy and p53 protein expression was analysed. All cases were classified according to Anneroth's histological malignancy grading system (1987). Materials and Methods: 40 cases of OSCC were assessed for clinical parameters, Anneroth's histological grading and immunohistochemically stained with p53 protien. Statistical Analysis: The results obtained were analyzed using Spearman's Co-relation. Observations and Results: The positive expression of p53 was found in 62% of carcinomas studied. Positivity of p53 showed correlation with histological grade of malignancy and with individual parameters like degree of keratinization, nuclear polymorphism, number of mitoses and lymphoplasmacytic infiltration while showed a negative correlation with pattern of invasion. Conclusion: Our study showed a significant correlation between parameters of tumor cell population, lymphoplasmacytic infiltration and p53 expression. A significant association between high grade of malignancy and p53 overexpression and insignificant correlation of p53 with age, sex of the patient and site of the tumor was found. PMID:27194859

  14. Wild-type p53 controls cell motility and invasion by dual regulation of MET expression

    PubMed Central

    Hwang, Chang-Il; Matoso, Andres; Corney, David C.; Flesken-Nikitin, Andrea; Körner, Stefanie; Wang, Wei; Boccaccio, Carla; Thorgeirsson, Snorri S.; Comoglio, Paolo M.; Hermeking, Heiko; Nikitin, Alexander Yu.

    2011-01-01

    Recent observations suggest that p53 mutations are responsible not only for growth of primary tumors but also for their dissemination. However, mechanisms involved in p53-mediated control of cell motility and invasion remain poorly understood. By using the primary ovarian surface epithelium cell culture, we show that conditional inactivation of p53 or expression of its mutant forms results in overexpression of MET receptor tyrosine kinase, a crucial regulator of invasive growth. At the same time, cells acquire increased MET-dependent motility and invasion. Wild-type p53 negatively regulates MET expression by two mechanisms: (i) transactivation of MET-targeting miR-34, and (ii) inhibition of SP1 binding to MET promoter. Both mechanisms are not functional in p53 absence, but mutant p53 proteins retain partial MET promoter suppression. Accordingly, MET overexpression, cell motility, and invasion are particularly high in p53-null cells. These results identify MET as a critical effector of p53 and suggest that inhibition of MET may be an effective antimetastatic approach to treat cancers with p53 mutations. These results also show that the extent of advanced cancer traits, such as invasion, may be determined by alterations in individual components of p53/MET regulatory network. PMID:21831840

  15. Jasmonates induce nonapoptotic death in high-resistance mutant p53-expressing B-lymphoma cells.

    PubMed

    Fingrut, Orit; Reischer, Dorit; Rotem, Ronit; Goldin, Natalia; Altboum, Irit; Zan-Bar, Israel; Flescher, Eliezer

    2005-11-01

    Mutations in p53, a tumor suppressor gene, occur in more than half of human cancers. Therefore, we tested the hypothesis that jasmonates (novel anticancer agents) can induce death in mutated p53-expressing cells. Two clones of B-lymphoma cells were studied, one expressing wild-type (wt) p53 and the other expressing mutated p53. Jasmonic acid and methyl jasmonate (0.25-3 mM) were each equally cytotoxic to both clones, whereas mutant p53-expressing cells were resistant to treatment with the radiomimetic agent neocarzinostatin and the chemotherapeutic agent bleomycin. Neocarzinostatin and bleomycin induced an elevation in the p53 levels in wt p53-expressing cells, whereas methyl jasmonate did not. Methyl jasmonate induced mostly apoptotic death in the wt p53-expressing cells, while no signs of early apoptosis were detected in mutant p53-expressing cells. In contrast, neocarzinostatin and bleomycin induced death only in wt p53-expressing cells, in an apoptotic mode. Methyl jasmonate induced a rapid depletion of ATP in both clones. In both clones, oligomycin (a mitochondrial ATP synthase inhibitor) did not increase ATP depletion induced by methyl jasmonate, whereas inhibition of glycolysis with 2-deoxyglucose did. High glucose levels protected both clones from methyl jasmonate-induced ATP depletion (and reduced methyl jasmonate-induced cytotoxicity), whereas high levels of pyruvate did not. These results suggest that methyl jasmonate induces ATP depletion mostly by compromising oxidative phosphorylation in the mitochondria. In conclusion, jasmonates can circumvent the resistance of mutant p53-expressing cells towards chemotherapy by inducing a nonapoptotic cell death.

  16. [Prognostic significance of p53 expression in patients with mammary gland cancer].

    PubMed

    Shchurov, N F; Pogorelaia, T Iu; Zaplatina, S V

    2013-07-01

    Prognostic significance of p53 expression in tumoral cells was studied in patients, suffering mammary gland cancer (MGC). The higher p53 mutative type expression in the tumor, the more aggressive is MGC development, the indices of general and disease-free survival are poorer, so prognosis is poorer as well.

  17. Immunohistochemical study of p53 and proliferating cell nuclear antigen expression in odontogenic keratocyst and periapical cyst

    PubMed Central

    Sajeevan, Thara Purath; Saraswathi, Tillai Rajasekaran; Ranganathan, Kannan; Joshua, Elizabeth; Rao, Uma Devi K.

    2014-01-01

    Introduction: p53 protein is a product of p53 gene, which is now classified as a tumor suppressor gene. The gene is a frequent target for mutation, being seen as a common step in the pathogenesis of many human cancers. Proliferating cell nuclear antigen (PCNA) is an auxiliary protein of DNA polymerase delta and plays a critical role in initiation of cell proliferation. Aim: The aim of this study is to assess and compare the expression of p53 and PCNA in lining epithelium of odontogenic keratocyst (OKC) and periapical cyst (PA). Materials and Methods: A total of 20 cases comprising 10 OKC and 10 PA were included in retrospective study. Three paraffin section of 4 μm were cut, one was used for routine hematoxylin and eosin stain, while the other two were used for immunohistochemistry. Statistical analysis was performed using Chi-square test. Results: The level of staining and intensity were assessed in all these cases. OKC showed PCNA expression in all cases (100%), whereas in perapical cyst only 60% of cases exhibited PCNA staining. (1) OKC showed p53 expression in 6 cases (60%) whereas in PA only 10% of the cases exhibited p53 staining. Chi-square test showed PCNA staining intensity was more significant than p53 in OKC. (2) The staining intensity of PA using p53, PCNA revealed that PCNA stating intensity was more significant than p53. Conclusion: OKC shows significant proliferative activity than PA using PCNA and p53. PCNA staining was more intense when compared with p53 in both OKC and PA. PMID:25210385

  18. Gene expression profiling analysis reveals arsenic-induced cell cycle arrest and apoptosis in p53-proficient and p53-deficient cells through differential gene pathways

    SciTech Connect

    Yu Xiaozhong Robinson, Joshua F.; Gribble, Elizabeth; Hong, Sung Woo; Sidhu, Jaspreet S.; Faustman, Elaine M.

    2008-12-15

    Arsenic (As) is a well-known environmental toxicant and carcinogen as well as an effective chemotherapeutic agent. The underlying mechanism of this dual capability, however, is not fully understood. Tumor suppressor gene p53, a pivotal cell cycle checkpoint signaling protein, has been hypothesized to play a possible role in mediating As-induced toxicity and therapeutic efficiency. In this study, we found that arsenite (As{sup 3+}) induced apoptosis and cell cycle arrest in a dose-dependent manner in both p53{sup +/+} and p53{sup -/-} mouse embryonic fibroblasts (MEFs). There was, however, a distinction between genotypes in the apoptotic response, with a more prominent induction of caspase-3 in the p53{sup -/-} cells than in the p53{sup +/+} cells. To examine this difference further, a systems-based genomic analysis was conducted comparing the critical molecular mechanisms between the p53 genotypes in response to As{sup 3+}. A significant alteration in the Nrf2-mediated oxidative stress response pathway was found in both genotypes. In p53{sup +/+} MEFs, As{sup 3+} induced p53-dependent gene expression alterations in DNA damage and cell cycle regulation genes. However, in the p53{sup -/-} MEFs, As{sup 3+} induced a significant up-regulation of pro-apoptotic genes (Noxa) and down-regulation of genes in immune modulation. Our findings demonstrate that As-induced cell death occurs through a p53-independent pathway in p53 deficient cells while apoptosis induction occurs through p53-dependent pathway in normal tissue. This difference in the mechanism of apoptotic responses between the genotypes provides important information regarding the apparent dichotomy of arsenic's dual mechanisms, and potentially leads to further advancement of its utility as a chemotherapeutic agent.

  19. Residues in the alternative reading frame tumor suppressor that influence its stability and p53-independent activities

    SciTech Connect

    Tommaso, Anne di; Hagen, Jussara; Tompkins, Van; Muniz, Viviane; Dudakovic, Amel; Kitzis, Alain; Ladeveze, Veronique; Quelle, Dawn E.

    2009-04-15

    The Alternative Reading Frame (ARF) protein suppresses tumorigenesis through p53-dependent and p53-independent pathways. Most of ARF's anti-proliferative activity is conferred by sequences in its first exon. Previous work showed specific amino acid changes occurred in that region during primate evolution, so we programmed those changes into human p14ARF to assay their functional impact. Two human p14ARF residues (Ala{sup 14} and Thr{sup 31}) were found to destabilize the protein while two others (Val{sup 24} and Ala{sup 41}) promoted more efficient p53 stabilization and activation. Despite those effects, all modified p14ARF forms displayed robust p53-dependent anti-proliferative activity demonstrating there are no significant biological differences in p53-mediated growth suppression associated with simian versus human p14ARF residues. In contrast, p53-independent p14ARF function was considerably altered by several residue changes. Val{sup 24} was required for p53-independent growth suppression whereas multiple residues (Val{sup 24}, Thr{sup 31}, Ala{sup 41} and His{sup 60}) enabled p14ARF to block or reverse the inherent chromosomal instability of p53-null MEFs. Together, these data pinpoint specific residues outside of established p14ARF functional domains that influence its expression and signaling activities. Most intriguingly, this work reveals a novel and direct role for p14ARF in the p53-independent maintenance of genomic stability.

  20. Accumulation of tissue factor in endothelial cells induces cell apoptosis, mediated through p38 and p53 activation.

    PubMed

    ElKeeb, A M; Collier, M E W; Maraveyas, A; Ettelaie, C

    2015-08-01

    We previously reported that high levels of tissue factor (TF) can induce cellular apoptosis in endothelial cells. In this study, TF-mediated mechanisms of induction of apoptosis were explored. Endothelial cells were transfected to express wild-type TF. Additionally, cells were transfected to express Asp253-substituted, or Ala253-substitued TF to enhance or prevent TF release, respectively. Alternatively, cells were pre-incubated with TF-rich and TF-poor microvesicles. Cell proliferation, apoptosis and the expression of cyclin D1, p53, bax and p21 were measured following activation of cells with PAR2-agonist peptide. Greatest levels of cell proliferation and cyclin D1 expression were observed in cells expressing wild-type or Asp253-substituted TF. In contrast, increased cellular apoptosis was observed in cells expressing Ala253-substituted TF, or cells pre-incubated with TF-rich microvesicles. The level of p53 protein, p53-phosphorylation at ser33, p53 nuclear localisation and transcriptional activity, but not p53 mRNA, were increased in cells expressing wild-type and Ala253-substituted TF, or in cells pre-incubated with TF-rich microvesicles. However, the expression of bax and p21 mRNA, and Bax protein were only increased in cells pre-incubated with TF-rich microvesicle and in cells expressing Ala253-substituted TF. Inhibition of the transcriptional activity of p53 using pifithrin-α suppressed the expression of Bax. Finally, siRNA-mediated suppression of p38α, or inhibition using SB202190 significantly reduced the p53 protein levels, p53 nuclear localisation and transcriptional activity, suppressed Bax expression and prevented cellular apoptosis. In conclusion, accumulation of TF within endothelial cells, or sequestered from the surrounding can induce cellular apoptosis through mechanisms mediated by p38, and involves the stabilisation of p53. PMID:25903973

  1. Effect of Boschniakia rossica on expression of GST-P, p53 and p21(ras)proteins in early stage of chemical hepatocarcinogenesis and its anti-inflammatory activities in rats.

    PubMed

    Yin, Zong-Zhu; Jin, Hai-Ling; Yin, Xue-Zhe; Li, Tian-Zhu; Quan, Ji-Shu; Jin, Zeng-Nan

    2000-12-01

    AIM:To investigate the effect of Boschniakia rossica (BR) extract on expression of GST-P, p53 and p21(ras) proteins in early stage of chemical hepatocarcinogenesis in rats and its anti-inflammatory activities.METHODS:The expression of tumor marker-placental form glutathione S-transferase (GST-P), p53 and p21(ras) proteins were investigated by immunohisto-chemical techniques and ABC method. Anti-inflammatory activities of BR were studied by xylene and croton oil-induced mouse ear edema, carrageenin, histamine and hot scald-induced rat pow edema, adjuvant-induced rat arthritis and cotton pellet induced mouse granuloma formation methods.RESULTS:The 500mg/kg of BR-H2O extract frac-tionated from BR-Methanol extract had inhibitory effect on the formation of DEN-induced GST-P-positive foci in rat liver (GST-P staining was 78% positive in DEN+AAF group vs 20% positive in DEN+AAF+BR group, P<0.05) and the expression of mutant p53 and p21(ras) protein was lower than that of hepatic preneoplastic lesions (33% and 22% positive respectively in DEN+AAF group vs negative in DEN+AAF+BR group). Both CH(2)Cl(2) and H(2)O extracts from BR had anti-inflamatory effect in xylene and crotonoil induced mouse ear edema (inhibitory rates were 26%-29% and 35%-59%, respectively). BR H(2)O extract exhibited inhibitory effect in carrageenin, histamine and hot scald-induced hind paw edema and adjuvant-induced arthritis in rats and cotton pellet-induced granuloma formation in mice.CONCLUSION:BR extract exhibited inhibitory effect on formation of preneoplastic hepatic foci in early stage of rat chemical hepato-carcinogenesis.Both CH(2)Cl(2) and H(2)O extracts from BR exerted anti-inflammatory effect in rats and mice.

  2. Lack of p53 augments thymoquinone-induced apoptosis and caspase activation in human osteosarcoma cells.

    PubMed

    Roepke, Martin; Diestel, Antje; Bajbouj, Khuloud; Walluscheck, Diana; Schonfeld, Peter; Roessner, Albert; Schneider-Stock, Regine; Gali-Muhtasib, Hala

    2007-02-01

    We have recently shown that thymoquinone (TQ) is an antineoplastic drug that induces p53-dependent apoptosis in human colon cancer cells. This study evaluated the antiproliferative and pro-apoptotic effects of TQ in two human osteosarcoma cell lines with different p53 mutation status. TQ decreased cell survival dose-dependently and, more significantly, in p53-null MG63 cells (IC(50) = 17 muM) than in p53-mutant MNNG/HOS cells (IC(50) = 38 muM). Cell viability was reduced more selectively in MG63 tumor cells than in normal human osteoblasts. Flow cytometric analysis showed that TQ induced a much greater increase in the PreG(1) (apoptotic) cell population, but no cell cycle arrest in MG63. G(2)/M arrest in MNNG/HOS cells was associated with p21(WAF1) upregulation. Using three DNA damage assays, TQ was confirmed to result in a significantly greater extent of apoptosis in p53 null MG63 cells. Although the Bax/Bcl-2 ratios were not differentially modulated in both cell lines, the mitochondrial pathway appeared to be involved in TQ-induced apoptosis in MG63 by showing the cleavage of caspases-9 and -3. Oxidative stress and mitochondrial O(2)(*-) generation in isolated rat mitochondria were enhanced by TQ as measured by the dose-dependent reduction in aconitase enzyme activity and Amplex Red oxidation respectively. TQ-induced oxidative damage, reflected by an increase in gamma-H2AX foci and increased protein expression levels of gamma-H2AX and the DNA repair enzyme, NBS1, was more pronounced in MNNG/HOS than in MG63. We suggest that the resistance of MNNG/HOS cells to drug-induced apoptosis is caused by the up-regulation of p21(WAF1) by the mutant p53 (transcriptional activity was shown by p53 siRNA treatment) which induces cell cycle arrest and allows to repair DNA damage. Collectively, these findings show that TQ induces p53-independent apoptosis in human osteosarcoma cells. As the loss of p53 function is frequently observed in osteosarcoma patients, our data suggest

  3. Mdm2 is a novel activator of ApoCIII promoter which is antagonized by p53 and SHP inhibition

    SciTech Connect

    Yang, Zhihong; Zhang, Yuxia; Wang, Li

    2012-01-13

    Highlights: Black-Right-Pointing-Pointer Mdm2 enhances HNF4{alpha} activation of the ApoCIII promoter via interaction with HNF4{alpha}. Black-Right-Pointing-Pointer p53 antagonizes the effect of Mdm2 activation of the ApoCIII promoter. Black-Right-Pointing-Pointer SHP strengthens p53 inhibition but abolishes Mdm2 activation of the ApoCIII promoter. Black-Right-Pointing-Pointer Mdm2 alters the enrichment of HNF4{alpha}, p53 and SHP to the ApoCIII promoter. -- Abstract: We examined the effect of Mdm2 on regulation of the ApoCIII promoter and its cross-talk with p53 and nuclear receptor SHP. Overexpression of Mdm2 markedly enhanced ApoCIII promoter activity by HNF4{alpha}. A direct association of Mdm2 protein with the HNF4{alpha} protein was observed by co-immunoprecipitation. Ectopic expression of p53 decreased HNF4{alpha} activation of the ApoCIII promoter and antagonized the effect of Mdm2. Co-expression of SHP further strengthened p53 inhibition and abolished Mdm2 activation of the ApoCIII promoter. Mdm2 inhibited p53-mediated enrichment of HNF4{alpha} to the ApoCIII promoter while simultaneously reducing p53 binding and increasing recruitment of SHP to the ApoCIII promoter. The results from this study implicate a potentially important function of Mdm2 in regulation of lipoprotein metabolism.

  4. Nuclear expression of p53 in mature tumor endothelium of retinoblastoma.

    PubMed

    Lee, Byung Joo; Kim, Jin Hyoung; Jo, Dong Hyun; Kim, Kyu-Won; Yu, Young Suk; Kim, Jeong Hun

    2014-08-01

    The present study aimed to investigate the p53 expression pattern in tumor cells and in mature tumor vascular endothelium of retinoblastoma. Nuclear p53 accumulation was observed in most of the tumor cells in both the human and orthotopic retinoblastoma animal models using SNUOT-Rb1 and Y79 cells. In the orthotopic animal model, some of the tumor vascular endothelium also demonstrated nuclear p53 immunoreactivity, and the ratio of p53 positivity among the total mature tumor vascular endothelium was slightly higher in the Y79 cell model when compared with the SNUOT-Rb1 cell model. In addition, in the human retinoblastoma specimens, 32.9% of the tumor vascular endothelium showed p53 nuclear staining. In conclusion, some of the mature tumor vascular endothelium in both the human and orthotopic models of retinoblastoma share the same cytogenetic abnormality (an abnormal nuclear accumulation of p53) with retinoblastoma cells. PMID:24898002

  5. An expression signature for p53 status in human breast cancer predicts mutation status, transcriptional effects, and patient survival.

    PubMed

    Miller, Lance D; Smeds, Johanna; George, Joshy; Vega, Vinsensius B; Vergara, Liza; Ploner, Alexander; Pawitan, Yudi; Hall, Per; Klaar, Sigrid; Liu, Edison T; Bergh, Jonas

    2005-09-20

    Perturbations of the p53 pathway are associated with more aggressive and therapeutically refractory tumors. However, molecular assessment of p53 status, by using sequence analysis and immunohistochemistry, are incomplete assessors of p53 functional effects. We posited that the transcriptional fingerprint is a more definitive downstream indicator of p53 function. Herein, we analyzed transcript profiles of 251 p53-sequenced primary breast tumors and identified a clinically embedded 32-gene expression signature that distinguishes p53-mutant and wild-type tumors of different histologies and outperforms sequence-based assessments of p53 in predicting prognosis and therapeutic response. Moreover, the p53 signature identified a subset of aggressive tumors absent of sequence mutations in p53 yet exhibiting expression characteristics consistent with p53 deficiency because of attenuated p53 transcript levels. Our results show the primary importance of p53 functional status in predicting clinical breast cancer behavior. PMID:16141321

  6. Oxidative stress regulates IGF1R expression in vascular smooth-muscle cells via p53 and HDAC recruitment

    PubMed Central

    Kavurma, Mary M.; Figg, Nichola; Bennett, Martin R.; Mercer, John; Khachigian, Levon M.; Littlewood, Trevor D.

    2007-01-01

    Apoptosis of VSMCs (vascular smooth-muscle cells) leads to features of atherosclerotic plaque instability. We have demonstrated previously that plaque-derived VSMCs have reduced IGF1 (insulin-like growth factor 1) signalling, resulting from a decrease in the expression of IGF1R (IGF1 receptor) compared with normal aortic VSMCs [Patel, Zhang, Siddle, Soos, Goddard, Weissberg and Bennett (2001) Circ. Res. 88, 895–902]. In the present study, we show that apoptosis induced by oxidative stress is inhibited by ectopic expression of IGF1R. Oxidative stress repressed IGF1R expression at multiple levels, and this was also blocked by mutant p53. Oxidative stress also induced p53 phosphorylation and apoptosis in VSMCs. p53 negatively regulated IGF1R promoter activity and expression and, consistent with this, p53−/− VSMCs demonstrated increased IGF1R expression, both in vitro and in advanced atherosclerotic plaques in vivo. Oxidative-stress-induced interaction of endogenous p53 with TBP (TATA-box-binding protein) was dependent on p53 phosphorylation. Oxidative stress also increased the association of p53 with HDAC1 (histone deacetylase 1). Trichostatin A, a specific HDAC inhibitor, or p300 overexpression relieved the repression of IGF1R following oxidative stress. Furthermore, acetylated histone-4 association with the IGF1R promoter was reduced in cells subjected to oxidative stress. These results suggest that oxidative-stress-induced repression of IGF1R is mediated by the association of phosphorylated p53 with the IGF1R promoter via TBP, and by the subsequent recruitment of chromatin-modifying proteins, such as HDAC1, to the IGF1R promoter–TBP–p53 complex. PMID:17600529

  7. Combined CSL and p53 downregulation promotes cancer-associated fibroblast activation

    PubMed Central

    Procopio, Maria-Giuseppina; Laszlo, Csaba; Labban, Dania Al; Kim, Dong Eun; Bordignon, Pino; Jo, Seunghee; Goruppi, Sandro; Menietti, Elena; Ostano, Paola; Ala, Ugo; Provero, Paolo; Hoetzenecker, Wolfram; Neel, Victor; Kilarski, Witek; Swartz, Melody A.; Brisken, Cathrin; Lefort, Karine; Dotto, G. Paolo

    2015-01-01

    Stromal fibroblast senescence has been linked to aging-associated cancer risk. However, density and proliferation of cancer-associated fibroblasts (CAF) are frequently increased. Loss or down-modulation of the Notch effector CSL/RBP-Jκ in dermal fibroblasts is sufficient for CAF activation and ensuing keratinocyte-derived tumors. We report that CSL silencing induces senescence of primary fibroblasts from dermis, oral mucosa, breast and lung. CSL functions in these cells as direct repressor of multiple senescence- and CAF-effector genes. It also physically interacts with p53, repressing its activity. CSL is down-modulated in stromal fibroblasts of premalignant skin actinic keratosis lesions and squamous cell carcinomas (SCC), while p53 expression and function is down-modulated only in the latter, with paracrine FGF signaling as likely culprit. Concomitant loss of CSL and p53 overcomes fibroblast senescence, enhances expression of CAF effectors and promotes stromal and cancer cell expansion. The findings support a CAF activation/stromal co-evolution model under convergent CSL/p53 control. PMID:26302407

  8. TGEV nucleocapsid protein induces cell cycle arrest and apoptosis through activation of p53 signaling

    SciTech Connect

    Ding, Li; Huang, Yong; Du, Qian; Dong, Feng; Zhao, Xiaomin; Zhang, Wenlong; Xu, Xingang; Tong, Dewen

    2014-03-07

    Highlights: • TGEV N protein reduces cell viability by inducing cell cycle arrest and apoptosis. • TGEV N protein induces cell cycle arrest and apoptosis by regulating p53 signaling. • TGEV N protein plays important roles in TGEV-induced cell cycle arrest and apoptosis. - Abstract: Our previous studies showed that TGEV infection could induce cell cycle arrest and apoptosis via activation of p53 signaling in cultured host cells. However, it is unclear which viral gene causes these effects. In this study, we investigated the effects of TGEV nucleocapsid (N) protein on PK-15 cells. We found that TGEV N protein suppressed cell proliferation by causing cell cycle arrest at the S and G2/M phases and apoptosis. Characterization of various cellular proteins that are involved in regulating cell cycle progression demonstrated that the expression of N gene resulted in an accumulation of p53 and p21, which suppressed cyclin B1, cdc2 and cdk2 expression. Moreover, the expression of TGEV N gene promoted translocation of Bax to mitochondria, which in turn caused the release of cytochrome c, followed by activation of caspase-3, resulting in cell apoptosis in the transfected PK-15 cells following cell cycle arrest. Further studies showed that p53 inhibitor attenuated TGEV N protein induced cell cycle arrest at S and G2/M phases and apoptosis through reversing the expression changes of cdc2, cdk2 and cyclin B1 and the translocation changes of Bax and cytochrome c induced by TGEV N protein. Taken together, these results demonstrated that TGEV N protein might play an important role in TGEV infection-induced p53 activation and cell cycle arrest at the S and G2/M phases and apoptosis occurrence.

  9. HIPK2 modulates p53 activity towards pro-apoptotic transcription

    PubMed Central

    Puca, Rosa; Nardinocchi, Lavinia; Sacchi, Ada; Rechavi, Gideon; Givol, David; D'Orazi, Gabriella

    2009-01-01

    Background Activation of p53-mediated gene transcription is a critical cellular response to DNA damage and involves a phosphorylation-acetylation cascade of p53. The discovery of differences in the response to different agents raises the question whether some of the p53 oncosuppressor functions might be exerted by different posttranslational modifications. Stress-induced homeodomain-interacting protein kinase-2 (HIPK2) phosphorylates p53 at serine-46 (Ser46) for p53 apoptotic activity; p53 acetylation at different C-terminus lysines including p300-mediated lysine-382 (Lys382) is also required for full activation of p53 transcriptional activity. The purpose of the current study was to evaluate the interplay among HIPK2, p300, and p53 in p53 acetylation and apoptotic transcriptional activity in response to drug by using siRNA interference, p300 overexpression or deacetylase inhibitors, in cancer cells. Results Knockdown of HIPK2 inhibited both adriamycin-induced Ser46 phosphorylation and Lys382 acetylation in p53 protein; however, while combination of ADR and zinc restored Ser46 phosphorylation it did not recover Lys382 acetylation. Chromatin immunoprecipitation studies showed that HIPK2 was required in vivo for efficient p300/p53 co-recruitment onto apoptotic promoters and that both p53 modifications at Ser46 and Lys382 were necessary for p53 apoptotic transcription. Thus, p53Lys382 acetylation in HIPK2 knockdown as well as p53 apoptotic activity in response to drug could be rescued by p300 overexpression. Similar effect was obtained with the Sirt1-inhibitor nicotinamide. Interestingly trichostatin A (TSA), the inhibitor of histone deacetylase complexes (HDAC) did not have effect, suggesting that Sirt1 was the deacetylase involved in p53 deacetylation in HIPK2 knockdown. Conclusion These results reveal a novel role for HIPK2 in activating p53 apoptotic transcription. Our results indicate that HIPK2 may regulate the balance between p53 acetylation and deacetylation

  10. Stress-mediated Sin3B activation leads to negative regulation of subset of p53 target genes.

    PubMed

    Kadamb, Rama; Mittal, Shilpi; Bansal, Nidhi; Saluja, Daman

    2015-01-01

    The multiprotein SWI-independent 3 (Sin3)-HDAC (histone deacetylase) corepressor complex mediates gene repression through its interaction with DNA-binding factors and recruitment of chromatin-modifying proteins on to the promoters of target gene. Previously, an increased expression of Sin3B and tumour suppressor protein, p53 has been established upon adriamycin treatment. We, now provide evidence that Sin3B expression is significantly up-regulated under variety of stress conditions and this response is not stress-type specific. We observed that Sin3B expression is significantly up-regulated both at transcript and at protein level upon DNA damage induced by bleomycin drug, a radiomimetic agent. This increase in Sin3B expression upon stress is found to be p53-dependent and is associated with enhanced interaction of Sin3B with Ser(15) phosphorylated p53. Binding of Sin3-HDAC repressor complex on to the promoters of p53 target genes influences gene regulation by altering histone modifications (H3K9me3 and H3K27me3) at target genes. Furthermore, knockdown of Sin3B by shRNA severely compromises p53-mediated gene repression under stress conditions. Taken together, these results suggest that stress-induced Sin3B activation is p53-dependent and is essential for p53-mediated repression of its selective target genes. The present study has an implication in understanding the transrepression mechanism of p53 under DNA damaging conditions.

  11. Activation of p53 Facilitates the Target Search in DNA by Enhancing the Target Recognition Probability.

    PubMed

    Itoh, Yuji; Murata, Agato; Sakamoto, Seiji; Nanatani, Kei; Wada, Takehiko; Takahashi, Satoshi; Kamagata, Kiyoto

    2016-07-17

    Tumor suppressor p53 binds to the target in a genome and regulates the expression of downstream genes. p53 searches for the target by combining three-dimensional diffusion and one-dimensional sliding along the DNA. To examine the regulation mechanism of the target binding, we constructed the pseudo-wild type (pseudo-WT), activated (S392E), and inactive (R248Q) mutants of p53 and observed their target binding in long DNA using single-molecule fluorescence imaging. The pseudo-WT sliding along the DNA showed many pass events over the target and possessed target recognition probability (TRP) of 7±2%. The TRP increased to 18±2% for the activated mutant but decreased to 0% for the inactive mutant. Furthermore, the fraction of the target binding by the one-dimensional sliding among the total binding events increased from 63±9% for the pseudo-WT to 87±2% for the activated mutant. Control of TRP upon activation, as demonstrated here for p53, might be a general activation mechanism of transcription factors.

  12. Activation of p53-regulated pro-apoptotic signaling pathways in PrP-mediated myopathy

    PubMed Central

    Liang, Jingjing; Parchaliuk, Debra; Medina, Sarah; Sorensen, Garrett; Landry, Laura; Huang, Shenghai; Wang, Meiling; Kong, Qingzhong; Booth, Stephanie A

    2009-01-01

    Background We have reported that doxycycline-induced over-expression of wild type prion protein (PrP) in skeletal muscles of Tg(HQK) mice is sufficient to cause a primary myopathy with no signs of peripheral neuropathy. The preferential accumulation of the truncated PrP C1 fragment was closely correlated with these myopathic changes. In this study we use gene expression profiling to explore the temporal program of molecular changes underlying the PrP-mediated myopathy. Results We used DNA microarrays, and confirmatory real-time PCR and Western blot analysis to demonstrate deregulation of a large number of genes in the course of the progressive myopathy in the skeletal muscles of doxycycline-treated Tg(HQK) mice. These include the down-regulation of genes coding for the myofibrillar proteins and transcription factor MEF2c, and up-regulation of genes for lysosomal proteins that is concomitant with increased lysosomal activity in the skeletal muscles. Significantly, there was prominent up-regulation of p53 and p53-regulated genes involved in cell cycle arrest and promotion of apoptosis that paralleled the initiation and progression of the muscle pathology. Conclusion The data provides the first in vivo evidence that directly links p53 to a wild type PrP-mediated disease. It is evident that several mechanistic features contribute to the myopathy observed in PrP over-expressing mice and that p53-related apoptotic pathways appear to play a major role. PMID:19400950

  13. CerS6 Is a Novel Transcriptional Target of p53 Protein Activated by Non-genotoxic Stress.

    PubMed

    Fekry, Baharan; Jeffries, Kristen A; Esmaeilniakooshkghazi, Amin; Ogretmen, Besim; Krupenko, Sergey A; Krupenko, Natalia I

    2016-08-01

    Our previous study suggested that ceramide synthase 6 (CerS6), an enzyme in sphingolipid biosynthesis, is regulated by p53: CerS6 was elevated in several cell lines in response to transient expression of p53 or in response to folate stress, which is known to activate p53. It was not clear, however, whether CerS6 gene is a direct transcriptional target of p53 or whether this was an indirect effect through additional regulatory factors. In the present study, we have shown that the CerS6 promoter is activated by p53 in luciferase assays, whereas transcriptionally inactive R175H p53 mutant failed to induce the luciferase expression from this promoter. In vitro immunoprecipitation assays and gel shift analyses have further demonstrated that purified p53 binds within the CerS6 promoter sequence spanning 91 bp upstream and 60 bp downstream of the transcription start site. The Promo 3.0.2 online tool for the prediction of transcription factor binding sites indicated the presence of numerous putative non-canonical p53 binding motifs in the CerS6 promoter. Luciferase assays and gel shift analysis have identified a single motif upstream of the transcription start as a key p53 response element. Treatment of cells with Nutlin-3 or low concentrations of actinomycin D resulted in a strong elevation of CerS6 mRNA and protein, thus demonstrating that CerS6 is a component of the non-genotoxic p53-dependent cellular stress response. This study has shown that by direct transcriptional activation of CerS6, p53 can regulate specific ceramide biosynthesis, which contributes to the pro-apoptotic cellular response.

  14. Liriodenine induces the apoptosis of human laryngocarcinoma cells via the upregulation of p53 expression

    PubMed Central

    LI, LIANG; XU, YING; WANG, BINQUAN

    2015-01-01

    Laryngocarcinoma is one of the most aggressive cancers that affects the head and neck region. The survival rate of patients with laryngocarcinoma is low due to late metastases and the resistance of the disease to chemotherapy and radiotherapy. Liriodenine, an alkaloid extracted from a number of plant species, has demonstrated antitumor effects on multiple types of cancer. However, the effects of liriodenine upon laryngocarcinoma, and the underlying mechanisms, are yet to be elucidated. The present study therefore investigated the potential antitumor effects of liriodenine on HEp-2 human laryngocarcinoma cells in vitro and HEp-2-implanted nude mice in vivo. Liriodenine induced significant apoptosis and inhibition of cell migration in the HEp-2 cells. Furthermore, the rate of tumor growth in the HEp-2-implanted nude mice was inhibited by the administration of liriodenine. The potential mechanism underlying the antitumor effects of liriodenine may result from an upregulative effect upon p53 expression, which ultimately induces cellular apoptosis. By contrast, the downregulation of p53 significantly reduced the antitumor effects of liriodenine. Together, these results suggest that liriodenine exhibits potent antitumor activities in laryngocarcinoma HEp-2 cells, in vitro and in vivo, via the upregulation of p53 expression. Liriodenine may therefore be a potential therapy for the treatment of laryngocarcinoma. PMID:25663867

  15. Matrine-induced autophagy regulated by p53 through AMP-activated protein kinase in human hepatoma cells.

    PubMed

    Xie, Shan-Bu; He, Xing-Xing; Yao, Shu-Kun

    2015-08-01

    Matrine, one of the main extract components of Sophora flavescens, has been shown to exhibit inhibitory effects on some tumors through autophagy. However, the mechanism underlying the effect of matrine remains unclear. The cultured human hepatocellular carcinoma cell line HepG2 and SMMC‑7721 were treated with matrine. Signal transduction and gene expression profile were determined. Matrine stimulated autophagy in SMMC‑7721 cells in a mammalian target of rapamycin (mTOR)-dependent manner, but in an mTOR-independent manner in HepG2 cells. Next, in HepG2 cells, autophagy induced by matrine was regulated by p53 inactivation through AMP-activated protein kinase (AMPK) signaling transduction, then AMPK suppression switched autophagy to apoptosis. Furthermore, the interferon (IFN)-inducible genes, including interferon α-inducible protein 27 (IFI27) and interferon induced transmembrane protein 1 (IFITM1), which are downstream effector of p53, might be modulated by matrine-induced autophagy. In addition, we found that the p53 protein isoforms, p53β, p53γ, ∆133p53, and ∆133p53γ, due to alternative splicing of intron 9, might be regulated by the p53-mediated autophagy. These results show that matrine induces autophagy in human hepatoma cells through a novel mechanism, which is p53/AMPK signaling pathway involvement in matrine-promoted autophagy.

  16. Rpl22 loss impairs the development of B lymphocytes by activating a p53-dependent checkpoint

    PubMed Central

    Fahl, Shawn P.; Harris, Bryan; Coffey, Francis; Wiest, David L.

    2014-01-01

    While ribosomal proteins facilitate the ribosome’s core function of translation, emerging evidence suggests that some ribosomal proteins are also capable of performing tissue restricted functions either from within specialized ribosomes or from outside of the ribosome. In particular, we have previously demonstrated that germline ablation of the gene encoding ribosomal protein Rpl22 causes a selective and p53 dependent arrest of αβ T cell progenitors at the β-selection checkpoint. We have now identified a crucial role for Rpl22 during early B cell development. Germline ablation of Rpl22 results in a reduction in the absolute number of B-lineage progenitors in the bone marrow beginning at the pro-B cell stage. Although Rpl22-deficient proB cells are hyporesponsive to IL-7, a key cytokine required for early B cell development, the arrest of B cell development does not result from disrupted IL-7 signaling. Instead, p53 induction appears to be responsible for the developmental defects, as Rpl22-deficiency causes increased expression of p53 and activation of downstream p53 target genes and p53-deficiency rescues the defect in B cell development in Rpl22-deficient mice. Interestingly, the requirement for Rpl22 in the B cell lineage appears to be developmentally restricted, since Rpl22-deficient splenic B cells proliferate normally in response to antigen receptor and toll receptor stimuli and undergo normal class switch recombination. These results indicate that Rpl22 performs a critical, developmentally restricted role in supporting early B cell development by preventing p53-induction. PMID:25416806

  17. Ribosomal protein S7 as a novel modulator of p53-MDM2 interaction: binding to MDM2, stabilization of p53 protein, and activation of p53 function.

    PubMed

    Chen, D; Zhang, Z; Li, M; Wang, W; Li, Y; Rayburn, E R; Hill, D L; Wang, H; Zhang, R

    2007-08-01

    As a major negative regulator of p53, the MDM2 oncogene plays an important role in carcinogenesis and tumor progression. MDM2 promotes p53 proteasomal degradation and negatively regulates p53 function. The mechanisms by which the MDM2-p53 interaction is regulated are not fully understood, although several MDM2-interacting molecules have recently been identified. To search for novel MDM2-binding partners, we screened a human prostate cDNA library by the yeast two-hybrid assay using full-length MDM2 protein as the bait. Among the candidate proteins, ribosomal protein S7 was identified and confirmed as a novel MDM2-interacting protein. Herein, we demonstrate that S7 binds to MDM2, in vitro and in vivo, and that the interaction between MDM2 and S7 leads to modulation of MDM2-p53 binding by forming a ternary complex among MDM2, p53 and S7. This results in the stabilization of p53 protein through abrogation of MDM2-mediated p53 ubiquitination. Consequently, S7 overexpression increases p53 transactivational activities, induces apoptosis, and inhibits cell proliferation. The identification of S7 as a novel MDM2-interacting partner contributes to elucidation of the complex regulation of the MDM2-p53 interaction and has implications in cancer prevention and therapy.

  18. Serum withdrawal up-regulates human SIRT1 gene expression in a p53-dependent manner.

    PubMed

    Shang, Linshan; Zhou, Haibin; Xia, Yu; Wang, Hui; Gao, Guimin; Chen, Bingxi; Liu, Qiji; Shao, Changshun; Gong, Yaoqin

    2009-10-01

    SIRT1, a nicotinamide adenine dinucleotide (NAD(+))-dependent histone/protein deacetylase, has been extensively studied recently for its critical role in the regulation of physiology, calorie restriction and aging. Studies on laboratory mice showed that expression of SIRT1 can be induced by starvation in a p53-dependent manner and requires the p53-binding sites present in the Sirt1 promoter. However, it remains to be determined whether these findings based on rodents apply to human beings. In this paper, we characterized a putative p53-binding element in the human SIRT1 promoter that might be required for the up-regulation of SIRT1 in response to nutritional stress. The p53-binding site in the promoter of human SIRT1 is more deviant from the consensus sequence than the corresponding sequence in the mouse Sirt1. There is a C to A change at the second half site in human SIRT1, thus disrupting the core-binding element CWWG in the canonical RRRCWWGYYY. To test whether such sequence change would affect its binding with p53 and the SIRT1 expression under stress, we studied various human cell lines with different p53 status and cells with ectopic expression of functionally distinct p53. We found that serum withdrawal also up-regulates human SIRT1 gene expression in a p53-dependent manner and that the p53-binding element in SIRT1 is required for the up-regulation. Thus, the mechanism responsible for the regulation of SIRT1 expression by p53 is conserved between mice and human beings.

  19. Epstein-Barr virus nuclear antigen 3C targets p53 and modulates its transcriptional and apoptotic activities

    SciTech Connect

    Yi Fuming; Saha, Abhik; Murakami, Masanao; Kumar, Pankaj; Knight, Jason S.; Cai Qiliang; Choudhuri, Tathagata; Robertson, Erle S.

    2009-06-05

    The p53 tumor suppressor gene is one of the most commonly mutated genes in human cancers and the corresponding encoded protein induces apoptosis or cell-cycle arrest at the G1/S checkpoint in response to DNA damage. To date, previous studies have shown that antigens encoded by human tumor viruses such as SV40 large T antigen, adenovirus E1A and HPV E6 interact with p53 and disrupt its functional activity. In a similar fashion, we now show that EBNA3C, one of the EBV latent antigens essential for the B-cell immortalization in vitro, interacts directly with p53. Additionally, we mapped the interaction of EBNA3C with p53 to the C-terminal DNA-binding and the tetramerization domain of p53, and the region of EBNA3C responsible for binding to p53 was mapped to the N-terminal domain of EBNA3C (residues 130-190), previously shown to interact with a number of important cell-cycle components, specifically SCF{sup Skp2}, cyclin A, and cMyc. Furthermore, we demonstrate that EBNA3C substantially represses the transcriptional activity of p53 in luciferase based reporter assays, and rescues apoptosis induced by ectopic p53 expression in SAOS-2 (p53{sup -/-}) cells. Interestingly, we also show that the DNA-binding ability of p53 is diminished in the presence of EBNA3C. Thus, the interaction between the p53 and EBNA3C provides new insights into the mechanism(s) by which the EBNA3C oncoprotein can alter cellular gene expression in EBV associated human cancers.

  20. In Vivo Mitochondrial p53 Translocation Triggers a Rapid First Wave of Cell Death in Response to DNA Damage That Can Precede p53 Target Gene Activation

    PubMed Central

    Erster, Susan; Mihara, Motohiro; Kim, Roger H.; Petrenko, Oleksi; Moll, Ute M.

    2004-01-01

    p53 promotes apoptosis in response to death stimuli by transactivation of target genes and by transcription-independent mechanisms. We recently showed that wild-type p53 rapidly translocates to mitochondria in response to multiple death stimuli in cultured cells. Mitochondrial p53 physically interacts with antiapoptotic Bcl proteins, induces Bak oligomerization, permeabilizes mitochondrial membranes, and rapidly induces cytochrome c release. Here we characterize the mitochondrial p53 response in vivo. Mice were subjected to γ irradiation or intravenous etoposide administration, followed by cell fractionation and immunofluorescence studies of various organs. Mitochondrial p53 accumulation occurred in radiosensitive organs like thymus, spleen, testis, and brain but not in liver and kidney. Of note, mitochondrial p53 translocation was rapid (detectable at 30 min in thymus and spleen) and triggered an early wave of marked caspase 3 activation and apoptosis. This caspase 3-mediated apoptosis was entirely p53 dependent, as shown by p53 null mice, and preceded p53 target gene activation. The transcriptional p53 program had a longer lag phase than the rapid mitochondrial p53 program. In thymus, the earliest apoptotic target gene products PUMA, Noxa, and Bax appeared at 2, 4, and 8 h, respectively, while Bid, Killer/DR5, and p53DinP1 remained uninduced even after 20 h. Target gene induction then led to further increase in active caspase 3. Similar biphasic kinetics was seen in cultured human cells. Our results suggest that in sensitive organs mitochondrial p53 accumulation in vivo occurs soon after a death stimulus, triggering a rapid first wave of apoptosis that is transcription independent and may precede a second slower wave that is transcription dependent. PMID:15254240

  1. p53 Small-molecule inhibitor enhances temozolomide cytotoxic activity against intracranial glioblastoma xenografts.

    PubMed

    Dinca, Eduard B; Lu, Kan V; Sarkaria, Jann N; Pieper, Russell O; Prados, Michael D; Haas-Kogan, Daphne A; Vandenberg, Scott R; Berger, Mitchel S; James, C David

    2008-12-15

    In this study, we investigated the precursor and active forms of a p53 small-molecule inhibitor for their effects on temozolomide (TMZ) antitumor activity against glioblastoma (GBM), using both in vitro and in vivo experimental approaches. Results from in vitro cell viability analysis showed that the cytotoxic activity of TMZ was substantially increased when p53 wild-type (p53(wt)) GBMs were cotreated with the active form of p53 inhibitor, and this heightened cytotoxic response was accompanied by increased poly(ADP-ribose) polymerase cleavage as well as elevated cellular phospho-H2AX. Analysis of the same series of GBMs, as intracranial xenografts in athymic mice, and administering corresponding p53 inhibitor precursor, which is converted to the active compound in vivo, yielded results consistent with the in vitro analyses: TMZ + p53 inhibitor precursor cotreatment of three distinct p53(wt) GBM xenografts resulted in significant enhancement of TMZ antitumor effect relative to treatment with TMZ alone, as indicated by serial bioluminescence monitoring as well as survival analysis (P < 0.001 for cotreatment survival benefit in each case). Mice receiving intracranial injection with p53(null) GBM showed similar survival benefit from TMZ treatment regardless of the presence or absence of p53 inhibitor precursor. In total, our results indicate that the p53 active and precursor inhibitor pair enhances TMZ cytotoxicity in vitro and in vivo, respectively, and do so in a p53-dependent manner.

  2. TAp73 promotes cell survival upon genotoxic stress by inhibiting p53 activity

    PubMed Central

    Chen, Dongshi; Ming, Lihua; Zou, Fangdong; Peng, Ye; Houten, Bennett Van; Yu, Jian; Zhang, Lin

    2014-01-01

    p53 plays a key role in regulating DNA damage response by suppressing cell cycle progression or inducing apoptosis depending on extent of DNA damage. However, it is not clear why mild genotoxic stress favors growth arrest, whereas excessive lesions signal cells to die. Here we showed that TAp73, a p53 homologue thought to have a similar function as p53, restrains the transcriptional activity of p53 and prevents excessive activation of its downstream targets upon low levels of DNA damage, which results in cell cycle arrest. Extensive DNA damage triggers TAp73 depletion through ubiquitin/proteasome-mediated degradation of E2F1, leading to enhanced transcriptional activation by p53 and subsequent induction of apoptosis. These findings provide novel insights into the regulation of p53 function and suggest that TAp73 keeps p53 activity in check in regulating cell fate decisions upon genotoxic stress. PMID:25237903

  3. Significance of Ebp1 and p53 protein expression in cervical cancer.

    PubMed

    Liu, L; Li, X D; Chen, H Y; Cui, J S; Xu, D Y

    2015-10-02

    In this study, the ErbB3-binding protein (Ebp1) and p53 protein expression in cervical cancer tissues, and its significance in the prognosis of the disease was investigated. Ebp1 and p53 protein expression was detected by immunohistochemical analysis in cervical cancer tissues (N = 60) and normal tissues adjacent to the cancer tissues (N = 60). The rates of positive Ebp1 and p53 protein expression were 35.0 and 60.0%, respectively. Ebp1 and p53 were overexpressed in cervical cancer tissues, compared to normal tissues (P < 0.05). Ebp1 and p53 protein expression was not correlated with age, tumor size, or family tumor history (P > 0.05). However, high levels of expression of Ebp1 and p53 were positively correlated with the TNM stage and lymphatic metastasis in cervical cancer patients (P < 0.05). The combined determination of Ebp1 and p53 expression levels in cervical cancer patients could support the effective prediction of metastatic potential and patient prognosis.

  4. Critical role of ARID3B in the expression of pro-apoptotic p53-target genes and apoptosis.

    PubMed

    Pratama, Endrawan; Tian, Xiaohui; Lestari, Widya; Iseki, Sachiko; Ichwan, Solachuddin J A; Ikeda, Masa-Aki

    ARID3A and ARID3B are transcriptional targets of p53. Recently, it has been reported that ARID3A plays a critical role in the transcriptional activation of pro-arrest p21 in response to DNA damage. However, the role of ARID3B in the p53 regulatory pathway remains poorly understood. Here we show that ARID3A and ARID3B specifically bind to putative ARID3-binding sites in p53 target genes in vitro and in vivo. ARID3B and, to a lesser extent, ARID3A silencing blocked transcriptional activation of pro-apoptotic p53 target genes, such as PUMA, PIG3, and p53. Furthermore, ectopic ARID3B, to a lesser extent, ARID3A expression activated the pro-apoptotic gene expression, and only ARID3B induced apoptosis. Finally, ARID3B but not ARID3A silencing blocked apoptosis induction following DNA damage. These results indicated that, although ARID3B and ARID3A share overlapping functions, ARID3B play a key role in the expression of pro-apoptotic p53-target genes and apoptosis.

  5. Expression and Prognostic Significance of p53 in Glioma Patients: A Meta-analysis.

    PubMed

    Jin, Yueling; Xiao, Weizhong; Song, Tingting; Feng, Guangjia; Dai, Zhensheng

    2016-07-01

    Glioma is a brain tumor deriving from the neoplastic glial cells or neuroglia. Due to its resistance to anticancer drugs and different disease progress of individuals, patients with high-grade glioma are difficult to completely cure, leading to a poor prognosis and low overall survival. Therefore, there is an urgent need to look for prognostic and diagnostic indicators that can predict glioma grades. P53 is one of the widely studied biomarkers in human glioma. The purpose of this study was to comprehensively evaluate the significance of p53 expression in glioma grades and overall survival. We searched commonly used electronic databases to retrieve related articles of p53 expression in glioma. Overall, a total of 21 studies including 1322 glioma patients were finally screened out. We observed that the frequency of p53 immuno-positivity was higher in high-grade patients than that in low-grade category (63.8 vs. 41.6 %), and our statistic analysis indicated that p53 expression was associated with pathological grade of glioma (OR 2.93, 95 % CI 1.87-4.60, P < 0.00001). This significant correction was also found in 1-, 3- and 5-year overall survival. However, no positive relationship was found between age, sex, tumor size and p53 expression in patients with glioma. In conclusion, our results suggested that p53 immunohistochemical expression might have an effective usefulness in predicting the prognosis in patients with glioma.

  6. Expression and Prognostic Significance of p53 in Glioma Patients: A Meta-analysis.

    PubMed

    Jin, Yueling; Xiao, Weizhong; Song, Tingting; Feng, Guangjia; Dai, Zhensheng

    2016-07-01

    Glioma is a brain tumor deriving from the neoplastic glial cells or neuroglia. Due to its resistance to anticancer drugs and different disease progress of individuals, patients with high-grade glioma are difficult to completely cure, leading to a poor prognosis and low overall survival. Therefore, there is an urgent need to look for prognostic and diagnostic indicators that can predict glioma grades. P53 is one of the widely studied biomarkers in human glioma. The purpose of this study was to comprehensively evaluate the significance of p53 expression in glioma grades and overall survival. We searched commonly used electronic databases to retrieve related articles of p53 expression in glioma. Overall, a total of 21 studies including 1322 glioma patients were finally screened out. We observed that the frequency of p53 immuno-positivity was higher in high-grade patients than that in low-grade category (63.8 vs. 41.6 %), and our statistic analysis indicated that p53 expression was associated with pathological grade of glioma (OR 2.93, 95 % CI 1.87-4.60, P < 0.00001). This significant correction was also found in 1-, 3- and 5-year overall survival. However, no positive relationship was found between age, sex, tumor size and p53 expression in patients with glioma. In conclusion, our results suggested that p53 immunohistochemical expression might have an effective usefulness in predicting the prognosis in patients with glioma. PMID:27038932

  7. p53 and PCNA Expression in Keratocystic Odontogenic Tumors Compared with Selected Odontogenic Cysts

    PubMed Central

    Seyedmajidi, Maryam; Nafarzadeh, Shima; Siadati, Sepideh; Shafaee, Shahryar; Bijani, Ali; Keshmiri, Nazanin

    2013-01-01

    p53 and PCNA expression in keratocystic odontogenic tumors compared with selected odontogenic cysts Summary: The aim of this study was to evaluate p53 and PCNA expression in different odontogenic lesions regarding their different clinical behaviors. Slices prepared from 94 paraffin-embedded tissue blocks (25 radicular cysts (RC), 23 dentigerous cysts (DC), 23 keratocystic odontogenic tumors (KCOT) and 23 calcifying cystic odontogenic tumors (CCOT)) were stained with p53 and PCNA antibodies using immunohistochemistry procedure. The highest level of p53 expression was in the basal layer of RC, and the highest level of PCNA expression was in the suprabasal layer of KCOT. The differences of p53 expression in basal and suprabasal layers as well as PCNA expression in the suprabasal layer were significant but there was no significant difference in PCNA expression in the basal layer of these lesions. The expression of p53 in the basal layer of RC was higher than in other cysts. This may be due to intensive inflammatory infiltration. Also, the high level of PCNA expression in the suprabasal layer of KCOT may justify its neoplastic nature and tendency to recurrence. KCOT and calcifying cystic odontogenic tumors did not show similar expression of studied biomarkers. PMID:24551811

  8. Transcriptional Activation of p53 during Cold Induced Torpor in the 13-Lined Ground Squirrel Ictidomys tridecemlineatus

    PubMed Central

    Hefler, Joshua; Wu, Cheng-Wei; Storey, Kenneth B.

    2015-01-01

    The transcription factor p53 is located at the centre of multiple pathways relating the cellular response to stress. Commonly known as a tumor suppressor, it is responsible for initiating diverse actions to protect the integrity of the genome, ranging from cell cycle arrest to apoptosis. This study investigated the regulation of p53 protein in hibernating 13-lined ground squirrel Ictidomys tridecemlineatus during multiple stages of the torpor-arousal cycle. Transcript and protein levels of p53 were both elevated in the skeletal muscle during early and late torpor stages of the hibernation cycle. Nuclear localization of p53 was also increased during late torpor, and this is associated with an increase in its DNA binding activity and expression of p53 transcriptional targets p21CIP, gadd45α, and 14-3-3σ. The increase in p53 transcriptional activity appears to be independent of its phosphorylation at Ser-15, Ser-46, and Ser-392, consistent with an absence of checkpoint kinase activation during torpor. Sequence analysis revealed unique amino acid substitutions in the ground squirrel p53 protein, which may contribute to an increase in protein stability compared to nonhibernators. Overall, the study results provided evidences for a potential role of p53 in the protection of the skeletal muscle during torpor. PMID:26843984

  9. Transcriptional Activation of p53 during Cold Induced Torpor in the 13-Lined Ground Squirrel Ictidomys tridecemlineatus.

    PubMed

    Hefler, Joshua; Wu, Cheng-Wei; Storey, Kenneth B

    2015-01-01

    The transcription factor p53 is located at the centre of multiple pathways relating the cellular response to stress. Commonly known as a tumor suppressor, it is responsible for initiating diverse actions to protect the integrity of the genome, ranging from cell cycle arrest to apoptosis. This study investigated the regulation of p53 protein in hibernating 13-lined ground squirrel Ictidomys tridecemlineatus during multiple stages of the torpor-arousal cycle. Transcript and protein levels of p53 were both elevated in the skeletal muscle during early and late torpor stages of the hibernation cycle. Nuclear localization of p53 was also increased during late torpor, and this is associated with an increase in its DNA binding activity and expression of p53 transcriptional targets p21CIP, gadd45α, and 14-3-3σ. The increase in p53 transcriptional activity appears to be independent of its phosphorylation at Ser-15, Ser-46, and Ser-392, consistent with an absence of checkpoint kinase activation during torpor. Sequence analysis revealed unique amino acid substitutions in the ground squirrel p53 protein, which may contribute to an increase in protein stability compared to nonhibernators. Overall, the study results provided evidences for a potential role of p53 in the protection of the skeletal muscle during torpor.

  10. AID, p53 and MLH1 expression in early gastric neoplasms and the correlation with the background mucosa

    PubMed Central

    KAWATA, SOICHIRO; YASHIMA, KAZUO; YAMAMOTO, SOHEI; SASAKI, SHUJI; TAKEDA, YOHEI; HAYASHI, AKIHIRO; MATSUMOTO, KAZUYA; KAWAGUCHI, KOICHIRO; HARADA, KENICHI; MURAWAKI, YOSHIKAZU

    2015-01-01

    A number of tumor-associated genes have been associated with gastric cancer development. The present study evaluated differences in tumor-associated protein expression and phenotype among early gastric neoplasms, and correlated these data with those of the background mucosa. The expression of activation-induced cytidine deaminase (AID), p53 and MLH1 in 151 early gastric neoplasms [22 gastric adenomas, 92 intramucosal carcinomas (MCs), and 37 submucosal carcinomas (SMCs)] was examined immunohistochemically and compared with that of the corresponding background mucosal condition. The cellular phenotypes of the neoplasms and the corresponding background intestinal metaplasia were also determined. Aberrant AID, p53 and MLH1 expression was detected in 36.4, 0 and 0% of the adenomas, in 35.9, 32.6 and 16.3% of the MCs, and in 56.8, 62.2 and 21.6% of the SMCs, respectively. The frequency of aberrant AID and p53 expression in the SMCs was significantly increased compared with that in the MCs (AID, P<0.05; p53, P<0.01). Aberrant AID expression was significantly associated with p53 overexpression in the SMCs (P<0.01), but not in the adenomas or MCs. In addition, AID expression was associated with the severity of mononuclear cell activity in the non-cancerous mucosa adjacent to the tumor (P<0.05), particularly in the SMC cases. The percentage of MCs (34.8%) and SMCs (24.3%) that were of the gastric phenotype was higher compared with the percentage of adenomas (18.2%). These results indicated that p53 and MLH1 expression and a gastric phenotype may be important for carcinogenesis, and that chronic inflammation and AID and p53 expression are associated with submucosal progression. PMID:26622562

  11. Increases in apoptosis, caspase activity and expression of p53 and bax, and the transition between two types of mitochondrion-rich cells, in the gills of the climbing perch, Anabas testudineus, during a progressive acclimation from freshwater to seawater

    PubMed Central

    Ching, Biyun; Chen, Xiu L.; Yong, Jing H. A.; Wilson, Jonathan M.; Hiong, Kum C.; Sim, Eugene W. L.; Wong, Wai P.; Lam, Siew H.; Chew, Shit F.; Ip, Yuen K.

    2013-01-01

    This study aimed to test the hypothesis that branchial osmoregulatory acclimation involved increased apoptosis and replacement of mitochdonrion-rich cells (MRCs) in the climbing perch, Anabas testudineus, during a progressive acclimation from freshwater to seawater. A significant increase in branchial caspase-3/-7 activity was observed on day 4 (salinity 20), and an extensive TUNEL-positive apoptosis was detected on day 5 (salinity 25), indicating salinity-induced apoptosis had occurred. This was further supported by an up-regulation of branchial mRNA expression of p53, a key regulator of cell cycle arrest and apoptosis, between day 2 (salinity 10) and day 6 (seawater), and an increase in branchial p53 protein abundance on day 6. Seawater acclimation apparently activated both the extrinsic and intrinsic pathways, as reflected by significant increases in branchial caspase-8 and caspase-9 activities. The involvement of the intrinsic pathway was confirmed by the significant increase in branchial mRNA expression of bax between day 4 (salinity 20) and day 6 (seawater). Western blotting results revealed the presence of a freshwater Na+/K+-ATPase (Nka) α-isoform, Nka α1a, and a seawater isoform, Nka α1b, the protein abundance of which decreased and increased, respectively, during seawater acclimation. Immunofluorescence microscopy revealed the presence of two types of MRCs distinctly different in sizes, and confirmed that the reduction in Nka α1a expression, and the prominent increases in expression of Nka α1b, Na+:K+:2Cl− cotransporter 1, and cystic fibrosis transmembrane conductance regulator Cl− channel coincided with the salinity-induced apoptotic event. Since modulation of existing MRCs alone could not have led to extensive salinity-induced apoptosis, it is probable that some, if not all, freshwater-type MRCs could have been removed through increased apoptosis and subsequently replaced by seawater-type MRCs in the gills of A. testudineus during seawater

  12. Gain-of-function of mutant p53: mutant p53 enhances cancer progression by inhibiting KLF17 expression in invasive breast carcinoma cells.

    PubMed

    Ali, Amjad; Shah, Abdus Saboor; Ahmad, Ayaz

    2014-11-01

    Kruppel-like-factor 17 (KLF17) is a negative regulator of metastasis and epithelial-mesenchymal-transition (EMT). However, its expression is downregulated in metastatic breast cancer that contains p53 mutations. Here, we show that mutant-p53 plays a key role to suppress KLF17 and thereby enhances cancer progression, which defines novel gain-of-function (GOF) of mutant-p53. Mutant-p53 interacts with KLF17 and antagonizes KLF17 mediated EMT genes transcription. Depletion of KLF17 promotes cell viability, decreases apoptosis and induces drug resistance in metastatic breast cancer cells. KLF17 suppresses cell migration and invasion by decreasing CD44, PAI-1 and Cyclin-D1 expressions. Taken together, our results show that KLF17 is important for the suppression of metastasis and could be a potential therapeutic target during chemotherapy.

  13. 2-Sulfonylpyrimidines: Mild alkylating agents with anticancer activity toward p53-compromised cells.

    PubMed

    Bauer, Matthias R; Joerger, Andreas C; Fersht, Alan R

    2016-09-01

    The tumor suppressor p53 has the most frequently mutated gene in human cancers. Many of p53's oncogenic mutants are just destabilized and rapidly aggregate, and are targets for stabilization by drugs. We found certain 2-sulfonylpyrimidines, including one named PK11007, to be mild thiol alkylators with anticancer activity in several cell lines, especially those with mutationally compromised p53. PK11007 acted by two routes: p53 dependent and p53 independent. PK11007 stabilized p53 in vitro via selective alkylation of two surface-exposed cysteines without compromising its DNA binding activity. Unstable p53 was reactivated by PK11007 in some cancer cell lines, leading to up-regulation of p53 target genes such as p21 and PUMA. More generally, there was cell death that was independent of p53 but dependent on glutathione depletion and associated with highly elevated levels of reactive oxygen species and induction of endoplasmic reticulum (ER) stress, as also found for the anticancer agent PRIMA-1(MET)(APR-246). PK11007 may be a lead for anticancer drugs that target cells with nonfunctional p53 or impaired reactive oxygen species (ROS) detoxification in a wide variety of mutant p53 cells.

  14. 2-Sulfonylpyrimidines: Mild alkylating agents with anticancer activity toward p53-compromised cells.

    PubMed

    Bauer, Matthias R; Joerger, Andreas C; Fersht, Alan R

    2016-09-01

    The tumor suppressor p53 has the most frequently mutated gene in human cancers. Many of p53's oncogenic mutants are just destabilized and rapidly aggregate, and are targets for stabilization by drugs. We found certain 2-sulfonylpyrimidines, including one named PK11007, to be mild thiol alkylators with anticancer activity in several cell lines, especially those with mutationally compromised p53. PK11007 acted by two routes: p53 dependent and p53 independent. PK11007 stabilized p53 in vitro via selective alkylation of two surface-exposed cysteines without compromising its DNA binding activity. Unstable p53 was reactivated by PK11007 in some cancer cell lines, leading to up-regulation of p53 target genes such as p21 and PUMA. More generally, there was cell death that was independent of p53 but dependent on glutathione depletion and associated with highly elevated levels of reactive oxygen species and induction of endoplasmic reticulum (ER) stress, as also found for the anticancer agent PRIMA-1(MET)(APR-246). PK11007 may be a lead for anticancer drugs that target cells with nonfunctional p53 or impaired reactive oxygen species (ROS) detoxification in a wide variety of mutant p53 cells. PMID:27551077

  15. Histone modifications and p53 binding poise the p21 promoter for activation in human embryonic stem cells

    PubMed Central

    Itahana, Yoko; Zhang, Jinqiu; Göke, Jonathan; Vardy, Leah A.; Han, Rachel; Iwamoto, Kozue; Cukuroglu, Engin; Robson, Paul; Pouladi, Mahmoud A.; Colman, Alan; Itahana, Koji

    2016-01-01

    The high proliferation rate of embryonic stem cells (ESCs) is thought to arise partly from very low expression of p21. However, how p21 is suppressed in ESCs has been unclear. We found that p53 binds to the p21 promoter in human ESCs (hESCs) as efficiently as in differentiated human mesenchymal stem cells, however it does not promote p21 transcription in hESCs. We observed an enrichment for both the repressive histone H3K27me3 and activating histone H3K4me3 chromatin marks at the p21 locus in hESCs, suggesting it is a suppressed, bivalent domain which overrides activation by p53. Reducing H3K27me3 methylation in hESCs rescued p21 expression, and ectopic expression of p21 in hESCs triggered their differentiation. Further, we uncovered a subset of bivalent promoters bound by p53 in hESCs that are similarly induced upon differentiation in a p53-dependent manner, whereas p53 promotes the transcription of other target genes which do not show an enrichment of H3K27me3 in ESCs. Our studies reveal a unique epigenetic strategy used by ESCs to poise undesired p53 target genes, thus balancing the maintenance of pluripotency in the undifferentiated state with a robust response to differentiation signals, while utilizing p53 activity to maintain genomic stability and homeostasis in ESCs. PMID:27346849

  16. Histone modifications and p53 binding poise the p21 promoter for activation in human embryonic stem cells.

    PubMed

    Itahana, Yoko; Zhang, Jinqiu; Göke, Jonathan; Vardy, Leah A; Han, Rachel; Iwamoto, Kozue; Cukuroglu, Engin; Robson, Paul; Pouladi, Mahmoud A; Colman, Alan; Itahana, Koji

    2016-06-27

    The high proliferation rate of embryonic stem cells (ESCs) is thought to arise partly from very low expression of p21. However, how p21 is suppressed in ESCs has been unclear. We found that p53 binds to the p21 promoter in human ESCs (hESCs) as efficiently as in differentiated human mesenchymal stem cells, however it does not promote p21 transcription in hESCs. We observed an enrichment for both the repressive histone H3K27me3 and activating histone H3K4me3 chromatin marks at the p21 locus in hESCs, suggesting it is a suppressed, bivalent domain which overrides activation by p53. Reducing H3K27me3 methylation in hESCs rescued p21 expression, and ectopic expression of p21 in hESCs triggered their differentiation. Further, we uncovered a subset of bivalent promoters bound by p53 in hESCs that are similarly induced upon differentiation in a p53-dependent manner, whereas p53 promotes the transcription of other target genes which do not show an enrichment of H3K27me3 in ESCs. Our studies reveal a unique epigenetic strategy used by ESCs to poise undesired p53 target genes, thus balancing the maintenance of pluripotency in the undifferentiated state with a robust response to differentiation signals, while utilizing p53 activity to maintain genomic stability and homeostasis in ESCs.

  17. Histone modifications and p53 binding poise the p21 promoter for activation in human embryonic stem cells.

    PubMed

    Itahana, Yoko; Zhang, Jinqiu; Göke, Jonathan; Vardy, Leah A; Han, Rachel; Iwamoto, Kozue; Cukuroglu, Engin; Robson, Paul; Pouladi, Mahmoud A; Colman, Alan; Itahana, Koji

    2016-01-01

    The high proliferation rate of embryonic stem cells (ESCs) is thought to arise partly from very low expression of p21. However, how p21 is suppressed in ESCs has been unclear. We found that p53 binds to the p21 promoter in human ESCs (hESCs) as efficiently as in differentiated human mesenchymal stem cells, however it does not promote p21 transcription in hESCs. We observed an enrichment for both the repressive histone H3K27me3 and activating histone H3K4me3 chromatin marks at the p21 locus in hESCs, suggesting it is a suppressed, bivalent domain which overrides activation by p53. Reducing H3K27me3 methylation in hESCs rescued p21 expression, and ectopic expression of p21 in hESCs triggered their differentiation. Further, we uncovered a subset of bivalent promoters bound by p53 in hESCs that are similarly induced upon differentiation in a p53-dependent manner, whereas p53 promotes the transcription of other target genes which do not show an enrichment of H3K27me3 in ESCs. Our studies reveal a unique epigenetic strategy used by ESCs to poise undesired p53 target genes, thus balancing the maintenance of pluripotency in the undifferentiated state with a robust response to differentiation signals, while utilizing p53 activity to maintain genomic stability and homeostasis in ESCs. PMID:27346849

  18. Association of p53 and WAF1 expression with apoptosis in diffuse alveolar damage.

    PubMed Central

    Guinee, D.; Fleming, M.; Hayashi, T.; Woodward, M.; Zhang, J.; Walls, J.; Koss, M.; Ferrans, V.; Travis, W.

    1996-01-01

    Little is known about alterations in cell cycle regulatory proteins such as p53 and WAF1 in diffuse alveolar damage (DAD). We hypothesized that up-regulation of p53 and WAF1 in type II pneumocytes in DAD is associated with underlying DNA damage and apoptosis. Twenty cases of DAD and twenty control specimens of lung adjacent to resected tumors were studied. Immunohistochemical stains with antibodies recognizing p53 and WAF1 were performed, and apoptosis was assessed in sixteen cases by the nick end-labeling method. We identified p53 expression and apoptosis in all cases of DAD but not in any of the control lungs. We detected WAF1 expression in nineteen of twenty cases of DAD and in sixteen of twenty control lungs. In general, the distribution and intensity of WAF1 staining were greater in DAD than in control lungs. Staining for both p53 and WAF1 and labeling of apoptotic cells in DAD were usually focal ( < 10% of cells) and predominantly localized in type II pneumocytes. We conclude that increased p53 and WAF1 expression in DAD reflects normal physiological up-regulation in response to cellular and DNA damage and is associated with apoptosis of type II pneumocytes. p53-dependent apoptosis may contribute to the pathogenesis of this disease. Images Figure 1 Figure 2 PMID:8701992

  19. p53 Small Molecule Inhibitor Enhances Temozolomide Cytotoxic Activity against Intracranial Glioblastoma Xenografts

    PubMed Central

    Dinca, Eduard B.; Lu, Kan V.; Sarkaria, Jann N.; Pieper, Russell O.; Prados, Michael D.; Haas-Kogan, Daphne A.; VandenBerg, Scott R.; Berger, Mitchel S.; James, C. David

    2010-01-01

    In this study we investigated corresponding precursor and active forms of a p53 small molecule inhibitor for effect on temozolomide (TMZ) anti-tumor activity against glioblastoma (GBM), using both in vitro and in vivo experimental approaches. Results from in vitro cell viability analysis showed that the cytotoxic activity of TMZ was substantially increased when GBMs with wild-type p53 were co-treated with the active form of p53 inhibitor, and this heightened cytotoxic response was accompanied by increased PARP cleavage as well as elevated cellular phospho-H2AX. Analysis of the same series of GBMs, as intracranial xenografts in athymic mice, and administering corresponding p53 inhibitor precursor, that is converted to the active compound in vivo, yielded results consistent with the in vitro analyses: i.e., TMZ + p53 inhibitor precursor co-treatment, of three distinct wild-type p53 GBM xenografts, resulted in significant enhancement of TMZ anti-tumor effect relative to treatment with TMZ alone, as indicated by serial bioluminescence monitoring as well as survival analysis (p < 0.001 for co-treatment survival benefit in each case). Mice receiving intracranial injection with p53 null GBM showed similar survival benefit from TMZ treatment regardless of the presence or absence of p53 inhibitor precursor. In total, our results indicate that the p53 active and precursor inhibitor pair enhance TMZ cytotoxicity in vitro and in vivo, respectively, and do so in a p53-dependent manner. PMID:19074867

  20. Structure of the Tfb1/p53 complex: Insights into the interaction between the p62/Tfb1 subunit of TFIIH and the activation domain of p53.

    PubMed

    Di Lello, Paola; Jenkins, Lisa M Miller; Jones, Tamara N; Nguyen, Bao D; Hara, Toshiaki; Yamaguchi, Hiroshi; Dikeakos, Jimmy D; Appella, Ettore; Legault, Pascale; Omichinski, James G

    2006-06-23

    The interaction between the amino-terminal transactivation domain (TAD) of p53 and TFIIH is directly correlated with the ability of p53 to activate both transcription initiation and elongation. We have identified a region within the p53 TAD that specifically interacts with the pleckstrin homology (PH) domain of the p62 and Tfb1 subunits of human and yeast TFIIH. We have solved the 3D structure of a complex between the p53 TAD and the PH domain of Tfb1 by NMR spectroscopy. Our structure reveals that p53 forms a nine residue amphipathic alpha helix (residues 47-55) upon binding to Tfb1. In addition, we demonstrate that diphosphorylation of p53 at Ser46 and Thr55 leads to a significant enhancement in p53 binding to p62 and Tfb1. These results indicate that a phosphorylation cascade involving Ser46 and Thr55 of p53 could play an important role in the regulation of select p53 target genes. PMID:16793543

  1. The transcription factor p53: Not a repressor, solely an activator

    PubMed Central

    Fischer, Martin; Steiner, Lydia; Engeland, Kurt

    2014-01-01

    The predominant function of the tumor suppressor p53 is transcriptional regulation. It is generally accepted that p53-dependent transcriptional activation occurs by binding to a specific recognition site in promoters of target genes. Additionally, several models for p53-dependent transcriptional repression have been postulated. Here, we evaluate these models based on a computational meta-analysis of genome-wide data. Surprisingly, several major models of p53-dependent gene regulation are implausible. Meta-analysis of large-scale data is unable to confirm reports on directly repressed p53 target genes and falsifies models of direct repression. This notion is supported by experimental re-analysis of representative genes reported as directly repressed by p53. Therefore, p53 is not a direct repressor of transcription, but solely activates its target genes. Moreover, models based on interference of p53 with activating transcription factors as well as models based on the function of ncRNAs are also not supported by the meta-analysis. As an alternative to models of direct repression, the meta-analysis leads to the conclusion that p53 represses transcription indirectly by activation of the p53-p21-DREAM/RB pathway. PMID:25486564

  2. Activation of p53 with ilimaquinone and ethylsmenoquinone, marine sponge metabolites, induces apoptosis and autophagy in colon cancer cells.

    PubMed

    Lee, Hyun-Young; Chung, Kyu Jin; Hwang, In Hyun; Gwak, Jungsuk; Park, Seoyoung; Ju, Bong Gun; Yun, Eunju; Kim, Dong-Eun; Chung, Young-Hwa; Na, MinKyun; Song, Gyu-Yong; Oh, Sangtaek

    2015-01-01

    The tumor suppressor, p53, plays an essential role in the cellular response to stress through regulating the expression of genes involved in cell cycle arrest, apoptosis and autophagy. Here, we used a cell-based reporter system for the detection of p53 response transcription to identify the marine sponge metabolites, ilimaquinone and ethylsmenoquinone, as activators of the p53 pathway. We demonstrated that ilimaquinone and ethylsmenoquinone efficiently stabilize the p53 protein through promotion of p53 phosphorylation at Ser15 in both HCT116 and RKO colon cancer cells. Moreover, both compounds upregulate the expression of p21WAF1/CIP1, a p53-dependent gene, and suppress proliferation of colon cancer cells. In addition, ilimaquinone and ethylsmenoquinone induced G2/M cell cycle arrest and increased caspase-3 cleavage and the population of cells that positively stained with Annexin V-FITC, both of which are typical biochemical markers of apoptosis. Furthermore, autophagy was elicited by both compounds, as indicated by microtubule-associated protein 1 light chain 3 (LC3) puncta formations and LC3-II turnover in HCT116 cells. Our findings suggest that ilimaquinone and ethylsmenoquinone exert their anti-cancer activity by activation of the p53 pathway and may have significant potential as chemo-preventive and therapeutic agents for human colon cancer. PMID:25603347

  3. Expression level of DEK in chronic lymphocytic leukemia is regulated by fludarabine and Nutlin-3 depending on p53 status

    PubMed Central

    Wang, Dong-Mei; Liu, Ling; Fan, Lei; Zou, Zhi-Jian; Zhang, Li-Na; Yang, Shu; Li, Jian-Yong; Xu, Wei

    2012-01-01

    Human oncogene DEK has been shown to be upregulated in a number of neoplasms. The purpose of this study was to investigate DEK expression level in chronic lymphocytic leukemia (CLL), analyze the correlation between DEK expression and CLL prognostic markers, and characterize the role of DEK in the response to either chemotherapeutic drugs or nongenotoxic activators of the p53 pathway. DEK mRNA was evaluated by real-time quantitative reverse transcriptase-polymerase chain reaction (qPCR), and primary CLL samples were treated in vitro with either fludarabine or Nutlin-3 to explore the interaction of p53 status and DEK mRNA expression. The median expression levels of DEK mRNA were 6.792 × 10−2 (1.438 × 10−2−3.201 × 10−1) in 65 patients with CLL. A marked increase of DEK mRNA expression was observed in the CLL patients with unmutated immunoglobulin heavy chain variable (IGHV) gene (p = 0.025), CD38-positive (p = 0.047), del(17p13) (p = 0.006). Both fludarabine and Nutlin-3 significantly downregulated DEK in the primary CLL cells which were with normal function of p53, or without deletion or mutation of p53 (p = 0.042, p = 0.038; p = 0.021, p = 0.017; p = 0.037, p = 0.017). However, the downregulation of DEK was not observed in the primary CLL cells which were with dysfunction of p53, or with deletion or mutation of p53 (p = 0.834, p = 0.477; p = 0.111, p = 0.378; p = 0.263, p = 0.378). These data show that DEK might be applied for the assessment of prognosis in patients with CLL, and fludarabine and Nutlin-3 regulate DEK expression depended on p53 status. PMID:23052131

  4. Differential p53 protein expression in breast cancer fine needle aspirates: the potential for in vivo monitoring

    PubMed Central

    Ball, H M-L; Hupp, T R; Ziyaie, D; Purdie, C A; Kernohan, N M; Thompson, A M

    2001-01-01

    Fine needle aspiration (FNA) biopsy is the least invasive method of sampling breast cancer in vivo and provides material for breast cancer diagnosis. FNA has also been used to examine cellular markers to predict and monitor the effects of therapy. The aim of this study was to assess the accuracy of using FNA material compared with resected cancer for Western blotting studies of the p53 pathway, a key to tumour response to radiotherapy and chemotherapy. Paired samples of breast cancer FNAs collected pre-operatively and post-operatively were compared with tissue samples obtained at the time of surgical resection. Western blots were probed for p53 using the antibodies DO12 and DO1, and for levels of downstream proteins p21/WAF1 and p27. The protein extracted by FNA was sufficient for up to 5 Western blot studies. p53 expression and phosphorylation did not differ significantly pre- and post-operatively, indicating that intra-operative manipulation does not affect p53 expression or downstream activation in breast cancer. However, expression of p53, p21 and p27 varied between individual patients suggesting a range of p53 pathway activation in breast cancer. Immunohistochemistry confirmed that the cancer cells accounted for the protein expression detected on Western blots. FNA yields adequate protein for Western blotting studies and could be used as a method to monitor p53 activity in vivo before and during anti-cancer treatment possibly providing early evidence of tumour response to therapy. © 2001 Cancer Research Campaign  http://www.bjcancer.com PMID:11710820

  5. Loss of tumour suppressor PTEN expression in renal injury initiates SMAD3- and p53-dependent fibrotic responses.

    PubMed

    Samarakoon, Rohan; Helo, Sevann; Dobberfuhl, Amy D; Khakoo, Nidah S; Falke, Lucas; Overstreet, Jessica M; Goldschmeding, Roel; Higgins, Paul J

    2015-08-01

    Deregulation of the tumour suppressor PTEN occurs in lung and skin fibrosis and diabetic and ischaemic renal injury. However, the potential role of PTEN and associated mechanisms in the progression of kidney fibrosis is unknown. Tubular and interstitial PTEN expression was dramatically decreased in several models of renal injury, including aristolochic acid nephropathy (AAN), streptozotocin (STZ)-mediated injury and ureteral unilateral obstruction (UUO), correlating with Akt, p53 and SMAD3 activation and fibrosis. Stable silencing of PTEN in HK-2 human tubular epithelial cells induced dedifferentiation and CTGF, PAI-1, vimentin, α-SMA and fibronectin expression, compared to HK-2 cells expressing control shRNA. Furthermore, PTEN knockdown stimulated Akt, SMAD3 and p53(Ser15) phosphorylation, with an accompanying decrease in population density and an increase in epithelial G1 cell cycle arrest. SMAD3 or p53 gene silencing or pharmacological blockade partially suppressed fibrotic gene expression and relieved growth inhibition orchestrated by deficiency or inhibition of PTEN. Similarly, shRNA suppression of PAI-1 rescued the PTEN loss-associated epithelial proliferative arrest. Moreover, TGFβ1-initiated fibrotic gene expression is further enhanced by PTEN depletion. Combined TGFβ1 treatment and PTEN silencing potentiated epithelial cell death via p53-dependent pathways. Thus, PTEN loss initiates tubular dysfunction via SMAD3- and p53-mediated fibrotic gene induction, with accompanying PAI-1-dependent proliferative arrest, and cooperates with TGFβ1 to induce the expression of profibrotic genes and tubular apoptosis.

  6. Extensive Post-translational Modification of Active and Inactivated Forms of Endogenous p53*

    PubMed Central

    DeHart, Caroline J.; Chahal, Jasdave S.; Flint, S. J.; Perlman, David H.

    2014-01-01

    The p53 tumor suppressor protein accumulates to very high concentrations in normal human fibroblasts infected by adenovirus type 5 mutants that cannot direct assembly of the viral E1B 55-kDa protein-containing E3 ubiquitin ligase that targets p53 for degradation. Despite high concentrations of nuclear p53, the p53 transcriptional program is not induced in these infected cells. We exploited this system to examine select post-translational modifications (PTMs) present on a transcriptionally inert population of endogenous human p53, as well as on p53 activated in response to etoposide treatment of normal human fibroblasts. These forms of p53 were purified from whole cell lysates by means of immunoaffinity chromatography and SDS-PAGE, and peptides derived from them were subjected to nano-ultra-high-performance LC-MS and MS/MS analyses on a high-resolution accurate-mass MS platform (data available via ProteomeXchange, PXD000464). We identified an unexpectedly large number of PTMs, comprising phosphorylation of Ser and Thr residues, methylation of Arg residues, and acetylation, ubiquitinylation, and methylation of Lys residues—for example, some 150 previously undescribed modifications of p53 isolated from infected cells. These modifications were distributed across all functional domains of both forms of the endogenous human p53 protein, as well as those of an orthologous population of p53 isolated from COS-1 cells. Despite the differences in activity, including greater in vitro sequence-specific DNA binding activity exhibited by p53 isolated from etoposide-treated cells, few differences were observed in the location, nature, or relative frequencies of PTMs on the two populations of human p53. Indeed, the wealth of PTMs that we have identified is consistent with a far greater degree of complex, combinatorial regulation of p53 by PTM than previously anticipated. PMID:24056736

  7. Positive regulation of p53 stability and activity by the deubiquitinating enzyme Otubain 1.

    PubMed

    Sun, Xiao-Xin; Challagundla, Kishore B; Dai, Mu-Shui

    2012-02-01

    The ubiquitin (Ub)-proteasome system plays a pivotal role in the regulation of p53 protein stability and activity. p53 is ubiquitinated and destabilized by MDM2 and several other Ub E3s, whereas it is deubiquitinated and stabilized by Ub-specific protease (USP)7 and USP10. Here we show that the ovarian tumour domain-containing Ub aldehyde-binding protein 1 (Otub1) is a novel p53 regulator. Otub1 directly suppresses MDM2-mediated p53 ubiquitination in cells and in vitro. Overexpression of Otub1 drastically stabilizes and activates p53, leading to apoptosis and marked inhibition of cell proliferation in a p53-dependent manner. These effects are independent of its catalytic activity but require residue Asp88. Mutation of Asp88 to Ala (Otub1(D88A)) abolishes activity of Otub1 to suppress p53 ubiquitination. Further, wild-type Otub1 and its catalytic mutant (Otub1(C91S)), but not Otub1(D88A), bind to the MDM2 cognate E2, UbcH5, and suppress its Ub-conjugating activity in vitro. Overexpression of Otub1(D88A) or ablation of endogenous Otub1 by siRNA markedly impaired p53 stabilization and activation in response to DNA damage. Together, these results reveal a novel function for Otub1 in regulating p53 stability and activity.

  8. High-level expression of human tumour suppressor P53 in the methylotrophic yeast: Pichia pastoris.

    PubMed

    Abdelmoula-Souissi, Salma; Rekik, Leila; Gargouri, Ali; Mokdad-Gargouri, Raja

    2007-08-01

    The human tumour suppressor P53 is a key protein involved in tumour suppression. P53 acts as a "guardian of genome" by regulating many target genes involved in cell cycle regulation, DNA repair and apoptosis. We report the P53 expression by the methylotrophic yeast Pichia pastoris using the methanol inducible AOX1 promoter. We have produced the rP53 in intracellular form as well as secreted using the Saccharomyces cerevisiae alpha-mating factor prepro-leader sequence in two genetic contexts of Pichia, Mut(s) and Mut(+). The intracellular P53 was successfully produced by Mut(s) (KM71) as well as Mut(+) (X33) strains, however, the secreted form was mainly observed in the Mut(s) strain, despite a higher number of p53 copies integrated in the Mut(+) strain. Interestingly, in Mut(s) phenotype, the medium pH influences markedly the rP53 production since it was higher at pH 7 than 6. PMID:17482479

  9. Valproic Acid Induces the Hyperacetylation of P53, Expression of P53 Target Genes, and Markers of the Intrinsic Apoptotic Pathway in Midorganogenesis Murine Limbs.

    PubMed

    Paradis, France-Hélène; Hales, Barbara F

    2015-10-01

    In utero exposure to valproic acid (VPA), an anticonvulsant and histone deacetylase inhibitor (HDACi), increases the risk of congenital malformations. Although the mechanisms leading to the teratogenicity of VPA remain unsolved, several HDAC inhibitors increase cell death in cancer cell lines and embryonic tissues. Moreover, P53, the master regulator of apoptosis, is an established HDAC target. The purpose of this study was to investigate the effects of VPA on P53 signaling and markers of apoptosis during midorganogenesis in vitro limb development. Timed-pregnant CD1 mice (gestation day 12) were euthanized; embryonic forelimbs were excised and cultured in vitro for 3, 6, 12, or 24 hr in the presence or absence of VPA or valpromide (VPD), a non-HDACi analog of VPA. Quantitative RT-PCR and Western blots were used to assess the expression of candidate genes and proteins involved in P53 signaling and apoptosis. P53 hyperacetylation and a decrease (Survivin/Birc5 and Bcl2) or an increase (p21/Cdkn1a) in the expression of p53 target genes was observed only in VPA-exposed limbs. VPA exposure also triggered an increase in markers of apoptosis and DNA damage; the concentrations of cleaved caspase 9 and caspase 3, cleaved-poly (ADP-ribose) polymerase, and γ-H2AX were increased in VPA-exposed limbs. VPD treatment caused a small but significant increase in cleaved caspase 3. Thus, in vitro exposure to an HDACi such as VPA leads to P53 hyperacetylation, enhances the expression of P53 target genes, and triggers an increase in apoptosis that may contribute to teratogenicity.

  10. Exercise Activates p53 and Negatively Regulates IGF-1 Pathway in Epidermis within a Skin Cancer Model.

    PubMed

    Yu, Miao; King, Brenee; Ewert, Emily; Su, Xiaoyu; Mardiyati, Nur; Zhao, Zhihui; Wang, Weiqun

    2016-01-01

    Exercise has been previously reported to lower cancer risk through reducing circulating IGF-1 and IGF-1-dependent signaling in a mouse skin cancer model. This study aims to investigate the underlying mechanisms by which exercise may down-regulate the IGF-1 pathway via p53 and p53-related regulators in the skin epidermis. Female SENCAR mice were pair-fed an AIN-93 diet with or without 10-week treadmill exercise at 20 m/min, 60 min/day and 5 days/week. Animals were topically treated with TPA 2 hours before sacrifice and the target proteins in the epidermis were analyzed by both immunohistochemistry and Western blot. Under TPA or vehicle treatment, MDM2 expression was significantly reduced in exercised mice when compared with sedentary control. Meanwhile, p53 was significantly elevated. In addition, p53-transcriptioned proteins, i.e., p21, IGFBP-3, and PTEN, increased in response to exercise. There was a synergy effect between exercise and TPA on the decreased MDM2 and increased p53, but not p53-transcripted proteins. Taken together, exercise appeared to activate p53, resulting in enhanced expression of p21, IGFBP-3, and PTEN that might induce a negative regulation of IGF-1 pathway and thus contribute to the observed cancer prevention by exercise in this skin cancer model. PMID:27509024

  11. Exercise Activates p53 and Negatively Regulates IGF-1 Pathway in Epidermis within a Skin Cancer Model

    PubMed Central

    Yu, Miao; King, Brenee; Ewert, Emily; Su, Xiaoyu; Mardiyati, Nur; Zhao, Zhihui; Wang, Weiqun

    2016-01-01

    Exercise has been previously reported to lower cancer risk through reducing circulating IGF-1 and IGF-1-dependent signaling in a mouse skin cancer model. This study aims to investigate the underlying mechanisms by which exercise may down-regulate the IGF-1 pathway via p53 and p53-related regulators in the skin epidermis. Female SENCAR mice were pair-fed an AIN-93 diet with or without 10-week treadmill exercise at 20 m/min, 60 min/day and 5 days/week. Animals were topically treated with TPA 2 hours before sacrifice and the target proteins in the epidermis were analyzed by both immunohistochemistry and Western blot. Under TPA or vehicle treatment, MDM2 expression was significantly reduced in exercised mice when compared with sedentary control. Meanwhile, p53 was significantly elevated. In addition, p53-transcriptioned proteins, i.e., p21, IGFBP-3, and PTEN, increased in response to exercise. There was a synergy effect between exercise and TPA on the decreased MDM2 and increased p53, but not p53-transcripted proteins. Taken together, exercise appeared to activate p53, resulting in enhanced expression of p21, IGFBP-3, and PTEN that might induce a negative regulation of IGF-1 pathway and thus contribute to the observed cancer prevention by exercise in this skin cancer model. PMID:27509024

  12. IKK is a therapeutic target in KRAS-Induced lung cancer with disrupted p53 activity

    PubMed Central

    Bassères, Daniela S.; Ebbs, Aaron; Cogswell, Patricia C.; Baldwin, Albert S.

    2014-01-01

    Activating mutations in KRAS are prevalent in cancer, but therapies targeted to oncogenic RAS have been ineffective to date. These results argue that targeting downstream effectors of RAS will be an alternative route for blocking RAS-driven oncogenic pathways. We and others have shown that oncogenic RAS activates the NF-κB transcription factor pathway and that KRAS-induced lung tumorigenesis is suppressed by expression of a degradation-resistant form of the IκBα inhibitor or by genetic deletion of IKKβ or the RELA/p65 subunit of NF-κB. Here, genetic and pharmacological approaches were utilized to inactivate IKK in human primary lung epithelial cells transformed by KRAS, as well as KRAS mutant lung cancer cell lines. Administration of the highly specific IKKβ inhibitor Compound A (CmpdA) led to NF-κB inhibition in different KRAS mutant lung cells and siRNA-mediated knockdown of IKKα or IKKβ reduced activity of the NF-κB canonical pathway. Next, we determined that both IKKα and IKKβ contribute to oncogenic properties of KRAS mutant lung cells, particularly when p53 activity is disrupted. Based on these results, CmpdA was tested for potential therapeutic intervention in the Kras-induced lung cancer mouse model (LSL-KrasG12D) combined with loss of p53 (LSL-KrasG12D/p53fl/fl). CmpdA treatment was well tolerated and mice treated with this IKKβ inhibitor presented smaller and lower grade tumors than mice treated with placebo. Additionally, IKKβ inhibition reduced inflammation and angiogenesis. These results support the concept of targeting IKK as a therapeutic approach for oncogenic RAS-driven tumors with altered p53 activity. PMID:24955217

  13. Immunohistochemical expression of p53 in breast carcinoma is associated with the intron 1 BglII polymorphism of the p53 gene.

    PubMed

    Trejo-Becerril, C; Sarmiento, R G; Abad, M M; Ichaso, N; Delgado, R; Cruz, J J; Dueñas-González, A

    2000-09-18

    Breast carcinoma is a public health problem worldwide. It is known that both genetic and environmental factors are important for breast carcinogenesis and that structural and/or functional alterations at p53 gene are commonly observed in breast tumors. In addition, polymorphisms of several genes in either their coding or non-coding sequences have been found related to cancer risk and/or clinicopathological characteristics of tumors. In this study we have evaluated the intron 1 BglII polymorphism of the p53 gene with a PCR-based approach in 117 cases of breast cancer and 102 healthy women and its association with the immunohistochemical expression of p53 in the tumors. The results showed that the presence of the polymorphism (allele 2) is highly associated with the tumor expression of p53 (p<0.0001) and that there is a trend for increased frequency of allele 2 in cases than in controls (p=0.2376). These data suggest that the germ-line variation in the intron 1 of the p53 gene could produce functional or structural changes of the protein that is reflected by its abnormal expression.

  14. Differential Expressions of p53, p53R2, hRRM2 and PBR in Chronic Lymphocytic Leukemia: A Correlation with Intracellular Cholesterol.

    PubMed

    Verma, Ankit; Chandra, N C

    2016-07-01

    Regulation of intracellular cholesterol homeostasis exists under balance between intracellular biosynthesis and uptake from extracellular origin by cell surface transport proteins. Expected role of cholesterol on either tumor suppressor gene and/or DNA synthesis has been aimed in the present study to explore intracellular cholesterol homeostasis in CLL subjects. Higher expressions of p53R2 (p53 dependent subunit of ribonucleotide reductase) and p53 were found in lymphocytes of chronic human lymphocytic leukemia as comparison to their normal counterparts. Inverse relation was found with p53 independent R2 subunit (in human hRRM2) of ribonucleotide reductase, which was found to be decreased from its control group. More expression of peripheral type benzodiazepine receptor, a cholesterol transporter, was noticed in isolated nuclear fraction with simultaneous increase of cholesterol concentration in cytoplasmic and nuclear compartments. A parallel increase of cholesterol in cell nucleus with increased p53R2 expression shows priority of the involvement of cholesterol in the process of cell replication.

  15. Expression and mutation patterns of p53 in benign and malignant salivary gland tumors.

    PubMed

    Nordkvist, A; Röijer, E; Bang, G; Gustafsson, H; Behrendt, M; Ryd, W; Thoresen, S; Donath, K; Stenman, G

    2000-03-01

    The expression and mutation patterns of p53 were studied in a series of 68 benign pleomorphic adenomas and 237 malignant salivary gland tumors. p53 overexpression (nuclear staining exceeding 10%) was detected in 20% of the malignant salivary gland tumors, with the highest prevalence observed in polymorphous low grade adenocarcinoma, squamous cell carcinoma, and carcinoma ex pleomorphic adenoma and the lowest in adenoid cystic carcinoma and acinic cell carcinoma. In contrast, none of the 68 benign pleomorphic adenomas had nuclear staining exceeding 10%. SSCP and nucleotide sequence analysis of exons 4 to 9 of p53 in 19 malignant tumors revealed 9 mutations in 7 tumors. Our findings indicate that p53 may be a useful marker to help discriminate between benign and malignant salivary gland tumors.

  16. Expression profiling of cutaneous squamous cell carcinoma with perineural invasion implicates the p53 pathway in the process

    PubMed Central

    Warren, Timothy A.; Broit, Natasa; Simmons, Jacinta L.; Pierce, Carly J.; Chawla, Sharad; Lambie, Duncan L. J.; Quagliotto, Gary; Brown, Ian S.; Parsons, Peter G.; Panizza, Benedict J.; Boyle, Glen M.

    2016-01-01

    Squamous cell carcinoma (SCC) is the second most common cancer worldwide and accounts for approximately 30% of all keratinocyte cancers. The vast majority of cutaneous SCCs of the head and neck (cSCCHN) are readily curable with surgery and/or radiotherapy unless high-risk features are present. Perineural invasion (PNI) is recognized as one of these high-risk features. The molecular changes during clinical PNI in cSCCHN have not been previously investigated. In this study, we assessed the global gene expression differences between cSCCHN with or without incidental or clinical PNI. The results of the analysis showed signatures of gene expression representative of activation of p53 in tumors with PNI compared to tumors without, amongst other alterations. Immunohistochemical staining of p53 showed cSCCHN with clinical PNI to be more likely to exhibit a diffuse over-expression pattern, with no tumors showing normal p53 staining. DNA sequencing of cSCCHN samples with clinical PNI showed no difference in mutation number or position with samples without PNI, however a significant difference was observed in regulators of p53 degradation, stability and activity. Our results therefore suggest that cSCCHN with clinical PNI may be more likely to contain alterations in the p53 pathway, compared to cSCCHN without PNI. PMID:27665737

  17. MUC1 oncoprotein suppresses activation of the ARF-MDM2-p53 pathway

    PubMed Central

    Raina, Deepak; Ahmad, Rehan; Chen, Dongshu; Kumar, Shailendra; Kharbanda, Surender; Kufe, Donald

    2011-01-01

    The MUC1 oncoprotein interacts with the c-Abl tyrosine kinase and blocks nuclear targeting of c-Abl in the apoptotic response to DNA damage. Mutation of the MUC1 cytoplasmic domain at Tyr-60 disrupts the MUC1-c-Abl interaction. The present results demonstrate that the MUC1(Y60F) mutant is a potent inducer of the ARF tumor suppressor. MUC1(Y60F) induces transcription of the ARF locus by a c-Abl-dependent mechanism that promotes CUL-4A-mediated nuclear export of the replication protein Cdc6. The functional significance of these findings is that MUC1(Y60F)-induced ARF expression and thereby inhibition of MDM2 results in the upregulation of p53 and the homeodomain interacting protein kinase 2 (HIPK2) serine/threonine kinase. HIPK2-mediated phosphorylation of p53 on Ser-46 was further associated with a shift from expression of the cell cycle arrest-related p21 gene to the apoptosis-related PUMA gene. We also show that the MUC1(Y60F) mutant functions as dominant negative inhibitor of tumorigenicity. These findings indicate that the oncogenic function of MUC1 is conferred by suppressing activation of the ARF-MDM2-p53 pathway. PMID:18981727

  18. New insights into the anticancer activity of carnosol: p53 reactivation in the U87MG human glioblastoma cell line.

    PubMed

    Giacomelli, Chiara; Natali, Letizia; Trincavelli, Maria Letizia; Daniele, Simona; Bertoli, Alessandra; Flamini, Guido; Braca, Alessandra; Martini, Claudia

    2016-05-01

    Glioblastoma multiforme (GBM) is an aggressive brain tumour with high resistance to radio- and chemotherapy. As such, increasing attention has focused on developing new therapeutic strategies to improve treatment responses. Recently, attention has been shifted to natural compounds that are able to halt tumour development. Among them, carnosol (CAR), a phenolic diterpene present in rosemary, has become a promising molecule that is able to prevent certain types of solid cancer. However, no data are available on the effects of CAR in GBM. Here, CAR activity decreased the proliferation of different human glioblastoma cell lines, particularly cells that express wild type p53. The p53 pathway is involved in the control of apoptosis and is often impaired in GBM. Notably, CAR, through the dissociation of p53 from its endogenous inhibitor MDM2, was able to increase the intracellular p53 levels in GBM cells. Accordingly, functional reactivation of p53 was demonstrated by the stimulation of p53 target genes' transcription, the induction of apoptosis and cell cycle blockade. Most importantly, CAR produced synergistic effects with temozolomide (TMZ) and reduced the restoration of the tumour cells' proliferation after drug removal. Thus, for the first time, these data highlighted the potential use of the diterpene in the sensitization of GBM cells to chemotherapy through a direct re-activation of p53 pathway. Furthermore, progress has been made in delineating the biochemical mechanisms underlying the pro-apoptotic effects of this molecule. PMID:26939786

  19. Allele-specific silencing of mutant p53 attenuates dominant-negative and gain-of-function activities

    PubMed Central

    Iyer, Swathi V.; Parrales, Alejandro; Begani, Priya; Narkar, Akshay; Adhikari, Amit S.; Martinez, Luis A.; Iwakuma, Tomoo

    2016-01-01

    Many p53 hotspot mutants not only lose the transcriptional activity, but also show dominant-negative (DN) and oncogenic gain-of-function (GOF) activities. Increasing evidence indicates that knockdown of mutant p53 (mutp53) in cancer cells reduces their aggressive properties, suggesting that survival and proliferation of cancer cells are, at least partially, dependent on the presence of mutp53. However, these p53 siRNAs can downregulate both wild-type p53 (wtp53) and mutp53, which limits their therapeutic applications. In order to specifically deplete mutp53, we have developed allele-specific siRNAs against p53 hotspot mutants and validated their biological effects in the absence or presence of wtp53. First, the mutp53-specific siRNAs selectively reduced protein levels of matched p53 mutants with minimal reduction in wtp53 levels. Second, downregulation of mutp53 in cancer cells expressing a mutp53 alone (p53mut) resulted in significantly decreased cell proliferation and migration. Third, transfection of mutp53-specific siRNAs in cancer cells expressing both wtp53 and mutp53 also reduced cell proliferation and migration with increased transcripts of p53 downstream target genes, which became further profound when cells were treated with an MDM2 inhibitor Nutlin-3a or a chemotherapeutic agent doxorubicin. These results indicate that depletion of mutp53 by its specific siRNA restored endogenous wtp53 activity in cells expressing both wtp53 and mutp53. This is the first study demonstrating biological effects and therapeutic potential of allele-specific silencing of mutp53 by mutp53-specific siRNAs in cancer cells expressing both wtp53 and mutp53, thus providing a novel strategy towards targeted cancer therapies. PMID:26700961

  20. Senescence Process in Primary Wilms' Tumor Cell Culture Induced by p53 Independent p21 Expression

    PubMed Central

    Theerakitthanakul, Korkiat; Saetang, Jirakrit; Kruatong, Jirasak; Graidist, Potchanapond; Raungrut, Pritsana; Kayasut, Kanita; Sangkhathat, Surasak

    2016-01-01

    Wilms tumor (WT) is an embryonal tumor occurring in developing kidney tissue. WT cells showing invasive cancer characteristics, also retain renal stem cell behaviours. In-vitro culture of WT is hampered by limited replicative potential. This study aimed to establish a longterm culture of WT cells to enable the study of molecular events to attempt to explain its cellular senescence. Methods: Primary cell cultures from fresh WT tumor specimen were established. Of 5 cultures tried, only 1 could be propagated for more than 7 passages. One culture, identified as PSU-SK-1, could be maintained > 35 passages and was then subjected to molecular characterization and evaluation for cancer characteristics. The cells consistently harbored concomitant mutations of CTNNB1 (Ser45Pro) and WT1 (Arg413Stop) thorough the cultivation. On Transwell invasion assays, the cells exhibited migration and invasion at 55% and 27% capability of the lung cancer cells, A549. On gelatin zymography, PSU-SK-1 showed high expression of the matrix metaloproteinase. The cells exhibited continuous proliferation with 24-hour doubling time until passages 28-30 when the growth slowed, showing increased cell size, retention of cells in G1/S proportion and positive β-galactosidase staining. As with those evidence of senescence in advanced cell passages, expression of p21 and cyclin D1 increased when the expression of β-catenin and its downstream protein, TCF, declined. There was also loss-of-expression of p53 in this cell line. In conclusion, cellular senescence was responsible for limited proliferation in the primary culture of WT, which was also associated with increased expression of p21 and was independent of p53 expression. Decreased activation of the Wnt signalling might explain the induction of p21 expression. PMID:27698927

  1. Senescence Process in Primary Wilms' Tumor Cell Culture Induced by p53 Independent p21 Expression

    PubMed Central

    Theerakitthanakul, Korkiat; Khrueathong, Jeerasak; Kruatong, Jirasak; Graidist, Potchanapond; Raungrut, Pritsana; Kayasut, Kanita; Sangkhathat, Surasak

    2016-01-01

    Wilms tumor (WT) is an embryonal tumor occurring in developing kidney tissue. WT cells showing invasive cancer characteristics, also retain renal stem cell behaviours. In-vitro culture of WT is hampered by limited replicative potential. This study aimed to establish a longterm culture of WT cells to enable the study of molecular events to attempt to explain its cellular senescence. Methods: Primary cell cultures from fresh WT tumor specimen were established. Of 5 cultures tried, only 1 could be propagated for more than 7 passages. One culture, identified as PSU-SK-1, could be maintained > 35 passages and was then subjected to molecular characterization and evaluation for cancer characteristics. The cells consistently harbored concomitant mutations of CTNNB1 (Ser45Pro) and WT1 (Arg413Stop) thorough the cultivation. On Transwell invasion assays, the cells exhibited migration and invasion at 55% and 27% capability of the lung cancer cells, A549. On gelatin zymography, PSU-SK-1 showed high expression of the matrix metaloproteinase. The cells exhibited continuous proliferation with 24-hour doubling time until passages 28-30 when the growth slowed, showing increased cell size, retention of cells in G1/S proportion and positive β-galactosidase staining. As with those evidence of senescence in advanced cell passages, expression of p21 and cyclin D1 increased when the expression of β-catenin and its downstream protein, TCF, declined. There was also loss-of-expression of p53 in this cell line. In conclusion, cellular senescence was responsible for limited proliferation in the primary culture of WT, which was also associated with increased expression of p21 and was independent of p53 expression. Decreased activation of the Wnt signalling might explain the induction of p21 expression.

  2. Thickness of Actinic Keratosis Does Not Predict Dysplasia Severity or P53 Expression

    PubMed Central

    Heerfordt, Ida M.; Nissen, Christoffer V.; Poulsen, Thomas; Philipsen, Peter A.; Wulf, Hans Christian

    2016-01-01

    The severity of dysplasia and expression of p53 in actinic keratosis (AK) is of importance for the transformation to squamous cell carcinoma. It is assumed that it is most important to treat thick AKs as they are believed to be more dysplastic than thin AKs. However, a relation between AK thickness and dysplasia or the expression of p53 has never been demonstrated. The aim of this study was to investigate this possible relation. Sixty-six AKs were included for clinical and histological examination. Prior to performing a punch biopsy, the clinical thickness of each AK was measured objectively using two scale bars with a thickness of 0.5 mm and 1 mm. Subsequently, the thickness of the epidermis, the severity of dysplasia and the expression of p53 were assessed histologically. We found a strong and significant positive correlation between measured clinical thickness of the AKs and the histological thickness of epidermis (p < 0.0001). However, the clinical thickness did not correlate with either the severity of dysplasia (p = 0.7) or the expression of p53 (p = 0.5). In conclusion, thin AKs show the same severity of dysplasia and expression of p53 as thicker AK lesions. Consequently, clinical thickness cannot predict aggressiveness. PMID:27670104

  3. A High-Throughput Cell-Based Screen Identified a 2-[(E)-2-Phenylvinyl]-8-Quinolinol Core Structure That Activates p53.

    PubMed

    Bechill, John; Zhong, Rong; Zhang, Chen; Solomaha, Elena; Spiotto, Michael T

    2016-01-01

    p53 function is frequently inhibited in cancer either through mutations or by increased degradation via MDM2 and/or E6AP E3-ubiquitin ligases. Most agents that restore p53 expression act by binding MDM2 or E6AP to prevent p53 degradation. However, fewer compounds directly bind to and activate p53. Here, we identified compounds that shared a core structure that bound p53, caused nuclear localization of p53 and caused cell death. To identify these compounds, we developed a novel cell-based screen to redirect p53 degradation to the Skip-Cullin-F-box (SCF) ubiquitin ligase complex in cells expressing high levels of p53. In a multiplexed assay, we coupled p53 targeted degradation with Rb1 targeted degradation in order to identify compounds that prevented p53 degradation while not inhibiting degradation through the SCF complex or other proteolytic machinery. High-throughput screening identified several leads that shared a common 2-[(E)-2-phenylvinyl]-8-quinolinol core structure that stabilized p53. Surface plasmon resonance analysis indicated that these compounds bound p53 with a KD of 200 ± 52 nM. Furthermore, these compounds increased p53 nuclear localization and transcription of the p53 target genes PUMA, BAX, p21 and FAS in cancer cells. Although p53-null cells had a 2.5±0.5-fold greater viability compared to p53 wild type cells after treatment with core compounds, loss of p53 did not completely rescue cell viability suggesting that compounds may target both p53-dependent and p53-independent pathways to inhibit cell proliferation. Thus, we present a novel, cell-based high-throughput screen to identify a 2-[(E)-2-phenylvinyl]-8-quinolinol core structure that bound to p53 and increased p53 activity in cancer cells. These compounds may serve as anti-neoplastic agents in part by targeting p53 as well as other potential pathways.

  4. A High-Throughput Cell-Based Screen Identified a 2-[(E)-2-Phenylvinyl]-8-Quinolinol Core Structure That Activates p53

    PubMed Central

    Bechill, John; Zhong, Rong; Zhang, Chen; Solomaha, Elena

    2016-01-01

    p53 function is frequently inhibited in cancer either through mutations or by increased degradation via MDM2 and/or E6AP E3-ubiquitin ligases. Most agents that restore p53 expression act by binding MDM2 or E6AP to prevent p53 degradation. However, fewer compounds directly bind to and activate p53. Here, we identified compounds that shared a core structure that bound p53, caused nuclear localization of p53 and caused cell death. To identify these compounds, we developed a novel cell-based screen to redirect p53 degradation to the Skip-Cullin-F-box (SCF) ubiquitin ligase complex in cells expressing high levels of p53. In a multiplexed assay, we coupled p53 targeted degradation with Rb1 targeted degradation in order to identify compounds that prevented p53 degradation while not inhibiting degradation through the SCF complex or other proteolytic machinery. High-throughput screening identified several leads that shared a common 2-[(E)-2-phenylvinyl]-8-quinolinol core structure that stabilized p53. Surface plasmon resonance analysis indicated that these compounds bound p53 with a KD of 200 ± 52 nM. Furthermore, these compounds increased p53 nuclear localization and transcription of the p53 target genes PUMA, BAX, p21 and FAS in cancer cells. Although p53-null cells had a 2.5±0.5-fold greater viability compared to p53 wild type cells after treatment with core compounds, loss of p53 did not completely rescue cell viability suggesting that compounds may target both p53-dependent and p53-independent pathways to inhibit cell proliferation. Thus, we present a novel, cell-based high-throughput screen to identify a 2-[(E)-2-phenylvinyl]-8-quinolinol core structure that bound to p53 and increased p53 activity in cancer cells. These compounds may serve as anti-neoplastic agents in part by targeting p53 as well as other potential pathways. PMID:27124407

  5. A High-Throughput Cell-Based Screen Identified a 2-[(E)-2-Phenylvinyl]-8-Quinolinol Core Structure That Activates p53.

    PubMed

    Bechill, John; Zhong, Rong; Zhang, Chen; Solomaha, Elena; Spiotto, Michael T

    2016-01-01

    p53 function is frequently inhibited in cancer either through mutations or by increased degradation via MDM2 and/or E6AP E3-ubiquitin ligases. Most agents that restore p53 expression act by binding MDM2 or E6AP to prevent p53 degradation. However, fewer compounds directly bind to and activate p53. Here, we identified compounds that shared a core structure that bound p53, caused nuclear localization of p53 and caused cell death. To identify these compounds, we developed a novel cell-based screen to redirect p53 degradation to the Skip-Cullin-F-box (SCF) ubiquitin ligase complex in cells expressing high levels of p53. In a multiplexed assay, we coupled p53 targeted degradation with Rb1 targeted degradation in order to identify compounds that prevented p53 degradation while not inhibiting degradation through the SCF complex or other proteolytic machinery. High-throughput screening identified several leads that shared a common 2-[(E)-2-phenylvinyl]-8-quinolinol core structure that stabilized p53. Surface plasmon resonance analysis indicated that these compounds bound p53 with a KD of 200 ± 52 nM. Furthermore, these compounds increased p53 nuclear localization and transcription of the p53 target genes PUMA, BAX, p21 and FAS in cancer cells. Although p53-null cells had a 2.5±0.5-fold greater viability compared to p53 wild type cells after treatment with core compounds, loss of p53 did not completely rescue cell viability suggesting that compounds may target both p53-dependent and p53-independent pathways to inhibit cell proliferation. Thus, we present a novel, cell-based high-throughput screen to identify a 2-[(E)-2-phenylvinyl]-8-quinolinol core structure that bound to p53 and increased p53 activity in cancer cells. These compounds may serve as anti-neoplastic agents in part by targeting p53 as well as other potential pathways. PMID:27124407

  6. Expression of bcl-2, p53 and Ki-67 in arsenical skin cancers.

    PubMed

    Chang, C H; Tsai, R K; Chen, G S; Yu, H S; Chai, C Y

    1998-10-01

    To investigate the regulation of apoptosis and proliferation in arsenic-induced skin cancers, we examined the expression of bcl-2, p53, and Ki-67 using immunohistochemical staining. Thirty patients with Bowen's disease (BD), ten with basal cell carcinoma (BCC), eight with squamous cell carcinoma (SCC) and eleven of perilesional normal skin (PLN) of the non-sun exposure sites from endemic area were examined. The results showed that: 1) bcl-2 was expressed in all of the BCC homogeneously, in none of the SCC, and in 12/30 of the BD focally or homogeneously; 2) p53 was expressed in all of the arsenical skin cancers with a labelling index of 75 +/- 14% of BD, 50 +/- 17% of BCC, 61 +/- 15% of SCC, and also in all of the perilesional normal skin with a labelling index of 55 +/- 24%; 3) Ki-67 was expressed in all of the skin cancers with labelling index of 58 +/- 17% of BD, 12 +/- 7% of BCC, 47 +/- 21% of SCC, and in 9/11 of PLN with a labelling index of 41 +/- 24%. Expression of bcl-2 in BCC or BD is related to the phenotype of germinative basal cell. The constant expression of bcl-2 i early dysplastic cells of BD and the earliest expression of P53 in the basal cells of perilesional normal skin indicate that the initial step of arsenic-induced carcinogenesis is from the basal germinative cells. There is no mutual relationship between bcl-2, p53 or Ki-67 expression in any type of the arsenical skin cancers, but there is a positive correlation between p53 and Ki-67 expression identified in perilesional normal skin. BD had the highest labelling index of p53 and Ki-67.

  7. Suppressing activity of tributyrin on hepatocarcinogenesis is associated with inhibiting the p53-CRM1 interaction and changing the cellular compartmentalization of p53 protein

    PubMed Central

    Ortega, Juliana F.; de Conti, Aline; Tryndyak, Volodymyr; Furtado, Kelly S.; Heidor, Renato; Horst, Maria Aderuza; Fernandes, Laura Helena Gasparini; Tavares, Paulo Eduardo Latorre Martins; Pogribna, Marta; Shpyleva, Svitlana; Beland, Frederick A.; Pogribny, Igor P.; Moreno, Fernando Salvador

    2016-01-01

    Hepatocellular carcinoma (HCC), an aggressive and the fastest growing life-threatening cancer worldwide, is often diagnosed at intermediate or advanced stages of the disease, which substantially limits therapeutic approaches for its successful treatment. This indicates that the prevention of hepatocarcinogenesis is probably the most promising approach to reduce both the HCC incidence and cancer-related mortality. In previous studies, we demonstrated a potent chemopreventive effect of tributyrin, a butyric acid prodrug, on experimental hepatocarcinogenesis. The cancer-inhibitory effect of tributyrin was linked to the suppression of sustained cell proliferation and induction of apoptotic cell death driven by an activation of the p53 apoptotic signaling pathway. The goal of the present study was to investigate the underlying molecular mechanisms linked to tributyrin-mediated p53 activation. Using in vivo and in vitro models of liver cancer, we demonstrate that an increase in the level of p53 protein in nuclei, a decrease in the level of cytoplasmic p53, and, consequently, an increase in the ratio of nuclear/cytoplasmic p53 in rat preneoplastic livers and in rat and human HCC cell lines caused by tributyrin or sodium butyrate treatments was associated with a marked increase in the level of nuclear chromosome region maintenance 1 (CRM1) protein. Mechanistically, the increase in the level of nuclear p53 protein was associated with a substantially reduced binding interaction between CRM1 and p53. The results demonstrate that the cancer-inhibitory activity of sodium butyrate and its derivatives on liver carcinogenesis may be attributed to retention of p53 and CRM1 proteins in the nucleus, an event that may trigger activation of p53-mediated apoptotic cell death in neoplastic cells. PMID:27013579

  8. Pharmacological activation of wild-type p53 in the therapy of leukemia.

    PubMed

    Kojima, Kensuke; Ishizawa, Jo; Andreeff, Michael

    2016-09-01

    The tumor suppressor p53 is inactivated by mutations in the majority of human solid tumors. Conversely, p53 mutations are rare in leukemias and are only observed in a small fraction of the patient population, predominately in patients with complex karyotype acute myeloid leukemia or hypodiploid acute lymphoblastic leukemia. However, the loss of p53 function in leukemic cells is often caused by abnormalities in p53-regulatory proteins, including overexpression of MDM2/MDMX, deletion of CDKN2A/ARF, and alterations in ATM. For example, MDM2 inhibits p53-mediated transcription, promotes its nuclear export, and induces proteasome-dependent degradation. The MDM2 homolog MDMX is another direct regulator of p53 that inhibits p53-mediated transcription. Several small-molecule inhibitors and stapled peptides targeting MDM2 and MDMX have been developed and have recently entered clinical trials. The clinical trial results of the first clinically used MDM2 inhibitor, RG7112, illustrated promising p53 activation and apoptosis induction in leukemia cells as proof of concept. Side effects of RG7112 were most prominent in suppression of thrombopoiesis and gastrointestinal symptoms in leukemia patients. Predictive biomarkers for response to MDM2 inhibitors have been proposed, but they require further validation both in vitro and in vivo so that the accumulated knowledge concerning pathological p53 dysregulation in leukemia and novel molecular-targeted strategies to overcome this dysregulation can be translated safely and efficiently into novel clinical therapeutics. PMID:27327543

  9. Pharmacological activation of wild-type p53 in the therapy of leukemia.

    PubMed

    Kojima, Kensuke; Ishizawa, Jo; Andreeff, Michael

    2016-09-01

    The tumor suppressor p53 is inactivated by mutations in the majority of human solid tumors. Conversely, p53 mutations are rare in leukemias and are only observed in a small fraction of the patient population, predominately in patients with complex karyotype acute myeloid leukemia or hypodiploid acute lymphoblastic leukemia. However, the loss of p53 function in leukemic cells is often caused by abnormalities in p53-regulatory proteins, including overexpression of MDM2/MDMX, deletion of CDKN2A/ARF, and alterations in ATM. For example, MDM2 inhibits p53-mediated transcription, promotes its nuclear export, and induces proteasome-dependent degradation. The MDM2 homolog MDMX is another direct regulator of p53 that inhibits p53-mediated transcription. Several small-molecule inhibitors and stapled peptides targeting MDM2 and MDMX have been developed and have recently entered clinical trials. The clinical trial results of the first clinically used MDM2 inhibitor, RG7112, illustrated promising p53 activation and apoptosis induction in leukemia cells as proof of concept. Side effects of RG7112 were most prominent in suppression of thrombopoiesis and gastrointestinal symptoms in leukemia patients. Predictive biomarkers for response to MDM2 inhibitors have been proposed, but they require further validation both in vitro and in vivo so that the accumulated knowledge concerning pathological p53 dysregulation in leukemia and novel molecular-targeted strategies to overcome this dysregulation can be translated safely and efficiently into novel clinical therapeutics.

  10. The expression of p73 is increased in lung cancer, independent of p53 gene alteration

    PubMed Central

    Tokuchi, Y; Hashimoto, T; Kobayashi, Y; Hayashi, M; Nishida, K; Hayashi, S; Imai, K; Nakachi, K; Ishikawa, Y; Nakagawa, K; Kawakami, Y; Tsuchiya, E

    1999-01-01

    p73 gene, a new p53 homologue, has been identified: it supposedly acts as tumour suppressor gene in neuroblastoma. To clarify whether p73 might be involved in lung carcinogenesis, we examined p73 expression in resected lung cancer and paired normal lung in 60 cases using semi-quantitative reverse transcription-polymerase chain reaction (RT-PCR). We also examined p73 gene status in three representative cases using Southern blot, and p53 gene alteration in 49 cases using PCR-single-strand conformation polymorphism (PCR-SSCP) and direct sequence. In 87% of the cases (52/60) p73 expression in tumour was more than twice as high as that in paired normal lung tissues, and the difference between p73 expression in tumour and normal lung tissue was significant (P < 0.0001). However, Southern blot analysis revealed that none of the cases showed p73 gene amplification. Compared with clinicopathological characteristics, p73 expression correlates significantly with histological differences and age of patient, independently (P < 0.05). Concerning p53 gene status, 43% (21/49) showed p53 gene alteration, but there was no correlation between p73 overexpression and p53 gene alteration. Our results suggest that need for further functional analysis of the role of p73 in lung carcinogenesis. © 1999 Cancer Research Campaign PMID:10408409

  11. Stress-mediated Sin3B activation leads to negative regulation of subset of p53 target genes

    PubMed Central

    Kadamb, Rama; Mittal, Shilpi; Bansal, Nidhi; Saluja, Daman

    2015-01-01

    The multiprotein SWI-independent 3 (Sin3)–HDAC (histone deacetylase) corepressor complex mediates gene repression through its interaction with DNA-binding factors and recruitment of chromatin-modifying proteins on to the promoters of target gene. Previously, an increased expression of Sin3B and tumour suppressor protein, p53 has been established upon adriamycin treatment. We, now provide evidence that Sin3B expression is significantly up-regulated under variety of stress conditions and this response is not stress-type specific. We observed that Sin3B expression is significantly up-regulated both at transcript and at protein level upon DNA damage induced by bleomycin drug, a radiomimetic agent. This increase in Sin3B expression upon stress is found to be p53-dependent and is associated with enhanced interaction of Sin3B with Ser15 phosphorylated p53. Binding of Sin3–HDAC repressor complex on to the promoters of p53 target genes influences gene regulation by altering histone modifications (H3K9me3 and H3K27me3) at target genes. Furthermore, knockdown of Sin3B by shRNA severely compromises p53-mediated gene repression under stress conditions. Taken together, these results suggest that stress-induced Sin3B activation is p53-dependent and is essential for p53-mediated repression of its selective target genes. The present study has an implication in understanding the transrepression mechanism of p53 under DNA damaging conditions. PMID:26181367

  12. ΔNp73α regulates MDR1 expression by inhibiting p53 function

    PubMed Central

    Vilgelm, A; Wei, JX; Piazuelo, MB; Washington, MK; Prassolov, V; El-Rifai, W; Zaika, A

    2014-01-01

    The p73 protein is a transcription factor and member of the p53 protein family that expresses as a complex variety of isoforms. ΔNp73α is an N-terminally truncated isoform of p73. We found that ΔNp73 protein is upregulated in human gastric carcinoma suggesting that ΔNp73 may play an oncogenic role in these tumors. Although it has been shown that ΔNp73α inhibits apoptosis and counteracts the effect of chemotherapeutic drugs, the underlying mechanism by which this p73 isoform contributes to chemotherapeutic drug response remains to be explored. We found that ΔNp73α upregulates MDR1 mRNA and p-glycoprotein (p-gp), which is involved in chemotherapeutic drug transport. This p-gp upregulation was accompanied by increased p-gp functional activity in gastric cancer cells. Our data suggest that upregulation of MDR1 by ΔNp73α is mediated by interaction with p53 at the MDR1 promoter. PMID:17952118

  13. DeltaNp73alpha regulates MDR1 expression by inhibiting p53 function.

    PubMed

    Vilgelm, A; Wei, J X; Piazuelo, M B; Washington, M K; Prassolov, V; El-Rifai, W; Zaika, A

    2008-04-01

    The p73 protein is a transcription factor and member of the p53 protein family that expresses as a complex variety of isoforms. DeltaNp73alpha is an N-terminally truncated isoform of p73. We found that DeltaNp73 protein is upregulated in human gastric carcinoma suggesting that DeltaNp73 may play an oncogenic role in these tumors. Although it has been shown that DeltaNp73alpha inhibits apoptosis and counteracts the effect of chemotherapeutic drugs, the underlying mechanism by which this p73 isoform contributes to chemotherapeutic drug response remains to be explored. We found that DeltaNp73alpha upregulates MDR1 mRNA and p-glycoprotein (p-gp), which is involved in chemotherapeutic drug transport. This p-gp upregulation was accompanied by increased p-gp functional activity in gastric cancer cells. Our data suggest that upregulation of MDR1 by DeltaNp73alpha is mediated by interaction with p53 at the MDR1 promoter.

  14. A Small Ras-like protein Ray/Rab1c modulates the p53-regulating activity of PRPK

    SciTech Connect

    Abe, Yasuhito . E-mail: yasuhito@m.ehime-u.ac.jp; Takeuchi, Takashi; Imai, Yoshinori; Murase, Ryuichi; Kamei, Yoshiaki; Fujibuchi, Taketsugu; Matsumoto, Suguru; Ueda, Norifumi; Kito, Katsumi; Ogasawara, Masahito; Shigemoto, Kazuhiro

    2006-05-26

    PRPK phosphorylates serine-15 residue of p53 and enhances transcriptional activity. PRPK possesses a bipartite nuclear localization signal and localizes in nucleus when over-expressed in cells. However, intrinsic PRPK localizes mainly in the cytosol in situ. While studying the mechanisms in the distribution of intrinsic PRPK, we identified a PRPK binding protein, an ubiquitously expressed Small Ras-like GTPase, Rab1c, also named Ray or Rab35. The over-expressed Ray was distributed in the nucleus, cytosol, and cell membrane. Both Ray wild type and GTP-restrictively binding mutant Ray-Q67L, but not guanine nucleotide unstable binding mutant Ray-N120I, partially distributed the over-expressed PRPK to the cytosol and also suppressed the PRPK-induced p53-transcriptional activity profoundly. A Small Ras-like GTPase protein Ray was thus indicated to modulate p53 transcriptional activity of PRPK.

  15. Che-1 gene silencing induces osteosarcoma cell apoptosis by inhibiting mutant p53 expression.

    PubMed

    Liu, Ming; Wang, Dan; Li, Ning

    2016-04-22

    The transcriptional cofactor Che-1 is an RNA polymerase II (Pol II) which is involved in tumorigenesis, such as breast cancer and multiple myeloma. Che-1 can also regulate mutant p53 expression, which plays roles in many types of cancer. In this study, we aimed to investigate the effects and specific mechanism of Che-1 in the regulation of osteosarcoma (OS) cell growth. We found that Che-1 is highly expressed in several kinds of OS cells compared with osteoblast hFOB1.19 cells. MTT and flow cytometry assays showed that Che-1 depletion by siRNA markedly suppressed MG-63 and U2OS cell proliferation and promoted apoptosis. The chromatin immunoprecipitation (ChIP) assay verified the presence of Che-1 on the p53 promoter in MG-63 and U2OS cells carrying mutant p53. Further studies showed that Che-1 depletion inhibited mutant p53 expression. Notably, our study showed that the loss of Che-1 inhibits proliferation and promotes apoptosis in MG-63 cells by decreasing the level of mutant p53. Therefore, these findings open the possibility that silencing of Che-1 will have therapeutic benefit in OS.

  16. Immunohistochemical analysis of p53 and ras p21 expression in colorectal adenomas and early carcinomas.

    PubMed

    Ieda, S; Watatani, M; Yoshida, T; Kuroda, K; Inui, H; Yasutomi, M

    1996-01-01

    To further investigate whether multiple genetic changes are involved in the development of colorectal cancer, we performed an immunohistochemical analysis of p53 and ras p21 protein expression in 139 specimens of colorectal adenoma with varying degrees of dysplasia, 57 specimens of early cancer with an adenomatous component, and 12 specimens of superficial early cancer without any adenomatous component. Positive p53 staining was found in 15% of the adenomas with moderate dysplasia and in 42% of the adenomas with severe dysplasia or intramucosal carcinoma (IMCA). Positive immunostaining of p53 was observed to be significantly correlated with the degree of dysplasia and the depth of invasion, as was the expression of ras p21. However, a closer correlation was observed with the increasing size of the adenomas. Furthermore, p53 staining was positive in 42% of the 12 superficial early cancer specimens, while ras staining was positive in only 1 specimen (8%). These results indicate that p53 gene overexpression may play some biological role in both the adenoma-to-carcinoma sequence and in de novo cancer development, whereas ras p21 expression may not be as involved in de novo cancer development as in the malignant conversion of colorectal adenomas.

  17. Celecoxib Treatment Alters p53 and MDM2 Expression via COX-2 Crosstalk in A549 Cells.

    PubMed

    Gharghabi, Mehdi; Rezaei, Farhang; Mir Mohammadrezaei, Fereshteh; Ghahremani, Mohammad Hossein

    2016-01-01

    Cyclooxygenase-2 (COX-2) has a pivotal role in the pathogenesis of the lung cancer. It is known that COX-2 negatively regulates the activity of a number of tumor suppressors, including p53. Consequently, inhibition of COX-2 signaling is anticipated to be a promising approach to stabilize p53 functionality. In this regard, we investigated the effect of COX-2 signaling blockade on p53 and COX-2expression in A549 cells. Cell viability was assessed using MTT and protein expression was measured using Western Blot assay. Results revealed that Celecoxib dose-dependently induced growth inhibition within 24 h. However, prolonged exposure to the drug up to 48 h led to increase cell viability compared to the corresponding control. Western blot analysis demonstrated that Celecoxib could augment p53 expression within 24 h, independently of COX-2 inhibition. In contrast, Celecoxib treatment not only returned p53 to the control level, but also strikingly induced COX-2 expression within 48 h. Of further relevance, Celecoxib exposure could significantly result in MDM2 elevation at 48 h. These findings represent p53 as a molecular target being interconnected with COX-2 signaling axis upon Celecoxib treatment. Moreover, our data point toward the possibility that Celecoxib treatment may not be a proper therapeutic strategy in lung cancer cells owing to its potential role in the activation of oncogenes, including COX-2 and MDM2 which seemingly confers a chemoresistance circumstance to the cell. Consequently, these results underscore intensive preclinical assessment prior to applying COX-2 inhibitors in the treatment of lung tumors. PMID:27642319

  18. Cytoplasmic localization of wild-type p53 in glioblastomas correlates with expression of vimentin and glial fibrillary acidic protein.

    PubMed Central

    Sembritzki, Olivier; Hagel, Christian; Lamszus, Katrin; Deppert, Wolfgang; Bohn, Wolfgang

    2002-01-01

    Cytoplasmic accumulation of wild-type p53 in tumor cells indicates that the tumor suppressor is inactive with regard to growth suppressive functions. Whether this occurs randomly during tumor development or characterizes a certain tumor cell subset is not known. Here we assayed primary glioblastomas for expression and subcellular localization of p53 and determined a correlation with expression of intermediate filament proteins characterizing glial cell development. Sixty-nine percent of the tumors were p53 positive in immunohistochemistry. A significant number of tumors (23%) accumulated wild-type p53 in the cytoplasm, which correlated with the presence of vimentin and glial fibrillary acidic protein, except for 1 case. Tumors with exclusive nuclear p53 contained none or only one of these intermediate filament proteins. In an alternative approach, tumors positive for glial fibrillary acidic protein were screened for expression of p53 and vimentin. Thirty-eight percent of these tumors showed cytoplasmic p53, and all of those also expressed vimentin. Tumors with only nuclear p53 were vimentin negative, except for 1 case. No mutation was detected in p53 exons 5 to 8 in tumors with cytoplasmic p53, suggesting that they express wild-type p53. The data indicate that a cytoplasmic accumulation of wild-type p53 in human primary glioblastomas correlates with a certain intermediate filament protein expression, suggesting that it identifies a certain subset of tumors. PMID:12084347

  19. JNK confers 5-fluorouracil resistance in p53-deficient and mutant p53-expressing colon cancer cells by inducing survival autophagy

    PubMed Central

    Sui, Xinbing; Kong, Na; Wang, Xian; Fang, Yong; Hu, Xiaotong; Xu, Yinghua; Chen, Wei; Wang, Kaifeng; Li, Da; Jin, Wei; Lou, Fang; Zheng, Yu; Hu, Hong; Gong, Liu; Zhou, Xiaoyun; Pan, Hongming; Han, Weidong

    2014-01-01

    Deficiency or mutation in the p53 tumor suppressor gene commonly occurs in human cancer and can contribute to disease progression and chemotherapy resistance. Currently, although the pro-survival or pro-death effect of autophagy remains a controversial issue, increasing data seem to support the idea that autophagy facilitates cancer cell resistance to chemotherapy treatment. Here we report that 5-FU treatment causes aberrant autophagosome accumulation in HCT116 p53−/− and HT-29 cancer cells. Specific inhibition of autophagy by 3-MA, CQ or small interfering RNA treatment targeting Atg5 or Beclin 1 can potentiate the re-sensitization of these resistant cancer cells to 5-FU. In further analysis, we show that JNK activation and phosphorylation of Bcl-2 are key determinants in 5-FU-induced autophagy. Inhibition of JNK by the compound SP600125 or JNK siRNA suppressed autophagy and phosphorylation of c-Jun and Bcl-2 but increased 5-FU-induced apoptosis in both HCT116 p53−/− and HT29 cells. Taken together, our results suggest that JNK activation confers 5-FU resistance in HCT116 p53−/− and HT29 cells by promoting autophagy as a pro-survival effect, likely via inducing Bcl-2 phosphorylation. These results provide a promising strategy to improve the efficacy of 5-FU-based chemotherapy for colorectal cancer patients harboring a p53 gene mutation. PMID:24733045

  20. Immunohistochemical Evaluation of p53 and Ki67 Expression in Skin Epithelial Tumors

    PubMed Central

    Khodaeiani, Effat; Fakhrjou, Ashraf; Amirnia, Mehdi; Babaei-nezhad, Shahla; Taghvamanesh, Farshid; Razzagh-Karimi, Elham; Alikhah, Hossein

    2013-01-01

    Background and Aims: The cellular mechanisms responsible for initiating or limiting the tumors including skin types are of great importance. The p53 is a tumor-inhibiting gene which is believed to be defective in many malignant situations. Ki67 is a non-histonic protein which is mainly interfere with the proliferation and has many controlling effects during the cell cycle. Because of their importance in skin tumor cell growth, this study aimed at evaluating the p53 and Ki67 expression in skin epithelial tumors by immunohistochemical method. Materials and Methods: In a descriptive setting, 50 biopsy samples (30 basal cell carcinomas (BCCs), 10 squamous cell carcinomas (SCCs), 8 keratoacanthomas (KAs), and 2 trichoepitheliomas (TEs)) were immunohistochemically evaluated for p53 and Ki67 expression during a 14-month period. The incidence and expression rate of these two variables were separately reported in each group of samples. Results: The expression rate of p53 was 67.77% for the BCCs, 50.20% for the SCCs, and null for the KAs. For both TEs, it was 50%. The expression rate of Ki67 was 57.33% for the BCCs, 47.70% for the SCCs, 37.5% for the KAs, and 0.0% for TEs. The incidence of P53+ cells was 100% and 90% in the BCC and SCC samples, respectively. The both TEs were positive in this regard. The incidence of Ki67+ cells was 100% for the BCC, SCC, and KA samples. The both TEs were negative in this regard. Conclusion: This study showed that the incidence rate of p53- and Ki67-positive cells is very high in skin malignant epithelial tumors. The expression rate of these two variables is comparable with reports in the literature. Further studies with large sample size are recommended to be carried out for KA and TE samples. PMID:23723466

  1. p53 activity is selectively licensed in the Drosophila stem cell compartment

    PubMed Central

    Wylie, Annika; Lu, Wan-Jin; D’Brot, Alejandro; Buszczak, Michael; Abrams, John M

    2014-01-01

    Oncogenic stress provokes tumor suppression by p53 but the extent to which this regulatory axis is conserved remains unknown. Using a biosensor to visualize p53 action, we find that Drosophila p53 is selectively active in gonadal stem cells after exposure to stressors that destabilize the genome. Similar p53 activity occurred in hyperplastic growths that were triggered either by the RasV12 oncoprotein or by failed differentiation programs. In a model of transient sterility, p53 was required for the recovery of fertility after stress, and entry into the cell cycle was delayed in p53- stem cells. Together, these observations establish that the stem cell compartment of the Drosophila germline is selectively licensed for stress-induced activation of the p53 regulatory network. Furthermore, the findings uncover ancestral links between p53 and aberrant proliferation that are independent of DNA breaks and predate evolution of the ARF/Mdm2 axis. DOI: http://dx.doi.org/10.7554/eLife.01530.001 PMID:24618896

  2. Comparative analysis of P16 and P53 expression in uterine malignant mixed mullerian tumors.

    PubMed

    Buza, Natalia; Tavassoli, Fattaneh A

    2009-11-01

    Recent studies have shown that, in addition to cervical carcinomas, a substantial proportion of endometrial adenocarcinomas are also immunoreactive with p16. The expression of p16 in uterine malignant mixed mullerian tumors (MMMTs), in contrast, has not yet been analyzed in a large series. To our knowledge, we present the first study assessing p16 expression in both components of MMMTs. We performed p16 and p53 immunostains on 30 cases of uterine MMMTs. Both the epithelial and mesenchymal components were subclassified; p16 and p53 immunoreactions were assessed using a semiquantitative scoring system. p16 overexpression was noted in the carcinomatous component in 96.7% (29/30), and in the sarcomatous component in 86.7% (26/30) of cases. In comparison, p53 immunoreactivity was present in the carcinomatous component in 76.7% (23/30), and in the sarcomatous component in 83.3% (25/30) of cases. p16 immunoreactivity was more intense and diffuse than p53 in 40% of type I, 30% of type II carcinomas, and 27% of sarcomatous components. There was no significant difference in p16 or p53 immunoreactivity between the homologous and heterologous sarcomas. The concordance rates for p16 and p53 immunoreactivity between the 2 components were 83% and 90%, respectively. We conclude that p16 immunostain is positive in the vast majority of uterine MMMTs with no significant difference in staining between the 2 components. Compared with p53, p16 immunoreactivity is significantly more intense and diffuse in both components. Our findings indicate that alterations in the p16-Rb pathway play an important role in the pathogenesis of uterine MMMTs.

  3. RAG-induced DNA lesions activate proapoptotic BIM to suppress lymphomagenesis in p53-deficient mice.

    PubMed

    Delbridge, Alex R D; Pang, Swee Heng Milon; Vandenberg, Cassandra J; Grabow, Stephanie; Aubrey, Brandon J; Tai, Lin; Herold, Marco J; Strasser, Andreas

    2016-09-19

    Neoplastic transformation is driven by oncogenic lesions that facilitate unrestrained cell expansion and resistance to antiproliferative signals. These oncogenic DNA lesions, acquired through errors in DNA replication, gene recombination, or extrinsically imposed damage, are thought to activate multiple tumor suppressive pathways, particularly apoptotic cell death. DNA damage induces apoptosis through well-described p53-mediated induction of PUMA and NOXA. However, loss of both these mediators (even together with defects in p53-mediated induction of cell cycle arrest and cell senescence) does not recapitulate the tumor susceptibility observed in p53(-/-) mice. Thus, potentially oncogenic DNA lesions are likely to also trigger apoptosis through additional, p53-independent processes. We found that loss of the BH3-only protein BIM accelerated lymphoma development in p53-deficient mice. This process was negated by concomitant loss of RAG1/2-mediated antigen receptor gene rearrangement. This demonstrates that BIM is critical for the induction of apoptosis caused by potentially oncogenic DNA lesions elicited by RAG1/2-induced gene rearrangement. Furthermore, this highlights the role of a BIM-mediated tumor suppressor pathway that acts in parallel to the p53 pathway and remains active even in the absence of wild-type p53 function, suggesting this may be exploited in the treatment of p53-deficient cancers. PMID:27621418

  4. Evaluation of microvessel density and p53 expression in pancreatic adenocarcinoma

    PubMed Central

    Jureidini, Ricardo; da Cunha, José Eduardo Monteiro; Takeda, Flavio; Namur, Guilherme Naccache; Ribeiro, Thiago Costa; Patzina, Rosely; Figueira, Estela RR; Ribeiro, Ulysses; Bacchella, Telesforo; Cecconello, Ivan

    2016-01-01

    OBJECTIVE: To evaluate the prognostic significance of microvessel density and p53 expression in pancreatic cancer. METHODS: Between 2008 and 2012, 49 patients with pancreatic adenocarcinoma underwent resection with curative intention. The resected specimens were immunohistochemically stained with anti-p53 and anti-CD34 antibodies. Microvessel density was assessed by counting vessels within ten areas of each tumoral section a highpower microscope. RESULTS: The microvessel density ranged from 21.2 to 54.2 vessels/mm2. Positive nuclear staining for p53 was found in 20 patients (40.6%). The overall median survival rate after resection was 24.1 months and there were no differences in survival rates related to microvessel density or p53 positivity. Microvessel density was associated with tumor diameter greater than 3.0 cm and with R0 resection failure. CONCLUSIONS: Microvessel density was associated with R1 resection and with larger tumors. p53 expression was not correlated with intratumoral microvessel density in pancreatic adenocarcinoma. PMID:27438564

  5. Chemotherapy-induced Dkk-1 expression by primary human mesenchymal stem cells is p53 dependent.

    PubMed

    Hare, Ian; Evans, Rebecca; Fortney, James; Moses, Blake; Piktel, Debbie; Slone, William; Gibson, Laura F

    2016-10-01

    Mesenchymal stem cells (MSCs) are abundant throughout the body and regulate signaling within tumor microenvironments. Wnt signaling is an extrinsically regulated pathway that has been shown to regulate tumorigenesis in many types of cancer. After evaluating a panel of Wnt activating and inhibiting molecules, we show that primary human MSCs increase the expression of Dkk-1, an inhibitor of Wnt signaling, into the extracellular environment following chemotherapy exposure in a p53-dependent manner. Dkk-1 has been shown to promote tumor growth in several models of malignancy, suggesting that MSC-derived Dkk-1 could counteract the intent of cytotoxic chemotherapy, and that pharmacologic inhibition of Dkk-1 in patients receiving chemotherapy treatment for certain malignancies may be warranted. PMID:27586146

  6. PCNA, Ki-67 and p53 expressions in submandibular salivary gland tumours.

    PubMed

    Alves, F A; Pires, F R; De Almeida, O P; Lopes, M A; Kowalski, L P

    2004-09-01

    Salivary gland tumours are uncommon with a broad heterogeneity. The most common benign tumour is the pleomorphic adenoma, whereas mucoepidermoid carcinoma and adenoid cystic carcinoma predominate among the malignancies. Most salivary gland tumours occur in the parotid, and consequently clinical and biological data are normally derived from this site. This work describes the expressions of PCNA, Ki-67 and p53 in 15 pleomorphic adenomas, 15 mucoepidermoid carcinomas and 15 adenoid cystic carcinomas of the submandibular gland. Our results showed that all pleomorphic adenomas were negative for p53 and Ki-67 with 66.6% being positive for PCNA. Conversely, p53 was positive in 53% of the mucoepidermoid carcinomas and in 20% of the adenoid cystic carcinomas. Ki-67 was expressed in 47.7% of the mucoepidermoid carcinomas and 40% of the adenoid cystic carcinomas. All malignant tumours were positive for PCNA. These results indicate that the proliferative rate analysed with PCNA and Ki-67 and the expression of p53 in pleomorphic adenoma and adenoid cystic carcinoma of the submandibular gland were similar to those described in the parotid and minor salivary glands. However, mucoepidermoid carcinomas showed higher expression of these markers than those of other salivary glands. This work is the first describing the expression of these immunohistochemical markers exclusively in submandibular salivary gland tumours.

  7. Plasminogen activator inhibitor-1 is a critical downstream target of p53 in the induction of replicative senescence.

    PubMed

    Kortlever, Roderik M; Higgins, Paul J; Bernards, René

    2006-08-01

    p53 limits the proliferation of primary diploid fibroblasts by inducing a state of growth arrest named replicative senescence - a process which protects against oncogenic transformation and requires integrity of the p53 tumour suppressor pathway. However, little is known about the downstream target genes of p53 in this growth-limiting response. Here, we report that suppression of the p53 target gene encoding plasminogen activator inhibitor-1 (PAI-1) by RNA interference (RNAi) leads to escape from replicative senescence both in primary mouse embryo fibroblasts and primary human BJ fibroblasts. PAI-1 knockdown results in sustained activation of the PI(3)K-PKB-GSK3beta pathway and nuclear retention of cyclin D1, consistent with a role for PAI-1 in regulating growth factor signalling. In agreement with this, we find that the PI(3)K-PKB-GSK3beta-cyclin D1 pathway is also causally involved in cellular senescence. Conversely, ectopic expression of PAI-1 in proliferating p53-deficient murine or human fibroblasts induces a phenotype displaying all the hallmarks of replicative senescence. Our data indicate that PAI-1 is not merely a marker of senescence, but is both necessary and sufficient for the induction of replicative senescence downstream of p53.

  8. Expression of heat shock protein 70 and p53 in human lung cancer.

    PubMed

    Costa, M; Rosas, S; Chindano, A; Lima, P; Madi, K; Carvalho, M

    1997-01-01

    Bronchial biopsies of 21 patients with lung cancer were analyzed by Western blot for stress protein HSP70 and p53 proteins. Squamous carcinoma was the most common type found. The p53 protein was detectable in 14 cases. The HSP70 was detectable in 17 and overexpressed in 9 patients. Eleven patients showed positivity for both protein expressions, however no statistical significance was found (Kappa's test, p>0.05). Specific associations were not observed for HSP70 overexpression and p53 detection that could be related to clinical finds or tabagism. Our results indicate that the stress protein HSP70 is detectable and may be involved in the tumor development. PMID:21590207

  9. Correlation between radiation dose and p53 protein expression levels in human lymphocytes.

    PubMed

    Cavalcanti, Mariana B; Fernandes, Thiago S; Silva, Edvane B; Amaral, Ademir

    2015-09-01

    The aim of this research was to evaluate the relationship between p53 protein levels and absorbed doses from in vitro irradiated human lymphocytes. For this, samples of blood from 23 donors were irradiated with 0.5; 1; 2; and 4 Gy from a Cobalt-60 source, and the percentages of lymphocytes expressing p53 were scored using Flow Cytometry. The subjects were divided into 3 groups, in accordance with the p53 levels expressed per radiation dose: low (Group I), high (Group II), and excessive levels (Group III). For all groups, the analyses showed that the p53 expression levels increase with the absorbed dose. Particularly for groups I and II, the correlation between this protein expression and the dose follows the linear-quadratic model, such as for radioinduced chromosomal aberrations. In conclusion, our findings indicate possible applications of this approach in evaluating individual radiosensitivity prior to radiotherapeutical procedures as well as in medical surveillance of occupationally exposed workers. Furthermore, due to the rapidity of flow-cytometric analyses, the methodology here employed would play an important role in emergency responses to a large-scale radiation incident where many people may have been exposed. PMID:26312422

  10. Impact of the Adenoviral E4 Orf3 Protein on the Activity and Posttranslational Modification of p53

    PubMed Central

    DeHart, Caroline J.; Perlman, David H.

    2015-01-01

    ABSTRACT Our previous studies have established that the p53 populations that accumulate in normal human cells exposed to etoposide or infected by an E1B 55-kDa protein-null mutant of human adenovirus type 5 carry a large number of posttranslational modifications at numerous residues (C. J. DeHart, J. S. Chahal, S. J. Flint, and D. H. Perlman, Mol Cell Proteomics 13:1–17, 2014, http://dx.doi.org/10.1074/mcp.M113.030254). In the absence of this E1B protein, the p53 transcriptional program is not induced, and it has been reported that the viral E4 Orf3 protein inactivates p53 (C. Soria, F. E. Estermann, K. C. Espantman, and C. C. O'Shea, Nature 466:1076–1081, 2010, http://dx.doi.org/10.1038/nature09307). As the latter protein disrupts nuclear Pml bodies, sites at which p53 is modified, we used mass spectrometry to catalogue the posttranscriptional modifications of the p53 population that accumulates when neither the E1B 55-kDa nor the E4 Orf3 protein is made in infected cells. Eighty-five residues carrying 163 modifications were identified. The overall patterns of posttranslational modification of this population and p53 present in cells infected by an E1B 55-kDa-null mutant were similar. The efficiencies with which the two forms of p53 bound to a consensus DNA recognition sequence could not be distinguished and were lower than that of transcriptionally active p53. The absence of the E4 Orf3 protein increased expression of several p53-responsive genes when the E1B protein was also absent from infected cells. However, expression of these genes did not attain the levels observed when p53 was activated in response to etoposide treatment and remained lower than those measured in mock-infected cells. IMPORTANCE The tumor suppressor p53, a master regulator of cellular responses to stress, is inactivated and destroyed in cells infected by species C human adenoviruses, such as type 5. It is targeted for proteasomal degradation by the action of a virus-specific E3

  11. Diagnostic utility of p53 and CK20 immunohistochemical expression grading urothelial malignancies

    PubMed Central

    2014-01-01

    Introduction Current grading system in application by WHO/ISUP divides urothelial malignancies in low and high grade by morphologic criteria while strict segregation may become cumbersome in limited tissue specimens. As grading these carcinomas are of utmost prognostic significance after depth of invasion, therefore we evaluated the role of immunohistochemical expression of p53 and cytokeratin 20 as an adjuctive tool in grading urothelial carcinoma. Methods The study was conducted in Aga khan university hospital, Histopathology section from December 2010 till June 2011 for duration of six months. It involved 95 cases of urothelial carcinomas diagnosed on trans-uretheral resection specimens of bladder growth. Immunohistochemical expression of p53 and cytokeratin 20 was performed according to standard protocols and correlated with grade and depth of invasion. Results There were 48 cases (50.5%) of low grade and 47 cases (49.5%) of high grade urothelial carcinoma included in the study. Male to female ratio was 4.3:1. Majority of patients (80%) were seen in 45 to 90 years age group. Diffuse positive expression of cytokerain 20 was noted in 33 cases (68.8%) of high grade and 19 (40.4%) low grade tumors. Strong positive expression of p53 was seen in 35 cases (72.9%) of high grade while only 17 cases (36.2%) of low grade tumors showed strong p53 expression. Conclusion Significant difference in expression of Cytokeratin 20 and p53 was found between low and high grade urothelial carcinoma. Therefore we suggest combined use of these markers may be helpful in assigning grade to urothelial carcinoma especially when histologic features are borderline. PMID:25089155

  12. The role of hydroxyl radical as a messenger in Cr(VI)-induced p53 activation.

    PubMed

    Wang, S; Leonard, S S; Ye, J; Ding, M; Shi, X

    2000-09-01

    The present study investigates whether reactive oxygen species (ROS) are involved in p53 activation, and if they are, which species is responsible for the activation. Our hypothesis is that hydroxyl radical (.OH) functions as a messenger for the activation of this tumor suppressor protein. Human lung epithelial cells (A549) were used to test this hypothesis. Cr(VI) was employed as the source of ROS due to its ability to generate a whole spectrum of ROS inside the cell. Cr(VI) is able to activate p53 by increasing the protein levels and enhancing both the DNA binding activity and transactivation ability of the protein. Increased cellular levels of superoxide radicals (O(2)(-).), hydrogen peroxide (H(2)O(2)), and.OH radicals were detected on the addition of Cr(VI) to the cells. Superoxide dismutase, by enhancing the production of H(2)O(2) from O(2)(-). radicals, increased p53 activity. Catalase, an H(2)O(2) scavenger, eliminated.OH radical generation and inhibited p53 activation. Sodium formate and aspirin,.OH radical scavengers, also suppressed p53 activation. Deferoxamine, a metal chelator, inhibited p53 activation by chelating Cr(V) to make it incapable of generating radicals from H(2)O(2). NADPH, which accelerated the one-electron reduction of Cr(VI) to Cr(V) and increased.OH radical generation, dramatically enhanced p53 activation. Thus.OH radical generated from Cr(VI) reduction in A549 cells is responsible for Cr(VI)-induced p53 activation.

  13. DNA Damage and the Activation of the p53 Pathway Mediate Alterations in Metabolic and Secretory Functions of Adipocytes.

    PubMed

    Vergoni, Bastien; Cornejo, Pierre-Jean; Gilleron, Jérôme; Djedaini, Mansour; Ceppo, Franck; Jacquel, Arnaud; Bouget, Gwennaelle; Ginet, Clémence; Gonzalez, Teresa; Maillet, Julie; Dhennin, Véronique; Verbanck, Marie; Auberger, Patrick; Froguel, Philippe; Tanti, Jean-François; Cormont, Mireille

    2016-10-01

    Activation of the p53 pathway in adipose tissue contributes to insulin resistance associated with obesity. However, the mechanisms of p53 activation and the effect on adipocyte functions are still elusive. Here we found a higher level of DNA oxidation and a reduction in telomere length in adipose tissue of mice fed a high-fat diet and an increase in DNA damage and activation of the p53 pathway in adipocytes. Interestingly, hallmarks of chronic DNA damage are visible at the onset of obesity. Furthermore, injection of lean mice with doxorubicin, a DNA damage-inducing drug, increased the expression of chemokines in adipose tissue and promoted its infiltration by proinflammatory macrophages and neutrophils together with adipocyte insulin resistance. In vitro, DNA damage in adipocytes increased the expression of chemokines and triggered the production of chemotactic factors for macrophages and neutrophils. Insulin signaling and effect on glucose uptake and Glut4 translocation were decreased, and lipolysis was increased. These events were prevented by p53 inhibition, whereas its activation by nutlin-3 reproduced the DNA damage-induced adverse effects. This study reveals that DNA damage in obese adipocytes could trigger p53-dependent signals involved in alteration of adipocyte metabolism and secretory function leading to adipose tissue inflammation, adipocyte dysfunction, and insulin resistance. PMID:27388216

  14. Inactivation of arf-bp1 induces p53 activation and diabetic phenotypes in mice.

    PubMed

    Kon, Ning; Zhong, Jiayun; Qiang, Li; Accili, Domenico; Gu, Wei

    2012-02-10

    It is well accepted that the Mdm2 ubiquitin ligase acts as a major factor in controlling p53 stability and activity in vivo. Although several E3 ligases have been reported to be involved in Mdm2-independent p53 degradation, the roles of these ligases in p53 regulation in vivo remain largely unknown. To elucidate the physiological role of the ubiquitin ligase ARF-BP1, we generated arf-bp1 mutant mice. We found that inactivation of arf-bp1 during embryonic development in mice resulted in p53 activation and embryonic lethality, but the mice with arf-bp1 deletion specifically in the pancreatic β-cells (arf-bp1(FL/Y)/RIP-cre) were viable and displayed no obvious abnormality after birth. Interestingly, these mice showed dramatic loss of β-cells as mice aged, and >50% of these mice died of severe diabetic symptoms before reaching 1 year of age. Notably, the diabetic phenotype of these mice was largely reversed by concomitant deletion of p53, and the life span of the mice was significantly extended (p53(LFL/FL)/arf-bp1(FL/Y)/RIP-cre). These findings underscore an important role of ARF-BP1 in maintaining β-cell homeostasis in aging mice and reveal that the stability of p53 is critically regulated by ARF-BP1 in vivo.

  15. Comprehensive Expression Profiling and Functional Network Analysis of p53-Regulated MicroRNAs in HepG2 Cells Treated with Doxorubicin

    PubMed Central

    Yang, Yalan; Liu, Wenrong; Ding, Ruofan; Xiong, Lili; Dou, Rongkun; Zhang, Yiming; Guo, Zhiyun

    2016-01-01

    Acting as a sequence-specific transcription factor, p53 tumor suppressor involves in a variety of biological processes after being activated by cellular stresses such as DNA damage. In recent years, microRNAs (miRNAs) have been confirmed to be regulated by p53 in several cancer types. However, it is still unclear how miRNAs orchestrate their regulation and function in p53 network after p53 activation in hepatocellular carcinoma (HCC). In this study, we used small RNA sequencing and systematic bioinformatic analysis to characterize the regulatory networks of differentially expressed miRNAs after the p53 activation in HepG2. Here, 33 miRNAs significantly regulated by p53 (12 up-regulated and 21 down-regulated) were detected between the doxorubicin-treated and untreated HepG2 cells in two biological replicates for small RNA sequencing and 8 miRNAs have been reported previously to be associated with HCC. Gene ontology (GO) and KEGG pathway enrichment analysis showed that 87.9% (29 out of 33) and 90.9% (30 out of 33) p53-regulated miRNAs were involved in p53-related biological processes and pathways with significantly low p-value, respectively. Remarkably, 18 out of 33 p53-regulated miRNAs were identified to contain p53 binding sites around their transcription start sites (TSSs). Finally, comprehensive p53-miRNA regulatory networks were constructed and analyzed. These observations provide a new insight into p53-miRNA co-regulatory network in the context of HCC. PMID:26886852

  16. p63 expression confers significantly better survival outcomes in high-risk diffuse large B-cell lymphoma and demonstrates p53-like and p53-independent tumor suppressor function

    PubMed Central

    Manyam, Ganiraju C.; Wang, Xiao-xiao; Xia, Yi; Visco, Carlo; Tzankov, Alexandar; Zhang, Li; Montes-Moreno, Santiago; Dybkaer, Karen; Chiu, April; Orazi, Attilio; Zu, Youli; Bhagat, Govind; Richards, Kristy L.; Hsi, Eric D.; Choi, William W.L.; van Krieken, J. Han; Huh, Jooryung; Ponzoni, Maurilio; Ferreri, Andrés J.M.; Zhao, Xiaoying; Møller, Michael B.; Parsons, Ben M.; Winter, Jane N.; Piris, Miguel A.; Medeiros, L. Jeffrey; Young, Ken H.

    2016-01-01

    The role of p53 family member, p63 in oncogenesis is the subject of controversy. Limited research has been done on the clinical implications of p63 expression in diffuse large B-cell lymphoma (DLBCL). In this study, we assessed p63 expression in de novo DLBCL samples (n=795) by immunohistochemistry with a pan-p63-monoclonal antibody and correlated it with other clinicopathologic factors and clinical outcomes. p63 expression was observed in 42.5% of DLBCL, did not correlate with p53 levels, but correlated with p21, MDM2, p16INK4A, Ki-67, Bcl-6, IRF4/MUM-1 and CD30 expression, REL gains, and BCL6 translocation. p63 was an independent favorable prognostic factor in DLBCL, which was most significant in patients with International Prognostic Index (IPI) >2, and in activated-B-cell–like DLBCL patients with wide-type TP53. The prognostic impact in germinal-center-B-cell–like DLBCL was not apparent, which was likely due to the association of p63 expression with high-risk IPI, and potential presence of ∆Np63 isoform in TP63 rearranged patients (a mere speculation). Gene expression profiling suggested that p63 has both overlapping and distinct functions compared with p53, and that p63 and mutated p53 antagonize each other. In summary, p63 has p53-like and p53-independent functions and favorable prognostic impact, however this protective effect can be abolished by TP53 mutations. PMID:26878872

  17. p63 expression confers significantly better survival outcomes in high-risk diffuse large B-cell lymphoma and demonstrates p53-like and p53-independent tumor suppressor function.

    PubMed

    Xu-Monette, Zijun Y; Zhang, Shanxiang; Li, Xin; Manyam, Ganiraju C; Wang, Xiao-Xiao; Xia, Yi; Visco, Carlo; Tzankov, Alexandar; Zhang, Li; Montes-Moreno, Santiago; Dybkaer, Karen; Chiu, April; Orazi, Attilio; Zu, Youli; Bhagat, Govind; Richards, Kristy L; Hsi, Eric D; Choi, William W L; van Krieken, J Han; Huh, Jooryung; Ponzoni, Maurilio; Ferreri, Andrés J M; Zhao, Xiaoying; Møller, Michael B; Parsons, Ben M; Winter, Jane N; Piris, Miguel A; Medeiros, L Jeffrey; Young, Ken H

    2016-02-01

    The role of p53 family member p63 in oncogenesis is the subject of controversy. Limited research has been done on the clinical implications of p63 expression in diffuse large B-cell lymphoma (DLBCL). In this study, we assessed p63 expression in de novo DLBCL samples (n=795) by immunohistochemistry with a pan-p63-monoclonal antibody and correlated it with other clinicopathologic factors and clinical outcomes. p63 expression was observed in 42.5% of DLBCL, did not correlate with p53 levels, but correlated with p21, MDM2, p16INK4A, Ki-67, Bcl-6, IRF4/MUM-1 and CD30 expression, REL gains, and BCL6 translocation. p63 was an independent favorable prognostic factor in DLBCL, which was most significant in patients with International Prognostic Index (IPI) >2, and in activated-B-cell-like DLBCL patients with wide- type TP53. The prognostic impact in germinal-center-B-cell-like DLBCL was not apparent, which was likely due to the association of p63 expression with high-risk IPI, and potential presence of ∆Np63 isoform in TP63 rearranged patients (a mere speculation). Gene expression profiling suggested that p63 has both overlapping and distinct functions compared with p53, and that p63 and mutated p53 antagonize each other. In summary, p63 has p53-like and p53-independent functions and favorable prognostic impact, however this protective effect can be abolished by TP53 mutations. PMID:26878872

  18. Topical formulation engendered alteration in p53 and cyclobutane pyrimidine dimer expression in chronic photodamaged patients.

    PubMed

    Spencer, James M; Morgan, Michael B; Trapp, Kara M; Moon, Summer D

    2013-03-01

    While the clinical attributes of photoaging are well characterized in the literature, the pathogenic mechanisms that underlie these changes are incompletely elucidated. At the molecular level, p53 tumor-suppressor gene product mediated excision repair of ultraviolet (UV)-induced DNA damage is a critical effector in xeroderma pigmentosum (XP) and potentially in conventional photoaging. We examined p53 activity and measured UV-induced DNA damage via cyclobutane pyrimidine dimers (CPDs) quantitatively in 20 volunteers before and after an 8-week, open-label prospective topical application of a proprietary DNA recovery serum (Celfix). There was a statistically significant decrease in immunohistochemically determined p53 and CPD levels. While these data are preliminary, the findings lend support to the theoretical possibility of a topical agent reversing the effects of photodamage at the molecular level and, potentially, an ameliorative outcome clinically.

  19. Evidence for activation of mutated p53 by apigenin in human pancreatic cancer

    PubMed Central

    King, Jonathan C; Lu, Qing-Yi; Li, Gang; Moro, Aune; Takahashi, Hiroki; Chen, Monica; Go, Vay Liang W; Reber, Howard A; Eibl, Guido; Hines, O. Joe

    2012-01-01

    Pancreatic cancer is an exceedingly lethal disease with a five-year survival that ranks among the lowest of gastrointestinal malignancies. Part of its lethality is attributable to a generally poor response to existing chemotherapeutic regimens. New therapeutic approaches are urgently needed. We aimed to elucidate the anti-neoplastic mechanisms of apigenin-an abundant, naturally-occurring plant flavonoid-with a particular focus on p53 function. Pancreatic cancer cells (BxPC-3, MiaPaCa-2) experienced dose and time-dependent growth inhibition and increased apoptosis with apigenin treatment. p53 post-translational modification, nuclear translocation, DNA binding, and upregulation of p21 and PUMA were all enhanced by apigenin treatment despite mutated p53 in both cell lines. Transcription-dependent p53 activity was reversed by pifithrin-α, a specific DNA binding inhibitor of p53, but not growth inhibition or apoptosis suggesting transcription-independent p53 activity. This was supported by immunoprecipitation assays which demonstrated disassociation of p53/BclXL and PUMA/BclXL and formation of complexes with Bak followed by Cytochrome c release. Treated animals grew smaller tumors with increased cellular apoptosis than those fed control diet. These results suggest that despite deactivating mutation, p53 retains some of its function which is augmented following treatment with apigenin. Cell cycle arrest and apoptosis induction may be mediated by transcription-independent p53 function via interactions with BclXL and PUMA. Further study of flavonoids as chemotherapeutics is warranted PMID:22227579

  20. Expression of p53-regulated genes in human cultured lymphoblastoid TSCE5 and WTK1 cell lines after spaceflight in a frozen state

    NASA Astrophysics Data System (ADS)

    Takahashi, A.; Suzuki, H.; Omori, K.; Seki, M.; Hashizume, T.; Shimazu, T.; Ishioka, N.; Ohnishi, T.

    2011-03-01

    The 53 kDa tumor suppressor protein p53 is generally thought to contribute to the genetic stability of cells and to protect cells from DNA damage through the activity of p53-centered signal transduction pathways. To clarify the effect of space radiation on the expression of p53-dependent regulated genes, gene expression profiles were compared between two human cultured lymphoblastoid cell lines: one line (TSCE5) has a wild-type p53 gene status, and the other line (WTK1) has a mutated p53 gene status. Frozen human lymphoblastoid cells were stored in a freezer in the International Space Station (ISS) for 133 days. Gene expression was analyzed using DNA chips after culturing the space samples for 6 h on the ground after their return from space. Ground control samples were also cultured for 6 h after being stored in a frozen state on the ground for the same time period that the frozen cells were in space. p53-Dependent gene expression was calculated from the ratio of the gene expression values in wild-type p53 cells and in mutated p53 cells. The expression of 50 p53-dependent genes was up-regulated, and the expression of 94 p53-dependent genes was down-regulated after spaceflight. These expression data identified genes which could be useful in advancing studies in basic space radiation biology. The biological meaning of these results is discussed from the aspect of gene functions in the up- and down-regulated genes after exposure to low doses of space radiation.

  1. TATA-binding protein (TBP)-like protein is required for p53-dependent transcriptional activation of upstream promoter of p21Waf1/Cip1 gene.

    PubMed

    Suzuki, Hidefumi; Ito, Ryo; Ikeda, Kaori; Tamura, Taka-Aki

    2012-06-01

    TATA-binding protein-like protein (TLP) is involved in development, checkpoint, and apoptosis through potentiation of gene expression. TLP-overexpressing human cells, especially p53-containing cells, exhibited a decreased growth rate and increased proportion of G(1) phase cells. TLP stimulated expression of several growth-related genes including p21 (p21(Waf1/Cip1)). TLP-mediated activation of the p21 upstream promoter in cells was shown by a promoter-luciferase reporter assay. The p53-binding sequence located in the p21 upstream promoter and p53 itself are required for TLP-mediated transcriptional activation. TLP and p53 bound to each other and synergistically enhanced activity of the upstream promoter. TLP specifically activated transcription from the endogenous upstream promoter, and p53 was required for this activation. Etoposide treatment also resulted in activation of the upstream promoter as well as nuclear accumulation of TLP and p53. Moreover, the upstream promoter was associated with endogenous p53 and TLP, and the p53 recruitment was enhanced by TLP. The results of the present study suggest that TLP mediates p53-governed transcriptional activation of the p21 upstream promoter.

  2. Chronic p53-independent p21 expression causes genomic instability by deregulating replication licensing.

    PubMed

    Galanos, Panagiotis; Vougas, Konstantinos; Walter, David; Polyzos, Alexander; Maya-Mendoza, Apolinar; Haagensen, Emma J; Kokkalis, Antonis; Roumelioti, Fani-Marlen; Gagos, Sarantis; Tzetis, Maria; Canovas, Begoña; Igea, Ana; Ahuja, Akshay K; Zellweger, Ralph; Havaki, Sofia; Kanavakis, Emanuel; Kletsas, Dimitris; Roninson, Igor B; Garbis, Spiros D; Lopes, Massimo; Nebreda, Angel; Thanos, Dimitris; Blow, J Julian; Townsend, Paul; Sørensen, Claus Storgaard; Bartek, Jiri; Gorgoulis, Vassilis G

    2016-07-01

    The cyclin-dependent kinase inhibitor p21(WAF1/CIP1) (p21) is a cell-cycle checkpoint effector and inducer of senescence, regulated by p53. Yet, evidence suggests that p21 could also be oncogenic, through a mechanism that has so far remained obscure. We report that a subset of atypical cancerous cells strongly expressing p21 showed proliferation features. This occurred predominantly in p53-mutant human cancers, suggesting p53-independent upregulation of p21 selectively in more aggressive tumour cells. Multifaceted phenotypic and genomic analyses of p21-inducible, p53-null, cancerous and near-normal cellular models showed that after an initial senescence-like phase, a subpopulation of p21-expressing proliferating cells emerged, featuring increased genomic instability, aggressiveness and chemoresistance. Mechanistically, sustained p21 accumulation inhibited mainly the CRL4-CDT2 ubiquitin ligase, leading to deregulated origin licensing and replication stress. Collectively, our data reveal the tumour-promoting ability of p21 through deregulation of DNA replication licensing machinery-an unorthodox role to be considered in cancer treatment, since p21 responds to various stimuli including some chemotherapy drugs. PMID:27323328

  3. Effect of Mir-122 on Human Cholangiocarcinoma Proliferation, Invasion, and Apoptosis Through P53 Expression

    PubMed Central

    Wu, Cuiping; Zhang, Jinmei; Cao, Xiangang; Yang, Qian; Xia, Dequan

    2016-01-01

    Background Bile duct carcinoma is a common digestive tract tumor with high morbidity and mortality. As a kind of important non-coding RNA, microRNA (miR) plays an important role in post-transcriptional regulation. MiR-122 is the most abundant miR in the liver. Multiple studies have shown that miR-122 level is reduced in a variety of liver tumors and can be used as a specific marker for liver injury. P53 is a classic tumor suppressor gene that can induce tumor cell apoptosis through various pathways. Whether miR-122 affects p53 in bile duct carcinoma still needs investigation. Material/Methods miR inhibitor or mimics was transfected to bile duct carcinoma cells to evaluate its function on proliferation, invasion, apoptosis, and p53 expression. Results MiR-122 overexpression reduced cell invasion and migration ability, and inhibited cell apoptosis and p53 expression. Inhibiting miR-122 caused the opposite results. Conclusions Upregulating miR-122 can suppress bile duct carcinoma cell proliferation and induce apoptosis. MiR-122 could be used as a target for bile duct carcinoma treatment, which provides a new strategy for cholangiocarcinoma patients. PMID:27472451

  4. Vascular endothelial growth factor and nitric oxide synthase expression in human lung cancer and the relation to p53.

    PubMed Central

    Ambs, S.; Bennett, W. P.; Merriam, W. G.; Ogunfusika, M. O.; Oser, S. M.; Khan, M. A.; Jones, R. T.; Harris, C. C.

    1998-01-01

    Vascular endothelial growth factor (VEGF) expression and mutations of cancer-related genes increase with cancer progression. This correlation suggests the hypothesis that oncogenes and tumour suppressors regulate VEGF, and a significant correlation between p53 alteration and increased VEGF expression in human lung cancer was reported recently. To further examine this hypothesis, we analysed VEGF protein expression and mutations in p53 and K-ras in 27 non-small-cell lung cancers (NSCLC): 16 squamous cell, six adenocarcinomas, one large cell, two carcinoids and two undifferentiated tumours. VEGF was expressed in 50% of the squamous cell carcinomas (SCC) and carcinoids but none of the others. p53 mutations occurred in 14 tumours (52%), and K-ras mutations were found in two adenocarcinomas and one SCC; there was no correlation between the mutations and VEGF expression. As nitric oxide also regulates angiogenesis, we examined NOS expression in NSCLC. The Ca2+-dependent NOS activity, which indicates NOS1 and NOS3 expression, was significantly reduced in lung carcinomas compared with adjacent non-tumour tissue (P < 0.004). Although the Ca2+-independent NOS activity, which indicates NOS2 expression, was low or undetectable in non-tumour tissues and most carcinomas, significant activity occurred in three SCC. In summary, our data do not show a direct regulation of VEGF by p53 in NSCLC. Finally, we did not find the up-regulation of NOS isoforms during NSCLC progression that has been suggested for gynaecological and breast cancers. Images Figure 1 Figure 4 Figure 5 PMID:9683299

  5. Regulation of Nucleotide Metabolism by Mutant p53 Contributes to its Gain-of-Function Activities

    PubMed Central

    Kollareddy, Madhusudhan; Dimitrova, Elizabeth; Vallabhaneni, Krishna C.; Chan, Adriano; Le, Thuc; Chauhan, Krishna M.; Carrero, Zunamys I.; Ramakrishnan, Gopalakrishnan; Watabe, Kounosuke; Haupt, Ygal; Haupt, Sue; Pochampally, Radhika; Boss, Gerard R.; Romero, Damian G.; Radu, Caius G.; Martinez, Luis A.

    2015-01-01

    SUMMARY Mutant p53 (mtp53) is an oncogene that drives cancer cell proliferation. Here we report that mtp53 associates with the promoters of numerous nucleotide metabolism genes (NMG). Mtp53 knockdown reduces NMG expression and substantially depletes nucleotide pools, which attenuates GTP dependent protein (GTPase) activity and cell invasion. Addition of exogenous guanosine or GTP restores the invasiveness of mtp53 knockdown cells, suggesting that mtp53 promotes invasion by increasing GTP. Additionally, mtp53 creates a dependency on the nucleoside salvage pathway enzyme deoxycytidine kinase (dCK) for the maintenance of a proper balance in dNTP pools required for proliferation. These data indicate that mtp53 harboring cells have acquired a synthetic sick or lethal phenotype relationship with the nucleoside salvage pathway. Finally, elevated expression of NMG correlates with mutant p53 status and poor prognosis in breast cancer patients. Thus, mtp53’s control of nucleotide biosynthesis has both a driving and sustaining role in cancer development. PMID:26067754

  6. Proteasome inhibition mediates p53 reactivation and anti-cancer activity of 6-gingerol in cervical cancer cells.

    PubMed

    Rastogi, Namrata; Duggal, Shivali; Singh, Shailendra Kumar; Porwal, Konica; Srivastava, Vikas Kumar; Maurya, Rakesh; Bhatt, M L B; Mishra, Durga Prasad

    2015-12-22

    Human papilloma virus (HPV) expressing E6 and E7 oncoproteins, is known to inactivate the tumor suppressor p53 through proteasomal degradation in cervical cancers. Therefore, use of small molecules for inhibition of proteasome function and induction of p53 reactivation is a promising strategy for induction of apoptosis in cervical cancer cells. The polyphenolic alkanone, 6-Gingerol (6G), present in the pungent extracts of ginger (Zingiber officinale Roscoe) has shown potent anti-tumorigenic and pro-apoptotic activities against a variety of cancers. In this study we explored the molecular mechanism of action of 6G in human cervical cancer cells in vitro and in vivo. 6G potently inhibited proliferation of the HPV positive cervical cancer cells. 6G was found to: (i) inhibit the chymotrypsin activity of proteasomes, (ii) induce reactivation of p53, (iii) increase levels of p21, (iv) induce DNA damage and G2/M cell cycle arrest, (v) alter expression levels of p53-associated apoptotic markers like, cleaved caspase-3 and PARP, and (vi) potentiate the cytotoxicity of cisplatin. 6G treatment induced significant reduction of tumor volume, tumor weight, proteasome inhibition and p53 accumulation in HeLa xenograft tumor cells in vivo. The 6G treatment was devoid of toxic effects as it did not affect body weights, hematological and osteogenic parameters. Taken together, our data underscores the therapeutic and chemosensitizing effects of 6G in the management and treatment of cervical cancer.

  7. Proteasome inhibition mediates p53 reactivation and anti-cancer activity of 6-Gingerol in cervical cancer cells

    PubMed Central

    Rastogi, Namrata; Duggal, Shivali; Singh, Shailendra Kumar; Porwal, Konica; Srivastava, Vikas Kumar; Maurya, Rakesh; Bhatt, Madan L.B.; Mishra, Durga Prasad

    2015-01-01

    Human papilloma virus (HPV) expressing E6 and E7 oncoproteins, is known to inactivate the tumor suppressor p53 through proteasomal degradation in cervical cancers. Therefore, use of small molecules for inhibition of proteasome function and induction of p53 reactivation is a promising strategy for induction of apoptosis in cervical cancer cells. The polyphenolic alkanone, 6-Gingerol (6G), present in the pungent extracts of ginger (Zingiber officinale Roscoe) has shown potent anti-tumorigenic and pro-apoptotic activities against a variety of cancers. In this study we explored the molecular mechanism of action of 6G in human cervical cancer cells in vitro and in vivo. 6G potently inhibited proliferation of the HPV positive cervical cancer cells. 6G was found to: (i) inhibit the chymotrypsin activity of proteasomes, (ii) induce reactivation of p53, (iii) increase levels of p21, (iv) induce DNA damage and G2/M cell cycle arrest, (v) alter expression levels of p53-associated apoptotic markers like, cleaved caspase-3 and PARP, and (vi) potentiate the cytotoxicity of cisplatin. 6G treatment induced significant reduction of tumor volume, tumor weight, proteasome inhibition and p53 accumulation in HeLa xenograft tumor cells in vivo. The 6G treatment was devoid of toxic effects as it did not affect body weights, hematological and osteogenic parameters. Taken together, our data underscores the therapeutic and chemosensitizing effects of 6G in the management and treatment of cervical cancer. PMID:26621832

  8. Proteasome inhibition mediates p53 reactivation and anti-cancer activity of 6-gingerol in cervical cancer cells.

    PubMed

    Rastogi, Namrata; Duggal, Shivali; Singh, Shailendra Kumar; Porwal, Konica; Srivastava, Vikas Kumar; Maurya, Rakesh; Bhatt, M L B; Mishra, Durga Prasad

    2015-12-22

    Human papilloma virus (HPV) expressing E6 and E7 oncoproteins, is known to inactivate the tumor suppressor p53 through proteasomal degradation in cervical cancers. Therefore, use of small molecules for inhibition of proteasome function and induction of p53 reactivation is a promising strategy for induction of apoptosis in cervical cancer cells. The polyphenolic alkanone, 6-Gingerol (6G), present in the pungent extracts of ginger (Zingiber officinale Roscoe) has shown potent anti-tumorigenic and pro-apoptotic activities against a variety of cancers. In this study we explored the molecular mechanism of action of 6G in human cervical cancer cells in vitro and in vivo. 6G potently inhibited proliferation of the HPV positive cervical cancer cells. 6G was found to: (i) inhibit the chymotrypsin activity of proteasomes, (ii) induce reactivation of p53, (iii) increase levels of p21, (iv) induce DNA damage and G2/M cell cycle arrest, (v) alter expression levels of p53-associated apoptotic markers like, cleaved caspase-3 and PARP, and (vi) potentiate the cytotoxicity of cisplatin. 6G treatment induced significant reduction of tumor volume, tumor weight, proteasome inhibition and p53 accumulation in HeLa xenograft tumor cells in vivo. The 6G treatment was devoid of toxic effects as it did not affect body weights, hematological and osteogenic parameters. Taken together, our data underscores the therapeutic and chemosensitizing effects of 6G in the management and treatment of cervical cancer. PMID:26621832

  9. Expression profiles of p53, p63, and p73 in benign salivary gland tumors.

    PubMed

    Weber, Anette; Langhanki, Larissa; Schütz, Alexander; Gerstner, Andreas; Bootz, Friedrich; Wittekind, Christian; Tannapfel, Andrea

    2002-11-01

    The tumor-suppressor protein p53 has recently been shown to belong to a family that includes two structurally related proteins, p63 and p73. In contrast to p53, p63 and p73 play an essential role in epithelial development, stem cell identity and cellular differentiation. Salivary gland tumors carry a wide spectrum of histopathological forms, which may share a common single-cell origin from the epithelial progenitor basal duct cells and have a different tendency of malignant progression. This study was performed to examine the expression of p53, p63, and p73 in benign salivary gland tumors. Expression and mutation of p53, p73, and p63 were examined by direct DNA sequencing, reverse transcription PCR using isoform-specific primers, and by immunohistochemistry in normal parotid tissue ( n=10), and various tumors of the salivary gland (42 pleomorphic adenomas, 12 myoepitheliomas, 8 basal cell adenomas, 5 oncocytomas, 5 canalicular adenomas, and 20 adenolymphomas). In normal parotid tissue the expression of p63 and p73 was restricted to few basal and myoepithelial cells. Ductal luminal and acinus cells were completely negative for the expression of all three family members. In contrast, in salivary gland tumors, strong nuclear staining for p63 and p73 was observed. Myoepithelial and basaloid cells and the basal epithelial layer of adenolyphomas and oncocytomas were positive for p63 and also, to a lesser extent, to p73. Mutations of p53 were detected in 4 of 42 (10%) pleomorphic adenomas, in 3 of 12 (25%) myoepitheliomas, and in 1 of 8 (13%) basal cell adenomas but not in other tumors. We failed to detect specific mutations of p63 and p73. Using isoform-specific PCR, we found that all isoforms of p63 were expressed in normal parotid tissue whereas the pleomorphic adenomas, myoepitehliomas, and basal cell adenomas dominantly expressed the transactivation-incompetent truncated isoforms. Our data indicate that p63 and p73 are upregulated in salivary gland tumors and may

  10. p53 status is a major determinant of effects of decreasing peroxiredoxin I expression on tumor growth and response of lung cancer cells to treatment

    SciTech Connect

    Chen, M.-F. . E-mail: miaofen@adm.cgmh.org.tw; Chen, W.-C.; Wu, C.-T.; Lin, P.-Y.; Shau Hungyi; Liao, S.-K.; Yang, C.-T.; Lee, K.-D.

    2006-12-01

    Purpose: The potential roles of peroxiredoxin (Prx) I in carcinogenesis and treatment have been explored. Our previous study revealed differences between A549 (functional p53) and H1299 (null p53) Prx I antisense transfectants. The discrepancy might have resulted from the p53 status. In this study, we further investigated the role of Prx I and p53 on lung cancer growth and the response to treatment in vitro and in vivo. Methods: We established stable A549 and H1299 transfectants with Prx I antisense and p53, respectively. We then examined their characteristics in vitro and used nude mice xenografts of these cell lines to compare their capacity for tumor invasion and spontaneous metastasis and their sensitivity to radiotherapy. Results: Increased reactive oxygen species caused by lower Prx I activity induced p53 expression. In lethal stress, the augmentation of reactive oxygen species was partially reversed by blocking p53 in A549 with Prx I antisense. We demonstrated the potential contribution of p53-dependent mechanisms to inhibit lung tumor growth and increase radiosensitization using H1299 transfected with p53 in vitro and in vivo. An increased p53 level attenuated the capacity of the cells for metastasis by decreasing vascular endothelial growth factor and induced radiosensitization by increased apoptosis and cell senescence and by regulating intracellular reactive oxygen species. Conclusion: These results suggest that p53 status has an important role in the tumor-inhibiting and radiosensitizing effects of decreasing Prx I. Both Prx I and p53 may be powerful prognosticators for lung cancer.

  11. Isoflurane suppresses the self-renewal of normal mouse neural stem cells in a p53-dependent manner by activating the Lkb1-p53-p21 signalling pathway.

    PubMed

    Hou, Lengchen; Liu, Te; Wang, Jian

    2015-11-01

    Isoflurane is widely used in anaesthesia for surgical operations. However, whether it elicits unwanted side effects, particularly in neuronal cells, remains to be fully elucidated. The Lkb1-p53-p21 signalling pathway is able to modulate neuronal self‑renewal and proliferation. Furthermore, the suppression of Lkb1‑dependent p21 induction leads to apoptosis. In the present study, whether Lkb1‑p53‑p21 signalling is involved in the response to isoflurane was investigated. A comparison of mouse primary, wild‑type neural stem cells (WT NSCs) with the p53‑/‑ NSC cell line, NE‑4C, revealed that isoflurane inhibited proliferation in a dose‑, a time‑ and a p53‑dependent manner. However, flow cytometric analysis revealed that the concentration of isoflurane which caused 50% inhibition (the IC50 value) induced cell cycle arrest in WT NSCs. Furthermore, the protein expression levels of LKB1, p53 and p21 were increased, although those of nestin and survivin decreased, following treatment of WT NSCs with isoflurane. On the other hand, isoflurane induced the phosphorylation of Ser15 in p53 in WT NSCs, which was associated with p53 binding to the p21 promoter, and consequentially, the transcriptional activation of p21. All these events were abrogated in NE‑4C cells. Taken together, the present study has demonstrated that isoflurane suppresses the self-renewal of normal mouse NSCs by activating the Lkb1-p53-p21 signalling pathway.

  12. Chloroquine activates the p53 pathway and induces apoptosis in human glioma cells

    PubMed Central

    Kim, Ella L.; Wüstenberg, Robin; Rübsam, Anne; Schmitz-Salue, Christoph; Warnecke, Gabriele; Bücker, Eva-Maria; Pettkus, Nadine; Speidel, Daniel; Rohde, Veit; Schulz-Schaeffer, Walter; Deppert, Wolfgang; Giese, Alf

    2010-01-01

    Glioblastoma is the most common malignant brain tumor in adults. The currently available treatments offer only a palliative survival advantage and the need for effective treatments remains an urgent priority. Activation of the p53 growth suppression/apoptotic pathway is one of the promising strategies in targeting glioma cells. We show that the quinoline derivative chloroquine activates the p53 pathway and suppresses growth of glioma cells in vitro and in vivo in an orthotopic (U87MG) human glioblastoma mouse model. Induction of apoptosis is one of the mechanisms underlying the effects of chloroquine on suppressing glioma cell growth and viability. siRNA-mediated downregulation of p53 in wild-type but not mutant p53 glioblastoma cells substantially impaired chloroquine-induced apoptosis. In addition to its p53-activating effects, chloroquine may also inhibit glioma cell growth via p53-independent mechanisms. Our results clarify the mechanistic basis underlying the antineoplastic effect of chloroquine and reveal its therapeutic potential as an adjunct to glioma chemotherapy. PMID:20308316

  13. Mutation of p53 in Recurrent Hepatocellular Carcinoma and Its Association with the Expression of ZBP-89

    PubMed Central

    Chen, George G.; Merchant, Juanita L.; Lai, Paul B. S.; Ho, Rocky L. K.; Hu, Xu; Okada, Morihiro; Huang, Sheng F.; Chui, Albert K. K.; Law, David J.; Li, Yong G.; Lau, Wan Y.; Li, Arthur K. C.

    2003-01-01

    p53 has recently been identified as a downstream target of ZBP-89, a zinc finger transcription factor. ZBP-89 promotes growth arrest through stabilization of the p53 protein. The aim of this study is to determine the status of the p53 gene in recurrent human hepatocellular carcinoma (HCC) and test the link between the expression of ZBP-89 and the p53 gene. The results showed that mutations in the p53 gene were frequently detected in recurrent HCC. The interval between surgical resection and the recurrence of HCC was significantly longer in patients with the wild-type p53 gene than those with mutations, strongly suggesting a pathological role for the mutant p53 gene in HCC recurrence. Among those positive for the p53 protein, nearly 85% (18 of 21) showed nuclear localization of the p53 protein while only about 14% (3 of 21) were positive for the p53 protein in the cytoplasm. ZBP-89 co-localized with p53 in the nucleus in about 67% (12 of 18) of all cases positive for the nuclear p53 protein, suggesting that ZBP-89 may play a role in the nuclear accumulation of the p53 protein in a subset of recurrent HCC. With accumulation of p53 protein in the nucleus, tumor cells undergo apoptosis and thus are more susceptible to radiotherapy and chemotherapy. Therefore, co-localization of p53 protein with ZBP-89 may define a subgroup of recurrent HCC that is more sensitive to treatment. PMID:12759240

  14. Mechanical Stretch Inhibits MicroRNA499 via p53 to Regulate Calcineurin-A Expression in Rat Cardiomyocytes

    PubMed Central

    Chua, Su-Kiat; Wang, Bao-Wei; Lien, Li-Ming; Lo, Huey-Ming; Chiu, Chiung-Zuan; Shyu, Kou-Gi

    2016-01-01

    Background MicroRNAs play an important role in cardiac remodeling. MicroRNA 499 (miR499) is highly enriched in cardiomyocytes and targets the gene for Calcineurin A (CnA), which is associated with mitochondrial fission and apoptosis. The mechanism regulating miR499 in stretched cardiomyocytes and in volume overloaded heart is unclear. We sought to investigate the mechanism regulating miR499 and CnA in stretched cardiomyocytes and in volume overload-induced heart failure. Methods & Results Rat cardiomyocytes grown on a flexible membrane base were stretched via vacuum to 20% of maximum elongation at 60 cycles/min. An in vivo model of volume overload with aorta-caval shunt in adult rats was used to study miR499 expression. Mechanical stretch downregulated miR499 expression, and enhanced the expression of CnA protein and mRNA after 12 hours of stretch. Expression of CnA and calcineurin activity was suppressed with miR499 overexpression; whereas, expression of dephosphorylated dynamin-related protein 1 (Drp1) was suppressed with miR499 overexpression and CnA siRNA. Adding p53 siRNA reversed the downregulation of miR499 when stretched. A gel shift assay and promoter-activity assay demonstrated that stretch increased p53 DNA binding activity but decreased miR499 promoter activity. When the miR499 promoter p53-binding site was mutated, the inhibition of miR499 promoter activity with stretch was reversed. The in vivo aorta-caval shunt also showed downregulated myocardial miR499 and overexpression of miR499 suppressed CnA and cellular apoptosis. Conclusion The miR499-controlled apoptotic pathway involving CnA and Drp1 in stretched cardiomyocytes may be regulated by p53 through the transcriptional regulation of miR499. PMID:26859150

  15. The energetics of the acetylation switch in p53-mediated transcriptional activation.

    PubMed

    Eichenbaum, Kenneth D; Rodríguez, Yoel; Mezei, Mihaly; Osman, Roman

    2010-02-01

    Targeted therapeutic intervention in receptor-ligand interactions of p53-mediated tumor suppression can impact progression of disease, aging, and variation in genetic expression. Here, we conducted a number of molecular simulations, based on structures of p53 in complex with its transcriptional coactivating CBP bromodomain, determined by NMR spectroscopy, to investigate the energetics of the binding complex. Building on the observation that acetylation of K382 in p53 serves as the essential triggering switch for a specific interaction with CBP, we assessed the differential effect of acetylation on binding from simulations of an octapeptide derived from p53 with acetylated and nonacetylated K382 (residues 379-386). Cluster analysis of the simulations shows that acetylation of the free peptide does not significantly change the population of the preferred conformation of the peptide in solution for binding to CBP. Conversion of the acetylated K382 to nonacetylated form with free energy perturbation (FEP) simulations of the p53 CBP complex and the free peptide showed that the relative contribution of the acetyl group to binding is 4.8 kcal/mol. An analysis of residue contributions to the binding energy using an MM-GBSA approach agrees with the FEP results and sheds additional light on the origin of selectivity in p53 binding to the CBP bromodomain.

  16. Study of Arsenic Sulfide in Solid Tumor Cells Reveals Regulation of Nuclear Factors of Activated T-cells by PML and p53

    PubMed Central

    Ding, Wenping; Tong, Yingying; Zhang, Xiuli; Pan, Minggui; Chen, Siyu

    2016-01-01

    Arsenic sulfide (AS) has excellent cytotoxic activity in acute promyelocytic leukemia (APL) but its activity in solid tumors remains to be explored. Here we show that AS and cyclosporine A (CsA) exerted synergistic inhibitory effect on cell growth and c-Myc expression in HCT116 cells. AS inhibited the expression of PML, c-Myc, NFATc1, NFATc3, and NFATc4, while stimulating the expression of p53 and NFATc2. Knockdown of PML reduced NFATc1, NFATc2, NFATc3 and NFATc4 expression while overexpression of p53 stimulated NFATc2-luciferase activity that was further augmented by AS by binding to a set of p53 responsive elements (PREs) on the NFATc2 promoter. Additionally, overexpression of p53 suppressed NFATc3 and NFATc4. Reciprocally, NFATc3 knockdown enhanced p53 while reducing MDM2 expression indicating that NFATc3 is a negative regulator of p53 while a positive regulator of MDM2, consistent with its tumor-promoting property as knockdown of NFATc3 retarded cell growth in vitro and tumor growth in xenograft. In patients with colon cancer, tumor expression of NFATc2 correlated with superior survival, while nuclear NFATc1 with inferior survival. These results indicate that AS differentially regulates NFAT pathway through PML and p53 and reveal an intricate reciprocal regulatory relationship between NFAT proteins and p53 pathway. PMID:26795951

  17. Arecoline-induced phosphorylated p53 and p21(WAF1) protein expression is dependent on ATM/ATR and phosphatidylinositol-3-kinase in clone-9 cells.

    PubMed

    Chou, Wen-Wen; Guh, Jinn-Yuh; Tsai, Jung-Fa; Hwang, Chi-Ching; Chiou, Shean-Jaw; Chuang, Lea-Yea

    2009-06-01

    Betel-quid use is associated with liver cancer whereas its constituent arecoline is cytotoxic, genotoxic, and induces p53-dependent p21(WAF1) protein expression in Clone-9 cells (rat hepatocytes). The ataxia telangiectasia mutated (ATM)/rad3-related (ATR)-p53-p21(WAF1) and the phosphatidylinositol-3-kinase (PI3K)-mammalian target of rapamycin (mTOR) pathways are involved in the DNA damage response and the pathogenesis of cancers. Thus, we studied the role of ATM/ATR and PI3K in arecoline-induced p53 and p21(WAF1) protein expression in Clone-9 cells. We found that arecoline (0.5 mM) activated the ATM/ATR kinase at 30 min. The arecoline-activated ATM/ATR substrate contained p-p53Ser15. Moreover, arecoline only increased the levels of the p-p53Ser6, p-p53Ser15, and p-p53Ser392 phosphorylated p53 isoforms among the known isoforms. ATM shRNA attenuated arecoline-induced p-p53Ser15 and p21(WAF1) at 24 h. Arecoline (0.5 mM) increased phosphorylation levels of p-AktSer473 and p-mTORSer2448 at 30-60 min. Dominant-negative PI3K plasmids attenuated arecoline-induced p21(WAF1), but not p-p53Ser15, at 24 h. Rapamycin attenuated arecoline-induced phosphrylated p-p53Ser15, but not p21(WAF1), at 24 h. ATM shRNA, but not dominant-negative PI3K plasmids, attenuated arecoline-induced p21(WAF1) gene transcription. We conclude that arecoline activates the ATM/ATR-p53-p21(WAF1) and the PI3K/Akt-mTOR-p53 pathways in Clone-9 cells. Arecoline-induced phosphorylated p-p53Ser15 expression is dependent on ATM whereas arecoline-induced p21(WAF1) protein expression is dependent on ATM and PI3K. Moreover, p21(WAF1) gene is transcriptionally induced by arecoline-activated ATM.

  18. Space experiment "Rad Gene"-report 1; p53-Dependent gene expression in human cultured cells exposed to space environment

    NASA Astrophysics Data System (ADS)

    Takahashi, Akihisa; Ohnishi, Takeo; Suzuki, Hiromi; Omori, Katsunori; Seki, Masaya; Hashizume, Toko; Shimazu, Toru; Ishioka, Noriaki

    The space environment contains two major biologically significant influences: space radiations and microgravity. A p53 tumor suppressor protein plays a role as a guardian of the genome through the activity of p53-centered signal transduction pathways. The aim of this study was to clarify the biological effects of space radiations, microgravity and a space environment on the gene and protein expression of p53-dependent regulated genes. Space experiments were performed with two human cultured lymphoblastoid cell lines: one cells line (TSCE5) bears a wild-type p53 gene status, and another cells line (WTK1) bears a mutated p53 gene status. Un-der one gravity or microgravity condition, the cells were grown in the cell biology experimental facility (CBEF) of the International Space Station (ISS) for 8 days without experiencing the stress during launching and landing because the cells were frozen during these periods. Ground control samples also were cultured for 8 days in the CBEF on the ground during the same periods as space flight. Gene and protein expression was analyzed by using DNA chip (a 44k whole human genome microarray, Agilent Technologies Inc.) and protein chip (PanoramaTM Ab MicroArray, Sigma-Aldrich Co.), respectively. In addition, we analyzed the gene expression in cultured cells after space flight during 133 days with frozen condition. We report the results and discussion from the viewpoint of the functions of the up-regulated and down-regulated genes after an exposure to space radiations and/or microgravity. The initial goal of this space experiment was completely achieved. It is expected that data from this type of work will be helpful in designing physical protection from the deleterious effects of space radiations during long term stays in space.

  19. Mutant, wild type, or overall p53 expression: freedom from clinical progression in tumours of astrocytic lineage.

    PubMed

    Pardo, F S; Hsu, D W; Zeheb, R; Efird, J T; Okunieff, P G; Malkin, D M

    2004-11-01

    Abnormalities of the p53 tumor-suppressor gene are found in a significant proportion of astrocytic brain tumours. We studied tumour specimens from 74 patients evaluated over 20 years at the Massachusetts General Hospital, where clinical outcome could be determined and sufficient pathologic material was available for immunostaining. p53 expression studies employed an affinity-purified p53 monoclonal antibody, whose specificity was verified in absorption studies and, in a minority of cases, a second antibody recognising a different epitope of p53. Significant overexpression of p53 protein was found in 48% of the 74 tumours included in this series and high levels of expression were associated with higher mortality from astrocytic tumours (P<0.001, log rank). Multivariate analyses revealed that immunohistochemically detected p53 was an independent marker of shortened progression-free and overall actuarial survival in patients with astrocytic tumours, suggesting that increased expression of p53 plays an important role in the pathobiology of these tumours. In a subset of 36 cases, coding regions of the p53 gene were completely sequenced via SSCP and direct DNA sequencing, revealing that overexpression of p53 protein is not always associated with point mutations in conserved exons of the p53 gene. Finally, we confirmed p53 protein expression in early-passage human glioma cell lines of known p53 mutational status and immunostaining scores. Although grade continues to be the strongest prognostic variable, the use of p53 staining as a prognostic indicator, in contrast to mutational DNA analyses, may be a useful adjunct in identifying patients at higher risk of treatment failure.

  20. Perturbation of ribosome biogenesis drives cells into senescence through 5S RNP-mediated p53 activation.

    PubMed

    Nishimura, Kazuho; Kumazawa, Takuya; Kuroda, Takao; Katagiri, Naohiro; Tsuchiya, Mai; Goto, Natsuka; Furumai, Ryohei; Murayama, Akiko; Yanagisawa, Junn; Kimura, Keiji

    2015-03-01

    The 5S ribonucleoprotein particle (RNP) complex, consisting of RPL11, RPL5, and 5S rRNA, is implicated in p53 regulation under ribotoxic stress. Here, we show that the 5S RNP contributes to p53 activation and promotes cellular senescence in response to oncogenic or replicative stress. Oncogenic stress accelerates rRNA transcription and replicative stress delays rRNA processing, resulting in RPL11 and RPL5 accumulation in the ribosome-free fraction, where they bind MDM2. Experimental upregulation of rRNA transcription or downregulation of rRNA processing, mimicking the nucleolus under oncogenic or replicative stress, respectively, also induces RPL11-mediated p53 activation and cellular senescence. We demonstrate that exogenous expression of certain rRNA-processing factors rescues the processing defect, attenuates p53 accumulation, and increases replicative lifespan. To summarize, the nucleolar-5S RNP-p53 pathway functions as a senescence inducer in response to oncogenic and replicative stresses.

  1. The PTTG1-Binding Factor (PBF/PTTG1IP) regulates p53 activity in thyroid cells

    PubMed Central

    Read, Martin L.; Seed, Robert I.; Fong, Jim C.W.; Modasia, Bhavika; Ryan, Gavin A.; Watkins, Rachel J; Gagliano, Teresa; Smith, Vicki E.; Stratford, Anna L.; Kwan, Perkin K; Sharma, Neil; Dixon, Olivia M.; Watkinson, John C.; Boelaert, Kristien; Franklyn, Jayne A.; Turnell, Andrew S.; McCabe, Christopher J.

    2016-01-01

    The PTTG1-Binding Factor (PBF/PTTG1IP) has an emerging repertoire of roles, especially in thyroid biology, and functions as a proto-oncogene. High PBF expression is independently associated with poor prognosis and lower disease-specific survival in human thyroid cancer. However, the precise role of PBF in thyroid tumorigenesis is unclear. Here, we present extensive evidence demonstrating that PBF is a novel regulator of p53, a tumor suppressor protein with a key role in maintaining genetic stability, which is infrequently mutated in differentiated thyroid cancer. By coimmunoprecipitation and proximity ligation assays, we show that PBF binds specifically to p53 in thyroid cells, and significantly represses transactivation of responsive promoters. Further, we identify that PBF decreases p53 stability by enhancing ubiquitination, which appears dependent on the E3 ligase activity of Mdm2. Impaired p53 function was evident in a transgenic mouse model with thyroid-specific PBF over-expression (PBF-Tg), which had significantly increased genetic instability as indicated by FISSR-PCR analysis. Consistent with this, ~40% of all DNA repair genes examined were repressed in PBF-Tg primary cultures, including genes with critical roles in maintaining genomic integrity such as Mgmt, Rad51 and Xrcc3. Our data also revealed that PBF induction resulted in upregulation of the E2 enzyme Rad6 in murine thyrocytes, and was associated with Rad6 expression in human thyroid tumors. Overall, this work provides novel insights into the role of the proto-oncogene PBF as a negative regulator of p53 function in thyroid tumorigenesis, where PBF is generally over-expressed and p53 mutations are rare compared to other tumor types. PMID:24506068

  2. Oligomeric peroxiredoxin-I is an essential intermediate for p53 to activate MST1 kinase and apoptosis.

    PubMed

    Morinaka, A; Funato, Y; Uesugi, K; Miki, H

    2011-10-01

    Mammalian Ste20-like kinase-1 (MST1) kinase mediates H₂O₂-induced cell death by anticancer drugs such as cisplatin in a p53-dependent manner. However, the mechanism underlying MST1 activation by H₂O₂ remains unknown. Here we show that peroxiredoxin-I (PRX-I) is an essential intermediate in H₂O₂-induced MST1 activation and cisplatin-induced cell death through p53. Cell stimulation with H₂O₂ resulted in PRX-I oxidation to form homo-oligomers and interaction with MST1, leading to MST1 autophosphorylation and augmentation of kinase activity. In addition, RNA interference knockdown experiments indicated that endogenous PRX-I is required for H₂O₂-induced MST1 activation. Live-cell imaging showed H₂O₂ generation by cisplatin treatment, which likewise caused PRX-I oligomer formation, MST1 activation and cell death. Cisplatin-induced PRX-I oligomer formation was not observed in embryonic fibroblasts obtained from p53-knockout mice, confirming the importance of p53. Indeed, ectopic expression of p53 induced PRX-I oligomer formation and cell death, both of which were cancelled by the antioxidant NAC. Moreover, we succeeded in reconstituting H₂O₂-induced MST1 activation in vitro, using purified PRX-I and MST1 proteins. Collectively, our results show a novel PRX-I function to cause cell death in response to high levels of oxidative stress by activating MST1, which underlies the p53-dependent cytotoxicity caused by anticancer agents.

  3. In vivo activation of the p53 tumor suppressor pathway by an engineered cyclotide.

    PubMed

    Ji, Yanbin; Majumder, Subhabrata; Millard, Melissa; Borra, Radhika; Bi, Tao; Elnagar, Ahmed Y; Neamati, Nouri; Shekhtman, Alexander; Camarero, Julio A

    2013-08-01

    The overexpression of Hdm2 and HdmX is a common mechanism used by many tumor cells to inactive the p53 tumor suppressor pathway promoting cell survival. Targeting Hdm2 and HdmX has emerged as a validated therapeutic strategy for treating cancers with wild-type p53. Small linear peptides mimicking the N-terminal fragment of p53 have been shown to be potent Hdm2/HdmX antagonists. The potential therapeutic use of these peptides, however, is limited by their poor stability and bioavailability. Here, we report the engineering of the cyclotide MCoTI-I to efficiently antagonize intracellular p53 degradation. The resulting cyclotide MCo-PMI was able to bind with low nanomolar affinity to both Hdm2 and HdmX, showed high stability in human serum, and was cytotoxic to wild-type p53 cancer cell lines by activating the p53 tumor suppressor pathway both in vitro and in vivo. These features make the cyclotide MCoTI-I an optimal scaffold for targeting intracellular protein-protein interactions.

  4. p53 activates G₁ checkpoint following DNA damage by doxorubicin during transient mitotic arrest.

    PubMed

    Hyun, Sun-Yi; Jang, Young-Joo

    2015-03-10

    Recovery from DNA damage is critical for cell survival. The serious damage is not able to be repaired during checkpoint and finally induces cell death to prevent abnormal cell growth. In this study, we demonstrated that 8N-DNA contents are accumulated via re-replication during prolonged recovery period containing serious DNA damage in mitotic cells. During the incubation for recovery, a mitotic delay and initiation of an abnormal interphase without cytokinesis were detected. Whereas a failure of cytokinesis occurred in cells with no relation with p53/p21, re-replication is an anomalous phenomenon in the mitotic DNA damage response in p53/p21 negative cells. Cells with wild-type p53 are accumulated just prior to the initiation of DNA replication through a G₁ checkpoint after mitotic DNA damage, even though p53 does not interrupt pre-RC assembly. Finally, these cells undergo cell death by apoptosis. These data suggest that p53 activates G₁ checkpoint in response to mitotic DNA damage. Without p53, cells with mitotic DNA damage undergo re-replication leading to accumulation of damage.

  5. In vivo activation of the p53 tumor suppressor pathway by an engineered cyclotide

    PubMed Central

    Neamati, Nouri; Shekhtman, Alexander; Camarero, Julio A.

    2013-01-01

    The overexpression of Hdm2 and HdmX is a common mechanism used by many tumor cells to inactive the p53 tumor suppressor pathway promoting cell survival. Targeting Hdm2 and HdmX has emerged as a validated therapeutic strategy for treating cancers with wild-type p53. Small linear peptides mimicking the N-terminal fragment of p53 have been shown to be potent Hdm2/HdmX antagonists. The potential therapeutic use of these peptides, however, is limited by their poor stability and bioavailability. Here, we report the engineering of the cyclotide MCoTI-I to efficiently antagonize intracellular p53 degradation. The resulting cyclotide MCo-PMI was able to bind with low nanomolar affinity to both Hdm2 and HdmX, showed high stability in human serum and was cytotoxic to wild-type p53 cancer cell lines by activating the p53 tumor suppressor pathway both in vitro and in vivo. These features make the cyclotide MCoTI-I an optimal scaffold for targeting intracellular protein-protein interactions. PMID:23848581

  6. PCNA AND P53 EXPRESSION IN ORAL LEUKOPLAKIA WITH DIFFERENT DEGREES OF KERATINIZATION

    PubMed Central

    Lawall, Melaine de Almeida; Crivelini, Marcelo Macedo

    2006-01-01

    Leukoplakias are oral lesions that may have many clinical and histological aspects and they are usually associated with malignancy when dysplastic alterations are shown. However, these transformations may occur in non-dysplastic lesions that show harmless clinical aspect. For this reason, the proposal was to study the p53 and PCNA immunohistochemical expression in non-dysplastic leukoplakias, trying to correlate the results only with the epithelial keratinization degree. For this, 24 leukoplakias degrees I, II and III of Grinspan were used, all of them located in oral mucosa. Most of the leukoplakias showed p53 and PCNA expression in their different keratinization degrees. The p53 marking was confined to the basal and parabasal layers, while the PCNA marking occurred in practically all epithelial layers. The expression pattern of these markers was histologically and statistically similar between the lesions with these keratinization variations. It was evident that non-dysplastic epithelium of leukoplakias showed submicroscopical signs of alterations that lead to malignant transformation, and that the keratinization degree did not correlate to a greater risk of this event. PMID:19089276

  7. p53-dependent SIRT6 expression protects Aβ42-induced DNA damage

    PubMed Central

    Jung, Eun Sun; Choi, Hyunjung; Song, Hyundong; Hwang, Yu Jin; Kim, Ahbin; Ryu, Hoon; Mook-Jung, Inhee

    2016-01-01

    Alzheimer’s disease (AD) is the most common type of dementia and age-related neurodegenerative disease. Elucidating the cellular changes that occur during ageing is an important step towards understanding the pathogenesis and progression of neurodegenerative disorders. SIRT6 is a member of the mammalian sirtuin family of anti-aging genes. However, the relationship between SIRT6 and AD has not yet been elucidated. Here, we report that SIRT6 protein expression levels are reduced in the brains of both the 5XFAD AD mouse model and AD patients. Aβ42, a major component of senile plaques, decreases SIRT6 expression, and Aβ42-induced DNA damage is prevented by the overexpression of SIRT6 in HT22 mouse hippocampal neurons. Also, there is a strong negative correlation between Aβ42-induced DNA damage and p53 levels, a protein involved in DNA repair and apoptosis. In addition, upregulation of p53 protein by Nutlin-3 prevents SIRT6 reduction and DNA damage induced by Aβ42. Taken together, this study reveals that p53-dependent SIRT6 expression protects cells from Aβ42-induced DNA damage, making SIRT6 a promising new therapeutic target for the treatment of AD. PMID:27156849

  8. p53 activation by Ni(II) is a HIF-1α independent response causing caspases 9/3-mediated apoptosis in human lung cells

    SciTech Connect

    Wong, Victor C.; Morse, Jessica L.; Zhitkovich, Anatoly

    2013-06-15

    Hypoxia mimic nickel(II) is a human respiratory carcinogen with a suspected epigenetic mode of action. We examined whether Ni(II) elicits a toxicologically significant activation of the tumor suppressor p53, which is typically associated with genotoxic responses. We found that treatments of H460 human lung epithelial cells with NiCl{sub 2} caused activating phosphorylation at p53-Ser15, accumulation of p53 protein and depletion of its inhibitor MDM4 (HDMX). Confirming the activation of p53, its knockdown suppressed the ability of Ni(II) to upregulate MDM2 and p21 (CDKN1A). Unlike DNA damage, induction of GADD45A by Ni(II) was p53-independent. Ni(II) also increased p53-Ser15 phosphorylation and p21 expression in normal human lung fibroblasts. Although Ni(II)-induced stabilization of HIF-1α occurred earlier, it had no effect on p53 accumulation and Ser15 phosphorylation. Ni(II)-treated H460 cells showed no evidence of necrosis and their apoptosis and clonogenic death were suppressed by p53 knockdown. The apoptotic role of p53 involved a transcription-dependent program triggering the initiator caspase 9 and its downstream executioner caspase 3. Two most prominently upregulated proapoptotic genes by Ni(II) were PUMA and NOXA but only PUMA induction required p53. Knockdown of p53 also led to derepression of antiapoptotic MCL1 in Ni(II)-treated cells. Overall, our results indicate that p53 plays a major role in apoptotic death of human lung cells by Ni(II). Chronic exposure to Ni(II) may promote selection of resistant cells with inactivated p53, providing an explanation for the origin of p53 mutations by this epigenetic carcinogen. - Highlights: • Ni(II) is a strong activator of the transcription factor p53. • Apoptosis is a principal form of death by Ni(II) in human lung epithelial cells. • Ni(II)-activated p53 triggers caspases 9/3-mediated apoptotic program. • NOXA and PUMA are two main proapoptotic genes induced by Ni(II). • HIF-1α and p53 are independent

  9. Post-immunization immunohistochemical expression of Caspase 3 and p53 apoptotic markers in experimental hydatidosis.

    PubMed

    El-Aal, Amany Ahmed Abd; El-Gebaly, Naglaa Saad Mahmoud; Al-Antably, Abeer Said; Hassan, Marwa Adel; El-Dardiry, Marwa Ahmed

    2016-01-01

    The aim of this study was to investigate post-immunization apoptotic changes in experimental hydatidosis, using Caspase 3 and p53 immunohistochemical markers. Two groups of rabbits were immunized with a crude antigen (group 1) or a partially purified antigen (group 2) and were compared to an infected non-immunized control group. More effective immune responses were obtained in group 2 than group 1, signified by fewer and smaller cystic lesions and more severe destructive changes. Normal growth of cysts was attained in the control group, with no expression of apoptotic markers. Significantly higher expression of Caspase 3 and p53 were observed in group 1 compared to group 2, as indicated by OD and area percentage, respectively (Group 1 Caspase 3: 0.89±0.21, 93.5%±6.2; Group 1 p53: 0.46±0.18, 53.26%±11.6; Group 2 Caspase 3: 0.52±0.15, 49.23%±11.7; Group 2 p53: 0.19±0.4, 18.17%±7.3). Vaccine-induced immune responses and cellular damage may underlie the expression of apoptotic markers that appeared to result in a degenerative and atrophic course of action upon immunization. The results of the current study emphasize the importance of immunization for the stimulation of protective immune responses and in preventing mechanisms of evasion to ensure normal cell growth. A cost/benefit control program that implements proper vaccine preparations should be further assessed for complete elimination of severe infections in endemic areas. PMID:27683842

  10. Olaquindox induces DNA damage via the lysosomal and mitochondrial pathway involving ROS production and p53 activation in HEK293 cells.

    PubMed

    Yang, Yang; Jiang, Liping; She, Yan; Chen, Min; Li, Qiujuan; Yang, Guang; Geng, Chengyan; Tang, Liyun; Zhong, Laifu; Jiang, Lijie; Liu, Xiaofang

    2015-11-01

    Olaquindox (OLA) is a potent antibacterial agent used as a feed additive and growth promoter. In this study, the genotoxic potential of OLA was investigated in the human embryonic kidney cell line 293 (HEK293). Results showed that OLA caused significant increases of DNA migration. Lysosomal membrane permeability and mitochondrial membrane potential were reduced after treatment with OLA. OLA was shown to induce ROS production and GSH depletion. The expression of p53 protein is increased in cells incubated with OLA. The activation of p53 and ATM gene was assessed by exposure to OLA. Furthermore, NAC reduced DNA migration, ROS formation, GSH depletion and the expression of the p53 protein and gene. And desipramine significantly decreased AO fluorescence intensity and the expression of the p53 protein and gene. These results support the assumption that OLA exerted genotoxic effects and induced DNA strand breaks in HEK293 cells, possibly through lysosomal-mitochondrial pathway involving ROS production and p53 activation.

  11. Mdm2 ligase dead mutants did not act in a dominant negative manner to re-activate p53, but promoted tumor cell growth.

    PubMed

    Swaroop, Manju; Sun, Yi

    2003-01-01

    Mdm2 (murine double minute 2) is an oncogene, first identified in BALB/c 3T3 cells. Over-expression and gene amplification of Mdm2 were found in a variety of human cancers. Recently, Mdm2 was found to be an E3 ubiquitin ligase that promotes degradation of p53, which contributes significantly to its oncogenic activity. In this study, we test a hypothesis that Mdm2 ligase dead mutants, which retained p53 binding activity but lost degradation activity, would act in a dominant negative manner to re-activate p53, especially upon stressed conditions. Five Mdm2 constructs expressing wild-type and E3 ligase-dead Mdm2 proteins were generated in a Tet-Off system and transfected into MCF-7 breast cancer cells (p53+/+ with Mdm2 overexpression) as well as MCF10A immortalized breast cells (p53+/+ without Mdm2 overexpression) as a normal control. We found that expression of Mdm2 mutants were tightly regulated by doxycycline. Withdrawal of doxycycline in culture medium triggered overexpression of Mdm2 mutants. However, expression of ligase dead mutants in MCF7 and MCF10A cells did not reactivate p53 as shown by a luciferase-reporter transcription assay and Western blot of p53 and its downstream target p21 under either unstressed condition or after exposure to DNA damaging agents. Biologically, over-expression of Mdm2 mutants had no effect on p53-induced apoptosis following DNA damage. Interestingly, over-expression of Mdm2 mutants promoted growth of MCF7 tumor cells probably via a p53-independent mechanism. Over-expression of Mdm2 mutants, however, had no effect on the growth of normal MCF10A cells and did not cause their transformation. Thus, ligase dead mutants of Mdm2 did not act in a dominant negative manner to reactivate p53 and they are not oncogenes in MCF10A cells.

  12. Mulberry leaf polyphenol extract induced apoptosis involving regulation of adenosine monophosphate-activated protein kinase/fatty acid synthase in a p53-negative hepatocellular carcinoma cell.

    PubMed

    Yang, Tzi-Peng; Lee, Huei-Jane; Ou, Ting-Tsz; Chang, Ya-Ju; Wang, Chau-Jong

    2012-07-11

    The polyphenols in mulberry leaf possess the ability to inhibit cell proliferation, invasion, and metastasis of tumors. It was reported that the p53 status plays an important role in switching apoptosis and the cell cycle following adenosine monophosphate-activated protein kinase (AMPK) activation. In this study, we aimed to detect the effect of the mulberry leaf polyphenol extract (MLPE) on inducing cell death in p53-negative (Hep3B) and p53-positive (Hep3B with transfected p53) hepatocellular carcinoma cells and also to clarify the role of p53 in MLPE-treated cells. After treatment of the Hep3B cells with MLPE, apoptosis was induced via the AMPK/PI3K/Akt and Bcl-2 family pathways. Transient transfection of p53 into Hep3B cells led to switching autophagy instead of apoptosis by MLPE treatment. We demonstrated that acridine orange staining and protein expressions of LC-3 and beclin-1 were increased in p53-transfected cells. These results implied induction of apoptosis or autophagy in MLPE-treated hepatocellular carcinoma cells can be due to the p53 status. We also found MLPE can not only activate AMPK but also diminish fatty acid synthase, a molecular target for cancer inhibition. At present, our results indicate MLPE can play an active role in mediating the cell death of hepatocellular carcinoma cells and the p53 might play an important role in regulating the death mechanisms.

  13. Activation of p53 contributes to pseudolaric acid B-induced senescence in human lung cancer cells in vitro

    PubMed Central

    Yao, Guo-dong; Yang, Jing; Li, Qiang; Zhang, Ye; Qi, Min; Fan, Si-miao; Hayashi, Toshihiko; Tashiro, Shin-ichi; Onodera, Satoshi; Ikejima, Takashi

    2016-01-01

    Aim: Pseudolaric acid B (PAB), a diterpene acid isolated from the root bark of Pseudolarix kaempferi Gordon, has shown to exert anti-tumor effects via inducing cell cycle arrest followed by apoptosis in several cancer cell lines. Here we reported that PAB induced a mitotic catastrophe in human lung cancer A549 cells, which resulted in senescence without apoptosis or necrosis. Methods: Three human lung cancer cell lines (A549, H460 and H1299 cells) were examined. Cell growth inhibition was assessed with MTT assay. Cell cycle distribution was determined using a flow cytometer. Cell nuclear morphology was observed under a fluorescence microscope. Senescent cells were detected using SA-β-Gal staining. Apoptotic and senescent protein expression was examined using Western blot analysis. The expression of p53 and p21 in the cells was downregulated by siRNAs. Results: Treatment with PAB (5–80 μmol/L) inhibited the growth of A549 cells in dose- and time-dependent manners. Prolonged treatment with PAB (20 μmol/L) caused G2/M arrest at day 1 followed by mitotic catastrophe from day 2, which eventually resulted in cell senescence between days 3 and 4 without cell death (apoptosis or necrosis). Knockdown of p53 expression with siRNA significantly suppressed PAB-induced senescence in A549 cells (p53 wild). Furthermore, PAB-induced senescence was also observed in human lung cancer H460 cells (p53 wild), but not in human lung cancer H1299 cells (p53 null). Conclusion: The anti-tumor action of PAB against human lung cancer A549 cells in vitro involves the induction of senescence through activation of the p53 pathway. PMID:27041461

  14. Clinical prognostic values of vascular endothelial growth factor, microvessel density,and p53 expression in esophageal carcinomas.

    PubMed Central

    Ahn, Myung-Ju; Jang, Se-Jin; Park, Yong-Wook; Choi, Jung-Hye; Oh, Ho-Suk; Lee, Chul-Burm; Paik, Hong-Kyu; Park, Chan-Kum

    2002-01-01

    Vascular endothelial growth factor (VEGF) is known to play a key role in tumor angiogenesis. The tumor-suppressor gene p53 has been thought to regulate VEGF. We investigated the effect of VEGF on esophageal carcinoma and the correlation between VEGF and p53. Tissue samples were taken from 81 patients with esophageal carcinoma after surgery. VEGF and p53 expressions were examined by immunohistochemical staining. Microvessels in the tumor stained for CD34 antigen were also counted. VEGF and p53 expressions were observed in 51.3% (41/80) and 51.9% (41/79), respectively. The microvessel density was 70.9+/-6.7 (mean+/-SE) in VEGF-positive group and 68.7+/-5.1 in VEGF-negative group. However, no correlation was noted between VEGF and p53 expression. Whereas the tumor size, nodal status, depth of invasions, and tumor stage were associated with poor overall survival, VEGF expression or p53 expression was not. These results indicate that VEGF and p53 are highly expressed in esophageal carcinomas. Since the VEGF expression is not correlated with the p53 expression, microvessel density or clinicopathological findings, further studies with other angiogenic molecules are needed to determine the role in esophageal carcinomas. PMID:11961303

  15. FHL2 mediates p53-induced transcriptional activation through a direct association with HIPK2

    SciTech Connect

    Lee, Sang-Wang . E-mail: umsj@sejong.ac.kr

    2006-01-27

    To understand the molecular mechanism underlying HIPK2 regulation of the transcriptional activation by p53, we sought to identify the protein that interacts with HIPK2. From our yeast two-hybrid screen, we found that four and a half LIM domains 2 (FHL2) could bind to the C-terminal half of HIPK2. Further assays in yeast mapped the minimal interaction domain to amino acids 812-907 in HIPK2. The interaction was confirmed using a GST pull-down assay in vitro, and an immunoprecipitation (IP) assay and fluorescence microscopy in vivo. FHL2 alone spread throughout both the cytoplasm and nucleus but was redistributed to dot-like structures in the nucleus when HIPK2 was coexpressed in HEK293 cells. When tethered to the Gal4-responsive promoter through the Gal4 DBD fusion, FHL2 showed autonomous transcriptional activity that was enhanced by wild-type HIPK2, but not by the kinase-defective mutant. In addition, FHL2 increased the p53-dependent transcriptional activation and had an additive effect on the activation when coexpressed with HIPK2, which was again not observed with the kinase-defective mutant of HIPK2. Finally, we found a ternary complex of p53, HIPK2, and FHL2 using IP, and their recruitment to the p53-responsive p21Waf1 promoter in chromatin IP assays. Overall, our findings indicate that FHL2 can also regulate p53 via a direct association with HIPK2.

  16. Characterization, expression and silencing by RNAi of p53 from Penaeus monodon.

    PubMed

    Dai, Wenting; Qiu, Lihua; Zhao, Chao; Fu, Mingjun; Ma, Zhenhua; Zhou, Falin; Yang, Qibin

    2016-06-01

    The tumor suppressor p53 is a sequence-specific transcription factor, whose target genes can regulate genomic stability, the cellular response to DNA damage and cell-cycle progression. In the present study, the full-length complementary DNA (cDNA) sequence of p53 gene from Penaeus monodon (Pmp53) was cloned by the technology of rapid amplification of cDNA ends (RACE). The cDNA of Pmp53 was 2239 bp, encoding a protein of 450 amino acids with calculated molecular weight of 50.62 kDa. The temporal expression of Pmp53 in different tissues (ovary, heart, intestine, brain, muscles, stomach and gills) and different developmental stages of ovary was investigated by real-time quantitative PCR (RT-qPCR). The lowest expression level of Pmp53 was observed in the stomach, while the highest expression level was detected in the brain. During the ovary development stages, the expression level of Pmp53 reached the peak at stage III. RNA interference (RNAi) and serotonin (5-hydroxytryptamine, 5-HT) injection experiments were conducted to study the expression profile of Pmp53 and PmCDK2 (cyclin-dependent kinase 2, CDK2). Knocked down of Pmp53 by dsRNA-p53 was sequence-specific and successful. Expression levels of Pmp53 and PmCDK2 in ovary of P. monodon were significantly increased at 12-96 h post 5-HT injection. These results indicate that Pmp53 may be involved in the regulation of ovarian development of P. monodon.

  17. Characterization, expression and silencing by RNAi of p53 from Penaeus monodon.

    PubMed

    Dai, Wenting; Qiu, Lihua; Zhao, Chao; Fu, Mingjun; Ma, Zhenhua; Zhou, Falin; Yang, Qibin

    2016-06-01

    The tumor suppressor p53 is a sequence-specific transcription factor, whose target genes can regulate genomic stability, the cellular response to DNA damage and cell-cycle progression. In the present study, the full-length complementary DNA (cDNA) sequence of p53 gene from Penaeus monodon (Pmp53) was cloned by the technology of rapid amplification of cDNA ends (RACE). The cDNA of Pmp53 was 2239 bp, encoding a protein of 450 amino acids with calculated molecular weight of 50.62 kDa. The temporal expression of Pmp53 in different tissues (ovary, heart, intestine, brain, muscles, stomach and gills) and different developmental stages of ovary was investigated by real-time quantitative PCR (RT-qPCR). The lowest expression level of Pmp53 was observed in the stomach, while the highest expression level was detected in the brain. During the ovary development stages, the expression level of Pmp53 reached the peak at stage III. RNA interference (RNAi) and serotonin (5-hydroxytryptamine, 5-HT) injection experiments were conducted to study the expression profile of Pmp53 and PmCDK2 (cyclin-dependent kinase 2, CDK2). Knocked down of Pmp53 by dsRNA-p53 was sequence-specific and successful. Expression levels of Pmp53 and PmCDK2 in ovary of P. monodon were significantly increased at 12-96 h post 5-HT injection. These results indicate that Pmp53 may be involved in the regulation of ovarian development of P. monodon. PMID:27112755

  18. Activation of the tumor suppressor p53 upon impairment of ribosome biogenesis.

    PubMed

    Bursac, Sladana; Brdovcak, Maja Cokaric; Donati, Giulio; Volarevic, Sinisa

    2014-06-01

    Errors in ribosome biogenesis can result in quantitative or qualitative defects in protein synthesis and consequently lead to improper execution of the genetic program and the development of specific diseases. Evidence has accumulated over the last decade suggesting that perturbation of ribosome biogenesis triggers a p53-activating checkpoint signaling pathway, often referred to as the ribosome biogenesis stress checkpoint pathway. Although it was originally suggested that p53 has a prominent role in preventing diseases by monitoring the fidelity of ribosome biogenesis, recent work has demonstrated that p53 activation upon impairment of ribosome biogenesis also mediates pathological manifestations in humans. Perturbations of ribosome biogenesis can trigger a p53-dependent checkpoint signaling pathway independent of DNA damage and the tumor suppressor ARF through inhibitory interactions of specific ribosomal components with the p53 negative regulator, Mdm2. Here we review the recent advances made toward understanding of this newly-recognized checkpoint signaling pathway, its role in health and disease, and discuss possible future directions in this exciting research field. This article is part of a Special Issue entitled: Role of the Nucleolus in Human Disease. PMID:24514102

  19. Low ATM protein expression and depletion of p53 correlates with olaparib sensitivity in gastric cancer cell lines

    PubMed Central

    Kubota, Eiji; Williamson, Christopher T; Ye, Ruiqiong; Elegbede, Anifat; Peterson, Lars; Lees-Miller, Susan P; Bebb, D Gwyn

    2014-01-01

    Small-molecule inhibitors of poly (ADP-ribose) polymerase (PARP) have shown considerable promise in the treatment of homologous recombination (HR)-defective tumors, such as BRCA1- and BRCA2-deficient breast and ovarian cancers. We previously reported that mantle cell lymphoma cells with deficiency in ataxia telangiectasia mutated (ATM) are sensitive to PARP-1 inhibitors in vitro and in vivo. Here, we report that PARP inhibitors can potentially target ATM deficiency arising in a solid malignancy. We show that ATM protein expression varies between gastric cancer cell lines, with NUGC4 having significantly reduced protein levels. Significant correlation was found between ATM protein expression and sensitivity to the PARP inhibitor olaparib, with NUGC4 being the most sensitive. Moreover, reducing ATM kinase activity using a small-molecule inhibitor (KU55933) or shRNA-mediated depletion of ATM protein enhanced olaparib sensitivity in gastric cancer cell lines with depletion or inactivation of p53. Our results demonstrate that ATM is a potential predictive biomarker for PARP-1 inhibitor activity in gastric cancer harboring disruption of p53, and that combined inhibition of ATM and PARP-1 is a rational strategy for expanding the utility of PARP-1 inhibitors to gastric cancer with p53 disruption. PMID:24841718

  20. A new invertebrate member of the p53 gene family is developmentally expressed and responds to polychlorinated biphenyls.

    PubMed Central

    Jessen-Eller, Kathryn; Kreiling, Jill A; Begley, Gail S; Steele, Marjorie E; Walker, Charles W; Stephens, Raymond E; Reinisch, Carol L

    2002-01-01

    The cell-cycle checkpoint protein p53 both directs terminal differentiation and protects embryos from DNA damage. To study invertebrate p53 during early development, we identified three differentially expressed p53 family members (p53, p97, p120) in the surf clam, Spisula solidissima. In these mollusks, p53 and p97 occur in both embryonic and adult tissue, whereas p120 is exclusively embryonic. We sequenced, cloned, and characterized p120 cDNA. The predicted protein, p120, resembles p53 across all evolutionarily conserved regions and contains a C-terminal extension with a sterile alpha motif (SAM) as in p63 and p73. These vertebrate forms of p53 are required for normal inflammatory, epithelial, and neuronal development. Unlike clam p53 and p97, p120 mRNA and protein levels are temporally expressed in embryos, with mRNA levels decreasing with increasing p120 protein (R(2) = 0.97). Highest surf clam p120 mRNA levels coincide with the onset of neuronal growth. In earlier work we have shown that neuronal development is altered by exposure to polychlorinated biphenyls (PCBs), a neurotoxic environmental contaminant. In this study we show that PCBs differentially affect expression of the three surf clam p53 family members. p120 mRNA and protein are reduced the most and earliest in development, p97 protein shows a smaller and later reduction, and p53 protein levels do not change. For the first time we report that unlike p53 and p97, p120 is specifically embryonic and expressed in a time-dependent manner. Furthermore, p120 responds to PCBs by 48 hr when PCB-induced suppression of the serotonergic nervous system occurs. PMID:11940455

  1. Linking polymorphic p53 response elements with gene expression in airway epithelial cells of smokers and cancer risk.

    PubMed

    Wang, Xuting; Pittman, Gary S; Bandele, Omari J; Bischof, Jason J; Liu, Gang; Brothers, John F; Spira, Avrum; Bell, Douglas A

    2014-12-01

    Chronic cigarette smoking exposes airway epithelial cells to thousands of carcinogens, oxidants and DNA-damaging agents, creating a field of molecular injury in the airway and altering gene expression. Studies of cytologically normal bronchial epithelial cells from smokers have identified transcription-based biomarkers that may prove useful in early diagnosis of lung cancer, including a number of p53-regulated genes. The ability of p53 to regulate transcription is critical for tumor suppression, and this suggests that single-nucleotide polymorphisms (SNPs) in functional p53 binding sites (p53 response elements, or p53REs) that affect gene expression could influence susceptibility to cancer. To connect p53RE SNP genotype with gene expression and cancer risk, we identified a set of 204 SNPs in putative p53REs, and performed cis expression quantitative trait loci (eQTL) analysis, assessing associations between SNP genotypes and mRNA levels of adjacent genes in bronchial epithelial cells obtained from 44 cigarette smokers. To further test and validate these genotype-expression associations, we searched published eQTL studies from independent populations and determined that 53% (39/74) of the bronchial epithelial eQTLs were observed in at least one of other studies. SNPs in p53REs were also evaluated for effects on p53-DNA binding using a quantitative in vitro protein-DNA binding assay. Last, based on linkage disequilibrium, we found 6 p53RE SNPs associated with gene expression were identified as cancer risk SNPs by either genome-wide association studies or candidate gene studies. We provide an approach for identifying and evaluating potentially functional SNPs that may modulate the airway gene expression response to smoking and may influence susceptibility to cancers.

  2. Different Regulation of p53 Expression by Cadmium Exposure in Kidney, Liver, Intestine, Vasculature, and Brain Astrocytes

    PubMed Central

    Lee, Jin-Yong; Tokumoto, Maki; Hattori, Yuta; Fujiwara, Yasuyuki; Shimada, Akinori; Satoh, Masahiko

    2016-01-01

    Chronic exposure to cadmium (Cd) is known to adversely affect renal function. Our previous studies indicated that Cd induces p53-dependent apoptosis by inhibiting gene expression of the ubiquitin-conjugating enzyme (Ube) 2d family in both human and rat proximal tubular cells. In this study, the effects of Cd on protein expression of p53 and apoptotic signals in the kidney and liver of mice exposed to Cd for 12 months were examined, as well as the effects of Cd on p53 protein levels and gene expression of the Ube2d family in various cell lines. Results showed that in the kidney of mice exposed to 300 ppm Cd for 12 months, there was overaccumulation of p53 proteins in addition to the induction of apoptosis, which was triggered specifically in the proximal tubules. Interestingly, the site of apoptosis was the same as that of p53 accumulation in the proximal tubules. In the liver of mice chronically exposed to Cd, gene expression of the Ube2d family tended to be slightly decreased, together with slight apoptosis without the accumulation of p53 protein. In rat small intestine epithelial (IEC-6) cells, Cd decreased not only the p53 protein level but also gene expression of Ube2d1, Ube2d2 and Ube2d4. In human brain microvascular endothelial cells (HBMECs), Cd did not suppress gene expression of the Ube2d family, but increased the p53 protein level. In human brain astrocytes (HBASTs), Cd only increased gene expression of UBE2D3. These results suggest that Cd-induced apoptosis through p53 protein is associated with renal toxicity but not hepatic toxicity, and the modification of p53 protein by Cd may vary depending on cell type. PMID:26977261

  3. Inhibition of NAMPT pathway by FK866 activates the function of p53 in HEK293T cells

    SciTech Connect

    Thakur, Basant Kumar; Dittrich, Tino; Chandra, Prakash; Becker, Annette; Lippka, Yannick; Selvakumar, Divakarvel; Klusmann, Jan-Henning; Reinhardt, Dirk; Welte, Karl

    2012-08-03

    Highlights: Black-Right-Pointing-Pointer In 293T cells, p53 is considered to be inactive due to its interaction with the large T-antigen. Black-Right-Pointing-Pointer Acetylation of p53 at lysine 382 is important for its functional activation. Black-Right-Pointing-Pointer First evidence to document the presence of a functional p53 in 293T cells. Black-Right-Pointing-Pointer Inhibition of NAMPT/SIRT pathway by FK866 in 293T cells increases the functional activity of p53. Black-Right-Pointing-Pointer This activation of p53 involves reversible acetylation of p53 at lysine 382. -- Abstract: Inactivation of p53 protein by endogenous and exogenous carcinogens is involved in the pathogenesis of different human malignancies. In cancer associated with SV-40 DNA tumor virus, p53 is considered to be non-functional mainly due to its interaction with the large T-antigen. Using the 293T cell line (HEK293 cells transformed with large T antigen) as a model, we provide evidence that p53 is one of the critical downstream targets involved in FK866-mediated killing of 293T cells. A reduced rate of apoptosis and an increased number of cells in S-phase was accompanied after knockdown of p53 in these cells. Inhibition of NAMPT by FK866, or inhibition of SIRT by nicotinamide decreased proliferation and triggered death of 293T cells involving the p53 acetylation pathway. Additionally, knockdown of p53 attenuated the effect of FK866 on cell proliferation, apoptosis, and cell cycle arrest. The data presented here shed light on two important facts: (1) that p53 in 293T cells is active in the presence of FK866, an inhibitor of NAMPT pathway; (2) the apoptosis induced by FK866 in 293T cells is associated with increased acetylation of p53 at Lys382, which is required for the functional activity of p53.

  4. Activation of PPARγ/P53 signaling is required for curcumin to induce hepatic stellate cell senescence

    PubMed Central

    Jin, H; Lian, N; Zhang, F; Chen, L; Chen, Q; Lu, C; Bian, M; Shao, J; Wu, L; Zheng, S

    2016-01-01

    Activation of quiescent hepatic stellate cells (HSCs) is the major event in hepatic fibrogenesis, along with enhancement of cell proliferation and overproduction of extracellular matrix. Although inhibition of cell proliferation and induction of apoptosis are potential strategies to block the activation of HSCs, a better understanding of the senescence of activated HSCs can provide a new therapeutic strategy for prevention and treatment of liver fibrosis. The antioxidant curcumin, a phytochemical from turmeric, has been shown to suppress HSC activation in vitro and in vivo. The current work was aimed to evaluate the effect of curcumin on senescence of activated HSCs and to elucidate the underlying mechanisms. In this study, curcumin promoted the expression of senescence marker Hmga1 in rat fibrotic liver. In addition, curcumin increased the number of senescence-associated β-galactosidase-positive HSCs in vitro. At the same time, curcumin induced HSC senescence by elevating the expression of senescence markers P16, P21 and Hmga1, concomitant with reduced abundance of HSC activation markers α-smooth muscle actin and α1(I)-procollagen in cultured HSCs. Moreover, curcumin affected the cell cycle and telomerase activity. We further demonstrated that P53 pharmacological inhibitor pifithrin-α (PFT-α) or transfection with P53 siRNA abrogated the curcumin-induced HSC senescence in vitro. Meanwhile, curcumin disruption of P53 leading to increased senescence of activated HSCs was further verified in vivo. Further studies indicated that curcumin promoted the expression of P53 through a PPARγ activation-dependent mechanism. Moreover, promoting PPARγ transactivating activity by a PPARγ agonist 15d-PGJ2 markedly enhanced curcumin induction of senescence of activated HSCs. However, the PPARγ antagonist PD68235 eliminated curcumin induction of HSC senescence. Taken together, our results provided a novel insight into the mechanisms underlying curcumin inhibition of HSC

  5. SOX30, a novel epigenetic silenced tumor suppressor, promotes tumor cell apoptosis by transcriptional activating p53 in lung cancer.

    PubMed

    Han, F; Liu, W; Jiang, X; Shi, X; Yin, L; Ao, L; Cui, Z; Li, Y; Huang, C; Cao, J; Liu, J

    2015-08-13

    Although members of SOX family have been well documented for their essential roles in embryonic development, cell proliferation and disease, the functional role and molecular mechanism of SOX30 in cancer are largely unexplored. Here, we first identified SRY-box containing gene 30 (SOX30) as a novel preferentially methylated gene using genome-wide methylation screening. SOX30 hypermethylation was detected in 100% of lung cancer cell lines (9/9) and 70.83% (85/120) of primary lung tumor tissues compared with none (0/20) of normal and 8.0% (2/25) of peri-tumoral lung tissues (P<0.01). SOX30 was expressed in normal and peri-tumoral lung tissues in which SOX30 was unmethylated, but was silenced or downregulated in lung cancer cell lines and primary lung tumor tissues harboring a hypermethylated SOX30. De-methylation experiments further confirmed that silence of SOX30 was regulated by its hypermethylation. Ectopic expression of SOX30 induces cancer cell apoptosis with inhibiting proliferation in vitro and represses tumor formation in vivo, whereas knockdown of SOX30 demonstrates a reversed effect both in vitro and in vivo. At the molecular level, the antitumorigenic effect of SOX30 is mediated by directly binding to CACTTTG (+115 to +121) of p53 promoter region and activating p53 transcription, suggesting that SOX30 is a novel transcriptional activating factor of p53. Indeed, blockade of p53 attenuates the tumor inhibition of SOX30. Overall, these findings demonstrate that SOX30 is a novel epigenetic silenced tumor suppressor acting through direct regulation of p53 transcription and expression. This study provides novel insights on the mechanism of tumorigenesis in lung cancer. PMID:25435374

  6. Targeting RING domains of Mdm2-MdmX E3 complex activates apoptotic arm of the p53 pathway in leukemia/lymphoma cells.

    PubMed

    Wu, W; Xu, C; Ling, X; Fan, C; Buckley, B P; Chernov, M V; Ellis, L; Li, F; Muñoz, I G; Wang, X

    2015-12-31

    Reactivation of tumor-suppressor p53 for targeted cancer therapy is an attractive strategy for cancers bearing wild-type (WT) p53. Targeting the Mdm2-p53 interface or MdmX ((MDM4), mouse double minute 4)-p53 interface or both has been a focus in the field. However, targeting the E3 ligase activity of Mdm2-MdmX really interesting new gene (RING)-RING interaction as a novel anticancer strategy has never been explored. In this report, we describe the identification and characterization of small molecule inhibitors targeting Mdm2-MdmX RING-RING interaction as a new class of E3 ligase inhibitors. With a fluorescence resonance energy transfer-based E3 activity assay in high-throughput screening of a chemical library, we identified inhibitors (designated as MMRis (Mdm2-MdmX RING domain inhibitors)) that specifically inhibit Mdm2-MdmX E3 ligase activity toward Mdm2 and p53 substrates. MMRi6 and its analog MMRi64 are capable of disrupting Mdm2-MdmX interactions in vitro and activating p53 in cells. In leukemia cells, MMRi64 potently induces downregulation of Mdm2 and MdmX. In contrast to Nutlin3a, MMRi64 only induces the expression of pro-apoptotic gene PUMA (p53 upregulated modulator of apoptosis) with minimal induction of growth-arresting gene p21. Consequently, MMRi64 selectively induces the apoptotic arm of the p53 pathway in leukemia/lymphoma cells. Owing to the distinct mechanisms of action of MMRi64 and Nutlin3a, their combination synergistically induces p53 and apoptosis. Taken together, this study reveals that Mdm2-MdmX has a critical role in apoptotic response of the p53 pathway and MMRi64 may serve as a new pharmacological tool for p53 studies and a platform for cancer drug development.

  7. Expression of growth factors, proto-oncogenes, and p53 in nasopharyngeal angiofibromas.

    PubMed

    Nagai, M A; Butugan, O; Logullo, A; Brentani, M M

    1996-02-01

    Biopsies from 25 juvenile nasopharyngeal angiofibromas (JNAs) and respective normal inferior turbinates were examined and compared. The expression patterns of the messenger RNAs (mRNAs) for various growth factors possibly involved in the growth of mesenchymal cells, as well as angiogenesis and fibrosis, were also compared. These growth factors included insulin-like growth factor II (IGF-II), basic fibroblast growth factor (bFGF), vascular endothelial growth factor (VEGF), transforming growth factors-beta1 (TGF-beta1) and platelet-derived growth factors (PDGF-A and PDGF-B). Quantification of mRNA coding for proto-oncogenes and suppressor genes related to proliferation (i.e., c-myc, c-fos, p53) was also undertaken. Tumor and turbinates expressed similar levels of bFGF, VEGF, TGF-beta1, c-myc, c-fos, and PDGF-A mRNAs. The presence of TGF-beta1 protein was confirmed by immunohistochemistry in several structures that characterize the lesions of JNA, which suggests that TGF-beta1 may play a role in the development of the fibrous component of this tumor. PDGF-B and p53 were overexpressed (i.e., twice the mean level found in turbinates) in 50% and 32% of JNAs, respectively but there was no statistical significance when compared with controls. Statistically significant increased expression of IGF-II mRNA was observed in JNA (P = .04). IGF-II mRNA levels were correlated to p53 (P = .05) and PDGF-B (P = .034), indicating a possible synergistic action of such factors in JNA. The results of this study suggest that IGF-II might be a potential growth regulator of nasopharyngeal angiofibromas.

  8. The Activating Transcription Factor 3 Protein Suppresses the Oncogenic Function of Mutant p53 Proteins*

    PubMed Central

    Wei, Saisai; Wang, Hongbo; Lu, Chunwan; Malmut, Sarah; Zhang, Jianqiao; Ren, Shumei; Yu, Guohua; Wang, Wei; Tang, Dale D.; Yan, Chunhong

    2014-01-01

    Mutant p53 proteins (mutp53) often acquire oncogenic activities, conferring drug resistance and/or promoting cancer cell migration and invasion. Although it has been well established that such a gain of function is mainly achieved through interaction with transcriptional regulators, thereby modulating cancer-associated gene expression, how the mutp53 function is regulated remains elusive. Here we report that activating transcription factor 3 (ATF3) bound common mutp53 (e.g. R175H and R273H) and, subsequently, suppressed their oncogenic activities. ATF3 repressed mutp53-induced NFKB2 expression and sensitized R175H-expressing cancer cells to cisplatin and etoposide treatments. Moreover, ATF3 appeared to suppress R175H- and R273H-mediated cancer cell migration and invasion as a consequence of preventing the transcription factor p63 from inactivation by mutp53. Accordingly, ATF3 promoted the expression of the metastasis suppressor SHARP1 in mutp53-expressing cells. An ATF3 mutant devoid of the mutp53-binding domain failed to disrupt the mutp53-p63 binding and, thus, lost the activity to suppress mutp53-mediated migration, suggesting that ATF3 binds to mutp53 to suppress its oncogenic function. In line with these results, we found that down-regulation of ATF3 expression correlated with lymph node metastasis in TP53-mutated human lung cancer. We conclude that ATF3 can suppress mutp53 oncogenic function, thereby contributing to tumor suppression in TP53-mutated cancer. PMID:24554706

  9. Growth Inhibitory and Tumor- Suppressive Functions of p53 Depend on its Repression of CD44 Expression

    PubMed Central

    Godar, Samuel; Ince, Tan A.; Bell, George W.; Feldser, David; Donaher, Joana Liu; Bergh, Jonas; Liu, Anne; Miu, Kevin; Watnick, Randolph S.; Reinhardt, Ferenc; McAllister, Sandra S.; Jacks, Tyler; Weinberg, Robert A.

    2011-01-01

    SUMMARY The p53 tumor suppressor is a key mediator of cellular responses to various stresses. Here we show that under conditions of basal physiologic and cell-culture stress, p53 inhibits expression of the CD44 cell-surface molecule via binding to a non-canonical p53-binding sequence in the CD44 promoter. This interaction enables an untransformed cell to respond to stress-induced, p53-dependent cytostatic and apoptotic signals that would otherwise be blocked by the actions of CD44. In the absence of p53 function, the resulting de-repressed CD44 expression is essential for the growth and tumor-initiating ability of highly tumorigenic mammary epithelial cells. In both tumorigenic and non-tumorigenic cells, CD44’s expression is positively regulated by p63, a paralogue of p53. Our data indicate that CD44 is a key tumor-promoting agent in transformed tumor cells lacking p53 function. They also suggest that the de-repression of CD44 resulting from inactivation of p53 can potentially aid the survival of immortalized, premalignant, cells. PMID:18614011

  10. Interaction between transactivation domain of p53 and middle part of TBP-like protein (TLP) is involved in TLP-stimulated and p53-activated transcription from the p21 upstream promoter.

    PubMed

    Maeda, Ryo; Suzuki, Hidefumi; Tanaka, Yuta; Tamura, Taka-aki

    2014-01-01

    TBP-like protein (TLP) is involved in transcriptional activation of an upstream promoter of the human p21 gene. TLP binds to p53 and facilitates p53-activated transcription from the upstream promoter. In this study, we clarified that in vitro affinity between TLP and p53 is about one-third of that between TBP and p53. Extensive mutation analyses revealed that the TLP-stimulated function resides in transcription activating domain 1 (TAD1) in the N-terminus of p53. Among the mutants, #22.23, which has two amino acid substitutions in TAD1, exhibited a typical mutant phenotype. Moreover, #22.23 exhibited the strongest mutant phenotype for TLP-binding ability. It is thus thought that TLP-stimulated and p53-dependent transcriptional activation is involved in TAD1 binding of TLP. #22.23 had a decreased transcriptional activation function, especially for the upstream promoter of the endogenous p21 gene, compared with wild-type p53. This mutant did not facilitate p53-dependent growth repression and etoposide-mediated cell-death as wild-type p53 does. Moreover, mutation analysis revealed that middle part of TLP, which is requited for p53 binding, is involved in TLP-stimulated and p53-dependent promoter activation and cell growth repression. These results suggest that activation of the p21 upstream promoter is mediated by interaction between specific regions of TLP and p53.

  11. Changes in O-Linked N-Acetylglucosamine (O-GlcNAc) Homeostasis Activate the p53 Pathway in Ovarian Cancer Cells.

    PubMed

    de Queiroz, Rafaela Muniz; Madan, Rashna; Chien, Jeremy; Dias, Wagner Barbosa; Slawson, Chad

    2016-09-01

    O-GlcNAcylation is a dynamic post-translational modification consisting of the addition of a single N-acetylglucosamine sugar to serine and threonine residues in proteins by the enzyme O-linked β-N-acetylglucosamine transferase (OGT), whereas the enzyme O-GlcNAcase (OGA) removes the modification. In cancer, tumor samples present with altered O-GlcNAcylation; however, changes in O-GlcNAcylation are not consistent between tumor types. Interestingly, the tumor suppressor p53 is modified by O-GlcNAc, and most solid tumors contain mutations in p53 leading to the loss of p53 function. Because ovarian cancer has a high frequency of p53 mutation rates, we decided to investigate the relationship between O-GlcNAcylation and p53 function in ovarian cancer. We measured a significant decrease in O-GlcNAcylation of tumor tissue in an ovarian tumor microarray. Furthermore, O-GlcNAcylation was increased, and OGA protein and mRNA levels were decreased in ovarian tumor cell lines not expressing the protein p53. Treatment with the OGA inhibitor Thiamet-G (TMG), silencing of OGA, or overexpression of OGA and OGT led to p53 stabilization, increased nuclear localization, and increased protein and mRNA levels of p53 target genes. These data suggest that changes in O-GlcNAc homeostasis activate the p53 pathway. Combination treatment of the chemotherapeutic cisplatin with TMG decreased tumor cell growth and enhanced cell cycle arrest without impairing cytotoxicity. The effects of TMG on tumor cell growth were partially dependent on wild type p53 activation. In conclusion, changes in O-GlcNAc homeostasis activate the wild type p53 pathway in ovarian cancer cells, and OGA inhibition has the potential as an adjuvant treatment for ovarian carcinoma. PMID:27402830

  12. Changes in O-Linked N-Acetylglucosamine (O-GlcNAc) Homeostasis Activate the p53 Pathway in Ovarian Cancer Cells.

    PubMed

    de Queiroz, Rafaela Muniz; Madan, Rashna; Chien, Jeremy; Dias, Wagner Barbosa; Slawson, Chad

    2016-09-01

    O-GlcNAcylation is a dynamic post-translational modification consisting of the addition of a single N-acetylglucosamine sugar to serine and threonine residues in proteins by the enzyme O-linked β-N-acetylglucosamine transferase (OGT), whereas the enzyme O-GlcNAcase (OGA) removes the modification. In cancer, tumor samples present with altered O-GlcNAcylation; however, changes in O-GlcNAcylation are not consistent between tumor types. Interestingly, the tumor suppressor p53 is modified by O-GlcNAc, and most solid tumors contain mutations in p53 leading to the loss of p53 function. Because ovarian cancer has a high frequency of p53 mutation rates, we decided to investigate the relationship between O-GlcNAcylation and p53 function in ovarian cancer. We measured a significant decrease in O-GlcNAcylation of tumor tissue in an ovarian tumor microarray. Furthermore, O-GlcNAcylation was increased, and OGA protein and mRNA levels were decreased in ovarian tumor cell lines not expressing the protein p53. Treatment with the OGA inhibitor Thiamet-G (TMG), silencing of OGA, or overexpression of OGA and OGT led to p53 stabilization, increased nuclear localization, and increased protein and mRNA levels of p53 target genes. These data suggest that changes in O-GlcNAc homeostasis activate the p53 pathway. Combination treatment of the chemotherapeutic cisplatin with TMG decreased tumor cell growth and enhanced cell cycle arrest without impairing cytotoxicity. The effects of TMG on tumor cell growth were partially dependent on wild type p53 activation. In conclusion, changes in O-GlcNAc homeostasis activate the wild type p53 pathway in ovarian cancer cells, and OGA inhibition has the potential as an adjuvant treatment for ovarian carcinoma.

  13. Hepatitis B virus X protein inhibits p53 sequence-specific DNA binding, transcriptional activity, and association with transcription factor ERCC3.

    PubMed Central

    Wang, X W; Forrester, K; Yeh, H; Feitelson, M A; Gu, J R; Harris, C C

    1994-01-01

    Chronic active hepatitis caused by infection with hepatitis B virus, a DNA virus, is a major risk factor for human hepatocellular carcinoma. Since the oncogenicity of several DNA viruses is dependent on the interaction of their viral oncoproteins with cellular tumor-suppressor gene products, we investigated the interaction between hepatitis B virus X protein (HBX) and human wild-type p53 protein. HBX complexes with the wild-type p53 protein and inhibits its sequence-specific DNA binding in vitro. HBX expression also inhibits p53-mediated transcriptional activation in vivo and the in vitro association of p53 and ERCC3, a general transcription factor involved in nucleotide excision repair. Therefore, HBX may affect a wide range of p53 functions and contribute to the molecular pathogenesis of human hepatocellular carcinoma. Images PMID:8134379

  14. Abrogation of p53 by its antisense in MCF-7 breast carcinoma cells increases cyclin D1 via activation of Akt and promotion of cell proliferation

    SciTech Connect

    Chhipa, Rishi Raj; Kumari, Ratna; Upadhyay, Ankur Kumar; Bhat, Manoj Kumar

    2007-11-15

    The p53 protein has been a subject of intense research interest since its discovery as about 50% of human cancers carry p53 mutations. Mutations in the p53 gene are the most frequent genetic lesions in breast cancers suggesting a critical role of p53 in breast cancer development, growth and chemosensitivity. This report describes the derivation and characterization of MCF-7As53, an isogenic cell line derived from MCF-7 breast carcinoma cells in which p53 was abrogated by antisense p53 cDNA. Similar to MCF-7 and simultaneously selected hygromycin resistant MCF-7H cells, MCF-7As53 cells have consistent basal epithelial phenotype, morphology, and estrogen receptor expression levels at normal growth conditions. Present work documents investigation of molecular variations, growth kinetics, and cell cycle related studies in relation to absence of wild-type p53 protein and its transactivation potential as well. Even though wild-type tumor suppressor p53 is an activator of cell growth arrest and apoptosis-mediator genes such as p21, Bax, and GADD45 in MCF-7As53 cells, no alterations in expression levels of these genes were detected. The doubling time of these cells decreased due to depletion of G0/G1 cell phase because of constitutive activation of Akt and increase in cyclin D1 protein levels. This proliferative property was abrogated by wortmannin, an inhibitor of PI3-K/Akt signaling pathway. Therefore this p53 null cell line indicates that p53 is an indispensable component of cellular signaling system which is regulated by caveolin-1 expression, involving Akt activation and increase in cyclin D1, thereby promoting proliferation of breast cancer cells.

  15. Conditional inactivation of PDCD2 induces p53 activation and cell cycle arrest

    PubMed Central

    Granier, Celine J.; Wang, Wei; Tsang, Tiffany; Steward, Ruth; Sabaawy, Hatem E.; Bhaumik, Mantu; Rabson, Arnold B.

    2014-01-01

    ABSTRACT PDCD2 (programmed cell death domain 2) is a highly conserved, zinc finger MYND domain-containing protein essential for normal development in the fly, zebrafish and mouse. The molecular functions and cellular activities of PDCD2 remain unclear. In order to better understand the functions of PDCD2 in mammalian development, we have examined PDCD2 activity in mouse blastocyst embryos, as well as in mouse embryonic stem cells (ESCs) and embryonic fibroblasts (MEFs). We have studied mice bearing a targeted PDCD2 locus functioning as a null allele through a splicing gene trap, or as a conditional knockout, by deletion of exon2 containing the MYND domain. Tamoxifen-induced knockout of PDCD2 in MEFs, as well as in ESCs, leads to defects in progression from the G1 to the S phase of cell cycle, associated with increased levels of p53 protein and p53 target genes. G1 prolongation in ESCs was not associated with induction of differentiation. Loss of entry into S phase of the cell cycle and marked induction of nuclear p53 were also observed in PDCD2 knockout blastocysts. These results demonstrate a unique role for PDCD2 in regulating the cell cycle and p53 activation during early embryonic development of the mouse. PMID:25150276

  16. ASPP1 and ASPP2 bind active RAS, potentiate RAS signalling and enhance p53 activity in cancer cells

    PubMed Central

    Wang, Y; Godin-Heymann, N; Dan Wang, X; Bergamaschi, D; Llanos, S; Lu, X

    2013-01-01

    RAS mutations occur frequently in human cancer and activated RAS signalling contributes to tumour development and progression. Apart from its oncogenic effects on cell growth, active RAS has tumour-suppressive functions via its ability to induce cellular senescence and apoptosis. RAS is known to induce p53-dependent cell cycle arrest, yet its effect on p53-dependent apoptosis remains unclear. We report here that apoptosis-stimulating protein of p53 (ASPP) 1 and 2, two activators of p53, preferentially bind active RAS via their N-terminal RAS-association domains (RAD). Additionally, ASPP2 colocalises with and contributes to RAS cellular membrane localisation and potentiates RAS signalling. In cancer cells, ASPP1 and ASPP2 cooperate with oncogenic RAS to enhance the transcription and apoptotic function of p53. Thus, loss of ASPP1 and ASPP2 in human cancer cells may contribute to the full transforming property of RAS oncogene. PMID:23392125

  17. PIM1 destabilization activates a p53-dependent response to ribosomal stress in cancer cells

    PubMed Central

    Sagar, Vinay; Caldarola, Sara; Aria, Valentina; Monteleone, Valentina; Fuoco, Claudia; Gargioli, Cesare; Cannata, Stefano; Loreni, Fabrizio

    2016-01-01

    Defects in ribosome biogenesis triggers a stress response (ribosomal stress) that can lead to growth arrest and apoptosis. Signaling pathways activated by ribosomal stress are specifically involved in the pathological mechanism of a group of disorders defined as ribosomopathies. However, more generally, the quality control of ribosome synthesis is part of the regulatory circuits that control cell metabolism. A number of studies identified tumor suppressor p53 as a central player in ribosomal stress. We have previously reported that the kinase PIM1 plays a role as a sensor for ribosome deficiency. In this report we address the relationship between PIM1 and p53 in cancer cell lines after depletion of a ribosomal protein. We identified a novel signaling pathway that includes the kinase AKT and the ubiquitin ligase MDM2. In fact, our results indicate that the lower level of PIM1, induced by ribosomal stress, causes inactivation of AKT, inhibition of MDM2 and a consequent p53 stabilization. Therefore, we propose that activation of p53 in response to ribosomal stress, is dependent on the pathway PIM1-AKT-MDM2. In addition, we report evidence that PIM1 level may be relevant to assess the sensitivity of cancer cells to chemotherapeutic drugs that induce ribosomal stress. PMID:26993775

  18. PIM1 destabilization activates a p53-dependent response to ribosomal stress in cancer cells.

    PubMed

    Sagar, Vinay; Caldarola, Sara; Aria, Valentina; Monteleone, Valentina; Fuoco, Claudia; Gargioli, Cesare; Cannata, Stefano; Loreni, Fabrizio

    2016-04-26

    Defects in ribosome biogenesis triggers a stress response (ribosomal stress) that can lead to growth arrest and apoptosis. Signaling pathways activated by ribosomal stress are specifically involved in the pathological mechanism of a group of disorders defined as ribosomopathies. However, more generally, the quality control of ribosome synthesis is part of the regulatory circuits that control cell metabolism. A number of studies identified tumor suppressor p53 as a central player in ribosomal stress. We have previously reported that the kinase PIM1 plays a role as a sensor for ribosome deficiency. In this report we address the relationship between PIM1 and p53 in cancer cell lines after depletion of a ribosomal protein. We identified a novel signaling pathway that includes the kinase AKT and the ubiquitin ligase MDM2. In fact, our results indicate that the lower level of PIM1, induced by ribosomal stress, causes inactivation of AKT, inhibition of MDM2 and a consequent p53 stabilization. Therefore, we propose that activation of p53 in response to ribosomal stress, is dependent on the pathway PIM1-AKT-MDM2. In addition, we report evidence that PIM1 level may be relevant to assess the sensitivity of cancer cells to chemotherapeutic drugs that induce ribosomal stress. PMID:26993775

  19. Expression and clinical significance of P53, O6-methylguanine-dna methyltransferase and epidermal growth factor receptor in glioma.

    PubMed

    Fu, X R; Sun, Z C; Chang, Y

    2015-01-01

    Glioma is a serious life-threatening disease, the pathogenesis of which remains to be investigated. The objective of the present investigation was to explore the expression and clinical significance of tumor suppressor gene (P53), O6-methylguanine-DNA methyltransferase (MGMT) and epidermal growth factor receptor (EGFR) in glioma. Immunohistochemical staining was applied to study the clinical characteristics of 40 samples from glioma patients, detect the expression of and analyse the relationship between P53, MGMT and EGFR and glioma. The results demonstrated that the positive expression rate of P53 was 47.5% in 40 cases of glioma samples, of which the expression of P53 in the high grade glioma was higher than that of the low grade samples (P < 0.05); the positive expression rate of MGMT was 37.5%, but there was no significant significance of MGMT expression between the high grade glioma and the low grade glioma (P < 0.05); the positive expression rate of EGFR was 55%, of which the expression of EGFR of the high grade glioma was higher than that of the low grade glioma (P < 0.05). There was no significant difference in the expressions of P53, MGMT and EGFR in the glioma patients of different ages, gender and with different tumor sizes. The expressions of P53 and MGMT were negatively correlated (P < 0.05). The expressions of P53 and EGFR were positively correlated (P < 0.05). In conclusion, P53, EGFR and MGMT could play a role in the occurrence, development and deterioration of glioma. PMID:26753647

  20. Expression of pRb, p53, p16 and cyclin D1 and their clinical implications in urothelial carcinoma.

    PubMed

    Lee, Kyungji; Jung, Eun Sun; Choi, Young-Jin; Lee, Kyo Young; Lee, Ahwon

    2010-10-01

    The aim of this study was to assess immunohistochemical expression of p53, pRb, p16, and cyclin D1, alone or in combination, as prognostic indicators and to investigate their correlation with clinocopathologic features of urothelial carcinoma. Immunohistochemical staining for p53, pRb, p16, and cyclin D1 was performed on a tissue microarray from 103 patients with urothelial carcinoma who underwent radical cystectomy. Of the patient samples analyzed, 36 (35%), 61 (59%), 47 (46%) and 30 (29%) had altered expression of p53, pRb, p16, and cyclin D1, respectively. Abnormal expression of p53 and pRb correlated with depth of invasion (P=0.040 and P=0.044, respectively). Cyclin D1 expression was associated with tumor stage and recurrence (P=0.017 and P=0.036, respectively). Altered pRb was significantly correlated with overall survival (P=0.040). According to the expression pattern of pRb and p53, p53/pRb (altered/normal) had worse survival than p53/pRb (normal/altered) (P=0.022). Alteration of all markers had worse survival than all normal (P=0.029). As determined by multivariate analysis, tumor stage, lymph node metastasis and the combined expression of p53 and pRb are independent prognostic factors. In conclusion, immunohistochemical evaluation of cell cycle regulators, especially the p53/pRb combination, might be useful in planning appropriate treatment strategies.

  1. Negative growth regulation in a glioblastoma tumor cell line that conditionally expresses human wild-type p53

    SciTech Connect

    Mercer, W.E.; Shields, M.T.; Amin, M.; Sauve, G.J. ); Appella, E.; Romano, J.W.; Ullrich, S.J. )

    1990-08-01

    To investigate the effect that human wild-type p53 (wt-p53) expression has on cell proliferation the authors constructed a recombinant plasmid, pM47, in which wt-p53 cDNA is under transcriptional control of the hormone-inducible mouse mammary tumor virus promoter linked to the dominant biochemical selection marker gene Eco gpt. The pM47 plasmid was introduced into T98G cells derived from a human glioblastomas multiforme tumor, and a stable clonal cell line, GM47.23, was derived that conditionally expressed wt-p53 following exposure to dexamethasone. The authors show that induction of wt-p53 expression in exponentially growing cells inhibits cell cycle progression and that the inhibitory effect is reversible upon removal of the inducer or infection with simian virus 40. Moreover, when growth-arrested cells are stimulated to proliferate, induction of wt-p53 expression inhibits G{sub 0}/G{sub 1} progression into S phase and the cells accumulate with a DNA content equivalent to cells arrested in the G{sub 0}/G{sub 1} phase of the cell cycle. Taken together, these studies suggest that wt-p53 may play a negative role in growth regulation.

  2. p53, Rb and bcl-2 expression during the cell cycle: a study in phytohaemagglutinin stimulated lymphocytes and microwave irradiated lymphoid tissue sections.

    PubMed Central

    Mateo, M S; Sanchez-Beato, M; Martinez, J C; Orfao, A; Orradre, J L; Piris, M A

    1995-01-01

    AIMS--To determine the expression of p53, Rb, and bcl-2 during the cell cycle in stimulated peripheral blood lymphocytes (PBLs) and microwave heated reactive lymphoid tissue sections. METHODS--The expression of p53, Rb and bcl-2 proteins in paraffin wax embedded tonsil tissue sections was detected by immunohistochemistry using an (APAAP) technique following microwave irradiation. Flow cytometric analysis as performed on phytohaemagglutinin (PHA) stimulated PBLs, with simultaneous S fraction determination. RESULTS--Expression of p53 protein was detected in reactive tonsil germinal centre cells, in some suprabasal cells in the surface and cryptic epithelium, and in some endothelial cells. Analysis of p53 in PHA stimulated PBLs revealed expression of p53 by non-tumoral activated lymphocytes. Rb protein expression was increased in PHA stimulated PBLs and was usually detected in most germinal centre B cells, in isolated paracortical cells, in a fraction of endothelial cells, and in most epithelial suprabasal cells. Expression of bcl-2 in stimulated lymphocytes was inversely correlated with proliferation. This confirms findings in reactive tonsil tissue samples, where proliferating cells located in the germinal centres and paracortical area are mostly bcl-2 negative. CONCLUSIONS--Expression of these three oncogenic and tumour suppressor proteins varies during the cell cycle in non-tumoral cells. Consequently, tumoral growth fraction must be taken into account when analysing dysregulation of these three genes in lymphomas and other tumours. The p53 protein may be detected in benign conditions, as its expression is not synonymous with malignancy or mutation of the p53 gene. Images PMID:7745116

  3. Capsaicin mediates cell cycle arrest and apoptosis in human colon cancer cells via stabilizing and activating p53.

    PubMed

    Jin, Junzhe; Lin, Guofu; Huang, Hong; Xu, Dong; Yu, Hao; Ma, Xu; Zhu, Lisi; Ma, Dongyan; Jiang, Honglei

    2014-01-01

    Capsaicin is the major pungent ingredient in red peppers which is world widely consumed. Except its potent pain relieving efficacy as reported, capsaicin also exerted its antitumor activity in several tumor models. Here, we reported that capsaicin had a profound anti-proliferative effect on human colon cancer cells via inducing cell cycle G0/G1 phase arrest and apoptosis, which was associated with an increase of p21, Bax and cleaved PARP. The underlying mechanism of capsaicin's antitumor potency was mainly attributed to the stabilization and activation of p53. Capsaicin substantially prolonged the half-life of p53 and significantly elevated the transcriptional activity of p53. Through suppressing the interaction between p53 and MDM2, MDM2-mediated p53 ubiquitination was remarkably decreased after capsaicin treatment, which resulted in the stabilization and accumulation of p53. The results of p53-shRNA experiment further demonstrated that p53 knockdown severely impaired the sensitivity of tested cells to capsaicin, G0/G1 phase arrest and the apoptosis induced by capsaicin in p53-knockdown cells was also dramatically decreased, implicating the important role of p53 played in capsaicin's antitumor activity. In summary, our data suggested that capsaicin, or a related analogue, may have a role in the management of human colon cancer.

  4. Dihydromyricetin promotes hepatocellular carcinoma regression via a p53 activation-dependent mechanism

    NASA Astrophysics Data System (ADS)

    Zhang, Qingyu; Liu, Jie; Liu, Bin; Xia, Juan; Chen, Nianping; Chen, Xiaofeng; Cao, Yi; Zhang, Chen; Lu, Caijie; Li, Mingyi; Zhu, Runzhi

    2014-04-01

    The development of antitumor chemotherapy drugs remains a key goal for oncologists, and natural products provide a vast resource for anti-cancer drug discovery. In the current study, we found that the flavonoid dihydromyricetin (DHM) exhibited antitumor activity against liver cancer cells, including primary cells obtained from hepatocellular carcinoma (HCC) patients. In contrast, DHM was not cytotoxic to immortalized normal liver cells. Furthermore, DHM treatment resulted in the growth inhibition and remission of xenotransplanted tumors in nude mice. Our results further demonstrated that this antitumor activity was caused by the activation of the p53-dependent apoptosis pathway via p53 phosphorylation at serine (15Ser). Moreover, our results showed that DHM plays a dual role in the induction of cell death when administered in combination with cisplatin, a common clinical drug that kills primary hepatoma cells but not normal liver cells.

  5. Soluble egg antigens of Schistosoma japonicum induce senescence in activated hepatic stellate cells by activation of the STAT3/p53/p21 pathway.

    PubMed

    Chen, Jinling; Pan, Jing; Wang, Jianxin; Song, Ke; Zhu, Dandan; Huang, Caiqun; Duan, Yinong

    2016-01-01

    Liver fibrosis is characterized by the activation of hepatic stellate cells (HSCs). Recent findings suggest that senescence of activated HSCs might limit the development of liver fibrosis. Based on previously observed anti-fibrotic effects of soluble egg antigens from Schistosoma japonicum in vitro, we hypothesized that SEA might play a crucial role in alleviating liver fibrosis through promoting senescence of activated HSCs. We show here that SEA inhibited expression of α-SMA and pro-collagen I and promoted senescence of activated HSCs in vitro. In addition, SEA induced an increased expression of P-p53 and p21. Knockdown of p53 inhibited the expression of p21 and failed to induce senescence of activated-HSCs. Phosphorylated STAT3 was elevated upon SEA stimulation, while loss of STAT3 decreased the level of p53 and senescence of HSCs. Results from immunoprecipitation analysis demonstrated that SOCS3 might be involved in the SEA-induced senescence in HSCs through its interaction with p53. This study demonstrates the potential capacity of SEA in restricting liver fibrosis through promoting senescence in HSCs. Furthermore, a novel STAT3-p53-p21 pathway might participate in the observed SEA-mediated senescence of HSCs. Our results suggest that SEA might carry potential therapeutic effects of restraining liver fibrosis through promoting senescence. PMID:27489164

  6. Soluble egg antigens of Schistosoma japonicum induce senescence in activated hepatic stellate cells by activation of the STAT3/p53/p21 pathway

    PubMed Central

    Chen, Jinling; Pan, Jing; Wang, Jianxin; Song, Ke; Zhu, Dandan; Huang, Caiqun; Duan, Yinong

    2016-01-01

    Liver fibrosis is characterized by the activation of hepatic stellate cells (HSCs). Recent findings suggest that senescence of activated HSCs might limit the development of liver fibrosis. Based on previously observed anti-fibrotic effects of soluble egg antigens from Schistosoma japonicum in vitro, we hypothesized that SEA might play a crucial role in alleviating liver fibrosis through promoting senescence of activated HSCs. We show here that SEA inhibited expression of α-SMA and pro-collagen I and promoted senescence of activated HSCs in vitro. In addition, SEA induced an increased expression of P-p53 and p21. Knockdown of p53 inhibited the expression of p21 and failed to induce senescence of activated-HSCs. Phosphorylated STAT3 was elevated upon SEA stimulation, while loss of STAT3 decreased the level of p53 and senescence of HSCs. Results from immunoprecipitation analysis demonstrated that SOCS3 might be involved in the SEA-induced senescence in HSCs through its interaction with p53. This study demonstrates the potential capacity of SEA in restricting liver fibrosis through promoting senescence in HSCs. Furthermore, a novel STAT3-p53-p21 pathway might participate in the observed SEA-mediated senescence of HSCs. Our results suggest that SEA might carry potential therapeutic effects of restraining liver fibrosis through promoting senescence. PMID:27489164

  7. DNA–protein crosslinks and p53 protein expression in relation to occupational exposure to formaldehyde

    PubMed Central

    Shaham, J; Bomstein, Y; Gurvich, R; Rashkovsky, M; Kaufman, Z

    2003-01-01

    Background: Formaldehyde (FA) is classified as a probable human carcinogen. Aims: To examine DNA protein crosslinks (DPC) and p53, which are generally known to be involved in carcinogenesis, in peripheral blood lymphocytes of workers exposed to FA. Methods: DPC and p53 ("wild type" and mutant) were examined in peripheral blood lymphocytes of 186 workers exposed to FA (mean years of exposure = 16) and 213 unexposed workers. Every worker completed a questionnaire on demographic data, occupational and medical history, smoking, and hygiene. Results: The adjusted mean level of DPC in the exposed and the unexposed workers differed significantly. Adjustment was made for age, sex, years of education, smoking, and origin. Exposure to FA increased the risk of having a higher level of pantropic p53 above 150 pg/ml (OR 1.6, 95% CI 0.8 to 3.1). A significant positive correlation was found between the increase of pantropic p53 protein and mutant p53 protein, as well as between pantropic p53 >150 pg/ml and mutant p53 protein. In the exposed group a significantly higher proportion of p53 >150 pg/ml was found among workers with DPC >0.187 (55.7%) (0.187 = median level of DPC) than among workers with DPC ⩽0.187 (33.3%). The risk of having pantropic p53 protein >150 pg/ml was determined mainly by levels of DPC. Workers with DPC above the median level had a significantly higher risk of having pantropic p53 >150 pg/ml (adjusted OR 2.5, 95% CI 1.2 to 5.4). Conclusions: Results suggest that DPC and mutation in p53 may represent steps in FA carcinogenesis and a possible causal relation between DPC and mutation in p53. These biomarkers can be applied in the assessment of the development of cancer due to FA exposure. PMID:12771391

  8. p53 Transcriptional activity is mediated through the SRC1-interacting domain of CBP/p300.

    PubMed

    Livengood, Jill A; Scoggin, Kirsten E S; Van Orden, Karen; McBryant, Steven J; Edayathumangalam, Rajeswari S; Laybourn, Paul J; Nyborg, Jennifer K

    2002-03-15

    The tumor suppressor p53 recruits the cellular coactivator CBP/p300 to mediate the transcriptional activation of target genes. In this study, we identify a novel p53-interacting region in CBP/p300, which we call CR2, located near the carboxyl terminus. The 95-amino acid CR2 region (amino acids 2055--2150) is located adjacent to the C/H3 domain and corresponds precisely with the minimal steroid receptor coactivator 1 (SRC1)-interacting domain of CBP (also called IBiD). We show that the region of p53 that participates in the CR2 interaction resides within the first 107 amino acids of the protein. p53 binds strongly to the CR2 domain of both CBP and the highly homologous coactivator p300. Importantly, an in-frame deletion of CR2 within the full-length p300 protein strongly compromises p300-mediated p53 transcriptional activation from a chromatin template in vitro. The identification of the p53-interacting CR2 domain in CBP/p300 prompted us to ask if the human T-cell leukemia virus (HTLV-I) Tax protein, which also interacts with CR2, competes with p53 for binding to this domain. We show that p53 and Tax exhibit mutually exclusive binding to the CR2 region, possibly contributing to the previously reported Tax repression of p53 function. Together, these studies identify and molecularly characterize a new p53 binding site on CBP/p300 that participates in coactivator-mediated p53 transcription function. The identity of the p53.CR2 interaction indicates that at least three distinct sites on CBP/p300 may participate in mediating p53 transactivation. PMID:11782467

  9. Cofactor Strap regulates oxidative phosphorylation and mitochondrial p53 activity through ATP synthase

    PubMed Central

    Maniam, S; Coutts, A S; Stratford, M R; McGouran, J; Kessler, B; La Thangue, N B

    2015-01-01

    Metabolic reprogramming is a hallmark of cancer cells. Strap (stress-responsive activator of p300) is a novel TPR motif OB-fold protein that contributes to p53 transcriptional activation. We show here that, in addition to its established transcriptional role, Strap is localised at mitochondria where one of its key interaction partners is ATP synthase. Significantly, the interaction between Strap and ATP synthase downregulates mitochondrial ATP production. Under glucose-limiting conditions, cancer cells are sensitised by mitochondrial Strap to apoptosis, which is rescued by supplementing cells with an extracellular source of ATP. Furthermore, Strap augments the apoptotic effects of mitochondrial p53. These findings define Strap as a dual regulator of cellular reprogramming: first as a nuclear transcription cofactor and second in the direct regulation of mitochondrial respiration. PMID:25168243

  10. Kras activation in p53-deficient myoblasts results in high-grade sarcoma formation with impaired myogenic differentiation

    PubMed Central

    McKinnon, Timothy; Venier, Rosemarie; Dickson, Brendan C.; Kabaroff, Leah; Alkema, Manon; Chen, Li; Shern, Jack F.; Yohe, Marielle E.; Khan, Javed; Gladdy, Rebecca A.

    2015-01-01

    While genomic studies have improved our ability to classify sarcomas, the molecular mechanisms involved in the formation and progression of many sarcoma subtypes are unknown. To better understand developmental origins and genetic drivers involved in rhabdomyosarcomagenesis, we describe a novel sarcoma model system employing primary murine p53-deficient myoblasts that were isolated and lentivirally transduced with KrasG12D. Myoblast cell lines were characterized and subjected to proliferation, anchorage-independent growth and differentiation assays to assess the effects of transgenic KrasG12D expression. KrasG12D overexpression transformed p53−/− myoblasts as demonstrated by an increased anchorage-independent growth. Induction of differentiation in parental myoblasts resulted in activation of key myogenic regulators. In contrast, Kras-transduced myoblasts had impaired terminal differentiation. p53−/− myoblasts transformed by KrasG12D overexpression resulted in rapid, reproducible tumor formation following orthotopic injection into syngeneic host hindlimbs. Pathological analysis revealed high-grade sarcomas with myogenic differentiation based on the expression of muscle-specific markers, such as Myod1 and Myog. Gene expression patterns of murine sarcomas shared biological pathways with RMS gene sets as determined by gene set enrichment analysis (GSEA) and were 61% similar to human RMS as determined by metagene analysis. Thus, our novel model system is an effective means to model high-grade sarcomas along the RMS spectrum. PMID:25992772

  11. Depletion of Securin Induces Senescence After Irradiation and Enhances Radiosensitivity in Human Cancer Cells Regardless of Functional p53 Expression

    SciTech Connect

    Chen Wenshu; Yu Yichu; Lee Yijang; Chen, J.-H.; Hsu, H.-Y.; Chiu, S.-J.

    2010-06-01

    Purpose: Radiotherapy is one of the best choices for cancer treatment. However, various tumor cells exhibit resistance to irradiation-induced apoptosis. The development of new strategies to trigger cancer cell death besides apoptosis is necessary. This study investigated the role of securin in radiation-induced apoptosis and senescence in human cancer cells. Methods and Materials: Cell survival was determined using clonogenic assays. Western blot analysis was used to analyze levels of securin, caspase-3, PARP, p53, p21, Rb, gamma-H2AX, and phospho-Chk2. Senescent cells were analyzed using a beta-galactosidase staining assay. A securin-expressed vector (pcDNA-securin) was stably transfected into securin-null HCT116 cells. Securin gene knockdown was performed by small interfering RNA and small hairpin RNA in HCT116 and MDA-MB-231 cells, respectively. Results: Radiation was found to induce apoptosis in securin wild type HCT116 cells but induced senescence in securin-null cells. Restoration of securin reduced senescence and increased cell survival in securin-null HCT116 cells after irradiation. Radiation-induced gamma-H2AX and Chk2 phosphorylation were induced transiently in securin-wild-type cells but exhibited sustained activation in securin-null cells. Securin gene knockdown switches irradiation-induced apoptosis to senescence in both HCT116 p53-null and MDA-MB-231 cells. Conclusions: Our results demonstrated that the level of securin expression plays a determining role in the radiosensitivity and fate of cells. Depletion of securin impairs DNA repair after irradiation, increasing DNA damage and promoting senescence in the residual surviving cells regardless of functional p53 expression. The knockdown of securin may contribute to a novel radiotherapy protocol for the treatment of human cancer cells that are resistant to irradiation.

  12. Thrombospondins I and II messenger RNA expression in lung carcinoma: relationship with p53 alterations, angiogenic growth factors, and vascular density.

    PubMed

    Fontanini, G; Boldrini, L; Calcinai, A; Chinè, S; Lucchi, M; Mussi, A; Angeletti, C A; Basolo, F; Bevilacqua, G

    1999-01-01

    Thrombospondin (TSP) is a Mr 450,000 multifunctional matrix glycoprotein that interferes with tumor growth, angiogenesis, and metastasis. It has recently been shown that TSP expression is enhanced by the product of the p53 gene and that a down-regulation of TSP may be observed when alterations of the p53 protein occur. Moreover, a number of studies have demonstrated a regulatory activity of p53 on human vascular endothelial growth factor (VEGF), although additional investigations will be necessary to understand their relationship. In non-small cell lung carcinoma (NSCLC), neoangiogenesis, p53 alterations, and VEGF expression seem to have meaningful implications in the development and progression of this type of cancer. The aim of this study is to identify and quantitate TSP I and TSP II mRNA in NSCLCs with respect to p53 alterations, angiogenic growth factor expression, and microvascular density. A series of 24 cases of NSCLC were analyzed. Eleven of 24 of the cases were positive for TSP II mRNA, whereas 8 of 24 showed TSP I mRNA expression. A significant inverse association was found between TSP I mRNA and fibroblast growth factor (FGF) protein expression (P = 0.00001). Tumors with low FGF protein expression (< or = 40% of positive cells) presented a number of TSP I cDNA molecules, significantly higher than tumors expressing high levels of FGF protein. No association was found between TSP mRNA expression and other angiogenic growth factors (i.e., VEGF) or tumoral neovascularization. On the contrary, tumors with high levels of FGF showed a higher number of microvessels (P = 0.05). By PCR-single-strand conformational polymorphism analysis, we observed aberrations of the p53 gene in 19 of the 24 tumor samples. No association was found between p53 alterations and TSP mRNA expression. Instead, an interestingly significant association was found between the presence of p53 mutations and high VEGF protein expression (P = 0.01) and neovascularization (P = 0.03). Highly

  13. p53 and bcl-2 expression in high-grade B-cell lymphomas: correlation with survival time.

    PubMed Central

    Piris, M. A.; Pezzella, F.; Martinez-Montero, J. C.; Orradre, J. L.; Villuendas, R.; Sanchez-Beato, M.; Cuena, R.; Cruz, M. A.; Martinez, B.; Pezella F [corrected to Pezzella, F. ].

    1994-01-01

    B-cell high-grade lymphomas are heterogeneous in terms of histology, clinical presentation, treatment response and prognosis. As bcl-2 and p53 gene deregulations are frequently involved in several types of lymphoid malignancies, we aimed our investigation at the study of the relation between bcl-2 and p53 expression and survival probability in a group of 119 patients with B-cell high-grade lymphoma. These were obtained from the Virgen de la Salud Hospital, Toledo, Spain (73 cases), John Radcliffe Hospital, Oxford, UK (31 cases), and the Istituto Nazionale dei Tumori, Milan, Italy (15 cases). The relation between bcl-2 protein expression and survival was small, depending on the primary localisation of the tumour (in lymph node of mucosae), and lacked a significant correlation with overall survival. In contrast with this, p53 expression was related to survival probability in our series, this relation being both significant and independent of histological diagnosis. p53-positive patients showed a sudden decrease in life expectancy in the first months after diagnosis. Multivariant regression analysis confirmed that the only parameters significantly related with survival were extranodal origin, which is associated with a better prognosis, and p53 expression, which indicates a poor prognosis. Simultaneous expression of bcl-2 and p53 was associated with a poorer prognosis than p53 alone. This is particularly significant for large B-cell lymphomas presenting in lymph nodes. The cumulative poor effect of both p53 and bcl-2 in large B-cell lymphomas, which is more significant in nodal tumours, could confirm the existence of a multistep genetic deregulation in non-Hodgkin's lymphoma. This indicates that the genetic mechanisms controlling apoptosis and their disregulation are critical steps in the progression of lymphomas. PMID:8297731

  14. Co-expression of ING4 and P53 enhances hypopharyngeal cancer chemosensitivity to cisplatin in vivo

    PubMed Central

    Ren, Xin; Liu, Hao; Zhang, Mingjie; Wang, Mengjun; Ma, Shiyin

    2016-01-01

    Hypopharyngeal cancer is a distinct type of malignant head and neck tumor, which exhibits low sensitivity to anti-cancer drugs. The importance of developing methods for reducing chemotherapy resistance, and improving and enhancing prognosis has previously been emphasized and is considered a challenge for effective clinical treatment of hypopharyngeal cancer. The current study investigated the effects of co-expression of inhibitor of growth protein 4 (ING4) and P53, a tumor suppressor gene, on chemosensitivity to cisplatin in human hypopharyngeal cancer xenografts in vivo, and the potential molecular mechanisms involved. A tumor model was established by injecting athymic nude mice with FADU human hypopharyngeal cancer cells. Five days after intratumoral and peritumoral injections of an empty adenoviral vector (Ad), Ad-ING4-P53, cisplatin, or a combination of Ad-ING4-P53 and cisplatin (Ad-ING4-P53 + cisplatin) every other day for 5 days, the mice were euthanized and their tumors, livers, and kidneys were removed. The tumor weights were used to calculate the inhibition rate, and the expression levels of ING4 and P53 were detected by reverse transcription-polymerase chain reaction. Additionally, apoptotic cells were detected using terminal deoxynucleotidyl transferase dUTP nick end labeling, and immunohistochemistry determined the levels ING4, P53, B-cell lymphoma-2 (Bcl-2) and Bcl-2 associated X protein (Bax) protein expression. The results demonstrated increased expression of ING4 and P53 in the Ad-ING4-P53 groups compared with PBS and Ad groups, indicating successful introduction of the genes into the tumor cells. Notably, the Ad-ING4-P53 + cisplatin group exhibited a higher inhibition rate compared with the four other groups. The results of immunohistochemistry analysis demonstrated that Bax expression was increased and Bcl-2 was decreased in the Ad-ING4-P53 + cisplatin group. This suggested that the enhanced cisplatin chemosensitivity with Ad-ING4-P53 gene therapy

  15. Nucleolus-derived mediators in oncogenic stress response and activation of p53-dependent pathways.

    PubMed

    Stępiński, Dariusz

    2016-08-01

    Rapid growth and division of cells, including tumor ones, is correlated with intensive protein biosynthesis. The output of nucleoli, organelles where translational machineries are formed, depends on a rate of particular stages of ribosome production and on accessibility of elements crucial for their effective functioning, including substrates, enzymes as well as energy resources. Different factors that induce cellular stress also often lead to nucleolar dysfunction which results in ribosome biogenesis impairment. Such nucleolar disorders, called nucleolar or ribosomal stress, usually affect cellular functioning which in fact is a result of p53-dependent pathway activation, elicited as a response to stress. These pathways direct cells to new destinations such as cell cycle arrest, damage repair, differentiation, autophagy, programmed cell death or aging. In the case of impaired nucleolar functioning, nucleolar and ribosomal proteins mediate activation of the p53 pathways. They are also triggered as a response to oncogenic factor overexpression to protect tissues and organs against extensive proliferation of abnormal cells. Intentional impairment of any step of ribosome biosynthesis which would direct the cells to these destinations could be a strategy used in anticancer therapy. This review presents current knowledge on a nucleolus, mainly in relation to cancer biology, which is an important and extremely sensitive element of the mechanism participating in cellular stress reaction mediating activation of the p53 pathways in order to counteract stress effects, especially cancer development.

  16. DNA-dependent protein kinase and checkpoint kinase 2 synergistically activate a latent population of p53 upon DNA damage.

    PubMed

    Jack, Melissa T; Woo, Richard A; Motoyama, Noboru; Takai, Hitoyuki; Lee, Patrick W K

    2004-04-01

    The role of the checkpoint kinase 2 (Chk2) as an upstream activator of p53 following DNA damage has been controversial. We have recently shown that Chk2 and the DNA-dependent protein kinase (DNA-PK) are both involved in DNA damage-induced apoptosis but not G(1) arrest in mouse embryo fibroblasts. Here we demonstrate that Chk2 is required to activate p53 in vitro as measured by its ability to bind its consensus DNA target sequence following DNA damage and is in fact the previously unidentified factor working synergistically with DNA-PK to activate p53. The gene mutated in ataxia telangiectasia is not involved in this p53 activation. Using wortmannin, serine 15 mutants of p53, DNA-PK null cells and Chk2 null cells, we demonstrate that DNA-PK and Chk2 act independently and sequentially on p53. Furthermore, the p53 target of these two kinases represents a latent (preexisting) population of p53. Taken together, the results from these studies are consistent with a model in which DNA damage causes an immediate and sequential modification of latent p53 by DNA-PK and Chk2, which under appropriate conditions can lead to apoptosis. PMID:14752107

  17. c-myc, ras p21 and p53 expression in pleomorphic adenoma and its malignant form of the human salivary glands.

    PubMed

    Deguchi, H; Hamano, H; Hayashi, Y

    1993-01-01

    Using an immunohistochemical study and an immunoblot analysis, the expression of cellular oncogenes of the human salivary glands such as c-myc, ras p21, and p53 tumor-suppressor gene in pleomorphic adenomas and its malignant form, carcinoma in pleomorphic adenomas was examined to evaluate a differential biological significance, in comparison with that in normal salivary gland tissues. Immunohistochemically, the c-myc product was detected in 42% of the pleomorphic adenomas and in 56% of the carcinomas in pleomorphic adenoma. The ras p21 expression was observed in 24% of pleomorphic adenomas, and in 50% of carcinomas in pleomorphic adenoma. The p53 protein was detected in 18% of the pleomorphic adenomas and in 67% of the carcinomas in pleomorphic adenoma. Although there was no significant difference between the benign and malignant forms for the expression of c-myc, a statistical significance in ras p21 and p53 expression was found between the pleomorphic adenoma and its malignant form (P < 0.05) and P < 0.001, respectively). An immunoblotting assay clearly demonstrated the expression of c-myc and p53 gene products in both the benign and malignant forms of the pleomorphic adenoma, and that of ras p21 in the malignant form. These results indicate that activation of c-myc and ras p21 proto-oncogenes and the involvement of p53 mutation may play important roles in the malignant transformation of salivary gland pleomorphic adenoma.

  18. An Aqueous Extract of Fagonia cretica Induces DNA Damage, Cell Cycle Arrest and Apoptosis in Breast Cancer Cells via FOXO3a and p53 Expression

    PubMed Central

    Lam, Matt; Carmichael, Amtul R.; Griffiths, Helen R.

    2012-01-01

    Background Plants have proved to be an important source of anti-cancer drugs. Here we have investigated the cytotoxic action of an aqueous extract of Fagonia cretica, used widely as a herbal tea-based treatment for breast cancer. Methodology/Principal Findings Using flow cytometric analysis of cells labeled with cyclin A, annexin V and propidium iodide, we describe a time and dose-dependent arrest of the cell cycle in G0/G1 phase of the cell cycle and apoptosis following extract treatment in MCF-7 (WT-p53) and MDA-MB-231 (mutant-p53) human breast cancer cell lines with a markedly reduced effect on primary human mammary epithelial cells. Analysis of p53 protein expression and of its downstream transcription targets, p21 and BAX, revealed a p53 associated growth arrest within 5 hours of extract treatment and apoptosis within 24 hours. DNA double strand breaks measured as γ-H2AX were detected early in both MCF-7 and MDA-MB-231 cells. However, loss of cell viability was only partly due to a p53-driven response; as MDA-MB-231 and p53-knockdown MCF-7 cells both underwent cell cycle arrest and death following extract treatment. p53-independent growth arrest and cytotoxicity following DNA damage has been previously ascribed to FOXO3a expression. Here, in MCF-7 and MDA-MB-231 cells, FOXO3a expression was increased significantly within 3 hours of extract treatment and FOXO3 siRNA reduced the extract-induced loss of cell viability in both cell lines. Conclusions/Significance Our results demonstrate for the first time that an aqueous extract of Fagonia cretica can induce cell cycle arrest and apoptosis via p53-dependent and independent mechanisms, with activation of the DNA damage response. We also show that FOXO3a is required for activity in the absence of p53. Our findings indicate that Fagonia cretica aqueous extract contains potential anti-cancer agents acting either singly or in combination against breast cancer cell proliferation via DNA damage-induced FOXO3a and p53

  19. Bax/Bak activation in the absence of Bid, Bim, Puma, and p53.

    PubMed

    Zhang, J; Huang, K; O'Neill, K L; Pang, X; Luo, X

    2016-06-16

    How BH3-only proteins activate Bax/Bak, the two gateway proteins of the mitochondria-dependent apoptotic pathway, remains incompletely understood. Although all pro-apoptotic BH3-only proteins are known to bind/neutralize the anti-apoptotic Bcl-2 proteins, the three most potent ones, Bid (tBid), Bim, and Puma, possess an additional activity of directly activating Bax/Bak in vitro. This latter activity has been proposed to be responsible for triggering Bax/Bak activation following apoptotic stimulation. To test this hypothesis, we generated Bid(-/)(-)Bim(-/)(-)Puma(-/)(-) (TKO), TKO/Bax(-/)(-)/Bak(-/)(-) (PentaKO), and PentaKO/Mcl-1(-/-) (HexaKO) HCT116 cells through gene editing. Surprisingly, although the TKO cells were resistant to several apoptotic stimuli, robust apoptosis was induced upon the simultaneous inactivation of Bcl-xL and Mcl-1, two anti-apoptotic Bcl-2 proteins known to suppress Bax/Bak activation and activity. Importantly, such apoptotic activity was completely abolished in the PentaKO cells. In addition, ABT-737, a BH3 mimetic that inhibits Bcl-xL/Bcl-w/Bcl-2, induced Bax activation in HexaKO cells reconstituted with endogenous level of GFP-Bax. Further, by generating TKO/p53(-/-) (QKO) cells, we demonstrated that p53, a tumor suppressor postulated to directly activate Bax, is not required for Bid/Bim/Puma-independent Bax/Bak activation. Together, these results strongly suggest that the direct activation activities of Bid (tBid), Bim, Puma, and p53 are not essential for activating Bax/Bak once the anti-apoptotic Bcl-2 proteins are neutralized.

  20. Bax/Bak activation in the absence of Bid, Bim, Puma, and p53.

    PubMed

    Zhang, J; Huang, K; O'Neill, K L; Pang, X; Luo, X

    2016-01-01

    How BH3-only proteins activate Bax/Bak, the two gateway proteins of the mitochondria-dependent apoptotic pathway, remains incompletely understood. Although all pro-apoptotic BH3-only proteins are known to bind/neutralize the anti-apoptotic Bcl-2 proteins, the three most potent ones, Bid (tBid), Bim, and Puma, possess an additional activity of directly activating Bax/Bak in vitro. This latter activity has been proposed to be responsible for triggering Bax/Bak activation following apoptotic stimulation. To test this hypothesis, we generated Bid(-/)(-)Bim(-/)(-)Puma(-/)(-) (TKO), TKO/Bax(-/)(-)/Bak(-/)(-) (PentaKO), and PentaKO/Mcl-1(-/-) (HexaKO) HCT116 cells through gene editing. Surprisingly, although the TKO cells were resistant to several apoptotic stimuli, robust apoptosis was induced upon the simultaneous inactivation of Bcl-xL and Mcl-1, two anti-apoptotic Bcl-2 proteins known to suppress Bax/Bak activation and activity. Importantly, such apoptotic activity was completely abolished in the PentaKO cells. In addition, ABT-737, a BH3 mimetic that inhibits Bcl-xL/Bcl-w/Bcl-2, induced Bax activation in HexaKO cells reconstituted with endogenous level of GFP-Bax. Further, by generating TKO/p53(-/-) (QKO) cells, we demonstrated that p53, a tumor suppressor postulated to directly activate Bax, is not required for Bid/Bim/Puma-independent Bax/Bak activation. Together, these results strongly suggest that the direct activation activities of Bid (tBid), Bim, Puma, and p53 are not essential for activating Bax/Bak once the anti-apoptotic Bcl-2 proteins are neutralized. PMID:27310874

  1. Inhibition of AKT/FoxO3a signaling induced PUMA expression in response to p53-independent cytotoxic effects of H1: A derivative of tetrandrine.

    PubMed

    Zhang, Yin-Xu; Liu, Xiao-Mei; Wang, Jing; Li, Jun; Liu, Ying; Zhang, Hua; Yu, Xue-Wen; Wei, Ning

    2015-01-01

    PUMA (p53 unregulated modulator of apoptosis), a BH3-only Bcl-2 family member, can be induced by p53-dependent and p53-independent manners. It plays an important role as regulator of cellular apoptosis. Herein, we evaluate the effects of H1 (a derivative of tetrandrine) on induction of PUMA and underlie its potential mechanism in p53-independent cytotoxic response. Anti-proliferative activity and evidently cytotoxic activity of H1 were observed in wild-type and p53 null cells. Further studies demonstrated that H1 resulted in an increase of cleaved PARP, decease of survivin and elevation of p-H2AX. What is more, H1 significantly induced PUMA expression in a concentration- and time-dependent manner and caused an increase of Bax/Bcl-2 ratio in p53 null cells. Of note, knockdown of PUMA attenuated cytotoxic activity of H1. Further studies demonstrated that inhibition of AKT/FoxO3a signaling contributed to H1-mediated PUMA induction. Targeted suppression of AKT/FoxO3a signaling by siRNA could overcome H1-mediated PUMA induction. In addition, H1 significantly suppressed NF-κB activity and caused an increase of early apoptotic and late apoptotic cells, and elevated caspase-3 activity. Taken together, we found that inhibition of AKT/FoxO3a signaling may contribute to H1-mediated PUMA induction, suggesting that inhibition of AKT/FoxO3a signaling result in PUMA expression in response to p53-independent cytotoxic effects of H1.

  2. Inhibition of AKT/FoxO3a signaling induced PUMA expression in response to p53-independent cytotoxic effects of H1: A derivative of tetrandrine.

    PubMed

    Zhang, Yin-Xu; Liu, Xiao-Mei; Wang, Jing; Li, Jun; Liu, Ying; Zhang, Hua; Yu, Xue-Wen; Wei, Ning

    2015-01-01

    PUMA (p53 unregulated modulator of apoptosis), a BH3-only Bcl-2 family member, can be induced by p53-dependent and p53-independent manners. It plays an important role as regulator of cellular apoptosis. Herein, we evaluate the effects of H1 (a derivative of tetrandrine) on induction of PUMA and underlie its potential mechanism in p53-independent cytotoxic response. Anti-proliferative activity and evidently cytotoxic activity of H1 were observed in wild-type and p53 null cells. Further studies demonstrated that H1 resulted in an increase of cleaved PARP, decease of survivin and elevation of p-H2AX. What is more, H1 significantly induced PUMA expression in a concentration- and time-dependent manner and caused an increase of Bax/Bcl-2 ratio in p53 null cells. Of note, knockdown of PUMA attenuated cytotoxic activity of H1. Further studies demonstrated that inhibition of AKT/FoxO3a signaling contributed to H1-mediated PUMA induction. Targeted suppression of AKT/FoxO3a signaling by siRNA could overcome H1-mediated PUMA induction. In addition, H1 significantly suppressed NF-κB activity and caused an increase of early apoptotic and late apoptotic cells, and elevated caspase-3 activity. Taken together, we found that inhibition of AKT/FoxO3a signaling may contribute to H1-mediated PUMA induction, suggesting that inhibition of AKT/FoxO3a signaling result in PUMA expression in response to p53-independent cytotoxic effects of H1. PMID:25893985

  3. Deficiency in p53 is required for doxorubicin induced transcriptional activation of NF-κB target genes in human breast cancer

    PubMed Central

    Dalmases, Alba; González, Irene; Menendez, Silvia; Arpí, Oriol; Corominas, Josep Maria; Servitja, Sonia; Tusquets, Ignasi; Chamizo, Cristina; Rincón, Raúl; Espinosa, Lluis; Bigas, Anna; Eroles, Pilar; Furriol, Jessica; Lluch, Anna; Rovira, Ana; Albanell, Joan; Rojo, Federico

    2014-01-01

    NF-κB has been linked to doxorubicin resistance in breast cancer patients. NF-κB nuclear translocation and DNA binding in doxorubicin treated-breast cancer cells have been extensively examined; however its functional relevance at transcriptional level on NF-κB -dependent genes and the biological consequences are unclear. We studied NF-κB -dependent gene expression induced by doxorubicin in breast cancer cells and fresh human cancer specimens with different genetic backgrounds focusing on their p53 status. NF-κB -dependent signature of doxorubicin was identified by gene expression microarrays in breast cancer cells treated with doxorubicin and the IKKβ-inhibitor MLN120B, and confirmed ex vivo in human cancer samples. The association with p53 was functionally validated. Finally, NF-κB activation and p53 status was determined in a cohort of breast cancer patients treated with adjuvant doxorubicin-based chemotherapy. Doxorubicin treatment in the p53-mutated MDA-MB-231 cells resulted in NF NF-κB driven-gene transcription signature. Modulation of genes related with invasion, metastasis and chemoresistance (ICAM-1, CXCL1, TNFAIP3, IL8) were confirmed in additional doxorubicin-treated cell lines and fresh primary human breast tumors. In both systems, p53-defcient background correlated with the activation of the NF-κB -dependent signature. Furthermore, restoration of p53WT in the mutant p53 MDA-MB-231 cells impaired NF-κB driven transcription induced by doxorubicin. Moreover, a p53 deficient background and nuclear NF-κB /p65 in breast cancer patients correlated with reduced disease free-survival. This study supports that p53 deficiency is necessary for a doxorubicin driven NF-κB -response that limits doxorubicin cytotoxicity in breast cancer and is linked to an aggressive clinical behavior. PMID:24344116

  4. Selective apoptotic effect of Zelkova serrata twig extract on mouth epidermoid carcinoma through p53 activation.

    PubMed

    Kang, Hoe-Jin; Jang, Young-Joo

    2012-06-01

    Apoptosis or programmed cell death plays an essential role in chemotherapy-induced tumor cell killing, and inducers of apoptosis are commonly used in cancer therapy. Treatment with Zelkova serrata extracts was performed in human gingival fibroblast (HGF), mouth epidermoid carcinoma cell (KB), lower gingival squamous cancer cell (YD38) and tongue mucoepidermoid carcinoma cells (YD15). We observed that extract prepared from Zelkova serrata twig selectively inhibited proliferation of various oral cancer cells, but not normal gingival fibroblasts, in a dose-dependent manner. Caspase-8-mediated apoptosis was induced by treatment with the extract only in mouth epidermoid carcinoma and not in other types of cancer cells, including lower gingival squamous cell carcinoma. The selective apoptotic effect of Zelkova serrata twig extract in mouth epidermoid carcinoma was dependent on normal p53 status. Apoptosis was not remarkably induced by treatment with the extract in either lower gingival squamous or tongue mucoepidermoid carcinoma cells, both of which contain abnormalities of p53. Upon treatment with Zelkova serrata twig extract, mouth epidermoid carcinoma cells accumulated in S phase by activation of p21. These data indicate that Zelkova serrata twig extract exerted a cancer type-specific, p53-dependent apoptotic effect and disturbed the cell cycle, which suggests that herbal medicine could be a treatment for specific types of cancers. PMID:22498930

  5. KAI-1 and p53 expression in oral squamous cell carcinomas: Markers of significance in future diagnostics and possibly therapeutics

    PubMed Central

    Patil, Namrata N; Wadhwan, Vijay; Chaudhary, Minal; Nayyar, Abhishek Singh

    2016-01-01

    Context: KAI-1/CD82 is a tumor suppressor gene with decreased gene expression being associated with increased invasive ability of oral squamous cell carcinomas (OSCCs). p53 protein functions in the G1-S phase of the cell cycle to allow repair of damaged DNA. In the present study, p53 and KAI-1 expression was investigated using monoclonal antibodies in OSCC. Aims: The aim of this study was to detect KAI-1 and p53 expression in OSCCs and to assess the relation between both in OSCCs. Materials and Methods: The present study included histopathologically diagnosed thirty cases of well- and moderately differentiated OSCCs to study the expression of KAI-1 and p53 antibodies. Statistical Analysis: The results obtained were tabulated and statistically analyzed using descriptive statistical analysis; one-way ANOVA; least square difference method and independent t-test. Results: OSCCs exhibited 41.62% positivity for KAI-1 while p53 positive cells were recorded to an extent of 60.82%. A significant positive correlation was observed between KAI-1 and p53 expression in OSCCs. Conclusions: Although a significant amount of work is still required to uncover the mechanisms of action and regulation of KAI-1 and p53 expression, control of the complex metastatic processes would be of interest in controlling the tumor biology in OSCCs as well as other types of malignancies to enhance prognosis in the affected patients and to help protect against future metastasis in the going to be treated and treated patients. PMID:27721601

  6. WISP-1 attenuates p53-mediated apoptosis in response to DNA damage through activation of the Akt kinase.

    PubMed

    Su, Fei; Overholtzer, Michael; Besser, Daniel; Levine, Arnold J

    2002-01-01

    WISP-1 (Wnt-1-induced secreted protein) was identified as an oncogene regulated by the Wnt-1-beta-catenin pathway. WISP-1 belongs to the CCN family of growth factors, which are cysteine-rich, heparin-binding, secreted proteins associated with the extracellular matrix, and can interact with cellular integrins. Expression of WISP-1 in some cells results in transformation and tumorigenesis. Here it is shown that WISP-1 can activate the antiapoptotic Akt/PKB signaling pathway. It also is demonstrated that WISP-1 can prevent cells from undergoing apoptosis following DNA damage through inhibition of the mitochondrial release of cytochrome c and up-regulation of antiapoptotic Bcl-X(L). Furthermore, the results show that WISP-1 protects cells from p53-dependent cell death, but not Fas-ligand activated cell death, suggesting that there may be cross talk between the tumor suppressor protein p53 and WISP-1 signaling pathways. WISP-1 acts to block cell death at a late stage in the p53-mediated apoptosis pathway.

  7. Polydatin Protecting Kidneys against Hemorrhagic Shock-Induced Mitochondrial Dysfunction via SIRT1 Activation and p53 Deacetylation

    PubMed Central

    Zeng, Zhenhua; Chen, Zhongqing; Xu, Siqi; Zhang, Qin; Wang, Xingmin; Gao, Youguang; Zhao, Ke-seng

    2016-01-01

    Objectives. To ascertain if mitochondrial dysfunction (MD) of kidney cells is present in severe hemorrhagic shock and to investigate whether polydatin (PD) can attenuate MD and its protective mechanisms. Research Design and Methods. Renal tubular epithelial cells (RTECs) from rat kidneys experiencing HS and a cell line (HK-2) under hypoxia/reoxygenation (H/R) treatment were used. Morphology and function of mitochondria in isolated RTECs or cultured HK-2 cells were evaluated, accompanied by mitochondrial apoptosis pathway-related proteins. Result. Severe MD was found in rat kidneys, especially in RTECs, as evidenced by swollen mitochondria and poorly defined cristae, decreased mitochondrial membrane potential (ΔΨm), and reduced ATP content. PD treatment attenuated MD partially and inhibited expression of proapoptotic proteins. PD treatment increased SIRT1 activity and decreased acetylated-p53 levels. Beneficial effect of PD was abolished partially when the SIRT1 inhibitor Ex527 was added. Similar phenomena were shown in the H/R cell model; when pifithrin-α (p53 inhibitor) was added to the PD/Ex527 group, considerable therapeutic effects were regained compared with the PD group apart from increased SIRT1 activity. Conclusions. MD is present in severe HS, and PD can attenuate MD of RTECs via the SIRT1-p53 pathway. PD might be a promising therapeutic drug for acute renal injury. PMID:27057271

  8. The expression of p21 is upregulated by forkhead box A1/2 in p53-null H1299 cells.

    PubMed

    An, Joo-Hee; Jang, Sang-Min; Kim, Jung-Woong; Kim, Chul-Hong; Song, Peter I; Choi, Kyung-Hee

    2014-11-01

    The expression of the cell cycle inhibitor p21 is increased in response to various stimuli and stress signals through p53-dependent and independent pathways. We demonstrate in this study that forkhead box A1/2 (FOXA1/2) is a crucial transcription factor in the activation of p21 transcription via direct binding to the p21 promoter in p53-null H1299 lung carcinoma cells. In addition, histone deacetylase inhibitor trichostatin A (TSA)-mediated upregulation of p21 expression was repressed by knockdown of FOXA1/2 in H1299 cells. Consequently, these results suggest that FOXA1/2 is required for p53-independent p21 expression. PMID:25281925

  9. XRCC1 and CYP2E1 polymorphisms as susceptibility factors of plasma mutant p53 protein and anti-p53 antibody expression in vinyl chloride monomer-exposed polyvinyl chloride workers.

    PubMed

    Wong, Ruey-Hong; Du, Chung-Li; Wang, Jung-Der; Chan, Chang-Chuan; Luo, Jiin-Chyuan J; Cheng, Tsun-Jen

    2002-05-01

    Mutant p53 protein and anti-p53 antibody in circulating blood can be detectedamong individuals with mutations of the p53 tumor suppressor gene. Plasma mutant p53 protein and anti-p53 antibody have also been associated with vinyl chloride monomer (VCM) exposure, although the mechanism of VCM-related carcinogenesis remains unclear. Polymorphisms of metabolic and DNA repair genes have been implicated in chemical exposure-related carcinogenesis. The aim of this study is to explore the association between polymorphisms of metabolic and DNA repair genes with mutant p53 protein and anti-p53 antibody expression induced by VCM. Study subjects comprised 333 male workers occupationally exposed to VCM. Plasma mutant p53 protein and anti-p53 antibody detected with ELISA were grouped together as p53 overexpression. Genotypes of cytochrome P450 2E1 (CYP2E1), aldehyde dehydrogenase 2 (ALDH2), glutathione S-transferase T1 (GSTT1), and X-ray repair cross-complementing group 1 (XRCC1, exon 10) genes were identified by the PCR. High VCM exposure group had significantly higher p53 overexpression as compared with low exposure group [odds ratio (OR), 2.1; 95% confidence interval (CI), 1.1-3.8]. Individuals having experienced a high VCM exposure and displaying a XRCC1 Gln-Gln genotype had a highest risk of p53 overexpression among those having different combinations of VCM exposure and XRCC1 genotypes (OR, 6.5; 95% CI, 1.7-24.2). Interestingly, those subjects reflecting a CYP2E1 c2c2 genotype among the low VCM-exposure group demonstrated a greater risk of p53 overexpression (OR, 9.8; 95% CI, 1.2-81.6) as compared with those experiencing a low VCM exposure and CYP2E1 c1c1/c1c2 genotypes. Additional analysis revealed that individuals possessing more susceptible XRCC1 Gln-Gln, CYP2E1 c2c2, ALDH2 1-2/2-2, and non-null GSTT1 genotypes were more likely to reveal p53 overexpression. Our results suggest that susceptible XRCC1 and CYP2E1 genotypes may modulate the mutation of the p53 gene among

  10. Attenuation of BPDE-induced p53 accumulation by TPA is associated with a decrease in stability and phosphorylation of p53 and down-regulation of NF-κB activation: Role of p38 MAP kinase

    PubMed Central

    Mukherjee, Jagat J.; Sikka, Harish C.

    2005-01-01

    DNA damage caused by benzo[a]pyrene (BP) or other PAHs induce p53 protein as a protective measure to eliminate the possibility of mutagenic fixation of the DNA damage. 12-O-tetradecanoylphorbol-13-acetate (TPA) inhibits p53 response induced by BP and other DNA-damaging agents and may cause tumor promotion. The molecular mechanism of attenuation of BP-induced p53 response by TPA is not known. We investigated the effect of TPA on p53 response in BPDE-treated mouse epidermal JB6(P+) Cl 41 cells. BPDE treatment induced p53 accumulation which was attenuated significantly by TPA. Cells treated with BPDE and TPA showed increased ratio of Mdm2 to p53 proteins in p53 immunoprecipitate and decreased p53 life span compared to BPDE-treated cells indicating p53 destabilization by TPA. TPA also inhibited BPDE-induced p53 phosphorylation at serine15. Activation of both ERKs and p38 MAPK by BPDE and attenuation of BPDE-induced p53 accumulation by U0126 or SB202190, specific inhibitor of MEK1/2 or p38 MAPK, indicate the role of ERKs and p38 MAPK in p53 accumulation. Interestingly, TPA potentiated BPDE-induced activation of ERKs whereas p38 MAPK activation was significantly inhibited by TPA, suggesting that inhibition of p38 MAPK is involved in p53 attenuation by TPA. Furthermore SB202190 treatment caused decreased p53 stability and inhibition of phosphorylation of p53 at serine 15 in BPDE-treated cells. We also observed that TPA or SB202190 attenuated BPDE-induced NF-κB activation in JB6 (Cl 41) cells harboring NF-κB reporter plasmid. To our knowledge this is the first report that TPA inhibits chemical carcinogen-induced NF-κB activation. Interference of TPA with BPDE-induced NF-κB activation implicates abrogation of p53 function which has been discussed. Overall our data suggest that abrogation of BPDE-induced p53 response and of NF-κB activation by TPA is mediated by impairment of signaling pathway involving p38 MAPK. PMID:16244358

  11. Quantitative phosphoproteomic analysis reveals γ-bisabolene inducing p53-mediated apoptosis of human oral squamous cell carcinoma via HDAC2 inhibition and ERK1/2 activation.

    PubMed

    Jou, Yu-Jen; Chen, Chao-Jung; Liu, Yu-Ching; Way, Tzong-Der; Lai, Chih-Ho; Hua, Chun-Hung; Wang, Ching-Ying; Huang, Su-Hua; Kao, Jung-Yie; Lin, Cheng-Wen

    2015-10-01

    γ-Bisabolene, one of main components in cardamom, showed potent in vitro and in vivo anti-proliferative activities against human oral squamous cell carcinoma (OSCC). γ-Bisabolene activated caspases-3/9 and decreased mitochondrial memebrane potential, leading to apoptosis of OSCC cell lines (Ca9-22 and SAS), but not normal oral fibroblast cells. Phosphoproteome profiling of OSCC cells treated with γ-bisabolene was identified using TiO2-PDMS plate and LC-MS/MS, then confirmed using Western blotting and real-time RT-PCR assays. Phosphoproteome profiling revealed that γ-bisabolene increased the phosphorylation of ERK1/2, protein phosphatases 1 (PP1), and p53, as well as decreased the phosphorylation of histone deacetylase 2 (HDAC2) in the process of apoptosis induction. Protein-protein interaction network analysis proposed the involvement of PP1-HDAC2-p53 and ERK1/2-p53 pathways in γ-bisabolene-induced apoptosis. Subsequent assays indicated γ-bisabolene eliciting p53 acetylation that enhanced the expression of p53-regulated apoptotic genes. PP1 inhibitor-2 restored the status of HDAC2 phosphorylation, reducing p53 acetylation and PUMA mRNA expression in γ-bisabolene-treated Ca9-22 and SAS cells. Meanwhile, MEK and ERK inhibitors significantly decreased γ-bisabolene-induced PUMA expression in both cancer cell lines. Notably, the results ascertained the involvement of PP1-HDAC2-p53 and ERK1/2-p53 pathways in mitochondria-mediated apoptosis of γ-bisabolene-treated cells. This study demonstrated γ-bisabolene displaying potent anti-proliferative and apoptosis-inducing activities against OSCC in vitro and in vivo, elucidating molecular mechanisms of γ-bisabolene-induced apoptosis. The novel insight could be useful for developing anti-cancer drugs. PMID:26194454

  12. USP10 regulates p53 localization and stability by deubiquitinating p53.

    PubMed

    Yuan, Jian; Luo, Kuntian; Zhang, Lizhi; Cheville, John C; Lou, Zhenkun

    2010-02-01

    Stability and localization of p53 is essential for its tumor suppressor function. Ubiquitination by the E3 ubiquitin ligase Mdm2 is the major regulatory mechanism of p53, which induces p53 nuclear export and degradation. However, it is unclear whether ubiquitinated cytoplasmic p53 can be recycled. Here, we report that USP10, a cytoplasmic ubiquitin-specific protease, deubiquitinates p53, reversing Mdm2-induced p53 nuclear export and degradation. After DNA damage, USP10 is stabilized, and a fraction of USP10 translocates to the nucleus to activate p53. The translocation and stabilization of USP10 is regulated by ATM -mediated phosphorylation of USP10 at Thr42 and Ser337. Finally, USP10 suppresses tumor cell growth in cells with wild-type p53, with USP10 expression downregulated in a high percentage of clear cell carcinomas, known to have few p53 mutations. These findings reveal USP10 to be a novel regulator of p53, providing an alternative mechanism of p53 inhibition in cancers with wild-type p53.

  13. Insulin receptor signaling activated by penta-O-galloyl-α-D: -glucopyranose induces p53 and apoptosis in cancer cells.

    PubMed

    Cao, Yanyan; Evans, Susan C; Soans, Eroica; Malki, Ahmed; Liu, Yi; Liu, Yan; Chen, Xiaozhuo

    2011-09-01

    p53 is essential for cell cycle arrest and apoptosis induction while insulin receptor (IR) signaling is important for cell metabolism and proliferation and found upregulated in cancers. While IR has recently been found to be involved in apoptosis, p53 induction or apoptosis mediated through IR signaling activation has never been documented. Here, we report that the IR signaling pathway, particularly the IR-MEK pathway, mediates biological and biochemical changes in p53 and apoptosis in tumor cells. Specifically, natural compound penta-O-galloyl-α-D: -glucopyranose (α-PGG), a previously characterized IR signaling activator, induced apoptosis in RKO cells without significantly affecting its normal counterpart FHC cells. α-PGG induced apoptosis in RKO cells through p53, Bax and caspase 3. Importantly, α-PGG's ability to elevate p53 was diminished by IR inhibitor and IR-siRNA, suggesting a non-conventional role of IR as being involved in p53 induction. Further studies revealed that α-PGG activated MEK, a downstream signaling factor of IR. Blocking MEK significantly suppressed α-PGG-induced p53 and Bax elevation. All these results suggested that α-PGG induced p53, Bax, and apoptosis through the IR-MEK signaling pathway. The unique activity of α-PGG, a novel IR phosphorylation and apoptosis inducer, may offer a new therapeutic strategy for eliciting apoptotic signal and inhibiting cancer growth.

  14. Expression of Cell Competition Markers at the Interface between p53 Signature and Normal Epithelium in the Human Fallopian Tube

    PubMed Central

    Kito, Masahiko; Maeda, Daichi; Kudo-Asabe, Yukitsugu; Sato, Naoki; Shih, Ie-Ming; Wang, Tian-Li; Tanaka, Masamitsu; Terada, Yukihiro; Goto, Akiteru

    2016-01-01

    There is a growing body of evidence regarding cell competition between normal and mutant mammalian cells, which suggest that it may play a defensive role in the early phase of carcinogenesis. In vitro study in the past has shown that overexpression of vimentin in normal epithelial cells at the contact surface with transformed cells is essential for the cell competition involved in epithelial defense against cancer. In this study, we attempted to examine cell competition in human tissue in vivo by investigating surgically resected human fallopian tubes that contain p53 signatures and serous tubal intraepithelial lesions (STILs), a linear expansion of p53-immunopositive/TP53 mutant tubal epithelial cells that are considered as precursors of pelvic high grade serous carcinoma. Immunofluorescence double staining for p53 and the cell competition marker vimentin was performed in 21 sections of human fallopian tube tissue containing 17 p53 signatures and 4 STILs. The intensities of vimentin expression at the interface between p53-positive cells at the end of the p53 signature/STIL and adjacent p53-negative normal tubal epithelial cells were compared with the background tubal epithelium. As a result, the average vimentin intensity at the interfaces relative to the background intensity was 1.076 (95% CI, 0.9412 – 1.211 for p53 signature and 0.9790 (95% CI, 0.7206 – 1.237) for STIL. Thus, it can be concluded that overexpression of the cell competition marker vimentin are not observed in human tissue with TP53 alterations. PMID:27258067

  15. A Two-Step Mechanism for Cell Fate Decision by Coordination of Nuclear and Mitochondrial p53 Activities

    PubMed Central

    Tian, Xiao-Jun; Liu, Feng; Zhang, Xiao-Peng; Li, Jun; Wang, Wei

    2012-01-01

    The tumor suppressor p53 has a crucial role in the DNA damage response. Here, we proposed an integrated model of the p53 network and explored how the nuclear and mitochondrial p53 pathways are coordinated to determine cell fates after -irradiation in radiosensitive tissues. Using numerical simulations, we found that depending on the extent of DNA damage, cells may survive, commit apoptosis after cell cycle arrest, or undergo apoptosis soon after irradiation. There exists a large cell-to-cell variability in outcome because of stochasticity in the generation and repair of DNA damage as well as cellular heterogeneity. At the cell population level, there occur two waves of apoptosis: a fast wave mediated by mitochondrial p53 within three hours postirradiation, and a slow wave mediated by nuclear p53 after eight hours postirradiation. Thus, we propose a two-step mechanism for cell fate decision. The first step is to decide whether DNA damage is severe enough to trigger apoptosis directly through the mitochondrial p53 pathway, while the second step is to determine whether the damage is fixed after cell cycle arrest. Such a mechanism may represent an efficient and reliable control mode, avoiding unnecessary death or greatly promoting the execution of apoptosis. It was also demonstrated that nuclear p53 can inhibit the pro-apoptotic activity of mitochondrial p53 by transactivating p21, and Mdm2 can facilitate apoptosis by promoting the mono-ubiquitination of p53. These results are either in good agreement with experimental observations or experimentally testable. Our work suggests that both the transcription-independent and -dependent p53 activities are indispensable for a reliable choice of cell fate and also provides clues to therapeutic manipulation of the p53 pathway in cancer treatment. PMID:22679490

  16. Transcriptional inhibition of p21{sup WAF1/CIP1} gene (CDKN1) expression by survivin is at least partially p53-dependent: Evidence for survivin acting as a transcription factor or co-factor

    SciTech Connect

    Tang, Lei; Ling, Xiang; Liu, Wensheng; Das, Gokul M.; Li, Fengzhi

    2012-05-04

    Highlights: Black-Right-Pointing-Pointer Survivin inhibits the expression of p21 protein, mRNA and promoter activity. Black-Right-Pointing-Pointer Survivin neutralizes p53-induced p21 expression and promoter activity. Black-Right-Pointing-Pointer Survivin physically interacts with p53 in cancer cells. Black-Right-Pointing-Pointer Genetic silencing of endogenous survivin upregulates p21 in p53 wild type cancer cells. Black-Right-Pointing-Pointer Both p53 and survivin interacts on the two p53-binding sites in the p21 promoter. -- Abstract: Growing evidence suggests a role for the antiapoptotic protein survivin in promotion of cancer cell G1/S transition and proliferation. However, the underlying mechanism is unclear. Further, although upregulation of p21{sup WAF1/CIP1} by p53 plays an important role in p53-mediated cell G1 arrests in response to various distresses, it is unknown whether survivin plays a role in the regulation of p21{sup WAF1/CIP1} expression. Here, we report that exogenous expression of survivin in p53-wild type MCF-7 breast cancer cells inhibits the expression of p21{sup WAF1/CIP1} protein, mRNA and promoter activity, while the survivin C84A mutant and antisense failed to do so. Cotransfection experiments in the p53 mutant H1650 lung cancer cell line showed that survivin neutralizes p53-induced p21{sup WAF1/CIP1} expression and promoter activity. Importantly, genetically silencing of endogenous survivin using lentiviral survivin shRNA also enhances endogenous p21 in p53 wild type cancer cells, suggesting the physiological relevance of the fining. We further demonstrated that both p53 and survivin interacts on the two p53-binding sites in the p21{sup WAF1/CIP1} promoter (-2313 to -2212; -1452 to -1310), and survivin physically interacts with p53 in cancer cells. Together, we propose that survivin may act as a transcription factor or cofactor to interact with p53 on the p21{sup WAF1/CIP1} promoter leading to the inhibition of p21{sup WAF1/CIP1

  17. KR-POK interacts with p53 and represses its ability to activate transcription of p21WAF1/CDKN1A.

    PubMed

    Jeon, Bu-Nam; Kim, Min-Kyeong; Choi, Won-Il; Koh, Dong-In; Hong, Sung-Yi; Kim, Kyung-Sup; Kim, Minjung; Yun, Chae-Ok; Yoon, Juyong; Choi, Kang-Yell; Lee, Kyung-Ryul; Nephew, Kenneth P; Hur, Man-Wook

    2012-03-01

    Transcriptional regulation by p53 is thought to play a role in its ability to suppress tumorigenesis. However, there remain gaps in understanding about how p53 regulates transcription and how disrupting this function may promote cancer. Here we report a role in these processes for the kidney cancer-related gene KR-POK (ZBTB7C), a POZ domain and Krüppel-like zinc finger transcription factor that we found to physically interact with p53. Murine embryonic fibroblasts isolated from genetically deficient mice (Kr-pok(-/-) MEFs) exhibited a proliferative defect relative to wild-type mouse embryonic fibroblasts (MEF). The zinc finger domain of Kr-pok interacted directly with the DNA binding and oligomerization domains of p53. This interaction was essential for Kr-pok to bind the distal promoter region of the CDKN1A gene, an important p53 target gene encoding the cell-cycle regulator p21WAF1, and to inhibit p53-mediated transcriptional activation of CDKN1A. Kr-pok also interacted with the transcriptional corepressors NCoR and BCoR, acting to repress histone H3 and H4 deacetylation at the proximal promoter region of the CDKN1A gene. Importantly, Kr-pok(-/-) MEFs displayed an enhancement in CDKN1A transactivation by p53 during the DNA damage response, without any parallel changes in transcription of either the p53 or Kr-pok genes themselves. Furthermore, Kr-pok promoted cell proliferation in vitro and in vivo, and its expression was increased in more than 50% of the malignant human kidney cancer cases analyzed. Together, our findings define KR-POK as a transcriptional repressor with a pro-oncogenic role that relies upon binding to p53 and inhibition of its transactivation function.

  18. Antiproliferation and apoptosis induced by tamoxifen in human bile duct carcinoma QBC939 cells via upregulated p53 expression

    SciTech Connect

    Han, Peng; Kang, Jin-He; Li, Hua-Liang; Hu, Su-Xian; Lian, Hui-Hui; Qiu, Ping-Ping; Zhang, Jian; Li, Wen-Gang; Chen, Qing-Xi

    2009-07-24

    Tamoxifen (TAM) is a nonsteroidal antiestrogen that has been used in the treatment of breast cancer for over 30 years. Recently, it was shown that TAM also has efficacy on gastrointestinal neoplasms such as hepatocarcinoma and pancreatic carcinoma, and that the chemopreventive activities of TAM might be due to its abilities to inhibit cell growth and induce apoptosis. In the present study, we investigated the effects of tamoxifen on growth and apoptosis in the human bile duct carcinoma (BDC) cell line QBC939 using MTT assay, inverted microscopy, fluorescence microscopy, transmission electron microscopy, classic DNA fragmentation agarose gel electrophoresis assay, PI single- and FITC/PI double-staining flow cytometry, and Western blotting. Our data revealed that TAM could significantly inhibit growth and induce apoptosis in QBC939 cells. Increased expression of p53 was observed in TAM-treated cells, indicating that p53 might play an important role in TAM-induced apoptosis in QBC939 cells. These results provide significant insight into the anticarcinogenic action of TAM on BDC.

  19. Inactivation of p53 rescues the maintenance of high risk HPV DNA genomes deficient in expression of E6.

    PubMed

    Lorenz, Laurel D; Rivera Cardona, Jessenia; Lambert, Paul F

    2013-10-01

    The human papillomavirus DNA genome undergoes three distinct stages of replication: establishment, maintenance and amplification. We show that the HPV16 E6 protein is required for the maintenance of the HPV16 DNA genome as an extrachromosomal, nuclear plasmid in its natural host cell, the human keratinocyte. Based upon mutational analyses, inactivation of p53 by E6, but not necessarily E6-mediated degradation of p53, was found to correlate with the ability of E6 to support maintenance of the HPV16 genome as a nuclear plasmid. Inactivation of p53 with dominant negative p53 rescued the ability of HPV16 E6STOP and E6SAT mutant genomes to replicate as extrachromosomal genomes, though not to the same degree as observed for the HPV16 E6 wild-type (WT) genome. Inactivation of p53 also rescued the ability of HPV18 and HPV31 E6-deficient genomes to be maintained at copy numbers comparable to that of HPV18 and HPV31 E6WT genomes at early passages, though upon further passaging copy numbers for the HPV18 and 31 E6-deficient genomes lessened compared to that of the WT genomes. We conclude that inactivation of p53 is necessary for maintenance of HPV16 and for HPV18 and 31 to replicate at WT copy number, but that additional functions of E6 independent of inactivating p53 must also contribute to the maintenance of these genomes. Together these results suggest that re-activation of p53 may be a possible means for eradicating extrachromosomal HPV16, 18 or 31 genomes in the context of persistent infections.

  20. USP11 regulates p53 stability by deubiquitinating p53*

    PubMed Central

    Ke, Jia-ying; Dai, Cong-jie; Wu, Wen-lin; Gao, Jin-hua; Xia, Ai-juan; Liu, Guang-ping; Lv, Kao-sheng; Wu, Chun-lin

    2014-01-01

    The p53 tumor suppressor protein coordinates the cellular responses to a broad range of cellular stresses, leading to DNA repair, cell cycle arrest or apoptosis. The stability of p53 is essential for its tumor suppressor function, which is tightly controlled by ubiquitin-dependent degradation primarily through its negative regulator murine double minute 2 (Mdm2). To better understand the regulation of p53, we tested the interaction between p53 and USP11 using co-immunoprecipitation. The results show that USP11, an ubiquitin-specific protease, forms specific complexes with p53 and stabilizes p53 by deubiquitinating it. Moreover, down-regulation of USP11 dramatically attenuated p53 induction in response to DNA damage stress. These findings reveal that USP11 is a novel regulator of p53, which is required for p53 activation in response to DNA damage. PMID:25471832

  1. ATM-dependent phosphorylation of Mdm2 on serine 395: role in p53 activation by DNA damage.

    PubMed

    Maya, R; Balass, M; Kim, S T; Shkedy, D; Leal, J F; Shifman, O; Moas, M; Buschmann, T; Ronai, Z; Shiloh, Y; Kastan, M B; Katzir, E; Oren, M

    2001-05-01

    The p53 tumor suppressor protein, a key regulator of cellular responses to genotoxic stress, is stabilized and activated after DNA damage. The rapid activation of p53 by ionizing radiation and radiomimetic agents is largely dependent on the ATM kinase. p53 is phosphorylated by ATM shortly after DNA damage, resulting in enhanced stability and activity of p53. The Mdm2 oncoprotein is a pivotal negative regulator of p53. In response to ionizing radiation and radiomimetic drugs, Mdm2 undergoes rapid ATM-dependent phosphorylation prior to p53 accumulation. This results in a decrease in its reactivity with the 2A10 monoclonal antibody. Phage display analysis identified a consensus 2A10 recognition sequence, possessing the core motif DYS. Unexpectedly, this motif appears twice within the human Mdm2 molecule, at positions corresponding to residues 258-260 and 393-395. Both putative 2A10 epitopes are highly conserved and encompass potential phosphorylation sites. Serine 395, residing within the carboxy-terminal 2A10 epitope, is the major target on Mdm2 for phosphorylation by ATM in vitro. Mutational analysis supports the conclusion that Mdm2 undergoes ATM-dependent phosphorylation on serine 395 in vivo in response to DNA damage. The data further suggests that phosphorylated Mdm2 may be less capable of promoting the nucleo-cytoplasmic shuttling of p53 and its subsequent degradation, thereby enabling p53 accumulation. Our findings imply that activation of p53 by DNA damage is achieved, in part, through attenuation of the p53-inhibitory potential of Mdm2.

  2. Sirtuin 7 promotes cellular survival following genomic stress by attenuation of DNA damage, SAPK activation and p53 response

    SciTech Connect

    Kiran, Shashi; Oddi, Vineesha; Ramakrishna, Gayatri

    2015-02-01

    Maintaining the genomic integrity is a constant challenge in proliferating cells. Amongst various proteins involved in this process, Sirtuins play a key role in DNA damage repair mechanisms in yeast as well as mammals. In the present work we report the role of one of the least explored Sirtuin viz., SIRT7, under conditions of genomic stress when treated with doxorubicin. Knockdown of SIRT7 sensitized osteosarcoma (U2OS) cells to DNA damage induced cell death by doxorubicin. SIRT7 overexpression in NIH3T3 delayed cell cycle progression by causing delay in G1 to S transition. SIRT7 overexpressing cells when treated with low dose of doxorubicin (0.25 µM) showed delayed onset of senescence, lesser accumulation of DNA damage marker γH2AX and lowered levels of growth arrest markers viz., p53 and p21 when compared to doxorubicin treated control GFP expressing cells. Resistance to DNA damage following SIRT7 overexpression was also evident by EdU incorporation studies where cellular growth arrest was significantly delayed. When treated with higher dose of doxorubicin (>1 µM), SIRT7 conferred resistance to apoptosis by attenuating stress activated kinases (SAPK viz., p38 and JNK) and p53 response thereby shifting the cellular fate towards senescence. Interestingly, relocalization of SIRT7 from nucleolus to nucleoplasm together with its co-localization with SAPK was an important feature associated with DNA damage. SIRT7 mediated resistance to doxorubicin induced apoptosis and senescence was lost when p53 level was restored by nutlin treatment. Overall, we propose SIRT7 attenuates DNA damage, SAPK activation and p53 response thereby promoting cellular survival under conditions of genomic stress. - Highlights: • Knockdown of SIRT7 sensitized cells to DNA damage induced apoptosis. • SIRT7 delayed onset of premature senescence by attenuating DNA damage response. • Overexpression of SIRT7 delayed cell cycle progression by delaying G1/S transition. • Upon DNA damage SIRT

  3. Rapamycin regulates the proliferation of Huh7, a hepatocellular carcinoma cell line, by up-regulating p53 expression.

    PubMed

    Kwon, Sora; Jeon, Ji-Sook; Ahn, Curie; Sung, Jung-Suk; Choi, Inho

    2016-10-01

    Rapamycin, a specific inhibitor of mTOR used extensively as an immunosuppressant, has been expanded recently to cancer therapy, because the mTOR signal is known to be up-regulated in various cancer cells including hepatocellular carcinoma (HCC) cells. In spite of extensive efforts to employ mTOR inhibitors as anti-HCC therapy, they have not yet been approved by the FDA. Because of the heterogeneity and complexity of molecular signaling in HCC, suitable biomarkers should be identified or discovered to improve clinical efficacy of mTOR-specific inhibitors to HCC cells. In this study, the effect of rapamycin was investigated on two different HCC cell lines, Huh7 cells and HepG2 cells. Rapamycin was found to inhibit the proliferation of Huh7 cells but not of HepG2 cells. Moreover, it was found that rapamycin can up-regulate p53 at the protein level, but not affect its transcript. To understand the critical role of p53 in the rapamycin effect, knock-down experiments were performed using small-interfering RNAs (siRNAs). The anti-proliferative effect of rapamycin on Huh7 cells clearly disappeared after blocking p53 production with siRNA, which indicates that p53 is a critical factor in the anti-proliferative effect of rapamycin in HCC cells. The over-expression system of p53 was also employed to mimic the effect of rapamycin and found that cell proliferation was clearly down-regulated by p53 over-expression. Finally, we found that the extracellular signal-regulated kinase 1/2 (ERK1/2) signal was regulated by p53 whose expression was induced by rapamycin. Overall, this study demonstrates that rapamycin inhibited the proliferation of Huh7 cells by up-regulating the expression of p53 and down-regulating the ERK1/2 signal, indicating that p53 is a useful biomarker for anti-cancer therapy using the specific inhibitor of mTOR signal, rapamycin, against hepatocellular carcinoma cells.

  4. APE1/Ref-1 enhances DNA binding activity of mutant p53 in a redox-dependent manner.

    PubMed

    Cun, Yanping; Dai, Nan; Li, Mengxia; Xiong, Chengjie; Zhang, Qinhong; Sui, Jiangdong; Qian, Chengyuan; Wang, Dong

    2014-02-01

    Apurinic/apyrimidinic endonuclease 1/redox factor-1 (APE1/Ref-1) is a dual function protein; in addition to its DNA repair activity, it can stimulate DNA binding activity of numerous transcription factors as a reduction-oxidation (redox) factor. APE1/Ref-1 has been found to be a potent activator of wild-type p53 (wtp53) DNA binding in vitro and in vivo. Although p53 is mutated in most types of human cancer including hepatocellular carcinoma (HCC), little is known about whether APE1/Ref-1 can regulate mutant p53 (mutp53). Herein, we reported the increased APE1/Ref-1 protein and accumulation of mutp53 in HCC by immunohistochemistry. Of note, it was observed that APE1/Ref-1 high-expression and mutp53 expression were associated with carcinogenesis and progression of HCC. To determine whether APE1/Ref-1 regulates DNA binding of mutp53, we performed electromobility shift assays (EMSAs) and quantitative chromatin immunoprecipitation (ChIP) assays in HCC cell lines. In contrast to sequence-specific and DNA structure-dependent binding of wtp53, reduced mutp53 efficiently bound to nonlinear DNA, but not to linear DNA. Notably, overexpression of APE1/Ref-1 resulted in increased DNA binding activity of mutp53, while downregulation of APE1/Ref-1 caused a marked decrease of mutp53 DNA binding. In addition, APE1/Ref-1 could not potentiate the accumulation of p21 mRNA and protein in mutp53 cells. These data indicate that APE1/Ref-1 can stimulate mutp53 DNA binding in a redox-dependent manner.

  5. Human papillomavirus oncogenic E6 protein regulates human β-defensin 3 (hBD3) expression via the tumor suppressor protein p53

    PubMed Central

    Yue, Hong; Wang, Liming; Jin, Jessica; Ghosh, Santosh K.; Kawsar, Hameem I.; Zender, Chad; Androphy, Elliot J.; Weinberg, Aaron; McCormick, Thomas S.; Jin, Ge

    2016-01-01

    Human β-defensin-3 (hBD3) is an epithelial cell-derived innate immune regulatory molecule overexpressed in oral dysplastic lesions and fosters a tumor-promoting microenvironment. Expression of hBD3 is induced by the epidermal growth factor receptor signaling pathway. Here we describe a novel pathway through which the high-risk human papillomavirus type-16 (HPV-16) oncoprotein E6 induces hBD3 expression in mucosal keratinocytes. Ablation of E6 by siRNA induces the tumor suppressor p53 and diminishes hBD3 in HPV-16 positive CaSki cervical cancer cells and UM-SCC-104 head and neck cancer cells. Malignant cells in HPV-16-associated oropharyngeal cancer overexpress hBD3. HPV-16 E6 induces hBD3 mRNA expression, peptide production and gene promoter activity in mucosal keratinocytes. Reduction of cellular levels of p53 stimulates hBD3 expression, while activation of p53 by doxorubicin inhibits its expression in primary oral keratinocytes and CaSki cells, suggesting that p53 represses hBD3 expression. A p53 binding site in the hBD3 gene promoter has been identified by using electrophoretic mobility shift assays and chromatin immunoprecipitation (ChIP). In addition, the p63 protein isoform ΔNp63α, but not TAp63, stimulated transactivation of the hBD3 gene and was co-expressed with hBD3 in head and neck cancer specimens. Therefore, high-risk HPV E6 oncoproteins may stimulate hBD3 expression in tumor cells to facilitate tumorigenesis of HPV-associated head and neck cancer. PMID:27034006

  6. Targeting Hypoxia in Cancer Cells by Restoring Homeodomain Interacting Protein-Kinase 2 and p53 Activity and Suppressing HIF-1α

    PubMed Central

    Nardinocchi, Lavinia; Puca, Rosa; Sacchi, Ada; Rechavi, Gideon; Givol, David; D'Orazi, Gabriella

    2009-01-01

    Background The tumor suppressor homeodomain-interacting protein kinase-2 (HIPK2) by phosphorylating serine 46 (Ser46) is a crucial regulator of p53 apoptotic function. HIPK2 is also a transcriptional co-repressor of hypoxia-inducible factor-1α (HIF-1α) restraining tumor angiogenesis and chemoresistance. HIPK2 can be deregulated in tumors by several mechanisms including hypoxia. Here, we sought to target hypoxia by restoring HIPK2 function and suppressing HIF-1α, in order to provide evidence for the involvement of both HIPK2 and p53 in counteracting hypoxia-induced chemoresistance. Methodology/Principal Findings Upon exposure of colon and lung cancer cells to hypoxia, by either low oxygen or cobalt, HIPK2 function was impaired allowing for increased HIF-1α expression and inhibiting the p53-apoptotic response to drug. Cobalt suppressed HIPK2 recruitment onto HIF-1α promoter. Hypoxia induced expression of the p53 target MDM2 that downregulates HIPK2, thus MDM2 inhibition by siRNA restored the HIPK2/p53Ser46 response to drug. Zinc supplementation to hypoxia-treated cells increased HIPK2 protein stability and nuclear accumulation, leading to restoration of HIPK2 binding to HIF-1α promoter, repression of MDR1, Bcl2, and VEGF genes, and activation of the p53 apoptotic response to drug. Combination of zinc and ADR strongly suppressed tumor growth in vivo by inhibiting HIF-1 pathway and upregulating p53 apoptotic target genes. Conclusions/Significance We show here for the first time that hypoxia-induced HIPK2 deregulation was counteracted by zinc that restored HIPK2 suppression of HIF-1 pathway and reactivated p53 apoptotic response to drug, underscoring the potential use of zinc supplementation in combination with chemotherapy to address hypoxia and improve tumor treatment. PMID:19714248

  7. Porcine parvovirus infection induces apoptosis in PK-15 cells through activation of p53 and mitochondria-mediated pathway

    SciTech Connect

    Zhang, Hongling; Huang, Yong; Du, Qian; Luo, Xiaomao; Zhang, Liang; Zhao, Xiaomin; Tong, Dewen

    2015-01-09

    Highlights: • PPV reduces PK-15 cells viability by inducing apoptosis. • PPV infection induces apoptosis through mitochondria-mediated pathway. • PPV infection activates p53 to regulate the mitochondria apoptotic signaling. - Abstract: Porcine parvovirus (PPV) infection has been reported to induce the cytopathic effects (CPE) in some special host cells and contribute the occurrence of porcine parvovirus disease, but the molecular mechanisms underlying PPV-induced CPE are not clear. In this study, we investigated the morphological and molecular changes of porcine kidney cell line (PK-15 cells) infected with PPV. The results showed that PPV infection inhibited the viability of PK-15 cells in a time and concentration dependent manner. PPV infection induced typical apoptotic features including chromatin condensation, apoptotic body formation, nuclear fragmentation, and Annexin V-binding activity. Further studies showed that Bax was increased and translocated to mitochondria, whereas Bcl-2 was decreased in PPV-infected cells, which caused mitochondrial outer-membrane permeabilization, resulting in the release of mitochondrial cytochrome c, followed by caspase-9 and caspase-3 activation. However, the expression of Fas and Fas ligand (FasL) did not appear significant changes in the process of PPV-induced apoptosis. Moreover, PPV infection activated p53 signaling, which was involved in the activation of apoptotic signaling induced by PPV infection via regulation of Bax and Bcl-2. Taken together, our results demonstrated that PPV infection induced apoptosis in PK-15 cells through activation of p53 and mitochondria-mediated apoptosis pathway. This study may contribute to shed light on the molecular pathogenesis of PPV infection.

  8. The selective activation of p53 target genes regulated by SMYD2 in BIX-01294 induced autophagy-related cell death.

    PubMed

    Fan, Jia-Dong; Lei, Pin-Ji; Zheng, Jun-Yi; Wang, Xiang; Li, Shangze; Liu, Huan; He, Yi-Lei; Wang, Zhao-Ning; Wei, Gang; Zhang, Xiaodong; Li, Lian-Yun; Wu, Min

    2015-01-01

    Transcription regulation emerged to be one of the key mechanisms in regulating autophagy. Inhibitors of H3K9 methylation activates the expression of LC3B, as well as other autophagy-related genes, and promotes autophagy process. However, the detailed mechanisms of autophagy regulated by nuclear factors remain elusive. In this study, we performed a drug screen of SMYD2-/- cells and discovered that SMYD2 deficiency enhanced the cell death induced by BIX01294, an inhibitor of histone H3K9 methylation. BIX-01294 induces accumulation of LC3 II and autophagy-related cell death, but not caspase-dependent apoptosis. We profiled the global gene expression pattern after treatment with BIX-01294, in comparison with rapamycin. BIX-01294 selectively activates the downstream genes of p53 signaling, such as p21 and DOR, but not PUMA, a typical p53 target gene inducing apoptosis. BIX-01294 also induces other autophagy-related genes, such as ATG4A and ATG9A. SMYD2 is a methyltransferase for p53 and regulates its transcription activity. Its deficiency enhances the BIX-01294-induced autophagy-related cell death through transcriptionally promoting the expression of p53 target genes. Taken together, our data suggest BIX-01294 induces autophagy-related cell death and selectively activates p53 target genes, which is repressed by SMYD2 methyltransferase.

  9. p53 protein expression independently predicts outcome in patients with lower-risk myelodysplastic syndromes with del(5q).

    PubMed

    Saft, Leonie; Karimi, Mohsen; Ghaderi, Mehran; Matolcsy, András; Mufti, Ghulam J; Kulasekararaj, Austin; Göhring, Gudrun; Giagounidis, Aristoteles; Selleslag, Dominik; Muus, Petra; Sanz, Guillermo; Mittelman, Moshe; Bowen, David; Porwit, Anna; Fu, Tommy; Backstrom, Jay; Fenaux, Pierre; MacBeth, Kyle J; Hellström-Lindberg, Eva

    2014-06-01

    Del(5q) myelodysplastic syndromes defined by the International Prognostic Scoring System as low- or intermediate-1-risk (lower-risk) are considered to have an indolent course; however, recent data have identified a subgroup of these patients with more aggressive disease and poorer outcomes. Using deep sequencing technology, we previously demonstrated that 18% of patients with lower-risk del(5q) myelodysplastic syndromes carry TP53 mutated subclones rendering them at higher risk of progression. In this study, bone marrow biopsies from 85 patients treated with lenalidomide in the MDS-004 clinical trial were retrospectively assessed for p53 expression by immunohistochemistry in association with outcome. Strong p53 expression in ≥ 1% of bone marrow progenitor cells, observed in 35% (30 of 85) of patients, was significantly associated with higher acute myeloid leukemia risk (P=0.0006), shorter overall survival (P=0.0175), and a lower cytogenetic response rate (P=0.009), but not with achievement or duration of 26-week transfusion independence response. In a multivariate analysis, p53-positive immunohistochemistry was the strongest independent predictor of transformation to acute myeloid leukemia (P=0.0035). Pyrosequencing analysis of laser-microdissected cells with strong p53 expression confirmed the TP53 mutation, whereas cells with moderate expression predominantly had wild-type p53. This study validates p53 immunohistochemistry as a strong and clinically useful predictive tool in patients with lower-risk del(5q) myelodysplastic syndromes. This study was based on data from the MDS 004 trial (clinicaltrials.gov identifier: NCT00179621). PMID:24682512

  10. p53 protein expression independently predicts outcome in patients with lower-risk myelodysplastic syndromes with del(5q)

    PubMed Central

    Saft, Leonie; Karimi, Mohsen; Ghaderi, Mehran; Matolcsy, András; Mufti, Ghulam J.; Kulasekararaj, Austin; Göhring, Gudrun; Giagounidis, Aristoteles; Selleslag, Dominik; Muus, Petra; Sanz, Guillermo; Mittelman, Moshe; Bowen, David; Porwit, Anna; Fu, Tommy; Backstrom, Jay; Fenaux, Pierre; MacBeth, Kyle J.; Hellström-Lindberg, Eva

    2014-01-01

    Del(5q) myelodysplastic syndromes defined by the International Prognostic Scoring System as low- or intermediate-1-risk (lower-risk) are considered to have an indolent course; however, recent data have identified a subgroup of these patients with more aggressive disease and poorer outcomes. Using deep sequencing technology, we previously demonstrated that 18% of patients with lower-risk del(5q) myelodysplastic syndromes carry TP53 mutated subclones rendering them at higher risk of progression. In this study, bone marrow biopsies from 85 patients treated with lenalidomide in the MDS-004 clinical trial were retrospectively assessed for p53 expression by immunohistochemistry in association with outcome. Strong p53 expression in ≥1% of bone marrow progenitor cells, observed in 35% (30 of 85) of patients, was significantly associated with higher acute myeloid leukemia risk (P=0.0006), shorter overall survival (P=0.0175), and a lower cytogenetic response rate (P=0.009), but not with achievement or duration of 26-week transfusion independence response. In a multivariate analysis, p53-positive immunohistochemistry was the strongest independent predictor of transformation to acute myeloid leukemia (P=0.0035). Pyrosequencing analysis of laser-microdissected cells with strong p53 expression confirmed the TP53 mutation, whereas cells with moderate expression predominantly had wild-type p53. This study validates p53 immunohistochemistry as a strong and clinically useful predictive tool in patients with lower-risk del(5q) myelodysplastic syndromes. This study was based on data from the MDS 004 trial (clinicaltrials.gov identifier: NCT00179621). PMID:24682512

  11. Upregulating of Fas, integrin beta4 and P53 and depressing of PC-PLC activity and ROS level in VEC apoptosis by safrole oxide.

    PubMed

    Zhao, Jing; Miao, Junying; Zhao, Baoxiang; Zhang, Shangli

    2005-10-24

    Previously, we found that safrole oxide could trigger vascular endothelial cell (VEC) apoptosis. In this study, to investigate its mechanism to induce apoptosis in VECs, the activities of nitric oxide synthetase and phosphatidylcholine specific phospholipase C, the level of reactive oxygen species and the expressions of Fas, integrin beta4 and P53 were analyzed. The data showed that safrole oxide induced apoptosis by increasing the expressions of Fas, integrin beta4 and P53, and depressing the activity of Ca(2+)-independent phosphatidylcholine-specific phospholipase C and intracellular reactive oxygen species levels in VECs.

  12. Terpenoids from Zingiber officinale (Ginger) Induce Apoptosis in Endometrial Cancer Cells through the Activation of p53

    PubMed Central

    Liu, Yang; Whelan, Rebecca J.; Pattnaik, Bikash R.; Ludwig, Kai; Subudhi, Enkateswar; Rowland, Helen; Claussen, Nick; Zucker, Noah; Uppal, Shitanshu; Kushner, David M.; Felder, Mildred; Patankar, Manish S.; Kapur, Arvinder

    2012-01-01

    Novel strategies are necessary to improve chemotherapy response in advanced and recurrent endometrial cancer. Here, we demonstrate that terpenoids present in the Steam Distilled Extract of Ginger (SDGE) are potent inhibitors of proliferation of endometrial cancer cells. SDGE, isolated from six different batches of ginger rhizomes, consistently inhibited proliferation of the endometrial cancer cell lines Ishikawa and ECC-1 at IC50 of 1.25 µg/ml. SDGE also enhanced the anti-proliferative effect of radiation and cisplatin. Decreased proliferation of Ishikawa and ECC-1 cells was a direct result of SDGE-induced apoptosis as demonstrated by FITC-Annexin V staining and expression of cleaved caspase 3. GC/MS analysis identified a total of 22 different terpenoid compounds in SDGE, with the isomers neral and geranial constituting 30–40%. Citral, a mixture of neral and geranial inhibited the proliferation of Ishikawa and ECC-1 cells at an IC50 10 µM (2.3 µg/ml). Phenolic compounds such as gingerol and shogaol were not detected in SDGE and 6-gingerol was a weaker inhibitor of the proliferation of the endometrial cancer cells. SDGE was more effective in inducing cancer cell death than citral, suggesting that other terpenes present in SDGE were also contributing to endometrial cancer cell death. SDGE treatment resulted in a rapid and strong increase in intracellular calcium and a 20–40% decrease in the mitochondrial membrane potential. Ser-15 of p53 was phosphorylated after 15 min treatment of the cancer cells with SDGE. This increase in p53 was associated with 90% decrease in Bcl2 whereas no effect was observed on Bax. Inhibitor of p53, pifithrin-α, attenuated the anti-cancer effects of SDGE and apoptosis was also not observed in the p53neg SKOV-3 cells. Our studies demonstrate that terpenoids from SDGE mediate apoptosis by activating p53 and should be therefore be investigated as agents for the treatment of endometrial cancer. PMID:23300887

  13. SIGNALING TO THE P53 TUMOR SUPPRESSOR THROUGH PATHWAYS ACTIVATED BY GENOTOXIC AND NON-GENOTOXIC STRESSES.

    SciTech Connect

    ANDERSON,C.W.APPELLA,E.

    2002-07-01

    The p53 tumor suppressor is a tetrameric transcription factor that is post-translational modified at {approx}18 different sites by phosphorylation, acetylation, or sumoylation in response to various cellular stress conditions. Specific posttranslational modifications, or groups of modifications, that result from the activation of different stress-induced signaling pathways are thought to modulate p53 activity to regulate cell fate by inducing cell cycle arrest, apoptosis, or cellular senescence. Here we review the posttranslational modifications to p53 and the pathways that produce them in response to both genotoxic and non-genotoxic stresses.

  14. The tumor suppressor p53 guides GluA1 homeostasis through Nedd4-2 during chronic elevation of neuronal activity.

    PubMed

    Jewett, Kathryn A; Zhu, Jiuhe; Tsai, Nien-Pei

    2015-10-01

    Chronic activity perturbation in neurons can trigger homeostatic mechanisms to restore the baseline function. Although the importance and dysregulation of neuronal activity homeostasis has been implicated in neurological disorders such as epilepsy, the complete signaling by which chronic changes in neuronal activity initiate the homeostatic mechanisms is unclear. We report here that the tumor suppressor p53 and its signaling are involved in neuronal activity homeostasis. Upon chronic elevation of neuronal activity in primary cortical neuron cultures, the ubiquitin E3 ligase, murine double minute- 2 (Mdm2), is phosphorylated by the kinase Akt. Phosphorylated Mdm2 triggers the degradation of p53 and subsequent induction of a p53 target gene, neural precursor cell expressed developmentally down-regulated gene 4-like (Nedd4-2). Nedd4-2 encodes another ubiquitin E3 ligase. We identified glutamate receptor subunit 1 (GluA1), subunit of alpha-amino-3-hydroxy-5-methyl-4-isoxazolepropionic acid receptors as a novel substrate of Nedd4-2. The regulation of GluA1 level is known to be crucial for neuronal activity homeostasis. We confirmed that, by pharmacologically inhibiting Mdm2-mediated p53 degradation or genetically reducing Nedd4-2 in a mouse model, the GluA1 ubiquitination and down-regulation induced by chronically elevated neuronal activity are both attenuated. Our findings demonstrate the first direct function of p53 in neuronal homeostasis and elucidate a new mechanism by which cortical neurons respond to chronic activity perturbation.

  15. Loss of Sparc in p53-null Astrocytes Promotes Macrophage Activation and Phagocytosis Resulting in Decreased Tumor Size and Tumor Cell Survival.

    PubMed

    Thomas, Stacey L; Schultz, Chad R; Mouzon, Ezekiell; Golembieski, William A; El Naili, Reima; Radakrishnan, Archanna; Lemke, Nancy; Poisson, Laila M; Gutiérrez, Jorge A; Cottingham, Sandra; Rempel, Sandra A

    2015-07-01

    Both the induction of SPARC expression and the loss of the p53 tumor suppressor gene are changes that occur early in glioma development. Both SPARC and p53 regulate glioma cell survival by inverse effects on apoptotic signaling. Therefore, during glioma formation, the upregulation of SPARC may cooperate with the loss of p53 to enhance cell survival. This study determined whether the loss of Sparc in astrocytes that are null for p53 would result in reduced cell survival and tumor formation and increased tumor immunogenicity in an in vivo xenograft brain tumor model. In vitro, the loss of Sparc in p53-null astrocytes resulted in an increase in cell proliferation, but a loss of tumorigenicity. At 7 days after intracranial implantation, Sparc-null tumors had decreased tumor cell survival, proliferation and reduced tumor size. The loss of Sparc promoted microglia/macrophage activation and phagocytosis of tumor cells. Our results indicate that the loss of p53 by deletion/mutation in the early stages of glioma formation may cooperate with the induction of SPARC to potentiate cancer cell survival and escape from immune surveillance.

  16. Amino-terminal p53 mutations lead to expression of apoptosis proficient p47 and prognosticate better survival, but predispose to tumorigenesis

    PubMed Central

    Phang, Beng Hooi; Othman, Rashidah; Bougeard, Gaelle; Chia, Ren Hui; Frebourg, Thierry; Tang, Choong Leong; Cheah, Peh Yean; Sabapathy, Kanaga

    2015-01-01

    Whereas most mutations in p53 occur in the DNA-binding domain and lead to its functional inactivation, their relevance in the amino-terminal transactivation domain is unclear. We show here that amino-terminal p53 (ATp53) mutations often result in the abrogation of full-length p53 expression, but concomitantly lead to the expression of the amino-terminally truncated p47 isoform. Using genetically modified cancer cells that only express p47, we demonstrate it to be up-regulated in response to various stimuli, and to contribute to cell death, through its ability to selectively activate a group of apoptotic target genes. Target gene selectivity is influenced by K382 acetylation, which depends on the amino terminus, and is required for recruitment of selective cofactors. Consistently, cancers capable of expressing p47 had a better overall survival. Nonetheless, retention of the apoptotic function appears insufficient for tumor suppression, because these mutations are also found in the germ line and lead to Li–Fraumeni syndrome. These data from ATp53 mutations collectively demonstrate that p53’s apoptosis proficiency is dispensable for tumor suppression, but could prognosticate better survival. PMID:26578795

  17. Wild-type and mutated presenilins 2 trigger p53-dependent apoptosis and down-regulate presenilin 1 expression in HEK293 human cells and in murine neurons.

    PubMed

    Alves da Costa, Cristine; Paitel, Erwan; Mattson, Mark P; Amson, Robert; Telerman, Adam; Ancolio, Karine; Checler, Frédéric; Mattson, Marc P

    2002-03-19

    Presenilins 1 and 2 are two homologous proteins that, when mutated, account for most early onset Alzheimer's disease. Several lines of evidence suggest that, among various functions, presenilins could modulate cell apoptotic responses. Here we establish that the overexpression of presenilin 2 (PS2) and its mutated form Asn-141-Ile-PS2 alters the viability of human embryonic kidney (HEK)293 cells as established by combined trypan blue exclusion, sodium 3'-[1-(phenylamino-carbonyl)-3,4-tetrazolium]-bis(4-methoxy-6-nitro)benzene sulfonic acid hydrate assay, and propidium iodide incorporation FACS analyses. The two parent proteins increase the acetyl-DEVD-al-sensitive caspase-3-like activity in both HEK293 cells and Telencephalon specific murine neurons, modulate Bax and bcl-2 expressions, and enhance cytochrome C translocation into the cytosol. We show that overexpression of both wild-type and mutated PS2 increases p53-like immunoreactivity and transcriptional activity. We also establish that wild-type- and mutated PS2-induced caspase activation is reduced by p53 antisense approach and by pifithrin-alpha, a chemical inhibitor of p53. Furthermore, mouse fibroblasts in which the PS2 gene has been knocked out exhibited strongly reduced p53-transcriptional activity. Finally, we establish that the overexpression of both wild-type and mutated PS2 is accompanied by a drastic reduction of endogenous presenilin 1 (PS1) expression. Interestingly, pifithrin-alpha diminished endogenous PS2 immunoreactivity, whereas the inhibitor increases PS1 expression. Altogether, our data demonstrate that wild-type and familial Alzheimer's disease-linked PS2 trigger apoptosis and down-regulate PS1 expression through p53-dependent mechanisms. PMID:11904448

  18. Discovery of Highly Potent p53-MDM2 Antagonists and Structural Basis for Anti-Acute Myeloid Leukemia Activities

    PubMed Central

    2015-01-01

    The inhibition of p53-MDM2 interaction is a promising new approach to non-genotoxic cancer treatment. A potential application for drugs blocking the p53-MDM2 interaction is acute myeloid leukemia (AML) due to the occurrence of wild type p53 (wt p53) in the majority of patients. Although there are very promising preclinical results of several p53-MDM2 antagonists in early development, none of the compounds have yet proven the utility as a next generation anticancer agent. Herein we report the design, synthesis and optimization of YH239-EE (ethyl ester of the free carboxylic acid compound YH239), a potent p53-MDM2 antagonizing and apoptosis-inducing agent characterized by a number of leukemia cell lines as well as patient-derived AML blast samples. The structural basis of the interaction between MDM2 (the p53 receptor) and YH239 is elucidated by a co-crystal structure. YH239-EE acts as a prodrug and is the most potent compound that induces apoptosis in AML cells and patient samples. The observed superior activity compared to reference compounds provides the preclinical basis for further investigation and progression of YH239-EE. PMID:24405416

  19. Nuclear translocation of annexin 1 following oxygen-glucose deprivation-reperfusion induces apoptosis by regulating Bid expression via p53 binding.

    PubMed

    Li, Xing; Zhao, Yin; Xia, Qian; Zheng, Lu; Liu, Lu; Zhao, Baoming; Shi, Jing

    2016-01-01

    Previous data have suggested that the nuclear translocation of annexin 1 (ANXA1) is involved in neuronal apoptosis after ischemic stroke. As the mechanism and function of ANXA1 nuclear migration remain unclear, it is important to clarify how ANXA1 performs its role as an apoptosis 'regulator' in the nucleus. Here we report that importazole (IPZ), an importin β (Impβ)-specific inhibitor, decreased ANXA1 nuclear accumulation and reduced the rate of neuronal death induced by nuclear ANXA1 migration after oxygen-glucose deprivation-reoxygenation (OGD/R). Notably, ANXA1 interacted with the Bid (BH3-interacting-domain death agonist) promoter directly; however; this interaction could be partially blocked by the p53 inhibitor pifithrin-α (PFT-α). Accordingly, ANXA1 was shown to interact with p53 in the nucleus and this interaction was enhanced following OGD/R. A luciferase reporter assay revealed that ANXA1 was involved in the regulation of p53-mediated transcriptional activation after OGD/R. Consistent with this finding, the nuclear translocation of ANXA1 after OGD/R upregulated the expression of Bid, which was impeded by IPZ, ANXA1 shRNA, or PFT-α. Finally, cell-survival testing demonstrated that silencing ANXA1 could improve the rate of cell survival and decrease the expression of both cleaved caspase-3 and cleaved poly(ADP-ribose) polymerase. These data suggested that Impβ-dependent nuclear ANXA1 migration participates in the OGD/R-dependent induction of neuronal apoptosis. ANXA1 interacts with p53 and promotes p53 transcriptional activity, which in turn regulates Bid expression. Silencing ANXA1 decreases the expression of Bid and suppresses caspase-3 pathway activation, thus improving cell survival after OGD/R. This study provides a novel mechanism whereby ANXA1 regulates apoptosis, suggesting the potential for a previously unidentified treatment strategy in minimizing apoptosis after OGD/R. PMID:27584794

  20. Nuclear translocation of annexin 1 following oxygen-glucose deprivation–reperfusion induces apoptosis by regulating Bid expression via p53 binding

    PubMed Central

    Li, Xing; Zhao, Yin; Xia, Qian; Zheng, Lu; Liu, Lu; Zhao, Baoming; Shi, Jing

    2016-01-01

    Previous data have suggested that the nuclear translocation of annexin 1 (ANXA1) is involved in neuronal apoptosis after ischemic stroke. As the mechanism and function of ANXA1 nuclear migration remain unclear, it is important to clarify how ANXA1 performs its role as an apoptosis ‘regulator' in the nucleus. Here we report that importazole (IPZ), an importin β (Impβ)-specific inhibitor, decreased ANXA1 nuclear accumulation and reduced the rate of neuronal death induced by nuclear ANXA1 migration after oxygen-glucose deprivation–reoxygenation (OGD/R). Notably, ANXA1 interacted with the Bid (BH3-interacting-domain death agonist) promoter directly; however; this interaction could be partially blocked by the p53 inhibitor pifithrin-α (PFT-α). Accordingly, ANXA1 was shown to interact with p53 in the nucleus and this interaction was enhanced following OGD/R. A luciferase reporter assay revealed that ANXA1 was involved in the regulation of p53-mediated transcriptional activation after OGD/R. Consistent with this finding, the nuclear translocation of ANXA1 after OGD/R upregulated the expression of Bid, which was impeded by IPZ, ANXA1 shRNA, or PFT-α. Finally, cell-survival testing demonstrated that silencing ANXA1 could improve the rate of cell survival and decrease the expression of both cleaved caspase-3 and cleaved poly(ADP-ribose) polymerase. These data suggested that Impβ-dependent nuclear ANXA1 migration participates in the OGD/R-dependent induction of neuronal apoptosis. ANXA1 interacts with p53 and promotes p53 transcriptional activity, which in turn regulates Bid expression. Silencing ANXA1 decreases the expression of Bid and suppresses caspase-3 pathway activation, thus improving cell survival after OGD/R. This study provides a novel mechanism whereby ANXA1 regulates apoptosis, suggesting the potential for a previously unidentified treatment strategy in minimizing apoptosis after OGD/R. PMID:27584794

  1. Prognostic factors in papillary and follicular thyroid carcinomas: p53 expression is a significant indicator of prognosis.

    PubMed

    Godballe, C; Asschenfeldt, P; Jørgensen, K E; Bastholt, L; Clausen, P P; Hansen, T P; Hansen, O; Bentzen, S M

    1998-02-01

    To identify clinical and histologic prognostic factors and to investigate whether immunohistochemical detection of p53 expression might contain prognostic information, a retrospective study of patient and tumor characteristics was performed in 225 cases of papillary and follicular thyroid carcinomas. The analyses were based on cause-specific and crude survival. In univariate analysis, age at diagnosis, tumor size, presence of distant metastases, histology (papillary contra follicular type), extrathyroidal invasion, necrosis in primary tumor, and p53 expression were significant prognostic indicators. For 211 patients (96%) all information was available and Cox's proportional hazard model was applied. The authors found that age, distant metastases, necrosis in primary tumor, extrathyroidal invasion, and p53 expression were significant prognostic factors. Analyses of cause-specific and crude survival gave similar results. The authors conclude that age at diagnosis, presence of distant metastases, necrosis in primary tumor, and extrathyroidal invasion are important prognostic factors, and that immunohistochemical detection of p53 protein in the primary tumor is a significant and independent prognostic indicator, which might be of value in the treatment planning in patients with papillary or follicular thyroid carcinomas. PMID:9473076

  2. Gene expression profiling reveals the role of RIG1 like receptor signaling in p53 dependent apoptosis induced by PUVA in keratinocytes.

    PubMed

    Chowdhari, Shruti; Saini, Neeru

    2016-01-01

    Photochemotherapy using 8-methoxypsoralen in combination with UVA radiation (PUVA) is an effective treatment for various skin dermatosis including psoriasis however its molecular mechanism is not clear. Previously we demonstrated that PUVA differentially regulates miRNA expression profile with a significant up-regulation of hsa-miR-4516. To study in detail the molecular mechanism of PUVA in keratinocytes, we investigated the genome wide transcriptomic changes using Illumina whole genome gene expression beadchip. Microarray analysis revealed 1932 differentially expressed gene and their Insilico analysis revealed Retinoic Acid Inducible Gene-I (RIG-1) signaling, apoptosis and p53 pathway to be associated with PUVA induced effects. We demonstrate that miR-4516 mediated down-regulation of UBE2N promotes p53 nuclear translocation and pro-apoptotic activity of PUVA is independent of IRF3 but is mediated by the RIG-I in a p53 and NFκB dependent manner. Additionally, PUVA inactivated the AKT/mTOR pathway in concert with inhibition of autophagy and suppressed cell migration. Taken together this study broadens our understanding about the mechanism of action of PUVA providing possible new strategy targeting proapoptotic function of RIG-1, a regulator of innate immune response or p53 for psoriasis therapy. PMID:26518362

  3. TGF-β induces p53/Smads complex formation in the PAI-1 promoter to activate transcription

    PubMed Central

    Kawarada, Yuki; Inoue, Yasumichi; Kawasaki, Fumihiro; Fukuura, Keishi; Sato, Koichi; Tanaka, Takahito; Itoh, Yuka; Hayashi, Hidetoshi

    2016-01-01

    Transforming growth factor β (TGF-β) signaling facilitates tumor development during the advanced stages of tumorigenesis, but induces cell-cycle arrest for tumor suppression during the early stages. However, the mechanism of functional switching of TGF-β is still unknown, and it is unclear whether inhibition of TGF-β signaling results amelioration or exacerbation of cancers. Here we show that the tumor suppressor p53 cooperates with Smad proteins, which are TGF-β signal transducers, to selectively activate plasminogen activator inhibitor type-1 (PAI-1) transcription. p53 forms a complex with Smad2/3 in the PAI-1 promoter to recruit histone acetyltransferase CREB-binding protein (CBP) and enhance histone H3 acetylation, resulting in transcriptional activation of the PAI-1 gene. Importantly, p53 is required for TGF-β-induced cytostasis and PAI-1 is involved in the cytostatic activity of TGF-β in several cell lines. Our results suggest that p53 enhances TGF-β-induced cytostatic effects by activating PAI-1 transcription, and the functional switching of TGF-β is partially caused by p53 mutation or p53 inactivation during cancer progression. It is expected that these findings will contribute to optimization of TGF-β-targeting therapies for cancer. PMID:27759037

  4. Depletion of hepatoma-derived growth factor-related protein-3 induces apoptotic sensitization of radioresistant A549 cells via reactive oxygen species-dependent p53 activation

    SciTech Connect

    Yun, Hong Shik; Hong, Eun-Hee; Lee, Su-Jae; Baek, Jeong-Hwa; Lee, Chang-Woo; Yim, Ji-Hye; Um, Hong-Duck; Hwang, Sang-Gu

    2013-09-27

    Highlights: •HRP-3 is a radiation- and anticancer drug-responsive protein in A549 cells. •Depletion of HRP-3 induces apoptosis of radio- and chemoresistant A549 cells. •Depletion of HRP-3 promotes ROS generation via inhibition of the Nrf2/HO-1 pathway. •Depletion of HRP-3 enhances ROS-dependent p53 activation and PUMA expression. -- Abstract: Biomarkers based on functional signaling have the potential to provide greater insight into the pathogenesis of cancer and may offer additional targets for anticancer therapeutics. Here, we identified hepatoma-derived growth factor-related protein-3 (HRP-3) as a radioresistance-related gene and characterized the molecular mechanism by which its encoded protein regulates the radio- and chemoresistant phenotype of lung cancer-derived A549 cells. Knockdown of HRP-3 promoted apoptosis of A549 cells and potentiated the apoptosis-inducing action of radio- and chemotherapy. This increase in apoptosis was associated with a substantial generation of reactive oxygen species (ROS) that was attributable to inhibition of the Nrf2/HO-1 antioxidant pathway and resulted in enhanced ROS-dependent p53 activation and p53-dependent expression of PUMA (p53 upregulated modulator of apoptosis). Therefore, the HRP-3/Nrf2/HO-1/ROS/p53/PUMA cascade is an essential feature of the A549 cell phenotype and a potential radiotherapy target, extending the range of targets in multimodal therapies against lung cancer.

  5. Inflammatory stimuli induce inhibitory S-nitrosylation of the deacetylase SIRT1 to increase acetylation and activation of p53 and p65.

    PubMed

    Shinozaki, Shohei; Chang, Kyungho; Sakai, Michihiro; Shimizu, Nobuyuki; Yamada, Marina; Tanaka, Tomokazu; Nakazawa, Harumasa; Ichinose, Fumito; Yamada, Yoshitsugu; Ishigami, Akihito; Ito, Hideki; Ouchi, Yasuyoshi; Starr, Marlene E; Saito, Hiroshi; Shimokado, Kentaro; Stamler, Jonathan S; Kaneki, Masao

    2014-01-01

    Inflammation increases the abundance of inducible nitric oxide synthase (iNOS), leading to enhanced production of nitric oxide (NO), which can modify proteins by S-nitrosylation. Enhanced NO production increases the activities of the transcription factors p53 and nuclear factor κB (NF-κB) in several models of disease-associated inflammation. S-nitrosylation inhibits the activity of the protein deacetylase SIRT1. SIRT1 limits apoptosis and inflammation by deacetylating p53 and p65 (also known as RelA), a subunit of NF-κB. We showed in multiple cultured mammalian cell lines that NO donors or inflammatory stimuli induced S-nitrosylation of SIRT1 within CXXC motifs, which inhibited SIRT1 by disrupting its ability to bind zinc. Inhibition of SIRT1 reduced deacetylation and promoted activation of p53 and p65, leading to apoptosis and increased expression of proinflammatory genes. In rodent models of systemic inflammation, Parkinson's disease, or aging-related muscular atrophy, S-nitrosylation of SIRT1 correlated with increased acetylation of p53 and p65 and activation of p53 and NF-κB target genes, suggesting that S-nitrosylation of SIRT1 may represent a proinflammatory switch common to many diseases and aging. PMID:25389371

  6. Inflammatory stimuli induce inhibitory S-nitrosylation of the deacetylase SIRT1 to increase acetylation and activation of p53 and p65

    PubMed Central

    Shinozaki, Shohei; Chang, Kyungho; Sakai, Michihiro; Shimizu, Nobuyuki; Yamada, Marina; Tanaka, Tomokazu; Nakazawa, Harumasa; Ichinose, Fumito; Yamada, Yoshitsugu; Ishigami, Akihito; Ito, Hideki; Ouchi, Yasuyoshi; Starr, Marlene E.; Saito, Hiroshi; Shimokado, Kentaro; Stamler, Jonathan S.; Kaneki, Masao

    2015-01-01

    Inflammation increases the abundance of inducible nitric oxide synthase (iNOS), leading to enhanced production of nitric oxide (NO), which can modify proteins by S-nitrosylation. Enhanced NO production increases the activities of the transcription factors p53 and nuclear factor κB (NF-κB) in several models of disease-associated inflammation. S-Nitrosylation inhibits the activity of the protein deacetylase SIRT1. SIRT1 limits apoptosis and inflammation by deacetylating p53 and p65 (also known as RelA), a subunit of NF-κB. We showed in multiple cultured mammalian cell lines that NO donors or inflammatory stimuli induced S-nitrosylation of SIRT1 within CXXC motifs, which inhibited SIRT1 by disrupting its ability to bind zinc. Inhibition of SIRT1 reduced deacetylation and promoted activation of p53 and p65, leading to apoptosis and increased expression of proinflammatory genes. In rodent models of systemic inflammation, Parkinson’s disease, or aging-related muscular atrophy, S-nitrosylation of SIRT1 correlated with increased acetylation of p53 and p65 and activation of p53 and NF-κB target genes, suggesting that S-nitrosylation of SIRT1 may represent a proinflammatory switch common to many diseases and aging. PMID:25389371

  7. Mitomycin C and decarbamoyl mitomycin C induce p53-independent p21WAF1/CIP1 activation

    PubMed Central

    Cheng, Shu-Yuan; Seo, Jiwon; Huang, Bik Tzu; Napolitano, Tanya; Champeil, Elise

    2016-01-01

    Mitomycin C (MC), a commonly used anticancer drug, induces DNA damage via DNA alkylation. Decarbamoyl mitomycin C (DMC), another mitomycin lacking the carbamate at C10, generates similar lesions as MC. Interstrand cross-links (ICLs) are believed to be the lesions primarily responsible for the cytotoxicity of MC and DMC. The major ICL generated by MC (α-ICL) has a trans stereochemistry at the guanine-drug linkage whereas the major ICL from DMC (β-ICL) has the opposite, cis, stereochemistry. In addition, DMC can provoke strong p53-independent cell death. Our hypothesis is that the stereochemistry of the major unique β-ICL generated by DMC is responsible for this p53-independent cell death signaling. p53 gene is inactively mutated in more than half of human cancers. p21WAF1/CIP1 known as a major effector of p53 is involved in p53-dependent and -independent control of cell proliferation and death. This study revealed the role of p21WAF1/CIP1 on MC and DMC triggered cell damage. MCF-7 (p53-proficient) and K562 (p53-deficient) cells were used. Cell cycle distributions were shifted to the G1/S phase in MCF-7 treated with MC and DMC, but were shifted to the S phase in K562. p21WAF1/CIP1 activation was observed in both cells treated with MC and DMC, and DMC triggered more significant activation. Knocking down p53 in MCF-7 did not attenuate MC and DMC induced p21WAF1/CIP1 activation. The α-ICL itself was enough to cause p21WAF1/CIP1 activation. PMID:27666201

  8. Effect of boswellia thurifera gum methanol extract on cytotoxicity and p53 gene expression in human breast cancer cell line.

    PubMed

    Yazdanpanahi, Nasrin; Behbahani, Mandana; Yektaeian, Afsaneh

    2014-01-01

    Boswellia has been widely used in traditional medicine for the treatment of different diseases such as cancer in Iran. The aim of this study was to evaluate the effect of the gum methanol extract of Boswellia thurifera on the viability and P53 gene expression of cultured breast cancer cells. The gum methanol extract was obtained in various concentrations using the maceration method. Normal (HEK-293) and cancer (MDA-MB-231) human cells were cultured and treated with various concentrations of the extract. Then MTT assay was used for the study of cytotoxic effect of the extract and real time PCR method was also applied for the investigation of P53 gene expression in cancer cells. The IC50 of the extract against cancer cells was 80 µg/mL and had less cytotoxic effect in normal cells. The effect of the extract was dose dependent. Induction of P53 expression by extract was also significantly more in treated cancer cells than untreated cells. This inductive effect in cells was higher after 12 h treatment than it was after 6 h. The results of the current study show that gum methanol extract of Boswellia thurifera has probably anti-cancer effects and could induce P53 gene transcription and toxicity in the cultured breast cancer cell line. The increase of P53 gene specific mRNA may be a mechanism of gum methanol extract induced cytotoxicity. However, for a definitive conclusion, further studies on other cell lines as well as animal models and subsequent clinical studies are warranted. PMID:25237368

  9. High-grade fimbrial-ovarian carcinomas are unified by altered p53, PTEN and PAX2 expression.

    PubMed

    Roh, Michael H; Yassin, Yosuf; Miron, Alexander; Mehra, Karishma K; Mehrad, Mitra; Monte, Nicolas M; Mutter, George L; Nucci, Marisa R; Ning, Geng; Mckeon, Frank D; Hirsch, Michelle S; Wa, Xian; Crum, Christopher P

    2010-10-01

    High-grade endometrioid and serous carcinomas of the ovary and fallopian tube are responsible for the majority of cancer deaths and comprise a spectrum that includes early or localized (tubal intraepithelial carcinoma) and advanced (invasive or metastatic) disease. We subdivided a series of these tumors into three groups, (1) classic serous, (2) mixed serous and endometrioid and (3) endometrioid carcinomas and determined: (1) the frequencies of coexisting tubal intraepithelial carcinoma, (2) frequency of a dominant ovarian mass suggesting an ovarian origin and (3) immuno-localization of WT-1, p53, PTEN, PAX2 and p16(ink4). All tumors were analyzed for p53 mutations. Thirty six, 25 and 8% of groups 1-3 were associated with tubal intraepithelial carcinoma (P=0.09) and 34, 45 and 62% predominated in one ovary (P=0.028), respectively. Differences in frequencies of diffuse p53 immunostaining (85-93%), WT-1 (70-98%) and p16(ink4) positivity (69-75%) were not significant for all groups. Greater than 95% reduction in PAX2 and PTEN occurred in 67-75 and 5-12%, respectively; however, PAX2 and PTEN staining intensity, when present, was often heterogeneous, highlighting different tumor populations. PAX2 and PTEN expression were markedly reduced or absent in 12 of 12 and 4 of 12 tubal intraepithelial carcinomas. In summary, high-grade müllerian carcinomas share identical frequencies of altered or reduced expression of p53, PTEN and PAX2, all of which can be appreciated in tubal intraepithelial carcinomas. Because only a subset of these tumors appears to arise in the fallopian tube, attention to expression of these biomarkers in the ovary and other müllerian sites might facilitate the identification of other carcinogenic pathways. PAX2 and PTEN, in addition to p53 and p16(ink4), comprise a potentially important gene combination in high-grade pelvic carcinogenesis.

  10. Effect of Boswellia Thurifera Gum Methanol Extract on Cytotoxicity and P53 Gene Expression in Human Breast Cancer Cell Line

    PubMed Central

    Yazdanpanahi, Nasrin; Behbahani, Mandana; Yektaeian, Afsaneh

    2014-01-01

    Boswellia has been widely used in traditional medicine for the treatment of different diseases such as cancer in Iran. The aim of this study was to evaluate the effect of the gum methanol extract of Boswellia thurifera on the viability and P53 gene expression of cultured breast cancer cells. The gum methanol extract was obtained in various concentrations using the maceration method. Normal (HEK-293) and cancer (MDA-MB-231) human cells were cultured and treated with various concentrations of the extract. Then MTT assay was used for the study of cytotoxic effect of the extract and real time PCR method was also applied for the investigation of P53 gene expression in cancer cells. The IC50 of the extract against cancer cells was 80 µg/mL and had less cytotoxic effect in normal cells. The effect of the extract was dose dependent. Induction of P53 expression by extract was also significantly more in treated cancer cells than untreated cells. This inductive effect in cells was higher after 12 h treatment than it was after 6 h. The results of the current study show that gum methanol extract of Boswellia thurifera has probably anti-cancer effects and could induce P53 gene transcription and toxicity in the cultured breast cancer cell line. The increase of P53 gene specific mRNA may be a mechanism of gum methanol extract induced cytotoxicity. However, for a definitive conclusion, further studies on other cell lines as well as animal models and subsequent clinical studies are warranted. PMID:25237368

  11. Prospective study of intratumoral microvessel density, p53 expression and survival in colorectal cancer

    PubMed Central

    Vermeulen, P B; Eynden, G G Van den; Huget, P; Goovaerts, G; Weyler, J; Lardon, F; Marck, E Van; Hubens, G; Dirix, L Y

    1999-01-01

    Adjuvant treatment of patients with colorectal cancer is hampered by a lack of reliable prognostic factors in addition to the clinicopathological staging system. A poorly defined but considerable fraction of Astler–Coller stage B patients will experience tumour recurrence, and some of the stage C patients will probably survive for a prolonged time after surgery without adjuvant treatment. Assessing parameters related to tumour angiogenesis has provided valuable prognostic information in different tumour types. The formation of new microvessels is part of the malignant phenotype in the majority of tumours. Alterations in tumour-suppressor genes, such as the p53 gene, or oncogenes, such as the ras gene, have been found to be responsible for changing the local balance of pro- and antiangiogenic factors in favour of the former. In this prospective study, intratumoral microvessel density (IMD) was assessed by immunostaining tissue sections for CD31 and counting individual microvessels in selected and highly vascular regions in specimens of 145 colorectal cancer patients. p53 protein overexpression was semiquantitatively determined after immunohistochemistry. In both uni- and multivariate analysis, high IMD was significantly associated with shorter survival in the patients undergoing surgery with curative intent (Astler–Coller stages A–C). p53 added prognostic power to IMD, both in Astler–Coller stage B and stage C patients. An association between IMD and mode of metastasis was also noted. High IMD was strongly associated with the incidence of haematogenous metastasis during follow-up, but not with the presence of lymphogenic metastasis observed at surgery. This study confirms the results of previous retrospective analyses of IMD and survival in colorectal cancer and warrants a clinical validation by randomizing stage B tumour patients with high IMD and p53 overexpression between adjuvant treatment or not. © 1999 Cancer Research Campaign PMID:9888475

  12. An immunohistochemical study of p53 protein expression in classical Kaposi's sarcoma.

    PubMed

    Bergman, R; Ramon, M; Kilim, S; Lichtig, C; Friedman-Birnbaum, R

    1996-08-01

    The present study was performed to determine the frequency of p53 protein immunoreactivity in classical Kaposi's sarcoma (KS) as a whole and in relation to the histological subtypes which are considered to correspond to the developmental stages of the tumor. The accumulation of p53 protein was studied immunohistochemically using monoclonal antibody BP53-12 on formalin-fixed paraffin-embedded sections of 36 KS lesions, of which 14 were classified histologically as early type and 22 as spindle-cell or mixed type. No positive immunoreactivity was detected in any of the 14 early-type lesions. Among the 22 spindle-cell and mixed variants, positive staining was detected in 5-10% of the tumor cells in one lesion, 1-5% of the cells in six lesions, and in < 1% of the cells in two lesions. These very small percentages of positively stained cells in less than half of the cases of the spindle-cell and mixed variants do not support a significant role for p53 in tumor progression and evolution in KS.

  13. Sodium Arsenite ± Hyperthermia Sensitizes p53-Expressing Human Ovarian Cancer Cells to Cisplatin by Modulating Platinum-DNA Damage Responses

    PubMed Central

    Muenyi, Clarisse S.; Pinhas, Allan R.; Fan, Teresa W.; Brock, Guy N.; Helm, C. William; States, J. Christopher

    2012-01-01

    Epithelial ovarian cancer (EOC) is the leading cause of gynecological cancer death in the United States. Cisplatin is a DNA damaging agent initially effective against EOC but limited by resistance. P53 plays a critical role in cellular response to DNA damage and has been implicated in EOC response to platinum chemotherapy. In this study, we examined the role of p53 status in EOC response to a novel combination of cisplatin, sodium arsenite, and hyperthermia. Human EOC cells were treated with cisplatin ± 20μM sodium arsenite at 37°C or 39°C for 1 h. Sodium arsenite ± hyperthermia sensitized wild-type p53-expressing (A2780, A2780/CP70, OVCA 420, OVCA 429, and OVCA 433) EOC cells to cisplatin. Hyperthermia sensitized p53-null SKOV-3 and p53-mutant (OVCA 432 and OVCAR-3) cells to cisplatin. P53 small interfering RNA (siRNA) transfection abrogated sodium arsenite sensitization effect. XPC, a critical DNA damage recognition protein in global genome repair pathway, was induced by cisplatin only in wild-type p53-expressing cells. Cotreatment with sodium arsenite ± hyperthermia attenuated cisplatin-induced XPC in wild-type p53-expressing cells. XPC siRNA transfection sensitized wild-type p53-expressing cells to cisplatin, suggesting that sodium arsenite ± hyperthermia attenuation of XPC is a mechanism by which wild-type p53-expressing cells are sensitized to cisplatin. Hyperthermia ± sodium arsenite enhanced cellular and DNA accumulation of platinum in wild-type p53-expressing cells. Only hyperthermia enhanced platinum accumulation in p53-null cells. In conclusion, sodium arsenite ± hyperthermia sensitizes wild-type p53-expressing EOC cells to cisplatin by suppressing DNA repair protein XPC and increasing cellular and DNA platinum accumulation. PMID:22331493

  14. Indolo-pyrido-isoquinolin based alkaloid inhibits growth, invasion and migration of breast cancer cells via activation of p53-miR34a axis.

    PubMed

    Avtanski, Dimiter B; Nagalingam, Arumugam; Tomaszewski, Joseph E; Risbood, Prabhakar; Difillippantonio, Michael J; Saxena, Neeraj K; Malhotra, Sanjay V; Sharma, Dipali

    2016-08-01

    The tumor suppressor p53 plays a critical role in suppressing cancer growth and progression and is an attractive target for the development of new targeted therapies. We synthesized several indolo-pyrido-isoquinolin based alkaloids to activate p53 function and examined their therapeutic efficacy using NCI-60 screening. Here, we provide molecular evidence that one of these compounds, 11-methoxy-2,3,4,13-tetrahydro-1H-indolo[2',3':3,4]pyrido[1,2-b]isoquinolin-6-ylium-bromide (termed P18 or NSC-768219) inhibits growth and clonogenic potential of cancer cells. P18 treatment results in downregulation of mesenchymal markers and concurrent upregulation of epithelial markers as well as inhibition of migration and invasion. Experimental epithelial-mesenchymal-transition (EMT) induced by exposure to TGFβ/TNFα is also completely reversed by P18. Importantly, P18 also inhibits mammosphere-formation along with a reduction in the expression of stemness factors, Oct4, Nanog and Sox2. We show that P18 induces expression, phosphorylation and accumulation of p53 in cancer cells. P18-mediated induction of p53 leads to increased nuclear localization and elevated expression of p53 target genes. Using isogenic cancer cells differing only in p53 status, we show that p53 plays an important role in P18-mediated alteration of mesenchymal and epithelial genes, inhibition of migration and invasion of cancer cells. Furthermore, P18 increases miR-34a expression in p53-dependent manner and miR-34a is integral for P18-mediated inhibition of growth, invasion and mammosphere-formation. miR-34a mimics potentiate P18 efficacy while miR-34a antagomirs antagonize P18. Collectively, these data provide evidence that P18 may represent a promising therapeutic strategy for the inhibition of growth and progression of breast cancer and p53-miR-34a axis is important for P18 function.

  15. Repeated PM2.5 exposure inhibits BEAS-2B cell P53 expression through ROS-Akt-DNMT3B pathway-mediated promoter hypermethylation

    PubMed Central

    Zhou, Wei; Tian, Dongdong; He, Jun; Wang, Yimei; Zhang, Lijun; Cui, Lan; jia, Li; Zhang, Li; Li, Lizhong; Shu, Yulei; Yu, Shouzhong; Zhao, Jun; Yuan, Xiaoyan; Peng, Shuangqing

    2016-01-01

    Long-term exposure to fine particulate matter (PM2.5) has been reported to be closely associated with the increased lung cancer risk in populations, but the mechanisms underlying PM-associated carcinogenesis are not yet clear. Previous studies have indicated that aberrant epigenetic alterations, such as genome-wide DNA hypomethylation and gene-specific DNA hypermethylation contribute to lung carcinogenesis. And silence or mutation of P53 tumor suppressor gene is the most prevalent oncogenic driver in lung cancer development. To explore the effects of PM2.5 on global and P53 promoter methylation changes and the mechanisms involved, we exposed human bronchial epithelial cells (BEAS-2B) to low concentrations of PM2.5 for 10 days. Our results indicated that PM2.5-induced global DNA hypomethylation was accompanied by reduced DNMT1 expression. PM2.5 also induced hypermethylation of P53 promoter and inhibited its expression by increasing DNMT3B protein level. Furthermore, ROS-induced activation of Akt was involved in PM2.5-induced increase in DNMT3B. In conclusion, our results strongly suggest that repeated exposure to PM2.5 induces epigenetic silencing of P53 through ROS-Akt-DNMT3B pathway-mediated promoter hypermethylation, which not only provides a possible explanation for PM-induced lung cancer, but also may help to identify specific interventions to prevent PM-induced lung carcinogenesis. PMID:26942697

  16. Construction of the mammalian expressing vector pEGFP-N1-P53 and its expression successful in chicken fibroblast cells and blastoderm.

    PubMed

    Song, Z; Li, Z H; Lei, X Q; Xu, T S; Zhang, X H; Li, Y J; Zhang, G M; Xi, S M; Yang, Y B; Wei, Z G

    2015-02-02

    The enhanced green fluorescent protein (EGFP) pEGFP-N1-P53 eukaryotic expression vector, which contains the human tumor suppressor p53, was constructed and transfected into chicken fibroblast cells and stage-X blastoderm to analyze the transfection efficiency. The complementary DNA of the human p53 gene was cloned by reverse transcription-polymerase chain reaction from human peripheral blood and inserted into the pEGFP-N1 vector by HindIII and BamHI double digestion. The pEGFP-N1-P53 vector was transfected into chicken embryo fibroblasts by Lipofectamine 2000 liposomes, and the transfection efficiency was analyzed by fluorescence microscope after 36 h of transfection. The stage-X blastoderm was also transfected by blastoderm injection using Lipofectamine 2000 liposomes at room temperature after 12-24 h; then hatching occurred until seventh day, and the transfection efficiency was analyzed by fluorescence microscope in the dead embryo. A total of 90 hatching eggs were transfected by the pEGFP-N1-P53 vector, and 20 chicken embryos expressed the reporter gene, which indicated that recombinant pEGFP-N1-P53 could be transfected and expressed in stage-X blastoderm by liposomes. Chicken embryo fibroblasts were transfected and expressed the reporter gene. The pEGFP-N1-P53 vector was constructed successfully and could be transfected and expressed in chicken embryo fibroblasts and stage-X blastoderms efficiently.

  17. COH-203, a novel microtubule inhibitor, exhibits potent anti-tumor activity via p53-dependent senescence in hepatocellular carcinoma.

    PubMed

    Qi, Huan; Zuo, Dai-Ying; Bai, Zhao-Shi; Xu, Jing-Wen; Li, Zeng-Qiang; Shen, Qi-Rong; Wang, Zhi-Wei; Zhang, Wei-Ge; Wu, Ying-Liang

    2014-12-12

    5-(3-Hydroxy-4-methoxyphenyl)-4-(3,4,5-trimethoxyphenyl)-3H-1,2-dithiol-3-one (COH-203) is a novel synthesized analogue of combretastatin A-4 that can be classified as a microtubule inhibitor. In this study, we evaluated the anti-hepatoma effect of COH-203 in vitro and in vivo and explored the underlying molecular mechanisms. COH-203 was shown to be more effective in inhibiting the proliferation of liver cancer cells compared with normal liver cells. COH-203 also displayed potent anti-tumor activity in a hepatocellular carcinoma xenograft model without significant toxicity. Mechanistic studies demonstrated that treatment with COH-203 induced mitotic arrest by inhibiting tubulin polymerization in BEL-7402 liver cancer cells. Long-term COH-203 treatment in BEL-7402 cells led to mitotic slippage followed by senescence via the p14(Arf)-p53-p21 and p16(INK4α)-Rb pathways. Furthermore, suppression of p53 via pifithrin-α (p53 inhibitor) and p53-siRNA attenuated COH-203-induced senescence in BEL-7402 cells, suggesting that COH-203 induced senescence p53-dependently. In conclusion, we report for the first time that COH-203, one compound in the combretastatin family, promotes anti-proliferative activity through the induction of p-53 dependent senescence. Our findings will provide a molecular rationale for the development of COH-203 as a promising anti-tumor agent.

  18. New Plays in the p53 Theater

    PubMed Central

    Aylon, Yael; Oren, Moshe

    2010-01-01

    Summary The p53 tumor suppressor and its paralogs p63 and p73 are at the crux of a network modulating cellular responses against potentially tumorigenic events. p53 acts primarily as a transcription factor, regulating the expression of both coding and non-coding RNAs, as well as the activity of RNA processing complexes. In line with their anti-tumorigenic function, p53 and p63 have recently been implicated in restricting tumor cell invasion. In parallel, a growing number of non-canonical target genes have been added to the p53 repertoire. These include genes encoding for proteins that impinge on a broad spectrum of cellular functions, from cell metabolism to stem cell renewal. The p53 story is still far from being fully told. PMID:21317061

  19. [Anti-gastric cancer effect of melatonin and Bcl-2, Bax, p21 and p53 expression changes].

    PubMed

    Xu, Li; Jin, Qing-Dong; Gong, Xi; Liu, Hui; Zhou, Rui-Xiang

    2014-12-25

    In order to investigate the role of melatonin in inhibiting the proliferation of murine gastric cancer and the underlying molecular mechanism, we performed an in vivo study by inoculating murine foregastric carcinoma (MFC) cells in mice, and then tumor-bearing mice were treated with different concentrations of melatonin (i.p.). The changes of Bcl-2, Bax, p21 and p53 expressions in tumor tissue were detected by using real-time fluorescence quantitative RT-PCR and Western blot. We found that: (1) melatonin resulted in reductions of tumor's volume and weight in the gastric cancer-bearing mice and thus showed anti-cancer effect; (2) melatonin reduced Bcl-2 expression, but increased the expression of Bax, p53 and p21 in tumor tissue. Our results suggest that melatonin could inhibit the growth of tumors in gastric cancer-bearing mice through accelerating the apoptosis of tumor cells. PMID:25516522

  20. Upregulation of ULK1 expression in PC-3 cells following tumor protein P53 transfection by sonoporation

    PubMed Central

    WANG, YU; CHEN, YI-NI; ZHANG, WEI; YANG, YU; BAI, WEN-KUN; SHEN, E; HU, BING

    2016-01-01

    The aim of the present study was to investigate whether ultrasound combined with microbubbles was able to enhance liposome-mediated transfection of genes into human prostate cancer cells, and to examine the association between autophagy and tumor protein P53 (P53). An MTT assay was used to evaluate cell viability, while flow cytometry and fluorescence microscopy were used to measure gene transfection efficiency. Autophagy was observed using transmission electron microscopy. Reverse transcription-polymerase chain reaction (RT-PCR) and western blot analysis were used to assess the expression of autophagy-associated genes. The results of the present study revealed that cell viability was significantly reduced following successfully enhanced transfection of P53 by ultrasound combined with microbubbles. In addition, serine/threonine-protein kinase ULK1 levels were simultaneously upregulated. Castration-resistant prostate cancer is difficult to treat and is investigated in the present study. P53 has a significant role in a number of key biological functions, including DNA repair, apoptosis, cell cycle, autophagy, senescence and angiogenesis. Prior to the present study, to the best of our knowledge, increased transfection efficiency and reduced side effects have been difficult to achieve. Ultrasound is considered to be a ‘gentle’ technique that may be able to achieve increased transfection efficiency and reduced side effects. The results of the present study highlight a potential novel therapeutic strategy for the treatment of prostate cancer. PMID:26870270

  1. Over-expression of p53 mutants in LNCaP cells alters tumor growth and angiogenesis in vivo

    SciTech Connect

    Perryman, L.A.; Blair, J.M.; Kingsley, E.A.; Szymanska, B.; Ow, K.T.; Wen, V.W.; MacKenzie, K.L.; Vermeulen, P.B.; Jackson, P.; Russell, P.J. . E-mail: p.russell@unsw.edu.au

    2006-07-07

    This study has investigated the impact of three specific dominant-negative p53 mutants (F134L, M237L, and R273H) on tumorigenesis by LNCaP prostate cancer cells. Mutant p53 proteins were associated with an increased subcutaneous 'take rate' in NOD-SCID mice, and increased production of PSA. Tumors expressing F134L and R273H grew slower than controls, and were associated with decreased necrosis and apoptosis, but not hypoxia. Interestingly, hypoxia levels were increased in tumors expressing M237L. There was less proliferation in F134L-bearing tumors compared to control, but this was not statistically significant. Angiogenesis was decreased in tumors expressing F134L and R273H compared with M237L, or controls. Conditioned medium from F134L tumors inhibited growth of normal human umbilical-vein endothelial cells but not telomerase-immortalized bone marrow endothelial cells. F134L tumor supernatants showed lower levels of VEGF and endostatin compared with supernatants from tumors expressing other mutants. Our results support the possibility that decreased angiogenesis might account for reduced growth rate of tumor cells expressing the F134L p53 mutation.

  2. Radiosensitivity profiles from a panel of ovarian cancer cell lines exhibiting genetic alterations in p53 and disparate DNA-dependent protein kinase activities

    SciTech Connect

    Langland, Gregory T.; Yannone, Steven M.; Langland, Rachel A.; Nakao, Aki; Guan, Yinghui; Long, Sydney B.T.; Vonguyen, Lien; Chen, David J.; Gray, Joe W; Chen, Fanqing

    2009-09-07

    The variability of radiation responses in ovarian tumors and tumor-derived cell lines is poorly understood. Since both DNA repair capacity and p53 status can significantly alter radiation sensitivity, we evaluated these factors along with radiation sensitivity in a panel of sporadic human ovarian carcinoma cell lines. We observed a gradation of radiation sensitivity among these sixteen lines, with a five-fold difference in the LD50 between the most radiosensitive and the most radioresistant cells. The DNA-dependent protein kinase (DNA-PK) is essential for the repair of radiation induced DNA double-strand breaks in human somatic cells. Therefore, we measured gene copy number, expression levels, protein abundance, genomic copy and kinase activity for DNA-PK in all of our cell lines. While there were detectable differences in DNA-PK between the cell lines, there was no clear correlation with any of these differences and radiation sensitivity. In contrast, p53 function as determined by two independent methods, correlated well with radiation sensitivity, indicating p53 mutant ovarian cancer cells are typically radioresistant relative to p53 wild-type lines. These data suggest that the activity of regulatory molecules such as p53 may be better indicators of radiation sensitivity than DNA repair enzymes such as DNAPK in ovarian cancer.

  3. Therapeutic Response to Non-genotoxic Activation of p53 by Nutlin3a Is Driven by PUMA-Mediated Apoptosis in Lymphoma Cells.

    PubMed

    Valente, Liz J; Aubrey, Brandon J; Herold, Marco J; Kelly, Gemma L; Happo, Lina; Scott, Clare L; Newbold, Andrea; Johnstone, Ricky W; Huang, David C S; Vassilev, Lyubomir T; Strasser, Andreas

    2016-03-01

    Nutlin3a is a small-molecule antagonist of MDM2 that promotes non-genotoxic activation of p53 through p53 protein stabilization and transactivation of p53 target genes. Nutlin3a is the forerunner of a class of cancer therapeutics that have reached clinical trials. Using transgenic and gene-targeted mouse models lacking the critical p53 target genes, p21, Puma, and Noxa, we found that only loss of PUMA conferred profound protection against Nutlin3a-induced killing in both non-transformed lymphoid cells and Eμ-Myc lymphomas in vitro and in vivo. CRISPR/Cas9-mediated targeting of the PUMA gene rendered human hematopoietic cancer cell lines markedly resistant to Nutlin3a-induced cell death. These results demonstrate that PUMA-mediated apoptosis, but not p21-mediated cell-cycle arrest or senescence, is a critical determinant of the therapeutic response to non-genotoxic p53 activation by Nutlin3a. Importantly, in human cancer, PUMA expression may predict patient responses to treatment with MDM2 antagonists.

  4. Clioquinol induces DNA double-strand breaks, activation of ATM, and subsequent activation of p53 signaling.

    PubMed

    Katsuyama, Masato; Iwata, Kazumi; Ibi, Masakazu; Matsuno, Kuniharu; Matsumoto, Misaki; Yabe-Nishimura, Chihiro

    2012-09-01

    Clioquinol, a Cu²⁺/Zn²⁺/Fe²⁺ chelator/ionophor, was used extensively in the mid 1900s as an amebicide for treating indigestion and diarrhea. It was eventually withdrawn from the market because of a link to subacute myelo-optic neuropathy (SMON) in Japan. The pathogenesis of SMON, however, is not fully understood. To clarify the molecular mechanisms of clioquinol-induced neurotoxicity, a global analysis using DNA chips was carried out on human neuroblastoma cells. The global analysis and quantitative PCR demonstrated that mRNA levels of p21(Cip1), an inhibitor of cyclins D and E, and of GADD45α, a growth arrest and DNA damage-inducible protein, were significantly increased by clioquinol treatment in SH-SY5Y and IMR-32 neuroblastoma cells. Activation of p53 by clioquinol was suggested, since clioquinol induced phosphorylation of p53 at Ser15 to enhance its stabilization. The phosphorylation of p53 was inhibited by KU-55933, an inhibitor of ataxia-telangiectasia mutated kinase (ATM), but not by NU7026, an inhibitor of DNA-dependent protein kinase (DNA-PK). Clioquinol in fact induced phosphorylation of ATM and histone H2AX, a marker of DNA double-strand breaks (DSBs). These results suggest that clioquinol-induced neurotoxicity is mediated by DSBs and subsequent activation of ATM/p53 signaling. PMID:22627294

  5. SET1 and p300 act synergistically, through coupled histone modifications, in transcriptional activation by p53.

    PubMed

    Tang, Zhanyun; Chen, Wei-Yi; Shimada, Miho; Nguyen, Uyen T T; Kim, Jaehoon; Sun, Xiao-Jian; Sengoku, Toru; McGinty, Robert K; Fernandez, Joseph P; Muir, Tom W; Roeder, Robert G

    2013-07-18

    The H3K4me3 mark in chromatin is closely correlated with actively transcribed genes, although the mechanisms involved in its generation and function are not fully understood. In vitro studies with recombinant chromatin and purified human factors demonstrate a robust SET1 complex (SET1C)-mediated H3K4 trimethylation that is dependent upon p53- and p300-mediated H3 acetylation, a corresponding SET1C-mediated enhancement of p53- and p300-dependent transcription that reflects a primary effect of SET1C through H3K4 trimethylation, and direct SET1C-p53 and SET1C-p300 interactions indicative of a targeted recruitment mechanism. Complementary cell-based assays demonstrate a DNA-damage-induced p53-SET1C interaction, a corresponding enrichment of SET1C and H3K4me3 on a p53 target gene (p21/WAF1), and a corresponding codependency of H3K4 trimethylation and transcription upon p300 and SET1C. These results establish a mechanism in which SET1C and p300 act cooperatively, through direct interactions and coupled histone modifications, to facilitate the function of p53. PMID:23870121

  6. Glutamine supplementation prevents exercise-induced neutrophil apoptosis and reduces p38 MAPK and JNK phosphorylation and p53 and caspase 3 expression.

    PubMed

    Lagranha, Claudia J; Hirabara, Sandro M; Curi, Rui; Pithon-Curi, Tania C

    2007-01-01

    We have previously shown that a single session of exercise induces DNA fragmentation, mitochondrial membrane depolarization, increases expression of pro-apoptotic genes (bax and bcl-xS) and decreases expression of anti-apoptotic genes (bcl-xL) in rat neutrophils. Glutamine supplementation had a protective effect in the apoptosis induced by a single session of exercise. The mechanism involved in the effect of single session of exercise to induce apoptosis was investigated by measuring expression of p53 and caspase 3 and phosphorylation of p38 mitogen-activated protein kinases (MAPK) and cJun NH(2)-terminal kinase (JNK) in neutrophils from rats supplemented or not with glutamine. Exercise was carried out on a treadmill for 1 h and the rats were killed by decapitation. Neutrophils were obtained by intraperitoneal (i.p.) lavage with PBS, 4 h after injection of oyster glycogen solution. Glutamine supplementation (1g per Kg b.w.) was given by gavage 1 h before the exercise session. Gene expression and protein phosphorylation were then analyzed by reverse transcriptase chain reaction (RT-PCR) and Western blotting, respectively. A single session of exercise increased p38 MAPK and JNK phosphorylation and p53 and caspase 3 expression. Glutamine supplementation partially prevented the increase in p38 MAPK and JNK phosphorylation and p53 expression, and fully abolished the increase in caspase 3 expression. Thus, neutrophil apoptosis induced by a single session of exercise is accompanied by increased p53 and caspase 3 expression and p38 MAPK and JNK phosphorylation. Glutamine supplementation prevents these effects of exercise and reduces apoptosis. PMID:17542038

  7. Glutamine supplementation prevents exercise-induced neutrophil apoptosis and reduces p38 MAPK and JNK phosphorylation and p53 and caspase 3 expression.

    PubMed

    Lagranha, Claudia J; Hirabara, Sandro M; Curi, Rui; Pithon-Curi, Tania C

    2007-01-01

    We have previously shown that a single session of exercise induces DNA fragmentation, mitochondrial membrane depolarization, increases expression of pro-apoptotic genes (bax and bcl-xS) and decreases expression of anti-apoptotic genes (bcl-xL) in rat neutrophils. Glutamine supplementation had a protective effect in the apoptosis induced by a single session of exercise. The mechanism involved in the effect of single session of exercise to induce apoptosis was investigated by measuring expression of p53 and caspase 3 and phosphorylation of p38 mitogen-activated protein kinases (MAPK) and cJun NH(2)-terminal kinase (JNK) in neutrophils from rats supplemented or not with glutamine. Exercise was carried out on a treadmill for 1 h and the rats were killed by decapitation. Neutrophils were obtained by intraperitoneal (i.p.) lavage with PBS, 4 h after injection of oyster glycogen solution. Glutamine supplementation (1g per Kg b.w.) was given by gavage 1 h before the exercise session. Gene expression and protein phosphorylation were then analyzed by reverse transcriptase chain reaction (RT-PCR) and Western blotting, respectively. A single session of exercise increased p38 MAPK and JNK phosphorylation and p53 and caspase 3 expression. Glutamine supplementation partially prevented the increase in p38 MAPK and JNK phosphorylation and p53 expression, and fully abolished the increase in caspase 3 expression. Thus, neutrophil apoptosis induced by a single session of exercise is accompanied by increased p53 and caspase 3 expression and p38 MAPK and JNK phosphorylation. Glutamine supplementation prevents these effects of exercise and reduces apoptosis.

  8. Modulation of p53 and met expression by Krüppel-like factor 8 regulates zebrafish cerebellar development.

    PubMed

    Tsai, Ming-Yuan; Lu, Yu-Fen; Liu, Yu-Hsiu; Lien, Huang-Wei; Huang, Chang-Jen; Wu, Jen-Leih; Hwang, Sheng-Ping L

    2015-09-01

    Krüppel-like factor 8 (Klf8) is a zinc-finger transcription factor implicated in cell proliferation, and cancer cell survival and invasion; however, little is known about its role in normal embryonic development. Here, we show that Klf8 is required for normal cerebellar development in zebrafish embryos. Morpholino knockdown of klf8 resulted in abnormal cerebellar primordium morphology and the induction of p53 in the brain region at 24 hours post-fertilization (hpf). Both p53-dependent reduction of cell proliferation and augmentation of apoptosis were observed in the cerebellar anlage of 24 hpf-klf8 morphants. In klf8 morphants, expression of ptf1a in the ventricular zone was decreased from 48 to 72 hpf; on the other hand, expression of atohla in the upper rhombic lip was unaffected. Consistent with this finding, Purkinje cell development was perturbed and granule cell number was reduced in 72 hpf-klf8 morphants; co-injection of p53 MO(sp) or klf8 mRNA substantially rescued development of cerebellar Purkinje cells in klf8 morphants. Hepatocyte growth factor/Met signaling is known to regulate cerebellar development in zebrafish and mouse. We observed decreased met expression in the tectum and rhombomere 1 of 24 hpf-klf8 morphants, which was largely rescued by co-injection with klf8 mRNA. Moreover, co-injection of met mRNA substantially rescued formation of Purkinje cells in klf8 morphants at 72 hpf. Together, these results demonstrate that Klf8 modulates expression of p53 and met to maintain ptf1a-expressing neuronal progenitors, which are required for the appropriate development of cerebellar Purkinje and granule cells in zebrafish embryos.

  9. Uptake, p53 Pathway Activation, and Cytotoxic Responses for Co(II) and Ni(II) in Human Lung Cells: Implications for Carcinogenicity

    PubMed Central

    Luczak, Michal W.; Zhitkovich, Anatoly

    2013-01-01

    Cobalt(II) and nickel(II) ions display similar chemical properties and act as hypoxia mimics in cells. However, only soluble Co(II) but not soluble Ni(II) is carcinogenic by inhalation. To explore potential reasons for these differences, we examined responses of human lung cells to both metals. We found that Co(II) showed almost 8 times higher accumulation than Ni(II) in H460 cells but caused a less efficient activation of the transcriptional factor p53 as measured by its accumulation, Ser15 phosphorylation, and target gene expression. Unlike Ni(II), Co(II) was ineffective in downregulating the p53 inhibitor MDM4 (HDMX). Co(II)-treated cells continued DNA replication at internal doses that caused massive apoptosis by Ni(II). Apoptosis and the overall cell death by Co(II) were delayed and weaker than by Ni(II). Inhibition of caspases but not programmed necrosis pathways suppressed Co(II)-induced cell death. Knockdown of p53 produced 50%–60% decreases in activation of caspases 3/7 and expression of 2 most highly upregulated proapoptotic genes PUMA and NOXA by Co(II). Overall, p53-mediated apoptosis accounted for 55% cell death by Co(II), p53-independent apoptosis for 20%, and p53/caspase-independent mechanisms for 25%. Similar to H460, normal human lung fibroblasts and primary human bronchial epithelial cells had several times higher accumulation of Co(II) than Ni(II) and showed a delayed and weaker caspase activation by Co(II). Thus, carcinogenicity of soluble Co(II) could be related to high survival of metal-loaded cells, which permits accumulation of genetic and epigenetic abnormalities. High cytotoxicity of soluble Ni(II) causes early elimination of damaged cells and is expected to be cancer suppressive. PMID:24068677

  10. p53 Cellular Localization and Function in Neuroblastoma

    PubMed Central

    Tweddle, Deborah A.; Malcolm, Archie J.; Cole, Michael; Pearson, Andrew D.J.; Lunec, John

    2001-01-01

    This study investigated the hypothesis that p53 accumulation in neuroblastoma, in the absence of mutation, is associated with functional inactivation, which interferes with downstream mediators of p53 function. To test this hypothesis, p53 expression, location, and functional integrity was examined in neuroblastoma by irradiating 6 neuroblastoma cell lines and studying the effects on p53 transcriptional function, cell cycle arrest, and induction of apoptosis, together with the transcriptional function of p53 after irradiation in three ex vivo primary, untreated neuroblastoma tumors. p53 sequencing showed five neuroblastoma cell lines, two of which were MYCN-amplified, and that all of the tumors were wild-type for p53. p53 was found to be predominantly nuclear before and after irradiation and to up-regulate the p53 responsive genes WAF1 and MDM2 in wild-type p53 cell lines and a poorly-differentiated neuroblastoma, but not a differentiating neuroblastoma or the ganglioneuroblastoma part of a nodular ganglioneuroblastoma in short term culture. This suggests intact p53 transcriptional activity in proliferating neuroblastoma. Irradiation of wild-type p53 neuroblastoma cell lines led to G1 cell cycle arrest in cell lines without MYCN amplification, but not in those with MYCN amplification, despite induction of WAF1. This suggests MYCN amplification may alter downstream mediators of p53 function in neuroblastoma. PMID:11395384

  11. The p53–Mdm2 interaction and the E3 ligase activity of Mdm2/Mdm4 are conserved from lampreys to humans

    PubMed Central

    Coffill, Cynthia R.; Lee, Alison P.; Siau, Jia Wei; Chee, Sharon M.; Joseph, Thomas L.; Tan, Yaw Sing; Madhumalar, Arumugam; Tay, Boon-Hui; Brenner, Sydney; Verma, Chandra S.; Ghadessy, Farid J.; Venkatesh, Byrappa; Lane, David P.

    2016-01-01

    The extant jawless vertebrates, represented by lampreys and hagfish, are the oldest group of vertebrates and provide an interesting genomic evolutionary pivot point between invertebrates and jawed vertebrates. Through genome analysis of one of these jawless vertebrates, the Japanese lamprey (Lethenteron japonicum), we identified all three members of the important p53 transcription factor family—Tp53, Tp63, and Tp73—as well as the Mdm2 and Mdm4 genes. These genes and their products are significant cellular regulators in human cancer, and further examination of their roles in this most distant vertebrate relative sheds light on their origin and coevolution. Their important role in response to DNA damage has been highlighted by the discovery of multiple copies of the Tp53 gene in elephants. Expression of lamprey p53, Mdm2, and Mdm4 proteins in mammalian cells reveals that the p53–Mdm2 interaction and the Mdm2/Mdm4 E3 ligase activity existed in the common ancestor of vertebrates and have been conserved for >500 million years of vertebrate evolution. Lamprey Mdm2 degrades human p53 with great efficiency, but this interaction is not blocked by currently available small molecule inhibitors of the human HDM2 protein, suggesting utility of lamprey Mdm2 in the study of the human p53 signaling pathway. PMID:26798135

  12. The p53-Mdm2 interaction and the E3 ligase activity of Mdm2/Mdm4 are conserved from lampreys to humans.

    PubMed

    Coffill, Cynthia R; Lee, Alison P; Siau, Jia Wei; Chee, Sharon M; Joseph, Thomas L; Tan, Yaw Sing; Madhumalar, Arumugam; Tay, Boon-Hui; Brenner, Sydney; Verma, Chandra S; Ghadessy, Farid J; Venkatesh, Byrappa; Lane, David P

    2016-02-01

    The extant jawless vertebrates, represented by lampreys and hagfish, are the oldest group of vertebrates and provide an interesting genomic evolutionary pivot point between invertebrates and jawed vertebrates. Through genome analysis of one of these jawless vertebrates, the Japanese lamprey (Lethenteron japonicum), we identified all three members of the important p53 transcription factor family--Tp53, Tp63, and Tp73--as well as the Mdm2 and Mdm4 genes. These genes and their products are significant cellular regulators in human cancer, and further examination of their roles in this most distant vertebrate relative sheds light on their origin and coevolution. Their important role in response to DNA damage has been highlighted by the discovery of multiple copies of the Tp53 gene in elephants. Expression of lamprey p53, Mdm2, and Mdm4 proteins in mammalian cells reveals that the p53-Mdm2 interaction and the Mdm2/Mdm4 E3 ligase activity existed in the common ancestor of vertebrates and have been conserved for >500 million years of vertebrate evolution. Lamprey Mdm2 degrades human p53 with great efficiency, but this interaction is not blocked by currently available small molecule inhibitors of the human HDM2 protein, suggesting utility of lamprey Mdm2 in the study of the human p53 signaling pathway.

  13. p28-Mediated Activation of p53 in G2-M Phase of the Cell Cycle Enhances the Efficacy of DNA Damaging and Antimitotic Chemotherapy.

    PubMed

    Yamada, Tohru; Das Gupta, Tapas K; Beattie, Craig W

    2016-04-15

    p28 is an anionic cell-penetrating peptide of 28 amino acids that activates wild-type and mutated p53, leading subsequently to selective inhibition of CDK2 and cyclin A expression and G2-M cell-cycle arrest. In this study, we investigated the cytotoxic effects of p28 treatment alone and in combination with DNA-damaging and antimitotic agents on human cancer cells. p28 enhanced the cytotoxic activity of lower concentrations (IC20-50) of DNA-damaging drugs (doxorubicin, dacarbazine, temozolamide) or antimitotic drugs (paclitaxel and docetaxel) in a variety of cancer cells expressing wild-type or mutated p53. Mechanistic investigations revealed that p28 induced a post-translational increase in the expression of wild-type or mutant p53 and p21, resulting in cell-cycle inhibition at the G2-M phase. The enhanced activity of these anticancer agents in combination with p28 was facilitated through the p53/p21/CDK2 pathway. Taken together, these results highlight a new approach to maximize the efficacy of chemotherapeutic agents while reducing dose-related toxicity. Cancer Res; 76(8); 2354-65. ©2016 AACR. PMID:26921335

  14. Modification of tumor cell exosome content by transfection with wt-p53 and microRNA-125b expressing plasmid DNA and its effect on macrophage polarization.

    PubMed

    Trivedi, M; Talekar, M; Shah, P; Ouyang, Q; Amiji, M

    2016-01-01

    Exosomes are responsible for intercellular communication between tumor cells and others in the tumor microenvironment. These microvesicles promote oncogensis and can support towards metastasis by promoting a pro-tumorogenic environment. Modifying the exosomal content and exosome delivery are emerging novel cancer therapies. However, the clinical translation is limited due to feasibility of isolating and delivery of treated exosomes as well as an associated immune response in patients. In this study, we provide proof-of-concept for a novel treatment approach for manipulating exosomal content by genetic transfection of tumor cells using dual-targeted hyaluronic acid-based nanoparticles. Following transfection with plasmid DNA encoding for wild-type p53 (wt-p53) and microRNA-125b (miR-125b), we evaluate the transgene expression in the SK-LU-1 cells and in the secreted exosomes. Furthermore, along with modulation of wt-p53 and miR-125b expression, we also show that the exosomes (i.e., wt-p53/exo, miR-125b/exo and combination/exo) have a reprogramed global miRNA profile. The miRNAs in the exosomes were mainly related to the activation of genes associated with apoptosis as well as p53 signaling. More importantly, these altered miRNA levels in the exosomes could mediate macrophage repolarization towards a more pro-inflammatory/antitumor M1 phenotype. However, further studies, especially in vivo studies, are warranted to assess the direct influence of such macrophage reprogramming on cancer cells and oncogenesis post-treatment. The current study provides a novel platform enabling the development of therapeutic strategies affecting not only the cancer cells but also the tumor microenvironment by utilizing the 'bystander effect' through genetic transfer with secreted exosomes. Such modification could also support antitumor environment leading to decreased oncogenesis. PMID:27500388

  15. Individual variation in p53 and Cip1 expression profiles in normal human fibroblast strains following exposure to high-let radiation

    SciTech Connect

    Carpenter, T.R.; Johnson, N.F.; Gilliland, F.D.

    1995-12-01

    Exposure to {alpha}-particles emitted by radon progeny appears to be the second-leading cause of lung cancer mortality. However, individual susceptibility to the carcinogenic effects of {alpha}-particles remains poorly characterized. Variation in susceptibility to cancer produced by certian classes of DNA-damaging chemicals is suspected to involve differences in metabolic activation and detoxication. Susceptibility to {alpha}-particle-induced cancer may involve variations in capacity or opportunity to repair DNA damage. Subtle variations in DNA repair capacity would more likely explain radon-related lung cancer susceptibility. The p53 tumor suppressor protein accumulates as a cellular response to DNA damage from ionizing radiation and regulates arrest in the G{sub 1} portion of the cell cycle. Arrest in G{sub 1} portion of the cell cycle. While upstream regulation of p53 protein stability is poorly understood, variations in the ability to accumulate p53 following DNA damage represent potential variations in lung cancer susceptibility related to radon progeny. Further, transcription of the cell-cycle regulatory gene Cip1 is regulated by p53 and increases following ionizing radiation. Therefore, variations in the expression of Cip1 following {alpha}-particle exposure may also be a susceptibility factor in radon-related lung cancers. The purpose of the present investigation was to measure p53 and Cip1 protein induction following {alpha}-particle exposure of fibroblast lines from nine individuals to determine if there were significant variations. The expression of Cip1 protein indicates the differences in response are biologically relevant.

  16. Modification of tumor cell exosome content by transfection with wt-p53 and microRNA-125b expressing plasmid DNA and its effect on macrophage polarization

    PubMed Central

    Trivedi, M; Talekar, M; Shah, P; Ouyang, Q; Amiji, M

    2016-01-01

    Exosomes are responsible for intercellular communication between tumor cells and others in the tumor microenvironment. These microvesicles promote oncogensis and can support towards metastasis by promoting a pro-tumorogenic environment. Modifying the exosomal content and exosome delivery are emerging novel cancer therapies. However, the clinical translation is limited due to feasibility of isolating and delivery of treated exosomes as well as an associated immune response in patients. In this study, we provide proof-of-concept for a novel treatment approach for manipulating exosomal content by genetic transfection of tumor cells using dual-targeted hyaluronic acid-based nanoparticles. Following transfection with plasmid DNA encoding for wild-type p53 (wt-p53) and microRNA-125b (miR-125b), we evaluate the transgene expression in the SK-LU-1 cells and in the secreted exosomes. Furthermore, along with modulation of wt-p53 and miR-125b expression, we also show that the exosomes (i.e., wt-p53/exo, miR-125b/exo and combination/exo) have a reprogramed global miRNA profile. The miRNAs in the exosomes were mainly related to the activation of genes associated with apoptosis as well as p53 signaling. More importantly, these altered miRNA levels in the exosomes could mediate macrophage repolarization towards a more pro-inflammatory/antitumor M1 phenotype. However, further studies, especially in vivo studies, are warranted to assess the direct influence of such macrophage reprogramming on cancer cells and oncogenesis post-treatment. The current study provides a novel platform enabling the development of therapeutic strategies affecting not only the cancer cells but also the tumor microenvironment by utilizing the ‘bystander effect' through genetic transfer with secreted exosomes. Such modification could also support antitumor environment leading to decreased oncogenesis. PMID:27500388

  17. Neoangiogenesis and p53 protein in lung cancer: their prognostic role and their relation with vascular endothelial growth factor (VEGF) expression.

    PubMed

    Fontanini, G; Vignati, S; Lucchi, M; Mussi, A; Calcinai, A; Boldrini, L; Chiné, S; Silvestri, V; Angeletti, C A; Basolo, F; Bevilacqua, G

    1997-01-01

    Following up-regulation of an angiogenesis inhibitor by the wild-type p53 protein proven recently, we have analysed on the one hand the prognostic impact of microvessel count (MC) and p53 protein overexpression in non-small-cell lung carcinoma (NSCLC) progression and, on the other hand, the inter-relation between the microvascular pattern and the p53 protein expression. Moreover, we assessed the expression of vascular endothelial growth factor (VEGF), one of the pivotal mediators of tumour angiogenesis, in order to investigate its relation to p53 protein expression and MC. Tumours from 73 patients resected for NSCLC between March 1991 and April 1992 (median follow-up 47 months, range 32-51 months) were analysed using an immunohistochemical method. In univariate analysis, MC and p53 accumulation were shown to affect metastatic nodal involvement, recurrence and death significantly. Multiple logistic regression analysis showed an important prognostic influence of MC and nodal status on overall (P = 0.0009; P = 0.01) and disease-free survival (P = 0.0001; P = 0.03). Interestingly, a strong statistical association was observed between p53 nuclear accumulation and MC (P = 0.0003). The same inter-relationship was found in non-squamous histotype (P = 0.002). When we analysed the concomitant influence of MC and p53 expression on overall survival, we were able to confirm a real predominant role of MC in comparison with p53. With regard to VEGF expression, p53-negative and lowly vascularized tumours showed a mean VEGF expression significantly lower than p53-positive and highly vascularized cancers (P = 0.02). These results underline the prognostic impact of MC and p53 protein accumulation in NSCLC and their reciprocal inter-relationship, supporting the hypothesis of a wild-type p53 regulation on the angiogenetic process through a VEGF up-regulation.

  18. Human herpes virus 8 (HHV-8) in Kaposi's sarcoma: lack of association with Bcl-2 and p53 protein expression.

    PubMed Central

    Kennedy, M M; O'Leary, J J; Oates, J L; Lucas, S B; Howells, D D; Picton, S; McGee, J O

    1998-01-01

    AIMS: Human herpes virus 8 (HHV-8) is the infectious agent implicated in the pathogenesis of Kaposi's sarcoma, although its mode of action is unclear. Recent work indicates that the HHV-8 genome encodes a viral Bcl-2 homologue (v-Bcl-2). The aim of this study was to explore Bcl-2 expression in Kaposi's sarcoma using a unique set of HHV-8 positive and negative cases, and to determine whether there is a relation with p53 expression. METHODS: Up to 18 specimens from 17 patients were selected. HHV-8 status was determined using nested polymerase chain reaction (PCR) to the open reading frame (ORF) 26, with further confirmation by TaqMan PCR. In addition, Bcl-2 and p53 immunohistochemistry were performed using standard protocols. RESULTS: The results suggest that Bcl-2 and p