Science.gov

Sample records for activity patterns observed

  1. 19th century auroral observations reveal solar activity patterns

    NASA Astrophysics Data System (ADS)

    Silverman, Sam

    Growing interest in the aurora in the early part of the eighteenth century, which resulted from the spectacular reappearance of the aurora in 1707 and 1716, followed a relative scarcity of great auroras during the Maunder minimum, a period of prolonged reduced solar activity from about 1645-1715. Observations in the early eighteenth century led to questions about the geographical extent, nature, and temporal variability of the auroras. Typically, such observations were included as part of recorded meteorological notations, though occasionally early astronomers, such as Tycho Brahe in the 1590s, included auroras in their observations. Meteorological observations were important because of the effects of weather and climate on agriculture, and, according to the belief at the time, on disease.

  2. Patterns of fire activity over Indonesia and Malaysia from polar and geostationary satellite observations

    NASA Astrophysics Data System (ADS)

    Hyer, Edward J.; Reid, Jeffrey S.; Prins, Elaine M.; Hoffman, Jay P.; Schmidt, Christopher C.; Miettinen, Jukka I.; Giglio, Louis

    2013-03-01

    Biomass burning patterns over the Maritime Continent of Southeast Asia are examined using a new active fire detection product based on application of the Wildfire Automated Biomass Burning Algorithm (WF_ABBA) to data from the imagers on the MTSAT geostationary satellites operated by the Japanese space agency JAXA. Data from MTSAT-1R and MTSAT-2 covering 34 months from September 2008 to July 2011 are examined for a study region consisting of Indonesia, Malaysia, and nearby environs. The spatial and temporal distributions of fires detected in the MTSAT WF_ABBA product are described and compared with active fire observations from MODIS MOD14 data. Land cover distributions for the two instruments are examined using a new 250 m land cover product from the National University of Singapore. The two products show broadly similar patterns of fire activity, land cover distribution of fires, and pixel fire radiative power (FRP). However, the MTSAT WF_ABBA data differ from MOD14 in important ways. Relative to MODIS, the MTSAT WF_ABBA product has lower overall detection efficiency, but more fires detected due to more frequent looks, a greater relative fraction of fires in forest and a lower relative fraction of fires in open areas, and significantly higher single-pixel retrieved FRP. The differences in land cover distribution and FRP between the MTSAT and MODIS products are shown to be qualitatively consistent with expectations based on pixel size and diurnal sampling. The MTSAT WF_ABBA data are used to calculate coverage-corrected diurnal cycles of fire for different regions within the study area. These diurnal cycles are preliminary but demonstrate that the fraction of diurnal fire activity sampled by the two MODIS sensors varies significantly by region and vegetation type. Based on the results from comparison of the two fire products, a series of steps is outlined to account for some of the systematic biases in each of these satellite products in order to produce a

  3. Brain activation patterns resulting from learning letter forms through active self-production and passive observation in young children

    PubMed Central

    Kersey, Alyssa J.; James, Karin H.

    2013-01-01

    Although previous literature suggests that writing practice facilitates neural specialization for letters, it is unclear if this facilitation is driven by the perceptual feedback from the act of writing or the actual execution of the motor act. The present study addresses this issue by measuring the change in BOLD signal in response to hand-printed letters, unlearned cursive letters, and cursive letters that 7-year-old children learned actively, by writing, and passively, by observing an experimenter write. Brain activation was assessed using fMRI while perceiving letters—in both cursive and manuscript forms. Results showed that active training led to increased recruitment of the sensori-motor network associated with letter perception as well as the insula and claustrum, but passive observation did not. This suggests that perceptual networks for newly learned cursive letters are driven by motor execution rather than by perceptual feedback. PMID:24069007

  4. The three-dimensional pattern of crustal deformation associated with active normal fault systems observed using continuous GPS geodesy

    NASA Astrophysics Data System (ADS)

    Bennett, R. A.; Hreinsdottir, S.

    2009-12-01

    Geological examples of shallow dipping normal faults with large displacements are exposed at numerous locations throughout the world and it is widely recognized that extensional deformation at brittle crustal levels is most efficiently accomplished by slip across such structures. It has previously been shown that lower dip angles reduce the regional stresses required to drive large horizontal displacements. Nevertheless, the traditional theory of fault mechanics—based on Anderson’s classification of stress regimes, the Coulomb failure criterion, and Byerlee’s friction law—precludes such faults from slipping at low angle. Observational support for this traditional theory includes the absence of large unequivocally low-angle normal fault earthquakes in the global catalog; all well-determined normal fault earthquakes appear to have occurred on moderate to steeply dipping planes. However, precise measurements of 3D crustal motions based on continuous GPS in central Italy and Utah reveal deformation patterns across active normal fault systems that are inconsistent with active slip across steeply dipping planes. Instead, the combination of observed horizontal and vertical surface motions are consistent with slip across low angle surfaces independently imaged in the subsurface by seismic reflection and other geophysical data. For the Alto Tiberina fault in central Italy, active aseismic creep occurs at shallow crustal levels, most likely within the brittle-frictional regime at which Andersonian-Byerlee fault mechanics should be applicable. The actively creeping portion of the fault inferred using GPS geodesy correlates well with the observed pattern of micro-seismicity, which concentrates along the inferred subsurface fault plane. GPS measurements across the greater Wasatch fault zone in the vicinity of Salt Lake City, Utah, reveal crustal motions consistent with aseismic displacement across a shallow dipping fault or sub-horizontal shear zone at mid

  5. PATTERNS OF NANOFLARE STORM HEATING EXHIBITED BY AN ACTIVE REGION OBSERVED WITH SOLAR DYNAMICS OBSERVATORY/ATMOSPHERIC IMAGING ASSEMBLY

    SciTech Connect

    Viall, Nicholeen M.; Klimchuk, James A.

    2011-09-01

    It is largely agreed that many coronal loops-those observed at a temperature of about 1 MK-are bundles of unresolved strands that are heated by storms of impulsive nanoflares. The nature of coronal heating in hotter loops and in the very important but largely ignored diffuse component of active regions is much less clear. Are these regions also heated impulsively, or is the heating quasi-steady? The spectacular new data from the Atmospheric Imaging Assembly (AIA) telescopes on the Solar Dynamics Observatory offer an excellent opportunity to address this question. We analyze the light curves of coronal loops and the diffuse corona in six different AIA channels and compare them with the predicted light curves from theoretical models. Light curves in the different AIA channels reach their peak intensities with predictable orderings as a function the nanoflare storm properties. We show that while some sets of light curves exhibit clear evidence of cooling after nanoflare storms, other cases are less straightforward to interpret. Complications arise because of line-of-sight integration through many different structures, the broadband nature of the AIA channels, and because physical properties can change substantially depending on the magnitude of the energy release. Nevertheless, the light curves exhibit predictable and understandable patterns consistent with impulsive nanoflare heating.

  6. Patterns in Active Nematics

    NASA Astrophysics Data System (ADS)

    Yeomans, Julia M.

    Active systems, from bacterial suspensions to cellular monolayers, are continuously driven out of equilibrium by local injection of energy from their constituent elements and exhibit turbulent-like, chaotic patterns. We describe how active systems can be stabilised by tuning a physical feature of the system, friction. We demonstrate how the crossover between wet active systems, whose behaviour is dominated by hydrodynamics, and dry active matter where any flow is screened, can be achieved by using friction as a control parameter and demonstrate vortex ordering at the wet-dry crossover. We show that the self organisation of vortices into lattices is accompanied by the spatial ordering of topological defects leading to active crystal-like structures. The emergence of vortex lattices which leads to the positional ordering of topological defects may be a useful step towards the design and control of active materials.

  7. Microgravity effects on 'postural' muscle activity patterns

    NASA Technical Reports Server (NTRS)

    Layne, Charles S.; Spooner, Brian S.

    1994-01-01

    Changes in neuromuscular activation patterns associated with movements made in microgravity can contribute to muscular atrophy. Using electromyography (EMG) to monitor 'postural' muscles, it was found that free floating arm flexions made in microgravity were not always preceded by neuromuscular activation patterns normally observed during movements made in unit gravity. Additionally, manipulation of foot sensory input during microgravity arm flexion impacted upon anticipatory postural muscle activation.

  8. PM ACTIVITY PATTERN RESEARCH

    EPA Science Inventory

    Human activity/uptake rate data are necessary to estimate potential human exposure and intake dose to environmental pollutants and to refine human exposure models. Personal exposure monitoring studies have demonstrated the critical role that activities play in explaining and pre...

  9. HUMAN EXPOSURE ACTIVITY PATTERNS

    EPA Science Inventory

    Human activity/uptake rate data are necessary to estimate potential human exposure and intake dose to environmental pollutants and to refine human exposure models. Personal exposure monitoring studies have demonstrated the critical role that activities play in explaining and pre...

  10. Physical Activity Patterns during Pregnancy

    PubMed Central

    Borodulin, Katja; Evenson, Kelly R; Wen, Fang; Herring, Amy H.; Benson, Aimee

    2012-01-01

    Purpose The aim of the study was to describe the mode, frequency, duration, and intensity of physical activity among pregnant women, to explore whether these women reached the recommended levels of activity, and to explore how these patterns changed during pregnancy. Methods This study, as part of the third phase of the Pregnancy, Infection, and Nutrition Study, investigated physical activity among 1482 pregnant women. A recall of the different modes, frequency, duration, and intensity of physical activity during the past week was assessed in two telephone interviews at 17–22 and 27–30 weeks’ gestation. Results Most women reported some type of physical activity during both time periods. Child and adult care giving, indoor household, and recreational activities constituted the largest proportion of total reported activity. The overall physical activity level decreased during pregnancy, particularly in care giving, outdoor household, and recreational activity. Women who were active during the second and third trimesters reported higher levels of activity in all modes of activity than those who became active or inactive during pregnancy. The majority did not reach the recommended level of physical activity. Conclusion These data suggest that self-reported physical activity decreased from the second to third trimester and only a small proportion reached the recommended level of activity during pregnancy. Further research is needed to explore if physical activity rebounds during the postpartum period. PMID:18845974

  11. Neutrino observables from predictive flavour patterns

    NASA Astrophysics Data System (ADS)

    Cebola, Luís M.; Emmanuel-Costa, David; Felipe, Ricardo González

    2016-03-01

    We look for predictive flavour patterns of the effective Majorana neutrino mass matrix that are compatible with current neutrino oscillation data. Our search is based on the assumption that the neutrino mass matrix contains equal elements and a minimal number of parameters, in the flavour basis where the charged lepton mass matrix is diagonal and real. Three unique patterns that can successfully explain neutrino observables at the 3\\upsigma confidence level with just three physical parameters are presented. Neutrino textures described by four and five parameters are also studied. The predictions for the lightest neutrino mass, the effective mass parameter in neutrinoless double beta decays and for the CP-violating phases in the leptonic mixing are given.

  12. Earthquake networks based on similar activity patterns.

    PubMed

    Tenenbaum, Joel N; Havlin, Shlomo; Stanley, H Eugene

    2012-10-01

    Earthquakes are a complex spatiotemporal phenomenon, the underlying mechanism for which is still not fully understood despite decades of research and analysis. We propose and develop a network approach to earthquake events. In this network, a node represents a spatial location while a link between two nodes represents similar activity patterns in the two different locations. The strength of a link is proportional to the strength of the cross correlation in activities of two nodes joined by the link. We apply our network approach to a Japanese earthquake catalog spanning the 14-year period 1985-1998. We find strong links representing large correlations between patterns in locations separated by more than 1000 kilometers, corroborating prior observations that earthquake interactions have no characteristic length scale. We find network characteristics not attributable to chance alone, including a large number of network links, high node assortativity, and strong stability over time. PMID:23214652

  13. Dynamic labyrinthine pattern in an active liquid film.

    PubMed

    Chen, Yong-Jun; Nagamine, Yuko; Yoshikawa, Kenichi

    2009-11-01

    We report the generation of a dynamic labyrinthine pattern in an active alcohol film. A dynamic labyrinthine pattern is formed along the contact line of air/pentanol/aqueous three phases. The contact line shows a clear time-dependent change with regard to both perimeter and area of a domain. An autocorrelation analysis of time development of the dynamics of the perimeter and area revealed a strong geometric correlation between neighboring patterns. The pattern showed autoregressive behavior. The behavior of the dynamic pattern is strikingly different from those of stationary labyrinthine patterns. The essential aspects of the observed dynamic pattern are reproduced by a diffusion-controlled geometric model. PMID:20365076

  14. Visual Templates in Pattern Generalization Activity

    ERIC Educational Resources Information Center

    Rivera, F. D.

    2010-01-01

    In this research article, I present evidence of the existence of visual templates in pattern generalization activity. Such templates initially emerged from a 3-week design-driven classroom teaching experiment on pattern generalization involving linear figural patterns and were assessed for existence in a clinical interview that was conducted four…

  15. Dynamic patterns of academic forum activities

    NASA Astrophysics Data System (ADS)

    Zhao, Zhi-Dan; Gao, Ya-Chun; Cai, Shi-Min; Zhou, Tao

    2016-11-01

    A mass of traces of human activities show rich dynamic patterns. In this article, we comprehensively investigate the dynamic patterns of 50 thousands of researchers' activities in Sciencenet, the largest multi-disciplinary academic community in China. Through statistical analyses, we found that (i) there exists a power-law scaling between the frequency of visits to an academic forum and the number of corresponding visitors, with the exponent being about 1.33; (ii) the expansion process of academic forums obeys the Heaps' law, namely the number of distinct visited forums to the number of visits grows in a power-law form with exponent being about 0.54; (iii) the probability distributions of time intervals and the number of visits taken to revisit the same academic forum both follow power-laws, indicating the existence of memory effect in academic forum activities. On the basis of these empirical results, we propose a dynamic model that incorporates the exploration, preferential return with memory effect, which can well reproduce the observed scaling laws.

  16. Pattern activation/recognition theory of mind

    PubMed Central

    du Castel, Bertrand

    2015-01-01

    In his 2012 book How to Create a Mind, Ray Kurzweil defines a “Pattern Recognition Theory of Mind” that states that the brain uses millions of pattern recognizers, plus modules to check, organize, and augment them. In this article, I further the theory to go beyond pattern recognition and include also pattern activation, thus encompassing both sensory and motor functions. In addition, I treat checking, organizing, and augmentation as patterns of patterns instead of separate modules, therefore handling them the same as patterns in general. Henceforth I put forward a unified theory I call “Pattern Activation/Recognition Theory of Mind.” While the original theory was based on hierarchical hidden Markov models, this evolution is based on their precursor: stochastic grammars. I demonstrate that a class of self-describing stochastic grammars allows for unifying pattern activation, recognition, organization, consistency checking, metaphor, and learning, into a single theory that expresses patterns throughout. I have implemented the model as a probabilistic programming language specialized in activation/recognition grammatical and neural operations. I use this prototype to compute and present diagrams for each stochastic grammar and corresponding neural circuit. I then discuss the theory as it relates to artificial network developments, common coding, neural reuse, and unity of mind, concluding by proposing potential paths to validation. PMID:26236228

  17. Pattern activation/recognition theory of mind.

    PubMed

    du Castel, Bertrand

    2015-01-01

    In his 2012 book How to Create a Mind, Ray Kurzweil defines a "Pattern Recognition Theory of Mind" that states that the brain uses millions of pattern recognizers, plus modules to check, organize, and augment them. In this article, I further the theory to go beyond pattern recognition and include also pattern activation, thus encompassing both sensory and motor functions. In addition, I treat checking, organizing, and augmentation as patterns of patterns instead of separate modules, therefore handling them the same as patterns in general. Henceforth I put forward a unified theory I call "Pattern Activation/Recognition Theory of Mind." While the original theory was based on hierarchical hidden Markov models, this evolution is based on their precursor: stochastic grammars. I demonstrate that a class of self-describing stochastic grammars allows for unifying pattern activation, recognition, organization, consistency checking, metaphor, and learning, into a single theory that expresses patterns throughout. I have implemented the model as a probabilistic programming language specialized in activation/recognition grammatical and neural operations. I use this prototype to compute and present diagrams for each stochastic grammar and corresponding neural circuit. I then discuss the theory as it relates to artificial network developments, common coding, neural reuse, and unity of mind, concluding by proposing potential paths to validation. PMID:26236228

  18. Circulation patterns in active lava lakes

    NASA Astrophysics Data System (ADS)

    Redmond, T. C.; Lev, E.

    2014-12-01

    Active lava lakes provide a unique window into magmatic conduit processes. We investigated circulation patterns of 4 active lava lakes: Kilauea's Halemaumau crater, Mount Erebus, Erta Ale and Nyiragongo, and in an artificial "lava lake" constructed at the Syracuse University Lava Lab. We employed visual and thermal video recordings collected at these volcanoes and use computer vision techniques to extract time-dependent, two-dimensional surface velocity maps. The large amount of data available from Halemaumau enabled us to identify several characteristic circulation patterns. One such pattern is a rapid acceleration followed by rapid deceleration, often to a level lower than the pre-acceleration level, and then a slow recovery. Another pattern is periodic asymmetric peaks of gradual acceleration and rapid deceleration, or vice versa, previously explained by gas pistoning. Using spectral analysis, we find that the dominant period of circulation cycles at approximately 30 minutes, 3 times longer than the dominant period identified previously for Mount Erebus. Measuring a complete surface velocity field allowed us to map and follow locations of divergence and convergence, therefore upwelling and downwelling, thus connecting the surface flow with that at depth. At Nyiragongo, the location of main upwelling shifts gradually, yet is usually at the interior of the lake, for Erebus it is usually along the perimeter yet often there is catastrophic downwelling at the interior; For Halemaumau upwelling/downwelling position is almost always on the perimeter. In addition to velocity fields, we developed an automated tool for counting crustal plates at the surface of the lava lakes, and found a correlation, and a lag time, between changes if circulation vigor and the average size of crustal plates. Circulation in the artificial basaltic lava "lake" was limited by its size and degree of foaming, yet we measured surface velocities and identify patterns. Maximum surface velocity

  19. Pattern Formation on Networks: from Localised Activity to Turing Patterns

    PubMed Central

    McCullen, Nick; Wagenknecht, Thomas

    2016-01-01

    Networks of interactions between competing species are used to model many complex systems, such as in genetics, evolutionary biology or sociology and knowledge of the patterns of activity they can exhibit is important for understanding their behaviour. The emergence of patterns on complex networks with reaction-diffusion dynamics is studied here, where node dynamics interact via diffusion via the network edges. Through the application of a generalisation of dynamical systems analysis this work reveals a fundamental connection between small-scale modes of activity on networks and localised pattern formation seen throughout science, such as solitons, breathers and localised buckling. The connection between solutions with a single and small numbers of activated nodes and the fully developed system-scale patterns are investigated computationally using numerical continuation methods. These techniques are also used to help reveal a much larger portion of of the full number of solutions that exist in the system at different parameter values. The importance of network structure is also highlighted, with a key role being played by nodes with a certain so-called optimal degree, on which the interaction between the reaction kinetics and the network structure organise the behaviour of the system. PMID:27273339

  20. Pattern Formation on Networks: from Localised Activity to Turing Patterns

    NASA Astrophysics Data System (ADS)

    McCullen, Nick; Wagenknecht, Thomas

    2016-06-01

    Networks of interactions between competing species are used to model many complex systems, such as in genetics, evolutionary biology or sociology and knowledge of the patterns of activity they can exhibit is important for understanding their behaviour. The emergence of patterns on complex networks with reaction-diffusion dynamics is studied here, where node dynamics interact via diffusion via the network edges. Through the application of a generalisation of dynamical systems analysis this work reveals a fundamental connection between small-scale modes of activity on networks and localised pattern formation seen throughout science, such as solitons, breathers and localised buckling. The connection between solutions with a single and small numbers of activated nodes and the fully developed system-scale patterns are investigated computationally using numerical continuation methods. These techniques are also used to help reveal a much larger portion of of the full number of solutions that exist in the system at different parameter values. The importance of network structure is also highlighted, with a key role being played by nodes with a certain so-called optimal degree, on which the interaction between the reaction kinetics and the network structure organise the behaviour of the system.

  1. Pattern Formation on Networks: from Localised Activity to Turing Patterns.

    PubMed

    McCullen, Nick; Wagenknecht, Thomas

    2016-01-01

    Networks of interactions between competing species are used to model many complex systems, such as in genetics, evolutionary biology or sociology and knowledge of the patterns of activity they can exhibit is important for understanding their behaviour. The emergence of patterns on complex networks with reaction-diffusion dynamics is studied here, where node dynamics interact via diffusion via the network edges. Through the application of a generalisation of dynamical systems analysis this work reveals a fundamental connection between small-scale modes of activity on networks and localised pattern formation seen throughout science, such as solitons, breathers and localised buckling. The connection between solutions with a single and small numbers of activated nodes and the fully developed system-scale patterns are investigated computationally using numerical continuation methods. These techniques are also used to help reveal a much larger portion of of the full number of solutions that exist in the system at different parameter values. The importance of network structure is also highlighted, with a key role being played by nodes with a certain so-called optimal degree, on which the interaction between the reaction kinetics and the network structure organise the behaviour of the system. PMID:27273339

  2. Patterns of Flows in an Intermediate Prominence Observed by Hinode

    NASA Astrophysics Data System (ADS)

    Ahn, Kwangsu; Chae, Jongchul; Cao, Wenda; Goode, Philip R.

    2010-09-01

    The investigation of plasma flows in filaments/prominences gives us clues to understanding their magnetic structures. We studied the patterns of flows in an intermediate prominence observed by Hinode/SOT. By examining a time series of Hα images and Ca II H images, we have found horizontal flows in the spine and vertical flows in the barb. Both of these flows have a characteristic speed of 10-20 km s-1. The horizontal flows displayed counterstreaming. Our detailed investigation revealed that most of the moving fragments in fact reversed direction at the end point of the spine near a footpoint close to the associated active region. These returning flows may be one possible explanation of the well-known counterstreaming flows in prominences. In contrast, we have found vertical flows—downward and upward—in the barb. Most of the horizontal flows in the spine seem to switch into vertical flows when they approach the barb, and vice versa. We propose that the net force resulting from a small deviation from magnetohydrostatic equilibrium, where magnetic fields are predominantly horizontal, may drive these patterns of flow. In the prominence studied here, the supposed magnetohydrostatic configuration is characterized by magnetic field lines sagging with angles of 13° and 39° in the spine and the barb, respectively.

  3. Observation of spatio-temporal pattern in magnetised rf plasmas

    NASA Astrophysics Data System (ADS)

    Bandyopadhyay, P.; Sharma, D.; Konopka, U.; Morfill, G.

    2014-02-01

    We address an experimental observation of pattern formation in a magnetised rf plasma. The experiments are carried out in a electrically grounded aluminium chamber which is housed inside a rotatable superconducting magnetic coil. The plasma is formed by applying a rf voltage in parallel plate electrodes in push-pull mode under the background of argon gas. The time evolution of plasma intensity shows that a homogeneous plasma breaks into several concentric radial spatiotemoral bright and dark rings. These rings propagate radially at considerably low pressure and a constant magnetic field. These patterns are observed to trap small dust particles/grains in their potential. Exploiting this property of the patterns, a novel technique to measure the electric field associated with the patterns is described. The resulting estimates of the corresponding field intensity are presented. At other specific discharge parameters the plasma shows a range of special type of characteristic structures observed in certain other chemical, mechanical and biological systems.

  4. Where Do I Look? Preservice Teachers' Classroom Observation Patterns

    ERIC Educational Resources Information Center

    Young, Teresa; Bender-Slack, Delane

    2011-01-01

    During field experiences, preservice teachers are typically required to observe mentor teachers in schools, but what exactly are they seeing? This research examined the patterns and variations that existed with regard to preservice teachers' classroom observations during recent field experiences. Data were collected from 24 preservice teachers…

  5. Young School Children's Recess Physical Activity: Movement Patterns and Preferences

    ERIC Educational Resources Information Center

    Woods, Amelia M.; Graber, Kim C.; Daum, David N.; Gentry, Chris

    2015-01-01

    This study examined physical activity (PA) variables related to recess PA patterns of kindergarten, first and second grade children, and the social preferences and individuals influencing their PA. Data collected (N = 147) used the System of Observing Children's Activity and Relationships during Play (SOCARP) instrument. Children were interviewed.…

  6. Motor patterns during active electrosensory acquisition

    PubMed Central

    Hofmann, Volker; Geurten, Bart R. H.; Sanguinetti-Scheck, Juan I.; Gómez-Sena, Leonel; Engelmann, Jacob

    2014-01-01

    Motor patterns displayed during active electrosensory acquisition of information seem to be an essential part of a sensory strategy by which weakly electric fish actively generate and shape sensory flow. These active sensing strategies are expected to adaptively optimize ongoing behavior with respect to either motor efficiency or sensory information gained. The tight link between the motor domain and sensory perception in active electrolocation make weakly electric fish like Gnathonemus petersii an ideal system for studying sensory-motor interactions in the form of active sensing strategies. Analyzing the movements and electric signals of solitary fish during unrestrained exploration of objects in the dark, we here present the first formal quantification of motor patterns used by fish during electrolocation. Based on a cluster analysis of the kinematic values we categorized the basic units of motion. These were then analyzed for their associative grouping to identify and extract short coherent chains of behavior. This enabled the description of sensory behavior on different levels of complexity: from single movements, over short behaviors to more complex behavioral sequences during which the kinematics alter between different behaviors. We present detailed data for three classified patterns and provide evidence that these can be considered as motor components of active sensing strategies. In accordance with the idea of active sensing strategies, we found categorical motor patterns to be modified by the sensory context. In addition these motor patterns were linked with changes in the temporal sampling in form of differing electric organ discharge frequencies and differing spatial distributions. The ability to detect such strategies quantitatively will allow future research to investigate the impact of such behaviors on sensing. PMID:24904337

  7. A Multiscale Survival Process for Modeling Human Activity Patterns

    PubMed Central

    Zhang, Tianyang; Cui, Peng; Song, Chaoming; Zhu, Wenwu; Yang, Shiqiang

    2016-01-01

    Human activity plays a central role in understanding large-scale social dynamics. It is well documented that individual activity pattern follows bursty dynamics characterized by heavy-tailed interevent time distributions. Here we study a large-scale online chatting dataset consisting of 5,549,570 users, finding that individual activity pattern varies with timescales whereas existing models only approximate empirical observations within a limited timescale. We propose a novel approach that models the intensity rate of an individual triggering an activity. We demonstrate that the model precisely captures corresponding human dynamics across multiple timescales over five orders of magnitudes. Our model also allows extracting the population heterogeneity of activity patterns, characterized by a set of individual-specific ingredients. Integrating our approach with social interactions leads to a wide range of implications. PMID:27023682

  8. North American vegetation patterns observed with the NOAA-7 advanced very high resolution radiometer. [North America

    NASA Technical Reports Server (NTRS)

    Goward, S. N.; Tucker, C. J.; Dye, D. G.

    1985-01-01

    Spectral vegetation index measurements derived from remotely sensed observations show great promise as a means to improve knowledge of land vegetation patterns. The daily, global observations acquired by the advanced very high resolution radiometer, a sensor on the current series of U.S. National Oceanic and Atmospheric Administration meteorological satellites, may be particularly well suited for global studies of vegetation. Preliminary results from analysis of North American observations, extending from April to November 1982, show that the vegetation index patterns observed correspond to the known seasonality of North American natural and cultivated vegetation. Integration of the observations over the growing season produced measurements that are related to net primary productivity patterns of the major North American natural vegetation formations. Regions of intense cultivation were observed as anomalous areas in the integrated growing season measurements. Significant information on seasonality, annual extent and interannual variability of vegetation photosynthetic activity at continental and global scales can be derived from these satellite observations.

  9. EMISSION PATTERNS OF SOLAR TYPE III RADIO BURSTS: STEREOSCOPIC OBSERVATIONS

    SciTech Connect

    Thejappa, G.; Bergamo, M.; MacDowall, R. J. E-mail: mbergamo@umd.edu

    2012-02-01

    Simultaneous observations of solar type III radio bursts obtained by the STEREO A, B, and WIND spacecraft at low frequencies from different vantage points in the ecliptic plane are used to determine their directivity. The heliolongitudes of the sources of these bursts, estimated at different frequencies by assuming that they are located on the Parker spiral magnetic field lines emerging from the associated active regions into the spherically symmetric solar atmosphere, and the heliolongitudes of the spacecraft are used to estimate the viewing angle, which is the angle between the direction of the magnetic field at the source and the line connecting the source to the spacecraft. The normalized peak intensities at each spacecraft R{sub j} = I{sub j} /{Sigma}I{sub j} (the subscript j corresponds to the spacecraft STEREO A, B, and WIND), which are defined as the directivity factors are determined using the time profiles of the type III bursts. It is shown that the distribution of the viewing angles divides the type III bursts into: (1) bursts emitting into a very narrow cone centered around the tangent to the magnetic field with angular width of {approx}2 Degree-Sign and (2) bursts emitting into a wider cone with angular width spanning from {approx} - 100 Degree-Sign to {approx}100 Degree-Sign . The plots of the directivity factors versus the viewing angles of the sources from all three spacecraft indicate that the type III emissions are very intense along the tangent to the spiral magnetic field lines at the source, and steadily fall as the viewing angles increase to higher values. The comparison of these emission patterns with the computed distributions of the ray trajectories indicate that the intense bursts visible in a narrow range of angles around the magnetic field directions probably are emitted in the fundamental mode, whereas the relatively weaker bursts visible to a wide range of angles are probably emitted in the harmonic mode.

  10. Patterns of seismic activity preceding large earthquakes

    NASA Technical Reports Server (NTRS)

    Shaw, Bruce E.; Carlson, J. M.; Langer, J. S.

    1992-01-01

    A mechanical model of seismic faults is employed to investigate the seismic activities that occur prior to major events. The block-and-spring model dynamically generates a statistical distribution of smaller slipping events that precede large events, and the results satisfy the Gutenberg-Richter law. The scaling behavior during a loading cycle suggests small but systematic variations in space and time with maximum activity acceleration near the future epicenter. Activity patterns inferred from data on seismicity in California demonstrate a regional aspect; increased activity in certain areas are found to precede major earthquake events. One example is given regarding the Loma Prieta earthquake of 1989 which is located near a fault section associated with increased activity levels.

  11. Hinode Observes an Active Sun

    NASA Video Gallery

    The X-ray Telescope on the Japanese/NASA mission Hinode has been observing the full sun, nearly continuously, for an extended period. In this movie significant small-scale dynamic events can be obs...

  12. Leisure Activity Patterns and Marital Conflict in Iran

    PubMed Central

    Ahmadi, Khodabakhsh; Saadat, Hassan; Noushad, Siena

    2016-01-01

    Background: Over the past few decades, the association between leisure activity patterns and marital conflict or satisfaction has been studied extensively. However, most studies to date have been limited to middle-class families of developed societies, and an investigation of the issue, from a developing country perspective like Iran, is non-existent. Objectives: In an observational, analytical, cross-sectional study we aimed to investigate the relationship between leisure activity patterns and marital conflict in a nationally representative sample of Iranian married males. Patients and Methods: Using the cluster sampling method, a representative sample of 400 Iranian married individuals from seven provinces of Iran was surveyed. Self-administered surveys included a checklist collecting demographic and socioeconomic characteristics of the enrolled participants, leisure time questionnaire, and marital conflict questionnaire. The main patterns of leisure activity were derived from principal component analysis. For each pattern, factor scores were calculated. The relationship between factor scores and marital conflict were assessed using multivariate linear regression models accounting for the potential confounding effects of age, education, socioeconomic status, job status, number of children, duration of marriage, and time spent for leisure. Results: Two hundred and ninety-nine respondents completed the leisure time and marital conflict questionnaires. Five major leisure patterns were identified accounting for 60.3% of the variance in data. The most dominant pattern was family-oriented activities (e.g. spending time with family outdoors and spending time with family indoors) and was negatively linked to marital conflict (standardized beta= −0.154, P = 0.013). Of the four remaining patterns, three only included individual activities and one was a family-individual composite. Individual patterns exhibited discrepant behavior; while the pattern involving activities

  13. Observations on traffic flow patterns and traffic engineering practice

    NASA Astrophysics Data System (ADS)

    Wang, Feng; Gao, Lixin

    2002-07-01

    Border Gateway Protocol allows ASs to apply diverse routing policies for selecting routes and propagating reachability information to other ASs. This enables network operators to configure routing policies so as to control traffic flows between ASs. However, BGP is not designed for the inter-AS traffic engineering. This makes it difficult to implement effective routing policies to address network performance and utilization problems. Network operators usually tweak routing policies to influence the inter-domain traffic among the available links. This can lead to undesirable traffic flow patterns across the Internet and degrade the Internet traffic performance. In this paper, we show several observations on Internet traffic flow patterns and derive routing policies that give rise to the traffic flow patterns. Our results show that an AS can reach as much as 20% of the prefixes via a peer link even though there is a path via a customer link. In addition, an AS can reach as much as 80% of the prefixes via a provider link even though there is a path via a peer link. Second, we analyze the cause of the prevalence of these traffic patterns. Our analysis shows that an AS typically does not receive the potential route from its customers or peers. Third, we find that alternate routes have with lower propagation delay than the chosen routes for some prefixes. This shows that some traffic engineering practices might adversely affect Internet performance.

  14. Hollowness of the observed auroral kilometric radiation pattern

    NASA Technical Reports Server (NTRS)

    Calvert, W.

    1987-01-01

    Presumably also generated by electron cyclotron emission, the earth's auroral kilometric radiation would be expected to exhibit a hollow pattern in the direction of the source magnetic field, similar to that reported for the comparable emissions from Jupiter. Although previously overlooked, such hollowness is clearly present in the new pattern measurements of Green and Gallagher (1985) at 56 kHz, occupying source-centered latitudes of 30 to 45 deg and hence occurring exactly where it was predicted and previously observed. Being distributed in longitude and spanning the entire evening sector, presumably reflecting a similar longitudinal distribution of auroral zone sources, this hollowness is attributed to sources beamed preferentially in the poleward magnetic meridian.

  15. Pattern formation in Active Polar Fluids

    NASA Astrophysics Data System (ADS)

    Gopinath, Arvind; Hagan, Michael; Baskaran, Aparna

    2011-03-01

    Systems such as bacterial suspensions or cytoskeletal filaments and motility assays can be described within the paradigm of active polar fluids. These systems have been shown to exhibit pattern formation raging from asters and vortices to traveling stripes. A coarse-grained description of such a fluid is given by a scalar density field and a vector polarization field. We study such a macroscopic description of the system using weakly nonlinear analysis and numerical simulations to map out the emergent pattern formation as a function of the hydrodynamic parameters in the context of two specific microscopic models - a quasi-2D suspension of cytoskeletal filaments and motor proteins and a system of self propelled hard rods that interact through excluded volume interactions. The authors thank the Brandeis MRSEC center for financial support.

  16. Cortical motor activation patterns following hand transplantation and replantation.

    PubMed

    Brenneis, C; Löscher, W N; Egger, K E; Benke, T; Schocke, M; Gabl, M F; Wechselberger, G; Felber, S; Pechlaner, S; Margreiter, R; Piza-Katzer, H; Poewe, W

    2005-10-01

    We studied cortical activation patterns by functional MRI in a patient who received bilateral hand transplantation after amputation 6 years ago and in a patient who had received unilateral hand replantation within 2 hours after amputation. In the early postoperative period, the patient who had had the hand transplantation revealed strong activation of a higher motor area, only weak activation of the primary sensorimotor motor cortex and no activation of the primary somatosensory cortex. At 1-year follow-up, a small increase in primary sensorimotor motor cortex activation was observed. Activation of the primary somatosensory cortex was only seen at the 2 year follow-up. By contrast, after hand replantation, the activation pattern was similar to that of the uninjured hand within 6 weeks. This included activation of the primary sensorimotor motor cortex, higher motor areas and primary somatosensory cortex. Transplantation after long-standing amputation results in cortical reorganization occurring over a 2-year period. In contrast, hand replantation within a few hours preserves a normal activation pattern. PMID:16055246

  17. Spiral and never-settling patterns in active systems

    NASA Astrophysics Data System (ADS)

    Yang, X.; Marenduzzo, D.; Marchetti, M. C.

    2014-01-01

    We present a combined numerical and analytical study of pattern formation in an active system where particles align, possess a density-dependent motility, and are subject to a logistic reaction. The model can describe suspensions of reproducing bacteria, as well as polymerizing actomyosin gels in vitro or in vivo. In the disordered phase, we find that motility suppression and growth compete to yield stable or blinking patterns, which, when dense enough, acquire internal orientational ordering to give asters or spirals. We predict these may be observed within chemotactic aggregates in bacterial fluids. In the ordered phase, the reaction term leads to previously unobserved never-settling patterns which can provide a simple framework to understand the formation of motile and spiral patterns in intracellular actin systems.

  18. Spiral and never-settling patterns in active systems.

    PubMed

    Yang, X; Marenduzzo, D; Marchetti, M C

    2014-01-01

    We present a combined numerical and analytical study of pattern formation in an active system where particles align, possess a density-dependent motility, and are subject to a logistic reaction. The model can describe suspensions of reproducing bacteria, as well as polymerizing actomyosin gels in vitro or in vivo. In the disordered phase, we find that motility suppression and growth compete to yield stable or blinking patterns, which, when dense enough, acquire internal orientational ordering to give asters or spirals. We predict these may be observed within chemotactic aggregates in bacterial fluids. In the ordered phase, the reaction term leads to previously unobserved never-settling patterns which can provide a simple framework to understand the formation of motile and spiral patterns in intracellular actin systems. PMID:24580261

  19. Patterns of Activity in a Global Model of a Solar Active Region

    NASA Astrophysics Data System (ADS)

    Bradshaw, S. J.; Viall, N. M.

    2016-04-01

    In this work we investigate the global activity patterns predicted from a model active region heated by distributions of nanoflares that have a range of frequencies. What differs is the average frequency of the distributions. The activity patterns are manifested in time lag maps of narrow-band instrument channel pairs. We combine hydrodynamic and forward modeling codes with a magnetic field extrapolation to create a model active region and apply the time lag method to synthetic observations. Our aim is not to reproduce a particular set of observations in detail, but to recover some typical properties and patterns observed in active regions. Our key findings are the following. (1) Cooling dominates the time lag signature and the time lags between the channel pairs are generally consistent with observed values. (2) Shorter coronal loops in the core cool more quickly than longer loops at the periphery. (3) All channel pairs show zero time lag when the line of sight passes through coronal loop footpoints. (4) There is strong evidence that plasma must be re-energized on a timescale comparable to the cooling timescale to reproduce the observed coronal activity, but it is likely that a relatively broad spectrum of heating frequencies are operating across active regions. (5) Due to their highly dynamic nature, we find nanoflare trains produce zero time lags along entire flux tubes in our model active region that are seen between the same channel pairs in observed active regions.

  20. Roughness determination by direct visual observation of the speckle pattern

    NASA Astrophysics Data System (ADS)

    Rebollo, M. A.; Landau, M. R.; Hogert, E. N.; Gaggioli, N. G.; Muramatsu, M.

    1995-12-01

    There are mechanical and optical methods of measuring the roughness of surfaces. Mechanical methods are of a destructive type, while optical methods, although they are non-destructive, involve relatively complex systems and calculations. In this work a simple method is introduced, which allows one—through the direct observation of the speckle pattern—to make a visual correlation, comparing the first pattern with others obtained when the beam incidence angle varies. With this method it is possible to obtain results with acceptable accuracy for many industrial uses.

  1. Technique and Observation of Angular Gait Patterns in Running

    PubMed Central

    Sykes, K.

    1975-01-01

    A technique for the biomechanical analysis of running is described with specific reference to the angular displacement patterns of the lower limb. From high speed cine film recording profile views of the running gait, the Thigh, Knee and Ankle angles are measured during one complete cycle. Results are presented in the form of vector-space diagrams, namely Thigh-Knee angle and Knee-Ankle angle cyclograms. The diagrams are interpreted and some experimental observations are presented and discussed. The technique provides a useful research tool and a very good `teaching asset' for biomechanical studies of movement.

  2. Sequences of cortical activation for tactile pattern discrimination using magnetoencephalography.

    PubMed

    Reed, Catherine L; Hagler, Donald J; Marinkovic, Ksenija; Dale, Anders; Halgren, Eric

    2009-07-01

    To observe sequential stages in tactile pattern discrimination and their modification with and without attention, we used whole-head anatomically constrained magnetoencephalography to spatiotemporally map brain responses. Eight, normal, right-handed participants discriminated between two patterns presented on the palm. Latencies of neural activity were determined from stimulus contact with the palm. Early cortical activation moved from sensorimotor cortex (SM1) to secondary somatosensory cortex (SII), Broca's area (BA), and superior parietal cortex by 65 ms. It continued bilaterally to temporal and frontal poles by 290 ms. Subtraction of nonattended from attended conditions removed primarily the early contralateral sensory components. There was some indication of a preferred order of sensory processing that may express and optimize hemispheric computational specializations. Results indicate similar functional organizations for tactile and visual pattern recognition. PMID:19525880

  3. IRAS observations of active galaxies

    NASA Technical Reports Server (NTRS)

    Neugebauer, G.; Soifer, B. T.; Rowan-Robinson, M.

    1985-01-01

    The IRAS survey gives an unbiased view of the infrared properties of the active galaxies. Seyfert galaxies occupy much the same area in color-color plots as to normal infrared bright galaxies, but extend the range towards flatter 60 to 25 mm slopes. Statistically the Seyfert 1 galaxies can be distinguished from the Seyfert 2 galaxies, lying predominantly closer to the area with constant slopes between 25 and 200 mm. The infrared measurements of the Seyfert galaxies cannot distinguish between the emission mechanisms in these objects although they agree with the currently popular ideas; they do provide a measure of the total luminosity of the Seyferts. The quasar's position in the color-color diagrams continue the trend of the Seyferts. The quasar 3C48 is shown to be exceptional among the radio loud quasars in that it has a high infrared luminosity which dominates the power output of the quasar and is most likely associated with the underlying host galaxy.

  4. Patterns of Activity Revealed by a Time Lag Analysis of a Model Active Region

    NASA Astrophysics Data System (ADS)

    Bradshaw, Stephen; Viall, Nicholeen

    2016-05-01

    We investigate the global activity patterns predicted from a model active region heated by distributions of nanoflares that have a range of average frequencies. The activity patterns are manifested in time lag maps of narrow-band instrument channel pairs. We combine an extrapolated magnetic skeleton with hydrodynamic and forward modeling codes to create a model active region, and apply the time lag method to synthetic observations. Our aim is to recover some typical properties and patterns of activity observed in active regions. Our key findings are: 1. Cooling dominates the time lag signature and the time lags between the channel pairs are generally consistent with observed values. 2. Shorter coronal loops in the core cool more quickly than longer loops at the periphery. 3. All channel pairs show zero time lag when the line-of-sight passes through coronal loop foot-points. 4. There is strong evidence that plasma must be re-energized on a time scale comparable to the cooling timescale to reproduce the observed coronal activity, but it is likely that a relatively broad spectrum of heating frequencies operates across active regions. 5. Due to their highly dynamic nature, we find nanoflare trains produce zero time lags along entire flux tubes in our model active region that are seen between the same channel pairs in observed active regions.

  5. New activity pattern in human interactive dynamics

    NASA Astrophysics Data System (ADS)

    Formentin, Marco; Lovison, Alberto; Maritan, Amos; Zanzotto, Giovanni

    2015-09-01

    We investigate the response function of human agents as demonstrated by written correspondence, uncovering a new pattern for how the reactive dynamics of individuals is distributed across the set of each agent’s contacts. In long-term empirical data on email, we find that the set of response times considered separately for the messages to each different correspondent of a given writer, generate a family of heavy-tailed distributions, which have largely the same features for all agents, and whose characteristic times grow exponentially with the rank of each correspondent. We furthermore show that this new behavioral pattern emerges robustly by considering weighted moving averages of the priority-conditioned response-time probabilities generated by a basic prioritization model. Our findings clarify how the range of priorities in the inputs from one’s environment underpin and shape the dynamics of agents embedded in a net of reactive relations. These newly revealed activity patterns might be universal, being present in other general interactive environments, and constrain future models of communication and interaction networks, affecting their architecture and evolution.

  6. Patterns of muscle activity for digital coarticulation

    PubMed Central

    Winges, Sara A.; Furuya, Shinichi; Faber, Nathaniel J.

    2013-01-01

    Although piano playing is a highly skilled task, basic features of motor pattern generation may be shared across tasks involving fine movements, such as handling coins, fingering food, or using a touch screen. The scripted and sequential nature of piano playing offered the opportunity to quantify the neuromuscular basis of coarticulation, i.e., the manner in which the muscle activation for one sequential element is altered to facilitate production of the preceding and subsequent elements. Ten pianists were asked to play selected pieces with the right hand at a uniform tempo. Key-press times were recorded along with the electromyographic (EMG) activity from seven channels: thumb flexor and abductor muscles, a flexor for each finger, and the four-finger extensor muscle. For the thumb and index finger, principal components of EMG waveforms revealed highly consistent variations in the shape of the flexor bursts, depending on the type of sequence in which a particular central key press was embedded. For all digits, the duration of the central EMG burst scaled, along with slight variations across subjects in the duration of the interkeystroke intervals. Even within a narrow time frame (about 100 ms) centered on the central EMG burst, the exact balance of EMG amplitudes across multiple muscles depended on the nature of the preceding and subsequent key presses. This fails to support the idea of fixed burst patterns executed in sequential phases and instead provides evidence for neuromuscular coarticulation throughout the time course of a hand movement sequence. PMID:23596338

  7. Active gels: dynamics of patterning and self-organization

    NASA Astrophysics Data System (ADS)

    Backouche, F.; Haviv, L.; Groswasser, D.; Bernheim-Groswasser, A.

    2006-12-01

    The actin cytoskeleton is an active gel which constantly remodels during cellular processes such as motility and division. Myosin II molecular motors are involved in this active remodeling process and therefore control the dynamic self-organization of cytoskeletal structures. Due to the complexity of in vivo systems, it is hard to investigate the role of myosin II in the reorganization process which determines the resulting cytoskeletal structures. Here we use an in vitro model system to show that myosin II actively reorganizes actin into a variety of mesoscopic patterns, but only in the presence of bundling proteins. We find that the nature of the reorganization process is complex, exhibiting patterns and dynamical phenomena not predicted by current theoretical models and not observed in corresponding passive systems (excluding motors). This system generates active networks, asters and even rings depending on motor and bundling protein concentrations. Furthermore, the motors generate the formation of the patterns, but above a critical concentration they can also disassemble them and even totally prevent the polymerization and bundling of actin filaments. These results may suggest that tuning the assembly and disassembly of cytoskeletal structures can be obtained by tuning the local myosin II concentration/activity.

  8. Muscle activation patterns in patients with recurrent shoulder instability

    PubMed Central

    Jaggi, Anju; Noorani, Ali; Malone, Alex; Cowan, Joseph; Lambert, Simon; Bayley, Ian

    2012-01-01

    Purpose: The aim of this study is to present muscle patterns observed with the direction of instability in a series of patients presenting with recurrent shoulder instability. Materials and Methods: A retrospective review was carried out on shoulder instability cases referred for fine wire dynamic electromyography (DEMG) studies at a specialist upper limb centre between 1981 and 2003. An experienced consultant clinical neurophysiologist performed dual needle insertion into four muscles (pectoralis major (PM), latissimus dorsi (LD), anterior deltoid (AD) and infraspinatus (IS)) in shoulders that were suspected to have increased or suppressed activation of muscles that could be contributing to the instability. Raw EMG signals were obtained while subjects performed simple uniplanar movements of the shoulder. The presence or absence of muscle activation was noted and compared to clinical diagnosis and direction of instability. Results: A total of 140 (26.6%) shoulders were referred for fine wire EMG, and 131 studies were completed. Of the shoulders tested, 122 shoulders (93%) were identified as having abnormal patterns and nine had normal patterns. PM was found to be more active in 60% of shoulders presenting with anterior instability. LD was found to be more active in 81% of shoulders with anterior instability and 80% with posterior instability. AD was found to be more active in 22% of shoulders with anterior instability and 18% with posterior instability. IS was found to be inappropriately inactive in only 3% of shoulders with anterior instability but in 25% with posterior instability. Clinical assessment identified 93% of cases suspected to have muscle patterning, but the specificity of the clinical assessment was only correct in 11% of cases. Conclusion: The DEMG results suggest that increased activation of LD may play a role in both anterior and posterior shoulder instability; increased activation of PM may play a role in anterior instability. PMID:23493512

  9. Categorizing Pedagogical Patterns by Teaching Activities and Pedagogical Values

    ERIC Educational Resources Information Center

    Bennedsen, Jens; Eriksen, Ole

    2006-01-01

    The main contribution of this paper is a proposal for a universal pedagogical pattern categorization based on teaching values and activities. This categorization would be more sustainable than the arbitrary categorization implied by pedagogical pattern language themes. Pedagogical patterns from two central patterns languages are analyzed and…

  10. Report on observational activity in (summer) 2015

    NASA Astrophysics Data System (ADS)

    Zejda, M.

    2016-03-01

    A short report on the author's observational activity in 2015 and the last 20 years is given. In total this means almost 900 nights, about a half million of CCD frames and thousands of photometric measurements.

  11. Handover patterns: an observational study of critical care physicians

    PubMed Central

    2012-01-01

    Background Handover (or 'handoff') is the exchange of information between health professionals that accompanies the transfer of patient care. This process can result in adverse events. Handover 'best practices', with emphasis on standardization, have been widely promoted. However, these recommendations are based mostly on expert opinion and research on medical trainees. By examining handover communication of experienced physicians, we aim to inform future research, education and quality improvement. Thus, our objective is to describe handover communication patterns used by attending critical care physicians in an academic centre and to compare them with currently popular, standardized schemes for handover communication. Methods Prospective, observational study using video recording in an academic intensive care unit in Ontario, Canada. Forty individual patient handovers were randomly selected out of 10 end-of-week handover sessions of attending physicians. Two coders independently reviewed handover transcripts documenting elements of three communication schemes: SBAR (Situation, Background, Assessment, Recommendations); SOAP (Subjective, Objective, Assessment, Plan); and a standard medical admission note. Frequency and extent of questions asked by incoming physicians were measured as well. Analysis consisted of descriptive statistics. Results Mean (± standard deviation) duration of patient-specific handovers was 2 min 58 sec (± 57 sec). The majority of handovers' content consisted of recent and current patient status. The remainder included physicians' interpretations and advice. Questions posed by the incoming physicians accounted for 5.8% (± 3.9%) of the handovers' content. Elements of all three standardized communication schemes appeared repeatedly throughout the handover dialogs with no consistent pattern. For example, blocks of SOAP's Assessment appeared 5.2 (± 3.0) times in patient handovers; they followed Objective blocks in only 45.9% of the

  12. A central pattern generator producing alternative outputs: temporal pattern of premotor activity.

    PubMed

    Norris, Brian J; Weaver, Adam L; Morris, Lee G; Wenning, Angela; García, Paul A; Calabrese, Ronald L

    2006-07-01

    The central pattern generator for heartbeat in medicinal leeches constitutes seven identified pairs of segmental heart interneurons. Four identified pairs of heart interneurons make a staggered pattern of inhibitory synaptic connections with segmental heart motor neurons. Using extracellular recording from multiple interneurons in the network in 56 isolated nerve cords, we show that this pattern generator produces a side-to-side asymmetric pattern of intersegmental coordination among ipsilateral premotor interneurons. This pattern corresponds to a similarly asymmetric fictive motor pattern in heart motor neurons and asymmetric constriction pattern of the two tubular hearts, synchronous and peristaltic. We provide a quantitative description of the firing pattern of all the premotor interneurons, including phase, duty cycle, and intraburst frequency of this premotor activity pattern. This analysis identifies two stereotypical coordination modes corresponding to synchronous and peristaltic, which show phase constancy over a broad range of periods as do the fictive motor pattern and the heart constriction pattern. Coordination mode is controlled through one segmental pair of heart interneurons (switch interneurons). Side-to-side switches in coordination mode are a regular feature of this pattern generator and occur with changes in activity state of these switch interneurons. Associated with synchronous coordination of premotor interneurons, the ipsilateral switch interneuron is in an active state, during which it produces rhythmic bursts, whereas associated with peristaltic coordination, the ipsilateral switch interneuron is largely silent. We argue that timing and pattern elaboration are separate functions produced by overlapping subnetworks in the heartbeat central pattern generator. PMID:16611849

  13. Vision Drives Correlated Activity without Patterned Spontaneous Activity in Developing Xenopus Retina

    PubMed Central

    Demas, James A.; Payne, Hannah; Cline, Hollis T.

    2011-01-01

    Developing amphibians need vision to avoid predators and locate food before visual system circuits fully mature. Xenopus tadpoles can respond to visual stimuli as soon as retinal ganglion cells (RGCs) innervate the brain, however, in mammals, chicks and turtles, RGCs reach their central targets many days, or even weeks, before their retinas are capable of vision. In the absence of vision, activity-dependent refinement in these amniote species is mediated by waves of spontaneous activity that periodically spread across the retina, correlating the firing of action potentials in neighboring RGCs. Theory suggests that retinorecipient neurons in the brain use patterned RGC activity to sharpen the retinotopy first established by genetic cues. We find that in both wild type and albino Xenopus tadpoles, RGCs are spontaneously active at all stages of tadpole development studied, but their population activity never coalesces into waves. Even at the earliest stages recorded, visual stimulation dominates over spontaneous activity and can generate patterns of RGC activity similar to the locally correlated spontaneous activity observed in amniotes. In addition, we show that blocking AMPA and NMDA type glutamate receptors significantly decreases spontaneous activity in young Xenopus retina, but that blocking GABAA receptor blockers does not. Our findings indicate that vision drives correlated activity required for topographic map formation. They further suggest that developing retinal circuits in the two major subdivisions of tetrapods, amphibians and amniotes, evolved different strategies to supply appropriately patterned RGC activity to drive visual circuit refinement. PMID:21312343

  14. Air pollution exposure: An activity pattern approach for active transportation

    NASA Astrophysics Data System (ADS)

    Adams, Matthew D.; Yiannakoulias, Nikolaos; Kanaroglou, Pavlos S.

    2016-09-01

    In this paper, we demonstrate the calculation of personal air pollution exposure during trips made by active transportation using activity patterns without personal monitors. We calculate exposure as the inhaled dose of particulate matter 2.5 μg or smaller. Two modes of active transportation are compared, and they include cycling and walking. Ambient conditions are calculated by combining mobile and stationary monitoring data in an artificial neural network space-time model. The model uses a land use regression framework and has a prediction accuracy of R2 = 0.78. Exposure is calculated at 10 m or shorter intervals during the trips using inhalation rates associated with both modes. The trips are children's routes between home and school. The average dose during morning cycling trips was 2.17 μg, during morning walking trips was 3.19 μg, during afternoon cycling trips was 2.19 μg and during afternoon walking trips was 3.23 μg. The cycling trip dose was significantly lower than the walking trip dose. The air pollution exposure during walking or cycling trips could not be strongly predicted by either the school or household ambient conditions, either individually or in combination. Multiple linear regression models regressing both the household and school ambient conditions against the dose were only able to account for, at most, six percent of the variance in the exposure. This paper demonstrates that incorporating activity patterns when calculating exposure can improve the estimate of exposure compared to its calculation from ambient conditions.

  15. Prediction of Spatiotemporal Patterns of Neural Activity from Pairwise Correlations

    NASA Astrophysics Data System (ADS)

    Marre, O.; El Boustani, S.; Frégnac, Y.; Destexhe, A.

    2009-04-01

    We designed a model-based analysis to predict the occurrence of population patterns in distributed spiking activity. Using a maximum entropy principle with a Markovian assumption, we obtain a model that accounts for both spatial and temporal pairwise correlations among neurons. This model is tested on data generated with a Glauber spin-glass system and is shown to correctly predict the occurrence probabilities of spatiotemporal patterns significantly better than Ising models only based on spatial correlations. This increase of predictability was also observed on experimental data recorded in parietal cortex during slow-wave sleep. This approach can also be used to generate surrogates that reproduce the spatial and temporal correlations of a given data set.

  16. Prediction of Spatiotemporal Patterns of Neural Activity from Pairwise Correlations

    SciTech Connect

    Marre, O.; El Boustani, S.; Fregnac, Y.; Destexhe, A.

    2009-04-03

    We designed a model-based analysis to predict the occurrence of population patterns in distributed spiking activity. Using a maximum entropy principle with a Markovian assumption, we obtain a model that accounts for both spatial and temporal pairwise correlations among neurons. This model is tested on data generated with a Glauber spin-glass system and is shown to correctly predict the occurrence probabilities of spatiotemporal patterns significantly better than Ising models only based on spatial correlations. This increase of predictability was also observed on experimental data recorded in parietal cortex during slow-wave sleep. This approach can also be used to generate surrogates that reproduce the spatial and temporal correlations of a given data set.

  17. Renal electrolyte circadian rhythms - Independence from feeding and activity patterns

    NASA Technical Reports Server (NTRS)

    Moore-Ede, M. C.; Herd, J. A.

    1977-01-01

    Experiments were conducted on six unanesthetized chair-acclimatized adult male squirrel monkeys (Saimiri sciureus) weighing 600-900 g to determine whether internal synchronization is the result of simple passive dependence of renal excretory rhythms on endogenous rhythms of those variable that influence electrolyte excretion such as dietary intake and muscular activity. Independence of the urinary rhythms from diurnal variations in feeding, drinking, and activity was secured by depriving the animals of food, water, and training them to perform a two-hourly schedule of feeding, drinking, and activity throughout day and night. Results indicate that the internal synchronization which is normally observed between the behavioral and urinary rhythms cannot be explained by any direct dependence of renal function on behavioral patterns. The most probable mechanism for circadian internal synchronization is that the various behavioral and renal rhythms are controlled by potentially independent separate oscillators which are normally kept in synchrony with one another.

  18. Activity recognition using correlated pattern mining for people with dementia.

    PubMed

    Sim, Kelvin; Phua, Clifton; Yap, Ghim-Eng; Biswas, Jit; Mokhtari, Mounir

    2011-01-01

    Due to the rapidly aging population around the world, senile dementia is growing into a prominent problem in many societies. To monitor the elderly dementia patients so as to assist them in carrying out their basic Activities of Daily Living (ADLs) independently, sensors are deployed in their homes. The sensors generate a stream of context information, i.e., snippets of the patient's current happenings, and pattern mining techniques can be applied to recognize the patient's activities based on these micro contexts. Most mining techniques aim to discover frequent patterns that correspond to certain activities. However, frequent patterns can be poor representations of activities. In this paper, instead of using frequent patterns, we propose using correlated patterns to represent activities. Using simulation data collected in a smart home testbed, our experimental results show that using correlated patterns rather than frequent ones improves the recognition performance by 35.5% on average. PMID:22256096

  19. The Built Environment Predicts Observed Physical Activity

    PubMed Central

    Kelly, Cheryl; Wilson, Jeffrey S.; Schootman, Mario; Clennin, Morgan; Baker, Elizabeth A.; Miller, Douglas K.

    2014-01-01

    Background: In order to improve our understanding of the relationship between the built environment and physical activity, it is important to identify associations between specific geographic characteristics and physical activity behaviors. Purpose: Examine relationships between observed physical activity behavior and measures of the built environment collected on 291 street segments in Indianapolis and St. Louis. Methods: Street segments were selected using a stratified geographic sampling design to ensure representation of neighborhoods with different land use and socioeconomic characteristics. Characteristics of the built environment on-street segments were audited using two methods: in-person field audits and audits based on interpretation of Google Street View imagery with each method blinded to results from the other. Segments were dichotomized as having a particular characteristic (e.g., sidewalk present or not) based on the two auditing methods separately. Counts of individuals engaged in different forms of physical activity on each segment were assessed using direct observation. Non-parametric statistics were used to compare counts of physically active individuals on each segment with built environment characteristic. Results: Counts of individuals engaged in physical activity were significantly higher on segments with mixed land use or all non-residential land use, and on segments with pedestrian infrastructure (e.g., crosswalks and sidewalks) and public transit. Conclusion: Several micro-level built environment characteristics were associated with physical activity. These data provide support for theories that suggest changing the built environment and related policies may encourage more physical activity. PMID:24904916

  20. Earth observation archive activities at DRA Farnborough

    NASA Technical Reports Server (NTRS)

    Palmer, M. D.; Williams, J. M.

    1993-01-01

    Space Sector, Defence Research Agency (DRA), Farnborough have been actively involved in the acquisition and processing of Earth Observation data for over 15 years. During that time an archive of over 20,000 items has been built up. This paper describes the major archive activities, including: operation and maintenance of the main DRA Archive, the development of a prototype Optical Disc Archive System (ODAS), the catalog systems in use at DRA, the UK Processing and Archive Facility for ERS-1 data, and future plans for archiving activities.

  1. Turing patterns in network-organized activator-inhibitor systems

    NASA Astrophysics Data System (ADS)

    Nakao, Hiroya; Mikhailov, Alexander S.

    2010-07-01

    Turing instability in activator-inhibitor systems provides a paradigm of non-equilibrium self-organization; it has been extensively investigated for biological and chemical processes. Turing instability should also be possible in networks, and general mathematical methods for its treatment have been formulated previously. However, only examples of regular lattices and small networks were explicitly considered. Here we study Turing patterns in large random networks, which reveal striking differences from the classical behaviour. The initial linear instability leads to spontaneous differentiation of the network nodes into activator-rich and activator-poor groups. The emerging Turing patterns become furthermore strongly reshaped at the subsequent nonlinear stage. Multiple coexisting stationary states and hysteresis effects are observed. This peculiar behaviour can be understood in the framework of a mean-field theory. Our results offer a new perspective on self-organization phenomena in systems organized as complex networks. Potential applications include ecological metapopulations, synthetic ecosystems, cellular networks of early biological morphogenesis, and networks of coupled chemical nanoreactors.

  2. Patterns of activity expressed by juvenile horseshoe crabs.

    PubMed

    Dubofsky, E A; Simpson, S D; Chabot, Christopher C; Watson, Winsor H

    2013-09-01

    Adult American horseshoe crabs, Limulus polyphemus, possess endogenous circadian and circatidal clocks controlling visual sensitivity and locomotion, respectively. The goal of this study was to determine the types of activity rhythms expressed by juvenile horseshoe crabs (n = 24) when exposed to a 14:10 light/dark cycle (LD) for 10 days, followed by 10 days of constant darkness (DD). Horseshoe crab activity was recorded with a digital time-lapse video system that used an infrared-sensitive camera so animals could be monitored at night. In LD, 15 animals expressed daily patterns of activity, 6 displayed a circatidal pattern, and the remaining 3 were arrhythmic. Of the 15 animals with daily patterns of locomotion, 7 had a significant preference (P < 0.05) for diurnal activity and 3 for nocturnal activity; the remainder did not express a significant preference for day or night activity. In DD, 13 horseshoe crabs expressed circatidal rhythms and 8 maintained a pattern of about 24 h. Although these results suggest the presence of a circadian clock influencing circatidal patterns of locomotion, these apparent circadian rhythms may actually represent the expression of just one of the two bouts of activity driven by the putative circalunidian clocks that control their tidal rhythms. Overall, these results indicate that, like adults, juvenile horseshoe crabs express both daily and tidal patterns of activity and that at least one, and maybe both, of these patterns is driven by endogenous clocks. PMID:24088795

  3. Generating Coherent Patterns of Activity from Chaotic Neural Networks

    PubMed Central

    Sussillo, David; Abbott, L. F.

    2009-01-01

    Neural circuits display complex activity patterns both spontaneously and when responding to a stimulus or generating a motor output. How are these two forms of activity related? We develop a procedure called FORCE learning for modifying synaptic strengths either external to or within a model neural network to change chaotic spontaneous activity into a wide variety of desired activity patterns. FORCE learning works even though the networks we train are spontaneously chaotic and we leave feedback loops intact and unclamped during learning. Using this approach, we construct networks that produce a wide variety of complex output patterns, input-output transformations that require memory, multiple outputs that can be switched by control inputs, and motor patterns matching human motion capture data. Our results reproduce data on pre-movement activity in motor and premotor cortex, and suggest that synaptic plasticity may be a more rapid and powerful modulator of network activity than generally appreciated. PMID:19709635

  4. Synchronization pattern observed in a complex (dusty) plasma

    NASA Astrophysics Data System (ADS)

    Zhdanov, Sergey; Couedel, Lenaic; Morfill, Gregor

    2015-04-01

    Complex or dusty plasmas are weakly ionized gases containing micron-size particles called dust particles or microparticles. In a laboratory radio-frequency (rf) plasma these particles are negatively charged. Due to their strong interactions with the plasma and with each other, they can form strongly coupled systems. Complex plasmas are ideal model systems for phase transitions, self-organization and transport processes. We report on the kinematics of dust particles during the early stage of mode-coupling induced melting of a two-dimensional plasma crystal. It was found that the formation of the hybrid mode causes the particle vibrations to partially synchronize at the hybrid frequency. The system self-organizes in a rhythmic pattern of alternating in-phase and anti-phase oscillating chains of particles. Phase- and frequency-locked hybrid particle motion in both vertical and horizontal directions is evidenced. The spatial orientation of the synchronization pattern correlates well with the directions of the maximal increment of the shear-free hybrid mode. Dynamically, a two-dimensional plasma crystal can be seen as an ensemble of coupled nonlinear oscillators. Spontaneous emergence of synchronized signals and spontaneous symmetry breaking are typical behaviors in such large populations of interacting units.

  5. Relative humidity and activity patterns of Ixodes scapularis (Acari: Ixodidae)

    USGS Publications Warehouse

    Berger, K.A.; Ginsberg, Howard S.; Gonzalez, L.; Mather, T.N.

    2014-01-01

    Laboratory studies have shown clear relationships between relative humidity (RH) and the activity and survival of Ixodes scapularis Say (blacklegged tick). However, field studies have produced conflicting results. We examined this relationship using weekly tick count totals and hourly RH observations at three field sites, stratified by latitude, within the state of Rhode Island. Records of nymphal tick abundance were compared with several RH-related variables (e.g., RH at time of sampling and mean weekly daytime RH). In total, 825 nymphs were sampled in 2009, a year of greater precipitation, with a weighted average leaf litter RH recorded at time of sampling of 85.22%. Alternatively, 649 nymphs were collected in 2010, a year of relatively low precipitation, and a weighted average RH recorded at time of sampling was 75.51%. Negative binomial regression analysis of tick count totals identified cumulative hours <82% RH threshold as a significant factor observed in both years (2009: P = 0.0037; 2010: P < 0.0001). Mean weekly daytime RH did not significantly predict tick activity in either year. However, mean weekly daytime RH recorded with 1-wk lag before sample date was a significant variable (P = 0.0016) in 2010. These results suggest a lag effect between moisture availability and patterns of tick activity and abundance. Differences in the relative importance of each RH variable between years may have been due to abnormally wet summer conditions in 2009.

  6. The Influence of Epoch Length on Physical Activity Patterns Varies by Child's Activity Level

    ERIC Educational Resources Information Center

    Nettlefold, Lindsay; Naylor, P. J.; Warburton, Darren E. R.; Bredin, Shannon S. D.; Race, Douglas; McKay, Heather A.

    2016-01-01

    Purpose: Patterns of physical activity (PA) and sedentary time, including volume of bouted activity, are important health indicators. However, the effect of accelerometer epoch length on measurement of these patterns and associations with health outcomes in children remain unknown. Method: We measured activity patterns in 308 children (52% girls,…

  7. Cognitive Aging: Activity Patterns and Maintenance Intentions

    ERIC Educational Resources Information Center

    Gilhooly, K. J.; Gilhooly, M. L.; Phillips, L. H.; Harvey, D.; Murray, A.; Hanlon, P.

    2007-01-01

    This study examined relationships between cognitive functioning in older people and (1) levels of mental, physical and social activities, and (2) intentions regarding maintenance of cognitive functioning. Participants (N = 145) were 70-91 years of age, varied in health status and socio-economic backgrounds. Current cognitive functioning was…

  8. HEROES Observations of a Quiescent Active Region

    NASA Astrophysics Data System (ADS)

    Shih, A. Y.; Christe, S.; Gaskin, J.; Wilson-Hodge, C.

    2014-12-01

    Hard X-ray (HXR) observations of solar flares reveal the signatures of energetic electrons, and HXR images with high dynamic range and high sensitivity can distinguish between where electrons are accelerated and where they stop. Even in the non-flaring corona, high-sensitivity HXR measurements may be able to detect the presence of electron acceleration. The High Energy Replicated Optics to Explore the Sun (HEROES) balloon mission added the capability of solar observations to an existing astrophysics balloon payload, HERO, which used grazing-incidence optics for direct HXR imaging. HEROES measures HXR emission from ~20 to ~75 keV with an angular resolution of 33" HPD. HEROES launched on 2013 September 21 from Fort Sumner, New Mexico, and had a successful one-day flight. We present the detailed analysis of the 7-hour observation of AR 11850, which sets new upper limits on the HXR emission from a quiescent active region, with corresponding constraints on the numbers of tens of keV energetic electrons present. Using the imaging capability of HEROES, HXR upper limits are also obtained for the quiet Sun surrounding the active region. We also discuss what can be achieved with new and improved HXR instrumentation on balloons.

  9. Precipitation Patterns Observed over the Southwest Region of Saudi Arabia

    NASA Astrophysics Data System (ADS)

    Kucera, Paul; Chapman, Michael

    2010-05-01

    During 2008 and 2009, an intensive field program has been conducted in the southwest region of Saudi Arabia, which is adjacent to the Red Sea and is bounded by the Yemen border to the south and the region around Jeddah to the north. The period of study focused on analysis of observations for the months of June-August. This period coincides with a climatological peak in precipitation over the region. This region is mountainous with terrain ranging from sea level to a maximum height of about 2800 m. During the field program, convection was observed almost daily during mid-afternoon was focused along the mountain peaks. This peak in convection coincided with the sea breeze reaching the top of the tallest terrain features. The intensity of convection was modulated by the strength of the sea breeze (predominate wind direction, amount of moisture in the boundary layer, etc.) and strength of a persistent mid-level inversion. The main objective of this study focuses on characterizing the spatial and temporal features of convection and related it to the atmospheric conditions that were observed during the months of June-August. The study examines precipitation and atmospheric conditions using a network of C-Band radars (Abha, Baha, Jeddah, Jizan, and Taif) and surface and upper data collected from the site located in Abha. The presentation will provide an overview of the field program and give a summary of the precipitation and atmospheric characteristics for the two years used in the study.

  10. Physical Activity Patterns of Young Women Post-College Graduation

    ERIC Educational Resources Information Center

    Soliah, LuAnn; Walter, Janelle; Antosh, Deeanna

    2008-01-01

    Americans need more physical activity in their daily routines. There are numerous physical as well as psychological benefits that can be credited to regular physical activity. The purpose of this research was to examine the physical activity patterns of young women, post-college graduation. The average woman in this study exercised 22 minutes per…

  11. Turing pattern formation in fractional activator-inhibitor systems.

    PubMed

    Henry, B I; Langlands, T A M; Wearne, S L

    2005-08-01

    Activator-inhibitor systems of reaction-diffusion equations have been used to describe pattern formation in numerous applications in biology, chemistry, and physics. The rate of diffusion in these applications is manifest in the single parameter of the diffusion constant, and stationary Turing patterns occur above a critical value of d representing the ratio of the diffusion constants of the inhibitor to the activator. Here we consider activator-inhibitor systems in which the diffusion is anomalous subdiffusion; the diffusion rates are manifest in both a diffusion constant and a diffusion exponent. A consideration of this problem in terms of continuous-time random walks with sources and sinks leads to a reaction-diffusion system with fractional order temporal derivatives operating on the spatial Laplacian. We have carried out an algebraic stability analysis of the homogeneous steady-state solution in fractional activator-inhibitor systems, with Gierer-Meinhardt reaction kinetics and with Brusselator reaction kinetics. For each class of reaction kinetics we identify a Turing instability bifurcation curve in the two-dimensional diffusion parameter space. The critical value of d , for Turing instabilities, decreases monotonically with the anomalous diffusion exponent between unity (standard diffusion) and zero (extreme subdiffusion). We have also carried out numerical simulations of the governing fractional activator-inhibitor equations and we show that the Turing instability precipitates the formation of complex spatiotemporal patterns. If the diffusion of the activator and inhibitor have the same anomalous scaling properties, then the surface profiles of these patterns for values of d slightly above the critical value varies from smooth stationary patterns to increasingly rough and nonstationary patterns as the anomalous diffusion exponent varies from unity towards zero. If the diffusion of the activator is anomalous subdiffusion but the diffusion of the inhibitor

  12. Observations of an active region filament

    NASA Astrophysics Data System (ADS)

    Zong, W. G.; Tang, Y. H.; Fang, C.; Xu, A. A.

    An active region filament was well observed on September 4, 2002 with THEMIS at the Teide observatory and SOHO/MDI. The full Stokes parameters of the filament were obtained in Hα and FeI 6302 Å lines. Using the data, we have studied the fine structure of the filament and obtained the parameters at the barb endpoints, including intensity, velocity and longitudinal magnetic field. Our results indicate: (a) the Doppler velocities are quiet different at barb endpoints; (b) the longitudinal magnetic fields at the barb endpoints are very weak; (c) there is a strong magnetic field structure under the filament spine.

  13. Mining continuous activity patterns from animal trajectory data

    USGS Publications Warehouse

    Wang, Y.; Luo, Ze; Baoping, Yan; Takekawa, John Y.; Prosser, Diann J.; Newman, Scott H.

    2014-01-01

    The increasing availability of animal tracking data brings us opportunities and challenges to intuitively understand the mechanisms of animal activities. In this paper, we aim to discover animal movement patterns from animal trajectory data. In particular, we propose a notion of continuous activity pattern as the concise representation of underlying similar spatio-temporal movements, and develop an extension and refinement framework to discover the patterns. We first preprocess the trajectories into significant semantic locations with time property. Then, we apply a projection-based approach to generate candidate patterns and refine them to generate true patterns. A sequence graph structure and a simple and effective processing strategy is further developed to reduce the computational overhead. The proposed approaches are extensively validated on both real GPS datasets and large synthetic datasets.

  14. MESSENGER Observations of Substorm Activity at Mercury

    NASA Astrophysics Data System (ADS)

    Sun, W. J.; Slavin, J. A.; Fu, S.; Raines, J. M.; Zong, Q. G.; Poh, G.; Jia, X.; Sundberg, T.; Gershman, D. J.; Pu, Z.; Zurbuchen, T.; Shi, Q.

    2015-12-01

    MErcury Surface, Space ENviroment, GEochemistry, and Ranging (MESSENGER) magnetic field and plasma measurements taken during crossings of Mercury's magnetotail from 2011 to 2014 have been investigated for substorms. A number of events with clear Earth-like growth phase and expansion phase signatures were found. The thinning of the plasma sheet and the increase of magnetic field intensity in the lobe were observed during the growth phase and plasma sheet was observed to thicken during the expansion phase, which are similar to the observations at Earth. But the time scale of Mercury's substorm is only several minutes comparing with the several hours at Earth [Sun et al., 2015a]. Detailed analysis of magnetic field fluctuations during the substorm expansion phase have revealed low frequency plasma waves, e.g. Pi2-like pulsations. The By fluctuations accompanying substorm dipolarizations are consistent with pulses of field-aligned currents near the high latitude edge of the plasma sheet. Further study shows that they are near-circularly polarized electromagnetic waves, most likely Alfvén waves. Soon afterwards the plasma sheet thickened and MESSENGER detected a series of compressional waves. We have also discussed their possible sources [Sun et al., 2015b]. Sun, W.-J., J. A. Slavin, S. Y. Fu, et al. (2015a), MESSENGER observations of magnetospheric substorm activity in Mercury's near magnetotail. Geophys. Res. Lett., 42, 3692-3699. doi: 10.1002/2015GL064052.Sun, W.-J., J. A. Slavin, S. Y. Fu, et al. (2015b), MESSENGER observations of Alfvénic and compressional waves during Mercury's substorms. Geophys. Res. Lett., 42, in press. doi: 10.1002/ 2015GL065452.

  15. Cortical activity patterns predict speech discrimination ability

    PubMed Central

    Engineer, Crystal T; Perez, Claudia A; Chen, YeTing H; Carraway, Ryan S; Reed, Amanda C; Shetake, Jai A; Jakkamsetti, Vikram; Chang, Kevin Q; Kilgard, Michael P

    2010-01-01

    Neural activity in the cerebral cortex can explain many aspects of sensory perception. Extensive psychophysical and neurophysiological studies of visual motion and vibrotactile processing show that the firing rate of cortical neurons averaged across 50–500 ms is well correlated with discrimination ability. In this study, we tested the hypothesis that primary auditory cortex (A1) neurons use temporal precision on the order of 1–10 ms to represent speech sounds shifted into the rat hearing range. Neural discrimination was highly correlated with behavioral performance on 11 consonant-discrimination tasks when spike timing was preserved and was not correlated when spike timing was eliminated. This result suggests that spike timing contributes to the auditory cortex representation of consonant sounds. PMID:18425123

  16. Active sensing in the categorization of visual patterns

    PubMed Central

    Yang, Scott Cheng-Hsin; Lengyel, Máté; Wolpert, Daniel M

    2016-01-01

    Interpreting visual scenes typically requires us to accumulate information from multiple locations in a scene. Using a novel gaze-contingent paradigm in a visual categorization task, we show that participants' scan paths follow an active sensing strategy that incorporates information already acquired about the scene and knowledge of the statistical structure of patterns. Intriguingly, categorization performance was markedly improved when locations were revealed to participants by an optimal Bayesian active sensor algorithm. By using a combination of a Bayesian ideal observer and the active sensor algorithm, we estimate that a major portion of this apparent suboptimality of fixation locations arises from prior biases, perceptual noise and inaccuracies in eye movements, and the central process of selecting fixation locations is around 70% efficient in our task. Our results suggest that participants select eye movements with the goal of maximizing information about abstract categories that require the integration of information from multiple locations. DOI: http://dx.doi.org/10.7554/eLife.12215.001 PMID:26880546

  17. Observations of seismic activity in Southern Lebanon

    NASA Astrophysics Data System (ADS)

    Meirova, T.; Hofstetter, R.

    2013-04-01

    Recent seismic activity in southern Lebanon is of particular interest since the tectonic framework of this region is poorly understood. In addition, seismicity in this region is very infrequent compared with the Roum fault to the east, which is seismically active. Between early 2008 and the end of 2010, intense seismic activity occurred in the area. This was manifested by several swarm-like sequences and continuous trickling seismicity over many days, amounting in total to more than 900 earthquakes in the magnitude range of 0.5 ≤ M d ≤ 5.2. The region of activity extended in a 40-km long zone mainly in a N-S direction and was located about 10 km west of the Roum fault. The largest earthquake, with a duration magnitude of M d = 5.2, occurred on February 15, 2008, and was located at 33.327° N, 35.406° E at a depth of 3 km. The mean-horizontal peak ground acceleration observed at two nearby accelerometers exceeded 0.05 g, where the strongest peak horizontal acceleration was 55 cm/s2 at about 20 km SE of the epicenter. Application of the HypoDD algorithm yielded a pronounced N-S zone, parallel to the Roum fault, which was not known to be seismically active. Focal mechanism, based on full waveform inversion and the directivity effect of the strongest earthquake, suggests left-lateral strike-slip NNW-SSE faulting that crosses the NE-SW traverse faults in southern Lebanon.

  18. Satellite observation of tropical forest seasonality: spatial patterns of carbon exchange in Amazonia

    NASA Astrophysics Data System (ADS)

    Xu, Liang; Saatchi, Sassan S.; Yang, Yan; Myneni, Ranga B.; Frankenberg, Christian; Chowdhury, Diya; Bi, Jian

    2015-08-01

    Determining the seasonality of terrestrial carbon exchange with the atmosphere remains a challenge in tropical forests because of the heterogeneity of ecosystem and climate. The magnitude and spatial variability of this flux are unknown, particularly in Amazonia where empirical upscaling approaches from spatially sparse in situ measurements and simulations from process-based models have been challenged in recent scientific literature. Here, we use satellite proxy observations of canopy structure, skin temperature, water content, and optical properties over a period of 10 years (2000-2009) to constrain and quantify the spatial pattern and seasonality of carbon exchange of Amazonian forests. We identify nine regions through an optimized cluster approach with distinct leaf phenology synchronized with either water or light availability and corresponding seasonal cycles of gross primary production (GPP), covering more than 600 million ha of remaining old growth forests of Amazonia. We find South and Southwestern regions show strong seasonality of GPP with a peak in the wet season; while from Central Western to Northeastern Amazonia cover three regions with rising GPP in the dry season. The remaining four regions have significant but weak seasonality. These patterns agree with satellite florescence observations, a better proxy for photosynthetic activity. Our results suggest that only one-third of the patterns can be explained by the spatial autocorrelation caused by intra-annual variability of climate over Amazonia. The remaining two-thirds of variations are due to biogeography of the Amazon basin driven by forest composition, structure, and nutrients. These patterns, for the first time, provide a complex picture of seasonal changes of tropical forests related to photosynthesis and influenced by water, light, and stomatal responses of trees that can improve modeling of regional carbon cycle and future prediction of impacts of climate change.

  19. Perceptual similarity of visual patterns predicts dynamic neural activation patterns measured with MEG.

    PubMed

    Wardle, Susan G; Kriegeskorte, Nikolaus; Grootswagers, Tijl; Khaligh-Razavi, Seyed-Mahdi; Carlson, Thomas A

    2016-05-15

    Perceptual similarity is a cognitive judgment that represents the end-stage of a complex cascade of hierarchical processing throughout visual cortex. Previous studies have shown a correspondence between the similarity of coarse-scale fMRI activation patterns and the perceived similarity of visual stimuli, suggesting that visual objects that appear similar also share similar underlying patterns of neural activation. Here we explore the temporal relationship between the human brain's time-varying representation of visual patterns and behavioral judgments of perceptual similarity. The visual stimuli were abstract patterns constructed from identical perceptual units (oriented Gabor patches) so that each pattern had a unique global form or perceptual 'Gestalt'. The visual stimuli were decodable from evoked neural activation patterns measured with magnetoencephalography (MEG), however, stimuli differed in the similarity of their neural representation as estimated by differences in decodability. Early after stimulus onset (from 50ms), a model based on retinotopic organization predicted the representational similarity of the visual stimuli. Following the peak correlation between the retinotopic model and neural data at 80ms, the neural representations quickly evolved so that retinotopy no longer provided a sufficient account of the brain's time-varying representation of the stimuli. Overall the strongest predictor of the brain's representation was a model based on human judgments of perceptual similarity, which reached the limits of the maximum correlation with the neural data defined by the 'noise ceiling'. Our results show that large-scale brain activation patterns contain a neural signature for the perceptual Gestalt of composite visual features, and demonstrate a strong correspondence between perception and complex patterns of brain activity. PMID:26899210

  20. Soil moisture variation patterns observed in Hand County, South Dakota

    NASA Technical Reports Server (NTRS)

    Jones, E. B.; Owe, M.; Schmugge, T. J. (Principal Investigator)

    1981-01-01

    Soil moisture data were taken during 1976 (April, June, October), 1977 (April, May, June), and 1978 (May, June, July) Hand County, South Dakota as part of the ground truth used in NASA's aircraft experiments to study the use of microwave radiometers for the remote sensing of soil moisture. The spatial variability observed on the ground during each of the sampling events was studied. The data reported are the mean gravimetric soil moisture contained in three surface horizon depths: 0 to 2.5, 0 to 5 and 0 to 10 cm. The overall moisture levels ranged from extremely dry conditions in June 1976 to very wet in May 1978, with a relatively even distribution of values within that range. It is indicated that well drained sites have to be partitioned from imperfectly drained areas when attempting to characterize the general moisture profile throughout an area of varying soil and cover type conditions. It is also found that the variability in moisture content is greatest in the 0 to 2.5 cm measurements and decreases as the measurements are integrated over a greater depth. It is also determined that the sampling intensity of 10 measurements per km is adequate to estimate the mean moisture with an uncertainty of + or - 3 percent under average moisture conditions in areas of moderate to good drainage.

  1. Cultural patterns in children's learning through keen observation and participation in their communities.

    PubMed

    Correa-Chávez, Maricela; Roberts, Amy L D; Pérez, Margarita Martínez

    2011-01-01

    This chapter examines children's learning through careful attention and participation in the ongoing activities of their community. This form of learning, which has been called learning through Intent Community Participation, seems to be especially common in Mesoamerican Indigenous communities. In these communities, children are integrated into the everyday work and lives of adults and their learning may not be the central focus. We contrast this pattern with that of middle-class European American communities where children are segregated from the primary adult functions of the community. In middle-class communities and schools, children are often encouraged to engage in abstract lessons where their attention is explicitly directed to specific events. In contrast, learning through keen attention and observation may rely on learning through attention to instructions not specifically directed to the learner. Studies demonstrate Mesoamerican Indigenous children's ability to learn through simultaneous and open attention to overheard or observed activities. This form of learning is supported through multiple modalities of communication and interaction. Motivation to learn stems from the learner's inclusion into the major activities and goals of the community. Implications of research and future directions for the study of learning through keen observation are discussed. PMID:21887963

  2. Brain responses in humans reveal ideal observer-like sensitivity to complex acoustic patterns.

    PubMed

    Barascud, Nicolas; Pearce, Marcus T; Griffiths, Timothy D; Friston, Karl J; Chait, Maria

    2016-02-01

    We use behavioral methods, magnetoencephalography, and functional MRI to investigate how human listeners discover temporal patterns and statistical regularities in complex sound sequences. Sensitivity to patterns is fundamental to sensory processing, in particular in the auditory system, because most auditory signals only have meaning as successions over time. Previous evidence suggests that the brain is tuned to the statistics of sensory stimulation. However, the process through which this arises has been elusive. We demonstrate that listeners are remarkably sensitive to the emergence of complex patterns within rapidly evolving sound sequences, performing on par with an ideal observer model. Brain responses reveal online processes of evidence accumulation--dynamic changes in tonic activity precisely correlate with the expected precision or predictability of ongoing auditory input--both in terms of deterministic (first-order) structure and the entropy of random sequences. Source analysis demonstrates an interaction between primary auditory cortex, hippocampus, and inferior frontal gyrus in the process of discovering the regularity within the ongoing sound sequence. The results are consistent with precision based predictive coding accounts of perceptual inference and provide compelling neurophysiological evidence of the brain's capacity to encode high-order temporal structure in sensory signals. PMID:26787854

  3. Brain responses in humans reveal ideal observer-like sensitivity to complex acoustic patterns

    PubMed Central

    Pearce, Marcus T.; Griffiths, Timothy D.; Chait, Maria

    2016-01-01

    We use behavioral methods, magnetoencephalography, and functional MRI to investigate how human listeners discover temporal patterns and statistical regularities in complex sound sequences. Sensitivity to patterns is fundamental to sensory processing, in particular in the auditory system, because most auditory signals only have meaning as successions over time. Previous evidence suggests that the brain is tuned to the statistics of sensory stimulation. However, the process through which this arises has been elusive. We demonstrate that listeners are remarkably sensitive to the emergence of complex patterns within rapidly evolving sound sequences, performing on par with an ideal observer model. Brain responses reveal online processes of evidence accumulation—dynamic changes in tonic activity precisely correlate with the expected precision or predictability of ongoing auditory input—both in terms of deterministic (first-order) structure and the entropy of random sequences. Source analysis demonstrates an interaction between primary auditory cortex, hippocampus, and inferior frontal gyrus in the process of discovering the regularity within the ongoing sound sequence. The results are consistent with precision based predictive coding accounts of perceptual inference and provide compelling neurophysiological evidence of the brain's capacity to encode high-order temporal structure in sensory signals. PMID:26787854

  4. Patterns of Children's Participation in Unorganized Physical Activity

    ERIC Educational Resources Information Center

    Findlay, Leanne C.; Garner, Rochelle E.; Kohen, Dafna E.

    2010-01-01

    Children's leisure-time or unorganized physical activity is associated with positive physical and mental health, yet there is little information available on tracking and predicting participation throughout the childhood and adolescent years. The purpose of the current study was to explore patterns of unorganized physical activity participation of…

  5. Physical Activity Patterns of Youth with Down Syndrome

    ERIC Educational Resources Information Center

    Esposito, Phil E.; MacDonald, Megan; Hornyak, Joseph E.; Ulrich, Dale A.

    2012-01-01

    The purpose of this study was to examine the physical activity patterns of children with Down syndrome. A cross-sectional approach and accelerometry were used to measure the time children with Down syndrome (N = 104) spent in sedentary, light, and moderate-to-vigorous physical activity. Results indicated that adolescents from ages 14 to 15 years…

  6. Mouse Visual Neocortex Supports Multiple Stereotyped Patterns of Microcircuit Activity

    PubMed Central

    Sadovsky, Alexander J.

    2014-01-01

    Spiking correlations between neocortical neurons provide insight into the underlying synaptic connectivity that defines cortical microcircuitry. Here, using two-photon calcium fluorescence imaging, we observed the simultaneous dynamics of hundreds of neurons in slices of mouse primary visual cortex (V1). Consistent with a balance of excitation and inhibition, V1 dynamics were characterized by a linear scaling between firing rate and circuit size. Using lagged firing correlations between neurons, we generated functional wiring diagrams to evaluate the topological features of V1 microcircuitry. We found that circuit connectivity exhibited both cyclic graph motifs, indicating recurrent wiring, and acyclic graph motifs, indicating feedforward wiring. After overlaying the functional wiring diagrams onto the imaged field of view, we found properties consistent with Rentian scaling: wiring diagrams were topologically efficient because they minimized wiring with a modular architecture. Within single imaged fields of view, V1 contained multiple discrete circuits that were overlapping and highly interdigitated but were still distinct from one another. The majority of neurons that were shared between circuits displayed peri-event spiking activity whose timing was specific to the active circuit, whereas spike times for a smaller percentage of neurons were invariant to circuit identity. These data provide evidence that V1 microcircuitry exhibits balanced dynamics, is efficiently arranged in anatomical space, and is capable of supporting a diversity of multineuron spike firing patterns from overlapping sets of neurons. PMID:24899701

  7. Patterns of physical activity and sedentary behaviour in preschool children

    PubMed Central

    2012-01-01

    Background Little is known about patterns of sedentary behavior (SB) and physical activity among preschoolers. Therefore, in this observational study patterns of SB and moderate-to-vigorous physical activity (MVPA) were examined in detail throughout the week in preschool-aged boys and girls. Methods A sample of 703 Melbourne preschool children (387 boys; 4.6 ± 0.7 y) were included in data analysis. SB and MVPA data were collected using accelerometry over an eight-day period. Percentage of time per hour in SB and in MVPA between 08:00 h and 20:00 h was calculated. Multi-level logistic regression models were created to examine the hour-by-hour variability in SB and MVPA for boys and girls across weekdays and weekend days. Odds ratios (OR) were calculated to interpret differences in hour-by-hour SB and MVPA levels between boys and girls, and between weekdays and weekend days. Results The highest SB levels co-occurred with the lowest MVPA levels from the morning till the early afternoon on weekdays, and during the morning and around midday on weekends. Besides, participation in SB was the lowest and participation in MVPA was the highest from the mid afternoon till the evening on weekdays and weekend days. The variability across the hours in SB and, especially, in MVPA was rather small throughout weekdays and weekends. These patterns were found in both boys and girls. During some hours, girls were found to be more likely than boys to demonstrate higher SB levels (OR from 1.08 to 1.16; all p < 0.05) and lower MVPA levels (OR from 0.75 to 0.88; all p < 0.05), but differences were small. During weekends, hour-by-hour SB levels were more likely to be lower (OR from 0.74 to 0.98; all p < 0.05) and hour-by-hour MVPA levels were more likely to be higher (OR from 1.15 to 1.50; all p < 0.05), than during weekdays, in boys and girls. Conclusion Entire weekdays, especially from the morning till the early afternoon, and entire weekend days are opportunities to

  8. Decoding the representation of numerical values from brain activation patterns.

    PubMed

    Damarla, Saudamini Roy; Just, Marcel Adam

    2013-10-01

    Human neuroimaging studies have increasingly converged on the possibility that the neural representation of specific numbers may be decodable from brain activity, particularly in parietal cortex. Multivariate machine learning techniques have recently demonstrated that the neural representation of individual concrete nouns can be decoded from fMRI patterns, and that some patterns are general over people. Here we use these techniques to investigate whether the neural codes for quantities of objects can be accurately decoded. The pictorial mode (nonsymbolic) depicted a set of objects pictorially (e.g., a picture of three tomatoes), whereas the digit-object mode depicted quantities as combination of a digit (e.g., 3) with a picture of a single object. The study demonstrated that quantities of objects were decodable from neural activation patterns, in parietal regions. These brain activation patterns corresponding to a given quantity were common across objects and across participants in the pictorial mode. Other important findings included better identification of individual numbers in the pictorial mode, partial commonality of neural patterns across the two modes, and hemispheric asymmetry with pictorially-depicted numbers represented bilaterally and numbers in the digit-object mode represented primarily in the left parietal regions. The findings demonstrate the ability to identify individual quantities of objects based on neural patterns, indicating the presence of stable neural representations of numbers. Additionally, they indicate a predominance of neural representation of pictorially depicted numbers over the digit-object mode. PMID:22505340

  9. Agricultural activity shapes the communication and migration patterns in Senegal.

    PubMed

    Martin-Gutierrez, S; Borondo, J; Morales, A J; Losada, J C; Tarquis, A M; Benito, R M

    2016-06-01

    The communication and migration patterns of a country are shaped by its socioeconomic processes. The economy of Senegal is predominantly rural, as agriculture employs over 70% of the labor force. In this paper, we use mobile phone records to explore the impact of agricultural activity on the communication and mobility patterns of the inhabitants of Senegal. We find two peaks of phone calls activity emerging during the growing season. Moreover, during the harvest period, we detect an increase in the migration flows throughout the country. However, religious holidays also shape the mobility patterns of the Senegalese people. Hence, in the light of our results, agricultural activity and religious holidays are the primary drivers of mobility inside the country. PMID:27368795

  10. Agricultural activity shapes the communication and migration patterns in Senegal

    NASA Astrophysics Data System (ADS)

    Martin-Gutierrez, S.; Borondo, J.; Morales, A. J.; Losada, J. C.; Tarquis, A. M.; Benito, R. M.

    2016-06-01

    The communication and migration patterns of a country are shaped by its socioeconomic processes. The economy of Senegal is predominantly rural, as agriculture employs over 70% of the labor force. In this paper, we use mobile phone records to explore the impact of agricultural activity on the communication and mobility patterns of the inhabitants of Senegal. We find two peaks of phone calls activity emerging during the growing season. Moreover, during the harvest period, we detect an increase in the migration flows throughout the country. However, religious holidays also shape the mobility patterns of the Senegalese people. Hence, in the light of our results, agricultural activity and religious holidays are the primary drivers of mobility inside the country.

  11. Patterns of presynaptic activity and synaptic strength interact to produce motor output.

    PubMed

    Wright, Terrence Michael; Calabrese, Ronald L

    2011-11-30

    Motor neuron activity is coordinated by premotor networks into a functional motor pattern by complex patterns of synaptic drive. These patterns combine both the temporal pattern of spikes of the premotor network and the profiles of synaptic strengths (i.e., conductances). Given the complexity of premotor networks in vertebrates, it has been difficult to ascertain the relative contributions of temporal patterns and synaptic strength profiles to the motor patterns observed in these animals. Here, we use the leech (Hirudo sp.) heartbeat central pattern generator (CPG), in which we can measure both the temporal pattern and the synaptic strength profiles of the entire premotor network and the motor outflow in individual animals. In this system, a series of motor neurons all receive input from the same premotor interneurons of the CPG but must be coordinated differentially to produce a functional pattern. These properties allow a theoretical and experimental dissection of the rules that govern how temporal patterns and synaptic strength profiles are combined in motor neurons so that functional motor patterns emerge, including an analysis of the impact of animal-to-animal variation in input to such variation in output. In the leech, segmental heart motor neurons are coordinated alternately in a synchronous and peristaltic pattern. We show that synchronous motor patterns result from a nearly synchronous premotor temporal pattern produced by the leech heartbeat CPG. For peristaltic motor patterns, the staggered premotor temporal pattern determines the phase range over which segmental motor neurons can fire while synaptic strength profiles define the intersegmental motor phase progression realized. PMID:22131417

  12. Connectivity, excitability and activity patterns in neuronal networks

    NASA Astrophysics Data System (ADS)

    le Feber, Joost; Stoyanova, Irina I.; Chiappalone, Michela

    2014-06-01

    Extremely synchronized firing patterns such as those observed in brain diseases like epilepsy may result from excessive network excitability. Although network excitability is closely related to (excitatory) connectivity, a direct measure for network excitability remains unavailable. Several methods currently exist for estimating network connectivity, most of which are related to cross-correlation. An example is the conditional firing probability (CFP) analysis which calculates the pairwise probability (CFPi,j) that electrode j records an action potential at time t = τ, given that electrode i recorded a spike at t = 0. However, electrode i often records multiple spikes within the analysis interval, and CFP values are biased by the on-going dynamic state of the network. Here we show that in a linear approximation this bias may be removed by deconvoluting CFPi,j with the autocorrelation of i (i.e. CFPi,i), to obtain the single pulse response (SPRi,j)—the average response at electrode j to a single spike at electrode i. Thus, in a linear system SPRs would be independent of the dynamic network state. Nonlinear components of synaptic transmission, such as facilitation and short term depression, will however still affect SPRs. Therefore SPRs provide a clean measure of network excitability. We used carbachol and ghrelin to moderately activate cultured cortical networks to affect their dynamic state. Both neuromodulators transformed the bursting firing patterns of the isolated networks into more dispersed firing. We show that the influence of the dynamic state on SPRs is much smaller than the effect on CFPs, but not zero. The remaining difference reflects the alteration in network excitability. We conclude that SPRs are less contaminated by the dynamic network state and that mild excitation may decrease network excitability, possibly through short term synaptic depression.

  13. Vitality Forms Processing in the Insula during Action Observation: A Multivoxel Pattern Analysis

    PubMed Central

    Di Cesare, Giuseppe; Valente, Giancarlo; Di Dio, Cinzia; Ruffaldi, Emanuele; Bergamasco, Massimo; Goebel, Rainer; Rizzolatti, Giacomo

    2016-01-01

    Observing the style of an action done by others allows the observer to understand the cognitive state of the agent. This information has been defined by Stern “vitality forms”. Previous experiments showed that the dorso-central insula is selectively active both during vitality form observation and execution. In the present study, we presented participants with videos showing hand actions performed with different velocities and asked them to judge either their vitality form (gentle, neutral, rude) or their velocity (slow, medium, fast). The aim of the present study was to assess, using multi-voxel pattern analysis, whether vitality forms and velocities of observed goal-directed actions are differentially processed in the insula, and more specifically whether action velocity is encoded per se or it is an element that triggers neural populations of the insula encoding the vitality form. The results showed that, consistently across subjects, in the dorso-central sector of the insula there were voxels selectively tuned to vitality forms, while voxel tuned to velocity were rare. These results indicate that the dorso-central insula, which previous data showed to be involved in the vitality form processing, contains voxels specific for the action style processing. PMID:27375461

  14. Vitality Forms Processing in the Insula during Action Observation: A Multivoxel Pattern Analysis.

    PubMed

    Di Cesare, Giuseppe; Valente, Giancarlo; Di Dio, Cinzia; Ruffaldi, Emanuele; Bergamasco, Massimo; Goebel, Rainer; Rizzolatti, Giacomo

    2016-01-01

    Observing the style of an action done by others allows the observer to understand the cognitive state of the agent. This information has been defined by Stern "vitality forms". Previous experiments showed that the dorso-central insula is selectively active both during vitality form observation and execution. In the present study, we presented participants with videos showing hand actions performed with different velocities and asked them to judge either their vitality form (gentle, neutral, rude) or their velocity (slow, medium, fast). The aim of the present study was to assess, using multi-voxel pattern analysis, whether vitality forms and velocities of observed goal-directed actions are differentially processed in the insula, and more specifically whether action velocity is encoded per se or it is an element that triggers neural populations of the insula encoding the vitality form. The results showed that, consistently across subjects, in the dorso-central sector of the insula there were voxels selectively tuned to vitality forms, while voxel tuned to velocity were rare. These results indicate that the dorso-central insula, which previous data showed to be involved in the vitality form processing, contains voxels specific for the action style processing. PMID:27375461

  15. A survey of daily asthmatic activity patterns in Cincinnati

    SciTech Connect

    Not Available

    1992-11-01

    A survey was undertaken in Cincinnati to obtain information on the activity patterns of asthmatics. Because studies have demonstrated symptomatic responses to elevated levels of SO[sub 2] only during outdoor exercise, information on the behavioral patterns of asthmatics is vital for the accurate estimation of risk due to air pollution exposures. In particular, data detailing the actual likelihood of asthmatics being engaged in strenuous outdoor activity at any given time of day is essential for an accurate appraisal of response probability. This, in turn, is necessary for an accurate estimate of risk. In the absence of such activity data, those concerned with the setting of short-term SO[sub 2] regulations are required to use purely subjective judgment to estimate how many asthmatics are engaged in strenuous outdoor exercise when SO[sub 2] levels are high enough to affect them. The activity pattern data give an indication of how much such an assumption would overestimate the true response and thus the true risk associated with SO[sub 2]. Lack of information on the activity patterns of asthmatics has thus been a critical gap in the SO[sub 2] risk assessment process. The primary purpose of this survey was to fill that gap.

  16. Reaction-diffusion patterns: From observations in halogene chemistry to a test for implication in mitosis

    NASA Astrophysics Data System (ADS)

    Dulos, E.; Hunding, A.; Boissonade, J.; de Kepper, P.

    Since the seminal paper "The chemical basis of morphogenesis" by Alan Turing, the temporal and spatial self-organization phenomena produced in chemically reacting and diffusing systems are often thought as paradigms for biological development. The basic theoretical principles on which the development of stationary concentration patterns (Turing structures) rely on are briefly presented. We review different aspects of our contribution to the experimental observation of reaction-diffusion patterns in iodine-oxychlorine systems. The experimental techniques are emphasized. Phase diagrams gathering different standing and travelling patterns are presented, analyzed and modeled. A special attention is also given to some peculiar pattern growth dynamics (spot division, finger splitting).

  17. Retinal waves coordinate patterned activity throughout the developing visual system

    PubMed Central

    Ackman, James B.; Burbridge, Timothy J.; Crair, Michael C.

    2014-01-01

    Summary The morphologic and functional development of the vertebrate nervous system is initially governed by genetic factors and subsequently refined by neuronal activity. However, fundamental features of the nervous system emerge before sensory experience is possible. Thus, activity-dependent development occurring before the onset of experience must be driven by spontaneous activity, but the origin and nature of activity in vivo remains largely untested. Here we use optical methods to demonstrate in live neonatal mice that waves of spontaneous retinal activity are present and propagate throughout the entire visual system before eye opening. This patterned activity encompassed the visual field, relied on cholinergic neurotransmission, preferentially initiated in the binocular retina, and exhibited spatiotemporal correlations between the two hemispheres. Retinal waves were the primary source of activity in the midbrain and primary visual cortex, but only modulated ongoing activity in secondary visual areas. Thus, spontaneous retinal activity is transmitted through the entire visual system and carries patterned information capable of guiding the activity-dependent development of complex intra- and inter- hemispheric circuits before the onset of vision. PMID:23060192

  18. Fractal Patterns of Neural Activity Exist within the Suprachiasmatic Nucleus and Require Extrinsic Network Interactions

    PubMed Central

    Hu, Kun; Meijer, Johanna H.; Shea, Steven A.; vanderLeest, Henk Tjebbe; Pittman-Polletta, Benjamin; Houben, Thijs; van Oosterhout, Floor; Deboer, Tom; Scheer, Frank A. J. L.

    2012-01-01

    The mammalian central circadian pacemaker (the suprachiasmatic nucleus, SCN) contains thousands of neurons that are coupled through a complex network of interactions. In addition to the established role of the SCN in generating rhythms of ∼24 hours in many physiological functions, the SCN was recently shown to be necessary for normal self-similar/fractal organization of motor activity and heart rate over a wide range of time scales—from minutes to 24 hours. To test whether the neural network within the SCN is sufficient to generate such fractal patterns, we studied multi-unit neural activity of in vivo and in vitro SCNs in rodents. In vivo SCN-neural activity exhibited fractal patterns that are virtually identical in mice and rats and are similar to those in motor activity at time scales from minutes up to 10 hours. In addition, these patterns remained unchanged when the main afferent signal to the SCN, namely light, was removed. However, the fractal patterns of SCN-neural activity are not autonomous within the SCN as these patterns completely broke down in the isolated in vitro SCN despite persistence of circadian rhythmicity. Thus, SCN-neural activity is fractal in the intact organism and these fractal patterns require network interactions between the SCN and extra-SCN nodes. Such a fractal control network could underlie the fractal regulation observed in many physiological functions that involve the SCN, including motor control and heart rate regulation. PMID:23185285

  19. PROCEEDINGS OF THE RESEARCH PLANNING CONFERENCE ON HUMAN ACTIVITY PATTERNS

    EPA Science Inventory

    The study of human activity patterns was initially an area of interest in the field of sociology, but recently it has become important to people investigating the amount and extent of exposure of human populations to hazardous chemicals. This report presents the proceedings of a ...

  20. Children's Recess Physical Activity: Movement Patterns and Preferences

    ERIC Educational Resources Information Center

    Woods, Amelia Mays; Graber, Kim C.; Daum, David Newman

    2012-01-01

    The benefits of recess can be reaped by all students regardless of socioeconomic status, race, or gender and at relatively little cost. The purpose of this study was to examine physical activity (PA) variables related to the recess PA patterns of third and fourth grade children and the social preferences and individuals influencing their PA…

  1. Physical Activity Patterns among U.S. Adults with Disabilities

    ERIC Educational Resources Information Center

    Chiu, Chung-Yi; An, Ruopeng

    2016-01-01

    Purpose: To characterize physical activity patterns among people with disabilities using data from a nationally representative health survey. Method: Individual-level data came from the Behavioral Risk Factor Surveillance System 2011 survey. Pearson's chi-squared tests were conducted to assess the difference in the proportion distribution of…

  2. Active Commuting Patterns at a Large, Midwestern College Campus

    ERIC Educational Resources Information Center

    Bopp, Melissa; Kaczynski, Andrew; Wittman, Pamela

    2011-01-01

    Objective: To understand patterns and influences on active commuting (AC) behavior. Participants: Students and faculty/staff at a university campus. Methods: In April-May 2008, respondents answered an online survey about mode of travel to campus and influences on commuting decisions. Hierarchical regression analyses predicted variance in walking…

  3. An Active Region Model for Capturing Fractal Flow Patterns inUnsaturated Soils: Model Development

    SciTech Connect

    Liu, Hui-Hai; Zhang, R.; Bodvarsson, Gudmundur S.

    2005-06-11

    Preferential flow commonly observed in unsaturated soils allows rapid movement of solute from the soil surface or vadose zone to the groundwater, bypassing a significant volume of unsaturated soil and increasing the risk of groundwater contamination. A variety of evidence indicates that complex preferential patterns observed from fields are fractals. In this study, we developed a relatively simple active region model to incorporate the fractal flow pattern into the continuum approach. In the model, the flow domain is divided into active and inactive regions. Flow occurs preferentially in the active region (characterized by fractals), and inactive region is simply bypassed. A new constitutive relationship (the portion of the active region as a function of saturation) was derived. The validity of the proposed model is demonstrated by the consistency between field observations and the new constitutive relationship.

  4. Global feedback control of Turing patterns in network-organized activator-inhibitor systems

    NASA Astrophysics Data System (ADS)

    Hata, S.; Nakao, H.; Mikhailov, A. S.

    2012-06-01

    Results of the first systematic study on feedback control of nonequilibrium pattern formation in networks are reported. Effects of global feedback control on Turing patterns in network-organized activator-inhibitor system have been investigated. The feedback signal was introduced into one of the parameters of the system and was proportional to the amplitude of the developing Turing pattern. Without the control, the Turing instability corresponded to a subcritical bifurcation and hysteresis effects were observed. Sufficiently strong feedback control rendered, however, the bifurcation supercritical and eliminated the hysteresis effects.

  5. Clustering and Pattern Formation in Chemorepulsive Active Colloids.

    PubMed

    Liebchen, Benno; Marenduzzo, Davide; Pagonabarraga, Ignacio; Cates, Michael E

    2015-12-18

    We demonstrate that migration away from self-produced chemicals (chemorepulsion) generates a generic route to clustering and pattern formation among self-propelled colloids. The clustering instability can be caused either by anisotropic chemical production, or by a delayed orientational response to changes of the chemical environment. In each case, chemorepulsion creates clusters of a self-limiting area which grows linearly with self-propulsion speed. This agrees with recent observations of dynamic clusters in Janus colloids (albeit not yet known to be chemorepulsive). More generally, our results could inform design principles for the self-assembly of chemorepulsive synthetic swimmers and/or bacteria into nonequilibrium patterns. PMID:26722949

  6. Clustering and Pattern Formation in Chemorepulsive Active Colloids

    NASA Astrophysics Data System (ADS)

    Liebchen, Benno; Marenduzzo, Davide; Pagonabarraga, Ignacio; Cates, Michael E.

    2015-12-01

    We demonstrate that migration away from self-produced chemicals (chemorepulsion) generates a generic route to clustering and pattern formation among self-propelled colloids. The clustering instability can be caused either by anisotropic chemical production, or by a delayed orientational response to changes of the chemical environment. In each case, chemorepulsion creates clusters of a self-limiting area which grows linearly with self-propulsion speed. This agrees with recent observations of dynamic clusters in Janus colloids (albeit not yet known to be chemorepulsive). More generally, our results could inform design principles for the self-assembly of chemorepulsive synthetic swimmers and/or bacteria into nonequilibrium patterns.

  7. Microvariability Observations of Three Active Galactic Nuclei

    NASA Astrophysics Data System (ADS)

    Clements, S. D.; Hirschmann, A.; Jenks, A.; Keshishian, G.; Torres, Y.

    2000-12-01

    Microvariability observations are presented for three objects - the BL Lac object OQ 530, the OVV quasar 3CR 345, and the very high redshift quasar PSS 1057+4555. All objects were observed using the 0.76m telescope at the Rosemary Hill Observatory. The object OQ 530 was observed in the R band during three nights in June of 1997. Observations in the V and I bands were made of the OVV quasar 3CR 345 in May of 2000. The microvariability behavior reported here for OQ 530 and 3CR 345 is compared to the previously reported behavior for these objects. In addition, observations were carried out over four nights in March and May of 2000 to search for microvariability of the very high redshift (z = 4.10) quasar PSS 1057+4555. The data presented here for these three objects are discussed in relation to current models for microvariability.

  8. Virtual Active Touch Using Randomly Patterned Intracortical Microstimulation

    PubMed Central

    O’Doherty, Joseph E.; Lebedev, Mikhail A.; Li, Zheng; Nicolelis, Miguel A.L.

    2012-01-01

    Intracortical microstimulation (ICMS) has promise as a means for delivering somatosensory feedback in neuroprosthetic systems. Various tactile sensations could be encoded by temporal, spatial, or spatiotemporal patterns of ICMS. However, the applicability of temporal patterns of ICMS to artificial tactile sensation during active exploration is unknown, as is the minimum discriminable difference between temporally modulated ICMS patterns. We trained rhesus monkeys in an active exploration task in which they discriminated periodic pulse-trains of ICMS (200 Hz bursts at a 10 Hz secondary frequency) from pulse trains with the same average pulse rate, but distorted periodicity (200 Hz bursts at a variable instantaneous secondary frequency). The statistics of the aperiodic pulse trains were drawn from a gamma distribution with mean inter-burst intervals equal to those of the periodic pulse trains. The monkeys distinguished periodic pulse trains from aperiodic pulse trains with coefficients of variation 0.25 or greater. Reconstruction of movement kinematics, extracted from the activity of neuronal populations recorded in the sensorimotor cortex concurrent with the delivery of ICMS feedback, improved when the recording intervals affected by ICMS artifacts were removed from analysis. These results add to the growing evidence that temporally patterned ICMS can be used to simulate a tactile sense for neuroprosthetic devices. PMID:22207642

  9. Active Curved Polymers Form Vortex Patterns on Membranes

    NASA Astrophysics Data System (ADS)

    Denk, Jonas; Huber, Lorenz; Reithmann, Emanuel; Frey, Erwin

    2016-04-01

    Recent in vitro experiments with FtsZ polymers show self-organization into different dynamic patterns, including structures reminiscent of the bacterial Z ring. We model FtsZ polymers as active particles moving along chiral, circular paths by Brownian dynamics simulations and a Boltzmann approach. Our two conceptually different methods point to a generic phase behavior. At intermediate particle densities, we find self-organization into vortex structures including closed rings. Moreover, we show that the dynamics at the onset of pattern formation is described by a generalized complex Ginzburg-Landau equation.

  10. Active Curved Polymers Form Vortex Patterns on Membranes.

    PubMed

    Denk, Jonas; Huber, Lorenz; Reithmann, Emanuel; Frey, Erwin

    2016-04-29

    Recent in vitro experiments with FtsZ polymers show self-organization into different dynamic patterns, including structures reminiscent of the bacterial Z ring. We model FtsZ polymers as active particles moving along chiral, circular paths by Brownian dynamics simulations and a Boltzmann approach. Our two conceptually different methods point to a generic phase behavior. At intermediate particle densities, we find self-organization into vortex structures including closed rings. Moreover, we show that the dynamics at the onset of pattern formation is described by a generalized complex Ginzburg-Landau equation. PMID:27176542

  11. Preservice Elementary Teachers' Knowledge of Observable Moon Phases and Pattern of Change in Phases

    ERIC Educational Resources Information Center

    Trundle, Kathy Cabe; Atwood, Ronald K.; Christopher, John E.

    2006-01-01

    The purpose of this study was to describe selected content knowledge held by 52 preservice elementary teachers about the observable phases of the moon and the monthly pattern of change in observable phases. Data were obtained from participants in a physics course before and after they received inquiry-based instruction designed to promote…

  12. Autogenic training alters cerebral activation patterns in fMRI.

    PubMed

    Schlamann, Marc; Naglatzki, Ryan; de Greiff, Armin; Forsting, Michael; Gizewski, Elke R

    2010-10-01

    Cerebral activation patterns during the first three auto-suggestive phases of autogenic training (AT) were investigated in relation to perceived experiences. Nineteen volunteers trained in AT and 19 controls were studied with fMRI during the first steps of autogenic training. FMRI revealed activation of the left postcentral areas during AT in those with experience in AT, which also correlated with the level of AT experience. Activation of prefrontal and insular cortex was significantly higher in the group with experience in AT while insular activation was correlated with number years of simple relaxation exercises. Specific activation in subjects experienced in AT may represent a training effect. Furthermore, the correlation of insular activation suggests that these subjects are different from untrained subjects in emotional processing or self-awareness. PMID:20799123

  13. Frequency requirements for active earth observation sensors

    NASA Technical Reports Server (NTRS)

    1977-01-01

    The foundation and rationale for the selection of microwave frequencies for active remote sensing usage and for subsequent use in determination of sharing criteria and allocation strategies for the WARC-79 are presented.

  14. Optimizing human activity patterns using global sensitivity analysis

    PubMed Central

    Hickmann, Kyle S.; Mniszewski, Susan M.; Del Valle, Sara Y.; Hyman, James M.

    2014-01-01

    Implementing realistic activity patterns for a population is crucial for modeling, for example, disease spread, supply and demand, and disaster response. Using the dynamic activity simulation engine, DASim, we generate schedules for a population that capture regular (e.g., working, eating, and sleeping) and irregular activities (e.g., shopping or going to the doctor). We use the sample entropy (SampEn) statistic to quantify a schedule’s regularity for a population. We show how to tune an activity’s regularity by adjusting SampEn, thereby making it possible to realistically design activities when creating a schedule. The tuning process sets up a computationally intractable high-dimensional optimization problem. To reduce the computational demand, we use Bayesian Gaussian process regression to compute global sensitivity indices and identify the parameters that have the greatest effect on the variance of SampEn. We use the harmony search (HS) global optimization algorithm to locate global optima. Our results show that HS combined with global sensitivity analysis can efficiently tune the SampEn statistic with few search iterations. We demonstrate how global sensitivity analysis can guide statistical emulation and global optimization algorithms to efficiently tune activities and generate realistic activity patterns. Though our tuning methods are applied to dynamic activity schedule generation, they are general and represent a significant step in the direction of automated tuning and optimization of high-dimensional computer simulations. PMID:25580080

  15. Optimizing human activity patterns using global sensitivity analysis

    SciTech Connect

    Fairchild, Geoffrey; Hickmann, Kyle S.; Mniszewski, Susan M.; Del Valle, Sara Y.; Hyman, James M.

    2013-12-10

    Implementing realistic activity patterns for a population is crucial for modeling, for example, disease spread, supply and demand, and disaster response. Using the dynamic activity simulation engine, DASim, we generate schedules for a population that capture regular (e.g., working, eating, and sleeping) and irregular activities (e.g., shopping or going to the doctor). We use the sample entropy (SampEn) statistic to quantify a schedule’s regularity for a population. We show how to tune an activity’s regularity by adjusting SampEn, thereby making it possible to realistically design activities when creating a schedule. The tuning process sets up a computationally intractable high-dimensional optimization problem. To reduce the computational demand, we use Bayesian Gaussian process regression to compute global sensitivity indices and identify the parameters that have the greatest effect on the variance of SampEn. Here we use the harmony search (HS) global optimization algorithm to locate global optima. Our results show that HS combined with global sensitivity analysis can efficiently tune the SampEn statistic with few search iterations. We demonstrate how global sensitivity analysis can guide statistical emulation and global optimization algorithms to efficiently tune activities and generate realistic activity patterns. Finally, though our tuning methods are applied to dynamic activity schedule generation, they are general and represent a significant step in the direction of automated tuning and optimization of high-dimensional computer simulations.

  16. Optimizing human activity patterns using global sensitivity analysis

    DOE PAGESBeta

    Fairchild, Geoffrey; Hickmann, Kyle S.; Mniszewski, Susan M.; Del Valle, Sara Y.; Hyman, James M.

    2013-12-10

    Implementing realistic activity patterns for a population is crucial for modeling, for example, disease spread, supply and demand, and disaster response. Using the dynamic activity simulation engine, DASim, we generate schedules for a population that capture regular (e.g., working, eating, and sleeping) and irregular activities (e.g., shopping or going to the doctor). We use the sample entropy (SampEn) statistic to quantify a schedule’s regularity for a population. We show how to tune an activity’s regularity by adjusting SampEn, thereby making it possible to realistically design activities when creating a schedule. The tuning process sets up a computationally intractable high-dimensional optimizationmore » problem. To reduce the computational demand, we use Bayesian Gaussian process regression to compute global sensitivity indices and identify the parameters that have the greatest effect on the variance of SampEn. Here we use the harmony search (HS) global optimization algorithm to locate global optima. Our results show that HS combined with global sensitivity analysis can efficiently tune the SampEn statistic with few search iterations. We demonstrate how global sensitivity analysis can guide statistical emulation and global optimization algorithms to efficiently tune activities and generate realistic activity patterns. Finally, though our tuning methods are applied to dynamic activity schedule generation, they are general and represent a significant step in the direction of automated tuning and optimization of high-dimensional computer simulations.« less

  17. Sciencing with Mother Goose: Observation Activities with Chicken Little.

    ERIC Educational Resources Information Center

    Angus, Carolyn

    1996-01-01

    Provides sample observation activities to accompany the nursery tale of Chicken Little. Includes five activities that involve the skills of observing, communicating, comparing, ordering, and categorizing to engage students in hands-on science. (DDR)

  18. OBSERVING CORONAL NANOFLARES IN ACTIVE REGION MOSS

    SciTech Connect

    Testa, Paola; DeLuca, Ed; Golub, Leon; Korreck, Kelly; Weber, Mark; De Pontieu, Bart; Martinez-Sykora, Juan; Title, Alan; Hansteen, Viggo; Cirtain, Jonathan; Winebarger, Amy; Kobayashi, Ken; Kuzin, Sergey; Walsh, Robert; DeForest, Craig

    2013-06-10

    The High-resolution Coronal Imager (Hi-C) has provided Fe XII 193A images of the upper transition region moss at an unprecedented spatial ({approx}0.''3-0.''4) and temporal (5.5 s) resolution. The Hi-C observations show in some moss regions variability on timescales down to {approx}15 s, significantly shorter than the minute-scale variability typically found in previous observations of moss, therefore challenging the conclusion of moss being heated in a mostly steady manner. These rapid variability moss regions are located at the footpoints of bright hot coronal loops observed by the Solar Dynamics Observatory/Atmospheric Imaging Assembly in the 94 A channel, and by the Hinode/X-Ray Telescope. The configuration of these loops is highly dynamic, and suggestive of slipping reconnection. We interpret these events as signatures of heating events associated with reconnection occurring in the overlying hot coronal loops, i.e., coronal nanoflares. We estimate the order of magnitude of the energy in these events to be of at least a few 10{sup 23} erg, also supporting the nanoflare scenario. These Hi-C observations suggest that future observations at comparable high spatial and temporal resolution, with more extensive temperature coverage, are required to determine the exact characteristics of the heating mechanism(s).

  19. Observation of harmonically related solar radio zebra patterns in the 1-4 GHz frequency range

    NASA Astrophysics Data System (ADS)

    Sawant, H. S.; Karlický, M.; Fernandes, F. C. R.; Cecatto, J. R.

    2002-12-01

    A unique case of two zebra patterns related harmonically with ratio of ~ 1:2 was observed by distant radio telescopes at São José dos Campos and Ondřejov Observatories. Accompanied zebras show that the ratio of frequencies of the neighboring zebra lines is in the range of 1.009-1.037. There is a tendency of a decrease of this ratio with decreasing frequency within the specific zebra pattern. Both facts speak in favour of plasma emission models for the zebra pattern fine structure in radio burst continua.

  20. Seasonal variation in American black bear Ursus americanus activity patterns: Quantification via remote photography

    USGS Publications Warehouse

    Bridges, A.S.; Vaughan, M.R.; Klenzendorf, S.

    2004-01-01

    Activity pattern plasticity may serve as an evolutionary adaptation to optimize fitness in an inconstant environment, however, quantifying patterns and demonstrating variation can be problematic. For American black bears Ursus americanus, wariness and habitat inaccessibility further complicate quantification. Radio telemetry has been the primary technique used to examine activity, however, interpretation error and limitation on numbers of animals available to monitor prevent extrapolation to unmarked or untransmittered members of the population. We used remote cameras to quantify black bear activity patterns and examined differences by season, sex and reproductive class in the Alleghany Mountains of western Virginia, USA. We used 1,533 pictures of black bears taken during 1998-2002 for our analyses. Black bears generally were diurnal in summer and nocturnal in autumn with a vespertine activity peak during both seasons. Bear-hound training seasons occurred during September and may offer explanation for the observed shift towards nocturnal behaviour. We found no substantial differences in activity patterns between sex and reproductive classes. Use of remote cameras allowed us to efficiently sample larger numbers of individual animals and likely offered a better approximation of population-level activity patterns than individual-level, telemetry-based methodologies.

  1. Active Latitude Oscillations Observed on the Sun

    NASA Astrophysics Data System (ADS)

    Kilcik, A.; Yurchyshyn, V.; Clette, F.; Ozguc, A.; Rozelot, J.-P.

    2016-04-01

    We investigate periodicities in the mean heliographic latitudes of sunspot groups, called active latitudes, for the past six complete solar cycles (1945 - 2008). For this purpose, the multitaper method and Morlet wavelet analysis were used. We found that solar rotation periodicities (26 - 38 days) are present in active latitudes of both hemispheres for all the investigated cycles (18 to 23). Both in the northern and southern hemispheres, active latitudes drifted toward the equator from the beginning to the end of each cycle and followed an oscillating path. These motions are well described by a second-order polynomial. There are no meaningful periods of between 55 and about 300 days in either hemisphere for all cycles. A periodicity of 300 to 370 days appears in both hemispheres for Cycle 23, in the northern hemisphere for Cycle 20, and in the southern hemisphere for Cycle 18.

  2. Mesoscopic Patterns of Neural Activity Support Songbird Cortical Sequences

    PubMed Central

    Guitchounts, Grigori; Velho, Tarciso; Lois, Carlos; Gardner, Timothy J.

    2015-01-01

    Time-locked sequences of neural activity can be found throughout the vertebrate forebrain in various species and behavioral contexts. From “time cells” in the hippocampus of rodents to cortical activity controlling movement, temporal sequence generation is integral to many forms of learned behavior. However, the mechanisms underlying sequence generation are not well known. Here, we describe a spatial and temporal organization of the songbird premotor cortical microcircuit that supports sparse sequences of neural activity. Multi-channel electrophysiology and calcium imaging reveal that neural activity in premotor cortex is correlated with a length scale of 100 µm. Within this length scale, basal-ganglia–projecting excitatory neurons, on average, fire at a specific phase of a local 30 Hz network rhythm. These results show that premotor cortical activity is inhomogeneous in time and space, and that a mesoscopic dynamical pattern underlies the generation of the neural sequences controlling song. PMID:26039895

  3. Mesoscopic patterns of neural activity support songbird cortical sequences.

    PubMed

    Markowitz, Jeffrey E; Liberti, William A; Guitchounts, Grigori; Velho, Tarciso; Lois, Carlos; Gardner, Timothy J

    2015-06-01

    Time-locked sequences of neural activity can be found throughout the vertebrate forebrain in various species and behavioral contexts. From "time cells" in the hippocampus of rodents to cortical activity controlling movement, temporal sequence generation is integral to many forms of learned behavior. However, the mechanisms underlying sequence generation are not well known. Here, we describe a spatial and temporal organization of the songbird premotor cortical microcircuit that supports sparse sequences of neural activity. Multi-channel electrophysiology and calcium imaging reveal that neural activity in premotor cortex is correlated with a length scale of 100 µm. Within this length scale, basal-ganglia-projecting excitatory neurons, on average, fire at a specific phase of a local 30 Hz network rhythm. These results show that premotor cortical activity is inhomogeneous in time and space, and that a mesoscopic dynamical pattern underlies the generation of the neural sequences controlling song. PMID:26039895

  4. Observational Activities at Manipur University, India (Abstract)

    NASA Astrophysics Data System (ADS)

    Singh, K. Y.; Meitei, I. A.; Singh, S. A.; Singh, R. B.

    2015-06-01

    (Abstract only) We have innovatively designed and constructed three observatories each costing a few hundred USD for housing three small Schmidt-Cassegrain type telescopes namely, Celestron CGE925, Celestron CGE1400, Meade 12-inch LX200GPS. These observatories are completely different in design and are found to be perfectly usable for doing serious work on astronomical observation and measurements. The observatory with the Celestron CGE1400 telescope has been inducted, since January 2012, as one of the observatories of the international “Orion Project” headquartered at Phoenix, Arizona, which is dedicated for photometric and spectroscopic observations of five bright variable stars of the Orion constellation namely, Betelgeuse (alpha Ori), Rigel (beta Ori), Mintaka (delta Ori), Alnilam (epsilon Ori) and Alnitak (zeta Ori). Using this observatory, we have been producing BVRI photometric data for the five stars of the Orion project. The other observatory with the Meade 12-inch LX200GPS telescope is being inducted into service for CCD photometric study of SU UMa stars in connection with implementation of a project funded by Indian Space Research Organization (ISRO). In the present paper, we would like to describe our self-built observatories, our observational facilities, the BVRI photometric data that we acquired for the Orion project, and our future plan for observation of variable stars of interest.

  5. Effect of Low-Surface-Tension Liquid on Pattern Collapse Analyzed by Observing Dynamical Meniscus

    NASA Astrophysics Data System (ADS)

    Kawai, Akira; Suzuki, Kenta

    2006-06-01

    It has been recognized that the decrease in surface tension of rinse water prevents resist pattern collapse during the pattern development process. We have already reported that the resist pattern collapse occurs as induced by stress concentration at the resist pattern bottom due to an air tunnel, that is formed between parallel patterns. To clarify the effect of low-surface-tension liquid visibly, a transparent organic film is used as a monitoring pattern in this study, that is, direct observation through the transparent film (DOT) method. Two types of liquid; namely, (i) low-surface-tension liquid (ethyl alcohol γL=22.5 mJ/m2) and (ii) high-surface-tension liquid [deionized (DI) water γL=72.9 mJ/m2], are used. As a consequence, the air tunnel is not formed using the low surface tension liquid but is formed using DI water. The balance between Laplace and elastic forces of the pattern is estimated to determine pattern collapse and deformation. As a consequence, it is effective to employ low-surface-tension liquid as rinse liquid to prevent air tunnel formation.

  6. Reliable and Affordable Control Systems Active Combustor Pattern Factor Control

    NASA Technical Reports Server (NTRS)

    McCarty, Bob; Tomondi, Chris; McGinley, Ray

    2004-01-01

    Active, closed-loop control of combustor pattern factor is a cooperative effort between Honeywell (formerly AlliedSignal) Engines and Systems and the NASA Glenn Research Center to reduce emissions and turbine-stator vane temperature variations, thereby enhancing engine performance and life, and reducing direct operating costs. Total fuel flow supplied to the engine is established by the speed/power control, but the distribution to individual atomizers will be controlled by the Active Combustor Pattern Factor Control (ACPFC). This system consist of three major components: multiple, thin-film sensors located on the turbine-stator vanes; fuel-flow modulators for individual atomizers; and control logic and algorithms within the electronic control.

  7. Temporal Links in Daily Activity Patterns between Coral Reef Predators and Their Prey

    PubMed Central

    Bosiger, Yoland J.; McCormick, Mark I.

    2014-01-01

    Few studies have documented the activity patterns of both predators and their common prey over 24 h diel cycles. This study documents the temporal periodicity of two common resident predators of juvenile reef fishes, Cephalopholis cyanostigma (rockcod) and Pseudochromis fuscus (dottyback) and compares these to the activity and foraging pattern of a common prey species, juvenile Pomacentrus moluccensis (lemon damselfish). Detailed observations of activity in the field and using 24 h infrared video in the laboratory revealed that the two predators had very different activity patterns. C. cyanostigma was active over the whole 24 h period, with a peak in feeding strikes at dusk and increased activity at both dawn and dusk, while P. fuscus was not active at night and had its highest strike rates at midday. The activity and foraging pattern of P. moluccensis directly opposes that of C. cyanostigma with individuals reducing strike rate and intraspecific aggression at both dawn and dusk, and reducing distance from shelter and boldness at dusk only. Juveniles examined were just outside the size-selection window of P. fuscus. We suggest that the relatively predictable diel behaviour of coral reef predators results from physiological factors such as visual sensory abilities, circadian rhythmicity, variation in hunting profitability, and predation risk at different times of the day. Our study suggests that the diel periodicity of P. moluccensis behaviour may represent a response to increased predation risk at times when both the ability to efficiently capture food and visually detect predators is reduced. PMID:25354096

  8. Twenty-four hour activity budgets and patterns of behavior in captive ocelots (Leopardus pardalis).

    PubMed

    Weller, S H.; Bennett, C L.

    2001-02-16

    Activity budgets of captive ocelots (Leopardus pardalis) were assessed from over 547h of observational data obtained from six ocelots; two females at the Dallas Zoo (Dallas, TX), two females at the Caldwell Zoo (Tyler, TX) and a male and female at the Fossil Rim Wildlife Center (Glen Rose, TX). Data were examined for the percentage of active behaviors exhibited during the day and nighttime hours; temporal patterns of active, pace, exploratory and marking behavior, and for significance in pacing behavior between pre- and post-feeding times. The captive cats had a bimodal pattern of active behavior similar to field studies of wild ocelots, except that the timing of the active peaks were closer to the diurnal hours for the captive cats. The captive ocelots were less active than wild ocelots, and more diurnal. Also, the captive cats exhibited stereotypic pacing. When the percentage of time of active behavior was assessed for each cat, a strong variation between individuals and institution was not seen. Pacing behavior was highest prior to the feeding times for the cats. In assessing patterns of behavior, peaks in marking and exploratory behavior in the cats did not occur at the same time as the peaks in active behavior. However, we did see institutional differences in the pattern of exploratory and marking behavior, which may have been influenced by differing management practices. PMID:11179560

  9. OBSERVATIONS ON ASBESTOS RELEASE DURING DEMOLITION ACTIVITIES

    EPA Science Inventory

    The Risk Reduction Engineering Laboratory has monitored block-wide building demolition and debris disposal activities at Santa Cruz and Watsonville, California following the earthquake, an implosion demolition of a 26-story building in Cincinnati, Ohio, and the demolition of two ...

  10. Muscle Activation Patterns When Passively Stretching Spastic Lower Limb Muscles of Children with Cerebral Palsy

    PubMed Central

    Bar-On, Lynn; Aertbeliën, Erwin; Molenaers, Guy; Desloovere, Kaat

    2014-01-01

    The definition of spasticity as a velocity-dependent activation of the tonic stretch reflex during a stretch to a passive muscle is the most widely accepted. However, other mechanisms are also thought to contribute to pathological muscle activity and, in patients post-stroke and spinal cord injury can result in different activation patterns. In the lower-limbs of children with spastic cerebral palsy (CP) these distinct activation patterns have not yet been thoroughly explored. The aim of the study was to apply an instrumented assessment to quantify different muscle activation patterns in four lower-limb muscles of children with CP. Fifty-four children with CP were included (males/females n = 35/19; 10.8±3.8 yrs; bilateral/unilateral involvement n =  32/22; Gross Motor Functional Classification Score I–IV) of whom ten were retested to evaluate intra-rater reliability. With the subject relaxed, single-joint, sagittal-plane movements of the hip, knee, and ankle were performed to stretch the lower-limb muscles at three increasing velocities. Muscle activity and joint motion were synchronously recorded using inertial sensors and electromyography (EMG) from the adductors, medial hamstrings, rectus femoris, and gastrocnemius. Muscles were visually categorised into activation patterns using average, normalized root mean square EMG (RMS-EMG) compared across increasing position zones and velocities. Based on the visual categorisation, quantitative parameters were defined using stretch-reflex thresholds and normalized RMS-EMG. These parameters were compared between muscles with different activation patterns. All patterns were dominated by high velocity-dependent muscle activation, but in more than half, low velocity-dependent activation was also observed. Muscle activation patterns were found to be both muscle- and subject-specific (p<0.01). The intra-rater reliability of all quantitative parameters was moderate to good. Comparing RMS-EMG between incremental

  11. Muscle activity pattern dependent pain development and alleviation.

    PubMed

    Sjøgaard, Gisela; Søgaard, Karen

    2014-12-01

    Muscle activity is for decades considered to provide health benefits irrespectively of the muscle activity pattern performed and whether it is during e.g. sports, transportation, or occupational work tasks. Accordingly, the international recommendations for public health-promoting physical activity do not distinguish between occupational and leisure time physical activity. However, in this body of literature, attention has not been paid to the extensive documentation on occupational physical activity imposing a risk of impairment of health - in particular musculoskeletal health in terms of muscle pain. Focusing on muscle activity patterns and musculoskeletal health it is pertinent to elucidate the more specific aspects regarding exposure profiles and body regional pain. Static sustained muscle contraction for prolonged periods often occurs in the neck/shoulder area during occupational tasks and may underlie muscle pain development in spite of rather low relative muscle load. Causal mechanisms include a stereotype recruitment of low threshold motor units (activating type 1 muscle fibers) characterized by a lack of temporal as well as spatial variation in recruitment. In contrast during physical activities at leisure and sport the motor recruitment patterns are more dynamic including regularly relatively high muscle forces - also activating type 2 muscles fibers - as well as periods of full relaxation even of the type 1 muscle fibers. Such activity is unrelated to muscle pain development if adequate recovery is granted. However, delayed muscle soreness may develop following intensive eccentric muscle activity (e.g. down-hill skiing) with peak pain levels in thigh muscles 1-2 days after the exercise bout and a total recovery within 1 week. This acute pain profile is in contrast to the chronic muscle pain profile related to repetitive monotonous work tasks. The painful muscles show adverse functional, morphological, hormonal, as well as metabolic characteristics. Of

  12. Interplay activity-connectivity: Dynamics in patterned neuronal cultures

    NASA Astrophysics Data System (ADS)

    Tibau, E.; Bendiksen, Ch.; Teller, S.; Amigó, N.; Soriano, J.

    2013-01-01

    The ability of a neuronal tissue to efficiently process and transmit information depends on both the intrinsic dynamical properties of the neurons and the connectivity between them. One of the few experimental systems where one can vary the connectivity of a neuronal network in a control manner are neuronal cultures. Here we show that, by combining neuronal cultures with different pattering techniques, we can control and dictate the connectivity of neuronal networks. The emerging cultures are characterized by a rich spontaneous activity, but with some dynamical traits that can be ascribed to the underlying, engineered wiring architecture. Simple patterned cultures can be obtained by plating neurons onto predefined topographical molds, which guide neurons and connections through complex paths. In contrast to homogeneous cultures, characterized by an on/off behavior where all neurons fire in a short time window, patterned cultures show more complex spatio-temporal dynamics, and with varying propagation paths and velocities. Patterned cultures provide a valuable tool to understand not only the interplay activity-connectivity, but also aspects such as the emergence and maintenance of spontaneous activity, synchronization, or the presence of specific dynamic motifs.

  13. Sources of Information and Behavioral Patterns in Online Health Forums: Observational Study

    PubMed Central

    Friede, Tim; Grabowski, Jens; Koschack, Janka; Makedonski, Philip; Himmel, Wolfgang

    2014-01-01

    Background Increasing numbers of patients are raising their voice in online forums. This shift is welcome as an act of patient autonomy, reflected in the term “expert patient”. At the same time, there is considerable concern that patients can be easily misguided by pseudoscientific research and debate. Little is known about the sources of information used in health-related online forums, how users apply this information, and how they behave in such forums. Objective The intent of the study was to identify (1) the sources of information used in online health-related forums, and (2) the roles and behavior of active forum visitors in introducing and disseminating this information. Methods This observational study used the largest German multiple sclerosis (MS) online forum as a database, analyzing the user debate about the recently proposed and controversial Chronic Cerebrospinal Venous Insufficiency (CCSVI) hypothesis. After extracting all posts and then filtering relevant CCSVI posts between 01 January 2008 and 17 August 2012, we first identified hyperlinks to scientific publications and other information sources used or referenced in the posts. Employing k-means clustering, we then analyzed the users’ preference for sources of information and their general posting habits. Results Of 139,912 posts from 11,997 threads, 8628 posts discussed or at least mentioned CCSVI. We detected hyperlinks pointing to CCSVI-related scientific publications in 31 posts. In contrast, 2829 different URLs were posted to the forum, most frequently referring to social media, such as YouTube or Facebook. We identified a total of 6 different roles of hyperlink posters including Social Media Fans, Organization Followers, and Balanced Source Users. Apart from the large and nonspecific residual category of the “average user”, several specific behavior patterns were identified, such as the small but relevant groups of CCSVI-Focused Responders or CCSVI Activators. Conclusions The bulk

  14. A system for simulating aerial or orbital TV observations of geographic patterns

    NASA Technical Reports Server (NTRS)

    Latham, J. P.

    1972-01-01

    A system which simulates observation of the earth surface by aerial or orbiting television devices has been developed. By projecting color slides of photographs taken by aircraft and orbiting sensors upon a rear screen system, and altering scale of projected image, screen position, or TV camera position, it is possible to simulate alternatives of altitude, or optical systems. By altering scan line patterns in COHU 3200 series camera from 525 to 945 scan lines, it is possible to study implications of scan line resolution upon the detection and analysis of geographic patterns observed by orbiting TV systems.

  15. Einstein observations of active galaxies and quasars

    NASA Technical Reports Server (NTRS)

    Schreier, E. J.

    1979-01-01

    The radio galaxies Centaurus A and Signus B are discussed. In both these sources, a comparison of the radio and imaged X-ray flux is allowed for the measurement of the magnetic fields. Einstein observations of quasars are discussed. The number of known X-ray emitting QSO's was increased from 3 to 22 and the distances where these QSO's were seen to correspond to an age of 15 billion years. It was shown that these quasars contributed significantly to the X-ray background.

  16. Retrieving Binary Answers Using Whole-Brain Activity Pattern Classification

    PubMed Central

    Nawa, Norberto E.; Ando, Hiroshi

    2015-01-01

    Multivariate pattern analysis (MVPA) has been successfully employed to advance our understanding of where and how information regarding different mental states is represented in the human brain, bringing new insights into how these states come to fruition, and providing a promising complement to the mass-univariate approach. Here, we employed MVPA to classify whole-brain activity patterns occurring in single fMRI scans, in order to retrieve binary answers from experiment participants. Five healthy volunteers performed two types of mental task while in the MRI scanner: counting down numbers and recalling positive autobiographical events. Data from these runs were used to train individual machine learning based classifiers that predicted which mental task was being performed based on the voxel-based brain activity patterns. On a different day, the same volunteers reentered the scanner and listened to six statements (e.g., “the month you were born is an odd number”), and were told to countdown numbers if the statement was true (yes) or recall positive events otherwise (no). The previously trained classifiers were then used to assign labels (yes/no) to the scans collected during the 24-second response periods following each one of the statements. Mean classification accuracies at the single scan level were in the range of 73.6 to 80.8%, significantly above chance for all participants. When applying a majority vote on the scans within each response period, i.e., the most frequent label (yes/no) in the response period becomes the answer to the previous statement, 5.0 to 5.8 sentences, out of 6, were correctly classified in each one of the runs, on average. These results indicate that binary answers can be retrieved from whole-brain activity patterns, suggesting that MVPA provides an alternative way to establish basic communication with unresponsive patients when other techniques are not successful. PMID:26778992

  17. Patterns of adolescent physical activity and dietary behaviours

    PubMed Central

    Pearson, Natalie; Atkin, Andrew J; Biddle, Stuart JH; Gorely, Trish; Edwardson, Charlotte

    2009-01-01

    Background The potential synergistic effects of multiple dietary and physical activity behaviours on the risk of chronic conditions and health outcomes is a key issue for public health. This study examined the prevalence and clustering patterns of multiple health behaviours among a sample of adolescents in the UK. Methods Cross-sectional survey of 176 adolescents aged 12–16 years (49% boys). Adolescents wore accelerometers for seven days and completed a questionnaire assessing fruit, vegetable, and breakfast consumption. The prevalence of adolescents meeting the physical activity (≥ 60 minutes moderate-to-vigorous physical activity/day), fruit and vegetable (≥ 5 portions of FV per day) and breakfast recommendations (eating breakfast on ≥ 5 days per week), and clustering patterns of these health behaviours are described. Results Boys were more active than girls (p < 0.001) and younger adolescents were more active than older adolescents (p < 0.01). Boys ate breakfast on more days per week than girls (p < 0.01) and older adolescents ate more fruit and vegetables than younger adolescents (p < 0.01). Almost 54% of adolescents had multiple risk behaviours and only 6% achieved all three of the recommendations. Girls had significantly more risk factors than boys (p < 0.01). For adolescents with two risk behaviours, the most prevalent cluster was formed by not meeting the physical activity and fruit and vegetable recommendations. Conclusion Many adolescents fail to meet multiple diet and physical activity recommendations, highlighting that physical activity and dietary behaviours do not occur in isolation. Future research should investigate how best to achieve multiple health behaviour change in adolescent boys and girls. PMID:19624822

  18. NATIONAL HUMAN ACTIVITY PATTERN SURVEY (NHAPS): USE OF NATIONWIDE ACTIVITY DATA FOR HUMAN EXPOSURE ASSESSMENT

    EPA Science Inventory

    The National Human Activity Pattern Survey (NHAPS) was initiated to fill a need for updated activity information on a nationwide scale. Several recent exposure field monitoring studies have shown that human activities play a critical role in explaining the variation in human expo...

  19. Note: Experimental observation of nano-channel pattern in light sheet laser interference nanolithography system

    NASA Astrophysics Data System (ADS)

    Mohan, Kavya; Mondal, Partha Pratim

    2016-06-01

    We experimentally observed nano-channel-like pattern in a light-sheet based interference nanolithography system. The optical system created nano-channel-like patterned illumination. Coherent counter-propagating light sheets are made to interfere at and near geometrical focus along the propagation z-axis. This results in the formation of nano-channel-like pattern (of size ≈ 300 nm and inter-channel periodicity of ≈337.5 nm) inside the sample due to constructive and destructive interference. In addition, the technique has the ability to generate large area patterning using larger light-sheets. Exciting applications are in the broad field of nanotechnology (nano-electronics and nano-fluidics).

  20. Muscle activation patterns are bilaterally linked during split-belt treadmill walking in humans

    PubMed Central

    Ivanenko, Y. P.; Massaad, F.; Bruijn, S. M.; Duysens, J.; Lacquaniti, F.

    2014-01-01

    There is growing evidence that human locomotion is controlled by flexibly combining a set of basic muscle activity patterns. To explore how these patterns are modified to cope with environmental constraints, 10 healthy young adults 1st walked on a split-belt treadmill at symmetric speeds of 4 and 6 km/h for 2 min. An asymmetric condition was then performed for 10 min in which treadmill speeds for the dominant (fast) and nondominant (slow) sides were 6 and 4 km/h, respectively. This was immediately followed by a symmetric speed condition of 4 km/h for 5 min. Gait kinematics and ground reaction forces were recorded. Electromyography (EMG) was collected from 12 lower limb muscles on each side of the body. Nonnegative matrix factorization was applied to the EMG signals bilaterally and unilaterally to obtain basic activation patterns. A cross-correlation analysis was then used to quantify temporal changes in the activation patterns. During the early (1st 10 strides) and late (final 10 strides) phases of the asymmetric condition, the patterns related to ankle plantar flexor (push-off) of the fast limb and quadriceps muscle (contralateral heel contact) of the slow limb occurred earlier in the gait cycle compared with the symmetric conditions. Moreover, a bilateral temporal alignment of basic patterns between limbs was still maintained in the split-belt condition since a similar shift was observed in the unilateral patterns. The results suggest that the temporal structure of these locomotor patterns is shaped by sensory feedback and that the patterns are bilaterally linked. PMID:24478155

  1. Predicting variations of perceptual performance across individuals from neural activity using pattern classifiers.

    PubMed

    Das, Koel; Giesbrecht, Barry; Eckstein, Miguel P

    2010-07-15

    Within the past decade computational approaches adopted from the field of machine learning have provided neuroscientists with powerful new tools for analyzing neural data. For instance, previous studies have applied pattern classification algorithms to electroencephalography data to predict the category of presented visual stimuli, human observer decision choices and task difficulty. Here, we quantitatively compare the ability of pattern classifiers and three ERP metrics (peak amplitude, mean amplitude, and onset latency of the face-selective N170) to predict variations across individuals' behavioral performance in a difficult perceptual task identifying images of faces and cars embedded in noise. We investigate three different pattern classifiers (Classwise Principal Component Analysis, CPCA; Linear Discriminant Analysis, LDA; and Support Vector Machine, SVM), five training methods differing in the selection of training data sets and three analyses procedures for the ERP measures. We show that all three pattern classifier algorithms surpass traditional ERP measurements in their ability to predict individual differences in performance. Although the differences across pattern classifiers were not large, the CPCA method with training data sets restricted to EEG activity for trials in which observers expressed high confidence about their decisions performed the highest at predicting perceptual performance of observers. We also show that the neural activity predicting the performance across individuals was distributed through time starting at 120ms, and unlike the face-selective ERP response, sustained for more than 400ms after stimulus presentation, indicating that both early and late components contain information correlated with observers' behavioral performance. Together, our results further demonstrate the potential of pattern classifiers compared to more traditional ERP techniques as an analysis tool for modeling spatiotemporal dynamics of the human brain and

  2. a Multidisciplinary Analytical Framework for Studying Active Mobility Patterns

    NASA Astrophysics Data System (ADS)

    Orellana, D.; Hermida, C.; Osorio, P.

    2016-06-01

    Intermediate cities are urged to change and adapt their mobility systems from a high energy-demanding motorized model to a sustainable low-motorized model. In order to accomplish such a model, city administrations need to better understand active mobility patterns and their links to socio-demographic and cultural aspects of the population. During the last decade, researchers have demonstrated the potential of geo-location technologies and mobile devices to gather massive amounts of data for mobility studies. However, the analysis and interpretation of this data has been carried out by specialized research groups with relatively narrow approaches from different disciplines. Consequently, broader questions remain less explored, mainly those relating to spatial behaviour of individuals and populations with their geographic environment and the motivations and perceptions shaping such behaviour. Understanding sustainable mobility and exploring new research paths require an interdisciplinary approach given the complex nature of mobility systems and their social, economic and environmental impacts. Here, we introduce the elements for a multidisciplinary analytical framework for studying active mobility patterns comprised of three components: a) Methodological, b) Behavioural, and c) Perceptual. We demonstrate the applicability of the framework by analysing mobility patterns of cyclists and pedestrians in an intermediate city integrating a range of techniques, including: GPS tracking, spatial analysis, auto-ethnography, and perceptual mapping. The results demonstrated the existence of non-evident spatial behaviours and how perceptual features affect mobility. This knowledge is useful for developing policies and practices for sustainable mobility planning.

  3. Patterning of sympathetic nerve activity in response to vestibular stimulation

    NASA Technical Reports Server (NTRS)

    Kerman, I. A.; McAllen, R. M.; Yates, B. J.

    2000-01-01

    Growing evidence suggests a role for the vestibular system in regulation of autonomic outflow during postural adjustments. In the present paper we review evidence for the patterning of sympathetic nerve activity elicited by vestibular stimulation. In response to electrical activation of vestibular afferents, firing of sympathetic nerves located throughout the body is altered. However, activity of the renal nerve is most sensitive to vestibular inputs. In contrast, high-intensity simultaneous activation of cutaneous and muscle inputs elicits equivalent changes in firing of the renal, superior mesenteric and lumbar colonic nerves. Responses of muscle vasoconstrictor (MVC) efferents to vestibular stimulation are either inhibitory (Type I) or are comprised of a combination of excitation and inhibition (Type II). Interestingly, single MVC units located in the hindlimb exhibited predominantly Type I responses while those located in the forelimb and face exhibited Type II responses. Furthermore, brachial and femoral arterial blood flows were dissociated in response to vestibular stimulation, such that brachial vascular resistance increased while femoral resistance decreased. These studies demonstrate that vestibulosympathetic reflexes are patterned according to both the anatomical location and innervation target of a particular sympathetic nerve, and can lead to distinct changes in local blood flow.

  4. Patterns of metabolic activity in the treatment of schizophrenia

    SciTech Connect

    Brodie, J.D.; Christman, D.R.; Corona, J.F.; Fowler, J.S.; Gomez-Mont, F.; Jaeger, J.; Micheels, P.A.; Rotrosen, J.; Russell, J.A.; Volkow, N.D.; Wikler, A.

    1984-04-01

    Six patients with chronic schizophrenia were studied with positron emission tomography (PET) before and after neuroleptic treatment, using fluorine-18-labeled fluorodeoxyglucose. After treatment, the mean whole-slice glucose metabolic rate at the level of the basal ganglia showed a 25% increase. However, patterns of frontal hypometabolism observed with the schizophrenic patients were not altered by medication. Pattern analysis using the fast Fourier transform was applied to a set of 422 images from a mixed group of normal, depressed, and schizophrenic subjects. Reconstruction of the images with low-frequency coefficients was excellent, reducing considerably the number of variables needed to characterize each image. Hierarchical cluster analysis categorized the transformed images according to anatomical level and subject group (patient versus control). The results suggest the utility of this procedure for the classification and characterization of metabolic PET images from psychiatric patients. 8 references, 3 figures, 1 table.

  5. A framework for the Subaru Telescope observation control system based on the command design pattern

    NASA Astrophysics Data System (ADS)

    Jeschke, Eric; Bon, Bruce; Inagaki, Takeshi; Streeper, Sam

    2008-08-01

    Subaru Telescope is developing a second-generation Observation Control System that specifically addresses some of the deficiencies of the current Subaru OCS. One area of concern is better extensibility: the current system uses a custom language for implementing commands with a complex macro processing subsystem written in C. It is laborious to improve the language and awkward for scientists to extend and use standard programming techniques. Our Generation 2 OCS provides a lightweight, object-oriented task framework based on the Command design pattern. The framework provides a base task class that abstracts services for processing status and other common infrastructure activities. Upon this are built and provided a set of "atomic" tasks for telescope and instrument commands. A set of "container" tasks based on common sequential and concurrent command processing paradigms is also included. Since all tasks share the same exact interface, it is straightforward to build up compound tasks by plugging simple tasks into container tasks and container tasks into other containers, and so forth. In this way various advanced astronomical workflows can be readily created, with well controlled behaviors. In addition, since tasks are written in Python, it is easy for astronomers to subclass and extend the standard observatory tasks with their own custom extensions and behaviors, in a high-level, full-featured programming language. In this talk we will provide an overview of the task framework design and present preliminary results on the use of the framework during two separate engineering runs.

  6. Explanation of observed interference patterns in the differential cross section for double photoionization of H2

    SciTech Connect

    Horner, Daniel A; Miyabe, Shungo; Morales, Felipe; Martin, Fernando; Rescigno, Thomas N; Mccurdy, C William

    2009-01-01

    We present the results of numerical calculations on the single photon double photoionization of H{sub 2} for energies between 130 eV and 240 eV. We find that our results are in excellent agreement with experimental observations. However, our interpretation of the observed interference pattern at these energies is that it is due to mixing of parallel and perpendicular components through circularly polarized light rather than due to classical double slit diffraction.

  7. Dietary patterns are associated with disease risk among participants in the women's health initiative observational study

    Technology Transfer Automated Retrieval System (TEKTRAN)

    Coronary heart disease (CHD) is the leading cause of death in women. A nested case-control study tested whether dietary patterns predicted CHD events among 1224 participants in the Women’s Health Initiative-Observational Study (WHI-OS) with centrally confirmed CHD, fatal or nonfatal myocardial infar...

  8. Successful Remembering Elicits Event-Specific Activity Patterns in Lateral Parietal Cortex

    PubMed Central

    Chun, Marvin M.

    2014-01-01

    Remembering a past event involves reactivation of content-specific patterns of neural activity in high-level perceptual regions (e.g., ventral temporal cortex, VTC). In contrast, the subjective experience of vivid remembering is typically associated with increased activity in lateral parietal cortex (LPC)—“retrieval success effects” that are thought to generalize across content types. However, the functional significance of LPC activation during memory retrieval remains a subject of active debate. In particular, theories are divided with respect to whether LPC actively represents retrieved content or if LPC activity only scales with content reactivation elsewhere (e.g., VTC). Here, we report a human fMRI study of visual memory recall (faces vs scenes) in which complementary forms of multivoxel pattern analysis were used to test for and compare content reactivation within LPC and VTC. During recall of visual images, we observed robust reactivation of broad category information (face vs scene) in both VTC and LPC. Moreover, recall-related activity patterns in LPC, but not VTC, differentiated between individual events. Importantly, these content effects were particularly evident in areas of LPC (namely, angular gyrus) in which activity scaled with subjective reports of recall vividness. These findings provide striking evidence that LPC not only signals that memories have been successfully recalled, but actively represents what is being remembered. PMID:24899726

  9. Video Observation of the Leonids 2001 Activity

    NASA Astrophysics Data System (ADS)

    Lin, Chilong; Abe, Shinsuke; Koten, Pavel; Yang, I-Ching

    2012-02-01

    This paper presents an analysis of records obtained by video equipment of the 2001 Leonid meteor storm. Totally, 3712 meteors, including 22 non-Leonid ones, were recognized from the record of 247 min. The brightness of meteors was measured with the software ``LIMovie'', and a population index of r = 2.01 ± 0.05 (-8 ≤ mag ≤ -3) was thus derived. We proposed a way to derive the mass-distribution index, s = 1.82, from only our one-station data. The maximum of the activity appeared at 18h25m UT with an effective peak of ZHR90°×67° = 52606 (mag ≤ +6.5). There are also compatible sub-peaks and high plateaus beside the main peak. One of them may correspond to the predicted 9-revolution dust trail (ejection in 1699). In this article we treat the cross section of the influx zone as a trapezoid. The peak ``influx rate'' generated by the 4-revolution dust trail (ejection in 1866) thus derived would be 6.76 × 10-5km-2s-1 (mag ≤ +6.5), and the corresponding ``spatial number density'' would be 9.52 × 10-7km-3 (mag ≤ +6.5).

  10. Solar Activity Studies using Microwave Imaging Observations

    NASA Technical Reports Server (NTRS)

    Gopalswamy, N.

    2016-01-01

    We report on the status of solar cycle 24 based on polar prominence eruptions (PEs) and microwave brightness enhancement (MBE) information obtained by the Nobeyama radioheliograph. The north polar region of the Sun had near-zero field strength for more than three years (2012-2015) and ended only in September 2015 as indicated by the presence of polar PEs and the lack of MBE. The zero-polar-field condition in the south started only around 2013, but it ended by June 2014. Thus the asymmetry in the times of polarity reversal switched between cycle 23 and 24. The polar MBE is a good proxy for the polar magnetic field strength as indicated by the high degree of correlation between the two. The cross-correlation between the high- and low-latitude MBEs is significant for a lag of approximately 5.5 to 7.3 years, suggesting that the polar field of one cycle indicates the sunspot number of the next cycle in agreement with the Babcock-Leighton mechanism of solar cycles. The extended period of near-zero field in the north-polar region should result in a weak and delayed sunspot activity in the northern hemisphere in cycle 25.

  11. Linking Plagioclase Zoning Patterns to Active Magma Processes

    NASA Astrophysics Data System (ADS)

    Izbekov, P. E.; Nicolaysen, K. P.; Neill, O. K.; Shcherbakov, V.; Plechov, P.; Eichelberger, J. C.

    2015-12-01

    Plagioclase, one of the most common and abundant mineral phases in volcanic products, will vary in composition in response to changes in temperature, pressure, composition of the ambient silicate melt, and melt H2O concentration. Changes in these parameters may cause dissolution or growth of plagioclase crystals, forming characteristic textural and compositional variations (zoning patterns), the complete core-to-rim sequence of which describes events experienced by an individual crystal from its nucleation to the last moments of its growth. Plagioclase crystals in a typical volcanic rock may look drastically dissimilar despite their spatial proximity and the fact that they have erupted together. Although they shared last moments of their growth during magma ascent and eruption, their prior experiences could be very different, as plagioclase crystals often come from different domains of the same magma system. Distinguishing similar zoning patterns, correlating them across the entire population of plagioclase crystals, and linking these patterns to specific perturbations in the magmatic system may provide additional perspective on the variety, extent, and timing of magma processes at active volcanic systems. Examples of magma processes, which may be distinguished based on plagioclase zoning patterns, include (1) cooling due to heat loss, (2) heating and/or pressure build up due to an input of new magmatic material, (3) pressure drop in response to magma system depressurization, and (4) crystal transfer between different magma domains/bodies. This review will include contrasting examples of zoning patters from recent eruptions of Karymsky, Bezymianny, and Tolbachik Volcanoes in Kamchatka, Augustine and Cleveland Volcanoes in Alaska, as well as from the drilling into an active magma body at Krafla, Iceland.

  12. Cassini UVIS Observations Show Active Saturn's Rings

    NASA Astrophysics Data System (ADS)

    Esposito, L.; Colwell, J. E.; UVIS Team

    2004-12-01

    The Cassini Ultraviolet Imaging Spectrograph (UVIS) is part of the remote sensing payload of the NASA/ESA Cassini spacecraft. This spectrograph includes channels for extreme UV and far UV spectroscopic imaging, high speed photometry of stellar occultations, solar EUV occultation, and a hydrogen/deuterium absorption cell. We report our initial results from UVIS observations of Saturn's rings. Dynamic interactions between neutrals, ions, rings, moons and meteoroids produce a highly structured and time variable Saturn system Oxygen in the Saturn system dominates the magnetosphere. Observed fluctuations indicate close interactions with plasma sources. Stochastic events in the E ring may be the ultimate source. The spectral signature of water ice is seen on Phoebe and in Saturn's rings. Water ice is mixed non-uniformly with darker constituents. The high structure of the UV ring reflectance argues that collisional transport dominates ballistic transport in darkening the rings. Our preliminary results support the idea that rings are recycled fragments of moons: the current processes are more important than history and initial conditions. The spectra along the UVIS SOI radial scan indicate varying amounts of water ice. In the A ring, the ice fraction increases outward to a maximum at the outer edge. This large-scale variation is consistent with initially pure ice that has suffered meteoritic bombardment over the age of the Solar system (Cuzzi and Estrada 1998). We also see variations over scales of 1000 - 3000 km, which cannot be explained by this mechanism. Ballistic transport of spectrally neutral extrinsic pollutants from meteoroids striking the rings has a typical throw distance of 6000 km (Durisen et al 1989), too long to explain this finer structure. We propose a class of smaller renewal events, in which a small moon residing within the rings is shattered by an external impactor (Colwell and Esposito 1993, Barbara and Esposito 2002, Esposito and Colwell 2003). The

  13. Activity Patterns of Free-Ranging Koalas (Phascolarctos cinereus) Revealed by Accelerometry

    PubMed Central

    Ryan, Michelle A.; Whisson, Desley A.; Holland, Greg J.; Arnould, John P. Y.

    2013-01-01

    An understanding of koala activity patterns is important for measuring the behavioral response of this species to environmental change, but to date has been limited by the logistical challenges of traditional field methodologies. We addressed this knowledge gap by using tri-axial accelerometer data loggers attached to VHF radio collars to examine activity patterns of adult male and female koalas in a high-density population at Cape Otway, Victoria, Australia. Data were obtained from 27 adult koalas over two 7-d periods during the breeding season: 12 in the early-breeding season in November 2010, and 15 in the late-breeding season in January 2011. Multiple 15 minute observation blocks on each animal were used for validation of activity patterns determined from the accelerometer data loggers. Accelerometry was effective in distinguishing between inactive (sleeping, resting) and active (grooming, feeding and moving) behaviors. Koalas were more active during the early-breeding season with a higher index of movement (overall dynamic body acceleration [ODBA]) for both males and females. Koalas showed a distinct temporal pattern of behavior, with most activity occurring from mid-afternoon to early morning. Accelerometry has potential for examining fine-scale behavior of a wide range of arboreal and terrestrial species. PMID:24224050

  14. The effect of contrast in camouflage patterns on detectability by human observers and CAMAELEON

    NASA Astrophysics Data System (ADS)

    Heinrich, Daniela H.; Selj, Gorm K.

    2015-05-01

    Evaluation of signature properties of military equipment is very important. It is crucial to apply the proper method out of many possible approaches, based on amongst others ranking by probability of detection, detection time, and distance to target, which have been carried out by various countries. In this paper we present results from camouflage pattern assessments utilising two different approaches, based on human observers (detection time) and simulations (CAMAELEON). CAMAELEON ranks camouflaged targets by their local contrast, orientation and spatial frequency, mimicking the human eye's response, and is a rapid and low cost method for signature assessment. In our camouflage tests, human observers were asked to search for targets (in a natural setting) presented on a high resolution pc screen, and the corresponding detection times were recorded. In our study we find a good correspondence between the camouflage properties of the targets in most of our unique tests (scenes), but in some particular cases there is an interesting deviation. Two similar camouflage patterns (both were random samples of the pattern) were tested, and it seemed that the results depended on the way the pattern is attached to the test subject. More precisely, it may seem that high-contrast coloured patches of the pattern in the target outline were significantly different detected by humans compared to CAMAELEON. In this paper we discuss this deviation in the two signature evaluation methods and look at potential risks.

  15. Gas velocity patterns in simulated galaxies: Observational diagnostics of spiral structure theories

    NASA Astrophysics Data System (ADS)

    Baba, J.; Morokuma-Matsui, K.; Miyamoto, Y.; Egusa, F.; Kuno, N.

    2016-04-01

    There are two theories of stellar spiral arms in isolated disc galaxies that model stellar spiral arms with different longevities: quasi-stationary density wave theory, which characterises spirals as rigidly rotating, long-lived patterns (i.e. steady spirals), and dynamic spiral theory, which characterises spirals as differentially rotating, transient, recurrent patterns (i.e. dynamic spirals). In order to discriminate between these two spiral models observationally, we investigated the differences between the gas velocity patterns predicted by these two spiral models in hydrodynamic simulations. We found that the azimuthal phases of the velocity patterns relative to the gas density peaks (i.e. gaseous arms) differ between the two models, as do the gas flows; nevertheless, the velocity patterns themselves are similar for both models. Such similarity suggests that the mere existence of streaming motions does not conclusively confirm the steady spiral model. However, we found that the steady spiral model shows that the gaseous arms have radial streaming motions well inside the co-rotation radius, whereas the dynamic spiral model predicts that the gaseous arms tend to have tangential streaming motions. These differences suggest that the gas velocity patterns around spiral arms will enable distinction between the spiral theories.

  16. Gas velocity patterns in simulated galaxies: observational diagnostics of spiral structure theories

    NASA Astrophysics Data System (ADS)

    Baba, J.; Morokuma-Matsui, K.; Miyamoto, Y.; Egusa, F.; Kuno, N.

    2016-08-01

    There are two theories of stellar spiral arms in isolated disc galaxies that model stellar spiral arms with different longevities: quasi-stationary density wave theory, which characterizes spirals as rigidly rotating, long-lived patterns (i.e. steady spirals), and dynamic spiral theory, which characterizes spirals as differentially rotating, transient, recurrent patterns (i.e. dynamic spirals). In order to discriminate between these two spiral models observationally, we investigated the differences between the gas velocity patterns predicted by these two spiral models in hydrodynamic simulations. We found that the azimuthal phases of the velocity patterns relative to the gas density peaks (i.e. gaseous arms) differ between the two models, as do the gas flows; nevertheless, the velocity patterns themselves are similar for both models. Such similarity suggests that the mere existence of streaming motions does not conclusively confirm the steady spiral model. However, we found that the steady spiral model shows that the gaseous arms have radial streaming motions well inside the co-rotation radius, whereas the dynamic spiral model predicts that the gaseous arms tend to have tangential streaming motions. These differences suggest that the gas velocity patterns around spiral arms will enable distinction between the spiral theories.

  17. Active ultrasound pattern injection system (AUSPIS) for interventional tool guidance.

    PubMed

    Guo, Xiaoyu; Kang, Hyun-Jae; Etienne-Cummings, Ralph; Boctor, Emad M

    2014-01-01

    Accurate tool tracking is a crucial task that directly affects the safety and effectiveness of many interventional medical procedures. Compared to CT and MRI, ultrasound-based tool tracking has many advantages, including low cost, safety, mobility and ease of use. However, surgical tools are poorly visualized in conventional ultrasound images, thus preventing effective tool tracking and guidance. Existing tracking methods have not yet provided a solution that effectively solves the tool visualization and mid-plane localization accuracy problem and fully meets the clinical requirements. In this paper, we present an active ultrasound tracking and guiding system for interventional tools. The main principle of this system is to establish a bi-directional ultrasound communication between the interventional tool and US imaging machine within the tissue. This method enables the interventional tool to generate an active ultrasound field over the original imaging ultrasound signals. By controlling the timing and amplitude of the active ultrasound field, a virtual pattern can be directly injected into the US machine B mode display. In this work, we introduce the time and frequency modulation, mid-plane detection, and arbitrary pattern injection methods. The implementation of these methods further improves the target visualization and guiding accuracy, and expands the system application beyond simple tool tracking. We performed ex vitro and in vivo experiments, showing significant improvements of tool visualization and accurate localization using different US imaging platforms. An ultrasound image mid-plane detection accuracy of ±0.3 mm and a detectable tissue depth over 8.5 cm was achieved in the experiment. The system performance is tested under different configurations and system parameters. We also report the first experiment of arbitrary pattern injection to the B mode image and its application in accurate tool tracking. PMID:25337784

  18. Active Ultrasound Pattern Injection System (AUSPIS) for Interventional Tool Guidance

    PubMed Central

    Guo, Xiaoyu; Kang, Hyun-Jae; Etienne-Cummings, Ralph; Boctor, Emad M.

    2014-01-01

    Accurate tool tracking is a crucial task that directly affects the safety and effectiveness of many interventional medical procedures. Compared to CT and MRI, ultrasound-based tool tracking has many advantages, including low cost, safety, mobility and ease of use. However, surgical tools are poorly visualized in conventional ultrasound images, thus preventing effective tool tracking and guidance. Existing tracking methods have not yet provided a solution that effectively solves the tool visualization and mid-plane localization accuracy problem and fully meets the clinical requirements. In this paper, we present an active ultrasound tracking and guiding system for interventional tools. The main principle of this system is to establish a bi-directional ultrasound communication between the interventional tool and US imaging machine within the tissue. This method enables the interventional tool to generate an active ultrasound field over the original imaging ultrasound signals. By controlling the timing and amplitude of the active ultrasound field, a virtual pattern can be directly injected into the US machine B mode display. In this work, we introduce the time and frequency modulation, mid-plane detection, and arbitrary pattern injection methods. The implementation of these methods further improves the target visualization and guiding accuracy, and expands the system application beyond simple tool tracking. We performed ex vitro and in vivo experiments, showing significant improvements of tool visualization and accurate localization using different US imaging platforms. An ultrasound image mid-plane detection accuracy of ±0.3 mm and a detectable tissue depth over 8.5 cm was achieved in the experiment. The system performance is tested under different configurations and system parameters. We also report the first experiment of arbitrary pattern injection to the B mode image and its application in accurate tool tracking. PMID:25337784

  19. Using ILP to Identify Pathway Activation Patterns in Systems Biology

    PubMed Central

    Neaves, Samuel R; Millard, Louise A C; Tsoka, Sophia

    2016-01-01

    We show a logical aggregation method that, combined with propositionalization methods, can construct novel structured biological features from gene expression data. We do this to gain understanding of pathway mechanisms, for instance, those associated with a particular disease. We illustrate this method on the task of distinguishing between two types of lung cancer; Squamous Cell Carcinoma (SCC) and Adenocarcinoma (AC). We identify pathway activation patterns in pathways previously implicated in the development of cancers. Our method identified a model with comparable predictive performance to the winning algorithm of a recent challenge, while providing biologically relevant explanations that may be useful to a biologist. PMID:27478883

  20. Circadian Patterns of Wikipedia Editorial Activity: A Demographic Analysis

    PubMed Central

    Yasseri, Taha; Sumi, Robert; Kertész, János

    2012-01-01

    Wikipedia (WP) as a collaborative, dynamical system of humans is an appropriate subject of social studies. Each single action of the members of this society, i.e., editors, is well recorded and accessible. Using the cumulative data of 34 Wikipedias in different languages, we try to characterize and find the universalities and differences in temporal activity patterns of editors. Based on this data, we estimate the geographical distribution of editors for each WP in the globe. Furthermore we also clarify the differences among different groups of WPs, which originate in the variance of cultural and social features of the communities of editors. PMID:22272279

  1. Neuromuscular activation patterns during treadmill walking after space flight

    NASA Technical Reports Server (NTRS)

    Layne, C. S.; McDonald, P. V.; Bloomberg, J. J.

    1997-01-01

    Astronauts adopt a variety of neuromuscular control strategies during space flight that are appropriate for locomoting in that unique environment, but are less than optimal upon return to Earth. We report here the first systematic investigation of potential adaptations in neuromuscular activity patterns associated with postflight locomotion. Astronaut-subjects were tasked with walking on a treadmill at 6.4 km/h while fixating a visual target 30 cm away from their eyes after space flights of 8-15 days. Surface electromyography was collected from selected lower limb muscles and normalized with regard to mean amplitude and temporal relation to heel strike. In general, high correlations (more than 0.80) were found between preflight and postflight activation waveforms for each muscle and each subject: however relative activation amplitude around heel strike and toe off was changed as a result of flight. The level of muscle cocontraction and activation variability, and the relationship between the phasic characteristics of the ankle musculature in preparation for toe off also were altered by space flight. Subjects also reported oscillopsia during treadmill walking after flight. These findings indicate that, after space flight, the sensory-motor system can generate neuromuscular-activation strategies that permit treadmill walking, but subtle changes in lower-limb neuromuscular activation are present that may contribute to increased lower limb kinematic variability and oscillopsia also present during postflight walking.

  2. Active patterning and asymmetric transport in a model actomyosin network

    SciTech Connect

    Wang, Shenshen; Wolynes, Peter G.

    2013-12-21

    Cytoskeletal networks, which are essentially motor-filament assemblies, play a major role in many developmental processes involving structural remodeling and shape changes. These are achieved by nonequilibrium self-organization processes that generate functional patterns and drive intracellular transport. We construct a minimal physical model that incorporates the coupling between nonlinear elastic responses of individual filaments and force-dependent motor action. By performing stochastic simulations we show that the interplay of motor processes, described as driving anti-correlated motion of the network vertices, and the network connectivity, which determines the percolation character of the structure, can indeed capture the dynamical and structural cooperativity which gives rise to diverse patterns observed experimentally. The buckling instability of individual filaments is found to play a key role in localizing collapse events due to local force imbalance. Motor-driven buckling-induced node aggregation provides a dynamic mechanism that stabilizes the two-dimensional patterns below the apparent static percolation limit. Coordinated motor action is also shown to suppress random thermal noise on large time scales, the two-dimensional configuration that the system starts with thus remaining planar during the structural development. By carrying out similar simulations on a three-dimensional anchored network, we find that the myosin-driven isotropic contraction of a well-connected actin network, when combined with mechanical anchoring that confers directionality to the collective motion, may represent a novel mechanism of intracellular transport, as revealed by chromosome translocation in the starfish oocyte.

  3. Active patterning and asymmetric transport in a model actomyosin network

    NASA Astrophysics Data System (ADS)

    Wang, Shenshen; Wolynes, Peter G.

    2013-12-01

    Cytoskeletal networks, which are essentially motor-filament assemblies, play a major role in many developmental processes involving structural remodeling and shape changes. These are achieved by nonequilibrium self-organization processes that generate functional patterns and drive intracellular transport. We construct a minimal physical model that incorporates the coupling between nonlinear elastic responses of individual filaments and force-dependent motor action. By performing stochastic simulations we show that the interplay of motor processes, described as driving anti-correlated motion of the network vertices, and the network connectivity, which determines the percolation character of the structure, can indeed capture the dynamical and structural cooperativity which gives rise to diverse patterns observed experimentally. The buckling instability of individual filaments is found to play a key role in localizing collapse events due to local force imbalance. Motor-driven buckling-induced node aggregation provides a dynamic mechanism that stabilizes the two-dimensional patterns below the apparent static percolation limit. Coordinated motor action is also shown to suppress random thermal noise on large time scales, the two-dimensional configuration that the system starts with thus remaining planar during the structural development. By carrying out similar simulations on a three-dimensional anchored network, we find that the myosin-driven isotropic contraction of a well-connected actin network, when combined with mechanical anchoring that confers directionality to the collective motion, may represent a novel mechanism of intracellular transport, as revealed by chromosome translocation in the starfish oocyte.

  4. Mammalian Rest/Activity Patterns Explained by Physiologically Based Modeling

    PubMed Central

    Phillips, A. J. K.; Fulcher, B. D.; Robinson, P. A.; Klerman, E. B.

    2013-01-01

    Circadian rhythms are fundamental to life. In mammals, these rhythms are generated by pacemaker neurons in the suprachiasmatic nucleus (SCN) of the hypothalamus. The SCN is remarkably consistent in structure and function between species, yet mammalian rest/activity patterns are extremely diverse, including diurnal, nocturnal, and crepuscular behaviors. Two mechanisms have been proposed to account for this diversity: (i) modulation of SCN output by downstream nuclei, and (ii) direct effects of light on activity. These two mechanisms are difficult to disentangle experimentally and their respective roles remain unknown. To address this, we developed a computational model to simulate the two mechanisms and their influence on temporal niche. In our model, SCN output is relayed via the subparaventricular zone (SPZ) to the dorsomedial hypothalamus (DMH), and thence to ventrolateral preoptic nuclei (VLPO) and lateral hypothalamus (LHA). Using this model, we generated rich phenotypes that closely resemble experimental data. Modulation of SCN output at the SPZ was found to generate a full spectrum of diurnal-to-nocturnal phenotypes. Intriguingly, we also uncovered a novel mechanism for crepuscular behavior: if DMH/VLPO and DMH/LHA projections act cooperatively, daily activity is unimodal, but if they act competitively, activity can become bimodal. In addition, we successfully reproduced diurnal/nocturnal switching in the rodent Octodon degu using coordinated inversions in both masking and circadian modulation. Finally, the model correctly predicted the SCN lesion phenotype in squirrel monkeys: loss of circadian rhythmicity and emergence of ∼4-h sleep/wake cycles. In capturing these diverse phenotypes, the model provides a powerful new framework for understanding rest/activity patterns and relating them to underlying physiology. Given the ubiquitous effects of temporal organization on all aspects of animal behavior and physiology, this study sheds light on the physiological

  5. Developmental Heterogeneity in DNA Packaging Patterns Influences T-Cell Activation and Transmigration

    PubMed Central

    Garg, Megha; R., Indulaxmi; Perumalsamy, Lakshmi R.; Sarin, Apurva; Shivashankar, G. V.

    2012-01-01

    Cellular differentiation programs are accompanied by large-scale changes in nuclear organization and gene expression. In this context, accompanying transitions in chromatin assembly that facilitates changes in gene expression and cell behavior in a developmental system are poorly understood. Here, we address this gap and map structural changes in chromatin organization during murine T-cell development, to describe an unusual heterogeneity in chromatin organization and associated functional correlates in T-cell lineage. Confocal imaging of DNA assembly in cells isolated from bone marrow, thymus and spleen reveal the emergence of heterogeneous patterns in DNA organization in mature T-cells following their exit from the thymus. The central DNA pattern dominated in immature precursor cells in the thymus whereas both central and peripheral DNA patterns were observed in naïve and memory cells in circulation. Naïve T-cells with central DNA patterns exhibited higher mechanical pliability in response to compressive loads in vitro and transmigration assays in vivo, and demonstrated accelerated expression of activation-induced marker CD69. T-cell activation was characterized by marked redistribution of DNA assembly to a central DNA pattern and increased nuclear size. Notably, heterogeneity in DNA patterns recovered in cells induced into quiescence in culture, suggesting an internal regulatory mechanism for chromatin reorganization. Taken together, our results uncover an important component of plasticity in nuclear organization, reflected in chromatin assembly, during T-cell development, differentiation and transmigration. PMID:22957031

  6. Cardiovascular activity in blood-injection-injury phobia during exposure: evidence for diphasic response patterns?

    PubMed

    Ritz, Thomas; Meuret, Alicia E; Simon, Erica

    2013-08-01

    Exposure to feared stimuli in blood-injection-injury (BII)-phobia is thought to elicit a diphasic response pattern, with an initial fight-flight-like cardiovascular activation followed by a marked deactivation and possible fainting (vasovagal syncope). However, studies have remained equivocal on the importance of such patterns. We therefore sought to determine the prevalence and clinical relevance of diphasic responses using criteria that require a true diphasic response to exceed cardiovascular activation of an emotional episode of a negative valence and to exceed deactivation of an emotionally neutral episode. Sixty BII-phobia participants and 20 healthy controls were exposed to surgery, anger and neutral films while measuring heart rate, blood pressure, respiratory pattern, and end-tidal partial pressure of carbon dioxide (as indicator of hyperventilation). Diphasic response patterns were observed in up to 20% of BII-phobia participants and 26.6% of healthy controls for individual cardiovascular parameters. BII-phobia participants with diphasic patterns across multiple parameters showed more fear of injections and blood draws, reported the strongest physical symptoms during the surgery film, and showed the strongest tendency to hyperventilate. Thus, although only a minority of individuals with BII phobia shows diphasic responses, their occurrence indicates significant distress. Respiratory training may add to the treatment of BII phobia patients that show diphasic response patterns. PMID:23747585

  7. Cannabinoid Receptor Activation Shifts Temporally Engendered Patterns of Dopamine Release

    PubMed Central

    Oleson, Erik B; Cachope, Roger; Fitoussi, Aurelie; Tsutsui, Kimberly; Wu, Sharon; Gallegos, Jacqueline A; Cheer, Joseph F

    2014-01-01

    The ability to discern temporally pertinent environmental events is essential for the generation of adaptive behavior in conventional tasks, and our overall survival. Cannabinoids are thought to disrupt temporally controlled behaviors by interfering with dedicated brain timing networks. Cannabinoids also increase dopamine release within the mesolimbic system, a neural pathway generally implicated in timing behavior. Timing can be assessed using fixed-interval (FI) schedules, which reinforce behavior on the basis of time. To date, it remains unknown how cannabinoids modulate dopamine release when responding under FI conditions, and for that matter, how subsecond dopamine release is related to time in these tasks. In the present study, we hypothesized that cannabinoids would accelerate timing behavior in an FI task while concurrently augmenting a temporally relevant pattern of dopamine release. To assess this possibility, we measured subsecond dopamine concentrations in the nucleus accumbens while mice responded for food under the influence of the cannabinoid agonist WIN 55 212-2 in an FI task. Our data reveal that accumbal dopamine concentrations decrease proportionally to interval duration—suggesting that dopamine encodes time in FI tasks. We further demonstrate that WIN 55 212-2 dose-dependently increases dopamine release and accelerates a temporal behavioral response pattern in a CB1 receptor-dependent manner—suggesting that cannabinoid receptor activation modifies timing behavior, in part, by augmenting time-engendered patterns of dopamine release. Additional investigation uncovered a specific role for endogenous cannabinoid tone in timing behavior, as elevations in 2-arachidonoylglycerol, but not anandamide, significantly accelerated the temporal response pattern in a manner akin to WIN 55 212-2. PMID:24345819

  8. A comparative Study of Circulation Patterns at Active Lava Lakes

    NASA Astrophysics Data System (ADS)

    Lev, Einat; Oppenheimer, Clive; Spampinato, Letizia; Hernandez, Pedro; Unglert, Kathi

    2016-04-01

    Lava lakes present a rare opportunity to study magma dynamics in a large scaled-up "crucible" and provide a unique natural laboratory to ground-truth dynamic models of magma circulation. The persistence of lava lakes allows for long-term observations of flow dynamics and of lava properties, especially compared to surface lava flows. There are currently five persistent lava lakes in the world: Halemaumau in Kilauea (Hawaii, USA), Erta Ale (Ethiopia), Nyiragongo (Congo), Erebus (Antarctica), and Villarica (Chile). Marum and Benbow craters of Ambrym volcano (Vanuatu) and Masaya (Nicaragua) have often hosted lava lakes as well. We use visible-light and thermal infrared time-lapse and video footage collected at all above lakes (except Villarica, where the lake is difficult to observe), and compare the circulation patterns recorded. We calculate lake surface motion from the footage using the optical flow method (Lev et al., 2012) to produce 2D velocity fields. We mined both the surface temperature field and the surface velocity field for patterns using machine learning techniques such as "self-organizing maps (SOMs)" and "principle component analysis (PCA)". We use automatic detection technique to study the configuration of crustal plates at the lakes' surface. We find striking differences among the lakes, in flow direction, flow speed, frequency of changes in flow direction and speed, location and consistency of upwelling and downwelling, and crustal plate configuration. We relate the differences to lake size, shallow conduit geometry, lava viscosity, crystal and gas content, and crust integrity.

  9. Cortical Activity Patterns in ADHD during Arousal, Activation and Sustained Attention

    ERIC Educational Resources Information Center

    Loo, Sandra K.; Hale, T. Sigi; Macion, James; Hanada, Grant; McGough, James J.; McCracken, James T.; Smalley, Susan L.

    2009-01-01

    Objective: The goal of the present study is to test whether there are Attention-Deficit Hyperactivity Disorder (ADHD)-related differences in brain electrical activity patterns across arousal, activation and vigilance states. Method: The sample consists of 80 adults (38 with ADHD and 42 non-ADHD controls) who were recruited for a family study on…

  10. Lower arm electromyography (EMG) activity detection using local binary patterns.

    PubMed

    McCool, Paul; Chatlani, Navin; Petropoulakis, Lykourgos; Soraghan, John J; Menon, Radhika; Lakany, Heba

    2014-09-01

    This paper presents a new electromyography activity detection technique in which 1-D local binary pattern histograms are used to distinguish between periods of activity and inactivity in myoelectric signals. The algorithm is tested on forearm surface myoelectric signals occurring due to hand gestures. The novel features of the presented method are that: 1) activity detection is performed across multiple channels using few parameters and without the need for majority vote mechanisms, 2) there are no per-channel thresholds to be tuned, which makes the process of activity detection easier and simpler to implement and less prone to errors, 3) it is not necessary to measure the properties of the signal during a quiescent period before using the algorithm. The algorithm is compared to other offline single- and double-threshold activity detection methods and, for the data sets tested, it is shown to have a better overall performance with greater tolerance to the noise in the real data set used. PMID:24802139

  11. An Active Poroelastic Model for Mechanochemical Patterns in Protoplasmic Droplets of Physarum polycephalum

    PubMed Central

    Radszuweit, Markus; Engel, Harald; Bär, Markus

    2014-01-01

    Motivated by recent experimental studies, we derive and analyze a two-dimensional model for the contraction patterns observed in protoplasmic droplets of Physarum polycephalum. The model couples a description of an active poroelastic two-phase medium with equations describing the spatiotemporal dynamics of the intracellular free calcium concentration. The poroelastic medium is assumed to consist of an active viscoelastic solid representing the cytoskeleton and a viscous fluid describing the cytosol. The equations for the poroelastic medium are obtained from continuum force balance and include the relevant mechanical fields and an incompressibility condition for the two-phase medium. The reaction-diffusion equations for the calcium dynamics in the protoplasm of Physarum are extended by advective transport due to the flow of the cytosol generated by mechanical stress. Moreover, we assume that the active tension in the solid cytoskeleton is regulated by the calcium concentration in the fluid phase at the same location, which introduces a mechanochemical coupling. A linear stability analysis of the homogeneous state without deformation and cytosolic flows exhibits an oscillatory Turing instability for a large enough mechanochemical coupling strength. Numerical simulations of the model equations reproduce a large variety of wave patterns, including traveling and standing waves, turbulent patterns, rotating spirals and antiphase oscillations in line with experimental observations of contraction patterns in the protoplasmic droplets. PMID:24927427

  12. An active poroelastic model for mechanochemical patterns in protoplasmic droplets of Physarum polycephalum.

    PubMed

    Radszuweit, Markus; Engel, Harald; Bär, Markus

    2014-01-01

    Motivated by recent experimental studies, we derive and analyze a two-dimensional model for the contraction patterns observed in protoplasmic droplets of Physarum polycephalum. The model couples a description of an active poroelastic two-phase medium with equations describing the spatiotemporal dynamics of the intracellular free calcium concentration. The poroelastic medium is assumed to consist of an active viscoelastic solid representing the cytoskeleton and a viscous fluid describing the cytosol. The equations for the poroelastic medium are obtained from continuum force balance and include the relevant mechanical fields and an incompressibility condition for the two-phase medium. The reaction-diffusion equations for the calcium dynamics in the protoplasm of Physarum are extended by advective transport due to the flow of the cytosol generated by mechanical stress. Moreover, we assume that the active tension in the solid cytoskeleton is regulated by the calcium concentration in the fluid phase at the same location, which introduces a mechanochemical coupling. A linear stability analysis of the homogeneous state without deformation and cytosolic flows exhibits an oscillatory Turing instability for a large enough mechanochemical coupling strength. Numerical simulations of the model equations reproduce a large variety of wave patterns, including traveling and standing waves, turbulent patterns, rotating spirals and antiphase oscillations in line with experimental observations of contraction patterns in the protoplasmic droplets. PMID:24927427

  13. Turing Patterns in Estuarine Sediments by Microbiological Activity

    NASA Astrophysics Data System (ADS)

    De Morais Mendonca Teles, Antonio

    2016-07-01

    The use of Turing mechanisms and lattice Lotka-Volterra model (LLV), also by means of the non-extensive statistical mechanics, can mathematically describe well the phenomena of clustering and their associated boundaries with fractal dimensionality, which occurs in various natural situations, among them, biogeochemical processes via microorganisms in estuarine and marine sediments on the planet Earth. The author did an experimental analysis in field work which took into account the spatial and temporal behavior of Turing patterns, in the form of microbial activity within estuarine subsurface sediments. We show we can find the characteristics of clustering and fractallity which are present in the dynamical LLV model and Turing patterns mechanisms, and the non-extensive statistical mechanics could be used to find the q-entropy (Sq), and other non-equilibrium statistical parameters of the studied estuarine (Caraís lagoon) subsurface biogeochemical system. In this paper, the author suggests that such kinds of subsurface ecological systems are of interest to Astrobiology because if we find Turing-type clustered geomorphological patterns, below meter scale, on the near subsurface and inside rocks at the surface of planet Mars, and also find non-equilibrium statistical parameters (temperature, [F], [C], [S], etc.), displaying Turing-type mechanism, in the aquatic environments of the internal seas of planets Jupiter's moon Europa and the internal global ocean of Saturn's moon Enceladus, that could mean that possible hypothetical biogeochemical activities are present in such places. This could be a bio-indicator tool. And with further studies we could find the q-entropy Sq to establish better defined statistical mechanical parameters for such environments and to refine models for their evolution, as we do on planet Earth.

  14. Cortical activity patterns predict robust speech discrimination ability in noise

    PubMed Central

    Shetake, Jai A.; Wolf, Jordan T.; Cheung, Ryan J.; Engineer, Crystal T.; Ram, Satyananda K.; Kilgard, Michael P.

    2012-01-01

    The neural mechanisms that support speech discrimination in noisy conditions are poorly understood. In quiet conditions, spike timing information appears to be used in the discrimination of speech sounds. In this study, we evaluated the hypothesis that spike timing is also used to distinguish between speech sounds in noisy conditions that significantly degrade neural responses to speech sounds. We tested speech sound discrimination in rats and recorded primary auditory cortex (A1) responses to speech sounds in background noise of different intensities and spectral compositions. Our behavioral results indicate that rats, like humans, are able to accurately discriminate consonant sounds even in the presence of background noise that is as loud as the speech signal. Our neural recordings confirm that speech sounds evoke degraded but detectable responses in noise. Finally, we developed a novel neural classifier that mimics behavioral discrimination. The classifier discriminates between speech sounds by comparing the A1 spatiotemporal activity patterns evoked on single trials with the average spatiotemporal patterns evoked by known sounds. Unlike classifiers in most previous studies, this classifier is not provided with the stimulus onset time. Neural activity analyzed with the use of relative spike timing was well correlated with behavioral speech discrimination in quiet and in noise. Spike timing information integrated over longer intervals was required to accurately predict rat behavioral speech discrimination in noisy conditions. The similarity of neural and behavioral discrimination of speech in noise suggests that humans and rats may employ similar brain mechanisms to solve this problem. PMID:22098331

  15. Impact of synoptic patterns on East Asia pollutant transport pathways observed from satellites

    NASA Astrophysics Data System (ADS)

    Kim, H. C.; Lee, P.; Kim, S.; Ngan, F.; Bae, C.; Kim, B. U.; Kim, E.

    2014-12-01

    This study presents that wintertime pollutant transport patterns in East Asia are visible from multiple satellite observations when inspected with corresponding synoptic weather analysis. Transport pathways of pollutants and anthropogenic emissions are investigated using satellite images, surface weather chart, and chemical transport model simulation in the context of conceptual categorization of synoptic weather pattern. We combined daily distributions of MODIS AOD and CMAQ simulated PM to represent aerosol distribution; and GOME-2 and OMI NO2 column density as a proxy for fresh anthropogenic emission flux; and Korean Meteorological Administration surface weather analysis chart to understand synoptic weather pattern using GIS geo-referencing technique. We identified a periodic extension of the Siberian high to south China and its associated migratory systems are important to understand transport patterns in this region. Based on the relative location and strength of high pressure system over south China, we classified three types of synoptic patterns that might affect high surface PM events: (1) Expansion of Siberian high as a result of cold surge, (2) Cold front passage associated with migratory northern low pressure system, and (3) Stagnant high pressure system near Yellow Sea. In all cases, the development of high pressure system in south China is essential for development of pollutant event. We demonstrate that observed and simulated surface PM show good agreement, not only with MODIS AOD but also with NO2 column density, implying the possible contributions of transported anthropogenic emissions. We also demonstrate many of these PM plumes are originated from northeastern China, pushed southward by cold front passage, generating unique narrow-band-shape PM plumes. All 3 types of transport patterns are shown to be important, in terms of intensity, frequency, and vertical lifting. These transport pathways are crucial to understand not only local pollutant events

  16. Physical Activity Patterns in the Elderly Kashan Population

    PubMed Central

    Sadrollahi, Ali; Hosseinian, Masoumeh; Masoudi Alavi, Negin; Khalili, Zahra; Esalatmanesh, Sophia

    2016-01-01

    Kashan. The pattern of physical activity in the elderly depends on their lifestyle. A promotion of active lifestyles should be a part of health care planning for the elderly. PMID:27621923

  17. Observation of adsorption behavior of biomolecules on ferroelectric crystal surfaces with polarization domain patterns

    NASA Astrophysics Data System (ADS)

    Nakayama, Tomoaki; Isobe, Akiko; Ogino, Toshio

    2016-08-01

    Lithium tantalate (LiTaO3) is one of the ferroelectric crystals that exhibit spontaneous polarization domain patterns on its surface. We observed the polarization-dependent adsorption of avidin molecules, which are positively charged in a buffer solution at pH 7.0, on LiTaO3 surfaces caused by electrostatic interaction at an electrostatic double layer using atomic force microscopy (AFM). Avidin adsorption in the buffer solution was confirmed by scratching the substrate surfaces using the AFM cantilever, and the adsorption patterns were found to depend on the avidin concentration. When KCl was added to the buffer solution to weaken the electrostatic double layer interaction between avidin molecules and LiTaO3 surfaces, adsorption domain patterns disappeared. From the comparison between the adsorption and chemically etched domain patterns, it was found that avidin molecule adsorption is enhanced on negatively polarized domains, indicating that surface polarization should be taken into account in observing biomolecule behaviors on ferroelectric crystals.

  18. Objective patterns in the evolving network of non-equivalent observers.

    PubMed

    Igamberdiev, Abir U

    2008-05-01

    The world's objective pattern is formed through consistent histories of quantum measurements originating as different branches of the same wave function. When we come close to the limits of measurement (either by approaching the speed of light or the values of the Planck's quantum), the relational effects come into place and the objectivity of world's pattern melts down. But when we are positioned far from these limits, we live in a comfortable area of the world common to all beings and approximating the objective environment (classical spacetime). Living systems are based on reflective cycles that can interact with relative predictability. Being quantum mechanical observers having different clocks, they generate perpetually evolving fitness landscape. I discuss how the perception of the objective is formed by the generation of same limits of iteration for the processes performed by non-equivalent observers and how the uniform time appears from its counting through these objective processes. PMID:18313205

  19. Cortical Activation Patterns of Bodily Attention triggered by Acupuncture Stimulation

    PubMed Central

    Jung, Won-Mo; Lee, In-Seon; Wallraven, Christian; Ryu, Yeon-Hee; Park, Hi-Joon; Chae, Younbyoung

    2015-01-01

    We investigated commonalities and differences in brain responses to enhanced bodily attention around acupuncture points with and without stimulation. Fourteen participants received acupuncture needles at both PC6 and HT7 acupoints in the left hand. To enhance bodily attention to acupoints, participants responded to the locations of stimulations in a two-alternative forced choice task. Two fMRI scans were taken in a block design: session 1 labeled with manual stimulation (genuine stimulation) and session 2 labeled with electro-acupuncture (pseudo-stimulation). To compare cortical activation patterns, data were analyzed using the Freesurfer software package. Both genuine-and pseudo-stimulation resulted in brain activations in the insula, anterior cingulate cortex, secondary somatosensory cortex, superior parietal cortex, and brain deactivation in the medial prefrontal cortex, posterior cingulate cortex, inferior parietal cortex, and the parahippocampus. Genuine acupuncture stimulation exhibited greater brain activation in the posterior insula, posterior operculum and the caudal part of the anterior cingulate cortex, compared with pseudo-stimulation. We demonstrated that enhanced bodily attention triggered by genuine acupuncture stimulation can activate the salience network and deactivate the default mode network regardless of the type of stimulation. The component of enhanced attention to a certain part of the body is significant in the brain response to acupuncture stimulation. PMID:26211895

  20. Abnormal patterns of displacement activities: a review and reinterpretation.

    PubMed

    Anselme, Patrick

    2008-09-01

    A series of important theoretical contributions flourished in the years 1950-1970 about displacement activities -- those 'out-of-context' actions expressed by organisms in stressful situations. Nothing really new has appeared thereafter. Although the models address different issues, such as causal factors of displacement, it appears obvious that they do not provide a unified (coherent) approach; they often explain the same phenomena using very different means and turn out to be contradictory on several points. In addition, some problems currently remain unsolved, especially concerning the fact that displacement activities exhibit 'abnormalities' of expression in comparison with the same activities performed in usual context. Each model is here described and criticized in order to evaluate its explanatory power and allow the identification of specific limits. A new, integrative model -- the Anticipatory Dynamics Model (or ADM) -- then attempts to overcome the failures of previous models. The ADM suggests that abnormal patterns of displacement activities result from attentional interference caused by a thwarting experience or conflicting motivations. At least one theoretical prediction of the ADM can be differentiated from that of any other model. PMID:18554824

  1. Patterns and outcomes of traumatic neck injuries: A population-based observational study

    PubMed Central

    Al-Thani, Hassan; El-Menyar, Ayman; Mathew, Sharon; Khawar, Mahwish; Asim, Mohammad; Abdelrahman, Husham; Peralta, Ruben; Parchani, Ashok; Zarour, Ahmad

    2015-01-01

    Objectives: We aimed to analyze the pattern and outcome of traumatic neck injury (TNI) in a small population. Materials and Methods: It is a retrospective analysis of all TNI patients who were admitted to the trauma center between 2008 and 2012. Patients’ demographics, details of TNI, associated injuries, hospital course, and mortality were analyzed. Results: A total of 51 TNI cases were included revealing an overall incidence of 0.61/100,000 population. The mean age was 31 ± 9 years. The most frequent mechanism of injury was motor vehicle crash (29.4%) followed by stab (17.6%), machinery injury (17.6%), fall (9.8%), and assault (7.8%). Larynx, thyroid gland, trachea, jugular veins, and carotid were the commonly injured structures. The majority of cases had Zone II TNI whereas isolated injury was observed in 11 cases. TNI were mainly presented with active bleeding (38%), hypovolemic shock (16%) and respiratory distress (16%). Surgical interventions mainly included simple repair and closure (53%), vein ligation (12%), repair of major arteries (4%), tracheal repair (6%), larynx and hypopharynx repair (4%), and repair of parotid gland (2%). Neck exploration was performed in 88%, and emergency tracheostomy was required in 18% of cases. Overall mortality rate was 11.8%, of which five patients had associated injuries, and one had isolated TNI. Conclusion: TNI are not frequent but represent an alarming serious entity in Qatar. Patients with persistent signs of major injuries should undergo early operative interventions. Moreover, the effective injury prevention program should be developed to minimize these preventable injuries in the majority of cases. PMID:26229299

  2. Patterns of expiratory and inspiratory activation for thoracic motoneurones in the anaesthetized and the decerebrate rat

    PubMed Central

    de Almeida, Anoushka T R; Al-Izki, Sarah; Denton, Manuel Enríquez; Kirkwood, Peter A

    2010-01-01

    The nervous control of expiratory muscles is less well understood than that of the inspiratory muscles, particularly in the rat. The patterns of respiratory discharges in adult rats were therefore investigated for the muscles of the caudal intercostal spaces, with hypercapnia and under either anaesthesia or decerebration. With neuromuscular blockade and artificial ventilation, efferent discharges were present for both inspiration and expiration in both external and internal intercostal nerves. This was also the case for proximal internal intercostal nerve branches that innervate only internal intercostal and subcostalis muscles. If active, this region of muscle in other species is always expiratory. Here, inspiratory bursts were almost always present. The expiratory activity appeared only gradually and intermittently, when the anaesthesia was allowed to lighten or as the pre-decerebration anaesthesia wore off. The intermittent appearance is interpreted as the coupling of a slow medullary expiratory oscillator with a faster inspiratory one. The patterns of nerve discharges, in particular the inspiratory or biphasic activation of the internal and subcostalis layers, were confirmed by observations of equivalent patterns of EMG discharges in spontaneously breathing preparations, using denervation procedures to identify which muscles generated the signals. Some motor units were recruited in both inspiratory and expiratory bursts. These patterns of activity have not previously been described and have implications both for the functional role of multiple respiratory oscillators in the adult and for the mechanical actions of the muscles of the caudal intercostal spaces, including subcostalis, which is a partly bisegmental muscle. PMID:20530111

  3. Effect of Frustration on Brain Activation Pattern in Subjects with Different Temperament

    PubMed Central

    Bierzynska, Maria; Bielecki, Maksymilian; Marchewka, Artur; Debowska, Weronika; Duszyk, Anna; Zajkowski, Wojciech; Falkiewicz, Marcel; Nowicka, Anna; Strelau, Jan; Kossut, Malgorzata

    2016-01-01

    In spite of the prevalence of frustration in everyday life, very few neuroimaging studies were focused on this emotional state. In the current study we aimed to examine effects of frustration on brain activity while performing a well-learned task in participants with low and high tolerance for arousal. Prior to the functional magnetic resonance imaging session, the subjects underwent 2 weeks of Braille reading training. Frustration induction was obtained by using a novel highly difficult tactile task based on discrimination of Braille-like raised dots patterns and negative feedback. Effectiveness of this procedure has been confirmed in a pilot study using galvanic skin response and questionnaires. Brain activation pattern during tactile discrimination task before and after frustration were compared directly. Results revealed changes in brain activity in structures mostly reported in acute stress studies: striatum, cingulate cortex, insula, middle frontal gyrus and precuneus and in structures engaged in tactile Braille discrimination: SI and SII. Temperament type affected activation pattern. Subjects with low tolerance for arousal showed higher activation in the posterior cingulate gyrus, precuneus, and inferior parietal lobule than high reactivity group. Even though performance in the discrimination trials following frustration was unaltered, we observed increased activity of primary and secondary somatosensory cortex processing the tactile information. We interpret this effect as an indicator of additional involvement required to counteract the effects of frustration. PMID:26793136

  4. Central circuits mediating patterned autonomic activity during active vs. passive emotional coping.

    PubMed

    Bandler, R; Keay, K A; Floyd, N; Price, J

    2000-09-01

    Animals, including humans, react with distinct emotional coping strategies to different sets of environmental demands. These strategies include the capacity to affect appropriate responses to "escapable" or "inescapable" stressors. Active emotional coping strategies--fight or flight--are particularly adaptive if the stress is escapable. On the other hand, passive emotional coping strategies-quiescence, immobility, decreased responsiveness to the environment-are useful when the stress is inescapable. Passive strategies contribute also to facilitating recovery and healing once the stressful event is over. Active vs. passive emotional coping strategies are characterised further by distinct patterns of autonomic change. Active strategies are associated with sympathoexcitation (hypertension, tachycardia), whereas passive strategies are associated with sympathoinhibitory patterns (hypotension, bradycardia). Distinct neural substrates mediating active vs. passive emotional coping have been identified within the longitudinal neuronal columns of the midbrain periaqueductal gray region (PAG). The PAG offers then a potentially useful point of entry for delineating neural circuits mediating the different forms of emotional coping and their associated patterns of autonomic activity. As one example, recent studies of the connections of orbital and medial prefrontal cortical (PFC) fields with specific PAG longitudinal neuronal columns are reviewed. Findings of discrete orbital and medial PFC projections to different PAG columns, and related PFC and PAG columnar connections with specific subregions of the hypothalamus, suggest that distinct but parallel circuits mediate the behavioural strategies and patterns of autonomic activity characteristic of emotional "engagement with" or "disengagement from" the external environment. PMID:11033213

  5. [Activity patterns and foraging behavior of Apis cerana cerana in the urban gardens in winter].

    PubMed

    Chen, Fa-jun; Yang, Qing-qing; Long, Li; Hu, Hong-mei; Duan, Bin; Chen, Wen-nian

    2016-01-01

    Bees and other pollinating insects are the important parts of biodiversity due to their great role in plant reproduction and crop production. To explore the role of city garden in native bees conservation, activity patterns, visiting behaviors and flowering plants with nectar or pollen were recorded in south Sichuan in winter. The results showed that, worker bees (Apis cerana cerana) were active to collect food out hive under suitable weather conditions, the duration of working was long. Peaks of the number of outgoing, entrance and foragers without pollen appeared at 14:00-15:00, and bimodal patterns were observed. While, peak of bees with pollen appeared at 11:00, and a unimodal pattern was observed. Time significantly affected the activity of workers. The workload of honey bees on nectar and pollen collection were different, just less than twenty percent foragers carrying pollen. Temperature and humidity also affected flights of bees to some degree, and bee activities showed similar patterns on different days. However, the activities had diverse characteristics in some time. Though a less number of plants were in flowering, most of them could be utilized by A. cerana cerana, and colonies could effectively get the food resource by behavior adjustment. In addition, visiting activities of bees on the flowers of main garden plants, such as Camellia japonica, showed obvious rhythm. Increasing the flowering plants with nectar and pollen in winter by scientific management of urban gardens would facilitate the creation of suitable habitats for A. cerana cerana and maintaining the wild population. PMID:27228619

  6. Prevalence and patterns of physical activity among medical students in Bangalore, India

    PubMed Central

    Padmapriya, Krishnakumar; Krishna, Pushpa; Rasu, Thenna

    2013-01-01

    Background: Physical activity is one of the leading health indicators. The objective was to study the prevalence and patterns of physical activity among young adults. Methods: 259 Medical students (Men: Women = 116:143) in the age group of 18–22 yrs were interviewed using the official English long version of the International Physical Activity Questionnaire (IPAQ). The total level of physical activity and activity in each of the 4 life domains – work, transport, domestic and gardening and leisure-time were estimated and was expressed as metabolic equivalent-hours per week (MET-hour/week). Results: 41.3 % showed high levels of physical activity, 43.2% and 15.4 % of students showed moderate level and low level of physical activity respectively. 84.6 % (n=219) were engaged in work related activity and 80.7% (n= 209) showed transport related activity. Domestic and gardening physical activity represented 63.7 % (n=165) of individuals total activity and 67.2% of students showed leisure time activity. The average time spent in sitting was 7.06 hrs/day. The median of the total physical activity for the whole sample was 39.13 MET/hour/week and 18.10 for work, 4.40 for transportation, 2.60 for domestic and gardening and 4 for leisure-time activity. There was significant gender difference observed with women having low physical activity. Conclusion: This study provides baseline information about the physical activity levels and patterns including sitting hours among Indian young adults using IPAQ that can used for comparison of data across different parts of world. PMID:26120390

  7. Calibration of a distributed hydrologic model using observed spatial patterns from MODIS data

    NASA Astrophysics Data System (ADS)

    Demirel, Mehmet C.; González, Gorka M.; Mai, Juliane; Stisen, Simon

    2016-04-01

    Distributed hydrologic models are typically calibrated against streamflow observations at the outlet of the basin. Along with these observations from gauging stations, satellite based estimates offer independent evaluation data such as remotely sensed actual evapotranspiration (aET) and land surface temperature. The primary objective of the study is to compare model calibrations against traditional downstream discharge measurements with calibrations against simulated spatial patterns and combinations of both types of observations. While the discharge based model calibration typically improves the temporal dynamics of the model, it seems to give rise to minimum improvement of the simulated spatial patterns. In contrast, objective functions specifically targeting the spatial pattern performance could potentially increase the spatial model performance. However, most modeling studies, including the model formulations and parameterization, are not designed to actually change the simulated spatial pattern during calibration. This study investigates the potential benefits of incorporating spatial patterns from MODIS data to calibrate the mesoscale hydrologic model (mHM). This model is selected as it allows for a change in the spatial distribution of key soil parameters through the optimization of pedo-transfer function parameters and includes options for using fully distributed daily Leaf Area Index (LAI) values directly as input. In addition the simulated aET can be estimated at a spatial resolution suitable for comparison to the spatial patterns observed with MODIS data. To increase our control on spatial calibration we introduced three additional parameters to the model. These new parameters are part of an empirical equation to the calculate crop coefficient (Kc) from daily LAI maps and used to update potential evapotranspiration (PET) as model inputs. This is done instead of correcting/updating PET with just a uniform (or aspect driven) factor used in the mHM model

  8. Video camera observation for assessing overland flow patterns during rainfall events

    NASA Astrophysics Data System (ADS)

    Silasari, Rasmiaditya; Oismüller, Markus; Blöschl, Günter

    2015-04-01

    Physically based hydrological models have been widely used in various studies to model overland flow propagation in cases such as flood inundation and dam break flow. The capability of such models to simulate the formation of overland flow by spatial and temporal discretization of the empirical equations makes it possible for hydrologists to trace the overland flow generation both spatially and temporally across surface and subsurface domains. As the upscaling methods transforming hydrological process spatial patterns from the small obrseved scale to the larger catchment scale are still being progressively developed, the physically based hydrological models become a convenient tool to assess the patterns and their behaviors crucial in determining the upscaling process. Related studies in the past had successfully used these models as well as utilizing field observation data for model verification. The common observation data used for this verification are overland flow discharge during natural rainfall events and camera observations during synthetic events (staged field experiments) while the use of camera observations during natural events are hardly discussed in publications. This study advances in exploring the potential of video camera observations of overland flow generation during natural rainfall events to support the physically based hydrological model verification and the assessment of overland flow spatial patterns. The study is conducted within a 64ha catchment located at Petzenkirchen, Lower Austria, known as HOAL (Hydrological Open Air Laboratory). The catchment land covers are dominated by arable land (87%) with small portions (13%) of forest, pasture and paved surfaces. A 600m stream is running at southeast of the catchment flowing southward and equipped with flumes and pressure transducers measuring water level in minutely basis from various inlets along the stream (i.e. drainages, surface runoffs, springs) to be calculated into flow discharge. A

  9. Guiding Catalytically Active Particles with Chemically Patterned Surfaces

    NASA Astrophysics Data System (ADS)

    Uspal, W. E.; Popescu, M. N.; Dietrich, S.; Tasinkevych, M.

    2016-07-01

    Catalytically active Janus particles suspended in solution create gradients in the chemical composition of the solution along their surfaces, as well as along any nearby container walls. The former leads to self-phoresis, while the latter gives rise to chemiosmosis, providing an additional contribution to self-motility. Chemiosmosis strongly depends on the molecular interactions between the diffusing chemical species and the wall. We show analytically, using an approximate "point-particle" approach, that by chemically patterning a planar substrate one can direct the motion of Janus particles: the induced chemiosmotic flows can cause particles to either "dock" at the chemical step between the two materials or follow a chemical stripe. These theoretical predictions are confirmed by full numerical calculations. Generically, docking occurs for particles which tend to move away from their catalytic caps, while stripe following occurs in the opposite case. Our analysis reveals the physical mechanisms governing this behavior.

  10. Hidden Stages of Cognition Revealed in Patterns of Brain Activation.

    PubMed

    Anderson, John R; Pyke, Aryn A; Fincham, Jon M

    2016-09-01

    To advance cognitive theory, researchers must be able to parse the performance of a task into its significant mental stages. In this article, we describe a new method that uses functional MRI brain activation to identify when participants are engaged in different cognitive stages on individual trials. The method combines multivoxel pattern analysis to identify cognitive stages and hidden semi-Markov models to identify their durations. This method, applied to a problem-solving task, identified four distinct stages: encoding, planning, solving, and responding. We examined whether these stages corresponded to their ascribed functions by testing whether they are affected by appropriate factors. Planning-stage duration increased as the method for solving the problem became less obvious, whereas solving-stage duration increased as the number of calculations to produce the answer increased. Responding-stage duration increased with the difficulty of the motor actions required to produce the answer. PMID:27440808

  11. OMP gene deletion results in an alteration in odorant-induced mucosal activity patterns.

    PubMed

    Youngentob, S L; Kent, P F; Margolis, F L

    2003-12-01

    -null and control mice. That is, although the general regions of characteristic activity for different odorants were the same in both mouse strains, the patterns in the null animals were degraded relative to controls. These data suggest therefore that the alterations in mucosal activity may serve as the substrate for the behaviorally observed changes in odorant quality perception in the null mutant. PMID:12917392

  12. Kin-Aggregations Explain Chaotic Genetic Patchiness, a Commonly Observed Genetic Pattern, in a Marine Fish.

    PubMed

    Selwyn, Jason D; Hogan, J Derek; Downey-Wall, Alan M; Gurski, Lauren M; Portnoy, David S; Heath, Daniel D

    2016-01-01

    The phenomenon of chaotic genetic patchiness is a pattern commonly seen in marine organisms, particularly those with demersal adults and pelagic larvae. This pattern is usually associated with sweepstakes recruitment and variable reproductive success. Here we investigate the biological underpinnings of this pattern in a species of marine goby Coryphopterus personatus. We find that populations of this species show tell-tale signs of chaotic genetic patchiness including: small, but significant, differences in genetic structure over short distances; a non-equilibrium or "chaotic" pattern of differentiation among locations in space; and within locus, within population deviations from the expectations of Hardy-Weinberg equilibrium (HWE). We show that despite having a pelagic larval stage, and a wide distribution across Caribbean coral reefs, this species forms groups of highly related individuals at small spatial scales (<10 metres). These spatially clustered family groups cause the observed deviations from HWE and local population differentiation, a finding that is rarely demonstrated, but could be more common than previously thought. PMID:27119659

  13. Kin-Aggregations Explain Chaotic Genetic Patchiness, a Commonly Observed Genetic Pattern, in a Marine Fish

    PubMed Central

    Hogan, J. Derek; Downey-Wall, Alan M.; Gurski, Lauren M.; Portnoy, David S.; Heath, Daniel D.

    2016-01-01

    The phenomenon of chaotic genetic patchiness is a pattern commonly seen in marine organisms, particularly those with demersal adults and pelagic larvae. This pattern is usually associated with sweepstakes recruitment and variable reproductive success. Here we investigate the biological underpinnings of this pattern in a species of marine goby Coryphopterus personatus. We find that populations of this species show tell-tale signs of chaotic genetic patchiness including: small, but significant, differences in genetic structure over short distances; a non-equilibrium or “chaotic” pattern of differentiation among locations in space; and within locus, within population deviations from the expectations of Hardy-Weinberg equilibrium (HWE). We show that despite having a pelagic larval stage, and a wide distribution across Caribbean coral reefs, this species forms groups of highly related individuals at small spatial scales (<10 metres). These spatially clustered family groups cause the observed deviations from HWE and local population differentiation, a finding that is rarely demonstrated, but could be more common than previously thought. PMID:27119659

  14. Dust pattern over Indian subcontinent based on NAAPS model, satellite and surface observations

    NASA Astrophysics Data System (ADS)

    Menon, R.; Husar, R. B.; Sethi, V.; Westphal, D. L.

    2013-12-01

    This paper presents the results of an integrated analysis of dust pattern over the Indian subcontinent using NRL Aerosol Analysis and Prediction System (NAAPS), multiple satellite sensors and surface based aerosol measurements. The satellite datasets include MODIS AOT and OMI Aerosol Index. The surface measurements include RSPM from Indian regulatory PM network (NAMP). The analysis methodology deals with spatial patterns, seasonality as well as the vertical distribution as a function of space and time. Based on the NAAPS model, the highest average surface dust concentrations of about 300 μg/m3 are observed over the dust source regions, north Gujarat- Pakistan border and over south Afghanistan- Pakistan border. The monsoon season has lowest surface dust concentrations over most of India, except the source regions. In the post-monsoon and winter seasons, the highest surface dust concentrations of about 150μg/m3 are observed over Indo-Gangetic basin (IGB). The location of highest concentration shift from West IGB in post monsoon to East IGB in winter. The spatial patterns in columnar dust concentration is the highest (AOT=0.4) near Pakistan border in North West Rajasthan, in summer and monsoon, while the surface dust concentration is highest over north Gujarat- Pakistan border. This indicates that the dust is more spread out at higher elevations than at the surface. The spatial pattern of dust AOT in winter and post-monsoon matches with that of surface concentrations, indicating that the dust is confined to the surface layer IGB. Unlike surface concentrations, a significant dust AOT of 0.2 is observed even in monsoon season over most part of India.The NAAPS average dust vertical profile shows elevated dust layer covering most part of India during monsoon season, reaching about 100 μg/m3 over the west at about 2 km elevation (about 0.75 sigma units). The satellite data, MODIS AOT and OMI Aerosol Index corroborate the NAAPS simulations of dust AOT. MODIS AOT show

  15. Activation patterns of embryonic chick hind-limb muscles following blockade of activity and motoneurone cell death.

    PubMed Central

    Landmesser, L T; Szente, M

    1986-01-01

    Motoneurone cell death and spontaneous embryonic motility were blocked in chick embryos by daily in ovo injections of d-tubocurarine from stage 28-36 (E5-10). Isolated spinal cord-hind-limb preparations were prepared from these embryos and movement sequences in response to electrical stimulation of the thoracic cord were assessed, after drug wash-out, by electromyogram (e.m.g.) or muscle-nerve recordings. In embryos in which complete blockade of lumbar motoneurone cell death was later confirmed histologically, flexor and extensor motoneurone pools were found to be activated in alternating bursts as occurs in control embryos. Thus the development of the basic cord circuits responsible for these patterns of motoneurone activation does not require motoneurone cell death. Partial blockade of motoneurone cell death by guanosine 3',5'-phosphate (cyclic GMP) was also without effect on muscle activation patterns. In ovo injection of d-tubocurarine or alpha-bungarotoxin in doses sufficient to block embryonic motility was found to have a direct effect on the spinal cord, preventing the patterned activation of motoneurone pools in alternating bursts. Cords removed from treated embryos behaved similarly to cords in which these drugs were applied acutely in the bath. Minor changes in muscle activation patterns that occurred with chronic drug treatment were also observed in acutely treated cords and appear to be a direct and persistent effect of the drugs on cord circuits. It is possible to conclude that cholinergic circuits within the chick lumbar cord play a role in the normal patterned activation of flexor and extensor motoneurone pools. Systemically applied drugs can have access to these circuits, indicating a need for caution when interpreting the results of drugs applied in this manner to developing embryos. We also conclude that neither the activation of motoneurones in patterned bursts, nor the afferent feed-back from the movements that result, are required to form the

  16. Unobtrusive assessment of activity patterns associated with mild cognitive impairment

    PubMed Central

    Hayes, T.L.; Abendroth, F.; Adami, A.; Pavel, M.; Zitzelberger, T.A.; Kaye, J.A.

    2008-01-01

    Background Timely detection of early cognitive impairment is difficult. Measures taken in the clinic reflect a single snapshot of performance that may be confounded by the increased variability typical in aging and disease. We evaluated the use of continuous, long-term and unobtrusive in-home monitoring to assess neurological function in healthy and cognitively impaired elders. Methods Fourteen older adults 65 years and older living independently in the community were monitored in their homes using an unobtrusive sensor system. Measures of walking speed and amount of activity in the home were obtained. Wavelet analysis was used to examine variance in activity at multiple timescales. Results More than 108,000 person-hours of continuous activity data were collected over periods as long as 418 days (mean 315 ± 82 days). The coefficient of variation in the median walking speed was twice as high in the MCI group (0.147 ± 0.074) as compared to the healthy group (0.079 ± 0.027; t11 = 2.266, p<0.03). Furthermore, the 24-hour wavelet variance was greater in the MCI group (MCI: 4.07 ± 0.14, Healthy elderly: 3.79± 0.23; F = 7.58, p=<0.008), indicating that the day-to-day pattern of activity of subjects in the MCI group was more variable than that of the cognitively healthy controls. Conclusions The results not only demonstrate the feasibility of these methods, but also suggest clear potential advantages to this new methodology. This approach may provide an improved means of detecting the earliest transition to MCI compared to conventional episodic testing in a clinic environment. PMID:19012864

  17. Region-dependent seasonal pattern of methane over Indian region as observed by SCIAMACHY

    NASA Astrophysics Data System (ADS)

    Kavitha, M.; Nair, Prabha R.

    2016-04-01

    The column averaged mixing ratio of methane (XCH4) from SCanning Imaging Absorption spectroMeter for Atmospheric CHartographY (SCIAMACHY) on-board satellite ENVISAT has been used to study its regional pattern and seasonal cycle over Indian region for the period 2003-2009. XCH4 varies from 1740 to 1890 ppbv over Indian region with distinct spatial and temporal features. The peak values are observed in monsoon and post monsoon and minimum in winter months, except over southern Peninsular India which shows the distinctly different seasonal behavior with peak in October/November. The mean background level of XCH4 over Indian region is estimated as ∼1795 ppbv. While regional patterns are strongly associated with livestock distribution, wetland emissions, including rice fields, the seasonal variations in XCH4 are predominantly associated with the rice cultivation as revealed by analysis of NDVI.

  18. Interfacial activity and leaching patterns of Leptospirillum ferrooxidans on pyrite.

    PubMed

    Rojas-Chapana, José A; Tributsch, Helmut

    2004-01-01

    The leaching ability of Leptospirillum ferrooxidans goes beyond the mere oxidation of Fe(2+) to Fe(3+). Addition of these bacteria to pyrite triggers interfacial phenomena that lead to bacterial attachment and local forms of corrosion (surface pitting). As the leaching process proceeds, bacterial cells undergo changes, characterized by the release of extracellular polymeric substances (EPS) and the uptake and storage of electro-dense nanoparticles. The latter are embedded in an exopolymeric capsule, which coats the bacterial surface leading to distinctive biomineralized assemblages. High-resolution scanning electron microscopy (SEM) and transmission electron microscopy (TEM) analyses, quantitative energy-dispersive X-ray measurements and electron diffraction established that the embedded electron-dense nanoparticles comprise pyrite with a well-defined stoichiometry. Addition of Fe(3+) alone did not induce any form of local corrosion on pyrite, which indicates that the reactions taking place between the attached bacteria and the underlying pyrite surface are responsible for the leaching patterns observed in this study. The observed corrosion process resembles that of 'electrochemical machining', because it uses a corrosion promoter, namely the locally concentrated Fe(3+) in the biofilm environment, formed by the attached cells. PMID:19712343

  19. Assessing risk based on uncertain avalanche activity patterns

    NASA Astrophysics Data System (ADS)

    Zeidler, Antonia; Fromm, Reinhard

    2015-04-01

    Avalanches may affect critical infrastructure and may cause great economic losses. The planning horizon of infrastructures, e.g. hydropower generation facilities, reaches well into the future. Based on the results of previous studies on the effect of changing meteorological parameters (precipitation, temperature) and the effect on avalanche activity we assume that there will be a change of the risk pattern in future. The decision makers need to understand what the future might bring to best formulate their mitigation strategies. Therefore, we explore a commercial risk software to calculate risk for the coming years that might help in decision processes. The software @risk, is known to many larger companies, and therefore we explore its capabilities to include avalanche risk simulations in order to guarantee a comparability of different risks. In a first step, we develop a model for a hydropower generation facility that reflects the problem of changing avalanche activity patterns in future by selecting relevant input parameters and assigning likely probability distributions. The uncertain input variables include the probability of avalanches affecting an object, the vulnerability of an object, the expected costs for repairing the object and the expected cost due to interruption. The crux is to find the distribution that best represents the input variables under changing meteorological conditions. Our focus is on including the uncertain probability of avalanches based on the analysis of past avalanche data and expert knowledge. In order to explore different likely outcomes we base the analysis on three different climate scenarios (likely, worst case, baseline). For some variables, it is possible to fit a distribution to historical data, whereas in cases where the past dataset is insufficient or not available the software allows to select from over 30 different distribution types. The Monte Carlo simulation uses the probability distribution of uncertain variables

  20. Diurnal patterns in lightning activity over South America

    NASA Astrophysics Data System (ADS)

    Ávila, Eldo E.; Bürgesser, Rodrigo E.; Castellano, Nesvit E.; Nicora, M. Gabriela

    2015-04-01

    Satellite observations of lightning flash distribution data are used to examine the diurnal cycle of lightning activity over the tropical and subtropical regions of South America. A harmonic analysis is used to study the spatial variations in the peak and strength of diurnal lightning activity across this area. Results show that in the northern and central regions of South America, the times of maxima in lightning activity was concentrated from late afternoon to evening hours (between 14:00 and 18:00 local time), which may be associated with the peaking of the local convective activity connected with heating of the surface caused by daytime insolation. In subtropical South America, particularly in the area limited by 25°S, 35°S of latitude and 70°W, 50°W of longitude, the time of maximum lightning activity was shifted to nocturnal hours, extending from close to midnight to early morning hours. This behavior can be associated to the peak in mesoscale convective systems in the region which occurs in the morning hours. The annual flash densities in the tropical and subtropical parts of the continent were found to have comparable magnitudes. However, the contribution of the continental tropics to the global electric circuit dominates over the continental subtropics contribution throughout all seasons, since the surface covered by the tropical region is more than twice the area covered by the subtropical region.

  1. SPATIALLY AND SPECTRALLY RESOLVED OBSERVATIONS OF A ZEBRA PATTERN IN A SOLAR DECIMETRIC RADIO BURST

    SciTech Connect

    Chen Bin; Bastian, T. S.; Gary, D. E.; Jing Ju

    2011-07-20

    We present the first interferometric observation of a zebra-pattern radio burst with simultaneous high spectral ({approx}1 MHz) and high time (20 ms) resolution. The Frequency-Agile Solar Radiotelescope Subsystem Testbed (FST) and the Owens Valley Solar Array (OVSA) were used in parallel to observe the X1.5 flare on 2006 December 14. By using OVSA to calibrate the FST, the source position of the zebra pattern can be located on the solar disk. With the help of multi-wavelength observations and a nonlinear force-free field extrapolation, the zebra source is explored in relation to the magnetic field configuration. New constraints are placed on the source size and position as a function of frequency and time. We conclude that the zebra burst is consistent with a double-plasma resonance model in which the radio emission occurs in resonance layers where the upper-hybrid frequency is harmonically related to the electron cyclotron frequency in a coronal magnetic loop.

  2. Quasicrystals and the Penrose Patterns: A Geometric Activity with a Scientific Application.

    ERIC Educational Resources Information Center

    Clason, Robert; And Others

    1993-01-01

    Penrose tile patterns are created using regular pentagon-based rhombi. Provides instructions for assembling Penrose patterns, plus activities for secondary school students and preservice elementary teachers. Compares the two-dimensional process of placing pattern blocks to form Penrose patterns to the symmetries of crystals formed in nature.…

  3. UTILITY OF ACTIVITY AND OBSERVATIONAL DATA FOR NEUROTOXICITY SCREENING

    EPA Science Inventory

    Observational and activity tests provide neurobehavioral data critical for assessing a chemical's effects on the nervous system. he measures are sensitive, relatively specific, and provide information about the effects of the chemical in specified functional domains. These measur...

  4. The recording of odorant-induced mucosal activity patterns with a voltage-sensitive dye.

    PubMed

    Kent, P F; Mozell, M M

    1992-11-01

    1. Fluorescence changes in the dye (WW 781) were monitored at 100 contiguous sites in a 10 x 10-pixel array on the bullfrog and salamander olfactory mucosas every 10 ms in response to odorous stimuli. The odorants were d-limonene, butanol, and amyl acetate, each presented at two concentrations with a 3:1 ratio. 2. The fluorescence signals elicited by these odorous stimuli were nearly identical in shape and time course to the electro-olfactograms (EOGs) recorded from the same animal under identical conditions. Like the EOGs, the fluorescence signals exhibited adaptation and were abolished by both Triton X-100 and ether. There was no measurable fluorescence when the tissue was not stained with the dye, and there was no change in fluorescence when, for stained tissue, nonodorized, humidified air was presented as the stimulus. 3. This technique presumably monitors the same events as the EOG, but has the advantage of simultaneously recording the odorant-induced activity from multiple sites across most of the mucosa. Thus this technique preserves subtle differences heretofore lost by other techniques both in the coarseness of their matrices and in the variability generated by trying to piece together, into one collage, results from numerous presentations given at different times. 4. In all preparations, there was a larger difference in the inherent activity patterns (derived from response magnitudes) between different odorants than between different concentrations of the same odorant. These differences were largest on the mucosa lining the floor of salamander's olfactory sac. d-limonene and butanol gave their largest responses near the internal and external nares, respectively, whereas the responses for amyl acetate were more uniform across the mucosal sheet. In contrast to the salamander, smaller differences were observed for both the roof and the floor of the bullfrog's olfactory sac. For the floor, both amyl acetate and d-limonene elicited similar patterns of response

  5. Characteristics of proportionate growth observed in instability patterns of miscible fluids

    NASA Astrophysics Data System (ADS)

    Bischofberger, Irmgard; Ramachandran, Radha; Nagel, Sidney R.; Nagel lab Team

    2014-11-01

    As a baby mammal grows, different parts of its body develop at the nearly the same rate and thus to a good approximation in direct proportion to one another. This type of growth is called proportionate growth. As familiar as it appears to us, it is very rarely found in physical systems outside of the biological world. We here show an example of proportionate growth that occurs in the instability formed when a less viscous liquid, of viscosity ηin displaces a more viscous miscible one, of viscosity ηout. We investigate the growth of these patterns in a quasi-two-dimensional geometry. Within a range of viscosity ratios 0.1 <ηin /ηout <0.3, we observe the formation of small blunt structures that form at the edges of an inner circular region devoid of fingers. As the pattern grows, the size of these structures increases in proportion to the size of the inner circle, such that even small details in the shape of the pattern remain essentially unchanged during growth. These characteristics of proportionate growth are reflected in the shape of the interface in the third dimension as well.

  6. Combined Passive Active Soil Moisture Observations During CLASIC

    Technology Transfer Automated Retrieval System (TEKTRAN)

    An important issue in advancing higher spatial resolution and better accuracy in soil moisture remote sensing is the integration of active and passive observations. In an effort to address these questions an airborne passive/active L-band system (PALS) was flown as part of CLASIC in Oklahoma over th...

  7. Axi-symmetric patterns of active polar filaments on spherical and composite surfaces

    NASA Astrophysics Data System (ADS)

    Srivastava, Pragya; Rao, Madan

    2014-03-01

    Experiments performed on Fission Yeast cells of cylindrical and spherical shapes, rod-shaped bacteria and reconstituted cylindrical liposomes suggest the influence of cell geometry on patterning of cortical actin. A theoretical model based on active hydrodynamic description of cortical actin that includes curvature-orientation coupling predicts spontaneous formation of acto-myosin rings, cables and nodes on cylindrical and spherical geometries [P. Srivastava et al, PRL 110, 168104(2013)]. Stability and dynamics of these patterns is also affected by the cellular shape and has been observed in experiments performed on Fission Yeast cells of spherical shape. Motivated by this, we study the stability and dynamics of axi-symmetric patterns of active polar filaments on the surfaces of spherical, saddle shaped and conical geometry and classify the stable steady state patterns on these surfaces. Based on the analysis of the fluorescence images of Myosin-II during ring slippage we propose a simple mechanical model for ring-sliding based on force balance and make quantitative comparison with the experiments performed on Fission Yeast cells. NSF Grant DMR-1004789 and Syracuse Soft Matter Program.

  8. Direct observation of electric field induced pattern formation and particle aggregation in ferrofluids

    SciTech Connect

    Rajnak, Michal; Kopcansky, Peter; Timko, Milan; Petrenko, Viktor I.; Avdeev, Mikhail V.; Ivankov, Olexandr I.; Feoktystov, Artem; Dolnik, Bystrik; Kurimsky, Juraj

    2015-08-17

    Ferrofluids typically respond to magnetic fields and can be manipulated by external magnetic fields. Here, we report on formation of visually observable patterns in a diluted low-polarity ferrofluid exposed to external electric fields. This presents a specific type of ferrofluid structure driven by a combined effect of electrohydrodynamics and electrical body forces. The free charge and permittivity variation are considered to play a key role in the observed phenomenon. The corresponding changes in the ferrofluid structure have been found at nanoscale as well. By small-angle neutron scattering (SANS), we show that the magnetic nanoparticles aggregate in direct current (dc) electric field with a strong dependence on the field intensity. The anisotropic aggregates preferably orient in the direction of the applied electric field. Conducting SANS experiments with alternating current (ac) electric fields of various frequencies, we found a critical frequency triggering the aggregation process. Our experimental study could open future applications of ferrofluids based on insulating liquids.

  9. Direct observation of electric field induced pattern formation and particle aggregation in ferrofluids

    NASA Astrophysics Data System (ADS)

    Rajnak, Michal; Petrenko, Viktor I.; Avdeev, Mikhail V.; Ivankov, Olexandr I.; Feoktystov, Artem; Dolnik, Bystrik; Kurimsky, Juraj; Kopcansky, Peter; Timko, Milan

    2015-08-01

    Ferrofluids typically respond to magnetic fields and can be manipulated by external magnetic fields. Here, we report on formation of visually observable patterns in a diluted low-polarity ferrofluid exposed to external electric fields. This presents a specific type of ferrofluid structure driven by a combined effect of electrohydrodynamics and electrical body forces. The free charge and permittivity variation are considered to play a key role in the observed phenomenon. The corresponding changes in the ferrofluid structure have been found at nanoscale as well. By small-angle neutron scattering (SANS), we show that the magnetic nanoparticles aggregate in direct current (dc) electric field with a strong dependence on the field intensity. The anisotropic aggregates preferably orient in the direction of the applied electric field. Conducting SANS experiments with alternating current (ac) electric fields of various frequencies, we found a critical frequency triggering the aggregation process. Our experimental study could open future applications of ferrofluids based on insulating liquids.

  10. Guiding catalytically active particles with chemically patterned surfaces

    NASA Astrophysics Data System (ADS)

    Uspal, William; Popescu, Mihail; Dietrich, Siegfried; Tasinkevych, Mykola

    Catalytically active Janus particles in solution create gradients in the chemical composition of the solution along their surfaces, as well as along any nearby container walls. The former leads to self-phoresis, while the latter gives rise to chemi-osmosis, providing an additional contribution to self-motility. Chemi-osmosis strongly depends on the molecular interactions between the diffusing chemical species and the wall. We show analytically, using an approximate ``point-particle'' approach, that by chemically patterning a planar substrate (e.g., by adsorbing two different materials) one can direct the motion of Janus particles: the induced chemi-osmotic flows can cause particles to either ``dock'' at a chemical step between the two materials, or to follow a chemical stripe. These theoretical predictions are confirmed by full numerical calculations. Generically, docking occurs for particles which tend to move away from their catalytic caps, while stripe-following occurs in the opposite case. Our analysis reveals the physical mechanisms governing this behavior.

  11. Two different interictal spike patterns anticipate ictal activity in vitro

    PubMed Central

    Avoli, Massimo; Panuccio, Gabriella; Herrington, Rochelle; D’Antuono, Margherita; de Guzman, Philip; Lévesque, Maxime

    2016-01-01

    4-Aminopyridine (4AP, 50 μM) induces interictal- and ictal-like discharges in brain slices including parahippocampal areas such as the entorhinal cortex (EC) but the relation between these two types of epileptiform activity remains undifined. Here, by employing field potential recordings in rat EC slices during 4AP application, we found that: (i) interictal events have a wide range of duration (0.4–3.3 s) and interval of occurrence (1.4–84 s); (ii) ictal discharges are either preceded by an isolated “slow” interictal discharge (ISID; duration=1.5±0.1 s, interval of occurrence=33.8±1.8 s) or suddenly initiate from a pattern of frequent polispike interictal discharge (FPID; duration=0.8±0.1 s; interval of occurrence=2.7±0.2 s); and (iii) ISID-triggered ictal events have longer duration (116±7.3 s) and interval of occurrence (425.8±42.3 s) than those initiating suddenly during FPID (58.3±7.8 s and 202.1±21.8 s, respectively). Glutamatergic receptor antagonists abolished ictal discharges in all experiments, markedly reduced FPIDs but did not influence ISIDs. We also discovered that high-frequency oscillations (HFOs, 80–500 Hz) occur more frequently during ISIDs as compared to FPIDs, and mainly coincide with the onset of ISID-triggered ictal discharges. These findings indicate that interictal events may define ictal onset features resembling those seen in vivo in low-voltage fast activity onset seizures. We propose a similar condition to occur in vivo in temporal lobe epileptic patients and animal models. PMID:23270790

  12. Using kinematics and a dynamical systems approach to enhance understanding of clinically observed aberrant movement patterns.

    PubMed

    Spinelli, Bryan A; Wattananon, Peemongkon; Silfies, Sheri; Talaty, Mukul; Ebaugh, David

    2015-02-01

    The objective of this technical paper is to demonstrate how graphing kinematic data to represent body segment coordination and control can assist clinicians and researchers in understanding typical and aberrant human movement patterns. Aberrant movements are believed to be associated with musculoskeletal pain and dysfunction. A dynamical systems approach to analysing movement provides a useful way to study movement control and coordination. Continuous motion angle-angle and coupling angle-movement cycle graphs provide information about coordinated movement between body segments, whereas phase-plane graphs provide information about neuromuscular control of a body segment. Examples demonstrate how a dynamical systems approach can be used to represent (1) typical movement patterns of the lumbopelvic and shoulder regions; (2) aberrant coordination in an individual with low back pain who presented with altered lumbopelvic rhythm; and (3) aberrant control of shoulder movement in an individual with observed scapular dysrhythmia. Angle-angle and coupling angle-movement cycle graphs were consistent with clinical operational definitions of typical and altered lumbopelvic rhythm. Phase-plane graphs illustrated differences in scapular control between individuals having typical scapular motion and an individual with scapular dysrhythmia. Angle-angle, coupling angle-movement cycle, and phase-plane graphs provide information about the amount and timing of segmental motion, which clinicians assess when they observe movements. These approaches have the potential to (1) enhance understanding of typical and aberrant movement patterns; (2) assist with identifying underlying movement impairments that contribute to aberrant movements: and (3) improve clinicians' ability to visually assess and categorize functional movements. PMID:25116648

  13. Prescribing Patterns of Drugs in Acute Respiratory Distress Syndrome (ARDS): An Observational Study

    PubMed Central

    Rao, Shobitha; Chogtu, Bharti

    2015-01-01

    Introduction: Acute respiratory distress syndrome (ARDS) is characterized by acute respiratory failure and is associated with wide range of clinical disorders. Controversy prevails over the pharmacological intervention in this disease. The aim of the study was to observe the prescribing pattern of drugs in patients with ARDS managed at a tertiary care hospital. Materials and Methods: This observational study was conducted at tertiary care hospital in India. Data of patients admitted from January 2010 to December 2012 was collected. Patients aged more than 18 years admitted in ICU, who were diagnosed to have ARDS during the study period, were included. A total of 150 patients of ARDS were selected. Data was collected as per the pre designed proforma and it included patients’ age, gender, clinical disorders precipitating ARDS, prescribing pattern of drugs and outcome. The data of the subjects was collected till discharge from hospital or death. Results: Infection was the cause of ARDS in 81.3% (n=122) of subjects. Antibiotics were prescribed in all the subjects and beta-lactams were prescribed in 97.3% (n=146). 41.3% (n=62) were prescribed corticosteroids, 39.3% (n=59) diuretics and 89.3% (n=134) intravenous fluids. Conclusion: The outcome of patients on different pharmacological treatment did not show any statistically significant difference. PMID:25859465

  14. Anglo- and Mexican-American preschoolers at home and at recess: activity patterns and environmental influences.

    PubMed

    McKenzie, T L; Sallis, J F; Nader, P R; Broyles, S L; Nelson, J A

    1992-06-01

    Habitual physical activity in children is related to physical fitness and appears to mediate cardiovascular disease (CVD) risk factors. We studied the physical activity patterns and associated variables of a large bi-ethnic cohort of 4-year-old children from low to middle socioeconomic families. Trained observers coded the behavior of 351 children (150 Anglo-American, 201 Mexican-American; 182 boys, 169 girls) during two 60-minute home visits and two unstructured recesses lasting up to 30 minutes each at 63 different preschools. Findings indicated that although children were much less active at home, there were low but significant correlations between their activity patterns at home and during recess (r = .13). Children who had activity-promoting toys at home also tended to have them available during preschool recess (r = .20). Ethnic differences were evident for both activity and environmental variables. Mexican-American children were less active than Anglo children at home (p less than .002) and during recess (p less than .03), thus adding to the adult literature that has found Mexican-Americans to be less active than Anglos, and supporting to the notion that physical activity life-style habits may be established in early childhood. In both settings, Mexican-American children spent more time in presence of adults (home, p less than .04; recess, p less than .03) and had access to fewer active toys (home, p less than .001; recess, p less than .05). Gender differences were also evident for both activity and environmental variables.(ABSTRACT TRUNCATED AT 250 WORDS) PMID:1613112

  15. Automated swimming activity monitor for examining temporal patterns of toxicant effects on individual Daphnia magna.

    PubMed

    Bahrndorff, Simon; Michaelsen, Thomas Yssing; Jensen, Anne; Marcussen, Laurits Faarup; Nielsen, Majken Elley; Roslev, Peter

    2016-07-01

    Aquatic pollutants are often biologically active at low concentrations and impact on biota in combination with other abiotic stressors. Traditional toxicity tests may not detect these effects, and there is a need for sensitive high-throughput methods for detecting sublethal effects. We have evaluated an automated infra-red (IR) light-based monitor for recording the swimming activity of Daphnia magna to establish temporal patterns of toxicant effects on an individual level. Activity was recorded for 48 h and the sensitivity of the monitor was evaluated by exposing D. magna to the reference chemicals K2 Cr2 O7 at 15, 20 and 25 °C and 2,4-dichlorophenol at 20 °C. Significant effects (P < 0.001) of toxicant concentrations, exposure time and incubation temperatures were observed. At 15 °C, the swimming activity remained unchanged for 48 h at sublethal concentrations of K2 Cr2 O7 whereas activity at 20 and 25 °C was more biphasic with decreases in activity occurring after 12-18 h. A similar biphasic pattern was observed after 2,4-dichlorophenol exposure at 20 °C. EC50 values for 2,4-dichlorophenol and K2 Cr2 O7 determined from automated recording of swimming activity showed increasing toxicity with time corresponding to decreases in EC50 of 0.03-0.07 mg l(-1) h(-1) . EC50 values determined after 48 h were comparable or lower than EC50 values based on visual inspection according to ISO 6341. The results demonstrated that the swimming activity monitor is capable of detecting sublethal behavioural effects that are toxicant and temperature dependent. The method allows EC values to be established at different time points and can serve as a high-throughput screening tool in toxicity testing. Copyright © 2015 John Wiley & Sons, Ltd. PMID:26198804

  16. PATTERNS OF PHYSICAL ACTIVITY AMONG AMERICAN INDIAN CHILDREN: AN ASSESSMENT OF BARRIERS AND SUPPORT

    PubMed Central

    Thompson, Janice L.; Davis, Sally M.; Gittelsohn, Joel; Going, Scott; Becenti, Alberta; Metcalfe, Lauve; Stone, Elaine; Harnack, Lisa; Ring, Kim

    2016-01-01

    Estimates indicate that 10% to 50% of American Indian and non-Indian children in the U.S. are obese, defined as a body mass index ≥ 95th percentile of the NHANES II reference data. Pathways is a two-phase, multi-site study to develop and test a school-based obesity prevention program in American Indian schoolchildren in grades three through five. During Phase I feasibility prior to initiation of the Pathways trial, data were collected related to physical activity patterns, and the supports of, and barriers to, physical activity. Nine schools from communities representing six different tribal groups participated in this study. Multiple measures were used for data collection including direct observation, paired child interviews, and in-depth interviews and focus groups with adults. Students completed the self-administered Knowledge, Attitudes, and Behaviors (KAB) survey, and a Physical Activity Questionnaire (PAQ). Barriers to physical activity at schools included a lack of facilities, equipment, and trained staff persons for PE. Adults were not consistently active with their children, but they were highly supportive of their children’s activity level. Children reported a strong enjoyment of physical activity and strong peer support to be physically active. Weather conditions, safety concerns, and homework/chores were common barriers to physical activity reported by children and adult caregivers. The information was used to design culturally and age-appropriate, practical interventions including the five physical activity programs for schoolchildren in the Pathways study. PMID:11759094

  17. Patterns of physical activity among American Indian children: an assessment of barriers and support.

    PubMed

    Thompson, J L; Davis, S M; Gittelsohn, J; Going, S; Becenti, A; Metcalfe, L; Stone, E; Harnack, L; Ring, K

    2001-12-01

    Estimates indicate that 10% to 50% of American Indian and non-Indian children in the U.S. are obese, defined as a body mass index > or = 95th percentile of the NHANES II reference data. Pathways is a two-phase, multi-site study to develop and test a school-based obesity prevention program in American Indian schoolchildren in grades three through five. During Phase I feasibility prior to initiation of the Pathways trial, data were collected related to physical activity patterns, and the supports of, and barriers to, physical activity. Nine schools from communities representing six different tribal groups participated in this study. Multiple measures were used for data collection including direct observation, paired child interviews, and in-depth interviews and focus groups with adults. Students completed the self-administered Knowledge, Attitudes, and Behaviors (KAB) survey, and a Physical Activity Questionnaire (PAQ). Barriers to physical activity at schools included a lack of facilities, equipment, and trained staff persons for PE. Adults were not consistently active with their children, but they were highly supportive of their children's activity level. Children reported a strong enjoyment of physical activity and strong peer support to be physically active. Weather conditions, safety concerns, and homework/chores were common barriers to physical activity reported by children and adult caregivers. The information was used to design culturally and age-appropriate, practical interventions including the five physical activity programs for schoolchildren in the Pathways study. PMID:11759094

  18. Distortion of the seismic radiation pattern in a long period band: Absence of clear node observations

    NASA Astrophysics Data System (ADS)

    Sakai, T.; Kumagai, H.

    2015-12-01

    Sakai et al. (2014, 10th ASC) estimated the source amplitudes in a long-period band of 50 - 100 s using broadband seismic records of earthquakes that occurred in the Philippine and Indonesia, and showed that the source amplitudes fell within a constant band against the moment magnitudes (Mw). Long-period waveforms are thought to be less influenced by structural heterogeneities, and the radiation pattern in a long-period band may not be distorted. However, the results of Sakai et al. (2014) suggest that the nodes are not clearly observed in the long-period band. In this study, we analyzed seismic data from the Japan broadband seismograph network (F-net), which is denser than the networks in the Philippine and Indonesia, and carried out numerical tests using synthetic waveforms to investigate the characteristics of long-period wavefields. We used earthquakes that occurred in Japan with Mw between 4 and 8 since 2003, and estimated their source amplitudes in a long-period band of 50 - 100 s using waveform data from F-net. In each event, we calculated the ratios of the minimum source amplitude to other source amplitudes. We found that the ratios for most of events had values ranging up to roughly 10 regardless of their moment magnitudes and the nodes were also not clearly observed in the F-net data. Using the discrete wavenumber method, we calculated synthetic seismograms assuming uniform station distributions with horizontal intervals of 50 and 100 km as well as the Philippine and F-net station distributions. We assumed an earthquake located in the center of the distributed stations, and systematically changed the dip, strike, and rake angels. We estimated the source amplitudes in the long-period band from the seismograms synthesized with these different fault angles. Our numerical tests indicated that the ratios of the source amplitudes become larger as the density of stations is higher and the ratios depend on the mechanisms. These estimated ratios were larger than

  19. Diurnal-activity Patterns of the Small Bee-eater (Merops orientalis) in Southern India

    PubMed Central

    Ali, Abdul Hameed Mohamed Samsoor; Asokan, Subramanian

    2015-01-01

    The diurnal time-activity patterns of the Small Bee-eater (Merops orientalis) were studied between 2005 and 2006 in the Nagapattinam District of Southern India. Bee-eaters were observed to spend an average of 52.5% of their day time scanning, 21.3% feeding, 13.3% flying, 8.8% resting and 4.1% engaging in preening activities. The time spent on scanning varied among seasons in 2005 (p<0.05) and among time blocks (p<0.05), but it did not vary among years or habitats (p>0.05). The feeding patterns differed among years, seasons within years, time blocks and habitats (p<0.05). The flying habits varied among years, time blocks and habitats (p<0.05) but did not change between seasons within years (p>0.05). The resting habits differed among years and habitats (p<0.05) but did not differ among seasons within years or time blocks (p>0.05). Preening differed among years and time blocks (p<0.05) but did not vary among seasons within years or habitats (p>0.05). We conclude that several factors, such as food availability, environmental factors and predation threats, may affect the diurnal activity patterns of Bee-eaters between habitats and seasons; a further study could clarify this conclusion. PMID:26868589

  20. Documenting Western Burrowing Owl Reproduction and Activity Patterns Using Motion-Activated Cameras

    SciTech Connect

    Hall, Derek B.; Greger, Paul D.

    2014-08-01

    We used motion-activated cameras to monitor the reproduction and patterns of activity of the Burrowing Owl (Athene cunicularia) above ground at 45 burrows in south-central Nevada during the breeding seasons of 1999, 2000, 2001, and 2005. The 37 broods, encompassing 180 young, raised over the four years represented an average of 4.9 young per successful breeding pair. Young and adult owls were detected at the burrow entrance at all times of the day and night, but adults were detected more frequently during afternoon/early evening than were young. Motion-activated cameras require less effort to implement than other techniques. Limitations include photographing only a small percentage of owl activity at the burrow; not detecting the actual number of eggs, young, or number fledged; and not being able to track individual owls over time. Further work is also necessary to compare the accuracy of productivity estimates generated from motion-activated cameras with other techniques.

  1. A bacterial tyrosine phosphatase inhibits plant pattern recognition receptor activation

    Technology Transfer Automated Retrieval System (TEKTRAN)

    Perception of pathogen-associated molecular patterns (PAMPs) by surface-localised pattern-recognition receptors (PRRs) is a key component of plant innate immunity. Most known plant PRRs are receptor kinases and initiation of PAMP-triggered immunity (PTI) signalling requires phosphorylation of the PR...

  2. A comparison of activity patterns for captive Propithecus tattersalli and Propithecus coquereli.

    PubMed

    Wallace, Gregory L; Paquette, Lisa B; Glander, Kenneth E

    2016-01-01

    The activity patterns and social interactions of two species of captive sifaka were observed during a 2-year period. Allogrooming was not observed in golden-crowned sifaka and they spent significantly more time resting than the Coquerel's sifaka. Females of both species were found to be dominant to males. The golden-crowned sifaka (Propithecus tattersalli) spent significantly less time feeding than the Coquerel's sifaka. Temperature, time of day, species, and interpair comparisons for the golden-crowned sifaka were found to affect activity and social interactions, while gender did not. Like the Coquerel's sifaka, the golden-crowned sifaka was found to be diurnal; however, they differed in that the golden-crowned sifaka did not descend to the ground. PMID:26802736

  3. Complex Regulation Pattern of IRF3 Activation Revealed by a Novel Dimerization Reporter System.

    PubMed

    Wang, Zining; Ji, Jingyun; Peng, Di; Ma, Feng; Cheng, Genhong; Qin, F Xiao-Feng

    2016-05-15

    Induction of type I IFN (IFN-I) is essential for host antiviral immune responses. However, IFN-I also plays divergent roles in antibacterial immunity, persistent viral infections, autoimmune diseases, and tumorigenesis. IFN regulatory factor 3 (IRF3) is the master transcription factor that controls IFN-I production via phosphorylation-dependent dimerization in most cell types in response to viral infections and various innate stimuli by pathogen-associated molecular patterns (PAMPs). To monitor the dynamic process of IRF3 activation, we developed a novel IRF3 dimerization reporter based on bimolecular luminescence complementation (BiLC) techniques, termed the IRF3-BiLC reporter. Robust induction of luciferase activity of the IRF3-BiLC reporter was observed upon viral infection and PAMP stimulation with a broad dynamic range. Knockout of TANK-binding kinase 1, the critical upstream kinase of IRF3, as well as the mutation of serine 386, the essential phosphorylation site of IRF3, completely abolished the luciferase activity of IRF3-BiLC reporter, confirming the authenticity of IRF3 activation. Taken together, these results demonstrated that the IRF3-BiLC reporter is a highly specific, reliable, and sensitive system to measure IRF3 activity. Using this reporter system, we further observed that the temporal pattern and magnitude of IRF3 activation induced by various PAMPs are highly complex with distinct cell type-specific characteristics, and IRF3 dimerization is a direct regulatory node for IFN-α/β receptor-mediated feed-forward regulation and crosstalk with other pathways. Therefore, the IRF3-BiLC reporter has multiple potential applications, including mechanistic studies as well as the identification of novel compounds that can modulate IRF3 activation. PMID:27045107

  4. Assessing Temporal and Spatial Patterns of Observed and Predicted Ozone in Multiple Urban Areas

    PubMed Central

    Simon, Heather; Wells, Benjamin; Baker, Kirk R.; Hubbell, Bryan

    2016-01-01

    Background: Ambient monitoring data show spatial gradients in ozone (O3) across urban areas. Nitrogen oxide (NOx) emissions reductions will likely alter these gradients. Epidemiological studies often use exposure surrogates that may not fully account for the impacts of spatially and temporally changing concentrations on population exposure. Objectives: We examined the impact of large NOx decreases on spatial and temporal O3 patterns and the implications on exposure. Methods: We used a photochemical model to estimate O3 response to large NOx reductions. We derived time series of 2006–2008 O3 concentrations consistent with 50% and 75% NOx emissions reduction scenarios in three urban areas (Atlanta, Philadelphia, and Chicago) at each monitor location and spatially interpolated O3 to census-tract centroids. Results: We predicted that low O3 concentrations would increase and high O3 concentrations would decrease in response to NOx reductions within an urban area. O3 increases occurred across larger areas for the seasonal mean metric than for the regulatory metric (annual 4th highest daily 8-hr maximum) and were located only in urban core areas. O3 always decreased outside the urban core (e.g., at locations of maximum local ozone concentration) for both metrics and decreased within the urban core in some instances. NOx reductions led to more uniform spatial gradients and diurnal and seasonal patterns and caused seasonal peaks in midrange O3 concentrations to shift from midsummer to earlier in the year. Conclusions: These changes have implications for how O3 exposure may change in response to NOx reductions and are informative for the design of future epidemiology studies and risk assessments. Citation: Simon H, Wells B, Baker KR, Hubbell B. 2016. Assessing temporal and spatial patterns of observed and predicted ozone in multiple urban areas. Environ Health Perspect 124:1443–1452; http://dx.doi.org/10.1289/EHP190 PMID:27153213

  5. On a possible nature of cross-shaped zebra patterns occasionally observed in the solar atmosphere

    NASA Astrophysics Data System (ADS)

    Alekseeva, Liliya; Kshevetskii, Sergey P.

    The currently available detailed images of the Sun sometimes exhibit the presence of unusual clear-cut small-scale features. Mass media suggest an interpretation of these as "artificial objects'' that emerge near the Sun. Various shapes of such structures were observed. In particular, as found by solar physicists, dark circular areas may be prominences or chromospheric magnetic tornados viewed along their axes. Star-shaped structures, with thin rays of varyious lengths and different angles apart, may be associated with the pattern of decay of a cosmic particle entering the solar atmosphere. Cross-shaped sructures consisting of two perpendicular straight segments with alternating dark and light strips were also noted. Based on our numerical experiments, we show here that such a cruciform zebra pattern can emerge in the contact zone of oppositely directed magnetic fields as a result of a pinch instability at its nonlinear development stage. We numerically solve a self-consistent initial-value problem for the nonlinear two-dimensional (planar) system of MHD equations for a collisional plasma in a horizontal magnetic field taking into both the account electric and thermal conduction. The plasma is assumed to be initially motionless at a temperature of 50 000 K. The computation domain is 300 km high and 4200 km long. The cruciform zebra pattern emerges as a transient phenomena before the erosion of the magnetic-fields contact zone if the initial magnetic field is not very strong, so that the nonlinear development of the pinch effect is not very rapid. In our case, this occurred if the characteristic gas pressure at the above-mentioned temperature exceeded the initial magnetic pressure by a factor of two or more. If waves and instabilitied are able to make the plasma effectiively collisional, our inferences can be applied to more rarefied regions of the solar atmosphere. This work was supported by the Russian Foundation for Basic Research (project no 12-02-00792-a).

  6. Galileo SSI Observations of Volcanic Activity at Tvashtar Catena, Io

    NASA Technical Reports Server (NTRS)

    Milazzo, M. P.; Keszthely, L. P.; Radebaugh, J.; Davies, A. G.; Turtle, E. P.; Geissler, P.; Klaasen, K. P.; McEwen, A. S.

    2005-01-01

    Introduction: We report on the analysis of the Galileo SSI's observations of the volcanic activity at Tvashtar Catena, Io as discussed by Milazzo et al. Galileo's Solid State Imager (SSI) observed Tvashtar Catena (63 deg N, 120 deg W) four times between November 1999 and October 2001, providing a unique look at the distinctive high latitude volcanism on Io. The November 1999 observation spatially resolved, for the first time, an active extraterrestrial fissure eruption. The brightness temperature of the lavas at the November 1999 fissure eruption was 1300 K. The second observation (orbit I27, February 2000) showed a large (approx. 500 sq km) region with many, small spots of hot, active lava. The third observation was taken in conjunction with a Cassini observation in December 2000 and showed a Pele-like plume deposition ring, while the Cassini images revealed a 400 km high Pele-type plume above the Catena. The final Galileo SSI observation of Tvashtar was acquired in October 2001, and all obvious (to SSI) activity had ceased, although data from Galileo's Near Infrared Mapping Spectrometer (NIMS) indicated that there was still significant thermal emission from the Tvashtar region. We have concentrated on analyzing the style of eruption during orbit I27 (February 2000). Comparison with a lava flow cooling model indicates that the behavior of the Tvashtar eruption during I27 does not match that of "simple" advancing lava flows. Instead, it may be an active lava lake or a complex set of lava flows with episodic, overlapping (in time and space) eruptions.

  7. Modelling of the micrometric erosion pattern observed on the Tore Supra limiter tiles

    NASA Astrophysics Data System (ADS)

    Mellet, N.; Martin, C.; Pégourié, B.; Giacometti, G.; Gunn, J. P.; Cartry, G.; Languille, P.; Pardanaud, C.; Panayotis, S.; Amiard, G.; Marandet, Y.; Roubin, P.

    2014-12-01

    Recently, the surface of carbon fibre composite tiles of the toroidal pump limiter of Tore Supra has been analysed by scanning electron and atomic force microscopies. In regions where fibres are perpendicular to the surface, a specific erosion pattern has been observed. It is constituted of a striation oriented with an angle oblique with respect to the magnetic field. The characteristic wavelength of this structure is micrometric, and similar to the fibre size. Modelling has been undertaken to reproduce this micrometric pattern. It is shown to originate from the carbon composite structure, for which it has been found by measurement using laboratory plasma that the erosion rate of the fibres is different from that of the surrounding matrix. Modelling emphasizes the effect of the impinging flux angle distributions of deuterium ions and carbon impurities that are preliminarily determined from computation of the magnetic sheath. In the case of deuterium the sheath is shown to have little effect on the particle trajectories for the simulation parameters considered here, although when impurities are included the sheath deflection is significant. Furthermore this study shows how the fibre organization in the composite influences the striation direction and points out the importance of the angular dependence of the sputtering yield.

  8. HiRISE observations of gas sublimation-driven activity

    NASA Astrophysics Data System (ADS)

    Thomas, N.; Hansen, C. J.; Portyankina, G.; Russell, P. S.; Bridges, N. T.

    2009-04-01

    The High Resolution Imaging Science Experiment (HiRISE) onboard Mars Reconnaissance Orbiter (MRO) has been used to monitor the seasonal evolution of several regions at high southern latitudes and, in particular, the geyser-like activity which may result from the process described by Kieffer [JGR, 112, 8005, 2007] involving translucent CO2 ice. Here, we mostly concentrate on observations of the Inca City (81S, 296E) region. The observations indicate rapid on-set of activity at the beginning of southern spring with activity initiating before HiRISE can obtain adequately illuminated images (Ls < 174 at Inca City). Most sources became active within the subsequent 8 weeks. Activity is indicated by the production of dark deposits surrounded by brighter bluer deposits which probably arise from the freezing out of vented CO2 [Titus et al., AGU Abstract P41A-0188, 2007]. These deposits originate from araneiform structures (spiders), stones on ridges, cracks on slopes, and along linear cracks in the slab ice on flatter surfaces. The type of activity observed can often be explained qualitatively by considering the local topography. Some dark fans were observed to shorten enormously in length on a timescale of 18 days. We consider this to be strong evidence that emission was in progress at the time of HiRISE image acquisition. The orientations of surficial deposits were mostly topographically controlled in Inca City in 2007. The deposition of dark material also appeared to be influenced by local topography suggesting that the ejection from the vents was at low velocity (<10 m/s) and that a ground-hugging flow type process (a sort of "cryo-fumarole") may have been occurring. The presentation will illustrate the above features and make a first comparison between activity separated by one full Martian year. Our first observations indicate a stronger influence of wind in 2009.

  9. Pattern of physical activity among persons with type 2 diabetes with special consideration to daily routine

    PubMed Central

    Arshad, Rozina; Younis, Bilal Bin; Masood, Junaid; Tahira, Maham; Khurhsid, Saima

    2016-01-01

    Objective: Physical activity is essential in maintaining a healthy lifestyle. Physical activity can improve general health, quality of life and diabetes management. The aim and objective of the study was to assess the physical activity trends in daily routine of people with type 2 diabetes. Methods: Two hundred persons with diabetes from four different clinical settings were included to access the trends of physical activity using a customized questionnaire EPIC-2. Pattern of physical activity was assessed across a set of domains including sleep time, hours of TV watch, preferred mode of transport for specific distance and household activities. Data was analyzed using SPSS 21. Results: Out of 200 persons with diabetes, 104(52%) were male and 96 (48%) were female. Out of the total sample of patients, 85 (81.7%) Male and 80 (83.3%) female patients preferred walk to cover a distance of less than one mile. There was a significant difference in selection of mode of transport for all other specified distance, esp. in female patients with both age groups. There was insignificant difference for physical activity pattern related to household activities in young and elderly male subjects. The mean sleeping time for younger male subjects on weekend was 464.31± 88.88 minutes/day and for elder it was 418.65± 102.66 minutes/day while for young female subjects was 476.25± 113.74 minutes/day and in female elderly subjects it was 420.62± 120.62 minutes/day respectively. Conclusion: In type 2 diabetics we observed a low level of physical activity which may be detrimental for the control of diabetes mellitus. PMID:27022382

  10. Patterns of neighborhood environment attributes related to physical activity across 11 countries: a latent class analysis

    PubMed Central

    2013-01-01

    type (e.g., U.S. disproportionally represented “Safe but Activity Unsupportive”). Compared to the Safe but Activity Unsupportive, two types showed greater odds of meeting PA guideline for walking outcome (High Walkable and Unsafe with Few Recreation Facilities, OR= 2.26 (95% CI 1.18-4.31); Overall Activity Supportive, OR= 1.90 (95% CI 1.13-3.21). Significant but smaller odds ratios were also found for total PA. Conclusions Meaningful neighborhood patterns generalized across countries and explained practical differences in PA. These observational results support WHO/UN recommendations for programs and policies targeted to improve features of the neighborhood environment for PA. PMID:23497187

  11. Humans but Not Chimpanzees Vary Face-Scanning Patterns Depending on Contexts during Action Observation

    PubMed Central

    Myowa-Yamakoshi, Masako; Yoshida, Chisato; Hirata, Satoshi

    2015-01-01

    Human and nonhuman primates comprehend the actions of other individuals by detecting social cues, including others’ goal-directed motor actions and faces. However, little is known about how this information is integrated with action understanding. Here, we present the ontogenetic and evolutionary foundations of this capacity by comparing face-scanning patterns of chimpanzees and humans as they viewed goal-directed human actions within contexts that differ in whether or not the predicted goal is achieved. Human adults and children attend to the actor’s face during action sequences, and this tendency is particularly pronounced in adults when observing that the predicted goal is not achieved. Chimpanzees rarely attend to the actor’s face during the goal-directed action, regardless of whether the predicted action goal is achieved or not. These results suggest that in humans, but not chimpanzees, attention to actor’s faces conveying referential information toward the target object indicates the process of observers making inferences about the intentionality of an action. Furthermore, this remarkable predisposition to observe others’ actions by integrating the prediction of action goals and the actor’s intention is developmentally acquired. PMID:26535901

  12. Real-time observation of X-ray diffraction patterns with the Lixiscope

    NASA Technical Reports Server (NTRS)

    Chung, D. Y.; Tsang, T.; Yin, L. I.; Anderson, J. R.

    1981-01-01

    The feasibility of the Lixiscope (Low Intensity X-ray Imaging Scope) is demonstrated for real-time observation of transmission Laue patterns. Making use of the high-gain capability of microchannel plate (MCP) visible-light image intensifier tubes, X-ray images are converted to visible-light images by a scintillator. Pb discs are taped to the center of the Lixiscope input face, and crystal samples are held on a goniometer stage with modeling clay. With a compact size to facilitate off axis viewing, and real-time viewing to allow instantaneous response, the Lixiscope may prove useful in dynamic studies of the effects of plastic flows, stresses, high pressures, and low temperatures.

  13. Simultaneous observation of the quantization and the interference pattern of a plasmonic near-field

    DOE PAGESBeta

    Piazza, L.; Lummen, T. T. A.; Quiñonez, E.; Murooka, Y.; Reed, B. W.; Barwick, B.; Carbone, F.

    2015-03-02

    Surface plasmon polaritons can confine electromagnetic fields in subwavelength spaces and are of interest for photonics, optical data storage devices and biosensing applications. In analogy to photons, they exhibit wave–particle duality, whose different aspects have recently been observed in separate tailored experiments. Here we demonstrate the ability of ultrafast transmission electron microscopy to simultaneously image both the spatial interference and the quantization of such confined plasmonic fields. Our experiments are accomplished by spatiotemporally overlapping electron and light pulses on a single nanowire suspended on a graphene film. The resulting energy exchange between single electrons and the quanta of the photoinducedmore » near-field is imaged synchronously with its spatial interference pattern. In conclusion, this methodology enables the control and visualization of plasmonic fields at the nanoscale, providing a promising tool for understanding the fundamental properties of confined electromagnetic fields and the development of advanced photonic circuits.« less

  14. Simultaneous observation of the quantization and the interference pattern of a plasmonic near-field

    SciTech Connect

    Piazza, L.; Lummen, T. T. A.; Quiñonez, E.; Murooka, Y.; Reed, B. W.; Barwick, B.; Carbone, F.

    2015-03-02

    Surface plasmon polaritons can confine electromagnetic fields in subwavelength spaces and are of interest for photonics, optical data storage devices and biosensing applications. In analogy to photons, they exhibit wave–particle duality, whose different aspects have recently been observed in separate tailored experiments. Here we demonstrate the ability of ultrafast transmission electron microscopy to simultaneously image both the spatial interference and the quantization of such confined plasmonic fields. Our experiments are accomplished by spatiotemporally overlapping electron and light pulses on a single nanowire suspended on a graphene film. The resulting energy exchange between single electrons and the quanta of the photoinduced near-field is imaged synchronously with its spatial interference pattern. In conclusion, this methodology enables the control and visualization of plasmonic fields at the nanoscale, providing a promising tool for understanding the fundamental properties of confined electromagnetic fields and the development of advanced photonic circuits.

  15. Patterns and causes of observed piñon pine mortality in the southwestern United States

    USGS Publications Warehouse

    Meddens, Arjan J.H.; Hicke, Jeff H.; Macalady, Alison K.; Buotte, P.C.; Cowles, T.R.; Allen, Craig D.

    2015-01-01

    Recently, widespread piñon pine die-off occurred in the southwestern United States. Here we synthesize observational studies of this event and compare findings to expected relationships with biotic and abiotic factors. Agreement exists on the occurrence of drought, presence of bark beetles and increased mortality of larger trees. However, studies disagree about the influences of stem density, elevation and other factors, perhaps related to study design, location and impact of extreme drought. Detailed information about bark beetles is seldom reported and their role is poorly understood. Our analysis reveals substantial limits to our knowledge regarding the processes that produce mortality patterns across space and time, indicating a poor ability to forecast mortality in response to expected increases in future droughts.

  16. Time-budgets and activity patterns of captive Sunda pangolins (Manis javanica).

    PubMed

    Challender, Daniel W S; Thai, Nguyen Van; Jones, Martin; May, Les

    2012-01-01

    This is the first assessment of Manis javanica behavior in captivity. The aim of the investigation was to assess behavior in order to suggest ways of improving captive care and management of the species. This was undertaken by constructing time-budgets and activity patterns and identifying any abnormal repetitive behavior (ARB) exhibited. Scan and focal animal sampling were implemented in observations of seven subjects. Analyses detailed idiosyncrasies in how subjects partitioned their active time. Peak activity occurred between 18:00 and 21:00 hr. Two ARBs, clawing and pacing, were identified and the cessation of clawing in one subject was possible by modifying its enclosure. Stress-related behavior, understood to be related to several factors, means maintaining this species in captivity remains problematic. Recommendations are made pertaining to husbandry, captive management, and future research. PMID:21360581

  17. Dietary Patterns Predict Subsequent Coronary Heart Disease Risk In Postmenopausal Women : The Women’s Health Initiative Observational Cohort Study

    Technology Transfer Automated Retrieval System (TEKTRAN)

    Background: Evidence suggests that dietary patterns predispose to the development of coronary heart disease (CHD). The relationship between dietary patterns and CHD risk was assessed in postmenopausal women participating in the Women’s Health Initiative Observational Study (WHI-OS). Methods: Case-co...

  18. Diagnosis and characterization of mania: Quantifying increased energy and activity in the human behavioral pattern monitor.

    PubMed

    Perry, William; McIlwain, Meghan; Kloezeman, Karen; Henry, Brook L; Minassian, Arpi

    2016-06-30

    Increased energy or activity is now an essential feature of the mania of Bipolar Disorder (BD) according to DSM-5. This study examined whether objective measures of increased energy can differentiate manic BD individuals and provide greater diagnostic accuracy compared to rating scales, extending the work of previous studies with smaller samples. We also tested the relationship between objective measures of energy and rating scales. 50 hospitalized manic BD patients were compared to healthy subjects (HCS, n=39) in the human Behavioral Pattern Monitor (hBPM) which quantifies motor activity and goal-directed behavior in an environment containing novel stimuli. Archival hBPM data from 17 schizophrenia patients were used in sensitivity and specificity analyses. Manic BD patients exhibited higher motor activity than HCS and higher novel object interactions. hBPM activity measures were not correlated with observer-rated symptoms, and hBPM activity was more sensitive in accurately classifying hospitalized BD subjects than observer ratings. Although the findings can only be generalized to inpatient populations, they suggest that increased energy, particularly specific and goal-directed exploration, is a distinguishing feature of BD mania and is best quantified by objective measures of motor activity. A better understanding is needed of the biological underpinnings of this cardinal feature. PMID:27138818

  19. Universal Patterns of Equilibrium Cluster Growth in Aqueous Sugars Observed by Dynamic Light Scattering

    PubMed Central

    Sidebottom, D. L.; Tran, Tri D.

    2010-01-01

    Dynamic light scattering performed on aqueous solutions of three sugars (glucose, maltose and sucrose) reveal a common pattern of sugar cluster formation with a narrow cluster size distribution. In each case, equilibrium clusters form whose size increases with increasing sugar content in an identical power law manner in advance of a common, critical-like, percolation threshold near 83 wt% sugar. The critical exponent of the power law divergence of the cluster size varies with temperature, increasing with decreasing temperature, due to changes in the strength of the intermolecular hydrogen bond and appears to vanish for temperatures in excess of 90 °C. Detailed analysis of the cluster growth process suggests a two-stage process: an initial cluster phase formed at low volume fractions, φ, consisting of non-interacting, monodisperse sugar clusters whose size increases φ1/3 followed by an aggregation stage, active at concentrations above about φ = 40%, where cluster-cluster contact first occurs. PMID:21243043

  20. Time Use Patterns between Maintenance, Subsistence and Leisure Activities: A Case Study in China

    ERIC Educational Resources Information Center

    Hui-fen, Zhou; Zhen-shan, Li; Dong-qian, Xue; Yang, Lei

    2012-01-01

    The Chinese government conducted its first time use survey of the activities of Chinese individuals in 2008. Activities were classified into three broad types, maintenance activities, subsistence activities and leisure activities. Time use patterns were defined by an individuals' time spent on maintenance, subsistence and leisure activities each…

  1. Contrasting activity patterns of sympatric and allopatric black and grizzly bears

    USGS Publications Warehouse

    Schwartz, C.C.; Cain, S.L.; Podruzny, S.; Cherry, S.; Frattaroli, L.

    2010-01-01

    The distribution of grizzly (Ursus arctos) and American black bears (U. americanus) overlaps in western North America. Few studies have detailed activity patterns where the species are sympatric and no studies contrasted patterns where populations are both sympatric and allopatric. We contrasted activity patterns for sympatric black and grizzly bears and for black bears allopatric to grizzly bears, how human influences altered patterns, and rates of grizzlyblack bear predation. Activity patterns differed between black bear populations, with those sympatric to grizzly bears more day-active. Activity patterns of black bears allopatric with grizzly bears were similar to those of female grizzly bears; both were crepuscular and day-active. Male grizzly bears were crepuscular and night-active. Both species were more night-active and less day-active when ???1 km from roads or developments. In our sympatric study area, 2 of 4 black bear mortalities were due to grizzly bear predation. Our results suggested patterns of activity that allowed for intra- and inter-species avoidance. National park management often results in convergence of locally high human densities in quality bear habitat. Our data provide additional understanding into how bears alter their activity patterns in response to other bears and humans and should help park managers minimize undesirable bearhuman encounters when considering needs for temporal and spatial management of humans and human developments in bear habitats. ?? 2010 The Wildlife Society.

  2. Generation of rhythmic patterns of activity by ventral interneurones in rat organotypic spinal slice culture

    PubMed Central

    Ballerini, Laura; Galante, Micaela; Grandolfo, Micaela; Nistri, Andrea

    1999-01-01

    In the presence of certain excitatory substances the rat isolated spinal cord generates rhythmic oscillations believed to be an in-built locomotor programme (fictive locomotion). However, it is unknown whether a long-term culture of the same tissue can express rhythmic activity. Such a simplified model system would provide useful data on the minimal circuitry involved and the cellular mechanisms mediating this phenomenon. For this purpose we performed patch clamp recording (under whole-cell voltage or current clamp conditions) from visually identified ventral horn interneurones of an organotypic slice culture of the rat spinal cord. Ventral horn interneurones expressed rhythmic bursting when the extracellular [K+] was raised from 4 to 6-7 mM. Under voltage clamp this activity consisted of composite synaptic currents grouped into bursts lasting 0.9 ± 0.5 s (2.8 ± 1.5 s period) and was generated at network level as it was blocked by tetrodotoxin or low-Ca2+-high-Mg2+ solution and its periodicity was unchanged at different potential levels. In current clamp mode bursting was usually observed as episodes comprising early depolarizing potentials followed by hyperpolarizing events with tight temporal patterning. Bursting was fully suppressed by 6-cyano-7-nitroquinoxaline-2,3-dione (CNQX) and reduced in amplitude and duration by N-methyl-D-aspartate (NMDA) receptor antagonism without change in periodicity. Extracellular field recording showed bursting activity over a wide area of the ventral horn. Regular, rhythmic activity similar to that induced by K+ also appeared spontaneously in Mg2+-free solution. The much slower rhythmic pattern induced by strychnine and bicuculline was also accelerated by high-K+ solution. The fast and regular rhythmic activity of interneurones in the spinal organotypic culture is a novel observation which suggests that the oversimplified circuit present in this culture is a useful model for investigating spinal rhythmic activity. PMID:10332095

  3. Regional Observation of Seismic Activity in Baekdu Mountain

    NASA Astrophysics Data System (ADS)

    Kim, Geunyoung; Che, Il-Young; Shin, Jin-Soo; Chi, Heon-Cheol

    2015-04-01

    Seismic unrest in Baekdu Mountain area between North Korea and Northeast China region has called attention to geological research community in Northeast Asia due to her historical and cultural importance. Seismic bulletin shows level of seismic activity in the area is higher than that of Jilin Province of Northeast China. Local volcanic observation shows a symptom of magmatic unrest in period between 2002 and 2006. Regional seismic data have been used to analyze seismic activity of the area. The seismic activity could be differentiated from other seismic phenomena in the region by the analysis.

  4. Evolution of Muscle Activity Patterns Driving Motions of the Jaw and Hyoid during Chewing in Gnathostomes

    PubMed Central

    Konow, Nicolai; Herrel, Anthony; Ross, Callum F.; Williams, Susan H.; German, Rebecca Z.; Sanford, Christopher P. J.; Gintof, Chris

    2011-01-01

    Although chewing has been suggested to be a basal gnathostome trait retained in most major vertebrate lineages, it has not been studied broadly and comparatively across vertebrates. To redress this imbalance, we recorded EMG from muscles powering anteroposterior movement of the hyoid, and dorsoventral movement of the mandibular jaw during chewing. We compared muscle activity patterns (MAP) during chewing in jawed vertebrate taxa belonging to unrelated groups of basal bony fishes and artiodactyl mammals. Our aim was to outline the evolution of coordination in MAP. Comparisons of activity in muscles of the jaw and hyoid that power chewing in closely related artiodactyls using cross-correlation analyses identified reorganizations of jaw and hyoid MAP between herbivores and omnivores. EMG data from basal bony fishes revealed a tighter coordination of jaw and hyoid MAP during chewing than seen in artiodactyls. Across this broad phylogenetic range, there have been major structural reorganizations, including a reduction of the bony hyoid suspension, which is robust in fishes, to the acquisition in a mammalian ancestor of a muscle sling suspending the hyoid. These changes appear to be reflected in a shift in chewing MAP that occurred in an unidentified anamniote stem-lineage. This shift matches observations that, when compared with fishes, the pattern of hyoid motion in tetrapods is reversed and also time-shifted relative to the pattern of jaw movement. PMID:21705368

  5. Exploring associations between gaze patterns and putative human mirror neuron system activity.

    PubMed

    Donaldson, Peter H; Gurvich, Caroline; Fielding, Joanne; Enticott, Peter G

    2015-01-01

    The human mirror neuron system (MNS) is hypothesized to be crucial to social cognition. Given that key MNS-input regions such as the superior temporal sulcus are involved in biological motion processing, and mirror neuron activity in monkeys has been shown to vary with visual attention, aberrant MNS function may be partly attributable to atypical visual input. To examine the relationship between gaze pattern and interpersonal motor resonance (IMR; an index of putative MNS activity), healthy right-handed participants aged 18-40 (n = 26) viewed videos of transitive grasping actions or static hands, whilst the left primary motor cortex received transcranial magnetic stimulation. Motor-evoked potentials recorded in contralateral hand muscles were used to determine IMR. Participants also underwent eyetracking analysis to assess gaze patterns whilst viewing the same videos. No relationship was observed between predictive gaze and IMR. However, IMR was positively associated with fixation counts in areas of biological motion in the videos, and negatively associated with object areas. These findings are discussed with reference to visual influences on the MNS, and the possibility that MNS atypicalities might be influenced by visual processes such as aberrant gaze pattern. PMID:26236215

  6. Human movements and abstract motion displays activate different processes in the observer's motor system.

    PubMed

    Agosta, Sara; Battelli, Lorella; Casile, Antonino

    2016-04-15

    Brain imaging studies have shown that observation of both bodily movements and abstract motion displays complying with human kinematics activate the observer's motor cortex. However, it is unknown whether the same processes are active in the two conditions. Here, we addressed this issue using transcranial magnetic stimulation (TMS) to directly compare cortico-spinal excitability during observation of actions and motion stimuli that complied with or violated normal human kinematics. We found that kinematics significantly modulated the motor-evoked potentials (MEPs) produced by TMS during observation of both human and abstract motion stimuli. However, only the temporal unfolding of cortico-spinal excitability during observation of human movements significantly correlated with instantaneous stimulus velocity. This correlation was present for normal movements and also for a subset of the movements having unnatural kinematics. Furthermore, bodily movements for which we found no correlation between MEPs and stimulus velocity produced significantly higher MEPs. Our novel results suggest a dissociation in how human movements and abstract motion displays engage the observer's motor system. Specifically, while both stimulus types significantly activate the observer's motor cortex, only bodily movements produce patterns of cortico-spinal excitability that closely follow the velocity profile of the observed movement. This internal "re-enactment" of observed bodily movements seems to be only partially attuned to normal human kinematics. PMID:26854559

  7. Timing and regional patterns of snowmelt on Antarctic sea ice from passive microwave satellite observations

    NASA Astrophysics Data System (ADS)

    Arndt, Stefanie; Willmes, Sascha; Dierking, Wolfgang; Nicolaus, Marcel

    2016-04-01

    The better understanding of temporal variability and regional distribution of surface melt on Antarctic sea ice is crucial for the understanding of atmosphere-ocean interactions and the determination of mass and energy budgets of sea ice. Since large regions of Antarctic sea ice are covered with snow during most of the year, observed inter-annual and regional variations of surface melt mainly represents melt processes in the snow. It is therefore important to understand the mechanisms that drive snowmelt, both at different times of the year and in different regions around Antarctica. In this study we combine two approaches for observing both surface and volume snowmelt by means of passive microwave satellite data. The former is achieved by measuring diurnal differences of the brightness temperature TB at 37 GHz, the latter by analyzing the ratio TB(19GHz)/TB(37GHz). Moreover, we use both melt onset proxies to divide the Antarctic sea ice cover into characteristic surface melt patterns from 1988/89 to 2014/15. Our results indicate four characteristic melt types. On average, 43% of the ice-covered ocean shows diurnal freeze-thaw cycles in the surface snow layer, resulting in temporary melt (Type A), less than 1% shows continuous snowmelt throughout the snowpack, resulting in strong melt over a period of several days (Type B), 19% shows Type A and B taking place consecutively (Type C), and for 37% no melt is observed at all (Type D). Continuous melt is primarily observed in the outflow of the Weddell Gyre and in the northern Ross Sea, usually 20 days after the onset of temporary melt. Considering the entire data set, snowmelt processes and onset do not show significant temporal trends. Instead, areas of increasing (decreasing) sea-ice extent have longer (shorter) periods of continuous snowmelt.

  8. Emergence of long-range correlations and bursty activity patterns in online communication

    NASA Astrophysics Data System (ADS)

    Panzarasa, Pietro; Bonaventura, Moreno

    2015-12-01

    Research has suggested that the activity occurring in a variety of social, economic, and technological systems exhibits long-range fluctuations in time. Pronounced levels of rapidly occurring events are typically observed over short periods of time, followed by long periods of inactivity. Relatively few studies, however, have shed light on the degree to which inhomogeneous temporal processes can be detected at, and emerge from, different levels of analysis. Here we investigate patterns of human activity within an online forum in which communication can be assessed at three intertwined levels: the micro level of the individual users; the meso level of discussion groups and continuous sessions; and the macro level of the whole system. To uncover the relation between different levels, we conduct a number of numerical simulations of a zero-crossing model in which users' behavior is constrained by progressively richer and more realistic rules of social interaction. Results indicate that, when users are solipsistic, their bursty behavior is not sufficient for generating heavy-tailed interevent time distributions at a higher level. However, when users are socially interdependent, the power spectra and interevent time distributions of the simulated and real forums are remarkably similar at all levels of analysis. Social interaction is responsible for the aggregation of multiple bursty activities at the micro level into an emergent bursty activity pattern at a higher level. We discuss the implications of the findings for an emergentist account of burstiness in complex systems.

  9. Patterns of flow and sedimentation in channels with variable tidal and fluvial influence: observations from coastal Georgia.

    NASA Astrophysics Data System (ADS)

    Hughes, Z. J.; Howes, N. C.; Georgiou, I. Y.; FitzGerald, D.

    2014-12-01

    Significant differences exist between the sedimentology of fluvial and tidal channels. This is primarily the result of differences in the temporal and spatial patterns of the hydrodynamics, and, where the regimes overlap, complex interactions between the two. In this detailed study, we investigate flow and resulting sedimentation in six tidal meander bends with varying levels of fluvial influence. Tidal currents were recorded using a combination of continuous deployments and vessel-based synoptic measurements. Residual circulation patterns and estimates of tidal asymmetry were determined. A series of cores, taken along transects both parallel and perpendicular to the channel, were used to examine the spatial variation of mud and sand deposits. We observed a separation of flow into ebb and flood pathways, creating a residual circulation and encouraging the growth of point bars. At our study sites, the majority of the channels were found to be ebb dominant. At several tidal sites, we identified regions of the channel where the flow remained close to zero throughout much of the tidal cycle. This occurred in sections of the channel that were primarily active during the flood tide. In these areas, settling of fine sediment was not limited to slack water periods as is common to most systems and, instead, could occur over longer periods. This translated to sandier sediments being observed in parts of the channel that were primarily active during the ebb tide, compared to muddier sediments where the channel only was active during flood tides. In regions where there was a greater fluvial influence, flow reversal during flood tides was reduced, and the timing of slack water was altered. At the upstream limit of our observations, minimal flow reversal was observed during the tide and the current slowed to zero (slack) only once per tidal cycle (during the flood). Although water levels at this site indicated that the tidal wave was strongly flood dominated due to shallow water

  10. Observations on Electronic Networks: Appropriate Activities for Learning.

    ERIC Educational Resources Information Center

    Levin, James A.; And Others

    1989-01-01

    Discussion of the use of electronic networks for learning activities highlights the Noon Observation Project in which students in various locations measured the length of a noontime shadow to determine the earth's circumference. Electronic pen pals are discussed, and the roles of the network and of the class are described. (LRW)

  11. Teaching Writing. Three Seasonal Activities to Hone Kids' Observation Skills.

    ERIC Educational Resources Information Center

    Power, Brenda

    1997-01-01

    The seasonal activities presented are: observing herbs to encourage use of the senses in writing; watching a jack-o'-lantern wither to learn skills in writing details; and building snowmen to learn to explain a string of events in writing. (SM)

  12. How in-situ observations challenge our understanding of cometary activity

    NASA Astrophysics Data System (ADS)

    Vincent, Jean-Baptiste

    2016-07-01

    "Cometary activity" is traditionally summarized as the combination of the sublimation of volatile material and the acceleration of refractories elements leading to a gas and dust coma around the nucleus. In-situ observations have shown that, although correct, this description is not sufficient. Volatiles are scarce on the surface of cometary nuclei, and the activity patterns are far more complex than initially thought. One example of the problems to solve is to understand how gas and dust can arise from the nucleus as collimated streams, often called "jets". ESA's Giotto observed these features for the first time 30 years ago but their formation mechanism remains to be explained. The Rosetta mission is now providing a continuous monitoring of a nucleus activity at high spatial and temporal resolution. We observed various types of activity, from narrow jets on a few meters scale to large structures extending 10s of kilometers from the nucleus. Overall the activity is quite homogeneously distributed, following closely the insolation pattern and repeating itself from one rotation to the other. We find however that some types of surfaces are more prone to create jets than others, reflecting local inhomogeneities in the topography and/or the volatile content. In addition to the typical jets, we also observed many transient events close to perihelion approach: sudden and massive releases of gas and dust for short times (<10min) which cannot be explained with the standard activity models. This presentation will review the different types of activity we have observed, and discuss how the Rosetta data challenges the current models.

  13. Radio Imaging Observations of Solar Activity Cycle and Its Anomaly

    NASA Astrophysics Data System (ADS)

    Shibasaki, K.

    2011-12-01

    The 24th solar activity cycle has started and relative sunspot numbers are increasing. However, their rate of increase is rather slow compared to previous cycles. Active region sizes are small, lifetime is short, and big (X-class) flares are rare so far. We study this anomalous situation using data from Nobeyama Radioheliograph (NoRH). Radio imaging observations have been done by NoRH since 1992. Nearly 20 years of daily radio images of the Sun at 17 GHz are used to synthesize a radio butterfly diagram. Due to stable operation of the instrument and a robust calibration method, uniform datasets are available covering the whole period of observation. The radio butterfly diagram shows bright features corresponding to active region belts and their migration toward low latitude as the solar cycle progresses. In the present solar activity cycle (24), increase of radio brightness is delayed and slow. There are also bright features around both poles (polar brightening). Their brightness show solar cycle dependence but peaks around solar minimum. Comparison between the last minimum and the previous one shows decrease of its brightness. This corresponds to weakening of polar magnetic field activity between them. In the northern pole, polar brightening is already weakened in 2011, which means it is close to solar maximum in the northern hemisphere. Southern pole does not show such feature yet. Slow rise of activity in active region belt, weakening of polar activity during the minimum, and large north-south asymmetry in polar activity imply that global solar activity and its synchronization are weakening.

  14. First OSIRIS observations of active areas on comet 67P

    NASA Astrophysics Data System (ADS)

    Vincent, J.-B.; Sierks, H.; Oklay, N.; Agarwal, J.; Güttler, C.; Bodewits, D.; Osiris Team

    2014-04-01

    After a successful exit from hibernation, Rosetta started observing its final target comet 67P in March 2014 with the two OSIRIS cameras WAC and NAC (Wide Angle and Narrow Angle Camera) [1]. By the time of this conference, the spacecraft will have flown from 5 million to 50 km from the nucleus surface, reaching a resolution of 1 meter/pixel in the NAC images. During that period, the comet heliocentric distance varies from 4.3 to 3.2 AU and we will observe how the early activity develops. We know that cometary surfaces are not fully active; only a small fraction of the surface emits gas and dust. However we do not yet understand why it happens in that way, and what to expect on 67P. Recent publications using data from ground-based telescopes have proposed different interpretations for the distribution of active sources, from one to three at various latitudes [2, 3]. There is some evidence for different levels of activity in the northern and southern hemispheres, but these variations can only be constrained with close range data. In August 2014, OSIRIS will map the surface of the comet at high resolution, and perform weekly monitoring of the activity, especially the faintest jets. With these images and the inversion code COSSIM [4], we will be able to link observed features in the coma or on the limb to physical spots on the surface. On other comets visited by spacecrafts the activity has sometimes been associated with smooth areas, rough terrains, or specific morphologic features (cliff, crater, rim, . . . ). We will present a first look at how activity and terrain are linked on 67P, and look at variations of composition, morphology, or both. We will compare this identification of active areas to previous publications.

  15. A Three-Dimensional Human Atrial Model with Fiber Orientation. Electrograms and Arrhythmic Activation Patterns Relationship

    PubMed Central

    Tobón, Catalina; Ruiz-Villa, Carlos A.; Heidenreich, Elvio; Romero, Lucia; Hornero, Fernando; Saiz, Javier

    2013-01-01

    The most common sustained cardiac arrhythmias in humans are atrial tachyarrhythmias, mainly atrial fibrillation. Areas of complex fractionated atrial electrograms and high dominant frequency have been proposed as critical regions for maintaining atrial fibrillation; however, there is a paucity of data on the relationship between the characteristics of electrograms and the propagation pattern underlying them. In this study, a realistic 3D computer model of the human atria has been developed to investigate this relationship. The model includes a realistic geometry with fiber orientation, anisotropic conductivity and electrophysiological heterogeneity. We simulated different tachyarrhythmic episodes applying both transient and continuous ectopic activity. Electrograms and their dominant frequency and organization index values were calculated over the entire atrial surface. Our simulations show electrograms with simple potentials, with little or no cycle length variations, narrow frequency peaks and high organization index values during stable and regular activity as the observed in atrial flutter, atrial tachycardia (except in areas of conduction block) and in areas closer to ectopic activity during focal atrial fibrillation. By contrast, cycle length variations and polymorphic electrograms with single, double and fragmented potentials were observed in areas of irregular and unstable activity during atrial fibrillation episodes. Our results also show: 1) electrograms with potentials without negative deflection related to spiral or curved wavefronts that pass over the recording point and move away, 2) potentials with a much greater proportion of positive deflection than negative in areas of wave collisions, 3) double potentials related with wave fragmentations or blocking lines and 4) fragmented electrograms associated with pivot points. Our model is the first human atrial model with realistic fiber orientation used to investigate the relationship between different

  16. Observational evidence for enhanced magnetic activity of superflare stars

    PubMed Central

    Karoff, Christoffer; Knudsen, Mads Faurschou; De Cat, Peter; Bonanno, Alfio; Fogtmann-Schulz, Alexandra; Fu, Jianning; Frasca, Antonio; Inceoglu, Fadil; Olsen, Jesper; Zhang, Yong; Hou, Yonghui; Wang, Yuefei; Shi, Jianrong; Zhang, Wei

    2016-01-01

    Superflares are large explosive events on stellar surfaces one to six orders-of-magnitude larger than the largest flares observed on the Sun throughout the space age. Due to the huge amount of energy released in these superflares, it has been speculated if the underlying mechanism is the same as for solar flares, which are caused by magnetic reconnection in the solar corona. Here, we analyse observations made with the LAMOST telescope of 5,648 solar-like stars, including 48 superflare stars. These observations show that superflare stars are generally characterized by larger chromospheric emissions than other stars, including the Sun. However, superflare stars with activity levels lower than, or comparable to, the Sun do exist, suggesting that solar flares and superflares most likely share the same origin. The very large ensemble of solar-like stars included in this study enables detailed and robust estimates of the relation between chromospheric activity and the occurrence of superflares. PMID:27009381

  17. Observational evidence for enhanced magnetic activity of superflare stars

    NASA Astrophysics Data System (ADS)

    Karoff, Christoffer; Knudsen, Mads Faurschou; De Cat, Peter; Bonanno, Alfio; Fogtmann-Schulz, Alexandra; Fu, Jianning; Frasca, Antonio; Inceoglu, Fadil; Olsen, Jesper; Zhang, Yong; Hou, Yonghui; Wang, Yuefei; Shi, Jianrong; Zhang, Wei

    2016-03-01

    Superflares are large explosive events on stellar surfaces one to six orders-of-magnitude larger than the largest flares observed on the Sun throughout the space age. Due to the huge amount of energy released in these superflares, it has been speculated if the underlying mechanism is the same as for solar flares, which are caused by magnetic reconnection in the solar corona. Here, we analyse observations made with the LAMOST telescope of 5,648 solar-like stars, including 48 superflare stars. These observations show that superflare stars are generally characterized by larger chromospheric emissions than other stars, including the Sun. However, superflare stars with activity levels lower than, or comparable to, the Sun do exist, suggesting that solar flares and superflares most likely share the same origin. The very large ensemble of solar-like stars included in this study enables detailed and robust estimates of the relation between chromospheric activity and the occurrence of superflares.

  18. Observational evidence for enhanced magnetic activity of superflare stars.

    PubMed

    Karoff, Christoffer; Knudsen, Mads Faurschou; De Cat, Peter; Bonanno, Alfio; Fogtmann-Schulz, Alexandra; Fu, Jianning; Frasca, Antonio; Inceoglu, Fadil; Olsen, Jesper; Zhang, Yong; Hou, Yonghui; Wang, Yuefei; Shi, Jianrong; Zhang, Wei

    2016-01-01

    Superflares are large explosive events on stellar surfaces one to six orders-of-magnitude larger than the largest flares observed on the Sun throughout the space age. Due to the huge amount of energy released in these superflares, it has been speculated if the underlying mechanism is the same as for solar flares, which are caused by magnetic reconnection in the solar corona. Here, we analyse observations made with the LAMOST telescope of 5,648 solar-like stars, including 48 superflare stars. These observations show that superflare stars are generally characterized by larger chromospheric emissions than other stars, including the Sun. However, superflare stars with activity levels lower than, or comparable to, the Sun do exist, suggesting that solar flares and superflares most likely share the same origin. The very large ensemble of solar-like stars included in this study enables detailed and robust estimates of the relation between chromospheric activity and the occurrence of superflares. PMID:27009381

  19. Observational and modeling studies of heat, moisture, precipitation, and global-scale circulation patterns

    NASA Technical Reports Server (NTRS)

    Vincent, Dayton G.; Robertson, Franklin

    1993-01-01

    The research sponsored by this grant is a continuation and an extension of the work conducted under a previous contract, 'South Pacific Convergence Zone and Global-Scale Circulations'. In the prior work, we conducted a detailed investigation of the South Pacific convergence zone (SPCZ), and documented many of its significant features and characteristics. We also conducted studies of its interaction with global-scale circulation features through the use of both observational and modeling studies. The latter was accomplished toward the end of the contract when Dr. James Hurrell, then a Ph.D. candidate, successfully ported the NASA GLA general circulation model (GCM) to Purdue University. In our present grant, we have expanded our previous research to include studies of other convectively-driven circulation systems in the tropics besides the SPCZ. Furthermore, we have continued to examine the relationship between these convective systems and global-scale circulation patterns. Our recent research efforts have focused on three objectives: (1) determining the periodicity of large-scale bands of organized convection in the tropics, primarily synoptic to intraseasonal time scales in the Southern Hemisphere; (2) examining the relative importance of tropical versus mid-latitude forcing for Southern Hemisphere summertime subtropical jets, particularly over the Pacific Ocean; and (3) estimating tropical precipitation, especially over oceans, using observational and budget methods. A summary list of our most significant accomplishments in the past year is given.

  20. Physical Activity Surveillance in Parks Using Direct Observation

    PubMed Central

    McKenzie, Thomas L.; Cohen, Deborah; Evenson, Kelly R.; Golinelli, Daniela; Hillier, Amy; Lapham, Sandra C.; Williamson, Stephanie

    2014-01-01

    Introduction Primary features of observational public health surveillance instruments are that they are valid, can reliably estimate physical activity behaviors, and are useful across diverse geographic settings and seasons by different users. Previous studies have reported the validity and reliability of Systematic Observation of Play and Recreation in Communities (SOPARC) to estimate park and user characteristics. The purpose of this investigation was to establish the use of SOPARC as a surveillance instrument and to situate the findings from the study in the context of the previous literature. Methods We collected data by using SOPARC for more than 3 years in 4 locations: Philadelphia, Pennsylvania; Columbus, Ohio; Chapel Hill/Durham, North Carolina; and Albuquerque, New Mexico during spring, summer, and autumn. Results We observed a total of 35,990 park users with an overall observer reliability of 94% (range, 85%–99%) conducted on 15% of the observations. We monitored the proportion of park users engaging in moderate-to-vigorous physical activity (MVPA) and found marginal differences in MVPA by both city and season. Park users visited parks significantly more on weekend days than weekdays and visitation rates tended to be lower during summer than spring. Conclusion SOPARC is a highly reliable observation instrument that can be used to collect data across diverse geographic settings and seasons by different users and has potential as a surveillance system. PMID:24384304

  1. Regular frequency patterns in the classical δ Scuti star HD 144277 observed by the MOST satellite

    NASA Astrophysics Data System (ADS)

    Zwintz, K.; Lenz, P.; Breger, M.; Pamyatnykh, A. A.; Zdravkov, T.; Kuschnig, R.; Matthews, J. M.; Guenther, D. B.; Moffat, A. F. J.; Rowe, J. F.; Rucinski, S. M.; Sasselov, D.; Weiss, W. W.

    2011-09-01

    Context. We present high-precision time-series photometry of the classical δ Scuti star HD 144277 obtained with the MOST (Microvariability and Oscillations of STars) satellite in two consecutive years. The observed regular frequency patterns are investigated asteroseismologically. Aims: HD 144277 is a hot A-type star that is located on the blue border of the classical instability strip. While we mostly observe low radial order modes in classical δ Scuti stars, HD 144277 presents a different case. Its high observed frequencies, i.e., between 59.9 d-1 (693.9 μHz) and 71.1 d-1 (822.8 μHz), suggest higher radial orders. We examine the progression of the regular frequency spacings from the low radial order to the asymptotic frequency region. Methods: Frequency analysis was performed using Period04 and SigSpec. The results from the MOST observing runs in 2009 and 2010 were compared to each other. The resulting frequencies were submitted to asteroseismic analysis. Results: HD 144277 was discovered to be a δ Scuti star using the time-series photometry observed by the MOST satellite. Twelve independent pulsation frequencies lying in four distinct groups were identified. Two additional frequencies were found to be combination frequencies. The typical spacing of 3.6 d-1 corresponds to the spacing between subsequent radial and dipole modes, therefore the spacing between radial modes is twice this value, 7.2 d-1. Based on the assumption of slow rotation, we find evidence that the two radial modes are the sixth and seventh overtones, and the frequency with the highest amplitude can be identified as a dipole mode. Conclusions: The models required to fit the observed instability range need slightly less metallicity and a moderate enhancement of the helium abundance compared to the standard chemical composition. Our asteroseismic models suggest that HD 144277 is a δ Scuti star close to the ZAMS with a mass of 1.66 M⊙. Based on data from the MOST satellite, a Canadian Space

  2. Ventilatory efficiency and breathing pattern in world-class cyclists: A three-year observational study.

    PubMed

    Salazar-Martínez, Eduardo; Terrados, Nicolás; Burtscher, Martin; Santalla, Alfredo; Naranjo Orellana, José

    2016-07-15

    The purpose of this three-year observational study was to analyze the ventilatory efficiency and breathing pattern in world-class professional cyclists. Twelve athletes (22.61±3.8years; 177.38±5.5cm; 68.96±5.5kg and VO2max 75.51±3.3mLkg(-1)min(-1)) were analyzed retrospectively. For each subject, respiratory and performance variables were recorded during incremental spiroergometry: oxygen uptake (VO2), carbon dioxide output (VCO2), pulmonary ventilation (VE), tidal volume (Vt), breathing frequency (fR), driving (Vt/Ti), timing (Ti/Ttot), peak power output (PPO) and maximum oxygen uptake (VO2max). Ventilatory efficiency (VE/VCO2 slope) was calculated from the beginning of exercise testing to the second ventilatory threshold (VT2). The VE/VCO2 slope was unaffected during the study period (24.63±3.07; 23.61±2:79; 24:89±2:61) with a low effect size (ES=0.04). The PPO improved significantly in the third year (365±33.74; 386.36±32.33; 415.00±24.15) (p<0.05). The breathing pattern variables, Vt/Ti and Ti/Ttot, did not change significantly over the three year period (ES=0.00; ES=0.03 respectively). These findings suggest that changes in cycling performance in world-class professional cyclists do not modify breathing variables related to the control of ventilatory efficiency. PMID:27083403

  3. NIMS Observes Increased Activity at Loki Patera, Io

    NASA Technical Reports Server (NTRS)

    1997-01-01

    Loki Patera, historically the most active and persistent hot spot on Io, is located on the hemisphere of Io always facing Jupiter. Loki Patera was the site of two plumes during the Voyager encounters, which were not seen during the early orbits of Galileo. Ground-based observers reported Loki Patera to be unusually dim during this time, marking a period of low volcanic activity.

    On 21 February 1997, during Galileo's sixth orbit, the Near Infrared Mapping Spectrometer (NIMS) on the Galileo spacecraft observed Io in daylight from a range of approximately 703,000 km (440,000 miles). The image on the left shows Io at a wavelength of 2.95 microns. Loki Patera is seen to be relatively quiescent (at longer wavelengths which are more sensitive to thermal emission, Loki Patera is more noticeable).

    A few weeks later, on March 12th 1997, ground based observers using the Infra-Red Telescope Facility (IRTF) on Mauna Kea, Hawaii, observed an intense brightening in the Loki region, so much that Loki was contributing 75% of Io's in-eclipse flux for this hemisphere. A large eruption was taking place! Other ground-based observations through March, April and May tracked the course of the activity and confirmed its location at Loki Patera.

    On 4 April 1997, NIMS again observed Io during the seventh orbit from a range of 556,000 km (348,000 miles), with Loki Patera positioned in darkness, close to the limb. The image on the right shows the increase in activity at Loki Patera, again at 2.95 microns. A preliminary single temperature fit to NIMS orbit seven Loki Patera hot spot data yields a temperature of 500 K and an area of over 800 square kilometers. That the image is so bright at this wavelength is an indication of the areal extent of the activity. It is also probable that some part of the volcanic material being erupted or exposed is at considerably higher temperatures than that of the 500 K single-temperature fit.

    Io is under observation by ground-based observers under

  4. Some implications of ultraviolet observations of quasars and active galaxies

    NASA Technical Reports Server (NTRS)

    Davidsen, A. F.

    1980-01-01

    The problem of the order of magnitude discrepancy in the expected and observed ratios of the Lyman and Balmer lines in quasars and active galaxies is reviewed. Whereas early photoionization models for the emission line regions predicted F(L-alpha)/F(H-beta) not less than 40, the observations give values for this ratio in the range 3-8. Attempts at explaining the observations have involved dust, both external and internal to the emission line regions, and improved treatments of the collisional processes and radiative transfer effects in dense (Ne about 10 to the 10th/cu cm), optically thick clouds. None of the effects considered is, by itself, able to explain all the observations, and a combination of several of them is probably required.

  5. Patterns of acoustical activity of bats prior to and following White-nose Syndrome occurrence

    USGS Publications Warehouse

    Ford, W. Mark; Britzke, Eric R.; Dobony, Christopher A.; Rodrigue, Jane L.; Johnson, Joshua B.

    2011-01-01

    White-nose Syndrome (WNS), a wildlife health concern that has decimated cave-hibernating bat populations in eastern North America since 2006, began affecting source-caves for summer bat populations at Fort Drum, a U.S. Army installation in New York in the winter of 2007–2008. As regional die-offs of bats became evident, and Fort Drum's known populations began showing declines, we examined whether WNS-induced change in abundance patterns and seasonal timing of bat activity could be quantified using acoustical surveys, 2003–2010, at structurally uncluttered riparian–water habitats (i.e., streams, ponds, and wet meadows). As predicted, we observed significant declines in overall summer activity between pre-WNS and post-WNS years for little brown bats Myotis lucifugus, northern bats M. septentrionalis, and Indiana bats M. sodalis. We did not observe any significant change in activity patterns between pre-WNS and post-WNS years for big brown bats Eptesicus fuscus, eastern red bats Lasiurus borealis, or the small number of tri-colored bats Perimyotis subflavus. Activity of silver-haired bats Lasionycteris noctivagans increased from pre-WNS to post-WNS years. Activity levels of hoary bats Lasiurus cinereus significantly declined between pre- and post-WNS years. As a nonhibernating, migratory species, hoary bat declines might be correlated with wind-energy development impacts occurring in the same time frame rather than WNS. Intraseason activity patterns also were affected by WNS, though the results were highly variable among species. Little brown bats showed an overall increase in activity from early to late summer pre-WNS, presumably due to detections of newly volant young added to the local population. However, the opposite occurred post-WNS, indicating that reproduction among surviving little brown bats may be declining. Our data suggest that acoustical monitoring during the summer season can provide insights into species' relative abundance on the

  6. Academic Life: Monitoring Work Patterns and Daily Activities

    ERIC Educational Resources Information Center

    Forgasz, Helen J.; Leder, Gilah C.

    2006-01-01

    Academics are reported to be working longer hours and have less time for research because of increasing administrative and teaching demands. The traditional pattern of the academic enterprise appears to have changed. To explore whether this is indeed the case, the Experience Sampling Method [ESM], a research technique devised by Mihaly…

  7. Is Brain Activity during Action Observation Modulated by the Perceived Fairness of the Actor?

    PubMed

    Etzel, Joset A; Valchev, Nikola; Gazzola, Valeria; Keysers, Christian

    2016-01-01

    Perceiving other people's actions triggers activity in premotor and parietal areas, brain areas also involved in executing and sensing our own actions. Paralleling this phenomenon, observing emotional states (including pain) in others is associated with activity in the same brain areas as activated when experiencing similar emotions directly. This emotion perception associated activity has been shown to be affected by the perceived fairness of the actor, and in-group membership more generally. Here, we examine whether action observation associated brain activity is also affected by the perceived social fairness of the actors. Perceived fairness was manipulated using an alternating iterated Prisoner's Dilemma game between the participant and two confederates, one of whom played fairly and the other unfairly. During fMRI scanning the participants watched movies of the confederates performing object-directed hand actions, and then performed hand actions themselves. Mass-univariate analysis showed that observing the actions triggered robust activation in regions associated with action execution, but failed to identify a strong modulation of this activation based on perceived fairness. Multivariate pattern analysis, however, identified clusters potentially carrying information about the perceived fairness of the actor in the middle temporal gyrus, left postcentral gyrus, right inferior parietal lobule, right middle cingulate cortex, right angular gyrus, and right superioroccipital gyrus. Despite being identified by a whole-brain searchlight analysis (and so without anatomical restriction), these clusters fall into areas frequently associated with action observation. We conclude that brain activity during action observation may be modulated by perceived fairness, but such modulation is subtle; robust activity is associated with observing the actions of both fair and unfair individuals. PMID:26820995

  8. Is Brain Activity during Action Observation Modulated by the Perceived Fairness of the Actor?

    PubMed Central

    Gazzola, Valeria; Keysers, Christian

    2016-01-01

    Perceiving other people’s actions triggers activity in premotor and parietal areas, brain areas also involved in executing and sensing our own actions. Paralleling this phenomenon, observing emotional states (including pain) in others is associated with activity in the same brain areas as activated when experiencing similar emotions directly. This emotion perception associated activity has been shown to be affected by the perceived fairness of the actor, and in-group membership more generally. Here, we examine whether action observation associated brain activity is also affected by the perceived social fairness of the actors. Perceived fairness was manipulated using an alternating iterated Prisoner’s Dilemma game between the participant and two confederates, one of whom played fairly and the other unfairly. During fMRI scanning the participants watched movies of the confederates performing object-directed hand actions, and then performed hand actions themselves. Mass-univariate analysis showed that observing the actions triggered robust activation in regions associated with action execution, but failed to identify a strong modulation of this activation based on perceived fairness. Multivariate pattern analysis, however, identified clusters potentially carrying information about the perceived fairness of the actor in the middle temporal gyrus, left postcentral gyrus, right inferior parietal lobule, right middle cingulate cortex, right angular gyrus, and right superioroccipital gyrus. Despite being identified by a whole-brain searchlight analysis (and so without anatomical restriction), these clusters fall into areas frequently associated with action observation. We conclude that brain activity during action observation may be modulated by perceived fairness, but such modulation is subtle; robust activity is associated with observing the actions of both fair and unfair individuals. PMID:26820995

  9. Temporal patterns of deer-vehicle collisions consistent with deer activity pattern and density increase but not general accident risk.

    PubMed

    Hothorn, Torsten; Müller, Jörg; Held, Leonhard; Möst, Lisa; Mysterud, Atle

    2015-08-01

    The increasing number of deer-vehicle collisions (DVCs) across Europe during recent decades poses a serious threat to human health and animal welfare and increasing costs for society. DVCs are triggered by both a human-related and a deer-related component. Mitigation requires an understanding of the processes driving temporal and spatial collision patterns. Separating human-related from deer-related processes is important for identifying potentially effective countermeasures, but this has rarely been done. We analysed two time series of 341,655 DVCs involving roe deer and 854,659 non-deer-related accidents (non-DVCs) documented between 2002 and 2011. Nonparametric smoothing and temporal parametric modelling were used to estimate annual, seasonal, weekly and diurnal patterns in DVCs, non-DVCs and adjusted DVCs. As we had access to data on both DVCs and non-DVCs, we were able to disentangle the relative role of human-related and deer-related processes contributing to the overall temporal DVC pattern. We found clear evidence that variation in DVCs was mostly driven by deer-related and not human-related activity on annual, seasonal, weekly and diurnal scales. A very clear crepuscular activity pattern with high activity after sunset and around sunrise throughout the year was identified. Early spring and the mating season between mid-July and mid-August are typically periods of high roe deer activity, and as expected we found a high number of DVC during these periods, although these patterns differed tremendously during different phases of a day. The role of human activity was mainly reflected in fewer DVCs on weekends than on weekdays. Over the ten-year study period, we estimated that DVCs increased by 25%, whereas the number of non-DVCs decreased by 10%. Increasing deer densities are the most likely driver behind this rise in DVCs. Precise estimates of DVC patterns and their relationship to deer and human activity patterns allow implementation of specific mitigation

  10. CORONAS-F observations of active phenomena on the sun

    NASA Astrophysics Data System (ADS)

    Oraevsky, V. N.; Sobelman, I. I.; Zitnik, I. A.; Kuznetsov, V. D.; Stepanov, A. I.; Polishuk, G. M.; Kovilin, P. N.; Negoda, A. A.; Dranovsky, V. I.; Yatskiv, Ya. S.

    Complex observations in the framework of the CORONAS-F Mission aimed at the study of active phenomena inthe solar corona are described. The main features are given for the following experiments: (1) XUV-imaging spectroscopy with high temporal and spatial resolution, (2) X-ray spectroscopy, (3) X-ray and gamma-ray photometer/spectrometer, and (4) solar cosmic rays. Some new observational data on the structure and dynamics of flares and transient events are discussed along with their analysis.

  11. OBSERVABILITY OF DUAL ACTIVE GALACTIC NUCLEI IN MERGING GALAXIES

    SciTech Connect

    Van Wassenhove, Sandor; Volonteri, Marta; Bellovary, Jillian; Mayer, Lucio; Callegari, Simone; Dotti, Massimo

    2012-03-20

    Supermassive black holes (SMBHs) have been detected in the centers of most nearby massive galaxies. Galaxies today are not only the products of billions of years of galaxy mergers, but also billions of years of SMBH activity as active galactic nuclei (AGNs) that is connected to galaxy mergers. In this context, detection of AGN pairs should be relatively common. Observationally, however, dual AGNs are scant, being just a few percent of all AGNs. In this Letter, we investigate the triggering of AGN activity in merging galaxies via a suite of high-resolution hydrodynamical simulations. We follow the dynamics and accretion onto the SMBHs as they move from separations of tens of kiloparsecs to tens of parsecs. Our resolution, cooling, and star formation implementation produce an inhomogeneous, multi-phase interstellar medium, allowing us to accurately trace star formation and accretion onto the SMBHs. We study the impact of gas content, morphology, and mass ratio, focusing on AGN activity and dynamics across a wide range of relevant conditions. We test when the two AGNs are simultaneously detectable, for how long and at which separations. We find that strong dual AGN activity occurs during the late phases of the mergers, at small separations (<1-10 kpc) below the resolution limit of most surveys. Much of the SMBH accretion is not simultaneous, limiting the dual AGN fraction detectable through imaging and spectroscopy to a few percent, in agreement with observational samples.

  12. [The blood glucose content in newborn rats depending on level and pattern of spontaneous motor activity].

    PubMed

    Kuznetsov, S V; Selina, E N; Kuznetsova, N N

    2011-01-01

    Earlier we have shown that administration to newborn rats of the pentose phosphate cycle inhibitor hydroquinone leads to a change in intensity and pattern of spontaneous periodic motor activity (SPMA) characteristic of early stages of development. The most typical was the disappearance of the rest period from the near-minute cycle "activity--rest" and the appearance of uninterrupted motor activity. In several cases, especially after 10 days of development, there was noted an enhancement in the SMPA pattern of the motor activity complexes following in the decasecond rhythm. In this study, on the 3-10-day old rats maintained under conditions of free behavior there was studied the blood glucose content in the animals at various periods of the activity-rest cycle. Apart from the SPMA phase, its composition (pattern) characterizing the maturity level and functional state of spinal motor centers was taken into account. In the 3, 7 and 10-day old rats at the rest period, the glucose concentration was established to differ depending on the motor activity pattern. In the case of the decasecond periodicity, it amounts to 5.7 +/- 0.2, 6.3 +/- +/- 0.3, and 7.7 +/- 0.3 mmol/l, while at the minute one--6.1 +/- 0.4, 7.8 +/- 0.3, and 7.8 +/- 0.1 mmol/l. At the moment of bursts of motor excitation, the glucose concentration falls to 5.2 +/- 0.1, 6.1 +/- 0.4, and 7.1 +/- +/- 0.3 mm at the decasecond and to 5.4 +/- 0.5, 6.7 +/- 0.2, and 7.6 +/- 0.3 mmol/l at the near-minute rhythm (for the 3, 7 and 10-day old animals, respectively). The results obtained on the 5-day rat pups differ qualitatively from those observed in other age groups. Thus, the glucose concentration at the rest period amounts to 6.8 +/- 0.2 at the decasecond and to 6.7 +/- 0.4 mmol/l at the nearminute periodicity. At the period of motor excitation accompanied by the presence of the decasecond activity rhythm, the glucose concentration falls to the level of 6.0 +/- 0.2 mmol/l by differing statistically significantly

  13. Underwater observations of active lava flows from Kilauea volcano, Hawaii

    USGS Publications Warehouse

    Tribble, G.W.

    1991-01-01

    Underwater observation of active submarine lava flows from Kilauea volcano, Hawaii, in March-June 1989 revealed both pillow lava and highly channelized lava streams flowing down a steep and unconsolidated lava delta. The channelized streams were 0.7-1.5 m across and moved at rates of 1-3 m/s. The estimated flux of a stream was 0.7 m3/s. Jets of hydrothermal water and gas bubbles were associated with the volcanic activity. The rapidly moving channelized lava streams represent a previously undescribed aspect of submarine volcanism. -Author

  14. Suboptimal Muscle Synergy Activation Patterns Generalize their Motor Function across Postures

    PubMed Central

    Sohn, M. Hongchul; Ting, Lena H.

    2016-01-01

    We used a musculoskeletal model to investigate the possible biomechanical and neural bases of using consistent muscle synergy patterns to produce functional motor outputs across different biomechanical conditions, which we define as generalizability. Experimental studies in cats demonstrate that the same muscle synergies are used during reactive postural responses at widely varying configurations, producing similarly-oriented endpoint force vectors with respect to the limb axis. However, whether generalizability across postures arises due to similar biomechanical properties or to neural selection of a particular muscle activation pattern has not been explicitly tested. Here, we used a detailed cat hindlimb model to explore the set of feasible muscle activation patterns that produce experimental synergy force vectors at a target posture, and tested their generalizability by applying them to different test postures. We used three methods to select candidate muscle activation patterns: (1) randomly-selected feasible muscle activation patterns, (2) optimal muscle activation patterns minimizing muscle effort at a given posture, and (3) generalizable muscle activation patterns that explicitly minimized deviations from experimentally-identified synergy force vectors across all postures. Generalizability was measured by the deviation between the simulated force direction of the candidate muscle activation pattern and the experimental synergy force vectors at the test postures. Force angle deviations were the greatest for the randomly selected feasible muscle activation patterns (e.g., >100°), intermediate for effort-wise optimal muscle activation patterns (e.g., ~20°), and smallest for generalizable muscle activation patterns (e.g., <5°). Generalizable muscle activation patterns were suboptimal in terms of effort, often exceeding 50% of the maximum possible effort (cf. ~5% in minimum-effort muscle activation patterns). The feasible muscle activation ranges of individual

  15. Temporal patterns of ascospore release in Leptosphaeria maculans vary depending on geographic region and time of observation.

    PubMed

    Savage, David; Barbetti, Martin J; MacLeod, William J; Salam, Moin U; Renton, Michael

    2013-04-01

    Diurnal patterns of spore release have been observed in a number of fungal pathogens that undergo wind-assisted dispersal. The mechanisms that drive these patterns, while not well understood, are thought to relate to the ability of dispersing spores to survive their journey and infect new hosts. In this paper, we characterise the diurnal pattern of ascospore release by a Western Australian population of Leptosphaeria maculans. Although L. maculans has been previously shown to exhibit diurnal patterns of ascospore release, these patterns appear to vary from region to region. In order to characterise the pattern of release in the Mediterranean climate of Western Australia, we analysed historical data describing the bi-hourly count of airborne ascospores at Mt Barker, Western Australia. Results of this analysis showed diurnal patterns that differ from those previously observed in other countries, with ascospore release in our study most likely to occur in the afternoon. Furthermore, we found that the time of peak release can shift from month to month within any one season, and from year to year. In explaining the hourly pattern of spore release over an entire season, time since rainfall, time since last release, temperature, hour and month were all shown to be significant variables. PMID:23271454

  16. Chemical activation of caudal medullary expiratory neurones alters the pattern of breathing in the cat.

    PubMed

    Bongianni, F; Corda, M; Fontana, G A; Pantaleo, T

    1994-02-01

    1. The purpose of this work was to ascertain whether the activation of caudal expiratory neurones located in the caudal part of the ventral respiratory group (VRG) may affect the pattern of breathing via medullary axon collaterals. 2. We used microinjections of DL-homocysteic acid (DLH) to activate this population of neurones in pentobarbitone-anaesthetized, vagotomized, paralysed and artificially ventilated cats. Both phrenic and abdominal nerve activities were monitored; extracellular recordings from medullary and upper cervical cord respiratory neurones were performed. 3. DLH (160 mM) microinjected (10-30 nl for a total of 1.6-4.8 nmol) into the caudal VRG, into sites where expiratory activity was encountered, provoked an intense and sustained activation of the expiratory motor output associated with a corresponding period of silence in phrenic nerve activity. During the progressive decline of the activation of abdominal motoneurones, rhythmic inspiratory activity resumed, displaying a decrease in frequency and a marked reduction or the complete suppression of postinspiratory activity as its most consistent features. 4. Medullary and upper cervical cord inspiratory neurones exhibited inhibitory responses consistent with those observed in phrenic nerve activity, while expiratory neurones in the caudal VRG on the side contralateral to the injection showed excitation patterns similar to those of abdominal motoneurones. On the other hand, in correspondence to expiratory motor output activation, expiratory neurones of the Bötzinger complex displayed tonic discharges whose intensity was markedly lower than the peak level of control breaths. 5. Bilateral lignocaine blockades of neural transmission at C2-C3 affecting the expiratory and, to a varying extent, the inspiratory bulbospinal pathways as well as spinal cord transections at C2-C3 or C1-C2, did not suppress the inhibitory effect on inspiratory neurones of either the ipsi- or contralateral VRG in response to DLH

  17. Spatial pattern of spontaneous retinal waves instructs retinotopic map refinement more than activity frequency.

    PubMed

    Xu, Hong-Ping; Burbridge, Timothy J; Chen, Ming-Gang; Ge, Xinxin; Zhang, Yueyi; Zhou, Zhimin Jimmy; Crair, Michael C

    2015-06-01

    Spontaneous activity during early development is necessary for the formation of precise neural connections, but it remains uncertain whether activity plays an instructive or permissive role in brain wiring. In the visual system, retinal ganglion cell (RGC) projections to the brain form two prominent sensory maps, one reflecting eye of origin and the other retinotopic location. Recent studies provide compelling evidence supporting an instructive role for spontaneous retinal activity in the development of eye-specific projections, but evidence for a similarly instructive role in the development of retinotopy is more equivocal. Here, we report on experiments in which we knocked down the expression of β2-containing nicotinic acetylcholine receptors (β2-nAChRs) specifically in the retina through a Cre-loxP recombination strategy. Overall levels of spontaneous retinal activity in retina-specific β2-nAChR mutant mice (Rx-β2cKO), examined in vitro and in vivo, were reduced to a degree comparable to that observed in whole animal β2-nAChR mouse mutants (β2KO). However, many residual spontaneous waves in Rx-β2cKO mice displayed local propagating features with strong correlations between nearby but not distant RGCs typical of waves observed in wild-type (WT) but not β2KO mice. We further observed that eye-specific segregation was disrupted in Rx-β2cKO mice, but retinotopy was spared in a competition-dependent manner. These results suggest that propagating patterns of spontaneous retinal waves are essential for normal development of the retinotopic map, even while overall activity levels are significantly reduced, and support an instructive role for spontaneous retinal activity in both eye-specific segregation and retinotopic refinement. PMID:25787992

  18. Spatial pattern of spontaneous retinal waves instructs retinotopic map refinement more than activity frequency

    PubMed Central

    Xu, Hong-Ping; Burbridge, Timothy J.; Chen, Ming-Gang; Ge, Xinxin; Zhang, Yueyi; Zhou, Z. Jimmy; Crair, Michael C.

    2015-01-01

    Spontaneous activity during early development is necessary for the formation of precise neural connections, but it remains uncertain whether activity plays an instructive or permissive role in brain wiring. In the visual system, retinal ganglion cell (RGC) projections to the brain form two prominent sensory maps, one reflecting eye of origin and the other retinotopic location. Recent studies provide compelling evidence supporting an instructive role for spontaneous retinal activity in the development of eye-specific projections, but evidence for a similarly instructive role in the development of retinotopy is more equivocal. Here, we report on experiments in which we knocked down the expression of β2-containing nicotinic acetylcholine receptors (β2-nAChRs) specifically in the retina through a Cre-loxP recombination strategy. Overall levels of spontaneous retinal activity in retina-specific β2-nAChR mutant mice (Rx-β2cKO), examined in vitro and in vivo, were reduced to a degree comparable to that observed in whole animal β2-nAChR mouse mutants (β2KO). However, many residual spontaneous waves in Rx-β2cKO mice displayed local propagating features with strong correlations between nearby but not distant RGCs typical of waves observed in WT, but not β2KO mice. We further observed that eye-specific segregation was disrupted in Rx-β2cKO mice, but retinotopy was spared in a competition-dependent manner. These results suggest that propagating patterns of spontaneous retinal waves are essential for normal development of the retinotopic map, even while overall activity levels are significantly reduced, and support an instructive role for spontaneous retinal activity in both eye-specific segregation and retinotopic refinement. PMID:25787992

  19. Estimation of rest-activity patterns using motion sensors.

    PubMed

    Hayes, Tamara L; Riley, Thomas; Pavel, Misha; Kaye, Jeffrey A

    2010-01-01

    Disrupted sleep patterns are a significant problem in the elderly, leading to increased cognitive dysfunction and risk of nursing home placement. A cost-effective and unobtrusive way to remotely monitor changing sleep patterns over time would enable improved management of this important health problem. We have developed an algorithm to derive sleep parameters such as bed time, rise time, sleep latency, and nap time from passive infrared sensors distributed around the home. We evaluated this algorithm using 404 days of data collected in the homes of 8 elderly community-dwelling elders. Data from this algorithm were highly correlated to ground truth measures (bed mats) and were surprisingly robust to variability in sensor layout and sleep habits. PMID:21097221

  20. Highly fluorinated 2,2'-biphenols and related compounds: relationship between substitution pattern and herbicidal activity.

    PubMed

    Francke, Robert; Reingruber, Rüdiger; Schollmeyer, Dieter; Waldvogel, Siegfried R

    2013-05-22

    A broad range of halogenated 2,2'-biphenols was tested for applicability as crop protection agents. The activity of these compounds toward four typical pest plants was observed after application by spraying of diluted solutions. Despite their rather simple structure, it was found that the studied compounds reveal a surprisingly high herbicidal impact. To gain a better understanding of the structure-activity relationship, specific sites of the molecule were chemically modified and the core structures thus gradually changed. The influence of the substitution pattern on the herbicidal properties is discussed, and conclusions on the active site of the biphenol structure are drawn. It was observed that type and position of the halogen substituents have a significant influence on the activity of the core structure. The hydroxy functionalities play a crucial role for the effectiveness of the tested compounds. Because the blocking of the hydroxy moiety leads to dramatically deteriorated performances, the presence of these functionalities on the aromatic ring seems to be indispensable. PMID:23641939

  1. Simulated versus observed patterns of warming over the extratropical Northern Hemisphere continents during the cold season.

    PubMed

    Wallace, John M; Fu, Qiang; Smoliak, Brian V; Lin, Pu; Johanson, Celeste M

    2012-09-01

    A suite of the historical simulations run with the Intergovernmental Panel on Climate Change Fourth Assessment Report (IPCC AR4) models forced by greenhouse gases, aerosols, stratospheric ozone depletion, and volcanic eruptions and a second suite of simulations forced by increasing CO(2) concentrations alone are compared with observations for the reference interval 1965-2000. Surface air temperature trends are disaggregated by boreal cold (November-April) versus warm (May-October) seasons and by high latitude northern (N: 40°-90 °N) versus southern (S: 60 °S-40 °N) domains. A dynamical adjustment is applied to remove the component of the cold-season surface air temperature trends (over land areas poleward of 40 °N) that are attributable to changing atmospheric circulation patterns. The model simulations do not simulate the full extent of the wintertime warming over the high-latitude Northern Hemisphere continents during the later 20th century, much of which was dynamically induced. Expressed as fractions of the concurrent trend in global-mean sea surface temperature, the relative magnitude of the dynamically induced wintertime warming over domain N in the observations, the simulations with multiple forcings, and the runs forced by the buildup of greenhouse gases only is 721, and roughly comparable to the relative magnitude of the concurrent sea-level pressure trends. These results support the notion that the enhanced wintertime warming over high northern latitudes from 1965 to 2000 was mainly a reflection of unforced variability of the coupled climate system. Some of the simulations exhibit an enhancement of the warming along the Arctic coast, suggestive of exaggerated feedbacks. PMID:22847408

  2. Simulated versus observed patterns of warming over the extratropical Northern Hemisphere continents during the cold season

    PubMed Central

    Wallace, John M.; Fu, Qiang; Smoliak, Brian V.; Lin, Pu; Johanson, Celeste M.

    2012-01-01

    A suite of the historical simulations run with the Intergovernmental Panel on Climate Change Fourth Assessment Report (IPCC AR4) models forced by greenhouse gases, aerosols, stratospheric ozone depletion, and volcanic eruptions and a second suite of simulations forced by increasing CO2 concentrations alone are compared with observations for the reference interval 1965–2000. Surface air temperature trends are disaggregated by boreal cold (November-April) versus warm (May-October) seasons and by high latitude northern (N: 40°–90 °N) versus southern (S: 60 °S–40 °N) domains. A dynamical adjustment is applied to remove the component of the cold-season surface air temperature trends (over land areas poleward of 40 °N) that are attributable to changing atmospheric circulation patterns. The model simulations do not simulate the full extent of the wintertime warming over the high-latitude Northern Hemisphere continents during the later 20th century, much of which was dynamically induced. Expressed as fractions of the concurrent trend in global-mean sea surface temperature, the relative magnitude of the dynamically induced wintertime warming over domain N in the observations, the simulations with multiple forcings, and the runs forced by the buildup of greenhouse gases only is 7∶2∶1, and roughly comparable to the relative magnitude of the concurrent sea-level pressure trends. These results support the notion that the enhanced wintertime warming over high northern latitudes from 1965 to 2000 was mainly a reflection of unforced variability of the coupled climate system. Some of the simulations exhibit an enhancement of the warming along the Arctic coast, suggestive of exaggerated feedbacks. PMID:22847408

  3. The 2010 Haiti earthquake: A complex fault pattern constrained by seismologic and tectonic observations

    NASA Astrophysics Data System (ADS)

    Mercier de Lépinay, Bernard; Deschamps, Anne; Klingelhoefer, Frauke; Mazabraud, Yves; Delouis, Bertrand; Clouard, Valérie; Hello, Yann; Crozon, Jacques; Marcaillou, Boris; Graindorge, David; Vallée, Martin; Perrot, Julie; Bouin, Marie-Paule; Saurel, Jean-Marie; Charvis, Philippe; St-Louis, Mildor

    2011-11-01

    After the January 12, 2010, Haiti earthquake, we deployed a mainly offshore temporary network of seismologic stations around the damaged area. The distribution of the recorded aftershocks, together with morphotectonic observations and mainshock analysis, allow us to constrain a complex fault pattern in the area. Almost all of the aftershocks have a N-S compressive mechanism, and not the expected left-lateral strike-slip mechanism. A first-order slip model of the mainshock shows a N264°E north-dipping plane, with a major left-lateral component and a strong reverse component. As the aftershock distribution is sub-parallel and close to the Enriquillo fault, we assume that although the cause of the catastrophe was not a rupture along the Enriquillo fault, this fault had an important role as a mechanical boundary. The azimuth of the focal planes of the aftershocks are parallel to the north-dipping faults of the Transhaitian Belt, which suggests a triggering of failure on these discontinuities. In the western part, the aftershock distribution reflects the triggering of slip on similar faults, and/or, alternatively, of the south-dipping faults, such the Trois-Baies submarine fault. These observations are in agreement with a model of an oblique collision of an indenter of the oceanic crust of the Southern Peninsula and the sedimentary wedge of the Transhaitian Belt: the rupture occurred on a wrench fault at the rheologic boundary on top of the under-thrusting rigid oceanic block, whereas the aftershocks were the result of the relaxation on the hanging wall along pre-existing discontinuities in the frontal part of the Transhaitian Belt.

  4. Adults' Physical Activity Patterns across Life Domains: Cluster Analysis with Replication

    PubMed Central

    Rovniak, Liza S.; Sallis, James F.; Saelens, Brian E.; Frank, Lawrence D.; Marshall, Simon J.; Norman, Gregory J.; Conway, Terry L.; Cain, Kelli L.; Hovell, Melbourne F.

    2010-01-01

    Objective Identifying adults' physical activity patterns across multiple life domains could inform the design of interventions and policies. Design Cluster analysis was conducted with adults in two US regions (Baltimore-Washington DC, n = 702; Seattle-King County, n = 987) to identify different physical activity patterns based on adults' reported physical activity across four life domains: leisure, occupation, transport, and home. Objectively measured physical activity, and psychosocial and built (physical) environment characteristics of activity patterns were examined. Main Outcome Measures Accelerometer-measured activity, reported domain-specific activity, psychosocial characteristics, built environment, body mass index (BMI). Results Three clusters replicated (kappa = .90-.93) across both regions: Low Activity, Active Leisure, and Active Job. The Low Activity and Active Leisure adults were demographically similar, but Active Leisure adults had the highest psychosocial and built environment support for activity, highest accelerometer-measured activity, and lowest BMI. Compared to the other clusters, the Active Job cluster had lower socioeconomic status and intermediate accelerometer-measured activity. Conclusion Adults can be clustered into groups based on their patterns of accumulating physical activity across life domains. Differences in psychosocial and built environment support between the identified clusters suggest that tailored interventions for different subgroups may be beneficial. PMID:20836604

  5. Dietary Patterns Are Associated with Disease Risk among Participants in the Women’s Health Initiative Observational Study123

    PubMed Central

    Van Horn, Linda; Tian, Lu; Neuhouser, Marian L.; Howard, Barbara V.; Eaton, Charles B.; Snetselaar, Linda; Matthan, Nirupa R.; Lichtenstein, Alice H.

    2012-01-01

    Coronary heart disease (CHD) is the leading cause of death in women. A nested case-control study tested whether dietary patterns predicted CHD events among 1224 participants in the Women’s Health Initiative-Observational Study (WHI-OS) with centrally confirmed CHD, fatal or nonfatal myocardial infarct compared to 1224 WHI-OS controls matched for age, enrollment date, race/ethnicity, and absence of CHD at baseline or follow-up. The first six principal components explained >75% of variation in dietary intakes and K-mean analysis based on these six components produced three clusters. Diet cluster 1 was rich in carbohydrate, vegetable protein, fiber, dietary vitamin K, folate, carotenoids, α-linolenic acid [18:3(n-3)], linoleic acid [18:2(n-6)], and supplemental calcium and vitamin D. Diet cluster 2 was rich in total and animal protein, arachidonic acid [20:4(n-6)], DHA [22:6(n-3)], vitamin D, and calcium. Diet cluster 3 was rich in energy, total fat, and trans fatty acids (all P < 0.01). Conditional logistic regression analysis demonstrated diet cluster 1 was associated with lower CHD risk than diet cluster 2 (reference group) adjusted for smoking, education, and physical activity [OR = 0.79 (95% CI = 0.64, 0.99); P = 0.038]. This difference was not significant after adjustment for BMI and systolic blood pressure. Diet cluster 3 was associated with higher CHD risk than diet cluster 2 [OR = 1.28 (95% CI = 1.04, 1.57); P = 0.019], but this difference did not remain significant after adjustment for smoking, education, and physical activity. Within this WHI-OS cohort, distinct dietary patterns may be associated with subsequent CHD outcomes. PMID:22190026

  6. Observation of Chlorine Activation near the Midlatitude Tropopause

    NASA Astrophysics Data System (ADS)

    Thornton, B.; Toohey, D.; Wilson, J. C.; Kelly, K. K.; Thompson, T. L.; Proffitt, M. H.; May, R. D.

    2004-12-01

    It has been proposed that heterogeneous chlorine activation on cirrus cloud particles near the tropopause could provide a chemical explanation for ozone trends in the midlatitude tropopause region. During the 1998 WAM (WB-57 Aerosol Mission) campaign, an in situ ClO instrument was deployed on the NASA WB-57 aircraft in the midlatitudes. On the 11 April 1998 flight, clear examples of enhancements to reactive chlorine in sunlit, wet, particle laden air near the tropopause were observed over eastern Wyoming (approximately 42\\deg N, 105\\deg E) at 11-12 km. The air being sampled appeared to contain evaporating cirrus, and the observed chlorine enhancements (up to 20% activation) were strongly correlated with both particle surface area and total water. Ozone values in this enhanced ClO region ranged from 80-300 ppbv, consistent with both tropospheric and lowermost stratospheric air. These observations suggest that near tropopause reactive chlorine enhancements likely occur in regions of recent stratospheric-tropospheric exchange providing water and increased particle surface area to otherwise relatively dry stratospheric air. Due to greater insolation, ozone loss rates in this region may be higher than those previously reported for similar active chlorine abundances at similar altitudes in the Arctic.

  7. Knowledge discovery in group activities through sequential observation analysis

    NASA Astrophysics Data System (ADS)

    Elangovan, Vinayak; Shirkhodaie, Amir

    2014-06-01

    Understanding of Group Activities (GA) has significant applications in civilian and military domains. The process of understanding GA is typically involved with spatiotemporal analysis of multi-modality sensor data. Video imagery is one popular sensing modality that offers rich data, however, data associated with imagery source may become fragmented and discontinued due to a number of reasons (e.g., data transmission, or observation obstructions and occlusions). However, making sense out of video imagery is a real challenge. It requires a proper inference working model capable of analyzing video imagery frame by frame, extract and inference spatiotemporal information pertaining to observations while developing an incremental perception of the GA as they emerge overtime. In this paper, we propose an ontology based GA recognition where three inference Hidden Markov Models (HMM's) are used for predicting group activities taking place in outdoor environments and different task operational taxonomy. The three competing models include: a concatenated HMM, a cascaded HMM, and a context-based HMM. The proposed ontology based GA-HMM was subjected to set of semantically annotated visual observations from outdoor group activity experiments. Experimental results from GA-HMM are presented with technical discussions on design of each model and their potential implication to Persistent Surveillance Systems (PSS).

  8. Active Region Moss: Doppler Shifts from Hinode/EIS Observations

    NASA Technical Reports Server (NTRS)

    Tripathi, Durgesh; Mason, Helen E.; Klimchuk, James A.

    2012-01-01

    Studying the Doppler shifts and the temperature dependence of Doppler shifts in moss regions can help us understand the heating processes in the core of the active regions. In this paper we have used an active region observation recorded by the Extreme-ultraviolet Imaging Spectrometer (EIS) onboard Hinode on 12-Dec- 2007 to measure the Doppler shifts in the moss regions. We have distinguished the moss regions from the rest of the active region by defining a low density cut-off as derived by Tripathi et al. (2010). We have carried out a very careful analysis of the EIS wavelength calibration based on the method described in Young, O Dwyer and Mason (2012). For spectral lines having maximum sensitivity between log T = 5.85 and log T = 6.25 K, we find that the velocity distribution peaks at around 0 km/s with an estimated error of 4 km/s. The width of the distribution decreases with temperature. The mean of the distribution shows a blue shift which increases with increasing temperature and the distribution also shows asymmetries towards blue-shift. Comparing these results with observables predicted from different coronal heating models, we find that these results are consistent with both steady and impulsive heating scenarios. Further observational constraints are needed to distinguish between these two heating scenarios.

  9. Continuous gravity observations at active volcanoes through superconducting gravimeters

    NASA Astrophysics Data System (ADS)

    Carbone, Daniele; Greco, Filippo

    2016-04-01

    Continuous gravity measurements at active volcanoes are usually taken through spring gravimeters that are easily portable and do not require much power to work. However, intrinsic limitations dictate that, when used in continuous, these instruments do not provide high-quality data over periods longer than some days. Superconducting gravimeters (SG), that feature a superconducting sphere in a magnetic field as the proof mass, provide better-quality data than spring gravimeters, but are bigger and need mains electricity to work, implying that they cannot be installed close to the active structures of high volcanoes. An iGrav SG was installed on Mt. Etna (Italy) in September 2014 and has worked almost continuously since then. It was installed about 6km from the active craters in the summit zone of the volcano. Such distance is normally too much to observe gravity changes due to relatively fast (minutes to days) volcanic processes. Indeed, mass redistributions in the shallowest part of the plumbing system induce short-wavelength gravity anomalies, centered below the summit craters. Nevertheless, thanks to the high precision and long-term stability of SGs, it was possible to observe low-amplitude changes over a wide range of timescales (minutes to months), likely driven by volcanic activity. Plans are in place for the implementation of a mini-array of SGs at Etna.

  10. The impact of chromospheric activity on observed initial mass functions

    SciTech Connect

    Stassun, Keivan G.; Scholz, Aleks; Dupuy, Trent J.; Kratter, Kaitlin M.

    2014-12-01

    Using recently established empirical calibrations for the impact of chromospheric activity on the radii, effective temperatures, and estimated masses of active low-mass stars and brown dwarfs, we reassess the shape of the initial mass function (IMF) across the stellar/substellar boundary in the Upper Sco star-forming region (age ∼ 5-10 Myr). We adjust the observed effective temperatures to warmer values using the observed strength of the chromospheric Hα emission, and redetermine the estimated masses of objects using pre-main-sequence evolutionary tracks in the H-R diagram. The effect of the activity-adjusted temperatures is to shift the objects to higher masses by 3%-100%. While the slope of the resulting IMF at substellar masses is not strongly changed, the peak of the IMF does shift from ≈0.06 to ≈0.11 M {sub ☉}. Moreover, for objects with masses ≲ 0.2 M {sub ☉}, the ratio of brown dwarfs to stars changes from ∼80% to ∼33%. These results suggest that activity corrections are essential for studies of the substellar mass function, if the masses are estimated from spectral types or from effective temperatures.

  11. Solar activities observed with the New Vacuum Solar Telescope

    NASA Astrophysics Data System (ADS)

    Yang, Shuhong

    2015-08-01

    The New Vacuum Solar Telescope is the most important facility of the Fuxian Solar Observatory in China. Based on the high spatial and temporal resolution NVST observations, we investigate the solar activities in the chromosphere and obtain some new results. (1) Observations of a flux rope tracked by filament activation (Yang et al. 2014a). The filament material is initially located at one end of the flux rope and fills in a section of the rope. Then the filament is activated and the material flows along helical threads, tracking the twisted flux rope structure. The flux rope can be detected in both low temperature and high temperature lines, and there exists a striking anti-correlation between the Hα and EUV lines, which could imply some mild heating of cool filament material to coronal temperatures during the filament activation. (2) Fine structures and overlying loops of homologous confined solar flares (Yang et al. 2014b). At the pre-flare stage, there exists a reconnection between small loops. During the flare processes, the overlying loops, some of which are tracked by activated dark materials, do not break out. These direct observations may illustrate the physical mechanism of confined flares, i.e., magnetic reconnection between the emerging loops and the pre-existing loops triggers flares and the overlying loops prevent the flares from being eruptive. (3) Magnetic reconnection between small-scale loops (Yang et al. 2015). We report the solid observational evidence of magnetic reconnection between two sets of small-scale loops. The observed signatures are consistent with the predictions by reconnection models. The thickness and length of the current sheet are determined to be about 420 km and 1.4 Mm, respectively. The reconnection process contains a slow step and a rapid step. We suggest that the successive slow reconnection changes the conditions around the reconnection site and disrupts the instability, thus leading to the rapid approach of the anti

  12. Surface circulation patterns at the southeastern Bay of Biscay: new observations from HF radar data

    NASA Astrophysics Data System (ADS)

    Solabarrieta, L.; Rubio, A.; Medina, R.; Paduan, J. D.; Castanedo, S.; Fontán, A.; Cook, M.; González, M.

    2012-12-01

    A CODAR Seasonde High Frequency (HF) radar network has been operational since the beginning of 2009 for the oceanic region of the Basque Country, Spain (south-eastern Bay of Biscay, Atlantic Ocean). It forms part of the Basque operational data acquisition system, established by the Directorate of Emergency Attention and Meteorology of the Basque Government. It is made up of two antennas, at the capes Higer (43d 23.554' N, 1d 47.745' W) and Matxitxako (43d 7.350' N, 2d 45.163' W), emitting at 4.525 MHz frequency and 30 kHz bandwidth. This system provides hourly surface currents with 5.12 km spatial resolution, covering 10,000 km2. Space- and time-covering measurements have been available in the study area since 2009. The data contribute considerably to the study of surface current patterns and the main physical processes in the area. Additional applications relate to security of navigation, maritime rescue, validation and improvement of numerical models, etc. For comparison with other validation studies and to obtain an estimate of the performance of the Basque system, statistical and spectral analysis of the surface currents obtained through the HF radar and different in-situ platforms have been conducted. The analyses show values of comparison between the different measuring systems consistent with those done by other authors (Paduan and Rosenfeld, 1996; Kaplan et al., 2005). The radar is able to reproduce the time evolution of the currents with a reasonable accuracy; likewise, the main three spectral peaks (inertial, semidiurnal and diurnal) are well resolved. In this context, the aim of this work is to show the HF radar ability to measure accurately the surface currents in the south-eastern Bay of Biscay and to study the ocean circulation in the area (figures 1 and 2). Surface current patterns are analysed and described for the period 2009-2011, for different timescales. A clear seasonality at a large-scale has been observed in accordance with previous work

  13. ELECTROMYOGRAPHIC ACTIVITY OF SCAPULAR MUSCLES DURING DIAGONAL PATTERNS USING ELASTIC RESISTANCE AND FREE WEIGHTS

    PubMed Central

    Talbott, Nancy; Kotowski, Susan

    2011-01-01

    Purpose/Background: Abnormalities in glenohumeral rhythm and neuromuscular control of the upper trapezius (UT), middle trapezius (MT), lower trapezius (LT) and serratus anterior (SA) muscles have been identified in individuals with shoulder pain. Upper extremity diagonal or proprioceptive neuromuscular facilitation (PNF) patterns have been suggested as effective means of activating scapular muscles, yet few studies have compared muscular activation during diagonal patterns with varying modes of resistance. The purpose of this study is to determine which type of resistance and PNF pattern combination best elicits electromyographic (EMG) activity of the scapular muscles. Methods: Twenty one healthy subjects with no history of scapulohumeral dysfunction were recruited from a population of convenience. Surface electrodes were applied to the SA, UT, MT and LT and EMG data collected for each muscle as the subject performed resisted UE D1 flexion, UE D1 extension, UE D2 flexion and UE D2 extension with elastic resistance and a three pound weight. Results: No significant differences were found between scapular muscle activity during D1 flexion when using elastic resistance and when using a weight. UT, MT and LT values were also not significantly different during D2 flexion when using elastic resistance vs. using a weight. The activity of the SA remained relatively the same during all patterns. The LT activity was significantly greater during D2 flexion with elastic resistance than during the D1 flexion and D1 extension with elastic resistance. MT activity was significantly greater during D2 flexion with elastic resistance as compared to all other patterns except D2 flexion with a weight. UT activity was significantly greater during flexion patterns than extension patterns. Conclusions: The upper extremity PNF pattern did significantly affect the mean UT, MT and LT activity but was not found to significantly affect SA activity. The type of resistance did not significantly

  14. Altered lower leg muscle activation patterns in patients with cerebral palsy during cycling on an ergometer

    PubMed Central

    Alves-Pinto, Ana; Blumenstein, Tobias; Turova, Varvara; Lampe, Renée

    2016-01-01

    Objective Cycling on a recumbent ergometer constitutes one of the most popular rehabilitation exercises in cerebral palsy (CP). However, no control is performed on how muscles are being used during training. Given that patients with CP present altered muscular activity patterns during cycling or walking, it is possible that an incorrect pattern of muscle activation is being promoted during rehabilitation cycling. This study investigated patterns of muscular activation during cycling on a recumbent ergometer in patients with CP and whether those patterns are determined by the degree of spasticity and of mobility. Methods Electromyographic (EMG) recordings of lower leg muscle activation during cycling on a recumbent ergometer were performed in 14 adult patients diagnosed with CP and five adult healthy participants. EMG recordings were done with an eight-channel EMG system built in the laboratory. The activity of the following muscles was recorded: Musculus rectus femoris, Musculus biceps femoris, Musculus tibialis anterior, and Musculus gastrocnemius. The degree of muscle spasticity and mobility was assessed using the Modified Ashworth Scale and the Gross Motor Function Classification System, respectively. Muscle activation patterns were described in terms of onset and duration of activation as well as duration of cocontractions. Results Muscle activation in CP was characterized by earlier onsets, longer periods of activation, a higher occurrence of agonist–antagonist cocontractions, and a more variable cycling tempo in comparison to healthy participants. The degree of altered muscle activation pattern correlated significantly with the degree of spasticity. Conclusion This study confirmed the occurrence of altered lower leg muscle activation patterns in patients with CP during cycling on a recumbent ergometer. There is a need to develop feedback systems that can inform patients and therapists of an incorrect muscle activation during cycling and support the training

  15. TRMM/LIS and PR Observations and Thunderstorm Activity

    NASA Astrophysics Data System (ADS)

    Ohita, S.; Morimoto, T.; Kawasaki, Z. I.; Ushio, T.

    2005-12-01

    Thunderstorms observed by TRMM/PR and LIS have been investigating, and Lightning Research Group of Osaka University (LRG-OU) has unveiled several interesting features. Correlation between lightning activities and the snow depth of convective clouds may follow the power-five law. The power five law means that the flash density is a function of the snow-depth to power five. The definition of snow depth is the height of detectable cloud tops by TRMM/PR from the climatological freezing level, and it may be equivalent to the length of the portion where the solid phase precipitation particles exist. This is given by examining more than one million convective clouds, and we conclude that the power five law should be universal from the aspect of the statistic. Three thunderstorm active areas are well known as "Three World Chimneys", and those are the Central Africa, Amazon of the South America, and South East Asia. Thunderstorm activities in these areas are expected to contribute to the distribution of thermal energy around the equator to middle latitude regions. Moreover thunderstorm activity in the tropical region is believed to be related with the average temperature of our planet earth. That is why long term monitoring of lightning activity is required. After launching TRMM we have accumulated seven-year LIS observations, and statistics for three world chimneys are obtained. We have recognized the additional lightning active area, and that is around the Maracaibo lake in Venezuera. We conclude that this is because of geographical features of the Maracaibo lake and the continuous easterly trade wind. Lightning Activity during El Niño period is another interesting subject. LRGOU studies thunderstorm occurrences over west Indonesia and south China, and investigates the influence of El Nino on lightning . We compare the statistics between El Nino and non El Nino periods. We learn that the lightning activity during El Niño period is higher than non El Nino period instead

  16. Both novelty and expertise increase action observation network activity

    PubMed Central

    Liew, Sook-Lei; Sheng, Tong; Margetis, John L.; Aziz-Zadeh, Lisa

    2013-01-01

    Our experiences with others affect how we perceive their actions. In particular, activity in bilateral premotor and parietal cortices during action observation, collectively known as the action observation network (AON), is modulated by one's expertise with the observed actions or individuals. However, conflicting reports suggest that AON activity is greatest both for familiar and unfamiliar actions. The current study examines the effects of different types and amounts of experience (e.g., visual, interpersonal, personal) on AON activation. fMRI was used to scan 16 healthy participants without prior experience with individuals with amputations (novices), 11 experienced occupational therapists (OTs) who had varying amounts of experience with individuals with amputations, and one individual born with below-elbow residual limbs (participant CJ), as they viewed video clips of goal-matched actions performed by an individual with residual limbs and by an individual with hands. Participants were given increased visual exposure to actions performed by both effectors midway through the scanning procedure. Novices demonstrated a large AON response to the initial viewing of an individual with residual limbs compared to one with hands, but this signal was attenuated after they received visual exposure to both effectors. In contrast, OTs, who had moderate familiarity with residual limbs, demonstrated a lower AON response upon initial viewing—similar to novices after they received visual exposure. At the other extreme, CJ, who has extreme familiarity with residual limbs both visually and motorically, shows a largely increased left-lateralized AON response, exceeding that of novices and experienced OTs, when viewing the residual limb compared to hand actions. These results suggest that a nuanced model of AON engagement is needed to explain how cases of both extreme experience (CJ) and extreme novelty (novices) can result in the greatest AON activity. PMID:24062656

  17. Transition and self-healing process between chaotic and self-organized patterns observed during femtosecond laser writing.

    PubMed

    Groothoff, Nathaniel; Hongler, Max-Olivier; Kazansky, Peter; Bellouard, Yves

    2015-06-29

    We report evidence of intermittent behavior between chaotic and self-organized patterns while writing lines with a femtosecond lasers on the surface of a fused silica substrate. The patterns are accompanied by resolidified sub-microspheres and non-aligned grating lamellae. We observe that such dynamic behavior exhibits a striking similarity with the fluctuating content of a queuing system which alternate between random busy and idle periods. PMID:26191709

  18. Learning a Taxonomy of Predefined and Discovered Activity Patterns

    PubMed Central

    Krishnan, Narayanan; Cook, Diane J.; Wemlinger, Zachary

    2013-01-01

    Many intelligent systems that focus on the needs of a human require information about the activities that are being performed by the human. At the core of this capability is activity recognition. Activity recognition techniques have become robust but rarely scale to handle more than a few activities. They also rarely learn from more than one smart home data set because of inherent differences between labeling techniques. In this paper we investigate a data-driven approach to creating an activity taxonomy from sensor data found in disparate smart home datasets. We investigate how the resulting taxonomy can help analyze the relationship between classes of activities. We also analyze how the taxonomy can be used to scale activity recognition to a large number of activity classes and training datasets. We describe our approach and evaluate it on 34 smart home datasets. The results of the evaluation indicate that the hierarchical modeling can reduce training time while maintaining accuracy of the learned model. PMID:25302084

  19. Learning a Taxonomy of Predefined and Discovered Activity Patterns.

    PubMed

    Krishnan, Narayanan; Cook, Diane J; Wemlinger, Zachary

    2013-01-01

    Many intelligent systems that focus on the needs of a human require information about the activities that are being performed by the human. At the core of this capability is activity recognition. Activity recognition techniques have become robust but rarely scale to handle more than a few activities. They also rarely learn from more than one smart home data set because of inherent differences between labeling techniques. In this paper we investigate a data-driven approach to creating an activity taxonomy from sensor data found in disparate smart home datasets. We investigate how the resulting taxonomy can help analyze the relationship between classes of activities. We also analyze how the taxonomy can be used to scale activity recognition to a large number of activity classes and training datasets. We describe our approach and evaluate it on 34 smart home datasets. The results of the evaluation indicate that the hierarchical modeling can reduce training time while maintaining accuracy of the learned model. PMID:25302084

  20. Observation of lasing modes with exotic localized wave patterns from astigmatic large-Fresnel-number cavities.

    PubMed

    Lu, T H; Lin, Y C; Liang, H C; Huang, Y J; Chen, Y F; Huang, K F

    2010-02-01

    We investigate the lasing modes in large-Fresnel-number laser systems with astigmatism effects. Experimental results reveal that numerous lasing modes are concentrated on exotic patterns corresponding to intriguing geometries. We theoretically use the quantum operator algebra to construct the wave representation for manifesting the origin of the localized wave patterns. PMID:20125716

  1. High Spatial Resolution Fe XII Observations of Solar Active Regions

    NASA Astrophysics Data System (ADS)

    Testa, Paola; De Pontieu, Bart; Hansteen, Viggo

    2016-08-01

    We use UV spectral observations of active regions with the Interface Region Imaging Spectrograph (IRIS) to investigate the properties of the coronal Fe xii 1349.4 Å emission at unprecedented high spatial resolution (∼0.33″). We find that by using appropriate observational strategies (i.e., long exposures, lossless compression), Fe xii emission can be studied with IRIS at high spatial and spectral resolution, at least for high-density plasma (e.g., post-flare loops and active region moss). We find that upper transition region (TR; moss) Fe xii emission shows very small average Doppler redshifts ({v}{{D}} ∼ 3 km s‑1) as well as modest non-thermal velocities (with an average of ∼24 km s‑1 and the peak of the distribution at ∼15 km s‑1). The observed distribution of Doppler shifts appears to be compatible with advanced three-dimensional radiative MHD simulations in which impulsive heating is concentrated at the TR footpoints of a hot corona. While the non-thermal broadening of Fe xii 1349.4 Å peaks at similar values as lower resolution simultaneous Hinode Extreme Ultraviolet Imaging Spectrometer (EIS) measurements of Fe xii 195 Å, IRIS observations show a previously undetected tail of increased non-thermal broadening that might be suggestive of the presence of subarcsecond heating events. We find that IRIS and EIS non-thermal line broadening measurements are affected by instrumental effects that can only be removed through careful analysis. Our results also reveal an unexplained discrepancy between observed 195.1/1349.4 Å Fe xii intensity ratios and those predicted by the CHIANTI atomic database.

  2. High Spatial Resolution Fe XII Observations of Solar Active Regions

    NASA Astrophysics Data System (ADS)

    Testa, Paola; De Pontieu, Bart; Hansteen, Viggo

    2016-08-01

    We use UV spectral observations of active regions with the Interface Region Imaging Spectrograph (IRIS) to investigate the properties of the coronal Fe xii 1349.4 Å emission at unprecedented high spatial resolution (˜0.33″). We find that by using appropriate observational strategies (i.e., long exposures, lossless compression), Fe xii emission can be studied with IRIS at high spatial and spectral resolution, at least for high-density plasma (e.g., post-flare loops and active region moss). We find that upper transition region (TR; moss) Fe xii emission shows very small average Doppler redshifts ({v}{{D}} ˜ 3 km s‑1) as well as modest non-thermal velocities (with an average of ˜24 km s‑1 and the peak of the distribution at ˜15 km s‑1). The observed distribution of Doppler shifts appears to be compatible with advanced three-dimensional radiative MHD simulations in which impulsive heating is concentrated at the TR footpoints of a hot corona. While the non-thermal broadening of Fe xii 1349.4 Å peaks at similar values as lower resolution simultaneous Hinode Extreme Ultraviolet Imaging Spectrometer (EIS) measurements of Fe xii 195 Å, IRIS observations show a previously undetected tail of increased non-thermal broadening that might be suggestive of the presence of subarcsecond heating events. We find that IRIS and EIS non-thermal line broadening measurements are affected by instrumental effects that can only be removed through careful analysis. Our results also reveal an unexplained discrepancy between observed 195.1/1349.4 Å Fe xii intensity ratios and those predicted by the CHIANTI atomic database.

  3. Development of Active Regions: Flows, Magnetic-Field Patterns and Bordering Effect

    NASA Astrophysics Data System (ADS)

    Getling, A. V.; Ishikawa, R.; Buchnev, A. A.

    2016-02-01

    A qualitative analysis is given of the data on the full magnetic and velocity vector fields in a growing sunspot group, recorded nearly simultaneously with the Solar Optical Telescope on the Hinode satellite. Observations of a young bipolar subregion developing within AR 11313 were carried out on 9 - 10 October 2011. Our aim was to form an idea about the consistency of the observed pattern with the well-known rising-tube model of the formation of bipolar active regions and sunspot groups. We find from our magnetograms that the distributions of the vertical [Bv] and the horizontal [Bh] component of the magnetic field over the area of the magnetic subregion are spatially well correlated; in contrast, the rise of a flux-tube loop would result in a qualitatively different pattern, with the maxima of the two magnetic-field components spatially separated: the vertical field would be the strongest where either spot emerges, while the maximum horizontal-field strengths would be reached in between them. A specific feature, which we call the bordering effect, is revealed: some local extrema of Bv are bordered with areas of locally enhanced Bh. This effect suggests a fountainlike spatial structure of the magnetic field near the Bv extrema, which is also hardly compatible with the emergence of a flux-tube loop. The vertical-velocity field in the area of the developing active subregion does not exhibit any upflow on the scale of the whole subregion, which should be related to the rising-tube process. Thus, our observational data can hardly be interpreted in the framework of the rising-tube model.

  4. Active dynamics of colloidal particles in time-varying laser speckle patterns

    PubMed Central

    Bianchi, Silvio; Pruner, Riccardo; Vizsnyiczai, Gaszton; Maggi, Claudio; Di Leonardo, Roberto

    2016-01-01

    Colloidal particles immersed in a dynamic speckle pattern experience an optical force that fluctuates both in space and time. The resulting dynamics presents many interesting analogies with a broad class of non-equilibrium systems like: active colloids, self propelled microorganisms, transport in dynamical intracellular environments. Here we show that the use of a spatial light modulator allows to generate light fields that fluctuate with controllable space and time correlations and a prescribed average intensity profile. In particular we generate ring-shaped random patterns that can confine a colloidal particle over a quasi one-dimensional random energy landscape. We find a mean square displacement that is diffusive at both short and long times, while a superdiffusive or subdiffusive behavior is observed at intermediate times depending on the value of the speckles correlation time. We propose two alternative models for the mean square displacement in the two limiting cases of a short or long speckles correlation time. A simple interpolation formula is shown to account for the full phenomenology observed in the mean square displacement across the entire range from fast to slow fluctuating speckles. PMID:27279540

  5. Active dynamics of colloidal particles in time-varying laser speckle patterns

    NASA Astrophysics Data System (ADS)

    Bianchi, Silvio; Pruner, Riccardo; Vizsnyiczai, Gaszton; Maggi, Claudio; di Leonardo, Roberto

    2016-06-01

    Colloidal particles immersed in a dynamic speckle pattern experience an optical force that fluctuates both in space and time. The resulting dynamics presents many interesting analogies with a broad class of non-equilibrium systems like: active colloids, self propelled microorganisms, transport in dynamical intracellular environments. Here we show that the use of a spatial light modulator allows to generate light fields that fluctuate with controllable space and time correlations and a prescribed average intensity profile. In particular we generate ring-shaped random patterns that can confine a colloidal particle over a quasi one-dimensional random energy landscape. We find a mean square displacement that is diffusive at both short and long times, while a superdiffusive or subdiffusive behavior is observed at intermediate times depending on the value of the speckles correlation time. We propose two alternative models for the mean square displacement in the two limiting cases of a short or long speckles correlation time. A simple interpolation formula is shown to account for the full phenomenology observed in the mean square displacement across the entire range from fast to slow fluctuating speckles.

  6. Active dynamics of colloidal particles in time-varying laser speckle patterns.

    PubMed

    Bianchi, Silvio; Pruner, Riccardo; Vizsnyiczai, Gaszton; Maggi, Claudio; Di Leonardo, Roberto

    2016-01-01

    Colloidal particles immersed in a dynamic speckle pattern experience an optical force that fluctuates both in space and time. The resulting dynamics presents many interesting analogies with a broad class of non-equilibrium systems like: active colloids, self propelled microorganisms, transport in dynamical intracellular environments. Here we show that the use of a spatial light modulator allows to generate light fields that fluctuate with controllable space and time correlations and a prescribed average intensity profile. In particular we generate ring-shaped random patterns that can confine a colloidal particle over a quasi one-dimensional random energy landscape. We find a mean square displacement that is diffusive at both short and long times, while a superdiffusive or subdiffusive behavior is observed at intermediate times depending on the value of the speckles correlation time. We propose two alternative models for the mean square displacement in the two limiting cases of a short or long speckles correlation time. A simple interpolation formula is shown to account for the full phenomenology observed in the mean square displacement across the entire range from fast to slow fluctuating speckles. PMID:27279540

  7. Natural history of Ctenus medius Keyserling, 1891 (Araneae, Ctenidae) I: observations on habitats and the development of chromatic patterns.

    PubMed

    Almeida, C E; Ramos, E F; Gouvêa, E; do Carmo-Silva, M; Costa, J

    2000-08-01

    Ctenus medius Keyserling, 1891 is a common species in several spots of Mata Atlântica, however there is a great lack of studies in all aspects of its natural history. This work aims to elucidate aspects of ecotope preference compared to large spiders, and to provide data on the development of chromatic patterns during its life cycle. The observations on the behavior of C. medius were done in the campus of Centro Universitário de Barra Mansa (UBM) by means of observations and nocturnal collections using cap lamps. For observations on the development of chromatic patterns, spiderlings raised in laboratory, hatched from an oviposition of a female from campus of UBM, and others spiderlings collected in field were used. The field observations indicate that: C. medius seems to prefer ecotopes characterized by dense shrub vegetation or herbal undergrowth; Lycosa erythrognatha and L. nordeskioldii seems to prefer open sites; Phoneutria nigriventer seems to prefer shrub vegetation and anthropogenic ecotopes as rubbish hills; Ancylometes sp. seems to prefer ecotopes near streams. Concerning chromatic patterns, it was observed that males and females show well distinct patterns during the last two instars, allowing distinction by sex without the use of a microscope. Through chromatic patterns it was also possible to draw a distinction between C. medius and C. ornatus longer that 3 mm cephalothorax width. 69 specimens of C. medius (males and females) collected in the campus of UBM did not show a striking polymorphism in chromatic pattern, but one among 7 adult females collected in National Park of Itatiaia, showed a distinct chromatic pattern. PMID:11188876

  8. Relationship between BOLD amplitude and pattern classification of orientation-selective activity in the human visual cortex.

    PubMed

    Tong, Frank; Harrison, Stephenie A; Dewey, John A; Kamitani, Yukiyasu

    2012-11-15

    Orientation-selective responses can be decoded from fMRI activity patterns in the human visual cortex, using multivariate pattern analysis (MVPA). To what extent do these feature-selective activity patterns depend on the strength and quality of the sensory input, and might the reliability of these activity patterns be predicted by the gross amplitude of the stimulus-driven BOLD response? Observers viewed oriented gratings that varied in luminance contrast (4, 20 or 100%) or spatial frequency (0.25, 1.0 or 4.0 cpd). As predicted, activity patterns in early visual areas led to better discrimination of orientations presented at high than low contrast, with greater effects of contrast found in area V1 than in V3. A second experiment revealed generally better decoding of orientations at low or moderate as compared to high spatial frequencies. Interestingly however, V1 exhibited a relative advantage at discriminating high spatial frequency orientations, consistent with the finer scale of representation in the primary visual cortex. In both experiments, the reliability of these orientation-selective activity patterns was well predicted by the average BOLD amplitude in each region of interest, as indicated by correlation analyses, as well as decoding applied to a simple model of voxel responses to simulated orientation columns. Moreover, individual differences in decoding accuracy could be predicted by the signal-to-noise ratio of an individual's BOLD response. Our results indicate that decoding accuracy can be well predicted by incorporating the amplitude of the BOLD response into simple simulation models of cortical selectivity; such models could prove useful in future applications of fMRI pattern classification. PMID:22917989

  9. Activity Patterns in Latissimus Dorsi and Sternocleidomastoid in Classical Singers

    PubMed Central

    Watson, Alan H.D.; Williams, Caitlin; James, Buddug V.

    2012-01-01

    Summary Objectives The aim of this study was to investigate and compare the roles of the accessory respiratory muscles, latissimus dorsi (LD), and sternocleidomastoid, in classical singing. Methods Electromyography was used to record the activity of these muscles in six classically trained female singers carrying out a number of singing and nonsinging tasks. Movements of the chest and abdominal walls were monitored simultaneously using inductive plethysmography, and the sound of the phonations was recorded. Results In normal breathing, LD is active transiently during very deep inhalations and in inhalation against resistance. During exhalation it becomes active again as residual capacity is approached or when air is expelled with great force. Sternocleidomastoid (SCM) supports inhalation when lung volume nears 100% vital capacity or when this is very rapid. All singers engaged LD in supported singing where it was associated with maintaining an expanded thorax. In coloratura singing, pulses of activity of increasing amplitude were often seen in LD toward the end of the breath. These were synchronized with each note. During a short phrase typical of the end of an aria, which was sung at full volume with the projected voice, both LD and SCM were active simultaneously. Spectral analysis of muscle activity demonstrated that in some singers, activity in LD and more rarely SCM, fluctuated in phase with vibrato. Conclusions LD appears to play a significant role in maintaining chest expansion and the dynamic processes underlying vibrato and coloratura singing in classically trained singers. PMID:21724365

  10. Observations of Active Volcanoes Using the EO-1 Satellite

    NASA Astrophysics Data System (ADS)

    Flynn, L. P.; Harris, A. J.; Wright, R.; Oppenheimer, C.; Geschwind, L. R.; Donegan, S.; Garbeil, H.

    2001-12-01

    Previous satellite observations of active volcanoes have been hampered by instruments that are primarily designed to measure surface reflectance of the Earth's vegetation. Sensors detecting radiation in the near-IR and IR are frequently saturated by highly radiant active volcanic features. Two satellite instruments, Hyperion and the Advanced Land Imager (ALI) on the Earth Observing -1 (EO-1) offer a means to circumvent saturation issues. Hyperion is a hyperspectral instrument that collects data in 242 narrow spectral bands between 0.4 and 2.5 microns and produces images that are 7.5 km x 100 km. For each 30m x 30m pixel, accurate atmospheric corrections and multiple component thermal models for lava flows can be generated. ALI is a Landsat-like instrument having 10 spectral bands at 0.4 - 2.35 microns. One of these, the 1.2 micron band, is sensitive to high temperature thermal anomalies such as overturning lava lakes and open lava channels. ALI also has a 10-m panchromtic band that allows for greater detailed mapping of volcanic features. ALI and Hyperion analyses for Erta Ale (Ethiopia), Mt. Etna (Sicily), Santiaguito (Guatemala), Popocatepetl (Mexico), and Mayon (Philippines) will be presented. While distribution of these data sets is limited to the EO-1 Science Team, the future of NASA's high spatial resolution terrestrial observation program will likely be based on a hybrid of these EO-1 sensors.

  11. Activity of faults observed in caves of the Eastern Alps

    NASA Astrophysics Data System (ADS)

    Baroň, Ivo; Plan, Lukas; Grasemann, Bernhard; Mitrovič, Ivanka; Stemberk, Josef

    2015-04-01

    Major recent tectonic process in the Eastern Alps involves the Neogene and Quaternary lateral extrusion of parts of the Eastern Alps towards the Pannonian Basin coeval with north-south shortening of the collision realm between the Adriatic Plate and the Bohemian Massif (European Plate). Within the framework of the FWF project "Speleotect" (2013-2017), we observe recent activity of the major fault systems of the Eastern Alps, such as the (1) Salzach-Ennstal-Mariazell-Puchberg (SEMP), (2) Mur-Mürz, (3) Periadriatic, (4) Lavanttal, and (5) Vienna Basin marginal Faults. Totally seven high-accuracy 3D crack-gauges TM71 with automated reading devices were installed in five selected karst caves with faults younger than the particular caves and correlated to one of these fault zones. The recorded micro-displacement events have been compared to known regional fault kinematics and to regional seismic activity (seismic data provided by the ZAMG). Already within the first year of observation, several micro displacement events were registered; these events sometimes revealed the same mechanisms as the geologically documented kinematics of the particular active faults, but in some cases performed completely opposite kinematics. These micro displacement events occurred in seismically rather quiet periods, however, usually about 1 - 10 days prior to local seismic events of different magnitudes (varying between ML 0.1 and 3.3). Further, in some caves gravitational mass movements were recorded that accompanied the tectonic moments.

  12. BDNFval66met affects neural activation pattern during fear conditioning and 24 h delayed fear recall

    PubMed Central

    Golkar, Armita; Lindström, Kara M.; Haaker, Jan; Öhman, Arne; Schalling, Martin; Ingvar, Martin

    2015-01-01

    Brain-derived neurotrophic factor (BDNF), the most abundant neutrophin in the mammalian central nervous system, is critically involved in synaptic plasticity. In both rodents and humans, BDNF has been implicated in hippocampus- and amygdala-dependent learning and memory and has more recently been linked to fear extinction processes. Fifty-nine healthy participants, genotyped for the functional BDNFval66met polymorphism, underwent a fear conditioning and 24h-delayed extinction protocol while skin conductance and blood oxygenation level dependent (BOLD) responses (functional magnetic resonance imaging) were acquired. We present the first report of neural activation pattern during fear acquisition ‘and’ extinction for the BDNFval66met polymorphism using a differential conditioned stimulus (CS)+ > CS− comparison. During conditioning, we observed heightened allele dose-dependent responses in the amygdala and reduced responses in the subgenual anterior cingulate cortex in BDNFval66met met-carriers. During early extinction, 24h later, we again observed heightened responses in several regions ascribed to the fear network in met-carriers as opposed to val-carriers (insula, amygdala, hippocampus), which likely reflects fear memory recall. No differences were observed during late extinction, which likely reflects learned extinction. Our data thus support previous associations of the BDNFval66met polymorphism with neural activation in the fear and extinction network, but speak against a specific association with fear extinction processes. PMID:25103087

  13. Interocular suppression patterns in binocularly abnormal observers using luminance- and contrast-modulated noise stimuli.

    PubMed

    Chima, Akash S; Formankiewicz, Monika A; Waugh, Sarah J

    2016-08-01

    In binocular viewing, images presented to the amblyopic eye are suppressed in the cortex to prevent confusion or diplopia. The present study measures depth and extent of interocular suppression across the central circular 24° visual field in observers with strabismus and microstrabismus. Visual stimuli were concentric rings of alternating polarity, each divided into sectors. Rings were defined by luminance (L), luminance-modulated noise (LM), or contrast-modulated noise (CM). They were viewed binocularly except for the tested ring, which was viewed dichoptically, so that the modulation of one sector presented to the weaker or amblyopic eye was adjusted to perceptually match the surrounding ring presented to the preferred eye. A two alternative forced-choice paradigm combined with a staircase procedure allowed for measurement of the point of subjective equality, or perceptual match. Depth of suppression was calculated as the difference between physical modulations presented to the two eyes at this point. Strabismic participants showed suppression deeper centrally than peripherally, and in one hemifield of the visual field more than the other. Suppression was deeper for L than LM, and CM than LM stimuli. Microstrabismic suppression was weaker than that of strabismics, central for L and LM stimuli, with suppression of CM stimuli being broader, deeper and more in one hemifield. Suppression depth was positively correlated with interocular visual acuity difference and stereoacuity reduction. Clinically, LM stimuli could be used for assessment of deeper amblyopes to assess suppression patterns, while more sensitive detection of mild suppression would be possible using CM stimuli. PMID:27580040

  14. Observations and modeling of the coupled latitude-altitude patterns of equatorial plasma depletions

    NASA Astrophysics Data System (ADS)

    Mendillo, Michael; Zesta, Eftyhia; Shodhan, Sheela; Sultan, Peter J.; Doe, Richard; Sahai, Yogeshwar; Baumgardner, Jeffrey

    2005-09-01

    The equatorial ionosphere is host to the most dramatic and enigmatic plasma instability mechanism in the geospace environment. Equatorial spread F (ESF) was discovered in early ionosonde measurements and interpreted theoretically using Rayleigh-Taylor theory. Subsequent diagnostic and modeling advances have improved substantially our understanding of ESF onset and evolution and its associated effects on the ionosphere throughout the low-latitude domain. The degree to which ESF mechanisms penetrate into the lower midlatitudes is a topic of current study, a reverse of the familiar concept of high-to-low latitude coupling for space weather phenomena. Optical diagnostic systems, first ground based and now space based, reveal the presence of ESF structures via images of airglow depletions that are aligned in the approximately north-south direction spanning the geomagnetic equator. Ground-based all-sky camera systems used to capture the two-dimensional horizontal patterns of airglow depletions are the main source of observations showing that ESF processes intrude to midlatitudes in the L ˜ 1.5 domain. In this paper we review the process of mapping airglow depletions along geomagnetic field lines to the equatorial plane, hence defining the maximum apex heights achieved. A case study comparison of simultaneous radar backscatter data from Kwajalein with optical data from Wake Island, sites that share common magnetic meridians in the Pacific section, confirms the utility of the approach and its applicability to sites at other longitudes. Modeling studies based on buoyancy arguments using flux tube-integrated mean density values versus L shell apex heights show that instability-induced plasma depletions starting at F layer bottomside heights easily reach altitudes above 2000 km in the equatorial plane, implying that ESF intrusions to lower midlatitudes should be a relatively frequent occurrence.

  15. Average thermospheric wind patterns over the polar regions, as observed by CHAMP

    NASA Astrophysics Data System (ADS)

    Lühr, H.; Rentz, S.; Ritter, P.; Liu, H.; Häusler, K.

    2007-06-01

    Measurements of the CHAMP accelerometer are utilized to investigate the average thermospheric wind distribution in the polar regions at altitudes around 400 km. This study puts special emphasis on the seasonal differences in the wind patterns. For this purpose 131 days centered on the June solstice of 2003 are considered. Within that period CHAMP's orbit is precessing once through all local times. The cross-track wind estimates of all 2030 passes are used to construct mean wind vectors for 918 equal-area cells. These bin averages are presented in corrected geomagnetic coordinates. Both hemispheres are considered simultaneously providing summer and winter responses for the same prevailing geophysical conditions. The period under study is characterized by high magnetic activity (Kp=4-) but moderate solar flux level (F10.7=124). Our analysis reveals clear wind features in the summer (Northern) Hemisphere. Over the polar cap there is a fast day-to-night flow with mean speeds surpassing 600 m/s in the dawn sector. At auroral latitudes we find strong westward zonal winds on the dawn side. On the dusk side, however, an anti-cyclonic vortex is forming. The dawn/dusk asymmetry is attributed to the combined action of Coriolis and centrifugal forces. Along the auroral oval the sunward streaming plasma causes a stagnation of the day-to-night wind. This effect is particularly clear on the dusk side. On the dawn side it is evident only from midnight to 06:00 MLT. The winter (Southern) Hemisphere reveals similar wind features, but they are less well ordered. The mean day-to-night wind over the polar cap is weaker by about 35%. Otherwise, the seasonal differences are mainly confined to the dayside (06:00-18:00 MLT). In addition, the larger offset between geographic and geomagnetic pole in the south also causes hemispheric differences of the thermospheric wind distribution.

  16. Evolutionary patterns of proteinase activity in attine ant fungus gardens

    PubMed Central

    2011-01-01

    Background Attine ants live in symbiosis with a basidiomycetous fungus that they rear on a substrate of plant material. This indirect herbivory implies that the symbiosis is likely to be nitrogen deprived, so that specific mechanisms may have evolved to enhance protein availability. We therefore hypothesized that fungal proteinase activity may have been under selection for efficiency and that different classes of proteinases might be involved. Results We determined proteinase activity profiles across a wide pH range for fungus gardens of 14 Panamanian species of fungus-growing ants, representing eight genera. We mapped these activity profiles on an independently obtained molecular phylogeny of the symbionts and show that total proteinase activity in lower attine symbionts peaks at ca. pH 6. The higher attine symbionts that have no known free-living relatives had much higher proteinase activities than the lower attine symbionts. Their total in vitro proteinase activity peaked at pH values around 5, which is close to the pH that the ants maintain in their fungus gardens, suggesting that the pH optimum of fungal proteinases may have changed after the irreversible domestication of evolutionary more derived fungal symbionts. This notion is also supported by buffering capacities of fungus gardens at pH 5.2 being remarkably high, and suggests that the fungal symbiont actively helps to maintain garden acidity at this specific level. Metalloproteinases dominated the activity profiles of lower attine gardens and may thus represent the ancestral type of proteinase production, whereas serine proteinase activity dominated the activity profiles of the higher attine gardens reared by Trachymyrmex and Sericomyrmex, suggesting that there may be trade-offs in the production of these enzyme classes. Remarkably, the single symbiont that is shared by species of the crown group of Atta and Acromyrmex leaf-cutting ants mostly showed metalloproteinase activity, suggesting that recurrent

  17. Initial observations of the 2005 Alexandrium fundyense bloom in southern New England: General patterns and mechanisms

    NASA Astrophysics Data System (ADS)

    Anderson, Donald M.; Keafer, Bruce A.; McGillicuddy, Dennis J.; Mickelson, Michael J.; Keay, Kenneth E.; Scott Libby, P.; Manning, James P.; Mayo, Charles A.; Whittaker, David K.; Michael Hickey, J.; He, Ruoying; Lynch, Daniel R.; Smith, Keston W.

    2005-09-01

    From May to July, 2005, an extensive bloom of Alexandrium fundyense occurred along the coast of southern New England. The outbreak eventually closed shellfish beds from central Maine to Massachusetts, including Nantucket Island and portions of Martha's Vineyard, and resulted in the closure of 40,000 km 2 of offshore federal waters as well. The coastal Alexandrium bloom was exceptional in several ways: high toxin levels were measured farther south than ever before in New England; levels of toxicity in many locations were higher than previously observed at those stations; for the first time toxicity at some locations was above quarantine levels; cell concentrations far exceeded those observed in the coastal waters of southern New England in the past; and for the first time in the region the governors of Maine and Massachusetts officially declared the red tide to be a disaster, clearing the way for federal assistance. Initial observations suggest that several factors contributed to this bloom. Abundant rainfall and heavy snowmelt substantially increased the amount of fresh water entering the Gulf of Maine. Combined with other freshwater inputs, we hypothesize that this provided macro- and micro-nutrients, a stratified water column, and a transport mechanism that led to high cell abundances and broad, region-wide dispersal of the organism. Warm temperatures in western waters also would have favored A. fundyense growth. In addition, several storms with strong winds out of the northeast occurred at times when cells were abundant and in locations where the winds could advect them into Massachusetts and Cape Cod Bays and keep them there, leading to high cell concentrations and toxicity. Another contributing factor may have been the high abundance of newly deposited cysts in western Gulf of Maine sediments, as documented in a fall 2004 survey. Here, we evaluate this bloom and the patterns of toxicity in light of the conceptual models for A. fundyense dynamics developed

  18. Spectroscopic Observations of Fe XVIII in Solar Active Regions

    NASA Astrophysics Data System (ADS)

    Teriaca, Luca; Warren, Harry P.; Curdt, Werner

    2012-08-01

    The large uncertainties associated with measuring the amount of high temperature emission in solar active regions (ARs) represents a significant impediment to making progress on the coronal heating problem. Most current observations at temperatures of 3 MK and above are taken with broadband soft X-ray instruments. Such measurements have proven difficult to interpret unambiguously. Here, we present the first spectroscopic observations of the Fe XVIII 974.86 Å emission line in an on-disk AR taken with the SUMER instrument on SOHO. Fe XVIII has a peak formation temperature of 7.1 MK and provides important constraints on the amount of impulsive heating in the corona. Detailed evaluation of the spectra and comparison of the SUMER data with soft X-ray images from the X-Ray Telescope on Hinode confirm that this line is unblended. We also compare the spectroscopic data with observations from the Atmospheric Imaging Assembly (AIA) 94 Å channel on the Solar Dynamics Observatory. The AIA 94 Å channel also contains Fe XVIII, but is blended with emission formed at lower temperatures. We find that it is possible to remove the contaminating blends and form relatively pure Fe XVIII images that are consistent with the spectroscopic observations from SUMER. The observed spectra also contain the Ca XIV 943.63 Å line that, although a factor 2-6 weaker than the Fe XVIII 974.86 Å line, allows us to probe the plasma around 3.5 MK. The observed ratio between the two lines indicates (isothermal approximation) that most of the plasma in the brighter Fe XVIII AR loops is at temperatures between 3.5 and 4 MK.

  19. Active region upflows. I. Multi-instrument observations

    NASA Astrophysics Data System (ADS)

    Vanninathan, K.; Madjarska, M. S.; Galsgaard, K.; Huang, Z.; Doyle, J. G.

    2015-12-01

    Context. We study upflows at the edges of active regions, called AR outflows, using multi-instrument observations. Aims: This study intends to provide the first direct observational evidence of whether chromospheric jets play an important role in furnishing mass that could sustain coronal upflows. The evolution of the photospheric magnetic field, associated with the footpoints of the upflow region and the plasma properties of active region upflows is investigated with the aim of providing information for benchmarking data-driven modelling of this solar feature. Methods: We spatially and temporally combine multi-instrument observations obtained with the Extreme-ultraviolet Imaging Spectrometer on board the Hinode, the Atmospheric Imaging Assembly and the Helioseismic Magnetic Imager instruments on board the Solar Dynamics Observatory and the Interferometric BI-dimensional Spectro-polarimeter installed at the National Solar Observatory, Sac Peak, to study the plasma parameters of the upflows and the impact of the chromosphere on active region upflows. Results: Our analysis shows that the studied active region upflow presents similarly to those studied previously, i.e. it displays blueshifted emission of 5-20 kms-1 in Fe xii and Fe xiii and its average electron density is 1.8 × 109 cm-3 at 1 MK. The time variation of the density is obtained showing no significant change (in a 3σ error). The plasma density along a single loop is calculated revealing a drop of 50% over a distance of ~20 000 km along the loop. We find a second velocity component in the blue wing of the Fe xii and Fe xiii lines at 105 kms-1 reported only once before. For the first time we study the time evolution of this component at high cadence and find that it is persistent during the whole observing period of 3.5 h with variations of only ±15 kms-1. We also, for the first time, study the evolution of the photospheric magnetic field at high cadence and find that magnetic flux diffusion is

  20. Role of synaptic inhibition in spatiotemporal patterning of cortical activity.

    PubMed

    Bosman, Laurens; Lodder, Johannes C; van Ooyen, Arjen; Brussaard, Arjen B

    2005-01-01

    Developmental upregulation of the GABAA receptor alpha1 subunit causes a faster decay of GABAergic inhibitory postsynaptic currents (IPSCs) in the visual cortex around the time of eye opening. In alpha1 deficient mice, a juvenile type of GABAA receptors is retained during maturation. As a result the decay time of the IPSCs is longer in alpha1-/- mice than in WT mice during the whole life span of the mice. Hence they form a valuable mouse model for studies on cellular aspects of neuronal network functioning. Using voltage sensitive dye imaging methods, we monitored the spatiotemporal excitation patterning in visual cortex slices upon local stimulation of the network. We found that in the alpha1-/- mice, the ability of the network to fire synchronously at gamma-frequencies (20-50 Hz) is diminished. This finding indicates that early onset of GABA synapse maturation is required for the normal neuronal network function in the maturating visual cortex. PMID:15581707

  1. Multi-wavelength Observations of Solar Active Region NOAA 7154

    NASA Technical Reports Server (NTRS)

    Bruner, M. E.; Nitta, N. V.; Frank. Z. A.; Dame, L.; Suematsu, Y.

    2000-01-01

    We report on observations of a solar active region in May 1992 by the Solar Plasma Diagnostic Experiment (SPDE) in coordination with the Yohkoh satellite (producing soft X-ray images) and ground-based observatories (producing photospheric magnetograms and various filtergrams including those at the CN 3883 A line). The main focus is a study of the physical conditions of hot (T is approximately greater than 3 MK) coronal loops at their foot-points. The coronal part of the loops is fuzzy but what appear to be their footpoints in the transition region down to the photosphere are compact. Despite the morphological similarities, the footpoint emission at 10(exp 5) K is not quantitatively correlated with that at approximately 300 km above the tau (sub 5000) = 1 level, suggesting that the heat transport and therefore magnetic field topology in the intermediate layer is complicated. High resolution imaging observations with continuous temperature coverage are crucially needed.

  2. Patterns in atmospheric carbonaceous aerosols in China: emission estimates and observed concentrations

    NASA Astrophysics Data System (ADS)

    Cui, H.; Mao, P.; Zhao, Y.; Nielsen, C. P.; Zhang, J.

    2015-03-01

    remote sites, attributed partly to weaker atmospheric oxidation and SOC formation compared to summer. Enhanced SOC formation from oxidization and anthropogenic activities like biomass combustion is judged to have crucial effects on severe haze events characterized by high particle concentrations. Several observational studies indicate an increasing trend in ambient OC/EC (but not in OC or EC individually) from 2000 to 2010, confirming increased atmospheric oxidation of OC across the country. Combining the results of emission estimation and observations, the improvement over prior emission inventories is indicated by inter-annual comparisons and correlation analysis. It is also indicated, however, that the estimated growth in emissions might be faster than observed growth, and that some sources with high primary OC/EC like burning of biomass are still underestimated. Further studies to determine changing emission factors over time in the residential sector and to compare to other measurements such as satellite observations are thus suggested to improve understanding of the levels and trends of primary carbonaceous aerosol emissions in China.

  3. Patterns in atmospheric carbonaceous aerosols in China: emission estimates and observed concentrations

    NASA Astrophysics Data System (ADS)

    Cui, H.; Mao, P.; Zhao, Y.; Nielsen, C. P.; Zhang, J.

    2015-08-01

    , attributed partly to weaker atmospheric oxidation and SOC formation compared to summer. Enhanced SOC formation from oxidization and anthropogenic activities like biomass combustion is judged to have crucial effects on severe haze events characterized by high particle concentrations. Several observational studies indicate an increasing trend in ambient OC / EC (but not in OC or EC individually) from 2000 to 2010, confirming increased atmospheric oxidation of OC across the country. Combining the results of emission estimation and observations, the improvement over prior emission inventories is indicated by inter-annual comparisons and correlation analysis. It is also indicated, however, that the estimated growth in emissions might be faster than observed growth, and that some sources with high primary OC / EC, such as burning of biomass, are still underestimated. Further studies to determine changing EFs over time in the residential sector and to compare to other measurements, such as satellite observations, are thus suggested to improve understanding of the levels and trends of primary carbonaceous aerosol emissions in China.

  4. Female pheromones modulate flight muscle activation patterns during preflight warm-up

    PubMed Central

    Vickers, Neil J.; Goller, Franz

    2013-01-01

    At low ambient temperature Helicoverpa zea male moths engage in warm-up behavior prior to taking flight in response to an attractive female pheromone blend. Male H. zea warm up at a faster rate when sensing the attractive pheromone blend compared with unattractive blends or blank controls (Crespo et al. 2012), but the mechanisms involved in this olfactory modulation of the heating rate during preflight warm-up are unknown. Here, we test three possible mechanisms for increasing heat production: 1) increased rate of muscle contraction; 2) reduction in mechanical movement by increased overlap in activation of the antagonistic flight muscles; and 3) increased activation of motor units. To test which mechanisms play a role, we simultaneously recorded electrical activation patterns of the main flight muscles (dorsolongitudinal and dorsoventral muscles), wing movement, and thoracic temperature in moths exposed to both the attractive pheromone blend and a blank control. Results indicate that the main mechanism responsible for the observed increase in thoracic heating rate with pheromone stimulation is the differential activation of motor units during each muscle contraction cycle in both antagonistic flight muscles. This additional activation lengthens the contracted state within each cycle and thus accounts for the greater heat production. Interestingly, the rate of activation (frequency of contraction cycles) of motor units, which is temperature dependent, did not vary between treatments. This result suggests that the activation rate is determined by a temperature-dependent oscillator, which is not affected by the olfactory stimulus, but activation of motor units is modulated during each cycle. PMID:23699056

  5. Inference of other's internal neural models from active observation.

    PubMed

    Kim, Kyung-Joong; Cho, Sung-Bae

    2015-02-01

    Recently, there have been several attempts to replicate theory of mind, which explains how humans infer the mental states of other people using multiple sensory input, with artificial systems. One example of this is a robot that observes the behavior of other artificial systems and infers their internal models, mapping sensory inputs to the actuator's control signals. In this paper, we present the internal model as an artificial neural network, similar to biological systems. During inference, an observer can use an active incremental learning algorithm to guess an actor's internal neural model. This could significantly reduce the effort needed to guess other people's internal models. We apply an algorithm to the actor-observer robot scenarios with/without prior knowledge of the internal models. To validate our approach, we use a physics-based simulator with virtual robots. A series of experiments reveal that the observer robot can construct an "other's self-model", validating the possibility that a neural-based approach can be used as a platform for learning cognitive functions. PMID:25617791

  6. Physical activity and sedentary activity patterns among children and adolescents: a latent class analysis approach

    PubMed Central

    Heitzler, Carrie; Lytle, Leslie; Erickson, Darin; Sirard, John; Barr-Anderson, Daheia; Story, Marry

    2010-01-01

    Background While much is known about the overall levels of physical activity and sedentary activity among youth, few studies have attempted to define clusters of such behaviors. The purpose of this study was to identify and describe unique classes of youth based on their participation in a variety of physical activity and sedentary behaviors. Methods Latent class analysis was used to characterize segments of youth based on patterns of self-reported and accelerometer-measured participation in 12 behaviors. Children and adolescents (N=720) from 6th–11th grade were included in the analysis. Differences in class membership were examined using multinomial logistic regression. Results Three distinct classes emerged for boys and girls. Among boys, the three classes were characterized as: (1) “Active” (42.1%), (2) “Sedentary” (24.9%), and (3) “Low Media/Moderate Activity” (33.0%). For girls, classes were: (1) “Active” (18.7%), (2) “Sedentary” (47.6%), and (3) “Low Media/Functional Activity” (33.7%). Significant differences were found between the classes for a number of demographic indicators including the proportion in each class who were classified as overweight or obese. Conclusions The behavioral profiles of the classes identified in this study can be used to suggest possible audience segments for intervention and to tailor strategies appropriately. PMID:21597117

  7. Observations on studies useful to asbestos operations and management activities

    SciTech Connect

    Wilmoth, R.C.; Powers, T.J.; Millette, J.R.

    1991-01-01

    Asbestos-containing materials found in buildings may release asbestos fibers into the air. Some of these fibers will eventually settle and attach to room surfaces (walls, furnishings, equipment, floors, and carpet) as part of normal dust. Activities like dusting, sweeping and vacuuming are likely to re-entrain the dust causing exposure to airborne asbestos. The paper discusses data that are largely observational in nature, but are illustrative of general trends of interest to those individuals dealing with the day-to-day problems of asbestos in buildings.

  8. fMRI activation patterns in an analytic reasoning task: consistency with EEG source localization

    NASA Astrophysics Data System (ADS)

    Li, Bian; Vasanta, Kalyana C.; O'Boyle, Michael; Baker, Mary C.; Nutter, Brian; Mitra, Sunanda

    2010-03-01

    Functional magnetic resonance imaging (fMRI) is used to model brain activation patterns associated with various perceptual and cognitive processes as reflected by the hemodynamic (BOLD) response. While many sensory and motor tasks are associated with relatively simple activation patterns in localized regions, higher-order cognitive tasks may produce activity in many different brain areas involving complex neural circuitry. We applied a recently proposed probabilistic independent component analysis technique (PICA) to determine the true dimensionality of the fMRI data and used EEG localization to identify the common activated patterns (mapped as Brodmann areas) associated with a complex cognitive task like analytic reasoning. Our preliminary study suggests that a hybrid GLM/PICA analysis may reveal additional regions of activation (beyond simple GLM) that are consistent with electroencephalography (EEG) source localization patterns.

  9. Patterns of arm muscle activation involved in octopus reaching movements.

    PubMed

    Gutfreund, Y; Flash, T; Fiorito, G; Hochner, B

    1998-08-01

    The extreme flexibility of the octopus arm allows it to perform many different movements, yet octopuses reach toward a target in a stereotyped manner using a basic invariant motor structure: a bend traveling from the base of the arm toward the tip (Gutfreund et al., 1996a). To study the neuronal control of these movements, arm muscle activation [electromyogram (EMG)] was measured together with the kinematics of reaching movements. The traveling bend is associated with a propagating wave of muscle activation, with maximal muscle activation slightly preceding the traveling bend. Tonic activation was occasionally maintained afterward. Correlation of the EMG signals with the kinematic variables (velocities and accelerations) reveals that a significant part of the kinematic variability can be explained by the level of muscle activation. Furthermore, the EMG level measured during the initial stages of movement predicts the peak velocity attained toward the end of the reaching movement. These results suggest that feed-forward motor commands play an important role in the control of movement velocity and that simple adjustment of the excitation levels at the initial stages of the movement can set the velocity profile of the whole movement. A simple model of octopus arm extension is proposed in which the driving force is set initially and is then decreased in proportion to arm diameter at the bend. The model qualitatively reproduces the typical velocity profiles of octopus reaching movements, suggesting a simple control mechanism for bend propagation in the octopus arm. PMID:9671683

  10. Activity patterns of bushbuck (Tragelaphus scriptus) in Queen Elizabeth National Park.

    PubMed

    Wronski, T; Apio, A; Plath, M

    2006-11-01

    Activity patterns and time budgets of bushbuck (Tragelaphus scriptus) were studied in a free-ranging population in Queen Elizabeth National Park, Uganda from August 2000 to January 2002. We investigated differences in activity patterns in relation to daytime, season, sun radiation, moonlight, age and sex. Bushbuck were found to show peak activities around sunrise and at dawn. No difference in the mean activity rates was found between the dry and wet season. Daytime activity was not predicted by differences in sun radiation, nor was nighttime activity predicted by the presence or absence of moonlight. We found the activity of adult territorial males to be strongly positively correlated with that of females, whereas the activity of young-adult non-territorial males was not significantly correlated with the activity of females. This suggests that young-adult males shift their peak activity to phases when adult territorial males are less active. PMID:16962727

  11. Association of lifestyle-related factors with circadian onset patterns of acute myocardial infarction: a prospective observational study in Japan

    PubMed Central

    Edahiro, Ryuya; Sakata, Yasuhiko; Nakatani, Daisaku; Suna, Shinichiro; Usami, Masaya; Matsumoto, Sen; Hara, Masahiko; Kitamura, Tetsuhisa; Sato, Hiroshi; Yamashita, Shizuya; Nanto, Shinsuke; Hikoso, Shungo; Sakata, Yasushi; Hori, Masatsugu; Hamasaki, Toshimitsu; Komuro, Issei

    2014-01-01

    Objective The onset of acute myocardial infarction (AMI) shows characteristic circadian variations involving a definite morning peak and a less-defined night-time peak. However, the factors influencing the circadian patterns of AMI onset and their influence on morning and night-time peaks have not been fully elucidated. Design, setting and participants An analysis of patients registered between 1998 and 2008 in the Osaka Acute Coronary Insufficiency Study, which is a prospective, multicentre observational study of patients with AMI in the Osaka region of Japan. The present study included 7755 consecutive patients with a known time of AMI onset. Main outcomes and measures A mixture of two von Mises distributions was used to examine whether a circadian pattern of AMI had uniform, unimodal or bimodal distribution, and the likelihood ratio test was then used to select the best circadian pattern among them. The hierarchical likelihood ratio test was used to identify factors affecting the circadian patterns of AMI onset. The Kaplan-Meier method was used to estimate survival curves of 1-year mortality according to AMI onset time. Results The overall population had a bimodal circadian pattern of AMI onset characterised by a high and sharp morning peak and a lower and less-defined night-time peak (bimodal p<0.001). Although several lifestyle-related factors had a statistically significant association with the circadian patterns of AMI onset, serum triglyceride levels had the most prominent association with the circadian patterns of AMI onset. Patients with triglyceride ≥150 mg/dL on admission had only one morning peak in the circadian pattern of AMI onset during weekdays, with no peaks detected on weekends, whereas all other subgroups had two peaks throughout the week. Conclusions The circadian pattern of AMI onset was characterised by bimodality. Notably, several lifestyle-related factors, particularly serum triglyceride levels, had a strong relation with the circadian

  12. Patterns of functional enzyme activity in fungus farming ambrosia beetles

    PubMed Central

    2012-01-01

    Introduction In wood-dwelling fungus-farming weevils, the so-called ambrosia beetles (Curculionidae: Scolytinae and Platypodinae), wood in the excavated tunnels is used as a medium for cultivating fungi by the combined action of digging larvae (which create more space for the fungi to grow) and of adults sowing and pruning the fungus. The beetles are obligately dependent on the fungus that provides essential vitamins, amino acids and sterols. However, to what extent microbial enzymes support fungus farming in ambrosia beetles is unknown. Here we measure (i) 13 plant cell-wall degrading enzymes in the fungus garden microbial consortium of the ambrosia beetle Xyleborinus saxesenii, including its primary fungal symbionts, in three compartments of laboratory maintained nests, at different time points after gallery foundation and (ii) four specific enzymes that may be either insect or microbially derived in X. saxesenii adult and larval individuals. Results We discovered that the activity of cellulases in ambrosia fungus gardens is relatively small compared to the activities of other cellulolytic enzymes. Enzyme activity in all compartments of the garden was mainly directed towards hemicellulose carbohydrates such as xylan, glucomannan and callose. Hemicellulolytic enzyme activity within the brood chamber increased with gallery age, whereas irrespective of the age of the gallery, the highest overall enzyme activity were detected in the gallery dump material expelled by the beetles. Interestingly endo-β-1,3(4)-glucanase activity capable of callose degradation was identified in whole-body extracts of both larvae and adult X. saxesenii, whereas endo-β-1,4-xylanase activity was exclusively detected in larvae. Conclusion Similar to closely related fungi associated with bark beetles in phloem, the microbial symbionts of ambrosia beetles hardly degrade cellulose. Instead, their enzyme activity is directed mainly towards comparatively more easily accessible hemicellulose

  13. Spatiotemporal activity patterns of rat cortical neurons predict responses in a conditioned task

    PubMed Central

    Villa, Alessandro E. P.; Tetko, Igor V.; Hyland, Brian; Najem, Abdellatif

    1999-01-01

    Precise and repeated spike-train timings within and across neurons define spatiotemporal patterns of activity. Although the existence of these patterns in the brain is well established in several species, there has been no direct evidence of their influence on behavioral output. To address this question, up to 15 neurons were recorded simultaneously in the auditory cortex of freely moving rats while animals waited for acoustic cues in a Go/NoGo task. A total of 235 significant patterns were detected during this interval from an analysis of 13 hr of recording involving over 1 million spikes. Of particular interest were 129 (55%) patterns that were significantly associated with the type of response the animal made later, independent of whether the response was that prompted by the cue because the response occurred later and the cue was chosen randomly. Of these behavior-predicting patterns, half (59/129) were associated with an enhanced tendency to go in response to the stimulus, and for 11 patterns of this subset, trials including the pattern were followed by significantly faster reaction time than those lacking the pattern. The remaining behavior-predicting patterns were associated with an enhanced NoGo tendency. Overall mean discharge rates did not vary across trials. Hence, these data demonstrate that particular spatiotemporal patterns predict future behavioral responses. Such presignal activity could form templates for extracting specific sensory information, motor programs prespecifying preference for a particular act, and/or some intermediate, associative brain process. PMID:9927701

  14. Evidence for Widespread Cooling in an Active Region Observed with the SDO Atmospheric Imaging Assembly

    NASA Technical Reports Server (NTRS)

    Viall, Nicholeen M.; Klimchuk, James A.

    2012-01-01

    A well known behavior of EUV light curves of discrete coronal loops is that the peak intensities of cooler channels or spectral lines are reached at progressively later times. This time lag is understood to be the result of hot coronal loop plasma cooling through these lower respective temperatures. However, loops typically comprise only a minority of the total emission in active regions. Is this cooling pattern a common property of active region coronal plasma, or does it only occur in unique circumstances, locations, and times? The new SDO/AIA data provide a wonderful opportunity to answer this question systematically for an entire active region. We measure the time lag between pairs of SDO/AIA EUV channels using 24 hours of images of AR 11082 observed on 19 June 2010. We find that there is a time-lag signal consistent with cooling plasma, just as is usually found for loops, throughout the active region including the diffuse emission between loops for the entire 24 hour duration. The pattern persists consistently for all channel pairs and choice of window length within the 24 hour time period, giving us confidence that the plasma is cooling from temperatures of greater than 3 MK, and sometimes exceeding 7 MK, down to temperatures lower than approx. 0.8 MK. This suggests that the bulk of the emitting coronal plasma in this active region is not steady; rather, it is dynamic and constantly evolving. These measurements provide crucial constraints on any model which seeks to describe coronal heating.

  15. Prediction of compounds in different local structure-activity relationship environments using emerging chemical patterns.

    PubMed

    Namasivayam, Vigneshwaran; Gupta-Ostermann, Disha; Balfer, Jenny; Heikamp, Kathrin; Bajorath, Jürgen

    2014-05-27

    Active compounds can participate in different local structure-activity relationship (SAR) environments and introduce different degrees of local SAR discontinuity, depending on their structural and potency relationships in data sets. Such SAR features have thus far mostly been analyzed using descriptive approaches, in particular, on the basis of activity landscape modeling. However, compounds in different local SAR environments have not yet been predicted. Herein, we adapt the emerging chemical patterns (ECP) method, a machine learning approach for compound classification, to systematically predict compounds with different local SAR characteristics. ECP analysis is shown to accurately assign many compounds to different local SAR environments across a variety of activity classes covering the entire range of observed local SARs. Control calculations using random forests and multiclass support vector machines were carried out and a variety of statistical performance measures were applied. In all instances, ECP calculations yielded comparable or better performance than controls. The approach presented herein can be applied to predict compounds that complement local SARs or prioritize compounds with different SAR characteristics. PMID:24803014

  16. Preliminary observations on the ability of hyperspectral imaging to provide detection and visualization of bloodstain patterns on black fabrics.

    PubMed

    Schuler, Rebecca L; Kish, Paul E; Plese, Cara A

    2012-11-01

    The analysis of bloodstain patterns can assist investigators in understanding the circumstances surrounding a violent crime. Bloodstains are routinely subjected to pattern analysis, which is inherently dependent upon the ability of the examiner to locate and visualize bloodstain patterns on items of evidence. Often, the ability to properly visualize bloodstain patterns is challenging, especially when the stain patterns occur on dark and/or patterned substrates. In this study, preliminary research was performed to better understand how near-infrared reflectance hyperspectral imaging (HSI) could be used to observe bloodstain patterns on commonly encountered black fabrics. The ability of HSI to visualize latent bloodstains on several commonly encountered substrates is demonstrated. The images acquired through HSI are of sufficient quality to allow for differentiation between stains produced from an impact mechanism or a transfer mechanism. This study also serves as a proof of concept in the differentiation of multiple staining materials. Because of its ability to generate spectral data, the data provide a preliminary separation of stains where more than one type of stain existed. PMID:22563710

  17. Prostate segmentation with local binary patterns guided active appearance models

    NASA Astrophysics Data System (ADS)

    Ghose, Soumya; Oliver, Arnau; Martí, Robert; Lladó, Xavier; Freixenet, Jordi; Vilanova, Joan C.; Meriaudeau, Fabrice

    2011-03-01

    Real-time fusion of Magnetic Resonance (MR) and Trans Rectal Ultra Sound (TRUS) images aid in the localization of malignant tissues in TRUS guided prostate biopsy. Registration performed on segmented contours of the prostate reduces computational complexity and improves the multimodal registration accuracy. However, accurate and computationally efficient segmentation of the prostate in TRUS images could be challenging in the presence of heterogeneous intensity distribution inside the prostate gland, and other imaging artifacts like speckle noise, shadow regions and low Signal to Noise Ratio (SNR). In this work, we propose to enhance the texture features of the prostate region using Local Binary Patterns (LBP) for the propagation of a shape and appearance based statistical model to segment the prostate in a multi-resolution framework. A parametric model of the propagating contour is derived from Principal Component Analysis (PCA) of the prior shape and texture information of the prostate from the training data. The estimated parameters are then modified with the prior knowledge of the optimization space to achieve an optimal segmentation. The proposed method achieves a mean Dice Similarity Coefficient (DSC) value of 0.94+/-0.01 and a mean segmentation time of 0.68+/-0.02 seconds when validated with 70 TRUS images of 7 datasets in a leave-one-patient-out validation framework. Our method performs computationally efficient and accurate prostate segmentation in the presence of intensity heterogeneities and imaging artifacts.

  18. Biogeographic patterns in below-ground diversity in New York City's Central Park are similar to those observed globally

    PubMed Central

    Ramirez, Kelly S.; Leff, Jonathan W.; Barberán, Albert; Bates, Scott Thomas; Betley, Jason; Crowther, Thomas W.; Kelly, Eugene F.; Oldfield, Emily E.; Shaw, E. Ashley; Steenbock, Christopher; Bradford, Mark A.; Wall, Diana H.; Fierer, Noah

    2014-01-01

    Soil biota play key roles in the functioning of terrestrial ecosystems, however, compared to our knowledge of above-ground plant and animal diversity, the biodiversity found in soils remains largely uncharacterized. Here, we present an assessment of soil biodiversity and biogeographic patterns across Central Park in New York City that spanned all three domains of life, demonstrating that even an urban, managed system harbours large amounts of undescribed soil biodiversity. Despite high variability across the Park, below-ground diversity patterns were predictable based on soil characteristics, with prokaryotic and eukaryotic communities exhibiting overlapping biogeographic patterns. Further, Central Park soils harboured nearly as many distinct soil microbial phylotypes and types of soil communities as we found in biomes across the globe (including arctic, tropical and desert soils). This integrated cross-domain investigation highlights that the amount and patterning of novel and uncharacterized diversity at a single urban location matches that observed across natural ecosystems spanning multiple biomes and continents. PMID:25274366

  19. Spatiotemporal ecohydrological patterns and processes in temperate uplands: linking field observations and model results

    NASA Astrophysics Data System (ADS)

    Dodd, N. H.; Baird, A. J.; Wainwright, J.; Dunn, S. M.

    2011-12-01

    There are obvious surface expressions - in terms of vegetation patterning - of ecohydrological feedbacks on dryland and peatland hillslopes. Much less is known about subsurface ecohydrological patterns, and whether or not they 'map onto' surface patterns. Likewise, few attempts have been made to investigate how such ecohydrological patterns affect whole-hillslope hydrological behaviour or how widespread they are in non-dryland and non-peatland hillslopes. In this study we investigate surface and near- surface patterning in temperate hillslopes, which to date have been the focus of much hydrological work but little ecohydrological work. In particular, we consider the extent to which the direct and the indirect effects of past and present plant assemblages on local and whole-hillslope soil moisture conditions may contribute to patterning. We have conducted a field study of two temperate upland hillslopes in Northern Scotland, UK, on one of which human intervention plays a major part in shaping the landscape. Repeat measurements have been made of near- surface soil-moisture content, taken at lag distances of 0.25 m to 20 m, under different antecedent hydrological conditions together with characterisation of plant assemblages at the same points through both ground-based vegetation surveys of 1 m × 1 m plots and kite aerial photography (KAP) of > 20 m2 plots. Results from this have indicated that changes in ecohydrological patterns can occur over small spatial scales (< 1 m2) and short time scales (< 1 day). Comparison of values of near-surface soil moisture content with topographic wetness indices, calculated using 1 -m resolution topographic data collected in the field, has highlighted that topography does not explain all of the spatial variation in soil moisture content at this scale. KAP images allowed detection of vegetation patterns not obvious from the ground. Comparison of KAP images and historic aerial photographs has highlighted the persistence of vegetation

  20. Analysis of the access patterns at GSFC distributed active archive center

    NASA Technical Reports Server (NTRS)

    Johnson, Theodore; Bedet, Jean-Jacques

    1996-01-01

    The Goddard Space Flight Center (GSFC) Distributed Active Archive Center (DAAC) has been operational for more than two years. Its mission is to support existing and pre Earth Observing System (EOS) Earth science datasets, facilitate the scientific research, and test Earth Observing System Data and Information System (EOSDIS) concepts. Over 550,000 files and documents have been archived, and more than six Terabytes have been distributed to the scientific community. Information about user request and file access patterns, and their impact on system loading, is needed to optimize current operations and to plan for future archives. To facilitate the management of daily activities, the GSFC DAAC has developed a data base system to track correspondence, requests, ingestion and distribution. In addition, several log files which record transactions on Unitree are maintained and periodically examined. This study identifies some of the users' requests and file access patterns at the GSFC DAAC during 1995. The analysis is limited to the subset of orders for which the data files are under the control of the Hierarchical Storage Management (HSM) Unitree. The results show that most of the data volume ordered was for two data products. The volume was also mostly made up of level 3 and 4 data and most of the volume was distributed on 8 mm and 4 mm tapes. In addition, most of the volume ordered was for deliveries in North America although there was a significant world-wide use. There was a wide range of request sizes in terms of volume and number of files ordered. On an average 78.6 files were ordered per request. Using the data managed by Unitree, several caching algorithms have been evaluated for both hit rate and the overhead ('cost') associated with the movement of data from near-line devices to disks. The algorithm called LRU/2 bin was found to be the best for this workload, but the STbin algorithm also worked well.

  1. Prescribing patterns in dementia: a multicentre observational study in a German network of CAM physicians

    PubMed Central

    2011-01-01

    Background Dementia is a major and increasing health problem worldwide. This study aims to investigate dementia treatment strategies among physicians specialised in complementary and alternative medicine (CAM) by analysing prescribing patterns and comparing them to current treatment guidelines in Germany. Methods Twenty-two primary care physicians in Germany participated in this prospective, multicentre observational study. Prescriptions and diagnoses were reported for each consecutive patient. Data were included if patients had at least one diagnosis of dementia according to the 10th revision of the International Classification of Diseases during the study period. Multiple logistic regression was used to determine factors associated with a prescription of any anti-dementia drug including Ginkgo biloba. Results During the 5-year study period (2004-2008), 577 patients with dementia were included (median age: 81 years (IQR: 74-87); 69% female). Dementia was classified as unspecified dementia (57.2%), vascular dementia (25.1%), dementia in Alzheimer's disease (10.4%), and dementia in Parkinson's disease (7.3%). The prevalence of anti-dementia drugs was 25.6%. The phytopharmaceutical Ginkgo biloba was the most frequently prescribed anti-dementia drug overall (67.6% of all) followed by cholinesterase inhibitors (17.6%). The adjusted odds ratio (AOR) for receiving any anti-dementia drug was greater than 1 for neurologists (AOR = 2.34; CI: 1.59-3.47), the diagnosis of Alzheimer's disease (AOR = 3.28; CI: 1.96-5.50), neuroleptic therapy (AOR = 1.87; CI: 1.22-2.88), co-morbidities hypertension (AOR = 2.03; CI: 1.41-2.90), and heart failure (AOR = 4.85; CI: 3.42-6.88). The chance for a prescription of any anti-dementia drug decreased with the diagnosis of vascular dementia (AOR = 0.64; CI: 0.43-0.95) and diabetes mellitus (AOR = 0.55; CI: 0.36-0.86). The prescription of Ginkgo biloba was associated with sex (female: AOR = 0.41; CI: 0.19-0.89), patient age (AOR = 1.06; CI: 1

  2. Nogo-A-deficient Transgenic Rats Show Deficits in Higher Cognitive Functions, Decreased Anxiety, and Altered Circadian Activity Patterns

    PubMed Central

    Petrasek, Tomas; Prokopova, Iva; Sladek, Martin; Weissova, Kamila; Vojtechova, Iveta; Bahnik, Stepan; Zemanova, Anna; Schönig, Kai; Berger, Stefan; Tews, Björn; Bartsch, Dusan; Schwab, Martin E.; Sumova, Alena; Stuchlik, Ales

    2014-01-01

    Decreased levels of Nogo-A-dependent signaling have been shown to affect behavior and cognitive functions. In Nogo-A knockout and knockdown laboratory rodents, behavioral alterations were observed, possibly corresponding with human neuropsychiatric diseases of neurodevelopmental origin, particularly schizophrenia. This study offers further insight into behavioral manifestations of Nogo-A knockdown in laboratory rats, focusing on spatial and non-spatial cognition, anxiety levels, circadian rhythmicity, and activity patterns. Demonstrated is an impairment of cognitive functions and behavioral flexibility in a spatial active avoidance task, while non-spatial memory in a step-through avoidance task was spared. No signs of anhedonia, typical for schizophrenic patients, were observed in the animals. Some measures indicated lower anxiety levels in the Nogo-A-deficient group. Circadian rhythmicity in locomotor activity was preserved in the Nogo-A knockout rats and their circadian period (tau) did not differ from controls. However, daily activity patterns were slightly altered in the knockdown animals. We conclude that a reduction of Nogo-A levels induces changes in CNS development, manifested as subtle alterations in cognitive functions, emotionality, and activity patterns. PMID:24672453

  3. Cerebral Activity Changes in Different Traditional Chinese Medicine Patterns of Psychogenic Erectile Dysfunction Patients

    PubMed Central

    Liu, Qi; Zhang, Peihai; Pan, Junjie; Li, Zhengjie; Liu, Jixin; Li, Guangsen; Qin, Wei; You, Yaodong; Yu, Xujun; Sun, Jinbo; Dong, Minghao; Gong, Qiyong; Guo, Jun; Chang, Degui

    2015-01-01

    Background. Pattern differentiation is the foundation of traditional Chinese medicine (TCM) treatment for erectile dysfunction (ED). This study aims to investigate the differences in cerebral activity in ED patients with different TCM patterns. Methods. 27 psychogenic ED patients and 27 healthy subjects (HS) were enrolled in this study. Each participant underwent an fMRI scan in resting state. The fractional amplitude of low-frequency fluctuation (fALFF) was used to detect the brain activity changes in ED patients with different patterns. Results. Compared to HS, ED patients showed an increased cerebral activity in bilateral cerebellum, insula, globus pallidus, parahippocampal gyrus, orbitofrontal cortex (OFC), and middle cingulate cortex (MCC). Compared to the patients with liver-qi stagnation and spleen deficiency pattern (LSSDP), the patients with kidney-yang deficiency pattern (KDP) showed an increased activity in bilateral brainstem, cerebellum, hippocampus, and the right insula, thalamus, MCC, and a decreased activity in bilateral putamen, medial frontal gyrus, temporal pole, and the right caudate nucleus, OFC, anterior cingulate cortex, and posterior cingulate cortex (P < 0.005). Conclusions. The ED patients with different TCM patterns showed different brain activities. The differences in cerebral activity between LSSDP and KDP were mainly in the emotion-related regions, including prefrontal cortex and cingulated cortex. PMID:26180534

  4. Fermi Observations of TeV-Selected Active Galactic Nuclei

    NASA Astrophysics Data System (ADS)

    Abdo, A. A.; Ackermann, M.; Ajello, M.; Atwood, W. B.; Axelsson, M.; Baldini, L.; Ballet, J.; Barbiellini, G.; Baring, M. G.; Bastieri, D.; Bechtol, K.; Bellazzini, R.; Berenji, B.; Bloom, E. D.; Bonamente, E.; Borgland, A. W.; Bregeon, J.; Brez, A.; Brigida, M.; Bruel, P.; Burnett, T. H.; Caliandro, G. A.; Cameron, R. A.; Caraveo, P. A.; Casandjian, J. M.; Cavazzuti, E.; Cecchi, C.; Çelik, Ö.; Chekhtman, A.; Cheung, C. C.; Chiang, J.; Ciprini, S.; Claus, R.; Cohen-Tanugi, J.; Cominsky, L. R.; Conrad, J.; Cutini, S.; de Angelis, A.; de Palma, F.; Di Bernardo, G.; Silva, E. do Couto e.; Drell, P. S.; Drlica-Wagner, A.; Dubois, R.; Dumora, D.; Farnier, C.; Favuzzi, C.; Fegan, S. J.; Finke, J.; Focke, W. B.; Fortin, P.; Foschini, L.; Frailis, M.; Fukazawa, Y.; Funk, S.; Fusco, P.; Gargano, F.; Gasparrini, D.; Gehrels, N.; Germani, S.; Giavitto, G.; Giebels, B.; Giglietto, N.; Giommi, P.; Giordano, F.; Glanzman, T.; Godfrey, G.; Grenier, I. A.; Grondin, M.-H.; Grove, J. E.; Guillemot, L.; Guiriec, S.; Hanabata, Y.; Hayashida, M.; Hays, E.; Horan, D.; Hughes, R. E.; Jackson, M. S.; Jóhannesson, G.; Johnson, A. S.; Johnson, R. P.; Johnson, W. N.; Kamae, T.; Katagiri, H.; Kataoka, J.; Kawai, N.; Kerr, M.; Knödlseder, J.; Kocian, M. L.; Kuss, M.; Lande, J.; Latronico, L.; Lemoine-Goumard, M.; Longo, F.; Loparco, F.; Lott, B.; Lovellette, M. N.; Lubrano, P.; Madejski, G. M.; Makeev, A.; Mazziotta, M. N.; McConville, W.; McEnery, J. E.; Meurer, C.; Michelson, P. F.; Mitthumsiri, W.; Mizuno, T.; Moiseev, A. A.; Monte, C.; Monzani, M. E.; Morselli, A.; Moskalenko, I. V.; Murgia, S.; Nolan, P. L.; Norris, J. P.; Nuss, E.; Ohsugi, T.; Omodei, N.; Orlando, E.; Ormes, J. F.; Ozaki, M.; Paneque, D.; Panetta, J. H.; Parent, D.; Pelassa, V.; Pepe, M.; Pesce-Rollins, M.; Piron, F.; Porter, T. A.; Rainò, S.; Rando, R.; Razzano, M.; Reimer, A.; Reimer, O.; Reposeur, T.; Reyes, L. C.; Ritz, S.; Rochester, L. S.; Rodriguez, A. Y.; Roth, M.; Ryde, F.; Sadrozinski, H. F.-W.; Sanchez, D.; Sander, A.; Saz Parkinson, P. M.; Scargle, J. D.; Schalk, T. L.; Sellerholm, A.; Sgrò, C.; Shaw, M. S.; Siskind, E. J.; Smith, D. A.; Smith, P. D.; Spandre, G.; Spinelli, P.; Strickman, M. S.; Suson, D. J.; Tajima, H.; Takahashi, H.; Takahashi, T.; Tanaka, T.; Tanaka, Y.; Thayer, J. B.; Thayer, J. G.; Thompson, D. J.; Tibaldo, L.; Torres, D. F.; Tosti, G.; Tramacere, A.; Uchiyama, Y.; Usher, T. L.; Vasileiou, V.; Vilchez, N.; Vitale, V.; Waite, A. P.; Wang, P.; Winer, B. L.; Wood, K. S.; Ylinen, T.; Ziegler, M.

    2009-12-01

    We report on observations of TeV-selected active galactic nuclei (AGNs) made during the first 5.5 months of observations with the Large Area Telescope (LAT) on-board the Fermi Gamma-ray Space Telescope (Fermi). In total, 96 AGNs were selected for study, each being either (1) a source detected at TeV energies (28 sources) or (2) an object that has been studied with TeV instruments and for which an upper limit has been reported (68 objects). The Fermi observations show clear detections of 38 of these TeV-selected objects, of which 21 are joint GeV-TeV sources, and 29 were not in the third EGRET catalog. For each of the 38 Fermi-detected sources, spectra and light curves are presented. Most can be described with a power law of spectral index harder than 2.0, with a spectral break generally required to accommodate the TeV measurements. Based on an extrapolation of the Fermi spectrum, we identify sources, not previously detected at TeV energies, which are promising targets for TeV instruments. Evidence for systematic evolution of the γ-ray spectrum with redshift is presented and discussed in the context of interaction with the extragalactic background light.

  5. UV Observations of Prominence Activation and Cool Loop Dynamics

    NASA Technical Reports Server (NTRS)

    Kucera, Therese A.; Landi, Enrico

    2006-01-01

    In this paper we investigate the thermal and dynamic properties of dynamic structures in and around a prominence channel observed on the limb on 17 April 2003. Observations were taken with the Solar and Heliospheric Observatory's Solar Ultraviolet Measurements of Emitted Radiation (SOHO/SUMER) in lines formed at temperatures from 80,000 to 1.6 MK. The instrument was pointed to a single location and took a series of 90 s exposures. Two-dimensional context was provided by the Transition Region and Coronal Explorer (TRACE) in the UV and EUV and the Kanzelhohe Solar Observatory in H-alpha. Two dynamic features were studied in depth: an activated prominence and repeated motions in a loop near the prominence. We calculated three-dimensional geometries and trajectories, differential emission measure, and limits on the mass, pressure, average density, and kinetic and thermal energies. These observations provide important tests for models of dynamics in prominences and cool (approx. 10(exp 5) K)loops, which will ultimately lead to a better understanding the mechanism(s) leading to energy and mass flow in these solar features.

  6. Emergent patterns from probabilistic generalizations of lateral activation and inhibition

    PubMed Central

    Kabla, Alexandre

    2016-01-01

    The combination of laterally activating and inhibiting feedbacks is well known to spontaneously generate spatial organization. It was introduced by Gierer and Meinhardt as an extension of Turing's great insight that two reacting and diffusing chemicals can spontaneously drive spatial morphogenesis per se. In this study, we develop an accessible nonlinear and discrete probabilistic model to study simple generalizations of lateral activation and inhibition. By doing so, we identify a range of modes of morphogenesis beyond the familiar Turing-type modes; notably, beyond stripes, hexagonal nets, pores and labyrinths, we identify labyrinthine highways, Kagome lattices, gyrating labyrinths and multi-colour travelling waves and spirals. The results are discussed within the context of Turing's original motivating interest: the mechanisms which underpin the morphogenesis of living organisms. PMID:27170648

  7. Patterns of Neural Activity in Networks with Complex Connectivity

    NASA Astrophysics Data System (ADS)

    Solla, Sara A.

    2008-03-01

    An understanding of emergent dynamics on complex networks requires investigating the interplay between the intrinsic dynamics of the node elements and the connectivity of the network in which they are embedded. In order to address some of these questions in a specific scenario of relevance to the dynamical states of neural ensembles, we have studied the collective behavior of excitable model neurons in a network with small-world topology. The small-world network has local lattice order, but includes a number of randomly placed connections that may provide connectivity shortcuts. This topology bears a schematic resemblance to the connectivity of the cerebral cortex, in which neurons are most strongly coupled to nearby cells within fifty to a hundred micrometers, but also make projections to cells millimeters away. We find that the dynamics of this small-world network of excitable neurons depend mostly on both the density of shortcuts and the delay associated with neuronal projections. In the regime of low shortcut density, the system exhibits persistent activity in the form of propagating waves, which annihilate upon collision and are spawned anew via the re-injection of activity through shortcut connections. As the density of shortcuts reaches a critical value, the system undergoes a transition to failure. The critical shortcut density results from matching the time associated with a recurrent path through the network to an intrinsic recovery time of the individual neurons. Furthermore, if the delay associated with neuronal interactions is sufficiently long, activity reemerges above the critical density of shortcuts. The activity in this regime exhibits long, chaotic transients composed of noisy, large-amplitude population bursts.

  8. Location, Timing, and Social Structure Patterns Related to Physical Activity Participation in Weight Loss Programs

    ERIC Educational Resources Information Center

    Gay, Jennifer L.; Trevarthen, Grace

    2013-01-01

    Less than half of the adults in the United States meet national guidelines for physical activity. Physical activity programs can induce short-term improvements in physical activity. To develop effective interventions, researchers and practitioners should consider the timing, location, and social structure patterns of participants. Using a pretest,…

  9. Study of Rayleigh-Benard convection by pattern of water molecular flow observation as function of temperature difference

    NASA Astrophysics Data System (ADS)

    Poluakan, Cosmas; Yusuf, Yusril; Tiwow, Vistarani Arini

    2012-06-01

    An observation set up of Rayleigh Benard Convection (RBC) phenomenon has been developed. Observation set up made from glass box limited by two reservoirs, i.e. bottom and top reservoirs. The bottom reservoir is hotter than the top reservoir which has function to heat horizontal layers of fluid from below. The used media to observe fluid dynamics is water which mixed by teak saw dust as representation of water molecular. The observation show that increasing of temperature difference (ΔT) between two reservoirs causes the pattern of water molecular flow was different i.e. laminar and turbulent.

  10. Language affects patterns of brain activation associated with perceptual decision.

    PubMed

    Tan, Li Hai; Chan, Alice H D; Kay, Paul; Khong, Pek-Lan; Yip, Lawrance K C; Luke, Kang-Kwong

    2008-03-11

    Well over half a century ago, Benjamin Lee Whorf [Carroll JB (1956) Language, Thought, and Reality: Selected Writings of Benjamin Lee Whorf (MIT Press, Cambridge, MA)] proposed that language affects perception and thought and is used to segment nature, a hypothesis that has since been tested by linguistic and behavioral studies. Although clear Whorfian effects have been found, it has not yet been demonstrated that language influences brain activity associated with perception and/or immediate postperceptual processes (referred hereafter as "perceptual decision"). Here, by using functional magnetic resonance imaging, we show that brain regions mediating language processes participate in neural networks activated by perceptual decision. When subjects performed a perceptual discrimination task on easy-to-name and hard-to-name colored squares, largely overlapping cortical regions were identified, which included areas of the occipital cortex critical for color vision and regions in the bilateral frontal gyrus. Crucially, however, in comparison with hard-to-name colored squares, perceptual discrimination of easy-to-name colors evoked stronger activation in the left posterior superior temporal gyrus and inferior parietal lobule, two regions responsible for word-finding processes, as demonstrated by a localizer experiment that uses an explicit color patch naming task. This finding suggests that the language-processing areas of the brain are directly involved in visual perceptual decision, thus providing neuroimaging support for the Whorf hypothesis. PMID:18316728

  11. Neural Substrates Underlying the Passive Observation and Active Control of Translational Egomotion

    PubMed Central

    Chen, Ching-fu; Sereno, Martin I.

    2015-01-01

    Moving or static obstacles often get in the way while walking in daily life. Avoiding obstacles involves both perceptual processing of motion information and controlling appropriate defensive movements. Several higher-level motion areas, including the ventral intraparietal area (VIP), medial superior temporal area, parieto-insular vestibular cortex (PIVC), areas V6 and V6A, and cingulate sulcus visual area, have been identified in humans by passive viewing of optic flow patterns that simulate egomotion and object motion. However, the roles of these areas in the active control of egomotion in the real world remain unclear. Here, we used functional magnetic resonance imaging (fMRI) to map the neural substrates underlying the passive observation and active control of translational egomotion in humans. A wide-field virtual reality environment simulated a daily scenario where doors randomly swing outward while walking in a hallway. The stimuli of door-dodging events were essentially the same in two event-related fMRI experiments, which compared passive and active dodges in response to swinging doors. Passive dodges were controlled by a computer program, while active dodges were controlled by the subject. Passive dodges activated several higher-level areas distributed across three dorsal motion streams in the temporal, parietal, and cingulate cortex. Active dodges most strongly activated the temporal–vestibular stream, with peak activation located in the right PIVC. Other higher-level motion areas including VIP showed weaker to no activation in active dodges. These results suggest that PIVC plays an active role in sensing and guiding translational egomotion that moves an observer aside from impending obstacles. PMID:25762672

  12. Neural substrates underlying the passive observation and active control of translational egomotion.

    PubMed

    Huang, Ruey-Song; Chen, Ching-Fu; Sereno, Martin I

    2015-03-11

    Moving or static obstacles often get in the way while walking in daily life. Avoiding obstacles involves both perceptual processing of motion information and controlling appropriate defensive movements. Several higher-level motion areas, including the ventral intraparietal area (VIP), medial superior temporal area, parieto-insular vestibular cortex (PIVC), areas V6 and V6A, and cingulate sulcus visual area, have been identified in humans by passive viewing of optic flow patterns that simulate egomotion and object motion. However, the roles of these areas in the active control of egomotion in the real world remain unclear. Here, we used functional magnetic resonance imaging (fMRI) to map the neural substrates underlying the passive observation and active control of translational egomotion in humans. A wide-field virtual reality environment simulated a daily scenario where doors randomly swing outward while walking in a hallway. The stimuli of door-dodging events were essentially the same in two event-related fMRI experiments, which compared passive and active dodges in response to swinging doors. Passive dodges were controlled by a computer program, while active dodges were controlled by the subject. Passive dodges activated several higher-level areas distributed across three dorsal motion streams in the temporal, parietal, and cingulate cortex. Active dodges most strongly activated the temporal-vestibular stream, with peak activation located in the right PIVC. Other higher-level motion areas including VIP showed weaker to no activation in active dodges. These results suggest that PIVC plays an active role in sensing and guiding translational egomotion that moves an observer aside from impending obstacles. PMID:25762672

  13. Cloud — Aerosol interaction during lightning activity over land and ocean: Precipitation pattern assessment

    NASA Astrophysics Data System (ADS)

    Pal, Jayanti; Chaudhuri, Sutapa; Chowdhury, Arumita Roy; Bandyopadhyay, Tanuka

    2016-06-01

    The present study attempts to identify the land - ocean contrast in cloud - aerosol relation during lightning and non-lightning days and its effect on subsequent precipitation pattern. The thermal hypothesis in view of Convective Available Potential Energy (CAPE) behind the land - ocean contrast is observed to be insignificant in the present study region. The result shows that the lightning activities are significantly and positively correlated with aerosols over both land and ocean in case of low aerosol loading whereas for high aerosol loading the correlation is significant but, only over land. The study attempts to comprehend the mechanism through which the aerosol and lightning interact using the concept of aerosol indirect effect that includes the study of cloud effective radius, cloud fraction and precipitation rate. The result shows that the increase in lightning activity over ocean might have been caused due to the first aerosol indirect effect, while over land the aerosol indirect effect might have been suppressed due to lightning. Thus, depending on the region and relation between cloud parameters it is observed that the precipitation rate decreases (increases) over ocean during lightning (non-lightning) days. On the other hand during non-lightning days, the precipitation rate decreases over land.

  14. TRACE and SVST Observations of an Active-Region Filament

    NASA Astrophysics Data System (ADS)

    van Ballegooijen, A. A.; Deluca, E. E.

    1999-05-01

    In June 1998 the Transition Region and Coronal Explorer (TRACE) observed filaments and prominences in coordination with various ground-based solar observatories, including the Swedish Vacuum Solar Telescope (SVST) on La Palma. Here we present results for an active-region filament observed on June 21-22. This horse-shoe shaped filament had a "barb" that reached down from the filament spine to the chomosphere below. We use high-resolution images obtained at the SVST on June 21 from 18:03 to 19:04 UT to study the fine structure and dynamics of plasmas in the barb and other parts of the filament. The data consist of narrowband Hα images taken with the Lockheed Tunable Filtergraph operating at a cadence of 20 s. We present Doppler maps derived from these images. The filament erupted six hours after the SVST observations. The eruption was observed with TRACE, which obtained images in Fe IX/X 171, Fe XII 195, Fe XV 284 and H I Lyalpha . At the start of the event, a thin bright loop appears high above the filament at the location of the barb. We interpret this feature as the outline of a magnetic "bubble" which forms as a result of kink instability in the magnetic field that supports the filament. The bright loop appears to be due to particle acceleration and impulsive heating along certain field lines on the periphery of this magnetic structure. A few minutes later, the dark filament threads turn into emission and move outward, exhibiting a helical structure. We discuss the magnetic structure of the barb and its possible role in the filament eruption.

  15. The Arctic Observing Viewer: A Web-mapping Application for U.S. Arctic Observing Activities

    NASA Astrophysics Data System (ADS)

    Cody, R. P.; Manley, W. F.; Gaylord, A. G.; Kassin, A.; Villarreal, S.; Barba, M.; Dover, M.; Escarzaga, S. M.; Habermann, T.; Kozimor, J.; Score, R.; Tweedie, C. E.

    2015-12-01

    interoperable resources in this way will help to ensure improved capacities for conducting activities such as assessing the status of arctic observing efforts, optimizing logistic operations, and for quickly accessing external and project-focused web resources for more detailed information and access to scientific data and derived products.

  16. Characterization of orderly spatiotemporal patterns of clock gene activation in mammalian suprachiasmatic nucleus

    PubMed Central

    Foley, Nicholas C.; Tong, Tina Y.; Foley, Duncan; LeSauter, Joseph; Welsh, David K.

    2012-01-01

    Because we can observe oscillation within individual cells and in the tissue as a whole, the suprachiasmatic nucleus (SCN) presents a unique system in the mammalian brain for the analysis of individual cells and the networks of which they are a part. While dispersed cells of the SCN sustain circadian oscillations in isolation, they are unstable oscillators that require network interactions for robust cycling. Using cluster analysis to assess bioluminescence in acute brain slices from PERIOD2∷Luciferase (PER2∷LUC) knockin mice, and immunochemistry of SCN from animals harvested at various circadian times, we assessed the spatiotemporal activation patterns of PER2 to explore the emergence of a coherent oscillation at the tissue level. The results indicate that circadian oscillation is characterized by a stable daily cycle of PER2 expression involving orderly serial activation of specific SCN subregions, followed by a silent interval, with substantial symmetry between the left and right side of the SCN. The biological significance of the clusters identified in living slices was confirmed by co-expression of LUC and PER2 in fixed, immunochemically stained brain sections, with the spatiotemporal pattern of LUC expression resembling that revealed in the cluster analysis of bioluminescent slices. We conclude that the precise timing of PER2 expression within individual neurons is dependent on their location within the nucleus, and that small groups of neurons within the SCN give rise to distinctive and identifiable subregions. We propose that serial activation of these subregions is the basis of robustness and resilience of the daily rhythm of the SCN. PMID:21488990

  17. Recovery patterns, histological observations and genetic integrity in Malus shoot tips cryopreserved using droplet vitrification and encapsulation-dehydration procedures

    Technology Transfer Automated Retrieval System (TEKTRAN)

    A droplet-vitrification procedure is described for cryopreservation of Malus shoot tips. Survival patterns, recovery types, histological observations, and genetic integrity were compared for Malus shoot tips cryopreserved using this droplet-vitrification procedure and an encapsulation-dehydration pr...

  18. Active relearning for robust supervised training of emphysema patterns.

    PubMed

    Raghunath, Sushravya; Rajagopalan, Srinivasan; Karwoski, Ronald A; Bartholmai, Brian J; Robb, Richard A

    2014-08-01

    Radiologists are adept at recognizing the character and extent of lung parenchymal abnormalities in computed tomography (CT) scans. However, the inconsistent differential diagnosis due to subjective aggregation necessitates the exploration of automated classification based on supervised or unsupervised learning. The robustness of supervised learning depends on the training samples. Towards optimizing emphysema classification, we introduce a physician-in-the-loop feedback approach to minimize ambiguity in the selected training samples. An experienced thoracic radiologist selected 412 regions of interest (ROIs) across 15 datasets to represent 124, 129, 139 and 20 training samples of mild, moderate, severe emphysema and normal appearance, respectively. Using multi-view (multiple metrics to capture complementary features) inductive learning, an ensemble of seven un-optimized support vector models (SVM) each based on a specific metric was constructed in less than 6 s. The training samples were classified using seven SVM models and consensus labels were created using majority voting. In the active relearning phase, the ensemble-expert label conflicts were resolved by the expert. The efficacy and generality of active relearning feedback was assessed in the optimized parameter space of six general purpose classifiers across the seven dissimilarity metrics. The proposed just-in-time active relearning feedback with un-optimized SVMs yielded 15 % increase in classification accuracy and 25 % reduction in the number of support vectors. The average improvement in accuracy of six classifiers in their optimized parameter space was 21 %. The proposed cooperative feedback method enhances the quality of training samples used to construct automated classification of emphysematous CT scans. Such an approach could lead to substantial improvement in quantification of emphysema. PMID:24771303

  19. Metabolic Patterns and Biotransformation Activities of Resveratrol in Human Glioblastoma Cells: Relevance with Therapeutic Efficacies

    PubMed Central

    Shu, Xiao-Hong; Li, Hong; Sun, Xiao-Xin; Wang, Qian; Sun, Zheng; Wu, Mo-Li; Chen, Xiao-Yan; Li, Chong; Kong, Qing-You; Liu, Jia

    2011-01-01

    Background Trans-resveratrol rather than its biotransformed monosulfate metabolite exerts anti-medulloblastoma effects by suppressing STAT3 activation. Nevertheless, its effects on human glioblastoma cells are variable due to certain unknown reason(s). Methodology/Principal Findings Citing resveratrol-sensitive UW228-3 medulloblastoma cell line and primarily cultured rat brain cells/PBCs as controls, the effect of resveratrol on LN-18 human glioblastoma cells and its relevance with metabolic pattern(s), brain-associated sulfotransferase/SULT expression and the statuses of STAT3 signaling and protein inhibitor of activated STAT3 (PIAS3) were elucidated by multiple experimental approaches. Meanwhile, the expression patterns of three SULTs (SULT1A1, 1C2 and 4A1) in human glioblastoma tumors were profiled immunohistochemically. The results revealed that 100 µM resveratrol-treated LN-18 generated the same metabolites as UW228-3 cells, while additional metabolite in molecular weight of 403.0992 in negative ion mode was found in PBCs. Neither growth arrest nor apoptosis was found in resveratrol-treated LN-18 and PBC cells. Upon resveratrol treatment, the levels of SULT1A1, 1C2 and 4A1 expression in LN-18 cells were more up-regulated than that expressed in UW228-3 cells and close to the levels in PBCs. Immunohistochemical staining showed that 42.0%, 27.1% and 19.6% of 149 glioblastoma cases produced similar SULT1A1, 1C2 and 4A1 levels as that of tumor-surrounding tissues. Unlike the situation in UW228-3 cells, STAT3 signaling remained activated and its protein inhibitor PIAS3 was restricted in the cytosol of resveratrol-treated LN-18 cells. No nuclear translocation of STAT3 and PIAS3 was observed in resveratrol-treated PBCs. Treatment with STAT3 chemical inhibitor, AG490, committed majority of LN-18 and UW228-3 cells but not PBCs to apoptosis within 48 hours. Conclusions/Significance LN-18 glioblastoma cells are insensitive to resveratrol due to the more inducible brain

  20. Movement preparation and execution: differential functional activation patterns after traumatic brain injury.

    PubMed

    Gooijers, Jolien; Beets, Iseult A M; Albouy, Genevieve; Beeckmans, Kurt; Michiels, Karla; Sunaert, Stefan; Swinnen, Stephan P

    2016-09-01

    subcortical (left cerebellum crus II) areas (P's < 0.05). Moreover, a significant interaction effect between Feedback Condition and Group in the primary motor area (bilaterally) (P < 0.001), the cerebellum (left) (P < 0.001) and caudate (left) (P < 0.05), revealed that controls showed less overlap of activation patterns accompanying the two feedback conditions than patients with traumatic brain injury (i.e. decreased neural differentiation). In sum, our findings point towards poorer predictive control in traumatic brain injury patients in comparison to controls. Moreover, irrespective of the feedback condition, overactivations were observed in traumatically brain injured patients during movement execution, pointing to more controlled processing of motor task performance. PMID:27435093

  1. Model and observational analysis of the Northeast's regional winter climate and its relationship to the PNA pattern

    NASA Astrophysics Data System (ADS)

    Notaro, Michael

    A study was performed of the winter climate in the Northeast United States and its relationship to the large-scale circulation. Temperature, radiation, precipitation, and circulation features of the La Nina winter of 1998--1999 were analyzed through observations, NCEP-NCAR Reanalysis, and model simulations by SUNYA regional climate model (RCM). The relationship between the Pacific North American (PNA) pattern and regional winter climate of the Northeast was also investigated. Ten Decembers during the 1980s and 1990s were simulated, five with the most positive and five with the most negative PNA index. RCM reproduced the key climate features of the Northeast during the winter of 1998--1999. The model's circulation closely agreed with the reanalysis, particularly in the mid- and upper-troposphere, and with surface wind observations. Spatial and temporal patterns of temperature and precipitation agreed well with observations, despite a cold bias in the boundary layer (2--3°C) and dry bias in precipitation. The use of six-hourly, rather than twelve-hourly, reanalysis boundary conditions improved the diurnal cycle and increased the success at capturing fast-moving systems, such as fronts, and reproducing hourly weather variations. The relationship of the PNA pattern, and other teleconnection patterns, to the Northeast winter climate was investigated. Positive PNA pattern was associated with a stronger, southeastward shifted jet and colder, drier conditions in the Northeast, while mild surface southerlies were more frequent with negative PNA pattern. In the positive PNA simulations, there was a large air-water thermal gradient over the Great Lakes, enhancing evaporation and fluxes of sensible and latent heat. Precipitation and clouds during positive PNA pattern were less abundant across the domain, although lake-effect maxima were well defined. The PDO (Pacific Decadal Oscillation), PNA, and ENSO (El Nino/Southern Oscillation) teleconnections significantly influenced

  2. A Computational Model of Dynein Activation Patterns that Can Explain Nodal Cilia Rotation

    PubMed Central

    Chen, Duanduan; Zhong, Yi

    2015-01-01

    Normal left-right patterning in vertebrates depends on the rotational movement of nodal cilia. In order to produce this ciliary motion, the activity of axonemal dyneins must be tightly regulated in a temporal and spatial manner; the specific activation pattern of the dynein motors in the nodal cilia has not been reported. Contemporary imaging techniques cannot directly assess dynein activity in a living cilium. In this study, we establish a three-dimensional model to mimic the ciliary ultrastructure and assume that the activation of dynein proteins is related to the interdoublet distance. By employing finite-element analysis and grid deformation techniques, we simulate the mechanical function of dyneins by pairs of point loads, investigate the time-variant interdoublet distance, and simulate the dynein-triggered ciliary motion. The computational results indicate that, to produce the rotational movement of nodal cilia, the dynein activity is transferred clockwise (looking from the tip) between the nine doublet microtubules, and along each microtubule, the dynein activation should occur faster at the basal region and slower when it is close to the ciliary tip. Moreover, the time cost by all the dyneins along one microtubule to be activated can be used to deduce the dynein activation pattern; it implies that, as an alternative method, measuring this time can indirectly reveal the dynein activity. The proposed protein-structure model can simulate the ciliary motion triggered by various dynein activation patterns explicitly and may contribute to furthering the studies on axonemal dynein activity. PMID:26153700

  3. Change of tropical cyclone activity by Pacific-Japan teleconnection pattern in the western North Pacific

    NASA Astrophysics Data System (ADS)

    Choi, Ki-Seon; Wu, Chun-Chieh; Cha, Eun-Jeong

    2010-10-01

    This study shows that the Pacific-Japan (PJ) teleconnection pattern has a significant influence on tropical cyclone (TC) activities over the western North Pacific (WNP) during the boreal summer (July, August, and September). During positive (negative) PJ phase, TCs form at a more northward (southward) location, recurve at a more northeastward (southwestward) location, and frequently pass over the northeast Asian (southeast Asian) region, including Korea and Japan (South China Sea and southern China). In particular, this difference in the TC track between the two phases is observed as a dipole-like pattern between the regions of Southeast and Northeast Asia. The TC characteristics during the positive PJ phase are caused by the following two stronger atmospheric circulations over the WNP: an anticyclonic circulation centered to the east of Japan and a cyclonic circulation centered to the east of Taiwan. The southeasterly between these two circulations serves as steering flow that TCs move northward toward Korea and Japan from the northeast of the Philippines. Conversely, TCs during the negative PJ phase mainly move westward toward the South China Sea and southern China by the easterly from a stronger anticyclonic circulation centered to the east of Taiwan. As a result of this feature of TC track during the negative PJ phase, TC lifetime is shorter and TC intensity is weaker.

  4. Magnetic observations during the recent declining phase of solar activity

    NASA Astrophysics Data System (ADS)

    Smith, E. J.

    Changes in the heliospheric magnetic field during the recent declining phase in solar activity are reviewed and compared with observations during past sunspot cycles. The study is based principally on data obtained by IMP-8 and Ulysses. The field magnitude is found to have increased during the declining phase until it reached a maximum value of 11.5nT in approximately 1991.5, approximately two years after sunspot maximum. The field of the sun's south pole became negative after a reversal in early 1990. The sector structure disappeared at Ulysses in April 1993 when the latitude of the spacecraft was -30 deg revealing a low inclination of the heliospheric current sheet. A large outburst of solar activity in March 1991 caused four Coronal Mass Ejections (CMEs) and numerious shocks at the location of Ulysses. Following a delay of more than a year, a series of recurrent high speed streams and Corotating Interaction Regions commenced in July 1992 which were observed by IMP-8, Ulysses and Voyager 2. In all these respects, the behavior of the magnetic field mimics that seen in the two earlier sunspot cycles. The comprehensive data set suggests a correlation between the absolute value of B and sunspot number. The major solar cycle variations in the radial component (and magnitude) of the field have been successfully reproduced by a recent model consisting of a tilted solar dipole, whose strength and tilt undergo characteristic changes over the sunspot cycle, and the heliospheric current sheet. The large outbursts of activity in mid-1972, mid-1982 and the first quarter of 1991 may represent a characteristic last 'gasp' of solar activity before the sun evolves to a different state. The recurrent high speed streams in 1973, 1984 and 1992 accompany the developemnt of large asymetrical polar coronal holes and the growth in intensity of the polar cap fields. After they endure for about one year, the polar coronal holes recede and the high speed streams are replaced by weaker

  5. Magnetic observations during the recent declining phase of solar activity

    NASA Technical Reports Server (NTRS)

    Smith, E. J.

    1995-01-01

    Changes in the heliospheric magnetic field during the recent declining phase in solar activity are reviewed and compared with observations during past sunspot cycles. The study is based principally on data obtained by IMP-8 and Ulysses. The field magnitude is found to have increased during the declining phase until it reached a maximum value of 11.5nT in approximately 1991.5, approximately two years after sunspot maximum. The field of the sun's south pole became negative after a reversal in early 1990. The sector structure disappeared at Ulysses in April 1993 when the latitude of the spacecraft was -30 deg revealing a low inclination of the heliospheric current sheet. A large outburst of solar activity in March 1991 caused four Coronal Mass Ejections (CMEs) and numerious shocks at the location of Ulysses. Following a delay of more than a year, a series of recurrent high speed streams and Corotating Interaction Regions commenced in July 1992 which were observed by IMP-8, Ulysses and Voyager 2. In all these respects, the behavior of the magnetic field mimics that seen in the two earlier sunspot cycles. The comprehensive data set suggests a correlation between the absolute value of B and sunspot number. The major solar cycle variations in the radial component (and magnitude) of the field have been successfully reproduced by a recent model consisting of a tilted solar dipole, whose strength and tilt undergo characteristic changes over the sunspot cycle, and the heliospheric current sheet. The large outbursts of activity in mid-1972, mid-1982 and the first quarter of 1991 may represent a characteristic last 'gasp' of solar activity before the sun evolves to a different state. The recurrent high speed streams in 1973, 1984 and 1992 accompany the developemnt of large asymetrical polar coronal holes and the growth in intensity of the polar cap fields. After they endure for about one year, the polar coronal holes recede and the high speed streams are replaced by weaker

  6. Patterns and Oscillations in Spatially Structured Active Media: Theory and Simulations

    NASA Astrophysics Data System (ADS)

    Giver, C. Michael

    Recent experiments in one and two-dimensional microfluidic arrays of droplets containing Belousov-Zhabotinsky reactants show a rich variety of spatial patterns. Motivated by this experimental system, we study two simple models, making use of simulations and techniques from statistical physics, to gain insight into self-organizing processes in non-equilibrium systems. In our first model, we study repulsively coupled Kuramoto oscillators with nearest neighbor interactions, on a linear chain as well as a ring in one dimension, and on a triangular lattice in two dimensions. In one dimension, we show using linear stability analysis as well as numerical study, that the stable phase patterns depend on the geometry of the lattice. We show that a transition to the ordered state does not exist in the thermodynamic limit. In two dimensions, we show that the geometry of the lattice constrains the phase difference between two neighboring oscillators to 2pi/3. We report the existence of domains with either clockwise or counterclockwise helicity, leading to defects in the lattice. We study the time dependence of these domains and show that at large coupling strengths the domains freeze due to frequency synchronization. In our second model, we study the intrinsically noisy Brusselator, a simple activator-inhibitor chemical reaction model. Intrinsic or demographic noise has been shown to play an important role in the dynamics of a variety of systems including predator-prey populations, biochemical reactions within cells, and oscillatory chemical reaction systems, and is known to give rise to oscillations and pattern formation well outside the parameter range predicted by standard mean-field analysis. Our work extends the results of recent studies on the zero and one dimensional systems with the ultimate goals of understanding the role of noise in spatially structured systems and engineering novel patterns and attractors induced by fluctuations. In the zero dimensional system, we

  7. A novel pattern mining approach for identifying cognitive activity in EEG based functional brain networks.

    PubMed

    Thilaga, M; Vijayalakshmi, R; Nadarajan, R; Nandagopal, D

    2016-06-01

    The complex nature of neuronal interactions of the human brain has posed many challenges to the research community. To explore the underlying mechanisms of neuronal activity of cohesive brain regions during different cognitive activities, many innovative mathematical and computational models are required. This paper presents a novel Common Functional Pattern Mining approach to demonstrate the similar patterns of interactions due to common behavior of certain brain regions. The electrode sites of EEG-based functional brain network are modeled as a set of transactions and node-based complex network measures as itemsets. These itemsets are transformed into a graph data structure called Functional Pattern Graph. By mining this Functional Pattern Graph, the common functional patterns due to specific brain functioning can be identified. The empirical analyses show the efficiency of the proposed approach in identifying the extent to which the electrode sites (transactions) are similar during various cognitive load states. PMID:27401999

  8. The Influence of verbalization on the pattern of cortical activation during mental arithmetic

    PubMed Central

    2012-01-01

    Background The aim of the present functional magnetic resonance imaging (fMRI) study at 3 T was to investigate the influence of the verbal-visual cognitive style on cerebral activation patterns during mental arithmetic. In the domain of arithmetic, a visual style might for example mean to visualize numbers and (intermediate) results, and a verbal style might mean, that numbers and (intermediate) results are verbally repeated. In this study, we investigated, first, whether verbalizers show activations in areas for language processing, and whether visualizers show activations in areas for visual processing during mental arithmetic. Some researchers have proposed that the left and right intraparietal sulcus (IPS), and the left angular gyrus (AG), two areas involved in number processing, show some domain or modality specificity. That is, verbal for the left AG, and visual for the left and right IPS. We investigated, second, whether the activation in these areas implied in number processing depended on an individual's cognitive style. Methods 42 young healthy adults participated in the fMRI study. The study comprised two functional sessions. In the first session, subtraction and multiplication problems were presented in an event-related design, and in the second functional session, multiplications were presented in two formats, as Arabic numerals and as written number words, in an event-related design. The individual's habitual use of visualization and verbalization during mental arithmetic was assessed by a short self-report assessment. Results We observed in both functional sessions that the use of verbalization predicts activation in brain areas associated with language (supramarginal gyrus) and auditory processing (Heschl's gyrus, Rolandic operculum). However, we found no modulation of activation in the left AG as a function of verbalization. Conclusions Our results confirm that strong verbalizers use mental speech as a form of mental imagination more strongly than

  9. Performance monitoring and empathy during active and observational learning in patients with major depression.

    PubMed

    Thoma, Patrizia; Norra, Christine; Juckel, Georg; Suchan, Boris; Bellebaum, Christian

    2015-07-01

    Previous literature established a link between major depressive disorder (MDD) and altered reward processing as well as between empathy and (observational) reward learning. The aim of the present study was to assess the effects of MDD on the electrophysiological correlates - the feedback-related negativity (FRN) and the P300 - of active and observational reward processing and to relate them to trait cognitive and affective empathy. Eighteen patients with MDD and 16 healthy controls performed an active and an observational probabilistic reward-learning task while event- related potentials were recorded. Also, participants were assessed with regard to self-reported cognitive and affective trait empathy. Relative to healthy controls, patients with MDD showed overall impaired learning and attenuated FRN amplitudes, irrespective of feedback valence and learning type (active vs. observational), but comparable P300 amplitudes. In the patient group, but not in controls, higher trait perspective taking scores were significantly correlated with reduced FRN amplitudes. The pattern of results suggests impaired prediction error processing and a negative effect of higher trait empathy on feedback-based learning in patients with MDD. PMID:26057196

  10. Bacillus sphaericus asporogenous mutants: morphology, protein pattern and larvicidal activity.

    PubMed

    Charles, J F; Kalfon, A; Bourgouin, C; de Barjac, H

    1988-01-01

    Asporogenous mutants from Bacillus sphaericus strains 2297 and 1593-4, blocked at different stages of the sporulation process, were isolated. Two mutants (2297 Aspo30A and 2297 Aspo34) which were blocked early in sporulation did not possess any crystalline inclusions and were poorly toxic to Culex pipiens mosquito larvae. Other mutants (2297 Aspo115, 2297 Aspo24 and 1593-4 Aspo12) which were blocked at later stages synthesized crystal-like inclusions next to the forespores, and were highly toxic to mosquito larvae. Electrophoretic protein analysis of alkali extracts from mutants and wild type strains confirmed the absence of toxic crystal-related proteins in early-blocked mutants and their presence in later ones. Western blots with antisera directed against the crystal proteins confirmed those observations. PMID:3408593

  11. Chronic neck pain alters muscle activation patterns to sudden movements.

    PubMed

    Boudreau, Shellie A; Falla, Deborah

    2014-06-01

    The aim of this study was to assess the activation of the sternocleidomastoid (SCM) and splenius capitis (SC) muscles in response to unanticipated, full body perturbations in individuals with chronic neck pain (NP) and age-matched healthy controls (HC). Individuals with NP had a history of NP for 8.9 ± 7.8 years, rated the intensity of NP as 4.2 ± 2.0 (score out of 10), and scored 15.3 ± 6.5 on the Neck Disability Index. Participants stood on a moveable platform during which 32 randomized postural perturbations (eight repetitions of four perturbation types: 8 cm forward slide (FS), 8 cm backward slides, 10° forward tilt, and 10° backward tilt) with varying inter-perturbation time intervals were performed over a period of 5 min. Bilateral surface electromyography (EMG) from the SCM and SC was recorded, and the onset time and the average rectified value of the EMG signal was determined for epochs of 100 ms; starting 100 ms prior to and 500 ms after the perturbation onset. Individuals with NP, as compared to HC, demonstrated delayed onset times and reduced EMG amplitude of the SCM and SC muscles in response to all postural perturbations. Such findings were most pronounced following the FS postural perturbation (healthy vs. NP for SCM 83.3 ± 8.0 vs. 86.3 ± 4.4 and SC 75.6 ± 3.5 vs. 89.3 ± 4.2), which was also associated with the greatest change (expressed in % relative to baseline) in EMG amplitude (healthy vs. NP for SCM 206.6 ± 50.4 vs. 115.9 ± 15.7 and SC 83.4 ± 19.2 vs. 69.2 ± 10.9) across all postural perturbations types. Individuals with NP display altered neural control of the neck musculature in response to rapid, unanticipated full body postural perturbations. Although the relative timing of neck musculature activity in individuals with NP appears to be intact, simultaneous co-activation of the neck musculature emerges for unanticipated anterior-posterior postural perturbations. PMID:24632836

  12. Active region studies with coordinated SOHO, microwave, and magnetograph observations

    NASA Technical Reports Server (NTRS)

    Holman, Gordon D.

    1992-01-01

    The scientific justification for an observing campaign to study the quantitative magnetic and plasma properties of coronal loops in active regions is presented. The SOHO (Solar and Heliospheric Observatory) instruments of primary relevance are CDS (Coronal Diagnostic Spectrometer), EIT, SUMER (Solar Ultraviolet Measurement of Emitted Radiation), and MDI. The primary ground based instruments would be the VLA (Very Large Array), the Owens Valley Radio Observatory, and vector and longitudinal field magnetographs. Similar campaigns have successfully been carried out with the Solar Maximum Mission x-ray polychromator and the Soft X-ray Imaging Sounding Rocket Payload (CoMStOC '87), the Goddard Solar EUV Rocket Telescope and Spectrograph, the Lockheed Solar Plasma Diagnostics Experiment rocket payload, and the Soft X-ray Telescope in Yohkoh (CoMStoc '92). The scientific payoff from such a campaign is discussed in light of the results from these previous campaigns.

  13. Estimating repetitive spatiotemporal patterns from resting-state brain activity data.

    PubMed

    Takeda, Yusuke; Hiroe, Nobuo; Yamashita, Okito; Sato, Masa-Aki

    2016-06-01

    Repetitive spatiotemporal patterns in spontaneous brain activities have been widely examined in non-human studies. These studies have reported that such patterns reflect past experiences embedded in neural circuits. In human magnetoencephalography (MEG) and electroencephalography (EEG) studies, however, spatiotemporal patterns in resting-state brain activities have not been extensively examined. This is because estimating spatiotemporal patterns from resting-state MEG/EEG data is difficult due to their unknown onsets. Here, we propose a method to estimate repetitive spatiotemporal patterns from resting-state brain activity data, including MEG/EEG. Without the information of onsets, the proposed method can estimate several spatiotemporal patterns, even if they are overlapping. We verified the performance of the method by detailed simulation tests. Furthermore, we examined whether the proposed method could estimate the visual evoked magnetic fields (VEFs) without using stimulus onset information. The proposed method successfully detected the stimulus onsets and estimated the VEFs, implying the applicability of this method to real MEG data. The proposed method was applied to resting-state functional magnetic resonance imaging (fMRI) data and MEG data. The results revealed informative spatiotemporal patterns representing consecutive brain activities that dynamically change with time. Using this method, it is possible to reveal discrete events spontaneously occurring in our brains, such as memory retrieval. PMID:26979127

  14. Temporal-Spatial Neural Activation Patterns Linked to Perceptual Encoding of Emotional Salience

    PubMed Central

    Todd, Rebecca M.; Taylor, Margot J.; Robertson, Amanda; Cassel, Daniel B.; Doesberg, Sam M.; Lee, Daniel H.; Shek, Pang N.; Pang, Elizabeth W.

    2014-01-01

    It is well known that we continuously filter incoming sensory information, selectively allocating attention to what is important while suppressing distracting or irrelevant information. Yet questions remain about spatiotemporal patterns of neural processes underlying attentional biases toward emotionally significant aspects of the world. One index of affectively biased attention is an emotional variant of an attentional blink (AB) paradigm, which reveals enhanced perceptual encoding for emotionally salient over neutral stimuli under conditions of limited executive attention. The present study took advantage of the high spatial and temporal resolution of magnetoencephalography (MEG) to investigate neural activation related to emotional and neutral targets in an AB task. MEG data were collected while participants performed a rapid stimulus visual presentation task in which two target stimuli were embedded in a stream of distractor words. The first target (T1) was a number and the second (T2) either an emotionally salient or neutral word. Behavioural results replicated previous findings of greater accuracy for emotionally salient than neutral T2 words. MEG source analyses showed that activation in orbitofrontal cortex, characterized by greater power in the theta and alpha bands, and dorsolateral prefrontal activation were associated with successful perceptual encoding of emotionally salient relative to neutral words. These effects were observed between 250 and 550 ms, latencies associated with discrimination of perceived from unperceived stimuli. These data suggest that important nodes of both emotional salience and frontoparietal executive systems are associated with the emotional modulation of the attentional blink. PMID:24727751

  15. The Arctic Observing Viewer: A Web-mapping Application for U.S. Arctic Observing Activities

    NASA Astrophysics Data System (ADS)

    Kassin, A.; Gaylord, A. G.; Manley, W. F.; Villarreal, S.; Tweedie, C. E.; Cody, R. P.; Copenhaver, W.; Dover, M.; Score, R.; Habermann, T.

    2014-12-01

    way will help to ensure improved capacities for conducting activities such as assessing the status of arctic observing efforts, optimizing logistic operations, and for quickly accessing external and project-focused web resources for more detailed information and data.

  16. Characteristics of atmospheric circulation patterns associated with extreme temperatures over North America in observations and climate models

    NASA Astrophysics Data System (ADS)

    Loikith, Paul C.

    associated with extreme temperature days in most places. Model-simulated patterns tend to resemble observed patterns better in the winter than the summer and at 500 hPa than at the surface. There is substantial variability among the suite of models analyzed and most models simulate circulation patterns more realistically away from influential features such as large bodies of water and complex topography.

  17. Highlights from the VERITAS Active Galactic Nuclei Observing Program

    NASA Astrophysics Data System (ADS)

    Fortson, Lucy; VERITAS Collaboration

    2016-01-01

    The VERITAS Observatory, located at the Fred Lawrence Whipple Observatory near Tucson, Arizona is one of the world's most sensitive detectors of very-high-energy (VHE; E>100GeV) gamma rays. With an array of four 12-m telescopes, VERITAS detects the Cherenkov light emitted from air showers initiated by astrophysical gamma rays. A sequence of upgrades completed in 2012 aimed at lowering the energy threshold resulted in the instrument being sensitive to gamma rays between 85 GeV and 30 TeV. Fully operational since 2007, VERITAS has so far detected 54 VHE gamma-ray objects in eight different source classes. The active galactic nuclei (AGN) class comprises the majority of these detections, with 34 sources that include several radio galaxies but are predominantly blazars (AGN with relativistic jets pointing towards Earth). The scientific importance of VHE detections of AGN includes studying the details of emission mechanisms in blazars and elucidating whether they are sources of ultra-high-energy cosmic rays and astrophysical neutrinos. Additionally VHE gamma-ray observations can be used to gain cosmological insights such as placing limits on the intergalactic magnetic field (IGMF) and the extragalactic background light (EBL), which comprises all the diffuse starlight in the universe. This presentation will summarize the VERITAS AGN observing program and highlight a few recent results.

  18. High-Resolution Observations of a Filament showing Activated Barb

    NASA Astrophysics Data System (ADS)

    Joshi, Anand; Martin, Sara F.; Mathew, Shibu; Srivastava, Nandita

    2012-07-01

    Analysis of a filament showing an activated barb using observations from the Dutch Open Telescope (DOT) on 2010 August 20 are presented. The DOT takes Doppler images in Hα, among other wavelengths, in a region about 110 × 110 arcsec^{2} in area, at a cadence of 30~seconds. The offline image restoration technique of speckle reconstruction is applied to obtain diffraction limited images. The filament developed a new barb in 10~minutes, which disappeared within the next 35~minutes. Such a rapid formation and disappearance of a filament barb is unusual, and has not been reported earlier. Line-of-sight velocity maps were constructed from the Doppler images of the target filament. We observe flows in the filament spine towards the barb location prior to its formation, and flows in the barb towards the spine during its disappearance. Photospheric magnetograms from Heliospheric Magnetic Imager on board the Solar Dynamics Observatory, at a cadence of 45~seconds, were used to determine the changes in magnetic flux in the region surrounding the barb location. The variation of magnetic flux in this duration supports the view that barbs are rooted in minor magnetic polarity. Our analysis shows that barbs can be short-lived and formation and disappearance of the barb was associated with cancellation of magnetic flux.

  19. MESSENGER observations of substorm activity in Mercury's near magnetotail

    NASA Astrophysics Data System (ADS)

    Sun, Wei-Jie; Slavin, James; Fu, Suiyan; Raines, Jim; Zong, Qiu-Gang; Yao, Zhonghua; Pu, Zuyin; Shi, Quanqi; Poh, Gangkai; Boardsen, Scott; Imber, Suzanne; Sundberg, Torbjörn; Anderson, Brian; Korth, Haje; Baker, Daniel

    2015-04-01

    MESSENGER magnetic field and plasma measurements taken during crossings of Mercury's magnetotail from 2011 to 2014 have been examined for evidence of substorm activity. A total of 32 events were found during which an Earth-like growth phase was followed by clear near-tail expansion phase signatures. During the growth phase, the lobe of the tail loads with magnetic flux while the plasma sheet thins due to the increased lobe magnetic pressure. MESSENGER is often initially in the plasma sheet and then moves into the lobe during the growth phases. The averaged time scale of the loading is around 1 min, consistent with previous observations of Mercury's Dungey cycle. The dipolarization front that marks the initiation of the substorm expansion phase is only a few seconds in duration. The spacecraft then abruptly enters the plasma sheet due to the plasma sheet expansion as reconnection-driven flow from the near-Mercury neutral line encounters the stronger magnetic fields closer to the planet. Substorm activity in the near tail of Mercury is quantitatively very similar to the Earth despite the very compressed time scale.

  20. High-energy gamma-ray observations of active galaxies

    NASA Technical Reports Server (NTRS)

    Fichtel, Carl E.

    1994-01-01

    During the period from 1992 May to early 1992 November, the Energetic Gamma-Ray Experiment Telescope (EGRET) on board the Compton Gamma Ray Observatory obtained high-energy gamma-ray data for most of the sky. A total of 18 active galaxies have been seen with high certainty, and it is expected that more will be found in the data when a more thorough analysis is complete. All of those that have been seen are radio-loud quasars or BL Lacertae objects; most have already been identified as blazars. No Seyfert galaxies have been found thus far. If the spectra are represented as a power law in energy, spectral slopes ranging from approximately -1.7 to -2.4 are found. A wide range of z-values exits in the observed sample, eight having values in excess of 1.0. Time variations have been seen, with the timescale for a significant change being as short as days in at least one case. These results imply the existence of very large numbers of relativistic particles, probably close to the central object. Although a large extrapolation is required, their existence also suggests that these active galactic nuclei may be the source of the extragalactic cosmic rays.

  1. Transnational Islamic activism and radicalization : patterns, trends, and prognosticators.

    SciTech Connect

    Colbaugh, Richard; Engi, Dennis; LaViolette, Randall A.; Spomer, Judith E.

    2010-06-01

    The research described in this report developed the theoretical and conceptual framework for understanding, recognizing, and anticipating the origins, dynamic mechanisms, perceptions, and social structures of Islamic social reform movements in the Muslim homeland and in diaspora communities. This research has revealed valuable insights into the dynamic mechanisms associated with reform movements and, as such, offers the potential to provide indications and warnings of impending violence. This study produced the following significant findings: (1) A framework for understanding Islamic radicalization in the context of Social Movement Theory was developed and implemented. This framework provides a causal structure for the interrelationships among the myriad features of a social movement. (2) The degree to which movement-related activity shows early diffusion across multiple social contexts is a powerful distinguisher of successful and unsuccessful social movements. Indeed, this measurable appears to have significantly more predictive power than volume of such activity and also more power than various system intrinsics. (3) Significant social movements can occur only if both the intra-context 'infectivity' of the movement exceeds a certain threshold and the inter-context interactions associated with the movement occur with a frequency that is larger than another threshold. Note that this is reminiscent of, and significantly extends, well-known results for epidemic thresholds in disease propagation models. (4) More in-depth content analysis of blogs through the lens of Argumentation Theory has the potential to reveal new insights into radicalization in the context of Social Movement Theory. This connection has the potential to be of value from two important perspectives - first, this connection has the potential to provide more in depth insights into the forces underlying the emergence of radical behavior and second, this connection may provide insights into how to use

  2. Pleiotropic patterning response to activation of Shh signaling in the limb Apical Ectodermal Ridge

    PubMed Central

    Wang, Chi-Kuang Leo; Tsugane, Mizuyo H.; Scranton, Victoria; Kosher, Robert A.; Pierro, Louis J.; Upholt, William B.; Dealy, Caroline N.

    2012-01-01

    Sonic hedgehog (Shh) signaling in the limb plays a central role in coordination of limb patterning and outgrowth. Shh expression in the limb is limited to the cells of the Zone of Polarizing Activity (ZPA), located in posterior limb bud mesoderm. Shh is not expressed by limb ectoderm or AER, but recent studies suggest a role for AER-Shh signaling in limb patterning. Here, we have examined the effects of activation of Shh signaling in the AER. We find that targeted expression of Shh in the AER activates constitutive Shh signaling throughout the AER and subjacent limb mesoderm, and causes a range of limb patterning defects with progressive severity from mild polydactyly, to polysyndactyly with proximal defects, to severe oligodactyly with phocomelia and partial limb ventralization. Our studies emphasize the importance of control of the timing, level and location of Shh pathway signaling for limb AP, PD and DV patterning. PMID:21465622

  3. Periodic patterning of the Drosophila eye is stabilized by the diffusible activator Scabrous

    PubMed Central

    Gavish, Avishai; Shwartz, Arkadi; Weizman, Abraham; Schejter, Eyal; Shilo, Ben-Zion; Barkai, Naama

    2016-01-01

    Generation of periodic patterns is fundamental to the differentiation of multiple tissues during development. How such patterns form robustly is still unclear. The Drosophila eye comprises ∼750 units, whose crystalline order is set during differentiation of the eye imaginal disc: an activation wave sweeping across the disc is coupled to lateral inhibition, sequentially selecting pro-neural cells. Using mathematical modelling, here we show that this template-based lateral inhibition is highly sensitive to spatial variations in biochemical parameters and cell sizes. We reveal the basis of this sensitivity, and suggest that it can be overcome by assuming a short-range diffusible activator. Clonal experiments identify Scabrous, a previously implicated inhibitor, as the predicted activator. Our results reveal the mechanism by which periodic patterning in the fly eye is stabilized against spatial variations, highlighting how the need to maintain robustness shapes the design of patterning circuits. PMID:26876750

  4. Chronic osteomyelitis: bone and gallium scan patterns associated with active disease

    SciTech Connect

    Tumeh, S.S.; Aliabadi, P.; Weissman, B.N.; McNeil, B.J.

    1986-03-01

    Bone and gallium scans are used to assess osteomyelitis patients with prior bone disease. To refine the criteria for interpreting these scans, the data from 136 consecutive patients with clinically suspected osteomyelitis were reviewed. Active osteomyelitis was diagnosed with surgery or biopsy and culture in 49 patients, excluded with the same criteria in 16, and excluded by clinical follow-up for at least 6 months in 71. Five different scintigraphic patterns were found. The true-positive and false-positive ratios, the likelihood ratios, and posterior probabilities for active osteomyelitis in each pattern were calculated. Only one pattern (gallium uptake exceeding bone-seeking radiopharmaceutical uptake) was indicative of active disease. Other patterns slightly raised or decreased the probability of disease. The extent of these changes varies directly with the prior probability of disease, determined from patient-specific factors (e.g., clinical data, laboratory data, findings on plain films) known best by the referring clinician.

  5. Peak-valley-peak pattern of histone modifications delineates active regulatory elements and their directionality.

    PubMed

    Pundhir, Sachin; Bagger, Frederik O; Lauridsen, Felicia B; Rapin, Nicolas; Porse, Bo T

    2016-05-19

    Formation of nucleosome free region (NFR) accompanied by specific histone modifications at flanking nucleosomes is an important prerequisite for enhancer and promoter activity. Due to this process, active regulatory elements often exhibit a distinct shape of histone signal in the form of a peak-valley-peak (PVP) pattern. However, different features of PVP patterns and their robustness in predicting active regulatory elements have never been systematically analyzed. Here, we present PARE, a novel computational method that systematically analyzes the H3K4me1 or H3K4me3 PVP patterns to predict NFRs. We show that NFRs predicted by H3K4me1 and me3 patterns are associated with active enhancers and promoters, respectively. Furthermore, asymmetry in the height of peaks flanking the central valley can predict the directionality of stable transcription at promoters. Using PARE on ChIP-seq histone modifications from four ENCODE cell lines and four hematopoietic differentiation stages, we identified several enhancers whose regulatory activity is stage specific and correlates positively with the expression of proximal genes in a particular stage. In conclusion, our results demonstrate that PVP patterns delineate both the histone modification landscape and the transcriptional activities governed by active enhancers and promoters, and therefore can be used for their prediction. PARE is freely available at http://servers.binf.ku.dk/pare. PMID:27095194

  6. Peak-valley-peak pattern of histone modifications delineates active regulatory elements and their directionality

    PubMed Central

    Pundhir, Sachin; Bagger, Frederik O.; Lauridsen, Felicia B.; Rapin, Nicolas; Porse, Bo T.

    2016-01-01

    Formation of nucleosome free region (NFR) accompanied by specific histone modifications at flanking nucleosomes is an important prerequisite for enhancer and promoter activity. Due to this process, active regulatory elements often exhibit a distinct shape of histone signal in the form of a peak-valley-peak (PVP) pattern. However, different features of PVP patterns and their robustness in predicting active regulatory elements have never been systematically analyzed. Here, we present PARE, a novel computational method that systematically analyzes the H3K4me1 or H3K4me3 PVP patterns to predict NFRs. We show that NFRs predicted by H3K4me1 and me3 patterns are associated with active enhancers and promoters, respectively. Furthermore, asymmetry in the height of peaks flanking the central valley can predict the directionality of stable transcription at promoters. Using PARE on ChIP-seq histone modifications from four ENCODE cell lines and four hematopoietic differentiation stages, we identified several enhancers whose regulatory activity is stage specific and correlates positively with the expression of proximal genes in a particular stage. In conclusion, our results demonstrate that PVP patterns delineate both the histone modification landscape and the transcriptional activities governed by active enhancers and promoters, and therefore can be used for their prediction. PARE is freely available at http://servers.binf.ku.dk/pare. PMID:27095194

  7. Activity Patterns of Preschool-Aged Children at Risk for Obesity

    PubMed Central

    Senso, Meghan M.; Trost, Stewart G.; Crain, A. Lauren; Seburg, Elisabeth M.; Anderson, Julie D.; Sherwood, Nancy E.

    2014-01-01

    Background Although the prevalence of obesity in young children highlights the importance of early interventions to promote physical activity (PA), there are limited data on activity patterns in this age group. The purpose of this study is to describe activity patterns in preschool-aged children and explore differences by weight status. Methods Analyses use baseline data from Healthy Homes/Healthy Kids- Preschool, a pilot obesity prevention trial of preschool-aged children overweight or at risk for overweight. A modified parent-reported version of the previous-day PA recall was used to summarize types of activity. Accelerometry was used to summarize daily and hourly activity patterns. Results “Playing with toys” accounted for the largest proportion of a child’s previous day, followed by “meals and snacks”, and “chores”. Accelerometry-measured daily time spent in sedentary behavior, light PA, and moderate-to-vigorous PA (MVPA) was 412, 247, and 69 minutes, respectively. Percent of hourly time spent in MVPA ranged from 3% to 13%, peaking in the late morning and evening hours. There were no statistically significant MVPA differences by weight status. Conclusions This study extends our understanding of activity types, amounts, and patterns in preschool-age children and warrants further exploration of differences in physical activity patterns by weight status. PMID:25133750

  8. Observational and modeling studies of heat, moisture, precipitation and global-scale circulation patterns

    NASA Technical Reports Server (NTRS)

    Vincent, Dayton G.

    1994-01-01

    This research grant was a revised version of an original proposal. The period of the grant was for three years with a six-month no-cost extension; thus, it was from 20 July 1990 to 19 January 1994. The objectives of the grant were to identify periods and locations of active convection centers, primarily over the Southern Hemisphere tropical Indian and Pacific Oceans; determine reasons for any periodic behavior found in the first objective; identify cases where subtropical jets over the South Pacific persisted for several days and examine the influences of tropical versus extra-tropical mechanisms in maintaining them; obtain estimates of precipitation by Q(sub 1) and Q(sub 2) budgets, including the importance of terms in each of the respective budgets, and compare these estimates to those obtained by other methods; and diagnose the distributions of moisture and precipitable water over the North Atlantic Ocean using routine analyses and satellite microwave data. To accomplish these objectives, we used grant funds to purchase several data sets, including the Global Precipitation Climate Project (GPCP) observations of station precipitation, ECMWF WCRP/TOGA archive two analyses for January 1985 - December 1990, ECMWF WMO analyses for January 1980 - December 1987, and OLR data for July 1974 - December 1991. We already had some SSM/I data and GLA analyses from a previous grant. In addition, to improve our computing power, we also used grant funds to purchase an IBM PS/2 with accessories, a NEC laser jet printer, and a microcomputer system for word processing. This report is organized as follows. Our research team is listed first. Section two contains a summary of our significant accomplishments; however, a detailed discussion of research results is not included since this information can be found in the accompanying reprints and preprints. Section three offers some concluding remarks, and a complete bibliographic summary is given in Section four.

  9. Turing pattern dynamics in an activator-inhibitor system with superdiffusion

    NASA Astrophysics Data System (ADS)

    Zhang, Lai; Tian, Canrong

    2014-12-01

    The fractional operator is introduced to an activator-inhibitor system to describe species anomalous superdiffusion. The effects of the superdiffusive exponent on pattern formation and pattern selection are studied. Our linear stability analysis shows that the wave number of the Turing pattern increases with the superdiffusive exponent. A weakly nonlinear analysis yields a system of amplitude equations and the analysis of these amplitude equations predicts parameter regimes where hexagons, stripes, and their coexistence are expected. Numerical simulations of the activator-inhibitor model near the stability boundaries confirm our analytical results. Since diffusion rate manifests in both diffusion constant and diffusion exponent, we numerically explore their interactions on the emergence of Turing patterns. When the activator and inhibitor have different superdiffusive exponents, we find that the critical ratio of the diffusion rate of the inhibitor to the activator, required for the formation of the Turing pattern, increases monotonically with the superdiffusive exponent. We conclude that small ratio (than unity) of anomalous diffusion exponent between the inhibitor and activator is more likely to promote the emergence of the Turing pattern, relative to the normal diffusion.

  10. Leisure activity patterns and their associations with overweight: a prospective study among adolescents.

    PubMed

    Lajunen, Hanna-Reetta; Keski-Rahkonen, Anna; Pulkkinen, Lea; Rose, Richard J; Rissanen, Aila; Kaprio, Jaakko

    2009-10-01

    We examined longitudinal associations between individual leisure activities (television viewing, video viewing, computer games, listening to music, board games, musical instrument playing, reading, arts, crafts, socializing, clubs or scouts, sports, outdoor activities) and being overweight using logistic regression and latent class analysis in a cohort of Finnish twins responding to self-report questionnaires at 11-12 (N=5184), 14, and 17 years. We also studied activity patterns ("Active and sociable", "Active but less sociable", "Passive but sociable", "Passive and solitary") thought to represent different lifestyles. Among boys, activity patterns did not predict becoming overweight, but sports and playing an instrument reduced the risk and arts and listening to music increased it. Among girls, few individual leisure activities predicted becoming overweight. However, girls in the "Passive and solitary" cluster carried the greatest risk of becoming overweight in late adolescence. Studying leisure activities related to overweight may help focus specific interventions on high risk groups. PMID:19345989

  11. Differences in activation patterns between eccentric and concentric quadriceps contractions.

    PubMed

    McHugh, Malachy P; Tyler, Timothy F; Greenberg, Scott C; Gleim, Gilbert W

    2002-02-01

    Previous studies analysing electromyograms (EMGs) from indwelling electrodes have indicated that fast-twitch motor units are selectively recruited for low-intensity eccentric contractions. The aim of this study was to compare the frequency content of surface EMGs from quadriceps muscles during eccentric and concentric contractions at various contraction intensities. Electromyograms were recorded from the rectus femoris, vastus lateralis and vastus medialis muscles of 10 men during isokinetic (1.05 rad x s(-1)) eccentric and concentric knee extension contractions at 25%, 50%, 75% and 100% of maximal voluntary contraction (MVC) for each contraction mode. Additionally, isometric contractions (70 degrees) were performed at each intensity. The mean frequency and root mean square (RMS) of the surface EMG were computed. Mean frequency was higher for eccentric than concentric contractions at 25% (P < 0.01), 50% (P < 0.01) and 75% (P < 0.05) but not at 100% MVC. It increased with increasing contraction intensity for isometric (P < 0.001) and concentric (P < 0.01) contractions but not for eccentric contractions (P = 0.27). The EMG amplitude (RMS) increased with increasing contraction intensity similarly in each contraction mode (P < 0.0001). Higher mean frequencies for eccentric than concentric contractions at submaximal contraction intensities is consistent with more fast-twitch motor units being active during eccentric contractions. PMID:11811575

  12. Active sensing via movement shapes spatiotemporal patterns of sensory feedback.

    PubMed

    Stamper, Sarah A; Roth, Eatai; Cowan, Noah J; Fortune, Eric S

    2012-05-01

    Previous work has shown that animals alter their locomotor behavior to increase sensing volumes. However, an animal's own movement also determines the spatial and temporal dynamics of sensory feedback. Because each sensory modality has unique spatiotemporal properties, movement has differential and potentially independent effects on each sensory system. Here we show that weakly electric fish dramatically adjust their locomotor behavior in relation to changes of modality-specific information in a task in which increasing sensory volume is irrelevant. We varied sensory information during a refuge-tracking task by changing illumination (vision) and conductivity (electroreception). The gain between refuge movement stimuli and fish tracking responses was functionally identical across all sensory conditions. However, there was a significant increase in the tracking error in the dark (no visual cues). This was a result of spontaneous whole-body oscillations (0.1 to 1 Hz) produced by the fish. These movements were costly: in the dark, fish swam over three times further when tracking and produced more net positive mechanical work. The magnitudes of these oscillations increased as electrosensory salience was degraded via increases in conductivity. In addition, tail bending (1.5 to 2.35 Hz), which has been reported to enhance electrosensory perception, occurred only during trials in the dark. These data show that both categories of movements - whole-body oscillations and tail bends - actively shape the spatiotemporal dynamics of electrosensory feedback. PMID:22496294

  13. Physical Activity Patterns and Psychological Correlates of Physical Activity among Singaporean Primary, Secondary, and Junior College Students

    ERIC Educational Resources Information Center

    Wang, C. K. John; Koh, K. T.; Biddle, Stuart J. H.; Liu, W. C.; Chye, Stefanie

    2011-01-01

    The purpose of this research was to examine physical activity patterns and psychological correlates of physical activity among primary, secondary, and junior college students in Singapore. A sample of 3,333 school students aged 10 to 18 years took part in the study. Results showed that the younger students had significantly higher physical…

  14. Activity pattern and energy expenditure due to physical activity before and during pregnancy in healthy Swedish women.

    PubMed

    Lof, Marie; Forsum, Elisabet

    2006-02-01

    Human pregnancy is associated with increased requirements for dietary energy and this increase may be partly offset by reductions in physical activity during gestation. Studies in well-nourished women have shown that the physical activity level (PAL), obtained as the total energy expenditure (TEE) divided by the BMR, decreases in late pregnancy. However, it is not known if this decrease is really caused by reductions in physical activity or if it is the result of decreases in energy expenditure/BMR (the so-called metabolic equivalent, MET) for many activities in late pregnancy. In the present study activity pattern, TEE and BMR were assessed in twenty-three healthy Swedish women before pregnancy as well as in gestational weeks 14 and 32. Activity pattern was assessed using a questionnaire and heart rate recording. TEE was assessed using the doubly labelled water method and BMR was measured by means of indirect calorimetry. When compared to the pre-pregnant value, there was little change in the PAL in gestational week 14 but it was significantly reduced in gestational week 32. Results obtained by means of the questionnaire and by heart rate recording showed that the activity pattern was largely unaffected by pregnancy. The findings support the following conclusion: in a population of well-nourished women where the activity pattern is maintained during pregnancy, the increase in BMR represents approximately the main part of the pregnancy-induced increase in TEE, at least until gestational week 32. PMID:16469145

  15. Spontaneous brain activity observed with functional magnetic resonance imaging as a potential biomarker in neuropsychiatric disorders

    PubMed Central

    Zhou, Yuan; Wang, Kun; Liu, Yong; Song, Ming; Song, Sonya W.

    2010-01-01

    As functional magnetic resonance imaging (fMRI) studies have yielded increasing amounts of information about the brain’s spontaneous activity, they have revealed fMRI’s potential to locate changes in brain hemodynamics that are associated with neuropsychiatric disorders. In this paper, we review studies that support the notion that changes in brain spontaneous activity observed by fMRI can be used as potential biomarkers for diagnosis and treatment evaluation in neuropsychiatric disorders. We first review the methods used to study spontaneous activity from the perspectives of (1) the properties of local spontaneous activity, (2) the spatial pattern of spontaneous activity, and (3) the topological properties of brain networks. We also summarize the major findings associated with major neuropsychiatric disorders obtained using these methods. Then we review the pilot studies that have used spontaneous activity to discriminate patients from normal controls. Finally, we discuss current challenges and potential research directions to further elucidate the clinical use of spontaneous brain activity in neuropsychiatric disorders. PMID:22132039

  16. Insights into the structural patterns of the antileishmanial activity of bi- and tricyclic N-heterocycles.

    PubMed

    Herrera, Lizzi; Stephens, David E; D'Avila, Abigail; George, Kathryn G; Arman, Hadi; Zhang, Yu; Perry, George; Lleonart, Ricardo; Larionov, Oleg V; Fernández, Patricia L

    2016-08-01

    The influence of various structural patterns in a series of novel bi- and tricyclic N-heterocycles on the activity against Leishmania major and Leishmania panamensis has been studied and compounds that are active in the low micromolar region have been identified. Both quinolines and tetrahydrooxazinoindoles (TOI) proved to have significant antileishmanial activities, while substituted indoles were inactive. We have also showed that a chloroquine analogue induces Leishmania killing by modulating macrophage activation. PMID:27376396

  17. Alternative Responses to Predation in Two Headwater Stream Minnows Is Reflected in Their Contrasting Diel Activity Patterns

    PubMed Central

    Kadye, Wilbert T.; Booth, Anthony J.

    2014-01-01

    Animals exhibit diel periodicity in their activity in part to meet energy requirements whilst evading predation. A competing hypothesis suggests that partitioning of diel activities is less important because animals capitalise on opportunity. To test these hypotheses we examined the diel activity patterns for two cyprinid minnows, chubbyhead barb Barbus anoplus and the Eastern Cape redfin minnow Pseudobarbus afer that both occur within headwater streams in the Eastern Cape, South Africa. Chubbyhead barbs exhibited consistent nocturnal activity based on both field and laboratory observations. Due to the absence of fish predators within its habitat, its nocturnal behaviour suggests a response to the cost associated with diurnal activity, such as predation risk by diving and wading birds. In contrast, redfin minnows showed high diurnal activity and a shoaling behaviour in the wild, whereas, in the laboratory, they showed high refuge use during the diel cycle. Despite their preference for refuge in the laboratory, they were diurnally active, a behaviour that was consistent with observations in the wild. The diurnal activity of this species suggests a response to the cost associated with nocturnal activity. Such a cost could be inferred from the presence of the longfin eel, a native predator that was active at night, whereas the daytime shoaling behaviour suggests an anti-predator mechanism to diurnal visual predators. The implications of these findings relate to the impacts associated with the potential invasions by non-native piscivores that occur in the mainstem sections. Diurnal activity patterns for redfin minnows, that are IUCN-listed as endangered, may, in part, explain their susceptibility to high predation by visual non-native piscivores, such as bass and trout. In contrast, the nocturnal habits of chubbyhead barbs suggest a probable pre-adaptation to visual predation. The likelihood of invasion by nocturnally-active sharptooth catfish Clarias gariepinus

  18. Experimental observation of multistability and dynamic attractors in silicon central pattern generators

    NASA Astrophysics Data System (ADS)

    Zhao, Le; Nogaret, Alain

    2015-11-01

    We report on the multistability of chaotic networks of silicon neurons and demonstrate how spatiotemporal sequences of voltage oscillations are selected with timed current stimuli. A three neuron central pattern generator was built by interconnecting Hodgkin-Huxley neurons with mutually inhibitory links mimicking gap junctions. By systematically varying the timing of current stimuli applied to individual neurons, we generate the phase lag maps of neuronal oscillators and study their dependence on the network connectivity. We identify up to six attractors consisting of triphasic sequences of unevenly spaced pulses propagating clockwise and anticlockwise. While confirming theoretical predictions, our experiments reveal more complex oscillatory patterns shaped by the ratio of the pulse width to the oscillation period. Our work contributes to validating the command neuron hypothesis.

  19. What Use Patterns Were Observed for PEV Drivers at Publicly Accessible AC Level 2 EVSE Sites?

    SciTech Connect

    Francfort, James Edward

    2015-12-01

    The EV Project deployed over 4,000 ACL2 EVSE for drivers to charge their plug-in electric vehicle (PEV) when away-from-home. The vast majority of these EVSE stations were installed to be available to all PEV drivers at publicly accessible locations. Some were also deployed for use at workplaces and fleets. This paper examines only the use patterns of PEV drivers using the EVSE intended to be publicly accessible.

  20. Patterns and origin of igneous activity around the Tanzanian craton

    NASA Astrophysics Data System (ADS)

    Foley, S. F.; Link, K.; Tiberindwa, J. V.; Barifaijo, E.

    2012-01-01

    Tertiary and later igneous activity is common on and around the Tanzanian craton, with primitive magma compositions ranging from kimberlites and varieties of picrites through nephelinites, basanites and alkali basalts. This review focuses on elucidating the conditions of origin of the melts, addressing the question of the state and involvement of the Tanzanian cratonic lithosphere in magma genesis. The Tanzanian craton is anomalous with a surface elevation of >1100 m reflecting buoyancy supported by a subcratonic plume whose effects are seen in the volcanics of both western and eastern rift branches. Magmatism on the craton and at its edge has high K/Na and primitive melts show fractionation dominated by olivine. Slightly further from the craton pyroxene fractionation dominates and K/Na ratios in the magmas are lower. Off-craton melts are nephelinites, basanites and alkali basalts with low K/Na. Potassium enrichment in the melts correlates with the occurrence of phlogopite in mantle-derived xenoliths, and also with carbonate in the magmas. This is attributed to melting at >140 km depths of mixed source regions containing phlogopite pyroxenite and peridotite, whereby the carbonate is derived from oxidation of diamonds concentrated near the base of the cratonic lithosphere. Mixed source regions are required by arrays of radiogenic isotopes such as Os and Sr in the volcanic rocks. The temporal progression of lamproites to phlogopite + carbonate-rich rocks to melilitites, nephelinites and alkali basalts seen during the erosion of the North Atlantic craton are seen around the Tanzanian craton as the coeval occurrence kimberlites, kamafugites and related rocks, nephelinites and alkali basalts showing spatial instead of temporal variation. This is due to the different stages of development of rifting around the craton: in northwestern Uganda and northern Tanzania, K-rich volcanism occurs at the craton edge, whereas nephelinites, basanites and alkali basalts occur where

  1. Dynamics of firing patterns, synchronization and resonances in neuronal electrical activities: experiments and analysis

    NASA Astrophysics Data System (ADS)

    Lu, Qishao; Gu, Huaguang; Yang, Zhuoqin; Shi, Xia; Duan, Lixia; Zheng, Yanhong

    2008-12-01

    Recent advances in the experimental and theoretical study of dynamics of neuronal electrical firing activities are reviewed. Firstly, some experimental phenomena of neuronal irregular firing patterns, especially chaotic and stochastic firing patterns, are presented, and practical nonlinear time analysis methods are introduced to distinguish deterministic and stochastic mechanism in time series. Secondly, the dynamics of electrical firing activities in a single neuron is concerned, namely, fast-slow dynamics analysis for classification and mechanism of various bursting patterns, one- or two-parameter bifurcation analysis for transitions of firing patterns, and stochastic dynamics of firing activities (stochastic and coherence resonances, integer multiple and other firing patterns induced by noise, etc.). Thirdly, different types of synchronization of coupled neurons with electrical and chemical synapses are discussed. As noise and time delay are inevitable in nervous systems, it is found that noise and time delay may induce or enhance synchronization and change firing patterns of coupled neurons. Noise-induced resonance and spatiotemporal patterns in coupled neuronal networks are also demonstrated. Finally, some prospects are presented for future research. In consequence, the idea and methods of nonlinear dynamics are of great significance in exploration of dynamic processes and physiological functions of nervous systems.

  2. Spatial dynamics of meningococcal meningitis in Niger: observed patterns in comparison with measles.

    PubMed

    Bharti, N; Broutin, H; Grais, R F; Ferrari, M J; Djibo, A; Tatem, A J; Grenfell, B T

    2012-08-01

    Throughout the African meningitis belt, meningococcal meningitis outbreaks occur only during the dry season. Measles in Niger exhibits similar seasonality, where increased population density during the dry season probably escalates measles transmission. Because meningococcal meningitis and measles are both directly transmitted, we propose that host aggregation also impacts the transmission of meningococcal meningitis. Although climate affects broad meningococcal meningitis seasonality, we focus on the less examined role of human density at a finer spatial scale. By analysing spatial patterns of suspected cases of meningococcal meningitis, we show fewer absences of suspected cases in districts along primary roads, similar to measles fadeouts in the same Nigerien metapopulation. We further show that, following periods during no suspected cases, districts with high reappearance rates of meningococcal meningitis also have high measles reintroduction rates. Despite many biological and epidemiological differences, similar seasonal and spatial patterns emerge from the dynamics of both diseases. This analysis enhances our understanding of spatial patterns and disease transmission and suggests hotspots for infection and potential target areas for meningococcal meningitis surveillance and intervention. PMID:22009033

  3. Sleeping patterns of Afghan unaccompanied asylum-seeking adolescents: a large observational study.

    PubMed

    Bronstein, Israel; Montgomery, Paul

    2013-01-01

    Unaccompanied asylum-seeking children (UASC) have experienced multiple traumas and are a high-risk group for posttraumatic stress disorder (PTSD). The effects of trauma are known to be associated with sleep problems; indeed sleeping problems are core features of PTSD. However, there has been no systematic research examining the sleep of this high risk group of children. This study presents the first evidence on the sleeping patterns of Afghan UASC living in the UK. A total of 222 male Afghan children, aged 13-18, were interviewed using validated self-report questionnaires measuring sleeping patterns and PTSD. Overall, UASC patterns for bed time and rise time appear acculturated to the country of asylum. Mean UASC sleep onset latency scores were approximately 20 minutes greater compared with normative scores, which may be a reflection of UASC pre-migration and post-migration experiences. As expected, UASC who screened above the clinical cut-off for PTSD reported significantly greater sleep onset latency, increased nightmares, and less total sleep time compared to the non-PTSD group. The results may be of particular interest to clinicians given that, compared to screening for PTSD, screening for sleep problems may be a less culturally disputed form of initial assessment indicating distress in UASC. Similarly, the field of UASC and refugee child interventions is largely focused on trauma, yet sleep may provide a novel avenue for equally or more effective treatment. PMID:23457517

  4. Implications of climatic seasonality on activity patterns and resource use by sympatric peccaries in northern Pantanal

    NASA Astrophysics Data System (ADS)

    Hofmann, Gabriel Selbach; Coelho, Igor Pfeifer; Bastazini, Vinicius Augusto Galvão; Cordeiro, José Luís Passos; de Oliveira, Luiz Flamarion Barbosa

    2016-03-01

    We evaluated the effects of climate seasonality from a thermal and water availability perspective on the activity patterns and resource use of Pecari tajacu and Tayassu pecari during wet and dry seasons in the northeastern Brazilian Pantanal. We used camera traps and temperature sensors to record species activity patterns in relation to temperature, established five habitat categories based on flooding intensity and local vegetation characteristics, assessed the activity patterns of each species in dry and wet periods and in artificial water bodies using circular statistical metrics, and calculated niche amplitude and overlap on three axes (temperature, time, and habitat) in both periods. Peccaries shared a strong resemblance in resource use and in their responses to seasonal variations in the tested gradients. The activity patterns of both species exhibited a significant correlation with air temperature on all the evaluated measures, and both species strongly reduced their activity when the air temperature exceeded 35 °C. High temperatures associated with low water availability were most likely responsible for the changes in species activity patterns, which resulted in an increased temporal overlap in habitat use throughout the dry season. However, the peccaries avoided intensively flooded habitats; therefore, the habitat gradient overlap was greater during the wet period. Our results show that an increase in niche overlap on the environmental gradient as a result of climatic seasonality may be partially compensated by a reduction in other niche dimensions. In this case, temporal partitioning appears to be an important, viable mechanism to reduce competition by potentially competing species.

  5. Assessing Activity Pattern Similarity with Multidimensional Sequence Alignment based on a Multiobjective Optimization Evolutionary Algorithm

    PubMed Central

    Kwan, Mei-Po; Xiao, Ningchuan; Ding, Guoxiang

    2015-01-01

    Due to the complexity and multidimensional characteristics of human activities, assessing the similarity of human activity patterns and classifying individuals with similar patterns remains highly challenging. This paper presents a new and unique methodology for evaluating the similarity among individual activity patterns. It conceptualizes multidimensional sequence alignment (MDSA) as a multiobjective optimization problem, and solves this problem with an evolutionary algorithm. The study utilizes sequence alignment to code multiple facets of human activities into multidimensional sequences, and to treat similarity assessment as a multiobjective optimization problem that aims to minimize the alignment cost for all dimensions simultaneously. A multiobjective optimization evolutionary algorithm (MOEA) is used to generate a diverse set of optimal or near-optimal alignment solutions. Evolutionary operators are specifically designed for this problem, and a local search method also is incorporated to improve the search ability of the algorithm. We demonstrate the effectiveness of our method by comparing it with a popular existing method called ClustalG using a set of 50 sequences. The results indicate that our method outperforms the existing method for most of our selected cases. The multiobjective evolutionary algorithm presented in this paper provides an effective approach for assessing activity pattern similarity, and a foundation for identifying distinctive groups of individuals with similar activity patterns. PMID:26190858

  6. Patterned ground as an indicator of periglacial activity in and around Lomonosov Crater, Mars

    NASA Astrophysics Data System (ADS)

    Barrett, Alex; Balme, Matt; Patel, Manish; Hagermann, Axel

    2014-05-01

    A survey of the northern plains of Mars has been conducted to catalogue the distribution of possible periglacial landforms across several large study areas in Acidalia, Utopia and Arcadia Planitiae.. Several hundred HiRISE and CTX images have been surveyed, looking for features indicative of a periglacial environment; patterned ground, solifluction features and scalloped depressions. Non-sorted patterned ground is fairly common across the Northern Plains of Mars where nets of fracture polygons are common at mid to high latitudes. These features are most likely the result of contraction cracking due to temperature changes. The occurrence of fracture polygons is in keeping with the cold, dry environment of Mars. Analogous features on Earth are found in some of the coldest and driest regions of the planet. However other types of patterned ground, such as sorted circles and stripes, tend to occur in warmer and wetter environments as sorted patterned ground is the result of the repeated freezing and thawing of the permafrost active layer. These features require the action of liquid water during the warmer months of the year and are characteristic of a periglacial environment. Such features would not be expected to be as common on Mars, where the surface temperature is only warm enough for water to exist in a liquid state for short periods of time in isolated areas which receive high levels of insolation. Prior studies (e.g. Gallagher et al., 2011, Icarus.) have observed features which appear to be morphologically similar to sorted patterned ground. It is possible that unusual sites where boulders appear organised into stripes and networks could be analogous to these terrestrial periglacial features. Determining where such features occur on Mars could have important implications for understanding the martian environment. Lomonosov Crater, located at 64.9 degrees N, 9.3 degrees W in the northern reaches of Acidalia Planitia, is a 150 km diameter crater surrounded by the

  7. Dopamine Receptor Blockade Modulates the Rewarding and Aversive Properties of Nicotine via Dissociable Neuronal Activity Patterns in the Nucleus Accumbens

    PubMed Central

    Sun, Ninglei; Laviolette, Steven R

    2014-01-01

    The mesolimbic pathway comprising the ventral tegmental area (VTA) and projection terminals in the nucleus accumbens (NAc) has been identified as a critical neural system involved in processing both the rewarding and aversive behavioral effects of nicotine. Transmission through dopamine (DA) receptors functionally modulates these effects directly within the NAc. Nevertheless, the neuronal mechanisms within the NAc responsible for these bivalent behavioral effects are presently not known. Using an unbiased conditioned place preference procedure combined with in vivo neuronal recordings, we examined the effects of nicotine reward and aversion conditioning on intra-NAc neuronal sub-population activity patterns. We report that intra-VTA doses of nicotine that differentially produce rewarding or aversive behavioral effects produce opposite effects on sub-populations of fast-spiking interneurons (FSIs) or medium spiny neurons (MSNs) within the shell region of the NAc (NAshell). Thus, while the rewarding effects of intra-VTA nicotine were associated with inhibition of FSI and activation of MSNs, the aversive effects of nicotine produced the opposite pattern of NAshell neuronal population activity. Blockade of DA transmission with a broad-spectrum DA receptor antagonist, α-flupenthixol, strongly inhibited the spontaneous activity of NAshell FSIs, and reversed the conditioning properties of intra-VTA nicotine, switching nicotine-conditioned responses from aversive to rewarding. Remarkably, DA receptor blockade switched intra-NAshell neuronal population activity from an aversion to a reward pattern, concomitant with the observed switch in behavioral conditioning effects. PMID:24896614

  8. Active Microwave Remote Sensing Observations of Weddell Sea Ice

    NASA Technical Reports Server (NTRS)

    Drinkwater, Mark R.

    1997-01-01

    Since July 1991, the European Space Agency's ERS-1 and ERS-2 satellites have acquired radar data of the Weddell Sea, Antarctica. The Active Microwave Instrument on board ERS has two modes; SAR and Scatterometer. Two receiving stations enable direct downlink and recording of high bit-rate, high resolution SAR image data of this region. When not in an imaging mode, when direct SAR downlink is not possible, or when a receiving station is inoperable, the latter mode allows normalized radar cross-section data to be acquired. These low bit-rate ERS scatterometer data are tape recorded, downlinked and processed off-line. Recent advances in image generation from Scatterometer backscatter measurements enable complementary medium-scale resolution images to be made during periods when SAR images cannot be acquired. Together, these combined C-band microwave image data have for the first time enabled uninterrupted night and day coverage of the Weddell Sea region at both high (25 m) and medium-scale (-20 km) resolutions. C-band ERS-1 radar data are analyzed in conjunction with field data from two simultaneous field experiments in 1992. Satellite radar signature data are compared with shipborne radar data to extract a regional and seasonal signature database for recognition of ice types in the images. Performance of automated sea-ice tracking algorithms is tested on Antarctic data to evaluate their success. Examples demonstrate that both winter and summer ice can be effectively tracked. The kinematics of the main ice zones within the Weddell Sea are illustrated, together with the complementary time-dependencies in their radar signatures. Time-series of satellite images are used to illustrate the development of the Weddell Sea ice cover from its austral summer minimum (February) to its winter maximum (September). The combination of time-dependent microwave signatures and ice dynamics tracking enable various drift regimes to be defined which relate closely to the circulation of the

  9. Visual pattern discrimination by population retinal ganglion cells' activities during natural movie stimulation.

    PubMed

    Zhang, Ying-Ying; Wang, Ru-Bin; Pan, Xiao-Chuan; Gong, Hai-Qing; Liang, Pei-Ji

    2014-02-01

    In the visual system, neurons often fire in synchrony, and it is believed that synchronous activities of group neurons are more efficient than single cell response in transmitting neural signals to down-stream neurons. However, whether dynamic natural stimuli are encoded by dynamic spatiotemporal firing patterns of synchronous group neurons still needs to be investigated. In this paper we recorded the activities of population ganglion cells in bullfrog retina in response to time-varying natural images (natural scene movie) using multi-electrode arrays. In response to some different brief section pairs of the movie, synchronous groups of retinal ganglion cells (RGCs) fired with similar but different spike events. We attempted to discriminate the movie sections based on temporal firing patterns of single cells and spatiotemporal firing patterns of the synchronous groups of RGCs characterized by a measurement of subsequence distribution discrepancy. The discrimination performance was assessed by a classification method based on Support Vector Machines. Our results show that different movie sections of the natural movie elicited reliable dynamic spatiotemporal activity patterns of the synchronous RGCs, which are more efficient in discriminating different movie sections than the temporal patterns of the single cells' spike events. These results suggest that, during natural vision, the down-stream neurons may decode the visual information from the dynamic spatiotemporal patterns of the synchronous group of RGCs' activities. PMID:24465283

  10. Uncovering patterns of forearm muscle activity using multi-channel mechanomyography.

    PubMed

    Alves, Natasha; Chau, Tom

    2010-10-01

    A coordinated activation of distal forearm muscles allows the hand and fingers to be shaped during movement and grasp. However, little is known about how the muscle activation patterns are reflected in multi-channel mechanomyogram (MMG) signals. The purpose of this study is to determine if multi-site MMG signals exhibit distinctive patterns of forearm muscle activity. MMG signals were recorded from forearm muscle sites of nine able-bodied participants during hand movement. By using 14 features selected by a genetic algorithm and classified by a linear discriminant analysis classifier (LDA), we show that MMG patterns are specific and consistent enough to identify 7+/-1 hand movements with an accuracy of 90+/-4%. MMG-based movement recognition required a minimum of three recording sites. Further, by classifying five classes of contraction patterns with 98+/-3% accuracy from MMG signals recorded from the residual limb of an amputee participant, we demonstrate that MMG shows pattern-specificity even in the absence of typical musculature. Multi-site monitoring of the RMS of MMG signals is suggested as a method of estimating the relative contributions of muscles to motor tasks. The patterns in MMG facilitate our understanding of the mechanical activity of muscles during movement. PMID:19854064

  11. Observation and Modelling of Micropore Formation in Active Network Regions

    NASA Astrophysics Data System (ADS)

    Berger, T. E.; Löfdahl, M. G.; Bercik, D. J.

    2002-06-01

    We present phase-diversity corrected G-band 4305 Å and 4364 Å continuum image time series showing the formation of a micropore in a small active region near disk center. The data were acquired at the Swedish Vacuum Solar Telescope on La Palma in June of 1997 and post-processed using the Phase Diverse Speckle (PDS) algorithm to produce diffraction limited images throughout the majority of both time series. The micropore dataset comprises a 29x29 Mm field of view and spans 5.1 hours with a 38 second cadence. The micropore forms in a strong sink area that can be seen to ``collect" many G-band bright points over the first 2 hours of the observation. During this time there is an occasional darkening at the sink point that may be the first unstable phase of the micropore formation. Once a stable dark pore forms in the flowfield, it grows to a maximum diameter of 1.2 Mm in approximately 1.9 hours. The pore persists for another 35 minutes before apparently being broken up by the intergranular flowfield. The total ``lifetime" of the stable pore phase is 2.5 hours. A separate nearby micropore of 1.5 Mm maximum diameter exists for the entire 5.2 hour data span. We show G-band and continuum movies of the micropore formation, correlation tracking flowfield analyses, G-band bright point tracking results, and area versus time plots for the micropore formation lifetime. The observational data are compared with fully compressible 3D MHD numerical simulations which show the development of a similar micropore structure within the computational domain. This research was supported by NASA SR&T grant NASW-98008, The Royal Swedish Academy of Sciences, NSF and NASA funding at Michigan State University, and Lockheed Martin IRAD funding.

  12. Role of Individual and School Factors in Physical Activity Patterns of Secondary-Level Spanish Students

    ERIC Educational Resources Information Center

    Juan, Francisco Ruiz; Bengoechea, Enrique Garcia; Montes, Maria Elena Garcia; Bush, Paula Louise

    2010-01-01

    Background: While the importance of individual and school factors as correlates of overall youth physical activity has been demonstrated by previous research, less is known about the relationship of these factors with specific patterns of physical activity during adolescence. Thus, the purpose of this study was to examine the association of…

  13. Friendship Characteristics and Activity Patterns of Adolescents with an Autism Spectrum Disorder

    ERIC Educational Resources Information Center

    Kuo, Melissa H.; Orsmond, Gael I.; Cohn, Ellen S.; Coster, Wendy J.

    2013-01-01

    This study compared perceptions of adolescents' friendships between adolescents with an autism spectrum disorder (ASD) and their parents, examined factors associated with friendship qualities, and investigated the adolescents' reports on the activities they did with friends and how activity patterns differed by gender. Ninety-one…

  14. Motives for Using Facebook, Patterns of Facebook Activities, and Late Adolescents' Social Adjustment to College

    ERIC Educational Resources Information Center

    Yang, Chia-chen; Brown, B. Bradford

    2013-01-01

    Previous studies have confirmed that Facebook, the leading social networking site among young people, facilitates social connections among college students, but the specific activities and motives that foster social adjustment remain unclear. This study examined associations between patterns of Facebook activity, motives for using Facebook, and…

  15. Comparing Activity Patterns, Biological, and Family Factors in Children with and without Developmental Coordination Disorder

    ERIC Educational Resources Information Center

    Beutum, Monique Natalie; Cordier, Reinie; Bundy, Anita

    2013-01-01

    The association between motor proficiency and moderate to vigorous physical activity (MVPA) suggests children with developmental coordination disorder (DCD) may be susceptible to inactivity-related conditions such as cardiovascular diseases. The aim of this study was to compare children with and without DCD on physical activity patterns, activity…

  16. A real-time locating system observes physician time-motion patterns during walk-rounds: a pilot study

    PubMed Central

    2014-01-01

    Background Walk-rounds, a common component of medical education, usually consist of a combination of teaching outside the patient room as well as in the presence of the patient, known as bedside teaching. The proportion of time dedicated to bedside teaching has been declining despite research demonstrating its benefits. Increasing complexities of patient care and perceived impediments to workflow are cited as reasons for this declining use. Research using real-time locating systems (RTLS) has been purported to improve workflow through monitoring of patients and equipment. We used RTLS technology to observe and track patterns of movement of attending physicians during a mandatory once-weekly medical teaching team patient care rounding session endorsed as a walk-rounds format. Methods During a project to assess the efficacy of RTLS technology to track equipment and patients in a clinical setting, we conducted a small-scale pilot study to observe attending physician walk-round patterns during a mandatory once-weekly team rounding session. A consecutive sample of attending physicians on the unit was targeted, eight agreed to participate. Data collected using the RTLS were pictorially represented as linked points overlaying a floor plan of the unit to represent each physician’s motion through time. Visual analysis of time-motion was independently performed by two researchers and disagreement resolved through consensus. Rounding events were described as a sequence of approximate proportions of time engaged within or outside patient rooms. Results The patient care rounds varied in duration from 60 to 425 minutes. Median duration of rounds within patient rooms was approximately 33% of total time (range approximately 20-50%). Three general time-motion rounding patterns were observed: a first pattern that predominantly involved rounding in ward hallways and little time in patient rooms; a second pattern that predominantly involved time in a ward conference room; and a

  17. MALDI-MS Patterning of Caspase Activities and Its Application in the Assessment of Drug Resistance.

    PubMed

    Hu, Junjie; Liu, Fei; Ju, Huangxian

    2016-06-01

    Mass spectrometry (MS) has been widely used for enzyme activity assays. Herein, we propose a MALDI-MS patterning strategy for the convenient visual presentation of multiple enzyme activities with an easy-to-prepare chip. The array-based caspase-activity patterned chip (Casp-PC) is fabricated by hydrophobically assembling different phospholipid-tagged peptide substrates on a modified ITO slide. The advantages of amphipathic phospholipids lead to high-quality mass spectra for imaging analysis. Upon the respective cleavage of these substrates by different caspases, such as caspase-1, -2, -3, and -8, to produce a mass shift, the enzyme activities can be directly evaluated by MALDI-MS patterning by m/z-dependent imaging of the cleavage products. The ability to identify drug-sensitive/resistant cancer cells and assess the curative effects of anticancer drugs is demonstrated, indicating the applicability of the method and the designed chip. PMID:27101158

  18. Bedtime activities, sleep environment, and sleep/wake patterns of Japanese elementary school children.

    PubMed

    Oka, Yasunori; Suzuki, Shuhei; Inoue, Yuich

    2008-01-01

    Bedtime activities, sleep environment, and their impact on sleep/wake patterns were assessed in 509 elementary school children (6-12 years of age; 252 males and 257 females). Television viewing, playing video games, and surfing the Internet had negative impact on sleep/wake parameters. Moreover, presence of a television set or video game in the child's bedroom increased their activity before bedtime. Time to return home later than 8 p.m. from after-school activity also had a negative impact on sleep/wake patterns. Health care practitioners should be aware of the potential negative impact of television, video games, and the Internet before bedtime, and also the possibility that late after-school activity can disturb sleep/wake patterns. PMID:18853306

  19. Observed Patterns of Teacher-Pupil Classroom Behavior as Predicators of Student Growth in Reading.

    ERIC Educational Resources Information Center

    Coker, Homer; Lorentz, Jeffrey L.

    This study examined the relationship between observed classroom behavior (teacher-pupil interactions) and reading achievement. An elementary school reading teacher and six students with different coping styles were observed six times in each of 41 classrooms during the school year. Pretest and posttest reading scores, a measure for socioeconomic…

  20. Electronic properties and van Hove singularities of observed moiré patterns of dislocated graphene on HOPG

    NASA Astrophysics Data System (ADS)

    Gulseren, Oguz; Sen, H. Sener; Yildiz, Dilek; Gurlu, Oguzhan

    2015-03-01

    Highly Oriented Pyrolitic Graphite (HOPG) can be described as stacked graphene layers. Due the weak van der Waals interaction between the layers, topmost layer of HOPG can be rotated or shifted by chemical or mechanical means. With rotation of the topmost layer, super periodic structures called as moiré patterns are formed. In this work, moiré patterns on HOPG surfaces due to dislocated graphene layers were studied. A simple geometric investigation of the atomic structure of the moiré patterns revealed that different atomic moiré periodicities result in similar geometric moiré periods. Our calculations showed that the band structure of moiré patterns even though exhibits the fingerprints of those of twisted bilayer graphene system, like the preserved Dirac cone at the K point of moiré Brillouin zone, it has several new emerging features like van Hove singularities and linear or flat bands depending on the moiré periodicity. Our results show that most of the moiré patterns observed on graphene/HOPG system do not have a purely electronic or structural origin, but both. Moreover, our results show that van Hove singularities in these systems with different twist angles have different origins in their respective band structure. e-mail: gulseren@fen.bilkent.edu.tr

  1. The patterns of seasonal activity of Ixodes vespertilionis (Acari: Ixodidae) on Rhinolophus hipposideros in nursery colonies.

    PubMed

    Piksa, Krzysztof; Górz, Andrzej; Nowak-Chmura, Magdalena; Siuda, Krzysztof

    2014-02-01

    The aim of this study was to describe the dynamics of the long-legged bat tick Ixodes vespertilionis infestation on the lesser horseshoe bat Rhinolophus hipposideros in 2 nursery colonies roosting in attics. Out of a total of 810 lesser horseshoe bats examined, 217 (26.8%) were found to be infested with a total of 464 I. vespertilionis individuals. The developmental stage most frequently found was the larva, followed by the nymph, and the adult female. Bats were significantly more frequently infested with I. vespertilionis ticks in the period April to May than in other months. In these months, all tick developmental stages were observed. During summer and autumn, only immature developmental stages were recorded, whilst in September and October larvae predominated. Considerable differences in tick load between nursery colonies were observed. The length of seasonal presence on bats, prevalence, and infestation intensity of I. vespertilionis on lesser horseshoe bats were higher in the nursery colony situated in close vicinity of a cave than in the colony situated far from the caves. The results suggest that the pattern of seasonal infestation of ticks on bats roosting in nursery colonies coincides with the seasonal activity of Rh. hipposideros in the caves. The first case of mixed infestation of the lesser horseshoe bat with I. vespertilionis and I. ricinus were also recorded. PMID:24252260

  2. Development of coherent neuronal activity patterns in mammalian cortical networks: common principles and local hetereogeneity.

    PubMed

    Egorov, Alexei V; Draguhn, Andreas

    2013-01-01

    Many mammals are born in a very immature state and develop their rich repertoire of behavioral and cognitive functions postnatally. This development goes in parallel with changes in the anatomical and functional organization of cortical structures which are involved in most complex activities. The emerging spatiotemporal activity patterns in multi-neuronal cortical networks may indeed form a direct neuronal correlate of systemic functions like perception, sensorimotor integration, decision making or memory formation. During recent years, several studies--mostly in rodents--have shed light on the ontogenesis of such highly organized patterns of network activity. While each local network has its own peculiar properties, some general rules can be derived. We therefore review and compare data from the developing hippocampus, neocortex and--as an intermediate region--entorhinal cortex. All cortices seem to follow a characteristic sequence starting with uncorrelated activity in uncoupled single neurons where transient activity seems to have mostly trophic effects. In rodents, before and shortly after birth, cortical networks develop weakly coordinated multineuronal discharges which have been termed synchronous plateau assemblies (SPAs). While these patterns rely mostly on electrical coupling by gap junctions, the subsequent increase in number and maturation of chemical synapses leads to the generation of large-scale coherent discharges. These patterns have been termed giant depolarizing potentials (GDPs) for predominantly GABA-induced events or early network oscillations (ENOs) for mostly glutamatergic bursts, respectively. During the third to fourth postnatal week, cortical areas reach their final activity patterns with distinct network oscillations and highly specific neuronal discharge sequences which support adult behavior. While some of the mechanisms underlying maturation of network activity have been elucidated much work remains to be done in order to fully

  3. Extraction and Characterization of Essential Discharge Patterns from Multisite Recordings of Spiking Ongoing Activity

    PubMed Central

    Storchi, Riccardo; Biella, Gabriele E. M.; Liberati, Diego; Baselli, Giuseppe

    2009-01-01

    Background Neural activation patterns proceed often by schemes or motifs distributed across the involved cortical networks. As neurons are correlated, the estimate of all possible dependencies quickly goes out of control. The complex nesting of different oscillation frequencies and their high non-stationariety further hamper any quantitative evaluation of spiking network activities. The problem is exacerbated by the intrinsic variability of neural patterns. Methodology/Principal Findings Our technique introduces two important novelties and enables to insulate essential patterns on larger sets of spiking neurons and brain activity regimes. First, the sampling procedure over N units is based on a fixed spike number k in order to detect N-dimensional arrays (k-sequences), whose sum over all dimension is k. Then k-sequences variability is greatly reduced by a hierarchical separative clustering, that assigns large amounts of distinct k-sequences to few classes. Iterative separations are stopped when the dimension of each cluster comes to be smaller than a certain threshold. As threshold tuning critically impacts on the number of classes extracted, we developed an effective cost criterion to select the shortest possible description of our dataset. Finally we described three indexes (C,S,R) to evaluate the average pattern complexity, the structure of essential classes and their stability in time. Conclusions/Significance We validated this algorithm with four kinds of surrogated activity, ranging from random to very regular patterned. Then we characterized a selection of ongoing activity recordings. By the S index we identified unstable, moderatly and strongly stable patterns while by the C and the R indices we evidenced their non-random structure. Our algorithm seems able to extract interesting and non-trivial spatial dynamics from multisource neuronal recordings of ongoing and potentially stimulated activity. Combined with time-frequency analysis of LFPs could provide a

  4. Geomagnetic activity during 10 - 11 solar cycles that has been observed by old Russian observatories.

    NASA Astrophysics Data System (ADS)

    Seredyn, Tomasz; Wysokinski, Arkadiusz; Kobylinski, Zbigniew; Bialy, Jerzy

    2016-07-01

    A good knowledge of solar-terrestrial relations during past solar activity cycles could give the appropriate tools for a correct space weather forecast. The paper focuses on the analysis of the historical collections of the ground based magnetic observations and their operational indices from the period of two sunspot solar cycles 10 - 11, period 1856 - 1878 (Bartels rotations 324 - 635). We use hourly observations of H and D geomagnetic field components registered at Russian stations: St. Petersburg - Pavlovsk, Barnaul, Ekaterinburg, Nertshinsk, Sitka, and compare them to the data obtained from the Helsinki observatory. We compare directly these records and also calculated from the data of the every above mentioned station IHV indices introduced by Svalgaard (2003), which have been used for further comparisons in epochs of assumed different polarity of the heliospheric magnetic field. We used also local index C9 derived by Zosimovich (1981) from St. Petersburg - Pavlovsk data. Solar activity is represented by sunspot numbers. The correlative and continuous wavelet analyses are applied for estimation of the correctness of records from different magnetic stations. We have specially regard to magnetic storms in the investigated period and the special Carrington event of 1-2 Sep 1859. Generally studied magnetic time series correctly show variability of the geomagnetic activity. Geomagnetic activity presents some delay in relation to solar one as it is seen especially during descending and minimum phase of the even 11-year cycle. This pattern looks similarly in the case of 16 - 17 solar cycles.

  5. Rhythmic alternating patterns of brain activity distinguish rapid eye movement sleep from other states of consciousness.

    PubMed

    Chow, Ho Ming; Horovitz, Silvina G; Carr, Walter S; Picchioni, Dante; Coddington, Nate; Fukunaga, Masaki; Xu, Yisheng; Balkin, Thomas J; Duyn, Jeff H; Braun, Allen R

    2013-06-18

    Rapid eye movement (REM) sleep constitutes a distinct "third state" of consciousness, during which levels of brain activity are commensurate with wakefulness, but conscious awareness is radically transformed. To characterize the temporal and spatial features of this paradoxical state, we examined functional interactions between brain regions using fMRI resting-state connectivity methods. Supporting the view that the functional integrity of the default mode network (DMN) reflects "level of consciousness," we observed functional uncoupling of the DMN during deep sleep and recoupling during REM sleep (similar to wakefulness). However, unlike either deep sleep or wakefulness, REM was characterized by a more widespread, temporally dynamic interaction between two major brain systems: unimodal sensorimotor areas and the higher-order association cortices (including the DMN), which normally regulate their activity. During REM, these two systems become anticorrelated and fluctuate rhythmically, in reciprocally alternating multisecond epochs with a frequency ranging from 0.1 to 0.01 Hz. This unique spatiotemporal pattern suggests a model for REM sleep that may be consistent with its role in dream formation and memory consolidation. PMID:23733938

  6. Foraging Activity Pattern Is Shaped by Water Loss Rates in a Diurnal Desert Rodent.

    PubMed

    Levy, Ofir; Dayan, Tamar; Porter, Warren P; Kronfeld-Schor, Noga

    2016-08-01

    Although animals fine-tune their activity to avoid excess heat, we still lack a mechanistic understanding of such behaviors. As the global climate changes, such understanding is particularly important for projecting shifts in the activity patterns of populations and communities. We studied how foraging decisions vary with biotic and abiotic pressures. By tracking the foraging behavior of diurnal desert spiny mice in their natural habitat and estimating the energy and water costs and benefits of foraging, we asked how risk management and thermoregulatory requirements affect foraging decisions. We found that water requirements had the strongest effect on the observed foraging decisions. In their arid environment, mice often lose water while foraging for seeds and cease foraging even at high energetic returns when water loss is high. Mice also foraged more often when energy expenditure was high and for longer times under high seed densities and low predation risks. Gaining insight into both energy and water balance will be crucial to understanding the forces exerted by changing climatic conditions on animal energetics, behavior, and ecology. PMID:27420785

  7. Weather effects on the patterns of people's everyday activities: a study using GPS traces of mobile phone users.

    PubMed

    Horanont, Teerayut; Phithakkitnukoon, Santi; Leong, Tuck W; Sekimoto, Yoshihide; Shibasaki, Ryosuke

    2013-01-01

    This study explores the effects that the weather has on people's everyday activity patterns. Temperature, rainfall, and wind speed were used as weather parameters. People's daily activity patterns were inferred, such as place visited, the time this took place, the duration of the visit, based on the GPS location traces of their mobile phones overlaid upon Yellow Pages information. Our analysis of 31,855 mobile phone users allowed us to infer that people were more likely to stay longer at eateries or food outlets, and (to a lesser degree) at retail or shopping areas when the weather is very cold or when conditions are calm (non-windy). When compared to people's regular activity patterns, certain weather conditions affected people's movements and activities noticeably at different times of the day. On cold days, people's activities were found to be more diverse especially after 10AM, showing greatest variations between 2PM and 6PM. A similar trend is observed between 10AM and midnight on rainy days, with people's activities found to be most diverse on days with heaviest rainfalls or on days when the wind speed was stronger than 4 km/h, especially between 10AM-1AM. Finally, we observed that different geographical areas of a large metropolis were impacted differently by the weather. Using data of urban infrastructure to characterize areas, we found strong correlations between weather conditions upon people's accessibility to trains. This study sheds new light on the influence of weather conditions on human behavior, in particular the choice of daily activities and how mobile phone data can be used to investigate the influence of environmental factors on urban dynamics. PMID:24367481

  8. Weather Effects on the Patterns of People's Everyday Activities: A Study Using GPS Traces of Mobile Phone Users

    PubMed Central

    Leong, Tuck W.; Sekimoto, Yoshihide; Shibasaki, Ryosuke

    2013-01-01

    This study explores the effects that the weather has on people's everyday activity patterns. Temperature, rainfall, and wind speed were used as weather parameters. People's daily activity patterns were inferred, such as place visited, the time this took place, the duration of the visit, based on the GPS location traces of their mobile phones overlaid upon Yellow Pages information. Our analysis of 31,855 mobile phone users allowed us to infer that people were more likely to stay longer at eateries or food outlets, and (to a lesser degree) at retail or shopping areas when the weather is very cold or when conditions are calm (non-windy). When compared to people's regular activity patterns, certain weather conditions affected people's movements and activities noticeably at different times of the day. On cold days, people's activities were found to be more diverse especially after 10AM, showing greatest variations between 2PM and 6PM. A similar trend is observed between 10AM and midnight on rainy days, with people's activities found to be most diverse on days with heaviest rainfalls or on days when the wind speed was stronger than 4 km/h, especially between 10AM–1AM. Finally, we observed that different geographical areas of a large metropolis were impacted differently by the weather. Using data of urban infrastructure to characterize areas, we found strong correlations between weather conditions upon people's accessibility to trains. This study sheds new light on the influence of weather conditions on human behavior, in particular the choice of daily activities and how mobile phone data can be used to investigate the influence of environmental factors on urban dynamics. PMID:24367481

  9. Visual observations of glottic activity during didgeridoo performance

    NASA Astrophysics Data System (ADS)

    Izdebski, Krzysztof; Hyde, Lydia; Ward, Ronald R.; Ross, Joel C.

    2012-02-01

    Australian didgeridoo is a reed-less hollow conically shape wooden tubular wind instrument typically measuring up to 150 cm in length, with distal and proximal diameters ranging from 150 to 30 mm. This tube allows a player to produce only a narrow variety of sound and sounds effects because it is coupled directly to the player's vocal tract. The typical frequency of the tube typically called the drone, is approximately within 60 to 100 Hz range. This tone generation modulated by lip vibration is supported by circular breathing, allowing for an uninterrupted (indefinite) length of sound generation. Inhalation introduces sound pulsation, while specific tonal effects can be consciously created by manipulation of the player's lips and/or the vocal tract, including conscious phonation using vocal folds vibration, all used to enrich both the sound and the artistic meaning of the played sequence. Though the results of the research on the acoustics of this instrument are often reported in the literature, physiologic data regarding vocal tract configurations, and especially on the behavior of the vocal folds in regulation of ventilation and in phonation, remain less than underreported. The data presented here comprises (as far as we were able to determine) the first ever physiologic account of vocal fold activity in a didgeridoo player observed with help of trans-nasal endoscopy. Our focus was to reveal the work of t

  10. Observational signatures of galactic winds powered by active galactic nuclei

    NASA Astrophysics Data System (ADS)

    Nims, Jesse; Quataert, Eliot; Faucher-Giguère, Claude-André

    2015-03-01

    We predict the observational signatures of galaxy scale outflows powered by active galactic nuclei (AGN). Most of the emission is produced by the forward shock driven into the ambient interstellar medium (ISM) rather than by the reverse shock. AGN-powered galactic winds with energetics suggested by phenomenological feedback arguments should produce spatially extended ˜1-10 keV X-ray emission ˜ 1041-44 erg s- 1, significantly in excess of the spatially extended X-ray emission associated with normal star-forming galaxies. The presence of such emission is a direct test of whether AGN outflows significantly interact with the ISM of their host galaxy. We further show that even radio-quiet quasars should have a radio luminosity comparable to or in excess of the far-infrared-radio correlation of normal star-forming galaxies. This radio emission directly constrains the total kinetic energy flux in AGN-powered galactic winds. Radio emission from AGN wind shocks can also explain the recently highlighted correlations between radio luminosity and the kinematics of AGN narrow-line regions in radio-quiet quasars.

  11. Hippocampal CA2 activity patterns change over time to a larger extent than between spatial contexts.

    PubMed

    Mankin, Emily A; Diehl, Geoffrey W; Sparks, Fraser T; Leutgeb, Stefan; Leutgeb, Jill K

    2015-01-01

    The hippocampal CA2 subregion has a different anatomical connectivity pattern within the entorhino-hippocampal circuit than either the CA1 or CA3 subregion. Yet major differences in the neuronal activity patterns of CA2 compared with the other CA subregions have not been reported. We show that standard spatial and temporal firing patterns of individual hippocampal principal neurons in behaving rats, such as place fields, theta modulation, and phase precession, are also present in CA2, but that the CA2 subregion differs substantially from the other CA subregions in its population coding. CA2 ensembles do not show a persistent code for space or for differences in context. Rather, CA2 activity patterns become progressively dissimilar over time periods of hours to days. The weak coding for a particular context is consistent with recent behavioral evidence that CA2 circuits preferentially support social, emotional, and temporal rather than spatial aspects of memory. PMID:25569350

  12. Use of an infrared sensor system to take long-term bedside measurements of rest-activity patterns in the elderly with dementia.

    PubMed

    Nakano, Toshio; Koyama, Emi; Nakamura, Toshiyuki; Ito, Takeo; Tamura, Koji; Yaginuma, Masaaki

    2002-06-01

    In order to study long-term rest-activity patterns of elderly residents in care facilities, an infrared sensor system was developed. This sensor system detects a resident's presence or absence from their bed and their activity with little inconvenience. Using this system, the rest-activity patterns of two elderly people with dementia was assessed over a period of 3 months. For both subjects, frequent activity peaks and absences from their beds were often observed during the night. Such a sensor system will be useful for evaluating the sleep-wake rhythms of people with sleep disorders. PMID:12047598

  13. Patterns of regional brain activation associated with different forms of motor learning.

    PubMed

    Ghilardi, M; Ghez, C; Dhawan, V; Moeller, J; Mentis, M; Nakamura, T; Antonini, A; Eidelberg, D

    2000-07-14

    To examine the variations in regional cerebral blood flow during execution and learning of reaching movements, we employed a family of kinematically and dynamically controlled motor tasks in which cognitive, mnemonic and executive features of performance were differentiated and characterized quantitatively. During 15O-labeled water positron emission tomography (PET) scans, twelve right-handed subjects moved their dominant hand on a digitizing tablet from a central location to equidistant targets displayed with a cursor on a computer screen in synchrony with a tone. In the preceding week, all subjects practiced three motor tasks: 1) movements to a predictable sequence of targets; 2) learning of new visuomotor transformations in which screen cursor motion was rotated by 30 degrees -60 degrees; 3) learning new target sequences by trial and error, by using previously acquired routines in a task placing heavy load on spatial working memory. The control condition was observing screen and audio displays. Subtraction images were analyzed with Statistical Parametric Mapping to identify significant brain activation foci. Execution of predictable sequences was characterized by a modest decrease in movement time and spatial error. The underlying pattern of activation involved primary motor and sensory areas, cerebellum, basal ganglia. Adaptation to a rotated reference frame, a form of procedural learning, was associated with decrease in the imposed directional bias. This task was associated with activation in the right posterior parietal cortex. New sequences were learned explicitly. Significant activation was found in dorsolateral prefrontal and anterior cingulate cortices. In this study, we have introduced a series of flexible motor tasks with similar kinematic characteristics and different spatial attributes. These tasks can be used to assess specific aspects of motor learning with imaging in health and disease. PMID:10882792

  14. Thrombus formation patterns in the HeartMate II ventricular assist device: clinical observations can be predicted by numerical simulations.

    PubMed

    Chiu, Wei-Che; Slepian, Marvin J; Bluestein, Danny

    2014-01-01

    Postimplant device thrombosis remains a life-threatening complication and limitation of continuous-flow ventricular assist devices (VADs). Using advanced computational fluid dynamic (CFD) simulations, we successfully depicted various flow patterns, recirculation zones, and stagnant platelet trajectories which promote thrombus formation and observed that they matched actual thrombus formation patterns observed in Thoratec HeartMate II VADs explanted from patients with pump thrombosis. Previously, these small eddies could not be captured by either digital particle image velocimetry or CFD due to insufficient resolution. Our study successfully demonstrated the potential capability of advanced CFD to be adopted for device optimization, leading to enhanced safety and efficacy of VADs for long-term destination therapy. PMID:24399065

  15. Long-term magnetic activity in close binary systems. I. Patterns of color variations

    NASA Astrophysics Data System (ADS)

    Messina, S.

    2008-03-01

    Aims:This is the first of a series of papers in which we present the results of a long-term photometric monitoring project carried out at Catania Astrophysical Observatory aimed at studying magnetic activity in late-type components of close binary systems, its dependence on global stellar parameters, and its evolution on different time scales from days to years. In this first paper, we present the complete observation dataset and new results of an investigation into the origin of brightness and color variations observed in the well-known magnetically active close binary stars: AR Psc, VY Ari, UX Ari, V711 Tau, EI Eri, V1149 Ori, DH Leo, HU Vir, RS CVn, V775 Her, AR Lac, SZ Psc, II Peg and BY Dra Methods: About 38 000 high-precision photoelectric nightly observations in the U, B and V filters are analysed. Correlation and regression analyses of the V magnitude vs. U-B and B-V color variations are carried out and a comparison with model variations for a grid of active region temperature and filling factor values is also performed. Results: We find the existence of two different patterns of color variation. Eight stars in our sample: BY Dra, VY Ari, V775 Her, II Peg, V1149 Ori, HU Vir, EI Eri and DH Leo become redder when they become fainter, as is expected from the presence of active regions consisting of cool spots. The other six stars show the opposite behaviour, i.e. they become bluer when they become fainter. For V711 Tau this behaviour could be explained by the increased relative U- and B-flux contribution by the earlier-type component of the binary system when the cooler component becomes fainter. On the other hand, for AR Psc, UX Ari, RS CVn, SZ Psc and AR Lac the existence of hot photospheric faculae must be invoked. We also found that in single-lined and double-lined binary stars in which the fainter component is inactive or much less active the V magnitude is correlated to B-V and U-B color variations in more than 60% of observation seasons. The correlation

  16. Variation in Lipid Profile Across Different Patterns of Obesity – Observations from Guwahati, Assam

    PubMed Central

    Pathak, Mauchumi Saikia; Borah, Probodh; Das, Dulmoni

    2015-01-01

    Background Obesity adversely affects cardiovascular health is known. But, data is few in this regard from Assam, northeast India. The serum lipid profile is performed for cardio-metabolic status assessment. Aim The aim of the study was to investigate variation in serum lipids across different obesity patterns in an urban population from Assam. Materials and Methods Two hundred subjects were classified by WC (waist circumference) and BMI (body mass index) values into four groups as follows: Group I (normal WC, normal BMI), Group II (normal WC, increased BMI), Group III (increased WC, normal BMI) and Group IV (increased WC, increased BMI). WC and BMI served as measures of central and generalized obesity respectively. Lipid profile was measured using VITROS 5600 Autoanalyser, and compared across these groups. Multivariate analyses were performed separately for males and females to confirm the results of univariate analyses. Results WC and BMI exhibited significant correlations with different lipid parameters. Group IV individuals had the most abnormal lipid profile values, while, Group I individuals had the most normal values. Group II and Group III individuals had intermediate values. BMI was independently associated with serum triglycerides in both males and females. WC was independently associated with high density lipoprotein cholesterol in females. Conclusion The lipid values varied significantly across different obesity patterns. Serum lipid concentrations were strongly influenced by anthropometric indices of obesity in both sexes. Presence of both central and generalized obesity led to greater abnormalities in lipid profile than presence of central or generalized obesity alone. PMID:26672627

  17. Seasonal variation in daily activity patterns of free-ranging European ground squirrels (Spermophilus citellus).

    PubMed

    Everts, Lammina G; Strijkstra, Arjen M; Hut, Roelof A; Hoffmann, Ilse E; Millesi, Eva

    2004-01-01

    Daily aboveground activity of European ground squirrels (Spermophilus citellus) in their natural habitat was recorded with a visual scanning procedure during the active seasons of 1992 and 1993. Activity patterns were analyzed with respect to time of year and to the animal's reproductive state. Aboveground activity started on average 3.9 h (SD 0.6 h, n = 37 days) after civil twilight at dawn and ended on average 3.2 h (SD 0.9 h, n = 37 days) before civil twilight at dusk. Between onset and offset of activity, 54% was spent aboveground, of which 73% was spent foraging. Activity patterns were influenced by photoperiod, rainfall, and by reproductive state. During mating, reproductively active males started activity earlier than females and reproductively inactive males. For females, time spent foraging was high during lactation. The midpoint of daily activity was at 12:16 h (SD 0.37 h, n = 37 days). Activity patterns of European ground squirrels thus appear robustly positioned in the middle of the photoperiod. PMID:15129824

  18. Satellite observations of surface temperature patterns induced by synoptic circulation over the Eastern Mediterranean

    NASA Astrophysics Data System (ADS)

    Lensky, Itamar; Dayan, Uri

    2013-04-01

    Land Surface Temperature (LST) controls most physical and biological processes on Earth. Knowledge of the LST at high spatial resolution enables representation of different climate regimes. The main factors controlling LST are the seasonal and diurnal cycles, land cover, cloud cover, and atmospheric processes at several scales. Lensky and Dayan analyzed atmospheric processes at the topoclimatic scale, and the mesoscale (Lensky and Dayan 2011, 2012). Here we will demonstrate an analysis of the spatial distribution of LST anomaly as affected by typical synoptic circulation patterns over the Eastern Mediterranean (EM). LST anomaly is defined as the difference between daily and climatological LST. Using LST anomaly reduces the effects of land cover and the seasonal and diurnal cycles, enabling a better detection of surface temperature patterns induced by synoptic circulation. In this study we used all available 2000-2012 NASA daily MODIS LST data over the EM, together with NCEP/NCAR Reanalysis data of SLP, surface winds and Omega (at 700hPa). We will present two frequent synoptic circulation patterns as classified by Levy and Dayan (2008) to demonstrate the LST patterns induced by synoptic circulation over the EM. The first is the "Red Sea Trough" (RST) with eastern axis, which is an extension of a low surface pressure from a tropical depression toward the Red Sea, penetrating up north as far as Turkey. It migrates from south to north and mostly frequent during the autumn. The axis of the RST separates distinctively between regions of positive (warm) anomalies over Turkey and regions of negative anomalies (cold) over Egypt induced by the wind flow from both sides of the axis. The second synoptic circulation pattern is "shallow Cyprus low to the north", which is a disturbance of the polar front extending southward. This synoptic system some times migrates over the Mediterranean eastward toward the EM during the winter season. The strong northwesterly flow featuring the

  19. Sensory Patterns, Obesity, and Physical Activity Participation of Children With Autism Spectrum Disorder.

    PubMed

    Lawson, Lisa Mische; Foster, Lauren

    2016-01-01

    Obesity is a public health concern for the population in general and for children with autism spectrum disorder (ASD) specifically. The purpose of this study was to understand relationships between sensory patterns, obesity, and physical activity engagement of children with ASD (N = 77) sampled from a specialized community-based swimming program. This retrospective correlational study analyzed program data. Results show that almost half (42.2%) of the children were overweight or obese, and sensory avoiding behaviors were related to higher body mass index (BMI). Children participated in few formal and informal physically active recreation activities. Sensory seeking behaviors were associated with increased participation in informal activities, and higher BMI was associated with less participation in both formal and informal activities. Practitioners should consider sensory processing patterns and BMI when developing community-based programs to promote physical activity of children with ASD. PMID:27548863

  20. X-Ray Diffraction Powder Patterns and Thin Section Observations from the Sierra Madera Impact Structure

    NASA Astrophysics Data System (ADS)

    Huson, S. A.; Foit, F. F.; Watkinson, A. J.; Pope, M. C.

    2006-03-01

    X-Ray powder diffraction analysis and thin section observations of carbonate and siliciclastic samples from the Sierra Madera impact structure indicate moderate shock pressures (8 to 30 GPa) were generated during the formation of this crater.

  1. Brain activity during observation and motor imagery of different balance tasks: an fMRI study.

    PubMed

    Taube, Wolfgang; Mouthon, Michael; Leukel, Christian; Hoogewoud, Henri-Marcel; Annoni, Jean-Marie; Keller, Martin

    2015-03-01

    After immobilization, patients show impaired postural control and increased risk of falling. Therefore, loss of balance control should already be counteracted during immobilization. Previously, studies have demonstrated that both motor imagery (MI) and action observation (AO) can improve motor performance. The current study elaborated how the brain is activated during imagination and observation of different postural tasks to provide recommendations about the conception of non-physical balance training. For this purpose, participants were tested in a within-subject design in an fMRI-scanner in three different conditions: (a) AO + MI, (b) AO, and (c) MI. In (a) participants were instructed to imagine themselves as the person pictured in the video whereas in (b) they were instructed simply to watch the video. In (c) subjects closed their eyes and kinesthetically imagined the task displayed in the video. Two tasks were evaluated in each condition: (i) static standing balance and (ii) dynamic standing balance (medio-lateral perturbation). In all conditions the start of a new trial was indicated every 2 sec by a sound. During AO + MI of the dynamic task, participants activated motor centers including the putamen, cerebellum, supplementary motor area, premotor cortices (PMv/d) and primary motor cortex (M1). MI showed a similar pattern but no activity in M1 and PMv/d. In the SMA and cerebellum, activity was generally higher in the dynamic than in the static condition. AO did not significantly activate any of these brain areas. Our results showed that (I) mainly AO + MI, but also MI, activate brain regions important for balance control; (II) participants display higher levels of brain activation in the more demanding balance task; (III) there is a significant difference between AO + MI and AO. Consequently, best training effects should be expected when participants apply MI during AO (AO + MI) of challenging postural tasks. PMID:25461711

  2. Unsupervised classification of neocortical activity patterns in neonatal and pre-juvenile rodents.

    PubMed

    Cichon, Nicole B; Denker, Michael; Grün, Sonja; Hanganu-Opatz, Ileana L

    2014-01-01

    Flexible communication within the brain, which relies on oscillatory activity, is not confined to adult neuronal networks. Experimental evidence has documented the presence of discontinuous patterns of oscillatory activity already during early development. Their highly variable spatial and time-frequency organization has been related to region specificity. However, it might be equally due to the absence of unitary criteria for classifying the early activity patterns, since they have been mainly characterized by visual inspection. Therefore, robust and unbiased methods for categorizing these discontinuous oscillations are needed for increasingly complex data sets from different labs. Here, we introduce an unsupervised detection and classification algorithm for the discontinuous activity patterns of rodents during early development. For this, in a first step time windows with discontinuous oscillations vs. epochs of network "silence" were identified. In a second step, the major features of detected events were identified and processed by principal component analysis for deciding on their contribution to the classification of different oscillatory patterns. Finally, these patterns were categorized using an unsupervised cluster algorithm. The results were validated on manually characterized neonatal spindle bursts (SB), which ubiquitously entrain neocortical areas of rats and mice, and prelimbic nested gamma spindle bursts (NG). Moreover, the algorithm led to satisfactory results for oscillatory events that, due to increased similarity of their features, were more difficult to classify, e.g., during the pre-juvenile developmental period. Based on a linear classification, the optimal number of features to consider increased with the difficulty of detection. This algorithm allows the comparison of neonatal and pre-juvenile oscillatory patterns in their spatial and temporal organization. It might represent a first step for the unbiased elucidation of activity patterns

  3. Observation of the waveguide resonance in a periodically patterned high refractive index broadband antireflection coating.

    PubMed

    Stenzel, O; Wilbrandt, S; Chen, X; Schlegel, R; Coriand, L; Duparré, A; Zeitner, U; Benkenstein, T; Wächter, C

    2014-05-10

    Grating waveguide structures have been prepared by the deposition of a high refractive index broadband antireflection coating onto a patterned fused silica substrate. Aluminum oxide and hafnium oxide as well as mixtures thereof have been used as coating materials. Optical reflection measurements combined with atomic force microscopy have been used to characterize the structures. Upon illumination with a TE wave, the best structure shows a narrow reflection peak located at 633 nm at an incidence angle of about 17°. The peak reflectance of that sample accounts for more than 89%. Off-resonance interference structures appear strongly suppressed in the spectrum between 450 and 800 nm because of the characteristics of the designed antireflection layer. The structure thus possesses a notch filter spectral characteristic in a broad spectral range. PMID:24922038

  4. The pattern of reading deterioration in dementia of the Alzheimer type: observations and implications.

    PubMed

    Cummings, J L; Houlihan, J P; Hill, M A

    1986-11-01

    Thirteen patients with dementia of the Alzheimer type (DAT) were tested for their ability to read aloud and to read with comprehension. Reading aloud was preserved in all but the most severely impaired cases and was found to be relatively independent of intellectual deterioration. Reading comprehension declined progressively with increasing dementia severity and correlated well with quantitative mental status assessments. The results suggest that the pattern of reading deterioration may aid in the clinical identification of DAT, that the disturbance of reading comprehension is a linguistic deficit rather than a product of visual-perceptual disturbances, and that the alexia is more consistent with an instrumental loss than a de-developmental model of dementia. PMID:3790984

  5. Atmospheric circulation patterns associated to the variability of River Ammer floods: evidence from observed and proxy data

    NASA Astrophysics Data System (ADS)

    Rimbu, Norel; Czymzik, Markus; Ionita, Monica; Lohmann, Gerrit; Brauer, Achim

    2016-04-01

    The relationship between the frequency of River Ammer floods (southern Germany) and atmospheric circulation variability is investigated based on observational Ammer discharge data back to 1926 and a flood layer time series from varved sediments of the downstream Lake Ammersee for the pre-instrumental period back to 1766. A composite analysis reveals that, at synoptic time scales, observed River Ammer floods are associated with enhanced moisture transport from the Atlantic Ocean and the Mediterranean towards the Ammer region, a pronounced trough over Western Europe as well as enhanced potential vorticity at upper levels. We argue that this synoptic scale configuration can trigger heavy precipitation and floods in the Ammer region. Interannual to multidecadal increases in flood frequency, as recorded in the instrumental discharge record, are associated to a wave-train pattern extending from the North Atlantic to western Asia with a prominent negative center over western Europe. A similar atmospheric circulation pattern is associated to increases in flood layer frequency in the Lake Ammersee sediment record during the pre-instrumental period. Furthermore, river Ammer flood frequency variability is associated with distinct patterns in various extreme climatic indices. In particular, high frequency of river Ammer floods is accompanied by high frequency of warm days (TX90p index) and positive anomalies of absolute maximum temperature (TXx) over northeastern Europe. Such extreme temperature patterns occur in connection with low cloudiness over this region forced by flood related atmospheric circulation pattern during summer. We argue that the complete flood layer time-series from Lake Ammersee sediments covering the last 5500 years, contains information about atmospheric circulation and extreme climate indices variability on inter-annual to millennial time-scales.

  6. Mars Global Digital Dune Database (MGD3): Global dune distribution and wind pattern observations

    USGS Publications Warehouse

    Hayward, Rosalyn K.; Fenton, Lori; Titus, Timothy N.

    2013-01-01

    The Mars Global Digital Dune Database (MGD3) is complete and now extends from 90°N to 90°S latitude. The recently released south pole (SP) portion (MC-30) of MGD3 adds ∼60,000 km2 of medium to large-size dark dune fields and ∼15,000 km2 of sand deposits and smaller dune fields to the previously released equatorial (EQ, ∼70,000 km2), and north pole (NP, ∼845,000 km2) portions of the database, bringing the global total to ∼975,000 km2. Nearly all NP dunes are part of large sand seas, while the majority of EQ and SP dune fields are individual dune fields located in craters. Despite the differences between Mars and Earth, their dune and dune field morphologies are strikingly similar. Bullseye dune fields, named for their concentric ring pattern, are the exception, possibly owing their distinctive appearance to winds that are unique to the crater environment. Ground-based wind directions are derived from slipface (SF) orientation and dune centroid azimuth (DCA), a measure of the relative location of a dune field inside a crater. SF and DCA often preserve evidence of different wind directions, suggesting the importance of local, topographically influenced winds. In general however, ground-based wind directions are broadly consistent with expected global patterns, such as polar easterlies. Intriguingly, between 40°S and 80°S latitude both SF and DCA preserve their strongest, though different, dominant wind direction, with transport toward the west and east for SF-derived winds and toward the north and west for DCA-derived winds.

  7. Mars Global Digital Dune Database (MGD3): Global dune distribution and wind pattern observations

    NASA Astrophysics Data System (ADS)

    Hayward, R. K.; Fenton, L. K.; Titus, T. N.

    2014-02-01

    The Mars Global Digital Dune Database (MGD3) is complete and now extends from 90°N to 90°S latitude. The recently released south pole (SP) portion (MC-30) of MGD3 adds ˜60,000 km2 of medium to large-size dark dune fields and ˜15,000 km2 of sand deposits and smaller dune fields to the previously released equatorial (EQ, ˜70,000 km2), and north pole (NP, ˜845,000 km2) portions of the database, bringing the global total to ˜975,000 km2. Nearly all NP dunes are part of large sand seas, while the majority of EQ and SP dune fields are individual dune fields located in craters. Despite the differences between Mars and Earth, their dune and dune field morphologies are strikingly similar. Bullseye dune fields, named for their concentric ring pattern, are the exception, possibly owing their distinctive appearance to winds that are unique to the crater environment. Ground-based wind directions are derived from slipface (SF) orientation and dune centroid azimuth (DCA), a measure of the relative location of a dune field inside a crater. SF and DCA often preserve evidence of different wind directions, suggesting the importance of local, topographically influenced winds. In general however, ground-based wind directions are broadly consistent with expected global patterns, such as polar easterlies. Intriguingly, between 40°S and 80°S latitude both SF and DCA preserve their strongest, though different, dominant wind direction, with transport toward the west and east for SF-derived winds and toward the north and west for DCA-derived winds.

  8. Direct Observations Of Microbial Activity At Extreme Pressures

    NASA Astrophysics Data System (ADS)

    Sharma, A.; Scott, J. H.; Cody, G. D.; Fogel, M.; Hazen, R. M.; Hemley, R. J.; Huntress, W. T.

    2002-12-01

    Microbial communities adapt to a wide range of pressures, temperatures, salinities, pH, and oxidation states. Although, significant attention has been focused on the effects of high and low temperature on physiology, there is some evidence that elevated pressure may also manifest interesting effects on cellular physiology, such as enzyme inactivation, cell-membrane breach, and suppression of protein interactions with various substrates. However, exactly how these factors affect intact cells is not well understood. In this study, we have adapted diamond anvil cells to explore the effects of high pressure on microbial life. We used the rate of microbial formate oxidation as a probe of metabolic viability. The utilization of formate by microorganisms is a fundamental metabolic process in anaerobic environments. We monitored in-situ microbial formate oxidation via molecular spectroscopy for Shewanella oneidensis strain MR1 and Escherichia coli strain MG1655 at high pressures (68 to 1060 MPa). At pressures of 1200 to 1600 MPa, living bacteria resided in fluid inclusions in ice-VI crystals and continued to be viable upon subsequent release to ambient pressures (0.1 MPa). Furthermore, direct microscopic observations indicate that these cells maintain their ability for cellular division upon decompression from such high pressures. Evidence of microbial viability and activity at these extreme pressures expands by an order of magnitude the range of conditions representing the habitable zone in the solar system. These results imply that pressure may not be a significant impediment to life. The maximum pressure explored in this work is equivalent to a depth of ~ 50 km below Earth's crust, or ~ 160 km in a hypothetical ocean. The pressures encountered at the depths of thick ice caps and deep crustal subsurface may not be a limiting factor for the existence of life. This suggests that deep (water/ice) layers of Europa, Callisto, or Ganymede, subduction zones on Earth, and the

  9. [Mammals' camera-trapping in Sierra Nanchititla, Mexico: relative abundance and activity patterns].

    PubMed

    Monroy-Vilchis, Octavio; Zarco-González, Martha M; Rodríguez-Soto, Clarita; Soria-Díaz, Leroy; Urios, Vicente

    2011-03-01

    Species conservation and their management depend on the availability of their population behavior and changes in time. This way, population studies include aspects such as species abundance and activity pattern, among others, with the advantage that nowadays new technologies can be applied, in addition to common methods. In this study, we used camera-traps to obtain the index of relative abundance and to establish activity pattern of medium and large mammals in Sierra Nanchititla, Mexico. The study was conducted from December 2003 to May 2006, with a total sampling effort of 4 305 trap-days. We obtained 897 photographs of 19 different species. Nasua narica, Sylvilagus floridanus and Urocyon cinereoargenteus were the most abundant, in agreement with the relative abundance index (RAI, number of independent records/100 trap-days), and according to previous studies with indirect methods in the area. The activity patterns of the species showed that 67% of them are nocturnal, except Odocoileus virginianus, Nasua narica and others. Some species showed differences with previously reported patterns, which are related with seasonality, resources availability, organism sex, principally. The applied method contributed with reliable data about relative abundance and activity patterns. PMID:21516657

  10. Differential Activation Patterns in the Same Brain Region Led to Opposite Emotional States.

    PubMed

    Shibata, Kazuhisa; Watanabe, Takeo; Kawato, Mitsuo; Sasaki, Yuka

    2016-09-01

    In human studies, how averaged activation in a brain region relates to human behavior has been extensively investigated. This approach has led to the finding that positive and negative facial preferences are represented by different brain regions. However, using a functional magnetic resonance imaging (fMRI) decoded neurofeedback (DecNef) method, we found that different patterns of neural activations within the cingulate cortex (CC) play roles in representing opposite directions of facial preference. In the present study, while neutrally preferred faces were presented, multi-voxel activation patterns in the CC that corresponded to higher (or lower) preference were repeatedly induced by fMRI DecNef. As a result, previously neutrally preferred faces became more (or less) preferred. We conclude that a different activation pattern in the CC, rather than averaged activation in a different area, represents and suffices to determine positive or negative facial preference. This new approach may reveal the importance of an activation pattern within a brain region in many cognitive functions. PMID:27608359

  11. Pressure oscillations on the surface of Gale Crater and coincident observations of global circulation patterns.

    NASA Astrophysics Data System (ADS)

    De La Torre Juarez, M.; Kass, D. M.; Haberle, R. M.; Gómez-Elvira, J.; Harri, A. M.; Kleinboehl, A.; Kahanpää, H.; Kahre, M. A.; Lemmon, M. T.; Martín-Torres, J.; Newman, C. E.; Rafkin, S. C.; Rodriguez-Manfredi, J. A.; Peinado, V.; Vasavada, A. R.; Zorzano, M. P.

    2014-12-01

    The annual cycle of mean diurnal surface pressures observed by Curiosity's Rover Environmental Monitoring Station (REMS) has shown oscillations after two Southern Hemispheric storms that occurred before the annual pressure maxima and minima of the dusty season (Ls~250 and 330). The oscillations had a period of ~7 sols and were less visible or absent during the dust free seasons (Ls ~ 0). Martian airborne dust alters the atmosphere's response to solar radiation and the resulting heating profiles. Since the atmospheric circulation responds to thermal forcing by the Sun, atmospheric dust can alter the large-scale circulation. We use coincident global observations by the Mars Climate Sounder (MCS) to examine the global circulation. We find that the observed surface pressure oscillations relate to oscillations of the Hadley cell. We also analyze the potential impacts of these coupled oscillations especially as related to traveling waves and thermal tides.

  12. OBSERVED ENVIRONMENTAL FEATURES AND THE PHYSICAL ACTIVITY OF ADOLESCENT MALES

    Technology Transfer Automated Retrieval System (TEKTRAN)

    Background: It has recently been reported that adult physical activity was associated with environmental features. The aim of this study was to determine whether environmental features were associated with physical activity among male adolescents. Methods: Physical activity levels of 210 Boy Scouts ...

  13. Directly Observed Physical Activity Levels in Preschool Children

    ERIC Educational Resources Information Center

    Pate, Russell R.; McIver, Kerry; Dowda, Marsha; Brown, William H.; Addy, Cheryl

    2008-01-01

    Background: Millions of young children attend preschools and other structured child development programs, but little is known about their physical activity levels while in those settings. The purpose of this study was to describe the physical activity levels and demographic and school-related correlates of physical activity in children attending…

  14. Skylab observations of X-ray loops connecting separate active regions. [solar activity

    NASA Technical Reports Server (NTRS)

    Chase, R. C.; Krieger, A. S.; Svestka, Z.; Vaiana, G. S.

    1976-01-01

    One hundred loops interconnecting 94 separate active solar regions detectable in soft X-rays were identified during the Skylab mission. While close active regions are commonly interconnected with loops, the number of such interconnections decreases steeply for longer distances; the longest interconnecting loop observed in the Skylab data connected regions separated by 37 deg. Several arguments are presented which support the point of view that this is the actual limit of the size of magnetic interconnections between active regions. No sympathetic flares could be found in the interconnected regions. These results cast doubt on the hypothesis that accelerated particles can be guided in interconnecting loops from one active region to another over distances of 100 deg or more and eventually produce sympathetic flares in them.

  15. Generation and use of observational data patterns in the evaluation of data quality for AmeriFlux and FLUXNET

    NASA Astrophysics Data System (ADS)

    Pastorello, G.; Agarwal, D.; Poindexter, C.; Papale, D.; Trotta, C.; Ribeca, A.; Canfora, E.; Faybishenko, B.; Gunter, D.; Chu, H.

    2015-12-01

    presentation, using AmeriFlux fluxes and micrometeorological data, we discuss our approach to creating observational data patterns, and how we are using them to implement new automated checks. We also detail examples of these observational data patterns, illustrating how they are being used.

  16. Differences in activity profile of bacterial cultures studied by dynamic speckle patterns

    NASA Astrophysics Data System (ADS)

    Ramírez-Miquet, E. E.; Otero, I.; Rodríguez, D.; Darias, J. G.; Combarro, A. M.; Contreras, O. R.

    2013-02-01

    We outline the main differences in the activity profile of bacterial cultures studied by dynamic laser speckle (or biospeckle) patterns. The activity is detected in two sorts of culture mediums. The optical setup and the experimental procedure are presented. The experimentally obtained images are processed by the temporal difference method and a qualitative assessment is made with the time history of speckle patterns of the sample. The main differences are studied after changing the culture medium composition. We conclude that the EC medium is suitable to detect the E. coli bacterial presence in early hours and that Mueller Hinton agar delays some additional hours to make possible the assessment of bacteria in time.

  17. The surface geometry of inherited joint and fracture trace patterns resulting from active and passive deformation

    NASA Technical Reports Server (NTRS)

    Podwysocki, M. H.; Gold, D. P.

    1974-01-01

    Hypothetical models are considered for detecting subsurface structure from the fracture or joint pattern, which may be influenced by the structure and propagated to the surface. Various patterns of an initially orthogonal fracture grid are modeled according to active and passive deformation mechanisms. In the active periclinal structure with a vertical axis, fracture frequency increased both over the dome and basin, and remained constant with decreasing depth to the structure. For passive periclinal features such as a reef or sand body, fracture frequency is determined by the arc of curvature and showed a reduction over the reefmound and increased over the basin.

  18. Visual Circuit Development Requires Patterned Activity Mediated by Retinal Acetylcholine Receptors

    PubMed Central

    Burbridge, Timothy J.; Xu, Hong-Ping; Ackman, James B.; Ge, Xinxin; Zhang, Yueyi; Ye, Mei-Jun; Zhou, Z. Jimmy; Xu, Jian; Contractor, Anis; Crair, Michael C.

    2014-01-01

    SUMMARY The elaboration of nascent synaptic connections into highly ordered neural circuits is an integral feature of the developing vertebrate nervous system. In sensory systems, patterned spontaneous activity before the onset of sensation is thought to influence this process, but this conclusion remains controversial largely due to the inherent difficulty recording neural activity in early development. Here, we describe novel genetic and pharmacological manipulations of spontaneous retinal activity, assayed in vivo, that demonstrate a causal link between retinal waves and visual circuit refinement. We also report a de-coupling of downstream activity in retinorecipient regions of the developing brain after retinal wave disruption. Significantly, we show that the spatiotemporal characteristics of retinal waves affect the development of specific visual circuits. These results conclusively establish retinal waves as necessary and instructive for circuit refinement in the developing nervous system and reveal how neural circuits adjust to altered patterns of activity prior to experience. PMID:25466916

  19. Visual circuit development requires patterned activity mediated by retinal acetylcholine receptors.

    PubMed

    Burbridge, Timothy J; Xu, Hong-Ping; Ackman, James B; Ge, Xinxin; Zhang, Yueyi; Ye, Mei-Jun; Zhou, Z Jimmy; Xu, Jian; Contractor, Anis; Crair, Michael C

    2014-12-01

    The elaboration of nascent synaptic connections into highly ordered neural circuits is an integral feature of the developing vertebrate nervous system. In sensory systems, patterned spontaneous activity before the onset of sensation is thought to influence this process, but this conclusion remains controversial, largely due to the inherent difficulty recording neural activity in early development. Here, we describe genetic and pharmacological manipulations of spontaneous retinal activity, assayed in vivo, that demonstrate a causal link between retinal waves and visual circuit refinement. We also report a decoupling of downstream activity in retinorecipient regions of the developing brain after retinal wave disruption. Significantly, we show that the spatiotemporal characteristics of retinal waves affect the development of specific visual circuits. These results conclusively establish retinal waves as necessary and instructive for circuit refinement in the developing nervous system and reveal how neural circuits adjust to altered patterns of activity prior to experience. PMID:25466916

  20. Unraveling dynamics of human physical activity patterns in chronic pain conditions

    NASA Astrophysics Data System (ADS)

    Paraschiv-Ionescu, Anisoara; Buchser, Eric; Aminian, Kamiar

    2013-06-01

    Chronic pain is a complex disabling experience that negatively affects the cognitive, affective and physical functions as well as behavior. Although the interaction between chronic pain and physical functioning is a well-accepted paradigm in clinical research, the understanding of how pain affects individuals' daily life behavior remains a challenging task. Here we develop a methodological framework allowing to objectively document disruptive pain related interferences on real-life physical activity. The results reveal that meaningful information is contained in the temporal dynamics of activity patterns and an analytical model based on the theory of bivariate point processes can be used to describe physical activity behavior. The model parameters capture the dynamic interdependence between periods and events and determine a `signature' of activity pattern. The study is likely to contribute to the clinical understanding of complex pain/disease-related behaviors and establish a unified mathematical framework to quantify the complex dynamics of various human activities.

  1. A Naturalistic Observational Study of Informal Segregation: Seating Patterns in Lectures

    ERIC Educational Resources Information Center

    Koen, Jennifer; Durrheim, Kevin

    2010-01-01

    In spite of the removal of legislated racial segregation, a number of observational studies in South Africa and elsewhere have shown that "informal," nonlegislated segregation persists in spaces of everyday interaction. Most of these have been case studies of segregation at single sites. The authors seek to quantify segregation in a sample of…

  2. User Activity Recognition in Smart Homes Using Pattern Clustering Applied to Temporal ANN Algorithm.

    PubMed

    Bourobou, Serge Thomas Mickala; Yoo, Younghwan

    2015-01-01

    This paper discusses the possibility of recognizing and predicting user activities in the IoT (Internet of Things) based smart environment. The activity recognition is usually done through two steps: activity pattern clustering and activity type decision. Although many related works have been suggested, they had some limited performance because they focused only on one part between the two steps. This paper tries to find the best combination of a pattern clustering method and an activity decision algorithm among various existing works. For the first step, in order to classify so varied and complex user activities, we use a relevant and efficient unsupervised learning method called the K-pattern clustering algorithm. In the second step, the training of smart environment for recognizing and predicting user activities inside his/her personal space is done by utilizing the artificial neural network based on the Allen's temporal relations. The experimental results show that our combined method provides the higher recognition accuracy for various activities, as compared with other data mining classification algorithms. Furthermore, it is more appropriate for a dynamic environment like an IoT based smart home. PMID:26007738

  3. User Activity Recognition in Smart Homes Using Pattern Clustering Applied to Temporal ANN Algorithm

    PubMed Central

    Bourobou, Serge Thomas Mickala; Yoo, Younghwan

    2015-01-01

    This paper discusses the possibility of recognizing and predicting user activities in the IoT (Internet of Things) based smart environment. The activity recognition is usually done through two steps: activity pattern clustering and activity type decision. Although many related works have been suggested, they had some limited performance because they focused only on one part between the two steps. This paper tries to find the best combination of a pattern clustering method and an activity decision algorithm among various existing works. For the first step, in order to classify so varied and complex user activities, we use a relevant and efficient unsupervised learning method called the K-pattern clustering algorithm. In the second step, the training of smart environment for recognizing and predicting user activities inside his/her personal space is done by utilizing the artificial neural network based on the Allen’s temporal relations. The experimental results show that our combined method provides the higher recognition accuracy for various activities, as compared with other data mining classification algorithms. Furthermore, it is more appropriate for a dynamic environment like an IoT based smart home. PMID:26007738

  4. Patterns of Physical Activity Among Older Adults in New York City

    PubMed Central

    Mooney, Stephen J.; Joshi, Spruha; Cerdá, Magdalena; Quinn, James W.; Beard, John R.; Kennedy, Gary J.; Benjamin, Ebele O.; Ompad, Danielle C.; Rundle, Andrew G.

    2015-01-01

    Introduction Little research to date has explored typologies of physical activity among older adults. An understanding of physical activity patterns may help to both determine the health benefits of different types of activity and target interventions to increase activity levels in older adults. This analysis, conducted in 2014, used a latent class analysis approach to characterize patterns of physical activity in a cohort of older adults. Methods A total of 3,497 men and women aged 65–75 years living in New York City completed the Physical Activity Scale for the Elderly (PASE) in 2011. PASE scale items were used to classify subjects into latent classes. Multinomial regression was then used to relate individual and neighborhood characteristics to class membership. Results Five latent classes were identified: “least active,” “walkers,” “domestic/gardening,” “athletic,” and “domestic/gardening athletic.” Individual-level predictors, including more education, higher income, and better self-reported health, were associated with membership in the more-active classes, particularly the athletic classes. Residential characteristics, including living in single-family housing and living in the lower-density boroughs of New York City, were predictive of membership in one of the domestic/gardening classes. Class membership was associated with BMI even after controlling for total PASE score. Conclusions This study suggests that individual and neighborhood characteristics are associated with distinct physical activity patterns in a group of older urban adults. These patterns are associated with body habitus independent of overall activity. PMID:26091927

  5. Using Active Satellite Observations to Characterize Uncertatinty in Long Term Satellite Cloud Liquid Water Path Climatologies

    NASA Astrophysics Data System (ADS)

    Lebsock, M. D.

    2014-12-01

    Bias between the Advanced Microwave Scanning Radiometer-EOS (AMSR-E) version 2 and the Moderate Resolution Imaging Spectroradiometer (MODIS) collection 5.1 cloud liquid water path (Wc)products are explored with the aid of coincident active observations from the CloudSat radar and the CALIPSO lidar. In terms of detection, the active observations provide precise separation of cloudy from clear sky and precipitating from nonprecipitating clouds. In addition, they offer a unique quantification of precipitation water path (Wp) in warm clouds. They also provide an independent quantification of Wc that isbased on an accurate surface reference technique, which is an independent arbiter between the two passive approaches. The results herein establish the potential for CloudSat and CALIPSO to provide an independent assessment of bias between the conventional passive remote sensing methods from reflected solar and emitted microwave radiation. After applying a common data filter to the observations to account for sampling biases, AMSR-E is biased high relative to MODIS in the global mean by 26.4gm2. The RMS difference in the regional patterns is 32.4gm2, which highlights a large geographical dependence in the bias which is related to the tropical transitions from stratocumulus to cumulus cloud regimes. The contributions of four potential sources for this bias are investigated by exploiting the active observations: (1)bias in MODIS related to solar zenith angle dependence accounts for 2.3gm2, (2) bias in MODIS due to undersampling of cloud edges accounts for 4.2gm2, (3) a wind speed and water vapor-dependent "clear-sky bias" in the AMSR-E retrieval accounts for 6.3gm2, and (4) evidence suggests that much of the remaining 18gm2 bias is related to the assumed partitioning of the observed emission signal between cloud and precipitation water in the AMSR-E retrieval. This is most evident through the correlations between the regional mean patterns of Wp and the Wc bias within the

  6. Observations and Modeling of Low Level Moisture Convergence Patterns in the Southern Appalachians during the Integrated Precipitation and Hydrology Experiment (IPHEx) Extended Observing Period

    NASA Astrophysics Data System (ADS)

    Wilson, Anna M.; Barros, Ana P.

    2015-04-01

    Accurate fields of precipitation accumulations and intensity at high spatial resolution in regions of complex terrain are largely unavailable. This is due to first, a lack of existing in situ observations, both because of the challenge in having high enough density in the instrument placement to represent the large spatial heterogeneity in rainfall patterns in these regions and because of the remote, harsh nature of the terrain that makes it difficult to install and maintain instrumentation and second, obstacles to remote sensing such as beam blockage and ground clutter that are caused by the complex orography. In this study we leverage observations from two sources: 1) a high-elevation, high-density tipping bucket rain gauge network that has been recording precipitation observations for over six years along ridgelines in the Pigeon River Basin, a small watershed in the Southern Appalachians, and 2) the 4-D database of observations collected in 2014 in support of the Global Precipitation Mission (GPM) during the first field campaign after the launch of the GPM satellite, the Integrated Precipitation and Hydrology Experiment (IPHEx), to learn about formation and maintenance mechanisms for fog and low cloud in this region and the resulting impact on the precipitation regime. The observations focused on here are those at the near surface, within 2 kilometers of the ground level. This presentation will focus on process-based modeling studies using the Advanced Research Weather and Forecasting Model conducted based upon observations made during this campaign. Case studies will be presented for real events simulated during the IPHEx campaign. These case studies occurred with different synoptic conditions, but include observational evidence of orographic enhancement. The case studies are simulated and analyzed in order to investigate how the topography modulates the regional, diurnal patterns of moisture convergence and fog and low cloud formation, as well as the mid

  7. Spiral crack patterns observed for melt-grown spherulites of poly(L-lactic acid) upon quenching.

    PubMed

    Matsuda, Futoshi; Sobajima, Takamasa; Irie, Satoshi; Sasaki, Takashi

    2016-04-01

    In this paper, we demonstrate the characteristic spiral cracking that appears on the surface of melt-grown poly(L-lactic acid) (PLLA) spherulites with relatively large sizes (greater than 0.4mm in diameter). The crack occurs via thermal shrinkage upon quenching after crystallization. Although concentric cracks on polymer spherulites have been found to occur in quite a few studies, spiral crack patterns have never been reported so far. The present spiral crack was observed for thick spherulites (> 10 μm), whereas the concentric crack pattern was frequently observed for thin spherulites (typically 5μm). The present PLLA spherulites exhibited a non-banded structure with no apparent structural periodicity at least on the scale of the spiral pitch, and thus no direct correlation between the crack pattern and the spherulitic structure was suggested. The spiral was revealed to be largely Archimedean of which the spiral pitch increases with an increase in the thickness of the spherulite. This may be interpreted in terms of a classical mechanical model for a thin layer with no delamination from the substrate. PMID:27085999

  8. Canalization of genetic and pharmacological perturbations in developing primary neuronal activity patterns

    PubMed Central

    Charlesworth, Paul; Morton, Andrew; Eglen, Stephen J.; Komiyama, Noboru H.; Grant, Seth G.N.

    2016-01-01

    The function of the nervous system depends on the integrity of synapses and the patterning of electrical activity in brain circuits. The rapid advances in genome sequencing reveal a large number of mutations disrupting synaptic proteins, which potentially result in diseases known as synaptopathies. However, it is also evident that every normal individual carries hundreds of potentially damaging mutations. Although genetic studies in several organisms show that mutations can be masked during development by a process known as canalization, it is unknown if this occurs in the development of the electrical activity in the brain. Using longitudinal recordings of primary cultured neurons on multi-electrode arrays from mice carrying knockout mutations we report evidence of canalization in development of spontaneous activity patterns. Phenotypes in the activity patterns in young cultures from mice lacking the Gria1 subunit of the AMPA receptor were ameliorated as cultures matured. Similarly, the effects of chronic pharmacological NMDA receptor blockade diminished as cultures matured. Moreover, disturbances in activity patterns by simultaneous disruption of Gria1 and NMDA receptors were also canalized by three weeks in culture. Additional mutations and genetic variations also appeared to be canalized to varying degrees. These findings indicate that neuronal network canalization is a form of nervous system plasticity that provides resilience to developmental disruption. This article is part of the Special Issue entitled ‘Synaptopathy – from Biology to Therapy’. PMID:26211975

  9. A survey of daily asthmatic activity patterns in Cincinnati. Final report

    SciTech Connect

    Not Available

    1992-11-01

    A survey was undertaken in Cincinnati to obtain information on the activity patterns of asthmatics. Because studies have demonstrated symptomatic responses to elevated levels of SO{sub 2} only during outdoor exercise, information on the behavioral patterns of asthmatics is vital for the accurate estimation of risk due to air pollution exposures. In particular, data detailing the actual likelihood of asthmatics being engaged in strenuous outdoor activity at any given time of day is essential for an accurate appraisal of response probability. This, in turn, is necessary for an accurate estimate of risk. In the absence of such activity data, those concerned with the setting of short-term SO{sub 2} regulations are required to use purely subjective judgment to estimate how many asthmatics are engaged in strenuous outdoor exercise when SO{sub 2} levels are high enough to affect them. The activity pattern data give an indication of how much such an assumption would overestimate the true response and thus the true risk associated with SO{sub 2}. Lack of information on the activity patterns of asthmatics has thus been a critical gap in the SO{sub 2} risk assessment process. The primary purpose of this survey was to fill that gap.

  10. Different decay patterns observed in a nineteenth-century building (Palma, Spain).

    PubMed

    Genestar, Catalina; Pons, Carmen; Cerro, José Carlos; Cerdà, Víctor

    2014-01-01

    The effects of atmospheric pollutants and climatic conditions were studied in a decayed column in the Seminary of Sant Pere. This nineteenth-century building is situated in the historic centre of Palma (Mallorca, Spain), less than 0.5 km from the sea. Samples were collected from the internal and external part of the crusts formed in the four sides of the column. The samples were analysed by means of thermal analysis, X-ray diffractometry, scanning electron microscopy, Fourier transform infrared spectroscopy and ion chromatography. Results show significant differences in the four sides of the column. A high degree of carbonate stone sulfation is observed in all of the samples analysed. A synergistic effect between atmospheric factors and micropollutants on the deterioration of stone is observed. A high uptake of atmospheric particulate matter is found in the external part of the black crusts. PMID:24705948

  11. a Three-Step Spatial-Temporal Clustering Method for Human Activity Pattern Analysis

    NASA Astrophysics Data System (ADS)

    Huang, W.; Li, S.; Xu, S.

    2016-06-01

    How people move in cities and what they do in various locations at different times form human activity patterns. Human activity pattern plays a key role in in urban planning, traffic forecasting, public health and safety, emergency response, friend recommendation, and so on. Therefore, scholars from different fields, such as social science, geography, transportation, physics and computer science, have made great efforts in modelling and analysing human activity patterns or human mobility patterns. One of the essential tasks in such studies is to find the locations or places where individuals stay to perform some kind of activities before further activity pattern analysis. In the era of Big Data, the emerging of social media along with wearable devices enables human activity data to be collected more easily and efficiently. Furthermore, the dimension of the accessible human activity data has been extended from two to three (space or space-time) to four dimensions (space, time and semantics). More specifically, not only a location and time that people stay and spend are collected, but also what people "say" for in a location at a time can be obtained. The characteristics of these datasets shed new light on the analysis of human mobility, where some of new methodologies should be accordingly developed to handle them. Traditional methods such as neural networks, statistics and clustering have been applied to study human activity patterns using geosocial media data. Among them, clustering methods have been widely used to analyse spatiotemporal patterns. However, to our best knowledge, few of clustering algorithms are specifically developed for handling the datasets that contain spatial, temporal and semantic aspects all together. In this work, we propose a three-step human activity clustering method based on space, time and semantics to fill this gap. One-year Twitter data, posted in Toronto, Canada, is used to test the clustering-based method. The results show that the

  12. Seismic source mechanisms for quarry blasts: modelling observed Rayleigh and Love wave radiation patterns from a Texas quarry

    NASA Astrophysics Data System (ADS)

    McLaughlin, Keith L.; Bonner, Jessie L.; Barker, Terrance

    2004-01-01

    A theoretical understanding of the mechanisms by which quarry blasts excite seismic waves is useful in understanding how quarry blast discriminants may be transported from one region to another. An experiment in Texas with well-placed seismic stations and a cooperative blasting engineer has shed light on some of the physical mechanisms of seismic excitation at short periods (0.1-3 Hz). Azimuthal radiation patterns of the 0.2-3 Hz Rayleigh and Love waves are diagnostic of two proposed mechanisms for non-isotropic radiation from quarry blasts. Observations show that the Love and Rayleigh wave radiation patterns depend upon the orientation of the quarry benches. Two possible mechanisms for non-isotropic radiation are (1) the lateral throw of spalled material and (2) the presence of the topographic bench in the quarry. The spall of material can be modelled by vertical and horizontal forces applied to the free surface with time functions proportional to the derivative of the momentum of the spalled material. We use wavenumber integration synthetics to model the explosion plus spall represented by seismic moment tensor sources plus point forces. The resulting synthetics demonstrate that the magnitude of the SH (Love) compared with the SV (fundamental Rayleigh or Rg) in the short period band (0.5-3 Hz) may be explained by the spall mechanism. Nearly all of the available mass must participate in the spall with an average velocity of 2-5 m s-1 to provide sufficient impulse to generate the observed Love waves. Love wave radiation patterns from such a mechanism are consistent with the spall mechanism. We modelled the effects of the topographic bench using 3-D linear finite-difference calculations to compute progressive elastic wavefields from explosion sources behind the quarry bench. These 3-D calculations show SH radiation patterns consistent with observations while the SV radiation patterns are not consistent with observations. We find that the radiation patterns from the

  13. In vivo monitoring of chemically evoked activity patterns in the rat trigeminal ganglion

    PubMed Central

    Lübbert, Matthias; Kyereme, Jessica; Rothermel, Markus; Wetzel, Christian H.; Hoffmann, Klaus-Peter; Hatt, Hanns

    2013-01-01

    Albeit lacking a sense of smell, anosmic patients maintain a reduced ability to distinguish different volatile chemicals by relying exclusively on their trigeminal system (TS). To elucidate differences in the neuronal representation of these volatile substances in the TS, we performed voltage-sensitive dye imaging (VSDI) in the rat trigeminal ganglion (TG) in vivo. We demonstrated that stimulus-specific patterns of bioelectrical activity occur within the TG upon nasal administration of ten different volatile chemicals. With regard to spatial differences between the evoked trigeminal response patterns, these substances could be sorted into three groups. Signal intensity and onset latencies were also dependent on the administered stimulus and its concentration. We conclude that particular compounds detected by the TS are represented by (1) a specific spatial response pattern, (2) the signal intensity, and (3) onset latencies within the pattern. Jointly, these trigeminal representations may contribute to the surprisingly high discriminative skills of anosmic patients. PMID:24115922

  14. Pattern reactivation co-varies with activity in the core recollection network during source memory.

    PubMed

    Leiker, Emily K; Johnson, Jeffrey D

    2015-08-01

    Neuroimaging studies of episodic memory have consistently demonstrated tha