Bagarinao, Epifanio; Yoshida, Akihiro; Ueno, Mika; Terabe, Kazunori; Kato, Shohei; Isoda, Haruo; Nakai, Toshiharu
2018-01-01
Motor imagery (MI), a covert cognitive process where an action is mentally simulated but not actually performed, could be used as an effective neurorehabilitation tool for motor function improvement or recovery. Recent approaches employing brain-computer/brain-machine interfaces to provide online feedback of the MI during rehabilitation training have promising rehabilitation outcomes. In this study, we examined whether participants could volitionally recall MI-related brain activation patterns when guided using neurofeedback (NF) during training. The participants' performance was compared to that without NF. We hypothesized that participants would be able to consistently generate the relevant activation pattern associated with the MI task during training with NF compared to that without NF. To assess activation consistency, we used the performance of classifiers trained to discriminate MI-related brain activation patterns. Our results showed significantly higher predictive values of MI-related activation patterns during training with NF. Additionally, this improvement in the classification performance tends to be associated with the activation of middle temporal gyrus/inferior occipital gyrus, a region associated with visual motion processing, suggesting the importance of performance monitoring during MI task training. Taken together, these findings suggest that the efficacy of MI training, in terms of generating consistent brain activation patterns relevant to the task, can be enhanced by using NF as a mechanism to enable participants to volitionally recall task-related brain activation patterns.
[Mammals' camera-trapping in Sierra Nanchititla, Mexico: relative abundance and activity patterns].
Monroy-Vilchis, Octavio; Zarco-González, Martha M; Rodríguez-Soto, Clarita; Soria-Díaz, Leroy; Urios, Vicente
2011-03-01
Species conservation and their management depend on the availability of their population behavior and changes in time. This way, population studies include aspects such as species abundance and activity pattern, among others, with the advantage that nowadays new technologies can be applied, in addition to common methods. In this study, we used camera-traps to obtain the index of relative abundance and to establish activity pattern of medium and large mammals in Sierra Nanchititla, Mexico. The study was conducted from December 2003 to May 2006, with a total sampling effort of 4 305 trap-days. We obtained 897 photographs of 19 different species. Nasua narica, Sylvilagus floridanus and Urocyon cinereoargenteus were the most abundant, in agreement with the relative abundance index (RAI, number of independent records/100 trap-days), and according to previous studies with indirect methods in the area. The activity patterns of the species showed that 67% of them are nocturnal, except Odocoileus virginianus, Nasua narica and others. Some species showed differences with previously reported patterns, which are related with seasonality, resources availability, organism sex, principally. The applied method contributed with reliable data about relative abundance and activity patterns.
Gazes, Yunglin; Habeck, Christian; O'Shea, Deirdre; Razlighi, Qolamreza R; Steffener, Jason; Stern, Yaakov
2015-01-01
Introduction A functional activation (i.e., ordinal trend) pattern was previously identified in both young and older adults during task-switching performance, the expression of which correlated with reaction time. The current study aimed to (1) replicate this functional activation pattern in a new group of fMRI activation data, and (2) extend the previous study by specifically examining whether the effect of aging on reaction time can be explained by differences in the activation of the functional activation pattern. Method A total of 47 young and 50 older participants were included in the extension analysis. Participants performed task-switching as the activation task and were cued by the color of the stimulus for the task to be performed in each block. To test for replication, two approaches were implemented. The first approach tested the replicability of the predictive power of the previously identified functional activation pattern by forward applying the pattern to the Study II data and the second approach was rederivation of the activation pattern in the Study II data. Results Both approaches showed successful replication in the new data set. Using mediation analysis, expression of the pattern from the first approach was found to partially mediate age-related effects on reaction time such that older age was associated with greater activation of the brain pattern and longer reaction time, suggesting that brain activation efficiency (defined as “the rate of activation increase with increasing task difficulty” in Neuropsychologia 47, 2009, 2015) of the regions in the Ordinal trend pattern directly accounts for age-related differences in task performance. Discussion The successful replication of the functional activation pattern demonstrates the versatility of the Ordinal Trend Canonical Variates Analysis, and the ability to summarize each participant's brain activation map into one number provides a useful metric in multimodal analysis as well as cross-study comparisons. PMID:25874162
He, Y; Li, Y; Lai, J; Wang, D; Zhang, J; Fu, P; Yang, X; Qi, L
2013-10-01
To examine the nationally-representative dietary patterns and their joint effects with physical activity on the likelihood of metabolic syndrome (MS) among 20,827 Chinese adults. CNNHS was a nationally representative cross-sectional observational study. Metabolic syndrome was defined according to the Joint Interim Statement definition. The "Green Water" dietary pattern, characterized by high intakes of rice and vegetables and moderate intakes in animal foods was related to the lowest prevalence of MS (15.9%). Compared to the "Green Water" dietary pattern, the "Yellow Earth" dietary pattern, characterized by high intakes of refined cereal products, tubers, cooking salt and salted vegetable was associated with a significantly elevated odds of MS (odds ratio 1.66, 95%CI: 1.40-1.96), after adjustment of age, sex, socioeconomic status and lifestyle factors. The "Western/new affluence" dietary pattern characterized by higher consumption of beef/lamb, fruit, eggs, poultry and seafood also significantly associated with MS (odds ratio: 1.37, 95%CI: 1.13-1.67). Physical activity showed significant interactions with the dietary patterns in relation to MS risk (P for interaction = 0.008). In the joint analysis, participants with the combination of sedentary activity with the "Yellow Earth" dietary pattern or the "Western/new affluence" dietary pattern both had more than three times (95%CI: 2.8-6.1) higher odds of MS than those with active activity and the "Green Water" dietary pattern. Our findings from the large Chinese national representative data indicate that dietary patterns affect the likelihood of MS. Combining healthy dietary pattern with active lifestyle may benefit more in prevention of MS. Copyright © 2012 Elsevier B.V. All rights reserved.
Chimenti, Ruth L.; Scholtes, Sara A.
2013-01-01
Many risk factors have been identified as contributing to the development or persistence of low back pain (LBP). However, the juxtaposition of both high and low levels of physical activity being associated with LBP reflects the complexity of the relationship between a risk factor and LBP. Moreover, not everyone with an identified risk factor, such as a movement pattern of increased lumbopelvic rotation, has LBP. Objective The purpose of this study was to examine differences in activity level and movement patterns between people with and people without chronic or recurrent LBP who participate in rotation-related sports. Design Case Case-control study. Setting University laboratory environment. Participants 52 people with chronic or recurrent LBP and 25 people without LBP who all play a rotation-related sport. Main Outcome Measures Participants completed self-report measures including the Baecke Habitual Activity Questionnaire and a questionnaire on rotation-related sports. A 3-dimensional motion-capture system was used to collect movement-pattern variables during 2 lower-limb-movement tests. Results Compared with people without LBP, people with LBP reported a greater difference between the sport subscore and an average work and leisure composite subscore on the Baecke Habitual Activity Questionnaire (F = 6.55, P = .01). There were no differences between groups in either rotation-related-sport participation or movement-pattern variables demonstrated during 2 lower-limb movement tests (P > .05 for all comparisons). Conclusions People with and people without LBP who regularly play a rotation-related sport differed in the amount and nature of activity participation but not in movement pattern variables. An imbalance between level of activity during sport and daily functions may contribute to the development or persistence of LBP in people who play a rotation-related sport. PMID:23295458
Waninge, Aly; van der Putten, Annette A J; Stewart, Roy E; Steenbergen, Bert; van Wijck, Ruud; van der Schans, Cees P
2013-11-01
Because physical fitness and health are related to physical activity, it is important to gain an insight into the physical activity levels of persons with profound intellectual and multiple disabilities (PIMD). The purpose of this study was to examine heart rate patterns to measure the activity levels of persons with PIMD and to analyze these heart rate patterns according to participant characteristics, observed level of activity, days, and time of day. The heart rate patterns of 24 participants with PIMD were measured continuously using a heart rate monitor for 8 h · d for a period of 6 days. Physical activity levels were measured with questionnaires. Data were analyzed using multilevel analysis. The results indicate that the participants use only 32% of their heart rate reserve over 6 days. The intensity of heart rate reserve ranged from 1 to 62%. On a given day, wide ranges in heart rates between participants and within persons were observed. Between days, only small ranges in the heart rate were found. The participants could be grouped into 4 classes according to their heart rate. In addition, factors such as time of day, physical activity, and age are significantly related to heart rate patterns. In conclusion, this study is an important first step in exploring activity patterns based on heart rate patterns in persons with PIMD. The participants used relatively small fractions of their heart rate reserves. Time of day and age appear to have a considerable influence on heart rate patterns. The observed classes in heart rate patterns suggest that other probably more personal and psychosocial factors have significant influences on heart rate patterns, as well.
Individual, Social, and Environmental Correlates of Active Transportation Patterns in French Women.
Perchoux, Camille; Enaux, Christophe; Oppert, Jean-Michel; Menai, Mehdi; Charreire, Hélène; Salze, Paul; Weber, Christiane; Hercberg, Serge; Feuillet, Thierry; Hess, Franck; Roda, Célina; Simon, Chantal; Nazare, Julie-Anne
2017-01-01
The objectives were (1) to define physical activity (PA) and sedentary behaviors (SB) patterns in daily life contexts (work, leisure, and transportation) in French working women from NutriNet-Santé web-cohort and (2) to identify pattern(s) of active transportation and their individual, social, and environmental correlates. 23,432 participants completed two questionnaires to evaluate PA and SB in daily life contexts and individual representations of residential neighborhood and transportation modes. Hierarchical cluster analysis was performed which identified 6 distinct movement behavior patterns: (i) active occupation, high sedentary leisure, (ii) sedentary occupation, low leisure, (iii) sedentary transportation, (iv) sedentary occupation and leisure, (v) active transportation, and (vi) active leisure. Multinomial logistic regressions were performed to identify correlates of the "active transportation" cluster. The perceived environmental characteristics positively associated with "active transportation" included "high availability of destinations around home," "presence of bicycle paths," and "low traffic." A "positive image of walking/cycling," the "individual feeling of being physically active," and a "high use of active transport modes by relatives/friends" were positively related to "active transportation," identified as a unique pattern regarding individual and environmental correlates. Identification of PA and SB context-specific patterns will help to understand movement behaviors' complexity and to design interventions to promote active transportation in specific subgroups.
Patterns of Physical Activity Outside of School Time among Japanese Junior High School Students
ERIC Educational Resources Information Center
He, Li; Ishii, Kaori; Shibata, Ai; Adachi, Minoru; Nonoue, Keiko; Oka, Koichiro
2013-01-01
Background: Physical activity is beneficial for adolescent health. The physical activity patterns of Japanese adolescents are relatively unknown. Therefore, this study aimed to describe the current patterns of physical activity and to identify sex and grade differences among them. Methods: The participants comprised 714 Japanese adolescents aged…
Physical activity patterns among Latinos in the United States: putting the pieces together.
Ham, Sandra A; Yore, Michelle M; Kruger, Judy; Heath, Gregory W; Moeti, Refilwe
2007-10-01
Estimates of participation in physical activity among Latinos are inconsistent across studies. To obtain better estimates and examine possible reasons for inconsistencies, we assessed 1) patterns of participation in various categories of physical activity among Latino adults, 2) changes in their activity patterns with acculturation, and 3) variations in their activity patterns by region of origin. Using data from four national surveillance systems (the National Health and Nutrition Examination Survey, 1999-2002; the Behavioral Risk Factor Surveillance System, 2003; the National Household Travel Survey, 2001; and the National Health Interview Survey Cancer Supplement, 2000), we estimated the percentage of Latinos who participated at least once per week in leisure-time, household, occupational, or transportation-related physical activity, as well as in an active pattern of usual daily activity. We reported prevalences by acculturation measures and region of origin. The percentage of Latinos who participated in the various types of physical activity ranged from 28.7% for having an active level of usual daily activity (usually walking most of the day and usually carrying or lifting objects) to 42.8% for participating in leisure-time physical activity at least once per week. The percentage who participated in leisure-time and household activities increased with acculturation, whereas the percentage who participated in occupational and transportation-related activities decreased with acculturation. Participation in an active level of usual daily activity did not change significantly. The prevalence of participation in transportation-related physical activity and of an active level of usual daily activity among Latino immigrants varied by region of origin. Physical activity patterns among Latinos vary with acculturation and region of origin. To assess physical activity levels in Latino communities, researchers should measure all types of physical activity and the effects of acculturation on each type of activity.
Ismael, Noor T; Lawson, Lisa A Mische; Cox, Jane A
2015-12-01
Sensory processing patterns may be associated with children's preferences for different activities; however, knowledge about how different sensory processing patterns may relate to children's participation in leisure activities is scarce. This study investigated in what leisure activities children with extreme sensory processing patterns participate and if relationships exist between children's sensory processing patterns and their leisure preferences and participation patterns. This correlational study analyzed data from children's Sensory Profiles and reported play and leisure preferences. All 91 children in the sample completed the Children's Assessment for Participation and Enjoyment (CAPE) and the Preferences for Activities of Children (PAC). Parents of children ages 6 to 10 years completed the Sensory Profile, and children ages 11 to 14 years completed the Adolescent/Adult Sensory Profile. Children with different sensory processing patterns preferred both similar and distinct leisure activities. Low-registration quadrant summary z scores negatively correlated with CAPE overall diversity scores (rs=-.23, p=.03), sensitivity quadrant summary z scores negatively correlated with preferences for social activities (rs=-.23, p=.03) and preferences for skill-based activities (rs=-.22, p=.04), and avoiding quadrant summary z scores negatively correlated with preferences for social activities (rs=-.26, p=.01). Children's sensory preferences are related to leisure preferences and participation. © CAOT 2015.
Increased sensorimotor network activity in DYT1 dystonia: a functional imaging study
Argyelan, Miklos; Habeck, Christian; Ghilardi, M. Felice; Fitzpatrick, Toni; Dhawan, Vijay; Pourfar, Michael; Bressman, Susan B.; Eidelberg, David
2010-01-01
Neurophysiological studies have provided evidence of primary motor cortex hyperexcitability in primary dystonia, but several functional imaging studies suggest otherwise. To address this issue, we measured sensorimotor activation at both the regional and network levels in carriers of the DYT1 dystonia mutation and in control subjects. We used 15Oxygen-labelled water and positron emission tomography to scan nine manifesting DYT1 carriers, 10 non-manifesting DYT1 carriers and 12 age-matched controls while they performed a kinematically controlled motor task; they were also scanned in a non-motor audio-visual control condition. Within- and between-group contrasts were analysed with statistical parametric mapping. For network analysis, we first identified a normal motor-related activation pattern in a set of 39 motor and audio-visual scans acquired in an independent cohort of 18 healthy volunteer subjects. The expression of this pattern was prospectively quantified in the motor and control scans acquired in each of the gene carriers and controls. Network values for the three groups were compared with ANOVA and post hoc contrasts. Voxel-wise comparison of DYT1 carriers and controls revealed abnormally increased motor activation responses in the former group (P < 0.05, corrected; statistical parametric mapping), localized to the sensorimotor cortex, dorsal premotor cortex, supplementary motor area and the inferior parietal cortex. Network analysis of the normative derivation cohort revealed a significant normal motor-related activation pattern topography (P < 0.0001) characterized by covarying neural activity in the sensorimotor cortex, dorsal premotor cortex, supplementary motor area and cerebellum. In the study cohort, normal motor-related activation pattern expression measured during movement was abnormally elevated in the manifesting gene carriers (P < 0.001) but not in their non-manifesting counterparts. In contrast, in the non-motor control condition, abnormal increases in network activity were present in both groups of gene carriers (P < 0.001). In this condition, normal motor-related activation pattern expression in non-manifesting carriers was greater than in controls, but lower than in affected carriers. In the latter group, measures of normal motor-related activation pattern expression in the audio-visual condition correlated with independent dystonia clinical ratings (r = 0.70, P = 0.04). These findings confirm that overexcitability of the sensorimotor system is a robust feature of dystonia. The presence of elevated normal motor-related activation pattern expression in the non-motor condition suggests that abnormal integration of audio-visual input with sensorimotor network activity is an important trait feature of this disorder. Lastly, quantification of normal motor-related activation pattern expression in individual cases may have utility as an objective descriptor of therapeutic response in trials of new treatments for dystonia and related disorders. PMID:20207699
Resting-State Network Topology Differentiates Task Signals across the Adult Life Span.
Chan, Micaela Y; Alhazmi, Fahd H; Park, Denise C; Savalia, Neil K; Wig, Gagan S
2017-03-08
Brain network connectivity differs across individuals. For example, older adults exhibit less segregated resting-state subnetworks relative to younger adults (Chan et al., 2014). It has been hypothesized that individual differences in network connectivity impact the recruitment of brain areas during task execution. While recent studies have described the spatial overlap between resting-state functional correlation (RSFC) subnetworks and task-evoked activity, it is unclear whether individual variations in the connectivity pattern of a brain area (topology) relates to its activity during task execution. We report data from 238 cognitively normal participants (humans), sampled across the adult life span (20-89 years), to reveal that RSFC-based network organization systematically relates to the recruitment of brain areas across two functionally distinct tasks (visual and semantic). The functional activity of brain areas (network nodes) were characterized according to their patterns of RSFC: nodes with relatively greater connections to nodes in their own functional system ("non-connector" nodes) exhibited greater activity than nodes with relatively greater connections to nodes in other systems ("connector" nodes). This "activation selectivity" was specific to those brain systems that were central to each of the tasks. Increasing age was accompanied by less differentiated network topology and a corresponding reduction in activation selectivity (or differentiation) across relevant network nodes. The results provide evidence that connectional topology of brain areas quantified at rest relates to the functional activity of those areas during task. Based on these findings, we propose a novel network-based theory for previous reports of the "dedifferentiation" in brain activity observed in aging. SIGNIFICANCE STATEMENT Similar to other real-world networks, the organization of brain networks impacts their function. As brain network connectivity patterns differ across individuals, we hypothesized that individual differences in network connectivity would relate to differences in brain activity. Using functional MRI in a group of individuals sampled across the adult life span (20-89 years), we measured correlations at rest and related the functional connectivity patterns to measurements of functional activity during two independent tasks. Brain activity varied in relation to connectivity patterns revealed by large-scale network analysis. This relationship tracked the differences in connectivity patterns accompanied by older age, providing important evidence for a link between the topology of areal connectivity measured at rest and the functional recruitment of these areas during task performance. Copyright © 2017 Chan et al.
Individual, Social, and Environmental Correlates of Active Transportation Patterns in French Women
Perchoux, Camille; Enaux, Christophe; Oppert, Jean-Michel; Menai, Mehdi; Charreire, Hélène; Salze, Paul; Weber, Christiane; Hercberg, Serge; Feuillet, Thierry; Hess, Franck; Roda, Célina; Simon, Chantal
2017-01-01
The objectives were (1) to define physical activity (PA) and sedentary behaviors (SB) patterns in daily life contexts (work, leisure, and transportation) in French working women from NutriNet-Santé web-cohort and (2) to identify pattern(s) of active transportation and their individual, social, and environmental correlates. 23,432 participants completed two questionnaires to evaluate PA and SB in daily life contexts and individual representations of residential neighborhood and transportation modes. Hierarchical cluster analysis was performed which identified 6 distinct movement behavior patterns: (i) active occupation, high sedentary leisure, (ii) sedentary occupation, low leisure, (iii) sedentary transportation, (iv) sedentary occupation and leisure, (v) active transportation, and (vi) active leisure. Multinomial logistic regressions were performed to identify correlates of the “active transportation” cluster. The perceived environmental characteristics positively associated with “active transportation” included “high availability of destinations around home,” “presence of bicycle paths,” and “low traffic.” A “positive image of walking/cycling,” the “individual feeling of being physically active,” and a “high use of active transport modes by relatives/friends” were positively related to “active transportation,” identified as a unique pattern regarding individual and environmental correlates. Identification of PA and SB context-specific patterns will help to understand movement behaviors' complexity and to design interventions to promote active transportation in specific subgroups. PMID:28717653
Briffaud, Virginie; Fourcaud-Trocmé, Nicolas; Messaoudi, Belkacem; Buonviso, Nathalie; Amat, Corine
2012-01-01
Background A slow respiration-related rhythm strongly shapes the activity of the olfactory bulb. This rhythm appears as a slow oscillation that is detectable in the membrane potential, the respiration-related spike discharge of the mitral/tufted cells and the bulbar local field potential. Here, we investigated the rules that govern the manifestation of membrane potential slow oscillations (MPSOs) and respiration-related discharge activities under various afferent input conditions and cellular excitability states. Methodology and Principal Findings We recorded the intracellular membrane potential signals in the mitral/tufted cells of freely breathing anesthetized rats. We first demonstrated the existence of multiple types of MPSOs, which were influenced by odor stimulation and discharge activity patterns. Complementary studies using changes in the intracellular excitability state and a computational model of the mitral cell demonstrated that slow oscillations in the mitral/tufted cell membrane potential were also modulated by the intracellular excitability state, whereas the respiration-related spike activity primarily reflected the afferent input. Based on our data regarding MPSOs and spike patterns, we found that cells exhibiting an unsynchronized discharge pattern never exhibited an MPSO. In contrast, cells with a respiration-synchronized discharge pattern always exhibited an MPSO. In addition, we demonstrated that the association between spike patterns and MPSO types appeared complex. Conclusion We propose that both the intracellular excitability state and input strength underlie specific MPSOs, which, in turn, constrain the types of spike patterns exhibited. PMID:22952828
The effects of age on the neural correlates of episodic encoding.
Grady, C L; McIntosh, A R; Rajah, M N; Beig, S; Craik, F I
1999-12-01
Young and old adults underwent positron emission tomographic scans while encoding pictures of objects and words using three encoding strategies: deep processing (a semantic living/nonliving judgement), shallow processing (size judgement) and intentional learning. Picture memory exceeded word memory in both young and old groups, and there was an age-related decrement only in word recognition. During the encoding tasks three brain activity patterns were found that differentiated stimulus type and the different encoding strategies. The stimulus-specific pattern was characterized by greater activity in extrastriate and medial temporal cortices during picture encoding, and greater activity in left prefrontal and temporal cortices during encoding of words. The older adults showed this pattern to a significantly lesser degree. A pattern distinguishing deep processing from intentional learning of words and pictures was identified, characterized mainly by differences in prefrontal cortex, and this pattern also was of significantly lesser magnitude in the old group. A final pattern identified areas with increased activity during deep processing and intentional learning of pictures, including left prefrontal and bilateral medial temporal regions. There was no group difference in this pattern. These results indicate age-related dysfunction in several encoding networks, with sparing of one specifically involved in more elaborate encoding of pictures. These age-related changes appear to affect verbal memory more than picture memory.
Walla, Peter; Duregger, Cornelia; Deecke, Lüder; Dal-Bianco, Peter
2011-01-01
Our study provides evidence that Mild Cognitive Impairment (MCI) is associated with olfactory dysfunction on both conscious and non-conscious levels. MCI patients and age-matched controls underwent a face processing task during which sympathy decisions had to be made via button presses. Incidentally, some of the faces were associated with a simultaneously presented odour. Although attention was paid to faces, brain activities were analysed with respect to odour versus no-odour conditions. Behavioural differences were found related to overall face recognition performance, but these were not statistically significant. However, odour-related neurophysiology differed between both groups. Normal controls demonstrated brain activity differences between odour and no-odour conditions that resemble difference activity patterns in healthy young participants as described in a previous magnetoencephalography (MEG) study [1]. They showed odour-related activity patterns between about 160 ms and 320 ms after stimulus onset and between about 640 ms and 720 ms. On the other hand, the patient group did not show any such difference activities. Based on previous research we interpret the early odour-related brain activity pattern in controls as being associated with subliminal olfaction and the later activity pattern with conscious olfaction. None of these were found in MCI patients, although it has to be emphasised that our sample size was rather small. We confirm previous findings about olfactory related dysfunction in patients with MCI and conclude from our findings that even subliminal odour-related information processing is impaired. PMID:24962612
Children's Recess Physical Activity: Movement Patterns and Preferences
ERIC Educational Resources Information Center
Woods, Amelia Mays; Graber, Kim C.; Daum, David Newman
2012-01-01
The benefits of recess can be reaped by all students regardless of socioeconomic status, race, or gender and at relatively little cost. The purpose of this study was to examine physical activity (PA) variables related to the recess PA patterns of third and fourth grade children and the social preferences and individuals influencing their PA…
Optimal Scaling of HIV-Related Sexual Risk Behaviors in Ethnically Diverse Homosexually Active Men.
ERIC Educational Resources Information Center
Cochran, Susan D.; And Others
1995-01-01
Used homogeneity analysis and latent class analysis to analyze sexual behavior patterns in two samples of homosexually active men. Results support the existence of a single, nonlinear, latent dimension underlying male homosexual behaviors consistent with HIV-related risk taking, providing an efficient means to scale sexual behavior patterns. (RJM)
Habitat degradation may affect niche segregation patterns in lizards
NASA Astrophysics Data System (ADS)
Pelegrin, N.; Chani, J. M.; Echevarria, A. L.; Bucher, E. H.
2013-08-01
Lizards partition resources in three main niche dimensions: time, space and food. Activity time and microhabitat use are strongly influenced by thermal environment, and may differ between species according to thermal requirements and tolerance. As thermal characteristics are influenced by habitat structure, microhabitat use and activity of lizards can change in disturbed habitats. We compared activity and microhabitat use of two abundant lizard species of the Semi-arid Chaco of Argentina between a restored and a highly degraded Chaco forest, to determine how habitat degradation affects lizard segregation in time and space, hypothesizing that as activity and microhabitat use of lizards are related to habitat structure, activity and microhabitat use of individual species can be altered in degraded habitats, thus changing segregation patterns between them. Activity changed from an overlapped pattern in a restored forest to a segregated pattern in a degraded forest. A similar trend was observed for microhabitat use, although to a less extent. No correlation was found between air temperature and lizard activity, but lizard activity varied along the day and among sites. Contrary to what was believed, activity patterns of neotropical diurnal lizards are not fixed, but affected by multiple factors related to habitat structure and possibly to interspecific interactions. Changes in activity patterns and microhabitat use in degraded forests may have important implications when analyzing the effects of climate change on lizard species, due to synergistic effects.
User Activity Recognition in Smart Homes Using Pattern Clustering Applied to Temporal ANN Algorithm.
Bourobou, Serge Thomas Mickala; Yoo, Younghwan
2015-05-21
This paper discusses the possibility of recognizing and predicting user activities in the IoT (Internet of Things) based smart environment. The activity recognition is usually done through two steps: activity pattern clustering and activity type decision. Although many related works have been suggested, they had some limited performance because they focused only on one part between the two steps. This paper tries to find the best combination of a pattern clustering method and an activity decision algorithm among various existing works. For the first step, in order to classify so varied and complex user activities, we use a relevant and efficient unsupervised learning method called the K-pattern clustering algorithm. In the second step, the training of smart environment for recognizing and predicting user activities inside his/her personal space is done by utilizing the artificial neural network based on the Allen's temporal relations. The experimental results show that our combined method provides the higher recognition accuracy for various activities, as compared with other data mining classification algorithms. Furthermore, it is more appropriate for a dynamic environment like an IoT based smart home.
Yang, Yan-Wen; Jiang, Yuan-Tong
2016-08-01
Study on 5 effective components and 6 soil enzyme activities of 2 different growth patterns, analyse the dates with the canonical correlation analysis, In order to reveal the relations between the effective components and soil enzyme activities. The result showed that they had a great relation between the effective components and soil enzyme activities, the activity of the same enzyme in humus soil was higher than that in farmland soil. Growth pattern of farmland soil, if the invertase and phosphatase activity were too high, which would inhibit the accumulation of total ginsenoside, water-miscible total proteins and total amino acid; Growth pattern of humus soil, if the invertase, urease and phosphatase activity were too high, which would inhibit the accumulation of total ginsenoside and the total essential oils. Integral soil enzyme activity can be used as a index of soil quality, which, together with other growth factors. The appropriate enzyme activity can accelerate the circulation and transformation of all kinds of material in the soil, improve effectively components accumulation. Copyright© by the Chinese Pharmaceutical Association.
Guallar-Castillón, Pilar; Bayán-Bravo, Ana; León-Muñoz, Luz M; Balboa-Castillo, Teresa; López-García, Esther; Gutierrez-Fisac, Juan Luis; Rodríguez-Artalejo, Fernando
2014-10-01
To examine the prospective association of patterns of physical activity, sedentary behavior and sleep with health-related quality of life (HRQL) in the general population of Spain. A cohort study with 4271 individuals aged ≥ 18 years was recruited in 2008-2010 and followed-up prospectively through 2012. Activity patterns were derived from factor analysis. HRQL was assessed with the SF-12 questionnaire, and suboptimal HRQL was defined as a score below the sex-specific sample median. Three main activity patterns were identified. A higher adherence to the pattern named "vigorous activity-seated at the computer" was inversely associated with a suboptimal score in the physical-composite summary (PCS) of the SF-12 (multivariate adjusted odds ratio [aOR] for the highest vs. the lowest quartile 0.71; 95% confidence interval [IC] 0.55-0.90; p-trend=0.003). The "light activity-seated for reading" pattern was inversely associated with a suboptimal score in the mental-composite summary (aOR=0.73; 95% CI=0.61-0.89; p-trend=0.002). However, a higher adherence to the "seated for watching TV-daytime sleeping" pattern was directly associated with suboptimal PCS (aOR=1.35; 95% CI=1.10-1.66; p-trend=0.008). Patterns including any physical activity were associated with better physical or mental HRQL. However, a pattern defined by sedentary behavior with diurnal sleep showed worse HRQL and should be a priority target of preventive interventions. Copyright © 2014 Elsevier Inc. All rights reserved.
Soto, Fabian A.; Waldschmidt, Jennifer G.; Helie, Sebastien; Ashby, F. Gregory
2013-01-01
Previous evidence suggests that relatively separate neural networks underlie initial learning of rule-based and information-integration categorization tasks. With the development of automaticity, categorization behavior in both tasks becomes increasingly similar and exclusively related to activity in cortical regions. The present study uses multi-voxel pattern analysis to directly compare the development of automaticity in different categorization tasks. Each of three groups of participants received extensive training in a different categorization task: either an information-integration task, or one of two rule-based tasks. Four training sessions were performed inside an MRI scanner. Three different analyses were performed on the imaging data from a number of regions of interest (ROIs). The common patterns analysis had the goal of revealing ROIs with similar patterns of activation across tasks. The unique patterns analysis had the goal of revealing ROIs with dissimilar patterns of activation across tasks. The representational similarity analysis aimed at exploring (1) the similarity of category representations across ROIs and (2) how those patterns of similarities compared across tasks. The results showed that common patterns of activation were present in motor areas and basal ganglia early in training, but only in the former later on. Unique patterns were found in a variety of cortical and subcortical areas early in training, but they were dramatically reduced with training. Finally, patterns of representational similarity between brain regions became increasingly similar across tasks with the development of automaticity. PMID:23333700
Hedman, Annicka; Kottorp, Anders; Nygård, Louise
2018-05-01
The aims were to describe longitudinal patterns in terms of perceived ability to use everyday technology (ET) and involvement in everyday activities over five years in older adults with mild cognitive impairment (MCI), and to examine the predictive value of these patterns regarding diagnostic outcomes. Thirty older adults diagnosed with MCI at inclusion, reported their perceived ability in using ET and involvement in everyday activities on seven occasions over five years. Individual longitudinal case plots and a pattern-oriented analysis were used to compare the participants' distribution in earlier identified stable/ascending, fluctuating and descending patterns of functioning (year 0-2). Fisher's exact test was used for testing the relation between pattern and diagnostic outcomes. An initial descending pattern of functioning tended to continue; none of these participants later developed a more stable pattern. More congruent trajectories of change appeared over time. Pattern affinity years 0-2 and diagnostic outcome were significantly related (p = .05), with a dementia diagnosis being more likely for those initially displaying an early descending pattern Conclusion: These findings point to a need for early support focusing on the use of ET for persons with MCI who early after diagnosis descend in functioning.
Ivanenko, Yuri P; Grasso, Renato; Zago, Myrka; Molinari, Marco; Scivoletto, Giorgio; Castellano, Vincenzo; Macellari, Velio; Lacquaniti, Francesco
2003-11-01
What are the building blocks with which the human spinal cord constructs the motor patterns of locomotion? In principle, they could correspond to each individual activity pattern in dozens of different muscles. Alternatively, there could exist a small set of constituent temporal components that are common to all activation patterns and reflect global kinematic goals. To address this issue, we studied patients with spinal injury trained to step on a treadmill with body weight support. Patients learned to produce foot kinematics similar to that of healthy subjects but with activity patterns of individual muscles generally different from the control group. Hidden in the muscle patterns, we found a basic set of five temporal components, whose flexible combination accounted for the wide range of muscle patterns recorded in both controls and patients. Furthermore, two of the components were systematically related to foot kinematics across different stepping speeds and loading conditions. We suggest that the components are related to control signals output by spinal pattern generators, normally under the influence of descending and afferent inputs.
Almoghrabi, A.; Abu Shaban, N.
2011-01-01
Summary Burn patterns differ across the whole world and not only in relation to lack of education, overcrowding, and poverty. Cultures, habits, traditions, psychiatric illness, and epilepsy are strongly correlated to burn patterns. However, burns may also occur because of specific religious beliefs and activities, social events and festivals, traditional medical practices, occupational activities, and war. PMID:22639565
SERENITY in Air Traffic Management
NASA Astrophysics Data System (ADS)
Felici, Massimo; Meduri, Valentino; Tedeschi, Alessandra; Riccucci, Carlo
This chapter is concerned with the validation of an implementation of the SERENITY Runtime Framework (SRF) tailored for the Air Traffic Management (ATM) domain. It reports our experience in the design and validation phases of a tool, which relies on the SRF in order to support Security and Dependability (S&D) Patterns into work practices. In particular, this chapter pinpoints the activities concerning the identification of S&D Patterns, the design of an ATM prototype and its validation. The validation activities involve qualitative as well as quantitative approaches. These activities as a whole highlight the validation process for adopting S&D Patterns within the ATM domain. Moreover, they stress how S&D Patters enhance and relate to critical features within an industry domain. The empirical results point out that S&D Patterns relate to work practices. Furthermore, they highlight design and validation activities in order to tailor systems relying on S&D Patterns to specific application domains. This strengths and supports the adoption of S&D Patterns in order to address AmI (Ambient Intelligence) requirements (e.g., awareness, proactiveness, resilience, etc.) within the ATM domain.
NASA Astrophysics Data System (ADS)
Frank, T. D.
The Lotka-Volterra-Haken equations have been frequently used in ecology and pattern formation. Recently, the equations have been proposed by several research groups as amplitude equations for task-related patterns of brain activity. In this theoretical study, the focus is on the circular causality aspect of pattern formation systems as formulated within the framework of synergetics. Accordingly, the stable modes of a pattern formation system inhibit the unstable modes, whereas the unstable modes excite the stable modes. Using this circular causality principle it is shown that under certain conditions the Lotka-Volterra-Haken amplitude equations can be derived from a general model of brain activity akin to the Wilson-Cowan model. The model captures the amplitude dynamics for brain activity patterns in experiments involving several consecutively performed multiple-choice tasks. This is explicitly demonstrated for two-choice tasks involving grasping and walking. A comment on the relevance of the theoretical framework for clinical psychology and schizophrenia is given as well.
Nettleton, Jennifer A; Steffen, Lyn M; Mayer-Davis, Elizabeth J; Jenny, Nancy S; Jiang, Rui; Herrington, David M; Jacobs, David R
2010-01-01
Background Dietary patterns may influence cardiovascular disease risk through effects on inflammation and endothelial activation. Objective We examined relations between dietary patterns and markers of inflammation and endothelial activation. Design At baseline, diet (food-frequency questionnaire) and concentrations of C-reactive protein (CRP), interleukin 6 (IL-6), homocysteine, soluble intercellular adhesion molecule-1 (sICAM-1), and soluble E selectin were assessed in 5089 nondiabetic participants in the Multi-Ethnic Study of Atherosclerosis. Results Four dietary patterns were derived by using factor analysis. The fats and processed meats pattern (fats, oils, processed meats, fried potatoes, salty snacks, and desserts) was positively associated with CRP (P for trend < 0.001), IL-6 (P for trend < 0.001), and homocysteine (P for trend = 0.002). The beans, tomatoes, and refined grains pattern (beans, tomatoes, refined grains, and high-fat dairy products) was positively related to sICAM-1 (P for trend = 0.007). In contrast, the whole grains and fruit pattern (whole grains, fruit, nuts, and green leafy vegetables) was inversely associated with CRP, IL-6, homocysteine (P for trend ≤ 0.001), and sICAM-1 (P for trend = 0.034), and the vegetables and fish pattern (fish and dark-yellow, cruciferous, and other vegetables) was inversely related to IL-6 (P for trend = 0.009). CRP, IL-6, and homocysteine relations across the fats and processed meats and whole grains and fruit patterns were independent of demographics and lifestyle factors and were not modified by race-ethnicity. CRP and homocysteine relations were independent of waist circumference. Conclusions These results corroborate previous findings that empirically derived dietary patterns are associated with inflammation and show that these relations in an ethnically diverse population with unique dietary habits are similar to findings in more homogeneous populations. PMID:16762949
Esteve, Rosa; López-Martínez, Alicia E; Peters, Madelon L; Serrano-Ibáñez, Elena R; Ruiz-Párraga, Gema T; Ramírez-Maestre, Carmen
2018-01-01
Activity patterns are the product of pain and of the self-regulation of current goals in the context of pain. The aim of this study was to investigate the association between goal management strategies and activity patterns while taking into account the role of optimism/pessimism and positive/negative affect. Two hundred and thirty-seven patients with chronic musculoskeletal pain filled out questionnaires on optimism, positive and negative affect, pain intensity, and the activity patterns they employed in dealing with their pain. Questionnaires were also administered to assess their general goal management strategies: goal persistence, flexible goal adjustment, and disengagement and reengagement with goals. Structural equation modelling showed that higher levels of optimism were related to persistence, flexible goal management, and commitment to new goals. These strategies were associated with higher positive affect, persistence in finishing tasks despite pain, and infrequent avoidance behaviour in the presence or anticipation of pain. The strategies used by the patients with chronic musculoskeletal pain to manage their life goals are related to their activity patterns.
Hall, Margaret I
2009-06-01
Activity pattern, the time of day when an animal is active, is associated with ecology. There are two major activity patterns: diurnal (awake during the day in a photopic environment) and nocturnal (awake at night in a scotopic environment). Lizards exhibit characteristic eye shapes associated with activity pattern, with scotopic-adapted lizard eyes optimized for visual sensitivity with large corneal diameters relative to their eye axial lengths, and photopic-adapted lizards optimized for visual acuity, with larger axial lengths of the eye relative to their corneal diameters. This study: (1) quantifies the relationship between the lizard eye and its associated bony anatomy (the orbit, sclerotic ring, and associated skull widths); (2) investigates how activity pattern is reflected in that bony anatomy; and (3) determines if it is possible to reliably interpret activity pattern for a lizard that does not have the soft tissue available for study, specifically, for a fossil. Knowledge of extinct lizards' activity patterns would be useful in making paleoecological interpretations. Here, 96 scotopic- and photopic-adapted lizard species are analyzed in a phylogenetic context. Although there is a close relationship between the lepidosaur eye and associated bony anatomy, based on these data activity pattern cannot be reliably interpreted for bony-only specimens, such as a fossil, possibly because of the limited ossification of the lepidosaur skull. Caution should be exercised when utilizing lizard bony anatomy to interpret light-level adaptation, either for a fossil lizard or as part of an extant phylogenetic bracket to interpret other extinct animals with sclerotic rings, such as dinosaurs. (c) 2009 Wiley-Liss, Inc.
Comparative study of visual pathways in owls (Aves: Strigiformes).
Gutiérrez-Ibáñez, Cristián; Iwaniuk, Andrew N; Lisney, Thomas J; Wylie, Douglas R
2013-01-01
Although they are usually regarded as nocturnal, owls exhibit a wide range of activity patterns, from strictly nocturnal, to crepuscular or cathemeral, to diurnal. Several studies have shown that these differences in the activity pattern are reflected in differences in eye morphology and retinal organization. Despite the evidence that differences in activity pattern among owl species are reflected in the peripheral visual system, there has been no attempt to correlate these differences with changes in the visual regions in the brain. In this study, we compare the relative size of nuclei in the main visual pathways in nine species of owl that exhibit a wide range of activity patterns. We found marked differences in the relative size of all visual structures among the species studied, both in the tectofugal and the thalamofugal pathway, as well in other retinorecipient nuclei, including the nucleus lentiformis mesencephali, the nucleus of the basal optic root and the nucleus geniculatus lateralis, pars ventralis. We show that the barn owl (Tyto alba), a species widely used in the study of the integration of visual and auditory processing, has reduced visual pathways compared to strigid owls. Our results also suggest there could be a trade-off between the relative size of visual pathways and auditory pathways, similar to that reported in mammals. Finally, our results show that although there is no relationship between activity pattern and the relative size of either the tectofugal or the thalamofugal pathway, there is a positive correlation between the relative size of both visual pathways and the relative number of cells in the retinal ganglion layer. Copyright © 2012 S. Karger AG, Basel.
Patterns of muscle activity underlying object-specific grasp by the macaque monkey.
Brochier, T; Spinks, R L; Umilta, M A; Lemon, R N
2004-09-01
During object grasp, a coordinated activation of distal muscles is required to shape the hand in relation to the physical properties of the object. Despite the fundamental importance of the grasping action, little is known of the muscular activation patterns that allow objects of different sizes and shapes to be grasped. In a study of two adult macaque monkeys, we investigated whether we could distinguish between EMG activation patterns associated with grasp of 12 differently shaped objects, chosen to evoke a wide range of grasping postures. Each object was mounted on a horizontal shuttle held by a weak spring (load force 1-2 N). Objects were located in separate sectors of a "carousel," and inter-trial rotation of the carousel allowed sequential presentation of the objects in pseudorandom order. EMG activity from 10 to 12 digit, hand, and arm muscles was recorded using chronically implanted electrodes. We show that the grasp of different objects was characterized by complex but distinctive patterns of EMG activation. Cluster analysis shows that these object-related EMG patterns were specific and consistent enough to identify the object unequivocally from the EMG recordings alone. EMG-based object identification required a minimum of six EMGs from simultaneously recorded muscles. EMG patterns were consistent across recording sessions in a given monkey but showed some differences between animals. These results identify the specific patterns of activity required to achieve distinct hand postures for grasping, and they open the way to our understanding of how these patterns are generated by the central motor network.
Robert T. Brooks
2009-01-01
The development and use of acoustic recording technology, surveys have revealed the composition, relative levels of activity, and preliminary habitat use of bat communities of various forest locations. However, detailed examinations of acoustic surveys results to investigate temporal patterns of bat activity are rare. Initial active acoustic surveys of bat activity on...
ERIC Educational Resources Information Center
Gay, Jennifer L.; Trevarthen, Grace
2013-01-01
Less than half of the adults in the United States meet national guidelines for physical activity. Physical activity programs can induce short-term improvements in physical activity. To develop effective interventions, researchers and practitioners should consider the timing, location, and social structure patterns of participants. Using a pretest,…
NASA Astrophysics Data System (ADS)
Pavlov, Alexey N.; Runnova, Anastasiya E.; Maksimenko, Vladimir A.; Grishina, Daria S.; Hramov, Alexander E.
2018-02-01
Authentic recognition of specific patterns of electroencephalograms (EEGs) associated with real and imagi- nary movements is an important stage for the development of brain-computer interfaces. In experiments with untrained participants, the ability to detect the motor-related brain activity based on the multichannel EEG processing is demonstrated. Using the detrended fluctuation analysis, changes in the EEG patterns during the imagination of hand movements are reported. It is discussed how the ability to recognize brain activity related to motor executions depends on the electrode position.
User Activity Recognition in Smart Homes Using Pattern Clustering Applied to Temporal ANN Algorithm
Bourobou, Serge Thomas Mickala; Yoo, Younghwan
2015-01-01
This paper discusses the possibility of recognizing and predicting user activities in the IoT (Internet of Things) based smart environment. The activity recognition is usually done through two steps: activity pattern clustering and activity type decision. Although many related works have been suggested, they had some limited performance because they focused only on one part between the two steps. This paper tries to find the best combination of a pattern clustering method and an activity decision algorithm among various existing works. For the first step, in order to classify so varied and complex user activities, we use a relevant and efficient unsupervised learning method called the K-pattern clustering algorithm. In the second step, the training of smart environment for recognizing and predicting user activities inside his/her personal space is done by utilizing the artificial neural network based on the Allen’s temporal relations. The experimental results show that our combined method provides the higher recognition accuracy for various activities, as compared with other data mining classification algorithms. Furthermore, it is more appropriate for a dynamic environment like an IoT based smart home. PMID:26007738
Delavari, Maryam; Sønderlund, Anders Larrabee; Mellor, David; Mohebbi, Mohammadreza; Swinburn, Boyd
2015-01-01
While migration from low- to high-income countries is typically associated with weight gain, the obesity risks of migration from middle-income countries are less certain. In addition to changes in behaviours and cultural orientation upon migration, analyses of changes in environments are needed to explain post-migration risks for obesity. The present study examines the interaction between obesity-related environmental factors and the pattern of migrant acculturation in a sample of 152 Iranian immigrants in Victoria, Australia. Weight measurements, demographics, physical activity levels and diet habits were also surveyed. The pattern of acculturation (relative integration, assimilation, separation or marginalization) was not related to body mass index, diet, or physical activity behaviours. Three relevant aspects of participants’ perception of the Australian environment (physically active environments, social pressure to be fit, unhealthy food environments) varied considerably by demographic characteristics, but only one (physically active environments) was related to a pattern of acculturation (assimilation). Overall, this research highlighted a number of key relationships between acculturation and obesity-related environments and behaviours for our study sample. Theoretical models on migration, culture and obesity need to include environmental factors. PMID:25648171
fMRI activation patterns in an analytic reasoning task: consistency with EEG source localization
NASA Astrophysics Data System (ADS)
Li, Bian; Vasanta, Kalyana C.; O'Boyle, Michael; Baker, Mary C.; Nutter, Brian; Mitra, Sunanda
2010-03-01
Functional magnetic resonance imaging (fMRI) is used to model brain activation patterns associated with various perceptual and cognitive processes as reflected by the hemodynamic (BOLD) response. While many sensory and motor tasks are associated with relatively simple activation patterns in localized regions, higher-order cognitive tasks may produce activity in many different brain areas involving complex neural circuitry. We applied a recently proposed probabilistic independent component analysis technique (PICA) to determine the true dimensionality of the fMRI data and used EEG localization to identify the common activated patterns (mapped as Brodmann areas) associated with a complex cognitive task like analytic reasoning. Our preliminary study suggests that a hybrid GLM/PICA analysis may reveal additional regions of activation (beyond simple GLM) that are consistent with electroencephalography (EEG) source localization patterns.
Smart Device Use and Perceived Physical and Psychosocial Outcomes among Hong Kong Adolescents
Kwok, Stephen Wai Hang; Lee, Paul Hong; Lee, Regina Lai Tong
2017-01-01
Excessive electronic screen-based activities have been found to be associated with negative outcomes. The aim of this study was to investigate the prevalences and patterns of smart device activities and the purposes and perceived outcomes related to smart device use, and the differences in patterns of smart device activities between adolescents who did and did not perceive these outcomes. The study was a cross-sectional survey of Hong Kong primary and secondary school students. Demographic characteristics, purpose and pattern of the activities, and frequencies of the outcomes were measured. Data from 960 adolescents aged 10–19 were analyzed. Nearly 86% of the sample use smart device daily. The one-week prevalence of perceived sleep deprivation, eye discomfort, musculoskeletal discomfort, family conflict and cyberbullying victimization related to smart device use were nearly 50%, 45%, 40%, 20% and 5% respectively. More than 25% of the respondents were at risk of negative outcomes related to smart device activities for more than 1 h per day, browsing and gaming on at least 4 days per week and watching TV/movies and posting on more than 2 days per week. Their patterns of smart device activities may put a significant number of them at risk of negative outcomes. PMID:28218719
Unraveling dynamics of human physical activity patterns in chronic pain conditions
NASA Astrophysics Data System (ADS)
Paraschiv-Ionescu, Anisoara; Buchser, Eric; Aminian, Kamiar
2013-06-01
Chronic pain is a complex disabling experience that negatively affects the cognitive, affective and physical functions as well as behavior. Although the interaction between chronic pain and physical functioning is a well-accepted paradigm in clinical research, the understanding of how pain affects individuals' daily life behavior remains a challenging task. Here we develop a methodological framework allowing to objectively document disruptive pain related interferences on real-life physical activity. The results reveal that meaningful information is contained in the temporal dynamics of activity patterns and an analytical model based on the theory of bivariate point processes can be used to describe physical activity behavior. The model parameters capture the dynamic interdependence between periods and events and determine a `signature' of activity pattern. The study is likely to contribute to the clinical understanding of complex pain/disease-related behaviors and establish a unified mathematical framework to quantify the complex dynamics of various human activities.
Actigraphy-Derived Daily Rest-Activity Patterns and Body Mass Index in Community-Dwelling Adults.
Cespedes Feliciano, Elizabeth M; Quante, Mirja; Weng, Jia; Mitchell, Jonathan A; James, Peter; Marinac, Catherine R; Mariani, Sara; Redline, Susan; Kerr, Jacqueline; Godbole, Suneeta; Manteiga, Alicia; Wang, Daniel; Hipp, J Aaron
2017-12-01
To examine associations between 24-hour rest-activity patterns and body mass index (BMI) among community-dwelling US adults. Rest-activity patterns provide a field method to study exposures related to circadian rhythms. Adults (N = 578) wore an actigraph on their nondominant wrist for 7 days. Intradaily variability and interdaily stability (IS), M10 (most active 10-hours), L5 (least active 5-hours), and relative amplitude (RA) were derived using nonparametric rhythm analysis. Mesor, acrophase, and amplitude were calculated from log-transformed count data using the parametric cosinor approach. Participants were 80% female and mean (standard deviation) age was 52 (15) years. Participants with higher BMI had lower values for magnitude, RA, IS, total sleep time (TST), and sleep efficiency. In multivariable analyses, less robust 24-hour rest-activity patterns as represented by lower RA were consistently associated with higher BMI: comparing the bottom quintile (least robust) to the top quintile (most robust 24-hour rest-activity pattern) of RA, BMI was 3-kg/m2 higher (p = .02). Associations were similar in magnitude to an hour less of TST (1-kg/m2 higher BMI) or a 10% decrease in sleep efficiency (2-kg/m2 higher BMI), and independent of age, sex, race, education, and the duration of rest and/or activity. Lower RA, reflecting both higher night activity and lower daytime activity, was associated with higher BMI. Independent of the duration of rest or activity during the day or night, 24-hour rest, and activity patterns from actigraphy provide aggregated measures of activity that associate with BMI in community-dwelling adults. © Sleep Research Society 2017. Published by Oxford University Press on behalf of the Sleep Research Society. All rights reserved. For permissions, please e-mail journals.permissions@oup.com.
Modification of medullary respiratory-related discharge patterns by behaviors and states of arousal.
Chang, F C
1992-02-07
The modulatory influences of behaviors and states of arousal on bulbar respiratory-related unit (RRU) discharge patterns were studied in an unanesthetized, freely behaving guinea pig respiratory model system. When fully instrumented, this model system permits concurrent monitoring and recording of (i) single units from either Bötzinger complex or nucleus para-ambiguus; (ii) electrocorticogram; and, (iii) diaphragmatic EMG. In addition to being used in surveys of RRU discharge patterns in freely behaving states, the model system also offered a unique opportunity in investigating the effects of pentobarbital on RRU discharge patterns before, throughout the course of, and during recovery from anesthesia. In anesthetized preparations, a particular RRU discharge pattern (such as tonic, incrementing or decrementing) typically displayed little, if any notable variation. The most striking development following pentobarbital was a state of progressive bradypnea attributable to a significantly augmented RRU cycle duration, burst duration and an increase in the RRU spike frequencies during anesthesia. In freely behaving states, medullary RRU activities rarely adhered to a fixed, immutable discharge pattern. More specifically, the temporal organization (such as burst duration, cycle duration, and the extent of modulation of within-burst spike frequencies) of RRU discharge patterns regularly showed complex and striking variations, not only with states of arousal (sleep/wakefulness, anesthesia) but also with discrete alterations in electrocorticogram (ECoG) activities and a multitude of on-going behavioral repertoires such as volitional movement, postural modification, phonation, mastication, deglutition, sniffing/exploratory behavior, alerting/startle reflexes. Only during sleep, and on occasions when the animal assumed a motionless, resting posture, could burst patterns of relatively invariable periodicity and uniform temporal attributes be observed. RRU activities during sniffing reflex is worthy of further note in that, based on power spectrum analyses of concurrently recorded ECoG activities, this particular discharge pattern was clearly associated with the activation of a 6-10 Hz theta rhythm. These findings indicated that bulbar RRU activity patterns are subject to change by not only behaviors and sleep/wakefulness cycles, but also a variety of modulatory influences and feedback/feedforward biases from other central and peripheral physiological control mechanisms.
ERIC Educational Resources Information Center
Beutum, Monique Natalie; Cordier, Reinie; Bundy, Anita
2013-01-01
The association between motor proficiency and moderate to vigorous physical activity (MVPA) suggests children with developmental coordination disorder (DCD) may be susceptible to inactivity-related conditions such as cardiovascular diseases. The aim of this study was to compare children with and without DCD on physical activity patterns, activity…
Perchoux, Camille; Kestens, Yan; Thomas, Frédérique; Van Hulst, Andraea; Thierry, Benoit; Chaix, Basile
2014-10-01
Prior epidemiological studies have mainly focused on local residential neighborhoods to assess environmental exposures. However, individual spatial behavior may modify residential neighborhood influences, with weaker health effects expected for mobile populations. By examining individual patterns of daily mobility and associated socio-demographic profiles and transportation modes, this article seeks to develop innovative methods to account for daily mobility in health studies. We used data from the RECORD Cohort Study collected in 2011-2012 in the Paris metropolitan area, France. A sample of 2062 individuals was investigated. Participants' perceived residential neighborhood boundaries and regular activity locations were geocoded using the VERITAS application. Twenty-four indicators were created to qualify individual space-time patterns, using spatial analysis methods and a geographic information system. Three domains of indicators were considered: lifestyle indicators, indicators related to the geometry of the activity space, and indicators related to the importance of the residential neighborhood in the overall activity space. Principal component analysis was used to identify main dimensions of spatial behavior. Multilevel linear regression was used to determine which individual characteristics were associated with each spatial behavior dimension. The factor analysis generated five dimensions of spatial behavior: importance of the residential neighborhood in the activity space, volume of activities, and size, eccentricity, and specialization of the activity space. Age, socioeconomic status, and location of the household in the region were the main predictors of daily mobility patterns. Activity spaces of small sizes centered on the residential neighborhood and implying a large volume of activities were associated with walking and/or biking as a transportation mode. Examination of patterns of spatial behavior by individual socio-demographic characteristics and in relation to transportation modes is useful to identify populations with specific mobility/accessibility needs and has implications for investigating transportation-related physical activity and assessing environmental exposures and their effects on health. Copyright © 2014 Elsevier Ltd. All rights reserved.
NASA Astrophysics Data System (ADS)
Maliniemi, V.; Asikainen, T.; Mursula, K.
2017-12-01
Northern Hemisphere winter circulation is known to be affected by both internal and external (solar-related) forcings. Earlier studies have shown ENSO and volcanic activity to produce negative and positive North Atlantic Oscillation (NAO) type responses, respectively. In addition, recent studies have shown a positive NAO response related to both geomagnetic activity (proxy for solar wind driven particle precipitation) and sunspot activity (proxy for solar irradiance). These solar-related signals have been suggested to be due to the changes in the polar vortex. Here the relative role of these four internal and external drivers on wintertime circulation in the Northern Hemisphere is studied. The phase of the quasi-biennial oscillation (QBO) is used to study the driver responses for different stratospheric conditions. Moreover, the effects are separated for early (Dec/Jan) and late (Feb/Mar) winter. The global pattern of ENSO is very similar (negative NAO) otherwise, but in early winter and westerly QBO the pattern is changed in the Atlantic sector to a weakly positive NAO. The positive NAO pattern due to volcanic activity is more pronounced for westerly QBO in both early and late winter. The positive NAO pattern produced by geomagnetic activity is obtained during easterly QBO phase in both early and late winter. Sunspot related NAO response in late winter is also strongly modulated by the QBO phase. These results imply that the stratospheric conditions expressed by QBO significantly modulate the way the internal and external drivers affect the Northern Hemisphere winter climate.
Eye shape and the nocturnal bottleneck of mammals.
Hall, Margaret I; Kamilar, Jason M; Kirk, E Christopher
2012-12-22
Most vertebrate groups exhibit eye shapes that vary predictably with activity pattern. Nocturnal vertebrates typically have large corneas relative to eye size as an adaptation for increased visual sensitivity. Conversely, diurnal vertebrates generally demonstrate smaller corneas relative to eye size as an adaptation for increased visual acuity. By contrast, several studies have concluded that many mammals exhibit typical nocturnal eye shapes, regardless of activity pattern. However, a recent study has argued that new statistical methods allow eye shape to accurately predict activity patterns of mammals, including cathemeral species (animals that are equally likely to be awake and active at any time of day or night). Here, we conduct a detailed analysis of eye shape and activity pattern in mammals, using a broad comparative sample of 266 species. We find that the eye shapes of cathemeral mammals completely overlap with nocturnal and diurnal species. Additionally, most diurnal and cathemeral mammals have eye shapes that are most similar to those of nocturnal birds and lizards. The only mammalian clade that diverges from this pattern is anthropoids, which have convergently evolved eye shapes similar to those of diurnal birds and lizards. Our results provide additional evidence for a nocturnal 'bottleneck' in the early evolution of crown mammals.
Altenmüller, Eckart; Schürmann, Kristian; Lim, Vanessa K; Parlitz, Dietrich
2002-01-01
In order to investigate the neurobiological mechanisms accompanying emotional valence judgements during listening to complex auditory stimuli, cortical direct current (dc)-electroencephalography (EEG) activation patterns were recorded from 16 right-handed students. Students listened to 160 short sequences taken from the repertoires of jazz, rock-pop, classical music and environmental sounds (each n=40). Emotional valence of the perceived stimuli were rated on a 5-step scale after each sequence. Brain activation patterns during listening revealed widespread bilateral fronto-temporal activation, but a highly significant lateralisation effect: positive emotional attributions were accompanied by an increase in left temporal activation, negative by a more bilateral pattern with preponderance of the right fronto-temporal cortex. Female participants demonstrated greater valence-related differences than males. No differences related to the four stimulus categories could be detected, suggesting that the actual auditory brain activation patterns were more determined by their affective emotional valence than by differences in acoustical "fine" structure. The results are consistent with a model of hemispheric specialisation concerning perceived positive or negative emotions proposed by Heilman [Journal of Neuropsychiatry and Clinical Neuroscience 9 (1997) 439].
Eye shape and the nocturnal bottleneck of mammals
Hall, Margaret I.; Kamilar, Jason M.; Kirk, E. Christopher
2012-01-01
Most vertebrate groups exhibit eye shapes that vary predictably with activity pattern. Nocturnal vertebrates typically have large corneas relative to eye size as an adaptation for increased visual sensitivity. Conversely, diurnal vertebrates generally demonstrate smaller corneas relative to eye size as an adaptation for increased visual acuity. By contrast, several studies have concluded that many mammals exhibit typical nocturnal eye shapes, regardless of activity pattern. However, a recent study has argued that new statistical methods allow eye shape to accurately predict activity patterns of mammals, including cathemeral species (animals that are equally likely to be awake and active at any time of day or night). Here, we conduct a detailed analysis of eye shape and activity pattern in mammals, using a broad comparative sample of 266 species. We find that the eye shapes of cathemeral mammals completely overlap with nocturnal and diurnal species. Additionally, most diurnal and cathemeral mammals have eye shapes that are most similar to those of nocturnal birds and lizards. The only mammalian clade that diverges from this pattern is anthropoids, which have convergently evolved eye shapes similar to those of diurnal birds and lizards. Our results provide additional evidence for a nocturnal ‘bottleneck’ in the early evolution of crown mammals. PMID:23097513
Allendorfer, Jane B.; Kissela, Brett M.; Holland, Scott K.; Szaflarski, Jerzy P.
2012-01-01
Summary Background Post-stroke language functions depend on the relative contributions of the dominant and non-dominant hemispheres. Thus, we aimed to identify the neural correlates of overt and covert verb generation in adult post-stroke aphasia. Material/Methods Sixteen aphasic LMCA stroke patients (SPs) and 32 healthy controls (HCs) underwent language testing followed by fMRI while performing an overt event-related verb generation task (ER-VGT) isolating activations related to noun-verb semantic processing or to articulation and auditory processing, and a covert block design verb generation task (BD-VGT). Results BD-VGT activation patterns were consistent with previous studies, while ER-VGT showed different patterns in SPs relative to HCs including less left-hemispheric involvement during semantic processing and predominantly right-sided activation related to articulation and auditory processing. ER-VGT intra-scanner performance was positively associated with activation during semantic associations in the left middle temporal gyrus for HCs (p=0.031) and left middle frontal gyrus for SPs (p=0.042). Increased activation in superior frontal/cingulate gyri was associated with better intra-scanner performance (p=0.020). Lesion size negatively impacted verbal fluency tested with Controlled Oral Word Association Test (p=0.0092) and the Semantic Fluency Test (p=0.033) and trended towards a negative association with verb generation performance on the event-related verb generation task (p=0.081). Conclusions Greater retention of pre-stroke language skills is associated with greater involvement of the left hemisphere with different cortical recruitment patterns observed in SPs versus HCs. Post-stroke verbal fluency may depend more upon the structural and functional integrity of the dominant left hemisphere language network rather than the shift to contralateral homologues. PMID:22367124
Effect of long-term bedrest on lower leg muscle activation patterns during quiet standing.
Miyoshi, T; Sato, T; Sekiguchi, H; Yamanaka, K; Miyazaki, M; Igawa, S; Komeda, T; Nakazawa, K; Yano, H
2001-07-01
It has been well known that balance instabilities after long-term exposure to microgravity (e.g., Anderson et al. 1986) or bedrest (BR) can be related to alterations and/or adaptations to postural control strategies. Little is known, however, how the reduced muscular activity affects the activation pattern of the lower limb muscles during quiet standing (QS). The purpose of this study was to investigate whether or not any changes in the lower limb muscle activation patterns during QS would occur after BR.
Singh, Jyotsna; Singh, Phool; Malik, Vikas
2017-01-01
Parkinson disease alters the information patterns in movement related pathways in brain. Experimental results performed on rats show that the activity patterns changes from single spike activity to mixed burst mode in Parkinson disease. However the cause of this change in activity pattern is not yet completely understood. Subthalamic nucleus is one of the main nuclei involved in the origin of motor dysfunction in Parkinson disease. In this paper, a single compartment conductance based model is considered which focuses on subthalamic nucleus and synaptic input from globus pallidus (external). This model shows highly nonlinear behavior with respect to various intrinsic parameters. Behavior of model has been presented with the help of activity patterns generated in healthy and Parkinson condition. These patterns have been compared by calculating their correlation coefficient for different values of intrinsic parameters. Results display that the activity patterns are very sensitive to various intrinsic parameters and calcium shows some promising results which provide insights into the motor dysfunction.
Zhou, Yu; Wang, Liyun; Park, Sung-Soo; Martin, Bronwen; Wang, Rui; Becker, Kevin G.; Wood, William H.; Zhang, Yongqing; Peers, Chris; Maudsley, Stuart
2011-01-01
The central nervous system normally functions at O2 levels which would be regarded as hypoxic by most other tissues. However, most in vitro studies of neurons and astrocytes are conducted under hyperoxic conditions without consideration of O2-dependent cellular adaptation. We analyzed the reactivity of astrocytes to 1, 4 and 9% O2 tensions compared to the cell culture standard of 20% O2, to investigate their ability to sense and translate this O2 information to transcriptional activity. Variance of ambient O2 tension for rat astrocytes resulted in profound changes in ribosomal activity, cytoskeletal and energy-regulatory mechanisms and cytokine-related signaling. Clustering of transcriptional regulation patterns revealed four distinct response pattern groups that directionally pivoted around the 4% O2 tension, or demonstrated coherent ascending/decreasing gene expression patterns in response to diverse oxygen tensions. Immune response and cell cycle/cancer-related signaling pathway transcriptomic subsets were significantly activated with increasing hypoxia, whilst hemostatic and cardiovascular signaling mechanisms were attenuated with increasing hypoxia. Our data indicate that variant O2 tensions induce specific and physiologically-focused transcript regulation patterns that may underpin important physiological mechanisms that connect higher neurological activity to astrocytic function and ambient oxygen environments. These strongly defined patterns demonstrate a strong bias for physiological transcript programs to pivot around the 4% O2 tension, while uni-modal programs that do not, appear more related to pathological actions. The functional interaction of these transcriptional ‘programs’ may serve to regulate the dynamic vascular responsivity of the central nervous system during periods of stress or heightened activity. PMID:21738745
Drag, Lauren L; Light, Sharee N; Langenecker, Scott A; Hazlett, Kathleen E; Wilde, Elisabeth A; Welsh, Robert; Steinberg, Brett A; Bieliauskas, Linas A
2016-09-01
Visuospatial abilities are sensitive to age-related decline, although the neural basis for this decline (and its everyday behavioral correlates) is as yet poorly understood. fMRI was employed to examine age-related differences in patterns of functional activation that underlie changes in visuospatial processing. All participants completed a brief neuropsychological battery and also a figure ground task (FGT) assessing visuospatial processing while fMRI was recorded. Participants included 16 healthy older adults (OA; aged 69-82 years) and 16 healthy younger adults (YA; aged 20-35 years). We examined age-related differences in behavioral performance on the FGT in relation to patterns of fMRI activation. OA demonstrated reduced performance on the FGT task and showed increased activation of supramarginal parietal cortex as well as increased activation of frontal and temporal regions compared to their younger counterparts. Performance on the FGT related to increased supramarginal gyrus activity and increased medial prefrontal activity in OAs, but not YAs. Our results are consistent with an anterior-posterior compensation model. Successful FGT performance requires the perception and integration of multiple stimuli and thus it is plausible that healthy aging may be accompanied by changes in visuospatial processing that mimic a subtle form of dorsal simultanagnosia. Overall, decreased visuospatial processing in OA relates to an altered frontoparietal neurobiological signature that may contribute to the general phenomenon of increasingly fragmented execution of behavior associated with normal aging.
Pérez-Rodrigo, Carmen; Gil, Ángel; González-Gross, Marcela; Ortega, Rosa M.; Serra-Majem, Lluis; Varela-Moreiras, Gregorio; Aranceta-Bartrina, Javier
2015-01-01
Weight gain has been associated with behaviors related to diet, sedentary lifestyle, and physical activity. We investigated dietary patterns and possible meaningful clustering of physical activity, sedentary behavior, and sleep time in Spanish children and adolescents and whether the identified clusters could be associated with overweight. Analysis was based on a subsample (n = 415) of the cross-sectional ANIBES study in Spain. We performed exploratory factor analysis and subsequent cluster analysis of dietary patterns, physical activity, sedentary behaviors, and sleep time. Logistic regression analysis was used to explore the association between the cluster solutions and overweight. Factor analysis identified four dietary patterns, one reflecting a profile closer to the traditional Mediterranean diet. Dietary patterns, physical activity behaviors, sedentary behaviors and sleep time on weekdays in Spanish children and adolescents clustered into two different groups. A low physical activity-poorer diet lifestyle pattern, which included a higher proportion of girls, and a high physical activity, low sedentary behavior, longer sleep duration, healthier diet lifestyle pattern. Although increased risk of being overweight was not significant, the Prevalence Ratios (PRs) for the low physical activity-poorer diet lifestyle pattern were >1 in children and in adolescents. The healthier lifestyle pattern included lower proportions of children and adolescents from low socioeconomic status backgrounds. PMID:26729155
1992-01-31
pattern of paraspinal muscle contraction , and (3) onset of low back pain. (b) That patterns of muscle tension recorded throughout the normal day in the...intensity and duration of activity being performed, (b) the pattern of paraspinal muscle contraction , and (c) onset of low back pain. (2) To determine whether... muscle contraction , and activity by performing continuous recordings of these factors among groups of low back pain subjects in their normal
Acute caffeine administration effect on brain activation patterns in mild cognitive impairment.
Haller, Sven; Montandon, Marie-Louise; Rodriguez, Cristelle; Moser, Dominik; Toma, Simona; Hofmeister, Jeremy; Sinanaj, Indrit; Lovblad, Karl-Olof; Giannakopoulos, Panteleimon
2014-01-01
Previous studies showed that acute caffeine administration enhances task-related brain activation in elderly individuals with preserved cognition. To explore the effects of this widely used agent on cognition and brain activation in early phases of cognitive decline, we performed a double-blinded, placebo-controlled functional magnetic resonance imaging (fMRI) study during an n-back working memory task in 17 individuals with mild cognitive impairment (MCI) compared to 17 age-matched healthy controls (HC). All individuals were regular caffeine consumers with an overnight abstinence and given 200 mg caffeine versus placebo tablets 30 minutes before testing. Analyses included assessment of task-related activation (general linear model), functional connectivity (tensorial-independent component analysis, TICA), baseline perfusion (arterial spin labeling, ASL), grey matter density (voxel-based morphometry, VBM), and white matter microstructure (tract-based spatial statistics, TBSS). Acute caffeine administration induced a focal activation of the prefrontal areas in HC with a more diffuse and posteromedial activation pattern in MCI individuals. In MCI, TICA documented a significant caffeine-related enhancement in the prefrontal cortex, supplementary motor area, ventral premotor and parietal cortex as well as the basal ganglia and cerebellum. The absence of significant group differences in baseline ASL perfusion patterns supports a neuronal rather than a purely vascular origin of these differences. The VBM and TBSS analyses excluded potentially confounding differences in grey matter density and white matter microstructure between MCI and HC. The present findings suggest a posterior displacement of working memory-related brain activation patterns after caffeine administration in MCI that may represent a compensatory mechanism to counterbalance a frontal lobe dysfunction.
How Do You and Your Partner Relate to Each Other About Smoking?
People develop routines and patterns for all sorts of activities, including smoking. This is true whether only one or both people smoke. Likely, there are patterns in how you and your partner relate to each other about smoking.
Qiu, Shuang; Yi, Weibo; Xu, Jiapeng; Qi, Hongzhi; Du, Jingang; Wang, Chunfang; He, Feng; Ming, Dong
2016-02-01
A number of electroencephalographic (EEG) studies have reported on event-related desynchronization/synchronization (ERD/ERS) during active movements, passive movements, and the movements induced by functional electrical stimulation (FES). However, the quantitative differences in ERD values and affected frequency bands associated with the lower limb have not been discussed. The goal of this paper was to quantitatively compare the ERD patterns during active movement, passive movement and FES-induced movement of the lower limb. 64-channel EEG signals were recorded to investigate the brain oscillatory patterns during active movement, passive movement and FES-induced movement of the lower limb in twelve healthy subjects. And passive movement and FES-induced movement were also performed in a hemiplegic stroke patient. For healthy subjects, FES-induced movement presented significantly higher characteristic frequency of central beta ERD while there was no significant difference in ERD values compared with active or passive movement. Meanwhile, beta ERD values of FES-induced movement were significantly correlated with those of active movement, and spatial distribution of beta ERD pattern for FES-induced movement was more correlated with that for active movement. In addition, the stroke patient presented central ERD patterns during FES-induced movement, while no ERD with similar frequencies could be found during passive movement. This work implies that the EEG oscillatory pattern under FES-induced movement tends more towards active movement instead of passive movement. The quantification of ERD patterns could be expected as a potential technique to evaluate the brain response during FES-induced movement.
Hall, Margaret I
2008-01-01
Activity pattern, or the time of day when an animal is awake and active, is highly associated with that animal's ecology. There are two principal activity patterns: diurnal, or awake during the day in a photopic, or high light level, environment; and nocturnal, awake at night in scotopic, or low light level, conditions. Nocturnal and diurnal birds exhibit characteristic eye shapes associated with their activity pattern, with nocturnal bird eyes optimized for visual sensitivity with large corneal diameters relative to their eye axial lengths, and diurnal birds optimized for visual acuity, with larger axial lengths of the eye relative to their corneal diameters. The current study had three aims: (1) to quantify the nature of the relationship between the avian eye and its associated bony anatomy, the orbit and the sclerotic ring; (2) to investigate how activity pattern is reflected in that bony anatomy; and (3) to identify how much bony anatomy is required to interpret activity pattern reliably for a bird that does not have the soft tissue available for study, specifically, for a fossil. Knowledge of extinct avian activity patterns would be useful in making palaeoecological interpretations. Here eye, orbit and sclerotic ring morphologies of 140 nocturnal and diurnal bird species are analysed in a phylogenetic context. Although there is a close relationship between the avian eye and orbit, activity pattern can only be reliably interpreted for bony-only specimens, such as a fossil, that include both measurements of the sclerotic ring and orbit depth. Any missing data render the fossil analysis inaccurate, including fossil specimens that are flat and therefore do not have an orbit depth available. For example, activity pattern cannot be determined with confidence for Archaeopteryx lithographica, which has a complete sclerotic ring but no orbit depth measurement. Many of the bird fossils currently available that retain a good sclerotic ring tend to be flat specimens, while three-dimensionally preserved bird fossils tend not to have a well-preserved sclerotic ring or a well-defined optic foramen, necessary for delimiting the orbit depth. PMID:18510506
Unique and Persistent Individual Patterns of Brain Activity Across Different Memory Retrieval Tasks
Miller, Michael B.; Donovan, Christa-Lynn; Van Horn, John D.; German, Elaine; Sokol-Hessner, Peter; Wolford, George L.
2009-01-01
Fourteen subjects were scanned in two fMRI sessions separated by several months. During each session, subjects performed an episodic retrieval task, a semantic retrieval task, and a working memory task. We found that 1) despite extensive intersubject variability in the pattern of activity across the whole brain, individual activity patterns were stable over time, 2) activity patterns of the same individual performing different tasks were more similar than activity patterns of different individuals performing the same task, and 3) that individual differences in decision criterion on a recognition test predicted the degree of similarity between any two individuals’ patterns of brain activity, but individual differences in memory accuracy or similarity in structural anatomy did not. These results imply that the exclusive use of group maps may be ineffective in profiling the pattern of activations for a given task. This may be particularly true for a task like episodic retrieval, which is relatively strategic and can involve widely-distributed specialized processes that are peripheral to the actual retrieval of stored information. Further, these processes may be differentially engaged depending on individual differences in cognitive processing and/or physiology. PMID:19540922
Pattern activation/recognition theory of mind
du Castel, Bertrand
2015-01-01
In his 2012 book How to Create a Mind, Ray Kurzweil defines a “Pattern Recognition Theory of Mind” that states that the brain uses millions of pattern recognizers, plus modules to check, organize, and augment them. In this article, I further the theory to go beyond pattern recognition and include also pattern activation, thus encompassing both sensory and motor functions. In addition, I treat checking, organizing, and augmentation as patterns of patterns instead of separate modules, therefore handling them the same as patterns in general. Henceforth I put forward a unified theory I call “Pattern Activation/Recognition Theory of Mind.” While the original theory was based on hierarchical hidden Markov models, this evolution is based on their precursor: stochastic grammars. I demonstrate that a class of self-describing stochastic grammars allows for unifying pattern activation, recognition, organization, consistency checking, metaphor, and learning, into a single theory that expresses patterns throughout. I have implemented the model as a probabilistic programming language specialized in activation/recognition grammatical and neural operations. I use this prototype to compute and present diagrams for each stochastic grammar and corresponding neural circuit. I then discuss the theory as it relates to artificial network developments, common coding, neural reuse, and unity of mind, concluding by proposing potential paths to validation. PMID:26236228
Pattern activation/recognition theory of mind.
du Castel, Bertrand
2015-01-01
In his 2012 book How to Create a Mind, Ray Kurzweil defines a "Pattern Recognition Theory of Mind" that states that the brain uses millions of pattern recognizers, plus modules to check, organize, and augment them. In this article, I further the theory to go beyond pattern recognition and include also pattern activation, thus encompassing both sensory and motor functions. In addition, I treat checking, organizing, and augmentation as patterns of patterns instead of separate modules, therefore handling them the same as patterns in general. Henceforth I put forward a unified theory I call "Pattern Activation/Recognition Theory of Mind." While the original theory was based on hierarchical hidden Markov models, this evolution is based on their precursor: stochastic grammars. I demonstrate that a class of self-describing stochastic grammars allows for unifying pattern activation, recognition, organization, consistency checking, metaphor, and learning, into a single theory that expresses patterns throughout. I have implemented the model as a probabilistic programming language specialized in activation/recognition grammatical and neural operations. I use this prototype to compute and present diagrams for each stochastic grammar and corresponding neural circuit. I then discuss the theory as it relates to artificial network developments, common coding, neural reuse, and unity of mind, concluding by proposing potential paths to validation.
Wadolowska, Lidia; Kowalkowska, Joanna; Lonnie, Marta; Czarnocinska, Jolanta; Jezewska-Zychowicz, Marzena; Babicz-Zielinska, Ewa
2016-08-02
Similar to other countries, trends of decreasing levels of physical activity (PA) and an increasing prevalence of unhealthy dietary patterns are observed among girls in Poland. Better understanding of potentially inter-related behaviours within this population can help to design tailored interventions. The purpose of this study was to determine associations between PA patterns and dietary patterns in a representative sample of Polish girls. Girls aged 13-21 years (n = 1107) were randomly selected for the study. PA was assessed using International Physical Activity Questionnaire - Long (IPAQ-L). Dietary data were collected with food frequency questionnaires. PA patterns and dietary patterns were drawn separately by Principal Component Analysis (PCA). Logistic regression was used to find the associations between PA patterns and dietary patterns. Four major PA patterns ('School/work activity', 'Active recreation', 'Yard activity' and 'Walking and domestic activity') and four dietary patterns ('Traditional Polish', 'Fruit & vegetables', 'Fast food & sweets' and 'Dairy & fats') were identified. Level of PA was the highest in the upper tertile of 'School/work activity' pattern (mean 1372.2 MET-minutes/week, 95 % Confidence Intervals [CI]: 1285.9-1458.5). Girls in upper tertiles of 'Yard activity', 'Active recreation' and 'School/work activity' patterns had significantly higher chances of being in the upper tertile of the 'Fruit and vegetables' dietary pattern (odds ratio [OR] 2.17, 95 % CI: 1.50-3.14, p < 0.0001; OR 2.02, 95 % CI: 1.41-2.91; p < 0.001 and OR 1.76, 95 % CI: 1.24-2.51, p < 0.01 respectively; all adjusted for confounders) in comparison to bottom tertiles. Weak, but significant inverse associations were found between upper tertiles of 'Active recreation' and 'Yard activity' patterns and unhealthy dietary patterns. We found associations between PA patterns and dietary patterns in the population of Polish girls. Girls with the highest adherence to the 'School/work activity' pattern had the highest levels of PA and presented pro-healthy dietary behaviours. School should be recognised as potentially efficient and important setting to maximise girls' PA potential. The after-school time is the area that should also be targeted to increase daily PA or to at least sustain the level of PA after completing education.
ERIC Educational Resources Information Center
Ferm, Ulrika; Ahlsen, Elisabeth; Bjorck-Akesson, Eva
2012-01-01
Background: Interaction between caregivers and children with severe impairments is closely related to the demands of daily activities. This study examines the relationship between interaction and the routine mealtime activity at home. Method: Patterns of interaction between a child (aged 6 years and 6 months) with severe speech and physical…
Hofstetter, Christoph; Vuilleumier, Patrik
2014-01-01
Understanding emotions in others engages specific brain regions in temporal and medial prefrontal cortices. These activations are often attributed to more general cognitive ‘mentalizing’ functions, associated with theory of mind and also necessary to represent people’s non-emotional mental states, such as beliefs or intentions. Here, we directly investigated whether understanding emotional feelings recruit similar or specific brain systems, relative to other non-emotional mental states. We used functional magnetic resonance imaging with multivoxel pattern analysis in 46 volunteers to compare activation patterns in theory-of-mind tasks for emotions, relative to beliefs or somatic states accompanied with pain. We found a striking dissociation between the temporoparietal cortex, that exhibited a remarkable voxel-by-voxel pattern overlap between emotions and beliefs (but not pain), and the dorsomedial prefrontal cortex, that exhibited distinct (and yet nearby) patterns of activity during the judgment of beliefs and emotions in others. Pain judgment was instead associated with activity in the supramarginal gyrus, middle cingulate cortex and middle insular cortex. Our data reveal for the first time a functional dissociation within brain networks sub-serving theory of mind for different mental contents, with a common recruitment for cognitive and affective states in temporal regions, and distinct recruitment in prefrontal areas. PMID:23770622
Physical activity patterns in Greenland: a country in transition.
Dahl-Petersen, Inger K; Jørgensen, Marit E; Bjerregaard, Peter
2011-11-01
To examine differences in physical activity patterns among Inuit in Greenland in relation to social transition. The Inuit in Greenland are an indigenous population in the circumpolar north who are experiencing rapid social transition. Physical activity patterns were assessed by the International Physical Activity Questionnaire (long version). The population was divided into six groups according to different stages of social change, measured on the basis of education, current residence and occupation. Data were collected in a country-wide cross-sectional population survey among adult Inuit in Greenland from 2005 to 2009. Men with long vocational or academic education living in towns (latest stage of social change) spent significantly less time on occupational physical activity (p = 0.001) compared with hunters and fishermen in villages (earliest stage of social change) (trend test p = 0.01). Women in the latest stage of change spent significantly less time on domestic physical activity (p < 0.001) (trend test p = 0.06) compared with women in the earliest stage of social change. This was also found for physical activity during transportation (p = 0.02 and p = 0.01 for men and women, respectively). No significant difference was found for leisure time physical activity. Men and women in the latest stage of social change spent more time on sedentary activity (p < 0.001). Differences in physical activity patterns among Inuit in Greenland included decreasing time spent on domestic and occupational physical activity and increasing time spent on sedentary activities along with social change. Knowledge of changes in physical activity patterns in relation to social transition is important in prevention of obesity, type 2 diabetes and lifestyle diseases.
NASA Astrophysics Data System (ADS)
Zhou, Y.; Fang, Z.
2017-09-01
There existing a significant social and spatial differentiation in the residential communities in urban city. People live in different places have different socioeconomic background, resulting in various geographically activity patterns. This paper aims to label the characteristics of residential communities in a city using collective activity patterns derived from taxi trip data. Specifically, we first present a method to allocate the O/D (Origin/Destination) points of taxi trips to the land use parcels where the activities taken place in. Then several indices are employed to describe the collective activity patterns, including both activity intensity, travel distance, travel time, and activity space of residents by taking account of the geographical distribution of all O/Ds of the taxi trip related to that residential community. Followed by that, an agglomerative hierarchical clustering algorithm is introduced to cluster the residential communities with similar activity patterns. In the case study of Wuhan, the residential communities are clearly divided into eight clusters, which could be labelled as ordinary communities, privileged communities, old isolated communities, suburban communities, and so on. In this paper, we provide a new perspective to label the land use under same type from people's mobility patterns with the support of big trajectory data.
Marino Claverie, Lucila; Knobel, Elizabeth; Takashima, Lorena; Techera, Lorena; Oliver, Marina; Gonzalez, Paula; Romanini, Félix E; Fonseca, María L; Mamani, Marta N
2013-06-01
Changes in nailfold capillaroscopy in systemic sclerosis patients could be related to the disease severity. The aim of this study was to investigate whether patients with "late" scleroderma (SD) pattern have more organ involvement than patients with "early/active" SD pattern. Forty-six Argentinian patients (44 women and 2 men), with a diagnosis of systemic sclerosis, were distributed in two groups based on the presence of late and early/active patterns. Organ involvement was assessed as follows: pulmonary function by chest radiography, high-resolution chest tomography (HRCT), lung volume tests, and diffusing capacity for carbon monoxide (DLCO); esophageal involvement by manometry; and pulmonary arterial hypertension (PAH) by Doppler echocardiography and six-minute walk test. Honeycombing of the lungs evaluated by HRCT was more frequently present in patients with late pattern compared with early/active patients (p = 0.01). We also found statistically significant differences in lung volume tests (p = 0.03) and DLCO (p = 0.02) between the two SD pattern groups. Esophageal manometry showed a significantly higher frequency of motility disorders in the group with late pattern (p = 0.0024). In this study, patients with late pattern had higher frequency of pulmonary and esophageal involvement compared with patients with early/active pattern.
An Investigation of Individual Variability in Brain Activity During Episodic Encoding and Retrieval
2008-12-01
variability in mnemonic strategy use is, at least in part, related to the extensive variability observed in brain activity patterns. While a number of...1 AN INVESTIGATION OF INDIVIDUAL VARIABILITY IN BRAIN ACTIVITY DURING EPISODIC ENCODING AND RETRIEVAL C.L. Donovan*, and M.B. Miller Department of...strategy measures for predicting differences in brain activity patterns during a learning and memory task and to compare their predictive value to other
NASA Astrophysics Data System (ADS)
Khan, Bilal; Tian, Fenghua; Behbehani, Khosrow; Romero, Mario I.; Delgado, Mauricio R.; Clegg, Nancy J.; Smith, Linsley; Reid, Dahlia; Liu, Hanli; Alexandrakis, George
2010-05-01
We demonstrate the utility of functional near-infrared spectroscopy (fNIRS) as a tool for physicians to study cortical plasticity in children with cerebral palsy (CP). Motor cortex activation patterns were studied in five healthy children and five children with CP (8.4+/-2.3 years old in both groups) performing a finger-tapping protocol. Spatial (distance from center and area difference) and temporal (duration and time-to-peak) image metrics are proposed as potential biomarkers for differentiating abnormal cortical activation in children with CP from healthy pediatric controls. In addition, a similarity image-analysis concept is presented that unveils areas that have similar activation patterns as that of the maximum activation area, but are not discernible by visual inspection of standard activation images. Metrics derived from the images presenting areas of similarity are shown to be sensitive identifiers of abnormal activation patterns in children with CP. Importantly, the proposed similarity concept and related metrics may be applicable to other studies for the identification of cortical activation patterns by fNIRS.
Significant Features of Warm Season Water Vapor Flux Related to Heavy Rainfall and Draught in Japan
NASA Astrophysics Data System (ADS)
Nishiyama, Koji; Iseri, Yoshihiko; Jinno, Kenji
2009-11-01
In this study, our objective is to reveal complicated relationships between spatial water vapor inflow patterns and heavy rainfall activities in Kyushu located in the western part of Japan, using the outcomes of pattern recognition of water vapor inflow, based on the Self-Organizing Map. Consequently, it could be confirmed that water vapor inflow patterns control the distribution and the frequency of heavy rainfall depending on the direction of their fluxes and the intensity of Precipitable water. Historically serious flood disasters in South Kyushu in 1993 were characterized by high frequency of the water vapor inflow patterns linking to heavy rainfall. On the other hand, severe draught in 1994 was characterized by inactive frontal activity that do not related to heavy rainfall.
Online Activity Levels Are Related to Caffeine Dependency.
Phillips, James G; Landhuis, C Erik; Shepherd, Daniel; Ogeil, Rowan P
2016-05-01
Online activity could serve in the future as behavioral markers of emotional states for computer systems (i.e., affective computing). Hence, this study considered relationships between self-reported stimulant use and online study patterns. Sixty-two undergraduate psychology students estimated their daily caffeine use, and this was related to study patterns as tracked by their use of a Learning Management System (Blackboard). Caffeine dependency was associated with less time spent online, lower rates of file access, and fewer online activities completed. Reduced breadth or depth of processing during work/study could be used as a behavioral marker of stimulant use.
Kinnunen, Ulla; Feldt, Taru; de Bloom, Jessica; Korpela, Kalevi
2015-11-01
The present study aimed at identifying subgroups of employees with similar daily energy management strategies at work and finding out whether well-being indicators and job characteristics differ between these subgroups. The study was conducted by electronic questionnaire among 1122 Finnish employees. First, subgroups of employees with unique and distinctive patterns of energy management strategies were identified using latent profile analysis. Second, differences in well-being indicators and job characteristics between the subgroups were investigated by means of ANCOVA. Four subgroups (i.e., patterns) were identified and named: Passives (n = 371), Averages (n = 390), Casuals (n = 272) and Actives (n = 89). Passives used all three (i.e., work-related, private micro-break and physical micro-break) strategies less frequently than other subgroups, whereas Actives used work-related and physical energy management strategies more frequently than other subgroups. Averages used all strategies on an average level. Casuals' use of all strategies came close to that of Actives, notably in a shared low use of private micro-break strategies. Active and Casual patterns maintained vigor and vitality. Autonomy and social support at work played a significant role in providing opportunities for the use of beneficial energy management strategies. Autonomy and support at work seem to support active and casual use of daily energy management, which is important in staying energized throughout the working day.
Sheldon, Signy; Levine, Brian
2015-12-01
During autobiographical memory retrieval, the medial temporal lobes (MTL) relate together multiple event elements, including object (within-item relations) and context (item-context relations) information, to create a cohesive memory. There is consistent support for a functional specialization within the MTL according to these relational processes, much of which comes from recognition memory experiments. In this study, we compared brain activation patterns associated with retrieving within-item relations (i.e., associating conceptual and sensory-perceptual object features) and item-context relations (i.e., spatial relations among objects) with respect to naturalistic autobiographical retrieval. We developed a novel paradigm that cued participants to retrieve information about past autobiographical events, non-episodic within-item relations, and non-episodic item-context relations with the perceptuomotor aspects of retrieval equated across these conditions. We used multivariate analysis techniques to extract common and distinct patterns of activity among these conditions within the MTL and across the whole brain, both in terms of spatial and temporal patterns of activity. The anterior MTL (perirhinal cortex and anterior hippocampus) was preferentially recruited for generating within-item relations later in retrieval whereas the posterior MTL (posterior parahippocampal cortex and posterior hippocampus) was preferentially recruited for generating item-context relations across the retrieval phase. These findings provide novel evidence for functional specialization within the MTL with respect to naturalistic memory retrieval. © 2015 Wiley Periodicals, Inc.
ERIC Educational Resources Information Center
De Nil, Luc F.; Beal, Deryk S.; Lafaille, Sophie J.; Kroll, Robert M.; Crawley, Adrian P.; Gracco, Vincent L.
2008-01-01
Functional magnetic resonance imaging was used to investigate the neural correlates of passive listening, habitual speech and two modified speech patterns (simulated stuttering and prolonged speech) in stuttering and nonstuttering adults. Within-group comparisons revealed increased right hemisphere biased activation of speech-related regions…
Human spinal locomotor control is based on flexibly organized burst generators.
Danner, Simon M; Hofstoetter, Ursula S; Freundl, Brigitta; Binder, Heinrich; Mayr, Winfried; Rattay, Frank; Minassian, Karen
2015-03-01
Constant drive provided to the human lumbar spinal cord by epidural electrical stimulation can cause local neural circuits to generate rhythmic motor outputs to lower limb muscles in people paralysed by spinal cord injury. Epidural spinal cord stimulation thus allows the study of spinal rhythm and pattern generating circuits without their configuration by volitional motor tasks or task-specific peripheral feedback. To reveal spinal locomotor control principles, we studied the repertoire of rhythmic patterns that can be generated by the functionally isolated human lumbar spinal cord, detected as electromyographic activity from the legs, and investigated basic temporal components shared across these patterns. Ten subjects with chronic, motor-complete spinal cord injury were studied. Surface electromyographic responses to lumbar spinal cord stimulation were collected from quadriceps, hamstrings, tibialis anterior, and triceps surae in the supine position. From these data, 10-s segments of rhythmic activity present in the four muscle groups of one limb were extracted. Such samples were found in seven subjects. Physiologically adequate cycle durations and relative extension- and flexion-phase durations similar to those needed for locomotion were generated. The multi-muscle activation patterns exhibited a variety of coactivation, mixed-synergy and locomotor-like configurations. Statistical decomposition of the electromyographic data across subjects, muscles and samples of rhythmic patterns identified three common temporal components, i.e. basic or shared activation patterns. Two of these basic patterns controlled muscles to contract either synchronously or alternatingly during extension- and flexion-like phases. The third basic pattern contributed to the observed muscle activities independently from these extensor- and flexor-related basic patterns. Each bifunctional muscle group was able to express both extensor- and flexor-patterns, with variable ratios across the samples of rhythmic patterns. The basic activation patterns can be interpreted as central drives implemented by spinal burst generators that impose specific spatiotemporally organized activation on the lumbosacral motor neuron pools. Our data thus imply that the human lumbar spinal cord circuits can form burst-generating elements that flexibly combine to obtain a wide range of locomotor outputs from a constant, repetitive input. It may be possible to use this flexibility to incorporate specific adaptations to gait and stance to improve locomotor control, even after severe central nervous system damage. © The Author (2015). Published by Oxford University Press on behalf of the Guarantors of Brain. All rights reserved. For Permissions, please email: journals.permissions@oup.com.
Human spinal locomotor control is based on flexibly organized burst generators
Danner, Simon M.; Hofstoetter, Ursula S.; Freundl, Brigitta; Binder, Heinrich; Mayr, Winfried; Rattay, Frank
2015-01-01
Constant drive provided to the human lumbar spinal cord by epidural electrical stimulation can cause local neural circuits to generate rhythmic motor outputs to lower limb muscles in people paralysed by spinal cord injury. Epidural spinal cord stimulation thus allows the study of spinal rhythm and pattern generating circuits without their configuration by volitional motor tasks or task-specific peripheral feedback. To reveal spinal locomotor control principles, we studied the repertoire of rhythmic patterns that can be generated by the functionally isolated human lumbar spinal cord, detected as electromyographic activity from the legs, and investigated basic temporal components shared across these patterns. Ten subjects with chronic, motor-complete spinal cord injury were studied. Surface electromyographic responses to lumbar spinal cord stimulation were collected from quadriceps, hamstrings, tibialis anterior, and triceps surae in the supine position. From these data, 10-s segments of rhythmic activity present in the four muscle groups of one limb were extracted. Such samples were found in seven subjects. Physiologically adequate cycle durations and relative extension- and flexion-phase durations similar to those needed for locomotion were generated. The multi-muscle activation patterns exhibited a variety of coactivation, mixed-synergy and locomotor-like configurations. Statistical decomposition of the electromyographic data across subjects, muscles and samples of rhythmic patterns identified three common temporal components, i.e. basic or shared activation patterns. Two of these basic patterns controlled muscles to contract either synchronously or alternatingly during extension- and flexion-like phases. The third basic pattern contributed to the observed muscle activities independently from these extensor- and flexor-related basic patterns. Each bifunctional muscle group was able to express both extensor- and flexor-patterns, with variable ratios across the samples of rhythmic patterns. The basic activation patterns can be interpreted as central drives implemented by spinal burst generators that impose specific spatiotemporally organized activation on the lumbosacral motor neuron pools. Our data thus imply that the human lumbar spinal cord circuits can form burst-generating elements that flexibly combine to obtain a wide range of locomotor outputs from a constant, repetitive input. It may be possible to use this flexibility to incorporate specific adaptations to gait and stance to improve locomotor control, even after severe central nervous system damage. PMID:25582580
Walking or dancing: patterns of physical activity by cross-sectional age among U.S. women.
Fan, Jessie X; Kowaleski-Jones, Lori; Wen, Ming
2013-10-01
To identify age differences in physical activity (PA) participation for women. Data from 3,952 women 25+ from the 2003-2006 National Health and Nutrition Examination Surveys (NHANES) were used to analyze participation patterns for 17 PA types. The top five leisure PAs by participation rate for all ages were walking (42%), dancing (20%), treadmill (15%), biking (11%), and yoga (10%). Participation in running, dancing, treadmill, and team sports declined around ages 35 to 44, and participation in household PA, walking, weightlifting, and hiking declined around ages 55 to 64. At age 75+ further substantial decline in most activities occurred. Nativity status was the most important moderator for age-related PA decline. Total PA declines with age but significant decline does not occur until ages 55 to 64. Major decline in leisure PA participation starts earlier at ages 35 to 44. While age-related declining patterns differ for different activities, the top five most popular leisure activities are similar for all age groups.
Hashimoto, Ryu-Ichiro; Itahashi, Takashi; Okada, Rieko; Hasegawa, Sayaka; Tani, Masayuki; Kato, Nobumasa; Mimura, Masaru
2018-01-01
Abnormalities in functional brain networks in schizophrenia have been studied by examining intrinsic and extrinsic brain activity under various experimental paradigms. However, the identified patterns of abnormal functional connectivity (FC) vary depending on the adopted paradigms. Thus, it is unclear whether and how these patterns are inter-related. In order to assess relationships between abnormal patterns of FC during intrinsic activity and those during extrinsic activity, we adopted a data-fusion approach and applied partial least square (PLS) analyses to FC datasets from 25 patients with chronic schizophrenia and 25 age- and sex-matched normal controls. For the input to the PLS analyses, we generated a pair of FC maps during the resting state (REST) and the auditory deviance response (ADR) from each participant using the common seed region in the left middle temporal gyrus, which is a focus of activity associated with auditory verbal hallucinations (AVHs). PLS correlation (PLS-C) analysis revealed that patients with schizophrenia have significantly lower loadings of a component containing positive FCs in default-mode network regions during REST and a component containing positive FCs in the auditory and attention-related networks during ADR. Specifically, loadings of the REST component were significantly correlated with the severities of positive symptoms and AVH in patients with schizophrenia. The co-occurrence of such altered FC patterns during REST and ADR was replicated using PLS regression, wherein FC patterns during REST are modeled to predict patterns during ADR. These findings provide an integrative understanding of altered FCs during intrinsic and extrinsic activity underlying core schizophrenia symptoms.
Kataoka, Aiko; Kudo, Ayako; Fujino, Fukue; Chen, Yu-Wen; Mitsuyama, Yuki; Nomura, Shinobu; Yoshioka, Tohru
2013-01-01
Pain and itch are closely related sensations, yet qualitatively quite distinct. Despite recent advances in brain imaging techniques, identifying the differences between pain and itch signals in the brain cortex is difficult due to continuous temporal and spatial changes in the signals. The high spatial resolution of positron emission tomography (PET) and functional magnetic resonance imaging (fMRI) has substantially advanced research of pain and itch, but these are uncomfortable because of expensiveness, importability and the limited operation in the shielded room. Here, we used near infrared spectroscopy (NIRS), which has more conventional usability. NIRS can be used to visualize dynamic changes in oxygenated hemoglobin and deoxyhemoglobin concentrations in the capillary networks near activated neural circuits in real-time as well as fMRI. We observed distinct activation patterns in the frontal cortex for acute pain and histamine-induced itch. The prefrontal cortex exhibited a pain-related and itch-related activation pattern of blood flow in each subject. Although it looked as though that activation pattern for pain and itching was different in each subject, further cross correlation analysis of NIRS signals between each channels showed an overall agreement with regard to prefrontal area involvement. As a result, pain-related and itch-related blood flow responses (delayed responses in prefrontal area) were found to be clearly different between pain (τ = +18.7 sec) and itch (τ = +0.63 sec) stimulation. This is the first pilot study to demonstrate the temporal and spatial separation of a pain-induced blood flow and an itch-induced blood flow in human cortex during information processing. PMID:24098378
Phasic spike patterning in rat supraoptic neurones in vivo and in vitro
Sabatier, Nancy; Brown, Colin H; Ludwig, Mike; Leng, Gareth
2004-01-01
In vivo, most vasopressin cells of the hypothalamic supraoptic nucleus fire action potentials in a ‘phasic’ pattern when the systemic osmotic pressure is elevated, while most oxytocin cells fire continuously. The phasic firing pattern is believed to arise as a consequence of intrinsic activity-dependent changes in membrane potential, and these have been extensively studied in vitro. Here we analysed the discharge patterning of supraoptic nucleus neurones in vivo, to infer the characteristics of the post-spike sequence of hyperpolarization and depolarization from the observed spike patterning. We then compared patterning in phasic cells in vivo and in vitro, and we found systematic differences in the interspike interval distributions, and in other statistical parameters that characterized activity patterns within bursts. Analysis of hazard functions (probability of spike initiation as a function of time since the preceding spike) revealed that phasic firing in vitro appears consistent with a regenerative process arising from a relatively slow, late depolarizing afterpotential that approaches or exceeds spike threshold. By contrast, in vivo activity appears to be dominated by stochastic rather than deterministic mechanisms, and appears consistent with a relatively early and fast depolarizing afterpotential that modulates the probability that random synaptic input exceeds spike threshold. Despite superficial similarities in the phasic firing patterns observed in vivo and in vitro, there are thus fundamental differences in the underlying mechanisms. PMID:15146047
Changing patterns of brain activation during maze learning.
Van Horn, J D; Gold, J M; Esposito, G; Ostrem, J L; Mattay, V; Weinberger, D R; Berman, K F
1998-05-18
Recent research has found that patterns of brain activation involving the frontal cortex during novel task performance change dramatically following practice and repeat performance. Evidence for differential left vs. right frontal lobe activation, respectively, during episodic memory encoding and retrieval has also been reported. To examine these potentially related issues regional cerebral blood flow (rCBF) was measured in 15 normal volunteers using positron emission tomography (PET) during the naive and practiced performance of a maze task paradigm. SPM analysis indicated a largely right-sided, frontal lobe activation during naive performance. Following training and practice, performance of the same maze task elicited a more posterior pattern of rCBF activation involving posterior cingulate and precuneus. The change in the pattern of rCBF activation between novel and practiced task conditions agrees with results found in previous studies using repeat task methodology, and indicates that the neural circuitry required for encoding novel task information differs from that required when the same task has become familiar and information is being recalled. The right-sided preponderance of activation during naive performance may relate to task novelty and the spatially-based nature of the stimuli, whereas posterior areas activated during repeat performance are those previously found to be associated with visuospatial memory recall. Activation of these areas, however, does not agree with previously reported findings of left-sided activation during verbal episodic memory encoding and right-sided activation during retrieval, suggesting different neural substrates for verbal and visuospatial processing within memory. Copyright 1998 Elsevier Science B.V.
Gubelmann, Cédric; Vollenweider, Peter; Marques-Vidal, Pedro
2017-12-01
Determinants of the interplay between physical activity (PA) and sedentary (SE) status are poorly known. We assessed the socio-economic determinants of PA and SE behaviours and patterns in a population-based study (The CoLaus study, Lausanne, Switzerland, 2014-2017). 2229 adults (51.8% women, age range 45-86 years) had PA and SE levels measured for 14 days using a wrist-worn accelerometer. Four activity behaviours: (1) 'Couch potato': low PA & high SE; (2) 'Light mover': low PA & low SE; (3) 'Sedentary exerciser': high PA & high SE, and (4) 'Busy bee': high PA & low SE; and three activity patterns: (1) 'Inactive', (2) 'Weekend warrior', and (3) 'Regularly active' were defined. Employment, household income and educational level were collected by questionnaire. For activity behaviours, relative to 'Couch potatoes', multivariate analysis showed that being employed and having a low educational level were positively associated with 'Light movers': relative risk ratios and (95% confidence interval): 1.54 (1.00-2.37) and 1.73 (1.11-2.69), respectively, and also with 'Busy bees': 1.49 (1.09-2.04) and 1.71 (1.26-2.32), respectively. High household income was negatively associated with 'Light movers': 0.58 (0.34-0.97) and positively with 'Sedentary exercisers': 1.85 (1.10-3.10). For activity patterns, relative to 'Inactives', being employed and having a high household income were positively associated with 'Weekend warriors': 1.78 (1.26-2.50) and 1.59 (1.07-2.36), respectively, while having a low educational level was positively associated with 'Regularly actives': 1.76 (1.32-2.34). Employment, educational level and household income are significantly but differently associated with activity behaviours and patterns. Copyright © 2017 Elsevier Inc. All rights reserved.
Neural constraints on learning.
Sadtler, Patrick T; Quick, Kristin M; Golub, Matthew D; Chase, Steven M; Ryu, Stephen I; Tyler-Kabara, Elizabeth C; Yu, Byron M; Batista, Aaron P
2014-08-28
Learning, whether motor, sensory or cognitive, requires networks of neurons to generate new activity patterns. As some behaviours are easier to learn than others, we asked if some neural activity patterns are easier to generate than others. Here we investigate whether an existing network constrains the patterns that a subset of its neurons is capable of exhibiting, and if so, what principles define this constraint. We employed a closed-loop intracortical brain-computer interface learning paradigm in which Rhesus macaques (Macaca mulatta) controlled a computer cursor by modulating neural activity patterns in the primary motor cortex. Using the brain-computer interface paradigm, we could specify and alter how neural activity mapped to cursor velocity. At the start of each session, we observed the characteristic activity patterns of the recorded neural population. The activity of a neural population can be represented in a high-dimensional space (termed the neural space), wherein each dimension corresponds to the activity of one neuron. These characteristic activity patterns comprise a low-dimensional subspace (termed the intrinsic manifold) within the neural space. The intrinsic manifold presumably reflects constraints imposed by the underlying neural circuitry. Here we show that the animals could readily learn to proficiently control the cursor using neural activity patterns that were within the intrinsic manifold. However, animals were less able to learn to proficiently control the cursor using activity patterns that were outside of the intrinsic manifold. These results suggest that the existing structure of a network can shape learning. On a timescale of hours, it seems to be difficult to learn to generate neural activity patterns that are not consistent with the existing network structure. These findings offer a network-level explanation for the observation that we are more readily able to learn new skills when they are related to the skills that we already possess.
Role of pattern recognition receptors of the neurovascular unit in inflamm-aging.
Wilhelm, Imola; Nyúl-Tóth, Ádám; Kozma, Mihály; Farkas, Attila E; Krizbai, István A
2017-11-01
Aging is associated with chronic inflammation partly mediated by increased levels of damage-associated molecular patterns, which activate pattern recognition receptors (PRRs) of the innate immune system. Furthermore, many aging-related disorders are associated with inflammation. PRRs, such as Toll-like receptors (TLRs) and nucleotide-binding oligomerization domain-like receptors (NLRs), are expressed not only in cells of the innate immune system but also in other cells, including cells of the neurovascular unit and cerebral vasculature forming the blood-brain barrier. In this review, we summarize our present knowledge about the relationship between activation of PRRs expressed by cells of the neurovascular unit-blood-brain barrier, chronic inflammation, and aging-related pathologies of the brain. The most important damage-associated molecular pattern-sensing PRRs in the brain are TLR2, TLR4, and NLR family pyrin domain-containing protein-1 and pyrin domain-containing protein-3, which are activated during physiological and pathological aging in microglia, neurons, astrocytes, and possibly endothelial cells and pericytes. Copyright © 2017 the American Physiological Society.
ERIC Educational Resources Information Center
DiMaggio, Paul; Ostrower, Francie
This report utilizes data from the 1982 and 1985 Surveys of Public Participation in the Arts to describe differences in patterns of participation in selected arts related activities by Black, Hispanic, and White respondents. Arts participation by Whites is greatest for all selected activities, except for Black attendance at jazz music activities.…
Modeling activity patterns of wildlife using time-series analysis.
Zhang, Jindong; Hull, Vanessa; Ouyang, Zhiyun; He, Liang; Connor, Thomas; Yang, Hongbo; Huang, Jinyan; Zhou, Shiqiang; Zhang, Zejun; Zhou, Caiquan; Zhang, Hemin; Liu, Jianguo
2017-04-01
The study of wildlife activity patterns is an effective approach to understanding fundamental ecological and evolutionary processes. However, traditional statistical approaches used to conduct quantitative analysis have thus far had limited success in revealing underlying mechanisms driving activity patterns. Here, we combine wavelet analysis, a type of frequency-based time-series analysis, with high-resolution activity data from accelerometers embedded in GPS collars to explore the effects of internal states (e.g., pregnancy) and external factors (e.g., seasonal dynamics of resources and weather) on activity patterns of the endangered giant panda ( Ailuropoda melanoleuca ). Giant pandas exhibited higher frequency cycles during the winter when resources (e.g., water and forage) were relatively poor, as well as during spring, which includes the giant panda's mating season. During the summer and autumn when resources were abundant, pandas exhibited a regular activity pattern with activity peaks every 24 hr. A pregnant individual showed distinct differences in her activity pattern from other giant pandas for several months following parturition. These results indicate that animals adjust activity cycles to adapt to seasonal variation of the resources and unique physiological periods. Wavelet coherency analysis also verified the synchronization of giant panda activity level with air temperature and solar radiation at the 24-hr band. Our study also shows that wavelet analysis is an effective tool for analyzing high-resolution activity pattern data and its relationship to internal and external states, an approach that has the potential to inform wildlife conservation and management across species.
van den Bulk, Bianca G; Somerville, Leah H; van Hoof, Marie-José; van Lang, Natasja D J; van der Wee, Nic J A; Crone, Eveline A; Vermeiren, Robert R J M
2016-10-01
Adolescents with internalizing disorders and adolescents with childhood sexual abuse related post-traumatic stress disorder (CSA-related PTSD) show a large overlap in symptomatology. In addition, brain research indicated hyper-responsiveness and sustained activation instead of habituation of amygdala activation to emotional faces in both groups. Little is known, however, about whether the same patterns of amygdala habituation are present in these two groups. The current study examined habituation patterns of amygdala activity to emotional faces (fearful, happy and neutral) in adolescents with a DSM-IV depressive and/or anxiety disorder (N=25), adolescents with CSA-related PTSD (N=19) and healthy controls (N=26). Behaviourally, the adolescents from the internalizing and CSA-related PTSD group reported more anxiety to fearful and neutral faces than adolescents from the control group and adolescents from the CSA-related PTSD group reacted slower compared to the internalizing group. At the whole brain level, there was a significant interaction between time and group within the left amygdala. Follow-up ROI analysis showed elevated initial activity in the amygdala and rapid habituation in the CSA-related PTSD group compared to the internalizing group. These findings suggest that habituation patterns of amygdala activation provide additional information on problems with emotional face processing. Furthermore, the results suggest there are differences in the underlying neurobiological mechanisms related to emotional face processing for adolescents with internalizing disorders and adolescents with CSA-related PTSD. Possibly CSA-related PTSD is characterized by a stronger primary emotional response driven by the amygdala. Copyright © 2016 The Authors. Published by Elsevier Ltd.. All rights reserved.
Erickson, Darin J.; Rutledge, Patricia C.; Lenk, Kathleen M.; Nelson, Toben F.; Jones-Webb, Rhonda; Toomey, Traci L.
2015-01-01
Aims We assessed levels and patterns of alcohol policy enforcement activities among U.S. local law enforcement agencies. Design/Setting/Participants We conducted a cross-sectional survey of a representative sample of 1,631 local law enforcement agencies across the 50 states. Measures/Methods We assessed 29 alcohol policy enforcement activities within each of five enforcement domains—underage alcohol possession/consumption, underage alcohol provision, underage alcohol sales, impaired driving, and overservice of alcohol—and conducted a series of latent class analyses to identify unique classes or patterns of enforcement activity for each domain. Findings We identified three to four unique enforcement activity classes for each of the enforcement domains. In four of the domains, we identified a Uniformly Low class (i.e., little or no enforcement) and a Uniformly High enforcement activity class (i.e., relatively high levels of enforcement), with one or two middle classes where some but not all activities were conducted. The underage provision domain had a Uniformly Low class but not a Uniformly High class. The Uniformly Low class was the most prevalent class in three domains: underage provision (58%), underage sales (61%), and overservice (79%). In contrast, less than a quarter of agencies were in Uniformly High classes. Conclusions We identified qualitatively distinct patterns of enforcement activity, with a large proportion of agencies in classes characterized by little or no enforcement and fewer agencies in high enforcement classes. An important next step is to determine if these patterns are associated with rates of alcohol use and alcohol-related injury and mortality. PMID:26877822
Nonlinear analysis of human physical activity patterns in health and disease.
Paraschiv-Ionescu, A; Buchser, E; Rutschmann, B; Aminian, K
2008-02-01
The reliable and objective assessment of chronic disease state has been and still is a very significant challenge in clinical medicine. An essential feature of human behavior related to the health status, the functional capacity, and the quality of life is the physical activity during daily life. A common way to assess physical activity is to measure the quantity of body movement. Since human activity is controlled by various factors both extrinsic and intrinsic to the body, quantitative parameters only provide a partial assessment and do not allow for a clear distinction between normal and abnormal activity. In this paper, we propose a methodology for the analysis of human activity pattern based on the definition of different physical activity time series with the appropriate analysis methods. The temporal pattern of postures, movements, and transitions between postures was quantified using fractal analysis and symbolic dynamics statistics. The derived nonlinear metrics were able to discriminate patterns of daily activity generated from healthy and chronic pain states.
Ranaweera, Ruwan D; Kwon, Minseok; Hu, Shuowen; Tamer, Gregory G; Luh, Wen-Ming; Talavage, Thomas M
2016-01-01
This study investigated the hemisphere-specific effects of the temporal pattern of imaging related acoustic noise on auditory cortex activation. Hemodynamic responses (HDRs) to five temporal patterns of imaging noise corresponding to noise generated by unique combinations of imaging volume and effective repetition time (TR), were obtained using a stroboscopic event-related paradigm with extra-long (≥27.5 s) TR to minimize inter-acquisition effects. In addition to confirmation that fMRI responses in auditory cortex do not behave in a linear manner, temporal patterns of imaging noise were found to modulate both the shape and spatial extent of hemodynamic responses, with classically non-auditory areas exhibiting responses to longer duration noise conditions. Hemispheric analysis revealed the right primary auditory cortex to be more sensitive than the left to the presence of imaging related acoustic noise. Right primary auditory cortex responses were significantly larger during all the conditions. This asymmetry of response to imaging related acoustic noise could lead to different baseline activation levels during acquisition schemes using short TR, inducing an observed asymmetry in the responses to an intended acoustic stimulus through limitations of dynamic range, rather than due to differences in neuronal processing of the stimulus. These results emphasize the importance of accounting for the temporal pattern of the acoustic noise when comparing findings across different fMRI studies, especially those involving acoustic stimulation. Copyright © 2015 Elsevier B.V. All rights reserved.
Top 10 Research Questions Related to Physical Activity in Preschool Children
ERIC Educational Resources Information Center
Pate, Russell R.; O'Neill, Jennifer R.; Brown, William H.; McIver, Kerry L.; Howie, Erin K.; Dowda, Marsha
2013-01-01
The purpose of this article was to highlight important research needs related to physical activity in 3-to 5-year-old children. We identified research needs in 3 major categories: health effects, patterns of physical activity, and interventions and policies. The top research needs include identifying the health effects of physical activity, the…
Villarreal, Mirta F; Drucaroff, Lucas J; Goldschmidt, Micaela G; de Achával, Delfina; Costanzo, Elsa Y; Castro, Mariana N; Ladrón-de-Guevara, M Soledad; Busatto Filho, Geraldo; Nemeroff, Charles B; Guinjoan, Salvador M
2014-09-01
Measures of social competence are closely related to actual community functioning in patients with schizophrenia. However, the neurobiological mechanisms underlying competence in schizophrenia are not fully understood. We hypothesized that social deficits in schizophrenia are explained, at least in part, by abnormally lateralized patterns of brain activation in response to tasks engaging social cognition, as compared to healthy individuals. We predicted such patterns would be partly heritable, and therefore affected in patients' nonpsychotic siblings as well. We used a functional magnetic resonance image paradigm to characterize brain activation induced by theory of mind tasks, and two tests of social competence, the Test of Adaptive Behavior in Schizophrenia (TABS), and the Social Skills Performance Assessment (SSPA) in siblings discordant for schizophrenia and comparable healthy controls (n = 14 per group). Healthy individuals showed the strongest correlation between social competence and activation of right hemisphere structures involved in social cognitive processing, whereas in patients, the correlation pattern was lateralized to left hemisphere areas. Unaffected siblings of patients exhibited a pattern intermediate between the other groups. These results support the hypothesis that schizophrenia may be characterized by an abnormal functioning of nondominant hemisphere structures involved in the processing of socially salient information. Copyright © 2014 Elsevier Ltd. All rights reserved.
Maestre, F.T.; Castillo-Monroy, A. P.; Bowker, M.A.; Ochoa-Hueso, R.
2012-01-01
1. Recent studies have suggested that the simultaneous maintenance of multiple ecosystem functions (multifunctionality) is positively supported by species richness. However, little is known regarding the relative importance of other community attributes (e.g. spatial pattern, species evenness) as drivers of multifunctionality. 2. We conducted two microcosm experiments using model biological soil crust communities dominated by lichens to: (i) evaluate the joint effects and relative importance of changes in species composition, spatial pattern (clumped and random distribution of lichens), evenness (maximal and low evenness) and richness (from two to eight species) on soil functions related to nutrient cycling (β-glucosidase, urease and acid phosphatase enzymes, in situ N availability, total N, organic C, and N fixation), and (ii) assess how these community attributes affect multifunctionality. 3. Species richness, composition and spatial pattern affected multiple ecosystem functions (e.g. organic C, total N, N availability, β-glucosidase activity), albeit the magnitude and direction of their effects varied with the particular function, experiment and soil depth considered. Changes in species composition had effects on organic C, total N and the activity of β-glucosidase. Significant species richness × evenness and spatial pattern × evenness interactions were found when analysing functions such as organic C, total N and the activity of phosphatase. 4. The probability of sustaining multiple ecosystem functions increased with species richness, but this effect was largely modulated by attributes such as species evenness, composition and spatial pattern. Overall, we found that model communities with high species richness, random spatial pattern and low evenness increased multifunctionality. 5. Synthesis. Our results illustrate how different community attributes have a diverse impact on ecosystem functions related to nutrient cycling, and provide new experimental evidence illustrating the importance of the spatial pattern of organisms on ecosystem functioning. They also indicate that species richness is not the only biotic driver of multifunctionality, and that particular combinations of community attributes may be required to maximize it.
Decoding Information in the Human Hippocampus: A User's Guide
ERIC Educational Resources Information Center
Chadwick, Martin J.; Bonnici, Heidi M.; Maguire, Eleanor A.
2012-01-01
Multi-voxel pattern analysis (MVPA), or "decoding", of fMRI activity has gained popularity in the neuroimaging community in recent years. MVPA differs from standard fMRI analyses by focusing on whether information relating to specific stimuli is encoded in patterns of activity across multiple voxels. If a stimulus can be predicted, or decoded,…
ERIC Educational Resources Information Center
Raynor, Hollie A.; Jelalian, Elissa; Vivier, Patrick M.; Hart, Chantelle N.; Wing, Rena R.
2009-01-01
Objective: Compare parent-reported preschool- and school-aged children's eating and leisure-time activity patterns that are proposed to influence energy balance. Design: Cross-sectional investigation of children, 2 to 12 years, attending a well visit. Setting: Pediatric private practice/ambulatory pediatric clinic. Participants: One hundred…
Zarrett, Nicole; Fay, Kristen; Li, Yibing; Carrano, Jennifer; Phelps, Erin; Lerner, Richard M
2009-03-01
The authors used data from Grades 5 through 7 of the longitudinal 4-H Study of Positive Youth Development to assess relations among sports participation, other out-of-school-time (OST) activities, and indicators of youth development. They used a mixture of variable- and pattern-centered analyses aimed at disentangling different features of participation (i.e., intensity, breadth). The benefits of sports participation were found to depend, in part, on specific combinations of multiple activities in which youths participated along with sports. In particular, participation in a combination of sports and youth development programs was related to positive youth development and youth contribution, even after controlling for the total time youths spent in OST activities and their sports participation duration. Adolescents' total time spent participating in OST activities, duration of participation in sports, and activity participation pattern each explained a unique part of the variance in some of the indicators of youth functioning. These findings suggest the need for future research to simultaneously assess multiple indices of OST activity participation.
Smith, Lindsey P; Ng, Shu Wen; Popkin, Barry M
2014-11-01
Physical activity and inactivity have distinct cardio-metabolic consequences, suggesting that combinations of activities can impact health above and beyond the effects of a single activity. However, little work has examined patterns of non-labor market time activity in the US population, particularly among full-time employees in sedentary occupations, who are at increased risk of adverse health consequences associated with a sedentary lifestyle. Identification of these patterns, and how they are related to total physical activity levels, is important for developing effective, attainable physical activity recommendations among sedentary employees, who typically have less time available for exercise. This is especially the case for low-income employees who face the highest time and financial barriers to achieving physical activity goals. This study uses cluster analysis to examine patterns of non-labor market time use among full-time (≥40 h/week) employed adults in sedentary occupations (<3 MET-h) on working days in the American Time Use Study. We then examine whether these patterns are associated with higher likelihood of meeting physical activity recommendations and higher overall physical activity (MET-h). We find that non-labor market time use patterns include those characterized by screen activities, housework, caregiving, sedentary leisure, and exercise. For both genders, the screen pattern was the most common and increased from 2003 to 2012, while the exercise pattern was infrequent and consistent across time. Screen, sedentary leisure, and community patterns were associated with lower likelihoods of meeting physical activity recommendations, suggesting that interventions targeting screen time may miss opportunities to improve physical activity among similarly sedentary groups. Alternately, non-labor market time use patterns characterized by housework and caregiving represented feasible avenues for increasing overall physical activity levels, especially for those with low financial and time resources. Consideration of non-labor market time use patterns may improve strategies to increase physical activity and decrease inactivity among full-time employed adults in sedentary jobs. Copyright © 2014 Elsevier Ltd. All rights reserved.
Trajectories of physical activity and risk factors among Taiwanese older adults.
Pan, Ling-Yen; Hsu, Hui-Chuan; Chang, Wen-Chiung; Luh, Dih-Ling
2015-02-01
The significance of physical activity has been noticed. However, the dynamic change and the heterogeneity of physical activity patterns among older people are little explored. This study aimed to identify the trajectory patterns of engaging in physical activity over time and its related factors. Nationally representative four-wave panel data from Taiwanese older adults, gathered between 1996 and 2007, were used (n = 4,018). The participants ranged in age from 50 to 96 years old. "Being physically active" was defined as performing physical activity in sports or exercises at least three times per week and lasting for at least 30 min each time. Group-based trajectory analysis was performed for analyzing the data. Four trajectory patterns were identified: inactive (47.83%), decreasing (12.21%), increasing (23.36%), and active (16.60%). Older respondents and those with more education were more likely to be active. Those respondents having more depressive symptoms, having more physical functional limitations, and having jobs were less likely to be physically active in the decreasing, increasing, and active patterns. There is heterogeneity among the trajectory patterns of physical activity across time in the older adults. Different strategies of physical activity promotion for the older people should be developed by the group characteristics.
Li, Kin-Kit; Chan, Darius K S
2008-02-01
This study examined how goal conflict influences the pattern of the moderating effects of intention stability on the intention-behavior relations in the context of physical activity participation. A longitudinal study of 136 young adult students with three waves of data collection (a 2-week interval between waves) was conducted. Results showed a significant three-way interaction among intention, goal conflict,& intention stability in explaining vigorous-intensity physical activity (Beta = -.25, p < .05). Consistent with our expectation, the pattern of the three-way interaction revealed that when the level of goal conflict was low, the intention-behavior relations were stronger with stable intentions and weaker with unstable intentions. However, when the level of goal conflict was high, the intention-behavior relations were weaker with stable intentions and stronger with unstable intentions. Possible underlying processes of goal conflict and intention stability on the intention-behavior relations are discussed.
Muscle activity pattern dependent pain development and alleviation.
Sjøgaard, Gisela; Søgaard, Karen
2014-12-01
Muscle activity is for decades considered to provide health benefits irrespectively of the muscle activity pattern performed and whether it is during e.g. sports, transportation, or occupational work tasks. Accordingly, the international recommendations for public health-promoting physical activity do not distinguish between occupational and leisure time physical activity. However, in this body of literature, attention has not been paid to the extensive documentation on occupational physical activity imposing a risk of impairment of health - in particular musculoskeletal health in terms of muscle pain. Focusing on muscle activity patterns and musculoskeletal health it is pertinent to elucidate the more specific aspects regarding exposure profiles and body regional pain. Static sustained muscle contraction for prolonged periods often occurs in the neck/shoulder area during occupational tasks and may underlie muscle pain development in spite of rather low relative muscle load. Causal mechanisms include a stereotype recruitment of low threshold motor units (activating type 1 muscle fibers) characterized by a lack of temporal as well as spatial variation in recruitment. In contrast during physical activities at leisure and sport the motor recruitment patterns are more dynamic including regularly relatively high muscle forces - also activating type 2 muscles fibers - as well as periods of full relaxation even of the type 1 muscle fibers. Such activity is unrelated to muscle pain development if adequate recovery is granted. However, delayed muscle soreness may develop following intensive eccentric muscle activity (e.g. down-hill skiing) with peak pain levels in thigh muscles 1-2 days after the exercise bout and a total recovery within 1 week. This acute pain profile is in contrast to the chronic muscle pain profile related to repetitive monotonous work tasks. The painful muscles show adverse functional, morphological, hormonal, as well as metabolic characteristics. Of note is that intensive muscle strength training actually may rehabilitate painful muscles, which has recently been repeatedly proven in randomized controlled trials. With training the maximal muscle activation and strength can be shown to recover, and consequently allow for decreased relative muscle load during occupational repetitive work tasks. Exercise training induces adaptation of metabolic and stress-related mRNA and protein responses in the painful muscles, which is in contrast to the responses evoked during repetitive work tasks per se. Copyright © 2014 Elsevier Ltd. All rights reserved.
Weiler, Julia A; Suchan, Boris; Daum, Irene
2010-10-15
Episodic memory and episodic future thinking activate a network of overlapping brain regions, but little is known about the mechanism with which the brain separates the two processes. It was recently suggested that differential activity for memory and future thinking may be linked to differences in the phenomenal properties (e.g., richness of detail). Using functional magnetic resonance imaging in healthy subjects and a novel experimental design, we investigated the networks involved in the imagery of future and the recall of past events for the same target occasion, i.e. the Christmas and New Year's holidays, thereby keeping temporal distance and content similar across conditions. Although ratings of phenomenal characteristics were comparable for future thoughts and memories, differential activation patterns emerged. The right posterior hippocampus exhibited stronger memory-related activity during early event recall, and stronger future thought-related activity during late event imagination. Other regions, e.g., the precuneus and lateral prefrontal cortex, showed the reverse activation pattern with early future-associated and late past-associated activation. Memories compared to future thoughts were further related to stronger activation in several visual processing regions, which accords with a reactivation of the original perceptual experience. In conclusion, the results showed for the first time unique neural signatures for both memory and future thinking even in the absence of differences in phenomenal properties and suggested different time courses of brain activation for episodic memory and future thinking. Copyright 2010 Elsevier B.V. All rights reserved.
Laser patterning of laminated structures for electroplating
Mayer, Steven T.; Evans, Leland B.
1993-01-01
A process for laser patterning of a substrate so that it can be subsequently electroplated or electrolessly plated. The process utilizes a laser to treat an inactive (inert) layer formed over an active layer to either combine or remove the inactive layer to produce a patterned active layer on which electrodeposition can occur. The process is carried out by utilizing laser alloying and laser etching, and involves only a few relatively high yield steps and can be performed on a very small scale.
Laser patterning of laminated structures for electroplating
Mayer, S.T.; Evans, L.B.
1993-11-23
A process for laser patterning of a substrate so that it can be subsequently electroplated or electrolessly plated. The process utilizes a laser to treat an inactive (inert) layer formed over an active layer to either combine or remove the inactive layer to produce a patterned active layer on which electrodeposition can occur. The process is carried out by utilizing laser alloying and laser etching, and involves only a few relatively high yield steps and can be performed on a very small scale. 9 figures.
Azeredo, Catarina Machado; Levy, Renata Bertazzi; Peres, Maria Fernanda Tourinho; Menezes, Paulo Rossi; Araya, Ricardo
2016-11-10
The aim of this study was to analyse the clustering of multiple health-related behaviours among adolescents and describe which socio-demographic characteristics are associated with these patterns. Cross-sectional study. Brazilian schools assessed by the National Survey of School Health (PeNSE, 2012). 104 109 Brazilian ninth-grade students from public and private schools (response rate=82.7%). Exploratory and confirmatory factor analyses were performed to identify behaviour clustering and linear regression models were used to identify socio-demographic characteristics associated with each one of these behaviour patterns. We identified a good fit model with three behaviour patterns. The first was labelled 'problem-behaviour' and included aggressive behaviour, alcohol consumption, smoking, drug use and unsafe sex; the second was labelled 'health-compromising diet and sedentary behaviours' and included unhealthy food indicators and sedentary behaviour; and the third was labelled 'health-promoting diet and physical activity' and included healthy food indicators and physical activity. No differences in behaviour patterns were found between genders. The problem-behaviour pattern was associated with male gender, older age, more developed region (socially and economically) and public schools (compared with private). The 'health-compromising diet and sedentary behaviours' pattern was associated with female gender, older age, mothers with higher education level and more developed region. The 'health-promoting diet and physical activity' pattern was associated with male gender and mothers with higher education level. Three health-related behaviour patterns were found among Brazilian adolescents. Interventions to decrease those negative patterns should take into account how these behaviours cluster together and the individuals most at risk. Published by the BMJ Publishing Group Limited. For permission to use (where not already granted under a licence) please go to http://www.bmj.com/company/products-services/rights-and-licensing/.
ElBasiouny, Sherif M.; Rymer, W. Zev; Heckman, C. J.
2012-01-01
Motoneuron discharge patterns reflect the interaction of synaptic inputs with intrinsic conductances. Recent work has focused on the contribution of conductances mediating persistent inward currents (PICs), which amplify and prolong the effects of synaptic inputs on motoneuron discharge. Certain features of human motor unit discharge are thought to reflect a relatively stereotyped activation of PICs by excitatory synaptic inputs; these features include rate saturation and de-recruitment at a lower level of net excitation than that required for recruitment. However, PIC activation is also influenced by the pattern and spatial distribution of inhibitory inputs that are activated concurrently with excitatory inputs. To estimate the potential contributions of PIC activation and synaptic input patterns to motor unit discharge patterns, we examined the responses of a set of cable motoneuron models to different patterns of excitatory and inhibitory inputs. The models were first tuned to approximate the current- and voltage-clamp responses of low- and medium-threshold spinal motoneurons studied in decerebrate cats and then driven with different patterns of excitatory and inhibitory inputs. The responses of the models to excitatory inputs reproduced a number of features of human motor unit discharge. However, the pattern of rate modulation was strongly influenced by the temporal and spatial pattern of concurrent inhibitory inputs. Thus, even though PIC activation is likely to exert a strong influence on firing rate modulation, PIC activation in combination with different patterns of excitatory and inhibitory synaptic inputs can produce a wide variety of motor unit discharge patterns. PMID:22031773
Dynamic reorganization of human resting-state networks during visuospatial attention.
Spadone, Sara; Della Penna, Stefania; Sestieri, Carlo; Betti, Viviana; Tosoni, Annalisa; Perrucci, Mauro Gianni; Romani, Gian Luca; Corbetta, Maurizio
2015-06-30
Fundamental problems in neuroscience today are understanding how patterns of ongoing spontaneous activity are modified by task performance and whether/how these intrinsic patterns influence task-evoked activation and behavior. We examined these questions by comparing instantaneous functional connectivity (IFC) and directed functional connectivity (DFC) changes in two networks that are strongly correlated and segregated at rest: the visual (VIS) network and the dorsal attention network (DAN). We measured how IFC and DFC during a visuospatial attention task, which requires dynamic selective rerouting of visual information across hemispheres, changed with respect to rest. During the attention task, the two networks remained relatively segregated, and their general pattern of within-network correlation was maintained. However, attention induced a decrease of correlation in the VIS network and an increase of the DAN→VIS IFC and DFC, especially in a top-down direction. In contrast, within the DAN, IFC was not modified by attention, whereas DFC was enhanced. Importantly, IFC modulations were behaviorally relevant. We conclude that a stable backbone of within-network functional connectivity topography remains in place when transitioning between resting wakefulness and attention selection. However, relative decrease of correlation of ongoing "idling" activity in visual cortex and synchronization between frontoparietal and visual cortex were behaviorally relevant, indicating that modulations of resting activity patterns are important for task performance. Higher order resting connectivity in the DAN was relatively unaffected during attention, potentially indicating a role for simultaneous ongoing activity as a "prior" for attention selection.
Fridman, Esteban A; Beattie, Bradley J; Broft, Allegra; Laureys, Steven; Schiff, Nicholas D
2014-04-29
Although disorders of consciousness (DOCs) demonstrate widely varying clinical presentations and patterns of structural injury, global down-regulation and bilateral reductions in metabolism of the thalamus and frontoparietal network are consistent findings. We test the hypothesis that global reductions of background synaptic activity in DOCs will associate with changes in the pattern of metabolic activity in the central thalamus and globus pallidus. We compared 32 [(18)F]fluorodeoxyglucose PETs obtained from severely brain-injured patients (BIs) and 10 normal volunteers (NVs). We defined components of the anterior forebrain mesocircuit on high-resolution T1-MRI (ventral, associative, and sensorimotor striatum; globus pallidus; central thalamus and noncentral thalamus). Metabolic profiles for BI and NV demonstrated distinct changes in the pattern of uptake: ventral and association striatum (but not sensorimotor) were significantly reduced relative to global mean uptake after BI; a relative increase in globus pallidus metabolism was evident in BI subjects who also showed a relative reduction of metabolism in the central thalamus. The reversal of globus pallidus and central thalamus profiles across BIs and NVs supports the mesocircuit hypothesis that broad functional (or anatomic) deafferentation may combine to reduce central thalamus activity and release globus pallidus activity in DOCs. In addition, BI subjects showed broad frontoparietal metabolic down-regulation consistent with prior studies supporting the link between central thalamic/pallidal metabolism and down-regulation of the frontoparietal network. Recovery of left hemisphere frontoparietal metabolic activity was further associated with command following.
Contrasting activity patterns of two related octopus species, Octopus macropus and Octopus vulgaris.
Meisel, Daniela V; Byrne, Ruth A; Kuba, Michael; Mather, Jennifer; Ploberger, Werner; Reschenhofer, Erhard
2006-08-01
Octopus macropus and Octopus vulgaris have overlapping habitats and are exposed to similar temporal changes. Whereas the former species is described as nocturnal in the field, there are conflicting reports about the activity time of the latter one. To compare activity patterns, the authors tested both species in the laboratory. Octopuses were exposed to a light-dark cycle and held under constant dim light for 7 days each. O. macropus showed nocturnal and light-cued activity. According to casual observations, O. vulgaris started out nocturnal but had switched to mostly diurnal when the experiment began. Individual variation of its activity was found. The different activity patterns of O. macropus and O. vulgaris might reflect their lifestyles, the latter species being more generalist. ((c) 2006 APA, all rights reserved).
Sex Differences in Brain Activity Related to General and Emotional Intelligence
ERIC Educational Resources Information Center
Jausovec, Norbert; Jausovec, Ksenija
2005-01-01
The study investigated gender differences in resting EEG (in three individually determined narrow [alpha] frequency bands) related to the level of general and emotional intelligence. Brain activity of males decreased with the level of general intelligence, whereas an opposite pattern of brain activity was observed in females. This difference was…
Dumuid, Dorothea; Olds, Timothy; Lewis, Lucy K; Martin-Fernández, Josep Antoni; Katzmarzyk, Peter T; Barreira, Tiago; Broyles, Stephanie T; Chaput, Jean-Philippe; Fogelholm, Mikael; Hu, Gang; Kuriyan, Rebecca; Kurpad, Anura; Lambert, Estelle V; Maia, José; Matsudo, Victor; Onywera, Vincent O; Sarmiento, Olga L; Standage, Martyn; Tremblay, Mark S; Tudor-Locke, Catrine; Zhao, Pei; Gillison, Fiona; Maher, Carol
2017-04-01
To evaluate the relationship between children's lifestyles and health-related quality of life and to explore whether this relationship varies among children from different world regions. This study used cross-sectional data from the International Study of Childhood Obesity, Lifestyle and the Environment. Children (9-11 years) were recruited from sites in 12 nations (n = 5759). Clustering input variables were 24-hour accelerometry and self-reported diet and screen time. Health-related quality of life was self-reported with KIDSCREEN-10. Cluster analyses (using compositional analysis techniques) were performed on a site-wise basis. Lifestyle behavior cluster characteristics were compared between sites. The relationship between cluster membership and health-related quality of life was assessed with the use of linear models. Lifestyle behavior clusters were similar across the 12 sites, with clusters commonly characterized by (1) high physical activity (actives); (2) high sedentary behavior (sitters); (3) high screen time/unhealthy eating pattern (junk-food screenies); and (4) low screen time/healthy eating pattern and moderate physical activity/sedentary behavior (all-rounders). Health-related quality of life was greatest in the all-rounders cluster. Children from different world regions clustered into groups of similar lifestyle behaviors. Cluster membership was related to differing health-related quality of life, with children from the all-rounders cluster consistently reporting greatest health-related quality of life at sites around the world. Findings support the importance of a healthy combination of lifestyle behaviors in childhood: low screen time, healthy eating pattern, and balanced daily activity behaviors (physical activity and sedentary behavior). ClinicalTrials.gov: NCT01722500. Copyright © 2016 Elsevier Inc. All rights reserved.
Larson, Nicole I; Story, Mary; Perry, Cheryl L; Neumark-Sztainer, Dianne; Hannan, Peter J
2007-07-01
An inadequate diet and physical inactivity may compound the many deleterious effects of smoking on health. Some research indicates that smoking behavior is related to other health behaviors, but little research has examined how smoking may be related to dietary intake of key nutrients, consumption of fast food, sedentary lifestyle, or weight status. The purpose of this study was to describe smoking frequency among adolescents and its relationship to physical activity and dietary patterns. The research study employed a cross-sectional, population-based design. Adolescents self-reported cigarette smoking, physical activity, and eating behaviors on the Project EAT (Eating Among Teens) survey and reported dietary intake on a food frequency questionnaire completed in school classrooms. The sample included 4746 middle school and high school students from Minneapolis-St. Paul public schools. Mixed-model regression, which was controlled for sex, race and ethnicity, socioeconomic status, grade level (middle school or high school), and school, was used to examine the association of smoking with diet and physical activity patterns. Overall, reported smoking frequency was inversely related to participating in team sports, eating regular meals, and consuming healthful foods and nutrients. Smoking frequency was directly related to frequency of fast-food and soft drink consumption. Adolescents who smoke cigarettes may be less likely to engage in health-promoting lifestyle behaviors. Interventions are needed to prevent smoking and the unhealthy dietary practices and physical activity behaviors that may be associated with it.
Shaw, Colin N; Stock, Jay T
2013-04-01
Descriptions of Pleistocene activity patterns often derive from comparisons of long bone diaphyseal robusticity across contemporaneous fossilized hominins. The purpose of this study is to augment existing understanding of Pleistocene hominin mobility patterns by interpreting fossil variation through comparisons with a) living human athletes with known activity patterns, and b) Holocene foragers where descriptions of group-level activity patterns are available. Relative tibial rigidity (midshaft tibial rigidity (J)/midshaft humeral rigidity (J)) was compared amongst Levantine and European Neandertals, Levantine and Upper Palaeolithic Homo sapiens, Holocene foragers and living human athletes and controls. Cross-country runners exhibit significantly (p<0.05) greater relative tibial rigidity compared with swimmers, and higher values compared with controls. In contrast, swimmers displayed significantly (p<0.05) lower relative tibial rigidity than both runners and controls. While variation exists among all Holocene H. sapiens, highly terrestrially mobile Later Stone Age (LSA) southern Africans and cross-country runners display the highest relative tibial rigidity, while maritime Andaman Islanders and swimmers display the lowest, with controls falling between. All fossil hominins displayed relative tibial rigidity that exceeded, or was similar to, the highly terrestrially mobile Later Stone Age southern Africans and modern human cross-country runners. The more extreme skeletal structure of most Neandertals and Levantine H. sapiens, as well as the odd Upper Palaeolithic individual, appears to reflect adaptation to intense and/or highly repetitive lower limb (relative to upper limb) loading. This loading may have been associated with bipedal travel, and appears to have been more strenuous than that encountered by even university varsity runners, and Holocene foragers with hunting grounds 2000-3000 square miles in size. Skeletal variation among the athletes and foraging groups is consistent with known or inferred activity profiles, which support the position that the Pleistocene remains reflect adaptation to extremely active and mobile lives. Copyright © 2013 Elsevier Ltd. All rights reserved.
Mobbs, Dean; Dalgleish, Tim
2014-01-01
Research has illustrated that the brain regions implicated in moral cognition comprise a robust and broadly distributed network. However, understanding how these brain regions interact and give rise to the complex interplay of cognitive processes underpinning human moral cognition is still in its infancy. We used functional magnetic resonance imaging to examine patterns of activation for ‘difficult’ and ‘easy’ moral decisions relative to matched non-moral comparators. This revealed an activation pattern consistent with a relative functional double dissociation between the temporoparietal junction (TPJ) and ventro-medial prefrontal cortex (vmPFC). Difficult moral decisions activated bilateral TPJ and deactivated the vmPFC and OFC. In contrast, easy moral decisions revealed patterns of activation in the vmPFC and deactivation in bilateral TPJ and dorsolateral PFC. Together these results suggest that moral cognition is a dynamic process implemented by a distributed network that involves interacting, yet functionally dissociable networks. PMID:23322890
Beaton, Elliott A; Schmidt, Louis A; Ashbaugh, Andrea R; Santesso, Diane L; Antony, Martin M; McCabe, Randi E
2008-01-01
A number of studies have noted that the pattern of resting frontal brain electrical activity (EEG) is related to individual differences in affective style in healthy infants, children, and adults and some clinical populations when symptoms are reduced or in remission. We measured self-reported trait shyness and sociability, concurrent depressive mood, and frontal brain electrical activity (EEG) at rest and in anticipation of a speech task in a non-clinical sample of healthy young adults selected for high and low social anxiety. Although the patterns of resting and reactive frontal EEG asymmetry did not distinguish among individual differences in social anxiety, the pattern of resting frontal EEG asymmetry was related to trait shyness after controlling for concurrent depressive mood. Individuals who reported a higher degree of shyness were likely to exhibit greater relative right frontal EEG activity at rest. However, trait shyness was not related to frontal EEG asymmetry measured during the speech-preparation task, even after controlling for concurrent depressive mood. These findings replicate and extend prior work on resting frontal EEG asymmetry and individual differences in affective style in adults. Findings also highlight the importance of considering concurrent emotional states of participants when examining psychophysiological correlates of personality. PMID:18728822
Dietary patterns as predictors of body fat and BMI in women: a factor analytic study.
Tucker, Larry A; Tucker, Jared M; Bailey, Bruce W; LeCheminant, James D
2015-01-01
To identify independent patterns of diet using factor analysis to determine the extent to which dietary patterns account for differences in body fat percentage (BF%) and body mass index (BMI). Also, to ascertain the extent to which the associations are influenced by age, education, menopause, energy intake, and physical activity. Study design was cross-sectional. Study setting was approximately 20 cities in the Mountain West. The study included 281 apparently healthy female nonsmokers. Diet was assessed using 7-day weighed food records, and foods were categorized using the American Diabetes and American Dietetic Associations Exchange Lists and expressed as servings per 1000 kcal. BF% was measured using the Bod Pod, and physical activity was estimated using accelerometers worn for 1 week. We used factor analysis, general linear models, and partial correlations. Three dietary patterns were identified: (1) Prudent Pattern, (2) Low-fat Milk, and (3) Meat. Higher consumption of the Prudent Pattern corresponded with significantly lower BF% (F = 8.5, p = .0038) and BMI (F = 4.4, p = .0363). The Low-fat Milk pattern was inversely related to BF% (F = 5.4, p = .0207) and BMI (F = 9.5, p = .0023). Higher intake of the Meat pattern was related to higher levels of BF% (F = 4.5, p = .0346) and BMI (F = 4.2, p = .0418). These findings support an association between dietary patterns and body composition. Dietary patterns reflect the complex interrelationships inherent in day-to-day eating and are strongly related to differences in BF% and BMI in women.
Can spectro-temporal complexity explain the autistic pattern of performance on auditory tasks?
Samson, Fabienne; Mottron, Laurent; Jemel, Boutheina; Belin, Pascal; Ciocca, Valter
2006-01-01
To test the hypothesis that level of neural complexity explain the relative level of performance and brain activity in autistic individuals, available behavioural, ERP and imaging findings related to the perception of increasingly complex auditory material under various processing tasks in autism were reviewed. Tasks involving simple material (pure tones) and/or low-level operations (detection, labelling, chord disembedding, detection of pitch changes) show a superior level of performance and shorter ERP latencies. In contrast, tasks involving spectrally- and temporally-dynamic material and/or complex operations (evaluation, attention) are poorly performed by autistics, or generate inferior ERP activity or brain activation. Neural complexity required to perform auditory tasks may therefore explain pattern of performance and activation of autistic individuals during auditory tasks.
Meditation leads to reduced default mode network activity beyond an active task
Garrison, Kathleen A.; Zeffiro, Thomas A.; Scheinost, Dustin; Constable, R. Todd; Brewer, Judson A.
2015-01-01
Meditation has been associated with relatively reduced activity in the default mode network, a brain network implicated in self-related thinking and mind wandering. However, previous imaging studies have typically compared meditation to rest despite other studies reporting differences in brain activation patterns between meditators and controls at rest. Moreover, rest is associated with a range of brain activation patterns across individuals that has only recently begun to be better characterized. Therefore, this study compared meditation to another active cognitive task, both to replicate findings that meditation is associated with relatively reduced default mode network activity, and to extend these findings by testing whether default mode activity was reduced during meditation beyond the typical reductions observed during effortful tasks. In addition, prior studies have used small groups, whereas the current study tested these hypotheses in a larger group. Results indicate that meditation is associated with reduced activations in the default mode network relative to an active task in meditators compared to controls. Regions of the default mode showing a group by task interaction include the posterior cingulate/precuneus and anterior cingulate cortex. These findings replicate and extend prior work indicating that suppression of default mode processing may represent a central neural process in long-term meditation, and suggest that meditation leads to relatively reduced default mode processing beyond that observed during another active cognitive task. PMID:25904238
Galashan, Daniela; Fehr, Thorsten; Kreiter, Andreas K; Herrmann, Manfred
2014-07-11
Initially, human area MT+ was considered a visual area solely processing motion information but further research has shown that it is also involved in various different cognitive operations, such as working memory tasks requiring motion-related information to be maintained or cognitive tasks with implied or expected motion.In the present fMRI study in humans, we focused on MT+ modulation during working memory maintenance using a dynamic shape-tracking working memory task with no motion-related working memory content. Working memory load was systematically varied using complex and simple stimulus material and parametrically increasing retention periods. Activation patterns for the difference between retention of complex and simple memorized stimuli were examined in order to preclude that the reported effects are caused by differences in retrieval. Conjunction analysis over all delay durations for the maintenance of complex versus simple stimuli demonstrated a wide-spread activation pattern. Percent signal change (PSC) in area MT+ revealed a pattern with higher values for the maintenance of complex shapes compared to the retention of a simple circle and with higher values for increasing delay durations. The present data extend previous knowledge by demonstrating that visual area MT+ presents a brain activity pattern usually found in brain regions that are actively involved in working memory maintenance.
Bauernfeind, Günther; Wriessnegger, Selina C; Haumann, Sabine; Lenarz, Thomas
2018-03-08
Functional near-infrared spectroscopy (fNIRS) is an emerging technique for the assessment of functional activity of the cerebral cortex. Recently fNIRS was also envisaged as a novel neuroimaging approach for measuring the auditory cortex activity in the field of in auditory diagnostics. This study aimed to investigate differences in brain activity related to spatially presented sounds with different intensities in 10 subjects by means of functional near-infrared spectroscopy (fNIRS). We found pronounced cortical activation patterns in the temporal and frontal regions of both hemispheres. In contrast to these activation patterns, we found deactivation patterns in central and parietal regions of both hemispheres. Furthermore our results showed an influence of spatial presentation and intensity of the presented sounds on brain activity in related regions of interest. These findings are in line with previous fMRI studies which also reported systematic changes of activation in temporal and frontal areas with increasing sound intensity. Although clear evidence for contralaterality effects and hemispheric asymmetries were absent in the group data, these effects were partially visible on the single subject level. Concluding, fNIRS is sensitive enough to capture differences in brain responses during the spatial presentation of sounds with different intensities in several cortical regions. Our results may serve as a valuable contribution for further basic research and the future use of fNIRS in the area of central auditory diagnostics. © 2018 Wiley Periodicals, Inc.
Time-activity relationships to VOC personal exposure factors
NASA Astrophysics Data System (ADS)
Edwards, Rufus D.; Schweizer, Christian; Llacqua, Vito; Lai, Hak Kan; Jantunen, Matti; Bayer-Oglesby, Lucy; Künzli, Nino
Social and demographic factors have been found to play a significant role in differences between time-activity patterns of population subgroups. Since time-activity patterns largely influence personal exposure to compounds as individuals move across microenvironments, exposure subgroups within the population may be defined by factors that influence daily activity patterns. Socio-demographic and environmental factors that define time-activity subgroups also define quantifiable differences in VOC personal exposures to different sources and individual compounds in the Expolis study. Significant differences in exposures to traffic-related compounds ethylbenzene, m- and p-xylene and o-xylene were observed in relation to gender, number of children and living alone. Categorization of exposures further indicated time exposed to traffic at work and time in a car as important determinants. Increased exposures to decane, nonane and undecane were observed for males, housewives and self-employed. Categorization of exposures indicated exposure subgroups related to workshop use and living downtown. Higher exposures to 3-carene and α-pinene commonly found in household cleaning products and fragrances were associated with more children, while exposures to traffic compounds ethylbenzene, m- and p-xylene and o-xylene were reduced with more children. Considerable unexplained variation remained in categorization of exposures associated with home product use and fragrances, due to individual behavior and product choice. More targeted data collection methods in VOC exposure studies for these sources should be used. Living alone was associated with decreased exposures to 2-methyl-1-propanol and 1-butanol, and traffic-related compounds. Identification of these subgroups may help to reduce the large amount of unexplained variation in VOC exposure studies. Further they may help in assessing impacts of urban planning that result in changes in behavior of individuals, resulting in shifts in the patterns of exposure experienced by the population.
Koch, Stefan P.; Hägele, Claudia; Haynes, John-Dylan; Heinz, Andreas; Schlagenhauf, Florian; Sterzer, Philipp
2015-01-01
Functional neuroimaging has provided evidence for altered function of mesolimbic circuits implicated in reward processing, first and foremost the ventral striatum, in patients with schizophrenia. While such findings based on significant group differences in brain activations can provide important insights into the pathomechanisms of mental disorders, the use of neuroimaging results from standard univariate statistical analysis for individual diagnosis has proven difficult. In this proof of concept study, we tested whether the predictive accuracy for the diagnostic classification of schizophrenia patients vs. healthy controls could be improved using multivariate pattern analysis (MVPA) of regional functional magnetic resonance imaging (fMRI) activation patterns for the anticipation of monetary reward. With a searchlight MVPA approach using support vector machine classification, we found that the diagnostic category could be predicted from local activation patterns in frontal, temporal, occipital and midbrain regions, with a maximal cluster peak classification accuracy of 93% for the right pallidum. Region-of-interest based MVPA for the ventral striatum achieved a maximal cluster peak accuracy of 88%, whereas the classification accuracy on the basis of standard univariate analysis reached only 75%. Moreover, using support vector regression we could additionally predict the severity of negative symptoms from ventral striatal activation patterns. These results show that MVPA can be used to substantially increase the accuracy of diagnostic classification on the basis of task-related fMRI signal patterns in a regionally specific way. PMID:25799236
Kaiser, Daniel; Strnad, Lukas; Seidl, Katharina N.; Kastner, Sabine
2013-01-01
Visual cues from the face and the body provide information about another's identity, emotional state, and intentions. Previous neuroimaging studies that investigated neural responses to (bodiless) faces and (headless) bodies have reported overlapping face- and body-selective brain regions in right fusiform gyrus (FG). In daily life, however, faces and bodies are typically perceived together and are effortlessly integrated into the percept of a whole person, raising the possibility that neural responses to whole persons are qualitatively different than responses to isolated faces and bodies. The present study used fMRI to examine how FG activity in response to a whole person relates to activity in response to the same face and body but presented in isolation. Using multivoxel pattern analysis, we modeled person-evoked response patterns in right FG through a linear combination of face- and body-evoked response patterns. We found that these synthetic patterns were able to accurately approximate the response patterns to whole persons, with face and body patterns each adding unique information to the response patterns evoked by whole person stimuli. These results suggest that whole person responses in FG primarily arise from the coactivation of independent face- and body-selective neural populations. PMID:24108794
Representational Similarity Analysis – Connecting the Branches of Systems Neuroscience
Kriegeskorte, Nikolaus; Mur, Marieke; Bandettini, Peter
2008-01-01
A fundamental challenge for systems neuroscience is to quantitatively relate its three major branches of research: brain-activity measurement, behavioral measurement, and computational modeling. Using measured brain-activity patterns to evaluate computational network models is complicated by the need to define the correspondency between the units of the model and the channels of the brain-activity data, e.g., single-cell recordings or voxels from functional magnetic resonance imaging (fMRI). Similar correspondency problems complicate relating activity patterns between different modalities of brain-activity measurement (e.g., fMRI and invasive or scalp electrophysiology), and between subjects and species. In order to bridge these divides, we suggest abstracting from the activity patterns themselves and computing representational dissimilarity matrices (RDMs), which characterize the information carried by a given representation in a brain or model. Building on a rich psychological and mathematical literature on similarity analysis, we propose a new experimental and data-analytical framework called representational similarity analysis (RSA), in which multi-channel measures of neural activity are quantitatively related to each other and to computational theory and behavior by comparing RDMs. We demonstrate RSA by relating representations of visual objects as measured with fMRI in early visual cortex and the fusiform face area to computational models spanning a wide range of complexities. The RDMs are simultaneously related via second-level application of multidimensional scaling and tested using randomization and bootstrap techniques. We discuss the broad potential of RSA, including novel approaches to experimental design, and argue that these ideas, which have deep roots in psychology and neuroscience, will allow the integrated quantitative analysis of data from all three branches, thus contributing to a more unified systems neuroscience. PMID:19104670
Changes in breathing pattern in the normal horse at rest up to age one year.
Koterba, A M; Wozniak, J A; Kosch, P C
1995-07-01
Changes in pattern of airflow, sequence of respiratory muscle activation and generated pressures were measured serially in a group of foals during the first year post partum, in order to describe the maturation of the equine breathing pattern. In neonatal foals, inspiration and expiration were both primarily active and airflow pattern was essentially monophasic. By age 1 year, foals displayed essentially the same breathing pattern previously described in adult horses, utilising a combination of active and passive inspiration and expiration to breathe around, rather than from, the relaxation volume of the respiratory system (Vrx). A strong temporal relationship during growth was found between the timing of changes observed in airflow pattern and in the neuromuscular strategy of breathing. The transition to the adult breathing pattern appeared to involve a time delay in activation of both inspiratory and expiratory muscle groups, establishing a passive and active component to both inspiration and expiration. Throughout the study period, concurrent with the increase in delay of abdominal muscle activation, the expiratory flow pattern became progressively more biphasic in appearance. The time of appearance of a consistent biphasic inspiratory flow pattern was considerably later, at approximately age 1 year and coincided with the appearance of a delay in inspiratory muscle activation. From our results, we conclude that the transition from the neonatal to the adult breathing strategy in the horse appears not to be induced by the time course of chest wall stiffening during maturation. While changes in relative body proportions and size of abdominal contents during growth may influence the transition in breathing, our results also indicate that respiratory control mechanisms play an essential role in the expression of the polyphasic breathing pattern.
Walking or Dancing: Patterns of Physical Activity by Cross-Sectional Age Among U.S. Women
Fan, Jessie X.; Kowaleski-Jones, Lori; Wen, Ming
2014-01-01
Objectives To identify age differences in physical activity (PA) participation for women. Methods Data from 3,952 women 25+ from the 2003–2006 National Health and Nutrition Examination Surveys (NHANES) were used to analyze participation patterns for 17 PA types. Results The top five leisure PAs by participation rate for all ages were walking (42%), dancing (20%), treadmill (15%), biking (11%), and yoga (10%). Participation in running, dancing, treadmill, and team sports declined around ages 35 to 44, and participation in household PA, walking, weightlifting, and hiking declined around ages 55 to 64. At age 75+ further substantial decline in most activities occurred. Nativity status was the most important moderator for age-related PA decline. Conclusions Total PA declines with age but significant decline does not occur until ages 55 to 64. Major decline in leisure PA participation starts earlier at ages 35 to 44. While age-related declining patterns differ for different activities, the top five most popular leisure activities are similar for all age groups. PMID:23867628
Workdays, in-between workdays and the weekend: a diary study on effort and recovery.
van Hooff, Madelon L M; Geurts, Sabine A E; Kompier, Michiel A J; Taris, Toon W
2007-07-01
Effort-recovery theory (Meijman and Mulder in Handbook of work and organizational psychology, Psychology Press/Erlbaum, Hove, pp 5-33, 1998) proposes that effort expenditure may have adverse consequences for health in the absence of sufficient recovery opportunities. Thus, insight in the relationships between effort and recovery is imperative to understand work-related health. This study therefore focused on the relation between work-related effort and recovery (1) during workdays, (2) in-between workdays and (3) in the weekend. For these three time periods, we compared a group of employees reporting relatively low levels of work-related effort ("low-effort group") and a group of employees reporting relatively high levels of work-related effort ("high-effort group") with respect to (1) activity patterns, (2) the experience of these activity patterns, and (3) health and well-being indicators. Data were collected among university staff members. Participants (N(high-effort group) = 24 and N(low-effort group) = 27) completed a general questionnaire and took part in a 7-day daily diary study covering five weekdays and the following weekend. Differences between the two effort-groups were examined by means of analysis of variance. Compared to the low-effort group, the high-effort group (1) engaged less often in active leisure activities during the week and worked more overtime in the weekend, (2) considered both work and home activities as more effortful, but not as less pleasurable, and (3) reported higher levels of sleep complaints (weekdays only) and fatigue, more preoccupation with work (weekdays only) and lower motivation to start the next workweek during the weekend. Work-related effort is associated with various aspects of work time and (potential) recovery time in-between workdays and in the weekend. High levels of work-related effort are associated with activity patterns that are less beneficial in terms of recovery, with higher effort expenditure during and after work time, and with diminished health and well-being.
Learning patterns of life from intelligence analyst chat
NASA Astrophysics Data System (ADS)
Schneider, Michael K.; Alford, Mark; Babko-Malaya, Olga; Blasch, Erik; Chen, Lingji; Crespi, Valentino; HandUber, Jason; Haney, Phil; Nagy, Jim; Richman, Mike; Von Pless, Gregory; Zhu, Howie; Rhodes, Bradley J.
2016-05-01
Our Multi-INT Data Association Tool (MIDAT) learns patterns of life (POL) of a geographical area from video analyst observations called out in textual reporting. Typical approaches to learning POLs from video make use of computer vision algorithms to extract locations in space and time of various activities. Such approaches are subject to the detection and tracking performance of the video processing algorithms. Numerous examples of human analysts monitoring live video streams annotating or "calling out" relevant entities and activities exist, such as security analysis, crime-scene forensics, news reports, and sports commentary. This user description typically corresponds with textual capture, such as chat. Although the purpose of these text products is primarily to describe events as they happen, organizations typically archive the reports for extended periods. This archive provides a basis to build POLs. Such POLs are useful for diagnosis to assess activities in an area based on historical context, and for consumers of products, who gain an understanding of historical patterns. MIDAT combines natural language processing, multi-hypothesis tracking, and Multi-INT Activity Pattern Learning and Exploitation (MAPLE) technologies in an end-to-end lab prototype that processes textual products produced by video analysts, infers POLs, and highlights anomalies relative to those POLs with links to "tracks" of related activities performed by the same entity. MIDAT technologies perform well, achieving, for example, a 90% F1-value on extracting activities from the textual reports.
Weisz, Nathan; Moratti, Stephan; Meinzer, Marcus; Dohrmann, Katalin; Elbert, Thomas
2005-01-01
Background The neurophysiological mechanisms underlying tinnitus perception are not well understood. Surprisingly, there have been no group studies comparing abnormalities in ongoing, spontaneous neuronal activity in individuals with and without tinnitus perception. Methods and Findings Here, we show that the spontaneous neuronal activity of a group of individuals with tinnitus (n = 17) is characterised by a marked reduction in alpha (8–12 Hz) power together with an enhancement in delta (1.5–4 Hz) as compared to a normal hearing control group (n = 16). This pattern was especially pronounced for temporal regions. Moreover, correlations with tinnitus-related distress revealed strong associations with this abnormal spontaneous activity pattern, particularly in right temporal and left frontal areas. Overall, effects were stronger for the alpha than for the delta frequency band. A data stream of 5 min, recorded with a whole-head neuromagnetometer under a resting condition, was sufficient to extract the marked differences. Conclusions Despite some limitations, there are arguments that the regional pattern of abnormal spontaneous activity we found could reflect a tinnitus-related cortical network. This finding, which suggests that a neurofeedback approach could reduce the adverse effects of this disturbing condition, could have important implications for the treatment of tinnitus. PMID:15971936
Spatial-temporal-spectral EEG patterns of BOLD functional network connectivity dynamics
NASA Astrophysics Data System (ADS)
Lamoš, Martin; Mareček, Radek; Slavíček, Tomáš; Mikl, Michal; Rektor, Ivan; Jan, Jiří
2018-06-01
Objective. Growing interest in the examination of large-scale brain network functional connectivity dynamics is accompanied by an effort to find the electrophysiological correlates. The commonly used constraints applied to spatial and spectral domains during electroencephalogram (EEG) data analysis may leave part of the neural activity unrecognized. We propose an approach that blindly reveals multimodal EEG spectral patterns that are related to the dynamics of the BOLD functional network connectivity. Approach. The blind decomposition of EEG spectrogram by parallel factor analysis has been shown to be a useful technique for uncovering patterns of neural activity. The simultaneously acquired BOLD fMRI data were decomposed by independent component analysis. Dynamic functional connectivity was computed on the component’s time series using a sliding window correlation, and between-network connectivity states were then defined based on the values of the correlation coefficients. ANOVA tests were performed to assess the relationships between the dynamics of between-network connectivity states and the fluctuations of EEG spectral patterns. Main results. We found three patterns related to the dynamics of between-network connectivity states. The first pattern has dominant peaks in the alpha, beta, and gamma bands and is related to the dynamics between the auditory, sensorimotor, and attentional networks. The second pattern, with dominant peaks in the theta and low alpha bands, is related to the visual and default mode network. The third pattern, also with peaks in the theta and low alpha bands, is related to the auditory and frontal network. Significance. Our previous findings revealed a relationship between EEG spectral pattern fluctuations and the hemodynamics of large-scale brain networks. In this study, we suggest that the relationship also exists at the level of functional connectivity dynamics among large-scale brain networks when no standard spatial and spectral constraints are applied on the EEG data.
Relationships between solar activity and climate change. [sunspot cycle effects on lower atmosphere
NASA Technical Reports Server (NTRS)
Roberts, W. O.
1974-01-01
Recurrent droughts are related to the double sunspot cycle. It is suggested that high solar activity generally increases meridional circulations and blocking patterns at high and intermediate latitudes, especially in winter. This effect is related to the sudden formation of cirrus clouds during strong geomagnetic activity that originates in the solar corpuscular emission.
Human inferior colliculus activity relates to individual differences in spoken language learning.
Chandrasekaran, Bharath; Kraus, Nina; Wong, Patrick C M
2012-03-01
A challenge to learning words of a foreign language is encoding nonnative phonemes, a process typically attributed to cortical circuitry. Using multimodal imaging methods [functional magnetic resonance imaging-adaptation (fMRI-A) and auditory brain stem responses (ABR)], we examined the extent to which pretraining pitch encoding in the inferior colliculus (IC), a primary midbrain structure, related to individual variability in learning to successfully use nonnative pitch patterns to distinguish words in American English-speaking adults. fMRI-A indexed the efficiency of pitch representation localized to the IC, whereas ABR quantified midbrain pitch-related activity with millisecond precision. In line with neural "sharpening" models, we found that efficient IC pitch pattern representation (indexed by fMRI) related to superior neural representation of pitch patterns (indexed by ABR), and consequently more successful word learning following sound-to-meaning training. Our results establish a critical role for the IC in speech-sound representation, consistent with the established role for the IC in the representation of communication signals in other animal models.
Normalizing motor-related brain activity: subthalamic nucleus stimulation in Parkinson disease.
Grafton, S T; Turner, R S; Desmurget, M; Bakay, R; Delong, M; Vitek, J; Crutcher, M
2006-04-25
To test whether therapeutic unilateral deep brain stimulation (DBS) of the subthalamic nucleus (STN) in patients with Parkinson disease (PD) leads to normalization in the pattern of brain activation during movement execution and control of movement extent. Six patients with PD were imaged off medication by PET during performance of a visually guided tracking task with the DBS voltage programmed for therapeutic (effective) or subtherapeutic (ineffective) stimulation. Data from patients with PD during ineffective stimulation were compared with a group of 13 age-matched control subjects to identify sites with abnormal patterns of activation. Conjunction analysis was used to identify those areas in patients with PD where activity normalized when they were treated with effective stimulation. For movement execution, effective DBS caused an increase of activation in the supplementary motor area (SMA), superior parietal cortex, and cerebellum toward a more normal pattern. At rest, effective stimulation reduced overactivity of SMA. Therapeutic stimulation also induced reductions of movement related "overactivity" compared with healthy subjects in prefrontal, temporal lobe, and basal ganglia circuits, consistent with the notion that many areas are recruited to compensate for ineffective motor initiation. Normalization of activity related to the control of movement extent was associated with reductions of activity in primary motor cortex, SMA, and basal ganglia. Effective subthalamic nucleus stimulation leads to task-specific modifications with appropriate recruitment of motor areas as well as widespread, nonspecific reductions of compensatory or competing cortical activity.
VanKim, Nicole A; Erickson, Darin J; Eisenberg, Marla E; Lust, Katherine; Rosser, B R Simon; Laska, Melissa N
2016-11-01
To identify and describe homogenous classes of male college students based on their weight-related behaviors (e.g., eating habits, physical activity, and unhealthy weight control) and to examine differences by sexual orientation. Study design was a cross-sectional sample of 2- and 4-year college students. Study setting was forty-six 2- and 4-year colleges in Minnesota. Study subjects comprised 10,406 college males. Measures were five categories of sexual orientation derived from self-reported sexual identity and behavior (heterosexual, discordant heterosexual [identifies as heterosexual and engages in same-sex sexual behavior], gay, bisexual, and unsure) and nine weight-related behaviors (including measures for eating habits, physical activity, and unhealthy weight control). Latent class models were fit for each of the five sexual orientation groups, using the nine weight-related behaviors. Overall, four classes were identified: "healthier eating habits" (prevalence range, 39.4%-77.3%), "moderate eating habits" (12.0%-30.2%), "unhealthy weight control" (2.6%-30.4%), and "healthier eating habits, more physically active" (35.8%). Heterosexual males exhibited all four patterns, gay and unsure males exhibited four patterns that included variations on the overall classes identified, discordant heterosexual males exhibited two patterns ("healthier eating habits" and "unhealthy weight control"), and bisexual males exhibited three patterns ("healthier eating habits," "moderate eating habits," and "unhealthy weight control"). Findings highlight the need for multibehavioral interventions for discordant heterosexual, gay, bisexual, and unsure college males, particularly around encouraging physical activity and reducing unhealthy weight control behaviors. © 2016 by American Journal of Health Promotion, Inc.
Development and Initial Validation of the Activity Patterns Scale in Patients With Chronic Pain.
Esteve, Rosa; Ramírez-Maestre, Carmen; Peters, Madelon L; Serrano-Ibáñez, Elena R; Ruíz-Párraga, Gema T; López-Martínez, Alicia E
2016-04-01
Several self-report measures were used to identify 6 activity patterns in chronic pain patients: pain avoidance, activity avoidance, task-contingent persistence, excessive persistence, pain-contingent persistence, and pacing. Instruments for assessing pacing should include 3 pacing behaviors (breaking tasks into smaller tasks, taking frequent short rests, slowing down), each of which relate to a single goal (increasing activity levels, conserving energy for valued activities, and reducing pain). This article presents the Activity Patterns Scale (APS), which assesses these 6 activity patterns. Study 1 included 291 participants with chronic pain, and tested 3 structures using confirmatory factor analyses. The structure with the best fit had 8 factors corresponding to the hypothesized scales. High correlations in the expected direction were found between the APS subscales and the "Patterns of Activity Measure-Pain." Study 2 included 111 patients with chronic pain, and aimed at examining the association between the APS subscales and adjustment to pain. It was found that that activity avoidance was associated with daily functioning and impairment. Negative affect was positively associated with activity avoidance and excessive persistence, and negatively associated with task-contingent persistence, which was also positively associated with positive affect. This study showed that the APS is a valid and reliable instrument for clinical practice and research. This article presents a valid and reliable instrument to assess activity patterns in patients with chronic pain. The findings suggest that avoidance, persistence, and pacing are multidimensional constructs. Distinguishing between these dimensions sheds light on previous contradictory results and has direct clinical implications regarding recommending the most advisable activity patterns. Copyright © 2016 American Pain Society. Published by Elsevier Inc. All rights reserved.
Scaling properties in time-varying networks with memory
NASA Astrophysics Data System (ADS)
Kim, Hyewon; Ha, Meesoon; Jeong, Hawoong
2015-12-01
The formation of network structure is mainly influenced by an individual node's activity and its memory, where activity can usually be interpreted as the individual inherent property and memory can be represented by the interaction strength between nodes. In our study, we define the activity through the appearance pattern in the time-aggregated network representation, and quantify the memory through the contact pattern of empirical temporal networks. To address the role of activity and memory in epidemics on time-varying networks, we propose temporal-pattern coarsening of activity-driven growing networks with memory. In particular, we focus on the relation between time-scale coarsening and spreading dynamics in the context of dynamic scaling and finite-size scaling. Finally, we discuss the universality issue of spreading dynamics on time-varying networks for various memory-causality tests.
ERIC Educational Resources Information Center
Takahashi, Junichi; Yasunaga, Daichi; Gyoba, Jiro
2014-01-01
We examined the effects of complexity on the efficiency of pattern encoding in the general population differing on autism-spectrum quotient (AQ) scores. We compared brain activity (electroencephalography) during a same-different task for High and Low AQ groups. The task was composed of identical comparison and categorical comparison (CC)…
1987-01-01
Both regional differences in mucosal sensitivity and a gas chromatography-like process along the mucosal sheet have been separately proposed in two sets of earlier studies to produce different odorant-dependent activity patterns across the olfactory mucosa. This investigation evaluated, in one study, whether and to what degree these two mechanisms contribute to the generation of these activity patterns. Summated multiunit discharges were simultaneously recorded from lateral (LN) and medial (MN) sites on the bullfrog's olfactory nerve to sample the mucosal activity occurring near the internal and external nares, respectively. Precisely controlled sniffs of four odorants (benzaldehyde, butanol, geraniol, and octane) were drawn through the frog's olfactory sac in both the forward (H1) and reverse (H2) hale directions. By combining the four resulting measurements, LNH1, LNH2, MNH1, and MNH2, in different mathematical expressions, indexes reflecting the relative effects of the chromatographic process, regional sensitivity, and hale direction could be calculated. Most importantly, the chromatographic process and the regional sensitivity differences both contributed significantly to the mucosal activity patterns. However, their relative roles varied markedly among the four odorants, ranging from complete dominance by either one to substantial contributions from each. In general, the more strongly an odorant was sorbed by the mucosa, the greater was the relative effect of the chromatographic process; the weaker the sorption, the greater the relative effect of regional sensitivity. Similarly, the greater an odorant's sorption, the greater was the effect of hale direction. Other stimulus variables (sniff volume, sniff duration, and the number of molecules within the sniff) had marked effects upon the overall size of the response. For strongly sorbed odorants, the effect of increasing volume was positive; for a weakly sorbed odorant, it was negative. The reverse may be true for duration. In contrast, the effect of increasing the number of molecules was uniformly positive for all four odorants. However, there was little evidence that these other stimulus variables had a major influence upon the effects of the chromatographic process and regional sensitivity differences in their generation of mucosal activity patterns. PMID:3500998
Complex genetic patterns in closely related colonizing invasive species
Anthropogenic activities frequently result in both rapidly changing environments and translocation of species from their native ranges (i.e., biological invasions). Empirical studies suggest that many factors associated with these changes can lead to complex genetic patterns, par...
Cholinergic modulation of cognition: Insights from human pharmacological functional neuroimaging
Bentley, Paul; Driver, Jon; Dolan, Raymond J.
2011-01-01
Evidence from lesion and cortical-slice studies implicate the neocortical cholinergic system in the modulation of sensory, attentional and memory processing. In this review we consider findings from sixty-three healthy human cholinergic functional neuroimaging studies that probe interactions of cholinergic drugs with brain activation profiles, and relate these to contemporary neurobiological models. Consistent patterns that emerge are: (1) the direction of cholinergic modulation of sensory cortex activations depends upon top-down influences; (2) cholinergic hyperstimulation reduces top-down selective modulation of sensory cortices; (3) cholinergic hyperstimulation interacts with task-specific frontoparietal activations according to one of several patterns, including: suppression of parietal-mediated reorienting; decreasing ‘effort’-associated activations in prefrontal regions; and deactivation of a ‘resting-state network’ in medial cortex, with reciprocal recruitment of dorsolateral frontoparietal regions during performance-challenging conditions; (4) encoding-related activations in both neocortical and hippocampal regions are disrupted by cholinergic blockade, or enhanced with cholinergic stimulation, while the opposite profile is observed during retrieval; (5) many examples exist of an ‘inverted-U shaped’ pattern of cholinergic influences by which the direction of functional neural activation (and performance) depends upon both task (e.g. relative difficulty) and subject (e.g. age) factors. Overall, human cholinergic functional neuroimaging studies both corroborate and extend physiological accounts of cholinergic function arising from other experimental contexts, while providing mechanistic insights into cholinergic-acting drugs and their potential clinical applications. PMID:21708219
Suzuki, Tomoko; Miyaki, Koichi; Tsutsumi, Akizumi; Hashimoto, Hideki; Kawakami, Norito; Takahashi, Masaya; Shimazu, Akihito; Inoue, Akiomi; Kurioka, Sumiko; Kakehashi, Masayuki; Sasaki, Yasuharu; Shimbo, Takuro
2013-09-05
This study examined the association between traditional Japanese dietary pattern and depressive symptoms in Japanese workers, employing large-scale samples, considering socioeconomic status (SES) and job stress factors. A cross-sectional study of 2266 Japanese employees aged 21-65 years from all areas of Japan was conducted as part of the Japanese Study of Health, Occupation and Psychosocial factors related Equity (J-HOPE). Habitual diet was assessed by FFQ (BDHQ). The depression degree and job stress factors (job demand, job control, and worksite support) were measured by K6 and Job Content Questionnaire. Participants with high scores for the balanced Japanese dietary pattern were significantly less likely to show probable mood/anxiety disorders (K6≥9) with multivariate adjustment including SES and job stress factors (odds ratio=0.66 [0.51-0.86], trend P=0.002). Other dietary patterns were not associated with depressive symptoms. Even after stratification by job stress factors, the Japanese dietary pattern was consistently protective against depressive symptoms. Furthermore, a highly significant difference between the first and third tertiles of the dietary pattern was observed in participants with active strain (high demand and high control) with low worksite supports (8.5 vs. 5.2, P=0.011). Female participant sample was relatively small. Japanese dietary pattern consistently related to low depressive symptoms in this large-scale cohort of Japanese workers, even after adjusting for SES and job stress factors. The protective impact is especially strong for workers with active strain and low support. Making better use of traditional dietary patterns may facilitate reducing social disparities in mental health. Copyright © 2013 Elsevier B.V. All rights reserved.
ERIC Educational Resources Information Center
Ladouceur, Cecile D.; Farchione, Tiffany; Diwadkar, Vaibhav; Pruitt, Patrick; Radwan, Jacqueline; Axelson, David A.; Birmaher, Boris; Phillips, Mary L.
2011-01-01
Objective: The functioning of neural systems supporting emotion processing and regulation in youth with bipolar disorder not otherwise specified (BP-NOS) remains poorly understood. We sought to examine patterns of activity and connectivity in youth with BP-NOS relative to youth with bipolar disorder type I (BP-I) and healthy controls (HC). Method:…
Kozunov, Vladimir; Nikolaeva, Anastasia; Stroganova, Tatiana A.
2018-01-01
The brain mechanisms that integrate the separate features of sensory input into a meaningful percept depend upon the prior experience of interaction with the object and differ between categories of objects. Recent studies using representational similarity analysis (RSA) have characterized either the spatial patterns of brain activity for different categories of objects or described how category structure in neuronal representations emerges in time, but never simultaneously. Here we applied a novel, region-based, multivariate pattern classification approach in combination with RSA to magnetoencephalography data to extract activity associated with qualitatively distinct processing stages of visual perception. We asked participants to name what they see whilst viewing bitonal visual stimuli of two categories predominantly shaped by either value-dependent or sensorimotor experience, namely faces and tools, and meaningless images. We aimed to disambiguate the spatiotemporal patterns of brain activity between the meaningful categories and determine which differences in their processing were attributable to either perceptual categorization per se, or later-stage mentalizing-related processes. We have extracted three stages of cortical activity corresponding to low-level processing, category-specific feature binding, and supra-categorical processing. All face-specific spatiotemporal patterns were associated with bilateral activation of ventral occipito-temporal areas during the feature binding stage at 140–170 ms. The tool-specific activity was found both within the categorization stage and in a later period not thought to be associated with binding processes. The tool-specific binding-related activity was detected within a 210–220 ms window and was located to the intraparietal sulcus of the left hemisphere. Brain activity common for both meaningful categories started at 250 ms and included widely distributed assemblies within parietal, temporal, and prefrontal regions. Furthermore, we hypothesized and tested whether activity within face and tool-specific binding-related patterns would demonstrate oppositely acting effects following procedural perceptual learning. We found that activity in the ventral, face-specific network increased following the stimuli repetition. In contrast, tool processing in the dorsal network adapted by reducing its activity over the repetition period. Altogether, we have demonstrated that activity associated with visual processing of faces and tools during the categorization stage differ in processing timing, brain areas involved, and in their dynamics underlying stimuli learning. PMID:29379426
Kozunov, Vladimir; Nikolaeva, Anastasia; Stroganova, Tatiana A
2017-01-01
The brain mechanisms that integrate the separate features of sensory input into a meaningful percept depend upon the prior experience of interaction with the object and differ between categories of objects. Recent studies using representational similarity analysis (RSA) have characterized either the spatial patterns of brain activity for different categories of objects or described how category structure in neuronal representations emerges in time, but never simultaneously. Here we applied a novel, region-based, multivariate pattern classification approach in combination with RSA to magnetoencephalography data to extract activity associated with qualitatively distinct processing stages of visual perception. We asked participants to name what they see whilst viewing bitonal visual stimuli of two categories predominantly shaped by either value-dependent or sensorimotor experience, namely faces and tools, and meaningless images. We aimed to disambiguate the spatiotemporal patterns of brain activity between the meaningful categories and determine which differences in their processing were attributable to either perceptual categorization per se , or later-stage mentalizing-related processes. We have extracted three stages of cortical activity corresponding to low-level processing, category-specific feature binding, and supra-categorical processing. All face-specific spatiotemporal patterns were associated with bilateral activation of ventral occipito-temporal areas during the feature binding stage at 140-170 ms. The tool-specific activity was found both within the categorization stage and in a later period not thought to be associated with binding processes. The tool-specific binding-related activity was detected within a 210-220 ms window and was located to the intraparietal sulcus of the left hemisphere. Brain activity common for both meaningful categories started at 250 ms and included widely distributed assemblies within parietal, temporal, and prefrontal regions. Furthermore, we hypothesized and tested whether activity within face and tool-specific binding-related patterns would demonstrate oppositely acting effects following procedural perceptual learning. We found that activity in the ventral, face-specific network increased following the stimuli repetition. In contrast, tool processing in the dorsal network adapted by reducing its activity over the repetition period. Altogether, we have demonstrated that activity associated with visual processing of faces and tools during the categorization stage differ in processing timing, brain areas involved, and in their dynamics underlying stimuli learning.
Exercising self-control increases relative left frontal cortical activation
Crowell, Adrienne; Harmon-Jones, Eddie
2016-01-01
Self-control refers to the capacity to override or alter a predominant response tendency. The current experiment tested the hypothesis that exercising self-control temporarily increases approach motivation, as revealed by patterns of electrical activity in the prefrontal cortex. Participants completed a writing task that did vs did not require them to exercise self-control. Then they viewed pictures known to evoke positive, negative or neutral affect. We assessed electroencephalographic (EEG) activity while participants viewed the pictures, and participants reported their trait levels of behavioral inhibition system (BIS) and behavioral activation system (BAS) sensitivity at the end of the study. We found that exercising (vs not exercising) self-control increased relative left frontal cortical activity during picture viewing, particularly among individuals with relatively higher BAS than BIS, and particularly during positive picture viewing. A similar but weaker pattern emerged during negative picture viewing. The results suggest that exercising self-control temporarily increases approach motivation, which may help to explain the aftereffects of self-control (i.e. ego depletion). PMID:26341900
Physical activity levels and patterns of 11-14 year-old Turkish adolescents.
Kin-Isler, Ayse; Asci, F Hulya; Altintas, Atakan; Guven-Karahan, Bengu
2009-01-01
This study examined age and gender differences in physical activity levels and various physical activity patterns of 11-14-year-old Turkish adolescents and also determined if these differ between genders. Six hundred and fifty girls and 666 boys between the ages of 11 and 14 years constituted the sample of this study. Participants self-reported physical activity levels and patterns were determined by a Weekly Activity Checklist. A 2 x 4 (Gender x Age) MANOVA revealed overall significant main effect of gender and age on the physical activity level of adolescents; however, gender x age interaction effect was not significant. The findings indicated an interaction effect was not significant. The findings indicated an age-related decline in physical activity level, an increase in participation in low activities, and a decrease in participation in moderate and vigorous activities in 11-14-year-old Turkish adolescents. In addition it was found that boys were more active than girls and participated more in moderate and vigorous activities.
Bendell, L I
2011-02-15
Archived samples of blue grouse (Dendragapus obscurus) gizzard contents, inclusive of grit, collected yearly between 1959 and 1970 were analyzed for cadmium, lead, zinc, and copper content. Approximately halfway through the 12-year sampling period, an open-pit copper mine began activities, then ceased operations 2 years later. Thus the archived samples provided a unique opportunity to determine if avian gizzard contents, inclusive of grit, could reveal patterns in the anthropogenic deposition of trace metals associated with mining activities. Gizzard concentrations of cadmium and copper strongly coincided with the onset of opening and the closing of the pit mining activity. Gizzard zinc and lead demonstrated significant among year variation; however, maximum concentrations did not correlate to mining activity. The archived gizzard contents did provide a useful tool for documenting trends in metal depositional patterns related to an anthropogenic activity. Further, blue grouse ingesting grit particles during the time of active mining activity would have been exposed to toxicologically significant levels of cadmium. Gizzard lead concentrations were also of toxicological significance but not related to mining activity. This type of "pulse" toxic metal exposure as a consequence of open-pit mining activity would not necessarily have been revealed through a "snap-shot" of soil, plant or avian tissue trace metal analysis post-mining activity. Copyright © 2010 Elsevier B.V. All rights reserved.
College Women's Weight-related Behavior Profiles Differ by Sexual Identity.
VanKim, Nicole A; Erickson, Darin J; Eisenberg, Marla E; Lust, Katherine; Rosser, B R Simon; Laska, Melissa N
2015-07-01
To identify and describe homogenous profiles of female college students based on weight-related behaviors and examine differences across 5 sexual orientation groups. Data from the 2009-2013 College Student Health Survey (Minnesota-based survey of 2- and 4-year college students) were used to fit latent class models. Four profiles were identified across all sexual orientation groups: "healthier eating habits," "moderate eating habits," "unhealthy weight control," and "healthier eating habits, more physically active." Differences in patterns and prevalence of profiles across sexual orientation suggest need for interventions addressing insufficient physical activity and unhealthy weight control behaviors. Future interventions should consider the diversity of behavioral patterns across sexual orientation to more effectively address weight-related behavioral disparities.
Retinoic acid regulates size, pattern and alignment of tissues at the head-trunk transition.
Lee, Keun; Skromne, Isaac
2014-11-01
At the head-trunk transition, hindbrain and spinal cord alignment to occipital and vertebral bones is crucial for coherent neural and skeletal system organization. Changes in neural or mesodermal tissue configuration arising from defects in the specification, patterning or relative axial placement of territories can severely compromise their integration and function. Here, we show that coordination of neural and mesodermal tissue at the zebrafish head-trunk transition crucially depends on two novel activities of the signaling factor retinoic acid (RA): one specifying the size and the other specifying the axial position relative to mesodermal structures of the hindbrain territory. These activities are each independent but coordinated with the well-established function of RA in hindbrain patterning. Using neural and mesodermal landmarks we demonstrate that the functions of RA in aligning neural and mesodermal tissues temporally precede the specification of hindbrain and spinal cord territories and the activation of hox transcription. Using cell transplantation assays we show that RA activity in the neuroepithelium regulates hindbrain patterning directly and territory size specification indirectly. This indirect function is partially dependent on Wnts but independent of FGFs. Importantly, RA specifies and patterns the hindbrain territory by antagonizing the activity of the spinal cord specification gene cdx4; loss of Cdx4 rescues the defects associated with the loss of RA, including the reduction in hindbrain size and the loss of posterior rhombomeres. We propose that at the head-trunk transition, RA coordinates specification, patterning and alignment of neural and mesodermal tissues that are essential for the organization and function of the neural and skeletal systems. © 2014. Published by The Company of Biologists Ltd.
Allendorfer, Jane B; Lindsell, Christopher J; Siegel, Miriam; Banks, Christi L; Vannest, Jennifer; Holland, Scott K; Szaflarski, Jerzy P
2012-10-01
To test the existence of sex differences in cortical activation during verb generation when performance is controlled for. Twenty male and 20 female healthy adults underwent functional magnetic resonance imaging (fMRI) using a covert block-design verb generation task (BD-VGT) and its event-related version (ER-VGT) that allowed for intra-scanner recordings of overt responses. Task-specific activations were determined using the following contrasts: BD-VGT covert generation>finger-tapping; ER-VGT overt generation>repetition; ER-VGT overt>covert generation. Lateral cortical regions activated during each contrast were used for calculating language lateralization index scores. Voxelwise regressions were used to determine sex differences in activation, with and without controlling for performance. Each brain region showing male/female activation differences for ER-VGT overt generation>repetition (isolating noun-verb association) was defined as a region of interest (ROI). For each subject, the signal change in each ROI was extracted, and the association between ER-VGT activation related to noun-verb association and performance was assessed separately for each sex. Males and females performed similarly on language assessments, had similar patterns of language lateralization, and exhibited similar activation patterns for each fMRI task contrast. Regression analysis controlling for overt intra-scanner performance either abolished (BD-VGT) or reduced (ER-VGT) the observed differences in activation between sexes. The main difference between sexes occurred during ER-VGT processing of noun-verb associations, where males showed greater activation than females in the right middle/superior frontal gyrus (MFG/SFG) and the right caudate/anterior cingulate gyrus (aCG) after controlling for performance. Better verb generation performance was associated with increased right caudate/aCG activation in males and with increased right MFG/SFG activation in females. Males and females exhibit similar activation patterns during verb generation fMRI, and controlling for intra-scanner performance reduces or even abolishes sex differences in language-related activation. These results suggest that previous findings of sex differences in neuroimaging studies that did not control for task performance may reflect false positives. Copyright © 2011 Elsevier Srl. All rights reserved.
Stokes, Mark; Nobre, Anna C.; Rushworth, Matthew F. S.
2013-01-01
Using multivoxel pattern analysis (MVPA), we studied how distributed visual representations in human occipitotemporal cortex are modulated by attention and link their modulation to concurrent activity in frontal and parietal cortex. We detected similar occipitotemporal patterns during a simple visuoperceptual task and an attention-to-working-memory task in which one or two stimuli were cued before being presented among other pictures. Pattern strength varied from highest to lowest when the stimulus was the exclusive focus of attention, a conjoint focus, and when it was potentially distracting. Although qualitatively similar effects were seen inside regions relatively specialized for the stimulus category and outside, the former were quantitatively stronger. By regressing occipitotemporal pattern strength against activity elsewhere in the brain, we identified frontal and parietal areas exerting top-down control over, or reading information out from, distributed patterns in occipitotemporal cortex. Their interactions with patterns inside regions relatively specialized for that stimulus category were higher than those with patterns outside those regions and varied in strength as a function of the attentional condition. One area, the frontal operculum, was distinguished by selectively interacting with occipitotemporal patterns only when they were the focus of attention. There was no evidence that any frontal or parietal area actively inhibited occipitotemporal representations even when they should be ignored and were suppressed. Using MVPA to decode information within these frontal and parietal areas showed that they contained information about attentional context and/or readout information from occipitotemporal cortex to guide behavior but that frontal regions lacked information about category identity. PMID:24133250
Nelissen, Natalie; Stokes, Mark; Nobre, Anna C; Rushworth, Matthew F S
2013-10-16
Using multivoxel pattern analysis (MVPA), we studied how distributed visual representations in human occipitotemporal cortex are modulated by attention and link their modulation to concurrent activity in frontal and parietal cortex. We detected similar occipitotemporal patterns during a simple visuoperceptual task and an attention-to-working-memory task in which one or two stimuli were cued before being presented among other pictures. Pattern strength varied from highest to lowest when the stimulus was the exclusive focus of attention, a conjoint focus, and when it was potentially distracting. Although qualitatively similar effects were seen inside regions relatively specialized for the stimulus category and outside, the former were quantitatively stronger. By regressing occipitotemporal pattern strength against activity elsewhere in the brain, we identified frontal and parietal areas exerting top-down control over, or reading information out from, distributed patterns in occipitotemporal cortex. Their interactions with patterns inside regions relatively specialized for that stimulus category were higher than those with patterns outside those regions and varied in strength as a function of the attentional condition. One area, the frontal operculum, was distinguished by selectively interacting with occipitotemporal patterns only when they were the focus of attention. There was no evidence that any frontal or parietal area actively inhibited occipitotemporal representations even when they should be ignored and were suppressed. Using MVPA to decode information within these frontal and parietal areas showed that they contained information about attentional context and/or readout information from occipitotemporal cortex to guide behavior but that frontal regions lacked information about category identity.
Development of visual cortical function in infant macaques: A BOLD fMRI study
Meeson, Alan; Munk, Matthias H. J.; Kourtzi, Zoe; Movshon, J. Anthony; Logothetis, Nikos K.; Kiorpes, Lynne
2017-01-01
Functional brain development is not well understood. In the visual system, neurophysiological studies in nonhuman primates show quite mature neuronal properties near birth although visual function is itself quite immature and continues to develop over many months or years after birth. Our goal was to assess the relative development of two main visual processing streams, dorsal and ventral, using BOLD fMRI in an attempt to understand the global mechanisms that support the maturation of visual behavior. Seven infant macaque monkeys (Macaca mulatta) were repeatedly scanned, while anesthetized, over an age range of 102 to 1431 days. Large rotating checkerboard stimuli induced BOLD activation in visual cortices at early ages. Additionally we used static and dynamic Glass pattern stimuli to probe BOLD responses in primary visual cortex and two extrastriate areas: V4 and MT-V5. The resulting activations were analyzed with standard GLM and multivoxel pattern analysis (MVPA) approaches. We analyzed three contrasts: Glass pattern present/absent, static/dynamic Glass pattern presentation, and structured/random Glass pattern form. For both GLM and MVPA approaches, robust coherent BOLD activation appeared relatively late in comparison to the maturation of known neuronal properties and the development of behavioral sensitivity to Glass patterns. Robust differential activity to Glass pattern present/absent and dynamic/static stimulus presentation appeared first in V1, followed by V4 and MT-V5 at older ages; there was no reliable distinction between the two extrastriate areas. A similar pattern of results was obtained with the two analysis methods, although MVPA analysis showed reliable differential responses emerging at later ages than GLM. Although BOLD responses to large visual stimuli are detectable, our results with more refined stimuli indicate that global BOLD activity changes as behavioral performance matures. This reflects an hierarchical development of the visual pathways. Since fMRI BOLD reflects neural activity on a population level, our results indicate that, although individual neurons might be adult-like, a longer maturation process takes place on a population level. PMID:29145469
Meditation leads to reduced default mode network activity beyond an active task.
Garrison, Kathleen A; Zeffiro, Thomas A; Scheinost, Dustin; Constable, R Todd; Brewer, Judson A
2015-09-01
Meditation has been associated with relatively reduced activity in the default mode network, a brain network implicated in self-related thinking and mind wandering. However, previous imaging studies have typically compared meditation to rest, despite other studies having reported differences in brain activation patterns between meditators and controls at rest. Moreover, rest is associated with a range of brain activation patterns across individuals that has only recently begun to be better characterized. Therefore, in this study we compared meditation to another active cognitive task, both to replicate the findings that meditation is associated with relatively reduced default mode network activity and to extend these findings by testing whether default mode activity was reduced during meditation, beyond the typical reductions observed during effortful tasks. In addition, prior studies had used small groups, whereas in the present study we tested these hypotheses in a larger group. The results indicated that meditation is associated with reduced activations in the default mode network, relative to an active task, for meditators as compared to controls. Regions of the default mode network showing a Group × Task interaction included the posterior cingulate/precuneus and anterior cingulate cortex. These findings replicate and extend prior work indicating that the suppression of default mode processing may represent a central neural process in long-term meditation, and they suggest that meditation leads to relatively reduced default mode processing beyond that observed during another active cognitive task.
NASA Astrophysics Data System (ADS)
Fels, Meike; Bauer, Robert; Gharabaghi, Alireza
2015-08-01
Objective. Novel rehabilitation strategies apply robot-assisted exercises and neurofeedback tasks to facilitate intensive motor training. We aimed to disentangle task-specific and subject-related contributions to the perceived workload of these interventions and the related cortical activation patterns. Approach. We assessed the perceived workload with the NASA Task Load Index in twenty-one subjects who were exposed to two different feedback tasks in a cross-over design: (i) brain-robot interface (BRI) with haptic/proprioceptive feedback of sensorimotor oscillations related to motor imagery, and (ii) control of neuromuscular activity with feedback of the electromyography (EMG) of the same hand. We also used electroencephalography to examine the cortical activation patterns beforehand in resting state and during the training session of each task. Main results. The workload profile of BRI feedback differed from EMG feedback and was particularly characterized by the experience of frustration. The frustration level was highly correlated across tasks, suggesting subject-related relevance of this workload component. Those subjects who were specifically challenged by the respective tasks could be detected by an interhemispheric alpha-band network in resting state before the training and by their sensorimotor theta-band activation pattern during the exercise. Significance. Neurophysiological profiles in resting state and during the exercise may provide task-independent workload markers for monitoring and matching participants’ ability and task difficulty of neurofeedback interventions.
Exploring the daily activities associated with delayed bedtime of Japanese university students.
Asaoka, Shoichi; Komada, Yoko; Fukuda, Kazuhiko; Sugiura, Tatsuki; Inoue, Yuichi; Yamazaki, Katuo
2010-07-01
University students show delayed sleep-wake patterns, i.e., later bed- and rise-times, and this pattern is known to be associated with various malfunctions. There may be a variety of daily activities associated with their delayed sleep patterns, such as watching TV. However, it is unclear to what extent each activity possesses an impact on their sleep patterns. The purpose of this study was to determine the daily activities associated with delayed bedtime in Japanese university students who live with or without their families. Three hundred and thirty-one participants were required to record the timing and duration of their sleep and daily activities, and the data from the 275 students (160 men and 115 women; 19.01 +/- 1.66 years) who completely filled forms were used for analysis. The results of multiple regression analyses suggested that interpersonal communication late at night is one of the major factors leading to the delayed bedtime of students living away from home. Among those living with their families, indoor activities such as watching TV and using the Internet were related to their delayed bedtimes. Attending classes and having a morning meal were related to the earlier bedtimes of the students living away from home, but there were no activities associated with those of the students living with their families. These results suggest that ensuring attendance at morning classes and having appropriate mealtimes, as well as restricting the use of visual media and socializing activities at night, are necessary for preventing late bedtimes in university students.
Classification and machine recognition of severe weather patterns
NASA Technical Reports Server (NTRS)
Wang, P. P.; Burns, R. C.
1976-01-01
Forecasting and warning of severe weather conditions are treated from the vantage point of pattern recognition by machine. Pictorial patterns and waveform patterns are distinguished. Time series data on sferics are dealt with by considering waveform patterns. A severe storm patterns recognition machine is described, along with schemes for detection via cross-correlation of time series (same channel or different channels). Syntactic and decision-theoretic approaches to feature extraction are discussed. Active and decayed tornados and thunderstorms, lightning discharges, and funnels and their related time series data are studied.
Dietary patterns associated with fat and bone mass in young children123
Khoury, Philip R; Claytor, Randal P; Copeland, Kristen A; Hornung, Richard W; Daniels, Stephen R; Kalkwarf, Heidi J
2010-01-01
Background: Obesity and osteoporosis have origins in childhood, and both are affected by dietary intake and physical activity. However, there is little information on what constitutes a diet that simultaneously promotes low fat mass and high bone mass accrual early in life. Objective: Our objective was to identify dietary patterns related to fat and bone mass in children during the age period of 3.8–7.8 y. Design: A total of 325 children contributed data from 13 visits over 4 separate study years (age ranges: 3.8–4.8, >4.8–5.8, >5.8–6.8, and >6.8–7.8 y). We performed reduced-rank regression to identify dietary patterns related to fat mass and bone mass measured by dual-energy X-ray absorptiometry for each study year. Covariables included race, sex, height, weight, energy intake, calcium intake, physical activity measured by accelerometry, and time spent viewing television and playing outdoors. Results: A dietary pattern characterized by a high intake of dark-green and deep-yellow vegetables was related to low fat mass and high bone mass; high processed-meat intake was related to high bone mass; and high fried-food intake was related to high fat mass. Dietary pattern scores remained related to fat mass and bone mass after all covariables were controlled for (P < 0.001–0.03). Conclusion: Beginning at preschool age, diets rich in dark-green and deep-yellow vegetables and low in fried foods may lead to healthy fat and bone mass accrual in young children. PMID:20519562
Bennett, Ilana J.; Rivera, Hannah G.; Rypma, Bart
2013-01-01
Previous studies examining age-group differences in working memory load-related neural activity have yielded mixed results. When present, age-group differences in working memory capacity are frequently proposed to underlie these neural effects. However, direct relationships between working memory capacity and working memory load-related activity have only been observed in younger adults. These relationships remain untested in healthy aging. Therefore, the present study examined patterns of working memory load-related activity in 22 younger and 20 older adults and assessed the contribution of working memory capacity to these load-related effects. Participants performed a partial-trial delayed response item recognition task during functional magnetic resonance imaging. In this task, participants encoded either 2 or 6 letters, maintained them during a delay, and then indicated whether a probe was present in the memory set. Behavioral results revealed faster and more accurate responses to load 2 versus 6, with age-group differences in this load condition effect for the accuracy measure. Neuroimaging results revealed one region (medial superior frontal gyrus) that showed age-group differences in load-related activity during the retrieval period, with less (greater) neural activity for the low versus high load condition in younger (older) adults. Furthermore, for older adults, load-related activity did not vary as a function of working memory capacity. Thus, working memory-related activity varies with healthy aging, but these patterns are not due solely to working memory capacity. Neurocognitive aging theories that feature capacity will need to account for these results. PMID:23357076
Quirk, D Adam; Hubley-Kozey, Cheryl L
2014-12-01
While healthy aging is associated with physiological changes that can impair control of trunk motion, few studies examine how spinal muscle responses change with increasing age. This study examined whether older (over 65 years) compared to younger (20-45 years) adults had higher overall amplitude and altered temporal recruitment patterns of trunk musculature when performing a functional transfer task. Surface electromyograms from twelve bilateral trunk muscle (24) sites were analyzed using principal component analysis, extracting amplitude and temporal features (PCs) from electromyographic waveforms. Two PCs explained 96% of the waveform variance. Three factor ANOVA models tested main effects (group, muscle and reach) and interactions for PC scores. Significant (p<.0125) group interactions were found for all PC scores. Post hoc analysis revealed that relative to younger adults, older adults recruited higher agonist and antagonistic activity, demonstrated continuous activation levels in specific muscle sites despite changing external moments, and had altered temporal synergies within abdominal and back musculature. In summary both older and younger adults recruit highly organized activation patterns in response to changing external moments. Differences in temporal trunk musculature recruitment patterns suggest that older adults experience different dynamic spinal stiffness and loading compared to younger adults during a functional lifting task. Copyright © 2014 Elsevier B.V. All rights reserved.
Lajunen, Hanna-Reetta; Keski-Rahkonen, Anna; Pulkkinen, Lea; Rose, Richard J.; Rissanen, Aila; Kaprio, Jaakko
2009-01-01
We examined longitudinal associations between individual leisure activities (television viewing, video viewing, computer games, listening to music, board games, musical instrument playing, reading, arts, crafts, socializing, clubs or scouts, sports, outdoor activities) and being overweight using logistic regression and latent class analysis in a cohort of Finnish twins responding to self-report questionnaires at 11–12 (N=5184), 14, and 17 years. We also studied activity patterns (“Active and sociable”, “Active but less sociable”, “Passive but sociable”, “Passive and solitary”) thought to represent different lifestyles. Among boys, activity patterns did not predict becoming overweight, but sports and playing an instrument reduced the risk and arts and listening to music increased it. Among girls, few individual leisure activities predicted becoming overweight. However, girls in the “Passive and solitary” cluster carried the greatest risk of becoming overweight in late adolescence. Studying leisure activities related to overweight may help focus specific interventions on high risk groups. PMID:19345989
Sera, Francesco; Griffiths, Lucy J; Dezateux, Carol; Geraci, Marco; Cortina-Borja, Mario
2017-01-01
Temporal characterisation of physical activity in children is required for effective strategies to increase physical activity (PA). Evidence regarding determinants of physical activity in childhood and their time-dependent patterns remain inconclusive. We used functional data analysis (FDA) to model temporal profiles of daily activity, measured objectively using accelerometers, to identify diurnal and seasonal PA patterns in a nationally representative sample of primary school-aged UK children. We hypothesised that PA levels would be lower in girls than boys at play times and after school, higher in children participating in social forms of exercise (such as sport or play), and lower among those not walking to school. Children participating in the UK-wide Millennium Cohort Study wore an Actigraph GT1M accelerometer for seven consecutive days during waking hours. We modelled 6,497 daily PA profiles from singleton children (3,176 boys; mean age: 7.5 years) by means of splines, and used functional analysis of variance to examine the cross-sectional relation of time and place of measurement, demographic and behavioural characteristics to smoothed PA profiles. Diurnal and time-specific patterns of activity showed significant variation by sex, ethnicity, UK country and season of measurement; girls were markedly less active than boys during school break times than boys, and children of Indian ethnicity were significantly less active during school hours (9:30-12:00). Social activities such as sport clubs, playing with friends were associated with higher level of PA in afternoon (15:00-17:30) and early evenings (17:30-19:30). Lower PA levels between 8:30-9:30 and 17:30-19:30 were associated with mode of travel to and from school, and number of cars in regular use in the household. Diminished PA in primary school aged children is temporally patterned and related to modifiable behavioural factors. FDA can be used to inform and evaluate public health policies to promote childhood PA.
The nocturnal bottleneck and the evolution of activity patterns in mammals.
Gerkema, Menno P; Davies, Wayne I L; Foster, Russell G; Menaker, Michael; Hut, Roelof A
2013-08-22
In 1942, Walls described the concept of a 'nocturnal bottleneck' in placental mammals, where these species could survive only by avoiding daytime activity during times in which dinosaurs were the dominant taxon. Walls based this concept of a longer episode of nocturnality in early eutherian mammals by comparing the visual systems of reptiles, birds and all three extant taxa of the mammalian lineage, namely the monotremes, marsupials (now included in the metatherians) and placentals (included in the eutherians). This review describes the status of what has become known as the nocturnal bottleneck hypothesis, giving an overview of the chronobiological patterns of activity. We review the ecological plausibility that the activity patterns of (early) eutherian mammals were restricted to the night, based on arguments relating to endothermia, energy balance, foraging and predation, taking into account recent palaeontological information. We also assess genes, relating to light detection (visual and non-visual systems) and the photolyase DNA protection system that were lost in the eutherian mammalian lineage. Our conclusion presently is that arguments in favour of the nocturnal bottleneck hypothesis in eutherians prevail.
The nocturnal bottleneck and the evolution of activity patterns in mammals
Gerkema, Menno P.; Davies, Wayne I. L.; Foster, Russell G.; Menaker, Michael; Hut, Roelof A.
2013-01-01
In 1942, Walls described the concept of a ‘nocturnal bottleneck’ in placental mammals, where these species could survive only by avoiding daytime activity during times in which dinosaurs were the dominant taxon. Walls based this concept of a longer episode of nocturnality in early eutherian mammals by comparing the visual systems of reptiles, birds and all three extant taxa of the mammalian lineage, namely the monotremes, marsupials (now included in the metatherians) and placentals (included in the eutherians). This review describes the status of what has become known as the nocturnal bottleneck hypothesis, giving an overview of the chronobiological patterns of activity. We review the ecological plausibility that the activity patterns of (early) eutherian mammals were restricted to the night, based on arguments relating to endothermia, energy balance, foraging and predation, taking into account recent palaeontological information. We also assess genes, relating to light detection (visual and non-visual systems) and the photolyase DNA protection system that were lost in the eutherian mammalian lineage. Our conclusion presently is that arguments in favour of the nocturnal bottleneck hypothesis in eutherians prevail. PMID:23825205
St-Laurent, Marie; Abdi, Hervé; Burianová, Hana; Grady, Cheryl L
2011-12-01
We used fMRI to assess the neural correlates of autobiographical, semantic, and episodic memory retrieval in healthy young and older adults. Participants were tested with an event-related paradigm in which retrieval demand was the only factor varying between trials. A spatio-temporal partial least square analysis was conducted to identify the main patterns of activity characterizing the groups across conditions. We identified brain regions activated by all three memory conditions relative to a control condition. This pattern was expressed equally in both age groups and replicated previous findings obtained in a separate group of younger adults. We also identified regions whose activity differentiated among the different memory conditions. These patterns of differentiation were expressed less strongly in the older adults than in the young adults, a finding that was further confirmed by a barycentric discriminant analysis. This analysis showed an age-related dedifferentiation in autobiographical and episodic memory tasks but not in the semantic memory task or the control condition. These findings suggest that the activation of a common memory retrieval network is maintained with age, whereas the specific aspects of brain activity that differ with memory content are more vulnerable and less selectively engaged in older adults. Our results provide a potential neural mechanism for the well-known age differences in episodic/autobiographical memory, and preserved semantic memory, observed when older adults are compared with younger adults.
Lubetzky-Vilnai, A; Carmeli, E; Katz-Leurer, M
2009-12-01
The rate of injuries resulting from physical exercise in sport centers as well as related factors has not yet been described. The aims of this study were to describe the prevalence of self-reported activity-specific injuries, to identify the relations between injury profile and different types and patterns of physical activity and to assess whether gender is a modifying variable in that connection. Four hundred and fifty-seven men and women aged 20-35 years participated in this cross-sectional study. A questionnaire was used to evaluate the types and patterns of physical activity performed in the 12 months preceding the study and sports injuries sustained during that time. One hundred and ninety of the 457 subjects reported an injury as a result of exercising (41.6%). A relationship was found between weight training and injuries of the upper extremity (UE) for men and between spinning classes and knee injuries for women. Among those who participated in weight-training exercises, more frequent and longer duration exercise was associated with UE injury, and among those who participated in spinning classes more frequent exercise was associated with knee injury. Future injury prevention programs in sport centers should pay special attention to men who participate in weight training and to women who participate in spinning classes.
Distributed Patterns of Reactivation Predict Vividness of Recollection.
St-Laurent, Marie; Abdi, Hervé; Buchsbaum, Bradley R
2015-10-01
According to the principle of reactivation, memory retrieval evokes patterns of brain activity that resemble those instantiated when an event was first experienced. Intuitively, one would expect neural reactivation to contribute to recollection (i.e., the vivid impression of reliving past events), but evidence of a direct relationship between the subjective quality of recollection and multiregional reactivation of item-specific neural patterns is lacking. The current study assessed this relationship using fMRI to measure brain activity as participants viewed and mentally replayed a set of short videos. We used multivoxel pattern analysis to train a classifier to identify individual videos based on brain activity evoked during perception and tested how accurately the classifier could distinguish among videos during mental replay. Classification accuracy correlated positively with memory vividness, indicating that the specificity of multivariate brain patterns observed during memory retrieval was related to the subjective quality of a memory. In addition, we identified a set of brain regions whose univariate activity during retrieval predicted both memory vividness and the strength of the classifier's prediction irrespective of the particular video that was retrieved. Our results establish distributed patterns of neural reactivation as a valid and objective marker of the quality of recollection.
Koelkebeck, Katja; Hirao, Kazuyuki; Kawada, Ryousaku; Miyata, Jun; Saze, Teruyasu; Ubukata, Shiho; Itakura, Shoji; Kanakogi, Yasuhiro; Ohrmann, Patricia; Bauer, Jochen; Pedersen, Anya; Sawamoto, Nobukatsu; Fukuyama, Hidenao; Takahashi, Hidehiko; Murai, Toshiya
2011-01-01
Theory of mind (ToM) functioning develops during certain phases of childhood. Factors such as language development and educational style seem to influence its development. Some studies that have focused on transcultural aspects of ToM development have found differences between Asian and Western cultures. To date, however, little is known about transcultural differences in neural activation patterns as they relate to ToM functioning. The aim of our study was to observe ToM functioning and differences in brain activation patterns, as assessed by functional magnetic resonance imaging (fMRI). This study included a sample of 18 healthy Japanese and 15 healthy Caucasian subjects living in Japan. We presented a ToM task depicting geometrical shapes moving in social patterns. We also administered questionnaires to examine empathy abilities and cultural background factors. Behavioral data showed no significant group differences in the subjects' post-scan descriptions of the movies. The imaging results displayed stronger activation in the medial prefrontal cortex (MPFC) in the Caucasian sample during the presentation of ToM videos. Furthermore, the task-associated activation of the MPFC was positively correlated with autistic and alexithymic features in the Japanese sample. In summary, our results showed evidence of culturally dependent sociobehavioral trait patterns, which suggests that they have an impact on brain activation patterns during information processing involving ToM.
Grubich, J R
2000-10-01
This study explores the evolution of molluscivory in the marine teleost family Sciaenidae by comparing the motor activity patterns of the pharyngeal muscles of two closely related taxa, the molluscivorous black drum (Pogonias cromis) and the generalist red drum (Sciaenops ocellatus). Muscle activity patterns were recorded simultaneously from eight pharyngeal muscles. Electromyographic (EMG) activity was recorded during feeding on three prey types that varied in shell hardness. Canonical variate and discriminant function analyses were used to describe the distinctness of drum pharyngeal processing behaviors. Discriminant functions built of EMG timing variables were more accurate than muscle activity intensity at identifying cycles by prey type and species. Both drum species demonstrated the ability to modulate pharyngeal motor patterns in response to prey hardness. The mean motor patterns and the canonical variate space of crushing behavior indicated that black drum employed a novel motor pattern during molluscivory. The mollusc-crushing motor pattern of black drum is different from other neoteleost pharyngeal behaviors in lacking upper jaw retraction by the retractor dorsalis muscle. This functional modification suggests that crushing hard-shelled marine bivalves requires a 'vice-like' compression bite in contrast to the shearing forces that are applied to weaker-shelled fiddler crabs by red drum and to freshwater snails by redear sunfish.
Thelen, D G; Muriuki, M; James, J; Schultz, A B; Ashton-Miller, J A; Alexander, N B
2000-04-01
The current study was undertaken to determine if age-related differences in muscle activities might relate to older adults being significantly less able than young adults to recover balance during a forward fall. Fourteen young and twelve older healthy males were released from forward leans of various magnitudes and asked to regain standing balance by taking a single forward step. Myoelectric signals were recorded from 12 lower extremity muscles and processed to compare the muscle activation patterns of young and older adults. Young adults successfully recovered from significantly larger leans than older adults using a single step (32.2 degrees vs. 23.5 degrees ). Muscular latency times, the time between release and activity onset, ranged from 73 to 114 ms with no significant age-related differences in the shortest muscular latency times. The overall response muscular activation patterns were similar for young and older adults. However older adults were slower to deactivate three stance leg muscles and also demonstrated delays in activating the step leg hip flexors and knee extensors prior to and during the swing phase. In the forward fall paradigm studied, age-differences in balance recovery performance do not seem due to slowness in response onset but may relate to differences in muscle activation timing during the stepping movement.
Patterns of Physical Activity Among Older Adults in New York City
Mooney, Stephen J.; Joshi, Spruha; Cerdá, Magdalena; Quinn, James W.; Beard, John R.; Kennedy, Gary J.; Benjamin, Ebele O.; Ompad, Danielle C.; Rundle, Andrew G.
2015-01-01
Introduction Little research to date has explored typologies of physical activity among older adults. An understanding of physical activity patterns may help to both determine the health benefits of different types of activity and target interventions to increase activity levels in older adults. This analysis, conducted in 2014, used a latent class analysis approach to characterize patterns of physical activity in a cohort of older adults. Methods A total of 3,497 men and women aged 65–75 years living in New York City completed the Physical Activity Scale for the Elderly (PASE) in 2011. PASE scale items were used to classify subjects into latent classes. Multinomial regression was then used to relate individual and neighborhood characteristics to class membership. Results Five latent classes were identified: “least active,” “walkers,” “domestic/gardening,” “athletic,” and “domestic/gardening athletic.” Individual-level predictors, including more education, higher income, and better self-reported health, were associated with membership in the more-active classes, particularly the athletic classes. Residential characteristics, including living in single-family housing and living in the lower-density boroughs of New York City, were predictive of membership in one of the domestic/gardening classes. Class membership was associated with BMI even after controlling for total PASE score. Conclusions This study suggests that individual and neighborhood characteristics are associated with distinct physical activity patterns in a group of older urban adults. These patterns are associated with body habitus independent of overall activity. PMID:26091927
NASA Astrophysics Data System (ADS)
Paul, Shibashis; Ghosh, Shyamolina; Ray, Deb Shankar
2018-02-01
We consider a reaction-diffusion system with linear, stochastic activator-inhibitor kinetics where the time evolution of concentration of a species at any spatial location depends on the relative average concentration of its neighbors. This self-regulating nature of kinetics brings in spatial correlation between the activator and the inhibitor. An interplay of this correlation in kinetics and disparity of diffusivities of the two species leads to symmetry breaking non-equilibrium transition resulting in stationary pattern formation. The role of initial noise strength and the linear reaction terms has been analyzed for pattern selection.
Yang, Jiajia; Kitada, Ryo; Kochiyama, Takanori; Yu, Yinghua; Makita, Kai; Araki, Yuta; Wu, Jinglong; Sadato, Norihiro
2017-01-01
Humans are able to judge the speed of an object’s motion by touch. Research has suggested that tactile judgment of speed is influenced by physical properties of the moving object, though the neural mechanisms underlying this process remain poorly understood. In the present study, functional magnetic resonance imaging was used to investigate brain networks that may be involved in tactile speed classification and how such networks may be affected by an object’s texture. Participants were asked to classify the speed of 2-D raised dot patterns passing under their right middle finger. Activity in the parietal operculum, insula, and inferior and superior frontal gyri was positively related to the motion speed of dot patterns. Activity in the postcentral gyrus and superior parietal lobule was sensitive to dot periodicity. Psycho-physiological interaction (PPI) analysis revealed that dot periodicity modulated functional connectivity between the parietal operculum (related to speed) and postcentral gyrus (related to dot periodicity). These results suggest that texture-sensitive activity in the primary somatosensory cortex and superior parietal lobule influences brain networks associated with tactually-extracted motion speed. Such effects may be related to the influence of surface texture on tactile speed judgment. PMID:28145505
Quamme, Joel R.; Weiss, David J.; Norman, Kenneth A.
2010-01-01
Recent studies of recognition memory indicate that subjects can strategically vary how much they rely on recollection of specific details vs. feelings of familiarity when making recognition judgments. One possible explanation of these results is that subjects can establish an internally directed attentional state (“listening for recollection”) that enhances retrieval of studied details; fluctuations in this attentional state over time should be associated with fluctuations in subjects’ recognition behavior. In this study, we used multi-voxel pattern analysis of fMRI data to identify brain regions that are involved in listening for recollection. We looked for brain regions that met the following criteria: (1) Distinct neural patterns should be present when subjects are instructed to rely on recollection vs. familiarity, and (2) fluctuations in these neural patterns should be related to recognition behavior in the manner predicted by dual-process theories of recognition: Specifically, the presence of the recollection pattern during the pre-stimulus interval (indicating that subjects are “listening for recollection” at that moment) should be associated with a selective decrease in false alarms to related lures. We found that pre-stimulus activity in the right supramarginal gyrus met all of these criteria, suggesting that this region proactively establishes an internally directed attentional state that fosters recollection. We also found other regions (e.g., left middle temporal gyrus) where the pattern of neural activity was related to subjects’ responding to related lures after stimulus onset (but not before), suggesting that these regions implement processes that are engaged in a reactive fashion to boost recollection. PMID:20740073
Patterns of Variation for the Sun and Sun-like Stars
NASA Astrophysics Data System (ADS)
Radick, Richard R.; Lockwood, G. Wesley; Henry, Gregory W.; Hall, Jeffrey C.; Pevtsov, Alexei A.
2018-03-01
We compare patterns of variation for the Sun and 72 Sun-like stars by combining total and spectral solar irradiance measurements between 2003 and 2017 from the SORCE satellite, Strömgren b, y stellar photometry between 1993 and 2017 from Fairborn Observatory, and solar and stellar chromospheric Ca II H+K emission observations between 1992 and 2016 from Lowell Observatory. The new data and their analysis strengthen the relationships found previously between chromospheric and brightness variability on the decadal timescale of the solar activity cycle. Both chromospheric H+K and photometric b, y variability among Sun-like stars are related to average chromospheric activity by power laws on this timescale. Young active stars become fainter as their H+K emission increases, and older, less active, more Sun-age stars tend to show a pattern of direct correlation between photometric and chromospheric emission variations. The directly correlated pattern between total solar irradiance and chromospheric Ca II emission variations shown by the Sun appears to extend also to variations in the Strömgren b, y portion of the solar spectrum. Although the Sun does not differ strongly from its stellar age and spectral class mates in the activity and variability characteristics that we have now studied for over three decades, it may be somewhat unusual in two respects: (1) its comparatively smooth, regular activity cycle, and (2) its rather low photometric brightness variation relative to its chromospheric activity level and variation, perhaps indicating that facular emission and sunspot darkening are especially well-balanced on the Sun.
NASA Astrophysics Data System (ADS)
Amor, T. A.; Russo, R.; Diez, I.; Bharath, P.; Zirovich, M.; Stramaglia, S.; Cortes, J. M.; de Arcangelis, L.; Chialvo, D. R.
2015-09-01
The brain exhibits a wide variety of spatiotemporal patterns of neuronal activity recorded using functional magnetic resonance imaging as the so-called blood-oxygenated-level-dependent (BOLD) signal. An active area of work includes efforts to best describe the plethora of these patterns evolving continuously in the brain. Here we explore the third-moment statistics of the brain BOLD signals in the resting state as a proxy to capture extreme BOLD events. We find that the brain signal exhibits typically nonzero skewness, with positive values for cortical regions and negative values for subcortical regions. Furthermore, the combined analysis of structural and functional connectivity demonstrates that relatively more connected regions exhibit activity with high negative skewness. Overall, these results highlight the relevance of recent results emphasizing that the spatiotemporal location of the relatively large-amplitude events in the BOLD time series contains relevant information to reproduce a number of features of the brain dynamics during resting state in health and disease.
Human inferior colliculus activity relates to individual differences in spoken language learning
Chandrasekaran, Bharath; Kraus, Nina
2012-01-01
A challenge to learning words of a foreign language is encoding nonnative phonemes, a process typically attributed to cortical circuitry. Using multimodal imaging methods [functional magnetic resonance imaging-adaptation (fMRI-A) and auditory brain stem responses (ABR)], we examined the extent to which pretraining pitch encoding in the inferior colliculus (IC), a primary midbrain structure, related to individual variability in learning to successfully use nonnative pitch patterns to distinguish words in American English-speaking adults. fMRI-A indexed the efficiency of pitch representation localized to the IC, whereas ABR quantified midbrain pitch-related activity with millisecond precision. In line with neural “sharpening” models, we found that efficient IC pitch pattern representation (indexed by fMRI) related to superior neural representation of pitch patterns (indexed by ABR), and consequently more successful word learning following sound-to-meaning training. Our results establish a critical role for the IC in speech-sound representation, consistent with the established role for the IC in the representation of communication signals in other animal models. PMID:22131377
Jaakkola, Timo; Kalaja, Sami; Liukkonen, Jarmo; Jutila, Ari; Virtanen, Petri; Watt, Anthony
2009-02-01
To investigate the relations among leisure time physical activity and in sport clubs, lifestyle activities, and the locomotor, balance manipulative skills of Grade 7 students participating in Finnish physical education at a secondary school in central Finland completed self-report questionnaires on their physical activity patterns at leisure time and during sport club participation, and time spent watching television and using the computer and other electronic media. Locomotor skills were analyzed by the leaping test, balance skills by the flamingo standing test, and manipulative skills by the accuracy throwing test. Analysis indicated physical activity in sport clubs positively explained scores on balance and locomotor tests but not on accuracy of throwing. Leisure time physical activity and lifestyle activities were not statistically significant predictors of performance on any movement skill tests. Girls scored higher on the static balance skill and boys higher on the throwing task. Overall, physical activity in sport clubs was more strongly associated with performance on the fundamental movement tasks than was physical activity during leisure.
Lewis, Vernard R; Leighton, Shawn; Tabuchi, Robin; Baldwin, James A; Haverty, Michael I
2013-02-01
Acoustic emission (AE) activity patterns were measured from seven loquat [Eriobotrya japonica (Thunb.) Lindl.] logs, five containing live western drywood termite [Incisitermes minor (Hagen)] infestations, and two without an active drywood termite infestation. AE activity, as well as temperature, were monitored every 3 min under unrestricted ambient conditions in a small wooden building, under unrestricted ambient conditions but in constant darkness, or in a temperature-controlled cabined under constant darkness. Logs with active drywood termite infestations displayed similar diurnal cycles of AE activity that closely followed temperature with a peak of AE activity late in the afternoon (1700-1800 hours). When light was excluded from the building, a circadian pattern continued and apparently was driven by temperature. When the seven logs were kept at a relatively constant temperature (approximately 23 +/- 0.9 degrees C) and constant darkness, the pattern of activity was closely correlated with temperature, even with minimal changes in temperature. Temperature is the primary driver of activity of these drywood termites, but the effects are different when temperature is increasing or decreasing. At constant temperature, AE activity was highly correlated with the number of termites in the logs. The possible implications of these findings on our understanding of drywood termite biology and how this information may affect inspections and posttreatment evaluations are discussed.
ERIC Educational Resources Information Center
Keating, Xiaofen D.; Castro-Pinero, Jose; Centeio, Erin; Harrison, Louis, Jr.; Ramirez, Tere; Chen, Li
2010-01-01
This study examined student health-related fitness (HRF) knowledge and its relationship to physical activity (PA). The participants were undergraduate students from a large U.S. state university. HRF knowledge was assessed using a test consisting of 150 multiple choice items. Differences in HRF knowledge scores by sex, ethnicity, and years in…
Enders, P; Scholz, P; Muether, P S; Fauser, S
2016-08-01
PurposeTo analyze choroidal neovasularization (CNV) activity and recurrence patterns in patients with neovascular age-related macular degeneration (nAMD) treated with ranibizumab, and the correlation with individual intraocular vascular endothelial growth factor (VEGF) suppression time (VST).MethodsPost-hoc analysis of data from a prospective, non-randomized clinical study. Patients with nAMD treated with ranibizumab on a pro re nata regimen. Disease activity was analyzed monthly by spectral-domain optical coherence tomography and correlated with VSTs.ResultsOverall, 73 eyes of 73 patients were included in the study with a mean follow-up of 717 days (range: 412-1239 days). Overall, the mean CNV-activity-free interval was 76.5 days (range: 0-829 days). The individual range of the length of dry intervals was high. A total of 42% of patients had a range of more than 90 days. Overall, 16% of patients showed persistent activity. And 12% stayed dry after the initial ranibizumab treatment. No significant correlation was found between the CNV-recurrence pattern and VST (P=0.12).ConclusionsCNV activity in nAMD is irregular, which is reflected in the range of the duration of dry intervals and late recurrences. The biomarker VST solely seems not to be sufficient to explain recurrence pattern of CNV in all AMD patients.
Klokgieters, Silvia S; van Tilburg, Theo G; Deeg, Dorly J H; Huisman, Martijn
2018-01-30
Despite a large body of sociological and psychological literature suggesting that religious activities may mitigate the effects of stress, few studies have investigated the beneficial effects of religious activities among immigrants. Immigrants in particular may stand to benefit from these activities because they often report a religious affiliation and often occupy disadvantaged positions. This study investigates whether private and public religious activities reduce the negative effects of a lack of physical, social, and socio-economic resources on wellbeing among Turkish and Moroccan young-old immigrants in the Netherlands. Using data from the Longitudinal Study Amsterdam, cluster analysis revealed three patterns of absence of resources: physically disadvantaged, multiple disadvantages, and relatively advantaged. Linear regression analysis assessed associations between patterns of resources, religious activities and wellbeing. Persons who are physically disadvantaged or have multiple disadvantages have a lower level of wellbeing compared to persons who are relatively advantaged. More engagement in private religious activities was associated with higher wellbeing. Among those with multiple disadvantages, however, more engagement in private religious activities was associated with lower wellbeing. Public religious activities were not associated with wellbeing in the disadvantaged group. Private religious activities are positively related to wellbeing among Turkish and Moroccan immigrants. In situations where resources are lacking, however, the relation between private religious activities and wellbeing is negative. The study's results highlight the importance of context, disadvantage and type of religious activity for wellbeing.
Awareness Becomes Necessary Between Adaptive Pattern Coding of Open and Closed Curvatures
Sweeny, Timothy D.; Grabowecky, Marcia; Suzuki, Satoru
2012-01-01
Visual pattern processing becomes increasingly complex along the ventral pathway, from the low-level coding of local orientation in the primary visual cortex to the high-level coding of face identity in temporal visual areas. Previous research using pattern aftereffects as a psychophysical tool to measure activation of adaptive feature coding has suggested that awareness is relatively unimportant for the coding of orientation, but awareness is crucial for the coding of face identity. We investigated where along the ventral visual pathway awareness becomes crucial for pattern coding. Monoptic masking, which interferes with neural spiking activity in low-level processing while preserving awareness of the adaptor, eliminated open-curvature aftereffects but preserved closed-curvature aftereffects. In contrast, dichoptic masking, which spares spiking activity in low-level processing while wiping out awareness, preserved open-curvature aftereffects but eliminated closed-curvature aftereffects. This double dissociation suggests that adaptive coding of open and closed curvatures straddles the divide between weakly and strongly awareness-dependent pattern coding. PMID:21690314
Altered temporal patterns of anxiety in aged and amyloid precursor protein (APP) transgenic mice.
Bedrosian, Tracy A; Herring, Kamillya L; Weil, Zachary M; Nelson, Randy J
2011-07-12
Both normal aging and dementia are associated with dysregulation of the biological clock, which contributes to disrupted circadian organization of physiology and behavior. Diminished circadian organization in conjunction with the loss of cholinergic input to the cortex likely contributes to impaired cognition and behavior. One especially notable and relatively common circadian disturbance among the aged is "sundowning syndrome," which is characterized by exacerbated anxiety, agitation, locomotor activity, and delirium during the hours before bedtime. Sundowning has been reported in both dementia patients and cognitively intact elderly individuals living in institutions; however, little is known about temporal patterns in anxiety and agitation, and the neurobiological basis of these rhythms remains unspecified. In the present study, we explored the diurnal pattern of anxiety-like behavior in aged and amyloid precursor protein (APP) transgenic mice. We then attempted to treat the observed behavioral disturbances in the aged mice using chronic nightly melatonin treatment. Finally, we tested the hypothesis that time-of-day differences in acetylcholinesterase and choline acetyltransferase expression and general neuronal activation (i.e., c-Fos expression) coincide with the behavioral symptoms. Our results show a temporal pattern of anxiety-like behavior that emerges in elderly mice. This behavioral pattern coincides with elevated locomotor activity relative to adult mice near the end of the dark phase, and with time-dependent changes in basal forebrain acetylcholinesterase expression. Transgenic APP mice show a similar behavioral phenomenon that is not observed among age-matched wild-type mice. These results may have useful applications to the study and treatment of age- and dementia-related circadian behavioral disturbances, namely, sundowning syndrome.
Gao, Lin; Zhang, Tongsheng; Wang, Jue; Stephen, Julia
2014-01-01
When connectivity analysis is carried out for event related EEG and MEG, the presence of strong spatial correlations from spontaneous activity in background may mask the local neuronal evoked activity and lead to spurious connections. In this paper, we hypothesized PCA decomposition could be used to diminish the background activity and further improve the performance of connectivity analysis in event related experiments. The idea was tested using simulation, where we found that for the 306-channel Elekta Neuromag system, the first 4 PCs represent the dominant background activity, and the source connectivity pattern after preprocessing is consistent with the true connectivity pattern designed in the simulation. Improving signal to noise of the evoked responses by discarding the first few PCs demonstrates increased coherences at major physiological frequency bands when removing the first few PCs. Furthermore, the evoked information was maintained after PCA preprocessing. In conclusion, it is demonstrated that the first few PCs represent background activity, and PCA decomposition can be employed to remove it to expose the evoked activity for the channels under investigation. Therefore, PCA can be applied as a preprocessing approach to improve neuronal connectivity analysis for event related data. PMID:22918837
Gao, Lin; Zhang, Tongsheng; Wang, Jue; Stephen, Julia
2013-04-01
When connectivity analysis is carried out for event related EEG and MEG, the presence of strong spatial correlations from spontaneous activity in background may mask the local neuronal evoked activity and lead to spurious connections. In this paper, we hypothesized PCA decomposition could be used to diminish the background activity and further improve the performance of connectivity analysis in event related experiments. The idea was tested using simulation, where we found that for the 306-channel Elekta Neuromag system, the first 4 PCs represent the dominant background activity, and the source connectivity pattern after preprocessing is consistent with the true connectivity pattern designed in the simulation. Improving signal to noise of the evoked responses by discarding the first few PCs demonstrates increased coherences at major physiological frequency bands when removing the first few PCs. Furthermore, the evoked information was maintained after PCA preprocessing. In conclusion, it is demonstrated that the first few PCs represent background activity, and PCA decomposition can be employed to remove it to expose the evoked activity for the channels under investigation. Therefore, PCA can be applied as a preprocessing approach to improve neuronal connectivity analysis for event related data.
Seasonal bat activity related to insect emergence at three temperate lakes.
Salvarina, Ioanna; Gravier, Dorian; Rothhaupt, Karl-Otto
2018-04-01
Knowledge of aquatic food resources entering terrestrial systems is important for food web studies and conservation planning. Bats, among other terrestrial consumers, often profit from aquatic insect emergence and their activity might be closely related to such events. However, there is a lack of studies which monitor bat activity simultaneously with aquatic insect emergence, especially from lakes. Thus, our aim was to understand the relationship between insect emergence and bat activity, and investigate whether there is a general spatial or seasonal pattern at lakeshores. We assessed whole-night bat activity using acoustic monitoring and caught emerging and aerial flying insects at three different lakes through three seasons. We predicted that insect availability and seasonality explain the variation in bat activity, independent of the lake size and characteristics. Spatial (between lakes) differences of bat activity were stronger than temporal (seasonal) differences. Bat activity did not always correlate to insect emergence, probably because other factors, such as habitat characteristics, or bats' energy requirements, play an important role as well. Aerial flying insects explained bat activity better than the emerged aquatic insects in the lake with lowest insect emergence. Bats were active throughout the night with some activity peaks, and the pattern of their activity also differed among lakes and seasons. Lakes are important habitats for bats, as they support diverse bat communities and activity throughout the night and the year when bats are active. Our study highlights that there are spatial and temporal differences in bat activity and its hourly nocturnal pattern, that should be considered when investigating aquatic-terrestrial interactions or designing conservation and monitoring plans.
Spatiotemporal activity patterns detected from single cell measurements from behaving animals
NASA Astrophysics Data System (ADS)
Villa, Alessandro E. P.; Tetko, Igor V.
1999-03-01
Precise temporal patterning of activity within and between neurons has been predicted on theoretical grounds, and found in the spike trains of neurons recorded from anesthetized and conscious animals, in association with sensor stimuli and particular phases of task performance. However, the functional significance of such patterning in the generation of behavior has not been confirmed. We recorded from multiple single neurons in regions of rat auditory cortex during the waiting period of a Go/NoGo task. During this time the animal waited for an auditory signal with high cognitive load. Of note is the fact that neural activity during the period analyzed was essentially stationary, with no event related variability in firing. Detected patterns therefore provide a measure of brain state that could not be addressed by standard methods relying on analysis of changes in mean discharge rate. The possibility is discussed that some patterns might reflect a preset bias to a particular response, formed in the waiting period. Others patterns might reflect a state of prior preparation of appropriate neural assemblies for analyzing a signal that is expected but of unknown behavioral valence.
Lieverse, Angela R; Weber, Andrzej W; Bazaliiskiy, Vladimir Ivanovich; Goriunova, Olga Ivanovna; Savel'ev, Nikolai Aleksandrovich
2007-01-01
This examination of osteoarthritis in Siberia's Cis-Baikal region focuses on the reconstruction of mid-Holocene mobility and activity patterns with particular interest in an alleged fifth millennium BC biocultural hiatus. Five cemetery populations--two representing the pre-hiatus Kitoi culture (6800-4900 BC) and three the post-hiatus Serovo-Glaskovo (4200-1000 BC)-are considered. The objective is to investigate osteoarthritic prevalence and distribution (patterning) within and among these populations in order to reconstruct mobility and activity patterns among the Cis-Baikal foragers, and to test for possible disparities that may reflect differing adaptive strategies. The data reveal that levels of activity remained relatively constant throughout the mid-Holocene but that mobility and specific activity patterns did not. Although results are consistent with the current understanding of distinct Kitoi and Serovo-Glaskovo subsistence regimes, specifically the lower residential mobility and narrower resource base of the former, they also draw attention to adaptive characteristics shared by all occupants of the Cis-Baikal. (c) 2006 Wiley-Liss, Inc
Prelinguistic Pitch Patterns Expressing "Communication" and "Apprehension"
ERIC Educational Resources Information Center
Papaeliou, Christina F.; Trevarthen, Colwyn
2006-01-01
This study examined whether pitch patterns of prelinguistic vocalizations could discriminate between social vocalizations, uttered apparently with the intention to communicate, and "private" speech, related to solitary activities as an expression of "thinking". Four healthy ten month old English-speaking infants (2 boys and 2 girls) were…
Exercising self-control increases relative left frontal cortical activation.
Schmeichel, Brandon J; Crowell, Adrienne; Harmon-Jones, Eddie
2016-02-01
Self-control refers to the capacity to override or alter a predominant response tendency. The current experiment tested the hypothesis that exercising self-control temporarily increases approach motivation, as revealed by patterns of electrical activity in the prefrontal cortex. Participants completed a writing task that did vs did not require them to exercise self-control. Then they viewed pictures known to evoke positive, negative or neutral affect. We assessed electroencephalographic (EEG) activity while participants viewed the pictures, and participants reported their trait levels of behavioral inhibition system (BIS) and behavioral activation system (BAS) sensitivity at the end of the study. We found that exercising (vs not exercising) self-control increased relative left frontal cortical activity during picture viewing, particularly among individuals with relatively higher BAS than BIS, and particularly during positive picture viewing. A similar but weaker pattern emerged during negative picture viewing. The results suggest that exercising self-control temporarily increases approach motivation, which may help to explain the aftereffects of self-control (i.e. ego depletion). © The Author (2015). Published by Oxford University Press. For Permissions, please email: journals.permissions@oup.com.
McGowan, C. P.; Duarte, H. A.; Main, J. B.; Biewener, A. A.
2008-01-01
The goal of this study was to test whether the contractile patterns of two major hindlimb extensors of guinea fowl are altered by load-carrying exercise. We hypothesized that changes in contractile pattern, specifically a decrease in muscle shortening velocity or enhanced stretch activation, would result in a reduction in locomotor energy cost relative to the load carried. We also anticipated that changes in kinematics would reflect underlying changes in muscle strain. Oxygen consumption, muscle activation intensity, and fascicle strain rate were measured over a range of speeds while animals ran unloaded vs. when they carried a trunk load equal to 22% of their body mass. Our results showed that loading produced no significant (P > 0.05) changes in kinematic patterns at any speed. In vivo muscle contractile strain patterns in the iliotibialis lateralis pars postacetabularis and the medial head of the gastrocnemius showed a significant increase in active stretch early in stance (P < 0.01), but muscle fascicle shortening velocity was not significantly affected by load carrying. The rate of oxygen consumption increased by 17% (P < 0.01) during loaded conditions, equivalent to 77% of the relative increase in mass. Additionally, relative increases in EMG intensity (quantified as mean spike amplitude) indicated less than proportional recruitment, consistent with force enhancement via stretch activation, in the proximal iliotibialis lateralis pars postacetabularis; however, a greater than proportional increase in the medial gastrocnemius was observed. As a result, when averaged for the two muscles, EMG intensity increased in direct proportion to the fractional increase in load carried. PMID:16809624
Saverino, Cristina; Fatima, Zainab; Sarraf, Saman; Oder, Anita; Strother, Stephen C.; Grady, Cheryl L.
2016-01-01
Human aging is characterized by reductions in the ability to remember associations between items, despite intact memory for single items. Older adults also show less selectivity in task-related brain activity, such that patterns of activation become less distinct across multiple experimental tasks. This reduced selectivity, or dedifferentiation, has been found for episodic memory, which is often reduced in older adults, but not for semantic memory, which is maintained with age. We used functional magnetic resonance imaging (fMRI) to investigate whether there is a specific reduction in selectivity of brain activity during associative encoding in older adults, but not during item encoding, and whether this reduction predicts associative memory performance. Healthy young and older adults were scanned while performing an incidental-encoding task for pictures of objects and houses under item or associative instructions. An old/new recognition test was administered outside the scanner. We used agnostic canonical variates analysis and split-half resampling to detect whole brain patterns of activation that predicted item vs. associative encoding for stimuli that were later correctly recognized. Older adults had poorer memory for associations than did younger adults, whereas item memory was comparable across groups. Associative encoding trials, but not item encoding trials, were predicted less successfully in older compared to young adults, indicating less distinct patterns of associative-related activity in the older group. Importantly, higher probability of predicting associative encoding trials was related to better associative memory after accounting for age and performance on a battery of neuropsychological tests. These results provide evidence that neural distinctiveness at encoding supports associative memory and that a specific reduction of selectivity in neural recruitment underlies age differences in associative memory. PMID:27082043
Bennett, Ilana J; Rivera, Hannah G; Rypma, Bart
2013-05-15
Previous studies examining age-group differences in working memory load-related neural activity have yielded mixed results. When present, age-group differences in working memory capacity are frequently proposed to underlie these neural effects. However, direct relationships between working memory capacity and working memory load-related activity have only been observed in younger adults. These relationships remain untested in healthy aging. Therefore, the present study examined patterns of working memory load-related activity in 22 younger and 20 older adults and assessed the contribution of working memory capacity to these load-related effects. Participants performed a partial-trial delayed response item recognition task during functional magnetic resonance imaging. In this task, participants encoded either 2 or 6 letters, maintained them during a delay, and then indicated whether a probe was present in the memory set. Behavioral results revealed faster and more accurate responses to load 2 versus 6, with age-group differences in this load condition effect for the accuracy measure. Neuroimaging results revealed one region (medial superior frontal gyrus) that showed age-group differences in load-related activity during the retrieval period, with less (greater) neural activity for the low versus high load condition in younger (older) adults. Furthermore, for older adults, load-related activity did not vary as a function of working memory capacity. Thus, working memory-related activity varies with healthy aging, but these patterns are not due solely to working memory capacity. Neurocognitive aging theories that feature capacity will need to account for these results. Copyright © 2013 Elsevier Inc. All rights reserved.
Reagan, Elizabeth M; Nguyen, Robert T; Ravishankar, Shreyas T; Chabra, Vikram; Fuentes, Barbara; Spiegel, Rebecca; Parnia, Sam
2018-05-01
To date, no studies have examined real-time electroencephalography and cerebral oximetry monitoring during cardiopulmonary resuscitation as markers of the magnitude of global ischemia. We therefore sought to assess the feasibility of combining cerebral oximetry and electroencephalography in patients undergoing cardiopulmonary resuscitation and further to evaluate the electroencephalography patterns during cardiopulmonary resuscitation and their relationship with cerebral oxygenation as measured by cerebral oximetry. Extended case series of in-hospital and out-of-hospital cardiac arrest subjects. Tertiary Medical Center. Inclusion criteria: Convenience sample of 16 patients undergoing cardiopulmonary resuscitation during working hours between March 2014 and March 2015, greater than or equal to 18 years. A portable electroencephalography (Legacy; SedLine, Masimo, Irvine, CA) and cerebral oximetry (Equanox 7600; Nonin Medical, Plymouth, MN) system was used to measure cerebral resuscitation quality. Real-time regional cerebral oxygen saturation and electroencephalography readings were observed during cardiopulmonary resuscitation. The regional cerebral oxygen saturation values and electroencephalography patterns were not used to manage patients by clinical staff. In total, 428 electroencephalography images from 16 subjects were gathered; 40.7% (n = 174/428) were artifactual, therefore 59.3% (n = 254/428) were interpretable. All 16 subjects had interpretable images. Interpretable versus noninterpretable images were not related to a function of time or duration of cardiopulmonary resuscitation but to artifacts that were introduced to the raw data such as diaphoresis, muscle movement, or electrical interference. Interpretable data were able to be obtained immediately after application of the electrode strip. Seven distinct electroencephalography patterns were identified. Voltage suppression was commonest and seen during 78% of overall cardiopulmonary resuscitation time and in 15 of 16 subjects at some point during their cardiopulmonary resuscitation. Other observed patterns and their relative prevalence in relation to overall cardiopulmonary resuscitation time were theta background activity 8%, delta background activity 5%, bi frontotemporal periodic discharge 4%, burst suppression 2%, spike and wave 2%, and rhythmic delta activity 1%. Eight of 16 subjects had greater than one interpretable pattern. At regional cerebral oxygen saturation levels less than or equal to 19%, the observed electroencephalography pattern was exclusively voltage suppression. Delta background activity was only observed at regional cerebral oxygen saturation levels greater than 40%. The remaining patterns were observed throughout regional cerebral oxygen saturation categories above a threshold of 20%. Real-time monitoring of cerebral oxygenation and function during cardiac arrest resuscitation is feasible. Although voltage suppression is the commonest electroencephalography pattern, other distinct patterns exist that may correlate with the quality of cerebral resuscitation and oxygen delivery.
Anterior EEG asymmetries and opponent process theory.
Kline, John P; Blackhart, Ginette C; Williams, William C
2007-03-01
The opponent process theory of emotion [Solomon, R.L., and Corbit, J.D. (1974). An opponent-process theory of motivation: I. Temporal dynamics of affect. Psychological Review, 81, 119-143.] predicts a temporary reversal of emotional valence during the recovery from emotional stimulation. We hypothesized that this affective contrast would be apparent in asymmetrical activity patterns in the frontal lobes, and would be more apparent for left frontally active individuals. The present study tested this prediction by examining EEG asymmetries during and after blocked presentations of aversive pictures selected from the International Affective Picture System (IAPS). 12 neutral images, 12 aversive images, and 24 neutral images were presented in blocks. Participants who were right frontally active at baseline did not show changes in EEG asymmetry while viewing aversive slides or after cessation. Participants left frontally active at baseline, however, exhibited greater relative left frontal activity after aversive stimulation than before stimulation. Asymmetrical activity patterns in the frontal lobes may relate to affect regulatory processes, including contrasting opponent after-reactions to aversive stimuli.
2016-01-01
Objective: Cognitive–behavioral models of chronic fatigue syndrome (CFS) propose that patients respond to symptoms with 2 predominant activity patterns—activity limitation and all-or-nothing behaviors—both of which may contribute to illness persistence. The current study investigated whether activity patterns occurred at the same time as, or followed on from, patient symptom experience and affect. Method: Twenty-three adults with CFS were recruited from U.K. CFS services. Experience sampling methodology (ESM) was used to assess fluctuations in patient symptom experience, affect, and activity management patterns over 10 assessments per day for a total of 6 days. Assessments were conducted within patients’ daily life and were delivered through an app on touchscreen Android mobile phones. Multilevel model analyses were conducted to examine the role of self-reported patient fatigue, pain, and affect as predictors of change in activity patterns at the same and subsequent assessment. Results: Current experience of fatigue-related symptoms and pain predicted higher patient activity limitation at the current and subsequent assessments whereas subjective wellness predicted higher all-or-nothing behavior at both times. Current pain predicted less all-or-nothing behavior at the subsequent assessment. In contrast to hypotheses, current positive affect was predictive of current activity limitation whereas current negative affect was predictive of current all-or-nothing behavior. Both activity patterns varied at the momentary level. Conclusions: Patient symptom experiences appear to be driving patient activity management patterns in line with the cognitive–behavioral model of CFS. ESM offers a useful method for examining multiple interacting variables within the context of patients’ daily life. PMID:27819461
2011-01-01
Introduction It has previously been reported that local and referred pain from active myofascial trigger points (MTPs) in the neck and shoulder region contribute to fibromyalgia (FM) pain and that the pain pattern induced from active MTPs can reproduce parts of the spontaneous clinical FM pain pattern. The current study investigated whether the overall spontaneous FM pain pattern can be reproduced by local and referred pain from active MTPs located in different muscles. Methods A spontaneous pain pattern in FM was recorded in 30 FM patients and 30 healthy subjects served as controls. Local and referred pain patterns induced from active (patients) and latent (controls) MTPs were recorded following manual stimulation. The existence of MTPs was confirmed by intramuscular electromyographical registration of spontaneous electrical activity. Results Local and referred pain areas induced from key active MTPs in FM were larger than pain areas from latent MTPs in healthy controls (P < 0.001), but were similar to the overall spontaneous FM pain area in FM (P > 0.05). The induced pain area was positively associated with current spontaneous pain intensity in FM (P < 0.01). The locations of key active MTPs in FM patients were found to have latent MTPs in healthy subjects. The muscles containing key active MTPs in FM are often observed in the muscles of extensor digitorum, trapezius, infraspinatus in the upper part of the body and of quadratus lumborum, gluteus medius in the lower part of the body. Conclusions The overall spontaneous FM pain pattern can be reproduced by mechanical stimulation of active MTPs located in different muscles, suggesting that fibromyalgia pain is largely composed of pain arising from muscle pain and spasm. Targeting active MTPs and related perpetuating factors may be an important strategy in FM pain control. Trial registration ISRCTN ISRCTN43167547. PMID:21426569
Relationships between solar activity and climate change
NASA Technical Reports Server (NTRS)
Roberts, W. O.
1975-01-01
The relationship between recurrent droughts in the High Plains of the United States and the double sunspot cycle is discussed in detail. It is suggested that high solar activity is generally related to an increase in meridional circulation and blocking patterns at high and intermediate latitudes, especially in winter, and the effect is related to the sudden formation of cirrus clouds during strong geomagnetic activity that originates in the solar corpuscular emission.
Harmonic Brain Modes: A Unifying Framework for Linking Space and Time in Brain Dynamics.
Atasoy, Selen; Deco, Gustavo; Kringelbach, Morten L; Pearson, Joel
2018-06-01
A fundamental characteristic of spontaneous brain activity is coherent oscillations covering a wide range of frequencies. Interestingly, these temporal oscillations are highly correlated among spatially distributed cortical areas forming structured correlation patterns known as the resting state networks, although the brain is never truly at "rest." Here, we introduce the concept of harmonic brain modes-fundamental building blocks of complex spatiotemporal patterns of neural activity. We define these elementary harmonic brain modes as harmonic modes of structural connectivity; that is, connectome harmonics, yielding fully synchronous neural activity patterns with different frequency oscillations emerging on and constrained by the particular structure of the brain. Hence, this particular definition implicitly links the hitherto poorly understood dimensions of space and time in brain dynamics and its underlying anatomy. Further we show how harmonic brain modes can explain the relationship between neurophysiological, temporal, and network-level changes in the brain across different mental states ( wakefulness, sleep, anesthesia, psychedelic). Notably, when decoded as activation of connectome harmonics, spatial and temporal characteristics of neural activity naturally emerge from the interplay between excitation and inhibition and this critical relation fits the spatial, temporal, and neurophysiological changes associated with different mental states. Thus, the introduced framework of harmonic brain modes not only establishes a relation between the spatial structure of correlation patterns and temporal oscillations (linking space and time in brain dynamics), but also enables a new dimension of tools for understanding fundamental principles underlying brain dynamics in different states of consciousness.
Matz, Carlyn J; Stieb, David M; Davis, Karelyn; Egyed, Marika; Rose, Andreas; Chou, Benedito; Brion, Orly
2014-02-19
Estimation of population exposure is a main component of human health risk assessment for environmental contaminants. Population-level exposure assessments require time-activity pattern distributions in relation to microenvironments where people spend their time. Societal trends may have influenced time-activity patterns since previous Canadian data were collected 15 years ago. The Canadian Human Activity Pattern Survey 2 (CHAPS 2) was a national survey conducted in 2010-2011 to collect time-activity information from Canadians of all ages. Five urban and two rural locations were sampled using telephone surveys. Infants and children, key groups in risk assessment activities, were over-sampled. Survey participants (n = 5,011) provided time-activity information in 24-hour recall diaries and responded to supplemental questionnaires concerning potential exposures to specific pollutants, dwelling characteristics, and socio-economic factors. Results indicated that a majority of the time was spent indoors (88.9%), most of which was indoors at home, with limited time spent outdoors (5.8%) or in a vehicle (5.3%). Season, age, gender and rurality were significant predictors of time activity patterns. Compared to earlier data, adults reported spending more time indoors at home and adolescents reported spending less time outdoors, which could be indicative of broader societal trends. These findings have potentially important implications for assessment of exposure and risk. The CHAPS 2 data also provide much larger sample sizes to allow for improved precision and are more representative of infants, children and rural residents.
Temporal Links in Daily Activity Patterns between Coral Reef Predators and Their Prey
Bosiger, Yoland J.; McCormick, Mark I.
2014-01-01
Few studies have documented the activity patterns of both predators and their common prey over 24 h diel cycles. This study documents the temporal periodicity of two common resident predators of juvenile reef fishes, Cephalopholis cyanostigma (rockcod) and Pseudochromis fuscus (dottyback) and compares these to the activity and foraging pattern of a common prey species, juvenile Pomacentrus moluccensis (lemon damselfish). Detailed observations of activity in the field and using 24 h infrared video in the laboratory revealed that the two predators had very different activity patterns. C. cyanostigma was active over the whole 24 h period, with a peak in feeding strikes at dusk and increased activity at both dawn and dusk, while P. fuscus was not active at night and had its highest strike rates at midday. The activity and foraging pattern of P. moluccensis directly opposes that of C. cyanostigma with individuals reducing strike rate and intraspecific aggression at both dawn and dusk, and reducing distance from shelter and boldness at dusk only. Juveniles examined were just outside the size-selection window of P. fuscus. We suggest that the relatively predictable diel behaviour of coral reef predators results from physiological factors such as visual sensory abilities, circadian rhythmicity, variation in hunting profitability, and predation risk at different times of the day. Our study suggests that the diel periodicity of P. moluccensis behaviour may represent a response to increased predation risk at times when both the ability to efficiently capture food and visually detect predators is reduced. PMID:25354096
Esliger, Dale W; Sherar, Lauren B; Muhajarine, Nazeem
2012-07-26
To determine whether, and to what extent, a relation exists between neighbourhood design and children's physical activity and sedentary behaviours in Saskatoon. Three neighbourhood designs were assessed: 1) core neighbourhoods developed before 1930 that follow a grid pattern, 2) fractured-grid pattern neighbourhoods that were developed between the 1930s and mid-1960s, and 3) curvilinear-pattern neighbourhoods that were developed between the mid-1960s through to 1998. Children aged 10-14 years (N=455; mean age 11.7 years), grouped by the neighbourhoods they resided in, had their physical activity and sedentary behaviour objectively measured by accelerometry for 7 days. ANCOVA and MANCOVA (multivariate analysis of covariance) models were used to assess group differences (p<0.05). Group differences were apparent on weekdays but not on weekend days. When age, sex and family income had been controlled for, children living in fractured-grid neighbourhoods had, on average, 83 and 55 fewer accelerometer counts per minute on weekdays than the children in the core and curvilinear-pattern neighbourhoods, respectively. Further analyses showed that the children in the fractured-grid neighbourhoods accumulated 15 and 9 fewer minutes of moderate-to-vigorous physical activity per day and had a greater time spent in sedentary behaviour (23 and 17 minutes) than those in core and curvilinear-pattern neighbourhoods, respectively. These data suggest that in Saskatoon there is a relation between neighbourhood design and children's physical activity and sedentary behaviours. Further work is needed to tease out which features of the built environments have the greatest impact on these important lifestyle behaviours. This information, offered in the context of ongoing development of neighbourhoods, as we see in Saskatoon, is critical to an evidence-informed approach to urban development and planning.
Tong, Frank; Harrison, Stephenie A; Dewey, John A; Kamitani, Yukiyasu
2012-11-15
Orientation-selective responses can be decoded from fMRI activity patterns in the human visual cortex, using multivariate pattern analysis (MVPA). To what extent do these feature-selective activity patterns depend on the strength and quality of the sensory input, and might the reliability of these activity patterns be predicted by the gross amplitude of the stimulus-driven BOLD response? Observers viewed oriented gratings that varied in luminance contrast (4, 20 or 100%) or spatial frequency (0.25, 1.0 or 4.0 cpd). As predicted, activity patterns in early visual areas led to better discrimination of orientations presented at high than low contrast, with greater effects of contrast found in area V1 than in V3. A second experiment revealed generally better decoding of orientations at low or moderate as compared to high spatial frequencies. Interestingly however, V1 exhibited a relative advantage at discriminating high spatial frequency orientations, consistent with the finer scale of representation in the primary visual cortex. In both experiments, the reliability of these orientation-selective activity patterns was well predicted by the average BOLD amplitude in each region of interest, as indicated by correlation analyses, as well as decoding applied to a simple model of voxel responses to simulated orientation columns. Moreover, individual differences in decoding accuracy could be predicted by the signal-to-noise ratio of an individual's BOLD response. Our results indicate that decoding accuracy can be well predicted by incorporating the amplitude of the BOLD response into simple simulation models of cortical selectivity; such models could prove useful in future applications of fMRI pattern classification. Copyright © 2012 Elsevier Inc. All rights reserved.
Tong, Frank; Harrison, Stephenie A.; Dewey, John A.; Kamitani, Yukiyasu
2012-01-01
Orientation-selective responses can be decoded from fMRI activity patterns in the human visual cortex, using multivariate pattern analysis (MVPA). To what extent do these feature-selective activity patterns depend on the strength and quality of the sensory input, and might the reliability of these activity patterns be predicted by the gross amplitude of the stimulus-driven BOLD response? Observers viewed oriented gratings that varied in luminance contrast (4, 20 or 100%) or spatial frequency (0.25, 1.0 or 4.0 cpd). As predicted, activity patterns in early visual areas led to better discrimination of orientations presented at high than low contrast, with greater effects of contrast found in area V1 than in V3. A second experiment revealed generally better decoding of orientations at low or moderate as compared to high spatial frequencies. Interestingly however, V1 exhibited a relative advantage at discriminating high spatial frequency orientations, consistent with the finer scale of representation in the primary visual cortex. In both experiments, the reliability of these orientation-selective activity patterns was well predicted by the average BOLD amplitude in each region of interest, as indicated by correlation analyses, as well as decoding applied to a simple model of voxel responses to simulated orientation columns. Moreover, individual differences in decoding accuracy could be predicted by the signal-to-noise ratio of an individual's BOLD response. Our results indicate that decoding accuracy can be well predicted by incorporating the amplitude of the BOLD response into simple simulation models of cortical selectivity; such models could prove useful in future applications of fMRI pattern classification. PMID:22917989
Long-Term Norms and Cognitive Structures as Shapers of Television Viewer Activity.
ERIC Educational Resources Information Center
Thompson, Margaret; And Others
1991-01-01
Describes a study of high school students that examined responses to a music video dealing with teenage pregnancy. Students' motivations for viewing music videos, experiences with sex and pregnancy, and family communication patterns are related to the cognitive activities of thinking about the video content and relating it to their own lives. (20…
What to Do with 15 Years of Injury Data from a College Guide Training Diploma Program?
ERIC Educational Resources Information Center
Jackson, Jeff S.
2017-01-01
The outdoor leadership field is maturing in its understanding of activity safety and objective measures of risk exposure. Patterns of injury, relative exposure between related activities, and risk profiles per user group are only just beginning to accumulate academic findings from which a collective understanding of managing adventure-based risk…
Wang, Xun-Heng; Li, Lihua; Xu, Tao; Ding, Zhongxiang
2015-01-01
The brain active patterns were organized differently under resting states of eyes open (EO) and eyes closed (EC). The altered voxel-wise and regional-wise resting state active patterns under EO/EC were found by static analysis. More importantly, dynamical spontaneous functional connectivity has been observed in the resting brain. To the best of our knowledge, the dynamical mechanisms of intrinsic connectivity networks (ICNs) under EO/EC remain largely unexplored. The goals of this paper were twofold: 1) investigating the dynamical intra-ICN and inter-ICN temporal patterns during resting state; 2) analyzing the altered dynamical temporal patterns of ICNs under EO/EC. To this end, a cohort of healthy subjects with scan conditions of EO/EC were recruited from 1000 Functional Connectomes Project. Through Hilbert transform, time-varying phase synchronization (PS) was applied to evaluate the inter-ICN synchrony. Meanwhile, time-varying amplitude was analyzed as dynamical intra-ICN temporal patterns. The results found six micro-states of inter-ICN synchrony. The medial visual network (MVN) showed decreased intra-ICN amplitude during EC relative to EO. The sensory-motor network (SMN) and auditory network (AN) exhibited enhanced intra-ICN amplitude during EC relative to EO. Altered inter-ICN PS was found between certain ICNs. Particularly, the SMN and AN exhibited enhanced PS to other ICNs during EC relative to EO. In addition, the intra-ICN amplitude might influence the inter-ICN synchrony. Moreover, default mode network (DMN) might play an important role in information processing during EO/EC. Together, the dynamical temporal patterns within and between ICNs were altered during different scan conditions of EO/EC. Overall, the dynamical intra-ICN and inter-ICN temporal patterns could benefit resting state fMRI-related research, and could be potential biomarkers for human functional connectome. PMID:26469182
Donovan, Edward R; Keeney, Brooke K; Kung, Eric; Makan, Sirish; Wild, J Martin; Altshuler, Douglas L
2013-01-01
Flying animals exhibit profound transformations in anatomy, physiology, and neural architecture. Although much is known about adaptations in the avian skeleton and musculature, less is known about neuroanatomy and motor unit integration for bird flight. Hummingbirds are among the most maneuverable and specialized of vertebrate fliers, and two unusual neuromuscular features have been previously reported: (1) the pectoralis major has a unique distribution pattern of motor end plates (MEPs) compared with all other birds and (2) electromyograms (EMGs) from the hummingbird's pectoral muscles, the pectoralis major and the supracoracoideus, show activation bursts composed of one or a few spikes that appear to have a very consistent pattern. Here, we place these findings in a broader context by comparing the MEPs, EMGs, and organization of the spinal motor neuron pools of flight muscles of Anna's hummingbird Calypte anna, zebra finches Taeniopygia guttata, and, for MEPs, several other species. The previously shown MEP pattern of the hummingbird pectoralis major is not shared with its closest taxonomic relative, the swift, and appears to be unique to hummingbirds. MEP arrangements in previously undocumented wing muscles show patterns that differ somewhat from other avian muscles. In the parallel-fibered strap muscles of the shoulder, MEP patterns appear to relate to muscle length, with the smallest muscles having fibers that span the entire muscle. MEP patterns in pennate distal wing muscles were the same regardless of size, with tightly clustered bands in the middle portion of the muscle, not evenly distributed bands over the muscle's entire length. Muscle activations were examined during slow forward flight in both species, during hovering in hummingbirds, and during slow ascents in zebra finches. The EMG bursts of a wing muscle, the pronator superficialis, were highly variable in peak number, size, and distribution across wingbeats for both species. In the pectoralis major, although the individual EMG bursts were much shorter in duration in hummingbirds relative to zebra finches, the variables describing the normalized amplitude and area of the activation bursts were otherwise indistinguishable between taxa during these flight modes. However, the degree of variation in the time intervals between EMG peaks was much lower in hummingbirds, which is a plausible explanation for the "patterned" EMG signals reported previously.
NASA Astrophysics Data System (ADS)
Kim, H.; Ho, C.; Kim, J.
2008-12-01
This study presents the pattern classification of tropical cyclone (TC) tracks over the western North Pacific (WNP) basin during the typhoon season (June through October) for 1965-2006 (total 42 years) using a fuzzy clustering method. After the fuzzy c-mean clustering algorithm to the TC trajectory interpolated into 20 segments of equivalent length, we divided the whole tracks into 7 patterns. The optimal number of the fuzzy cluster is determined by several validity measures. The classified TC track patterns represent quite different features in the recurving latitudes, genesis locations, and geographical pathways: TCs mainly forming in east-northern part of the WNP and striking Korean and Japan (C1); mainly forming in west-southern part of the WNP, traveling long pathway, and partly striking Japan (C2); mainly striking Taiwan and East China (C3); traveling near the east coast of Japan (C4); traveling the distant ocean east of Japan (C5); moving toward South China and Vietnam straightly (C6); and forming in the South China Sea (C7). Atmospheric environments related to each cluster show physically consistent with each TC track patterns. The straight track pattern is closely linked to a developed anticyclonic circulation to the north of the TC. It implies that this ridge acts as a steering flow forcing TCs to move to the northwest with a more west-oriented track. By contrast, recurving patterns occur commonly under the influence of the strong anomalous westerlies over the TC pathway but there definitely exist characteristic anomalous circulations over the mid- latitudes by pattern. Some clusters are closely related to the well-known large-scale phenomena. The C1 and C2 are highly related to the ENSO phase: The TCs in the C1 (C2) is more active during La Niña (El Niño). The TC activity in the C3 is associated with the WNP summer monsoon. The TCs in the C4 is more (less) vigorous during the easterly (westerly) phase of the stratospheric quasi-biennial oscillation. This study may be applied to the statistical-dynamic long-range forecast model of TC activity as well as the diagnostic study of TC activity.
Oscillatory Dynamics Related to the Unagreement Pattern in Spanish
ERIC Educational Resources Information Center
Perez, Alejandro; Molinaro, Nicola; Mancini, Simona; Barraza, Paulo; Carreiras, Manuel
2012-01-01
Unagreement patterns consist in a person feature mismatch between subject and verb that is nonetheless grammatical in Spanish. The processing of this type of construction gives new insights into the understanding of agreement processes during language comprehension. Here, we contrasted oscillatory brain activity triggered by Unagreement in…
Effects of musical training on sound pattern processing in high-school students.
Wang, Wenjung; Staffaroni, Laura; Reid, Errold; Steinschneider, Mitchell; Sussman, Elyse
2009-05-01
Recognizing melody in music involves detection of both the pitch intervals and the silence between sequentially presented sounds. This study tested the hypothesis that active musical training in adolescents facilitates the ability to passively detect sequential sound patterns compared to musically non-trained age-matched peers. Twenty adolescents, aged 15-18 years, were divided into groups according to their musical training and current experience. A fixed order tone pattern was presented at various stimulus rates while electroencephalogram was recorded. The influence of musical training on passive auditory processing of the sound patterns was assessed using components of event-related brain potentials (ERPs). The mismatch negativity (MMN) ERP component was elicited in different stimulus onset asynchrony (SOA) conditions in non-musicians than musicians, indicating that musically active adolescents were able to detect sound patterns across longer time intervals than age-matched peers. Musical training facilitates detection of auditory patterns, allowing the ability to automatically recognize sequential sound patterns over longer time periods than non-musical counterparts.
Stieglitz, Jonathan; Trumble, Benjamin C; Kaplan, Hillard; Gurven, Michael
2017-07-01
Modern humans may have gracile skeletons due to low physical activity levels and mechanical loading. Tests using pre-historic skeletons are limited by the inability to assess behavior directly, while modern industrialized societies possess few socio-ecological features typical of human evolutionary history. Among Tsimane forager-horticulturalists, we test whether greater activity levels and, thus, increased loading earlier in life are associated with greater later-life bone status and diminished age-related bone loss. We used quantitative ultrasonography to assess radial and tibial status among adults aged 20+ years (mean ± SD age = 49 ± 15; 52% female). We conducted systematic behavioral observations to assess earlier-life activity patterns (mean time lag between behavioural observation and ultrasound = 12 years). For a subset of participants, physical activity was again measured later in life, via accelerometry, to determine whether earlier-life time use is associated with later-life activity levels. Anthropometric and demographic data were collected during medical exams. Structural decline with age is reduced for the tibia (female: -0.25 SDs/decade; male: 0.05 SDs/decade) versus radius (female: -0.56 SDs/decade; male: -0.20 SDs/decade), which is expected if greater loading mitigates bone loss. Time allocation to horticulture, but not hunting, positively predicts later-life radial status (β Horticulture = 0.48, p = 0.01), whereas tibial status is not significantly predicted by subsistence or sedentary leisure participation. Patterns of activity- and age-related change in bone status indicate localized osteogenic responses to loading, and are generally consistent with the logic of bone functional adaptation. Nonmechanical factors related to subsistence lifestyle moderate the association between activity patterns and bone structure. © 2017 Wiley Periodicals, Inc.
The influence of sleep and activity patterns on fatigue in women with HIV/AIDS.
Lee, K A; Portillo, C J; Miramontes, H
2001-01-01
The cause of HIV-related fatigue is most likely multifactorial. When presented as a chief complaint, clinicians often include an assessment of stress level, depression, anemia, infection, and amount of sleep and activity. The empirical bases for these evaluations vary in their validity and implementation in clinical practice, but the basis for evaluating adequate amounts of sleep and activity currently lacks empirical research. The purpose of this study was to describe HIV seropositive women's sleep and activity patterns related to their fatigue experience. Sleep and activity were assessed with wrist actigraphy to obtain objective measures of total sleep time, number of awakenings, and sleep efficiency, as well as level of daytime activity, 24-hour activity rhythm, and naps. This sample of 100 women with HIV/AIDS averaged only 6.5 hours of sleep at night, and 45% of the sample napped. CD4 cell counts were unrelated to sleep and fatigue measures. Compared to the low-fatigue group, the women with high fatigue had significantly more difficulty falling asleep, more awakenings from nighttime sleep, poorer daytime functioning, and a higher frequency of depressive symptoms. Findings from this study provide clinicians with empirically based support for detailed clinical evaluations of sleep and activity patterns, as well as anxiety and depression, in clients who complain of fatigue. Findings also provide data for potential interventions to improve sleep and activity in persons living with HIV/AIDS and to reduce fatigue and depressive symptoms.
Lyu, Shurong; Su, Jian; Xiang, Quanyong; Wu, Ming
2014-08-01
Our study aims to explore the association between dietary patterns and physical activity levels (PAL) with a triglyceride-to-high-density lipoprotein cholesterol (TG/HDL-C) ratio, and to examine whether the association is sex dependent among Chinese adults. In this cross-sectional study, data were collected through questionnaires, anthropometric measurement, and biochemical tests. Four food patterns ("meat," "healthy," "high-energy," and "traditional Chinese") were established through factor analysis. Physical activity level was categorized as "active," "moderate," and "inactive." Logistic regression models were used to determine the associations between food patterns and PAL with TG/HDL-C ratio. Compared with quartile 1, quartiles 2 and 3 of meat pattern among men were found to be associated with lower risk of high TG/HDL-C ratio (the highest quartile of TG/HDL-C ratio). Similar decreased risk of high TG/HDL-C ratio was also observed in the highest quartile 4 of healthy pattern among women. Active PAL was protective against high TG/HDL-C ratio among both men (odds ratio [OR], 0.69; 95% confidence interval [CI], 0.55-0.86) and women (OR, 0.77; 95% CI, 0.62-0.96). Although no statistically significant interaction was observed, we found that individuals with active PAL and low healthy diet had a similar OR with those with inactive PAL and high healthy diet (0.62 vs 0.68). In conclusion, dietary patterns were associated with TG/HDL-C ratio in a sex-specific way, and active PAL was consistently related to decreased risk of high TG/HDL-C ratio across genders. Copyright © 2014 Elsevier Inc. All rights reserved.
ERIC Educational Resources Information Center
Miller, Wayne C.; Hering, Michelle; Cothran, Carrie; Croteau, Kim; Dunlap, Rebecca
2012-01-01
Objective: Examine after-school activity patterns, eating behaviors, and social environment of overweight and normal weight middle school students. Design: Eating and physical activity behaviors of 141 students, ages 10-14, were monitored. Students completed a diary documenting type of activity, location, adult supervision, accompanying…
Summer precipitation variability over South America on long and short intraseasonal timescales
NASA Astrophysics Data System (ADS)
Gonzalez, Paula L. M.; Vera, Carolina S.
2014-10-01
A dipole pattern in convection between the South Atlantic convergence zone and the subtropical plains of southeastern South America characterizes summer intraseasonal variability over the region. The dipole pattern presents two main bands of temporal variability, with periods between 10 and 30 days, and 30 and 90 days; each influenced by different large-scale dynamical forcings. The dipole activity on the 30-90-day band is related to an eastward traveling wavenumber-1 structure in both OLR and circulation anomalies in the tropics, similar to that associated with the Madden-Julian oscillation. The dipole is also related to a teleconnection pattern extended along the South Pacific between Australia and South America. Conversely, the dipole activity on the 10-30-day band does not seem to be associated with tropical convection anomalies. The corresponding circulation anomalies exhibit, in the extratropics, the structure of Rossby-like wave trains, although their sources are not completely clear.
A Recommendation System to Facilitate Business Process Modeling.
Deng, Shuiguang; Wang, Dongjing; Li, Ying; Cao, Bin; Yin, Jianwei; Wu, Zhaohui; Zhou, Mengchu
2017-06-01
This paper presents a system that utilizes process recommendation technology to help design new business processes from scratch in an efficient and accurate way. The proposed system consists of two phases: 1) offline mining and 2) online recommendation. At the first phase, it mines relations among activity nodes from existing processes in repository, and then stores the extracted relations as patterns in a database. At the second phase, it compares the new process under construction with the premined patterns, and recommends proper activity nodes of the most matching patterns to help build a new process. Specifically, there are three different online recommendation strategies in this system. Experiments on both real and synthetic datasets are conducted to compare the proposed approaches with the other state-of-the-art ones, and the results show that the proposed approaches outperform them in terms of accuracy and efficiency.
Great apes and children infer causal relations from patterns of variation and covariation.
Völter, Christoph J; Sentís, Inés; Call, Josep
2016-10-01
We investigated whether nonhuman great apes (N=23), 2.5-year-old (N=20), and 3-year-old children (N=40) infer causal relations from patterns of variation and covariation by adapting the blicket detector paradigm for apes. We presented chimpanzees (Pan troglodytes), bonobos (Pan paniscus), orangutans (Pongo abelii), gorillas (Gorilla gorilla), and children (Homo sapiens) with a novel reward dispenser, the blicket detector. The detector was activated by inserting specific (yet randomly determined) objects, the so-called blickets. Once activated a reward was released, accompanied by lights and a short tone. Participants were shown different patterns of variation and covariation between two different objects and the activation of the detector. When subsequently choosing between one of the two objects to activate the detector on their own all species, except gorillas (who failed the training), took these patterns of correlation into account. In particular, apes and 2.5-year-old children ignored objects whose effect on the detector completely depended on the presence of another object. Follow-up experiments explored whether the apes and children were also able to re-evaluate evidence retrospectively. Only children (3-year-olds in particular) were able to make such retrospective inferences about causal structures from observing the effects of the experimenter's actions. Apes succeeded here only when they observed the effects of their own interventions. Together, this study provides evidence that apes, like young children, accurately infer causal structures from patterns of (co)variation and that they use this information to inform their own interventions. Copyright © 2016 Elsevier B.V. All rights reserved.
Scholten, Derek; Saunders, Andrea; Dawson, Kathryn; Wong, Thomas; Ellis, Edward
2010-03-01
Investigations related to tuberculosis (TB) cases on airline flights have received increased attention in recent years. In Canada, reports of air travel by individuals with active TB are sent to the Public Health Agency of Canada (PHAC) for public health risk assessment and contact follow-up. A descriptive analysis was conducted to examine reporting patterns over time. Reports of air travel by individuals with active TB received by PHAC between January 2006 and December 2008 were reviewed. Descriptive analyses were performed on variables related to reporting patterns, characteristics and actions taken. The number of reports increased each year with 18, 35 and 51 reports received in 2006, 2007 and 2008, respectively. Of the 104 total cases, most were male (63%) and born outside of Canada (87%). Ninety-eight cases (97%) met the criteria for infectiousness and a contact investigation was initiated for 136 flights. Reports of air travel by individuals with active TB have been increasing annually in Canada in recent years. Outcomes of the subsequent contact investigations, including passenger follow-up results and evidence of TB transmission, is necessary to further evaluate the effectiveness of the Canadian guidelines.
Sylos-Labini, F.; Magnani, S.; Cappellini, G.; La Scaleia, V.; Fabiano, A.; Picone, S.; Paolillo, P.; Di Paolo, A.; Lacquaniti, F.; Ivanenko, Y.
2017-01-01
Stepping on ground can be evoked in human neonates, though it is rather irregular and stereotyped heel-to-toe roll-over pattern is lacking. Such investigations can provide insights into the role of contact- or load-related proprioceptive feedback during early development of locomotion. However, the detailed characteristics of foot placements and their association with motor patterns are still incompletely documented. We elicited stepping in 33 neonates supported on a table. Unilateral limb kinematics, bilateral plantar pressure distribution and EMG activity from up to 11 ipsilateral leg muscles were recorded. Foot placement characteristics in neonates showed a wide variation. In ~25% of steps, the swinging foot stepped onto the contralateral foot due to generally small step width. In the remaining steps with separate foot placements, the stance phase could start with forefoot (28%), midfoot (47%), or heel (25%) touchdowns. Despite forefoot or heel initial contacts, the kinematic and loading patterns markedly differed relatively to toe-walking or adult-like two-peaked vertical force profile. Furthermore, while the general stepping parameters (cycle duration, step length, range of motion of proximal joints) were similar, the initial foot contact was consistently associated with specific center-of-pressure excursion, range of motion in the ankle joint, and the center-of-activity of extensor muscles (being shifted by ~5% of cycle toward the end of stance in the “heel” relative to “forefoot” condition). In sum, we found a variety of footfall patterns in conjunction with associated changes in motor patterns. These findings suggest the potential contribution of load-related proprioceptive feedback and/or the expression of variations in the locomotor program already during early manifestations of stepping on ground in human babies. PMID:29066982
Pöttker, Bruno; Stöber, Franziska; Hummel, Regina; Angenstein, Frank; Radyushkin, Konstantin; Goldschmidt, Jürgen; Schäfer, Michael K E
2017-12-01
Traumatic brain injury (TBI) is a leading cause of disability and death and survivors often suffer from long-lasting motor impairment, cognitive deficits, anxiety disorders and epilepsy. Few experimental studies have investigated long-term sequelae after TBI and relations between behavioral changes and neural activity patterns remain elusive. We examined these issues in a murine model of TBI combining histology, behavioral analyses and single-photon emission computed tomography (SPECT) imaging of regional cerebral blood flow (CBF) as a proxy for neural activity. Adult C57Bl/6N mice were subjected to unilateral cortical impact injury and investigated at early (15-57 days after lesion, dal) and late (184-225 dal) post-traumatic time points. TBI caused pronounced tissue loss of the parietal cortex and subcortical structures and enduring neurological deficits. Marked perilesional astro- and microgliosis was found at 57 dal and declined at 225 dal. Motor and gait pattern deficits occurred at early time points after TBI and improved over the time. In contrast, impaired performance in the Morris water maze test and decreased anxiety-like behavior persisted together with an increased susceptibility to pentylenetetrazole-induced seizures suggesting alterations in neural activity patterns. Accordingly, SPECT imaging of CBF indicated asymmetric hemispheric baseline neural activity patterns. In the ipsilateral hemisphere, increased baseline neural activity was found in the amygdala. In the contralateral hemisphere, homotopic to the structural brain damage, the hippocampus and distinct cortex regions displayed increased baseline neural activity. Thus, regionally elevated CBF along with behavioral alterations indicate that increased neural activity is critically involved in the long-lasting consequences of TBI.
Goldwyn, Joshua H.; Bierer, Steven M.; Bierer, Julie A.
2010-01-01
The partial tripolar electrode configuration is a relatively novel stimulation strategies that can generate more spatially focused electric fields than the commonly used monopolar configuration. Focused stimulation strategies should improve spectral resolution in cochlear implant users, but may also be more sensitive to local irregularities in the electrode-neuron interface. In this study, we develop a practical computer model of cochlear implant stimulation that can simulate neural activation in a simplified cochlear geometry and we relate the resulting patterns of neural activity to basic psychophysical measures. We examine how two types of local irregularities in the electrode-neuron interface, variations in spiral ganglion nerve density and electrode position within the scala tympani, affect the simulated neural activation patterns and how these patterns change with electrode configuration. The model shows that higher partial tripolar fractions activate more spatially restricted populations of neurons at all current levels and require higher current levels to excite a given number of neurons. We find that threshold levels are more sensitive at high partial tripolar fractions to both types of irregularities, but these effects are not independent. In particular, at close electrode-neuron distances, activation is typically more spatially localized which leads to a greater influence of neural dead regions. PMID:20580801
Johnson, Brett A.; Ong, Joan; Leon, Michael
2014-01-01
To determine how responses evoked by natural odorant mixtures compare to responses evoked by individual odorant chemicals, we mapped 2-deoxyglucose uptake during exposures to vapors arising from a variety of odor objects that may be important to rodents in the wild. We studied 21 distinct natural odor stimuli ranging from possible food sources such as fruits, vegetables, and meats to environmental odor objects such as grass, herbs, and tree leaves. The natural odor objects evoked robust and surprisingly focal patterns of 2-deoxyglucose uptake involving clusters of neighboring glomeruli, thereby resembling patterns evoked by pure chemicals. Overall, the patterns were significantly related to patterns evoked by monomolecular odorant components that had been studied previously. Object patterns also were significantly related to the molecular features present in the mixture components. Despite these overall relationships, there were individual examples of object patterns that were simpler than might have been predicted given the multiplicity of components present in the vapors. In these cases, the object patterns lacked certain responses evoked by their major odorant mixture components. These data suggest the possibility of mixture response interactions and provide a foundation for understanding the neural coding of natural odor stimuli. PMID:20187145
Hofmann, Gabriel Selbach; Coelho, Igor Pfeifer; Bastazini, Vinicius Augusto Galvão; Cordeiro, José Luís Passos; de Oliveira, Luiz Flamarion Barbosa
2016-03-01
We evaluated the effects of climate seasonality from a thermal and water availability perspective on the activity patterns and resource use of Pecari tajacu and Tayassu pecari during wet and dry seasons in the northeastern Brazilian Pantanal. We used camera traps and temperature sensors to record species activity patterns in relation to temperature, established five habitat categories based on flooding intensity and local vegetation characteristics, assessed the activity patterns of each species in dry and wet periods and in artificial water bodies using circular statistical metrics, and calculated niche amplitude and overlap on three axes (temperature, time, and habitat) in both periods. Peccaries shared a strong resemblance in resource use and in their responses to seasonal variations in the tested gradients. The activity patterns of both species exhibited a significant correlation with air temperature on all the evaluated measures, and both species strongly reduced their activity when the air temperature exceeded 35 °C. High temperatures associated with low water availability were most likely responsible for the changes in species activity patterns, which resulted in an increased temporal overlap in habitat use throughout the dry season. However, the peccaries avoided intensively flooded habitats; therefore, the habitat gradient overlap was greater during the wet period. Our results show that an increase in niche overlap on the environmental gradient as a result of climatic seasonality may be partially compensated by a reduction in other niche dimensions. In this case, temporal partitioning appears to be an important, viable mechanism to reduce competition by potentially competing species.
Takehara-Nishiuchi, Kaori; Insel, Nathan; Hoang, Lan T; Wagner, Zachary; Olson, Kathy; Chawla, Monica K; Burke, Sara N; Barnes, Carol A
2013-09-01
Previous work suggests that activation patterns of neurons in superficial layers of the neocortex are more sensitive to spatial context than activation patterns in deep cortical layers. A possible source of this laminar difference is the distribution of contextual information to the superficial cortical layers carried by hippocampal efferents that travel through the entorhinal cortex and subiculum. To evaluate the role that the hippocampus plays in determining context sensitivity in superficial cortical layers, behavior-induced expression of the immediate early gene Arc was examined in hippocampus-lesioned and control rats after exposing them to 2 distinct contexts. Contrary to expectations, hippocampal lesions had no observable effect on Arc expression in any neocortical layer relative to controls. Furthermore, another group of intact animals was exposed to the same environment twice, to determine the reliability of Arc-expression patterns across identical contextual and behavioral episodes. Although this condition included no difference in external input between 2 epochs, the significant layer differences in Arc expression still remained. Thus, laminar differences in activation or plasticity patterns are not likely to arise from hippocampal sources or differences in external inputs, but are more likely to be an intrinsic property of the neocortex.
Wimmer, Klaus; Ramon, Marc; Pasternak, Tatiana; Compte, Albert
2016-01-13
Neuronal activity in the lateral prefrontal cortex (LPFC) reflects the structure and cognitive demands of memory-guided sensory discrimination tasks. However, we still do not know how neuronal activity articulates in network states involved in perceiving, remembering, and comparing sensory information during such tasks. Oscillations in local field potentials (LFPs) provide fingerprints of such network dynamics. Here, we examined LFPs recorded from LPFC of macaques while they compared the directions or the speeds of two moving random-dot patterns, S1 and S2, separated by a delay. LFP activity in the theta, beta, and gamma bands tracked consecutive components of the task. In response to motion stimuli, LFP theta and gamma power increased, and beta power decreased, but showed only weak motion selectivity. In the delay, LFP beta power modulation anticipated the onset of S2 and encoded the task-relevant S1 feature, suggesting network dynamics associated with memory maintenance. After S2 onset the difference between the current stimulus S2 and the remembered S1 was strongly reflected in broadband LFP activity, with an early sensory-related component proportional to stimulus difference and a later choice-related component reflecting the behavioral decision buildup. Our results demonstrate that individual LFP bands reflect both sensory and cognitive processes engaged independently during different stages of the task. This activation pattern suggests that during elementary cognitive tasks, the prefrontal network transitions dynamically between states and that these transitions are characterized by the conjunction of LFP rhythms rather than by single LFP bands. Neurons in the brain communicate through electrical impulses and coordinate this activity in ensembles that pulsate rhythmically, very much like musical instruments in an orchestra. These rhythms change with "brain state," from sleep to waking, but also signal with different oscillation frequencies rapid changes between sensory and cognitive processing. Here, we studied rhythmic electrical activity in the monkey prefrontal cortex, an area implicated in working memory, decision making, and executive control. Monkeys had to identify and remember a visual motion pattern and compare it to a second pattern. We found orderly transitions between rhythmic activity where the same frequency channels were active in all ongoing prefrontal computations. This supports prefrontal circuit dynamics that transitions rapidly between complex rhythmic patterns during structured cognitive tasks. Copyright © 2016 the authors 0270-6474/16/360489-17$15.00/0.
Circadian Activity Rhythms, Time Urgency, and Achievement Concerns.
ERIC Educational Resources Information Center
Watts, Barbara L.
Many physiological and psychological processes fluctuate throughout the day in fairly stable, rhythmic patterns. The relationship between individual differences in circadian activity rhythms and a sense of time urgency were explored as well as a number of achievement-related variables. Undergraduates (N=308), whose circadian activity rhythms were…
Cultured Neuronal Networks Express Complex Patterns of Activity and Morphological Memory
NASA Astrophysics Data System (ADS)
Raichman, Nadav; Rubinsky, Liel; Shein, Mark; Baruchi, Itay; Volman, Vladislav; Ben-Jacob, Eshel
The following sections are included: * Cultured Neuronal Networks * Recording the Network Activity * Network Engineering * The Formation of Synchronized Bursting Events * The Characterization of the SBEs * Highly-Active Neurons * Function-Form Relations in Cultured Networks * Analyzing the SBEs Motifs * Network Repertoire * Network under Hypothermia * Summary * Acknowledgments * References
Distant Interactions and Their Effects on Children's Physical Activity Levels
ERIC Educational Resources Information Center
Patterson, Debra L.; van der Mars, Hans
2008-01-01
Background: It has been observed that physical activity patterns of health-related behavior are established in childhood and may continue into adulthood. Recent findings showing a relationship between the onset of chronic diseases and sedentary lifestyles support the importance of examining Moderate to Vigorous Physical Activity (MVPA). One…
Kim, Kyung Hwan; Kim, Ja Hyun
2006-02-20
The aim of this study was to compare spatiotemporal cortical activation patterns during the visual perception of Korean, English, and Chinese words. The comparison of these three languages offers an opportunity to study the effect of written forms on cortical processing of visually presented words, because of partial similarity/difference among words of these languages, and the familiarity of native Koreans with these three languages at the word level. Single-character words and pictograms were excluded from the stimuli in order to activate neuronal circuitries that are involved only in word perception. Since a variety of cerebral processes are sequentially evoked during visual word perception, a high-temporal resolution is required and thus we utilized event-related potential (ERP) obtained from high-density electroencephalograms. The differences and similarities observed from statistical analyses of ERP amplitudes, the correlation between ERP amplitudes and response times, and the patterns of current source density, appear to be in line with demands of visual and semantic analysis resulting from the characteristics of each language, and the expected task difficulties for native Korean subjects.
Farrokhi, Shawn; Chen, Yi-Fan; Piva, Sara R.; Fitzgerald, G. Kelley; Jeong, Jong-Hyeon; Kwoh, C. Kent
2015-01-01
Objective To evaluate whether knee pain location can influence symptoms, functional status and knee-related quality of life in older adults with chronic knee pain. Methods A total of 2959 painful knees from the Osteoarthritis Initiative database were analyzed. Trained interviewers recorded patient-reported location of knee pain. Painful knees were divided into three groups of patellofemoral only pain, tibiofemoral only pain, and combined pain. Self-reported knee-specific symptoms, functional status and knee-related quality of life were assessed using the Knee Injury and Osteoarthritis Outcome Score (KOOS). Results The most common knee pain pattern was tibiofemoral only pain (62%), followed by patellofemoral only pain (23%) and combined pain (15%). The combined pain pattern was associated with greater odds of reporting pain, symptoms, sports or recreational activity limitations and lower knee-related quality of life compared to either isolated knee pain patterns, after adjusting for demographics and radiographic disease severity. Individual item analysis further revealed that patients with combined pain had greater odds of reporting difficulty with daily weightbearing activities that required knee bending compared to tibiofemoral or patellofemoral only pain patterns. Furthermore, symptoms, functional status, and knee-related quality of life were comparable between patients with patellofemoral and tibiofemoral only pain patterns, after adjusting for demographics and radiographic disease severity. Discussion Combined patellofemoral and tibiofemoral pain is associated with poorer clinical presentation compared to isolated knee pain from either location. Additionally, patellofemoral pain in isolation may be as important as tibiofemoral pain in causing symptoms and functional limitation in older adults with chronic knee pain. PMID:26308705
Gestational exposure to perfluorooctanoic acid (PFOA): alterations in motor related behaviors
Goulding, David R.; White, Sally S.; McBride, Sandra J.; Fenton, Suzanne E.; Harry, G. Jean
2016-01-01
Perfluoroalkyl and polyfluoroalkyl substances are used in commercial applications and developmental exposure has been implicated in alterations in neurobehavioral functioning. While associations between developmental perfluorooctanoic acid (PFOA) exposure and human outcomes have been inconsistent, studies in experimental animals suggest alterations in motor related behaviors. To examine a dose-response pattern of neurobehavioral effects following gestational exposure to PFOA, pregnant CD-1 mice received PFOA (0, 0.1, 0.3, 1.0 mg/kg/day) via oral gavage from gestational day 1–17 and the male offspring examined. Motor activity assessments on postnatal day (PND)18, 19, and 20 indicated a shift in the developmental pattern with an elevated activity level observed in the 1.0 mg/kg/day dose group on PND18. In the adult, no alterations were observed in body weights, activity levels, diurnal pattern of running wheel activity, startle response, or pre-pulse startle inhibition. In response to a subcutaneous injection of saline or nicotine (80 µg/kg), all animals displayed a transient increase in activity likely associated with handling with no differences observed across dose groups. Inhibition of motor activity over 18 days of 400µg/kg nicotine injection was not significantly different across dose groups. Hyperactivity induced by 2mg/kg (+)-methamphetamine hydrochloride intraperitoneal injection was significantly lower in the 1.0 mg/kg/day PFOA dose group as compared to controls. Taken together, these data suggest that the effects on motor-related behaviors with gestational PFOA exposure do not mimic those reported for acute postnatal exposure. Changes were not observed at dose level under 1.0 mg/kg/day PFOA. Further examination of pathways associated with methamphetamine-induced activity is warranted. PMID:27888120
Lifetime achievement patterns, retirement and life satisfaction of gifted aged women.
Holahan, C K
1981-11-01
The relationship of lifetime achievement patterns and retirement to life satisfaction for gifted aging women was investigated. Participants were 352 women in Terman's study of the gifted who were surveyed in 1977 at a mean age of 66. Lifetime achievement pattern was defined by either homemaker, job, or career work history. Dependent variables included health, happiness, life satisfaction, work attitudes, ambitions and aspirations, and participation in leisure activities. Results showed variations on life satisfaction measures as a function of lifetime career, with job holders generally less satisfied. There was a significant interaction between marital status and work pattern on overall life satisfaction suggesting an additive negative effect on the older woman of loss of spouse and a work history of working for income alone. Activity involvement varied as a function of retirement status and was differentially related to life satisfaction as a function of retirement status and career pattern.
Roth, Zvi N
2016-01-01
Neural responses in visual cortex are governed by a topographic mapping from retinal locations to cortical responses. Moreover, at the voxel population level early visual cortex (EVC) activity enables accurate decoding of stimuli locations. However, in many cases information enabling one to discriminate between locations (i.e., discriminative information) may be less relevant than information regarding the relative location of two objects (i.e., relative information). For example, when planning to grab a cup, determining whether the cup is located at the same retinal location as the hand is hardly relevant, whereas the location of the cup relative to the hand is crucial for performing the action. We have previously used multivariate pattern analysis techniques to measure discriminative location information, and found the highest levels in EVC, in line with other studies. Here we show, using representational similarity analysis, that availability of discriminative information in fMRI activation patterns does not entail availability of relative information. Specifically, we find that relative location information can be reliably extracted from activity patterns in posterior intraparietal sulcus (pIPS), but not from EVC, where we find the spatial representation to be warped. We further show that this variability in relative information levels between regions can be explained by a computational model based on an array of receptive fields. Moreover, when the model's receptive fields are extended to include inhibitory surround regions, the model can account for the spatial warping in EVC. These results demonstrate how size and shape properties of receptive fields in human visual cortex contribute to the transformation of discriminative spatial representations into relative spatial representations along the visual stream.
Roth, Zvi N.
2016-01-01
Neural responses in visual cortex are governed by a topographic mapping from retinal locations to cortical responses. Moreover, at the voxel population level early visual cortex (EVC) activity enables accurate decoding of stimuli locations. However, in many cases information enabling one to discriminate between locations (i.e., discriminative information) may be less relevant than information regarding the relative location of two objects (i.e., relative information). For example, when planning to grab a cup, determining whether the cup is located at the same retinal location as the hand is hardly relevant, whereas the location of the cup relative to the hand is crucial for performing the action. We have previously used multivariate pattern analysis techniques to measure discriminative location information, and found the highest levels in EVC, in line with other studies. Here we show, using representational similarity analysis, that availability of discriminative information in fMRI activation patterns does not entail availability of relative information. Specifically, we find that relative location information can be reliably extracted from activity patterns in posterior intraparietal sulcus (pIPS), but not from EVC, where we find the spatial representation to be warped. We further show that this variability in relative information levels between regions can be explained by a computational model based on an array of receptive fields. Moreover, when the model's receptive fields are extended to include inhibitory surround regions, the model can account for the spatial warping in EVC. These results demonstrate how size and shape properties of receptive fields in human visual cortex contribute to the transformation of discriminative spatial representations into relative spatial representations along the visual stream. PMID:27242455
Multistability of the Brain Network for Self-other Processing
Chen, Yi-An; Huang, Tsung-Ren
2017-01-01
Early fMRI studies suggested that brain areas processing self-related and other-related information were highly overlapping. Hypothesising functional localisation of the cortex, researchers have tried to locate “self-specific” and “other-specific” regions within these overlapping areas by subtracting suspected confounding signals in task-based fMRI experiments. Inspired by recent advances in whole-brain dynamic modelling, we instead explored an alternative hypothesis that similar spatial activation patterns could be associated with different processing modes in the form of different synchronisation patterns. Combining an automated synthesis of fMRI data with a presumption-free diffusion spectrum image (DSI) fibre-tracking algorithm, we isolated a network putatively composed of brain areas and white matter tracts involved in self-other processing. We sampled synchronisation patterns from the dynamical systems of this network using various combinations of physiological parameters. Our results showed that the self-other processing network, with simulated gamma-band activity, tended to stabilise at a number of distinct synchronisation patterns. This phenomenon, termed “multistability,” could serve as an alternative model in theorising the mechanism of processing self-other information. PMID:28256520
Zimnik, Andrew J.; Nora, Gerald J.; Desmurget, Michel
2015-01-01
Deep brain stimulation (DBS) of the subthalamic nucleus (STN-DBS) has largely replaced ablative therapies for Parkinson's disease. Because of the similar efficacies of the two treatments, it has been proposed that DBS acts by creating an “informational lesion,” whereby pathologic neuronal firing patterns are replaced by low-entropy, stimulus-entrained firing patterns. The informational lesion hypothesis, in its current form, states that DBS blocks the transmission of all information from the basal ganglia, including both pathologic firing patterns and normal, task-related modulations in activity. We tested this prediction in two healthy rhesus macaques by recording single-unit spiking activity from the globus pallidus (232 neurons) while the animals completed choice reaction time reaching movements with and without STN-DBS. Despite strong effects of DBS on the activity of most pallidal cells, reach-related modulations in firing rate were equally prevalent in the DBS-on and DBS-off states. This remained true even when the analysis was restricted to cells affected significantly by DBS. In addition, the overall form and timing of perimovement modulations in firing rate were preserved between DBS-on and DBS-off states in the majority of neurons (66%). Active movement and DBS had largely additive effects on the firing rate of most neurons, indicating an orthogonal relationship in which both inputs contribute independently to the overall firing rate of pallidal neurons. These findings suggest that STN-DBS does not act as an indiscriminate informational lesion but rather as a filter that permits task-related modulations in activity while, presumably, eliminating the pathological firing associated with parkinsonism. PMID:25740526
Enders, P; Scholz, P; Muether, P S; Fauser, S
2016-01-01
Purpose To analyze choroidal neovasularization (CNV) activity and recurrence patterns in patients with neovascular age-related macular degeneration (nAMD) treated with ranibizumab, and the correlation with individual intraocular vascular endothelial growth factor (VEGF) suppression time (VST). Methods Post-hoc analysis of data from a prospective, non-randomized clinical study. Patients with nAMD treated with ranibizumab on a pro re nata regimen. Disease activity was analyzed monthly by spectral-domain optical coherence tomography and correlated with VSTs. Results Overall, 73 eyes of 73 patients were included in the study with a mean follow-up of 717 days (range: 412–1239 days). Overall, the mean CNV-activity-free interval was 76.5 days (range: 0–829 days). The individual range of the length of dry intervals was high. A total of 42% of patients had a range of more than 90 days. Overall, 16% of patients showed persistent activity. And 12% stayed dry after the initial ranibizumab treatment. No significant correlation was found between the CNV-recurrence pattern and VST (P=0.12). Conclusions CNV activity in nAMD is irregular, which is reflected in the range of the duration of dry intervals and late recurrences. The biomarker VST solely seems not to be sufficient to explain recurrence pattern of CNV in all AMD patients. PMID:27197870
Alterations in Resting-State Activity Relate to Performance in a Verbal Recognition Task
López Zunini, Rocío A.; Thivierge, Jean-Philippe; Kousaie, Shanna; Sheppard, Christine; Taler, Vanessa
2013-01-01
In the brain, resting-state activity refers to non-random patterns of intrinsic activity occurring when participants are not actively engaged in a task. We monitored resting-state activity using electroencephalogram (EEG) both before and after a verbal recognition task. We show a strong positive correlation between accuracy in verbal recognition and pre-task resting-state alpha power at posterior sites. We further characterized this effect by examining resting-state post-task activity. We found marked alterations in resting-state alpha power when comparing pre- and post-task periods, with more pronounced alterations in participants that attained higher task accuracy. These findings support a dynamical view of cognitive processes where patterns of ongoing brain activity can facilitate –or interfere– with optimal task performance. PMID:23785436
Autogenic training alters cerebral activation patterns in fMRI.
Schlamann, Marc; Naglatzki, Ryan; de Greiff, Armin; Forsting, Michael; Gizewski, Elke R
2010-10-01
Cerebral activation patterns during the first three auto-suggestive phases of autogenic training (AT) were investigated in relation to perceived experiences. Nineteen volunteers trained in AT and 19 controls were studied with fMRI during the first steps of autogenic training. FMRI revealed activation of the left postcentral areas during AT in those with experience in AT, which also correlated with the level of AT experience. Activation of prefrontal and insular cortex was significantly higher in the group with experience in AT while insular activation was correlated with number years of simple relaxation exercises. Specific activation in subjects experienced in AT may represent a training effect. Furthermore, the correlation of insular activation suggests that these subjects are different from untrained subjects in emotional processing or self-awareness.
A Preliminary Analysis of Correlated Evolution in Mammalian Chewing Motor Patterns
Williams, Susan H.; Vinyard, Christopher J.; Wall, Christine E.; Doherty, Alison H.; Crompton, Alfred W.; Hylander, William L.
2011-01-01
Descriptive and quantitative analyses of electromyograms (EMG) from the jaw adductors during feeding in mammals have demonstrated both similarities and differences among species in chewing motor patterns. These observations have led to a number of hypotheses of the evolution of motor patterns, the most comprehensive of which was proposed by Weijs in 1994. Since then, new data have been collected and additional hypotheses for the evolution of motor patterns have been proposed. Here, we take advantage of these new data and a well-resolved species-level phylogeny for mammals to test for the correlated evolution of specific components of mammalian chewing motor patterns. We focus on the evolution of the coordination of working-side (WS) and balancing-side (BS) jaw adductors (i.e., Weijs’ Triplets I and II), the evolution of WS and BS muscle recruitment levels, and the evolution of asynchrony between pairs of muscles. We converted existing chewing EMG data into binary traits to incorporate as much data as possible and facilitate robust phylogenetic analyses. We then tested hypotheses of correlated evolution of these traits across our phylogeny using a maximum likelihood method and the Bayesian Markov Chain Monte Carlo method. Both sets of analyses yielded similar results highlighting the evolutionary changes that have occurred across mammals in chewing motor patterns. We find support for the correlated evolution of (1) Triplets I and II, (2) BS deep masseter asynchrony and Triplets I and II, (3) a relative delay in the activity of the BS deep masseter and a decrease in the ratio of WS to BS muscle recruitment levels, and (4) a relative delay in the activity of the BS deep masseter and a delay in the activity of the BS posterior temporalis. In contrast, changes in relative WS and BS activity levels across mammals are not correlated with Triplets I and II. Results from this work can be integrated with dietary and morphological data to better understand how feeding and the masticatory apparatus have evolved across mammals in the context of new masticatory demands. PMID:21719433
A preliminary analysis of correlated evolution in Mammalian chewing motor patterns.
Williams, Susan H; Vinyard, Christopher J; Wall, Christine E; Doherty, Alison H; Crompton, Alfred W; Hylander, William L
2011-08-01
Descriptive and quantitative analyses of electromyograms (EMG) from the jaw adductors during feeding in mammals have demonstrated both similarities and differences among species in chewing motor patterns. These observations have led to a number of hypotheses of the evolution of motor patterns, the most comprehensive of which was proposed by Weijs in 1994. Since then, new data have been collected and additional hypotheses for the evolution of motor patterns have been proposed. Here, we take advantage of these new data and a well-resolved species-level phylogeny for mammals to test for the correlated evolution of specific components of mammalian chewing motor patterns. We focus on the evolution of the coordination of working-side (WS) and balancing-side (BS) jaw adductors (i.e., Weijs' Triplets I and II), the evolution of WS and BS muscle recruitment levels, and the evolution of asynchrony between pairs of muscles. We converted existing chewing EMG data into binary traits to incorporate as much data as possible and facilitate robust phylogenetic analyses. We then tested hypotheses of correlated evolution of these traits across our phylogeny using a maximum likelihood method and the Bayesian Markov Chain Monte Carlo method. Both sets of analyses yielded similar results highlighting the evolutionary changes that have occurred across mammals in chewing motor patterns. We find support for the correlated evolution of (1) Triplets I and II, (2) BS deep masseter asynchrony and Triplets I and II, (3) a relative delay in the activity of the BS deep masseter and a decrease in the ratio of WS to BS muscle recruitment levels, and (4) a relative delay in the activity of the BS deep masseter and a delay in the activity of the BS posterior temporalis. In contrast, changes in relative WS and BS activity levels across mammals are not correlated with Triplets I and II. Results from this work can be integrated with dietary and morphological data to better understand how feeding and the masticatory apparatus have evolved across mammals in the context of new masticatory demands.
Sleep patterns and impulse control among Japanese junior high school students.
Abe, Takeru; Hagihara, Akihito; Nobutomo, Koichi
2010-10-01
Adolescents with decreased impulse control exhibit behavioral problems. Lifestyles are related to impulse control. However, the relations of sleep patterns and impulse control among adolescents are unknown. Thus we examined how sleep patterns were associated with impulse control among Japanese junior high school students. Surveys were completed by a nationwide sample of 1934 students. A significant association between decreased impulse control and bedtimes after midnight was revealed. Specific lifestyle factors related to bedtimes after midnight were older age, greater numbers of hours spent watching television, lack of participation in an extracurricular activity, greater use of convenience stores, and increased attendance at cram schools. This study revealed that going to sleep after midnight was significantly related to decreased impulse control among adolescents. Data about specific lifestyle factors related to going to sleep after midnight should be useful in preventing those behaviors demonstrated by school children that derive from decreased impulse control.
Koohpayehzadeh, Jalil; Etemad, Koorosh; Abbasi, Mehrshad; Meysamie, Alipasha; Sheikhbahaei, Sara; Asgari, Fereshteh; Noshad, Sina; Hafezi-Nejad, Nima; Rafei, Ali; Mousavizadeh, Mostafa; Khajeh, Elias; Ebadi, Maryam; Nakhjavani, Manouchehr; Esteghamati, Alireza
2014-04-01
This study describes the gender-specific pattern of physical activity (PA) in Iran 2011. The 4-year changes in PA levels (domains) are also determined according to the Iran's national surveys conducted on 2007 and 2011. Physical activity assessed based on the global physical activity questionnaire. In all, 4,121 (2007), and 7,436 (2011) adults were analyzed. Based on 2011 survey, 56.4 %, 39.2 %, and 74.4 % of participants were physically inactive at work, commuting and recreation, respectively. In all domains of PA, males showed a higher degree of activity (min/day) than females (P value <0.001). The overall prevalence of physical inactivity was increased from 15 % (2007) to 21.5 % (2011) (P value <0.001). Over the 4 years, a significant decline in total physical activity (MET × min/week) and the duration of commuting activity were noted in both genders. Work-related activity was dramatically decreased in females. However, the time spent in recreational activity remained relatively constant. This report indicating that the Iranian population, particularly females, have become less active during the survey period. Physical inactivity should receive more attention as a public health issue.
Matz, Carlyn J.; Stieb, David M.; Davis, Karelyn; Egyed, Marika; Rose, Andreas; Chou, Benedito; Brion, Orly
2014-01-01
Estimation of population exposure is a main component of human health risk assessment for environmental contaminants. Population-level exposure assessments require time-activity pattern distributions in relation to microenvironments where people spend their time. Societal trends may have influenced time-activity patterns since previous Canadian data were collected 15 years ago. The Canadian Human Activity Pattern Survey 2 (CHAPS 2) was a national survey conducted in 2010–2011 to collect time-activity information from Canadians of all ages. Five urban and two rural locations were sampled using telephone surveys. Infants and children, key groups in risk assessment activities, were over-sampled. Survey participants (n = 5,011) provided time-activity information in 24-hour recall diaries and responded to supplemental questionnaires concerning potential exposures to specific pollutants, dwelling characteristics, and socio-economic factors. Results indicated that a majority of the time was spent indoors (88.9%), most of which was indoors at home, with limited time spent outdoors (5.8%) or in a vehicle (5.3%). Season, age, gender and rurality were significant predictors of time activity patterns. Compared to earlier data, adults reported spending more time indoors at home and adolescents reported spending less time outdoors, which could be indicative of broader societal trends. These findings have potentially important implications for assessment of exposure and risk. The CHAPS 2 data also provide much larger sample sizes to allow for improved precision and are more representative of infants, children and rural residents. PMID:24557523
Exercise and food compensation: exploring diet-related beliefs and behaviors of regular exercisers.
Dohle, Simone; Wansink, Brian; Zehnder, Lorena
2015-03-01
The goal of this qualitative study is to identify common beliefs and behaviors related to exercise and diet. Data were collected in focus group discussions with regular exercisers who were physically active between 1 and 5 h per week. Exercise objectives, beliefs and behaviors regarding food intake before, during, and after exercise, consumption of sport supplements, and dietary patterns on sedentary days were explored. All focus groups were audio-taped and transcribed verbatim. Transcripts were analyzed using a grounded theory approach. Participants reported that they reward themselves for being active by consuming food. Other exercisers had specific beliefs about dietary needs and how to compensate for exercise-induced losses along with exercise-related food likes and dislikes. The participants' food intake also depended on their personal exercise objectives, such as the goal of performing well in competitions. External and physiological factors also played a role in determining participants' dietary patterns. Results of this study show that exercising and dietary patterns are closely intertwined. In addition, we articulate new hypotheses and outline a research agenda that can help improve how regular exercisers eat.
Gender differences in the relationship between hostility and the type A behavior pattern.
McCann, B S; Woolfolk, R L; Lehrer, P M; Schwarcz, L
1987-01-01
A group of 97 male and 111 female undergraduates completed the Jenkins Activity Survey, the Framingham Type A Scale, the Adjective Checklist Type A Scale, the Spielberger State-Trait Anxiety Inventory, and the Buss-Durkee Hostility Inventory. A factor analysis revealed three dimensions: Anger-Emotionality, Anger-Aggression, and Residual Pattern A. All Type A measures loaded highly on the Type A factor, with the Jenkins Activity Survey loading the highest. The Framingham Type A Scale was related to Anger-Emotionality, the Adjective Checklist Type A Scale was related to Anger-Aggression, and the Jenkins Activity Survey was related to neither of the anger dimensions. Women scored higher than men on Anger-Emotionality and the Guilt, Resentment, and Irritability subscales and lower than men on the Assaultiveness subscale. Women showed higher correlations between Type A and the Guilt subscale, and men between Type A and the Suspiciousness subscale. We conclude that Type A is a multidimensional construct that manifests itself differently in men and women.
Sjöström, A; Abrahamsson, M
1994-04-01
In a previous experimental study on anaesthetized cat it was shown that a short latency (35-40 ms) cortical potential changed polarity due to the presence or absence of a pattern in the flash stimulus. The results suggested one pathway of neuronal activation in the cortex to a pattern that was within the level of resolution and another to patterns that were not. It was implied that a similar difference in impulse transmission to pattern and non-pattern stimuli may be recorded in humans. The present paper describes recordings of the short-latency visual evoked response to varying light flash checkerboard pattern stimuli of high intensity in visually normal and amblyopic children and adults. When stimulating the normal eye a visual evoked response potential with a peak latency between 35 to 40 ms showed a polarity change to patterned compared to non-patterned stimulation. The visual evoked response resolution limit could be correlated to a visual acuity of 0.5 and below. In amblyopic eyes the shift in polarity was recorded at the acuity limit level. The latency of the pattern depending potential was increased in patients with amblyopia compared to normal, but not directly related to amblyopic degree. It is concluded that the short latency, visual evoked response that mainly represents the retino-geniculo-cortical activation may be used to estimate visual resolution below 0.5 in acuity level.(ABSTRACT TRUNCATED AT 250 WORDS)
DNA-Demethylase Regulated Genes Show Methylation-Independent Spatiotemporal Expression Patterns
Schumann, Ulrike; Lee, Joanne; Kazan, Kemal; Ayliffe, Michael; Wang, Ming-Bo
2017-01-01
Recent research has indicated that a subset of defense-related genes is downregulated in the Arabidopsis DNA demethylase triple mutant rdd (ros1 dml2 dml3) resulting in increased susceptibility to the fungal pathogen Fusarium oxysporum. In rdd plants these downregulated genes contain hypermethylated transposable element sequences (TE) in their promoters, suggesting that this methylation represses gene expression in the mutant and that these sequences are actively demethylated in wild-type plants to maintain gene expression. In this study, the tissue-specific and pathogen-inducible expression patterns of rdd-downregulated genes were investigated and the individual role of ROS1, DML2, and DML3 demethylases in these spatiotemporal regulation patterns was determined. Large differences in defense gene expression were observed between pathogen-infected and uninfected tissues and between root and shoot tissues in both WT and rdd plants, however, only subtle changes in promoter TE methylation patterns occurred. Therefore, while TE hypermethylation caused decreased gene expression in rdd plants it did not dramatically effect spatiotemporal gene regulation, suggesting that this latter regulation is largely methylation independent. Analysis of ros1-3, dml2-1, and dml3-1 single gene mutant lines showed that promoter TE hypermethylation and defense-related gene repression was predominantly, but not exclusively, due to loss of ROS1 activity. These data demonstrate that DNA demethylation of TE sequences, largely by ROS1, promotes defense-related gene expression but does not control spatiotemporal expression in Arabidopsis. Summary: Ros1-mediated DNA demethylation of promoter transposable elements is essential for activation of defense-related gene expression in response to fungal infection in Arabidopsis thaliana. PMID:28894455
VanKim, Nicole A.; Erickson, Darin J.; Eisenberg, Marla E.; Lust, Katherine; Rosser, B. R. Simon; Laska, Melissa N.
2015-01-01
Purpose To identify and describe homogenous classes of male college students based on their weight-related behaviors (e.g., eating habits, physical activity, and unhealthy weight control) and to examine differences by sexual orientation. Design Study design was a cross-sectional sample of 2- and 4-year college students. Setting Study setting was forty-six 2- and 4-year colleges in Minnesota. Subjects Study subjects comprised 10,406 college males. Measures Measures were five categories of sexual orientation derived from self-reported sexual identity and behavior (heterosexual, discordant heterosexual [identifies as heterosexual and engages in same-sex sexual behavior], gay, bisexual, and unsure) and nine weight-related behaviors (including measures for eating habits, physical activity, and unhealthy weight control). Analysis Latent class models were fit for each of the five sexual orientation groups, using the nine weight-related behaviors. Results Overall, four classes were identified: “healthier eating habits” (prevalence range, 39.4%–77.3%), “moderate eating habits” (12.0%–30.2%), “unhealthy weight control” (2.6%–30.4%), and “healthier eating habits, more physically active” (35.8%). Heterosexual males exhibited all four patterns, gay and unsure males exhibited four patterns that included variations on the overall classes identified, discordant heterosexual males exhibited two patterns (“healthier eating habits” and “unhealthy weight control”), and bisexual males exhibited three patterns (“healthier eating habits,” “moderate eating habits,” and “unhealthy weight control”). Conclusion Findings highlight the need for multibehavioral interventions for discordant heterosexual, gay, bisexual, and unsure college males, particularly around encouraging physical activity and reducing unhealthy weight control behaviors. PMID:26305726
Chun, Marvin M.; Kuhl, Brice A.
2013-01-01
Repeated exposure to a visual stimulus is associated with corresponding reductions in neural activity, particularly within visual cortical areas. It has been argued that this phenomenon of repetition suppression is related to increases in processing fluency or implicit memory. However, repetition of a visual stimulus can also be considered in terms of the similarity of the pattern of neural activity elicited at each exposure—a measure that has recently been linked to explicit memory. Despite the popularity of each of these measures, direct comparisons between the two have been limited, and the extent to which they differentially (or similarly) relate to behavioral measures of memory has not been clearly established. In the present study, we compared repetition suppression and pattern similarity as predictors of both implicit and explicit memory. Using functional magnetic resonance imaging, we scanned 20 participants while they viewed and categorized repeated presentations of scenes. Repetition priming (facilitated categorization across repetitions) was used as a measure of implicit memory, and subsequent scene recognition was used as a measure of explicit memory. We found that repetition priming was predicted by repetition suppression in prefrontal, parietal, and occipitotemporal regions; however, repetition priming was not predicted by pattern similarity. In contrast, subsequent explicit memory was predicted by pattern similarity (across repetitions) in some of the same occipitotemporal regions that exhibited a relationship between priming and repetition suppression; however, explicit memory was not related to repetition suppression. This striking double dissociation indicates that repetition suppression and pattern similarity differentially track implicit and explicit learning. PMID:24027275
Martin, Anna; Schurz, Matthias; Kronbichler, Martin; Richlan, Fabio
2015-05-01
We used quantitative, coordinate-based meta-analysis to objectively synthesize age-related commonalities and differences in brain activation patterns reported in 40 functional magnetic resonance imaging (fMRI) studies of reading in children and adults. Twenty fMRI studies with adults (age means: 23-34 years) were matched to 20 studies with children (age means: 7-12 years). The separate meta-analyses of these two sets showed a pattern of reading-related brain activation common to children and adults in left ventral occipito-temporal (OT), inferior frontal, and posterior parietal regions. The direct statistical comparison between the two meta-analytic maps of children and adults revealed higher convergence in studies with children in left superior temporal and bilateral supplementary motor regions. In contrast, higher convergence in studies with adults was identified in bilateral posterior OT/cerebellar and left dorsal precentral regions. The results are discussed in relation to current neuroanatomical models of reading and tentative functional interpretations of reading-related activation clusters in children and adults are provided. © 2015 Wiley Periodicals, Inc.
Swartz, Johnna R.; Phan, K. Luan; Angstadt, Mike; Fitzgerald, Kate D.; Monk, Christopher S.
2015-01-01
Anxiety disorders are associated with abnormalities in amygdala function and prefrontal cortex-amygdala connectivity. The majority of fMRI studies have examined mean group differences in amygdala activation or connectivity in children and adolescents with anxiety disorders relative to controls, but emerging evidence suggests that abnormalities in amygdala function are dependent on the timing of the task and may vary across the course of a scanning session. The goal of the present study was to extend our knowledge of the dynamics of amygdala dysfunction by examining whether changes in amygdala activation and connectivity over scanning differ in pediatric anxiety disorder patients relative to typically developing controls during an emotion processing task. Examining changes in activation over time allows for a comparison of how brain function differs during initial exposure to novel stimuli versus more prolonged exposure. Participants included 34 anxiety disorder patients and 19 controls 7 to 19 years old. Participants performed an emotional face matching task during fMRI scanning and the task was divided into thirds in order to examine change in activation over time. Results demonstrated that patients exhibited an abnormal pattern of amygdala activation characterized by an initially heightened amygdala response relative to controls at the beginning of scanning, followed by significant decreases in activation over time. In addition, controls evidenced greater prefrontal cortex-amygdala connectivity during the beginning of scanning relative to patients. These results indicate that differences in emotion processing between the groups vary from initial exposure to novel stimuli relative to more prolonged exposure. Implications are discussed regarding how this pattern of neural activation may relate to altered early-occurring or anticipatory emotion-regulation strategies and maladaptive later-occurring strategies in children and adolescents with anxiety disorders. PMID:25422963
Macro-Scale Patterns in Upwelling/Downwelling Activity at North American West Coast
Saldívar-Lucio, Romeo; Di Lorenzo, Emanuele; Nakamura, Miguel; Villalobos, Héctor; Lluch-Cota, Daniel; Del Monte-Luna, Pablo
2016-01-01
The seasonal and interannual variability of vertical transport (upwelling/downwelling) has been relatively well studied, mainly for the California Current System, including low-frequency changes and latitudinal heterogeneity. The aim of this work was to identify potentially predictable patterns in upwelling/downwelling activity along the North American west coast and discuss their plausible mechanisms. To this purpose we applied the min/max Autocorrelation Factor technique and time series analysis. We found that spatial co-variation of seawater vertical movements present three dominant low-frequency signals in the range of 33, 19 and 11 years, resembling periodicities of: atmospheric circulation, nodal moon tides and solar activity. Those periodicities might be related to the variability of vertical transport through their influence on dominant wind patterns, the position/intensity of pressure centers and the strength of atmospheric circulation cells (wind stress). The low-frequency signals identified in upwelling/downwelling are coherent with temporal patterns previously reported at the study region: sea surface temperature along the Pacific coast of North America, catch fluctuations of anchovy Engraulis mordax and sardine Sardinops sagax, the Pacific Decadal Oscillation, changes in abundance and distribution of salmon populations, and variations in the position and intensity of the Aleutian low. Since the vertical transport is an oceanographic process with strong biological relevance, the recognition of their spatio-temporal patterns might allow for some reasonable forecasting capacity, potentially useful for marine resources management of the region. PMID:27893826
Young people's time use and maternal employment in the UK.
Mullan, Killian
2009-12-01
This paper analyses the relationship between young people's time use and maternal employment in the United Kingdom (UK). Two dimensions of young people's time use are important for understanding the impact of maternal employment. The first of these is family context. This concerns the time young people are near their parents or not. The second relates to young people's activity patterns. Combining information from both dimensions is necessary to provide a comprehensive overview of the impact of maternal employment on young people's time use. The paper demonstrates that young people's time use is associated with maternal employment both in terms of activity patterns and family context. Young people with employed mothers spend more time alone with a father, and more time with neither parent. More specifically, young people with mothers employed full time (FT) spend significantly more time watching TV than those whose mothers are not employed, especially when they are not near any parents. There is a negative association between FT maternal employment and the time young people spend in achievement-related activities, concentrated in time when alone with a mother. Unlike time in leisure activities or time watching TV, time in achievement-related activities when in the presence of a father does not increase to compensate for the loss in time spent in achievement-related activities when alone with a mother.
Intra-operative characterisation of subthalamic oscillations in Parkinson’s disease
Geng, Xinyi; Xu, Xin; Horn, Andreas; Li, Ningfei; Ling, Zhipei; Brown, Peter; Wang, Shouyan
2018-01-01
Objective This study aims to use the activities recorded directly from the deep brain stimulation (DBS) electrode to address the focality and distinct nature of the local field potential (LFP) activities of different frequency. Methods Pre-operative and intra-operative magnetic resonance imaging (MRI) were acquired from patients with Parkinson’s disease (PD) who underwent DBS in the subthalamic nucleus and intra-operative LFP recording at rest and during cued movements. Images were reconstructed and 3-D visualized using Lead-DBS® toolbox to determine the coordinates of contact. The resting spectral power and movement-related power modulation of LFP oscillations were estimated. Results Both subthalamic LFP activity recorded at rest and its modulation by movement had focal maxima in the alpha, beta and gamma bands. The spatial distribution of alpha band activity and its modulation was significantly different to that in the beta band. Moreover, there were significant differences in the scale and timing of movement related modulation across the frequency bands. Conclusion Subthalamic LFP activities within specific frequency bands can be distinguished by spatial topography and pattern of movement related modulation. Significance Assessment of the frequency, focality and pattern of movement related modulation of subthalamic LFPs reveals a heterogeneity of neural population activity in this region. This could potentially be leveraged to finesse intra-operative targeting and post-operative contact selection. PMID:29567582
Munro, B J; Steele, J R
2000-02-01
The present study examined knee and arm extensor muscle activation patterns displayed by 12 elderly female rheumatoid arthritic patients (mean age = 65.5 +/- 8.6 yr) rising from an instrumented Eser ejector chair under four conditions: high seat (540 mm), low seat (450 mm), with and without ejector assistance. Electromyographic (EMG) signals were sampled (1000 Hz) for vastus lateralis (VL), vastus medialis (VM), rectus femoris (RF) and triceps brachii (TB) using a Noraxon Telemyo System (bandwidth 0-340 Hz). Muscle onset, offset and peak activity relative to loss of seat contact (SS), and integrated EMG, were calculated for each muscle burst before SS. A high seat significantly (p < or = 005) decreased VL and TB intensity but did not change muscle activation patterns compared with rising from a low seat. Ejector assistance significantly increased VM and RF burst duration and RF intensity but had no effect on vastii muscle intensity. It was concluded that concerns pertaining to muscle disuse when rising with ejector assistance were unfounded in the present study. However, further research is required to investigate the effects of habitual use of a mechanical ejector device on muscle activation patterns.
Decoding negative affect personality trait from patterns of brain activation to threat stimuli.
Fernandes, Orlando; Portugal, Liana C L; Alves, Rita de Cássia S; Arruda-Sanchez, Tiago; Rao, Anil; Volchan, Eliane; Pereira, Mirtes; Oliveira, Letícia; Mourao-Miranda, Janaina
2017-01-15
Pattern recognition analysis (PRA) applied to functional magnetic resonance imaging (fMRI) has been used to decode cognitive processes and identify possible biomarkers for mental illness. In the present study, we investigated whether the positive affect (PA) or negative affect (NA) personality traits could be decoded from patterns of brain activation in response to a human threat using a healthy sample. fMRI data from 34 volunteers (15 women) were acquired during a simple motor task while the volunteers viewed a set of threat stimuli that were directed either toward them or away from them and matched neutral pictures. For each participant, contrast images from a General Linear Model (GLM) between the threat versus neutral stimuli defined the spatial patterns used as input to the regression model. We applied a multiple kernel learning (MKL) regression combining information from different brain regions hierarchically in a whole brain model to decode the NA and PA from patterns of brain activation in response to threat stimuli. The MKL model was able to decode NA but not PA from the contrast images between threat stimuli directed away versus neutral with a significance above chance. The correlation and the mean squared error (MSE) between predicted and actual NA were 0.52 (p-value=0.01) and 24.43 (p-value=0.01), respectively. The MKL pattern regression model identified a network with 37 regions that contributed to the predictions. Some of the regions were related to perception (e.g., occipital and temporal regions) while others were related to emotional evaluation (e.g., caudate and prefrontal regions). These results suggest that there was an interaction between the individuals' NA and the brain response to the threat stimuli directed away, which enabled the MKL model to decode NA from the brain patterns. To our knowledge, this is the first evidence that PRA can be used to decode a personality trait from patterns of brain activation during emotional contexts. Copyright © 2016 The Authors. Published by Elsevier Inc. All rights reserved.
Therapy-induced brain reorganization patterns in aphasia.
Abel, Stefanie; Weiller, Cornelius; Huber, Walter; Willmes, Klaus; Specht, Karsten
2015-04-01
Both hemispheres are engaged in recovery from word production deficits in aphasia. Lexical therapy has been shown to induce brain reorganization even in patients with chronic aphasia. However, the interplay of factors influencing reorganization patterns still remains unresolved. We were especially interested in the relation between lesion site, therapy-induced recovery, and beneficial reorganization patterns. Thus, we applied intensive lexical therapy, which was evaluated with functional magnetic resonance imaging, to 14 chronic patients with aphasic word retrieval deficits. In a group study, we aimed to illuminate brain reorganization of the naming network in comparison with healthy controls. Moreover, we intended to analyse the data with joint independent component analysis to relate lesion sites to therapy-induced brain reorganization, and to correlate resulting components with therapy gain. As a result, we found peri-lesional and contralateral activations basically overlapping with premorbid naming networks observed in healthy subjects. Reduced activation patterns for patients compared to controls before training comprised damaged left hemisphere language areas, right precentral and superior temporal gyrus, as well as left caudate and anterior cingulate cortex. There were decreasing activations of bilateral visuo-cognitive, articulatory, attention, and language areas due to therapy, with stronger decreases for patients in right middle temporal gyrus/superior temporal sulcus, bilateral precuneus as well as left anterior cingulate cortex and caudate. The joint independent component analysis revealed three components indexing lesion subtypes that were associated with patient-specific recovery patterns. Activation decreases (i) of an extended frontal lesion disconnecting language pathways occurred in left inferior frontal gyrus; (ii) of a small frontal lesion were found in bilateral inferior frontal gyrus; and (iii) of a large temporo-parietal lesion occurred in bilateral inferior frontal gyrus and contralateral superior temporal gyrus. All components revealed increases in prefrontal areas. One component was negatively correlated with therapy gain. Therapy was associated exclusively with activation decreases, which could mainly be attributed to higher processing efficiency within the naming network. In our joint independent component analysis, all three lesion patterns disclosed involved deactivation of left inferior frontal gyrus. Moreover, we found evidence for increased demands on control processes. As expected, we saw partly differential reorganization profiles depending on lesion patterns. There was no compensatory deactivation for the large left inferior frontal lesion, with its less advantageous outcome probably being related to its disconnection from crucial language processing pathways. © The Author (2015). Published by Oxford University Press on behalf of the Guarantors of Brain. All rights reserved. For Permissions, please email: journals.permissions@oup.com.
Brown, Stephen L; Nobiling, Brandye D; Teufel, James; Birch, David A
2011-09-01
The activity patterns of children, especially after-school patterns, are receiving more professional attention. However, evidence regarding the value of various activities in children's lives is contradictory. The purpose of this study was to assess perceptions of discretionary activities, overscheduling, and levels of stress from adolescents' perspective. A sample of 882 children, ages 9 to 13, recruited at 9 health education centers in the United States was selected for this study. Children answered questionnaires using remote, handheld devices. Data were analyzed using descriptive statistics and multivariate logistic regression. The outcomes of interest were activity-based stress and desire for more free time. The primary predictor for the desire for more free time was hours of screen time (television, computer, video games): those who reported 3 or more hours were nearly 3 times more likely to desire more free time. Further, children who chose their own activities experienced more activity-related stress than those who shared decisions with parents. The single greatest predictor of activity-related stress was the reported number of hours spent on homework. Students who averaged at least 2 hours on homework per night were nearly twice as likely to report frequent activity-related stress. Parents of school-aged children should assess activity-related stress and the degree to which children perceive they are busy. Teachers, school counselors, and school administrators should be aware of these perceptions as they are making decisions regarding school schedules and should teach personal skills such as time management and stress control. © 2011, American School Health Association.
Self-organizing maps based on limit cycle attractors.
Huang, Di-Wei; Gentili, Rodolphe J; Reggia, James A
2015-03-01
Recent efforts to develop large-scale brain and neurocognitive architectures have paid relatively little attention to the use of self-organizing maps (SOMs). Part of the reason for this is that most conventional SOMs use a static encoding representation: each input pattern or sequence is effectively represented as a fixed point activation pattern in the map layer, something that is inconsistent with the rhythmic oscillatory activity observed in the brain. Here we develop and study an alternative encoding scheme that instead uses sparsely-coded limit cycles to represent external input patterns/sequences. We establish conditions under which learned limit cycle representations arise reliably and dominate the dynamics in a SOM. These limit cycles tend to be relatively unique for different inputs, robust to perturbations, and fairly insensitive to timing. In spite of the continually changing activity in the map layer when a limit cycle representation is used, map formation continues to occur reliably. In a two-SOM architecture where each SOM represents a different sensory modality, we also show that after learning, limit cycles in one SOM can correctly evoke corresponding limit cycles in the other, and thus there is the potential for multi-SOM systems using limit cycles to work effectively as hetero-associative memories. While the results presented here are only first steps, they establish the viability of SOM models based on limit cycle activity patterns, and suggest that such models merit further study. Copyright © 2014 Elsevier Ltd. All rights reserved.
Ritov, Gilad; Ardi, Ziv; Richter-Levin, Gal
2014-01-01
Recollection of emotional memories is attributed in part to the activation of the amygdala and the hippocampus. Recent hypothesis suggests a pivotal role for the ventral hippocampus (VH) in traumatic stress processing and emotional memory retrieval. Persistent re-experiencing and intrusive recollections are core symptoms in acute and posttraumatic stress disorders (ASD; PTSD). Such intrusive recollections are often triggered by reminders associated with the trauma. We examined the impact of exposure to a trauma reminder (under water trauma (UWT)) on the activation of the basolateral amygdala (BLA), dorsal and VH. Rats were exposed to UWT and 24 h later were re-exposed to the context of the trauma. Phosphorylation of the extracellular signal-regulated kinase (ERK) was used as a marker for level of activation of these regions. Significant increase in ERK activation was found in the VH and BLA. Such pattern of activation was not found in animals exposed only to the trauma or in animals exposed only to the trauma reminder. Additionally, the dissociative pattern of activation of the VH sub-regions positively correlated with the activation of the BLA. Our findings suggest a specific pattern of neural activation during recollection of a trauma reminder, with a unique contribution of the VH. Measured 24 h after the exposure to the traumatic experience, the current findings relate to relatively early stages of traumatic memory consolidation. Understanding the neural mechanisms underlying these initial stages may contribute to developing intervention strategies that could reduce the risk of eventually developing PTSD. PMID:24523683
Patterns of Activity in A Global Model of A Solar Active Region
NASA Technical Reports Server (NTRS)
Bradshaw, S. J.; Viall, N. M.
2016-01-01
In this work we investigate the global activity patterns predicted from a model active region heated by distributions of nanoflares that have a range of frequencies. What differs is the average frequency of the distributions. The activity patterns are manifested in time lag maps of narrow-band instrument channel pairs. We combine hydrodynamic and forward modeling codes with a magnetic field extrapolation to create a model active region and apply the time lag method to synthetic observations. Our aim is not to reproduce a particular set of observations in detail, but to recover some typical properties and patterns observed in active regions. Our key findings are the following. (1) Cooling dominates the time lag signature and the time lags between the channel pairs are generally consistent with observed values. (2) Shorter coronal loops in the core cool more quickly than longer loops at the periphery. (3) All channel pairs show zero time lag when the line of sight passes through coronal loop footpoints. (4) There is strong evidence that plasma must be re-energized on a timescale comparable to the cooling timescale to reproduce the observed coronal activity, but it is likely that a relatively broad spectrum of heating frequencies are operating across active regions. (5) Due to their highly dynamic nature, we find nanoflare trains produce zero time lags along entire flux tubes in our model active region that are seen between the same channel pairs in observed active regions.
Learning by strategies and learning by drill--evidence from an fMRI study.
Delazer, M; Ischebeck, A; Domahs, F; Zamarian, L; Koppelstaetter, F; Siedentopf, C M; Kaufmann, L; Benke, T; Felber, S
2005-04-15
The present fMRI study investigates, first, whether learning new arithmetic operations is reflected by changing cerebral activation patterns, and second, whether different learning methods lead to differential modifications of brain activation. In a controlled design, subjects were trained over a week on two new complex arithmetic operations, one operation trained by the application of back-up strategies, i.e., a sequence of arithmetic operations, the other by drill, i.e., by learning the association between the operands and the result. In the following fMRI session, new untrained items, items trained by strategy and items trained by drill, were assessed using an event-related design. Untrained items as compared to trained showed large bilateral parietal activations, with the focus of activation along the right intraparietal sulcus. Further foci of activation were found in both inferior frontal gyri. The reverse contrast, trained vs. untrained, showed a more focused activation pattern with activation in both angular gyri. As suggested by the specific activation patterns, newly acquired expertise was implemented in previously existing networks of arithmetic processing and memory. Comparisons between drill and strategy conditions suggest that successful retrieval was associated with different brain activation patterns reflecting the underlying learning methods. While the drill condition more strongly activated medial parietal regions extending to the left angular gyrus, the strategy condition was associated to the activation of the precuneus which may be accounted for by visual imagery in memory retrieval.
Age-related impairments in active learning and strategic visual exploration.
Brandstatt, Kelly L; Voss, Joel L
2014-01-01
Old age could impair memory by disrupting learning strategies used by younger individuals. We tested this possibility by manipulating the ability to use visual-exploration strategies during learning. Subjects controlled visual exploration during active learning, thus permitting the use of strategies, whereas strategies were limited during passive learning via predetermined exploration patterns. Performance on tests of object recognition and object-location recall was matched for younger and older subjects for objects studied passively, when learning strategies were restricted. Active learning improved object recognition similarly for younger and older subjects. However, active learning improved object-location recall for younger subjects, but not older subjects. Exploration patterns were used to identify a learning strategy involving repeat viewing. Older subjects used this strategy less frequently and it provided less memory benefit compared to younger subjects. In previous experiments, we linked hippocampal-prefrontal co-activation to improvements in object-location recall from active learning and to the exploration strategy. Collectively, these findings suggest that age-related memory problems result partly from impaired strategies during learning, potentially due to reduced hippocampal-prefrontal co-engagement.
Christakou, Anastasia; Halari, Rozmin; Smith, Anna B; Ifkovits, Eve; Brammer, Mick; Rubia, Katya
2009-10-15
Developmental functional imaging studies of cognitive control show progressive age-related increase in task-relevant fronto-striatal activation in male development from childhood to adulthood. Little is known, however, about how gender affects this functional development. In this study, we used event related functional magnetic resonance imaging to examine effects of sex, age, and their interaction on brain activation during attentional switching and interference inhibition, in 63 male and female adolescents and adults, aged 13 to 38. Linear age correlations were observed across all subjects in task-specific frontal, striatal and temporo-parietal activation. Gender analysis revealed increased activation in females relative to males in fronto-striatal areas during the Switch task, and laterality effects in the Simon task, with females showing increased left inferior prefrontal and temporal activation, and males showing increased right inferior prefrontal and parietal activation. Increased prefrontal activation clusters in females and increased parietal activation clusters in males furthermore overlapped with clusters that were age-correlated across the whole group, potentially reflecting more mature prefrontal brain activation patterns for females, and more mature parietal activation patterns for males. Gender by age interactions further supported this dissociation, revealing exclusive female-specific age correlations in inferior and medial prefrontal brain regions during both tasks, and exclusive male-specific age correlations in superior parietal (Switch task) and temporal regions (Simon task). These findings show increased recruitment of age-correlated prefrontal activation in females, and of age-correlated parietal activation in males, during tasks of cognitive control. Gender differences in frontal and parietal recruitment may thus be related to gender differences in the neurofunctional maturation of these brain regions.
An fMRI study of working memory in first-degree unaffected relatives of schizophrenia patients.
Meda, Shashwath A; Bhattarai, Manish; Morris, Nicholas A; Astur, Robert S; Calhoun, Vince D; Mathalon, Daniel H; Kiehl, Kent A; Pearlson, Godfrey D
2008-09-01
Identifying intermediate phenotypes of genetically complex psychiatric illnesses such as schizophrenia is important. First-degree relatives of persons with schizophrenia have increased genetic risk for the disorder and tend to show deficits on working memory (WM) tasks. An open question is the relationship between such behavioral endophenotypes and the corresponding brain activation patterns revealed during functional imaging. We measured task performance during a Sternberg WM task and used functional magnetic resonance imaging (fMRI) to assess whether 23 non-affected first-degree relatives showed altered performance and functional activation compared to 43 matched healthy controls. We predicted that a significant proportion of unaffected first-degree relatives would show either aberrant task performance and/or abnormal related fMRI blood oxygen level dependent (BOLD) patterns. While task performance in the relatives was not different than that of controls they were significantly slower in responding to probes., Schizophrenia relatives displayed reduced activation, most markedly in bilateral dorsolateral/ventrolateral (DLPFC/VLPFC) prefrontal and posterior parietal cortex when encoding stimuli and in bilateral DLPFC and parietal areas during response selection. Additionally, fMRI differences in both conditions were modulated by load, with a parametric increase in between-group differences with load in several key regions during encoding and an opposite effect during response selection.
Plummer, Prudence; Eskes, Gail; Wallace, Sarah; Giuffrida, Clare; Fraas, Michael; Campbell, Grace; Clifton, Kerrylee; Skidmore, Elizabeth R
2013-12-01
Cognitive-motor interference (CMI) is evident when simultaneous performance of a cognitive task and a motor task results in deterioration in performance in one or both of the tasks, relative to performance of each task separately. The purpose of this review is to present a framework for categorizing patterns of CMI and to examine the specific patterns of CMI evident in published studies comparing single-task and dual-task performance of cognitive and motor tasks during gait and balance activities after stroke. We also examine the literature for associations between patterns of CMI and a history of falls, as well as evidence for the effects of rehabilitation on CMI after stroke. Overall, this review suggests that during gait activities with an added cognitive task, people with stroke are likely to demonstrate significant decrements in motor performance only (cognitive-related motor interference), or decrements in both motor and cognitive performance (mutual interference). In contrast, patterns of CMI were variable among studies examining balance activities. Comparing people poststroke with and without a history of falls, patterns and magnitude of CMI were similar for fallers and nonfallers. Longitudinal studies suggest that conventional rehabilitation has minimal effects on CMI during gait or balance activities. However, early-phase pilot studies suggest that dual-task interventions may reduce CMI during gait performance in community-dwelling stroke survivors. It is our hope that this innovative and critical examination of the existing literature will highlight the limitations in current experimental designs and inform improvements in the design and reporting of dual-task studies in stroke. Copyright © 2013 American Congress of Rehabilitation Medicine. Published by Elsevier Inc. All rights reserved.
Bao, Chengzhen; Chai, Pengfei; Lin, Hongbo; Zhang, Zhenyu; Ye, Zhenhua; Gu, Mengjia; Lu, Huaichu; Shen, Peng; Jin, Mingjuan; Wang, Jianbing; Chen, Kun
2016-12-01
Recently, air pollution has attracted a substantial amount of attention in China, which can be influenced by a variety of factors, but the association between air pollution and human activity is not quite clear. Based on real-time online data (January 1, 2014, to December 31, 2014) of air pollution and meteorology reported by official sites, and demographic, economic, and environmental reform data in a statistical yearbook, the influences of meteorological factors (temperature, relative humidity, precipitation intensity, and wind force) and human activities on PM 2.5 pollution were explored. After correlation analysis, logistic regression analysis, and a nonparametric test, weak negative correlations between temperature and PM 2.5 pollution were found. In most cases, festival and morning peak hours were protection and risk factors of PM 2.5 pollution, respectively. In addition, government actions, such as an afforestation project and increasing financial expenditure for energy saving and environmental protection, could greatly contribute to alleviating pollution of PM 2.5 . The findings could help officials formulate effective laws and regulations, and then PM 2.5 pollution related to the pattern of human activity would be ameliorated. Most of the time, festival and morning peak hours are protection and risk factors for PM 2.5 pollution, respectively. Increasing the percentage of afforestation area and financial expenditure for energy saving and environmental protection could significantly reduce PM 2.5 pollution. The findings can help officials formulate effective laws and regulations, and then PM 2.5 pollution related to the pattern of human activity, especially government action, will be ameliorated.
Griffin, Darcy M; Hudson, Heather M; Belhaj-Saïf, Abderraouf; Cheney, Paul D
2014-01-29
The delivery of high-frequency, long-duration intracortical microstimulation (HFLD-ICMS) to primary motor cortex (M1) in primates produces hand movements to a common final end-point regardless of the starting hand position (Graziano et al., 2002). We have confirmed this general conclusion. We further investigated the extent to which the (1) temporal pattern, (2) magnitude, and (3) latency of electromyographic (EMG) activation associated with HFLD-ICMS-evoked movements are dependent on task conditions, including limb posture. HFLD-ICMS was applied to layer V sites in M1 cortex. EMG activation with HFLD-ICMS was evaluated while two male rhesus macaques performed a number of tasks in which the starting position of the hand could be varied throughout the workspace. HFLD-ICMS-evoked EMG activity was largely stable across all parameters tested independent of starting hand position. The most common temporal pattern of HFLD-ICMS-evoked EMG activity (58% of responses) was a sharp rise to a plateau. The plateau level was maintained essentially constant for the entire duration of the stimulus train. The plateau pattern is qualitatively different from the largely bell-shaped patterns typical of EMG activity associated with natural goal directed movements (Brown and Cooke, 1990; Hoffman and Strick, 1999). HFLD-ICMS produces relatively fixed parameters of muscle activation independent of limb position. We conclude that joint movement associated with HFLD-ICMS occurs as a function of the length-tension properties of stimulus-activated muscles until an equilibrium between agonist and antagonist muscle force is achieved.
Griffin, Darcy M.; Hudson, Heather M.; Belhaj-Saïf, Abderraouf
2014-01-01
The delivery of high-frequency, long-duration intracortical microstimulation (HFLD-ICMS) to primary motor cortex (M1) in primates produces hand movements to a common final end-point regardless of the starting hand position (Graziano et al., 2002). We have confirmed this general conclusion. We further investigated the extent to which the (1) temporal pattern, (2) magnitude, and (3) latency of electromyographic (EMG) activation associated with HFLD-ICMS-evoked movements are dependent on task conditions, including limb posture. HFLD-ICMS was applied to layer V sites in M1 cortex. EMG activation with HFLD-ICMS was evaluated while two male rhesus macaques performed a number of tasks in which the starting position of the hand could be varied throughout the workspace. HFLD-ICMS-evoked EMG activity was largely stable across all parameters tested independent of starting hand position. The most common temporal pattern of HFLD-ICMS-evoked EMG activity (58% of responses) was a sharp rise to a plateau. The plateau level was maintained essentially constant for the entire duration of the stimulus train. The plateau pattern is qualitatively different from the largely bell-shaped patterns typical of EMG activity associated with natural goal directed movements (Brown and Cooke, 1990; Hoffman and Strick, 1999). HFLD-ICMS produces relatively fixed parameters of muscle activation independent of limb position. We conclude that joint movement associated with HFLD-ICMS occurs as a function of the length–tension properties of stimulus-activated muscles until an equilibrium between agonist and antagonist muscle force is achieved. PMID:24478348
NASA Astrophysics Data System (ADS)
Louis, Chelsey N.
Schizophrenia is a neurological disorder associated with cognitive impairments, and clinical symptoms of hallucinations and delusions. Recent imaging and behavioral studies have repeatedly shown aberrant brain activity in the hippocampal regions in relation to episodic memory impairments associated with schizophrenia. These findings have warranted further research to elucidate the neural processes associated with episodic memory. Therefore, the current study examined activity in a priori brain regions associated with episodic memory using the face-name paired-associates fMRI task to determine whether there was reliable activation patterns observed in healthy subjects and patients with self-reported schizophrenia. This was evaluated by using ROI analysis and whole brain analysis to examine activity between subjects during a session, and by using Pearson's R correlation coefficients to examine test-retest reliability over time. 30 schizophrenic (SZ) patients and 31 healthy control (HC) volunteers underwent a series of assessments including the fMRI behavioral task, face-name paired-associates task. The tests were conducted twice with a 14-day interval for the subjects. The results indicated no reliable brain activation in the hippocampus between scanning sessions for either the SZ or HC groups. However, distinct activation patterns were observed within sessions for both groups. These patterns were observed in the hippocampus, and regions of the frontal lobe and occipital lobe. Future studies should further explore these brain activity patterns across sessions in SZ patients compared to HC subjects to determine whether these patterns are due to pathological mechanisms associated with schizophrenia.
González-Ramírez, Laura R.; Ahmed, Omar J.; Cash, Sydney S.; Wayne, C. Eugene; Kramer, Mark A.
2015-01-01
Epilepsy—the condition of recurrent, unprovoked seizures—manifests in brain voltage activity with characteristic spatiotemporal patterns. These patterns include stereotyped semi-rhythmic activity produced by aggregate neuronal populations, and organized spatiotemporal phenomena, including waves. To assess these spatiotemporal patterns, we develop a mathematical model consistent with the observed neuronal population activity and determine analytically the parameter configurations that support traveling wave solutions. We then utilize high-density local field potential data recorded in vivo from human cortex preceding seizure termination from three patients to constrain the model parameters, and propose basic mechanisms that contribute to the observed traveling waves. We conclude that a relatively simple and abstract mathematical model consisting of localized interactions between excitatory cells with slow adaptation captures the quantitative features of wave propagation observed in the human local field potential preceding seizure termination. PMID:25689136
Nonlinear pattern analysis of ventricular premature beats by mutual information
NASA Technical Reports Server (NTRS)
Osaka, M.; Saitoh, H.; Yokoshima, T.; Kishida, H.; Hayakawa, H.; Cohen, R. J.
1997-01-01
The frequency of ventricular premature beats (VPBs) has been related to the risk of mortality. However, little is known about the temporal pattern of occurrence of VPBs and its relationship to autonomic activity. Hence, we applied a general correlation measure, mutual information, to quantify how VPBs are generated over time. We also used mutual information to determine the correlation between VPB production and heart rate in order to evaluate effects of autonomic activity on VPB production. We examined twenty subjects with more than 3000 VPBs/day and simulated random time series of VPB occurrence. We found that mutual information values could be used to characterize quantitatively the temporal patterns of VPB generation. Our data suggest that VPB production is not random and VPBs generated with a higher value of mutual information may be more greatly affected by autonomic activity.
NASA Astrophysics Data System (ADS)
King, Martin P.; Herceg-Bulić, Ivana; Kucharski, Fred; Keenlyside, Noel
2018-03-01
We investigate the Northern Hemisphere atmospheric circulation anomalies associated to the sea surface temperature (SST) anomalies that are related to the eastern-Pacific and central-Pacific El Nino-Southern Oscillations in the late autumn (November). This research is motivated by the need for improving understanding of the autumn climate conditions which can impact on winter climate, as well as the relative lack of study on the boreal autumn climate processes compared to winter. Using reanalysis and SST datasets available from the late nineteenth century through the recent years, we found that there are two major atmospheric responses; one is a hemispheric-wide wave number-4 pattern, another has a more annular pattern. Both of these project on the East Atlantic pattern (southward-shifted North Atlantic Oscillation) in the Atlantic sector. Which of the patterns is active is suggested to depend on the background mean flow, with the annular anomaly active in the most recent decades, while the wave-4 pattern in the decades before. This switch is associated with a change of correlation sign in the North Pacific. We discuss the robustness of this finding. The ability of two atmospheric general circulation models (ICTP-AGCM and ECHAM-AGCM) to reproduce the teleconnections is also examined. Evidence provided shows that the wave-4 pattern and the East Atlantic pattern signals can be reproduced by the models, while the shift from this to an annular response for the recent years is not found conclusively.
Code of Federal Regulations, 2010 CFR
2010-04-01
... that it has reasonable cause to believe that a household member's abuse or pattern of abuse of alcohol... determines that a household member's abuse or pattern of abuse of alcohol may threaten the health, safety, or.... (e) In cases of criminal activity related to domestic violence, dating violence, or stalking, the...
Pulse Check: Trends in Drug Abuse, Mid-Year 2000.
ERIC Educational Resources Information Center
Meth, Marcia; Chalmers, Rebecca; Bassin, Gail
This report serves as a source of information on drug abuse and drug markets. It aims to describe drug-abusing populations; emerging drugs; new routes of administration; varying use patterns; changing demand for treatment; drug-related criminal activity; and shifts in supply and distribution patterns. It is not designed to be used as a law…
Pause Time Patterns in Writing Narrative and Expository Texts by Children and Adults
ERIC Educational Resources Information Center
van Hell, Janet G.; Verhoeven, Ludo; van Beijsterveldt, Liesbeth M.
2008-01-01
How do beginning and skilled writers compose a text in the course of time? To gain insight into the temporal aspects of planning and translating activities during writing, this article examined writing in real time and analyzed pause time patterns in writing in relation to linguistic characteristics of the written product. Fourth-grade children…
ERIC Educational Resources Information Center
Wedel, Michel; Pieters, Rik; Liechty, John
2008-01-01
Eye movements across advertisements express a temporal pattern of bursts of respectively relatively short and long saccades, and this pattern is systematically influenced by activated scene perception goals. This was revealed by a continuous-time hidden Markov model applied to eye movements of 220 participants exposed to 17 ads under a…
ERIC Educational Resources Information Center
Fischbach, Soren; Kopec, Ashley M.; Carew, Thomas J.
2014-01-01
Mechanistically distinct forms of long-lasting plasticity and memory can be induced by a variety of different training patterns. Although several studies have identified distinct molecular pathways that are engaged during these different training patterns, relatively little work has explored potential interactions between pathways when they are…
Parkinson's disease: increased motor network activity in the absence of movement.
Ko, Ji Hyun; Mure, Hideo; Tang, Chris C; Ma, Yilong; Dhawan, Vijay; Spetsieris, Phoebe; Eidelberg, David
2013-03-06
We used a network approach to assess systems-level abnormalities in motor activation in humans with Parkinson's disease (PD). This was done by measuring the expression of the normal movement-related activation pattern (NMRP), a previously validated activation network deployed by healthy subjects during motor performance. In this study, NMRP expression was prospectively quantified in (15)O-water PET scans from a PD patient cohort comprised of a longitudinal early-stage group (n = 12) scanned at baseline and at two or three follow-up visits two years apart, and a moderately advanced group scanned on and off treatment with either subthalamic nucleus deep brain stimulation (n = 14) or intravenous levodopa infusion (n = 14). For each subject and condition, we measured NMRP expression during both movement and rest. Resting expression of the abnormal PD-related metabolic covariance pattern was likewise determined in the same subjects. NMRP expression was abnormally elevated (p < 0.001) in PD patients scanned in the nonmovement rest state. By contrast, network activity measured during movement did not differ from normal (p = 0.34). In the longitudinal cohort, abnormal increases in resting NMRP expression were evident at the earliest clinical stages (p < 0.05), which progressed significantly over time (p = 0.003). Analogous network changes were present at baseline in the treatment cohort (p = 0.001). These abnormalities improved with subthalamic nucleus stimulation (p < 0.005) but not levodopa (p = 0.25). In both cohorts, the changes in NMRP expression that were observed did not correlate with concurrent PD-related metabolic covariance pattern measurements (p > 0.22). Thus, the resting state in PD is characterized by changes in the activity of normal as well as pathological brain networks.
NASA Astrophysics Data System (ADS)
Zeilinger, Gerold; Parra, Mauricio; Kober, Florian
2017-04-01
It is widely accepted, that drainage patterns are often controlled by tectonics/climate and geology/rheology. Classical drainage patterns can be found 1) in fault-and-thrust belt, where rives follow the valleys parallel or cut perpendicular to strike trough the ridges, forming a trellis pattern, 2) at dome structures where the drainage form a radial pattern or 3) rectangular patterns in strongly fractured regions. In this study, we focus on fault-and-thrust belts, that undergone different phases of tectonic activity. According to classical models, the deformation is propagating into the foreland, hence being youngest at the frontal part and getting successively older towards the axis of the orogen. Drainage patterns in the more interior parts of the orogenic wedge should be then less influenced by the direction of structures, as landscape evolution is changing to a tectonic passive stage. This relationship might represent the transience and maturity of drainage pattern evolution. Here we study drainage patterns of the Bolivian and the eastern Colombian Andes by comparing the relative orientation of the drainage network with the orogen structural grain. The drainage is extracted from Digital Elevation Models (SRTM 30 m) and indexed by their Strahler Order. Order 1 channels have an upstream area of 1 km2. The direction of all segments is analyzed by linear directional mean function that results in the mean orientation of input channels with approx. 500 m average length. The orientation of structures for different structural domains is calculated using the same function on digitized faults and fold-axis. Rose diagrams show the length-weighted directional distribution of structures, of higher (>= 4) and of lower order (<= 3) channels. The structural trend in the Bolivian Andes is controlled by the orocline, where a predominant NW-SE trend turns into an N-S trend at 18°S and where the eastern orogen comprise from west to east, the Eastern Cordillera (EC), the Interandean Zone and the Subandean Zone (SA), exhibiting a catchment relief of up to 5000 m. While the structural trend in the EC is predominately NW-SE with a uniform (no preferred orientation) distribution of lower order fluvial channels, it changes in the SA into a distinct N-S trend with a pronounced E-W orientation of lower order fluvial channels. A similar pattern is recognized in the Eastern Andes of Colombia, where the structural trend is NE-SW. The Eastern Cordillera comprise a frontal thin-skinned Neogene and Paleogene domain (FR) and the more interior lower Cretaceous an Upper Paleozoic thick-skinned region (IR). The trend of higher order channels is, as expected, parallel to the structures in the interior parts and perpendicular in the frontal part. However, the trend of lower order channels reveal no directional correlation to the structural trend in the interior, but a significant correlation to the structures in the frontal range that suffered relatively to the interior domains younger deformation phases. We therefore postulate a dependency of the directional evolution of drainage patterns on the relative timing of tectonic activity. The only weakly preferred orientation of drainages in the interior parts (EC and IR) suggests a balance between structural control and drainage occupation, and higher maturity of the landscape. In contrast, the distinct pattern of drainages oblique to the structural grain in the frontal ranges (SA and FR) highlights the alignment of tributaries and suggests an ongoing tectonic control on drainage orientation. We test the hypothesis whether the correlation between the direction of small order rivers and the direction of structures can be used as a proxy for relative tectonic activity, which might be relevant in questions on 1) dominance of tectonics over climate, 2) dynamics of deformation propagation in fault-and-thrust-belts and 3) occurrence of higher erosion rates despite "limited" relief or threshold slopes. Ongoing efforts will investigate the possibility to quantify or compare relative tectonic activity across sites.
Spatial eigenmodes and synchronous oscillation: co-incidence detection in simulated cerebral cortex.
Chapman, Clare L; Wright, James J; Bourke, Paul D
2002-07-01
Zero-lag synchronisation arises between points on the cerebral cortex receiving concurrent independent inputs; an observation generally ascribed to nonlinear mechanisms. Using simulations of cerebral cortex and Principal Component Analysis (PCA) we show patterns of zero-lag synchronisation (associated with empirically realistic spectral content) can arise from both linear and nonlinear mechanisms. For low levels of activation, we show the synchronous field is described by the eigenmodes of the resultant damped wave activity. The first and second spatial eigenmodes (which capture most of the signal variance) arise from the even and odd components of the independent input signals. The pattern of zero-lag synchronisation can be accounted for by the relative dominance of the first mode over the second, in the near-field of the inputs. The simulated cortical surface can act as a few millisecond response coincidence detector for concurrent, but uncorrelated, inputs. As cortical activation levels are increased, local damped oscillations in the gamma band undergo a transition to highly nonlinear undamped activity with 40 Hz dominant frequency. This is associated with "locking" between active sites and spatially segregated phase patterns. The damped wave synchronisation and the locked nonlinear oscillations may combine to permit fast representation of multiple patterns of activity within the same field of neurons.
Mechanochemical pattern formation in simple models of active viscoelastic fluids and solids
NASA Astrophysics Data System (ADS)
Alonso, Sergio; Radszuweit, Markus; Engel, Harald; Bär, Markus
2017-11-01
The cytoskeleton of the organism Physarum polycephalum is a prominent example of a complex active viscoelastic material wherein stresses induce flows along the organism as a result of the action of molecular motors and their regulation by calcium ions. Experiments in Physarum polycephalum have revealed a rich variety of mechanochemical patterns including standing, traveling and rotating waves that arise from instabilities of spatially homogeneous states without gradients in stresses and resulting flows. Herein, we investigate simple models where an active stress induced by molecular motors is coupled to a model describing the passive viscoelastic properties of the cellular material. Specifically, two models for viscoelastic fluids (Maxwell and Jeffrey model) and two models for viscoelastic solids (Kelvin-Voigt and Standard model) are investigated. Our focus is on the analysis of the conditions that cause destabilization of spatially homogeneous states and the related onset of mechano-chemical waves and patterns. We carry out linear stability analyses and numerical simulations in one spatial dimension for different models. In general, sufficiently strong activity leads to waves and patterns. The primary instability is stationary for all active fluids considered, whereas all active solids have an oscillatory primary instability. All instabilities found are of long-wavelength nature reflecting the conservation of the total calcium concentration in the models studied.
The hierarchy of work pursuits of public health managers.
Braithwaite, Jeffrey; Luft, Sabine; Bender, Wolfgang; Callen, Joanne; Westbrook, Johanna I; Westbrook, Mary T; Mallock, Nadine A; Iedema, Rick; Hindle, Donald; Jochelson, Tanya
2007-05-01
How public health is managed in various settings is an important but under-examined issue. We examine themes in the management literature, contextualize issues facing public health managers and investigate the relative importance placed on their various work pursuits using a 14-activity management model empirically derived from studies of clinician-managers in hospitals. Ethnographic case studies of 10 managers in nine diverse public health settings were conducted. The case study accounts of managers' activities were content analysed, and substantive words encapsulating their work were categorized using the model. Managerial activities of the nine public health managers were ranked according to the number of words describing each activity. Kendall's coefficient of concordance yielded W = 0.710, P < 0.000, revealing significant similarity between the activity patterns of the public health managers. A rank order correlation between the activity patterns of the average ranks for the public health sample and for the hospital clinician-managers (n = 52) was R = 0.420, P = 0.131, indicating no significant relationship between relative activity priorities of the two groups. Public health managers put less emphasis on pursuits associated with structure, hierarchy and education, and more on external relations and decision-making. The model of hospital clinician-managers' managerial activities is applicable to public health managers while identifying differences in the way the two groups manage. The findings suggest that public health management work is more managerialist than previously thought.
Khan, Bilal; Chand, Pankaj; Alexandrakis, George
2011-01-01
Functional near infrared (fNIR) imaging was used to identify spatiotemporal relations between spatially distinct cortical regions activated during various hand and arm motion protocols. Imaging was performed over a field of view (FOV, 12 x 8.4 cm) including the secondary motor, primary sensorimotor, and the posterior parietal cortices over a single brain hemisphere. This is a more extended FOV than typically used in current fNIR studies. Three subjects performed four motor tasks that induced activation over this extended FOV. The tasks included card flipping (pronation and supination) that, to our knowledge, has not been performed in previous functional magnetic resonance imaging (fMRI) or fNIR studies. An earlier rise and a longer duration of the hemodynamic activation response were found in tasks requiring increased physical or mental effort. Additionally, analysis of activation images by cluster component analysis (CCA) demonstrated that cortical regions can be grouped into clusters, which can be adjacent or distant from each other, that have similar temporal activation patterns depending on whether the performed motor task is guided by visual or tactile feedback. These analyses highlight the future potential of fNIR imaging to tackle clinically relevant questions regarding the spatiotemporal relations between different sensorimotor cortex regions, e.g. ones involved in the rehabilitation response to motor impairments. PMID:22162826
ERIC Educational Resources Information Center
Pawlowski, Charlotte Skau; Ergler, Christina; Tjørnhøj-Thomsen, Tine; Schipperijn, Jasper; Troelsen, Jens
2015-01-01
Boys are more physically active than girls and the greatest gender difference in children's physical activity is found in institutional settings such as school recess. However, research on gender relations, performances and practices that maintain gendered differences in physical activity during recess is still limited. Drawing on a qualitative…
Morrison, A C; Ferro, C; Pardo, R; Torres, M; Wilson, M L; Tesh, R B
1995-09-01
Nocturnal activity of the sand fly Lutzomyia longipalpis (Lutz & Neiva) was studied from August 1991 to July 1992 in a small rural community in Colombia where American visceral leishmaniasis is endemic. During 2 or 3 nights each month, sand flies were collected with hand-held aspirators each hour between 1730 and 0630 hours, from a pigpen and a cattle corral located 30 m apart. Host-seeking activity of L. longipalpis adults was characterized by 2 general patterns: (1) adult sand fly activity increased shortly after sunset and continued until just after sunrise, and (2) peak sand fly activity was greatest early in the evening (1830-2330 hours) and then declined steadily toward morning. Female L. longipalpis activity generally increased after 2030 hours, whereas that of males remained constant or declined as the evening progressed. There were seasonal differences in sand fly abundance between the 2 sites: peak abundance in the cattle corral occurred during hot, dry periods, whereas maximum abundance in the pigpen occurred when relative humidity was higher. Influence of relative humidity on activity varied with season. Sand fly activity tended to decrease at temperatures below 24 degrees C and increase in the presence of moonlight.
Ihle, Andreas; Gouveia, Élvio R; Gouveia, Bruna R; van der Linden, Bernadette W A; Sauter, Julia; Gabriel, Rainer; Oris, Michel; Fagot, Delphine; Kliegel, Matthias
2017-01-01
Recently, Paggi et al. [Gerontology 2016;62:450-458] for the very first time showed in a cross-sectional sample of 259 adults aged 18-81 years that the relation of physical health to psychological well-being was mediated via frequency of leisure activity participation. To extend this framework, we followed theories on successful aging and vulnerability to propose to add a differential perspective predicting that certain individuals may be more vulnerable than others and therefore may show differences in the mediation pattern. Specifically, we examined whether mediation patterns were differential in certain populations, such as in old-old (compared to young-old) adults and in individuals who carried out a low (compared to those with a high) number of activities. We analyzed data from 3,080 individuals on physical health (number of chronic diseases, subjective health status, and subjective evaluation of change in health over the last 10 years), frequency of participation in 18 leisure activities, and physical and psychological well-being using moderated mediation models with a path model approach that allowed the simultaneous estimation of all model paths, including their significance. We found that the relation of physical health to physical and psychological well-being was mediated via frequency of activity participation. For physical (but not for psychological) well-being, this mediation was more pronounced in old-old (compared to young-old) adults and in individuals who carried out a low (compared to those with a high) number of activities. These moderated mediations were attributable to differential relations of physical health to frequency of activity participation and to differential relations of frequency of activity participation to physical well-being between the investigated moderator levels. Present data suggest that participation in leisure activities may play a key role in mediating the relationship between physical health and well-being, particularly in very old age. Findings are discussed with respect to theories of successful aging and differences between physical and psychological well-being. © 2017 S. Karger AG, Basel.
Nonlinear dynamics and rheology of active fluids: simulations in two dimensions.
Fielding, S M; Marenduzzo, D; Cates, M E
2011-04-01
We report simulations of a continuum model for (apolar, flow aligning) active fluids in two dimensions. Both free and anchored boundary conditions are considered, at parallel confining walls that are either static or moving at fixed relative velocity. We focus on extensile materials and find that steady shear bands, previously shown to arise ubiquitously in one dimension for the active nematic phase at small (or indeed zero) shear rate, are generally replaced in two dimensions by more complex flow patterns that can be stationary, oscillatory, or apparently chaotic. The consequences of these flow patterns for time-averaged steady-state rheology are examined. ©2011 American Physical Society
Deep processing activates the medial temporal lobe in young but not in old adults.
Daselaar, Sander M; Veltman, Dick J; Rombouts, Serge A R B; Raaijmakers, Jeroen G W; Jonker, Cees
2003-11-01
Age-related impairments in episodic memory have been related to a deficiency in semantic processing, based on the finding that elderly adults typically benefit less than young adults from deep, semantic as opposed to shallow, nonsemantic processing of study items. In the present study, we tested the hypothesis that elderly adults are not able to perform certain cognitive operations under deep processing conditions. We further hypothesised that this inability does not involve regions commonly associated with lexical/semantic retrieval processes, but rather involves a dysfunction of the medial temporal lobe (MTL) memory system. To this end, we used functional MRI on rather extensive groups of young and elderly adults to compare brain activity patterns obtained during a deep (living/nonliving) and a shallow (uppercase/lowercase) classification task. Common activity in relation to semantic classification was observed in regions that have been previously related to semantic retrieval, including mainly left-lateralised activity in the inferior prefrontal, middle temporal, and middle frontal/anterior cingulate gyrus. Although the young adults showed more activity in some of these areas, the finding of mainly overlapping activation patterns during semantic classification supports the idea that lexical/semantic retrieval processes are still intact in elderly adults. This received further support by the finding that both groups showed similar behavioural performances as well on the deep and shallow classification tasks. Importantly, though, the young revealed significantly more activity than the elderly adults in the left anterior hippocampus during deep relative to shallow classification. This finding is in line with the idea that age-related impairments in episodic encoding are, at least partly, due to an under-recruitment of the medial temporal lobe memory system.
Pattern identification in time-course gene expression data with the CoGAPS matrix factorization.
Fertig, Elana J; Stein-O'Brien, Genevieve; Jaffe, Andrew; Colantuoni, Carlo
2014-01-01
Patterns in time-course gene expression data can represent the biological processes that are active over the measured time period. However, the orthogonality constraint in standard pattern-finding algorithms, including notably principal components analysis (PCA), confounds expression changes resulting from simultaneous, non-orthogonal biological processes. Previously, we have shown that Markov chain Monte Carlo nonnegative matrix factorization algorithms are particularly adept at distinguishing such concurrent patterns. One such matrix factorization is implemented in the software package CoGAPS. We describe the application of this software and several technical considerations for identification of age-related patterns in a public, prefrontal cortex gene expression dataset.
Al-Nakeeb, Yahya; Lyons, Mark; Collins, Peter; Al-Nuaim, Anwar; Al-Hazzaa, Hazzaa; Duncan, Michael J.; Nevill, Alan
2012-01-01
This study explores differences in weight status, obesity and patterns of physical activity (PA) in relation to gender and age of youth from two culturally, environmentally and geographically diverse countries, the United Kingdom (UK) and Saudi Arabia (SA). A total of 2,290 males and females (15–17 years) volunteered to participate in this study. Participants completed a validated self-report questionnaire that contained 47 items relating to patterns of PA, sedentary activity and eating habits. The questionnaire allows the calculation of total energy expenditure in metabolic equivalent (MET-min) values per week. Significant differences in percentage of overweight/obese and levels of PA were evident between the youth from the two countries, with males being generally more physically active than females. Additionally, there were significant associations between Body Mass Index (BMI), PA and sedentary behaviors; the youth with higher BMI reported lower levels of PA and higher amounts of sedentary time. These findings highlight the diverse nature of lifestyle of youth living in different geographical areas of the world and the need for further research to explore the socio-cultural factors that impact on the prevalence of obesity and patterns of PA of youth in different populations. PMID:22690207
2013-01-01
Background Robot-assisted gait training and treadmill training can complement conventional physical therapy in children with neuro-orthopedic movement disorders. The aim of this study was to investigate surface electromyography (sEMG) activity patterns during robot-assisted gait training (with and without motivating instructions from a therapist) and unassisted treadmill walking and to compare these with physiological sEMG patterns. Methods Nine children with motor impairments and eight healthy children walked in various conditions: (a) on a treadmill in the driven gait orthosis Lokomat®, (b) same condition, with additional motivational instructions from a therapist, and (c) on the treadmill without assistance. sEMG recordings were made of the tibialis anterior, gastrocnemius lateralis, vastus medialis, and biceps femoris muscles. Differences in sEMG amplitudes between the three conditions were analyzed for the duration of stance and swing phase (for each group and muscle separately) using non-parametric tests. Spearman’s correlation coefficients illustrated similarity of muscle activation patterns between conditions, between groups, and with published reference trajectories. Results The relative duration of stance and swing phase differed between patients and controls, and between driven gait orthosis conditions and treadmill walking. While sEMG amplitudes were higher when being encouraged by a therapist compared to robot-assisted gait training without instructions (0.008 ≤ p-value ≤ 0.015), muscle activation patterns were highly comparable (0.648 ≤ Spearman correlation coefficients ≤ 0.969). In general, comparisons of the sEMG patterns with published reference data of over-ground walking revealed that walking in the driven gait orthosis could induce more physiological muscle activation patterns compared to unsupported treadmill walking. Conclusions Our results suggest that robotic-assisted gait training with therapeutic encouragement could appropriately increase muscle activity. Robotic-assisted gait training in general could induce physiological muscle activation patterns, which might indicate that this training exploits restorative rather than compensatory mechanisms. PMID:23867005
Goldwyn, Joshua H; Bierer, Steven M; Bierer, Julie Arenberg
2010-09-01
The partial tripolar electrode configuration is a relatively novel stimulation strategy that can generate more spatially focused electric fields than the commonly used monopolar configuration. Focused stimulation strategies should improve spectral resolution in cochlear implant users, but may also be more sensitive to local irregularities in the electrode-neuron interface. In this study, we develop a practical computer model of cochlear implant stimulation that can simulate neural activation in a simplified cochlear geometry and we relate the resulting patterns of neural activity to basic psychophysical measures. We examine how two types of local irregularities in the electrode-neuron interface, variations in spiral ganglion nerve density and electrode position within the scala tympani, affect the simulated neural activation patterns and how these patterns change with electrode configuration. The model shows that higher partial tripolar fractions activate more spatially restricted populations of neurons at all current levels and require higher current levels to excite a given number of neurons. We find that threshold levels are more sensitive at high partial tripolar fractions to both types of irregularities, but these effects are not independent. In particular, at close electrode-neuron distances, activation is typically more spatially localized which leads to a greater influence of neural dead regions. Copyright (c) 2010 Elsevier B.V. All rights reserved.
Pattern Activity Clustering and Evaluation (PACE)
NASA Astrophysics Data System (ADS)
Blasch, Erik; Banas, Christopher; Paul, Michael; Bussjager, Becky; Seetharaman, Guna
2012-06-01
With the vast amount of network information available on activities of people (i.e. motions, transportation routes, and site visits) there is a need to explore the salient properties of data that detect and discriminate the behavior of individuals. Recent machine learning approaches include methods of data mining, statistical analysis, clustering, and estimation that support activity-based intelligence. We seek to explore contemporary methods in activity analysis using machine learning techniques that discover and characterize behaviors that enable grouping, anomaly detection, and adversarial intent prediction. To evaluate these methods, we describe the mathematics and potential information theory metrics to characterize behavior. A scenario is presented to demonstrate the concept and metrics that could be useful for layered sensing behavior pattern learning and analysis. We leverage work on group tracking, learning and clustering approaches; as well as utilize information theoretical metrics for classification, behavioral and event pattern recognition, and activity and entity analysis. The performance evaluation of activity analysis supports high-level information fusion of user alerts, data queries and sensor management for data extraction, relations discovery, and situation analysis of existing data.
Trigeminal activation using chemical, electrical, and mechanical stimuli.
Iannilli, E; Del Gratta, C; Gerber, J C; Romani, G L; Hummel, T
2008-10-15
Tactile, proprioceptive, and nociceptive information, including also chemosensory functions are expressed in the trigeminal nerve sensory response. To study differences in the processing of different stimulus qualities, we performed a study based on functional magnetic resonance imaging. The first trigeminal branch (ophthalmic nerve) was activated by (a) intranasal chemical stimulation with gaseous CO2 which produces stinging and burning sensations, but is virtually odorless, (b) painful, but not nociceptive specific cutaneous electrical stimulation, and (c) cutaneous mechanical stimulation using air puffs. Eighteen healthy subjects participated (eight men, 10 women, mean age 31 years). Painful stimuli produced patterns of activation similar to what has been reported for other noxious stimuli, namely activation in the primary and secondary somatosensory cortices, anterior cingulate cortex, insular cortex, and thalamus. In addition, analyses indicated intensity-related activation in the prefrontal cortex which was specifically involved in the evaluation of stimulus intensity. Importantly, the results also indicated similarities between activation patterns after intranasal chemosensory trigeminal stimulation and patterns usually found following intranasal odorous stimulation, indicating the intimate connection between these two systems in the processing of sensory information.
Evaluation of the relative risk to birds of alternative pesticides using EPA’s TIM/MCnest Model
Agricultural producers today have many choices of active ingredients for crop protection. These products come with different active ingredients, different modes of action, and that initiate different adverse outcome pathways. Use patterns also differ considerably among products...
Diel Patterns of Activity for Insect Pollinators of Two Oil Palm Species (Arecales : Arecaceae)
Frérot, Brigitte; Poveda, Roberto; Louise, Claude; Beaudoin-Ollivier, Laurence
2017-01-01
The pollination of two oil palm species, Elaeis guineensis Jacquin and Elaeis oleifera Cortés (Arecales: Arecaceae), depends on a mutualistic relation with insects, which use male inflorescences as a brood site, and visits female inflorescences lured by the emitted odor, which is similar to that of males. Although the activity of visiting the inflorescences by these insects is critical for the adequate natural pollination of the host plant, their activity is poorly documented. In the present study, we determine the diel activity of two specialized pollinator weevils (Coleoptera: Curculionidae) on inflorescences of their respective host-palm: Elaeidobius kamerunicus Faust specialized on E. guineensis, and Grasidius hybridus O’Brien and Beserra specialized on E. oleifera. The average timing of activity was studied by using passive interception traps. Then the pattern and the duration were refined by using aspiration trapping within the active period for each insect species at the male and female inflorescences. All the experiments were conducted in an Ecuadorian oil palm plantation, located close to Amazonian forest. El. kamerunicus and G. hybridus were found to be the pollinators of E. guineensis and E. oleifera, respectively. The two species differed in their diel pattern of activity: E. kamerunicus was active in the morning and G. hybridus during a short period at dusk. For both palm species, insect visits were synchronous on both male and female inflorescences. The synchronicity is discussed as a strategy to maintain the relation mutualistic between partners. These findings increase our understanding of the oil palm pollination system. PMID:28365767
Selective activation of human soleus and medial gastrocnemius muscles during walking in water.
Miyoshi, T; Satoh, T; Nakazawa, K; Komeda, T; Yano, H
2000-07-01
During walking in water (WW) the vertical component of ground reaction forces decreases, while the greater propulsive force is required to move forward against the greater resistance of water. In such reduced gravity environment, Hutchison et al. (1989) have demonstrated that the relative activation of rat medial gastrocnemius (MGAS) increased compared to that of the soleus (SOL) during swimming, suggesting different effects of peripheral information on motoneuron excitability of these muscles. It is conceivable that both buoyancy and resistance of water have different effects on the activation patterns of triceps surae muscles during WW, since the reduced weight in water might decrease the peripheral inflow relating load information while greater volitional command might be needed to propel a body forward against the water resistance. The present study was designed to assess each peripheral inflow and efferent input by adjusting the load and walking speed voluntarily during WW. The aim of this study is to investigate the dissociative activation pattern between the SOL and the MGAS during WW.
Okada, Yasumasa; Masumiya, Haruko; Tamura, Yoshiyasu; Oku, Yoshitaka
2007-11-01
Two respiratory-related areas, the para-facial respiratory group/retrotrapezoid nucleus (pFRG/RTN) and the pre-Bötzinger complex/ventral respiratory group (preBötC/VRG), are thought to play key roles in respiratory rhythm. Because respiratory output patterns in response to respiratory and metabolic acidosis differ, we hypothesized that the responses of the medullary respiratory neuronal network to respiratory and metabolic acidosis are different. To test these hypotheses, we analysed respiratory-related activity in the pFRG/RTN and preBötC/VRG of the neonatal rat brainstem-spinal cord in vitro by optical imaging using a voltage-sensitive dye, and compared the effects of respiratory and metabolic acidosis on these two populations. We found that the spatiotemporal responses of respiratory-related regional activities to respiratory and metabolic acidosis are fundamentally different, although both acidosis similarly augmented respiratory output by increasing respiratory frequency. PreBötC/VRG activity, which is mainly inspiratory, was augmented by respiratory acidosis. Respiratory-modulated pixels increased in the preBötC/VRG area in response to respiratory acidosis. Metabolic acidosis shifted the respiratory phase in the pFRG/RTN; the pre-inspiratory dominant pattern shifted to inspiratory dominant. The responses of the pFRG/RTN activity to respiratory and metabolic acidosis are complex, and involve either augmentation or reduction in the size of respiratory-related areas. Furthermore, the activation pattern in the pFRG/RTN switched bi-directionally between pre-inspiratory/inspiratory and post-inspiratory. Electrophysiological study supported the results of our optical imaging study. We conclude that respiratory and metabolic acidosis differentially affect activities of the pFRG/RTN and preBötC/VRG, inducing switching and shifts of the respiratory phase. We suggest that they differently influence the coupling states between the pFRG/RTN and preBötC/VRG.
Meinecke, Annika L; Lehmann-Willenbrock, Nale; Kauffeld, Simone
2017-07-01
Despite a wealth of research on antecedents and outcomes of annual appraisal interviews, the ingredients that make for a successful communication process within the interview itself remain unclear. This study takes a communication approach to highlight leader-follower dynamics in annual appraisal interviews. We integrate relational leadership theory and recent findings on leader-follower interactions to argue (a) how supervisors' task- and relation-oriented statements can elicit employee involvement during the interview process and (b) how these communication patterns affect both supervisors' and employees' perceptions of the interview. Moreover, we explore (c) how supervisor behavior is contingent upon employee contributions to the appraisal interview. We audiotaped 48 actual annual appraisal interviews between supervisors and their employees. Adopting a multimethod approach, we used quantitative interaction coding (N = 32,791 behavioral events) as well as qualitative open-axial coding to explore communication patterns among supervisors and their employees. Lag sequential analysis revealed that supervisors' relation-oriented statements triggered active employee contributions and vice versa. These relation-activation patterns were linked to higher interview success ratings by both supervisors and employees. Moreover, our qualitative findings highlight employee disagreement as a crucial form of active employee contributions during appraisal interviews. We distinguish what employees disagreed about, how the disagreement was enacted, and how supervisors responded to it. Overall employee disagreement was negatively related to ratings of supervisor support. We discuss theoretical implications for performance appraisal and leadership theory and derive practical recommendations for promoting employee involvement during appraisal interviews. (PsycINFO Database Record (c) 2017 APA, all rights reserved).
de Sousa-Mast, Fabiana R; Reis, Arianne C; Sperandei, Sandro; Gurgel, Luilma A; Vieira, Marcelo C; Pühse, Uwe
2016-07-01
The objective of this study was to analyze the physical activity patterns of women living in a low-income community located in close proximity to the 2016 Rio de Janeiro Olympic Park. Data (N = 140) were collected in June and July 2012 using the International Physical Activity Questionnaire. Findings indicated that the majority (54.8%) of participants reported high levels of physical activity. The domains that contributed the most to this pattern were occupational and household physical activity. Significantly, 88.1% of participants reported low physical activity levels during their leisure-time. In the transport-related domain, participants were relatively more active, but more than half of them (57%) spent less than 600 MET-minutes/week in this domain. The results highlighted the discrepancies between different physical activity domains. In addition, the findings also suggested that low-income women in our study engaged little in physical activity during their leisure time. Therefore, the proposed commitments found in the Rio de Janeiro Candidature File to host the 2016 Olympic Games to increase sport/physical activity participation within low-income communities in Rio de Janeiro need to be implemented effectively if this physical activity behavior during self-directed time is to be changed.
Jurakic, Danijel; Golubić, Antonija; Pedisic, Zeljko; Pori, Maja
2014-06-01
The purpose of this study was to determine the level, pattern and correlates (socio-demographic, lifestyle and work-related) of physical activity among middle-aged employees in Croatia. In this cross-sectional study the data were collected using a household interview on a random sample of 766 middle-aged employees (52% female) living in Croatia. The International Physical Activity Questionnaire (IPAQ-long) was used to assess physical activity. An additional questionnaire was used to collect data on socio-demographic, lifestyle and work-related correlates. The median (95% CI) total physical activity for the whole sample was 78.7 (69.1-88.3) MET-hours/week. Most physical activity was accumulated in the domain of work (26.4 (20.3-32.5) MET-hours/week) or in domestic activities (19.2(17.8-20.7) MET-hours/week), whilst a significantly lower physical activity was found in the transport (3.3 (2.9-3.7) MET-hours/week) and leisure-time domains (6.5 (5.7-7.3) MET-hours/week). The multiple regression analysis showed an inverse relationship between educational level and the size of settlements with the domestic-related and total physical activity (β range: -0.11 to -0.22; p < 0.01). Among lifestyle correlates, only alcohol consumption was positively related to the total physical activity (β = 0.12; p < 0.01), while the perceived level of stress outside work was the only one, which was inversely associated with the work-related (β = -0.09; p < 0.01) and leisure-time physical activity (β = -0.10; p < 0.01). Middle-aged employees in Croatia accumulate most of their daily physical activity in the work and domestic domains. Analysis of the relationship between physical activity and potential socio-demographic, lifestyle, and work-related correlates indicated that physical activity promotional activities should be primarily focused on males, employees living in smaller settlements and those with higher educational levels. The correlates of physical activity among middle-aged employees seem to be domain-specific. Therefore, future studies in this area should consider assessing physical activity in each domain separately.
Purcell, Jeremy J.; Rapp, Brenda
2013-01-01
Previous research has shown that damage to the neural substrates of orthographic processing can lead to functional reorganization during reading (Tsapkini et al., 2011); in this research we ask if the same is true for spelling. To examine the functional reorganization of spelling networks we present a novel three-stage Individual Peak Probability Comparison (IPPC) analysis approach for comparing the activation patterns obtained during fMRI of spelling in a single brain-damaged individual with dysgraphia to those obtained in a set of non-impaired control participants. The first analysis stage characterizes the convergence in activations across non-impaired control participants by applying a technique typically used for characterizing activations across studies: Activation Likelihood Estimate (ALE) (Turkeltaub et al., 2002). This method was used to identify locations that have a high likelihood of yielding activation peaks in the non-impaired participants. The second stage provides a characterization of the degree to which the brain-damaged individual's activations correspond to the group pattern identified in Stage 1. This involves performing a Mahalanobis distance statistics analysis (Tsapkini et al., 2011) that compares each of a control group's peak activation locations to the nearest peak generated by the brain-damaged individual. The third stage evaluates the extent to which the brain-damaged individual's peaks are atypical relative to the range of individual variation among the control participants. This IPPC analysis allows for a quantifiable, statistically sound method for comparing an individual's activation pattern to the patterns observed in a control group and, thus, provides a valuable tool for identifying functional reorganization in a brain-damaged individual with impaired spelling. Furthermore, this approach can be applied more generally to compare any individual's activation pattern with that of a set of other individuals. PMID:24399981
Rhythmic activities of hypothalamic magnocellular neurons: autocontrol mechanisms.
Richard, P; Moos, F; Dayanithi, G; Gouzènes, L; Sabatier, N
1997-12-01
Electrophysiological recordings in lactating rats show that oxytocin (OT) and vasopressin (AVP) neurons exhibit specific patterns of activities in relation to peripheral stimuli: periodic bursting firing for OT neurons during suckling, phasic firing for AVP neurons during hyperosmolarity (systemic injection of hypertonic saline). These activities are autocontrolled by OT and AVP released somato-dentritically within the hypothalamic magnocellular nuclei. In vivo, OT enhances the amplitude and frequency of bursts, an effect accompanied with an increase in basal firing rate. However, the characteristics of firing change as facilitation proceeds: the spike patterns become very irregular with clusters of spikes spaced by long silences; the firing rate is highly variable and clearly oscillates before facilitated bursts. This unstable behaviour dramatically decreases during intense tonic activation which temporarily interrupts bursting, and could therefore be a prerequisite for bursting. In vivo, the effects of AVP depend on the initial firing pattern of AVP neurons: AVP excites weakly active neurons (increasing duration of active periods and decreasing silences), inhibits highly active neurons, and does not affect neurons with intermediate phasic activity. AVP brings the entire population of AVP neurons to discharge with a medium phasic activity characterised by periods of firing and silence lasting 20-40 s, a pattern shown to optimise the release of AVP from the neurohypophysis. Each of the peptides (OT or AVP) induces an increase in intracellular Ca2+ concentration, specifically in the neurons containing either OT or AVP respectively. OT evokes the release of Ca2+ from IP3-sensitive intracellular stores. AVP induces an influx of Ca2+ through voltage-dependent Ca2+ channels of T-, L- and N-types. We postulate that the facilitatory autocontrol of OT and AVP neurons could be mediated by Ca2+ known to play a key role in the control of the patterns of phasic neurons.
McMullan, Sarah; Chin, Rachel; Froude, Elspeth; Imms, Christine
2012-06-01
Positive participation outcomes are deemed the ultimate goal of health care and specifically of occupational therapy. Knowledge of the typical participation patterns of children in Australia will provide essential information to support our understanding of participation and the goal of maximising children's engagement. This study investigated the participation of Grade 6 and Year 8 Victorian students in activities outside school and explored differences between genders and between students in different year levels. Secondarily, we began to establish Australian normative data on the Children's Assessment of Participation and Enjoyment and Preferences for Activities of Children. This cross sectional survey methods study recruited students from a random selection of public schools. Participation was measured using the Children's Assessment of Participation and Enjoyment and Preferences for Activities of Children questionnaires. Participants included 84 (37 female, 47 male) students in Grade 6 (n = 43) and Year 8 (n = 41). Differences between year levels were only evident for participation in Recreational and Active Physical activities. Grade 6 students did more activities, more intensely than Year 8 students, but with no difference in enjoyment. The mean number of Recreational activities done by Grade 6 students was 8.5 (95%CI: 7.9-9.1) compared to Year 8 students 6.9 (95%CI: 6.1-7.7; P = 0.001). Gender differences were evident in the participation patterns within Social, Skill-Based and Self-Improvement activities. The findings suggested that gender was a more important influence on participation patterns than a 2-year age gap, with participation patterns being relatively stable between Grade 6 and Year 8. © 2012 The Authors Australian Occupational Therapy Journal © 2012 Occupational Therapy Australia.
Konow, Nicolai; Herrel, Anthony; Ross, Callum F.; Williams, Susan H.; German, Rebecca Z.; Sanford, Christopher P. J.; Gintof, Chris
2011-01-01
Although chewing has been suggested to be a basal gnathostome trait retained in most major vertebrate lineages, it has not been studied broadly and comparatively across vertebrates. To redress this imbalance, we recorded EMG from muscles powering anteroposterior movement of the hyoid, and dorsoventral movement of the mandibular jaw during chewing. We compared muscle activity patterns (MAP) during chewing in jawed vertebrate taxa belonging to unrelated groups of basal bony fishes and artiodactyl mammals. Our aim was to outline the evolution of coordination in MAP. Comparisons of activity in muscles of the jaw and hyoid that power chewing in closely related artiodactyls using cross-correlation analyses identified reorganizations of jaw and hyoid MAP between herbivores and omnivores. EMG data from basal bony fishes revealed a tighter coordination of jaw and hyoid MAP during chewing than seen in artiodactyls. Across this broad phylogenetic range, there have been major structural reorganizations, including a reduction of the bony hyoid suspension, which is robust in fishes, to the acquisition in a mammalian ancestor of a muscle sling suspending the hyoid. These changes appear to be reflected in a shift in chewing MAP that occurred in an unidentified anamniote stem-lineage. This shift matches observations that, when compared with fishes, the pattern of hyoid motion in tetrapods is reversed and also time-shifted relative to the pattern of jaw movement. PMID:21705368
Stimulus-specific suppression preserves information in auditory short-term memory.
Linke, Annika C; Vicente-Grabovetsky, Alejandro; Cusack, Rhodri
2011-08-02
Philosophers and scientists have puzzled for millennia over how perceptual information is stored in short-term memory. Some have suggested that early sensory representations are involved, but their precise role has remained unclear. The current study asks whether auditory cortex shows sustained frequency-specific activation while sounds are maintained in short-term memory using high-resolution functional MRI (fMRI). Investigating short-term memory representations within regions of human auditory cortex with fMRI has been difficult because of their small size and high anatomical variability between subjects. However, we overcame these constraints by using multivoxel pattern analysis. It clearly revealed frequency-specific activity during the encoding phase of a change detection task, and the degree of this frequency-specific activation was positively related to performance in the task. Although the sounds had to be maintained in memory, activity in auditory cortex was significantly suppressed. Strikingly, patterns of activity in this maintenance period correlated negatively with the patterns evoked by the same frequencies during encoding. Furthermore, individuals who used a rehearsal strategy to remember the sounds showed reduced frequency-specific suppression during the maintenance period. Although negative activations are often disregarded in fMRI research, our findings imply that decreases in blood oxygenation level-dependent response carry important stimulus-specific information and can be related to cognitive processes. We hypothesize that, during auditory change detection, frequency-specific suppression protects short-term memory representations from being overwritten by inhibiting the encoding of interfering sounds.
Sakatani, Kaoru; Tanida, Masahiro; Hirao, Naoyasu; Takemura, Naohiro
2014-01-01
In order to clarify the mechanism through which extract of Ginkgo biloba leaves (EGb) improves cognitive function, we examined the effects of EGb on cerebral blood oxygenation in the prefrontal cortex (PFC) and on performance during a working memory task, using near-infrared spectrometry (NIRS). First, we evaluated differences in behavioral performance of the Sternberg working memory test (ST) and in the activation pattern of the PFC during ST between 15 young and 19 middle-aged healthy women. Then, we examined the effect of EGb (120 mg/day for 6 weeks) on ST performance and PFC activation pattern in the middle-aged group. The middle-aged group exhibited a longer reaction time (RT) in ST than the young group and showed a different PFC activation pattern during ST, i.e., the middle-aged group showed bilateral activation while the young group showed right-dominant activation. In the middle-aged group, administration of EGb for 6 weeks shortened the RT of ST and changed the PFC activation pattern to right-dominant, like that in the young group. The results indicate the PFC plays a role in the physiological cognitive function-enhancing effect of EGb. EGb might improve working memory function in middle-aged individuals by counteracting the occurrence of aging-related hemispheric asymmetry reduction.
Voxel-based morphometry of auditory and speech-related cortex in stutterers.
Beal, Deryk S; Gracco, Vincent L; Lafaille, Sophie J; De Nil, Luc F
2007-08-06
Stutterers demonstrate unique functional neural activation patterns during speech production, including reduced auditory activation, relative to nonstutterers. The extent to which these functional differences are accompanied by abnormal morphology of the brain in stutterers is unclear. This study examined the neuroanatomical differences in speech-related cortex between stutterers and nonstutterers using voxel-based morphometry. Results revealed significant differences in localized grey matter and white matter densities of left and right hemisphere regions involved in auditory processing and speech production.
Carlson, Bruce A.
2010-01-01
Sensory systems often encode stimulus information into the temporal pattern of action potential activity. However, little is known about how the information contained within these patterns is extracted by postsynaptic neurons. Similar to temporal coding by sensory neurons, social information in mormyrid fish is encoded into the temporal patterning of an electric organ discharge (EOD). In the current study, sensitivity to temporal patterns of electrosensory stimuli was found to arise within the midbrain posterior exterolateral nucleus (ELp). Whole-cell patch recordings from ELp neurons in vivo revealed three patterns of interpulse interval (IPI) tuning: low-pass neurons tuned to long intervals, high-pass neurons tuned to short intervals and band-pass neurons tuned to intermediate intervals. Many neurons within each class also responded preferentially to either increasing or decreasing IPIs. Playback of electric signaling patterns recorded from freely behaving fish revealed that the IPI and direction tuning of ELp neurons resulted in selective responses to particular social communication displays characterized by distinct IPI patterns. The postsynaptic potential responses of many neurons indicated a combination of excitatory and inhibitory synaptic input, and the IPI tuning of ELp neurons was directly related to rate-dependent changes in the direction and amplitude of postsynaptic potentials. These results suggest that differences in the dynamics of short-term synaptic plasticity in excitatory and inhibitory pathways may tune central sensory neurons to particular temporal patterns of presynaptic activity. This may represent a general mechanism for the processing of behaviorally-relevant stimulus information encoded into temporal patterns of activity by sensory neurons. PMID:19641105
Carlson, Bruce A
2009-07-29
Sensory systems often encode stimulus information into the temporal pattern of action potential activity. However, little is known about how the information contained within these patterns is extracted by postsynaptic neurons. Similar to temporal coding by sensory neurons, social information in mormyrid fish is encoded into the temporal patterning of an electric organ discharge. In the current study, sensitivity to temporal patterns of electrosensory stimuli was found to arise within the midbrain posterior exterolateral nucleus (ELp). Whole-cell patch recordings from ELp neurons in vivo revealed three patterns of interpulse interval (IPI) tuning: low-pass neurons tuned to long intervals, high-pass neurons tuned to short intervals, and bandpass neurons tuned to intermediate intervals. Many neurons within each class also responded preferentially to either increasing or decreasing IPIs. Playback of electric signaling patterns recorded from freely behaving fish revealed that the IPI and direction tuning of ELp neurons resulted in selective responses to particular social communication displays characterized by distinct IPI patterns. The postsynaptic potential responses of many neurons indicated a combination of excitatory and inhibitory synaptic input, and the IPI tuning of ELp neurons was directly related to rate-dependent changes in the direction and amplitude of postsynaptic potentials. These results suggest that differences in the dynamics of short-term synaptic plasticity in excitatory and inhibitory pathways may tune central sensory neurons to particular temporal patterns of presynaptic activity. This may represent a general mechanism for the processing of behaviorally relevant stimulus information encoded into temporal patterns of activity by sensory neurons.
Deliano, Matthias; Scheich, Henning; Ohl, Frank W
2009-12-16
Several studies have shown that animals can learn to make specific use of intracortical microstimulation (ICMS) of sensory cortex within behavioral tasks. Here, we investigate how the focal, artificial activation by ICMS leads to a meaningful, behaviorally interpretable signal. In natural learning, this involves large-scale activity patterns in widespread brain-networks. We therefore trained gerbils to discriminate closely neighboring ICMS sites within primary auditory cortex producing evoked responses largely overlapping in space. In parallel, during training, we recorded electrocorticograms (ECoGs) at high spatial resolution. Applying a multivariate classification procedure, we identified late spatial patterns that emerged with discrimination learning from the ongoing poststimulus ECoG. These patterns contained information about the preceding conditioned stimulus, and were associated with a subsequent correct behavioral response by the animal. Thereby, relevant pattern information was mainly carried by neuron populations outside the range of the lateral spatial spread of ICMS-evoked cortical activation (approximately 1.2 mm). This demonstrates that the stimulated cortical area not only encoded information about the stimulation sites by its focal, stimulus-driven activation, but also provided meaningful signals in its ongoing activity related to the interpretation of ICMS learned by the animal. This involved the stimulated area as a whole, and apparently required large-scale integration in the brain. However, ICMS locally interfered with the ongoing cortical dynamics by suppressing pattern formation near the stimulation sites. The interaction between ICMS and ongoing cortical activity has several implications for the design of ICMS protocols and cortical neuroprostheses, since the meaningful interpretation of ICMS depends on this interaction.
An Exploratory Look at the Relationships among Math Skills, Motivational Factors and Activity Choice
ERIC Educational Resources Information Center
Edens, Kellah M.; Potter, Ellen F.
2013-01-01
This study of a preschool classroom of 4 year old children examines underlying skills of number sense such as counting and spatial skills and Spontaneous Focusing on Numerosity. It also investigates children's patterns of engaging in spontaneous mathematical activities in free-play activity centers in relation to behaviors associated with…
Automatic classification of canine PRG neuronal discharge patterns using K-means clustering.
Zuperku, Edward J; Prkic, Ivana; Stucke, Astrid G; Miller, Justin R; Hopp, Francis A; Stuth, Eckehard A
2015-02-01
Respiratory-related neurons in the parabrachial-Kölliker-Fuse (PB-KF) region of the pons play a key role in the control of breathing. The neuronal activities of these pontine respiratory group (PRG) neurons exhibit a variety of inspiratory (I), expiratory (E), phase spanning and non-respiratory related (NRM) discharge patterns. Due to the variety of patterns, it can be difficult to classify them into distinct subgroups according to their discharge contours. This report presents a method that automatically classifies neurons according to their discharge patterns and derives an average subgroup contour of each class. It is based on the K-means clustering technique and it is implemented via SigmaPlot User-Defined transform scripts. The discharge patterns of 135 canine PRG neurons were classified into seven distinct subgroups. Additional methods for choosing the optimal number of clusters are described. Analysis of the results suggests that the K-means clustering method offers a robust objective means of both automatically categorizing neuron patterns and establishing the underlying archetypical contours of subtypes based on the discharge patterns of group of neurons. Published by Elsevier B.V.
Using Passive and Active Acoustics to Examine Relationships of Cetacean and Prey Densities
2015-09-30
modulation or production to the marine soundscape with daily, lunar, and seasonal patterns. We aim to document how presence and intensity of certain...sounds relate to spatio-temporal variability of active acoustic backscatter strength. Additionally, several marine mammal species are predators of deep...scattering layer (DSL) species as well as krill. We intend to investigate if passive acoustic marine mammal detections are related to increased
Ely, Alice V; Childress, Anna Rose; Jagannathan, Kanchana; Lowe, Michael R
2015-12-01
Normal weight historical dieters (HDs) are prone to future weight gain, and show higher levels of brain activation in reward-related regions after having eaten than nondieters (NDs) in response to food stimuli (Ely, Childress, Jagannathan, & Lowe, 2014), a similar pattern to that seen in obesity. We hypothesized that HDs are differentially sensitive after eating to rewards in general, and thus extended prior findings by comparing the same groups' brain activation when viewing romantic pictures compared to neutral stimuli while being scanned in a blood oxygenation level-dependent (BOLD) fMRI paradigm in a fasted and fed state. Results show that 1) in fed relative to fasted conditions, both HDs and NDs were more responsive in areas related to reward and 2) in HDs, greater fed versus fasted activation extended to areas linked to perception and goal-directed behavior. HDs relative to NDs were more responsive to romantic cues in the superior frontal gyrus when fasted and the middle temporal gyrus when fed. This pattern of response is similar to HDs' activation when viewing highly palatable food cues, and is consistent with research showing overlapping brain-based responses to sex, drugs and food. Copyright © 2015 Elsevier Ltd. All rights reserved.
Mathematical study on robust tissue pattern formation in growing epididymal tubule.
Hirashima, Tsuyoshi
2016-10-21
Tissue pattern formation during development is a reproducible morphogenetic process organized by a series of kinetic cellular activities, leading to the building of functional and stable organs. Recent studies focusing on mechanical aspects have revealed physical mechanisms on how the cellular activities contribute to the formation of reproducible tissue patterns; however, the understanding for what factors achieve the reproducibility of such patterning and how it occurs is far from complete. Here, I focus on a tube pattern formation during murine epididymal development, and show that two factors influencing physical design for the patterning, the proliferative zone within the tubule and the viscosity of tissues surrounding to the tubule, control the reproducibility of epididymal tubule pattern, using a mathematical model based on experimental data. Extensive numerical simulation of the simple mathematical model revealed that a spatially localized proliferative zone within the tubule, observed in experiments, results in more reproducible tubule pattern. Moreover, I found that the viscosity of tissues surrounding to the tubule imposes a trade-off regarding pattern reproducibility and spatial accuracy relating to the region where the tubule pattern is formed. This indicates an existence of optimality in material properties of tissues for the robust patterning of epididymal tubule. The results obtained by numerical analysis based on experimental observations provide a general insight on how physical design realizes robust tissue pattern formation. Copyright © 2016 Elsevier Ltd. All rights reserved.
Li, Chunyan; Tripathi, Pradeep K; Armstrong, William E
2007-01-01
The firing pattern of magnocellular neurosecretory neurons is intimately related to hormone release, but the relative contribution of synaptic versus intrinsic factors to the temporal dispersion of spikes is unknown. In the present study, we examined the firing patterns of vasopressin (VP) and oxytocin (OT) supraoptic neurons in coronal slices from virgin female rats, with and without blockade of inhibitory and excitatory synaptic currents. Inhibitory postsynaptic currents (IPSCs) were twice as prevalent as their excitatory counterparts (EPSCs), and both were more prevalent in OT compared with VP neurons. Oxytocin neurons fired more slowly and irregularly than VP neurons near threshold. Blockade of Cl− currents (including tonic and synaptic currents) with picrotoxin reduced interspike interval (ISI) variability of continuously firing OT and VP neurons without altering input resistance or firing rate. Blockade of EPSCs did not affect firing pattern. Phasic bursting neurons (putative VP neurons) were inconsistently affected by broad synaptic blockade, suggesting that intrinsic factors may dominate the ISI distribution during this mode in the slice. Specific blockade of synaptic IPSCs with gabazine also reduced ISI variability, but only in OT neurons. In all cases, the effect of inhibitory blockade on firing pattern was independent of any consistent change in input resistance or firing rate. Since the great majority of IPSCs are randomly distributed, miniature events (mIPSCs) in the coronal slice, these findings imply that even mIPSCs can impart irregularity to the firing pattern of OT neurons in particular, and could be important in regulating spike patterning in vivo. For example, the increased firing variability that precedes bursting in OT neurons during lactation could be related to significant changes in synaptic activity. PMID:17332000
Cabral, Joana; Vidaurre, Diego; Marques, Paulo; Magalhães, Ricardo; Silva Moreira, Pedro; Miguel Soares, José; Deco, Gustavo; Sousa, Nuno; Kringelbach, Morten L
2017-07-11
Growing evidence has shown that brain activity at rest slowly wanders through a repertoire of different states, where whole-brain functional connectivity (FC) temporarily settles into distinct FC patterns. Nevertheless, the functional role of resting-state activity remains unclear. Here, we investigate how the switching behavior of resting-state FC relates with cognitive performance in healthy older adults. We analyse resting-state fMRI data from 98 healthy adults previously categorized as being among the best or among the worst performers in a cohort study of >1000 subjects aged 50+ who underwent neuropsychological assessment. We use a novel approach focusing on the dominant FC pattern captured by the leading eigenvector of dynamic FC matrices. Recurrent FC patterns - or states - are detected and characterized in terms of lifetime, probability of occurrence and switching profiles. We find that poorer cognitive performance is associated with weaker FC temporal similarity together with altered switching between FC states. These results provide new evidence linking the switching dynamics of FC during rest with cognitive performance in later life, reinforcing the functional role of resting-state activity for effective cognitive processing.
Top 10 research questions related to physical activity in preschool children.
Pate, Russell R; O'Neill, Jennifer R; Brown, William H; McIver, Kerry L; Howie, Erin K; Dowda, Marsha
2013-12-01
The purpose of this article was to highlight important research needs related to physical activity in 3- to 5-year-old children. We identified research needs in 3 major categories: health effects, patterns of physical activity, and interventions and policies. The top research needs include identifying the health effects of physical activity, the effects of physical activity on the development of healthy weight, the effects of physical activity on learning and behavior, and the health implications of sedentary behavior. Research questions concerning patterns of physical activity include determining the prevalence of 3- to 5-year-olds meeting the current physical activity guidelines; the social and environmental factors that influence physical activity in home, preschool, and community settings; and how physical activity tracks into later childhood, adolescence, and adulthood. Research questions about interventions and policies include identifying the most effective strategies to promote physical activity in home, child care, and community settings and to reach diverse populations of young children, identifying effective intervention implementation and dissemination strategies, and determining the effectiveness of national, state, local, and institutional policies for increasing physical activity. In conclusion, research is needed to establish a full understanding of the health implications of physical activity in 3- to 5-year-old children, to better understand the nature of physical activity behavior in this group, and to learn how to promote physical activity in young children.
Volunteerism and socioemotional selectivity in later life.
Hendricks, Jon; Cutler, Stephen J
2004-09-01
The goal of this work was to assess the applicability of socioemotional selectivity theory to the realm of volunteerism by analyzing data drawn from the September 2002 Current Population Survey Volunteer Supplement. Total number of organizations volunteered for and total number of hours engaged in volunteer activities were utilized to obtain measures of volunteer hours per organization and volunteer hours in the main organization to determine whether a selective process could be observed. Descriptive statistics on age patterns were followed by a series of curve estimations to identify the best-fitting curves. Logistic age patterns of slowly increasing then relatively stable volunteer activity suggest that socioemotional selectivity processes are operative in the realm of voluntary activities. Socioemotional selectivity theory is applicable to voluntary activities.
Crisp, Kevin M; Mesce, Karen A
2006-05-01
The biological mechanisms of behavioral selection, as it relates to locomotion, are far from understood, even in relatively simple invertebrate animals. In the medicinal leech, Hirudo medicinalis, the decision to swim is distributed across populations of swim-activating and swim-inactivating neurons descending from the subesophageal ganglion of the compound cephalic ganglion, i.e. the brain. In the present study, we demonstrate that the serotonergic LL and Retzius cells in the brain are excited by swim-initiating stimuli and during spontaneous swim episodes. This activity likely influences or resets the neuromodulatory state of neural circuits involved in the activation or subsequent termination of locomotion. When serotonin (5-HT) was perfused over the brain, multi-unit recordings from descending brain neurons revealed rapid and substantial alterations. Subsequent intracellular recordings from identified command-like brain interneurons demonstrated that 5-HT, especially in combination with octopamine, inhibited swim-triggering neuron Tr1, as well as swim-inactivating neurons Tr2 and SIN1. Although 5-HT inhibited elements of the swim-inactivation pathway, rather than promoting them, the indirect and net effect of the amine was a reliable and sustained reduction in the firing of the segmental swim-gating neuron 204. This modulation caused cell 204 to relinquish its excitatory drive to the swim central pattern generator. The activation pattern of serotonergic brain neurons that we observed during swimming and the 5-HT-immunoreactive staining pattern obtained, suggest that within the head brain 5-HT secretion is massive. Over time, 5-HT secretion may provide a homeostatic feedback mechanism to limit swimming activity at the level of the head brain.
Kang, Sinkyu; Kimball, John S; Running, Steven W
2006-06-01
We used a terrestrial ecosystem process model, BIOME-BGC, to investigate historical climate change and fire disturbance effects on regional carbon and water budgets within a 357,500 km(2) portion of the Canadian boreal forest. Historical patterns of increasing atmospheric CO2, climate change, and regional fire activity were used as model drivers to evaluate the relative effects of these impacts to spatial patterns and temporal trends in forest net primary production (NPP) and evapotranspiration (ET). Historical trends of increasing atmospheric CO2 resulted in overall 13% and 5% increases in annual NPP and ET from 1994 to 1996, respectively. NPP was found to be relatively sensitive to changes in air temperature (T(a)), while ET was more sensitive to precipitation (P) change within the ranges of observed climate variability (e.g., +/-2 degrees C for T(a) and +/-20% for P). In addition, the potential effect of climate change related warming on NPP is exacerbated or offset depending on whether these changes are accompanied by respective decreases or increases in precipitation. Historical fire activity generally resulted in reductions of both NPP and ET, which consumed an average of approximately 6% of annual NPP from 1959 to 1996. Areas currently occupied by dry conifer forests were found to be subject to more frequent fire activity, which consumed approximately 8% of annual NPP. The results of this study show that the North American boreal ecosystem is sensitive to historical patterns of increasing atmospheric CO2, climate change and regional fire activity. The relative impacts of these disturbances on NPP and ET interact in complex ways and are spatially variable depending on regional land cover and climate gradients.
Falcón, Wilfredo; Baxter, Rich P; Furrer, Samuel; Bauert, Martin; Hatt, Jean-Michel; Schaepman-Strub, Gabriela; Ozgul, Arpat; Bunbury, Nancy; Clauss, Marcus; Hansen, Dennis M
2018-02-01
We studied the temperature relations of wild and zoo Aldabra giant tortoises ( Aldabrachelys gigantea ) focusing on (1) the relationship between environmental temperature and tortoise activity patterns ( n = 8 wild individuals) and (2) on tortoise body temperature fluctuations, including how their core and external body temperatures vary in relation to different environmental temperature ranges (seasons; n = 4 wild and n = 5 zoo individuals). In addition, we surveyed the literature to review the effect of body mass on core body temperature range in relation to environmental temperature in the Testudinidae. Diurnal activity of tortoises was bimodally distributed and influenced by environmental temperature and season. The mean air temperature at which activity is maximized was 27.9°C, with a range of 25.8-31.7°C. Furthermore, air temperature explained changes in the core body temperature better than did mass, and only during the coldest trial, did tortoises with higher mass show more stable temperatures. Our results, together with the overall Testudinidae overview, suggest that, once variation in environmental temperature has been taken into account, there is little effect of mass on the temperature stability of tortoises. Moreover, the presence of thermal inertia in an individual tortoise depends on the environmental temperatures, and we found no evidence for inertial homeothermy. Finally, patterns of core and external body temperatures in comparison with environmental temperatures suggest that Aldabra giant tortoises act as mixed conformer-regulators. Our study provides a baseline to manage the thermal environment of wild and rewilded populations of an important island ecosystem engineer species in an era of climate change.
Zhang, Jingming; Lanuza, Guillermo M.; Britz, Olivier; Wang, Zhi; Siembab, Valerie C.; Zhang, Ying; Velasquez, Tomoko; Alvarez, Francisco J.; Frank, Eric; Goulding, Martyn
2014-01-01
SUMMARY The reciprocal activation of flexor and extensor muscles constitutes the fundamental mechanism that tetrapod vertebrates use for locomotion and limb-driven reflex behaviors. This aspect of motor coordination is controlled by inhibitory neurons in the spinal cord; however, the identity of the spinal interneurons that serve this function is not known. Here we show that the production of an alternating flexor-extensor motor rhythm depends on the composite activities of two classes of ventrally-located inhibitory neurons, V1 and V2b interneurons (INs). Abrogating V1 and V2b IN-derived neurotransmission in the isolated spinal cord results in a synchronous pattern of L2 flexor-related and L5 extensor-related locomotor activity. Mice lacking V1 and V2b inhibition are unable to articulate their limb joints and display marked deficits in limb-driven reflex movements. Taken together, these findings identify V1- and V2b-derived neurons as the core interneuronal components of the limb central pattern generator (CPG) that coordinate flexor-extensor motor activity. PMID:24698273
Neural activity in the hippocampus during conflict resolution.
Sakimoto, Yuya; Okada, Kana; Hattori, Minoru; Takeda, Kozue; Sakata, Shogo
2013-01-15
This study examined configural association theory and conflict resolution models in relation to hippocampal neural activity during positive patterning tasks. According to configural association theory, the hippocampus is important for responses to compound stimuli in positive patterning tasks. In contrast, according to the conflict resolution model, the hippocampus is important for responses to single stimuli in positive patterning tasks. We hypothesized that if configural association theory is applicable, and not the conflict resolution model, the hippocampal theta power should be increased when compound stimuli are presented. If, on the other hand, the conflict resolution model is applicable, but not configural association theory, then the hippocampal theta power should be increased when single stimuli are presented. If both models are valid and applicable in the positive patterning task, we predict that the hippocampal theta power should be increased by presentation of both compound and single stimuli during the positive patterning task. To examine our hypotheses, we measured hippocampal theta power in rats during a positive patterning task. The results showed that hippocampal theta power increased during the presentation of a single stimulus, but did not increase during the presentation of a compound stimulus. This finding suggests that the conflict resolution model is more applicable than the configural association theory for describing neural activity during positive patterning tasks. Copyright © 2012 Elsevier B.V. All rights reserved.
Activity flow over resting-state networks shapes cognitive task activations.
Cole, Michael W; Ito, Takuya; Bassett, Danielle S; Schultz, Douglas H
2016-12-01
Resting-state functional connectivity (FC) has helped reveal the intrinsic network organization of the human brain, yet its relevance to cognitive task activations has been unclear. Uncertainty remains despite evidence that resting-state FC patterns are highly similar to cognitive task activation patterns. Identifying the distributed processes that shape localized cognitive task activations may help reveal why resting-state FC is so strongly related to cognitive task activations. We found that estimating task-evoked activity flow (the spread of activation amplitudes) over resting-state FC networks allowed prediction of cognitive task activations in a large-scale neural network model. Applying this insight to empirical functional MRI data, we found that cognitive task activations can be predicted in held-out brain regions (and held-out individuals) via estimated activity flow over resting-state FC networks. This suggests that task-evoked activity flow over intrinsic networks is a large-scale mechanism explaining the relevance of resting-state FC to cognitive task activations.
Activity flow over resting-state networks shapes cognitive task activations
Cole, Michael W.; Ito, Takuya; Bassett, Danielle S.; Schultz, Douglas H.
2016-01-01
Resting-state functional connectivity (FC) has helped reveal the intrinsic network organization of the human brain, yet its relevance to cognitive task activations has been unclear. Uncertainty remains despite evidence that resting-state FC patterns are highly similar to cognitive task activation patterns. Identifying the distributed processes that shape localized cognitive task activations may help reveal why resting-state FC is so strongly related to cognitive task activations. We found that estimating task-evoked activity flow (the spread of activation amplitudes) over resting-state FC networks allows prediction of cognitive task activations in a large-scale neural network model. Applying this insight to empirical functional MRI data, we found that cognitive task activations can be predicted in held-out brain regions (and held-out individuals) via estimated activity flow over resting-state FC networks. This suggests that task-evoked activity flow over intrinsic networks is a large-scale mechanism explaining the relevance of resting-state FC to cognitive task activations. PMID:27723746
ERIC Educational Resources Information Center
Meth, Marcia; Chalmers, Rebecca
The report aims to describe chronic drug users, emerging drugs, new routes of administration, varying use patterns, changing demand for treatment, drug-related criminal activity, drug markets, and shifts in supply and distribution patterns. Pulse Check regularly addresses four drugs of serious concern: heroin, crack cocaine/powder cocaine,…
ERIC Educational Resources Information Center
Marschalek, Douglas G.
1988-01-01
Describes study of children in grades one, three, and five that examined their active processing and short term memory (STM) of color, contour, and interior pattern of shapes found in computer digitized pictures. Age-related differences are examined, and the role of processing visual information in the learning process is discussed. (12…
The Role of Television in the Life of the Aged Person.
ERIC Educational Resources Information Center
Schalinske, Theo Fred
This study sought to relate the dynamic patterns of older adults to their use of television within the whole range of activity patterns available to them. Central to the study was an intensive interview study of a select sample (32 women and 18 men in a Columbus, Ohio, senior citizen community); this precluded derivative generalizations for the…
ERIC Educational Resources Information Center
Zarrett, Nicole; Fay, Kristen; Li, Yibing; Carrano, Jennifer; Phelps, Erin; Lerner, Richard M.
2009-01-01
The authors used data from Grades 5 through 7 of the longitudinal 4-H Study of Positive Youth Development to assess relations among sports participation, other out-of-school-time (OST) activities, and indicators of youth development. They used a mixture of variable- and pattern-centered analyses aimed at disentangling different features of…
Robert C. Lucas
1980-01-01
Presents a summary and analysis of data from a survey of visitors to eight wildernesses and related areas in the Montana and Idaho Rockies and to one wilderness in the California Sierra Nevadas. Basic data on use patterns, including types of groups, activities, travel behavior, visitor characteristics, motives for visits, satisfaction with conditions experienced, and...
NASA Technical Reports Server (NTRS)
Spence, Janet T.; Helmreich, Robert L.; Pred, Robert S.
1987-01-01
Psychometric analyses of college students' responses to the Jenkins Activity Survey, a self-report measure of the Type A behavior pattern, revealed the presence of two relatively independent factors. Based on these analyses, two scales, labeled Achievement Strivings (AS) and Impatience and Irritability (II), were developed. In two samples of male and female college students, scores on AS but not on II were found to be significantly correlated with grade point average. Responses to a health survey, on the other hand, indicated that frequency of physical complaints was significantly correlated with II but not with AS. These results suggest that there are two relatively independent factors in the Type A pattern that have differential effects on performance and health. Future research on the personality factors related to coronary heart disease and other disorders might more profitably focus on the syndrome reflected in the II scale than on the Type A pattern.
Self-Control Constructs Related to Measures of Dietary Intake and Physical Activity in Adolescents
Wills, Thomas A.; Isasi, Carmen R.; Mendoza, Don; Ainette, Michael G.
2007-01-01
Purpose To test self-regulation concepts in relation to dietary intake and physical activity patterns in adolescence, which we predicted to be influenced by components of a self-control model. Methods A survey was conducted with a multiethnic sample of 9th grade public school students in a metropolitan area (N = 539). Confirmatory analysis tested the measurement structure of self-control. Structural equation modeling tested the association of self-control constructs with measures of fruit and vegetable intake, saturated-fat intake, physical activity, and sedentary behavior. Results Confirmatory analysis of 14 indicators of self-control showed best fit for a two-factor structure, with latent constructs of good self-control (planfulness) and poor self-control (impulsiveness). Good self-control was related to more fruit and vegetable intake, more participation in sports, and less sedentary behavior. Poor self-control was related to more saturated-fat intake and less vigorous exercise. These effects were independent of gender, ethnicity, and parental education, which themselves had relations to diet and exercise measures. Multiple-group modeling indicated that effects of self-control were comparable across gender and ethnicity subgroups. Conclusions Self-control concepts are relevant for patterns of dietary intake and physical activity among adolescents. Attention to self-control processes may be warranted for prevention programs to improve health behaviors in childhood and adolescence. PMID:18023783
Relative humidity and activity patterns of Ixodes scapularis (Acari: Ixodidae)
Berger, K.A.; Ginsberg, Howard S.; Gonzalez, L.; Mather, T.N.
2014-01-01
Laboratory studies have shown clear relationships between relative humidity (RH) and the activity and survival of Ixodes scapularis Say (blacklegged tick). However, field studies have produced conflicting results. We examined this relationship using weekly tick count totals and hourly RH observations at three field sites, stratified by latitude, within the state of Rhode Island. Records of nymphal tick abundance were compared with several RH-related variables (e.g., RH at time of sampling and mean weekly daytime RH). In total, 825 nymphs were sampled in 2009, a year of greater precipitation, with a weighted average leaf litter RH recorded at time of sampling of 85.22%. Alternatively, 649 nymphs were collected in 2010, a year of relatively low precipitation, and a weighted average RH recorded at time of sampling was 75.51%. Negative binomial regression analysis of tick count totals identified cumulative hours <82% RH threshold as a significant factor observed in both years (2009: P = 0.0037; 2010: P < 0.0001). Mean weekly daytime RH did not significantly predict tick activity in either year. However, mean weekly daytime RH recorded with 1-wk lag before sample date was a significant variable (P = 0.0016) in 2010. These results suggest a lag effect between moisture availability and patterns of tick activity and abundance. Differences in the relative importance of each RH variable between years may have been due to abnormally wet summer conditions in 2009.
Sex in Its Daily Relational Context.
Dewitte, Marieke; Van Lankveld, Jacques; Vandenberghe, Sjouke; Loeys, Tom
2015-12-01
The present study measured the daily correlates of sexual behavior in an ecologically valid context by relying on a daily diary approach. Examining the dyadic and multicomponent nature of sexual behavior is essential to create valid models of sexual responding that are better aligned with the day-to-day context of having sex in a relationship. During 3 weeks, heterosexual couples completed, two times a day, an electronic diary to report on mood, own and perceived partner behavior, relational feelings (in the evening), sexual activity, physical intimacy, and masturbation (in the morning). This design allowed testing bidirectional temporal associations between daily context and different types of sexual behavior. Positive mood, displays of positive partner behavior, perceived positive partner behavior, and positive relational feelings predicted more sexual activity and intimacy in men, which then further increased their positive mood, perceived positive partner behavior, and positive feelings about the relationship on the following day. Women showed a similar pattern of predictors regarding sexual activity as men, though the effect of sexual behavior on next-day feelings and behavior was more relationship-oriented rather than affecting personal mood. Intimacy was related to almost all daily variables in women, but related only to own and perceived positive partner behavior and positive relational feelings the next day. Several partner effects also reached significance, and these were more influential in predicting male than female intimacy. Solitary sexual activity showed a different pattern of results than dyadic sexual activity, with men experiencing masturbation as negatively in the context of their relationship. These results confirm the regulatory function of sex and intimacy in maintaining a positive relational climate and indicate that the quality of the everyday relational context is important to get partners in the mood to act in a sexual way. © 2015 International Society for Sexual Medicine.
Arousal and locomotion make distinct contributions to cortical activity patterns and visual encoding
Vinck, Martin; Batista-Brito, Renata; Knoblich, Ulf; Cardin, Jessica A.
2015-01-01
Spontaneous and sensory-evoked cortical activity is highly state-dependent, yet relatively little is known about transitions between distinct waking states. Patterns of activity in mouse V1 differ dramatically between quiescence and locomotion, but this difference could be explained by either motor feedback or a change in arousal levels. We recorded single cells and local field potentials from area V1 in mice head-fixed on a running wheel and monitored pupil diameter to assay arousal. Using naturally occurring and induced state transitions, we dissociated arousal and locomotion effects in V1. Arousal suppressed spontaneous firing and strongly altered the temporal patterning of population activity. Moreover, heightened arousal increased the signal-to-noise ratio of visual responses and reduced noise correlations. In contrast, increased firing in anticipation of and during movement was attributable to locomotion effects. Our findings suggest complementary roles of arousal and locomotion in promoting functional flexibility in cortical circuits. PMID:25892300
Phonology and arithmetic in the language-calculation network.
Andin, Josefine; Fransson, Peter; Rönnberg, Jerker; Rudner, Mary
2015-04-01
Arithmetic and language processing involve similar neural networks, but the relative engagement remains unclear. In the present study we used fMRI to compare activation for phonological, multiplication and subtraction tasks, keeping the stimulus material constant, within a predefined language-calculation network including left inferior frontal gyrus and angular gyrus (AG) as well as superior parietal lobule and the intraparietal sulcus bilaterally. Results revealed a generally left lateralized activation pattern within the language-calculation network for phonology and a bilateral activation pattern for arithmetic, and suggested regional differences between tasks. In particular, we found a more prominent role for phonology than arithmetic in pars opercularis of the left inferior frontal gyrus but domain generality in pars triangularis. Parietal activation patterns demonstrated greater engagement of the visual and quantity systems for calculation than language. This set of findings supports the notion of a common, but regionally differentiated, language-calculation network. Copyright © 2015 The Authors. Published by Elsevier Inc. All rights reserved.
Millimeter-scale epileptiform spike propagation patterns and their relationship to seizures
Vanleer, Ann C; Blanco, Justin A; Wagenaar, Joost B; Viventi, Jonathan; Contreras, Diego; Litt, Brian
2016-01-01
Objective Current mapping of epileptic networks in patients prior to epilepsy surgery utilizes electrode arrays with sparse spatial sampling (∼1.0 cm inter-electrode spacing). Recent research demonstrates that sub-millimeter, cortical-column-scale domains have a role in seizure generation that may be clinically significant. We use high-resolution, active, flexible surface electrode arrays with 500 μm inter-electrode spacing to explore epileptiform local field potential spike propagation patterns in two dimensions recorded from subdural micro-electrocorticographic signals in vivo in cat. In this study, we aimed to develop methods to quantitatively characterize the spatiotemporal dynamics of epileptiform activity at high-resolution. Approach We topically administered a GABA-antagonist, picrotoxin, to induce acute neocortical epileptiform activity leading up to discrete electrographic seizures. We extracted features from local field potential spikes to characterize spatiotemporal patterns in these events. We then tested the hypothesis that two dimensional spike patterns during seizures were different from those between seizures. Main results We showed that spatially correlated events can be used to distinguish ictal versus interictal spikes. Significance We conclude that sub-millimeter-scale spatiotemporal spike patterns reveal network dynamics that are invisible to standard clinical recordings and contain information related to seizure-state. PMID:26859260
Millimeter-scale epileptiform spike propagation patterns and their relationship to seizures
NASA Astrophysics Data System (ADS)
Vanleer, Ann C.; Blanco, Justin A.; Wagenaar, Joost B.; Viventi, Jonathan; Contreras, Diego; Litt, Brian
2016-04-01
Objective. Current mapping of epileptic networks in patients prior to epilepsy surgery utilizes electrode arrays with sparse spatial sampling (∼1.0 cm inter-electrode spacing). Recent research demonstrates that sub-millimeter, cortical-column-scale domains have a role in seizure generation that may be clinically significant. We use high-resolution, active, flexible surface electrode arrays with 500 μm inter-electrode spacing to explore epileptiform local field potential (LFP) spike propagation patterns in two dimensions recorded from subdural micro-electrocorticographic signals in vivo in cat. In this study, we aimed to develop methods to quantitatively characterize the spatiotemporal dynamics of epileptiform activity at high-resolution. Approach. We topically administered a GABA-antagonist, picrotoxin, to induce acute neocortical epileptiform activity leading up to discrete electrographic seizures. We extracted features from LFP spikes to characterize spatiotemporal patterns in these events. We then tested the hypothesis that two-dimensional spike patterns during seizures were different from those between seizures. Main results. We showed that spatially correlated events can be used to distinguish ictal versus interictal spikes. Significance. We conclude that sub-millimeter-scale spatiotemporal spike patterns reveal network dynamics that are invisible to standard clinical recordings and contain information related to seizure-state.
Anxiety type modulates immediate versus delayed engagement of attention-related brain regions.
Spielberg, Jeffrey M; De Leon, Angeline A; Bredemeier, Keith; Heller, Wendy; Engels, Anna S; Warren, Stacie L; Crocker, Laura D; Sutton, Bradley P; Miller, Gregory A
2013-09-01
Background Habituation of the fear response, critical for the treatment of anxiety, is inconsistently observed during exposure to threatening stimuli. One potential explanation for this inconsistency is differential attentional engagement with negatively valenced stimuli as a function of anxiety type. Methods The present study tested this hypothesis by examining patterns of neural habituation associated with anxious arousal, characterized by panic symptoms and immediate engagement with negatively valenced stimuli, versus anxious apprehension, characterized by engagement in worry to distract from negatively valenced stimuli. Results As predicted, the two anxiety types evidenced distinct patterns of attentional engagement. Anxious arousal was associated with immediate activation in attention-related brain regions that habituated over time, whereas anxious apprehension was associated with delayed activation in attention-related brain regions that occurred only after habituation in a worry-related brain region. Conclusions Results further elucidate mechanisms involved in attention to negatively valenced stimuli and indicate that anxiety is a heterogeneous construct with regard to attention to such stimuli.
Anxiety type modulates immediate versus delayed engagement of attention-related brain regions
Spielberg, Jeffrey M; De Leon, Angeline A; Bredemeier, Keith; Heller, Wendy; Engels, Anna S; Warren, Stacie L; Crocker, Laura D; Sutton, Bradley P; Miller, Gregory A
2013-01-01
Background Habituation of the fear response, critical for the treatment of anxiety, is inconsistently observed during exposure to threatening stimuli. One potential explanation for this inconsistency is differential attentional engagement with negatively valenced stimuli as a function of anxiety type. Methods The present study tested this hypothesis by examining patterns of neural habituation associated with anxious arousal, characterized by panic symptoms and immediate engagement with negatively valenced stimuli, versus anxious apprehension, characterized by engagement in worry to distract from negatively valenced stimuli. Results As predicted, the two anxiety types evidenced distinct patterns of attentional engagement. Anxious arousal was associated with immediate activation in attention-related brain regions that habituated over time, whereas anxious apprehension was associated with delayed activation in attention-related brain regions that occurred only after habituation in a worry-related brain region. Conclusions Results further elucidate mechanisms involved in attention to negatively valenced stimuli and indicate that anxiety is a heterogeneous construct with regard to attention to such stimuli. PMID:24392275
'It was not just a walking experience': reflections on the role of care in dog-walking.
Degeling, Chris; Rock, Melanie
2013-09-01
Research into physical activity and human health has recently begun to attend to dog-walking. This study extends the literature on dog-walking as a health behaviour by conceptualizing dog-walking as a caring practice. It centres on qualitative interviews with 11 Canadian dog-owners. All participants resided in urban neighbourhoods identified through previous quantitative research as conducive to dog-walking. Canine characteristics, including breed and age, were found to influence people's physical activity. The health of the dog and its position in the life-course influenced patterns of dog-walking. Frequency, duration and spatial patterns of dog-walking all depended on relationships and people's capacity to tap into resources. In foregrounding networks of care, inclusive of pets and public spaces, a relational conceptualization of dog-walking as a practice of caring helps to make sense of heterogeneity in patterns of physical activity among dog-owners.
Diagnosis of the influence of the solar cycle in the annular character of the NAM using RAM.
NASA Astrophysics Data System (ADS)
de La Torre, L.; Gimeno, L.; Tesouro, M.; Nieto, R.; Añel, J. A.; Ribera, P.; García, R.; Hernández, E.
2003-04-01
It has been suggested that the North Atlantic Oscillation is a regional expression of the so called Northern Hemisphere Annular Mode (NAM), although some evidences have been found against this hypothesis. However, recent studies conect the spatial structure of the NAM with the phase of solar cycle, being annular-like only for the periods of high solar activity. With this work we try to make a contribution to the debate by using atmospheric relative angular momentum (RAM) to diagnose the annular character of the mode. Correlations of RAM vs. temperature and geopotential height at different levels for high activity years show a more zonally extended pattern than those for low activity years. Moreover, the Atlantic pattern is always shown, even when using RAM computed by 60º longitude sectors. On the other hand, the Pacific pattern almost dissapear.
Patterns of vegetation in the Owens Valley, California
NASA Technical Reports Server (NTRS)
Ustin, S. L.; Rock, B. N.; Woodward, R. A.
1986-01-01
Spectral characteristics of semi-arid shrub communities were examined using Airborne Imaging Spectrometer (AIS) data collected in the tree mode on 23 May 1985. Mesic sites with relatively high vegetation density and distinct zonation patterns exhibited greater spectral signature variations than sites with more xeric shrub communities. Spectral signature patterns were not directly related to vegetation density or physiognomy, although spatial maps derived from an 8-channel maximum likelihood classification were supported by photo-interpreted surface features. In AIS data, the principal detected effect of shrub vegetation on the alluvial fans is to lower reflectance across the spectrum. These results are similar to those reported during a period of minimal physiological activity in autumn, indicating that shadows cast by vegetation canopies are an important element of soil-vegetation interaction under conditions of relatively low canopy cover.
Visual Space and Object Space in the Cerebral Cortex of Retinal Disease Patients
Spileers, Werner; Wagemans, Johan; Op de Beeck, Hans P.
2014-01-01
The lower areas of the hierarchically organized visual cortex are strongly retinotopically organized, with strong responses to specific retinotopic stimuli, and no response to other stimuli outside these preferred regions. Higher areas in the ventral occipitotemporal cortex show a weak eccentricity bias, and are mainly sensitive for object category (e.g., faces versus buildings). This study investigated how the mapping of eccentricity and category sensitivity using functional magnetic resonance imaging is affected by a retinal lesion in two very different low vision patients: a patient with a large central scotoma, affecting central input to the retina (juvenile macular degeneration), and a patient where input to the peripheral retina is lost (retinitis pigmentosa). From the retinal degeneration, we can predict specific losses of retinotopic activation. These predictions were confirmed when comparing stimulus activations with a no-stimulus fixation baseline. At the same time, however, seemingly contradictory patterns of activation, unexpected given the retinal degeneration, were observed when different stimulus conditions were directly compared. These unexpected activations were due to position-specific deactivations, indicating the importance of investigating absolute activation (relative to a no-stimulus baseline) rather than relative activation (comparing different stimulus conditions). Data from two controls, with simulated scotomas that matched the lesions in the two patients also showed that retinotopic mapping results could be explained by a combination of activations at the stimulated locations and deactivations at unstimulated locations. Category sensitivity was preserved in the two patients. In sum, when we take into account the full pattern of activations and deactivations elicited in retinotopic cortex and throughout the ventral object vision pathway in low vision patients, the pattern of (de)activation is consistent with the retinal loss. PMID:24505449
Mouse Activity across Time Scales: Fractal Scenarios
Lima, G. Z. dos Santos; Lobão-Soares, B.; do Nascimento, G. C.; França, Arthur S. C.; Muratori, L.; Ribeiro, S.; Corso, G.
2014-01-01
In this work we devise a classification of mouse activity patterns based on accelerometer data using Detrended Fluctuation Analysis. We use two characteristic mouse behavioural states as benchmarks in this study: waking in free activity and slow-wave sleep (SWS). In both situations we find roughly the same pattern: for short time intervals we observe high correlation in activity - a typical 1/f complex pattern - while for large time intervals there is anti-correlation. High correlation of short intervals ( to : waking state and to : SWS) is related to highly coordinated muscle activity. In the waking state we associate high correlation both to muscle activity and to mouse stereotyped movements (grooming, waking, etc.). On the other side, the observed anti-correlation over large time scales ( to : waking state and to : SWS) during SWS appears related to a feedback autonomic response. The transition from correlated regime at short scales to an anti-correlated regime at large scales during SWS is given by the respiratory cycle interval, while during the waking state this transition occurs at the time scale corresponding to the duration of the stereotyped mouse movements. Furthermore, we find that the waking state is characterized by longer time scales than SWS and by a softer transition from correlation to anti-correlation. Moreover, this soft transition in the waking state encompass a behavioural time scale window that gives rise to a multifractal pattern. We believe that the observed multifractality in mouse activity is formed by the integration of several stereotyped movements each one with a characteristic time correlation. Finally, we compare scaling properties of body acceleration fluctuation time series during sleep and wake periods for healthy mice. Interestingly, differences between sleep and wake in the scaling exponents are comparable to previous works regarding human heartbeat. Complementarily, the nature of these sleep-wake dynamics could lead to a better understanding of neuroautonomic regulation mechanisms. PMID:25275515
NASA Astrophysics Data System (ADS)
Oweis, Khalid J.; Berl, Madison M.; Gaillard, William D.; Duke, Elizabeth S.; Blackstone, Kaitlin; Loew, Murray H.; Zara, Jason M.
2010-03-01
This paper describes the development of novel computer-aided analysis algorithms to identify the language activation patterns at a certain Region of Interest (ROI) in Functional Magnetic Resonance Imaging (fMRI). Previous analysis techniques have been used to compare typical and pathologic activation patterns in fMRI images resulting from identical tasks but none of them analyzed activation topographically in a quantitative manner. This paper presents new analysis techniques and algorithms capable of identifying a pattern of language activation associated with localization related epilepsy. fMRI images of 64 healthy individuals and 31 patients with localization related epilepsy have been studied and analyzed on an ROI basis. All subjects are right handed with normal MRI scans and have been classified into three age groups (4-6, 7-9, 10-12 years). Our initial efforts have focused on investigating activation in the Left Inferior Frontal Gyrus (LIFG). A number of volumetric features have been extracted from the data. The LIFG has been cut into slices and the activation has been investigated topographically on a slice by slice basis. Overall, a total of 809 features have been extracted, and correlation analysis was applied to eliminate highly correlated features. Principal Component analysis was then applied to account only for major components in the data and One-Way Analysis of Variance (ANOVA) has been applied to test for significantly different features between normal and patient groups. Twenty Nine features have were found to be significantly different (p<0.05) between patient and control groups
Bursting as a source of non-linear determinism in the firing patterns of nigral dopamine neurons
Jeong, Jaeseung; Shi, Wei-Xing; Hoffman, Ralph; Oh, Jihoon; Gore, John C.; Bunney, Benjamin S.; Peterson, Bradley S.
2012-01-01
Nigral dopamine (DA) neurons in vivo exhibit complex firing patterns consisting of tonic single-spikes and phasic bursts that encode information for certain types of reward-related learning and behavior. Non-linear dynamical analysis has previously demonstrated the presence of a non-linear deterministic structure in complex firing patterns of DA neurons, yet the origin of this non-linear determinism remains unknown. In this study, we hypothesized that bursting activity is the primary source of non-linear determinism in the firing patterns of DA neurons. To test this hypothesis, we investigated the dimension complexity of inter-spike interval data recorded in vivo from bursting and non-bursting DA neurons in the chloral hydrate-anesthetized rat substantia nigra. We found that bursting DA neurons exhibited non-linear determinism in their firing patterns, whereas non-bursting DA neurons showed truly stochastic firing patterns. Determinism was also detected in the isolated burst and inter-burst interval data extracted from firing patterns of bursting neurons. Moreover, less bursting DA neurons in halothane-anesthetized rats exhibited higher dimensional spiking dynamics than do more bursting DA neurons in chloral hydrate-anesthetized rats. These results strongly indicate that bursting activity is the main source of low-dimensional, non-linear determinism in the firing patterns of DA neurons. This finding furthermore suggests that bursts are the likely carriers of meaningful information in the firing activities of DA neurons. PMID:22831464
Visual Learning Induces Changes in Resting-State fMRI Multivariate Pattern of Information.
Guidotti, Roberto; Del Gratta, Cosimo; Baldassarre, Antonello; Romani, Gian Luca; Corbetta, Maurizio
2015-07-08
When measured with functional magnetic resonance imaging (fMRI) in the resting state (R-fMRI), spontaneous activity is correlated between brain regions that are anatomically and functionally related. Learning and/or task performance can induce modulation of the resting synchronization between brain regions. Moreover, at the neuronal level spontaneous brain activity can replay patterns evoked by a previously presented stimulus. Here we test whether visual learning/task performance can induce a change in the patterns of coded information in R-fMRI signals consistent with a role of spontaneous activity in representing task-relevant information. Human subjects underwent R-fMRI before and after perceptual learning on a novel visual shape orientation discrimination task. Task-evoked fMRI patterns to trained versus novel stimuli were recorded after learning was completed, and before the second R-fMRI session. Using multivariate pattern analysis on task-evoked signals, we found patterns in several cortical regions, as follows: visual cortex, V3/V3A/V7; within the default mode network, precuneus, and inferior parietal lobule; and, within the dorsal attention network, intraparietal sulcus, which discriminated between trained and novel visual stimuli. The accuracy of classification was strongly correlated with behavioral performance. Next, we measured multivariate patterns in R-fMRI signals before and after learning. The frequency and similarity of resting states representing the task/visual stimuli states increased post-learning in the same cortical regions recruited by the task. These findings support a representational role of spontaneous brain activity. Copyright © 2015 the authors 0270-6474/15/359786-13$15.00/0.
NASA Astrophysics Data System (ADS)
Liu, Fu-Cheng; He, Ya-Feng; Pan, Yu-Yang
2010-05-01
In this paper, superlattice patterns have been investigated by using a two linearly coupled Brusselator model. It is found that superlattice patterns can only be induced in the sub-system with the short wavelength. Three different coupling methods have been used in order to investigate the mode interaction between the two Turing modes. It is proved in the simulations that interaction between activators in the two sub-systems leads to spontaneous formation of black eye pattern and/or white eye patterns while interaction between inhibitors leads to spontaneous formation of super-hexagonal pattern. It is also demonstrated that the same symmetries of the two modes and suitable wavelength ratio of the two modes should also be satisfied to form superlattice patterns.
Dy-Ledesma, Janelyn L; Khoury, Joseph D; Agbay, Rose Lou Marie C; Garcia, Mar; Miranda, Roberto N; Medeiros, L Jeffrey
2016-11-01
The starry sky pattern is a distinctive histologic feature wherein a rapidly proliferating hematolymphoid neoplasm contains scattered histiocytes with abundant pale cytoplasm in a background of monomorphic neoplastic cells. The cytoplasm of these histiocytes typically contains cellular remnants, also known as tingible bodies, incorporated through active phagocytosis. Although common and widely recognized, relatively little is known about the pathophysiological underpinnings of the starry sky pattern. Its resemblance to a similar pattern seen in the germinal centers of secondary follicles suggests a possible starting point for understanding the molecular basis of the starry sky pattern and potential routes for its exploitation for therapeutic purposes. In this review, we discuss the historical, pathophysiological, and clinical implications of the starry sky pattern.
Laugero, Kevin D; Falcon, Luis M; Tucker, Katherine L
2011-02-01
Previous research supports a relationship between psychological stress and chronic disease in Puerto Rican adults living in the Boston, Massachusetts area. Stress may affect health by influencing dietary and physical activity patterns. Therefore, perceived stress and two hypothesized mediators of stress-related food intake, insulin and cortisol, were examined for possible associations with dietary and activity patterns in >1300 Puerto Ricans (aged 45-75 years; 70% women) living in the Boston, Massachusetts area. Data were analyzed using multiple linear regression and ANCOVA. Greater perceived stress was associated with lower fruit, vegetable, and protein intake, greater consumption of salty snacks, and lower participation in physical activity. Stress was associated with higher intake of sweets, particularly in those with type 2 diabetes. Cortisol and stress were positively associated in those without diabetes. Cortisol was associated with higher intake of saturated fat and, in those with diabetes, sweet foods. Independent of diabetes, perceived stress was associated with higher circulating insulin and BMI. Our findings support a link between stress, cortisol, and dietary and activity patterns in this population. For high-sugar foods, this relationship may be particularly important in those with type 2 diabetes. Longitudinal research to determine causal pathways for these identified associations is warranted. Copyright © 2010 Elsevier Ltd. All rights reserved.
Laugero, Kevin D.; Falcon, Luis M.; Tucker, Katherine L.
2016-01-01
Previous research supports a relationship between psychological stress and chronic disease in Puerto Rican adults living in the Boston, Massachusetts area. Stress may affect health by influencing dietary and physical activity patterns. Therefore, perceived stress and two hypothesized mediators of stress-related food intake, insulin and cortisol, were examined for possible associations with dietary and activity patterns in >1300 Puerto Ricans (aged 45–75 years; 70% women) living in the Boston, Massachusetts area. Data were analyzed using multiple linear regression and ANCOVA. Greater perceived stress was associated with lower fruit, vegetable, and protein intake, greater consumption of salty snacks, and lower participation in physical activity. Stress was associated with higher intake of sweets, particularly in those with type 2 diabetes. Cortisol and stress were positively associated in those without diabetes. Cortisol was associated with higher intake of saturated fat and, in those with diabetes, sweet foods. Independent of diabetes, perceived stress was associated with higher circulating insulin and BMI. Our findings support a link between stress, cortisol, and dietary and activity patterns in this population. For high-sugar foods, this relationship may be particularly important in those with type 2 diabetes. Longitudinal research to determine causal pathways for these identified associations is warranted. PMID:21070827
Gorsline, J.; Holmes, W.N.; Cronshaw, J.
1981-01-01
Hepatic mixed function oxidase activities were estimated in seawater-adapted mallard ducks (Anas platyrhynchos) that had been consuming food contaminated with one of five different types of crude oil. After 50 days of exposure to contaminated food, enzyme activities of liver microsomal preparations were assessed in terms of their naphthalenemetabolizing properties in vitro. Although dose-dependent increases in the total hepatic enzyme activities (nmole naphthalene metabolized per minute per unit mass body weight) were observed in birds consuming food contaminated with each type of crude oil, three patterns of response were apparent. Crude oils from South Louisiana and Kuwait stimulated large and significant increases in the specific activity of the enzyme system (nmole naphthalene metabolized per minute per unit mass microsomal protein), whereas little or no increase in either microsomal protein content or relative liver weight were observed. In contrast, two crude oils from Santa Barbara, Calif., induced only small increases in specific activity but significant increases occurred in hepatic microsomal protein concentration and relative liver weight. The crude oil from Prudhoe Bay, Ala., evoked intermediate patterns of response. The possible significance of these data is discussed in relation to the survival of seabirds consuming petroleum-contaminated food and drinking water.
NASA Astrophysics Data System (ADS)
Bulova, S.; Purce, K.; Khodak, P.; Sulger, E.; O'Donnell, S.
2016-04-01
Shifts to new ecological settings can drive evolutionary changes in animal sensory systems and in the brain structures that process sensory information. We took advantage of the diverse habitat ecology of Neotropical army ants to test whether evolutionary transitions from below- to above-ground activity were associated with changes in brain structure. Our estimates of genus-typical frequencies of above-ground activity suggested a high degree of evolutionary plasticity in habitat use among Neotropical army ants. Brain structure consistently corresponded to degree of above-ground activity among genera and among species within genera. The most above-ground genera (and species) invested relatively more in visual processing brain tissues; the most subterranean species invested relatively less in central processing higher-brain centers (mushroom body calyces). These patterns suggest a strong role of sensory ecology (e.g., light levels) in selecting for army ant brain investment evolution and further suggest that the subterranean environment poses reduced cognitive challenges to workers. The highly above-ground active genus Eciton was exceptional in having relatively large brains and particularly large and structurally complex optic lobes. These patterns suggest that the transition to above-ground activity from ancestors that were largely subterranean for approximately 60 million years was followed by re-emergence of enhanced visual function in workers.
The Impact of Ethnicity on Objectively Measured Physical Activity in Children
Eyre, Emma Lisa Jane; Duncan, Michael J.
2013-01-01
Obesity and obesity-related diseases (cardiovascular disease/metabolic risk factors) are experienced differently in individuals from different ethnic backgrounds, which originate in childhood. Physical activity is a modifiable risk factor for obesity and related diseases. Both physical activity and metabolic risk factors track to adulthood, and thus understanding the physical activity patterns in children from different ethnic backgrounds is important. Given the limitations of self-report measures in children, this study provides a review of studies which have objectively measured physical activity patterns in children from different ethnic backgrounds. From a total of 16 studies, it can be concluded that physical activity does seem to vary amongst the ethnic groups especially South Asian and Black compared to White EU (European Union). The findings are less consistent for Hispanic/Mexican American children. However, there are several methodological limitations which need to be considered in future studies. Firstly, there is a need for consistency in the measurement of physical activity. Secondly, there are a range of complex factors such as socioeconomic status and body composition which affect both physical activity and ethnicity. Studies have failed to account for these differences limiting the ability to generalise that ethnicity is an independent risk factor for physical activity. PMID:24555154
Edge-Related Activity Is Not Necessary to Explain Orientation Decoding in Human Visual Cortex.
Wardle, Susan G; Ritchie, J Brendan; Seymour, Kiley; Carlson, Thomas A
2017-02-01
Multivariate pattern analysis is a powerful technique; however, a significant theoretical limitation in neuroscience is the ambiguity in interpreting the source of decodable information used by classifiers. This is exemplified by the continued controversy over the source of orientation decoding from fMRI responses in human V1. Recently Carlson (2014) identified a potential source of decodable information by modeling voxel responses based on the Hubel and Wiesel (1972) ice-cube model of visual cortex. The model revealed that activity associated with the edges of gratings covaries with orientation and could potentially be used to discriminate orientation. Here we empirically evaluate whether "edge-related activity" underlies orientation decoding from patterns of BOLD response in human V1. First, we systematically mapped classifier performance as a function of stimulus location using population receptive field modeling to isolate each voxel's overlap with a large annular grating stimulus. Orientation was decodable across the stimulus; however, peak decoding performance occurred for voxels with receptive fields closer to the fovea and overlapping with the inner edge. Critically, we did not observe the expected second peak in decoding performance at the outer stimulus edge as predicted by the edge account. Second, we evaluated whether voxels that contribute most to classifier performance have receptive fields that cluster in cortical regions corresponding to the retinotopic location of the stimulus edge. Instead, we find the distribution of highly weighted voxels to be approximately random, with a modest bias toward more foveal voxels. Our results demonstrate that edge-related activity is likely not necessary for orientation decoding. A significant theoretical limitation of multivariate pattern analysis in neuroscience is the ambiguity in interpreting the source of decodable information used by classifiers. For example, orientation can be decoded from BOLD activation patterns in human V1, even though orientation columns are at a finer spatial scale than 3T fMRI. Consequently, the source of decodable information remains controversial. Here we test the proposal that information related to the stimulus edges underlies orientation decoding. We map voxel population receptive fields in V1 and evaluate orientation decoding performance as a function of stimulus location in retinotopic cortex. We find orientation is decodable from voxels whose receptive fields do not overlap with the stimulus edges, suggesting edge-related activity does not substantially drive orientation decoding. Copyright © 2017 the authors 0270-6474/17/371187-10$15.00/0.
Malone, Patrick S; Glezer, Laurie S; Kim, Judy; Jiang, Xiong; Riesenhuber, Maximilian
2016-09-28
The neural substrates of semantic representation have been the subject of much controversy. The study of semantic representations is complicated by difficulty in disentangling perceptual and semantic influences on neural activity, as well as in identifying stimulus-driven, "bottom-up" semantic selectivity unconfounded by top-down task-related modulations. To address these challenges, we trained human subjects to associate pseudowords (TPWs) with various animal and tool categories. To decode semantic representations of these TPWs, we used multivariate pattern classification of fMRI data acquired while subjects performed a semantic oddball detection task. Crucially, the classifier was trained and tested on disjoint sets of TPWs, so that the classifier had to use the semantic information from the training set to correctly classify the test set. Animal and tool TPWs were successfully decoded based on fMRI activity in spatially distinct subregions of the left medial anterior temporal lobe (LATL). In addition, tools (but not animals) were successfully decoded from activity in the left inferior parietal lobule. The tool-selective LATL subregion showed greater functional connectivity with left inferior parietal lobule and ventral premotor cortex, indicating that each LATL subregion exhibits distinct patterns of connectivity. Our findings demonstrate category-selective organization of semantic representations in LATL into spatially distinct subregions, continuing the lateral-medial segregation of activation in posterior temporal cortex previously observed in response to images of animals and tools, respectively. Together, our results provide evidence for segregation of processing hierarchies for different classes of objects and the existence of multiple, category-specific semantic networks in the brain. The location and specificity of semantic representations in the brain are still widely debated. We trained human participants to associate specific pseudowords with various animal and tool categories, and used multivariate pattern classification of fMRI data to decode the semantic representations of the trained pseudowords. We found that: (1) animal and tool information was organized in category-selective subregions of medial left anterior temporal lobe (LATL); (2) tools, but not animals, were encoded in left inferior parietal lobe; and (3) LATL subregions exhibited distinct patterns of functional connectivity with category-related regions across cortex. Our findings suggest that semantic knowledge in LATL is organized in category-related subregions, providing evidence for the existence of multiple, category-specific semantic representations in the brain. Copyright © 2016 the authors 0270-6474/16/3610089-08$15.00/0.
McKenney, Jesse K; Wei, Wei; Hawley, Sarah; Auman, Heidi; Newcomb, Lisa F; Boyer, Hilary D; Fazli, Ladan; Simko, Jeff; Hurtado-Coll, Antonio; Troyer, Dean A; Tretiakova, Maria S; Vakar-Lopez, Funda; Carroll, Peter R; Cooperberg, Matthew R; Gleave, Martin E; Lance, Raymond S; Lin, Dan W; Nelson, Peter S; Thompson, Ian M; True, Lawrence D; Feng, Ziding; Brooks, James D
2016-11-01
Histologic grading remains the gold standard for prognosis in prostate cancer, and assessment of Gleason score plays a critical role in active surveillance management. We sought to optimize the prognostic stratification of grading and developed a method of recording and studying individual architectural patterns by light microscopic evaluation that is independent of standard Gleason grade. Some of the evaluated patterns are not assessed by current Gleason grading (eg, reactive stromal response). Individual histologic patterns were correlated with recurrence-free survival in a retrospective postradical prostatectomy cohort of 1275 patients represented by the highest-grade foci of carcinoma in tissue microarrays. In univariable analysis, fibromucinous rupture with varied epithelial complexity had a significantly lower relative risk of recurrence-free survival in cases graded as 3+4=7. Cases having focal "poorly formed glands," which could be designated as pattern 3+4=7, had lower risk than cribriform patterns with either small cribriform glands or expansile cribriform growth. In separate multivariable Cox proportional hazard analyses of both Gleason score 3+3=6 and 3+4=7 carcinomas, reactive stromal patterns were associated with worse recurrence-free survival. Decision tree models demonstrate potential regrouping of architectural patterns into categories with similar risk. In summary, we argue that Gleason score assignment by current consensus guidelines are not entirely optimized for clinical use, including active surveillance. Our data suggest that focal poorly formed gland and cribriform patterns, currently classified as Gleason pattern 4, should be in separate prognostic groups, as the latter is associated with worse outcome. Patterns with extravasated mucin are likely overgraded in a subset of cases with more complex epithelial bridges, whereas stromogenic cancers have a worse outcome than conveyed by Gleason grade alone. These findings serve as a foundation to facilitate optimization of histologic grading and strongly support incorporating reactive stroma into routine assessment.
Martin, Anna; Schurz, Matthias; Kronbichler, Martin
2015-01-01
Abstract We used quantitative, coordinate‐based meta‐analysis to objectively synthesize age‐related commonalities and differences in brain activation patterns reported in 40 functional magnetic resonance imaging (fMRI) studies of reading in children and adults. Twenty fMRI studies with adults (age means: 23–34 years) were matched to 20 studies with children (age means: 7–12 years). The separate meta‐analyses of these two sets showed a pattern of reading‐related brain activation common to children and adults in left ventral occipito‐temporal (OT), inferior frontal, and posterior parietal regions. The direct statistical comparison between the two meta‐analytic maps of children and adults revealed higher convergence in studies with children in left superior temporal and bilateral supplementary motor regions. In contrast, higher convergence in studies with adults was identified in bilateral posterior OT/cerebellar and left dorsal precentral regions. The results are discussed in relation to current neuroanatomical models of reading and tentative functional interpretations of reading‐related activation clusters in children and adults are provided. Hum Brain Mapp 36:1963–1981, 2015. © 2015 The Authors Human Brain Mapping Published by Wiley Periodicals, Inc.. PMID:25628041
Vebrová, Lucie; van Nieuwenhuijzen, Andre; Kolář, Vojtěch; Boukal, David S
2018-06-19
Chironomids, a major invertebrate taxon in many standing freshwaters, rely on adult flight to reach new suitable sites, yet the impact of weather conditions on their flight activity is little understood. We investigated diel and seasonal flight activity patterns of aquatic and terrestrial chironomids in a reclaimed sandpit area and analysed how weather conditions and seasonality influenced their total abundance and species composition. Air temperature, relative humidity, wind speed, and air pressure significantly affected total flight activity of both groups, but not in the same way. We identified an intermediate temperature and humidity optimum for the flight activity of terrestrial chironomids, which contrasted with weaker, timescale-dependent relationships in aquatic species. Flight activity of both groups further declined with wind speed and increased with air pressure. Observed flight patterns also varied in time on both daily and seasonal scale. Flight activity of both groups peaked in the evenings after accounting for weather conditions but, surprisingly, aquatic and terrestrial chironomids used partly alternating time windows for dispersal during the season. This may be driven by different seasonal trends of key environmental variables in larval habitats and hence implies that species phenologies and conditions experienced by chironomid larvae (and probably other aquatic insects with short-lived adults) influence adult flight patterns more than weather conditions. Our results provide detailed insights into the drivers of chironomid flight activity and highlight the methodological challenges arising from the inherent collinearity of weather characteristics and their diurnal and seasonal cycles.
Application of activity sensors for estimating behavioral patterns
Roberts, Caleb P.; Cain, James W.; Cox, Robert D.
2016-01-01
The increasing use of Global Positioning System (GPS) collars in habitat selection studies provides large numbers of precise location data points with reduced field effort. However, inclusion of activity sensors in many GPS collars also grants the potential to remotely estimate behavioral state. Thus, only using GPS collars to collect location data belies their full capabilities. Coupling behavioral state with location data would allow researchers and managers to refine habitat selection models by using diel behavioral state changes to partition fine-scale temporal shifts in habitat selection. We tested the capability of relatively unsophisticated GPS-collar activity sensors to estimate behavior throughout diel periods using free-ranging female elk (Cervus canadensis) in the Jemez Mountains of north-central New Mexico, USA, 2013–2014. Collars recorded cumulative number of movements (hits) per 15-min recording period immediately preceding GPS fixes at 0000, 0600, 1200, and 1800 hr. We measured diel behavioral patterns of focal elk, categorizing active (i.e., foraging, traveling, vigilant, grooming) and inactive (i.e., resting) states. Active behaviors (foraging, traveling) produced more average hits (0.87 ± 0.69 hits/min, 4.0 ± 2.2 hits/min, respectively; 95% CI) and inactive (resting) behavior fewer hits (−1.1 ± 0.61 95% CI). We differentiated active and inactive behavioral states with a bootstrapped threshold of 5.9 ± 3.9 hits/15-min recording period. Mean cumulative activity-sensor hits corresponded with observed diel behavioral patterns: hits increased during crepuscular (0600, 1800 hr) observations when elk were most active (0000–0600 hr: d = 0.19; 1200–1800 hr: d = 0.64) and decreased during midday and night (0000 hr, 1200 hr) when elk were least active (1800–0000 hr: d = −0.39; 0600–1200 hr: d = −0.43). Even using relatively unsophisticated GPS-collar activity sensors, managers can remotely estimate behavioral states, approximate diel behavioral patterns, and potentially complement location data in developing habitat selection models.
The role of human outdoor recreation in shaping patterns of grizzly bear-black bear co-occurrence
Steenweg, Robin; Shepherd, Brenda; Boyce, Mark S.
2018-01-01
Species’ distributions are influenced by a combination of landscape variables and biotic interactions with other species, including people. Grizzly bears and black bears are sympatric, competing omnivores that also share habitats with human recreationists. By adapting models for multi-species occupancy analysis, we analyzed trail camera data from 192 trail camera locations in and around Jasper National Park, Canada to estimate grizzly bear and black bear occurrence and intensity of trail use. We documented (a) occurrence of grizzly bears and black bears relative to habitat variables (b) occurrence and intensity of use relative to competing bear species and motorised and non-motorised recreational activity, and (c) temporal overlap in activity patterns among the two bear species and recreationists. Grizzly bears were spatially separated from black bears, selecting higher elevations and locations farther from roads. Both species co-occurred with motorised and non-motorised recreation, however, grizzly bears reduced their intensity of use of sites with motorised recreation present. Black bears showed higher temporal activity overlap with recreational activity than grizzly bears, however differences in bear daily activity patterns between sites with and without motorised and non-motorised recreation were not significant. Reduced intensity of use by grizzly bears of sites where motorised recreation was present is a concern given off-road recreation is becoming increasingly popular in North America, and can negatively influence grizzly bear recovery by reducing foraging opportunities near or on trails. Camera traps and multi-species occurrence models offer non-invasive methods for identifying how habitat use by animals changes relative to sympatric species, including humans. These conclusions emphasise the need for integrated land-use planning, access management, and grizzly bear conservation efforts to consider the implications of continued access for motorised recreation in areas occupied by grizzly bears. PMID:29389939
The role of human outdoor recreation in shaping patterns of grizzly bear-black bear co-occurrence.
Ladle, Andrew; Steenweg, Robin; Shepherd, Brenda; Boyce, Mark S
2018-01-01
Species' distributions are influenced by a combination of landscape variables and biotic interactions with other species, including people. Grizzly bears and black bears are sympatric, competing omnivores that also share habitats with human recreationists. By adapting models for multi-species occupancy analysis, we analyzed trail camera data from 192 trail camera locations in and around Jasper National Park, Canada to estimate grizzly bear and black bear occurrence and intensity of trail use. We documented (a) occurrence of grizzly bears and black bears relative to habitat variables (b) occurrence and intensity of use relative to competing bear species and motorised and non-motorised recreational activity, and (c) temporal overlap in activity patterns among the two bear species and recreationists. Grizzly bears were spatially separated from black bears, selecting higher elevations and locations farther from roads. Both species co-occurred with motorised and non-motorised recreation, however, grizzly bears reduced their intensity of use of sites with motorised recreation present. Black bears showed higher temporal activity overlap with recreational activity than grizzly bears, however differences in bear daily activity patterns between sites with and without motorised and non-motorised recreation were not significant. Reduced intensity of use by grizzly bears of sites where motorised recreation was present is a concern given off-road recreation is becoming increasingly popular in North America, and can negatively influence grizzly bear recovery by reducing foraging opportunities near or on trails. Camera traps and multi-species occurrence models offer non-invasive methods for identifying how habitat use by animals changes relative to sympatric species, including humans. These conclusions emphasise the need for integrated land-use planning, access management, and grizzly bear conservation efforts to consider the implications of continued access for motorised recreation in areas occupied by grizzly bears.
Characterization of the Fire Regime and Drivers of Fires in the West African Tropical Forest
NASA Astrophysics Data System (ADS)
Dwomoh, F. K.; Wimberly, M. C.
2016-12-01
The Upper Guinean forest (UGF), encompassing the tropical regions of West Africa, is a globally significant biodiversity hotspot and a critically important socio-economic and ecological resource for the region. However, the UGF is one of the most human-disturbed tropical forest ecosystems with the only remaining large patches of original forests distributed in protected areas, which are embedded in a hotspot of climate stress & land use pressures, increasing their vulnerability to fire. We hypothesized that human impacts and climate interact to drive spatial and temporal variability in fire, with fire exhibiting distinctive seasonality and sensitivity to drought in areas characterized by different population densities, agricultural practices, vegetation types, and levels of forest degradation. We used the MODIS active fire product to identify and characterize fire activity in the major ecoregions of the UGF. We used TRMM rainfall data to measure climatic variability and derived indicators of human land use from a variety of geospatial datasets. We employed time series modeling to identify the influences of drought indices and other antecedent climatic indicators on temporal patterns of active fire occurrence. We used a variety of modeling approaches to assess the influences of human activities and land cover variables on the spatial pattern of fire activity. Our results showed that temporal patterns of fire activity in the UGF were related to precipitation, but these relationships were spatially heterogeneous. The pattern of fire seasonality varied geographically, reflecting both climatological patterns and agricultural practices. The spatial pattern of fire activity was strongly associated with vegetation gradients and anthropogenic activities occurring at fine spatial scales. The Guinean forest-savanna mosaic ecoregion had the most fires. This study contributes to our understanding of UGF fire regime and the spatio-temporal dynamics of tropical forest fires in response to intense human and climatic drivers.
Selective and nonselective transfer: positive and negative priming in a multiple-task environment.
Leboe, Jason P; Whittlesea, Bruce W A; Milliken, Bruce
2005-09-01
Processing of a probe stimulus can be affected either positively or negatively by presenting a related stimulus immediately before it. According to structural accounts, such effects occur because processing of the prime activates or inhibits the mental representation of the probe before it is presented. In contrast, transfer-appropriate processing accounts suggest that success in processing a probe depends on resources made available by earlier experiences of related stimuli. The authors manipulated the similarity between the prime and probe on color, lexical status, and orthographic structure, requiring either lexical decision or color identification on each. The authors observed a complex pattern of positive and negative transfer that cannot easily be explained through activation-inhibition of mental structures. Instead, that pattern provides evidence in favor of transfer-appropriate processing.
Frohlich, J; Godolphin, W J; Reeve, C E; Evelyn, K A
1978-01-01
A 16-year-old male (S.F.) and his 21-year-old sister (D.H.) from a large family of Italian and Swedish descent had virtually identical lipoprotein pattern and complete absence of LCAT activity. Both had typical corneal opacities and mild anemia with target cells. S.F., but not D.H., presented with proteinuria, which has increased over three years of follow-up. His kidney biopsy revealed lipid deposits in the glomerular basement membrane. Ten relatives in 4 generations had normal LCAT activity and/or lipoprotein pattern. The patients and their relatives had haptoglobin type 2. Factors that might influence the different clinical presentation in our patients (previous renal disease, diet, abnormal lipoproteins), prognosis, and treatment (diet, enzyme replacement, cholestyramine) are discussed.
EEG signatures of arm isometric exertions in preparation, planning and execution.
Nasseroleslami, Bahman; Lakany, Heba; Conway, Bernard A
2014-04-15
The electroencephalographic (EEG) activity patterns in humans during motor behaviour provide insight into normal motor control processes and for diagnostic and rehabilitation applications. While the patterns preceding brisk voluntary movements, and especially movement execution, are well described, there are few EEG studies that address the cortical activation patterns seen in isometric exertions and their planning. In this paper, we report on time and time-frequency EEG signatures in experiments in normal subjects (n=8), using multichannel EEG during motor preparation, planning and execution of directional centre-out arm isometric exertions performed at the wrist in the horizontal plane, in response to instruction-delay visual cues. Our observations suggest that isometric force exertions are accompanied by transient and sustained event-related potentials (ERP) and event-related (de-)synchronisations (ERD/ERS), comparable to those of a movement task. Furthermore, the ERPs and ERD/ERS are also observed during preparation and planning of the isometric task. Comparison of ear-lobe-referenced and surface Laplacian ERPs indicates the contribution of superficial sources in supplementary and pre-motor (FC(z)), parietal (CP(z)) and primary motor cortical areas (C₁ and FC₁) to ERPs (primarily negative peaks in frontal and positive peaks in parietal areas), but contribution of deep sources to sustained time-domain potentials (negativity in planning and positivity in execution). Transient and sustained ERD patterns in μ and β frequency bands of ear-lobe-referenced and surface Laplacian EEG indicate the contribution of both superficial and deep sources to ERD/ERS. As no physical displacement happens during the task, we can infer that the underlying mechanisms of motor-related ERPs and ERD/ERS patterns do not only depend on change in limb coordinate or muscle-length-dependent ascending sensory information and are primary generated by motor preparation, direction-dependent planning and execution of isometric motor tasks. The results contribute to our understanding of the functions of different brain regions during voluntary motor tasks and their activity signatures in EEG can shed light on the relationships between large-scale recordings such as EEG and other recordings such as single unit activity and fMRI in this context. Copyright © 2013 Elsevier Inc. All rights reserved.
Sasaki, Takuya; Piatti, Verónica C; Hwaun, Ernie; Ahmadi, Siavash; Lisman, John E; Leutgeb, Stefan; Leutgeb, Jill K
2018-02-01
Complex spatial working memory tasks have been shown to require both hippocampal sharp-wave ripple (SWR) activity and dentate gyrus (DG) neuronal activity. We therefore asked whether DG inputs to CA3 contribute to spatial working memory by promoting SWR generation. Recordings from DG and CA3 while rats performed a dentate-dependent working memory task on an eight-arm radial maze revealed that the activity of dentate neurons and the incidence rate of SWRs both increased during reward consumption. We then found reduced reward-related CA3 SWR generation without direct input from dentate granule neurons. Furthermore, CA3 cells with place fields in not-yet-visited arms preferentially fired during SWRs at reward locations, and these prospective CA3 firing patterns were more pronounced for correct trials and were dentate-dependent. These results indicate that coordination of CA3 neuronal activity patterns by DG is necessary for the generation of neuronal firing patterns that support goal-directed behavior and memory.
González-Garrido, Andrés A.; Gudayol-Ferré, Esteban; Guàrdia-Olmos, Joan
2015-01-01
In recent years, increasing attention has been paid to the effects of Type 1 Diabetes (T1D) on cognitive functions. T1D onset usually occurs during childhood, so it is possible that the brain could be affected during neurodevelopment. We selected young patients of normal intelligence with T1D onset during neurodevelopment, no complications from diabetes, and adequate glycemic control. The purpose of this study was to compare the neural BOLD activation pattern in a group of patients with T1D versus healthy control subjects while performing a visuospatial working memory task. Sixteen patients and 16 matched healthy control subjects participated. There was no significant statistical difference in behavioral performance between the groups, but, in accordance with our hypothesis, results showed distinct brain activation patterns. Control subjects presented the expected activations related to the task, whereas the patients had greater activation in the prefrontal inferior cortex, basal ganglia, posterior cerebellum, and substantia nigra. These different patterns could be due to compensation mechanisms that allow them to maintain a behavioral performance similar to that of control subjects. PMID:26266268
Alcohol-Related Facebook Activity Predicts Alcohol Use Patterns in College Students
Marczinski, Cecile A.; Hertzenberg, Heather; Goddard, Perilou; Maloney, Sarah F.; Stamates, Amy L.; O’Connor, Kathleen
2016-01-01
The purpose of this study was to determine if a brief 10-item alcohol-related Facebook® activity (ARFA) questionnaire would predict alcohol use patterns in college students (N = 146). During a single laboratory session, participants first privately logged on to their Facebook® profiles while they completed the ARFA measure, which queries past 30 day postings related to alcohol use and intoxication. Participants were then asked to complete five additional questionnaires: three measures of alcohol use (the Alcohol Use Disorders Identification Test [AUDIT], the Timeline Follow-Back [TLFB], and the Personal Drinking Habits Questionnaire [PDHQ]), the Barratt Impulsiveness Scale (BIS-11), and the Marlowe-Crowne Social Desirability Scale (MC-SDS). Regression analyses revealed that total ARFA scores were significant predictors of recent drinking behaviors, as assessed by the AUDIT, TLFB, and PDHQ measures. Moreover, impulsivity (BIS-11) and social desirability (MC-SDS) did not predict recent drinking behaviors when ARFA total scores were included in the regressions. The findings suggest that social media activity measured via the ARFA scale may be useful as a research tool for identifying risky alcohol use. PMID:28138317
Patterns of physical activity, sedentary behavior, and diet in U.S. adolescents.
Iannotti, Ronald J; Wang, Jing
2013-08-01
To identify patterns in adolescents' obesogenic behaviors and their relations to physical and psychological health. A nationally representative sample of 9,174 U.S. adolescents ages 11 to 16 years was surveyed on physical activity (PA), screen-based sedentary behavior (SB), frequency of consumption of healthy and unhealthy food items, weight status, weight control behavior, depression, physical symptoms, body dissatisfaction, overall health, and life satisfaction. Latent class analysis was used to identify patterns of PA, SB, and diet. A model with three latent classes best fit the data: Class 1 with high PA and high fruit and vegetable intake and low SB and intake of sweets, soft drinks, chips, and fries; Class 2 with high SB and high intake of sweets, soft drinks, chips, and fries; and Class 3 with low PA, low fruit and vegetable intake, and low intake of sweets, chips, and fries. Membership in the three classes was related to age, gender, race/ethnicity, and socioeconomic status. In addition, members of Class 1 (26.5%) were more likely to be of normal weight status and to fare well on most of the other health indices; of Class 2 (26.4%) were less likely to be trying to lose weight but scored poorly on the mental health indices; and of Class 3 (47.2%) were less likely to be underweight and reported greater body dissatisfaction. Three prevalent patterns of adolescent obesogenic behaviors were identified and these patterns related to weight status, depression, and other indicators of physical and psychological health. Published by Elsevier Inc.
Mechanisms and neural basis of object and pattern recognition: a study with chess experts.
Bilalić, Merim; Langner, Robert; Erb, Michael; Grodd, Wolfgang
2010-11-01
Comparing experts with novices offers unique insights into the functioning of cognition, based on the maximization of individual differences. Here we used this expertise approach to disentangle the mechanisms and neural basis behind two processes that contribute to everyday expertise: object and pattern recognition. We compared chess experts and novices performing chess-related and -unrelated (visual) search tasks. As expected, the superiority of experts was limited to the chess-specific task, as there were no differences in a control task that used the same chess stimuli but did not require chess-specific recognition. The analysis of eye movements showed that experts immediately and exclusively focused on the relevant aspects in the chess task, whereas novices also examined irrelevant aspects. With random chess positions, when pattern knowledge could not be used to guide perception, experts nevertheless maintained an advantage. Experts' superior domain-specific parafoveal vision, a consequence of their knowledge about individual domain-specific symbols, enabled improved object recognition. Functional magnetic resonance imaging corroborated this differentiation between object and pattern recognition and showed that chess-specific object recognition was accompanied by bilateral activation of the occipitotemporal junction, whereas chess-specific pattern recognition was related to bilateral activations in the middle part of the collateral sulci. Using the expertise approach together with carefully chosen controls and multiple dependent measures, we identified object and pattern recognition as two essential cognitive processes in expert visual cognition, which may also help to explain the mechanisms of everyday perception.
Distinct neural patterns enable grasp types decoding in monkey dorsal premotor cortex.
Hao, Yaoyao; Zhang, Qiaosheng; Controzzi, Marco; Cipriani, Christian; Li, Yue; Li, Juncheng; Zhang, Shaomin; Wang, Yiwen; Chen, Weidong; Chiara Carrozza, Maria; Zheng, Xiaoxiang
2014-12-01
Recent studies have shown that dorsal premotor cortex (PMd), a cortical area in the dorsomedial grasp pathway, is involved in grasp movements. However, the neural ensemble firing property of PMd during grasp movements and the extent to which it can be used for grasp decoding are still unclear. To address these issues, we used multielectrode arrays to record both spike and local field potential (LFP) signals in PMd in macaque monkeys performing reaching and grasping of one of four differently shaped objects. Single and population neuronal activity showed distinct patterns during execution of different grip types. Cluster analysis of neural ensemble signals indicated that the grasp related patterns emerged soon (200-300 ms) after the go cue signal, and faded away during the hold period. The timing and duration of the patterns varied depending on the behaviors of individual monkey. Application of support vector machine model to stable activity patterns revealed classification accuracies of 94% and 89% for each of the two monkeys, indicating a robust, decodable grasp pattern encoded in the PMd. Grasp decoding using LFPs, especially the high-frequency bands, also produced high decoding accuracies. This study is the first to specify the neuronal population encoding of grasp during the time course of grasp. We demonstrate high grasp decoding performance in PMd. These findings, combined with previous evidence for reach related modulation studies, suggest that PMd may play an important role in generation and maintenance of grasp action and may be a suitable locus for brain-machine interface applications.
Gayman, Amy M; Fraser-Thomas, Jessica; Spinney, Jamie E L; Stone, Rachael C; Baker, Joseph
2017-01-01
Given the dramatic demographic change underway in most industrialized nations, the health of older adults is a major concern, particularly given the prevalence of sedentary behaviours and physical inactivity among ageing populations. Researchers have suggested sport participation in later life promotes other health-related behaviours, however, these relationships are poorly understood. It is possible for individuals to be classified as sufficiently active and still spend most of their day involved in sedentary pursuits. Moreover, there is little information on older sport participants' use of time compared to leisurely active or inactive peers and whether type of physical activity involvement is associated with differences in older adults' behaviour patterns. With this in mind, data from 1,723 respondents (65 years and older) who completed the sport module of the 2010 Canadian General Social Survey-Time Use were used to investigate the influence of physical activity involvement (competitive sport vs. non-competitive sport vs. physically active leisure vs. inactivity) on time spent in leisure-time physical activity and sedentary behaviours. Results indicated that competitive sport participants spent less time engaging in sedentary behaviours compared to the physically active leisure or inactive respondents; however, sport participants (both competitive and non-competitive) also spent less time engaging in leisure-time physical activities than the physically active leisure group. Implications of these findings to assumptions related to the activity levels of older sport participants, suggestions for future research, and considerations for sport-related interventions aimed at enhancing health in older adulthood are discussed.
Dvorkin, Roman; Ziv, Noam E.
2016-01-01
The idea that synaptic properties are defined by specific pre- and postsynaptic activity histories is one of the oldest and most influential tenets of contemporary neuroscience. Recent studies also indicate, however, that synaptic properties often change spontaneously, even in the absence of specific activity patterns or any activity whatsoever. What, then, are the relative contributions of activity history-dependent and activity history-independent processes to changes synapses undergo? To compare the relative contributions of these processes, we imaged, in spontaneously active networks of cortical neurons, glutamatergic synapses formed between the same axons and neurons or dendrites under the assumption that their similar activity histories should result in similar size changes over timescales of days. The size covariance of such commonly innervated (CI) synapses was then compared to that of synapses formed by different axons (non-CI synapses) that differed in their activity histories. We found that the size covariance of CI synapses was greater than that of non-CI synapses; yet overall size covariance of CI synapses was rather modest. Moreover, momentary and time-averaged sizes of CI synapses correlated rather poorly, in perfect agreement with published electron microscopy-based measurements of mouse cortex synapses. A conservative estimate suggested that ~40% of the observed size remodeling was attributable to specific activity histories, whereas ~10% and ~50% were attributable to cell-wide and spontaneous, synapse-autonomous processes, respectively. These findings demonstrate that histories of naturally occurring activity patterns can direct glutamatergic synapse remodeling but also suggest that the contributions of spontaneous, possibly stochastic, processes are at least as great. PMID:27776122
Feng, Xiao; Peng, Li; Chang-Quan, Long; Yi, Lei; Hong, Li
2014-09-01
Most previous studies investigating relational reasoning have used visuo-spatial materials. This fMRI study aimed to determine how relational complexity affects brain activity during inductive reasoning, using numerical materials. Three numerical relational levels of the number series completion task were adopted for use: 0-relational (e.g., "23 23 23"), 1-relational ("32 30 28") and 2-relational ("12 13 15") problems. The fMRI results revealed that the bilateral dorsolateral prefrontal cortex (DLPFC) showed enhanced activity associated with relational complexity. Bilateral inferior parietal lobule (IPL) activity was greater during the 1- and 2-relational level problems than during the 0-relational level problems. In addition, the left fronto-polar cortex (FPC) showed selective activity during the 2-relational level problems. The bilateral DLPFC may be involved in the process of hypothesis generation, whereas the bilateral IPL may be sensitive to calculation demands. Moreover, the sensitivity of the left FPC to the multiple relational problems may be related to the integration of numerical relations. The present study extends our knowledge of the prefrontal activity pattern underlying numerical relational processing. Copyright © 2014 Elsevier B.V. All rights reserved.
ERIC Educational Resources Information Center
Scharp, Kristina M.; Canfield, Clair
2017-01-01
Courses: Interpersonal Communication, Family Communication, Relational Communication. Objectives: Students reflect on and discuss how personal objects are connected to their identity and relationships with others. This activity illustrates the ways course concepts such as relational metaphors, stories, rules, rituals, and other patterns of…
Enes, Carla C; Slater, Betzabeth
2013-06-01
To assess whether changes in dietary intake and physical activity pattern are associated with the annual body mass index (BMI) z-score change among adolescents. The study was conducted in public schools in the city of Piracicaba, Sao Paulo, Brazil, with a probabilistic sample of 431 adolescents participating in wave I (2004) (hereafter, baseline) and 299 in wave II (2005) (hereafter, follow-up). BMI, usual food intake, physical activity, screen time, sexual maturation and demographic variables were assessed twice. The association between annual change in food intake, physical activity, screen time, and annual BMI z-score changes were assessed by multiple regression. The study showed a positive variation in BMI z-score over one-year. Among variables related to physical activity pattern only playing videogame and using computer increased over the year. The intake of fruits and vegetables and sugar-sweetened beverages increased over one year, while the others variables showed a reduction. An increased consumption of fatty foods (β = 0.04, p = 0.04) and sweetened natural fruit juices (β = 0.05, p = 0.03) was positively associated with the rise in BMI z-score. Unhealthy dietary habits can predict the BMI z-score gain more than the physical activity pattern. The intake of fatty foods and sweetened fruit juices is associated with the BMI z-score over one year.
Abnormal fronto-striatal activation as a marker of threshold and subthreshold Bulimia Nervosa.
Cyr, Marilyn; Yang, Xiao; Horga, Guillermo; Marsh, Rachel
2018-04-01
This study aimed to determine whether functional disturbances in fronto-striatal control circuits characterize adolescents with Bulimia Nervosa (BN) spectrum eating disorders regardless of clinical severity. FMRI was used to assess conflict-related brain activations during performance of a Simon task in two samples of adolescents with BN symptoms compared with healthy adolescents. The BN samples differed in the severity of their clinical presentation, illness duration and age. Multi-voxel pattern analyses (MVPAs) based on machine learning were used to determine whether patterns of fronto-striatal activation characterized adolescents with BN spectrum disorders regardless of clinical severity, and whether accurate classification of less symptomatic adolescents (subthreshold BN; SBN) could be achieved based on patterns of activation in adolescents who met DSM5 criteria for BN. MVPA classification analyses revealed that both BN and SBN adolescents could be accurately discriminated from healthy adolescents based on fronto-striatal activation. Notably, the patterns detected in more severely ill BN compared with healthy adolescents accurately discriminated less symptomatic SBN from healthy adolescents. Deficient activation of fronto-striatal circuits can characterize BN early in its course, when clinical presentations are less severe, perhaps pointing to circuit-based disturbances as useful biomarker or risk factor for the disorder, and a tool for understanding its developmental trajectory, as well as the development of early interventions. © 2018 Wiley Periodicals, Inc.
Lau, Jenny Y. Y.; Guo, Xing; Pang, Chun-Chiu; Tang, Chin Cheung; Thomas, Daniel C.; Saunders, Richard M. K.
2017-01-01
Several evolutionary lineages in the early divergent angiosperm family Annonaceae possess flowers with a distinctive pollinator trapping mechanism, in which floral phenological events are very precisely timed in relation with pollinator activity patterns. This contrasts with previously described angiosperm pollinator traps, which predominantly function as pitfall traps. We assess the circadian rhythms of pollinators independently of their interactions with flowers, and correlate these data with detailed assessments of floral phenology. We reveal a close temporal alignment between patterns of pollinator activity and the floral phenology driving the trapping mechanism (termed ‘circadian trapping’ here). Non-trapping species with anthesis of standard duration (c. 48 h) cannot be pollinated effectively by pollinators with a morning-unimodal activity pattern; non-trapping species with abbreviated anthesis (23–27 h) face limitations in utilizing pollinators with a bimodal circadian activity; whereas species that trap pollinators (all with short anthesis) can utilize a broader range of potential pollinators, including those with both unimodal and bimodal circadian rhythms. In addition to broadening the range of potential pollinators based on their activity patterns, circadian trapping endows other selective advantages, including the possibility of an extended staminate phase to promote pollen deposition, and enhanced interfloral movement of pollinators. The relevance of the alignment of floral phenological changes with peaks in pollinator activity is furthermore evaluated for pitfall trap pollination systems. PMID:28713403
Do Media Use and Physical Activity Compete in Adolescents? Results of the MoMo Study
Spengler, Sarah; Mess, Filip; Woll, Alexander
2015-01-01
Purpose The displacement hypothesis predicts that physical activity and media use compete in adolescents; however, findings are inconsistent. A more differentiated approach at determining the co-occurrence of physical activity and media use behaviors within subjects may be warranted. The aim of this study was to determine the co-occurrence of physical activity and media use by identifying clusters of adolescents with specific behavior patterns including physical activity in various settings (school, sports club, leisure time) and different types of media use (watching TV, playing console games, using PC / Internet). Methods Cross-sectional data of 2,083 adolescents (11–17 years) from all over Germany were collected between 2009 and 2012 in the Motorik-Modul Study. Physical activity and media use were self-reported. Cluster analyses (Ward’s method and K-means analysis) were used to identify behavior patterns of boys and girls separately. Results Eight clusters were identified for boys and seven for girls. The clusters demonstrated that a high proportion of boys (33%) as well as girls (42%) show low engagement in both physical activity and media use, irrespective of setting or type of media. Other adolescents are engaged in both behaviors, but either physical activity (35% of boys, 27% of girls) or media use (31% of boys and girls) predominates. These adolescents belong to different clusters, whereat in most clusters either one specific setting of physical activity or a specific combination of different types of media predominates. Conclusion The results of this study support to some extent the hypothesis that media use and physical activity compete: Very high media use occurred with low physical activity behavior, but very high activity levels co-occurred with considerable amounts of time using any media. There was no evidence that type of used media was related to physical activity levels, neither setting of physical activity was related to amount of media use in any pattern. PMID:26629688
Briefly Cuing Memories Leads to Suppression of Their Neural Representations
Norman, Kenneth A.
2014-01-01
Previous studies have linked partial memory activation with impaired subsequent memory retrieval (e.g., Detre et al., 2013) but have not provided an account of this phenomenon at the level of memory representations: How does partial activation change the neural pattern subsequently elicited when the memory is cued? To address this question, we conducted a functional magnetic resonance imaging (fMRI) experiment in which participants studied word-scene paired associates. Later, we weakly reactivated some memories by briefly presenting the cue word during a rapid serial visual presentation (RSVP) task; other memories were more strongly reactivated or not reactivated at all. We tested participants' memory for the paired associates before and after RSVP. Cues that were briefly presented during RSVP triggered reduced levels of scene activity on the post-RSVP memory test, relative to the other conditions. We used pattern similarity analysis to assess how representations changed as a function of the RSVP manipulation. For briefly cued pairs, we found that neural patterns elicited by the same cue on the pre- and post-RSVP tests (preA–postA; preB–postB) were less similar than neural patterns elicited by different cues (preA–postB; preB–postA). These similarity reductions were predicted by neural measures of memory activation during RSVP. Through simulation, we show that our pattern similarity results are consistent with a model in which partial memory activation triggers selective weakening of the strongest parts of the memory. PMID:24899722
Barnes, Terra D.; Mao, Jian-Bin; Hu, Dan; Kubota, Yasuo; Dreyer, Anna A.; Stamoulis, Catherine; Brown, Emery N.
2011-01-01
One of the most characteristic features of habitual behaviors is that they can be evoked by a single cue. In the experiments reported here, we tested for the effects of such advance cueing on the firing patterns of striatal neurons in the sensorimotor striatum. Rats ran in a T-maze with instruction cues about the location of reward given at the start of the runs. This advance cueing about reward produced a highly augmented task-bracketing pattern of activity at the beginning and end of procedural task performance relative to the patterns found previously with midtask cueing. Remarkably, the largest increase in activity early during the T-maze runs was not associated with the instruction cues themselves, the earliest predictors of reward; instead, the highest peak of early activity was associated with the beginning of the motor period of the task. We suggest that the advance cueing, reducing midrun demands for decision making but adding a working-memory load, facilitated chunking of the maze runs as executable scripts anchored to sensorimotor aspects of the task and unencumbered by midtask decision-making demands. Our findings suggest that the acquisition of stronger task-bracketing patterns of striatal activity in the sensorimotor striatum could reflect this enhancement of behavioral chunking. Deficits in such representations of learned sequential behaviors could contribute to motor and cognitive problems in a range of neurological disorders affecting the basal ganglia, including Parkinson's disease. PMID:21307317
Analysis of Acoustic Emission Parameters from Corrosion of AST Bottom Plate in Field Testing
NASA Astrophysics Data System (ADS)
Jomdecha, C.; Jirarungsatian, C.; Suwansin, W.
Field testing of aboveground storage tank (AST) to monitor corrosion of the bottom plate is presented in this chapter. AE testing data of the ten AST with different sizes, materials, and products were employed to monitor the bottom plate condition. AE sensors of 30 and 150 kHz were used to monitor the corrosion activity of up to 24 channels including guard sensors. Acoustic emission (AE) parameters were analyzed to explore the AE parameter patterns of occurring corrosion compared to the laboratory results. Amplitude, count, duration, and energy were main parameters of analysis. Pattern recognition technique with statistical was implemented to eliminate the electrical and environmental noises. The results showed the specific AE patterns of corrosion activities related to the empirical results. In addition, plane algorithm was utilized to locate the significant AE events from corrosion. Both results of parameter patterns and AE event locations can be used to interpret and locate the corrosion activities. Finally, basic statistical grading technique was used to evaluate the bottom plate condition of the AST.
Phylogenetic, ecological, and allometric correlates of cranial shape in Malagasy lemuriforms.
Baab, Karen L; Perry, Jonathan M G; Rohlf, F James; Jungers, William L
2014-05-01
Adaptive radiations provide important insights into many aspects of evolution, including the relationship between ecology and morphological diversification as well as between ecology and speciation. Many such radiations include divergence along a dietary axis, although other ecological variables may also drive diversification, including differences in diel activity patterns. This study examines the role of two key ecological variables, diet and activity patterns, in shaping the radiation of a diverse clade of primates, the Malagasy lemurs. When phylogeny was ignored, activity pattern and several dietary variables predicted a significant proportion of cranial shape variation. However, when phylogeny was taken into account, only typical diet accounted for a significant proportion of shape variation. One possible explanation for this discrepancy is that this radiation was characterized by a relatively small number of dietary shifts (and possibly changes in body size) that occurred in conjunction with the divergence of major clades. This pattern may be difficult to detect with the phylogenetic comparative methods used here, but may characterize not just lemurs but other mammals. © 2014 The Author(s). Evolution © 2014 The Society for the Study of Evolution.
Liu, Xuewen; Wang, Yuchuan; Chang, Guangming; Wang, Feng; Wang, Fei; Geng, Xin
2017-03-07
The activation of telomerase is one of the key events in the malignant transition of cells, and the expression of human telomerase reverse transcriptase (hTERT) is indispensable in the process of activating telomerase. The pre-mRNA alternative splicing of hTERT at the post-transcriptional level is one of the mechanisms for the regulation of telomerase activity. Shifts in splicing patterns occur in the development, tumorigenesis, and response to diverse stimuli in a tissue-specific and cell type-specific manner. Despite the regulation of telomerase activity, the alternative splicing of hTERT pre-mRNA may play a role in other cellular functions. Modulating the mode of hTERT pre-mRNA splicing is providing a new precept of therapy for cancer and aging-related diseases. This review focuses on the patterns of hTERT pre-mRNA alternative splicing and their biological functions, describes the potential association between the alternative splicing of hTERT pre-mRNA and telomerase activity, and discusses the possible significance of the alternative splicing of the hTERT pre-mRNA in the diagnosis, therapy, and prognosis of cancer and aging-related diseases.
Horan, William P; Wynn, Jonathan K; Mathis, Ian; Miller, Gregory A; Green, Michael F
2014-01-01
Although motivational disturbances are common in schizophrenia, their neurophysiological and psychological basis is poorly understood. This electroencephalography (EEG) study examined the well-established motivational direction model of asymmetric frontal brain activity in schizophrenia. According to this model, relative left frontal activity in the resting EEG reflects enhanced approach motivation tendencies, whereas relative right frontal activity reflects enhanced withdrawal motivation tendencies. Twenty-five schizophrenia outpatients and 25 healthy controls completed resting EEG assessments of frontal asymmetry in the alpha frequency band (8-12 Hz), as well as a self-report measure of behavioral activation and inhibition system (BIS/BAS) sensitivity. Patients showed an atypical pattern of differences from controls. On the EEG measure patients failed to show the left lateralized activity that was present in controls, suggesting diminished approach motivation. On the self-report measure, patients reported higher BIS sensitivity than controls, which is typically interpreted as heightened withdrawal motivation. EEG asymmetry scores did not significantly correlate with BIS/BAS scores or with clinical symptom ratings among patients. The overall pattern suggests a motivational disturbance in schizophrenia characterized by elements of both diminished approach and elevated withdrawal tendencies.
Ohyama, Kaoru; Sugase-Miyamoto, Yasuko; Matsumoto, Narihisa; Shidara, Munetaka; Sato, Chikara
2012-11-28
Acquiring the significance of events based on reward-related information is critical for animals to survive and to conduct social activities. The importance of the perirhinal cortex for reward-related information processing has been suggested. To examine whether or not neurons in this cortex represent reward information flexibly when a visual stimulus indicates either a rewarded or unrewarded outcome, neuronal activity in the macaque perirhinal cortex was examined using a conditional-association cued-reward task. The task design allowed us to study how the neuronal responses depended on the animal's prediction of whether it would or would not be rewarded. Two visual stimuli, a color stimulus as Cue1 followed by a pattern stimulus as Cue2, were sequentially presented. Each pattern stimulus was conditionally associated with both rewarded and unrewarded outcomes depending on the preceding color stimulus. We found an activity depending upon the two reward conditions during Cue2, i.e., pattern stimulus presentation. The response appeared after the response dependent upon the image identity of Cue2. The response delineating a specific cue sequence also appeared between the responses dependent upon the identity of Cue2 and reward conditions. Thus, when Cue1 sets the context for whether or not Cue2 indicates a reward, this region represents the meaning of Cue2, i.e., the reward conditions, independent of the identity of Cue2. These results suggest that neurons in the perirhinal cortex do more than associate a single stimulus with a reward to achieve flexible representations of reward information.
Wu, Jia-Jia; Lu, Ye-Chen; Hua, Xu-Yun; Ma, Shu-Jie; Xu, Jian-Guang
2018-06-01
We used functional magnetic resonance imaging to provide a longitudinal description of cortical plasticity caused by electroacupuncture (EA) of sciatic nerve transection and direct anastomosis in rats. Sixteen rats in a sciatic nerve transection and direct anastomosis model were randomly divided into intervention and control groups. EA intervention in the position of ST-36, GB-30 was conducted continuously for 4 months in the intervention group. Functional magnetic resonance imaging and gait assessment were performed every month after intervention. The somatosensory area was more activated in the first 2 months and then deactivated in the rest 2 months when EA was applied. The pain-related areas had the same activation pattern as the somatosensory area. The limbic/paralimbic areas fluctuated more during the EA intervention, which was not constantly activated or deactivated as previous studies reported. We attributed such changes in somatosensory and pain-related areas to the gradual reduction of sensory afferentation. The alterations in limbic/paralimbic system might be associated with the confrontation between the upregulating effect of paresthesia or pain and the downregulating effect of EA intervention through the autonomic nerve system. The gait analysis showed significantly higher maximum contact mean intensity in the intervention group. The alterations in the brain brought about by the long-term therapeutic effect of EA could be described as a synchronized activation pattern in the somatosensory and pain-related areas and a fluctuating pattern in the limbic/paralimbic system. Copyright © 2018 Elsevier Inc. All rights reserved.
Poliacek, Ivan; Simera, Michal; Veternik, Marcel; Kotmanova, Zuzana; Pitts, Teresa; Hanacek, Jan; Plevkova, Jana; Machac, Peter; Visnovcova, Nadezda; Misek, Jakub; Jakus, Jan
2016-07-15
The effect of volume-related feedback and output airflow resistance on the cough motor pattern was studied in 17 pentobarbital anesthetized spontaneously-breathing cats. Lung inflation during tracheobronchial cough was ventilator controlled and triggered by the diaphragm electromyographic (EMG) signal. Altered lung inflations during cough resulted in modified cough motor drive and temporal features of coughing. When tidal volume was delivered (via the ventilator) there was a significant increase in the inspiratory and expiratory cough drive (esophageal pressures and EMG amplitudes), inspiratory phase duration (CTI), total cough cycle duration, and the duration of all cough related EMGs (Tactive). When the cough volume was delivered (via the ventilator) during the first half of inspiratory period (at CTI/2-early over inflation), there was a significant reduction in the inspiratory and expiratory EMG amplitude, peak inspiratory esophageal pressure, CTI, and the overlap between inspiratory and expiratory EMG activity. Additionally, there was significant increase in the interval between the maximum inspiratory and expiratory EMG activity and the active portion of the expiratory phase (CTE1). Control inflations coughs and control coughs with additional expiratory resistance had increased maximum expiratory esophageal pressure and prolonged CTE1, the duration of cough abdominal activity, and Tactive. There was no significant difference in control coughing and/or control coughing when sham ventilation was employed. In conclusion, modified lung inflations during coughing and/or additional expiratory airflow resistance altered the spatio-temporal features of cough motor pattern via the volume related feedback mechanism similar to that in breathing. Copyright © 2016. Published by Elsevier B.V.
Fitton, L C; Shi, J F; Fagan, M J; O'Higgins, P
2012-07-01
Biomechanical analyses are commonly conducted to investigate how craniofacial form relates to function, particularly in relation to dietary adaptations. However, in the absence of corresponding muscle activation patterns, incomplete muscle data recorded experimentally for different individuals during different feeding tasks are frequently substituted. This study uses finite element analysis (FEA) to examine the sensitivity of the mechanical response of a Macaca fascicularis cranium to varying muscle activation patterns predicted via multibody dynamic analysis. Relative to the effects of varying bite location, the consequences of simulated variations in muscle activation patterns and of the inclusion/exclusion of whole muscle groups were investigated. The resulting cranial deformations were compared using two approaches; strain maps and geometric morphometric analyses. The results indicate that, with bite force magnitude controlled, the variations among the mechanical responses of the cranium to bite location far outweigh those observed as a consequence of varying muscle activations. However, zygomatic deformation was an exception, with the activation levels of superficial masseter being most influential in this regard. The anterior portion of temporalis deforms the cranial vault, but the remaining muscles have less profound effects. This study for the first time systematically quantifies the sensitivity of an FEA model of a primate skull to widely varying masticatory muscle activations and finds that, with the exception of the zygomatic arch, reasonable variants of muscle loading for a second molar bite have considerably less effect on cranial deformation and the resulting strain map than does varying molar bite point. The implication is that FEA models of biting crania will generally produce acceptable estimates of deformation under load as long as muscle activations and forces are reasonably approximated. In any one FEA study, the biological significance of the error in applied muscle forces is best judged against the magnitude of the effect that is being investigated. © 2012 The Authors. Journal of Anatomy © 2012 Anatomical Society.
Fitton, L C; Shi, J F; Fagan, M J; O’Higgins, P
2012-01-01
Biomechanical analyses are commonly conducted to investigate how craniofacial form relates to function, particularly in relation to dietary adaptations. However, in the absence of corresponding muscle activation patterns, incomplete muscle data recorded experimentally for different individuals during different feeding tasks are frequently substituted. This study uses finite element analysis (FEA) to examine the sensitivity of the mechanical response of a Macaca fascicularis cranium to varying muscle activation patterns predicted via multibody dynamic analysis. Relative to the effects of varying bite location, the consequences of simulated variations in muscle activation patterns and of the inclusion/exclusion of whole muscle groups were investigated. The resulting cranial deformations were compared using two approaches; strain maps and geometric morphometric analyses. The results indicate that, with bite force magnitude controlled, the variations among the mechanical responses of the cranium to bite location far outweigh those observed as a consequence of varying muscle activations. However, zygomatic deformation was an exception, with the activation levels of superficial masseter being most influential in this regard. The anterior portion of temporalis deforms the cranial vault, but the remaining muscles have less profound effects. This study for the first time systematically quantifies the sensitivity of an FEA model of a primate skull to widely varying masticatory muscle activations and finds that, with the exception of the zygomatic arch, reasonable variants of muscle loading for a second molar bite have considerably less effect on cranial deformation and the resulting strain map than does varying molar bite point. The implication is that FEA models of biting crania will generally produce acceptable estimates of deformation under load as long as muscle activations and forces are reasonably approximated. In any one FEA study, the biological significance of the error in applied muscle forces is best judged against the magnitude of the effect that is being investigated. PMID:22690885
Dopamine D2-receptor blockade enhances decoding of prefrontal signals in humans.
Kahnt, Thorsten; Weber, Susanna C; Haker, Helene; Robbins, Trevor W; Tobler, Philippe N
2015-03-04
The prefrontal cortex houses representations critical for ongoing and future behavior expressed in the form of patterns of neural activity. Dopamine has long been suggested to play a key role in the integrity of such representations, with D2-receptor activation rendering them flexible but weak. However, it is currently unknown whether and how D2-receptor activation affects prefrontal representations in humans. In the current study, we use dopamine receptor-specific pharmacology and multivoxel pattern-based functional magnetic resonance imaging to test the hypothesis that blocking D2-receptor activation enhances prefrontal representations. Human subjects performed a simple reward prediction task after double-blind and placebo controlled administration of the D2-receptor antagonist amisulpride. Using a whole-brain searchlight decoding approach we show that D2-receptor blockade enhances decoding of reward signals in the medial orbitofrontal cortex. Examination of activity patterns suggests that amisulpride increases the separation of activity patterns related to reward versus no reward. Moreover, consistent with the cortical distribution of D2 receptors, post hoc analyses showed enhanced decoding of motor signals in motor cortex, but not of visual signals in visual cortex. These results suggest that D2-receptor blockade enhances content-specific representations in frontal cortex, presumably by a dopamine-mediated increase in pattern separation. These findings are in line with a dual-state model of prefrontal dopamine, and provide new insights into the potential mechanism of action of dopaminergic drugs. Copyright © 2015 the authors 0270-6474/15/354104-08$15.00/0.
Synchronous Spike Patterns in Macaque Motor Cortex during an Instructed-Delay Reach-to-Grasp Task
Torre, Emiliano; Quaglio, Pietro; Denker, Michael; Brochier, Thomas; Riehle, Alexa
2016-01-01
The computational role of spike time synchronization at millisecond precision among neurons in the cerebral cortex is hotly debated. Studies performed on data of limited size provided experimental evidence that low-order correlations occur in relation to behavior. Advances in electrophysiological technology to record from hundreds of neurons simultaneously provide the opportunity to observe coordinated spiking activity of larger populations of cells. We recently published a method that combines data mining and statistical evaluation to search for significant patterns of synchronous spikes in massively parallel spike trains (Torre et al., 2013). The method solves the computational and multiple testing problems raised by the high dimensionality of the data. In the current study, we used our method on simultaneous recordings from two macaque monkeys engaged in an instructed-delay reach-to-grasp task to determine the emergence of spike synchronization in relation to behavior. We found a multitude of synchronous spike patterns aligned in both monkeys along a preferential mediolateral orientation in brain space. The occurrence of the patterns is highly specific to behavior, indicating that different behaviors are associated with the synchronization of different groups of neurons (“cell assemblies”). However, pooled patterns that overlap in neuronal composition exhibit no specificity, suggesting that exclusive cell assemblies become active during different behaviors, but can recruit partly identical neurons. These findings are consistent across multiple recording sessions analyzed across the two monkeys. SIGNIFICANCE STATEMENT Neurons in the brain communicate via electrical impulses called spikes. How spikes are coordinated to process information is still largely unknown. Synchronous spikes are effective in triggering a spike emission in receiving neurons and have been shown to occur in relation to behavior in a number of studies on simultaneous recordings of few neurons. We recently published a method to extend this type of investigation to larger data. Here, we apply it to simultaneous recordings of hundreds of neurons from the motor cortex of macaque monkeys performing a motor task. Our analysis reveals groups of neurons selectively synchronizing their activity in relation to behavior, which sheds new light on the role of synchrony in information processing in the cerebral cortex. PMID:27511007
Synchronous Spike Patterns in Macaque Motor Cortex during an Instructed-Delay Reach-to-Grasp Task.
Torre, Emiliano; Quaglio, Pietro; Denker, Michael; Brochier, Thomas; Riehle, Alexa; Grün, Sonja
2016-08-10
The computational role of spike time synchronization at millisecond precision among neurons in the cerebral cortex is hotly debated. Studies performed on data of limited size provided experimental evidence that low-order correlations occur in relation to behavior. Advances in electrophysiological technology to record from hundreds of neurons simultaneously provide the opportunity to observe coordinated spiking activity of larger populations of cells. We recently published a method that combines data mining and statistical evaluation to search for significant patterns of synchronous spikes in massively parallel spike trains (Torre et al., 2013). The method solves the computational and multiple testing problems raised by the high dimensionality of the data. In the current study, we used our method on simultaneous recordings from two macaque monkeys engaged in an instructed-delay reach-to-grasp task to determine the emergence of spike synchronization in relation to behavior. We found a multitude of synchronous spike patterns aligned in both monkeys along a preferential mediolateral orientation in brain space. The occurrence of the patterns is highly specific to behavior, indicating that different behaviors are associated with the synchronization of different groups of neurons ("cell assemblies"). However, pooled patterns that overlap in neuronal composition exhibit no specificity, suggesting that exclusive cell assemblies become active during different behaviors, but can recruit partly identical neurons. These findings are consistent across multiple recording sessions analyzed across the two monkeys. Neurons in the brain communicate via electrical impulses called spikes. How spikes are coordinated to process information is still largely unknown. Synchronous spikes are effective in triggering a spike emission in receiving neurons and have been shown to occur in relation to behavior in a number of studies on simultaneous recordings of few neurons. We recently published a method to extend this type of investigation to larger data. Here, we apply it to simultaneous recordings of hundreds of neurons from the motor cortex of macaque monkeys performing a motor task. Our analysis reveals groups of neurons selectively synchronizing their activity in relation to behavior, which sheds new light on the role of synchrony in information processing in the cerebral cortex. Copyright © 2016 Torre, et al.
Personal and Behavioral Variables Related to Perceived Stress of Second-Year Medical Students.
ERIC Educational Resources Information Center
Sheets, Kent J.; And Others
1993-01-01
A survey of 555 second-year medical students from 7 schools found academic stress related to general satisfaction with life, gender, physical activity, alcohol use, sleep patterns, and recent losses and misfortunes. Personal stress was related to general satisfaction with life, gender, drug use, sensation-seeking sports, and recent losses and…
Kim, Min-Hee; Yoo, Won-Gyu
2013-05-01
[Purpose] The purpose of this study was to compare the hamstring muscle (HAM) activities and flexion-relaxation ratios of an asymptomatic group and a computer work-related low back pain (LBP) group. [Subjects] For this study, we recruited 10 asymptomatic computer workers and 10 computer workers with work-related LBP. [Methods] We measured the RMS activity of each phase (flexion, full-flexion, and re-extension phase) of trunk flexion and calculated the flexion-relaxation (FR) ratio of the muscle activities of the flexion and full-flexion phases. [Results] In the computer work-related LBP group, the HAM muscle activity increased during the full-flexion phase compared to the asymptomatic group, and the FR ration was also significantly higher. [Conclusion] We thought that prolonged sitting of computer workers might cause the change in their HAM muscle activity pattern.
Lawler, Margaret; Heary, Caroline; Nixon, Elizabeth
2017-08-17
Neglecting to take account of the underlying context or type of physical activity (PA) that underpins overall involvement has resulted in a limited understanding of adolescents' PA participation. The purpose of the present research was to identify male and female adolescents' leisure time PA patterns and examine whether psychological processes derived from self-determination theory differ as a function of the pattern of PA undertaken. Nine hundred ninety-five students (61.2% females, 38.8% males; M age = 13.72 years, SD = 1.25) from eight secondary schools in Dublin, Ireland completed a physical activity recall 7 day diary and measures of intrinsic motivation, competence, relatedness, autonomy and autonomy support. Based on the diary five binary indicators of physical activity were derived reflecting recommended levels of MVPA on a minimum of 3 days, at least three sessions of non-organized physical activity (e.g. jog), team sport, individual sport, and organized non-sport physical activity (e.g. dance). Latent class analysis was used to identify subgroups of adolescents that engaged in similar patterns of physical activity. Profiles of physical activity participation were subsequently compared on motivational characteristics using Kruskal-Wallis tests. Latent class analysis revealed six distinct classes for girls (Organized Run/Swim & Dance/Gym; Organized Dance; Leisure Active Team Sport; Active Individual Sport; Walk/Run/Outdoor games; Non-Participation) and five for boys (Leisure Active Gym; Leisure Active Individual Sport; Active Team Sport; Active Mixed Type; Non-Participation). Significant differences were found between the classes. Girls characterized by participation in team or individual sport, and boys represented by team sport participation demonstrated significantly higher self-determined motivational characteristics relative to other profiles of physical activity. This research offers a nuanced insight into the underlying type of activities that constitute overall patterns of PA among adolescent boys and girls and further reveals that psychological processes vary dependent on the profile of physical activity undertaken. The findings may be useful for informing interventions aimed at promoting physical activity among young people.
Kevin M. Potter; Jeanine L. Paschke
2013-01-01
Analyzing patterns of forest pest infestations, diseases occurrences, forest declines and related biotic stress factors is necessary to monitor the health of forested ecosystems and their potential impacts on forest structure, composition, biodiversity, and species distributions (Castello and others 1995). Introduced nonnative insects and diseases, in particular, can...
Kevin M. Potter
2013-01-01
Analyzing patterns of forest pest infestation, disease occurrences, forest declines, and related biotic stress factors is necessary to monitor the health of forested ecosystems and their potential impacts on forest structure, composition, biodiversity, and species distributions (Castello and others 1995). Introduced nonnative insects and diseases, in particular, can...
1989-01-17
Sigmund Freud but eventually broke with him and established his own school and pattern of work. When studying the behavioral patterns of children and...conform in most cases to U matters related to sexual activities so strongly emphasized by Freud . Instead, they required much more general analysis and
ERIC Educational Resources Information Center
Wallace, Grace Spice; May, W. Theodore
Findings on those aspects of participants' activities related to personal history and career choices both before and after graduation are reported in this second of a two-volume report on the findings of the Longitudinal Career Pattern Study of Graduates of the University of Tennessee College of Nursing, 1954-1974. The first two chapters describe…
ERIC Educational Resources Information Center
Lui, Donald P. Y.; Szeto, Grace P. Y.; Jones, Alice Y. M.
2011-01-01
The present study examined the usage pattern of electronic game devices among primary school children in Hong Kong. Commonly used types of games devices were grouped into three main categories: large-screen/TV-based games, small handheld game devices and active game devices. A survey was conducted among 476 students in a local primary school, with…
Macrosystems ecology: novel methods and new understanding of multi-scale patterns and processes
Songlin Fei; Qinfeng Guo; Kevin Potter
2016-01-01
As the global biomes are increasingly threatened by human activities, understanding of macroscale patterns and processes is pressingly needed for effective management and policy making. Macrosystems ecology, which studies multiscale ecologicalpatterns and processes, has gained growing interest in the research community. However, as a relatively new field in...
NASA Astrophysics Data System (ADS)
Maerten, Laurent; Maerten, Frantz; Lejri, Mostfa
2018-03-01
Whatever the processes involved in the natural fracture development in the subsurface, fracture patterns are often affected by the local stress field during propagation. This homogeneous or heterogeneous local stress field can be of mechanical and/or tectonic origin. In this contribution, we focus on the fracture-pattern development where active faults perturb the stress field, and are affected by fluid pressure and sliding friction along the faults. We analyse and geomechanically model two fractured outcrops in UK (Nash Point) and in France (Les Matelles). We demonstrate that the observed local radial joint pattern is best explained by local fluid pressure along the faults and that observed fracture pattern can only be reproduced when fault friction is very low (μ < 0.2). Additionally, in the case of sub-vertical faults, we emphasize that the far field horizontal stress ratio does not affect stress trajectories, or fracture patterns, unless fault normal displacement (dilation or contraction) is relatively large.
Generation of Viable Cell and Biomaterial Patterns by Laser Transfer
NASA Astrophysics Data System (ADS)
Ringeisen, Bradley
2001-03-01
In order to fabricate and interface biological systems for next generation applications such as biosensors, protein recognition microarrays, and engineered tissues, it is imperative to have a method of accurately and rapidly depositing different active biomaterials in patterns or layered structures. Ideally, the biomaterial structures would also be compatible with many different substrates including technologically relevant platforms such as electronic circuits or various detection devices. We have developed a novel laser-based technique, termed matrix assisted pulsed laser evaporation direct write (MAPLE DW), that is able to direct write patterns and three-dimensional structures of numerous biologically active species ranging from proteins and antibodies to living cells. Specifically, we have shown that MAPLE DW is capable of forming mesoscopic patterns of living prokaryotic cells (E. coli bacteria), living mammalian cells (Chinese hamster ovaries), active proteins (biotinylated bovine serum albumin, horse radish peroxidase), and antibodies specific to a variety of classes of cancer related proteins including intracellular and extracellular matrix proteins, signaling proteins, cell cycle proteins, growth factors, and growth factor receptors. In addition, patterns of viable cells and active biomolecules were deposited on different substrates including metals, semiconductors, nutrient agar, and functionalized glass slides. We will present an explanation of the laser-based transfer mechanism as well as results from our recent efforts to fabricate protein recognition microarrays and tissue-based microfluidic networks.
Emergence of long-range correlations and bursty activity patterns in online communication
NASA Astrophysics Data System (ADS)
Panzarasa, Pietro; Bonaventura, Moreno
2015-12-01
Research has suggested that the activity occurring in a variety of social, economic, and technological systems exhibits long-range fluctuations in time. Pronounced levels of rapidly occurring events are typically observed over short periods of time, followed by long periods of inactivity. Relatively few studies, however, have shed light on the degree to which inhomogeneous temporal processes can be detected at, and emerge from, different levels of analysis. Here we investigate patterns of human activity within an online forum in which communication can be assessed at three intertwined levels: the micro level of the individual users; the meso level of discussion groups and continuous sessions; and the macro level of the whole system. To uncover the relation between different levels, we conduct a number of numerical simulations of a zero-crossing model in which users' behavior is constrained by progressively richer and more realistic rules of social interaction. Results indicate that, when users are solipsistic, their bursty behavior is not sufficient for generating heavy-tailed interevent time distributions at a higher level. However, when users are socially interdependent, the power spectra and interevent time distributions of the simulated and real forums are remarkably similar at all levels of analysis. Social interaction is responsible for the aggregation of multiple bursty activities at the micro level into an emergent bursty activity pattern at a higher level. We discuss the implications of the findings for an emergentist account of burstiness in complex systems.
Brain activation during human male ejaculation revisited.
Georgiadis, Janniko R; Reinders, A A T Simone; Van der Graaf, Ferdinand H C E; Paans, Anne M J; Kortekaas, Rudie
2007-04-16
In a prior [O]-H2O positron emission tomographic study we reported brain regions involved in human male ejaculation. Here, we used another, more recently acquired data set to evaluate the methodological approach of this previous study, and discovered that part of the reported activation pattern was not related to ejaculation. With a new analysis of these ejaculation data, we now demonstrate ejaculation-related activations in the deep cerebellar nuclei (dentate nucleus), anterior vermis, pons, and ventrolateral thalamus, and, most importantly, ejaculation-related deactivations throughout the prefrontal cortex. This revision offers a new and more accurate insight into the brain regions involved in human male ejaculation.
Eating Behavior and BMI in Adolescent Survivors of Brain Tumor and Acute Lymphoblastic Leukemia
Hansen, Jennifer A.; Stancel, Heather H.; Klesges, Lisa M.; Tyc, Vida L.; Hinds, Pamela S.; Wu, Shengjie; Hudson, Melissa M.; Kahalley, Lisa S.
2014-01-01
Objectives Elevated BMI has been reported in pediatric cancer survivors. It is unclear whether this is related to altered energy intake (via disordered eating), decreased energy expenditure (via limited exercise), or treatment-related direct/indirect changes. The aims of this study are to describe the occurrence of overweight and obesity, exercise frequency, and the extent of disordered eating patterns in this sample of survivors, and to examine relationships among BMI, eating patterns, exercise frequency and demographic and disease and treatment-related variables to identify those survivors most at risk for overweight/obesity. Methods This cross-sectional study recruited 98 cancer survivors (50 ALL, 48 Brain Tumor), aged 12-17 years and >12 months post-treatment from a large pediatric oncology hospital. Survivors completed health behavior measures assessing disordered eating patterns and physical activity. Clinical variables were obtained through medical record review. Univariate analyses were conducted to make comparisons on health behaviors by diagnosis, gender, treatment history, and BMI category. Results Fifty-two percent of ALL survivors and 41.7% of BT survivors were classified as overweight/obese. Overweight/obesity status was associated with higher Cognitive Restraint (OR=1.0, 95%CI:1.0-1.1). Only 12% of ALL survivors and 8.3% of BT survivors met CDC guidelines for physical activity. Males reported more physical activity (t(96)=2.2, p<.05). Conclusions Overweight/obese survivors may attempt to purposefully restrict their food intake and rely less on physiological cues to regulate consumption. Survivors should be screened at follow-up for weight-related concerns. PMID:24451908
Larson, Nicole; Dewolfe, Jessica; Story, Mary; Neumark-Sztainer, Dianne
2014-01-01
To examine patterns of adolescent sports and energy drink (SED) consumption and identify behavioral correlates. Data were drawn from Eating and Activity in Teens, a population-based study. Adolescents from 20 middle and high schools in Minneapolis/St Paul, MN completed classroom-administered surveys. A total of 2,793 adolescents (53.2% girls) in grades 6-12. Beverage patterns; breakfast frequency; moderate to vigorous physical activity (MVPA); media use; sleep; and cigarette smoking. Linear and logistic regression models were used to estimate associations between health behaviors and SED consumption, adjusting for demographics. Over a third of adolescents consumed sports drinks and 14.7% consumed energy drinks at least once a week. Among boys and girls, both sports and energy drink consumption were related to higher video game use; sugar-sweetened beverage and fruit juice intake; and smoking (P < .05). Sports drink consumption was also significantly related to higher MVPA and organized sport participation for both genders (P < .01). Although sports drink consumption was associated with higher MVPA, adolescents should be reminded of recommendations to consume these beverages only after vigorous, prolonged activity. There is also a need for future interventions designed to reduce SED consumption, to address the clustering of unhealthy behaviors. Copyright © 2014 Society for Nutrition Education and Behavior. Published by Elsevier Inc. All rights reserved.
Larson, Nicole; DeWolfe, Jessica; Story, Mary; Neumark-Sztainer, Dianne
2014-01-01
Objective To examine patterns of adolescent sports and energy drink (SED) consumption and identify behavioral correlates. Design Data were drawn from EAT 2010 (Eating and Activity in Teens), a population-based study. Setting Adolescents from 20 middle and high schools in Minneapolis/St. Paul, Minnesota completed classroom-administered surveys. Participants 2,793 adolescents (53.2% girls) in grades 6–12. Variables Measured Beverage patterns; breakfast frequency; moderate-to-vigorous physical activity (MVPA); media use; sleep; and cigarette smoking. Analysis Linear and logistic regression models were used to estimate associations between health behaviors and SED consumption, adjusting for demographics. Results Over a third of adolescents consumed sports drinks and 14.7% consumed energy drinks at least once a week. Among boys and girls, both sports and energy drink consumption were related to higher video game use; sugar-sweetened beverage and fruit juice intake; and smoking (P<0.05). Sports drink consumption was also significantly related to higher MVPA and organized sport participation for both genders (P<0.01). Conclusions and Implications Although sports drink consumption was associated with higher MVPA, adolescents should be reminded of recommendations to consume these beverages only following vigorous, prolonged activity. There is also a need for future interventions designed to reduce SED consumption to address the clustering of unhealthy behaviors. PMID:24809865
Panasevich, E A; Tsitseroshin, M N
2015-01-01
We studied the correlation of intellectual development according to The Wechsler Intelligence Scale for Children (WISC test) with the spatial organization of resting EEG in 52 children aged 5-6 years. It was found that the patterns of interregional interactions of different parts of the cortex which correspond with the best performance in the subtests in boys (n = 23) and girls (n = 29) have significant topological differences. In girls, successful subtest performance positively correlated to a greater extent with interhemispheric interactions; in boys--long longitudinal rostral-caudal interactions between various regions of the cortex. The results showed that there are important gender differences in the spatial organization of brain activity associated with the performance of different cognitive activities in preschool children. The successful performance of various subtests by boys required considerable variability in the organization of spatial patterns of interregional interactions; on the contrary, the spatial structure of these patterns in girls was relatively invariable. Obviously, for the successful performance of various cognitive activities at this age in boys, the cortex need to form highly specialized organization of intracortical interactions, while in girls the brain uses relatively similar reorganization of interactions. The data suggest that 5-6-year-old boys and girls use different cognitive strategies when performing the same subtests of the WISC test.
ECONOMIC DEVELOPMENT THEORIES AND BUSINESS FIRM STRATEGIES,
characteristic economic patterns also provide a basis for business firms to plan their policies for investment and other international business activities in relation to opportunities in different kinds of environments. (Author)
Condensation and fractionation of rare earths in the solar nebula
NASA Technical Reports Server (NTRS)
Davis, A. M.; Grossman, L.
1979-01-01
The condensation behavior of the rare earth elements in the solar nebula is calculated on the basis of the most recent thermodynamic data in order to construct a model explaining group II rare earth element patterns in Allende inclusions. Models considered all involve the removal of large fractions of the more refractory heavy rare earth elements in an early condensate, followed by the condensation of the remainder at a lower temperature. It is shown that the model of Boynton (1975) in which one rare earth element component is dissolved nonideally in perovskite according to relative activity coefficients can not reasonably be made to fit the observed group II patterns. A model in which two rare earth components control the patterns and dissolve ideally in perovskite is proposed and shown to be able to account for the 20 patterns by variations of the perovskite removal temperature and the relative proportions of the two components.
Sociocultural Influences on Weight-Related Behaviors in African American Adolescents.
Tate, Nutrena H; Davis, Jean E; Yarandi, Hossein N
2015-12-01
The purpose of this study was to examine the sociocultural factors related to weight behaviors in African American adolescents utilizing a social ecological approach. A descriptive correlational design included a sample of 145 African American adolescents. Perceived familial socialization, ethnic identity, physical activity, and eating behavior patterns were measured. Data were analyzed using descriptive statistics, Pearson product-moment correlations, and multiple regression equations. Perceived maternal socialization was significantly related to adolescent eating behaviors and physical activity whereas perceived paternal socialization was significantly related only to their physical activity. The adolescents' ethnic identity was not significantly related to their eating behaviors or physical activity. Health care providers who work with adolescents and their families can use the initial findings from this study to encourage healthy weight-related behaviors while reducing the obesity epidemic within the African American adolescent population in a developmentally appropriate and culturally sensitive manner. © The Author(s) 2014.
Functional MRI reveals expert-novice differences during sport-related anticipation.
Wright, Michael J; Bishop, Daniel T; Jackson, Robin C; Abernethy, Bruce
2010-01-27
We examined the effect of expertise on cortical activation during sports anticipation using functional MRI. In experiment 1, recreational players predicted badminton stroke direction and the pattern of active clusters was consistent with a proposed perception-of-action network. This pattern was not replicated in a stimulus-matched, action-unrelated control task. In experiment 2, players of three different skill levels anticipated stroke direction from clips occluded either 160 ms before or 80 ms after racquet-shuttle contact. Early-occluded sequences produced more activation than late-occluded sequences overall, in most cortical regions of interest, but experts showed an additional enhancement in medial, dorsolateral and ventrolateral frontal cortex. Anticipation in open-skill sports engages cortical areas integral to observing and understanding others' actions; such activity is enhanced in experts.
NASA Astrophysics Data System (ADS)
Abidin, Mohammad Kamaruddin Zainal; Mohammed, Ahmad Azhar; Nor, Shukor Md
2018-04-01
Re-introduction programme has been adopted in solving the conflict issues related with the Malayan sun bears in Peninsular Malaysia. Two rehabilitated sun bears (#1533 and #1532) were collared and released in Tembat Forest Reserve, Hulu Terengganu to study the home-range and activity pattern. Tracking of sun bear in wild have be conducted manually by using telemetry devices namely radio frequency systems and GPS-UHF download system. A total of 912 locations were recorded. The home range size (indicate by the size of convex polygon) of bear #1533 is larger than bear #1532, with value of 95% minimum convex polygon was 130 km2 compared to its counterpart was 33.28 km2. Bears moved to forest (primary and secondary) and oil palm area. Bear #1533 and #1532 were more active in daytime (diurnal) especially from sunrise to midday. Activity pattern of both rehabilitated bears suggested influence by their daily activity in captivity. This study has proposed two guidelines in re-introduction, 1) minimum distance between release site and possible conflict area is 10-13 km and 2) release during the bear's active time.
Functional brain activation associated with working memory training and transfer.
Clark, Cameron M; Lawlor-Savage, Linette; Goghari, Vina M
2017-09-15
While behavioural trials of working memory (WM) training have received much attention in recent years, a lesser explored parallel approach is functional neuroimaging. A small literature has suggested a complex time course for functional activation pattern changes following WM training (i.e. not simply increasing or decreasing due to training); however, no study to date has examined such neuroplastic effects in both the training task (dual n-back) and the fluid intelligence transfer task to which the training is purported to transfer (Raven's Matrices). This study investigated neural correlates of WM training in healthy young adults randomized to six weeks of WM training, or an active control condition (processing speed training) with a pre- and post-training fMRI design. Results indicated significant reductions in activation for the WM trained group in key WM-task related areas for trained WM tasks after training compared to the processing speed active control group. The same pattern of training related decreases in activation for the WM trained group was not observed for the transfer task, which is consistent with null results for all cognitive outcomes of the present trial. The observed pattern of results suggests that repetitive practice with a complex task does indeed lead to neuroplastic processes that very likely represent the reduced demand for attentional control while sub-components of the task become more routinized with practice. We suggest that future research investigate neural correlates of WM training in populations for which WM itself is impaired and/or behavioural trials of WM training have returned more promising results. Copyright © 2017 Elsevier B.V. All rights reserved.
Schlumpf, Yolanda R; Reinders, Antje A T S; Nijenhuis, Ellert R S; Luechinger, Roger; van Osch, Matthias J P; Jäncke, Lutz
2014-01-01
In accordance with the Theory of Structural Dissociation of the Personality (TSDP), studies of dissociative identity disorder (DID) have documented that two prototypical dissociative subsystems of the personality, the "Emotional Part" (EP) and the "Apparently Normal Part" (ANP), have different biopsychosocial reactions to supraliminal and subliminal trauma-related cues and that these reactions cannot be mimicked by fantasy prone healthy controls nor by actors. Arterial spin labeling perfusion MRI was used to test the hypotheses that ANP and EP in DID have different perfusion patterns in response to rest instructions, and that perfusion is different in actors who were instructed to simulate ANP and EP. In a follow-up study, regional cerebral blood flow of DID patients was compared with the activation pattern of healthy non-simulating controls. Compared to EP, ANP showed elevated perfusion in bilateral thalamus. Compared to ANP, EP had increased perfusion in the dorsomedial prefrontal cortex, primary somatosensory cortex, and motor-related areas. Perfusion patterns for simulated ANP and EP were different. Fitting their reported role-play strategies, the actors activated brain structures involved in visual mental imagery and empathizing feelings. The follow-up study demonstrated elevated perfusion in the left temporal lobe in DID patients, whereas non-simulating healthy controls had increased activity in areas which mediate the mental construction of past and future episodic events. DID involves dissociative part-dependent resting-state differences. Compared to ANP, EP activated brain structures involved in self-referencing and sensorimotor actions more. Actors had different perfusion patterns compared to genuine ANP and EP. Comparisons of neural activity for individuals with DID and non-DID simulating controls suggest that the resting-state features of ANP and EP in DID are not due to imagination. The findings are consistent with TSDP and inconsistent with the idea that DID is caused by suggestion, fantasy proneness, and role-playing.
Schlumpf, Yolanda R.; Reinders, Antje A. T. S.; Nijenhuis, Ellert R. S.; Luechinger, Roger; van Osch, Matthias J. P.; Jäncke, Lutz
2014-01-01
Background In accordance with the Theory of Structural Dissociation of the Personality (TSDP), studies of dissociative identity disorder (DID) have documented that two prototypical dissociative subsystems of the personality, the “Emotional Part” (EP) and the “Apparently Normal Part” (ANP), have different biopsychosocial reactions to supraliminal and subliminal trauma-related cues and that these reactions cannot be mimicked by fantasy prone healthy controls nor by actors. Methods Arterial spin labeling perfusion MRI was used to test the hypotheses that ANP and EP in DID have different perfusion patterns in response to rest instructions, and that perfusion is different in actors who were instructed to simulate ANP and EP. In a follow-up study, regional cerebral blood flow of DID patients was compared with the activation pattern of healthy non-simulating controls. Results Compared to EP, ANP showed elevated perfusion in bilateral thalamus. Compared to ANP, EP had increased perfusion in the dorsomedial prefrontal cortex, primary somatosensory cortex, and motor-related areas. Perfusion patterns for simulated ANP and EP were different. Fitting their reported role-play strategies, the actors activated brain structures involved in visual mental imagery and empathizing feelings. The follow-up study demonstrated elevated perfusion in the left temporal lobe in DID patients, whereas non-simulating healthy controls had increased activity in areas which mediate the mental construction of past and future episodic events. Conclusion DID involves dissociative part-dependent resting-state differences. Compared to ANP, EP activated brain structures involved in self-referencing and sensorimotor actions more. Actors had different perfusion patterns compared to genuine ANP and EP. Comparisons of neural activity for individuals with DID and non-DID simulating controls suggest that the resting-state features of ANP and EP in DID are not due to imagination. The findings are consistent with TSDP and inconsistent with the idea that DID is caused by suggestion, fantasy proneness, and role-playing. PMID:24922512
Tracking and visualization of space-time activities for a micro-scale flu transmission study.
Qi, Feng; Du, Fei
2013-02-07
Infectious diseases pose increasing threats to public health with increasing population density and more and more sophisticated social networks. While efforts continue in studying the large scale dissemination of contagious diseases, individual-based activity and behaviour study benefits not only disease transmission modelling but also the control, containment, and prevention decision making at the local scale. The potential for using tracking technologies to capture detailed space-time trajectories and model individual behaviour is increasing rapidly, as technological advances enable the manufacture of small, lightweight, highly sensitive, and affordable receivers and the routine use of location-aware devices has become widespread (e.g., smart cellular phones). The use of low-cost tracking devices in medical research has also been proved effective by more and more studies. This study describes the use of tracking devices to collect data of space-time trajectories and the spatiotemporal processing of such data to facilitate micro-scale flu transmission study. We also reports preliminary findings on activity patterns related to chances of influenza infection in a pilot study. Specifically, this study employed A-GPS tracking devices to collect data on a university campus. Spatiotemporal processing was conducted for data cleaning and segmentation. Processed data was validated with traditional activity diaries. The A-GPS data set was then used for visual explorations including density surface visualization and connection analysis to examine space-time activity patterns in relation to chances of influenza infection. When compared to diary data, the segmented tracking data demonstrated to be an effective alternative and showed greater accuracies in time as well as the details of routes taken by participants. A comparison of space-time activity patterns between participants who caught seasonal influenza and those who did not revealed interesting patterns. This study proved that tracking technology an effective technique for obtaining data for micro-scale influenza transmission research. The findings revealed micro-scale transmission hotspots on a university campus and provided insights for local control and prevention strategies.
Moreside, Janice M; Quirk, D Adam; Hubley-Kozey, Cheryl L
2014-04-01
To compare temporal activation patterns from 24 abdominal and lumbar muscles between healthy subjects and those who reported recovery from recent low back injury (LBI). Cross-sectional comparative study. University neuromuscular function laboratory. Healthy adult volunteers (N=81; 30 LBI, 51 asymptomatic subjects). Trunk muscle electromyographic activity was collected during 2 difficulty levels of a supine trunk stability test aimed at challenging lumbopelvic control. Principal component (PC) analysis was applied to determine differences in temporal and/or amplitude electromyographic patterns between groups. Mixed-model analyses of variance were performed on PC scores that explained more than 89% of the variance (α=.05). Four PCs explained 89% and 96% of the variance for the abdominal and back muscles, respectively, with both muscle groups having similar shapes in the first 3 PCs. Significant interactions or group main effects were found for all PC scores except PC4 for the back extensors. Overall activation amplitudes for both the abdominal and back muscles (PC1 scores) were significantly (P<.05) higher for the LBI group, with both abdominal and back muscles of the LBI group demonstrating an increased response to the leg-loading phase (PC2 scores) compared with the asymptomatic group. Differences were also found between groups in their preparatory activity (PC3 scores), with the LBI group having a higher early relative amplitude of abdominal and back extensor activity. Despite perceived readiness to return to work and low pain scores, muscle activation patterns remained altered in this LBI group, including reduced synergistic coactivation and increased overall amplitudes as well as greater relative amplitude differences during specific phases of the movement. Electromyographic measures provide objective information to help guide therapy and may assist with determining the level of healing and return-to-work readiness after an LBI. Copyright © 2014 American Congress of Rehabilitation Medicine. Published by Elsevier Inc. All rights reserved.
Common patterns and disease-related signatures in tuberculosis and sarcoidosis.
Maertzdorf, Jeroen; Weiner, January; Mollenkopf, Hans-Joachim; Bauer, Torsten; Prasse, Antje; Müller-Quernheim, Joachim; Kaufmann, Stefan H E
2012-05-15
In light of the marked global health impact of tuberculosis (TB), strong focus has been on identifying biosignatures. Gene expression profiles in blood cells identified so far are indicative of a persistent activation of the immune system and chronic inflammatory pathology in active TB. Definition of a biosignature with unique specificity for TB demands that identified profiles can differentiate diseases with similar pathology, like sarcoidosis (SARC). Here, we present a detailed comparison between pulmonary TB and SARC, including whole-blood gene expression profiling, microRNA expression, and multiplex serum analytes. Our analysis reveals that previously disclosed gene expression signatures in TB show highly similar patterns in SARC, with a common up-regulation of proinflammatory pathways and IFN signaling and close similarity to TB-related signatures. microRNA expression also presented a highly similar pattern in both diseases, whereas cytokines in the serum of TB patients revealed a slightly elevated proinflammatory pattern compared with SARC and controls. Our results indicate several differences in expression between the two diseases, with increased metabolic activity and significantly higher antimicrobial defense responses in TB. However, matrix metallopeptidase 14 was identified as the most distinctive marker of SARC. Described communalities as well as unique signatures in blood profiles of two distinct inflammatory pulmonary diseases not only have considerable implications for the design of TB biosignatures and future diagnosis, but they also provide insights into biological processes underlying chronic inflammatory disease entities of different etiology.
a Multidisciplinary Analytical Framework for Studying Active Mobility Patterns
NASA Astrophysics Data System (ADS)
Orellana, D.; Hermida, C.; Osorio, P.
2016-06-01
Intermediate cities are urged to change and adapt their mobility systems from a high energy-demanding motorized model to a sustainable low-motorized model. In order to accomplish such a model, city administrations need to better understand active mobility patterns and their links to socio-demographic and cultural aspects of the population. During the last decade, researchers have demonstrated the potential of geo-location technologies and mobile devices to gather massive amounts of data for mobility studies. However, the analysis and interpretation of this data has been carried out by specialized research groups with relatively narrow approaches from different disciplines. Consequently, broader questions remain less explored, mainly those relating to spatial behaviour of individuals and populations with their geographic environment and the motivations and perceptions shaping such behaviour. Understanding sustainable mobility and exploring new research paths require an interdisciplinary approach given the complex nature of mobility systems and their social, economic and environmental impacts. Here, we introduce the elements for a multidisciplinary analytical framework for studying active mobility patterns comprised of three components: a) Methodological, b) Behavioural, and c) Perceptual. We demonstrate the applicability of the framework by analysing mobility patterns of cyclists and pedestrians in an intermediate city integrating a range of techniques, including: GPS tracking, spatial analysis, auto-ethnography, and perceptual mapping. The results demonstrated the existence of non-evident spatial behaviours and how perceptual features affect mobility. This knowledge is useful for developing policies and practices for sustainable mobility planning.
Peeters, Geeske; Edwards, Kimberley L; Brown, Wendy J; Barker, Anna L; Arden, Nigel; Redmond, Anthony C; Conaghan, Philip G; Cicuttini, Flavia; Mishra, Gita D
2017-12-06
To examine whether body mass index (BMI), menopausal status and hormone therapy (HT) use modify the association between physical activity (PA) patterns throughout middle age and incidence and prevalence of joint symptoms in later middle age in women. Data were from 6661 participants (born 1946-1951) in the Australian Longitudinal Study on Women's Health. Surveys were completed every three years from 1998 to 2010 with questions on joint pain and stiffness, PA, height and weight, menopausal symptoms, and HT use. PA patterns were defined as 'none-or-low', 'low-or-meeting-guidelines', 'fluctuating' or 'meeting guidelines-at-all-times' (reference pattern). Logistic regression was used to examine the association between PA patterns and prevalent (in 2010) and cumulative incident (1998-2010) joint symptoms and effect modification by patterns of BMI, menopausal status and HT. The groups representing 'fluctuating' (odds ratio [OR]=1.34, 99% confidence interval [CI]=1.04-1.72) and 'none-or-low' physical activity (OR=1.60, CI =1.08-2.35) had higher odds of incident joint symptoms than those 'meeting guidelines-at-all-times'. Stratification by BMI showed that this association was statistically significant in the obese group only. No evidence was found for effect modification by menopausal status or HT use. The findings were similar for prevalent joint symptoms. Maintaining at least low levels of physical activity throughout middle age was associated with lower prevalence and incidence of joint symptoms in later life. This apparent protective effect of physical activity on joint symptoms was stronger in obese women than in under or normal weight women, and not related to menopause and HT status. This article is protected by copyright. All rights reserved. This article is protected by copyright. All rights reserved.
The work patterns of lactating women in Madura.
Launer, L J
1993-08-01
Little is known about the work patterns of mildly malnourished lactating women: are they modified to accommodate the demands of lactation? What factors influence their pattern of work during this period of nutritional stress? These questions were addressed using quantitative and qualitative data collected from 36 randomly selected women living in a poor community in Madura, Indonesia. Work patterns of the lactating women and their family members were documented for the first 12 months post-partum. Changes in work activity were analysed within four time periods corresponding to Madurese views on development during infancy: the vulnerable neonatal (birth-40 days), early (6-12 wk) and mid (13-31 wk) stages and the independent late (32-54 wk) stage. Quantitative data suggest that women did adjust work patterns to accommodate the demands of lactation and that these adjustments went beyond the neonatal stage. Mothers curtailed their participation in high- and low-energy income-generating activities, modified their conditions of work to promote maternal-infant proximity and conserved energy while performing specific activities. These patterns were most common through the mid infancy stage. Data are presented that describe how cultural values supporting maternal-infant proximity, intra- and inter-familial work exchanges, season and resources played a role in the type of accommodations mothers were able to make to breast-feed. These data suggest that even in relatively poor environments alterations in work patterns that may be favourable to lactation are possible, particularly when cultural concepts of infancy support such a trade-off.
Iannotti, Ronald J.; Kogan, Michael D.; Janssen, Ian; Boyce, William F.
2008-01-01
Purpose To examine: 1) how adolescent physical activity (PA) and screen-based media use (SBM) relate to physical and social health indicators, and 2) cross-national differences in these relationships. Methods Essentially identical questions and methodologies were used in the Health Behavior in School-Aged Children cross-sectional surveys of nationally-representative samples of American (N = 14,818) and Canadian (N = 7,266) students in grades 6 to 10. Items included questions about frequency of PA, SBM, positive health indicators (health status, self-image, quality of life, and quality of family and peer relationships), and negative health indicators (health complaints, physical aggression, smoking, drinking, and marijuana use). Results In regression analyses controlling for age and gender, positive health indicators were uniformly positively related to PA while two negative health indicators were negatively related to PA. However, PA was positively related to physical aggression. The pattern for SBM was generally the opposite; SBM was negatively related to most positive health indices and positively related to several of the negative health indicators. The notable exception was that SBM was positively related to the quality of peer relationships. Although there were cross-national differences in the strength of some relationships, these patterns were essentially replicated in both countries. Conclusions Surveys of nationally representative samples of youth in two countries provide evidence of positive physical and social concomitants of PA and negative concomitants of SBM. These findings suggest potential positive consequences of increasing PA and decreasing SBM in adolescents and provide further justification for such efforts. PMID:19380098
Chang, Yu-Hsuan A; Javadi, Sogol S; Bahrami, Naeim; Uttarwar, Vedang S; Reyes, Anny; McDonald, Carrie R
2018-04-01
Blocked and event-related fMRI designs are both commonly used to localize language networks and determine hemispheric dominance in research and clinical settings. We compared activation profiles on a semantic monitoring task using one of the two designs in a total of 43 healthy individual to determine whether task design or subject-specific factors (i.e., age, sex, or language performance) influence activation patterns. We found high concordance between the two designs within core language regions, including the inferior frontal, posterior temporal, and basal temporal region. However, differences emerged within inferior parietal cortex. Subject-specific factors did not influence activation patterns, nor did they interact with task design. These results suggest that despite high concordance within perisylvian regions that are robust to subject-specific factors, methodological differences between blocked and event-related designs may contribute to parietal activations. These findings provide important information for researchers incorporating fMRI results into meta-analytic studies, as well as for clinicians using fMRI to guide pre-surgical planning. Copyright © 2018 Elsevier Inc. All rights reserved.
Park, Jungan; Kim, Soyeon; Choi, Eunseok; Auh, Chung-Kyun; Park, Jong-Bum; Kim, Dong-Giun; Chung, Young-Jae; Lee, Taek-Kyun; Lee, Sukchan
2013-09-01
Arabidopsis thaliana infected with Beet severe curly top virus (BSCTV) exhibits systemic symptoms such as stunting of plant growth, callus induction on shoot tips, and curling of leaves and shoot tips. The regulation of sucrose metabolism is essential for obtaining the energy required for viral replication and the development of symptoms in BSCTV-infected A. thaliana. We evaluated the changed transcript level and enzyme activity of invertases in the inflorescence stems of BSCTV-infected A. thaliana. These results were consistent with the increased pattern of ribulose-1,5-bisphosphate carboxylase/oxygenase activity and photosynthetic pigment concentration in virus-infected plants to supply more energy for BSCTV multiplication. The altered gene expression of invertases during symptom development was functionally correlated with the differential expression patterns of D-type cyclins, E2F isoforms, and invertase-related genes. Taken together, our results indicate that sucrose sensing by BSCTV infection may regulate the expression of sucrose metabolism and result in the subsequent development of viral symptoms in relation with activation of cell cycle regulation.
Patel, Krishna T; Stevens, Michael C; Meda, Shashwath A; Muska, Christine; Thomas, Andre D; Potenza, Marc N; Pearlson, Godfrey D
2013-10-01
Abnormal function in reward circuitry in cocaine addiction could predate drug use as a risk factor, follow drug use as a consequence of substance-induced alterations, or both. We used a functional magnetic resonance imaging monetary incentive delay task (MIDT) to investigate reward-loss neural response differences among 42 current cocaine users, 35 former cocaine users, and 47 healthy subjects who also completed psychological measures and tasks related to impulsivity and reward. We found various reward processing-related group differences in several MIDT phases. Across task phases we found a control > current user > former user activation pattern, except for loss outcome, where former compared with current cocaine users activated ventral tegmental area more robustly. We also found regional prefrontal activation differences during loss anticipation between cocaine-using groups. Both groups of cocaine users scored higher than control subjects on impulsivity, compulsivity and reward-punishment sensitivity factors. In addition, impulsivity-related factors correlated positively with activation in amygdala and negatively with anterior cingulate activation during loss anticipation. Compared with healthy subjects, both former and current users displayed abnormal brain activation patterns during MIDT performance. Both cocaine groups differed similarly from healthy subjects, but differences between former and current users were localized to the ventral tegmental area during loss outcome and to prefrontal regions during loss anticipation, suggesting that long-term cocaine abstinence does not normalize most reward circuit abnormalities. Elevated impulsivity-related factors that relate to loss processing in current and former users suggest that these tendencies and relationships may pre-exist cocaine addiction. © 2013 Society of Biological Psychiatry.
Das, Koel; Giesbrecht, Barry; Eckstein, Miguel P
2010-07-15
Within the past decade computational approaches adopted from the field of machine learning have provided neuroscientists with powerful new tools for analyzing neural data. For instance, previous studies have applied pattern classification algorithms to electroencephalography data to predict the category of presented visual stimuli, human observer decision choices and task difficulty. Here, we quantitatively compare the ability of pattern classifiers and three ERP metrics (peak amplitude, mean amplitude, and onset latency of the face-selective N170) to predict variations across individuals' behavioral performance in a difficult perceptual task identifying images of faces and cars embedded in noise. We investigate three different pattern classifiers (Classwise Principal Component Analysis, CPCA; Linear Discriminant Analysis, LDA; and Support Vector Machine, SVM), five training methods differing in the selection of training data sets and three analyses procedures for the ERP measures. We show that all three pattern classifier algorithms surpass traditional ERP measurements in their ability to predict individual differences in performance. Although the differences across pattern classifiers were not large, the CPCA method with training data sets restricted to EEG activity for trials in which observers expressed high confidence about their decisions performed the highest at predicting perceptual performance of observers. We also show that the neural activity predicting the performance across individuals was distributed through time starting at 120ms, and unlike the face-selective ERP response, sustained for more than 400ms after stimulus presentation, indicating that both early and late components contain information correlated with observers' behavioral performance. Together, our results further demonstrate the potential of pattern classifiers compared to more traditional ERP techniques as an analysis tool for modeling spatiotemporal dynamics of the human brain and relating neural activity to behavior. Copyright 2010 Elsevier Inc. All rights reserved.
Moriyama, Koichi; Fukui, Ken–ichi; Numao, Masayuki
2015-01-01
Background Non-medical professionals (consumers) are increasingly using the Internet to support their health information needs. However, the cognitive effort required to perform health information searches is affected by the consumer’s familiarity with health topics. Consumers may have different levels of familiarity with individual health topics. This variation in familiarity may cause misunderstandings because the information presented by search engines may not be understood correctly by the consumers. Objective As a first step toward the improvement of the health information search process, we aimed to examine the effects of health topic familiarity on health information search behaviors by identifying the common search activity patterns exhibited by groups of consumers with different levels of familiarity. Methods Each participant completed a health terminology familiarity questionnaire and health information search tasks. The responses to the familiarity questionnaire were used to grade the familiarity of participants with predefined health topics. The search task data were transcribed into a sequence of search activities using a coding scheme. A computational model was constructed from the sequence data using a Markov chain model to identify the common search patterns in each familiarity group. Results Forty participants were classified into L1 (not familiar), L2 (somewhat familiar), and L3 (familiar) groups based on their questionnaire responses. They had different levels of familiarity with four health topics. The video data obtained from all of the participants were transcribed into 4595 search activities (mean 28.7, SD 23.27 per session). The most frequent search activities and transitions in all the familiarity groups were related to evaluations of the relevancy of selected web pages in the retrieval results. However, the next most frequent transitions differed in each group and a chi-squared test confirmed this finding (P<.001). Next, according to the results of a perplexity evaluation, the health information search patterns were best represented as a 5-gram sequence pattern. The most common patterns in group L1 were frequent query modifications, with relatively low search efficiency, and accessing and evaluating selected results from a health website. Group L2 performed frequent query modifications, but with better search efficiency, and accessed and evaluated selected results from a health website. Finally, the members of group L3 successfully discovered relevant results from the first query submission, performed verification by accessing several health websites after they discovered relevant results, and directly accessed consumer health information websites. Conclusions Familiarity with health topics affects health information search behaviors. Our analysis of state transitions in search activities detected unique behaviors and common search activity patterns in each familiarity group during health information searches. PMID:25783222
Bursting as a source of non-linear determinism in the firing patterns of nigral dopamine neurons.
Jeong, Jaeseung; Shi, Wei-Xing; Hoffman, Ralph; Oh, Jihoon; Gore, John C; Bunney, Benjamin S; Peterson, Bradley S
2012-11-01
Nigral dopamine (DA) neurons in vivo exhibit complex firing patterns consisting of tonic single-spikes and phasic bursts that encode information for certain types of reward-related learning and behavior. Non-linear dynamical analysis has previously demonstrated the presence of a non-linear deterministic structure in complex firing patterns of DA neurons, yet the origin of this non-linear determinism remains unknown. In this study, we hypothesized that bursting activity is the primary source of non-linear determinism in the firing patterns of DA neurons. To test this hypothesis, we investigated the dimension complexity of inter-spike interval data recorded in vivo from bursting and non-bursting DA neurons in the chloral hydrate-anesthetized rat substantia nigra. We found that bursting DA neurons exhibited non-linear determinism in their firing patterns, whereas non-bursting DA neurons showed truly stochastic firing patterns. Determinism was also detected in the isolated burst and inter-burst interval data extracted from firing patterns of bursting neurons. Moreover, less bursting DA neurons in halothane-anesthetized rats exhibited higher dimensional spiking dynamics than do more bursting DA neurons in chloral hydrate-anesthetized rats. These results strongly indicate that bursting activity is the main source of low-dimensional, non-linear determinism in the firing patterns of DA neurons. This finding furthermore suggests that bursts are the likely carriers of meaningful information in the firing activities of DA neurons. © 2012 The Authors. European Journal of Neuroscience © 2012 Federation of European Neuroscience Societies and Blackwell Publishing Ltd.
Elnegaard, Sandra; Andersen, Rikke Sand; Pedersen, Anette Fischer; Jarbøl, Dorte Ejg
2017-10-15
To describe patterns of disclosure of symptoms experienced among people in the general population to persons in their personal and/or professional network. A population-based cross-sectional study. Data were collected from a web-based survey. The general population in Denmark. 100 000 individuals randomly selected, representative of the adult Danish population aged ≥20 years were invited. Approximately 5% were not eligible for inclusion. 49 706 (men=23 240; women=26 466) of 95 253 eligible individuals completed the questionnaire; yielding a response rate of 52.2%. Individuals completing all questions regarding social network relations form the study base (n=44 313). Activation of personal and/or professional relations when experiencing a symptom. The 44 313 individuals reported in total 260 079 symptom experiences within the last 4 weeks. No professional network relation was used in two-thirds of all reported symptoms. The general practitioner (GP) was the most frequently reported professional relation activated (22.5%). People reporting to have available personal relations were slightly less inclined to contact the GP (21.9%) when experiencing a symptom compared with people with no reported personal relations (26.8%). The most commonly activated personal relations were spouse/partner (56.4%) and friend (19.6%). More than a quarter of all reported symptom experiences was not shared with anyone, personal nor professional. The symptom experiences with the lowest frequency of network activation were symptoms such as black stool, constipation, change in stool texture and frequent urination. This study emphasises variation in the activation of network relations when experiencing a symptom. Symptoms were shared with both personal and professional relations, but different patterns of disclosures were discovered. For symptoms derived from the urogenital or colorectal region, the use of both personal and professional relations was relatively small, which might indicate reticence to involve other people when experiencing symptoms of that nature. © Article author(s) (or their employer(s) unless otherwise stated in the text of the article) 2017. All rights reserved. No commercial use is permitted unless otherwise expressly granted.
Elnegaard, Sandra; Andersen, Rikke Sand; Pedersen, Anette Fischer; Jarbøl, Dorte Ejg
2017-01-01
Objective To describe patterns of disclosure of symptoms experienced among people in the general population to persons in their personal and/or professional network. Design A population-based cross-sectional study. Data were collected from a web-based survey. Setting The general population in Denmark. Participants 100 000 individuals randomly selected, representative of the adult Danish population aged ≥20 years were invited. Approximately 5% were not eligible for inclusion. 49 706 (men=23 240; women=26 466) of 95 253 eligible individuals completed the questionnaire; yielding a response rate of 52.2%. Individuals completing all questions regarding social network relations form the study base (n=44 313). Primary and secondary outcome measures Activation of personal and/or professional relations when experiencing a symptom. Results The 44 313 individuals reported in total 260 079 symptom experiences within the last 4 weeks. No professional network relation was used in two-thirds of all reported symptoms. The general practitioner (GP) was the most frequently reported professional relation activated (22.5%). People reporting to have available personal relations were slightly less inclined to contact the GP (21.9%) when experiencing a symptom compared with people with no reported personal relations (26.8%). The most commonly activated personal relations were spouse/partner (56.4%) and friend (19.6%). More than a quarter of all reported symptom experiences was not shared with anyone, personal nor professional. The symptom experiences with the lowest frequency of network activation were symptoms such as black stool, constipation, change in stool texture and frequent urination. Conclusion This study emphasises variation in the activation of network relations when experiencing a symptom. Symptoms were shared with both personal and professional relations, but different patterns of disclosures were discovered. For symptoms derived from the urogenital or colorectal region, the use of both personal and professional relations was relatively small, which might indicate reticence to involve other people when experiencing symptoms of that nature. PMID:29038185
Hubeau, Marianne; Gulinck, Hubert; Kimaro, Didas N; Hieronimo, Proches; Meliyo, Joel
2014-07-01
Human plague has been a recurring public health threat in some villages in the Western Usambara Mountains, Tanzania, in the period between 1980 and 2004. Despite intensive past biological and medical research, the reasons for the plague outbreaks in the same set of villages remain unknown. Plague research needs to broaden its scope and formulate new hypotheses. This study was carried out to establish relationships between the nature and the spatial extent of selected human activities on one hand, and the reported plague cases on the other hand. Three outdoor activities namely, fetching water, collecting firewood and going to the market, were selected. Through enquiries the activity patterns related to these activities were mapped in 14 villages. Standard deviation ellipses represent the extent of action spaces. Over 130 activity types were identified and listed. Of these, fetching water, collecting firewood and going to the market were used for further analysis. The results indicate a significant correlation between the plague frequency and the size of these action spaces. Different characteristics of land use and related human activities were correlated with the plague frequency at village and hamlet levels. Significant relationships were found between plague frequency and specific sources of firewood and water, and specific market places.
ERIC Educational Resources Information Center
Hamilton, Kyra; White, Katherine M.; Cuddihy, Tom
2012-01-01
The accurate measurement of health-related physical activity (PA), often interpreted as either 150 min/week of at least moderate-intensity PA (U.S. Department of Health and Human Services, 2008) or at least 30 min of at least moderate-intensity PA on 5 or more days per week (Australian Government Department of Health and Ageing [AGDHA], 2005;…
ERIC Educational Resources Information Center
MacDonald, Dany J.; Horton, Sean; Kraemer, Krista; Weir, Patricia; Deakin, Janice M.; Cote, Jean
2009-01-01
This paper reports the results of two studies. The purpose of the first study was to determine if lifestyle variables and past involvement in physical activity was related to current activity levels in master athletes and sedentary older adults. Retrospective interviews were conducted with 12 master athletes and 12 sedentary older adults. Results…
Petersson, Karl Magnus; Sandblom, Johan; Elfgren, Christina; Ingvar, Martin
2003-11-01
In a within-subject design we investigated the levels-of-processing (LOP) effect using visual material in a behavioral and a corresponding PET study. In the behavioral study we characterize a generalized LOP effect, using pleasantness and graphical quality judgments in the encoding situation, with two types of visual material, figurative and nonfigurative line drawings. In the PET study we investigate the related pattern of brain activations along these two dimensions. The behavioral results indicate that instruction and material contribute independently to the level of recognition performance. Therefore the LOP effect appears to stem both from the relative relevance of the stimuli (encoding opportunity) and an altered processing of stimuli brought about by the explicit instruction (encoding mode). In the PET study, encoding of visual material under the pleasantness (deep) instruction yielded left lateralized frontoparietal and anterior temporal activations while surface-based perceptually oriented processing (shallow instruction) yielded right lateralized frontoparietal, posterior temporal, and occipitotemporal activations. The result that deep encoding was related to the left prefrontal cortex while shallow encoding was related to the right prefrontal cortex, holding the material constant, is not consistent with the HERA model. In addition, we suggest that the anterior medial superior frontal region is related to aspects of self-referential semantic processing and that the inferior parts of the anterior cingulate as well as the medial orbitofrontal cortex is related to affective processing, in this case pleasantness evaluation of the stimuli regardless of explicit semantic content. Finally, the left medial temporal lobe appears more actively engaged by elaborate meaning-based processing and the complex response pattern observed in different subregions of the MTL lends support to the suggestion that this region is functionally segregated.
Green, Charles E.; Robinson, Jason D.; Karam-Hage, Maher; Engelmann, Jeffrey M.; Minnix, Jennifer A.; Wetter, David W.; Versace, Francesco
2018-01-01
Rationale We have shown that differences in the level of neural activation to stimuli associated with smoking vs. natural rewards, a biomarker related to reward sensitivity, predict treatment outcome. Objectives This paper examined whether this biomarker moderates the impact of bupropion or varenicline on smoking cessation. Methods Prior to treatment randomization, smokers (N = 180) in a placebo-controlled trial using bupropion and varenicline completed event-related potential recording (late positive potential, LPP) while viewing pleasant (P), cigarette (C)-related, and other pictures. We used Bayesian models to estimate the probability of interaction between treatment and the LPP for both efficacy and comparative effectiveness analyses. Results Efficacy analysis showed that smokers with more neural activation to pleasant vs. cigarette-related stimuli (P > C) had a 98–99% chance of achieving greater abstinence than placebo (OR >1.00), using either medication from the end of treatment (EOT, primary outcome) through the 3-month follow-up. Relative to placebo, smokers with higher activation to cigarette-related vs. pleasant stimuli (C > P) had a 99% chance of increased benefit from varenicline at both time points (OR >1), but only 67 and 43% with bupropion at the EOT and 3-month follow-up, respectively. Comparative effectiveness analysis found that smokers with the C > P activation pattern had a 95–98% chance of benefit from varenicline vs. bupropion, while P > C smokers had a 50–58% chance of similar improvement with varenicline at the EOT and 3 months. Conclusions Varenicline appears to be the treatment of choice for smokers with the C > P pattern of neural activation, while for those showing P > C, varenicline and bupropion have similar efficacy. PMID:28275830
78 FR 5443 - Agency Information Collection Activities; Submission for OMB Review; Comment Request
Federal Register 2010, 2011, 2012, 2013, 2014
2013-01-25
... mean hourly income for workers in sales and related occupations according to the latest figures from... information such as costs, sales statistics, inventories, formulas, patterns, devices, manufacturing processes...
Peck, Stephen C.; Vida, Mina; Eccles, Jacquelynne S.
2015-01-01
Aims Use pattern-centered methods to examine how adolescents’ alcohol use and sports activities are related both to childhood sport and problem behavior and to heavy drinking in early adulthood. Design The data used in this study come from four waves of the Michigan Study of Adolescent Life Transitions (MSALT) that began in 1983, when participants were approximately age 12, and continued into early adulthood, when participants were approximately age 28. Participants Sixty per cent of the approximately 1000 MSALT youth living in south-eastern Michigan were females and 97% were European American. Approximately 28% of one or both parents held at least a college degree, and 45% held a high school diploma or lower. Findings Pattern-centered analyses revealed that the relation between adolescent sport activity and age 28 heavy alcohol use obtained primarily for sport participants who were also using more than the average amount of alcohol and other drugs at age 18. Similarly, children who were characterized by relatively high levels of sport participation, aggression and other problem behavior at age 12 were more likely than expected by chance to become sport participants who used more than the average amount of alcohol and other drugs at age 18. Conclusions The results indicate that childhood problem behavior and adolescent sport participation can, but do not necessarily, presage heavy drinking in adulthood and that pattern-centered analytical techniques are useful for revealing such theoretically generated predictions. PMID:18426541
García Carrascal, P; García García, J; Sierra Pallares, J; Castro Ruiz, F; Manuel Martín, F J
2017-05-01
Stent implantation is a common procedure followed in arteries affected by atherosclerosis. This procedure can lead to other stenting-related problems. One of these is the deposition and accumulation of blood clots over stent struts. This process can have further consequences, in so far as it can introduce modifications to the flow pattern. This problem is especially critical in stented bifurcations, where resulting stent geometry is more complex. In this regard, a numerical study is presented of the effect on the flow pattern and platelet activation of blood clot depositions on the stent struts of a stented coronary bifurcation. The numerical model is first validated with experimental measurements performed for this purpose. Experiments considered a flow with suspended artificial thrombi, which naturally deposited on stent struts. The location and shape observed were used to create numerical thrombi. Following this, numerical simulations were performed to analyze the influence of the presence of thrombi depositions on parameters such as Time Averaged Wall Shear Stress, Oscillatory Shear Index or Relative Residence Time. Finally, a study was also carried out of the effect of different geometrical configurations, from a straight tube to a stented bifurcation model with thrombus depositions, on platelet activation.
NASA Astrophysics Data System (ADS)
Erduran, Sibel
2018-01-01
Kim and Roth (this issue) purport to draw on the social-psychological theory of L. S. Vygotsky in order to investigate social relations in children's argumentation in science topics. The authors argue that the argumentation framework offered by Stephen Toulmin is limited in addressing social relations. The authors thus criticize Toulmin's Argument Pattern (TAP) as an analytical tool and propose to investigate the genesis of evidence-related practices (especially burden of proof) in second- and third-grade children by studying dialogical interactions. In this paper, I illustrate how Toulmin's framework can contribute to (a) the study of "social relations", and (b) provide an example utilizing a theoretical framework on social relations, namely Engeström's Activity Theory framework, and (c) describe how we have used the Activity Theory along with TAP in order to understand the development of argumentation in the practices of science educators. Overall, I will argue that TAP is not inherently incapable of addressing social relational aspects of argumentation in science education but rather that science education researchers can transform theoretical tools such as Toulmin's framework intended for other purposes for use in science education research.
Hurtado-Guerrero, Isaac; Pinto-Medel, Maria Jesús; Urbaneja, Patricia; Rodriguez- Bada, Jose Luis; León, Antonio; Guerrero, Miguel; Fernández, Óscar
2017-01-01
Interferon beta (IFNß) is a common treatment used for multiple sclerosis (MS) which acts through the activation of the JAK-STAT pathway. However, this therapy is not always effective and currently there are no reliable biomarkers to predict therapeutic response. We postulate that the heterogeneity in the response to IFNß therapy could be related to differential activation patterns of the JAK-STAT signaling pathway. Our aim was to evaluate the basal levels and the short term activation of this pathway after IFNß stimulation in untreated and IFNß treated patients, as well as according to therapeutic response. Therefore, cell surface levels of IFNAR subunits (IFNAR1 and IFNAR2) and the activated forms of STAT1 and STAT2 were assessed in peripheral blood mononuclear cells from MS patients by flow cytometry. Basal levels of each of the markers strongly correlated with the expression of the others in untreated patients, but many of these correlations lost significance in treated patients and after short term activation with IFNß. Patients who had undergone IFNß treatment showed higher basal levels of IFNAR1 and pSTAT1, but a reduced response to in vitro exposure to IFNß. Conversely, untreated patients, with lower basal levels, showed a greater ability of short term activation of this pathway. Monocytes from responder patients had lower IFNAR1 levels (p = 0.039) and higher IFNAR2 levels (p = 0.035) than non-responders just after IFNß stimulation. A cluster analysis showed that levels of IFNAR1, IFNAR2 and pSTAT1-2 in monocytes grouped 13 out of 19 responder patients with a similar expression pattern, showing an association of this pattern with the phenotype of good response to IFNß (p = 0.013). Our findings suggest that an activation pattern of the IFNß signaling pathway in monocytes could be associated with a clinical phenotype of good response to IFNß treatment and that a differential modulation of the IFNAR subunits in monocytes could be related with treatment effectiveness. PMID:28103257
NASA Astrophysics Data System (ADS)
Antonielli, Benedetta; Monserrat, Oriol; Bonini, Marco; Cenni, Nicola; Devanthéry, Núria; Righini, Gaia; Sani, Federico
2016-08-01
This work aims to explore the ongoing tectonic activity of structures in the outermost sector of the Northern Apennines, which represents the active leading edge of the thrust belt and is dominated by compressive deformation. We have applied the Persistent Scatterer Interferometry (PSI) technique to obtain new insights into the present-day deformation pattern of the frontal area of the Northern Apennine. PSI has proved to be effective in detecting surface deformation of wide regions involved in low tectonic movements. We used 34 Envisat images in descending geometry over the period of time between 2004 and 2010, performing about 300 interferometric pairs. The analysis of the velocity maps and of the PSI time-series has allowed to observe ground deformation over the sector of the Po Plain between Piacenza and Reggio Emilia. The time-series of permanent GPS stations located in the study area, validated the results of the PSI technique, showing a good correlation with the PS time-series. The PS analysis reveals the occurrence of a well-known subsidence area on the rear of the Ferrara arc, mostly connected to the exploitation of water resources. In some instances, the PS velocity pattern reveals ground uplift (with mean velocities ranging from 1 to 2.8 mm yr-1) above active thrust-related anticlines of the Emilia and Ferrara folds, and part of the Pede-Apennine margin. We hypothesize a correlation between the observed uplift deformation pattern and the growth of the thrust-related anticlines. As the uplift pattern corresponds to known geological features, it can be used to constrain the seismo-tectonic setting, and a working hypothesis may involve that the active Emilia and Ferrara thrust folds would be characterized by interseismic periods possibly dominated by aseismic creep.
Hug, François; Bendahan, David; Le Fur, Yann; Cozzone, Patrick J; Grélot, Laurent
2004-07-01
Although a number of studies have been devoted to the analysis of the activity pattern of the muscles involved in pedaling in sedentary subjects and/or amateur cyclists, data on professional cyclists are scarce and the issue of inter-individual differences has never been addressed in detail. In the present series of experiments, we performed a non-invasive investigation using functional magnetic resonance imaging and surface electromyography to determine the pattern of activity of lower limb muscles during two different exhausting pedaling exercises in eight French professional cyclists. Each subject performed an incremental exercise during which electromyographic activity of eight lower limb muscles and respiratory variables were recorded. After a 3-h recovery period, transverse relaxation times (T2) were measured before and just after a standardized constant-load maximal exercise in order to quantify exercise-related T2 changes. The global EMG activity illustrated by the root mean square clearly showed a large inter-individual difference during the incremental exercise regardless of the investigated muscle (variation coefficient up to 81%). In addition, for most of the muscles investigated, the constant-load exercise induced T2 increases, which varied noticeably among the subjects. This high level of variation in the recruitment of lower limb muscles in professional cyclists during both incremental and constant-load exercises is surprising given the homogeneity related to maximal oxygen consumption and training volume. The high degree of expertise of these professional cyclists was not linked to the production of a common pattern of pedaling and our results provide an additional evidence that the nervous system has multiple ways of accomplishing a given motor task, as has been suggested previously by neural control theorists and experimentalists.
The neural dynamics of task context in free recall.
Polyn, Sean M; Kragel, James E; Morton, Neal W; McCluey, Joshua D; Cohen, Zachary D
2012-03-01
Multivariate pattern analysis (MVPA) is a powerful tool for relating theories of cognitive function to the neural dynamics observed while people engage in cognitive tasks. Here, we use the Context Maintenance and Retrieval model of free recall (CMR; Polyn et al., 2009a) to interpret variability in the strength of task-specific patterns of distributed neural activity as participants study and recall lists of words. The CMR model describes how temporal and source-related (here, encoding task) information combine in a contextual representation that is responsible for guiding memory search. Each studied word in the free-recall paradigm is associated with one of two encoding tasks (size and animacy) that have distinct neural representations during encoding. We find evidence for the context retrieval hypothesis central to the CMR model: Task-specific patterns of neural activity are reactivated during memory search, as the participant recalls an item previously associated with a particular task. Furthermore, we find that the fidelity of these task representations during study is related to task-shifting, the serial position of the studied item, and variability in the magnitude of the recency effect across participants. The CMR model suggests that these effects may be related to a central parameter of the model that controls the rate that an internal contextual representation integrates information from the surrounding environment. Copyright © 2011 Elsevier Ltd. All rights reserved.
Age-related sex differences in language lateralization: A magnetoencephalography study in children.
Yu, Vickie Y; MacDonald, Matt J; Oh, Anna; Hua, Gordon N; De Nil, Luc F; Pang, Elizabeth W
2014-09-01
It is well supported by behavioral and neuroimaging studies that typical language function is lateralized to the left hemisphere in the adult brain and this laterality is less well defined in children. The behavioral literature suggests there maybe be sex differences in language development, but this has not been examined systematically with neuroimaging. In this study, magnetoencephalography was used to investigate the spatiotemporal patterns of language lateralization as a function of age and sex. Eighty typically developing children (46 female, 34 male; 4-18 years) participated in an overt visual verb generation task. An analysis method called differential beamforming was used to analyze language-related changes in oscillatory activity referred to as low-gamma event-related desynchrony (ERD). The proportion of ERD over language areas relative to total ERD was calculated. We found different patterns of laterality between boys and girls. Boys showed left-hemisphere lateralization in the frontal and temporal language-related areas across age groups, whereas girls showed a more bilateral pattern, particularly in frontal language-related areas. Differences in patterns of ERD were most striking between boys and girls in the younger age groups, and these patterns became more similar with increasing age, specifically in the preteen years. Our findings show sex differences in language lateralization during childhood; however, these differences do not seem to persist into adulthood. We present possible explanations for these differences. We also discuss the implications of these findings for presurgical language mapping in children and highlight the importance of examining the question of sex-related language differences across development.
Grotegerd, Dominik; Stuhrmann, Anja; Kugel, Harald; Schmidt, Simone; Redlich, Ronny; Zwanzger, Peter; Rauch, Astrid Veronika; Heindel, Walter; Zwitserlood, Pienie; Arolt, Volker; Suslow, Thomas; Dannlowski, Udo
2014-07-01
Bipolar disorder and Major depressive disorder are difficult to differentiate during depressive episodes, motivating research for differentiating neurobiological markers. Dysfunctional amygdala responsiveness during emotion processing has been implicated in both disorders, but the important rapid and automatic stages of emotion processing in the amygdala have so far never been investigated in bipolar patients. fMRI data of 22 bipolar depressed patients (BD), 22 matched unipolar depressed patients (MDD), and 22 healthy controls (HC) were obtained during processing of subliminal sad, happy and neutral faces. Amygdala responsiveness was investigated using standard univariate analyses as well as pattern-recognition techniques to differentiate the two clinical groups. Furthermore, medication effects on amygdala responsiveness were explored. All subjects were unaware of the emotional faces. Univariate analysis revealed a significant group × emotion interaction within the left amygdala. Amygdala responsiveness to sad>neutral faces was increased in MDD relative to BD. In contrast, responsiveness to happy>neutral faces showed the opposite pattern, with higher amygdala activity in BD than in MDD. Most of the activation patterns in both clinical groups differed significantly from activation patterns of HC--and therefore represent abnormalities. Furthermore, pattern classification on amygdala activation to sad>happy faces yielded almost 80% accuracy differentiating MDD and BD patients. Medication had no significant effect on these findings. Distinct amygdala excitability during automatic stages of the processing of emotional faces may reflect differential pathophysiological processes in BD versus MDD depression, potentially representing diagnosis-specific neural markers mostly unaffected by current psychotropic medication. Copyright © 2013 Wiley Periodicals, Inc.
Weekly patterns, diet quality and energy balance.
McCarthy, Sinéad
2014-07-01
Human behaviour is made up of many repeated patterns and habitual behaviours. Our day to day lives are punctuated by work, education, domestic chores, sleep and food. Changes in daily patterns such as not working in paid employment or attending school on the weekend contribute significantly to changes in dietary patterns of food consumption, patterns of physical activity and ultimately energy balance. The aim of this paper is to adopt a life-course perspective and explore the changes in dietary quality and physical activity patterns across the week from young children to elderly adults with a focus on Western cultures. Research literature indicates that the dietary quality is somewhat poorer on the weekends, characterised by higher fat intakes, higher alcohol intakes and consequently higher energy intakes. This increase in energy intake is not necessarily offset by an increase in activity, rather an increase in sedentary behaviours. Some research has observed an increase of more than 100 cal per day over the weekend in American adults. Over the course of one year, this can result in a significant increase in body mass. Some of the interventions in tackling obesity and diet related behaviours must focus on the changes in the weekend behaviour of consumers in terms of both food and activity. These efforts should also focus on increasing consumer awareness of the long term consequences of the short lived weekend excess as well as putting in place practical measures and interventions that are evidence based and targeted to consumer needs. Copyright © 2014 Elsevier Inc. All rights reserved.
Marques, Elisa A; Pizarro, Andreia N; Figueiredo, Pedro; Mota, Jorge; Santos, Maria P
2013-06-01
To analyze how modifiable health-related variables are clustered and associated with children's participation in play, active travel and structured exercise and sport among boys and girls. Data were collected from 9 middle-schools in Porto (Portugal) area. A total of 636 children in the 6th grade (340 girls and 296 boys) with a mean age of 11.64 years old participated in the study. Cluster analyses were used to identify patterns of lifestyle and healthy/unhealthy behaviors. Multinomial logistic regression analysis was used to estimate associations between cluster allocation, sedentary time and participation in three different physical activity (PA) contexts: play, active travel, and structured exercise/sport. Four distinct clusters were identified based on four lifestyle risk factors. The most disadvantaged cluster was characterized by high body mass index, low high-density lipoprotein cholesterol and cardiorespiratory fitness and a moderate level of moderate to vigorous PA. Everyday outdoor play (OR=1.85, 95%CI 0.318-0.915) and structured exercise/sport (OR=1.85, 95%CI 0.291-0.990) were associated with healthier lifestyle patterns. There were no significant associations between health patterns and sedentary time or travel mode. Outdoor play and sport/exercise participation seem more important than active travel from school in influencing children's healthy cluster profiles. Copyright © 2013 Elsevier Inc. All rights reserved.
Zhang, Jingming; Lanuza, Guillermo M; Britz, Olivier; Wang, Zhi; Siembab, Valerie C; Zhang, Ying; Velasquez, Tomoko; Alvarez, Francisco J; Frank, Eric; Goulding, Martyn
2014-04-02
Reciprocal activation of flexor and extensor muscles constitutes the fundamental mechanism that tetrapod vertebrates use for locomotion and limb-driven reflex behaviors. This aspect of motor coordination is controlled by inhibitory neurons in the spinal cord; however, the identity of the spinal interneurons that serve this function is not known. Here, we show that the production of an alternating flexor-extensor motor rhythm depends on the composite activities of two classes of ventrally located inhibitory neurons, V1 and V2b interneurons (INs). Abrogating V1 and V2b IN-derived neurotransmission in the isolated spinal cord results in a synchronous pattern of L2 flexor-related and L5 extensor-related locomotor activity. Mice lacking V1 and V2b inhibition are unable to articulate their limb joints and display marked deficits in limb-driven reflex movements. Taken together, these findings identify V1- and V2b-derived neurons as the core interneuronal components of the limb central pattern generator (CPG) that coordinate flexor-extensor motor activity. Copyright © 2014 Elsevier Inc. All rights reserved.
Sleep patterns and sleep-related complaints of Brazilian interstate bus drivers.
Mello, M T; Santana, M G; Souza, L M; Oliveira, P C; Ventura, M L; Stampi, C; Tufik, S
2000-01-01
Sleep-related complaints have become a highlight for physicians as well as public health administrators. Studies of sleep patterns and sleep-related complaints of shift workers have been useful in minimizing reduction in the quality of life due to the warping of the sleep-wake cycle. The objective of the present study was to assess patterns of sleep, sleep-related complaints as well as physical activity and scoring rates for depression and anxiety in interstate bus drivers. Data were obtained with a sleep questionnaire, with the Beck inventory for depression, and the State-Trait Anxiety Inventory (STAI). A total of 400 interstate bus drivers from the northern, southern, central-western and south-eastern regions of Brazil were interviewed. Sixty percent of the subjects interviewed presented at least one sleep-related complaint, 16% admitted to have dozed at the wheel while on duty, and 41% stated that they exercised on a regular basis. Other sleep disturbance complaints reported were: sleep latency 29'17"; physical fatigue, 59.8%; mental fatigue, 45.4%; sleepiness, 25.8%; irritability, 20.6%; insomnia, 37.5%, respiratory disturbances, 19. 25% and snoring, 20.75%. Scores for anxiety and depression were not in the pathological range. The present data reinforce the view that bus drivers are generally discontent with shift work and its effects on sleep. Consequently, it is very important to establish an appropriate work schedule for drivers, besides implementing photo-therapy and physical activities in order to minimize sleepiness when driving.
Monitoring of bread cooling by statistical analysis of laser speckle patterns
NASA Astrophysics Data System (ADS)
Lyubenova, Tanya; Stoykova, Elena; Nacheva, Elena; Ivanov, Branimir; Panchev, Ivan; Sainov, Ventseslav
2013-03-01
The phenomenon of laser speckle can be used for detection and visualization of physical or biological activity in various objects (e.g. fruits, seeds, coatings) through statistical description of speckle dynamics. The paper presents the results of non-destructive monitoring of bread cooling by co-occurrence matrix and temporal structure function analysis of speckle patterns which have been recorded continuously within a few days. In total, 72960 and 39680 images were recorded and processed for two similar bread samples respectively. The experiments proved the expected steep decrease of activity related to the processes in the bread samples during the first several hours and revealed its oscillating character within the next few days. Characterization of activity over the bread sample surface was also obtained.
A circular model for song motor control in Serinus canaria
Alonso, Rodrigo G.; Trevisan, Marcos A.; Amador, Ana; Goller, Franz; Mindlin, Gabriel B.
2015-01-01
Song production in songbirds is controlled by a network of nuclei distributed across several brain regions, which drives respiratory and vocal motor systems to generate sound. We built a model for birdsong production, whose variables are the average activities of different neural populations within these nuclei of the song system. We focus on the predictions of respiratory patterns of song, because these can be easily measured and therefore provide a validation for the model. We test the hypothesis that it is possible to construct a model in which (1) the activity of an expiratory related (ER) neural population fits the observed pressure patterns used by canaries during singing, and (2) a higher forebrain neural population, HVC, is sparsely active, simultaneously with significant motor instances of the pressure patterns. We show that in order to achieve these two requirements, the ER neural population needs to receive two inputs: a direct one, and its copy after being processed by other areas of the song system. The model is capable of reproducing the measured respiratory patterns and makes specific predictions on the timing of HVC activity during their production. These results suggest that vocal production is controlled by a circular network rather than by a simple top-down architecture. PMID:25904860
Jokeit, H; Makeig, S
1994-01-01
Fast- and slow-reacting subjects exhibit different patterns of gamma-band electroencephalogram (EEG) activity when responding as quickly as possible to auditory stimuli. This result appears to confirm long-standing speculations of Wundt that fast- and slow-reacting subjects produce speeded reactions in different ways and demonstrates that analysis of event-related changes in the amplitude of EEG activity recorded from the human scalp can reveal information about event-related brain processes unavailable using event-related potential measures. Time-varying spectral power in a selected (35- to 43-Hz) gamma frequency band was averaged across trials in two experimental conditions: passive listening and speeded reacting to binaural clicks, forming 40-Hz event-related spectral responses. Factor analysis of between-subject event-related spectral response differences split subjects into two near-equal groups composed of faster- and slower-reacting subjects. In faster-reacting subjects, 40-Hz power peaked near 200 ms and 400 ms poststimulus in the react condition, whereas in slower-reacting subjects, 40-Hz power just before stimulus delivery was larger in the react condition. These group differences were preserved in separate averages of relatively long and short reaction-time epochs for each group. gamma-band (20-60 Hz)-filtered event-related potential response averages did not differ between the two groups or conditions. Because of this and because gamma-band power in the auditory event-related potential is small compared with the EEG, the observed event-related spectral response features must represent gamma-band EEG activity reliably induced by, but not phase-locked to, experimental stimuli or events. PMID:8022783
Co-activation patterns in resting-state fMRI signals.
Liu, Xiao; Zhang, Nanyin; Chang, Catie; Duyn, Jeff H
2018-02-08
The brain is a complex system that integrates and processes information across multiple time scales by dynamically coordinating activities over brain regions and circuits. Correlations in resting-state functional magnetic resonance imaging (rsfMRI) signals have been widely used to infer functional connectivity of the brain, providing a metric of functional associations that reflects a temporal average over an entire scan (typically several minutes or longer). Not until recently was the study of dynamic brain interactions at much shorter time scales (seconds to minutes) considered for inference of functional connectivity. One method proposed for this objective seeks to identify and extract recurring co-activation patterns (CAPs) that represent instantaneous brain configurations at single time points. Here, we review the development and recent advancement of CAP methodology and other closely related approaches, as well as their applications and associated findings. We also discuss the potential neural origins and behavioral relevance of CAPs, along with methodological issues and future research directions in the analysis of fMRI co-activation patterns. Copyright © 2018 Elsevier Inc. All rights reserved.
Qualitatively different coding of symbolic and nonsymbolic numbers in the human brain.
Lyons, Ian M; Ansari, Daniel; Beilock, Sian L
2015-02-01
Are symbolic and nonsymbolic numbers coded differently in the brain? Neuronal data indicate that overlap in numerical tuning curves is a hallmark of the approximate, analogue nature of nonsymbolic number representation. Consequently, patterns of fMRI activity should be more correlated when the representational overlap between two numbers is relatively high. In bilateral intraparietal sulci (IPS), for nonsymbolic numbers, the pattern of voxelwise correlations between pairs of numbers mirrored the amount of overlap in their tuning curves under the assumption of approximate, analogue coding. In contrast, symbolic numbers showed a flat field of modest correlations more consistent with discrete, categorical representation (no systematic overlap between numbers). Directly correlating activity patterns for a given number across formats (e.g., the numeral "6" with six dots) showed no evidence of shared symbolic and nonsymbolic number-specific representations. Overall (univariate) activity in bilateral IPS was well fit by the log of the number being processed for both nonsymbolic and symbolic numbers. IPS activity is thus sensitive to numerosity regardless of format; however, the nature in which symbolic and nonsymbolic numbers are encoded is fundamentally different. © 2014 Wiley Periodicals, Inc.
Rosa, Mariana; Prado, Carolina; Chocobar-Ponce, Silvana; Pagano, Eduardo; Prado, Fernando
2017-09-01
Effects of seasonality and increasing Cr(VI) concentrations on leaf starch-sucrose partitioning, sucrose- and starch-related enzyme activities, and carbon allocation toward leaf development were analyzed in fronds (floating leaves) of the floating fern Salvinia minima. Carbohydrates and enzyme activities of Cr-exposed fronds showed different patterns in winter and summer. Total soluble sugars, starch, glucose and fructose increased in winter fronds, while sucrose was higher in summer ones. Starch and soluble carbohydrates, except glucose, increased under increasing Cr(VI) concentrations in winter fronds, while in summer ones only sucrose increased under Cr(VI) treatment. In summer fronds starch, total soluble sugars, fructose and glucose practically stayed without changes in all assayed Cr(VI) concentrations. Enzyme activities related to starch and sucrose metabolisms (e.g. ADPGase, SPS, SS and AI) were higher in winter fronds than in summer ones. Total amylase and cFBPase activities were higher in summer fronds. Cr(VI) treatment increased enzyme activities, except ADPGase, in both winter and summer fronds but no clear pattern changes were observed. Data of this study show clearly that carbohydrate metabolism is differently perturbed by both seasonality and Cr(VI) treatment in summer and winter fronds, which affects leaf starch-sucrose partitioning and specific leaf area (SLA) in terms of carbon investment. Copyright © 2017 Elsevier Masson SAS. All rights reserved.
Executive-affective connectivity in smokers viewing anti-smoking images: an fMRI study.
Dinh-Williams, Laurence; Mendrek, Adrianna; Dumais, Alexandre; Bourque, Josiane; Potvin, Stéphane
2014-12-30
Despite knowledge of the harmful consequences of smoking on health, tobacco users continue to smoke. Neuroimaging studies have begun to provide insight into the mechanisms underlying this response. Regions involved in executive control and affective processing/persuasion are activated when viewing the negative value of smoking, but these systems can interact in ways that promote or hinder its impact on behavior. The goal of this functional magnetic resonance imaging (fMRI) study was to examine the dynamics between these systems during the processing of images designed to elicit a negative emotional response regarding tobacco smoking in a group of current smokers. Thirty chronic smokers passively viewed aversive smoking-related, aversive nonsmoking-related and neutral images presented in a block design while being scanned. Functional connectivity analyses showed that the left inferior frontal gyrus (IFG) is negatively associated to activity in medial frontal, cingulate, limbic, subcortical and parietal regions in chronic smokers during the processing of aversive smoking-related material, a pattern that was significantly greater when stimuli were drug-related compared with when they were nondrug-related. Our results suggest that individuals with tobacco dependence present different patterns of functional connectivity depending on whether the aversive stimuli are smoking- or nonsmoking-related. Activity in the left inferior frontal gyrus may act to down-regulate corresponding activity in regions key to an affective and persuasive response during the processing of anti-smoking material. This mechanism may reduce the extent to which "feeling bad" brings about a change in behavior. Copyright © 2014 Elsevier Ireland Ltd. All rights reserved.
Distinct neural patterns enable grasp types decoding in monkey dorsal premotor cortex
NASA Astrophysics Data System (ADS)
Hao, Yaoyao; Zhang, Qiaosheng; Controzzi, Marco; Cipriani, Christian; Li, Yue; Li, Juncheng; Zhang, Shaomin; Wang, Yiwen; Chen, Weidong; Chiara Carrozza, Maria; Zheng, Xiaoxiang
2014-12-01
Objective. Recent studies have shown that dorsal premotor cortex (PMd), a cortical area in the dorsomedial grasp pathway, is involved in grasp movements. However, the neural ensemble firing property of PMd during grasp movements and the extent to which it can be used for grasp decoding are still unclear. Approach. To address these issues, we used multielectrode arrays to record both spike and local field potential (LFP) signals in PMd in macaque monkeys performing reaching and grasping of one of four differently shaped objects. Main results. Single and population neuronal activity showed distinct patterns during execution of different grip types. Cluster analysis of neural ensemble signals indicated that the grasp related patterns emerged soon (200-300 ms) after the go cue signal, and faded away during the hold period. The timing and duration of the patterns varied depending on the behaviors of individual monkey. Application of support vector machine model to stable activity patterns revealed classification accuracies of 94% and 89% for each of the two monkeys, indicating a robust, decodable grasp pattern encoded in the PMd. Grasp decoding using LFPs, especially the high-frequency bands, also produced high decoding accuracies. Significance. This study is the first to specify the neuronal population encoding of grasp during the time course of grasp. We demonstrate high grasp decoding performance in PMd. These findings, combined with previous evidence for reach related modulation studies, suggest that PMd may play an important role in generation and maintenance of grasp action and may be a suitable locus for brain-machine interface applications.
Cho, Yong Won; Song, Hui-Jin; Lee, Jae Jun; Lee, Joo Hwa; Lee, Hui Joong; Yi, Sang Doe; Chang, Hyuk Won; Berl, Madison M; Gaillard, William D; Chang, Yongmin
2012-03-01
Older adults perform much like younger adults on language. This similar level of performance, however, may come about through different underlying brain processes. In the present study, we evaluated age-related differences in the brain areas outside the typical language areas among adults using a category decision task. Our results showed that similar activation patterns were found in classical language processing areas across the three age groups although regional lateralization indices in Broca's and Wernicke's areas decreased with age. The greatest differences, however, among the three groups were found primarily in the brain areas not associated with core language functioning including the hippocampus, middle frontal gyrus, ventromedial frontal cortex, medial superior parietal cortex and posterior cingulate cortex. Therefore, the non-classical language areas may exhibit an age-related difference between three age groups while the subjects show a similar activation pattern in the core, primary language processing during a semantic decision task. Copyright © 2012 Elsevier Inc. All rights reserved.
Cortex-wide BOLD fMRI activity reflects locally-recorded slow oscillation-associated calcium waves.
Schwalm, Miriam; Schmid, Florian; Wachsmuth, Lydia; Backhaus, Hendrik; Kronfeld, Andrea; Aedo Jury, Felipe; Prouvot, Pierre-Hugues; Fois, Consuelo; Albers, Franziska; van Alst, Timo; Faber, Cornelius; Stroh, Albrecht
2017-09-15
Spontaneous slow oscillation-associated slow wave activity represents an internally generated state which is characterized by alternations of network quiescence and stereotypical episodes of neuronal activity - slow wave events. However, it remains unclear which macroscopic signal is related to these active periods of the slow wave rhythm. We used optic fiber-based calcium recordings of local neural populations in cortex and thalamus to detect neurophysiologically defined slow calcium waves in isoflurane anesthetized rats. The individual slow wave events were used for an event-related analysis of simultaneously acquired whole-brain BOLD fMRI. We identified BOLD responses directly related to onsets of slow calcium waves, revealing a cortex-wide BOLD correlate: the entire cortex was engaged in this specific type of slow wave activity. These findings demonstrate a direct relation of defined neurophysiological events to a specific BOLD activity pattern and were confirmed for ongoing slow wave activity by independent component and seed-based analyses.
Cortex-wide BOLD fMRI activity reflects locally-recorded slow oscillation-associated calcium waves
Backhaus, Hendrik; Kronfeld, Andrea; Aedo Jury, Felipe; Prouvot, Pierre-Hugues; Fois, Consuelo; Albers, Franziska; van Alst, Timo
2017-01-01
Spontaneous slow oscillation-associated slow wave activity represents an internally generated state which is characterized by alternations of network quiescence and stereotypical episodes of neuronal activity - slow wave events. However, it remains unclear which macroscopic signal is related to these active periods of the slow wave rhythm. We used optic fiber-based calcium recordings of local neural populations in cortex and thalamus to detect neurophysiologically defined slow calcium waves in isoflurane anesthetized rats. The individual slow wave events were used for an event-related analysis of simultaneously acquired whole-brain BOLD fMRI. We identified BOLD responses directly related to onsets of slow calcium waves, revealing a cortex-wide BOLD correlate: the entire cortex was engaged in this specific type of slow wave activity. These findings demonstrate a direct relation of defined neurophysiological events to a specific BOLD activity pattern and were confirmed for ongoing slow wave activity by independent component and seed-based analyses. PMID:28914607
Pérez-Sayas, Consuelo; Aguilar-Fenollosa, Ernestina; Hurtado, Mónica A; Jaques, Josep A; Pina, Tatiana
2017-06-16
Predatory mites of the Phytoseiidae family are considered one of the most important groups of natural enemies used in biological control. The behavioral patterns of arthropods can differ greatly daily and seasonally; however, there is a lack of literature related to Phytoseiidae diel and seasonal predation patterns. The predatory activity of three phytoseiid species (two Tetranychidae-specialists, Phytoseiulus persimilis and Neoseiulus californicus, and one omnivore, Euseius stipulatus) that occur naturally in Spanish citrus orchards was observed under laboratory conditions in winter and summer. The temperature and photoperiod of the climatic chamber where the mites were reared did not change during the experiment. Our study demonstrates that phytoseiids can exhibit diel and seasonal predatory patterns when feeding on Tetranychus urticae (Acari: Tetranychidae). Neoseiulus californicus was revealed to be a nocturnal predator in summer but diurnal in winter. In contrast, P. persimilis activity was maximal during the daytime, and E. stipulatus showed no clear daily predation patterns. The predatory patterns described in this study should be taken into account when designing laboratory studies and also in field samplings, especially when applying molecular techniques to unveil trophic relationships. © 2017 Institute of Zoology, Chinese Academy of Sciences.
Casarrubea, M; Faulisi, F; Caternicchia, F; Santangelo, A; Di Giovanni, G; Benigno, A; Magnusson, M S; Crescimanno, G
2016-08-01
We have analyzed the temporal patterns of behaviour of male rats of the Wistar and DA/Han strains on the central platform of the elevated plus maze. The ethogram encompassed 10 behavioural elements. Durations, frequencies and latencies showed quantitative differences as to walking and sniffing activities. Wistar rats displayed significantly lower latency and significantly higher durations and frequencies of walking activities. DA/Han rats showed a significant increase of sniffing duration. In addition, DA/Han rats showed a significantly higher amount of time spent in the central platform. Multivariate T-pattern analysis revealed differences in the temporal organization of behaviour of the two rat strains. DA/Han rats showed (a) higher behavioural complexity and variability and (b) a significantly higher mean number of T-patterns than Wistar rats. Taken together, T-pattern analysis of behaviour in the centre of the elevated plus maze can noticeably improve the detection of subtle features of anxiety related behaviour. We suggest that T-pattern analysis could be used as sensitive tool to test the action of anxiolytic and anxiogenic manipulations. Copyright © 2015 Elsevier B.V. All rights reserved.
PFC Activity Pattern During Verbal WM Task in Healthy Male and Female Subjects: A NIRS Study.
Gao, Chenyang; Zhang, Lei; Luo, Dewu; Liu, Dan; Gong, Hui
2016-01-01
Near-infrared spectroscopy (NIRS), as a non-invasive optical imaging method, has been widely used in psychology research. Working memory (WM) is an extensively researched psychological concept related to the temporary storage and processing of information. Many neuropsychological studies demonstrate that several brain areas of prefrontal cortex (PFC) are engaged during verbal WM tasks. The gender-based differences in WM remains under dispute. To better understand the active module and gender differences in PFC activity patterns during verbal WM tasks, we investigated the blood oxygenation changes of the PFC in 15 healthy subjects using a homemade multichannel continuous-wave NIRS instrument, while performing a verbal n-back task. We employed traditional activation and novel connectivity analyses simultaneously. Males had a higher level of oxygenation activity and connectivity in PFC than females. Only the results of females revealed a leftward lateralization in the 2-back task.
What can be found in scalp EEG spectrum beyond common frequency bands. EEG-fMRI study
NASA Astrophysics Data System (ADS)
Marecek, R.; Lamos, M.; Mikl, M.; Barton, M.; Fajkus, J.; I, Rektor; Brazdil, M.
2016-08-01
Objective. The scalp EEG spectrum is a frequently used marker of neural activity. Commonly, the preprocessing of EEG utilizes constraints, e.g. dealing with a predefined subset of electrodes or a predefined frequency band of interest. Such treatment of the EEG spectrum neglects the fact that particular neural processes may be reflected in several frequency bands and/or several electrodes concurrently, and can overlook the complexity of the structure of the EEG spectrum. Approach. We showed that the EEG spectrum structure can be described by parallel factor analysis (PARAFAC), a method which blindly uncovers the spatial-temporal-spectral patterns of EEG. We used an algorithm based on variational Bayesian statistics to reveal nine patterns from the EEG of 38 healthy subjects, acquired during a semantic decision task. The patterns reflected neural activity synchronized across theta, alpha, beta and gamma bands and spread over many electrodes, as well as various EEG artifacts. Main results. Specifically, one of the patterns showed significant correlation with the stimuli timing. The correlation was higher when compared to commonly used models of neural activity (power fluctuations in distinct frequency band averaged across a subset of electrodes) and we found significantly correlated hemodynamic fluctuations in simultaneously acquired fMRI data in regions known to be involved in speech processing. Further, we show that the pattern also occurs in EEG data which were acquired outside the MR machine. Two other patterns reflected brain rhythms linked to the attentional and basal ganglia large scale networks. The other patterns were related to various EEG artifacts. Significance. These results show that PARAFAC blindly identifies neural activity in the EEG spectrum and that it naturally handles the correlations among frequency bands and electrodes. We conclude that PARAFAC seems to be a powerful tool for analysis of the EEG spectrum and might bring novel insight to the relationships between EEG activity and brain hemodynamics.
Yúfera, Manuel; Moyano, Francisco J; Astola, Antonio; Pousão-Ferreira, Pedro; Martínez-Rodríguez, Gonzalo
2012-01-01
Two different modes for regulation of stomach acid secretion have been described in vertebrates. Some species exhibit a continuous acid secretion maintaining a low gastric pH during fasting. Others, as some teleosts, maintain a neutral gastric pH during fasting while the hydrochloric acid is released only after the ingestion of a meal. Those different patterns seem to be closely related to specific feeding habits. However, our recent observations suggest that this acidification pattern could be modified by changes in daily feeding frequency and time schedule. The aim of this study was to advance in understanding the regulation mechanisms of stomach digestion and pattern of acid secretion in teleost fish. We have examined the postprandial pattern of gastric pH, pepsin activity, and mRNA expression for pepsinogen and proton pump in white seabream juveniles maintained under a light/dark 12/12 hours cycle and receiving only one morning meal. The pepsin activity was analyzed according to the standard protocol buffering at pH 2 and using the actual pH measured in the stomach. The results show how the enzyme precursor is permanently available while the hydrochloric acid, which activates the zymogen fraction, is secreted just after the ingestion of food. Results also reveal that analytical protocol at pH 2 notably overestimates true pepsin activity in fish stomach. The expression of the mRNA encoding pepsinogen and proton pump exhibited almost parallel patterns, with notable increases during the darkness period and sharp decreases just before the morning meal. These results indicate that white seabream uses the resting hours for recovering the mRNA stock that will be quickly used during the feeding process. Our data clearly shows that both daily illumination pattern and feeding time are involved at different level in the regulation of the secretion of digestive juices.
Visual pattern recognition based on spatio-temporal patterns of retinal ganglion cells’ activities
Jing, Wei; Liu, Wen-Zhong; Gong, Xin-Wei; Gong, Hai-Qing
2010-01-01
Neural information is processed based on integrated activities of relevant neurons. Concerted population activity is one of the important ways for retinal ganglion cells to efficiently organize and process visual information. In the present study, the spike activities of bullfrog retinal ganglion cells in response to three different visual patterns (checker-board, vertical gratings and horizontal gratings) were recorded using multi-electrode arrays. A measurement of subsequence distribution discrepancy (MSDD) was applied to identify the spatio-temporal patterns of retinal ganglion cells’ activities in response to different stimulation patterns. The results show that the population activity patterns were different in response to different stimulation patterns, such difference in activity pattern was consistently detectable even when visual adaptation occurred during repeated experimental trials. Therefore, the stimulus pattern can be reliably discriminated according to the spatio-temporal pattern of the neuronal activities calculated using the MSDD algorithm. PMID:21886670
Altered prefrontal brain activity in persons at risk for Alzheimer's disease: an fMRI study.
Elgh, Eva; Larsson, Anne; Eriksson, Sture; Nyberg, Lars
2003-06-01
Early diagnosis of Alzheimer's disease (AD) is critical for adequate treatment and care. Recently it has been shown that functional magnetic resonance imaging (fMRI) can be important in preclinical detection of AD. The purpose of this study was to examine possible differences in memory-related brain activation between persons with high versus low risk for AD. This was achieved by combining a validated neurocognitive screening battery (the 7-minutes test) with memory assessment and fMRI. One hundred two healthy community-living persons with subjective memory complaints were recruited through advertisement and tested with the 7-minutes test. Based on their test performance they were classified as having either high (n = 8) or low risk (n = 94) for AD. Six high-risk individuals and six age-, sex-, and education-matched low-risk individuals were investigated with fMRI while engaged in episodic memory tasks. The high-risk individuals performed worse than low-risk individuals on tests of episodic memory. Patterns of brain activity during episodic encoding and retrieval showed significant group differences (p < .05 corrected). During both encoding and retrieval, the low-risk persons showed increased activity relative to a baseline condition in prefrontal brain regions that previously have been implicated in episodic memory. By contrast, the high-risk persons did not significantly activate any prefrontal regions, but instead showed increased activity in visual occipito-temporal regions. Patterns of prefrontal brain activity related to episodic memory differ between persons with high versus low risk for AD, and lowered prefrontal activity may predict subsequent disease.
Kafkas, Alexandros; Montaldi, Daniela
2012-11-01
Two experiments explored eye measures (fixations and pupil response patterns) and brain responses (BOLD) accompanying the recognition of visual object stimuli based on familiarity and recollection. In both experiments, the use of a modified remember/know procedure led to high confidence and matched accuracy levels characterising strong familiarity (F3) and recollection (R) responses. In Experiment 1, visual scanning behaviour at retrieval distinguished familiarity-based from recollection-based recognition. Recollection, relative to strength-matched familiarity, involved significantly larger pupil dilations and more dispersed fixation patterns. In Experiment 2, the hippocampus was selectively activated for recollected stimuli, while no evidence of activation was observed in the hippocampus for strong familiarity of matched accuracy. Recollection also activated the parahippocampal cortex (PHC), while the adjacent perirhinal cortex (PRC) was actively engaged in response to strong familiarity (than to recollection). Activity in prefrontal and parietal areas differentiated familiarity and recollection in both the extent and the magnitude of activity they exhibited, while the dorsomedial thalamus showed selective familiarity-related activity, and the ventrolateral and anterior thalamus selective recollection-related activity. These findings are consistent with the view that the hippocampus and PRC play contrasting roles in supporting recollection and familiarity and that these differences are not a result of differences in memory strength. Overall, the combined pupil dilation, eye movement and fMRI data suggest the operation of recognition mechanisms drawing differentially on familiarity and recollection, whose neural bases are distinct within the MTL. Copyright © 2012 Elsevier Ltd. All rights reserved.
Can Spectro-Temporal Complexity Explain the Autistic Pattern of Performance on Auditory Tasks?
ERIC Educational Resources Information Center
Samson, Fabienne; Mottron, Laurent; Jemel, Boutheina; Belin, Pascal; Ciocca, Valter
2006-01-01
To test the hypothesis that level of neural complexity explain the relative level of performance and brain activity in autistic individuals, available behavioural, ERP and imaging findings related to the perception of increasingly complex auditory material under various processing tasks in autism were reviewed. Tasks involving simple material…
Parent-Adolescent Involvement: The Relative Influence of Parent Gender and Residence
ERIC Educational Resources Information Center
Hawkins, Daniel N.; Amato, Paul R.; King, Valarie
2006-01-01
The 1995 wave of the Add Health study is used to investigate the relative influence of parent gender and residence on patterns of parental involvement with adolescents. Adolescent reports (N=17,330) of shared activities, shared communication, and relationship quality with both biological parents are utilized. A multidimensional scaling analysis…
ERIC Educational Resources Information Center
Inan, Fethi A.; Lowther, Deborah L.; Ross, Steven M.; Strahl, Dan
2010-01-01
The purpose of this study was to identify instructional strategies used by teachers to support technology integration. In addition, relations between types of computer applications and teachers' classroom practices were examined. Data were direct observation results from 143 integration lessons implemented in schools receiving federal technology…
Tout, K; de Haan, M; Campbell, E K; Gunnar, M R
1998-10-01
The relations between social behavior and daily patterns of a stress-sensitive hormone production were examined in preschool children (N = 75) attending center-based child care. Three behavioral dimensions, shy/anxious/internalizing, angry/aggressive/externalizing, and social competence, were assessed by teacher report and classroom observation, and their relations with 2 measures of cortisol activity, median (or typical) levels and reactivity (quartile range score between second and third quartile values) were explored. Cortisol-behavior relations differed by gender: significant associations were found for boys but not for girls. Specifically, for boys externalizing behavior was positively associated with cortisol reactivity, while internalizing behavior was negatively associated with median cortisol. Time of day of cortisol measurement affected the results. Surprisingly, median cortisol levels rose from morning to afternoon, a pattern opposite to that of the typical circadian rhythm of cortisol. This rise in cortisol over the day was positively correlated with internalizing behavior for boys. The methodological and theoretical implications of these findings for the study of the development of hormone-behavior relations are discussed.
NASA Astrophysics Data System (ADS)
Holden, L.; Cas, R.; Fournier, N.; Ailleres, L.
2017-09-01
The Okataina Volcanic Centre (OVC) is one of two large active rhyolite centres in the modern Taupo Volcanic Zone (TVZ) in the North Island of New Zealand. It is located in a complex section of the Taupo rift, a tectonically active section of the TVZ. The most recent volcanic unrest at the OVC includes the 1315 CE Kaharoa and 1886 Tarawera eruptions. Current monitoring activity at the OVC includes the use of continuous GPS receivers (cGPS), lake levelling and seismographs. The ground deformation patterns preceding volcanic activity the OVC are poorly constrained and restricted to predictions from basic modelling and comparison to other volcanoes worldwide. A better understanding of the deformation patterns preceding renewed volcanic activity is essential to determine if observed deformation is related to volcanic, tectonic or hydrothermal processes. Such an understanding also means that the ability of the present day cGPS network to detect these deformation patterns can also be assessed. The research presented here uses the finite element (FE) modelling technique to investigate ground deformation patterns associated with magma accumulation and diking processes at the OVC in greater detail. A number of FE models are produced and tested using Pylith software and incorporate characteristics of the 1315 CE Kaharoa and 1886 Tarawera eruptions, summarised from the existing body of research literature. The influence of a simple ring fault structure at the OVC on the modelled deformation is evaluated. The ability of the present-day continuous GPS (cGPS) GeoNet monitoring network to detect or observe the modelled deformation is also considered. The results show the modelled horizontal and vertical displacement fields have a number of key features, which include prominent lobe based regions extending northwest and southeast of the OVC. The results also show that the ring fault structure increases the magnitude of the displacements inside the caldera, in particular in the vicinity of the southern margin. As a result, some of the cGPS stations in the vicinity of the OVC are more important for measuring deformation related to volcanic processes than others. The results have important implications for how any future observed deformation at the OVC is observed and interpreted.
Azeredo, Catarina Machado; Levy, Renata Bertazzi; Peres, Maria Fernanda Tourinho; Menezes, Paulo Rossi; Araya, Ricardo
2016-01-01
Objectives The aim of this study was to analyse the clustering of multiple health-related behaviours among adolescents and describe which socio-demographic characteristics are associated with these patterns. Design Cross-sectional study. Setting Brazilian schools assessed by the National Survey of School Health (PeNSE, 2012). Participants 104 109 Brazilian ninth-grade students from public and private schools (response rate=82.7%). Methods Exploratory and confirmatory factor analyses were performed to identify behaviour clustering and linear regression models were used to identify socio-demographic characteristics associated with each one of these behaviour patterns. Results We identified a good fit model with three behaviour patterns. The first was labelled ‘problem-behaviour’ and included aggressive behaviour, alcohol consumption, smoking, drug use and unsafe sex; the second was labelled ‘health-compromising diet and sedentary behaviours’ and included unhealthy food indicators and sedentary behaviour; and the third was labelled ‘health-promoting diet and physical activity’ and included healthy food indicators and physical activity. No differences in behaviour patterns were found between genders. The problem-behaviour pattern was associated with male gender, older age, more developed region (socially and economically) and public schools (compared with private). The ‘health-compromising diet and sedentary behaviours’ pattern was associated with female gender, older age, mothers with higher education level and more developed region. The ‘health-promoting diet and physical activity’ pattern was associated with male gender and mothers with higher education level. Conclusions Three health-related behaviour patterns were found among Brazilian adolescents. Interventions to decrease those negative patterns should take into account how these behaviours cluster together and the individuals most at risk. PMID:28186927
Maintenance of youth-like processing protects against false memory in later adulthood.
Fandakova, Yana; Lindenberger, Ulman; Shing, Yee Lee
2015-02-01
Normal cognitive aging compromises the ability to form and retrieve associations among features of a memory episode. One indicator of this age-related deficit is older adults' difficulty in detecting and correctly rejecting new associations of familiar items. Comparing 28 younger and 30 older adults on a continuous recognition task with word pairs, we found that older adults whose activation patterns deviate less from the average pattern of younger adults while detecting repaired associations show the following: (1) higher overall memory and fewer false recognitions; (2) stronger functional connectivity of prefrontal regions with middle temporal and parahippocampal gyrus; and (3) higher recall and strategic categorical clustering in an independently assessed free recall task. Deviations from the average young-adult network reflected underactivation of frontoparietal regions instead of overactivation of regions not activated by younger adults. We conclude that maintenance of youth-like task-relevant activation patterns is critical for preserving memory functions in later adulthood. Copyright © 2015 Elsevier Inc. All rights reserved.
Tracking the unconscious generation of free decisions using ultra-high field fMRI.
Bode, Stefan; He, Anna Hanxi; Soon, Chun Siong; Trampel, Robert; Turner, Robert; Haynes, John-Dylan
2011-01-01
Recently, we demonstrated using functional magnetic resonance imaging (fMRI) that the outcome of free decisions can be decoded from brain activity several seconds before reaching conscious awareness. Activity patterns in anterior frontopolar cortex (BA 10) were temporally the first to carry intention-related information and thus a candidate region for the unconscious generation of free decisions. In the present study, the original paradigm was replicated and multivariate pattern classification was applied to functional images of frontopolar cortex, acquired using ultra-high field fMRI at 7 Tesla. Here, we show that predictive activity patterns recorded before a decision was made became increasingly stable with increasing temporal proximity to the time point of the conscious decision. Furthermore, detailed questionnaires exploring subjects' thoughts before and during the decision confirmed that decisions were made spontaneously and subjects were unaware of the evolution of their decision outcomes. These results give further evidence that FPC stands at the top of the prefrontal executive hierarchy in the unconscious generation of free decisions.
Thermodynamics and signatures of criticality in a network of neurons.
Tkačik, Gašper; Mora, Thierry; Marre, Olivier; Amodei, Dario; Palmer, Stephanie E; Berry, Michael J; Bialek, William
2015-09-15
The activity of a neural network is defined by patterns of spiking and silence from the individual neurons. Because spikes are (relatively) sparse, patterns of activity with increasing numbers of spikes are less probable, but, with more spikes, the number of possible patterns increases. This tradeoff between probability and numerosity is mathematically equivalent to the relationship between entropy and energy in statistical physics. We construct this relationship for populations of up to N = 160 neurons in a small patch of the vertebrate retina, using a combination of direct and model-based analyses of experiments on the response of this network to naturalistic movies. We see signs of a thermodynamic limit, where the entropy per neuron approaches a smooth function of the energy per neuron as N increases. The form of this function corresponds to the distribution of activity being poised near an unusual kind of critical point. We suggest further tests of criticality, and give a brief discussion of its functional significance.
Dinkel, Philipp Johannes; Willmes, Klaus; Krinzinger, Helga; Konrad, Kerstin; Koten Jr, Jan Willem
2013-01-01
FMRI-studies are mostly based on a group study approach, either analyzing one group or comparing multiple groups, or on approaches that correlate brain activation with clinically relevant criteria or behavioral measures. In this study we investigate the potential of fMRI-techniques focusing on individual differences in brain activation within a test-retest reliability context. We employ a single-case analysis approach, which contrasts dyscalculic children with a control group of typically developing children. In a second step, a support-vector machine analysis and cluster analysis techniques served to investigate similarities in multivariate brain activation patterns. Children were confronted with a non-symbolic number comparison and a non-symbolic exact calculation task during fMRI acquisition. Conventional second level group comparison analysis only showed small differences around the angular gyrus bilaterally and the left parieto-occipital sulcus. Analyses based on single-case statistical procedures revealed that developmental dyscalculia is characterized by individual differences predominantly in visual processing areas. Dyscalculic children seemed to compensate for relative under-activation in the primary visual cortex through an upregulation in higher visual areas. However, overlap in deviant activation was low for the dyscalculic children, indicating that developmental dyscalculia is a disorder characterized by heterogeneous brain activation differences. Using support vector machine analysis and cluster analysis, we tried to group dyscalculic and typically developing children according to brain activation. Fronto-parietal systems seem to qualify for a distinction between the two groups. However, this was only effective when reliable brain activations of both tasks were employed simultaneously. Results suggest that deficits in number representation in the visual-parietal cortex get compensated for through finger related aspects of number representation in fronto-parietal cortex. We conclude that dyscalculic children show large individual differences in brain activation patterns. Nonetheless, the majority of dyscalculic children can be differentiated from controls employing brain activation patterns when appropriate methods are used. PMID:24349547
Dinkel, Philipp Johannes; Willmes, Klaus; Krinzinger, Helga; Konrad, Kerstin; Koten, Jan Willem
2013-01-01
FMRI-studies are mostly based on a group study approach, either analyzing one group or comparing multiple groups, or on approaches that correlate brain activation with clinically relevant criteria or behavioral measures. In this study we investigate the potential of fMRI-techniques focusing on individual differences in brain activation within a test-retest reliability context. We employ a single-case analysis approach, which contrasts dyscalculic children with a control group of typically developing children. In a second step, a support-vector machine analysis and cluster analysis techniques served to investigate similarities in multivariate brain activation patterns. Children were confronted with a non-symbolic number comparison and a non-symbolic exact calculation task during fMRI acquisition. Conventional second level group comparison analysis only showed small differences around the angular gyrus bilaterally and the left parieto-occipital sulcus. Analyses based on single-case statistical procedures revealed that developmental dyscalculia is characterized by individual differences predominantly in visual processing areas. Dyscalculic children seemed to compensate for relative under-activation in the primary visual cortex through an upregulation in higher visual areas. However, overlap in deviant activation was low for the dyscalculic children, indicating that developmental dyscalculia is a disorder characterized by heterogeneous brain activation differences. Using support vector machine analysis and cluster analysis, we tried to group dyscalculic and typically developing children according to brain activation. Fronto-parietal systems seem to qualify for a distinction between the two groups. However, this was only effective when reliable brain activations of both tasks were employed simultaneously. Results suggest that deficits in number representation in the visual-parietal cortex get compensated for through finger related aspects of number representation in fronto-parietal cortex. We conclude that dyscalculic children show large individual differences in brain activation patterns. Nonetheless, the majority of dyscalculic children can be differentiated from controls employing brain activation patterns when appropriate methods are used.
Cove, Michael V.; Gardner, Beth; Simons, Theodore R.; Kays, Roland; O'Connell, Allan F.
2017-01-01
Feral and free-ranging domestic cats (Felis catus) can have strong negative effects on small mammals and birds, particularly in island ecosystems. We deployed camera traps to study free-ranging cats in national wildlife refuges and state parks on Big Pine Key and Key Largo in the Florida Keys, USA, and used spatial capture–recapture models to estimate cat abundance, movement, and activities. We also used stable isotope analyses to examine the diet of cats captured on public lands. Top population models separated cats based on differences in movement and detection with three and two latent groups on Big Pine Key and Key Largo, respectively. We hypothesize that these latent groups represent feral, semi-feral, and indoor/outdoor house cats based on the estimated movement parameters of each group. Estimated cat densities and activity varied between the two islands, with relatively high densities (~4 cats/km2) exhibiting crepuscular diel patterns on Big Pine Key and lower densities (~1 cat/km2) exhibiting nocturnal diel patterns on Key Largo. These differences are most likely related to the higher proportion of house cats on Big Pine relative to Key Largo. Carbon and nitrogen isotope ratios from hair samples of free-ranging cats (n = 43) provided estimates of the proportion of wild and anthropogenic foods in cat diets. At the population level, cats on both islands consumed mostly anthropogenic foods (>80% of the diet), but eight individuals were effective predators of wildlife (>50% of the diet). We provide evidence that cat groups within a population move different distances, exhibit different activity patterns, and that individuals consume wildlife at different rates, which all have implications for managing this invasive predator.
Decoding-Accuracy-Based Sequential Dimensionality Reduction of Spatio-Temporal Neural Activities
NASA Astrophysics Data System (ADS)
Funamizu, Akihiro; Kanzaki, Ryohei; Takahashi, Hirokazu
Performance of a brain machine interface (BMI) critically depends on selection of input data because information embedded in the neural activities is highly redundant. In addition, properly selected input data with a reduced dimension leads to improvement of decoding generalization ability and decrease of computational efforts, both of which are significant advantages for the clinical applications. In the present paper, we propose an algorithm of sequential dimensionality reduction (SDR) that effectively extracts motor/sensory related spatio-temporal neural activities. The algorithm gradually reduces input data dimension by dropping neural data spatio-temporally so as not to undermine the decoding accuracy as far as possible. Support vector machine (SVM) was used as the decoder, and tone-induced neural activities in rat auditory cortices were decoded into the test tone frequencies. SDR reduced the input data dimension to a quarter and significantly improved the accuracy of decoding of novel data. Moreover, spatio-temporal neural activity patterns selected by SDR resulted in significantly higher accuracy than high spike rate patterns or conventionally used spatial patterns. These results suggest that the proposed algorithm can improve the generalization ability and decrease the computational effort of decoding.
Rodil, Iván F; Lucena-Moya, Paloma; Jokinen, Henri; Ollus, Victoria; Wennhage, Håkan; Villnäs, Anna; Norkko, Alf
2017-01-01
Metacommunity ecology recognizes the interplay between local and regional patterns in contributing to spatial variation in community structure. In aquatic systems, the relative importance of such patterns depends mainly on the potential connectivity of the specific system. Thus, connectivity is expected to increase in relation to the degree of water movement, and to depend on the specific traits of the study organism. We examined the role of environmental and spatial factors in structuring benthic communities from a highly connected shallow beach network using a metacommunity approach. Both factors contributed to a varying degree to the structure of the local communities suggesting that environmental filters and dispersal-related mechanisms played key roles in determining abundance patterns. We categorized benthic taxa according to their dispersal mode (passive vs. active) and habitat specialization (generalist vs. specialist) to understand the relative importance of environment and dispersal related processes for shallow beach metacommunities. Passive dispersers were predicted by a combination of environmental and spatial factors, whereas active dispersers were not spatially structured and responded only to local environmental factors. Generalists were predicted primarily by spatial factors, while specialists were only predicted by local environmental factors. The results suggest that the role of the spatial component in metacommunity organization is greater in open coastal waters, such as shallow beaches, compared to less-connected environmentally controlled aquatic systems. Our results also reveal a strong environmental role in structuring the benthic metacommunity of shallow beaches. Specifically, we highlight the sensitivity of shallow beach macrofauna to environmental factors related to eutrophication proxies.
Lucena-Moya, Paloma; Jokinen, Henri; Ollus, Victoria; Wennhage, Håkan; Villnäs, Anna; Norkko, Alf
2017-01-01
Metacommunity ecology recognizes the interplay between local and regional patterns in contributing to spatial variation in community structure. In aquatic systems, the relative importance of such patterns depends mainly on the potential connectivity of the specific system. Thus, connectivity is expected to increase in relation to the degree of water movement, and to depend on the specific traits of the study organism. We examined the role of environmental and spatial factors in structuring benthic communities from a highly connected shallow beach network using a metacommunity approach. Both factors contributed to a varying degree to the structure of the local communities suggesting that environmental filters and dispersal-related mechanisms played key roles in determining abundance patterns. We categorized benthic taxa according to their dispersal mode (passive vs. active) and habitat specialization (generalist vs. specialist) to understand the relative importance of environment and dispersal related processes for shallow beach metacommunities. Passive dispersers were predicted by a combination of environmental and spatial factors, whereas active dispersers were not spatially structured and responded only to local environmental factors. Generalists were predicted primarily by spatial factors, while specialists were only predicted by local environmental factors. The results suggest that the role of the spatial component in metacommunity organization is greater in open coastal waters, such as shallow beaches, compared to less-connected environmentally controlled aquatic systems. Our results also reveal a strong environmental role in structuring the benthic metacommunity of shallow beaches. Specifically, we highlight the sensitivity of shallow beach macrofauna to environmental factors related to eutrophication proxies. PMID:28196112
Bar-Kochva, Irit
2011-01-01
Orthographies range from shallow orthographies with transparent grapheme-phoneme relations, to deep orthographies, in which these relations are opaque. Two forms of script transcribe the Hebrew language: the shallow pointed script (with diacritics) and the deep unpointed script (without diacritics). This study was set out to examine whether the reading of these scripts evokes distinct brain activity. Preliminary results indicate distinct Event-related-potentials (ERPs). As an equivalent finding was absent when ERPs of non-orthographic stimuli with and without meaningless diacritics were compared, the results imply that print-specific aspects of processing account for the distinct activity elicited by the pointed and unpointed scripts.
Schütz, Marlies H.
2017-01-01
ABSTRACT Regional specifics reveal in differences in economic activity and structure, the institutional, socio-economic and cultural environment and not least in the capability of regions to create new knowledge and to generate innovations. Focusing on the regional level, this paper for three Australian territories (New South Wales, Victoria and Queensland) explores patterns of innovative activities in their private business sectors. Furthermore, these patterns are compared to specifics of each region's economic structure. We make use of input–output-based innovation flow networks, which are directed and weighted instead of binary. The value added of the proposed analysis is that we are able to trace a variety of different aspects related to the structure of innovative activities for each territory. It gets evident that mostly innovative activities in each territory are not strong in ‘niche’ branches but in fields of intense economic activity, signalising the high path-dependency of innovative activities in a specific geographical environment. PMID:29097849
Schütz, Marlies H
2017-07-03
Regional specifics reveal in differences in economic activity and structure, the institutional, socio-economic and cultural environment and not least in the capability of regions to create new knowledge and to generate innovations. Focusing on the regional level, this paper for three Australian territories (New South Wales, Victoria and Queensland) explores patterns of innovative activities in their private business sectors. Furthermore, these patterns are compared to specifics of each region's economic structure. We make use of input-output-based innovation flow networks, which are directed and weighted instead of binary. The value added of the proposed analysis is that we are able to trace a variety of different aspects related to the structure of innovative activities for each territory. It gets evident that mostly innovative activities in each territory are not strong in 'niche' branches but in fields of intense economic activity, signalising the high path-dependency of innovative activities in a specific geographical environment.
Dawson, G
1994-01-01
Emotion expressions can be characterized by both the type of emotion displayed and the intensity with which the emotion is expressed. Individual differences in these two aspects of emotion appear to vary independently and may perhaps account for distinct dimensions of temperament, personality, and vulnerability to psychopathology. We reviewed several sets of data gathered in our laboratory that indicate that these two dimensions of emotion expression are associated with distinct and independent patterns of frontal EEG activity in infants. Specifically, whereas the type of emotion expression was found to be associated with asymmetries in frontal EEG activity, the intensity of emotion expression was found to be associated with generalized activation of both the right and the left frontal regions. Moreover, we reviewed and provided evidence that measures of asymmetrical frontal activity are better predictors of individual differences in the tendency to express certain emotions, such as distress and sadness, whereas measures of generalized frontal activity are better predictors of individual differences in emotional reactivity and emotion intensity. The neuroanatomical bases of emotion were discussed with special reference to the role of the frontal lobe in emotion regulation. It was hypothesized that the frontal activation asymmetries that have been found to accompany emotion expressions reflect specific regulation strategies. The left frontal region is specialized for regulation strategies involving action schemes that serve to maintain continuity and stability of the organism-environment relation and of ongoing motor schemes, such as those involved in language and the expression of happiness and interest. In contrast, the right frontal region appears to be specialized for regulation strategies that involve processing novel stimuli that disrupt ongoing activity, such as might occur during the expression of fear, disgust, and distress. Furthermore, it was proposed that individual differences in patterns of frontal EEG asymmetries during emotion may be related to socialization influences rather than solely innate factors. It was speculated that the pattern of generalized frontal lobe activation that accompanies the experience of intense emotions may reflect, in part, the relatively diffuse influence of subcortical structures on the cortex and may serve to increase the infant's general readiness to receive and respond to significant external stimuli.
Luis, Elkin O.; Arrondo, Gonzalo; Vidorreta, Marta; Martínez, Martin; Loayza, Francis; Fernández-Seara, María A.; Pastor, María A.
2015-01-01
Background Imaging studies help to understand the evolution of key cognitive processes related to aging, such as working memory (WM). This study aimed to test three hypotheses in older adults. First, that the brain activation pattern associated to WM processes in elderly during successful low load tasks is located in posterior sensory and associative areas; second, that the prefrontal and parietal cortex and basal ganglia should be more active during high-demand tasks; third, that cerebellar activations are related to high-demand cognitive tasks and have a specific lateralization depending on the condition. Methods We used a neuropsychological assessment with functional magnetic resonance imaging and a core N-back paradigm design that was maintained across the combination of four conditions of stimuli and two memory loads in a sample of twenty elderly subjects. Results During low-loads, activations were located in the visual ventral network. In high loads, there was an involvement of the basal ganglia and cerebellum in addition to the frontal and parietal cortices. Moreover, we detected an executive control role of the cerebellum in a relatively symmetric fronto-parietal network. Nevertheless, this network showed a predominantly left lateralization in parietal regions associated presumably with an overuse of verbal storage strategies. The differential activations between conditions were stimuli-dependent and were located in sensory areas. Conclusion Successful WM processes in the elderly population are accompanied by an activation pattern that involves cerebellar regions working together with a fronto-parietal network. PMID:26132286