Sample records for activity phagocytic activity

  1. Pseudomonas aeruginosa flagellar motility activates the phagocyte PI3K/Akt pathway to induce phagocytic engulfment.

    PubMed

    Lovewell, Rustin R; Hayes, Sandra M; O'Toole, George A; Berwin, Brent

    2014-04-01

    Phagocytosis of the bacterial pathogen Pseudomonas aeruginosa is the primary means by which the host controls bacterially induced pneumonia during lung infection. Previous studies have identified flagellar swimming motility as a key pathogen-associated molecular pattern (PAMP) recognized by phagocytes to initiate engulfment. Correspondingly, loss of flagellar motility is observed during chronic pulmonary infection with P. aeruginosa, and this likely reflects a selection for bacteria resistant to phagocytic clearance. However, the mechanism underlying the preferential phagocytic response to motile bacteria is unknown. Here we have identified a cellular signaling pathway in alveolar macrophages and other phagocytes that is specifically activated by flagellar motility. Genetic and biochemical methods were employed to identify that phagocyte PI3K/Akt activation is required for bacterial uptake and, importantly, it is specifically activated in response to P. aeruginosa flagellar motility. Based on these observations, the second important finding that emerged from these studies is that titration of the bacterial flagellar motility results in a proportional activation state of Akt. Therefore, the Akt pathway is responsive to, and corresponds with, the degree of bacterial flagellar motility, is independent of the actin polymerization that facilitates phagocytosis, and determines the phagocytic fate of P. aeruginosa. These findings elucidate the mechanism behind motility-dependent phagocytosis of extracellular bacteria and support a model whereby phagocytic clearance exerts a selective pressure on P. aeruginosa populations in vivo, which contributes to changes in pathogenesis during infections.

  2. Pseudomonas aeruginosa flagellar motility activates the phagocyte PI3K/Akt pathway to induce phagocytic engulfment

    PubMed Central

    Lovewell, Rustin R.; Hayes, Sandra M.; O'Toole, George A.

    2014-01-01

    Phagocytosis of the bacterial pathogen Pseudomonas aeruginosa is the primary means by which the host controls bacterially induced pneumonia during lung infection. Previous studies have identified flagellar swimming motility as a key pathogen-associated molecular pattern (PAMP) recognized by phagocytes to initiate engulfment. Correspondingly, loss of flagellar motility is observed during chronic pulmonary infection with P. aeruginosa, and this likely reflects a selection for bacteria resistant to phagocytic clearance. However, the mechanism underlying the preferential phagocytic response to motile bacteria is unknown. Here we have identified a cellular signaling pathway in alveolar macrophages and other phagocytes that is specifically activated by flagellar motility. Genetic and biochemical methods were employed to identify that phagocyte PI3K/Akt activation is required for bacterial uptake and, importantly, it is specifically activated in response to P. aeruginosa flagellar motility. Based on these observations, the second important finding that emerged from these studies is that titration of the bacterial flagellar motility results in a proportional activation state of Akt. Therefore, the Akt pathway is responsive to, and corresponds with, the degree of bacterial flagellar motility, is independent of the actin polymerization that facilitates phagocytosis, and determines the phagocytic fate of P. aeruginosa. These findings elucidate the mechanism behind motility-dependent phagocytosis of extracellular bacteria and support a model whereby phagocytic clearance exerts a selective pressure on P. aeruginosa populations in vivo, which contributes to changes in pathogenesis during infections. PMID:24487390

  3. Antioxidant Effect of Melatonin on the Functional Activity of Colostral Phagocytes in Diabetic Women

    PubMed Central

    Fagundes, Danny L. G.; Calderon, Iracema M. P.; França, Eduardo L.

    2013-01-01

    Melatonin is involved in a number of physiological and oxidative processes, including functional regulation in human milk. The present study investigated the mechanisms of action of melatonin and its effects on the functional activity of colostral phagocytes in diabetic women. Colostrum samples were collected from normoglycemic (N = 38) and diabetic (N = 38) women. We determined melatonin concentration, superoxide release, bactericidal activity and intracellular Ca2+ release by colostral phagocytes treated or not with 8-(Diethylamino) octyl-3,4,5-trimethoxybenzoate hydrochloride (TMB-8) and incubated with melatonin and its precursor (N-acetyl-serotonin-NAS), antagonist (luzindole) and agonist (chloromelatonin-CMLT). Melatonin concentration was higher in colostrum samples from hyperglycemic than normoglycemic mothers. Melatonin stimulated superoxide release by colostral phagocytes from normoglycemic but not hyperglycemic women. NAS increased superoxide, irrespective of glycemic status, whereas CMTL increased superoxide only in cells from the normoglycemic group. Phagocytic activity in colostrum increased significantly in the presence of melatonin, NAS and CMLT, irrespective of glycemic status. The bactericidal activity of colostral phagocytes against enterophatogenic Escherichia coli (EPEC) increased in the presence of melatonin or NAS in the normoglycemic group, but not in the hyperglycemic group. Luzindole blocked melatonin action on colostrum phagocytes. Phagocytes from the normoglycemic group treated with melatonin exhibited an increase in intracellular Ca2+ release. Phagocytes treated with TMB-8 (intracellular Ca2+ inhibitor) decreased superoxide, bactericidal activity and intracellular Ca2+ release in both groups. The results obtained suggest an interactive effect of glucose metabolism and melatonin on colostral phagocytes. In colostral phagocytes from normoglycemic mothers, melatonin likely increases the ability of colostrum to protect against EPEC

  4. High content analysis of phagocytic activity and cell morphology with PuntoMorph.

    PubMed

    Al-Ali, Hassan; Gao, Han; Dalby-Hansen, Camilla; Peters, Vanessa Ann; Shi, Yan; Brambilla, Roberta

    2017-11-01

    Phagocytosis is essential for maintenance of normal homeostasis and healthy tissue. As such, it is a therapeutic target for a wide range of clinical applications. The development of phenotypic screens targeting phagocytosis has lagged behind, however, due to the difficulties associated with image-based quantification of phagocytic activity. We present a robust algorithm and cell-based assay system for high content analysis of phagocytic activity. The method utilizes fluorescently labeled beads as a phagocytic substrate with defined physical properties. The algorithm employs statistical modeling to determine the mean fluorescence of individual beads within each image, and uses the information to conduct an accurate count of phagocytosed beads. In addition, the algorithm conducts detailed and sophisticated analysis of cellular morphology, making it a standalone tool for high content screening. We tested our assay system using microglial cultures. Our results recapitulated previous findings on the effects of microglial stimulation on cell morphology and phagocytic activity. Moreover, our cell-level analysis revealed that the two phenotypes associated with microglial activation, specifically cell body hypertrophy and increased phagocytic activity, are not highly correlated. This novel finding suggests the two phenotypes may be under the control of distinct signaling pathways. We demonstrate that our assay system outperforms preexisting methods for quantifying phagocytic activity in multiple dimensions including speed, accuracy, and resolution. We provide a framework to facilitate the development of high content assays suitable for drug screening. For convenience, we implemented our algorithm in a standalone software package, PuntoMorph. Copyright © 2017 Elsevier B.V. All rights reserved.

  5. High temperature affects the phagocytic activity of human peripheral blood mononuclear cells.

    PubMed

    Djaldetti, Meir; Bessler, Hanna

    2015-10-01

    The ability for engulfment of pathogens and inert particles is the key hallmark of the phagocytic cells. Phagocytes play a significant role in the modulation of local or extended inflammation. Since fever activates a number of factors linked with the immune response it was the goal of this study to examine the in vitro effect of hyperthermia on the phagocytic capacity, the number of phagocytic cells and the viability of human peripheral blood mononuclear cells (PBMC) at 37 and 40°C. PBMC were incubated with 0.8 μm polysterene latex beads, for 2 hours at 37 and 40°C. The number of phagocytic cells, and that of latex particles internalized by each individual cell was counted with a light microscope. In addition, the percentage of viable cells and the number of active metabolic cells was evaluated. A temperature of 40°C significantly increased the number of phagocytic cells and the phagocytic index by 41 and 37% respectively, as compared to cells incubated at 37°C. While the number of vital cells (trypan blue test) did not differ statistically at both temperatures, the number of active metabolic cells (XTT test) after 2 h of incubation at 40°C was 17% higher as compared with that at 37°C. However, the number of active metabolic cells after 24 h of incubation at 40°C was 51% lower compared with cells incubated at 37°C. The increased phagocytic capacity of human peripheral blood monocytes at high temperature further enlightens the immunomodulatory effect of fever in the immune responses during inflammation.

  6. Uptake and intracellular activity of AM-1155 in phagocytic cells.

    PubMed Central

    Yamamoto, T; Kusajima, H; Hosaka, M; Fukuda, H; Oomori, Y; Shinoda, H

    1996-01-01

    The uptake and intracellular activity of AM-1155 in murine J774.1 macrophages and human polymorphonuclear leukocytes were investigated. AM-1155 penetrated phagocytic cells rapidly and reversibly, although the penetration process was not affected by metabolic inhibitors such as sodium fluoride, cyanide m-chlorophenylhydrazone, or ouabain or by nucleoside transport system inhibitors such as adenosine. The intracellular concentration-to-extracellular concentration ratio of AM-1155 in both cell types of phagocytes ranged from 5 to 7. These ratios were almost equal to those for sparfloxacin. The intracellular activity of AM-1155 in J774.1 macrophages, examined with Staphylococcus aureus 209P as a test bacterium, was dependent on the extracellular concentration. AM-1155 at a concentration of 1 microgram/ml reduced the number of viable cells of S. aureus ingested by more than 90%. The intracellular activity of AM-1155 was more potent than those of sparfloxacin, ofloxacin, ciprofloxacin, flomoxef, and erythromycin. These results suggest that the potent intracellular activity of AM-1155 might mainly be due to the high intracellular concentration and its potent in vitro activity. PMID:9124835

  7. Phagocytic cell function in active brucellosis.

    PubMed Central

    Ocon, P; Reguera, J M; Morata, P; Juarez, C; Alonso, A; Colmenero, J D

    1994-01-01

    In this study, we analyzed phagocytic cell function in 51 patients with active brucellosis and its relationship with different clinical, serological, and evolutionary variables. A control group was made up of 30 blood donors of similar geographic extraction, age, and sex, with no previous history of brucellosis or known exposure ot the infection or specific antibodies. The investigations were carried out at the time of diagnosis, at the conclusion of treatment, and after 6 months of follow-up. Polymorphonuclear leukocyte adherence and nitroblue tetrazolium reduction in response to Brucella antigen were significantly increased in the patients at the time of diagnosis with respect to the control group. In contrast, chemotaxis in response to Brucella antigen and phagocytosis were significantly reduced in the patients with respect to the control group. The alterations in phagocytic cell function were greater in patients with bacteremia, with focal forms of the disease, or with a longer diagnostic delay. Most of these initial alterations tended to normalize with treatment, indicating their transient character. PMID:8112863

  8. Effect of the Gc-derived macrophage-activating factor precursor (preGcMAF) on phagocytic activation of mouse peritoneal macrophages.

    PubMed

    Uto, Yoshihiro; Yamamoto, Syota; Takeuchi, Ryota; Nakagawa, Yoshinori; Hirota, Keiji; Terada, Hiroshi; Onizuka, Shinya; Nakata, Eiji; Hori, Hitoshi

    2011-07-01

    The 1f1f subtype of the Gc protein (Gc(1f1f) protein) was converted into Gc-derived macrophage-activating factor (GcMAF) by enzymatic processing in the presence of β-galactosidase of an activated B-cell and sialidase of a T-cell. We hypothesized that preGc(1f1f)MAF, the only Gc(1f1f) protein lacking galactose, can be converted to GcMAF in vivo because sialic acid is cleaved by residual sialidase. Hence, we investigated the effect of preGc(1f1f)MAF on the phagocytic activation of mouse peritoneal macrophages. We examined the sugar moiety of preGc(1f1f)MAF with a Western blot using peanut agglutinin (PNA) and Helix pomatia agglutinin (HPA) lectin. We also found that preGc(1f1f)MAF significantly enhanced phagocytic activity in mouse peritoneal macrophages but only in the presence of the mouse peritoneal fluid; the level of phagocytic activity was the same as that observed for GcMAF. PreGc(1f1f)MAF can be used as an effective macrophage activator in vivo.

  9. MiR-155 enhances phagocytic activity of β-thalassemia/HbE monocytes via targeting of BACH1.

    PubMed

    Srinoun, Kanitta; Nopparatana, Chamnong; Wongchanchailert, Malai; Fucharoen, Suthat

    2017-11-01

    Abnormal red blood cell (RBC) clearance in β-thalassemia is triggered by activated monocytes. Recent reports indicate that miRNA (miR-) plays a role in monocyte activation. To study phagocytic function, we co-cultured monocytes of normal, non-splenectomized and splenectomized β-thalassemia/HbE individuals with RBCs obtained from normal, non-splenectomized and splenectomized β-thalassemia/HbE individuals. The phagocytic activity of β-thalassemia/HbE monocytes co-cultured with β-thalassemia/HbE RBCs was significantly higher than that of normal monocytes co-cultured with normal RBCs. Upregulation of monocyte miR-155 was observed in β-thalassemia/HbE patients. Increased miR-155 was associated with reductions in BTB and CNC Homology1 (BACH1) target gene expression and increased phagocytic activity of β-thalassemia/HbE monocytes. Taken together, these findings suggested that increased miR-155 expression in activated monocytes leads to enhanced phagocytic activity via BACH-1 regulation in β-thalassemia/HbE. This provides novel insights into the phagocytic clearance of abnormal RBCs in β-thalassemia/HbE.

  10. The Effect of Perioperative Immunonutrition on the Phagocytic Activity of Blood Platelets in Advanced Gastric Cancer Patients

    PubMed Central

    Kamocki, Zbigniew; Gryko, Mariusz; Kedra, Boguslaw; Kemona, Halina

    2013-01-01

    Background and Aims. Perioperative immunonutrition can influence the phagocytic activity of platelets in advanced gastric cancer. Methods. 51 patients with stage IV gastric cancer divided into four groups depending on the clinical status and 40 normal donors were analyzed. Patients of groups I and II underwent palliative gastrectomy. Patients of groups III and IV had exploratory laparotomy. Perioperative immunonutrition was administered as follows: group I—TPN, II—oral arginine, peripheral TPN, III—TPN preoperatively, and IV—without nutrition. The phagocytic activity of blood platelets was determined before and after nutritional therapy and was assessed by measuring the fraction of phagocytic thrombocytes (%phag) and the phagocytic index (Ixphag). Results. The percentage of phagocytizing platelets and the phagocytic index prior to and after the surgery amounted to the following: group I—1.136–1.237, P = NS, and 1.007–1.1, P = NS, respectively, II—1.111–1.25, P < 0.05, and 1.011–1.083, P < 0.05, III—1.112–1.186, P = NS, and 0.962–1.042, P = NS, and IV—1.085–0.96, P = NS, and 1.023–1.04, P = NS. Conclusions. The phagocytic activity of platelets in patients with advanced gastric cancer is significantly impaired. Perioperative immunonutrition with oral arginine-rich diet can partially improve the phagocytic activity of blood platelets. This trial is registred with Clinicaltrials.gov-NCT01704664. PMID:24363760

  11. Plasticity of Human THP-1 Cell Phagocytic Activity during Macrophagic Differentiation.

    PubMed

    Kurynina, A V; Erokhina, M V; Makarevich, O A; Sysoeva, V Yu; Lepekha, L N; Kuznetsov, S A; Onishchenko, G E

    2018-03-01

    Studies of the role of macrophages in phagocytosis are of great theoretical and practical importance for understanding how these cells are involved in the organism's defense response and in the development of various pathologies. Here we investigated phagocytic plasticity of THP-1 (acute monocytic human leukemia) cells at different stages (days 1, 3, and 7) of phorbol ester (PMA)-induced macrophage differentiation. Analysis of cytokine profiles showed that PMA at a concentration of 100 nM induced development of the proinflammatory macrophage population. The functional activity of macrophages was assessed on days 3 and 7 of differentiation using unlabeled latex beads and latex beads conjugated with ligands (gelatin, mannan, and IgG Fc fragment) that bind to the corresponding specific receptors. The general phagocytic activity increased significantly (1.5-2.0-fold) in the course of differentiation; phagocytosis occurred mostly through the Fc receptors, as shown previously for M1 macrophages. On day 7, the levels of phagocytosis of gelatin- and Fc-covered beads were high; however, the intensity of ingestion of mannan-conjugated beads via mannose receptors increased 2.5-3.0-fold as well, which indicated formation of cells with an alternative phenotype similar to that of M2 macrophages. Thus, the type and the plasticity of phagocytic activity at certain stages of macrophage differentiation can be associated with the formation of functionally mature morphological phenotype. This allows macrophages to exhibit their phagocytic potential in response to specific ligands. These data are of fundamental importance and can be used to develop therapeutic methods for correcting the M1/M2 macrophage ratio in an organism.

  12. Chemical composition and phagocyte immunomodulatory activity of Ferula iliensis essential oils.

    PubMed

    Özek, Gulmira; Schepetkin, Igor A; Utegenova, Gulzhakhan A; Kirpotina, Liliya N; Andrei, Spencer R; Özek, Temel; Başer, Kemal Hüsnü Can; Abidkulova, Karime T; Kushnarenko, Svetlana V; Khlebnikov, Andrei I; Damron, Derek S; Quinn, Mark T

    2017-06-01

    Essential oil extracts from Ferula iliensis have been used traditionally in Kazakhstan for treatment of inflammation and other illnesses. Because little is known about the biologic activity of these essential oils that contributes to their therapeutic properties, we analyzed their chemical composition and evaluated their phagocyte immunomodulatory activity. The main components of the extracted essential oils were ( E )-propenyl sec -butyl disulfide (15.7-39.4%) and ( Z )-propenyl sec -butyl disulfide (23.4-45.0%). Ferula essential oils stimulated [Ca 2+ ] i mobilization in human neutrophils and activated ROS production in human neutrophils and murine bone marrow phagocytes. Activation of human neutrophil [Ca 2+ ] i flux by Ferula essential oils was dose-dependently inhibited by capsazepine, a TRPV1 channel antagonist, indicating that TRPV1 channels mediate this response. Furthermore, Ferula essential oils stimulated Ca 2+ influx in TRPV1 channel-transfected HEK293 cells and desensitized the capsaicin-induced response in these cells. Additional molecular modeling with known TRPV1 channel agonists suggested that the active component is likely to be ( Z )-propenyl sec -butyl disulfide. Our results provide a cellular and molecular basis to explain at least part of the beneficial therapeutic properties of FEOs. © Society for Leukocyte Biology.

  13. One-year follow-up of the phagocytic activity of leukocytes after exposure of rats to asbestos and basalt fibers.

    PubMed Central

    Hurbánková, M

    1994-01-01

    The phagocytic activity of leukocytes in peripheral blood was investigated after 2, 24, and 48 hr; 1, 2, 4, and 8 weeks; and 6 and 12 months following intraperitoneal administration of asbestos and basalt fibers to Wistar rats. Asbestos and basalt fibers differed in their effects on the parameters studied. Both granulocyte count and phagocytic activity of leukocytes during the 1-year dynamic follow-up in both dust-exposed groups of animals changed in two phases, characterized by the initial stimulation of the acute phase I, followed by the suppression of the parameters in the chronic phase II. Exposure to asbestos and basalt fibers led, in phase II, to impairment of the phagocytic activity of granulocytes. Asbestos fibers also significantly decreased phagocytic activity of monocytes. Exposure to basalt fibers did not affect the phagocytic activity of monocytes in phase II. Results suggest that the monocytic component of leukocytes plays an important role in the development of diseases caused by exposure to fibrous dusts, but basalt fibers have lesser biological effects than asbestos fibers. PMID:7882931

  14. Phagocytizing activity of PMN from severe trauma patients in different post-traumatic phases during the 10-days post-injury course.

    PubMed

    Sturm, Ramona; Heftrig, David; Mörs, Katharina; Wagner, Nils; Kontradowitz, Kerstin; Jurida, Katrin; Marzi, Ingo; Relja, Borna

    2017-02-01

    Phagocytizing leukocytes (granulocytes and monocytes) play a fundamental role in immunological defense against pathogens and clearance of cellular debris after tissue injury due to trauma. According to the "two-hit hypothesis", phagocytes become primed due to/after trauma. Subsequently, a secondary stimulus may lead to their exaggerated response. This immune dysfunction can result in serious infectious complications, also depending on trauma injury pattern. Here, we investigated the phagocytizing capacity of leukocytes, and its correlation to trauma injury pattern. Peripheral whole blood was taken daily from 29 severely injured trauma patients (TP, Injury Severity Score, ISS≥28) for ten days (1-10) following admission to the emergency department (ED). Sixteen healthy volunteers served as controls (HV). Samples were incubated with opsonized Staphylococcus aureus labelled with pHrodo fluorescent reagent and the percentage of phagocytizing activity was assessed by flow cytometry. Abbreviated Injury Scales (AIS)≥3 of head, chest and extremities were used for injury pattern analysis. Overall distribution of active phagocytes (out of 100% phagocytizing leukocytes) in TP included granulocytes with 28.6±1.5% and monocytes with 59.3±1.9% at ED, and was comparable to HV (31.5±1.6% granulocytes and 60.1±1.6% monocytes). The percentage of phagocytizing granulocytes increased significantly after D2 (39.1±1.2%), while the percentage of phagocytizing monocytes (52.0±1.2%, p<0.05) decreased after D2. These changes persisted during the whole time course. Phagocytizing activity of granulocytes (27.9±2.8%) and monocytes (55.2±3.3%) was significantly decreased at ED compared to HV (42.4±4.1% and 78.1±3.1%, respectively). After D2 up to D10, phagocytizing activity was significantly enhanced in granulocytes. Phagocytizing activity of monocytes remained decreased on D1 and has risen continuously during the ten days time course to values comparable to HV. No significant

  15. BAY 41-2272, a soluble guanylate cyclase agonist, activates human mononuclear phagocytes

    PubMed Central

    Soeiro-Pereira, PV; Falcai, A; Kubo, CA; Oliveira-Júnior, EB; Marques, OC; Antunes, E; Condino-Neto, A

    2012-01-01

    BACKGROUND AND PURPOSE Phagocyte function is critical for host defense against infections. Defects in phagocytic function lead to several primary immunodeficiencies characterized by early onset of recurrent and severe infections. In this work, we further investigated the effects of BAY 41-2272, a soluble guanylate cyclase (sGC) agonist, on the activation of human peripheral blood monocytes (PBM) and THP-1 cells. EXPERIMENTAL APPROACH THP-1 cells and PBM viability was evaluated by methylthiazoletetrazolium assay; reactive oxygen species production by lucigenin chemiluminescence; gene and protein expression of NAPDH oxidase components by qRT-PCR and Western blot analysis, respectively; phagocytosis and microbicidal activity by co-incubation, respectively, with zymosan and Escherichia coli; and cytokine release by elisa. KEY RESULTS BAY 41-2272, compared with the untreated group, increased spreading of monocytes by at least 35%, superoxide production by at least 50%, and gp91PHOX and p67PHOX gene expression 20 to 40 times, in both PBM and THP-1 cells. BAY 41-2272 also augmented phagocytosis of zymosan particles threefold compared with control, doubled microbicidal activity against E. coli and enhanced the release of TNF-α and IL-12p70 by both PBM and THP-1 cells. Finally, by inhibiting sGC with ODQ, we showed that BAY 41-2272-induced superoxide production and phagocytosis is not dependent exclusively on sGC activation. CONCLUSIONS AND IMPLICATIONS In addition to its ability to induce vasorelaxation and its potential application for therapy of vascular diseases, BAY 41-2272 was shown to activate human mononuclear phagocytes. Hence, it is a novel pro-inflammatory drug that may be useful for controlling infections in the immunocompromised host. PMID:22044316

  16. SIRPα controls the activity of the phagocyte NADPH oxidase by restricting the expression of gp91(phox).

    PubMed

    van Beek, Ellen M; Zarate, Julian Alvarez; van Bruggen, Robin; Schornagel, Karin; Tool, Anton T J; Matozaki, Takashi; Kraal, Georg; Roos, Dirk; van den Berg, Timo K

    2012-10-25

    The phagocyte NADPH oxidase mediates oxidative microbial killing in granulocytes and macrophages. However, because the reactive oxygen species produced by the NADPH oxidase can also be toxic to the host, it is essential to control its activity. Little is known about the endogenous mechanism(s) that limits NADPH oxidase activity. Here, we demonstrate that the myeloid-inhibitory receptor SIRPα acts as a negative regulator of the phagocyte NADPH oxidase. Phagocytes isolated from SIRPα mutant mice were shown to have an enhanced respiratory burst. Furthermore, overexpression of SIRPα in human myeloid cells prevented respiratory burst activation. The inhibitory effect required interactions between SIRPα and its natural ligand, CD47, as well as signaling through the SIRPα cytoplasmic immunoreceptor tyrosine-based inhibitory motifs. Suppression of the respiratory burst by SIRPα was caused by a selective repression of gp91(phox) expression, the catalytic component of the phagocyte NADPH oxidase complex. Thus, SIRPα can limit gp91(phox) expression during myeloid development, thereby controlling the magnitude of the respiratory burst in phagocytes. Copyright © 2012 The Authors. Published by Elsevier Inc. All rights reserved.

  17. Degalactosylated/desialylated human serum containing GcMAF induces macrophage phagocytic activity and in vivo antitumor activity.

    PubMed

    Kuchiike, Daisuke; Uto, Yoshihiro; Mukai, Hirotaka; Ishiyama, Noriko; Abe, Chiaki; Tanaka, Daichi; Kawai, Tomohito; Kubo, Kentaro; Mette, Martin; Inui, Toshio; Endo, Yoshio; Hori, Hitoshi

    2013-07-01

    The group-specific component protein-derived macrophage-activating factor (GcMAF) has various biological activities, such as macrophage activation and antitumor activity. Clinical trials of GcMAF have been carried out for metastatic breast cancer, prostate cancer, and metastatic colorectal cancer. In this study, despite the complicated purification process of GcMAF, we used enzymatically-treated human serum containing GcMAF with a considerable macrophage-stimulating activity and antitumor activity. We detected GcMAF in degalactosylated/desialylated human serum by western blotting using an anti-human Gc globulin antibody, and Helix pomatia agglutinin lectin. We also found that GcMAF-containing human serum significantly enhanced the phagocytic activity of mouse peritoneal macrophages and extended the survival time of mice bearing Ehrlich ascites tumors. We demonstrated that GcMAF-containing human serum can be used as a potential macrophage activator for cancer immunotherapy.

  18. AMP-activated protein kinase enhances the phagocytic ability of macrophages and neutrophils

    PubMed Central

    Bae, Hong-Beom; Zmijewski, Jaroslaw W.; Deshane, Jessy S.; Tadie, Jean-Marc; Chaplin, David D.; Takashima, Seiji; Abraham, Edward

    2011-01-01

    Although AMPK plays well-established roles in the modulation of energy balance, recent studies have shown that AMPK activation has potent anti-inflammatory effects. In the present experiments, we examined the role of AMPK in phagocytosis. We found that ingestion of Escherichia coli or apoptotic cells by macrophages increased AMPK activity. AMPK activation increased the ability of neutrophils or macrophages to ingest bacteria (by 46±7.8 or 85±26%, respectively, compared to control, P<0.05) and the ability of macrophages to ingest apoptotic cells (by 21±1.4%, P<0.05 compared to control). AMPK activation resulted in cytoskeletal reorganization, including enhanced formation of actin and microtubule networks. Activation of PAK1/2 and WAVE2, which are downstream effectors of Rac1, accompanied AMPK activation. AMPK activation also induced phosphorylation of CLIP-170, a protein that participates in microtubule synthesis. The increase in phagocytosis was reversible by the specific AMPK inhibitor compound C, siRNA to AMPKα1, Rac1 inhibitors, or agents that disrupt actin or microtubule networks. In vivo, AMPK activation resulted in enhanced phagocytosis of bacteria in the lungs by 75 ± 5% vs. control (P<0.05). These results demonstrate a novel function for AMPK in enhancing the phagocytic activity of neutrophils and macrophages.—Bae, H. -B., Zmijewski, J. W., Deshane, J. S., Tadie, J. -M., Chaplin, D. D., Takashima, S., Abraham, E. AMP-activated protein kinase enhances the phagocytic ability of macrophages and neutrophils. PMID:21885655

  19. Effect of tilmicosin on chemotactic, phagocytic, and bactericidal activities of bovine and porcine alveolar macrophages.

    PubMed

    Brumbaugh, Gordon W; Herman, James D; Clancy, Julianne S; Burden, Kyland I; Barry, Tracie; Simpson, R B; López, Hector Sumano

    2002-01-01

    To evaluate chemotactic, phagocytic, and bactericidal activities of bovine and porcine alveolar macrophages (AM) exposed to tilmicosin. 12 healthy calves and 12 healthy pigs. Lungs were obtained immediately after euthanasia; AM were collected by means of bronchoalveolar lavage and density gradient centrifugation. Chemotactic activity was evaluated by exposing AM to lipopolysaccharide or macrophage inhibitory peptide during incubation with tilmicosin. Phagocytic activity was evaluated by incubating AM with tilmicosin for 24 hours and then with tilmicosin-resistant Salmonella serotype Typhimurium. Bactericidal activity was evaluated by incubating AM with tilmicosin (0, 10, or 20 microg/ml for bovine AM; 0 or 10 microg/ml or 10 microg/ml but washed free of tilmicosin for porcine AM) and then with Mannheimia haemolytica (bovine AM) or with Actinobacillus pleuropneumoniae or Pasteurella multocida (porcine AM). Tilmicosin had no significant effects on chemotactic or phagocytic activities of bovine or porcine AM. The time-course of bactericidal activity was best described by polynomial equations. Time to cessation of bacterial growth and area under the time versus bacterial number curve were significantly affected by incubation of AM with tilmicosin. Results show that bactericidal activity of bovine and porcine AM was enhanced by tilmicosin, but not in proportion to the reported ability of AM to concentrate tilmicosin intracellularly. With or without exposure to tilmicosin, the time-course of bactericidal activity of bovine AM against M haemolytica and of porcine AM against A pleuropneumoniae or P multocida was too complex to be reduced to a simple linear equation.

  20. Evaluation of Agaricus blazei in vivo for antigenotoxic, anticarcinogenic, phagocytic and immunomodulatory activities.

    PubMed

    Ishii, Priscila Lumi; Prado, Carolina Kato; Mauro, Mariana de Oliveira; Carreira, Clísia Mara; Mantovani, Mário Sérgio; Ribeiro, Lúcia Regina; Dichi, Jane Bandeira; Oliveira, Rodrigo Juliano

    2011-04-01

    The development of various types of cancer results from the interaction among endogenous, environmental and hormonal factors, where the most notable of these factors is diet. The aim of the present study was to determine the antigenotoxic, anticarcinogenic, phagocytic and immunomodulatory activities of Agaricus blazei. The test antigenotoxicity (Comet Assay) and anticarcinogenic (Test of Aberrant Crypt Foci) assess changes in DNA and/or intestinal mucosa that correlate to cancer development. Tests of phagocytosis in the spleen and differential count in blood cells allow the inference of modulation of the immune system as well as to propose a way of eliminating cells with DNA damage. Supplementation with the mushroom was carried out under pre-treatment, simultaneous treatment, post-treatment and pre-treatment+continuous conditions. Statistical analysis demonstrated that the mushroom did not have genotoxic activity but showed antigenotoxic activity. Supplementation caused an increase in the number of monocytes and in phagocytic activity, suggesting that supplementation increases a proliferation of monocytes, consequently increasing phagocytic capacity especially in the groups pre-treatment, simultaneous and pre-treatment+continuous. The data suggest that A. blazei could act as a functional food capable of promoting immunomodulation which can account for the destruction of cells with DNA alterations that correlate with the development of cancer, since this mushroom was demonstrated to have a preventive effect against pre-neoplastic colorectal lesions evaluated by the aberrant crypt foci assay. According to these results and the literature, it is believed that supplementation with A. blazei can be an efficient method for the prevention of cancer as well as possibly being an important coadjuvant treatment in chemotherapy. Copyright © 2011 Elsevier Inc. All rights reserved.

  1. Cellular immune responses and phagocytic activity of fishes exposed to pollution of volcano mud.

    PubMed

    Risjani, Yenny; Yunianta; Couteau, Jerome; Minier, Christophe

    2014-05-01

    Since May 29, 2006, a mud volcano in the Brantas Delta of the Sidoarjo district has emitted mud that has inundated nearby villages. Pollution in this area has been implicated in detrimental effects on fish health. In fishes, leukocyte and phagocytic cells play a vital role in body defenses. We report for the first time the effect of "LUSI" volcano mud on the immune systems of fish in the Brantas Delta. The aim of this study was to find biomarkers to allow the evaluation of the effects of volcanic mud and anthropogenic pollution on fish health in the Brantas Delta. The study took places at the Brantas Delta, which was polluted by volcano mud, and at reference sites in Karangkates and Pasuruan. Leukocyte numbers were determined using a Neubauer hemocytometer and a light microscope. Differential leukocyte counts were determined using blood smears stained with May Grunwald-Giemsa, providing neutrophil, lymphocyte and monocyte counts. Macrophages were taken from fish kidney, and their phagocytic activity was measured. In vitro analyses revealed that leukocyte and differential leukocyte counts (DLC) were higher in Channa striata and Chanos chanos caught from the polluted area. Macrophage numbers were higher in Oreochromis mossambicus than in the other species, indicating that this species is more sensitive to pollution. In areas close to volcanic mud eruption, all specimens had lower phagocytic activity. Our results show that immune cells were changed and phagocytic activity was reduced in the polluted area indicating cytotoxicity and alteration of the innate immune system in fishes exposed to LUSI volcano mud and anthropogenic pollution. Copyright © 2014 Elsevier Ltd. All rights reserved.

  2. The modulatory role of cytokines IL-4 and IL-17 in the functional activity of phagocytes in diabetic pregnant women.

    PubMed

    Fagundes, Danny L G; França, Eduardo L; Gonzatti, Michelangelo B; Rugde, Marilza V C; Calderon, Iracema M P; Honorio-França, Adenilda C

    2018-01-01

    The study investigated the role of cytokines IL-4 and IL-17 in the modulation of the functional activity of mononuclear phagocytes in diabetic pregnant women with hyperglycemia. Sixty pregnant women were assigned to the following groups: nondiabetic (ND), mild gestational hyperglycemia (MGH), gestational diabetes mellitus (GDM), or type 2 diabetes mellitus (DM2). The functional activity of phagocytes from maternal blood, cord blood, and colostrum was assessed by determining their superoxide release, phagocytosis, microbicidal activity, and intracellular Ca 2+ release. Irrespective of glycemic status, colostrum and blood cells treated with IL-4 and IL-17 increased superoxide release in the presence of enteropathogenic Escherichia coli (EPEC). The highest phagocytosis rate was observed in cells from the DM2 group treated with IL-4. In all the groups, phagocytes from colostrum, maternal blood, and cord blood exhibited higher microbicidal activity against EPEC when treated with cytokines. IL-17 increased intracellular Ca 2+ release by colostrum phagocytes in diabetic groups. The results indicate that the IL-4 and IL-17 modulate the functional activity of phagocytes in the maternal blood, cord blood, and colostrum of diabetic mother. The natural immunity resulting from the interaction between the cells and cytokines tested may be an alternative procedure to improve the prognosis of maternal and newborn infections. © 2017 APMIS. Published by John Wiley & Sons Ltd.

  3. Effects of in vivo exposure of Mya arenaria to organic and inorganic mercury on phagocytic activity of hemocytes.

    PubMed

    Fournier, M; Pellerin, J; Clermont, Y; Morin, Y; Brousseau, P

    2001-03-28

    Marine bivalves are aquatic invertebrate organisms which can be used as bioindicators in environmental monitoring. In vivo effects of mercuric chloride (HgCl(2)) and methylmercury (CH(3)HgCl) on phagocytic function of Mya arenaria hemocytes were evaluated in this study. Clams were exposed to single metal in water for up to 28 days at concentrations ranging from 10(-9) to 10(-5) M. Phagocytic activity of hemocytes was determined by uptake of fluorescent microspheres and flow cytometry. All clams exposed to 10(-5) M HgCl(2) died by day 7 of exposure. The viability of hemocytes was decreased only in clams exposed to 10(-6) M HgCl(2) for 28 days. A significant decrease in phagocytic activity of hemocytes was observed in clams exposed to 10(-6) M of HgCl(2) for 28 days. A similar pattern was observed with CH(3)HgCl, but at an earlier time. Chemical analysis performed on the tissues of the animals clearly show a greater uptake of the organic form of mercury by clams. Furthermore, a clear correlation was established between body burden of mercury and effects on phagocytic activity of hemocytes. Overall, the results of this study show that both speciations of mercury inhibited phagocytic function of Mya arenaria hemocytes following in vivo exposures.

  4. Phagocytic activities of hemocytes from the deep-sea symbiotic mussels Bathymodiolus japonicus, B. platifrons, and B. septemdierum.

    PubMed

    Tame, Akihiro; Yoshida, Takao; Ohishi, Kazue; Maruyama, Tadashi

    2015-07-01

    Deep-sea mytilid mussels harbor symbiotic bacteria in their gill epithelial cells that are horizontally or environmentally transmitted to the next generation of hosts. To understand the immune defense system in deep-sea symbiotic mussels, we examined the hemocyte populations of the symbiotic Bathymodiolus mussel species Bathymodiolus japonicus, Bathymodiolus platifrons, and Bathymodiolus septemdierum, and characterized three types of hemocytes: agranulocytes (AGs), basophilic granulocytes (BGs), and eosinophilic granulocytes (EGs). Of these, the EG cells were the largest (diameter, 8.4-10.0 μm) and had eosinophilic cytoplasm with numerous eosinophilic granules (diameter, 0.8-1.2 μm). Meanwhile, the BGs were of medium size (diameter, 6.7-8.0 μm) and contained small basophilic granules (diameter, 0.3-0.4 μm) in basophilic cytoplasm, and the AGs, the smallest of the hemocytes (diameter, 4.8-6.0 μm), had basophilic cytoplasm lacking granules. A lectin binding assay revealed that concanavalin A bound to all three hemocyte types, while wheat germ agglutinin bound exclusively to EGs and BGs. The total hemocyte population densities within the hemolymph of all three Bathymodiolus mussel species were similar (8.4-13.3 × 10(5) cells/mL), and the percentages of circulating AGs, BGs, and EGs in the hemolymph of these organisms were 44.7-48.5%, 14.3-17.6%, and 34.3-41.0%, respectively. To analyze the functional differences between these hemocytes, the phagocytic activity and post-phagocytic phagosome-lysosome fusion events were analyzed in each cell type using a fluorescent Alexa Fluor(®) 488-conjugated Escherichia coli bioparticle and a LysoTracker(®) lysosomal marker, respectively. While the AGs exhibited no phagocytic activity, both types of granulocytes were phagocytic. Of the three hemocyte types, the EGs exhibited the highest level of phagocytic activity as well as rapid phagosome-lysosome fusion, which occurred within 2 h of incubation. Meanwhile, the BGs showed

  5. Effect of conglutinin on phagocytic activity of bovine granulocytes.

    PubMed

    Dec, M; Wernicki, A; Puchalski, A; Urban-Chmiel, R; Radej, S

    2012-01-01

    In the present study we investigated the effect of bovine conglutinin on the phagocytic activity of leukocytes. We measured both the chemotactic activity of conglutinin and its effect on the internalization of zymosan particles and E. coli by granulocytes. We also assessed the binding of conglutinin to various microorganisms isolated from clinical cases in cattle. We showed that conglutinin binds strongly to the surface of yeast cells and to mannan-rich zymosan particles, while weak binding was observed in the case of the bacterial strains tested, including those whose O antigen is composed of mannan. Conglutinin (1-10 microg/ml) neither acts as a chemotactic factor for peripheral blood leukocytes nor affects ingestion of E. coli by granulocytes. However, as flow cytometry based assay showed, conglutinin (0.1-1 microg/ml) increased ingestion of zymosan expressed as mean fluorescence intensity (MFI) of positive cells.

  6. [EFFECT OF LACTOBACILLI EXOPOLYSACCHARIDES ON PHAGOCYTE AND CYTOKINE ACTIVITY IN VITRO AND IN ANIMAL ORGANISM DURING INFECTIOUS PROCESS MODELING].

    PubMed

    Gorelnikova, E A; Karpunina, L V

    2015-01-01

    Study the effect of lactobacilli exopolysaccharides (EPS)on cytokine and phagocyte activity in vitro and in mice organism during modelling of an infectious process. Lactobacillus delbrueckii subsp. delbrueckii B-1596 (laksaran 1596), L. delbrueckii B-1936 (laksaran 1936) and L. delbrueckii ssp. bulgaricus (laksaran Z) were used in the study. EPS were administered into white mice 1 hour after the Staphylococcus aureus 209-P infection. Index of phagocyte completion and index of killing activation (IKA) were calculated during phagocyte activity study. IL-1α, TNF-α, IFN-γ and IL-4 cytokine content was determined in blood sera and macrophage supernatants. Laksaran 1596, 1936 and Z had ambiguous effect on cytokine production. Laksaran: Z and 1936, 6 hours after mice infection increased IL-1 content in blood sera. Laksaran Z had the most pronounced effect on macrophages, resulting in an increase of active macrophages, facilitating increased digestion of S. aureus 209-P and IKA increase, stimulated cytokine production. The results obtained allow to speak about a possibility of using laksaran Z as a prophylaxis immune modulating preparation for correction of animal cytokine status.

  7. Effect of intravenous plasma transfusion on granulocyte and monocyte oxidative and phagocytic activity in dairy calves with failure of passive immunity.

    PubMed

    Yang, Victoria C; Rayburn, Maire C; Chigerwe, Munashe

    2017-12-01

    Plasma administration has been recommended in calves older than 48h with failure of passive immunity (FPI) to provide immunity consistent with adequate colostral ingestion. However, the protective serum immunoglobulin G (IgG) concentrations (≥1000mg/dL) of plasma derived IgG only lasts up to 12h. In addition to IgG, maternally derived colostral cells also confer immunity. The objective of the study was to determine the effect of intravenous plasma transfusion on granulocyte and monocyte oxidative and phagocytic activity in calves with FPI. Twenty-seven, one day-old, Jersey calves were assigned into 3 groups. The colostral (CL, N=9) group received 3L of colostrum once by oroesophageal tubing. Two other groups of calves received 1L of colostrum once by oroesophageal tubing and were assigned based on their health status (sick or non-sick) at 4days of age, as the sick-group (SG, N=7) or the non-sick (NG, N=11) groups. At 4days of age, the SG and NG groups were administered plasma intravenously at 30mL/kg. Granulocyte and monocyte oxidative and phagocytic activity was determined by flow cytometry. There was no significant difference in the granulocyte and monocyte oxidative or phagocytic activity among the 3 groups (P>0.05). Plasma administration had no significant effect on the oxidative or phagocytic activity of granulocytes or monocytes. In clinical practice, plasma administration for enhancing oxidative or phagocytic activity of granulocytes or monocytes, alone, might not be justified in calves with FPI. Copyright © 2017 Elsevier Ltd. All rights reserved.

  8. Occurrence and biological activity of palmitoleic acid isomers in phagocytic cells.

    PubMed

    Astudillo, Alma M; Meana, Clara; Guijas, Carlos; Pereira, Laura; Lebrero, Patricia; Balboa, María A; Balsinde, Jesús

    2018-02-01

    Recent studies have highlighted the role of palmitoleic acid [16:1 n-7 ( cis -9-hexadecenoic acid)] as a lipid hormone that coordinates cross-talk between liver and adipose tissue and exerts anti-inflammatory protective effects on hepatic steatosis and insulin signaling in murine models of metabolic disease. More recently, a 16:1 n-7 isomer, cis -7-hexadecenoic acid (16:1 n-9 ), that also possesses marked anti-inflammatory effects, has been described in human circulating monocytes and monocyte-derived macrophages. By using gas chromatographic/mass spectrometric analyses of dimethyl disulfide derivatives of fatty acyl methyl esters, we describe in this study the presence of a third 16:1 isomer, sapienic acid [16:1 n-10 (6- cis -hexadecenoic acid)], in phagocytic cells. Cellular levels of 16:1 n-10 appear to depend not only on the cellular content of linoleic acid, but also on the expression level of fatty acid desaturase 2, thus revealing a complex regulation both at the enzyme level, via fatty acid substrate competition, and directly at the gene level. However, unlike 16:1 n-7 and 16:1 n-9 , 16:1 n-10 levels are not regulated by the activation state of the cell. Moreover, while 16:1 n-7 and 16:1 n-9 manifest strong anti-inflammatory activity when added to the cells at low concentrations (10 μM), notably higher concentrations of 16:1 n-10 are required to observe a comparable effect. Collectively, these results suggest the presence in phagocytic cells of an unexpected variety of 16:1 isomers, which can be distinguished on the basis of their biological activity and cellular regulation. Copyright © 2018 by the American Society for Biochemistry and Molecular Biology, Inc.

  9. Molecular cloning of rock bream (Oplegnathus fasciatus) tumor necrosis factor-alpha and its effect on the respiratory burst activity of phagocytes.

    PubMed

    Kim, Min Sun; Hwang, Yoon Jung; Yoon, Ki Joon; Zenke, Kosuke; Nam, Yoon Kwon; Kim, Sung Koo; Kim, Ki Hong

    2009-11-01

    Rock bream (Oplegnathus fasciatus) tumor necrosis factor-alpha (rbTNF-alpha) gene was cloned, recombinantly produced, and the effect of the recombinant rbTNF-alpha on the respiratory burst activity of rock bream phagocytes was analyzed. Structurally, genomic DNA of rbTNF-alpha was comprised with four exons and three introns, and deduced amino acid sequence of its cDNA possessed the TNF family signature, a transmembrane domain, a protease cleavage site, and two cysteine residues, which are the typical characteristics of TNF-alpha gene in mammals and fish. The chemiluminescent (CL) response of rock bream phagocytes was significantly enhanced by pre-incubation with recombinant rbTNF-alpha, when opsonized zymosan was used as a stimulant of the respiratory burst. However, CL enhancing effect of the recombinant rbTNF-alpha was very weak when the respiratory burst activity of phagocytes was triggered with phorbol-12-myristate-13-acetate (PMA) instead of zymosan. These results suggest that rock bream TNF-alpha might have an ability to prime the respiratory burst activity of phagocytes against receptor-mediated phagocytosis inducing stimulants, such as zymosan, but have little ability against stimulants not accompanying receptor-mediated phagocytosis.

  10. Brazilian Propolis: A Natural Product That Improved the Fungicidal Activity by Blood Phagocytes

    PubMed Central

    Possamai, Muryllo Mendes; Honorio-França, Adenilda Cristina; Reinaque, Ana Paula Barcelos; França, Eduardo Luzia; Souto, Paula Cristina de Souza

    2013-01-01

    Natural product incorporation into microcarriers increases the bioavailability of these compounds, consequently improving their therapeutic properties. Natural products, particularly those from bees such as propolis, are widely used in popular medicine. Propolis is a powerful treatment for several diseases. In this context, the present study evaluated the effect of propolis Scaptotrigona sp. and its fractions, alone or adsorbed to polyethylene glycol (PEG) microspheres, on the activity of human phagocytes against Candida albicans. The results show that propolis exerts a stimulatory effect on these cells to assist in combating the fungus, especially as the crude extract is compared with the fractions. However, when incorporated into microspheres, these properties were significantly potentiated. These results suggest that propolis adsorbed onto PEG microspheres has immunostimulatory effects on phagocytes in human blood. Therefore, propolis may potentially be an additional natural product that can be used for a variety of therapies. PMID:23509737

  11. Rotenone Activates Phagocyte NADPH Oxidase through Binding to Its Membrane Subunit gp91phox

    PubMed Central

    Zhou, Hui; Zhang, Feng; Chen, Shih-heng; Zhang, Dan; Wilson, Belinda; Hong, Jau-shyong; Gao, Hui-Ming

    2011-01-01

    Rotenone, a widely used pesticide, reproduces Parkinsonism in rodents and associates with increased risk for Parkinson’s disease. We previously reported rotenone increased superoxide production through stimulating microglial phagocyte NADPH oxidase (PHOX). The present study identified a novel mechanism by which rotenone activates PHOX. Ligand-binding assay revealed that rotenone directly bound to membrane gp91phox, the catalytic subunit of PHOX; such binding was inhibited by diphenyleneiodonium, a PHOX inhibitor with a binding site on gp91phox. Functional studies showed both membrane and cytosolic subunits were required for rotenone-induced superoxide production in cell-free systems, intact phagocytes, and COS7 cells transfected with membrane subunits (gp91phox/p22phox) and cytosolic subunits (p67phox and p47phox). Rotenone-elicited extracellular superoxide release in p47phox-deficient macrophages suggested rotenone enabled to activate PHOX through a p47phox-independent mechanism. Increased membrane translocation of p67phox, elevated binding of p67phox to rotenone-treated membrane fractions, and co-immunoprecipitation of p67phox and gp91phox in rotenone-treated wild-type and p47phox-deficient macrophages indicated p67phox played a critical role in rotenone-induced PHOX activation via its direct interaction with gp91phox. Rac1, a Rho-like small GTPase, enhanced p67phox-gp91phox interaction; Rac1 inhibition decreased rotenone-elicited superoxide release. In conclusion, rotenone directly interacted with gp91phox; such an interaction triggered membrane translocation of p67phox, leading to PHOX activation and superoxide production. PMID:22094225

  12. Activation of the innate immune receptor Dectin-1 upon formation of a “phagocytic synapse”

    PubMed Central

    Goodridge, Helen S.; Reyes, Christopher N.; Becker, Courtney A.; Katsumoto, Tamiko R.; Ma, Jun; Wolf, Andrea J.; Bose, Nandita; Chan, Anissa S. H.; Magee, Andrew S.; Danielson, Michael E.; Weiss, Arthur; Vasilakos, John P.; Underhill, David M.

    2011-01-01

    Innate immune cells must be able to distinguish between direct binding to microbes and detection of components shed from the surface of microbes located at a distance. Dectin-1 is a pattern recognition receptor expressed by myeloid phagocytes (macrophages, dendritic cells and neutrophils) that detects β-glucans in fungal cell walls and triggers direct cellular anti-microbial activity, including phagocytosis and production of reactive oxygen species1, 2. In contrast to inflammatory responses stimulated upon detection of soluble ligands by other pattern recognition receptors, such as Toll-like receptors (TLRs), these responses are only useful when a cell comes into direct contact with a microbe and must not be spuriously activated by soluble stimuli. In this study we show that despite its ability to bind both soluble and particulate β-glucan polymers, Dectin-1 signalling is only activated by particulate β-glucans, which cluster the receptor in synapse-like structures from which regulatory tyrosine phosphatases CD45 and CD148 are excluded (Supplementary Figure 1). The “phagocytic synapse” now provides a model mechanism by which innate immune receptors can distinguish direct microbial contact from detection of microbes at a distance, thereby initiating direct cellular anti-microbial responses only when they are required. PMID:21525931

  13. Sex differences in the phagocytic and migratory activity of microglia and their impairment by palmitic acid.

    PubMed

    Yanguas-Casás, Natalia; Crespo-Castrillo, Andrea; de Ceballos, Maria L; Chowen, Julie A; Azcoitia, Iñigo; Arevalo, Maria Angeles; Garcia-Segura, Luis M

    2018-03-01

    Sex differences in the incidence, clinical manifestation, disease course, and prognosis of neurological diseases, such as autism spectrum disorders or Alzheimer's disease, have been reported. Obesity has been postulated as a risk factor for cognitive decline and Alzheimer's disease and, during pregnancy, increases the risk of autism spectrum disorders in the offspring. Obesity is associated with increased serum and brain levels of free fatty acids, such as palmitic acid, which activate microglial cells triggering a potent inflammatory cascade. In this study, we have determined the effect of palmitic acid in the inflammatory profile, motility, and phagocytosis of primary male and female microglia, both in basal conditions and in the presence of a pro-inflammatory stimulus (interferon-γ). Male microglia in vitro showed higher migration than female microglia under basal and stimulated conditions. In contrast, female microglia had higher basal and stimulated phagocytic activity than male microglia. Palmitic acid did not affect basal migration or phagocytosis, but abolished the migration and phagocytic activity of male and female microglia in response to interferon-γ. These findings extend previous observations of sex differences in microglia and suggest that palmitic acid impairs the protective responses of these cells. © 2017 Wiley Periodicals, Inc.

  14. The effect of core and lanthanide ion dopants in sodium fluoride-based nanocrystals on phagocytic activity of human blood leukocytes

    NASA Astrophysics Data System (ADS)

    Sojka, Bartlomiej; Liskova, Aurelia; Kuricova, Miroslava; Banski, Mateusz; Misiewicz, Jan; Dusinska, Maria; Horvathova, Mira; Ilavska, Silvia; Szabova, Michaela; Rollerova, Eva; Podhorodecki, Artur; Tulinska, Jana

    2017-02-01

    Sodium fluoride-based β-NaLnF4 nanoparticles (NPs) doped with lanthanide ions are promising materials for application as luminescent markers in bio-imaging. In this work, the effect of NPs doped with yttrium (Y), gadolinium (Gd), europium (Eu), thulium (Tm), ytterbium (Yb) and terbium (Tb) ions on phagocytic activity of monocytes and granulocytes and the respiratory burst was examined. The surface functionalization of <10-nm NPs was performed according to our variation of patent pending ligand exchange method that resulted in meso-2,3-dimercaptosuccinic acid (DMSA) molecules on their surface. Y-core-based NCs were doped with Eu ions, which enabled them to be excited with UV light wavelengths. Cultures of human peripheral blood ( n = 8) were in vitro treated with five different concentrations of eight NPs for 24 h. In summary, neither type of nanoparticles is found toxic with respect to conducted test; however, some cause toxic effects (they have statistically significant deviations compared to reference) in some selected doses tested. Both core types of NPs (Y-core and Gd-core) impaired the phagocytic activity of monocytes the strongest, having minimal or none whatsoever influence on granulocytes and respiratory burst of phagocytic cells. The lowest toxicity was observed in Gd-core, Yb, Tm dopants and near-infrared nanoparticles. Clear dose-dependent effect of NPs on phagocytic activity of leukocytes and respiratory burst of cells was observed for limited number of samples.

  15. Activation of cathepsins B and L in mouse lymphosarcoma tissue under the effect of cyclophosphamide is associated with apoptosis induction and infiltration by mononuclear phagocytes.

    PubMed

    Zhanaeva, S Ya; Mel'nikova, E V; Trufakin, V A; Korolenko, T A

    2013-11-01

    We analyzed activities of lysosomal cystein cathepsins B and L in mouse LS lymphosarcoma and its drug-resistant RLS 40 strain and their correlations with the dynamics of the percentage of cells with fragmented DNA and CD14 (+) phagocytes over 3 days after cyclophosphamide injection. LS regression and inhibition of RLS 40 growth after cyclophosphamide injection were paralleled by an increase in cathepsins B and L activities in tumor tissues. The antitumor effect of cyclophosphamide associated with apoptosis intensity and protease activities were significantly higher in LS. Positive correlations between activities of cathepsins B and L and the LS tissue content of cells with fragmented DNA and CD14 (+) phagocytes and negative correlations thereof with tumor weight were detected. It seems that the increase in cathepsins B and L activities in LS tissues was caused by cyclophosphamide induction of apoptosis and depended on the level of tumor cell infiltration with mononuclear phagocytes.

  16. Signaling pathway for phagocyte priming upon encounter with apoptotic cells.

    PubMed

    Nonaka, Saori; Ando, Yuki; Kanetani, Takuto; Hoshi, Chiharu; Nakai, Yuji; Nainu, Firzan; Nagaosa, Kaz; Shiratsuchi, Akiko; Nakanishi, Yoshinobu

    2017-05-12

    The phagocytic elimination of cells undergoing apoptosis is an evolutionarily conserved innate immune mechanism for eliminating unnecessary cells. Previous studies showed an increase in the level of engulfment receptors in phagocytes after the phagocytosis of apoptotic cells, which leads to the enhancement of their phagocytic activity. However, precise mechanisms underlying this phenomenon require further clarification. We found that the pre-incubation of a Drosophila phagocyte cell line with the fragments of apoptotic cells enhanced the subsequent phagocytosis of apoptotic cells, accompanied by an augmented expression of the engulfment receptors Draper and integrin αPS3. The DNA-binding activity of the transcription repressor Tailless was transiently raised in those phagocytes, depending on two partially overlapping signal-transduction pathways for the induction of phagocytosis as well as the occurrence of engulfment. The RNAi knockdown of tailless in phagocytes abrogated the enhancement of both phagocytosis and engulfment receptor expression. Furthermore, the hemocyte-specific RNAi of tailless reduced apoptotic cell clearance in Drosophila embryos. Taken together, we propose the following mechanism for the activation of Drosophila phagocytes after an encounter with apoptotic cells: two partially overlapping signal-transduction pathways for phagocytosis are initiated; transcription repressor Tailless is activated; expression of engulfment receptors is stimulated; and phagocytic activity is enhanced. This phenomenon most likely ensures the phagocytic elimination of apoptotic cells by stimulated phagocytes and is thus considered as a mechanism to prime phagocytes in innate immunity. © 2017 by The American Society for Biochemistry and Molecular Biology, Inc.

  17. Signaling pathway for phagocyte priming upon encounter with apoptotic cells

    PubMed Central

    Ando, Yuki; Kanetani, Takuto; Hoshi, Chiharu; Nakai, Yuji

    2017-01-01

    The phagocytic elimination of cells undergoing apoptosis is an evolutionarily conserved innate immune mechanism for eliminating unnecessary cells. Previous studies showed an increase in the level of engulfment receptors in phagocytes after the phagocytosis of apoptotic cells, which leads to the enhancement of their phagocytic activity. However, precise mechanisms underlying this phenomenon require further clarification. We found that the pre-incubation of a Drosophila phagocyte cell line with the fragments of apoptotic cells enhanced the subsequent phagocytosis of apoptotic cells, accompanied by an augmented expression of the engulfment receptors Draper and integrin αPS3. The DNA-binding activity of the transcription repressor Tailless was transiently raised in those phagocytes, depending on two partially overlapping signal-transduction pathways for the induction of phagocytosis as well as the occurrence of engulfment. The RNAi knockdown of tailless in phagocytes abrogated the enhancement of both phagocytosis and engulfment receptor expression. Furthermore, the hemocyte-specific RNAi of tailless reduced apoptotic cell clearance in Drosophila embryos. Taken together, we propose the following mechanism for the activation of Drosophila phagocytes after an encounter with apoptotic cells: two partially overlapping signal-transduction pathways for phagocytosis are initiated; transcription repressor Tailless is activated; expression of engulfment receptors is stimulated; and phagocytic activity is enhanced. This phenomenon most likely ensures the phagocytic elimination of apoptotic cells by stimulated phagocytes and is thus considered as a mechanism to prime phagocytes in innate immunity. PMID:28325838

  18. Degalactosylated/Desialylated Bovine Colostrum Induces Macrophage Phagocytic Activity Independently of Inflammatory Cytokine Production.

    PubMed

    Uto, Yoshihiro; Kawai, Tomohito; Sasaki, Toshihide; Hamada, Ken; Yamada, Hisatsugu; Kuchiike, Daisuke; Kubo, Kentaro; Inui, Toshio; Mette, Martin; Tokunaga, Ken; Hayakawa, Akio; Go, Akiteru; Oosaki, Tomohiro

    2015-08-01

    Colostrum contains antibodies, such as immunoglobulin G (IgG), immunoglobulin A (IgA) and immunoglobulin M (IgM), and, therefore, has potent immunomodulating activity. In particular, IgA has an O-linked sugar chain similar to that in the group-specific component (Gc) protein, a precursor of the Gc protein-derived macrophage-activating factor (GcMAF). In the present study, we investigated the macrophage-activating effects of degalactosylated/desialylated bovine colostrum. We detected the positive band in degalactosylated/ desialylated bovine colostrum by western blotting using Helix pomatia agglutinin lectin. We also found that degalactosylated/ desialylated bovine colostrum could significantly enhance the phagocytic activity of mouse peritoneal macrophages in vitro and of intestinal macrophages in vivo. Besides, degalactosylated/desialylated bovine colostrum did not mediate the production of inflammatory cytokines such as tumor necrosis factor-α (TNF-α) and interleukin-1β (IL-1β). Similar to the use of GcMAF, degalactosylated/desialylated bovine colostrum can be used as a potential macrophage activator for various immunotherapies. Copyright© 2015 International Institute of Anticancer Research (Dr. John G. Delinassios), All rights reserved.

  19. Characterization of phagocytic hemocytes in Ornithodoros moubata (Acari: Ixodidae).

    PubMed

    Inoue, N; Hanada, K; Tsuji, N; Igarashi, I; Nagasawa, H; Mikami, T; Fujisaki, K

    2001-07-01

    Effects of fetal bovine serum (FBS) and complement on phagocytic activity in Ornithodaros moubata (Murray 1877) hemocytes and protease activity in the hemocytes were examined. At least three morphologically different cell types, granulocytes, plasmatocytes, and prohemocytes, were detected in hemolymph of O. moubata, and granulocytes and plasmatocytes showed phagocytic activity. FBS altered phagocytic activity of granulocytes, and complement affected phagocytic activity of plasmatocytes. Ticks were inoculated with fluorescent polystyrene beads in combination with FBS or complement. The average number of beads in granulocytes was significantly higher in the FBS injected group than the control (P < 0.01). The percentage of bead-ingesting plasmatocytes in complement inoculated ticks was significantly lower than that in heat-inactivated complement inoculated and control ticks (P < 0.05). Proteases of tick hemocytes localized in small granules in the cytoplasm not only in phagocytic hemocytes but also in prohemocytes. Results suggested modulation of tick hemocyte function through serum components, and digestion of phagocytosed foreign bodies in the hemocytes.

  20. Melatonin signaling affects the timing in the daily rhythm of phagocytic activity by the retinal pigment epithelium.

    PubMed

    Laurent, Virgine; Sengupta, Anamika; Sánchez-Bretaño, Aída; Hicks, David; Tosini, Gianluca

    2017-12-01

    Earlier studies in Xenopus have indicated a role for melatonin in the regulation of retinal disk shedding, but the role of melatonin in the regulation of daily rhythm in mammalian disk shedding and phagocytosis is still unclear. We recently produced a series of transgenic mice lacking melatonin receptor type 1 (MT 1 ) or type 2 (MT 2 ) in a melatonin-proficient background and have shown that removal of MT 1 and MT 2 receptors induces significant effects on daily and circadian regulation of the electroretinogram as well as on the viability of photoreceptor cells during aging. In this study we investigated the daily rhythm of phagocytic activity by the retinal pigment epithelium in MT 1 and MT 2 knock-out mice. Our data indicate that in MT 1 and MT 2 knock-out mice the peak of phagocytosis is advanced by 3 h with respect to wild-type mice and occurred in dark rather than after the onset of light, albeit the mean phagocytic activity over the 24-h period did not change among the three genotypes. Nevertheless, this small change in the profile of daily phagocytic rhythms may produce a significant effect on retinal health since MT 1 and MT 2 knock-out mice showed a significant increase in lipofuscin accumulation in the retinal pigment epithelium. Copyright © 2017 Elsevier Ltd. All rights reserved.

  1. Polysialic acid blocks mononuclear phagocyte reactivity, inhibits complement activation, and protects from vascular damage in the retina.

    PubMed

    Karlstetter, Marcus; Kopatz, Jens; Aslanidis, Alexander; Shahraz, Anahita; Caramoy, Albert; Linnartz-Gerlach, Bettina; Lin, Yuchen; Lückoff, Anika; Fauser, Sascha; Düker, Katharina; Claude, Janine; Wang, Yiner; Ackermann, Johannes; Schmidt, Tobias; Hornung, Veit; Skerka, Christine; Langmann, Thomas; Neumann, Harald

    2017-02-01

    Age-related macular degeneration (AMD) is a major cause of blindness in the elderly population. Its pathophysiology is linked to reactive oxygen species (ROS) and activation of the complement system. Sialic acid polymers prevent ROS production of human mononuclear phagocytes via the inhibitory sialic acid-binding immunoglobulin-like lectin-11 (SIGLEC11) receptor. Here, we show that low-dose intravitreal injection of low molecular weight polysialic acid with average degree of polymerization 20 (polySia avDP20) in humanized transgenic mice expressing SIGLEC11 on mononuclear phagocytes reduced their reactivity and vascular leakage induced by laser coagulation. Furthermore, polySia avDP20 prevented deposition of the membrane attack complex in both SIGLEC11 transgenic and wild-type animals. In vitro, polySia avDP20 showed two independent, but synergistic effects on the innate immune system. First, polySia avDP20 prevented tumor necrosis factor-α, vascular endothelial growth factor A, and superoxide production by SIGLEC11-positive phagocytes. Second, polySia avDP20 directly interfered with complement activation. Our data provide evidence that polySia avDP20 ameliorates laser-induced damage in the retina and thus is a promising candidate to prevent AMD-related inflammation and angiogenesis. © 2016 The Authors. Published under the terms of the CC BY 4.0 license.

  2. Consumption of Bifidobacterium lactis Bi-07 by healthy elderly adults enhances phagocytic activity of monocytes and granulocytes.

    PubMed

    Maneerat, Sujira; Lehtinen, Markus J; Childs, Caroline E; Forssten, Sofia D; Alhoniemi, Esa; Tiphaine, Milin; Yaqoob, Parveen; Ouwehand, Arthur C; Rastall, Robert A

    2013-01-01

    Elderly adults have alterations in their gut microbiota and immune functions that are associated with higher susceptibility to infections and metabolic disorders. Probiotics and prebiotics, and their synbiotic combinations are food supplements that have been shown to improve both gut and immune function. The objective of this randomised, double-blind, placebo-controlled, cross-over human clinical trial was to study immune function and the gut microbiota in healthy elderly adults. Volunteers (n 37) consumed prebiotic galacto-oligosaccharides (GOS; 8 g/d), probiotic Bifidobacterium lactis Bi-07 (Bi-07; 10(9) colony-forming units/d), their combination (Bi-07 + GOS) and maltodextrin control (8 g/d) in four 3-week periods separated by 4-week wash-out periods. Immune function was analysed by determining the phagocytic and oxidative burst activity of monocytes and granulocytes, whole-blood response to lipopolysaccharide, plasma chemokine concentrations and salivary IgA levels. Gut microbiota composition and faecal SCFA content were determined using 16S ribosomal RNA fluorescence in situ hybridisation and HPLC, respectively. Primary statistical analyses indicated the presence of carry-over effects and thus measurements from only the first supplementation period were considered valid. Subsequent statistical analysis showed that consumption of Bi-07 improved the phagocytic activity of monocytes (P < 0·001) and granulocytes (P = 0·02). Other parameters were unchanged. We have for the first time shown that the probiotic Bi-07 may provide health benefits to elderly individuals by improving the phagocytic activity of monocytes and granulocytes. The present results also suggest that in the elderly, the effects of some probiotics and prebiotics may last longer than in adults.

  3. Necrotic Cells Actively Attract Phagocytes through the Collaborative Action of Two Distinct PS-Exposure Mechanisms

    PubMed Central

    Li, Zao; Venegas, Victor; Nagaoka, Yuji; Morino, Eri; Raghavan, Prashant; Audhya, Anjon; Nakanishi, Yoshinobu; Zhou, Zheng

    2015-01-01

    Necrosis, a kind of cell death closely associated with pathogenesis and genetic programs, is distinct from apoptosis in both morphology and mechanism. Like apoptotic cells, necrotic cells are swiftly removed from animal bodies to prevent harmful inflammatory and autoimmune responses. In the nematode Caenorhabditis elegans, gain-of-function mutations in certain ion channel subunits result in the excitotoxic necrosis of six touch neurons and their subsequent engulfment and degradation inside engulfing cells. How necrotic cells are recognized by engulfing cells is unclear. Phosphatidylserine (PS) is an important apoptotic-cell surface signal that attracts engulfing cells. Here we observed PS exposure on the surface of necrotic touch neurons. In addition, the phagocytic receptor CED-1 clusters around necrotic cells and promotes their engulfment. The extracellular domain of CED-1 associates with PS in vitro. We further identified a necrotic cell-specific function of CED-7, a member of the ATP-binding cassette (ABC) transporter family, in promoting PS exposure. In addition to CED-7, anoctamin homolog-1 (ANOH-1), the C. elegans homolog of the mammalian Ca2+-dependent phospholipid scramblase TMEM16F, plays an independent role in promoting PS exposure on necrotic cells. The combined activities from CED-7 and ANOH-1 ensure efficient exposure of PS on necrotic cells to attract their phagocytes. In addition, CED-8, the C. elegans homolog of mammalian Xk-related protein 8 also makes a contribution to necrotic cell-removal at the first larval stage. Our work indicates that cells killed by different mechanisms (necrosis or apoptosis) expose a common “eat me” signal to attract their phagocytic receptor(s); furthermore, unlike what was previously believed, necrotic cells actively present PS on their outer surfaces through at least two distinct molecular mechanisms rather than leaking out PS passively. PMID:26061275

  4. The immunomodulatory effect of Zingiber cassumunar ethanolic extract on phagocytic activity, nitrit oxide and reaxtive oxygen intermediate secretions of macrophage in mice

    NASA Astrophysics Data System (ADS)

    Nurkhasanah; Santoso, R. D.; Fauziah, R.

    2017-11-01

    Immunomodulators could protect the body from a variety of infectious agents and boost immunity. Zingiber cassumunar rhizome or bangle potentially showed as an immunomodulator through increasing of macrophage activity in vitro. The objective of the study was to determine the effect of Z. cassumunar rhizome ethanolic extract on phagocytic activity, nitrite oxide (NO) and reactive oxygen intermediate (ROI) secretions in macrophages in vivo. A total of 200 g of Z. cassumunar rhizome was powdered, macerated in 96% ethanol and evaporated to get concentrated extract. Mice were divided into 5 groups as follow: the normal group was given by water only, the negative control group was given by a 0.94% CMC-Na suspension, the treatment groups were given by 250, 500 and 1000 mg/kgBW, respectively, of Z. cassumunar ethanolic extract. The extract was administered orally for 7 days. On the 8th day the mice were injected intraperitoneally 0.7 mg/kg BW of lipopolysaccharide. Four hours later macrophage was isolated. Furthermore, the determination of the phagocytic activity, NO and ROI secretions levels of macrophage were performed. The treatments of 250, 500 and 1000 mg/kg BW of Z. cassumunar ethanolic extract significantly increase the ROI and NO secretions levels (p<0.05), but did not increase the phagocytic activity (p>0.05) of macrophage. Z. cassumunar ethanolic extract have immunomodulatory effect in vivo.

  5. Early decreased TLR2 expression on monocytes is associated with their reduced phagocytic activity and impaired maturation in a porcine polytrauma model

    PubMed Central

    Schimunek, Lukas; Serve, Rafael; Teuben, Michel P. J.; Störmann, Philipp; Auner, Birgit; Woschek, Mathias; Pfeifer, Roman; Horst, Klemens; Simon, Tim-P.; Kalbitz, Miriam; Sturm, Ramona; Pape, Hans-C.; Hildebrand, Frank; Marzi, Ingo

    2017-01-01

    In their post-traumatic course, trauma patients suffering from multiple injuries have a high risk for immune dysregulation, which may contribute to post-injury complications and late mortality. Monocytes as specific effector cells of the innate immunity play a crucial role in inflammation. Using their Pattern Recognition Receptors (PRRs), notably Toll-Like Receptors (TLR), the monocytes recognize pathogens and/or pathogen-associated molecular patterns (PAMPs) and organize their clearance. TLR2 is the major receptor for particles of gram-positive bacteria, and initiates their phagocytosis. Here, we investigated the phagocytizing capability of monocytes in a long-term porcine severe trauma model (polytrauma, PT) with regard to their TLR2 expression. Polytrauma consisted of femur fracture, unilateral lung contusion, liver laceration, hemorrhagic shock with subsequent resuscitation and surgical fracture fixation. After induction of PT, peripheral blood was withdrawn before (-1 h) and directly after trauma (0 h), as well as 3.5 h, 5.5 h, 24 h and 72 h later. CD14+ monocytes were identified and the expression levels of H(S)LA-DR and TLR2 were investigated by flow cytometry. Additionally, the phagocytizing activity of monocytes by applying S. aureus particles labelled with pHrodo fluorescent reagent was also assessed by flow cytometry. Furthermore, blood samples from 10 healthy pigs were exposed to a TLR2-neutralizing antibody and subsequently to S. aureus particles. Using flow cytometry, phagocytizing activity was determined. P below 0.05 was considered significant. The number of CD14+ monocytes of all circulating leukocytes remained constant during the observational time period, while the percentage of CD14+H(S)LA-DR+ monocytes significantly decreased directly, 3.5 h and 5.5 h after trauma. The percentage of TLR2+ expressing cells out of all monocytes significantly decreased directly, 3.5 h and 5.5 h after trauma. The percentage of phagocytizing monocytes decreased

  6. Augmented Passive Immunotherapy with P4 Peptide Improves Phagocyte Activity in Severe Sepsis.

    PubMed

    Morton, Ben; Mitsi, Elena; Pennington, Shaun H; Reiné, Jesús; Wright, Angela D; Parker, Robert; Welters, Ingeborg D; Blakey, John D; Rajam, Gowrisankar; Ades, Edwin W; Ferreira, Daniela M; Wang, Duolao; Kadioglu, Aras; Gordon, Stephen B

    2016-12-01

    Antimicrobial resistance threatens to undermine treatment of severe infection; new therapeutic strategies are urgently needed. Preclinical work shows that augmented passive immunotherapy with P4 peptide increases phagocytic activity and shows promise as a novel therapeutic strategy. Our aim was to determine ex vivo P4 activity in a target population of patients admitted to critical care with severe infection. We prospectively recruited UK critical care unit patients with severe sepsis and observed clinical course (≥3 months postdischarge). Blood samples were taken in early (≤48 h postdiagnosis, n = 54), latent (7 days postdiagnosis, n = 39), and convalescent (3-6 months postdiagnosis, n = 18) phases of disease. The primary outcome measure was killing of opsonized Streptococcus pneumoniae by neutrophils with and without P4 peptide stimulation. We also used a flow cytometric whole blood phagocytosis assay to determine phagocyte association and oxidation of intraphagosomal reporter beads. P4 peptide increased neutrophil killing of opsonized pneumococci by 8.6% (confidence interval 6.35-10.76, P < 0.001) in all phases of sepsis, independent of infection source and microbiological status. This represented a 54.9% increase in bacterial killing compared with unstimulated neutrophils (15.6%) in early phase samples. Similarly, P4 peptide treatment significantly increased neutrophil and monocyte intraphagosomal reporter bead association and oxidation, independent of infection source. We have extended preclinical work to demonstrate that P4 peptide significantly increases phagocytosis and bacterial killing in samples from a target patient population with severe sepsis. This study supports the rationale for augmented passive immunotherapy as a therapeutic strategy in severe sepsis.

  7. A pharmacologic study on the mechanism of action of Kakkon-to: body temperature elevation and phagocytic activation of macrophages in dogs.

    PubMed

    Muraoka, Kenichi; Yoshida, Satoshi; Hasegawa, Kazumasa; Nakanishi, Nobuo; Fukuzawa, Isao; Tomita, Akio; Cyong, Jong Chol

    2004-10-01

    The phagocytic activity of macrophages as a novel approach to scientific elucidation of the effects of Chinese medicines was studied through administration of a kampo preparation, by measuring the rise in body temperature, which is thought to stimulate innate defensive functions of organisms and enhance the immune systems. Using dogs as experimental models, a rise in body temperature following administration of Kakkon-to was observed, and the average number and average rate of phagocytosis of macrophages in blood using latex micro-particles was investigated. The body temperature of the treated animals significantly increased 30 minutes after administration (p<0.01), and remained elevated for more than 5 hours. A comparison of body temperatures before and after administration showed significant increases over controls from 1 to 11 hours, p<0.01; and at 12 hours, p<0.05 after administration. The average number and the average rate of phagocytosis were significantly increased 1 (p<0.05) and 2 (p<0.01) hours after administration. The mean number of phagocytized cells significantly increased (p<0.05) at 1 hour after administration compared with that before administration, and the mean phagocytic rate also increased significantly (p<0.01) 2 hours after administration. Increases (p<0.01) in both the rate of phagocytosis and the number of cells phagocytized were found at every measurement point from 2 to 24 hours after administration. Significant increases (p<0.01) were also observed in both the rate of phagocytosis and the number of cells phagocytized 3 hours after administration, when compared with the control group. This paper demonstrates that ingestion of Kakkon-to not only increases the body temperature but also enhances the phagocytic activity of macrophages, an in vivo defense mechanism, suggesting that Kakkon-to contributes to the suppression of multiplication of common cold viruses and influenza viruses, which consequently results in improvement of various

  8. Molecular Determinants in Phagocyte-Bacteria Interactions.

    PubMed

    Kaufmann, Stefan H E; Dorhoi, Anca

    2016-03-15

    Phagocytes are crucial for host defense against bacterial pathogens. As first demonstrated by Metchnikoff, neutrophils and mononuclear phagocytes share the capacity to engulf, kill, and digest microbial invaders. Generally, neutrophils focus on extracellular, and mononuclear phagocytes on intracellular, pathogens. Reciprocally, extracellular pathogens often capitalize on hindering phagocytosis and killing of phagocytes, whereas intracellular bacteria frequently allow their engulfment and then block intracellular killing. As foreseen by Metchnikoff, phagocytes become highly versatile by acquiring diverse phenotypes, but still retaining some plasticity. Further, phagocytes engage in active crosstalk with parenchymal and immune cells to promote adjunctive reactions, including inflammation, tissue healing, and remodeling. This dynamic network allows the host to cope with different types of microbial invaders. Here we present an update of molecular and cellular mechanisms underlying phagocyte functions in antibacterial defense. We focus on four exemplary bacteria ranging from an opportunistic extracellular to a persistent intracellular pathogen. Copyright © 2016 Elsevier Inc. All rights reserved.

  9. Chloride flux in phagocytes.

    PubMed

    Wang, Guoshun

    2016-09-01

    Phagocytes, such as neutrophils and macrophages, engulf microbes into phagosomes and launch chemical attacks to kill and degrade them. Such a critical innate immune function necessitates ion participation. Chloride, the most abundant anion in the human body, is an indispensable constituent of the myeloperoxidase (MPO)-H2 O2 -halide system that produces the potent microbicide hypochlorous acid (HOCl). It also serves as a balancing ion to set membrane potentials, optimize cytosolic and phagosomal pH, and regulate phagosomal enzymatic activities. Deficient supply of this anion to or defective attainment of this anion by phagocytes is linked to innate immune defects. However, how phagocytes acquire chloride from their residing environment especially when they are deployed to epithelium-lined lumens, and how chloride is intracellularly transported to phagosomes remain largely unknown. This review article will provide an overview of chloride protein carriers, potential mechanisms for phagocytic chloride preservation and acquisition, intracellular chloride supply to phagosomes for oxidant production, and methods to measure chloride levels in phagocytes and their phagosomes. © 2016 John Wiley & Sons A/S. Published by John Wiley & Sons Ltd.

  10. Flowers of Clerodendrum volubile exacerbate immunomodulation by suppressing phagocytic oxidative burst and modulation of COX-2 activity.

    PubMed

    Erukainure, Ochuko L; Mesaik, Ahmed M; Muhammad, Aliyu; Chukwuma, Chika I; Manhas, Neha; Singh, Parvesh; Aremu, Oluwole S; Islam, Md Shahidul

    2016-10-01

    The immunomodulatory potentials of the crude methanolic extract and fractions [n-hexane (Hex), n-dichloromethane (DCM), ethyl acetate (EtOAc) and n-butanol (BuOH)] of Clerodendrum volubile flowers were investigated on whole blood phagocytic oxidative burst using luminol-amplified chemiluminescence technique. They were also investigated for their free radicals scavenging activities. The DCM fraction showed significant (p<0.05) anti-oxidative burst and free radical scavenging activities indicating high immunomodulatory and antioxidant potencies respectively. Cytotoxicity assay of the DCM fraction revealed a cytotoxic effect on CC-1 normal cell line. GCMS analysis revealed the presence of triacetin; 3,6-dimethyl-3-octanol; 2R - Acetoxymethyl-1,3,3-trimethtyl - 4t - (3-methyl-2-buten-1-yl) - 1c - cyclohexanol and Stigmastan - 3,5-diene in DCM fraction. These compounds were docked with the active sites of cyclooxygenase-2 (COX-2). Triacetin, 3,6-dimethyl-3-Octanol, and 2R-Acetoxymethyl-1,3,3-trimethtyl-4t-(3-methyl-2-buten-1-yl)-1c-cyclohexanol docked comfortably with COX-2 with good scoring function (-CDocker energy) indicating their inhibitory potency against COX-2. 3,6-dimethyl-3-Octanol, displayed the lowest predicted free energy of binding (-21.4kcalmol -1 ) suggesting its stronger interaction with COX-2, this was followed by 2R - Acetoxymethyl-1, 3, 3-trimethtyl-4t-(3-methyl-2-buten-1-yl)-1c-cyclhexanol (BE=-20.5kcalmol -1 ), and triacetin (BE=-10.9kcalmol -1 ). Stigmastan - 3,5-diene failed to dock with COX-2. The observed suppressive effect of the DCM fraction of C. volubile flower methanolic extract on phagocytic oxidative burst indicates an immunomodulatory potential. This is further reflected in its free scavenging activities and synergetic modulation of COX-2 activities by its identified compounds in silico. Copyright © 2016 Elsevier Masson SAS. All rights reserved.

  11. Activation of phagocytic activity in astrocytes by reduced expression of the inflammasome component ASC and its implication in a mouse model of Alzheimer disease.

    PubMed

    Couturier, Julien; Stancu, Ilie-Cosmin; Schakman, Olivier; Pierrot, Nathalie; Huaux, François; Kienlen-Campard, Pascal; Dewachter, Ilse; Octave, Jean-Noël

    2016-01-27

    The proinflammatory cytokine interleukin-1β (IL-1β) is overexpressed in Alzheimer disease (AD) as a key regulator of neuroinflammation. Amyloid-β (Aβ) peptide triggers activation of inflammasomes, protein complexes responsible for IL-1β maturation in microglial cells. Downregulation of NALP3 (NACHT, LRR, and PYD domains-containing protein 3) inflammasome has been shown to decrease amyloid load and rescue cognitive deficits in a mouse model of AD. Whereas activation of inflammasome in microglial cells has been described in AD, no data are currently available concerning activation of inflammasome in astrocytes, although they are involved in inflammatory response and phagocytosis. Here, by targeting the inflammasome adaptor protein ASC (apoptosis-associated speck-like protein containing a CARD domain), we investigated the influence of activation of the inflammasome on the phagocytic activity of astrocytes. We used an ASC knockout mouse model, as ASC is a central protein in the inflammasome, acting as an adaptor and stabilizer of the complex and thus critical for its activation. Lipopolysaccharide (LPS)-primed primary cultures of astrocytes from newborn mice were utilized to evaluate Aβ-induced inflammasome activation by measuring IL-1β release by ECLIA (electro-chemiluminescence immunoassay). Phagocytosis efficiency was measured by incorporation of bioparticles, and the release of the chemokine CCL3 (C-C motif ligand 3) was measured by ECLIA. ASC mice were crossbred with 5xFAD (familial Alzheimer disease) mice and tested for spatial reference memory using the Morris water maze (MWM) at 7-8 months of age. Amyloid load and CCL3 were quantified by thioflavine S staining and quantitative real-time polymerase chain reaction (qRT-PCR), respectively. Cultured astrocytes primed with LPS and treated with Aβ showed an ASC-dependent production of IL-1β resulting from inflammasome activation mediated by Aβ phagocytosis and cathepsin B enzymatic activity. ASC

  12. Innate immune response during Yersinia infection: critical modulation of cell death mechanisms through phagocyte activation.

    PubMed

    Bergsbaken, Tessa; Cookson, Brad T

    2009-11-01

    Yersinia pestis, the etiological agent of plague, is one of the most deadly pathogens on our planet. This organism shares important attributes with its ancestral progenitor, Yersinia pseudotuberculosis, including a 70-kb virulence plasmid, lymphotropism during growth in the mammalian host, and killing of host macrophages. Infections with both organisms are biphasic, where bacterial replication occurs initially with little inflammation, followed by phagocyte influx, inflammatory cytokine production, and tissue necrosis. During infection, plasmid-encoded attributes facilitate bacterial-induced macrophage death, which results from two distinct processes and corresponds to the inflammatory crescendo observed in vivo: Naïve cells die by apoptosis (noninflammatory), and later in infection, activated macrophages die by pyroptosis (inflammatory). The significance of this redirected cell death for the host is underscored by the importance of phagocyte activation for immunity to Yersinia and the protective role of pyroptosis during host responses to anthrax lethal toxin and infections with Francisella, Legionella, Pseudomonas, and Salmonella. The similarities of Y. pestis and Y. pseudotuberculosis, including conserved, plasmid-encoded functions inducing at least two distinct mechanisms of cell death, indicate that comparative studies are revealing about their critical pathogenic mechanism(s) and host innate immune responses during infection. Validation of this idea and evidence of similar interactions with the host immune system are provided by Y. pseudotuberculosis-priming, cross-protective immunity against Y. pestis. Despite these insights, additional studies indicate much remains to be understood concerning effective host responses against Yersinia, including chromosomally encoded attributes that also contribute to bacterial evasion and modulation of innate and adaptive immune responses.

  13. Phagocytes in cell suspensions of human colon mucosa.

    PubMed Central

    Beeken, W; Northwood, I; Beliveau, C; Gump, D

    1987-01-01

    Because little is known of the phagocytes of the human colon we enumerated these cells in mucosal suspensions and studied their phagocytic activity. Phagocyte rich suspensions were made by EDTA collagenase dissociation followed by elutriation centrifugation. Phagocytosis was evaluated by measuring cellular radioactivity after incubation of phagocytes with 3H-adenine labelled E coli ON2 and checked microscopically. Dissociation of normal mucosa from colorectal neoplasms yielded means of 1.9 X 10(6) eosinophils, 1.4 X 10(6) macrophages and 2 X 10(5) neutrophils per gram of mucosa. Visually normal mucosa of inflammatory states yielded 2.2 X 10(6) eosinophils, 2.3 X 10(6) macrophages and 7 X 10(5) neutrophils per gram of mucosa. Phagocyte rich suspensions of normal mucosa from tumour patients phagocytosed 21.8% of a pool of opsonised tritiated E coli ON2 and by microscopy 100% of mucosal neutrophils ingested bacteria, 83% of eosinophils were phagocytic, and 53% of macrophages contained bacteria. These results suggest that in the human colonic mucosa, the eosinophil is more abundant than the macrophage and the per cent of those cells exhibiting phagocytosis is intermediate between that of the macrophage and the neutrophil. Thus these three types of cells are actively phagocytic and share the potential for a major role in host defence against invasive enteric bacteria. PMID:3666566

  14. Phagocyte dysfunction, tissue aging and degeneration

    PubMed Central

    2013-01-01

    Immunologically-silent phagocytosis of apoptotic cells is critical to maintaining tissue homeostasis and innate immune balance. Aged phagocytes reduce their functional activity, leading to accumulation of unphagocytosed debris, chronic sterile inflammation and exacerbation of tissue aging and damage. Macrophage dysfunction plays an important role in immunosenescence. Microglial dysfunction has been linked to age-dependent neurodegenerations. Retinal pigment epithelial (RPE) cell dysfunction has been implicated in the pathogenesis of age-related macular degeneration (AMD). Despite several reports on the characterization of aged phagocytes, the role of phagocyte dysfunction in tissue aging and degeneration is yet to be fully appreciated. Lack of knowledge of molecular mechanisms by which aging reduces phagocyte function has hindered our capability to exploit the therapeutic potentials of phagocytosis for prevention or delay of tissue degeneration. This review summarizes our current knowledge of phagocyte dysfunction in aged tissues and discusses possible links to age-related diseases. We highlight the challenges to decipher the molecular mechanisms, present new research approaches and envisage future strategies to prevent phagocyte dysfunction, tissue aging and degeneration. PMID:23748186

  15. Phagocyte dysfunction, tissue aging and degeneration.

    PubMed

    Li, Wei

    2013-09-01

    Immunologically-silent phagocytosis of apoptotic cells is critical to maintaining tissue homeostasis and innate immune balance. Aged phagocytes reduce their functional activity, leading to accumulation of unphagocytosed debris, chronic sterile inflammation and exacerbation of tissue aging and damage. Macrophage dysfunction plays an important role in immunosenescence. Microglial dysfunction has been linked to age-dependent neurodegenerations. Retinal pigment epithelial (RPE) cell dysfunction has been implicated in the pathogenesis of age-related macular degeneration (AMD). Despite several reports on the characterization of aged phagocytes, the role of phagocyte dysfunction in tissue aging and degeneration is yet to be fully appreciated. Lack of knowledge of molecular mechanisms by which aging reduces phagocyte function has hindered our capability to exploit the therapeutic potentials of phagocytosis for prevention or delay of tissue degeneration. This review summarizes our current knowledge of phagocyte dysfunction in aged tissues and discusses possible links to age-related diseases. We highlight the challenges to decipher the molecular mechanisms, present new research approaches and envisage future strategies to prevent phagocyte dysfunction, tissue aging and degeneration. Copyright © 2013 Elsevier B.V. All rights reserved.

  16. Listeriolysin O Membrane Damaging Activity Involves Arc Formation and Lineaction -- Implication for Listeria monocytogenes Escape from Phagocytic Vacuole

    PubMed Central

    Ruan, Yi; Rezelj, Saša; Bedina Zavec, Apolonija; Anderluh, Gregor; Scheuring, Simon

    2016-01-01

    Listeriolysin-O (LLO) plays a crucial role during infection by Listeria monocytogenes. It enables escape of bacteria from phagocytic vacuole, which is the basis for its spread to other cells and tissues. It is not clear how LLO acts at phagosomal membranes to allow bacterial escape. The mechanism of action of LLO remains poorly understood, probably due to unavailability of suitable experimental tools that could monitor LLO membrane disruptive activity in real time. Here, we used high-speed atomic force microscopy (HS-AFM) featuring high spatio-temporal resolution on model membranes and optical microscopy on giant unilamellar vesicles (GUVs) to investigate LLO activity. We analyze the assembly kinetics of toxin oligomers, the prepore-to-pore transition dynamics and the membrane disruption in real time. We reveal that LLO toxin efficiency and mode of action as a membrane-disrupting agent varies strongly depending on the membrane cholesterol concentration and the environmental pH. We discovered that LLO is able to form arc pores as well as damage lipid membranes as a lineactant, and this leads to large-scale membrane defects. These results altogether provide a mechanistic basis of how large-scale membrane disruption leads to release of Listeria from the phagocytic vacuole in the cellular context. PMID:27104344

  17. Low-Dose Curcumin Stimulates Proliferation, Migration and Phagocytic Activity of Olfactory Ensheathing Cells

    PubMed Central

    Tello Velasquez, Johana; Watts, Michelle E.; Todorovic, Michael; Nazareth, Lynnmaria; Pastrana, Erika; Diaz-Nido, Javier; Lim, Filip; Ekberg, Jenny A. K.; Quinn, Ronald J.; John, James A. St

    2014-01-01

    One of the promising strategies for neural repair therapies is the transplantation of olfactory ensheathing cells (OECs) which are the glial cells of the olfactory system. We evaluated the effects of curcumin on the behaviour of mouse OECs to determine if it could be of use to further enhance the therapeutic potential of OECs. Curcumin, a natural polyphenol compound found in the spice turmeric, is known for its anti-cancer properties at doses over 10 µM, and often at 50 µM, and it exerts its effects on cancer cells in part by activation of MAP kinases. In contrast, we found that low-dose curcumin (0.5 µM) applied to OECs strikingly modulated the dynamic morphology, increased the rate of migration by up to 4-fold, and promoted significant proliferation of the OECs. Most dramatically, low-dose curcumin stimulated a 10-fold increase in the phagocytic activity of OECs. All of these potently stimulated behavioural characteristics of OECs are favourable for neural repair therapies. Importantly, low-dose curcumin gave a transient activation of p38 kinases, which is in contrast to the high dose curcumin effects on cancer cells in which these MAP kinases tend to undergo prolonged activation. Low-dose curcumin mediated effects on OECs demonstrate cell-type specific stimulation of p38 and ERK kinases. These results constitute the first evidence that low-dose curcumin can modulate the behaviour of olfactory glia into a phenotype potentially more favourable for neural repair and thereby improve the therapeutic use of OECs for neural repair therapies. PMID:25360677

  18. The disintegrin, trimucrin, suppresses LPS-induced activation of phagocytes primarily through blockade of NF-κB and MAPK activation.

    PubMed

    Hung, Yu-Chun; Hsu, Chun-Chieh; Chung, Ching-Hu; Huang, Tur-Fu

    2016-07-01

    In addition to antiplatelet activity, disintegrin, a small-mass RGD-containing polypeptide, has been shown to exert anti-inflammatory effects but the mechanism involved remains unclear. In this study, we report that trimucrin, a disintegrin from the venom of Trimeresurus mucrosquamatus, inhibits lipopolysaccharide (LPS)-induced stimulation of THP-1 and RAW 264.7 cells. We also investigate the underlying mechanism. Trimucrin decreased the release of proinflammatory cytokines including tumor necrosis factor α (TNFα), interleukin-6 (IL-6), nitric oxide, and reactive oxygen species (ROS), and inhibited the adhesion and migration of LPS-activated phagocytes. Trimucrin significantly blocked the expression of nuclear factor kappaB (NF-κB)-related downstream inducible enzymes such as inducible nitric oxide synthase (iNOS) and COX-2. In addition, its anti-inflammatory effect was associated with the decreased mitogen-activated protein kinase (MAPK) phosphorylation. Furthermore, trimucrin concentration dependently inhibited LPS-induced phosphorylation of focal adhesion kinase (FAK), PI3K, and Akt. Trimucrin also reversed the DNA-binding activity of NF-κB by suppressing the LPS-induced nuclear translocation of p65 and the cytosolic IκB release. Flow cytometric analyses showed that trimucrin bound to cells in a concentration-dependent manner. The anti-αVβ3 mAb also specifically decreased the binding of fluorescein isothiocyanate (FITC)-conjugated trimucrin. Binding assays demonstrated that integrin αVβ3 was the binding site for trimucrin on THP-1 and RAW 264.7 cells. In conclusion, we showed that trimucrin decreases the inflammatory reaction through the attenuation of iNOS expression and nitric oxide (NO) production by blocking MAP kinase and the NF-κB activation in LPS-stimulated THP-1 and RAW 264.7 cells.

  19. CpG- and LPS-activated MAPK signaling in in vitro cultured salmon (Salmo salar) mononuclear phagocytes.

    PubMed

    Iliev, Dimitar B; Hansen, Tom; Jørgensen, Sven Martin; Krasnov, Aleksei; Jørgensen, Jorunn B

    2013-10-01

    The Mitogen-activated protein kinases (MAPK) are involved in transmitting intracellular signals downstream of diverse cell surface receptors and mediate the response to ligands such as growth factors, hormones and cytokines. In addition, MAPK are critically involved in the innate immune response to pathogen-derived substances, commonly referred to as pathogen-associated molecular patterns (PAMPs), such as bacterial lipopolysaccharide (LPS) and bacterial DNA rich in CpG dinucleotides. Currently, a great deal of knowledge is available about the involvement of MAPK in the innate immune response to PAMPs in mammals; however, little is known about the role of the different MAPK classes in the immune response to PAMPs in lower vertebrates. In the current study, p38 phosphorylation was induced by CpG oligonucleotides (ODNs) and LPS in primary salmon mononuclear phagocytes. Pre-treatment of the cells with a p38 inhibitor (SB203580) blocked the PAMP-induced p38 activity and suppressed the upregulation of most of the CpG- and LPS-induced transcripts highlighting the role of this kinase in the salmon innate immune response to PAMPs. In contrast to p38, the phosphorylation of extracellular signal-regulated kinase (ERK), a MAPK involved primarily in response to mitogens, was high in resting cells and, surprisingly, incubation with both CpG and control ODNs downregulated the phospho-ERK levels independently of p38 activation. The basal phospho-ERK level and the CpG-inducible p38 phosphorylation were greatly influenced by the length of in vitro incubation. The basal phospho-ERK level increased gradually throughout a 5-day culture period and was PI3K-dependent as demonstrated by its sensitivity to Wortmannin suggesting it is influenced by growth factors. Overall these data indicate that both basal and PAMP-induced activity of MAPKs might be greatly influenced by the differentiation status of salmon mononuclear phagocytes. Copyright © 2013. Published by Elsevier Ltd.

  20. [Effect of general magnetotherapy on specific activity of blood phagocytes in patients with ischemic heart disease].

    PubMed

    Ishutin, I S; Klemenkov, S V; Lesovskaia, M I; Spiridonova, M S; Krotova, T K; Ishutin, E I; Tsyganova, O B

    2007-01-01

    In general magnetotherapy for patients with hyporeactive phagocytes (less than 67% from the level of normal chelicoluminescent response) the adequate level of magnetic induction is 1 mT, for patients with normoreactive phagocytes--0.5 mT and for patients with hyperreactive phagocytes (more than 133% from the level of normal chelicoluminescent response)--0.75 mT daily.

  1. Grouper (Epinephelus coioides) IL-34/MCSF2 and MCSFR1/MCSFR2 were involved in mononuclear phagocytes activation against Cryptocaryon irritans infection.

    PubMed

    Mo, Ze-Quan; Li, Yan-Wei; Zhou, Ling; Li, An-Xing; Luo, Xiao-Chun; Dan, Xue-Ming

    2015-03-01

    MCSF and its well-known receptor MCSFR had been well studied in humans, regulating the differentiation, proliferation, and survival of the mononuclear phagocyte system. IL-34, which is an alternative ligand of MCSF receptor, was recently identified as a novel cytokine and functionally overlaps with MCSF. However, the functional study of these receptors and their ligands in fish are largely unknown. In the present study, the cDNA of two potential grouper MCSFR ligands have been cloned, EcIL-34 (657 bp) and EcMCSF2 (804 bp), as well as an additional copy of grouper MCSFR, EcMCSFR2 (3141 bp). Sequence analysis showed that these three molecules had higher identities with other fish counterparts compared to mammals and their conserved structures and important functional residues were also analyzed. Tissue distribution analysis showed that EcIL-34 is dominant in brain, gill and spleen compared to EcMCSF2, which is dominant in head kidney, trunk kidney, skin, heart and muscle. EcMCSFR1 was dominant in the most tissues except head kidney and liver compared to EcMCSFR2. The different tissue distribution patterns of these two grouper MCSF receptors and their two ligands indicate the different mononuclear phagocyte differentiation and activation modes in different tissues. In Cryptocaryon irritans infected grouper, EcIL-34 and EcMCSFR2 were the most strongly up-regulated ligand and receptor in the infected sites, gill and skin. Their up-regulation confirmed the proliferation and activation of phagocytes in C. irritans infected sites, which would improve the antigen presentation and elicit the host local specific immune response. In C. irritans infected grouper head kidney, both ligands EcIL-34 and EcMCSF2 (especially EcMCSF2) were up-regulated, but both receptors EcMCSFR1 and EcMCSFR2 were down-regulated, which indicated that the phagocytes differentiation and proliferation may have occurred in this hemopoietic organ, and after that they migrated to the infected cites. The

  2. Microglia in Glia-Neuron Co-cultures Exhibit Robust Phagocytic Activity Without Concomitant Inflammation or Cytotoxicity.

    PubMed

    Adams, Alexandra C; Kyle, Michele; Beaman-Hall, Carol M; Monaco, Edward A; Cullen, Matthew; Vallano, Mary Lou

    2015-10-01

    A simple method to co-culture granule neurons and glia from a single brain region is described, and microglia activation profiles are assessed in response to naturally occurring neuronal apoptosis, excitotoxin-induced neuronal death, and lipopolysaccharide (LPS) addition. Using neonatal rat cerebellar cortex as a tissue source, glial proliferation is regulated by omission or addition of the mitotic inhibitor cytosine arabinoside (AraC). After 7-8 days in vitro, microglia in AraC(-) cultures are abundant and activated based on their amoeboid morphology, expressions of ED1 and Iba1, and ability to phagocytose polystyrene beads and the majority of neurons undergoing spontaneous apoptosis. Microglia and phagocytic activities are sparse in AraC(+) cultures. Following exposure to excitotoxic kainate concentrations, microglia in AraC(-) cultures phagocytose most dead neurons within 24 h without exacerbating neuronal loss or mounting a strong or sustained inflammatory response. LPS addition induces a robust inflammatory response, based on microglial expressions of TNF-α, COX-2 and iNOS proteins, and mRNAs, whereas these markers are essentially undetectable in control cultures. Thus, the functional effector state of microglia is primed for phagocytosis but not inflammation or cytotoxicity even after kainate exposure that triggers death in the majority of neurons. This model should prove useful in studying the progressive activation states of microglia and factors that promote their conversion to inflammatory and cytotoxic phenotypes.

  3. Intestinal Mononuclear Phagocytes in Health and Disease.

    PubMed

    Sanders, Theodore J; Yrlid, Ulf; Maloy, Kevin J

    2017-01-01

    The intestine is the tissue of the body with the highest constitutive exposure to foreign antigen and is also a common entry portal for many local and systemic pathogens. Therefore, the local immune system has the unenviable task of balancing efficient responses to dangerous pathogens with tolerance toward beneficial microbiota and food antigens. As in most tissues, the decision between tolerance and immunity is critically governed by the activity of local myeloid cells. However, the unique challenges posed by the intestinal environment have necessitated the development of several specialized mononuclear phagocyte populations with distinct phenotypic and functional characteristics that have vital roles in maintaining barrier function and immune homeostasis in the intestine. Intestinal mononuclear phagocyte populations, comprising dendritic cells and macrophages, are crucial for raising appropriate active immune responses against ingested pathogens. Recent technical advances, including microsurgical approaches allowing collection of cells migrating in intestinal lymph, intravital microscopy, and novel gene-targeting approaches, have led to clearer distinctions between mononuclear phagocyte populations in intestinal tissue. In this review, we present an overview of the various subpopulations of intestinal mononuclear phagocytes and discuss their phenotypic and functional characteristics. We also outline their roles in host protection from infection and their regulatory functions in maintaining immune tolerance toward beneficial intestinal antigens.

  4. Nanoparticles of barium induce apoptosis in human phagocytes.

    PubMed

    Mores, Luana; França, Eduardo Luzia; Silva, Núbia Andrade; Suchara, Eliane Aparecida; Honorio-França, Adenilda Cristina

    2015-01-01

    Nutrients and immunological factors of breast milk are essential for newborn growth and the development of their immune system, but this secretion can contain organic and inorganic toxins such as barium. Colostrum contamination with barium is an important issue to investigate because this naturally occurring element is also associated with human activity and industrial pollution. The study evaluated the administration of barium nanoparticles to colostrum, assessing the viability and functional activity of colostral mononuclear phagocytes. Colostrum was collected from 24 clinically healthy women (aged 18-35 years). Cell viability, superoxide release, intracellular Ca(2+) release, and phagocyte apoptosis were analyzed in the samples. Treatment with barium lowered mononuclear phagocyte viability, increased superoxide release, and reduced intracellular calcium release. In addition, barium increased cell death by apoptosis. These data suggest that nanoparticles of barium in colostrum are toxic to cells, showing the importance of avoiding exposure to this element.

  5. Reactivity of airway phagocytes during the development of acute pneumonia under conditions of stimulation of mononuclear phagocyte system with zymosan.

    PubMed

    Makarova, O P

    2008-12-01

    Pneumonia was induced in (CBA x C57Bl)F1 mice under conditions of stimulation of the mononuclear phagocyte system with zymosan. The number of neutrophils in airways increased after 3 days; by day 14, the number of cells in the bronchoalveolar lavage fluid further increased due to migration of macrophages. After zymosan prestimulation, the number and functional activity of neutrophils during the early period of inflammation (3 days) did not change, but the increase in phagocytic activity of macrophages was inhibited by 20%. By day 14, the effect of prestimulation manifested in 4.5-fold decreased capacity of neutrophils and macrophages to reduce NBT.

  6. Temporary microglia-depletion after cosmic radiation modifies phagocytic activity and prevents cognitive deficits.

    PubMed

    Krukowski, Karen; Feng, Xi; Paladini, Maria Serena; Chou, Austin; Sacramento, Kristen; Grue, Katherine; Riparip, Lara-Kirstie; Jones, Tamako; Campbell-Beachler, Mary; Nelson, Gregory; Rosi, Susanna

    2018-05-18

    Microglia are the main immune component in the brain that can regulate neuronal health and synapse function. Exposure to cosmic radiation can cause long-term cognitive impairments in rodent models thereby presenting potential obstacles for astronauts engaged in deep space travel. The mechanism/s for how cosmic radiation induces cognitive deficits are currently unknown. We find that temporary microglia depletion, one week after cosmic radiation, prevents the development of long-term memory deficits. Gene array profiling reveals that acute microglia depletion alters the late neuroinflammatory response to cosmic radiation. The repopulated microglia present a modified functional phenotype with reduced expression of scavenger receptors, lysosome membrane protein and complement receptor, all shown to be involved in microglia-synapses interaction. The lower phagocytic activity observed in the repopulated microglia is paralleled by improved synaptic protein expression. Our data provide mechanistic evidence for the role of microglia in the development of cognitive deficits after cosmic radiation exposure.

  7. Nanoparticles of barium induce apoptosis in human phagocytes

    PubMed Central

    Mores, Luana; França, Eduardo Luzia; Silva, Núbia Andrade; Suchara, Eliane Aparecida; Honorio-França, Adenilda Cristina

    2015-01-01

    Purpose Nutrients and immunological factors of breast milk are essential for newborn growth and the development of their immune system, but this secretion can contain organic and inorganic toxins such as barium. Colostrum contamination with barium is an important issue to investigate because this naturally occurring element is also associated with human activity and industrial pollution. The study evaluated the administration of barium nanoparticles to colostrum, assessing the viability and functional activity of colostral mononuclear phagocytes. Methods Colostrum was collected from 24 clinically healthy women (aged 18–35 years). Cell viability, superoxide release, intracellular Ca2+ release, and phagocyte apoptosis were analyzed in the samples. Results Treatment with barium lowered mononuclear phagocyte viability, increased superoxide release, and reduced intracellular calcium release. In addition, barium increased cell death by apoptosis. Conclusion These data suggest that nanoparticles of barium in colostrum are toxic to cells, showing the importance of avoiding exposure to this element. PMID:26451108

  8. Dental Calculus Stimulates Interleukin-1β Secretion by Activating NLRP3 Inflammasome in Human and Mouse Phagocytes

    PubMed Central

    Montenegro Raudales, Jorge Luis; Yoshimura, Atsutoshi; SM, Ziauddin; Kaneko, Takashi; Ozaki, Yukio; Ukai, Takashi; Miyazaki, Toshihiro; Latz, Eicke; Hara, Yoshitaka

    2016-01-01

    Dental calculus is a mineralized deposit associated with periodontitis. The bacterial components contained in dental calculus can be recognized by host immune sensors, such as Toll-like receptors (TLRs), and induce transcription of proinflammatory cytokines, such as IL-1β. Studies have shown that cellular uptake of crystalline particles may trigger NLRP3 inflammasome activation, leading to the cleavage of the IL-1β precursor to its mature form. Phagocytosis of dental calculus in the periodontal pocket may therefore lead to the secretion of IL-1β, promoting inflammatory responses in periodontal tissues. However, the capacity of dental calculus to induce IL-1β secretion in human phagocytes has not been explored. To study this, we stimulated human polymorphonuclear leukocytes (PMNs) and peripheral blood mononuclear cells (PBMCs) with dental calculus collected from periodontitis patients, and measured IL-1β secretion by ELISA. We found that calculus induced IL-1β secretion in both human PMNs and PBMCs. Calculus also induced IL-1β in macrophages from wild-type mice, but not in macrophages from NLRP3- and ASC-deficient mice, indicating the involvement of NLRP3 and ASC. IL-1β induction was inhibited by polymyxin B, suggesting that LPS is one of the components of calculus that induces pro-IL-1β transcription. To analyze the effect of the inorganic structure, we baked calculus at 250°C for 1 h. This baked calculus failed to induce pro-IL-1β transcription. However, it did induce IL-1β secretion in lipid A-primed cells, indicating that the crystalline structure of calculus induces inflammasome activation. Furthermore, hydroxyapatite crystals, a component of dental calculus, induced IL-1β in mouse macrophages, and baked calculus induced IL-1β in lipid A-primed human PMNs and PBMCs. These results indicate that dental calculus stimulates IL-1β secretion via NLRP3 inflammasome in human and mouse phagocytes, and that the crystalline structure has a partial role in

  9. Dental Calculus Stimulates Interleukin-1β Secretion by Activating NLRP3 Inflammasome in Human and Mouse Phagocytes.

    PubMed

    Montenegro Raudales, Jorge Luis; Yoshimura, Atsutoshi; Sm, Ziauddin; Kaneko, Takashi; Ozaki, Yukio; Ukai, Takashi; Miyazaki, Toshihiro; Latz, Eicke; Hara, Yoshitaka

    2016-01-01

    Dental calculus is a mineralized deposit associated with periodontitis. The bacterial components contained in dental calculus can be recognized by host immune sensors, such as Toll-like receptors (TLRs), and induce transcription of proinflammatory cytokines, such as IL-1β. Studies have shown that cellular uptake of crystalline particles may trigger NLRP3 inflammasome activation, leading to the cleavage of the IL-1β precursor to its mature form. Phagocytosis of dental calculus in the periodontal pocket may therefore lead to the secretion of IL-1β, promoting inflammatory responses in periodontal tissues. However, the capacity of dental calculus to induce IL-1β secretion in human phagocytes has not been explored. To study this, we stimulated human polymorphonuclear leukocytes (PMNs) and peripheral blood mononuclear cells (PBMCs) with dental calculus collected from periodontitis patients, and measured IL-1β secretion by ELISA. We found that calculus induced IL-1β secretion in both human PMNs and PBMCs. Calculus also induced IL-1β in macrophages from wild-type mice, but not in macrophages from NLRP3- and ASC-deficient mice, indicating the involvement of NLRP3 and ASC. IL-1β induction was inhibited by polymyxin B, suggesting that LPS is one of the components of calculus that induces pro-IL-1β transcription. To analyze the effect of the inorganic structure, we baked calculus at 250°C for 1 h. This baked calculus failed to induce pro-IL-1β transcription. However, it did induce IL-1β secretion in lipid A-primed cells, indicating that the crystalline structure of calculus induces inflammasome activation. Furthermore, hydroxyapatite crystals, a component of dental calculus, induced IL-1β in mouse macrophages, and baked calculus induced IL-1β in lipid A-primed human PMNs and PBMCs. These results indicate that dental calculus stimulates IL-1β secretion via NLRP3 inflammasome in human and mouse phagocytes, and that the crystalline structure has a partial role in

  10. The cytochemical and ultrastructural characteristics of phagocytes in the Pacific oyster Crassostrea gigas.

    PubMed

    Jiang, Shuai; Jia, Zhihao; Xin, Lusheng; Sun, Ying; Zhang, Ran; Wang, Weilin; Wang, Lingling; Song, Linsheng

    2016-08-01

    Phagocytes have been proved to play vital roles in the innate immune response. However, the cellular characteristics of phagocytes in invertebrates, especially in molluscs, remain largely unknown. In the present study, fluorescence activated cell sorting (FACS) was employed to sort the phagocytes from the non-phagocytic haemocytes of the Pacific oyster Crassostrea gigas. The cytochemical staining analysis revealed that phagocytes were positive staining for α-naphthyl acetate esterase and myeloperoxidase, while negative staining for toluidine blue and periodic acid-Schiff. The non-phagocytic haemocytes exhibited positive staining for periodic acid-Schiff, weak positive staining for toluidine blue, but negative staining for α-naphthyl acetate esterase and myeloperoxidase. In addition, phagocytes exhibited ultrastructural cellular features similar to those of macrophages, with large cell diameter, rough cell membrane and extended pseudopodia revealed by the scanning electron microscopy, while the non-phagocytic haemocytes exhibited small cell diameter, smooth cell surface and round spherical shape. Transmission electron microscopy further demonstrated that phagocytes were abundant of cytoplasmic bodies and mitochondria, while non-phagocytic haemocytes were characterized as the comparatively large cell nucleus with contorted and condensed heterochromatin adherent to the nuclear envelope. Moreover, compared with non-phagocytic haemocytes, phagocytes exhibited significantly higher levels of intracellular cytokines, including tumor necrosis factor, interferon-like protein and interleukin-17, and significantly higher abundance of lysosome and reactive oxygen species, which were of great importance to the activation of immune response and pathogen clearance. Taken together, these findings revealed the different cytochemical and ultrastructural features between phagocytes and non-phagocytic haemocytes in C. gigas, which would provide an important clue to investigate the

  11. MRP8 and MRP14, phagocyte-specific danger signals, are sensitive biomarkers of disease activity in cryopyrin-associated periodic syndromes.

    PubMed

    Wittkowski, Helmut; Kuemmerle-Deschner, Jasmin B; Austermann, Judith; Holzinger, Dirk; Goldbach-Mansky, Raphaela; Gramlich, Katharina; Lohse, Peter; Jung, Thomas; Roth, Johannes; Benseler, Susanne M; Foell, Dirk

    2011-12-01

    To assess the sensitivity of the phagocyte-specific molecules myeloid-related protein (MRP) 8 and MRP14 (calprotectin) for monitoring disease activity during anti-interleukin (IL)-1 therapies in patients with cryopyrin-associated periodic syndromes (CAPS), including familial cold autoinflammatory syndrome (FCAS), Muckle-Wells syndrome (MWS) and chronic infantile neurological, cutaneous and articular (CINCA) syndrome. A total of 39 patients with CAPS, including 5 FCAS, 16 MWS and 18 CINCA syndrome, received anti-IL-1 therapy. All patients with CINCA and 12 with MWS were treated with IL-1Ra (anakinra), 14 patients with MWS with a monoclonal anti-IL-1β antibody (canakinumab) and patients with FCAS received IL-1 Trap (rilonacept). During serial clinical visits serum amyloid A, C-reactive protein, erythrocyte sedimentation rate and MRP8/14 serum levels were analysed. Untreated patients with CAPS had significantly elevated MRP8/14 values. In response to treatment there was a significant reduction of MRP8/14 levels in CINCA (2,830 (range 690 - 8,480) ng/ml to 670 ng/ml, p < 0.001) and MWS patients (anakinra-treated: 4,390 (1790 - 9780) ng/ml to 1,315 ng/ml (p = 0.003); canakinumab-treated: 3,000 (500 - 13060) ng/ml to 630 ng/ml (p=0.001)). However, in many patients with CAPS, MRP8/14 levels were still elevated compared with healthy individuals, reflecting residual disease activity. However, canakinumab-treated patients with CAPS showed normalised MRP8/14 levels, suggesting control of phagocyte activation. Monitoring of cellular systems involved in inflammatory cascades of the innate immunity was successfully applied to the IL-1-driven CAPS diseases. This is the first study illustrating different states of subclinical disease activity in all types of CAPS depending on the type of anti-IL-1 therapy. MRP8/14 is a sensitive biomarker for monitoring disease activity, status of inflammation and response to IL-1 blockade in patients with CAPS.

  12. MRP8 and MRP14, phagocyte-specific danger signals, are sensitive biomarkers of disease activity in cryopyrin-associated periodic syndromes

    PubMed Central

    Austermann, Judith; Holzinger, Dirk; Goldbach-Mansky, Raphaela; Gramlich, Katharina; Lohse, Peter; Jung, Thomas; Roth, Johannes; Benseler, Susanne M; Foell, Dirk

    2014-01-01

    Objectives To assess the sensitivity of the phagocyte-specific molecules myeloid-related protein (MRP) 8 and MRP14 (calprotectin) for monitoring disease activity during anti-interleukin (IL)-1 therapies in patients with cryopyrin-associated periodic syndromes (CAPS), including familial cold autoinflammatory syndrome (FCAS), Muckle–Wells syndrome (MWS) and chronic infantile neurological, cutaneous and articular (CINCA) syndrome. Methods A total of 39 patients with CAPS, including 5 FCAS, 16 MWS and 18 CINCA syndrome, received anti-IL-1 therapy. All patients with CINCA and 12 with MWS were treated with IL-1Ra (anakinra), 14 patients with MWS with a monoclonal anti-IL-1β antibody (canakinumab) and patients with FCAS received IL-1 Trap (rilonacept). During serial clinical visits serum amyloid A, C-reactive protein, erythrocyte sedimentation rate and MRP8/14 serum levels were analysed. Results Untreated patients with CAPS had significantly elevated MRP8/14 values. In response to treatment there was a significant reduction of MRP8/14 levels in CINCA (2,830 (range 690 – 8,480) ng/ml to 670 ng/ml, p < 0.001) and MWS patients (anakinra-treated: 4,390 (1790 – 9780) ng/ml to 1,315 ng/ml (p = 0.003); canakinumab-treated: 3,000 (500 – 13060) ng/ml to 630 ng/ml (p=0.001)). However, in many patients with CAPS, MRP8/14 levels were still elevated compared with healthy individuals, reflecting residual disease activity. However, canakinumab-treated patients with CAPS showed normalised MRP8/14 levels, suggesting control of phagocyte activation. Conclusions Monitoring of cellular systems involved in inflammatory cascades of the innate immunity was successfully applied to the IL-1-driven CAPS diseases. This is the first study illustrating different states of subclinical disease activity in all types of CAPS depending on the type of anti-IL-1 therapy. MRP8/14 is a sensitive biomarker for monitoring disease activity, status of inflammation and response to IL-1 blockade in

  13. Surface modification of nanoparticles enables selective evasion of phagocytic clearance by distinct macrophage phenotypes

    NASA Astrophysics Data System (ADS)

    Qie, Yaqing; Yuan, Hengfeng; von Roemeling, Christina A.; Chen, Yuanxin; Liu, Xiujie; Shih, Kevin D.; Knight, Joshua A.; Tun, Han W.; Wharen, Robert E.; Jiang, Wen; Kim, Betty Y. S.

    2016-05-01

    Nanomedicine is a burgeoning industry but an understanding of the interaction of nanomaterials with the immune system is critical for clinical translation. Macrophages play a fundamental role in the immune system by engulfing foreign particulates such as nanoparticles. When activated, macrophages form distinct phenotypic populations with unique immune functions, however the mechanism by which these polarized macrophages react to nanoparticles is unclear. Furthermore, strategies to selectively evade activated macrophage subpopulations are lacking. Here we demonstrate that stimulated macrophages possess higher phagocytic activities and that classically activated (M1) macrophages exhibit greater phagocytic capacity than alternatively activated (M2) macrophages. We show that modification of nanoparticles with polyethylene-glycol results in decreased clearance by all macrophage phenotypes, but importantly, coating nanoparticles with CD47 preferentially lowers phagocytic activity by the M1 phenotype. These results suggest that bio-inspired nanoparticle surface design may enable evasion of specific components of the immune system and provide a rational approach for developing immune tolerant nanomedicines.

  14. Bacteria-induced phagocyte secondary necrosis as a pathogenicity mechanism.

    PubMed

    Silva, Manuel T

    2010-11-01

    Triggering of phagocyte apoptosis is a major virulence mechanism used by some successful bacterial pathogens. A central issue in the apoptotic death context is that fully developed apoptosis results in necrotic cell autolysis (secondary necrosis) with release of harmful cell components. In multicellular animals, this occurs when apoptosing cells are not removed by scavengers, mainly macrophages. Secondary necrotic lysis of neutrophils and macrophages may occur in infection when extensive phagocyte apoptosis is induced by bacterial cytotoxins and removal of apoptosing phagocytes is defective because the apoptotic process exceeds the available scavenging capacity or targets macrophages directly. Induction of phagocyte secondary necrosis is an important pathogenic mechanism, as it combines the pathogen evasion from phagocyte antimicrobial activities and the release of highly cytotoxic molecules, particularly of neutrophil origin, such as neutrophil elastase. This pathogenicity mechanism therefore promotes the unrestricted multiplication of the pathogen and contributes directly to the pathology of several necrotizing infections, where extensive apoptosis and necrosis of macrophages and neutrophils are present. Here, examples of necrotizing infectious diseases, where phagocyte secondary necrosis is implicated, are reviewed.

  15. Tumour necrosis factor (TNF)-mediated NF-κB activation facilitates cellular invasion of non-professional phagocytic epithelial cell lines by Trypanosoma cruzi.

    PubMed

    Pinto, Andrea M T; Sales, Paula C M; Camargos, Elizabeth R S; Silva, Aristóbolo M

    2011-10-01

    At the site of infection, pro-inflammatory cytokines locally produced by macrophages infected with Trypanosoma cruzi can activate surrounding non-professional phagocytes such as fibroblasts, epithelial and endothelial cells, which can be further invaded by the parasite. The effect of secreted soluble factors on the invasion of these cells remains, however, to be established. We show here that two epithelial cell lines become significantly susceptible to the infection by the Y strain of T. cruzi after tumour necrosis factor (TNF) treatment. The increase in the invasion was correlated with the increasing concentration of recombinant TNF added to cultures of HEK293T or LLC-MK2 cells. Supernatants taken from PMA-differentiated human monocytes infected with T. cruzi also increased the permissiveness of epithelial cells to subsequent infection with the parasite, which was inhibited by a TNF monoclonal antibody. Furthermore, the permissiveness induced by TNF was inhibited by TPCK, and led to significant decrease in the number of intracellular parasites, providing evidence that activation of NF-κB induced by TNF favours the invasion of the epithelial cell lines by T. cruzi through yet an unidentified mechanism. Our data indicate that soluble factors released from macrophages early in the infection favours T. cruzi invasion of non-professional phagocytic cells. © 2011 Blackwell Publishing Ltd.

  16. In vitro studies on the relationship between the anti-inflammatory activity of Physalis peruviana extracts and the phagocytic process.

    PubMed

    Martínez, Willington; Ospina, Luis Fernando; Granados, Diana; Delgado, Gabriela

    2010-03-01

    The study of plants used in traditional medicine has drawn the attention of researchers as an alternative in the development of new therapeutics agents, such as the American Solanaceae Physalis peruviana, which has significant anti-inflammatory activity. The Physalis peruviana anti-inflammatory effect of ethanol or ether calyces extracts on the phagocytic process was assessed by using an in vitro phagocytosis model (Leishmania panamensis infection to murine macrophages). The Physalis peruviana extracts do not inhibit microorganism internalization and have no parasiticide effect. Most ET and EP extracts negatively affected the parasite's invasion of macrophages (Infected cells increased.). This observation might result from a down-regulation of the macrophage's microbicide ability associated with a selective reduction of proinflammatory cytokines levels. Physalis peruviana's anti-inflammatory activity described in this model is related to an immunomodulatory effect exerted on macrophages infected, which directly or indirectly "blocks" their ability to secrete soluble proinflammatory mediators.

  17. Regulation of mononuclear phagocyte development by IRF8.

    PubMed

    Tamura, Tomohiko

    2017-01-01

    Mononuclear phagocytes, such as monocytes and dendritic cells (DCs), are essential for tissue homeostasis and immunity. In adults, these cells develop from hematopoietic stem cells via a common progenitor population. We have been investigating the mechanism underlying the development of mononuclear phagocytes from the viewpoint of gene expression control by transcription factors. Particularly, IRF8, the loss of which causes immunodeficiency and chronic myeloid leukemia-like neutrophilia in mice and humans, promotes the development of monocytes and DCs, while it limits neutrophil differentiation. IRF8 cooperates with the myeloid master transcription factor, PU.1, in mononuclear phagocyte progenitors. KLF4 and BATF3 serve as critical transcription factors downstream of IRF8 to induce the differentiation of monocytes and DCs, respectively. Conversely, IRF8 blocks the activity of the transcription factor C/EBPα to suppress the neutrophil differentiation program. Indeed, Irf8 -/- mononuclear phagocyte progenitors do not efficiently generate monocytes and DCs and, instead, aberrantly give rise to a large number of neutrophils. Our recent data have begun to uncover the vital role of IRF8 in the establishment of distal enhancers in mononuclear phagocyte progenitors. These results place IRF8 as a central regulator of the development of monocytes and DCs.

  18. [Modulating Effect of Extracellular HSP70 on Generation of Reactive Oxigen Species in Populations of Phagocytes].

    PubMed

    Troyanova, N I; Shevchenko, M A; Boyko, A A; Mirzoyev, R R; Pertseva, M A; Kovalenko, E I; Sapozhnikov, A M

    2015-01-01

    Reactive oxygen species (ROS) produced by phagocytic cells of the innate immune system play an important role in the first line of defense protecting the host from pathogens. The NADPH oxidase multi-subunit complex is the main source of ROS in all types of the phagocytes. Formation of the membrane-associated enzyme complex and its activity are dependent on many different factors controlling both intensification and suppression of the ROS production rate. However, the evidences are emerging in recent years indicating existence of poorly studied mechanisms of restriction of ROS generation level in phagocytes directed at protection of host tissues in the sites of inflammation from destruction caused by the oxygen free radicals. Our previous data and results of other authors demonstrate that a mechanism of the limitation of ROS production by phagocytes may by connected with immunomodulating activity of extracellular pool. of HSP70. In the present work, we used inhibitors of NADPH oxidase and in vitro cultures of different phagocytes to study a possible relationship between down-regulating effect of exogenous HSP70 on ROS generation and the interaction of the protein with the enzyme subunits. Our results confirmed the literature data concerning the ability of extracellular HSP70 to modulate NADPH oxidase activity and demonstrated for the first time an inhibitory effect of the protein on intracellular ROS generation in phagocytes.

  19. Streptococcus pyogenes CAMP factor attenuates phagocytic activity of RAW 264.7 cells.

    PubMed

    Kurosawa, Mie; Oda, Masataka; Domon, Hisanori; Saitoh, Issei; Hayasaki, Haruaki; Terao, Yutaka

    2016-02-01

    Streptococcus pyogenes produces molecules that inhibit the function of human immune system, thus allowing the pathogen to grow and spread in tissues. It is known that S. pyogenes CAMP factor increases erythrocytosis induced by Staphylococcus aureus β-hemolysin. However, the effects of CAMP factor for immune cells are unclear. In this study, we investigated the effects of CAMP factor to macrophages. Western blotting analysis demonstrated that all examined strains expressed CAMP factor protein. In the presence of calcium or magnesium ion, CAMP factor was significantly released in the supernatant. In addition, both culture supernatant from S. pyogenes strain SSI-9 and recombinant CAMP factor dose-dependently induced vacuolation in RAW 264.7 cells, but the culture supernatant from Δcfa isogenic mutant strain did not. CAMP factor formed oligomers in RAW 264.7 cells in a time-dependent manner. CAMP factor suppressed cell proliferation via G2 phase cell cycle arrest without inducing cell death. Furthermore, CAMP factor reduced the uptake of S. pyogenes and phagocytic activity indicator by RAW 264.7 cells. These results suggest that CAMP factor works as a macrophage dysfunction factor. Therefore, we conclude that CAMP factor allows S. pyogenes to escape the host immune system, and contribute to the spread of streptococcal infection. Copyright © 2015 Institut Pasteur. Published by Elsevier Masson SAS. All rights reserved.

  20. Activation of Rho GTPases by Cytotoxic Necrotizing Factor 1 Induces Macropinocytosis and Scavenging Activity in Epithelial Cells

    PubMed Central

    Fiorentini, Carla; Falzano, Loredana; Fabbri, Alessia; Stringaro, Annarita; Logozzi, Mariaantonia; Travaglione, Sara; Contamin, Stéphanette; Arancia, Giuseppe; Malorni, Walter; Fais, Stefano

    2001-01-01

    Macropinocytosis, a ruffling-driven process that allows the capture of large material, is an essential aspect of normal cell function. It can be either constitutive, as in professional phagocytes where it ends with the digestion of captured material, or induced, as in epithelial cells stimulated by growth factors. In this case, the internalized material recycles back to the cell surface. We herein show that activation of Rho GTPases by a bacterial protein toxin, the Escherichia coli cytotoxic necrotizing factor 1 (CNF1), allowed epithelial cells to engulf and digest apoptotic cells in a manner similar to that of professional phagocytes. In particular, we have demonstrated that 1) the activation of all Rho, Rac, and Cdc42 by CNF1 was essential for the capture and internalization of apoptotic cells; and 2) such activation allowed the discharge of macropinosomal content into Rab7 and lysosomal associated membrane protein-1 acidic lysosomal vesicles where the ingested particles underwent degradation. Taken together, these findings indicate that CNF1-induced “switching on” of Rho GTPases may induce in epithelial cells a scavenging activity, comparable to that exerted by professional phagocytes. The activation of such activity in epithelial cells may be relevant, in mucosal tissues, in supporting or integrating the scavenging activity of resident macrophages. PMID:11452003

  1. Titanium dioxide nanoparticles stimulate sea urchin immune cell phagocytic activity involving TLR/p38 MAPK-mediated signalling pathway

    PubMed Central

    Pinsino, Annalisa; Russo, Roberta; Bonaventura, Rosa; Brunelli, Andrea; Marcomini, Antonio; Matranga, Valeria

    2015-01-01

    Titanium dioxide nanoparticles (TiO2NPs) are one of the most widespread-engineered particles in use for drug delivery, cosmetics, and electronics. However, TiO2NP safety is still an open issue, even for ethical reasons. In this work, we investigated the sea urchin Paracentrotus lividus immune cell model as a proxy to humans, to elucidate a potential pathway that can be involved in the persistent TiO2NP-immune cell interaction in vivo. Morphology, phagocytic ability, changes in activation/inactivation of a few mitogen-activated protein kinases (p38 MAPK, ERK), variations of other key proteins triggering immune response (Toll-like receptor 4-like, Heat shock protein 70, Interleukin-6) and modifications in the expression of related immune response genes were investigated. Our findings indicate that TiO2NPs influence the signal transduction downstream targets of p38 MAPK without eliciting an inflammatory response or other harmful effects on biological functions. We strongly recommend sea urchin immune cells as a new powerful model for nano-safety/nano-toxicity investigations without the ethical normative issue. PMID:26412401

  2. NAD(P)H Oxidase Activity in the Small Intestine Is Predominantly Found in Enterocytes, Not Professional Phagocytes.

    PubMed

    Lindquist, Randall L; Bayat-Sarmadi, Jannike; Leben, Ruth; Niesner, Raluca; Hauser, Anja E

    2018-05-04

    The balance between various cellular subsets of the innate and adaptive immune system and microbiota in the gastrointestinal tract is carefully regulated to maintain tolerance to the normal flora and dietary antigens, while protecting against pathogens. The intestinal epithelial cells and the network of dendritic cells and macrophages in the lamina propria are crucial lines of defense that regulate this balance. The complex relationship between the myeloid compartment (dendritic cells and macrophages) and lymphocyte compartment (T cells and innate lymphoid cells), as well as the impact of the epithelial cell layer have been studied in depth in recent years, revealing that the regulatory and effector functions of both innate and adaptive immune compartments exhibit more plasticity than had been previously appreciated. However, little is known about the metabolic activity of these cellular compartments, which is the basic function underlying all other additional tasks the cells perform. Here we perform intravital NAD(P)H fluorescence lifetime imaging in the small intestine of fluorescent reporter mice to monitor the NAD(P)H-dependent metabolism of epithelial and myeloid cells. The majority of myeloid cells which comprise the surveilling network in the lamina propria have a low metabolic activity and remain resting even upon stimulation. Only a few myeloid cells, typically localized at the tip of the villi, are metabolically active and are able to activate NADPH oxidases upon stimulation, leading to an oxidative burst. In contrast, the epithelial cells are metabolically highly active and, although not considered professional phagocytes, are also able to activate NADPH oxidases, leading to massive production of reactive oxygen species. Whereas the oxidative burst in myeloid cells is mainly catalyzed by the NOX2 isotype, in epithelial cells other isotypes of the NADPH oxidases family are involved, especially NOX4. They are constitutively expressed by the epithelial

  3. Macrophage activating activity of pyrrole alkaloids from Morus alba fruits.

    PubMed

    Kim, Seon Beom; Chang, Bo Yoon; Jo, Yang Hee; Lee, Sang Hoon; Han, Sang-Bae; Hwang, Bang Yeon; Kim, Sung Yeon; Lee, Mi Kyeong

    2013-01-09

    The fruits of Morus alba have been traditionally used as a tonic to enhance immune responses. The macrophage activating constituents of Morus alba fruits were purified using various column chromatography techniques. The structures of isolated compounds were determined on the basis of spectroscopic data interpretation such as 1D and 2D NMR analysis. The macrophage activating activities of isolated compounds were evaluated by measuring the production of nitric oxide, TNF-α and IL-12 in RAW 264.7 cells. The phagocytic activity was also evaluated. Five pyrrole alkaloids, 5-(hydroxymethyl)-1H-pyrrole-2-carboxaldehyde (1), 2-formyl-1H-pyrrole-1-butanoic acid (2), 2-formyl-5-(hydroxymethyl)-1H-pyrrole-1-butanoic acid (3), 2-formyl-5-(methoxymethyl)-1H-pyrrole-1-butanoic acid (4) and Morrole A (5) were isolated from the fruits of Morus alba. Morrole A (5) is first reported in nature and other pyrrole alkaloids (1-4) are first reported from Morus species. Among the isolated compounds, compounds 3 and 4 significantly activated macrophage activity by the enhancement of nitric oxide, TNF-α and IL-12 production, and the stimulation of phagocytic activity in RAW 264.7 cells. Pyrrole alkaloids, including a new compound, were isolated from Morus alba fruits. These compounds activated macrophage activity in RAW 264.7 cells. Copyright © 2012 Elsevier Ireland Ltd. All rights reserved.

  4. A novel assay system for macrophage-activating factor activity using a human U937 cell line.

    PubMed

    Ishikawa, Mami; Inoue, Takahiro; Inui, Toshio; Kuchiike, Daisuke; Kubo, Kentaro; Uto, Yoshihiro; Nishikata, Takahito

    2014-08-01

    Macrophages play important roles in antitumor immunity, and immunotherapy with the group-specific component protein-derived macrophage-activating factor (GcMAF) has been reported to be effective in patients with various types of cancers. However, in macrophage research, it is important to properly evaluate macrophage activity. U937 macrophages were induced by 12-O-tetradecanoyl-13-phorbolacetate (TPA). The phagocytic activity of macrophages was evaluated as the internalized beads ratio. The MAF activity was assessed at 30 min after MAF addition as the activation ratio. We established a novel assay for phagocytic activities using differentiated U937 macrophages. The novel protocol was simple and rapid and was sensitive for GcMAF. This protocol should be useful not only for basic studies, such as those on molecular mechanisms underlying macrophage activation, but also for clinical studies, such as assessment of GcMAF activity prior to clinical use. Copyright© 2014 International Institute of Anticancer Research (Dr. John G. Delinassios), All rights reserved.

  5. [EFFICIENCY OF COMBINATION OF ROFLUMILAST AND QUERCETIN FOR CORRECTION OXYGEN- INDEPENDENT MECHANISMS AND PHAGOCYTIC ACTIVITY OF MACROPHAGE CELLS OF PATIENTS WITH ACUTE EXACERBATION OF CHRONIC OBSTRUCTIVE PULMONARY DISEASE WHEN COMBINED WITH CORONARY HEART DISEASE].

    PubMed

    Gerych, P; Yatsyshyn, R

    2015-01-01

    Studied oxygen independent reaction and phagocytic activity of macrophage cells of patients with chronic obstructive pulmonary disease (COPD) II-III stage when combined with coronary heart disease (CHD). The increasing oxygen independent reactions monocytes and neutrophils and a decrease of the parameters that characterize the functional state of phagocytic cells, indicating a decrease in the functional capacity of macrophage phagocytic system (MPS) in patients with acute exacerbation of COPD, which runs as its own or in combination with stable coronary heart disease angina I-II. FC. Severity immunodeficiency state in terms of cellular component of nonspecific immunity in patients with acute exacerbation of COPD II-III stage in conjunction with the accompanying CHD increases with the progression of heart failure. Inclusion of basic therapy of COPD exacerbation and standard treatment of coronary artery disease and drug combinations Roflumilastand quercetin causes normalization of phagocytic indices MFS, indicating improved immune status and improves myocardial perfusion in terms of daily ECG monitoring.

  6. In vitro inhibitory effects of Moringa oleifera leaf extract and its major components on chemiluminescence and chemotactic activity of phagocytes.

    PubMed

    Vongsak, Boonyadist; Gritsanapan, Wandee; Wongkrajang, Yuvadee; Jantan, Ibrahim

    2013-11-01

    The ethanol extract of Moringa oleifera Lam. leaves and its major constituents, crypto-chlorogenic acid, quercetin 3-O-glucoside and kaempferol 3-O-glucoside, were investigated on the respiratory burst of human whole blood and isolated human polymorphonuclear leukocytes (PMNs) using a luminol-based chemiluminescence assay. The chemotactic migration of PMNs was also investigated using the Boyden chamber technique. The ethanol extract demonstrated inhibitory activities on the oxidative burst and the chemotactic migration of PMNs. Quercetin 3-O-glucoside, crypto-chlorogenic acid, and kaempferol 3-O-glucoside, isolated from the extract, expressed relatively strong inhibitory activity on the oxidative burst of PMNs with IC50 values of 4.1, 6.7 and 7.0 microM, respectively, comparable with that of aspirin. They also demonstrated strong inhibition of chemotatic migration of PMNs with IC50 values of 9.5, 15.9 and 18.2 microM, respectively. The results suggest that M. oleifera leaves could modulate the immune response of human phagocytes, linking to its ethnopharmacological use as an anti-inflammatory agent. The immunomodulating activity of the plant was mainly due to its major components.

  7. Effects of ascorbate on leucocytes: Part II. Effects of ascorbic acid and calcium and sodium ascorbate on neutrophil phagocytosis and post-phagocytic metabolic activity.

    PubMed

    Anderson, R

    1979-09-01

    The effects of ascorbic acid and calcium and sodium ascorbate at a concentration range of 10(-6)M - 10(-1)M on polymorphonuclear leucocyte (PMN) phagocytosis of Candida albicans and post-phagocytic nitroblue tetrazolium (NBT) reduction, hexose monophosphate shunt (HMS) activity and myeloperoxidase-mediated iodination of ingested protein were investigated. Phagocytosis of C. albicans was unaffected by ascorbate concentrations of 10(-6)M - 10(-2)M; however, progressive inhibition was observed at concentrations of 10(-2)M upwards. Enhancement of resting and stimulated HMS activity and NBT reduction was evident at ascorbate concentrations of 10(-5) M - 10(-2)M. The stimulations of HMS activity and NBT reduction was independent of myeloperoxidase iodination of ingested protein and this latter function was strongly inhibited by ascorbate. Concentrations of ascorbic acid and calcium and sodium ascorbate which caused inhibition of phagocytosis and HMS activity were the same as those which mediated stimulation of cell motility, indicating that independent cellular mechanisms may govern motility and phagocytosis.

  8. Live Candida albicans suppresses production of reactive oxygen species in phagocytes.

    PubMed

    Wellington, Melanie; Dolan, Kristy; Krysan, Damian J

    2009-01-01

    Production of reactive oxygen species (ROS) is an important aspect of phagocyte-mediated host responses. Since phagocytes play a crucial role in the host response to Candida albicans, we examined the ability of Candida to modulate phagocyte ROS production. ROS production was measured in the murine macrophage cell line J774 and in primary phagocytes using luminol-enhanced chemiluminescence. J774 cells, murine polymorphonuclear leukocytes (PMN), human monocytes, and human PMN treated with live C. albicans produced significantly less ROS than phagocytes treated with heat-killed C. albicans. Live C. albicans also suppressed ROS production in murine bone marrow-derived macrophages from C57BL/6 mice, but not from BALB/c mice. Live C. albicans also suppressed ROS in response to external stimuli. C. albicans and Candida glabrata suppressed ROS production by phagocytes, whereas Saccharomyces cerevisiae stimulated ROS production. The cell wall is the initial point of contact between Candida and phagocytes, but isolated cell walls from both heat-killed and live C. albicans stimulated ROS production. Heat-killed C. albicans has increased surface exposure of 1,3-beta-glucan, a cell wall component that can stimulate phagocytes. To determine whether surface 1,3-beta-glucan exposure accounted for the difference in ROS production, live C. albicans cells were treated with a sublethal dose of caspofungin to increase surface 1,3-beta-glucan exposure. Caspofungin-treated C. albicans was fully able to suppress ROS production, indicating that suppression of ROS overrides stimulatory signals from 1,3-beta-glucan. These studies indicate that live C. albicans actively suppresses ROS production in phagocytes in vitro, which may represent an important immune evasion mechanism.

  9. Phagocyte activity in the peripheral blood of pregnant women with systemic lupus erythematosus and in the cord blood of their newborns.

    PubMed

    Sukhikh, Gennady T; Safronova, Valentina G; Vanko, Ludmila V; Matveeva, Nataliya K; Belyaeva, Anastasiya S; Fedorova, Ekaterina V; Nikolaeva, Marina A; Klimenchenko, Nataliya I; Krechetova, Lyubov V

    2017-05-01

    To detect faults in phagocytosis in peripheral blood cells of pregnant women with systemic lupus erythematosus (SLE) and in cord blood of their newborns. Pregnant women fulfilled ≥ 4 American College of Rheumatology criteria for SLE and their newborns were recruited. Pregnant women without SLE and their newborns constituted controls. Phagocytosis and respiratory burst were measured using PHAGOTEST and BURSTTEST kits (Biotechnology GmbH, Germany) on FACSCalibur™ flow cytometer. Expression of CD11b was estimated with antibodies (BD Biosciences, San Jose, CA, USA). Mann-Whitney rank-sum test was used to compare SLE group and controls. Phagocytosis and respiratory burst were estimated in blood of 31 SLE women (29.5 ± 3.3 years) and in cord blood of 26 newborns. Controls were 21 health women (29.8 ± 2.8 years) and their 21 babies. Median reactive oxygen species (ROS) production was reduced in the SLE group versus controls (arbitrary units): women, 2315 versus 3316 (P = 0.034); babies, 1051 versus 1791 (P = 0.041), respectively. Proportion of ROS-producing granulocytes decreased in the SLE group: women, 72.5% versus 94.0% (P = 0.025); babies, 46.8% versus 90.7% (P = 0.008). Proportion of phagocytes which engulfed Escherichia coli and bacteria number per phagocyte also decreased in SLE women. Monocyte activity was suppressed in newborns from the SLE group (RLU): 224 versus 507 (P = 0.022). CD11b expression was reduced in SLE women (RLU): granulocytes, 588 versus 1448.5 (P < 0.001); monocytes, 1017 versus 1619 (P = 0.002). Pregnant SLE women have low ingesting capacity of phagocytes. Suppression of phagocytosis in their newborns is mainly due to reduced number of cells producing ROS. © 2017 Asia Pacific League of Associations for Rheumatology and John Wiley & Sons Australia, Ltd.

  10. Enhanced phagocytic activity of HIV-specific antibodies correlates with natural production of immunoglobulins with skewed affinity for FcγR2a and FcγR2b.

    PubMed

    Ackerman, Margaret E; Dugast, Anne-Sophie; McAndrew, Elizabeth G; Tsoukas, Stephen; Licht, Anna F; Irvine, Darrell J; Alter, Galit

    2013-05-01

    While development of an HIV vaccine that can induce neutralizing antibodies remains a priority, decades of research have proven that this is a daunting task. However, accumulating evidence suggests that antibodies with the capacity to harness innate immunity may provide some protection. While significant research has focused on the cytolytic properties of antibodies in acquisition and control, less is known about the role of additional effector functions. In this study, we investigated antibody-dependent phagocytosis of HIV immune complexes, and we observed significant differences in the ability of antibodies from infected subjects to mediate this critical effector function. We observed both quantitative differences in the capacity of antibodies to drive phagocytosis and qualitative differences in their FcγR usage profile. We demonstrate that antibodies from controllers and untreated progressors exhibit increased phagocytic activity, altered Fc domain glycosylation, and skewed interactions with FcγR2a and FcγR2b in both bulk plasma and HIV-specific IgG. While increased phagocytic activity may directly influence immune activation via clearance of inflammatory immune complexes, it is also plausible that Fc receptor usage patterns may regulate the immune response by modulating downstream signals following phagocytosis--driving passive degradation of internalized virus, release of immune modulating cytokines and chemokines, or priming of a more effective adaptive immune response.

  11. Dynamics of mononuclear phagocyte system Fc receptor function in systemic lupus erythematosus. Relation to disease activity and circulating immune complexes.

    PubMed Central

    Kimberly, R P; Parris, T M; Inman, R D; McDougal, J S

    1983-01-01

    Seventeen pairs of longitudinal studies of mononuclear phagocyte system (MPS) Fc receptor function in 15 patients with systemic lupus were performed to explore the dynamic range of Fc receptor dysfunction in lupus and to establish the relationships between MPS function, clinical disease activity and circulating immune complexes (CIC). Fc receptor function was measured by the clearance of IgG sensitized autologous erythrocytes. At the time of first study the degree of MPS dysfunction was correlated with both clinical activity (P less than 0.05) and CIC (P less than 0.05). At follow-up patients with a change in clinical status show significantly larger changes in clearance function compared to clinically stable patients (206 min vs 7 min; P less than 0.001). MPS function changed concordantly with a change in clinical status in all cases (P = 0.002). Longitudinal assessments did not demonstrate concordance of changes in MPS function and CIC, measured by three different assays. The MPS Fc receptor defect in systemic lupus is dynamic and closely associated with disease activity. The lack of concordance of the defect with changes in CIC suggests that either CIC does not adequately reflect receptor site saturation or that other factors may also contribute to the magnitude of MPS dysfunction. PMID:6839542

  12. Immunomodulatory Activity of Oenothein B Isolated from Epilobium angustifolium1

    PubMed Central

    Schepetkin, Igor A.; Kirpotina, Liliya N.; Jakiw, Larissa; Khlebnikov, Andrei I.; Blaskovich, Christie L.; Jutila, Mark A.; Quinn, Mark T.

    2009-01-01

    Epilobium angustifolium has been traditionally used to treat of a number of diseases; however, not much is known regarding its effect on innate immune cells. Here, we report that extracts of E. angustifolium activated functional responses in neutrophils and monocyte/macrophages. Activity-guided fractionation, followed by mass spectroscopy and NMR analysis, resulted in the identification of oenothein B as the primary component responsible for phagocyte activation. Oenothein B, a dimeric hydrolysable tannin, dose-dependently induced a number of phagocyte functions in vitro, including intracellular Ca2+ flux, production of reactive oxygen species (ROS), chemotaxis, nuclear factor (NF)-κB activation, and proinflammatory cytokine production. Furthermore, oenothein B was active in vivo, inducing keratinocyte chemoattractant (KC) production and neutrophil recruitment to the peritoneum after intraperitoneal administration. Biological activity required the full oenothein B structure, as substructures of oenothein B (pyrocatechol, gallic acid, pyrogallol, 3,4-dihydroxybenzoic acid) were all inactive. The ability of oenothein B to modulate phagocyte functions in vitro and in vivo suggests that this compound is responsible for at least part of the therapeutic properties of E. angustifolium extracts. PMID:19846877

  13. Inhibition of chemiluminescence and chemotactic activity of phagocytes in vitro by the extracts of selected medicinal plants.

    PubMed

    Jantan, Ibrahim; Harun, Nurul Hikmah; Septama, Abdi Wira; Murad, Shahnaz; Mesaik, M A

    2011-04-01

    The methanol extracts of 20 selected medicinal plants were investigated for their effects on the respiratory burst of human whole blood, isolated human polymorphonuclear leukocytes (PMNs) and isolated mice macrophages using a luminol/lucigenin-based chemiluminescence assay. We also tested the effect of the extracts on chemotactic migration of PMNs using the Boyden chamber technique. The extracts of Curcuma domestica L., Phyllanthus amarus Schum & Thonn and C. xanthorrhiza Roxb. were the samples producing the strongest oxidative burst of PMNs with luminol-based chemiluminescence, with IC(50) values ranging from 0.5 to 0.7 μg/ml. For macrophage cells, the extracts which showed strong suppressive activity for luminol-based chemiluminescence were C. xanthorrhiza and Garcinia mangostana L. Among the extracts studied, C. mangga Valton & Vazsjip, Piper nigrum L. and Labisia pumila var. alata showed strong inhibitory activity on lucigenin-amplified oxidative burst of PMNs, with IC(50) values ranging from 0.9 to 1.5 μg/ml. The extracts of Zingiber officinale Rosc., Alpinia galangal (L.) Willd and Averrhoa bilimbi Linn showed strong inhibition on the chemotaxic migration of cells, with IC(50) values comparable to that of ibuprofen (1.5 μg/ml). The results suggest that some of these plants were able to modulate the innate immune response of phagocytes at different steps, emphasizing their potential as a source of new immunomodulatory agents.

  14. Mechanisms of failed apoptotic cell clearance by phagocyte subsets in cardiovascular disease

    PubMed Central

    2013-01-01

    Recent evidence in humans indicate that defective phagocytic clearance of dying cells is linked to progression of advanced atherosclerotic lesions, the precursor to atherothrombosis, ischemic heart disease, and leading cause of death in the industrialized world. During atherogenesis, apoptotic cell turnover in the vascular wall is counterbalanced by neighboring phagocytes with high clearance efficiency, thereby limiting cellularity and maintaining lesion integrity. However, as lesions mature, phagocytic removal of apoptotic cells (efferocytosis) becomes defective, leading to secondary necrosis, expansion of plaque necrotic cores, and susceptibility to rupture. Recent genetic causation studies in experimental rodents have implicated key molecular regulators of efferocytosis in atherosclerotic progression. These include MER tyrosine kinase (MERTK), milk fat globule-EGF factor 8 (MFGE8), and complement C1q. At the cellular level, atheromata are infiltrated by a heterogenous population of professional phagocytes, comprised of monocytes, differentiated macrophages, and CD11c+ dendritic-like cells. Each cell type is characterized by disparate clearance efficiencies and varying activities of key phagocytic signaling molecules. It is in this context that we outline a working model whereby plaque necrosis and destabilization is jointly promoted by (1) direct inhibition of core phagocytic signaling pathways and (2) expansion of phagocyte subsets with poor clearance capacity. Towards identifying targets for promoting efficient apoptotic cell clearance and resolving inflammation in atherosclerosis and during ischemic heart disease and post myocardial infarction, this review will discuss potential in vivo suppressors of efferocytosis at each stage of clearance and how these putative interventional targets may differentially affect uptake at the level of vascular phagocyte subsets. PMID:20552278

  15. Phagocyte-myocyte interactions and consequences during hypoxic wound healing.

    PubMed

    Zhang, Shuang; Dehn, Shirley; DeBerge, Matthew; Rhee, Ki-Jong; Hudson, Barry; Thorp, Edward B

    2014-01-01

    Myocardial infarction (MI), secondary to atherosclerotic plaque rupture and occlusive thrombi, triggers acute margination of inflammatory neutrophils and monocyte phagocyte subsets to the damaged heart, the latter of which may give rise briefly to differentiated macrophage-like or dendritic-like cells. Within the injured myocardium, a primary function of these phagocytic cells is to remove damaged extracellular matrix, necrotic and apoptotic cardiac cells, as well as immune cells that turn over. Recognition of dying cellular targets by phagocytes triggers intracellular signaling, particularly in macrophages, wherein cytokines and lipid mediators are generated to promote inflammation resolution, fibrotic scarring, angiogenesis, and compensatory organ remodeling. These actions cooperate in an effort to preserve myocardial contractility and prevent heart failure. Immune cell function is modulated by local tissue factors that include secreted protease activity, oxidative stress during clinical reperfusion, and hypoxia. Importantly, experimental evidence suggests that monocyte function and phagocytosis efficiency is compromised in the setting of MI risk factors, including hyperlipidemia and ageing, however underlying mechanisms remain unclear. Herein we review seminal phagocyte and cardiac molecular factors that lead to, and culminate in, the recognition and removal of dying injured myocardium, the effects of hypoxia, and their relationship to cardiac infarct size and heart healing. Copyright © 2014 Elsevier Inc. All rights reserved.

  16. Phagocyte-Myocyte Interactions and Consequences during Hypoxic Wound Healing

    PubMed Central

    Zhang, Shuang; Dehn, Shirley; DeBerge, Matthew; Rhee, KJ; Hudson, Barry; Thorp, Edward

    2014-01-01

    Myocardial infarction (MI), secondary to atherosclerotic plaque rupture and occlusive thrombi, triggers acute margination of inflammatory neutrophils and monocyte phagocyte subsets to the damaged heart, the latter of which may give rise briefly to differentiated macrophage-like or dendritic-like cells. Within the injured myocardium, a primary function of these phagocytic cells is to remove damaged extracellular matrix, necrotic and apoptotic cardiac cells, as well as immune cells that turn over. Recognition of dying cellular targets by phagocytes triggers intracellular signaling, particularly in macrophages, wherein cytokines and lipid mediators are generated to promote inflammation resolution, fibrotic scarring, angiogenesis, and compensatory organ remodeling. These actions cooperate in an effort to preserve myocardial contractility and prevent heart failure. Immune cell function is modulated by local tissue factors that include secreted protease activity, oxidative stress during clinical reperfusion, and hypoxia. Importantly, experimental evidence suggests that monocyte function and phagocytosis efficiency is compromised in the setting of MI risk factors, including hyperlipidemia and ageing, however underlying mechanisms remain unclear. Herein we review seminal phagocyte and cardiac molecular factors that lead to, and culminate in, the recognition and removal of dying injured myocardium, the effects of hypoxia, and their relationship to cardiac infarct size and heart healing. PMID:24862542

  17. [Formation of endogenous pyrogen by mononuclear phagocytes].

    PubMed

    Agasarov, L G; Sorokin, A V; Ukhanova, I K

    1984-07-01

    Production of endogenous pyrogen by human and rabbit blood monocytes in response to stimulation with agents of different origin was studied by inhibitory analysis under comparable conditions. Actinomycin D and cytochalasin B were applied. New evidence was obtained about an important role in the mechanism of activation of mononuclear phagocytes of initial interaction between a stimulating agent and the leukocyte membrane and of the biphasic process of endogenous pyrogen production.

  18. Scrambled Eggs: Apoptotic Cell Clearance by Non-Professional Phagocytes in the Drosophila Ovary

    PubMed Central

    Serizier, Sandy B.; McCall, Kimberly

    2017-01-01

    For half of a century, it has been known that non-professional phagocytes, such as fibroblasts, endothelial, and epithelial cells, are capable of efferocytosis (engulfment of apoptotic cells). Non-professional phagocytes differ from professional phagocytes in the range and efficiency of engulfment. Much of the recognition and underlying signaling machinery between non-professional and professional phagocytes is the same, but it is not known how the engulfment capacity of non-professional phagocytes is controlled. Moreover, the signaling networks involved in cell corpse recognition, engulfment, and phagosome maturation are only partially understood. The Drosophila ovary provides an excellent system to investigate the regulation of phagocytic activity by epithelial cells, a major class of non-professional phagocytes. During Drosophila oogenesis, mid-stage egg chambers undergo apoptosis of the germline in response to nutrient deprivation. Epithelial follicle cells then undergo major cell shape changes and concomitantly engulf the germline material. Our previous work has established that Draper and the integrin α-PS3/β-PS heterodimer are required in follicle cells for germline cell clearance. In addition, we have characterized phagosome maturation pathways, and found that the JNK pathway amplifies the engulfment response. In this review, we discuss recent advances on the interplay between engulfment pathways in the follicular epithelium for cell clearance in the Drosophila ovary. We also provide a comparison to apoptotic cell clearance mechanisms in C. elegans and mammals, illustrating strong conservation of efferocytosis mechanisms by non-professional phagocytes. PMID:29238344

  19. Scrambled Eggs: Apoptotic Cell Clearance by Non-Professional Phagocytes in the Drosophila Ovary.

    PubMed

    Serizier, Sandy B; McCall, Kimberly

    2017-01-01

    For half of a century, it has been known that non-professional phagocytes, such as fibroblasts, endothelial, and epithelial cells, are capable of efferocytosis (engulfment of apoptotic cells). Non-professional phagocytes differ from professional phagocytes in the range and efficiency of engulfment. Much of the recognition and underlying signaling machinery between non-professional and professional phagocytes is the same, but it is not known how the engulfment capacity of non-professional phagocytes is controlled. Moreover, the signaling networks involved in cell corpse recognition, engulfment, and phagosome maturation are only partially understood. The Drosophila ovary provides an excellent system to investigate the regulation of phagocytic activity by epithelial cells, a major class of non-professional phagocytes. During Drosophila oogenesis, mid-stage egg chambers undergo apoptosis of the germline in response to nutrient deprivation. Epithelial follicle cells then undergo major cell shape changes and concomitantly engulf the germline material. Our previous work has established that Draper and the integrin α-PS3/β-PS heterodimer are required in follicle cells for germline cell clearance. In addition, we have characterized phagosome maturation pathways, and found that the JNK pathway amplifies the engulfment response. In this review, we discuss recent advances on the interplay between engulfment pathways in the follicular epithelium for cell clearance in the Drosophila ovary. We also provide a comparison to apoptotic cell clearance mechanisms in C. elegans and mammals, illustrating strong conservation of efferocytosis mechanisms by non-professional phagocytes.

  20. Ion channel signaling influences cellular proliferation and phagocyte activity during axolotl tail regeneration.

    PubMed

    Franklin, Brandon M; Voss, S Randal; Osborn, Jeffrey L

    2017-08-01

    Little is known about the potential for ion channels to regulate cellular behaviors during tissue regeneration. Here, we utilized an amphibian tail regeneration assay coupled with a chemical genetic screen to identify ion channel antagonists that altered critical cellular processes during regeneration. Inhibition of multiple ion channels either partially (anoctamin1/Tmem16a, anoctamin2/Tmem16b, K V 2.1, K V 2.2, L-type Ca V channels and H/K ATPases) or completely (GlyR, GABA A R, K V 1.5 and SERCA pumps) inhibited tail regeneration. Partial inhibition of tail regeneration by blocking the calcium activated chloride channels, anoctamin1&2, was associated with a reduction of cellular proliferation in tail muscle and mesenchymal regions. Inhibition of anoctamin 1/2 also altered the post-amputation transcriptional response of p44/42 MAPK signaling pathway genes, including decreased expression of erk1/erk2. We also found that complete inhibition via voltage gated K + channel blockade was associated with diminished phagocyte recruitment to the amputation site. The identification of H + pumps as required for axolotl tail regeneration supports findings in Xenopus and Planaria models, and more generally, the conservation of ion channels as regulators of tissue regeneration. This study provides a preliminary framework for an in-depth investigation of the mechanistic role of ion channels and their potential involvement in regulating cellular proliferation and other processes essential to wound healing, appendage regeneration, and tissue repair. Copyright © 2017 Elsevier B.V. All rights reserved.

  1. Transcriptomic and Quantitative Proteomic Analyses Provide Insights Into the Phagocytic Killing of Hemocytes in the Oyster Crassostrea gigas

    PubMed Central

    Jiang, Shuai; Qiu, Limei; Wang, Lingling; Jia, Zhihao; Lv, Zhao; Wang, Mengqiang; Liu, Conghui; Xu, Jiachao; Song, Linsheng

    2018-01-01

    As invertebrates lack an adaptive immune system, they depend to a large extent on their innate immune system to recognize and clear invading pathogens. Although phagocytes play pivotal roles in invertebrate innate immunity, the molecular mechanisms underlying this killing remain unclear. Cells of this type from the Pacific oyster Crassostrea gigas were classified efficiently in this study via fluorescence-activated cell sorting (FACS) based on their phagocytosis of FITC-labeled latex beads. Transcriptomic and quantitative proteomic analyses revealed a series of differentially expressed genes (DEGs) and proteins present in phagocytes; of the 352 significantly high expressed proteins identified here within the phagocyte proteome, 262 corresponding genes were similarly high expressed in the transcriptome, while 140 of 205 significantly low expressed proteins within the proteome were transcriptionally low expressed. A pathway crosstalk network analysis of these significantly high expressed proteins revealed that phagocytes were highly activated in a number of antimicrobial-related biological processes, including oxidation–reduction and lysosomal proteolysis processes. A number of DEGs, including oxidase, lysosomal protease, and immune receptors, were also validated in this study using quantitative PCR, while seven lysosomal cysteine proteases, referred to as cathepsin Ls, were significantly high expressed in phagocytes. Results show that the expression level of cathepsin L protein in phagocytes [mean fluorescence intensity (MFI): 327 ± 51] was significantly higher (p < 0.01) than that in non-phagocytic hemocytes (MFI: 83 ± 26), while the cathepsin L protein was colocalized with the phagocytosed Vibrio splendidus in oyster hemocytes during this process. The results of this study collectively suggest that oyster phagocytes possess both potent oxidative killing and microbial disintegration capacities; these findings provide important insights into hemocyte

  2. Enhancement in ex vivo phagocytic capacity of peritoneal leukocytes in mice by oral delivery of various lactic-acid-producing bacteria.

    PubMed

    Lee, Yeonhee; Lee, Taik-Soo

    2005-01-01

    Lactic-acid-producing bacteria (LABs) are known to have immunomodulating activity. In the current study, various LABs were tested for their immunity-enhancing activity, especially the phagocytic activity of leukocytes. Viable but not heat-killed cells of Weissella kimchii strain PL9001, Lactobacillus fermentum strain PL9005, and L. plantarum strain PL9011 significantly increased the ex vivo phagocytic capacity of mouse peritoneal leukocytes to ingest fluorescein isothiocyanate (FITC)-labeled Escherichia coli in a strain-dependent manner. Results of this and previous studies suggest these LABs as candidates for new probiotics. This is the first report of the enhancement of peritoneal leukocyte activity of these species.

  3. [Phagocyte migration: an overview].

    PubMed

    Le Cabec, Véronique; Van Goethem, Emeline; Guiet, Romain; Maridonneau-Parini, Isabelle

    2011-12-01

    Phagocytes are the first line of host defense thanks to their capacity to infiltrate infected and wounded tissues, where they exert their bactericidal and tissue repair functions. However, tissue infiltration of phagocytes also stimulates the progression of pathologies such as cancer and chronic inflammatory diseases. It is therefore necessary to identify the molecular and cellular mechanisms that control this process to identify new therapeutic targets. Phagocytes leave the blood stream by crossing the vascular wall and infiltrate interstitial tissues, a three-dimensional environment. A state-of-the-art of the different steps of phagocyte tissue recruitment in vivo and of the different in vitro models is developed in this synthesis. We focus on recent data concerning the migration of phagocytes in three-dimensional environments. The use of two different migration modes, amoeboid and mesenchymal, by macrophages and the role of podosomes and proteases in the mesenchymal migration are discussed. © 2011 médecine/sciences – Inserm / SRMS.

  4. The Effect of Bacteriophage Preparations on Intracellular Killing of Bacteria by Phagocytes

    PubMed Central

    Jończyk-Matysiak, Ewa; Łusiak-Szelachowska, Marzanna; Kłak, Marlena; Bubak, Barbara; Międzybrodzki, Ryszard; Weber-Dąbrowska, Beata; Żaczek, Maciej; Fortuna, Wojciech; Rogóż, Paweł; Letkiewicz, Sławomir; Szufnarowski, Krzysztof; Górski, Andrzej

    2015-01-01

    Intracellular killing of bacteria is one of the fundamental mechanisms against invading pathogens. Impaired intracellular killing of bacteria by phagocytes may be the reason of chronic infections and may be caused by antibiotics or substances that can be produced by some bacteria. Therefore, it was of great practical importance to examine whether phage preparations may influence the process of phagocyte intracellular killing of bacteria. It may be important especially in the case of patients qualified for experimental phage therapy (approximately half of the patients with chronic bacterial infections have their immunity impaired). Our analysis included 51 patients with chronic Gram-negative and Gram-positive bacterial infections treated with phage preparations at the Phage Therapy Unit in Wroclaw. The aim of the study was to investigate the effect of experimental phage therapy on intracellular killing of bacteria by patients' peripheral blood monocytes and polymorphonuclear neutrophils. We observed that phage therapy does not reduce patients' phagocytes' ability to kill bacteria, and it does not affect the activity of phagocytes in patients with initially reduced ability to kill bacteria intracellularly. Our results suggest that experimental phage therapy has no significant adverse effects on the bactericidal properties of phagocytes, which confirms the safety of the therapy. PMID:26783541

  5. Multi-parametric analysis of phagocyte antimicrobial responses using imaging flow cytometry.

    PubMed

    Havixbeck, Jeffrey J; Wong, Michael E; More Bayona, Juan A; Barreda, Daniel R

    2015-08-01

    We feature a multi-parametric approach based on an imaging flow cytometry platform for examining phagocyte antimicrobial responses against the gram-negative bacterium Aeromonas veronii. This pathogen is known to induce strong inflammatory responses across a broad range of animal species, including humans. We examined the contribution of A. veronii to the induction of early phagocyte inflammatory processes in RAW 264.7 murine macrophages in vitro. We found that A. veronii, both in live or heat-killed forms, induced similar levels of macrophage activation based on NF-κB translocation. Although these macrophages maintained high levels of viability following heat-killed or live challenges with A. veronii, we identified inhibition of macrophage proliferation as early as 1h post in vitro challenge. The characterization of phagocytic responses showed a time-dependent increase in phagocytosis upon A. veronii challenge, which was paired with a robust induction of intracellular respiratory burst responses. Interestingly, despite the overall increase in the production of reactive oxygen species (ROS) among RAW 264.7 macrophages, we found a significant reduction in the production of ROS among the macrophage subset that had bound A. veronii. Phagocytic uptake of the pathogen further decreased ROS production levels, even beyond those of unstimulated controls. Overall, this multi-parametric imaging flow cytometry-based approach allowed for segregation of unique phagocyte sub-populations and examination of their downstream antimicrobial responses, and should contribute to improved understanding of phagocyte responses against Aeromonas and other pathogens. Copyright © 2015 Elsevier B.V. All rights reserved.

  6. Pioglitazone restores phagocyte mitochondrial oxidants and bactericidal capacity in chronic granulomatous disease.

    PubMed

    Fernandez-Boyanapalli, Ruby F; Frasch, S Courtney; Thomas, Stacey M; Malcolm, Kenneth C; Nicks, Michael; Harbeck, Ronald J; Jakubzick, Claudia V; Nemenoff, Raphael; Henson, Peter M; Holland, Steven M; Bratton, Donna L

    2015-02-01

    Deficient production of reactive oxygen species (ROS) by the phagocyte nicotinamide adenine dinucleotide (NADPH) oxidase in patients with chronic granulomatous disease (CGD) results in susceptibility to certain pathogens secondary to impaired oxidative killing and mobilization of other phagocyte defenses. Peroxisome proliferator-activated receptor (PPAR) γ agonists, including pioglitazone, approved for type 2 diabetes therapy alter cellular metabolism and can heighten ROS production. It was hypothesized that pioglitazone treatment of gp91(phox-/-) mice, a murine model of human CGD, would enhance phagocyte oxidant production and killing of Staphylococcus aureus, a significant pathogen in patients with this disorder. We sought to determine whether pioglitazone treatment of gp91(phox-/-) mice enhanced phagocyte oxidant production and host defense. Wild-type and gp91(phox-/-) mice were treated with the PPARγ agonist pioglitazone, and phagocyte ROS and killing of S aureus were investigated. As demonstrated by 3 different ROS-sensing probes, short-term treatment of gp91(phox-/-) mice with pioglitazone enhanced stimulated ROS production in neutrophils and monocytes from blood and neutrophils and inflammatory macrophages recruited to tissues. Mitochondria were identified as the source of ROS. Findings were replicated in human monocytes from patients with CGD after ex vivo pioglitazone treatment. Importantly, although mitochondrial (mt)ROS were deficient in gp91(phox-/-) phagocytes, their restoration with treatment significantly enabled killing of S aureus both ex vivo and in vivo. Together, the data support the hypothesis that signaling from the NADPH oxidase under normal circumstances governs phagocyte mtROS production and that such signaling is lacking in the absence of a functioning phagocyte oxidase. PPARγ agonism appears to bypass the need for the NADPH oxidase for enhanced mtROS production and partially restores host defense in CGD. Copyright © 2014 American

  7. Role of caspofungin in restoring the impaired phagocyte-dependent innate immunity towards Candida albicans in chronic haemodialysis patients.

    PubMed

    Scalas, Daniela; Banche, Giuliana; Merlino, Chiara; Giacchino, Franca; Allizond, Valeria; Garneri, Giuseppe; Patti, Rosaria; Roana, Janira; Mandras, Narcisa; Tullio, Vivian; Cuffini, Anna Maria

    2012-01-01

    Phagocyte-dependent cellular immunity in chronic kidney disease patients undergoing haemodialysis treatment is frequently impaired owing to the uraemic state, resulting in an intrinsic susceptibility to developing invasive fungal infections with high mortality rates. Since synergism between phagocytic cells and antifungal drugs may be crucial for successful therapy, the aim of this study was to evaluate the effects exerted by caspofungin (CAS) on the functional activities of polymorphonuclear cells (PMNs) in haemodialysed patients (HDs) towards Candida albicans compared with those of PMNs from healthy subjects (HSs). PMNs were separated from venous blood samples of 66 HDs and 30 HSs (as controls), and measurement of phagocytic and intracellular fungicidal activities of HD-PMNs and HS-PMNs was performed in the presence of CAS at the minimum inhibitory concentration (MIC) and at sub-MICs. CAS-free controls were also included. In the drug-free test condition, no significant difference between the phagocytic activity of HD-PMNs and HS-PMNs was detected. In contrast, a progressive decline in the intracellular killing activity of HD-PMNs against proliferating yeasts was observed. CAS at MIC and sub-MIC levels was able to improve significantly the intracellular fungicidal activity of HD-PMNs against C. albicans, restoring their functionality. These findings provide evidence that CAS exerts a synergistic effect on HD-PMNs against C. albicans, being able to strength the depressed intracellular killing activity. These results corroborate the use of CAS as an effective therapeutic option for the treatment of invasive fungal infections in HDs, in whom even a marginal influence of antifungal drugs on host response may have a relevant effect. Copyright © 2011 Elsevier B.V. and the International Society of Chemotherapy. All rights reserved.

  8. Comprehensive analysis of mouse retinal mononuclear phagocytes.

    PubMed

    Lückoff, Anika; Scholz, Rebecca; Sennlaub, Florian; Xu, Heping; Langmann, Thomas

    2017-06-01

    The innate immune system is activated in a number of degenerative and inflammatory retinal disorders such as age-related macular degeneration (AMD). Retinal microglia, choroidal macrophages, and recruited monocytes, collectively termed 'retinal mononuclear phagocytes', are critical determinants of ocular disease outcome. Many publications have described the presence of these cells in mouse models for retinal disease; however, only limited aspects of their behavior have been uncovered, and these have only been uncovered using a single detection method. The workflow presented here describes a comprehensive analysis strategy that allows characterization of retinal mononuclear phagocytes in vivo and in situ. We present standardized working steps for scanning laser ophthalmoscopy of microglia from MacGreen reporter mice (mice expressing the macrophage colony-stimulating factor receptor GFP transgene throughout the mononuclear phagocyte system), quantitative analysis of Iba1-stained retinal sections and flat mounts, CD11b-based retinal flow cytometry, and qRT-PCR analysis of key microglia markers. The protocol can be completed within 3 d, and we present data from retinas treated with laser-induced choroidal neovascularization (CNV), bright white-light exposure, and Fam161a-associated inherited retinal degeneration. The assays can be applied to any of the existing mouse models for retinal disorders and may be valuable for documenting immune responses in studies for immunomodulatory therapies.

  9. M-ficolin concentrations in cord blood are related to circulating phagocytes and to early-onset sepsis.

    PubMed

    Schlapbach, Luregn J; Kjaer, Troels R; Thiel, Steffen; Mattmann, Maika; Nelle, Mathias; Wagner, Bendicht P; Ammann, Roland A; Aebi, Christoph; Jensenius, Jens C

    2012-04-01

    The pattern-recognition molecule M-ficolin is synthesized by monocytes and neutrophils. M-ficolin activates the complement system in a manner similar to mannan-binding lectin (MBL), but little is known about its role in host defense. Neonates are highly vulnerable to bacterial sepsis, in particular, due to their decreased phagocytic function. M-ficolin cord blood concentration was positively correlated with the absolute phagocyte count (ρ 0.51, P < 0.001) and with immature/total neutrophil ratio (ρ 0.34, P < 0.001). When comparing infants with sepsis and controls, a high M-ficolin cord blood concentration (>1,000 ng/ml) was associated with early-onset sepsis (EOS) (multivariate odds ratio 10.92, 95% confidence interval 2.21-54.02, P = 0.003). Experimental exposure of phagocytes isolated from adult donors to Escherichia coli resulted in a significant time- and dose-dependent release of M-ficolin. In conclusion, M-ficolin concentrations were related to circulating phagocytes and EOS. Our results indicate that bacterial sepsis can trigger M-ficolin release by phagocytes. Future studies should investigate whether M-ficolin may be used as a marker of neutrophil activation during invasive infections. We investigated M-ficolin in 47 infants with culture-positive sepsis during the first 30 days of life (13 with EOS and in 94 matched controls. M-ficolin was measured in cord blood using time-resolved immunofluorometric assay (TRIFMA). Multivariate logistic regression was performed.

  10. Microautophagy in nutritive phagocytes of sea urchins.

    PubMed

    Kalachev, Alexander V; Yurchenko, Olga V

    2017-01-01

    Two types of cells were observed in germinative epithelium of male and female sea urchins: germ cells and somatic accessory cells; the latter referred to as nutritive phagocytes. At the onset of gametogenesis, nutritive phagocytes accumulate nutrients and greatly increase in their size. As gametogenesis progresses, the accumulated nutrients are transferred from nutritive phagocytes into developing gametes, and size of the nutritive phagocytes decreases. An electron microscopic study of nutritive phagocytes in sea urchins, Strongylocentrotus intermedius, at different stages of annual reproductive cycle showed for the first time that both macro- and microautophagy take place in nutritive phagocytes. Both processes occur simultaneously and regulate size and composition of nutritive phagocytes in male and female sea urchins. Nutritive phagocytes consume redundant cytoplasm via macroautophagy. Microautophagy is probably involved in consumption of redundant membranes that appear within nutritive phagocytes due to destruction of nutrient-storing globules, macroautophagy, and phagocytosis of germ cells or their remnants.

  11. Phagocytic clearance of presynaptic dystrophies by reactive astrocytes in Alzheimer's disease

    PubMed Central

    Gomez‐Arboledas, Angela; Davila, Jose C.; Sanchez‐Mejias, Elisabeth; Navarro, Victoria; Nuñez‐Diaz, Cristina; Sanchez‐Varo, Raquel; Sanchez‐Mico, Maria Virtudes; Trujillo‐Estrada, Laura; Fernandez‐Valenzuela, Juan Jose; Vizuete, Marisa; Comella, Joan X.; Galea, Elena

    2017-01-01

    Abstract Reactive astrogliosis, a complex process characterized by cell hypertrophy and upregulation of components of intermediate filaments, is a common feature in brains of Alzheimer's patients. Reactive astrocytes are found in close association with neuritic plaques; however, the precise role of these glial cells in disease pathogenesis is unknown. In this study, using immunohistochemical techniques and light and electron microscopy, we report that plaque‐associated reactive astrocytes enwrap, engulf and may digest presynaptic dystrophies in the hippocampus of amyloid precursor protein/presenilin‐1 (APP/PS1) mice. Microglia, the brain phagocytic population, was apparently not engaged in this clearance. Phagocytic reactive astrocytes were present in 35% and 67% of amyloid plaques at 6 and 12 months of age, respectively. The proportion of engulfed dystrophic neurites was low, around 7% of total dystrophies around plaques at both ages. This fact, along with the accumulation of dystrophic neurites during disease course, suggests that the efficiency of the astrocyte phagocytic process might be limited or impaired. Reactive astrocytes surrounding and engulfing dystrophic neurites were also detected in the hippocampus of Alzheimer's patients by confocal and ultrastructural analysis. We posit that the phagocytic activity of reactive astrocytes might contribute to clear dysfunctional synapses or synaptic debris, thereby restoring impaired neural circuits and reducing the inflammatory impact of damaged neuronal parts and/or limiting the amyloid pathology. Therefore, potentiation of the phagocytic properties of reactive astrocytes may represent a potential therapy in Alzheimer's disease. PMID:29178139

  12. Isolation and functional characteristics of adherent phagocytic cells from mouse Peyer's patches.

    PubMed Central

    MacDonald, T T; Carter, P B

    1982-01-01

    Attempts were made to isolate adherent phagocytic cells (macrophages) from mouse Peyer's patch cell suspensions. Cell suspensions prepared by teasing apart the Peyer's patches contained no adherent phagocytic cells. However, if Peyer's patch fragments were treated with collagenase to disrupt the tissue matrix, cells prepared in this way contained a subpopulation of adherent phagocytic cells. These cells comprised only 0.1-0.2% of the total nucleated cell population of the Peyer's patch. Similar cells could also be isolated from the Peyer's patches of germ-free mice, but as judged by their ability to ingest opsonized erythrocytes, these cells were less activated than cells from the Peyer's patches of normal mice. Adherent cells from the Peyer's patches of normal mice could present antigen (ovalbumin) to T cells, and Peyer's patches cell suspensions containing adherent cells could be stimulated in vitro to produce an anti-sheep red blood cell plaque-forming cell response in the absence of 2-mercaptoethanol. These studies show that although the frequency of phagocytic adherent cells is extremely low in Peyer's patches, these cells have functions consistent with that of adherent cells in other lymphoid tissues. PMID:7068173

  13. It takes two to tango: Phagocyte and lymphocyte numbers in a small mammalian hibernator.

    PubMed

    Havenstein, Nadine; Langer, Franz; Stefanski, Volker; Fietz, Joanna

    2016-02-01

    Immunity is energetically costly and competes for resources with other physiological body functions, which may result in trade-offs that impair fitness during demanding situations. Endocrine mediators, particularly stress hormones, play a central role in these relationships and directly impact leukocyte differentials. To determine the effects of external stressors, energetic restraints and competing physiological functions on immune parameters and their relevance for fitness, we investigated leukocyte profiles during the active season of a small obligate hibernator, the edible dormouse (Glis glis), in five different study sites in south-western Germany. The highly synchronized yearly cycle of this species and the close adaptation of its life history to the irregular abundance of food resources provide a natural experiment to elucidate mechanisms underlying variations in fitness parameters. In contrast to previous studies on hibernators, that showed an immediate recovery of all leukocyte subtypes upon emergence, our study revealed that hibernation results in depleted phagocyte (neutrophils and monocytes) stores that recovered only slowly. As the phenomenon of low phagocyte counts was even more pronounced at the beginning of a low food year and primarily immature neutrophils were present in the blood upon emergence, preparatory mechanisms seem to determine the regeneration of phagocytes before hibernation is terminated. Surprisingly, the recovery of phagocytes thereafter took several weeks, presumably due to energetic restrictions. This impaired first line of defense coincides with lowest survival probabilities during the annual cycle of our study species. Reduced survival could furthermore be linked to drastic increases in the P/L ratio (phagocytes/lymphocytes), an indicator of physiological stress, during reproduction. On the other hand, moderate augmentations in the P/L ratio occurred during periods of low food availability and were associated with increased

  14. Different tissue phagocytes sample apoptotic cells to direct distinct homeostasis programs.

    PubMed

    Cummings, Ryan J; Barbet, Gaetan; Bongers, Gerold; Hartmann, Boris M; Gettler, Kyle; Muniz, Luciana; Furtado, Glaucia C; Cho, Judy; Lira, Sergio A; Blander, J Magarian

    2016-11-24

    Recognition and removal of apoptotic cells by professional phagocytes, including dendritic cells and macrophages, preserves immune self-tolerance and prevents chronic inflammation and autoimmune pathologies. The diverse array of phagocytes that reside within different tissues, combined with the necessarily prompt nature of apoptotic cell clearance, makes it difficult to study this process in situ. The full spectrum of functions executed by tissue-resident phagocytes in response to homeostatic apoptosis, therefore, remains unclear. Here we show that mouse apoptotic intestinal epithelial cells (IECs), which undergo continuous renewal to maintain optimal barrier and absorptive functions, are not merely extruded to maintain homeostatic cell numbers, but are also sampled by a single subset of dendritic cells and two macrophage subsets within a well-characterized network of phagocytes in the small intestinal lamina propria. Characterization of the transcriptome within each subset before and after in situ sampling of apoptotic IECs revealed gene expression signatures unique to each phagocyte, including macrophage-specific lipid metabolism and amino acid catabolism, and a dendritic-cell-specific program of regulatory CD4 + T-cell activation. A common 'suppression of inflammation' signature was noted, although the specific genes and pathways involved varied amongst dendritic cells and macrophages, reflecting specialized functions. Apoptotic IECs were trafficked to mesenteric lymph nodes exclusively by the dendritic cell subset and served as critical determinants for the induction of tolerogenic regulatory CD4 + T-cell differentiation. Several of the genes that were differentially expressed by phagocytes bearing apoptotic IECs overlapped with susceptibility genes for inflammatory bowel disease. Collectively, these findings provide new insights into the consequences of apoptotic cell sampling, advance our understanding of how homeostasis is maintained within the mucosa and

  15. Different tissue phagocytes sample apoptotic cells to direct distinct homeostasis programs

    PubMed Central

    Cummings, Ryan J.; Barbet, Gaetan; Bongers, Gerold; Hartmann, Boris M.; Gettler, Kyle; Muniz, Luciana; Furtado, Glaucia C.; Cho, Judy; Lira, Sergio A.; Blander, J. Magarian

    2017-01-01

    Recognition and removal of apoptotic cells by professional phagocytes, including dendritic cells and macrophages, preserves immune self-tolerance and prevents chronic inflammation and autoimmune pathologies1,2. The diverse array of phagocytes that reside within different tissues, combined with the necessarily prompt nature of apoptotic cell clearance, makes it difficult to study this process in situ. The full spectrum of functions executed by tissue-resident phagocytes in response to homeostatic apoptosis, therefore, remains unclear. Here we show that mouse apoptotic intestinal epithelial cells (IECs), which undergo continuous renewal to maintain optimal barrier and absorptive functions3, are not merely extruded to maintain homeostatic cell numbers4, but are also sampled by a single subset of dendritic cells and two macrophage subsets within a well-characterized network of phagocytes in the small intestinal lamina propria5,6. Characterization of the transcriptome within each subset before and after in situ sampling of apoptotic IECs revealed gene expression signatures unique to each phagocyte, including macrophage-specific lipid metabolism and amino acid catabolism, and a dendritic-cell-specific program of regulatory CD4+ T-cell activation. A common ‘suppression of inflammation’ signature was noted, although the specific genes and pathways involved varied amongst dendritic cells and macrophages, reflecting specialized functions. Apoptotic IECs were trafficked to mesenteric lymph nodes exclusively by the dendritic cell subset and served as critical determinants for the induction of tolerogenic regulatory CD4+ T-cell differentiation. Several of the genes that were differentially expressed by phagocytes bearing apoptotic IECs overlapped with susceptibility genes for inflammatory bowel disease7. Collectively, these findings provide new insights into the consequences of apoptotic cell sampling, advance our understanding of how homeostasis is maintained within the

  16. Apoptosis as a post-phagocytic winnowing mechanism in a coral-dinoflagellate mutualism.

    PubMed

    Dunn, Simon R; Weis, Virginia M

    2009-01-01

    This study was aimed at detecting apoptosis as a post-phagocytic mechanism of symbiont selection during the onset of symbiosis in larvae of the scleractinian coral Fungia scutaria. Larvae were infected with one of three Symbiodinium types: freshly isolated homologous ITS-type C1f from adult F. scutaria, heterologous C31 from adult Montipora capitata, known to be unable to successfully colonize F. scutaria larvae, and type B1 from the symbiotic sea anemone Aiptasia spp. Apoptosis was detected by the activation of caspases, enzymes specific to apoptosis. Caspase activity was measured in situ by cleavage of a specific fluorophore and detection with confocal microscopy. At 6 h post infection, there was a significant increase in caspase activation in gastrodermal cells in C31-infected larvae, compared with larvae infected with C1f or B1 types. Compared with control larvae infected with C31, which had decreased infection rates present by 24 h post infection, when C31-infected larvae were incubated with a broad-scale caspase inhibitor, the per cent of larvae infected with C31 did not significantly decrease over time. This indicates that the reduction in infection success observed in untreated C31-infected larvae can be rescued with inhibition of caspases and apoptosis. This suggests the presence of a post-phagocytic recognition mechanism. Larvae infected with freshly isolated B1 retained infection success over time compared with C31-infected larvae, suggesting that there is host discrimination between heterologous algae. Initiation of this post-phagocytic response may occur more readily with a highly specific heterologous symbiont type such as C31, compared with a generalist heterologous type such as clade B1.

  17. Continued clearance of apoptotic cells critically depends on the phagocyte Ucp2 protein

    PubMed Central

    Park, Daeho; Han, Claudia; Elliott, Michael R.; Kinchen, Jason M.; Trampont, Paul C.; Das, Soumita; Collins, Sheila; Lysiak, Jeffrey J.; Hoehn, Kyle L.; Ravichandran, Kodi S.

    2012-01-01

    Rapid and efficient removal of apoptotic cells by phagocytes plays a key role during development, tissue homeostasis, and in controlling immune responses1–5. An important feature of efficient clearance is the capacity of a single phagocyte to ingest multiple apoptotic cells successively, and to process the increased load of corpse-derived cellular material6–9. However, factors that influence sustained phagocytic capacity or how they in turn influence continued clearance by phagocytes are not known. Here we identify that the ability of a phagocyte to control its mitochondrial membrane potential is a critical factor in the capacity of a phagocyte to engulf apoptotic cells. Changing the phagocyte mitochondrial membrane potential (genetically or pharmacologically) significantly affected phagocytosis, with lower potential enhancing engulfment and higher membrane potential inhibiting uptake. We then identified that Ucp2, a mitochondrial membrane protein that acts to lower the mitochondrial membrane potential10–12, is upregulated in phagocytes engulfing apoptotic cells (but not synthetic targets, bacteria, or yeast). Loss of Ucp2 limited the capacity of phagocytes to continually ingest apoptotic cells, while overexpression of Ucp2 increased the capacity for engulfment and the ability to engulf multiple apoptotic cells. Mutational and pharmacological inhibition of Ucp2 uncoupling activity reversed the positive effect of Ucp2 on engulfment capacity, suggesting a direct role for Ucp2-mediated mitochondrial function in phagocytosis. Macrophages from Ucp2-deficient mice13, 14 were impaired in their capacity to engulf apoptotic cells in vitro, and Ucp2-deficient mice displayed profound in vivo defects in clearing dying cells in the thymus and the testes. Collectively, these data suggest that phagocytes alter the mitochondrial membrane potential during engulfment to regulate uptake of sequential apoptotic cells, and that Ucp2 is a key molecular determinant of this step in

  18. Structural definition of a potent macrophage activating factor derived from vitamin D3-binding protein with adjuvant activity for antibody production.

    PubMed

    Yamamoto, N

    1996-10-01

    Incubation of human vitamin D3-binding protein (Gc protein), with a mixture of immobilized beta-galactosidase and sialidase, efficiently generated a potent macrophage activating factor, a protein with N-acetylgalactosamine as the remaining sugar. Stepwise incubation of Gc protein with immobilized beta-galactosidase and sialidase, and isolation of the intermediates with immobilized lectins, revealed that either sequence of hydrolysis of Gc glycoprotein by these glycosidases yields the macrophage-activating factor, implying that Gc protein carries a trisaccharide composed of N-acetylgalactosamine and dibranched galactose and sialic acid termini. A 3 hr incubation of mouse peritoneal macrophages with picomolar amounts of the enzymatically generated macrophage-activating factor (GcMAF) resulted in a greatly enhanced phagocytic activity. Administration of a minute amount (10-50 pg/mouse) of GcMAF resulted in a seven- to nine-fold enhanced phagocytic activity of macrophages. Injection of sheep red blood cells (SRBC) along with GcMAF into mice produced a large number of anti-SRBC antibody secreting splenic cells in 2-4 days.

  19. Phagocyte dynamics in a highly regenerative urochordate: insights into development and host defense.

    PubMed

    Lauzon, Robert J; Brown, Christina; Kerr, Louie; Tiozzo, Stefano

    2013-02-15

    Phagocytosis is a cellular process by which particles and foreign bodies are engulfed and degraded by specialized cells. It is functionally involved in nutrient acquisition and represents a fundamental mechanism used to remove pathogens and cellular debris. In the marine invertebrate chordate Botryllus schlosseri, cell corpse engulfment by phagocytic cells is the recurrent mechanism of programmed cell clearance and a critical process for the successful execution of asexual regeneration and colony homeostasis. In the present study, we have utilized a naturally occurring process of vascular parabiosis coupled with intravascular microinjection of fluorescent bioparticles and liposomes as tools to investigate the dynamics of phagocyte behavior in real-time during cyclical body regeneration. Our findings indicate that B. schlosseri harbors two major populations of post-mitotic phagocytes, which display distinct phagocytic specificity and homing patterns: a static population that lines the circulatory system epithelia, and a mobile population that continuously recirculates throughout the colony and exhibits a characteristic homing pattern within mesenchymal niches called ventral islands (VI). We observed that a significant proportion of ventral island phagocytes (VIP) die and are engulfed by other VIP following takeover. Selective impairment of VIP activity curtailed zooid resorption and asexual development. Together, these findings strongly suggest that ventral islands are sites of phagocyte homing and turnover. As botryllid ascidians represent invertebrate chordates capable of whole body regeneration in a non-embryonic scenario, we discuss the pivotal role that phagocytosis plays in homeostasis, tissue renewal and host defense. Copyright © 2012 Elsevier Inc. All rights reserved.

  20. A novel phagocytic receptor (CgNimC) from Pacific oyster Crassostrea gigas with lipopolysaccharide and gram-negative bacteria binding activity.

    PubMed

    Wang, Weilin; Liu, Rui; Zhang, Tao; Zhang, Ran; Song, Xuan; Wang, Lingling; Song, Linsheng

    2015-03-01

    Phagocytosis is an evolutionarily conserved process to ingest the invading microbes and apoptotic or necrotic corpses, playing vital roles in defensing invaders and maintenance of normal physiological conditions. In the present study, a new Nimrod family phagocytic receptor with three EGF-like domains was identified in Pacific oyster Crassostrea gigas (designated CgNimC). CgNimC shared homology with other identified multiple EGF-like domain containing proteins. The mRNA transcripts of CgNimC were mainly distributed in mantle and hemocytes. Its relative expression level in hemocytes was significantly (P < 0.01) up-regulated after the injection of bacteria Vibrio anguillarum. Different to the NimC in Drosophila and Anopheles gambiae, the recombinant protein of CgNimC (rCgNimC) could bind directly to two gram-negative bacteria V. anguillarum and Vibrio splendidus, but not to gram-positive bacteria Staphylococci aureus, Micrococcus luteus or fungi Yarrowia lipolytica and Pichia pastoris. The affinity of rCgNimC toward M. luteus and Y. lipolytica was enhanced when the microorganisms were pre-incubated with the cell free hemolymph. rCgNimC exhibited higher affinity to lipopolysaccharide (LPS) and relatively lower affinity to peptidoglycan (PGN), while no affinity to glucan (GLU). After the CgNimC receptor was blocked by anti-rCgNimC antibody in vitro, the phagocytic rate of hemocytes toward two gram-negative bacteria V. anguillarum and V. splendidus was reduced significantly (P < 0.05), but no significant change of phagocytic rate was observed toward M. luteus and Y. lipolytica. All these results implied that CgNimC, with significant binding capability to LPS and gram-negative bacteria, was a novel phagocytic receptor involved in immune response of Pacific oyster. Further, it was speculated that receptors of Nimrod family might function as a phagocytic receptor to recognize PAMPs on the invaders and its recognition could be promoted by opsonization of molecules in

  1. Assessment of the cytotoxicity of a mineral trioxide aggregate-based sealer with respect to macrophage activity.

    PubMed

    Braga, Julia Mourão; Oliveira, Ricardo Reis; de Castro Martins, Renata; Vieira, Leda Quercia; Sobrinho, Antonio Paulino Ribeiro

    2015-10-01

    To assess the influence of co-culture with mineral trioxide aggregate (MTA) and MTA Fillapex (FLPX) on the viability, adherence, and phagocytosis activity of peritoneal macrophages from two mouse strains. Cellular viability, adherence, and phagocytosis of Saccharomyces boulardii were assayed in the presence of capillaries containing MTA and MTA Fillapex. The data were analyzed using parametric (Student's t) and non-parametric (Mann-Whitney) tests. FLPX was severely cytotoxic and decreased cell viability, adherence, and phagocytic activity of both macrophage subtypes. Cells that were treated with MTA Fillapex remained viable (>80%) for only 4 h after stimulation. Macrophages from C57BL/6 mice presented higher adherence and higher phagocytic activity compared with macrophages from BALB/c mice. Comparison of MTA and FLPX effects upon macrophages indicates that FLPX may impair macrophage activity and viability, while MTA seems to increase phagocytic activity. © 2015 John Wiley & Sons A/S. Published by John Wiley & Sons Ltd.

  2. Pathophysiology and Treatments of Oxidative Injury in Ischemic Stroke: Focus on the Phagocytic NADPH Oxidase 2

    PubMed Central

    Carbone, Federico; Teixeira, Priscila Camillo; Braunersreuther, Vincent; Mach, François; Vuilleumier, Nicolas

    2015-01-01

    Abstract Significance: Phagocytes play a key role in promoting the oxidative stress after ischemic stroke occurrence. The phagocytic NADPH oxidase (NOX) 2 is a membrane-bound enzyme complex involved in the antimicrobial respiratory burst and free radical production in these cells. Recent Advances: Different oxidants have been shown to induce opposite effects on neuronal homeostasis after a stroke. However, several experimental models support the detrimental effects of NOX activity (especially the phagocytic isoform) on brain recovery after stroke. Therapeutic strategies selectively targeting the neurotoxic ROS and increasing neuroprotective oxidants have recently produced promising results. Critical Issues: NOX2 might promote carotid plaque rupture and stroke occurrence. In addition, NOX2-derived reactive oxygen species (ROS) released by resident and recruited phagocytes enhance cerebral ischemic injury, activating the inflammatory apoptotic pathways. The aim of this review is to update evidence on phagocyte-related oxidative stress, focusing on the role of NOX2 as a potential therapeutic target to reduce ROS-related cerebral injury after stroke. Future Directions: Radical scavenger compounds (such as Ebselen and Edaravone) are under clinical investigation as a therapeutic approach against stroke. On the other hand, NOX inhibition might represent a promising strategy to prevent the stroke-related injury. Although selective NOX inhibitors are not yet available, nonselective compounds (such as apocynin and fasudil) provided encouraging results in preclinical studies. Whereas additional studies are needed to better evaluate this therapeutic potential in human beings, the development of specific NOX inhibitors (such as monoclonal antibodies, small-molecule inhibitors, or aptamers) might further improve brain recovery after stroke. Antioxid. Redox Signal. 23, 460–489. PMID:24635113

  3. Macrophages Exhibit a Large Repertoire of Activation States via Multiple Mechanisms of Macrophage-activating Factors.

    PubMed

    Sumiya, Y U; Inoue, Takahiro; Ishikawa, Mami; Inui, Toshio; Kuchiike, Daisuke; Kubo, Kentaro; Uto, Yoshihiro; Nishikata, Takahito

    2016-07-01

    Macrophages are important components of human defense systems and consequently key to antitumor immunity. Human-serum macrophage activation factor (serum MAF) can activate macrophages, making it a promising reagent for anticancer therapy. We established four different macrophage subtypes through introduction of different culture conditions to THP-1- and U937-derived macrophages. We assessed phagocytic activity to understand subtype responses to typical macrophage activation factors (MAFs) and the activation mechanisms of serum MAF. All four macrophage subtypes differed in their response to all MAFs. Moreover, serum MAF had two different activation mechanisms: N-acetylgalactosamine (GalNAc)-dependent and GalNAc-independent. Macrophage activation states and mechanisms are heterogeneous. Copyright© 2016 International Institute of Anticancer Research (Dr. John G. Delinassios), All rights reserved.

  4. The effect of beta-hydroxy-beta-methylbutyrate (HMB) on the proliferative response of blood lymphocytes and the phagocytic activity of blood monocytes and granulocytes in calves.

    PubMed

    Wójcik, R; Małaczewska, J; Siwicki, A K; Miciński, J; Zwierzchowski, G

    2013-01-01

    The objective of this study was to evaluate the effect of HMB on selected indicators of immunity in calves. The experiment was performed on 14 calves aged 30 +/- 2 days, divided into two equal groups of control (group I) and experimental (group II) animals. The feed administered to experimental group calves was supplemented with HMB at 40 mg/kg BW, whereas control calves were administered standard farm-made feed without supplementation. Blood was sampled from the jugular vein immediately before the experiment (day 0) and on experimental days 15, 30 and 60 to determine the following parameters of immunity: proliferative response of LPS- and ConA-stimulated lymphocytes (MTT), respiratory burst activity (RBA) and potential killing activity (PKA) of phagocytes. The results revealed a significant increase in RBA and MTT values in calves administered HMB in comparison with the control group throughout the experiment. In the group of animals receiving HMB, an increase in PKA values was noted only on day 30.

  5. Tetrahydrocannabinol-induced suppression of macrophage spreading and phagocytic activity in vitro.

    PubMed

    Lopez-Cepero, M; Friedman, M; Klein, T; Friedman, H

    1986-06-01

    The effects of tetrahydrocannabinol (THC) on several parameters of macrophage function in vitro were assessed. Delta 9 THC added to cultures of normal mouse peritoneal cells in vitro affected the ability of the cells to spread on glass surfaces and also had some effect on their ability to phagocytize yeast. These effects were dose related. A concentration of 20 micrograms of THC almost completely inhibited macrophage spreading, but it also decreased viability and the total number of these cells. Doses of 10 or 5 micrograms of THC also inhibited spreading but had little effect on cell viability or number. A dose of 1.0 microgram of THC had some inhibitory effect on spreading and the lowest dose affecting spreading appeared to be about 0.05 micrograms per culture. Higher doses of THC were necessary to inhibit phagocytosis of yeast particles as determined by direct microscopic examination or use of radiolabeled yeast as the test particles. These results indicate that several readily measured functions of macrophages may be suppressed by THC.

  6. Cellular Pharmacokinetics and Intracellular Activity of Gepotidacin against Staphylococcus aureus Isolates with Different Resistance Phenotypes in Models of Cultured Phagocytic Cells

    PubMed Central

    Peyrusson, Frédéric

    2018-01-01

    ABSTRACT Gepotidacin (GSK2140944), a novel triazaacenaphthylene bacterial topoisomerase inhibitor, is currently in clinical development for the treatment of bacterial infections. This study examined in vitro its activity against intracellular Staphylococcus aureus (involved in the persistent character of skin and skin structure infections) by use of a pharmacodynamic model and in relation to cellular pharmacokinetics in phagocytic cells. Compared to oxacillin, vancomycin, linezolid, daptomycin, azithromycin, and moxifloxacin, gepotidacin was (i) more potent intracellularly (the apparent bacteriostatic concentration [Cs] was reached at an extracellular concentration about 0.7× its MIC and was not affected by mechanisms of resistance to the comparators) and (ii) caused a maximal reduction of the intracellular burden (maximum effect) of about −1.6 log10 CFU (which was better than that caused by linezolid, macrolides, and daptomycin and similar to that caused by moxifloxacin). After 24 h of incubation of infected cells with antibiotics at 100× their MIC, the intracellular persisting fraction was <0.1% with moxifloxacin, 0.5% with gepotidacin, and >1% with the other drugs. The accumulation and efflux of gepotidacin in phagocytes were very fast (kin and kout, ∼0.3 min−1; the plateau was reached within 15 min) but modest (intracellular concentration-to-extracellular concentration ratio, ∼1.6). In cell fractionation studies, about 40 to 60% of the drug was recovered in the soluble fraction and ∼40% was associated with lysosomes in uninfected cells. In infected cells, about 20% of cell-associated gepotidacin was recovered in a sedimentable fraction that also contained bacteria. This study highlights the potential for further study of gepotidacin to fight infections where intracellular niches may play a determining role in bacterial persistence and relapses. PMID:29358297

  7. The Phagocyte, Metchnikoff, and the Foundation of Immunology.

    PubMed

    Teti, Giuseppe; Biondo, Carmelo; Beninati, Concetta

    2016-04-01

    Since the ability of some cells to engulf particulate material was observed before Metchnikoff, he did not "discover" phagocytosis, as is sometimes mentioned in textbooks. Rather, he assigned to particle internalization the role of defending the host against noxious stimuli, which represented a new function relative to the previously recognized task of intracellular digestion. With this proposal, Metchnikoff built the conceptual framework within which immunity could finally be seen as an active host function triggered by noxious stimuli. In this sense, Metchnikoff can be rightly regarded as the father of all immunological sciences and not only of innate immunity or myeloid cell biology. Moreover, the recognition properties of his phagocyte fit surprisingly well with recent discoveries and modern models of immune sensing. For example, rather than assigning to immune recognition exclusively the function of eliminating nonself components (as others did after him), Metchnikoff viewed phagocytes as homeostatic agents capable of monitoring the internal environment and promoting tissue remodeling, thereby continuously defining the identity of the organism. No doubt, Metchnikoff's life and creativity can provide, still today, a rich source of inspiration.

  8. Nano-sized and micro-sized polystyrene particles affect phagocyte function

    PubMed Central

    Prietl, B.; Meindl, C.; Roblegg, E.; Pieber, T. R.; Lanzer, G.; Fröhlich, E.

    2015-01-01

    Adverse effect of nanoparticles may include impairment of phagocyte function. To identify the effect of nanoparticle size on uptake, cytotoxicity, chemotaxis, cytokine secretion, phagocytosis, oxidative burst, nitric oxide production and myeloperoxidase release, leukocytes isolated from human peripheral blood, monocytes and macrophages were studied. Carboxyl polystyrene (CPS) particles in sizes between 20 and 1,000 nm served as model particles. Twenty nanometers CPS particles were taken up passively, while larger CPS particles entered cells actively and passively. Twenty nanometers CPS were cytotoxic to all phagocytes, ≥500 nm CPS particles only to macrophages. Twenty nanometers CPS particles stimulated IL-8 secretion in human monocytes and induced oxidative burst in monocytes. Five hundred nanometers and 1,000 nm CPS particles stimulated IL-6 and IL-8 secretion in monocytes and macrophages, chemotaxis towards a chemotactic stimulus of monocytes and phagocytosis of bacteria by macrophages and provoked an oxidative burst of granulocytes. At very high concentrations, CPS particles of 20 and 500 nm stimulated myeloperoxidase release of granulocytes and nitric oxide generation in macrophages. Cytotoxic effect could contribute to some of the observed effects. In the absence of cytotoxicity, 500 and 1,000 nm CPS particles appear to influence phagocyte function to a greater extent than particles in other sizes. PMID:24292270

  9. Nano-sized and micro-sized polystyrene particles affect phagocyte function.

    PubMed

    Prietl, B; Meindl, C; Roblegg, E; Pieber, T R; Lanzer, G; Fröhlich, E

    2014-02-01

    Adverse effect of nanoparticles may include impairment of phagocyte function. To identify the effect of nanoparticle size on uptake, cytotoxicity, chemotaxis, cytokine secretion, phagocytosis, oxidative burst, nitric oxide production and myeloperoxidase release, leukocytes isolated from human peripheral blood, monocytes and macrophages were studied. Carboxyl polystyrene (CPS) particles in sizes between 20 and 1,000 nm served as model particles. Twenty nanometers CPS particles were taken up passively, while larger CPS particles entered cells actively and passively. Twenty nanometers CPS were cytotoxic to all phagocytes, ≥500 nm CPS particles only to macrophages. Twenty nanometers CPS particles stimulated IL-8 secretion in human monocytes and induced oxidative burst in monocytes. Five hundred nanometers and 1,000 nm CPS particles stimulated IL-6 and IL-8 secretion in monocytes and macrophages, chemotaxis towards a chemotactic stimulus of monocytes and phagocytosis of bacteria by macrophages and provoked an oxidative burst of granulocytes. At very high concentrations, CPS particles of 20 and 500 nm stimulated myeloperoxidase release of granulocytes and nitric oxide generation in macrophages. Cytotoxic effect could contribute to some of the observed effects. In the absence of cytotoxicity, 500 and 1,000 nm CPS particles appear to influence phagocyte function to a greater extent than particles in other sizes.

  10. Interferon-beta signaling in retinal mononuclear phagocytes attenuates pathological neovascularization.

    PubMed

    Lückoff, Anika; Caramoy, Albert; Scholz, Rebecca; Prinz, Marco; Kalinke, Ulrich; Langmann, Thomas

    2016-06-01

    Age-related macular degeneration (AMD) is a leading cause of vision loss among the elderly. AMD pathogenesis involves chronic activation of the innate immune system including complement factors and microglia/macrophage reactivity in the retina. Here, we show that lack of interferon-β signaling in the retina accelerates mononuclear phagocyte reactivity and promotes choroidal neovascularization (CNV) in the laser model of neovascular AMD Complete deletion of interferon-α/β receptor (Ifnar) using Ifnar1(-/-) mice significantly enhanced early microglia and macrophage activation in lesion areas. This triggered subsequent vascular leakage and CNV at later stages. Similar findings were obtained in laser-treated Cx3cr1(Cre) (ER):Ifnar1(fl/fl) animals that allowed the tamoxifen-induced conditional depletion of Ifnar in resident mononuclear phagocytes only. Conversely, systemic IFN-β therapy of laser-treated wild-type animals effectively attenuated microgliosis and macrophage responses in the early stage of disease and significantly reduced CNV size in the late phase. Our results reveal a protective role of Ifnar signaling in retinal immune homeostasis and highlight a potential use for IFN-β therapy in the eye to limit chronic inflammation and pathological angiogenesis in AMD. © 2016 The Authors. Published under the terms of the CC BY 4.0 license.

  11. The amelioration of phagocytic ability in microglial cells by curcumin through the inhibition of EMF-induced pro-inflammatory responses

    PubMed Central

    2014-01-01

    Background Insufficient clearance by microglial cells, prevalent in several neurological conditions and diseases, is intricately intertwined with MFG-E8 expression and inflammatory responses. Electromagnetic field (EMF) exposure can elicit the pro-inflammatory activation and may also trigger an alteration of the clearance function in microglial cells. Curcumin has important roles in the anti-inflammatory and phagocytic process. Here, we evaluated the ability of curcumin to ameliorate the phagocytic ability of EMF-exposed microglial cells (N9 cells) and documented relative pathways. Methods N9 cells were pretreated with or without recombinant murine MFG-E8 (rmMFG-E8), curcumin and an antibody of toll-like receptor 4 (anti-TLR4), and subsequently treated with EMF or a sham exposure. Their phagocytic ability was evaluated using phosphatidylserine-containing fluorescent bioparticles. The pro-inflammatory activation of microglia was assessed via CD11b immunoreactivity and the production of tumor necrosis factor-α (TNF-α), interleukin-6 (IL-6), interleukin-1β (IL-1β) and nitric oxide (NO) via the enzyme-linked immunosorbent assay or the Griess test. We evaluated the ability of curcumin to ameliorate the phagocytic ability of EMF-exposed N9 cells, including checking the expression of MFG-E8, αvβ3 integrin, TLR4, nuclear factor-κB (NF-κB) and signal transducer and activator of transcription 3 (STAT3) using Western blotting. Results EMF exposure dramatically enhanced the expression of CD11b and depressed the phagocytic ability of N9 cells. rmMFG-E8 could clearly ameliorate the phagocytic ability of N9 cells after EMF exposure. We also found that EMF exposure significantly increased the secretion of pro-inflammatory cytokines (TNF-α, IL-6 and IL-1β) and the production of NO; however, these increases were efficiently chilled by the addition of curcumin to the culture medium. This reduction led to the amelioration of the phagocytic ability of EMF-exposed N9 cells

  12. β-glucans from Coriolus versicolor protect mice against S. typhimurium challenge by activation of macrophages.

    PubMed

    Shi, Shao-Hua; Yang, Wen-Tao; Huang, Ke-Yan; Jiang, Yan-Long; Yang, Gui-Lian; Wang, Chun-Feng; Li, Yu

    2016-05-01

    The effects of β-glucans from Coriolus versicolor (CVP), which are extracted from a well-known immune stimulator C. versicolor, have been demonstrated extensively in vitro and in vivo. However, until now, the phagocytic activity has not been elucidated. Hence, the objective of the present study was to identify the antibacterial activity of CVP or CVP-treated macrophages by an analysis of cell cytotoxicity, phagocytic activity, intracellular bacterial survival, macrophage activation, production of nitric oxide (NO) and expression of inducible nitric oxide synthase (iNOS) in CVP-treated macrophages using flow cytometry, RT-PCR, a gentamicin protection assay, a Nitric oxide assay and an iNOS enzymatic activity assay. The results indicate that CVP-treated macrophages can phagocytize and kill bacteria, probably due to the production of NO and iNOS. More importantly, CVP-treated macrophages are effective at protecting mice against the challenge of Salmonella typhimurium. The results of this study suggest that the antibacterial effects of CVP are probably caused by the activation of innate immune cells, especially macrophages, because the activated macrophage produces NO, which kills bacteria. These phenomena indicate the possibility of CVP as a potential alternative for antibiotics against resistant bacteria. Copyright © 2016 Elsevier B.V. All rights reserved.

  13. Marek's disease virus infection of phagocytes: a de novo in vitro infection model.

    PubMed

    Chakraborty, Pankaj; Vervelde, Lonneke; Dalziel, Robert G; Wasson, Peter S; Nair, Venugopal; Dutia, Bernadette M; Kaiser, Pete

    2017-05-01

    Marek's disease virus (MDV) is an alphaherpesvirus that induces T-cell lymphomas in chickens. Natural infections in vivo are caused by the inhalation of infected poultry house dust and it is presumed that MDV infection is initiated in the macrophages from where the infection is passed to B cells and activated T cells. Virus can be detected in B and T cells and macrophages in vivo, and both B and T cells can be infected in vitro. However, attempts to infect macrophages in vitro have not been successful. The aim of this study was to develop a model for infecting phagocytes [macrophages and dendritic cells (DCs)] with MDV in vitro and to characterize the infected cells. Chicken bone marrow cells were cultured with chicken CSF-1 or chicken IL-4 and chicken CSF-2 for 4 days to produce macrophages and DCs, respectively, and then co-cultured with FACS-sorted chicken embryo fibroblasts (CEFs) infected with recombinant MDV expressing EGFP. Infected phagocytes were identified and sorted by FACS using EGFP expression and phagocyte-specific mAbs. Detection of MDV-specific transcripts of ICP4 (immediate early), pp38 (early), gB (late) and Meq by RT-PCR provided evidence for MDV replication in the infected phagocytes. Time-lapse confocal microscopy was also used to demonstrate MDV spread in these cells. Subsequent co-culture of infected macrophages with CEFs suggests that productive virus infection may occur in these cell types. This is the first report of in vitro infection of phagocytic cells by MDV.

  14. ACANTHAMOEBA SP.S-11 PHAGOCYTOTIC ACTIVITY ON MYCOBACTERIUM LEPRAE IN DIFFERENT NUTRIENT CONDITIONS.

    PubMed

    Paling, Sepling; Wahyuni, Ratna; Ni'matuzahroh; Winarni, Dwi; Iswahyudi; Astari, Linda; Adriaty, Dinar; Agusni, Indropo; Izumi, Shinzo

    2018-01-01

    Mycobacterium leprae ( M. leprae ) is a pathogenic bacterium that causes leprosy. The presence of M. leprae in the environment is supported by microorganisms that act as the new host for M. leprae . Acanthamoeba 's potential to be a host of M. leprae in the environment. Acanthamoeba sp. is Free Living Amoeba (FLA) that classified as holozoic, saprophytic, and saprozoic. The existence of nutrients in the environment influence Acanthamoeba ability to phagocytosis or pinocytosis. This study is aimed to determine Acanthamoeba sp.S-11 phagocytic activity to Mycobacterium leprae ( M. leprae ) which cultured in non-nutrient media and riched-nutrient media. This research conducted by culturing Acanthamoeba sp.S-11 and M. leprae on different nutrient media conditions. M. leprae intracellular DNA were isolated and amplified by M. leprae specific primers through Real Time PCR (Q-PCR). The results showed that Acanthamoeba co-cultured on non-nutrient media were more active to phagocyte M. leprae than on rich-nutrient media. The use of non-nutrient media is recommended to optimize Acanthamoeba sp. phagocytic activity to M. leprae .

  15. Aspergillus-induced superoxide production by cystic fibrosis phagocytes is associated with disease severity.

    PubMed

    Brunel, Shan F; Willment, Janet A; Brown, Gordon D; Devereux, Graham; Warris, Adilia

    2018-04-01

    Aspergillus fumigatus infects up to 50% of cystic fibrosis (CF) patients and may play a role in progressive lung disease. As cystic fibrosis transmembrane conductance regulator is expressed in cells of the innate immune system, we hypothesised that impaired antifungal immune responses play a role in CF-related Aspergillus lung disease. Peripheral blood mononuclear cells, polymorphonuclear cells (PMN) and monocytes were isolated from blood samples taken from CF patients and healthy volunteers. Live-cell imaging and colorimetric assays were used to assess antifungal activity in vitro . Production of reactive oxygen species (ROS) was measured using luminol-induced chemiluminescence and was related to clinical metrics as collected by case report forms. CF phagocytes are as effective as those from healthy controls with regards to phagocytosis, killing and restricting germination of A. fumigatus conidia. ROS production by CF phagocytes was up to four-fold greater than healthy controls (p<0.05). This effect could not be replicated in healthy phagocytes by priming with lipopolysaccharide or serum from CF donors. Increased production of ROS against A. fumigatus by CF PMN was associated with an increased number of clinical exacerbations in the previous year (p=0.007) and reduced lung function (by forced expiratory volume in 1 s) (p=0.014). CF phagocytes mount an intrinsic exaggerated release of ROS upon A. fumigatus stimulation which is associated with clinical disease severity.

  16. Aspergillus-induced superoxide production by cystic fibrosis phagocytes is associated with disease severity

    PubMed Central

    Brunel, Shan F.; Brown, Gordon D.; Devereux, Graham; Warris, Adilia

    2018-01-01

    Aspergillus fumigatus infects up to 50% of cystic fibrosis (CF) patients and may play a role in progressive lung disease. As cystic fibrosis transmembrane conductance regulator is expressed in cells of the innate immune system, we hypothesised that impaired antifungal immune responses play a role in CF-related Aspergillus lung disease. Peripheral blood mononuclear cells, polymorphonuclear cells (PMN) and monocytes were isolated from blood samples taken from CF patients and healthy volunteers. Live-cell imaging and colorimetric assays were used to assess antifungal activity in vitro. Production of reactive oxygen species (ROS) was measured using luminol-induced chemiluminescence and was related to clinical metrics as collected by case report forms. CF phagocytes are as effective as those from healthy controls with regards to phagocytosis, killing and restricting germination of A. fumigatus conidia. ROS production by CF phagocytes was up to four-fold greater than healthy controls (p<0.05). This effect could not be replicated in healthy phagocytes by priming with lipopolysaccharide or serum from CF donors. Increased production of ROS against A. fumigatus by CF PMN was associated with an increased number of clinical exacerbations in the previous year (p=0.007) and reduced lung function (by forced expiratory volume in 1 s) (p=0.014). CF phagocytes mount an intrinsic exaggerated release of ROS upon A. fumigatus stimulation which is associated with clinical disease severity. PMID:29651422

  17. New Insights into the Immunobiology of Mononuclear Phagocytic Cells and Their Relevance to the Pathogenesis of Cardiovascular Diseases

    PubMed Central

    Sanmarco, Liliana Maria; Eberhardt, Natalia; Ponce, Nicolás Eric; Cano, Roxana Carolina; Bonacci, Gustavo; Aoki, Maria Pilar

    2018-01-01

    Macrophages are the primary immune cells that reside within the myocardium, suggesting that these mononuclear phagocytes are essential in the orchestration of cardiac immunity and homeostasis. Independent of the nature of the injury, the heart triggers leukocyte activation and recruitment. However, inflammation is harmful to this vital terminally differentiated organ with extremely poor regenerative capacity. As such, cardiac tissue has evolved particular strategies to increase the stress tolerance and minimize the impact of inflammation. In this sense, growing evidences show that mononuclear phagocytic cells are particularly dynamic during cardiac inflammation or infection and would actively participate in tissue repair and functional recovery. They respond to soluble mediators such as metabolites or cytokines, which play central roles in the timing of the intrinsic cardiac stress response. During myocardial infarction two distinct phases of monocyte influx have been identified. Upon infarction, the heart modulates its chemokine expression profile that sequentially and actively recruits inflammatory monocytes, first, and healing monocytes, later. In the same way, a sudden switch from inflammatory macrophages (with microbicidal effectors) toward anti-inflammatory macrophages occurs within the myocardium very shortly after infection with Trypanosoma cruzi, the causal agent of Chagas cardiomyopathy. While in sterile injury, healing response is necessary to stop tissue damage; during an intracellular infection, the anti-inflammatory milieu in infected hearts would promote microbial persistence. The balance of mononuclear phagocytic cells seems to be also dynamic in atherosclerosis influencing plaque initiation and fate. This review summarizes the participation of mononuclear phagocyte system in cardiovascular diseases, keeping in mind that the immune system evolved to promote the reestablishment of tissue homeostasis following infection/injury, and that the effects of

  18. New Insights into the Immunobiology of Mononuclear Phagocytic Cells and Their Relevance to the Pathogenesis of Cardiovascular Diseases.

    PubMed

    Sanmarco, Liliana Maria; Eberhardt, Natalia; Ponce, Nicolás Eric; Cano, Roxana Carolina; Bonacci, Gustavo; Aoki, Maria Pilar

    2017-01-01

    Macrophages are the primary immune cells that reside within the myocardium, suggesting that these mononuclear phagocytes are essential in the orchestration of cardiac immunity and homeostasis. Independent of the nature of the injury, the heart triggers leukocyte activation and recruitment. However, inflammation is harmful to this vital terminally differentiated organ with extremely poor regenerative capacity. As such, cardiac tissue has evolved particular strategies to increase the stress tolerance and minimize the impact of inflammation. In this sense, growing evidences show that mononuclear phagocytic cells are particularly dynamic during cardiac inflammation or infection and would actively participate in tissue repair and functional recovery. They respond to soluble mediators such as metabolites or cytokines, which play central roles in the timing of the intrinsic cardiac stress response. During myocardial infarction two distinct phases of monocyte influx have been identified. Upon infarction, the heart modulates its chemokine expression profile that sequentially and actively recruits inflammatory monocytes, first, and healing monocytes, later. In the same way, a sudden switch from inflammatory macrophages (with microbicidal effectors) toward anti-inflammatory macrophages occurs within the myocardium very shortly after infection with Trypanosoma cruzi , the causal agent of Chagas cardiomyopathy. While in sterile injury, healing response is necessary to stop tissue damage; during an intracellular infection, the anti-inflammatory milieu in infected hearts would promote microbial persistence. The balance of mononuclear phagocytic cells seems to be also dynamic in atherosclerosis influencing plaque initiation and fate. This review summarizes the participation of mononuclear phagocyte system in cardiovascular diseases, keeping in mind that the immune system evolved to promote the reestablishment of tissue homeostasis following infection/injury, and that the effects

  19. Macrophage Biochemistry, Activation and Function

    DTIC Science & Technology

    1981-01-01

    vacuolar apparatus become more abundant. Functional capabilities, including phagocytic activity, protein synthesis and surface receptors, also increase...properties of cell components of other tissues has led to the following assignment of marker enzymes to specific macrophage components. This assessment is...subfractions. The surface area of each histogram bar then gives the frac- tional amount of constituent present within each normalized fraction. Distribution

  20. Local force induced conical protrusions of phagocytic cells.

    PubMed

    Vonna, Laurent; Wiedemann, Agnès; Aepfelbacher, Martin; Sackmann, Erich

    2003-03-01

    Magnetic tweezers were used to study the passive and active response of macrophages to local centripetal nanonewton forces on beta1 integrins. Superparamagnetic beads coated with the beta1-integrin-binding protein invasin were attached to J774 murine macrophages to mimic phagocytosis of bacterial pathogens. Forces exceeding approximately 0.5 nN induce the active formation of trumpet-like protrusions resembling pseudopodia after an initial elastic deflection and a response time of approximately 30 seconds. The speed of advancement of the protrusion is =0.065+/-0.020 micro m second(-1) and is force independent. After saturation (after about 100 seconds) the protrusion stops abruptly and is completely retracted again against forces exceeding 5 nN with an effective relaxation time of approximately 30 seconds. The active protrusion is tentatively attributed to the growth of the actin cortex in the direction of the force, and evidence for the involvement of actin is provided by the finding that Latrunculin A abolishes the activated cone growth. The growth is assumed to be activated by cell signaling mediated by the invasin-specific integrins (exhibiting beta1 chains) and could play a role in phagocytic and protrusive events during immune response by macrophages.

  1. Mononuclear Phagocyte-Mediated Antifungal Immunity: The Role of Chemotactic Receptors and Ligands

    PubMed Central

    Swamydas, Muthulekha; Break, Timothy J.; Lionakis, Michail S.

    2015-01-01

    Over the past two decades, fungal infections have emerged as significant causes of morbidity and mortality in patients with hematological malignancies, hematopoietic stem cell or solid organ transplantation and acquired immunodeficiency syndrome. Besides neutrophils and CD4+ T lymphocytes, which have long been known to play an indispensable role in promoting protective antifungal immunity, mononuclear phagocytes are now being increasingly recognized as critical mediators of host defense against fungi. Thus, a recent surge of research studies has focused on understanding the mechanisms by which resident and recruited monocytes, macrophages and dendritic cells accumulate and become activated at the sites of fungal infection. Herein, we critically review how a variety of G-protein coupled chemoattractant receptors and their ligands mediate mononuclear phagocyte recruitment and effector function during infection by the most common human fungal pathogens. PMID:25715741

  2. Effect of detonation nanodiamonds on phagocyte activity.

    PubMed

    Karpukhin, Alexey V; Avkhacheva, Nadezhda V; Yakovlev, Ruslan Yu; Kulakova, Inna I; Yashin, Valeriy A; Lisichkin, Georgiy V; Safronova, Valentina G

    2011-07-01

    Detonation ND (nanodiamond) holds much promise for biological studies and medical applications. Properties like size of particles, inclination for modification of their surface and unambiguous biocompatibility are crucial. Of prime importance is interaction between ND and immune cells, which supervise foreign intrusion into an organism and eliminate it. Neutrophils are more reactive in inflammatory response implementing cytotoxical arsenal including ROS (reactive oxygen species). The aim of the work was to estimate the ability of two ND samples (produced by Diamond Center and PlasmaChem) to keep the vitality of neutrophils from the inflammatory site. The ability of cells to generate ROS in the presence of ND particles is considered as indicating their biocompatibility. IR spectra and size of particles in the samples were characterized. Acid modification of ND was carried out to get the luminescent form. In the biological aspect, ND demonstrated up or down action, depending on the concentration, time and conditions of activation of cells. Weak action of ND in whole blood was obtained possibly owing to the ND adsorbed plasma proteins, which mask active functional groups to interact with the cell membrane. ND did not influence the viability of isolated inflammatory neutrophils in low and moderate concentrations and suppressed it in high concentrations (≥1 g/l). Addition of ND to the cell suspension initiated concentration-dependent reaction to produce ROS similar to respiratory burst. ND up-regulated response to bacterial formylpeptide, but up- and down-modified (low or high concentrations, accordingly) response to such bacterial agents as OZ (opsonized zymosan), which neutrophils swallow up by oxygen-dependent phagocytosis. Localization of the particles on the cell surface as into the cells was identified by monitoring the intrinsic fluorescence of oxidized ND. The various mechanisms that could account for penetration of ND particles into the cell are discussed

  3. Comparison of fluorescence-based methods to determine nanoparticle uptake by phagocytes and non-phagocytic cells in vitro

    PubMed Central

    Claudia, Meindl; Kristin, Öhlinger; Jennifer, Ober; Eva, Roblegg; Eleonore, Fröhlich

    2017-01-01

    At many portals of entry the relative uptake by phagocytes and non-phagocytic cells has a prominent effect on availability and biological action of nanoparticles (NPs). Cellular uptake can be determined for fluorescence-labeled NPs. The present study compares three methods (plate reader, flow cytometry and image analysis) in order to investigate the influence of particle size and functionalization and medium content on cellular uptake of fluorescence–labeled polystyrene particles and to study the respective method’s suitability for uptake studies. For comparison between the techniques, ratios of macrophage to alveolar epithelial cell uptakes were used. Presence of serum protein in the exposure solution decreased uptake of carboxyl-functionalized and non-functionalized particles; there was no clear effect for the amine-functionalized particles. The 200 nm non- or carboxyl-functionalized NPs were taken up preferentially by phagocytes while for amine-functionalized particles preference was lowest. The presence of the serum slightly increased the preference for these particles. In conclusion, due to the possibility of calibration, plate reader measurements might present a better option than the other techniques to (semi)quantify differences between phagocytes and non-phagocytic cells for particles with different fluorescence. In order to obtain unbiased data the fluorescent labeling has to fulfill certain requirements. PMID:28065592

  4. Caspase Activity Is Required for Engulfment of Apoptotic Cells

    PubMed Central

    Shklyar, Boris; Levy-Adam, Flonia; Mishnaevski, Ketty

    2013-01-01

    Clearance of apoptotic cells by phagocytic neighbors is crucial for normal development of multicellular organisms. However, how phagocytes discriminate between healthy and dying cells remains poorly understood. We focus on glial phagocytosis of apoptotic neurons during development of the Drosophila central nervous system. We identified phosphatidylserine (PS) as a ligand on apoptotic cells for the phagocytic receptor Six Microns Under (SIMU) and report that PS alone is not sufficient for engulfment. Our data reveal that, additionally to PS exposure, caspase activity is required for clearance of apoptotic cells by phagocytes. Here we demonstrate that SIMU recognizes and binds PS on apoptotic cells through its N-terminal EMILIN (EMI), Nimrod 1 (NIM1), and NIM2 repeats, whereas the C-terminal NIM3 and NIM4 repeats control SIMU affinity to PS. Based on the structure-function analysis of SIMU, we discovered a novel mechanism of internal inhibition responsible for differential affinities of SIMU to its ligand which might prevent elimination of living cells exposing PS on their surfaces. PMID:23754750

  5. Obligate intracellular bacterium Ehrlichia inhibiting mitochondrial activity

    PubMed Central

    Liu, Yan; Zhang, Zhikai; Jiang, Yongquan; Zhang, Lihong; Popov, Vsevolod L.; Zhang, Jianzhi; Walker, David H.; Yu, Xue-jie

    2010-01-01

    Ehrlichia are obligately intracellular bacteria that reside in a vacuole in the cytoplasm of phagocytes. We determined by confocal microscopy the interaction between Ehrlichia and mitochondria in DH82 cells to investigate the mechanism of Ehrlichia survival inside the phagocyte. The most remarkable finding of our study was that Ehrlichia morulae interacted with mitochondria and inhibited mitochondrial metabolism,. We showed that in E. chaffeensis-infected DH82 cells, mitochondria did not incorporate BrdU and transcriptional level of the mitochondrial gene NADPH2 was significantly reduced, indicating the inhibition of mitochondrial metabolism. This study demonstrates that Ehrlichia are able to inhibit mitochondrial activities, and it opens up a new avenue for the study of Ehrlichia pathogenesis. PMID:21070861

  6. Influence of the acute alcoholism on the phagocytic function of the mononuclear phagocytic system

    PubMed Central

    Sabino, KR; Petroianu, A; Alberti, LR

    2011-01-01

    Rationale:Alcoholics are more likely to have infections, mainly in the respiratory system. Alcohol seems to inhibit the immune system. Despite the extensive literature related to alcoholism, data related to the immune system are still not conclusive. Objective: The purpose of this study was to verify the influence of acute alcohol intake on colloid distribution in the organs of the mononuclear phagocyte system. Methods and Results: Thirteen male Swiss mice were divided into two groups: Group 1 (n = 5) – control, and Group 2 (n = 8) – animals that received 0.5 ml ethanol 50%, 30 minutes before the experiment. Colloidal sulphur labeled with ⁸⁸mTc was used to evaluate colloid distribution in the liver, spleen and lungs. Colloid clearance was assessed as well. A gamma camera was used to measure the radioactivity of these organs and of a blood clot. No difference was found in the presence of colloid in the organs of both groups. The liver showed the highest phagocytic intake, followed by the spleen and lungs (p = 0.021 for Group 1 and p = 0.003 for Group 2). A minimum amount of radiation remained in the blood of both groups. Discussion: According to the experiential conditions of this work, acute ingestion of alcohol did not interfere with the phagocytic function of the mononuclear phagocyte system in mice. PMID:22514578

  7. The Intimate and Controversial Relationship between Voltage Gated Proton Channels and the Phagocyte NADPH Oxidase

    PubMed Central

    DeCoursey, Thomas E.

    2016-01-01

    Summary One of the most fascinating and exciting periods in my scientific career entailed dissecting the symbiotic relationship between two membrane transporters, the NADPH oxidase complex and voltage gated proton channels (HV1). By the time I entered this field, there had already been substantial progress toward understanding NADPH oxidase, but HV1 were known only to a tiny handful of cognoscenti around the world. Having identified the first proton currents in mammalian cells in 1991, I needed to find a clear function for these molecules if the work was to become fundable. The then-recent discoveries of Henderson, Chappell, and colleagues in 1987–1988 that led them to hypothesize interactions of both molecules during the respiratory burst of phagocytes provided an excellent opportunity. In a nutshell, both transporters function by moving electrical charge across the membrane: NADPH oxidase moves electrons and HV1 moves protons. The consequences of electrogenic NADPH oxidase activity on both membrane potential and pH strongly self-limit this enzyme. Fortunately, both consequences specifically activate HV1, and HV1 activity counteracts both consequences, a kind of yin-yang relationship. Notwithstanding a decade starting in 1995 when many believed the opposite, these are two separate molecules that function independently despite their being functionally interdependent in phagocytes. The relationship between NADPH oxidase and HV1 has become a paradigm that somewhat surprisingly has now extended well beyond the phagocyte NADPH oxidase -- an industrial strength producer of reactive oxygen species (ROS) -- to myriad other cells that produce orders of magnitude less ROS for signaling purposes. These cells with their seven NADPH oxidase (NOX) isoforms provide a vast realm of mechanistic obscurity that will occupy future studies for years to come. PMID:27558336

  8. The intimate and controversial relationship between voltage-gated proton channels and the phagocyte NADPH oxidase.

    PubMed

    DeCoursey, Thomas E

    2016-09-01

    One of the most fascinating and exciting periods in my scientific career entailed dissecting the symbiotic relationship between two membrane transporters, the Nicotinamide adenine dinucleotide phosphate reduced form (NADPH) oxidase complex and voltage-gated proton channels (HV 1). By the time I entered this field, there had already been substantial progress toward understanding NADPH oxidase, but HV 1 were known only to a tiny handful of cognoscenti around the world. Having identified the first proton currents in mammalian cells in 1991, I needed to find a clear function for these molecules if the work was to become fundable. The then-recent discoveries of Henderson, Chappell, and colleagues in 1987-1988 that led them to hypothesize interactions of both molecules during the respiratory burst of phagocytes provided an excellent opportunity. In a nutshell, both transporters function by moving electrical charge across the membrane: NADPH oxidase moves electrons and HV 1 moves protons. The consequences of electrogenic NADPH oxidase activity on both membrane potential and pH strongly self-limit this enzyme. Fortunately, both consequences specifically activate HV 1, and HV 1 activity counteracts both consequences, a kind of yin-yang relationship. Notwithstanding a decade starting in 1995 when many believed the opposite, these are two separate molecules that function independently despite their being functionally interdependent in phagocytes. The relationship between NADPH oxidase and HV 1 has become a paradigm that somewhat surprisingly has now extended well beyond the phagocyte NADPH oxidase - an industrial strength producer of reactive oxygen species (ROS) - to myriad other cells that produce orders of magnitude less ROS for signaling purposes. These cells with their seven NADPH oxidase (NOX) isoforms provide a vast realm of mechanistic obscurity that will occupy future studies for years to come. © 2016 John Wiley & Sons A/S. Published by John Wiley & Sons Ltd.

  9. Adjuvant Effect of Killed Propionibacterium acnes on Mouse Peritoneal B-1 Lymphocytes and Their Early Phagocyte Differentiation

    PubMed Central

    Mussalem, Juliana Sekeres; Squaiella-Baptistão, Carla Cristina; Teixeira, Daniela; Yendo, Tatiana Mina; Thies, Felipe Garutti; Popi, Ana Flavia; Mariano, Mario; Longo-Maugéri, Ieda

    2012-01-01

    B-1 lymphocytes are the predominant cells in mouse peritoneal cavity. They express macrophage and lymphocyte markers and are divided into B-1a, B-1b and B-1c subtypes. The role of B-1 cells is not completely clear, but they are responsible for natural IgM production and seem to play a regulatory role. An enriched B-1b cell population can be obtained from non-adherent peritoneal cell cultures, and we have previously demonstrated that these cells undergo differentiation to acquire a mononuclear phagocyte phenotype upon attachment to the substrate in vitro. Nevertheless, the B-1 cell response to antigens or adjuvants has been poorly investigated. Because killed Propionibacterium acnes exhibits immunomodulatory effects on both macrophages and B-2 lymphocytes, we analyzed whether a killed bacterial suspension or its soluble polysaccharide (PS) could modulate the absolute number of peritoneal B-1 cells in BALB/c mice, the activation status of these cells and their ability to differentiate into phagocytes in vitro. In vivo, P. acnes treatment elevated the absolute number of all B-1 subsets, whereas PS only increased B-1c. Moreover, the bacterium increased the number of B-1b cells that were positive for MHC II, TLR2, TLR4, TLR9, IL-4, IL-5 and IL-12, in addition to up-regulating TLR9, CD80 and CD86 expression. PS increased B-1b cell expression of TLR4, TLR9, CD40 and CD86, as well as IL-10 and IL-12 synthesis. Both of the treatments decreased the absolute number of B-1b cells in vitro, suggesting their early differentiation into B-1 cell-derived phagocytes (B-1CDP). We also observed a higher phagocytic activity from the phagocytes that were derived from B-1b cells after P. acnes and PS treatment. The adjuvant effect that P. acnes has on B-1 cells, mainly the B-1b subtype, reinforces the importance of B-1 cells in the innate and adaptive immune responses. PMID:22448280

  10. Adjuvant effect of killed Propionibacterium acnes on mouse peritoneal B-1 lymphocytes and their early phagocyte differentiation.

    PubMed

    Mussalem, Juliana Sekeres; Squaiella-Baptistão, Carla Cristina; Teixeira, Daniela; Yendo, Tatiana Mina; Thies, Felipe Garutti; Popi, Ana Flavia; Mariano, Mario; Longo-Maugéri, Ieda

    2012-01-01

    B-1 lymphocytes are the predominant cells in mouse peritoneal cavity. They express macrophage and lymphocyte markers and are divided into B-1a, B-1b and B-1c subtypes. The role of B-1 cells is not completely clear, but they are responsible for natural IgM production and seem to play a regulatory role. An enriched B-1b cell population can be obtained from non-adherent peritoneal cell cultures, and we have previously demonstrated that these cells undergo differentiation to acquire a mononuclear phagocyte phenotype upon attachment to the substrate in vitro. Nevertheless, the B-1 cell response to antigens or adjuvants has been poorly investigated. Because killed Propionibacterium acnes exhibits immunomodulatory effects on both macrophages and B-2 lymphocytes, we analyzed whether a killed bacterial suspension or its soluble polysaccharide (PS) could modulate the absolute number of peritoneal B-1 cells in BALB/c mice, the activation status of these cells and their ability to differentiate into phagocytes in vitro. In vivo, P. acnes treatment elevated the absolute number of all B-1 subsets, whereas PS only increased B-1c. Moreover, the bacterium increased the number of B-1b cells that were positive for MHC II, TLR2, TLR4, TLR9, IL-4, IL-5 and IL-12, in addition to up-regulating TLR9, CD80 and CD86 expression. PS increased B-1b cell expression of TLR4, TLR9, CD40 and CD86, as well as IL-10 and IL-12 synthesis. Both of the treatments decreased the absolute number of B-1b cells in vitro, suggesting their early differentiation into B-1 cell-derived phagocytes (B-1CDP). We also observed a higher phagocytic activity from the phagocytes that were derived from B-1b cells after P. acnes and PS treatment. The adjuvant effect that P. acnes has on B-1 cells, mainly the B-1b subtype, reinforces the importance of B-1 cells in the innate and adaptive immune responses.

  11. Comparison of fluorescence-based methods to determine nanoparticle uptake by phagocytes and non-phagocytic cells in vitro.

    PubMed

    Claudia, Meindl; Kristin, Öhlinger; Jennifer, Ober; Eva, Roblegg; Eleonore, Fröhlich

    2017-03-01

    At many portals of entry the relative uptake by phagocytes and non-phagocytic cells has a prominent effect on availability and biological action of nanoparticles (NPs). Cellular uptake can be determined for fluorescence-labeled NPs. The present study compares three methods (plate reader, flow cytometry and image analysis) in order to investigate the influence of particle size and functionalization and medium content on cellular uptake of fluorescence-labeled polystyrene particles and to study the respective method́s suitability for uptake studies. For comparison between the techniques, ratios of macrophage to alveolar epithelial cell uptakes were used. Presence of serum protein in the exposure solution decreased uptake of carboxyl-functionalized and non-functionalized particles; there was no clear effect for the amine-functionalized particles. The 200nm non- or carboxyl-functionalized NPs were taken up preferentially by phagocytes while for amine-functionalized particles preference was lowest. The presence of the serum slightly increased the preference for these particles. In conclusion, due to the possibility of calibration, plate reader measurements might present a better option than the other techniques to (semi)quantify differences between phagocytes and non-phagocytic cells for particles with different fluorescence. In order to obtain unbiased data the fluorescent labeling has to fulfill certain requirements. Copyright © 2017 The Author(s). Published by Elsevier B.V. All rights reserved.

  12. Mechanisms of mononuclear phagocyte recruitment in Alzheimer's disease.

    PubMed

    Hickman, Suzanne E; El Khoury, Joseph

    2010-04-01

    Alzheimer's disease (AD) is associated with a significant neuroinflammatory component. Mononuclear phagocytes including monocytes and microglia are the principal cells involved, and they accumulate at perivascular sites of beta-amyloid (Abeta) deposition and in senile plaques. Recent evidence suggests that mononuclear phagocyte accumulation in the AD brain is dependent on chemokines. CCL2, a major monocyte chemokine, is upregulated in the AD brain. Interaction of CCL2 with its receptor CCR2 regulates mononuclear phagocyte accumulation in a mouse model of AD. CCR2 deficiency leads to lower mononuclear phagocyte accumulation and is associated with higher brain Abeta levels, specifically around blood vessels, suggesting that monocytes accumulate at sites of Abeta deposition in an initial attempt to clear these deposits and stop or delay their neurotoxic effects. Indeed, enhancing mononuclear phagocyte accumulation delays progression of AD. Here we review the mechanisms of mononuclear phagocyte accumulation in AD and discuss the potential roles of additional chemokines and their receptors in this process. We also propose a multi-step model for recruitment of mononuclear phagocytes into the brain. The first step involves egress of monocyte/microglial precursors from the bone marrow into the blood. The second step is crossing the blood-brain barrier to the perivascular areas and into the brain parenchyma. The final step includes movement of monocytes/microglia from areas of the brain that lack any amyloid deposition to senile plaques. Understanding the mechanism of recruitment of mononuclear phagocytes to the AD brain is necessary to further understand the role of these cells in the pathogenesis of AD and to identify any potential therapeutic use of these cells for the treatment of this disease.

  13. Depletion of Phagocytic Cells during Nonlethal Plasmodium yoelii Infection Causes Severe Malaria Characterized by Acute Renal Failure in Mice

    PubMed Central

    Terkawi, Mohamad Alaa; Nishimura, Maki; Furuoka, Hidefumi

    2016-01-01

    In the current study, we examined the effects of depletion of phagocytes on the progression of Plasmodium yoelii 17XNL infection in mice. Strikingly, the depletion of phagocytic cells, including macrophages, with clodronate in the acute phase of infection significantly reduced peripheral parasitemia but increased mortality. Moribund mice displayed severe pathological damage, including coagulative necrosis in liver and thrombi in the glomeruli, fibrin deposition, and tubular necrosis in kidney. The severity of infection was coincident with the increased sequestration of parasitized erythrocytes, the systematic upregulation of inflammation and coagulation, and the disruption of endothelial integrity in the liver and kidney. Aspirin was administered to the mice to minimize the risk of excessive activation of the coagulation response and fibrin deposition in the renal tissue. Interestingly, treatment with aspirin reduced the parasite burden and pathological lesions in the renal tissue and improved survival of phagocyte-depleted mice. Our data imply that the depletion of phagocytic cells, including macrophages, in the acute phase of infection increases the severity of malarial infection, typified by multiorgan failure and high mortality. PMID:26755155

  14. Cryptococcus and Phagocytes: Complex Interactions that Influence Disease Outcome

    PubMed Central

    Leopold Wager, Chrissy M.; Hole, Camaron R.; Wozniak, Karen L.; Wormley, Floyd L.

    2016-01-01

    Cryptococcus neoformans and C. gattii are fungal pathogens that cause life-threatening disease. These fungi commonly enter their host via inhalation into the lungs where they encounter resident phagocytes, including macrophages and dendritic cells, whose response has a pronounced impact on the outcome of disease. Cryptococcus has complex interactions with the resident and infiltrating innate immune cells that, ideally, result in destruction of the yeast. These phagocytic cells have pattern recognition receptors that allow recognition of specific cryptococcal cell wall and capsule components. However, Cryptococcus possesses several virulence factors including a polysaccharide capsule, melanin production and secretion of various enzymes that aid in evasion of the immune system or enhance its ability to thrive within the phagocyte. This review focuses on the intricate interactions between the cryptococci and innate phagocytic cells including discussion of manipulation and evasion strategies used by Cryptococcus, anti-cryptococcal responses by the phagocytes and approaches for targeting phagocytes for the development of novel immunotherapeutics. PMID:26903984

  15. Far beyond Phagocytosis: Phagocyte-Derived Extracellular Traps Act Efficiently against Protozoan Parasites In Vitro and In Vivo.

    PubMed

    Silva, Liliana M R; Muñoz-Caro, Tamara; Burgos, Rafael A; Hidalgo, Maria A; Taubert, Anja; Hermosilla, Carlos

    2016-01-01

    Professional mononuclear phagocytes such as polymorphonuclear neutrophils (PMN), monocytes, and macrophages are considered as the first line of defence against invasive pathogens. The formation of extracellular traps (ETs) by activated mononuclear phagocytes is meanwhile well accepted as an effector mechanism of the early host innate immune response acting against microbial infections. Recent investigations showed evidence that ETosis is a widely spread effector mechanism in vertebrates and invertebrates being utilized to entrap and kill bacteria, fungi, viruses, and protozoan parasites. ETs are released in response to intact protozoan parasites or to parasite-specific antigens in a controlled cell death process. Released ETs consist of nuclear DNA as backbone adorned with histones, antimicrobial peptides, and phagocyte-specific granular enzymes thereby producing a sticky extracellular matrix capable of entrapping and killing pathogens. This review summarizes recent data on protozoa-induced ETosis. Special attention will be given to molecular mechanisms of protozoa-induced ETosis and on its consequences for the parasites successful reproduction and life cycle accomplishment.

  16. Elevation of oleate-activated phospholipase D activity during thymic atrophy

    PubMed Central

    Lee, Youngkyun; Song, Soo-Mee; Park, Heung Soon; Kim, Sungyeol; Koh, Eun-Hee; Choi, Myung Sun; Choi, Myung-Un

    2002-01-01

    Various phospholipases are thought to be associated with the in vitro apoptosis of thymocytes. In the present study, the in vivo phospholipase D (PLD) activity of rat thymus was studied after whole-body X-irradiation or injection of dexamethasone (DEX). Using exogenous [14C]dipalmitoyl phosphatidylcholine (PC) as the substrate, an elevation of oleate-activated PLD activity was observed during thymic atrophy. The activity increases were sevenfold at 48 hr after 5-Gy irradiation and fourfold at 72 hr after injection of 5 mg/kg DEX. The elevation of PLD activity appeared to parallel extensive thymus shrinkage. An increased level of thymic phosphatidic acid (PA), the presumed physiological product of PLD action on PC, was also detected. By comparing the acyl chains of PA with those of other phospholipids, PA appeared to originate from PC. To assess the role of PLD during thymic atrophy, thymocytes and stromal cells were isolated. Although thymocytes themselves exhibited significant PLD activation, the major elevation in PLD activity (greater than fourfold) was found in isolated stromal cells. PLD was also activated during in vitro phagocytosis of apoptotic thymocytes by the macrophage-like cell line P388D1. This in vitro phagocytosis was significantly inhibited by PLD action blockers, such as 2,3-diphosphoglycerate and 1-butanol. These observations strongly suggest that the alteration of oleate-activated PLD activity is part of an in vivo event in the progression of thymic atrophy, including phagocytic clearance of apoptotic thymocytes. PMID:12460188

  17. Δ6-fatty acid desaturase and fatty acid elongase mRNA expression, phagocytic activity and weight-to-length relationships in channel catfish (Ictalurus punctatus) fed alternative diets with soy oil and a probiotic.

    PubMed

    Santerre, A; Téllez-Bañuelos, M C; Casas-Solís, J; Castro-Félix, P; Huízar-López, M R; Zaitseva, G P; Horta-Fernández, J L; Trujillo-García, E A; de la Mora-Sherer, D; Palafox-Luna, J A; Juárez-Carrillo, E

    2015-09-22

    A time-course feeding trial was conducted for 120 days on juvenile channel catfish (Ictalurus punctatus) to study the effects of diets differing in oil source (fish oil or soy oil) and supplementation with a commercial probiotic. Relative levels of Δ6-fatty acid desaturase (Δ6-FAD) and fatty acid elongase (FAE) expression were assessed in brain and liver tissues. Both genes showed similar expression levels in all groups studied. Fish weight-to-length relationships were evaluated using polynomial regression analyses, which identified a burst in weight and length in the channel catfish on day 105 of treatment; this increase was related to an increase in gene expression. Mid-intestinal lactic acid bacterium (LAB) count was determined according to morphological and biochemical criteria using API strips. There was no indication that intestinal LAB count was affected by the modified diets. The Cunningham glass adherence method was applied to evaluate phagocytic cell activity in peripheral blood. Reactive oxygen species (ROS) generation was assessed through the respiratory burst activity of spleen macrophages by the NBT reduction test. Probiotic-supplemented diets provided a good substrate for innate immune system function; the phagocytic index was significantly enhanced in fish fed soy oil and the probiotic, and at the end of the experimental period, ROS production increased in fish fed soy oil. The substitution of fish oil by soy oil is recommended for food formulation and will contribute to promoting sustainable aquaculture. Probiotics are also recommended for channel catfish farming as they may act as immunonutrients.

  18. Mononuclear phagocytes as a target, not a barrier, for drug delivery.

    PubMed

    Yong, Seok-Beom; Song, Yoonsung; Kim, Hyung Jin; Ain, Qurrat Ul; Kim, Yong-Hee

    2017-08-10

    Mononuclear phagocytes have been generally recognized as a barrier to drug delivery. Recently, a new understanding of mononuclear phagocytes (MPS) ontogeny has surfaced and their functions in disease have been unveiled, demonstrating the need for re-evaluation of perspectives on mononuclear phagocytes in drug delivery. In this review, we described mononuclear phagocyte biology and focus on their accumulation mechanisms in disease sites with explanations of monocyte heterogeneity. In the 'MPS as a barrier' section, we summarized recent studies on mechanisms to avoid phagocytosis based on two different biological principles: protein adsorption and self-recognition. In the 'MPS as a target' section, more detailed descriptions were given on mononuclear phagocyte-targeted drug delivery systems and their applications to various diseases. Collectively, we emphasize in this review that mononuclear phagocytes are potent targets for future drug delivery systems. Mononuclear phagocyte-targeted delivery systems should be created with an understanding of mononuclear phagocyte ontogeny and pathology. Each specific subset of phagocytes should be targeted differently by location and function for improved disease-drug delivery while avoiding RES clearance such as Kupffer cells and splenic macrophages. Copyright © 2017 Elsevier B.V. All rights reserved.

  19. Sword and shield: linked group B streptococcal beta-hemolysin/cytolysin and carotenoid pigment function to subvert host phagocyte defense.

    PubMed

    Liu, George Y; Doran, Kelly S; Lawrence, Toby; Turkson, Nicole; Puliti, Manuela; Tissi, Luciana; Nizet, Victor

    2004-10-05

    Group B Streptococcus (GBS) is a major cause of pneumonia, bacteremia, and meningitis in neonates and has been found to persist inside host phagocytic cells. The pore-forming GBS beta-hemolysin/cytolysin (betaH/C) encoded by cylE is an important virulence factor as demonstrated in several in vivo models. Interestingly, cylE deletion results not only in the loss of betaH/C activity, but also in the loss of a carotenoid pigment of unknown function. In this study, we sought to define the mechanism(s) by which cylE may contribute to GBS phagocyte resistance and increased virulence potential. We found that cylE-deficient GBS was more readily cleared from a mouse's bloodstream, human whole blood, and isolated macrophage and neutrophil cultures. Survival was linked to the ability of betaH/C to induce cytolysis and apoptosis of the phagocytes. At a lower bacterial inoculum, cylE also contributed to enhanced survival within phagocytes that was attributed to the ability of carotenoid to shield GBS from oxidative damage. In oxidant killing assays, cylE mutants were shown to be more susceptible to hydrogen peroxide, hypochlorite, superoxide, and singlet oxygen. Together, these data suggest a mechanism by which the linked cylE-encoded phenotypes, betaH/C (sword) and carotenoid (shield), act in partnership to thwart the immune phagocytic defenses.

  20. Fosfomycin enhances phagocyte-mediated killing of Staphylococcus aureus by extracellular traps and reactive oxygen species.

    PubMed

    Shen, Fengge; Tang, Xudong; Cheng, Wei; Wang, Yang; Wang, Chao; Shi, Xiaochen; An, Yanan; Zhang, Qiaoli; Liu, Mingyuan; Liu, Bo; Yu, Lu

    2016-01-18

    The successful treatment of bacterial infections is the achievement of a synergy between the host's immune defences and antibiotics. Here, we examined whether fosfomycin (FOM) could improve the bactericidal effect of phagocytes, and investigated the potential mechanisms. FOM enhanced the phagocytosis and extra- or intracellular killing of S. aureus by phagocytes. And FOM enhanced the extracellular killing of S. aureus in macrophage (MФ) and in neutrophils mediated by extracellular traps (ETs). ET production was related to NADPH oxidase-dependent reactive oxygen species (ROS). Additionally, FOM increased the intracellular killing of S. aureus in phagocytes, which was mediated by ROS through the oxidative burst process. Our results also showed that FOM alone induced S. aureus producing hydroxyl radicals in order to kill the bacterial cells in vitro. In a mouse peritonitis model, FOM treatment increased the bactericidal extra- and intracellular activity in vivo, and FOM strengthened ROS and ET production from peritoneal lavage fluid ex vivo. An IVIS imaging system assay further verified the observed in vivo bactericidal effect of the FOM treatment. This work may provide a deeper understanding of the role of the host's immune defences and antibiotic interactions in microbial infections.

  1. Fosfomycin enhances phagocyte-mediated killing of Staphylococcus aureus by extracellular traps and reactive oxygen species

    PubMed Central

    Shen, Fengge; Tang, Xudong; Cheng, Wei; Wang, Yang; Wang, Chao; Shi, Xiaochen; An, Yanan; Zhang, Qiaoli; Liu, Mingyuan; Liu, Bo; Yu, Lu

    2016-01-01

    The successful treatment of bacterial infections is the achievement of a synergy between the host’s immune defences and antibiotics. Here, we examined whether fosfomycin (FOM) could improve the bactericidal effect of phagocytes, and investigated the potential mechanisms. FOM enhanced the phagocytosis and extra- or intracellular killing of S. aureus by phagocytes. And FOM enhanced the extracellular killing of S. aureus in macrophage (MФ) and in neutrophils mediated by extracellular traps (ETs). ET production was related to NADPH oxidase-dependent reactive oxygen species (ROS). Additionally, FOM increased the intracellular killing of S. aureus in phagocytes, which was mediated by ROS through the oxidative burst process. Our results also showed that FOM alone induced S. aureus producing hydroxyl radicals in order to kill the bacterial cells in vitro. In a mouse peritonitis model, FOM treatment increased the bactericidal extra- and intracellular activity in vivo, and FOM strengthened ROS and ET production from peritoneal lavage fluid ex vivo. An IVIS imaging system assay further verified the observed in vivo bactericidal effect of the FOM treatment. This work may provide a deeper understanding of the role of the host’s immune defences and antibiotic interactions in microbial infections. PMID:26778774

  2. In vivo activation of equine eosinophils and neutrophils by experimental Strongylus vulgaris infections.

    PubMed

    Dennis, V A; Klei, T R; Chapman, M R; Jeffers, G W

    1988-12-01

    Eosinophils and neutrophils from ponies with Strongylus vulgaris-induced eosinophilia (eosinophilic ponies; activated eosinophils and neutrophils) were assayed in vitro for chemotactic and chemokinetic responses to zymosan-activated serum (ZAS) using the filter system in Boyden chambers, for Fc and complement (C) receptors using the EA and EAC-rosette assays, respectively, and for phagocytic and bactericidal activities using opsonized Escherichia coli and the acridine orange method. The responses of activated eosinophils and neutrophils in the above assays were compared with those of eosinophils and neutrophils from S. vulgaris-naive ponies without eosinophilia (noneosinophilic ponies; nonactivated eosinophils and neutrophils). Differences in cell density following centrifugation in a continuous Percoll gradient were used to further characterize the heterogeneity of activated eosinophils and neutrophils. Activated and nonactivated eosinophils demonstrated similar chemotactic responses to ZAS while activated and nonactivated neutrophils demonstrated similar chemokinetic responses to ZAS. A higher percentage of activated eosinophils and neutrophils expressed Fc and C receptors compared with nonactivated cells (P less than 0.05). Generally, higher percentages of eosinophils and neutrophils expressed C than Fc receptors. However, the percentage of neutrophils with both receptors was higher than that of eosinophils. Phagocytosis and killing of E. coli by either type of eosinophil were not consistently observed. Both activated and nonactivated neutrophils phagocytized E. coli and significant differences between the two cell types were not observed. The bacterial activity, however, of activated neutrophils was significantly greater than that obtained using nonactivated neutrophils (P less than 0.05). Activated eosinophils and neutrophils were both separated into two distinct fractions based on differences in cell densities. A higher percentage of band 2 eosinophils

  3. Regulation of molecular clock oscillations and phagocytic activity via muscarinic Ca2+ signaling in human retinal pigment epithelial cells

    PubMed Central

    Ikarashi, Rina; Akechi, Honami; Kanda, Yuzuki; Ahmad, Alsawaf; Takeuchi, Kouhei; Morioka, Eri; Sugiyama, Takashi; Ebisawa, Takashi; Ikeda, Masaaki; Ikeda, Masayuki

    2017-01-01

    Vertebrate eyes are known to contain circadian clocks, however, the intracellular mechanisms regulating the retinal clockwork remain largely unknown. To address this, we generated a cell line (hRPE-YC) from human retinal pigmental epithelium, which stably co-expressed reporters for molecular clock oscillations (Bmal1-luciferase) and intracellular Ca2+ concentrations (YC3.6). The hRPE-YC cells demonstrated circadian rhythms in Bmal1 transcription. Also, these cells represented circadian rhythms in Ca2+-spiking frequencies, which were canceled by dominant-negative Bmal1 transfections. The muscarinic agonist carbachol, but not photic stimulation, phase-shifted Bmal1 transcriptional rhythms with a type-1 phase response curve. This is consistent with significant M3 muscarinic receptor expression and little photo-sensor (Cry2 and Opn4) expression in these cells. Moreover, forskolin phase-shifted Bmal1 transcriptional rhythm with a type-0 phase response curve, in accordance with long-lasting CREB phosphorylation levels after forskolin exposure. Interestingly, the hRPE-YC cells demonstrated apparent circadian rhythms in phagocytic activities, which were abolished by carbachol or dominant-negative Bmal1 transfection. Because phagocytosis in RPE cells determines photoreceptor disc shedding, molecular clock oscillations and cytosolic Ca2+ signaling may be the driving forces for disc-shedding rhythms known in various vertebrates. In conclusion, the present study provides a cellular model to understand molecular and intracellular signaling mechanisms underlying human retinal circadian clocks. PMID:28276525

  4. Similarities and differences between the responses induced in human phagocytes through activation of the medium chain fatty acid receptor GPR84 and the short chain fatty acid receptor FFA2R.

    PubMed

    Sundqvist, Martina; Christenson, Karin; Holdfeldt, André; Gabl, Michael; Mårtensson, Jonas; Björkman, Lena; Dieckmann, Regis; Dahlgren, Claes; Forsman, Huamei

    2018-05-01

    GPR84 is a recently de-orphanized member of the G-protein coupled receptor (GPCR) family recognizing medium chain fatty acids, and has been suggested to play important roles in inflammation. Due to the lack of potent and selective GPR84 ligands, the basic knowledge related to GPR84 functions is very limited. In this study, we have characterized the GPR84 activation profile and regulation mechanism in human phagocytes, using two recently developed small molecules that specifically target GPR84 agonistically (ZQ16) and antagonistically (GLPG1205), respectively. Compared to our earlier characterization of the short chain fatty acid receptor FFA2R which is functionally expressed in neutrophils but not in monocytes, GPR84 is expressed in both cell types and in monocyte-derived macrophages. In neutrophils, the GPR84 agonist had an activation profile very similar to that of FFA2R. The GPR84-mediated superoxide release was low in naïve cells, but the response could be significantly primed by TNFα and by the actin cytoskeleton disrupting agent Latrunculin A. Similar to that of FFA2R, a desensitization mechanism bypassing the actin cytoskeleton was utilized by GPR84. All ZQ16-mediated cellular responses were sensitive to GLPG1205, confirming the GPR84-dependency. Finally, our data of in vivo transmigrated tissue neutrophils indicate that both GPR84 and FFA2R are involved in neutrophil recruitment processes in vivo. In summary, we show functional similarities but also some important differences between GPR84 and FFA2R in human phagocytes, thus providing some mechanistic insights into GPR84 regulation in blood neutrophils and cells recruited to an aseptic inflammatory site in vivo. Copyright © 2018 Elsevier B.V. All rights reserved.

  5. Cellular defense of the avian respiratory system: effects of Pasteurella multocida on respiratory burst activity of avian respiratory tract phagocytes.

    PubMed

    Ochs, D L; Toth, T E; Pyle, R H; Siegel, P B

    1988-12-01

    The respiratory tract of healthy chickens contain few free-residing phagocytic cells. Intratracheal inoculation with Pasteurella multocida stimulated a significant (P less than 0.05) migration of cells to the lungs and air sacs of White Rock chickens within 2 hours after inoculation. We found the maximal number of avian respiratory tract phagocytes (22.9 +/- 14.0 x 10(6] at 8 hours after inoculation. Flow cytometric analysis of these cells revealed 2 populations on the basis of cell-size and cellular granularity. One of these was similar in size and granularity to those of blood heterophils. Only this population was capable of generating oxidative metabolites in response to phorbol myristate acetate. The ability of the heterophils to produce hydrogen peroxide, measured as the oxidation of intracellularly loaded 2',7'-dichlorofluorescein, decreased with time after inoculation. These results suggest that the migration of heterophils, which are capable of high levels of oxidative metabolism, to the lungs and air sacs may be an important defense mechanism of poultry against bacterial infections of the respiratory tract.

  6. The Complexity of Fungal β-Glucan in Health and Disease: Effects on the Mononuclear Phagocyte System

    PubMed Central

    Camilli, Giorgio; Tabouret, Guillaume; Quintin, Jessica

    2018-01-01

    β-glucan, the most abundant fungal cell wall polysaccharide, has gained much attention from the scientific community in the last few decades for its fascinating but not yet fully understood immunobiology. Study of this molecule has been motivated by its importance as a pathogen-associated molecular pattern upon fungal infection as well as by its promising clinical utility as biological response modifier for the treatment of cancer and infectious diseases. Its immune effect is attributed to the ability to bind to different receptors expressed on the cell surface of phagocytic and cytotoxic innate immune cells, including monocytes, macrophages, neutrophils, and natural killer cells. The characteristics of the immune responses generated depend on the cell types and receptors involved. Size and biochemical composition of β-glucans isolated from different sources affect their immunomodulatory properties. The variety of studies using crude extracts of fungal cell wall rather than purified β-glucans renders data difficult to interpret. A better understanding of the mechanisms of purified fungal β-glucan recognition, downstream signaling pathways, and subsequent immune regulation activated, is, therefore, essential not only to develop new antifungal therapy but also to evaluate β-glucan as a putative anti-infective and antitumor mediator. Here, we briefly review the complexity of interactions between fungal β-glucans and mononuclear phagocytes during fungal infections. Furthermore, we discuss and present available studies suggesting how different fungal β-glucans exhibit antitumor and antimicrobial activities by modulating the biologic responses of mononuclear phagocytes, which make them potential candidates as therapeutic agents. PMID:29755450

  7. The Complexity of Fungal β-Glucan in Health and Disease: Effects on the Mononuclear Phagocyte System.

    PubMed

    Camilli, Giorgio; Tabouret, Guillaume; Quintin, Jessica

    2018-01-01

    β-glucan, the most abundant fungal cell wall polysaccharide, has gained much attention from the scientific community in the last few decades for its fascinating but not yet fully understood immunobiology. Study of this molecule has been motivated by its importance as a pathogen-associated molecular pattern upon fungal infection as well as by its promising clinical utility as biological response modifier for the treatment of cancer and infectious diseases. Its immune effect is attributed to the ability to bind to different receptors expressed on the cell surface of phagocytic and cytotoxic innate immune cells, including monocytes, macrophages, neutrophils, and natural killer cells. The characteristics of the immune responses generated depend on the cell types and receptors involved. Size and biochemical composition of β-glucans isolated from different sources affect their immunomodulatory properties. The variety of studies using crude extracts of fungal cell wall rather than purified β-glucans renders data difficult to interpret. A better understanding of the mechanisms of purified fungal β-glucan recognition, downstream signaling pathways, and subsequent immune regulation activated, is, therefore, essential not only to develop new antifungal therapy but also to evaluate β-glucan as a putative anti-infective and antitumor mediator. Here, we briefly review the complexity of interactions between fungal β-glucans and mononuclear phagocytes during fungal infections. Furthermore, we discuss and present available studies suggesting how different fungal β-glucans exhibit antitumor and antimicrobial activities by modulating the biologic responses of mononuclear phagocytes, which make them potential candidates as therapeutic agents.

  8. Illuminating Phagocyte Biology: The View from Zebrafish.

    PubMed

    Huang, Cong; Niethammer, Philipp

    2016-07-25

    Many phagocyte behaviors, including vascular rolling and adhesion, migration, and oxidative bursting, are better measured in seconds or minutes than hours or days. Zebrafish is ideally suited for imaging such rapid biology within the intact animal. We discuss how this model has revealed unique insights into various aspects of phagocyte physiology. Copyright © 2016 Elsevier Inc. All rights reserved.

  9. Unique phagocytic properties of hemocytes of Pacific oyster Crassostrea gigas against yeast and yeast cell-wall derivatives.

    PubMed

    Takahashi, Keisuke G; Izumi-Nakajima, Nakako; Mori, Katsuyoshi

    2017-11-01

    then allowed to phagocytose the three types of the particles. The percentage of phagocytic cells of β-laminarin-treated granulocytes decreased significantly for zymosan and zymocel, but not for yeast. These results suggest that C. gigas might possess at least two types of hemocytes, and that one type of the hemocytes (granulocytes) is more active for phagocytosis. The granulocytes were found to have multiple subtypes with different phagocytic abilities and multiple phagocytic receptors. Some of the granulocyte subtypes revealed a much stronger phagocytic ability, depending on the presence of β-glucan receptors for phagocytosis. Copyright © 2017 Elsevier Ltd. All rights reserved.

  10. Acute myeloid leukemia associated with t(10;17)(p13-15;q12-21) and phagocytic activity by leukemic blasts: a clinical study and review of the literature.

    PubMed

    Oh, Seung Hwan; Park, Tae Sung; Cho, Sun Young; Kim, Min Jin; Huh, Jungwon; Kim, Bomi; Song, Sae Am; Lee, Ja Young; Jun, Kyung Ran; Shin, Jeong Hwan; Kim, Hye Ran; Lee, Jeong Nyeo

    2010-10-01

    Translocation (10;17)(p13-15;q12-21) in acute leukemia is rarely reported in the literature. Here, we present both a novel t(10;17) case study and a review of relevant literature on t(10;17) in acute leukemia (10 cases). In summary, we came to the following preliminary conclusions: t(10;17) is associated with poorly differentiated acute leukemia subtype [90%; eight cases of acute myeloid leukemia (AML M0, M1) and one case of acute undifferentiated leukemia], phagocytic activity by blasts occurs (30%), and the survival time was short in three of the seven t(10;17) cases for whom follow-up data were available (median, 8 months). More clinical studies concerning the prognosis, treatment response, and survival of patients with t(10;17) are necessary. 2010 Elsevier Inc. All rights reserved.

  11. Comparative Anatomy of Phagocytic and Immunological Synapses

    PubMed Central

    Niedergang, Florence; Di Bartolo, Vincenzo; Alcover, Andrés

    2016-01-01

    The generation of phagocytic cups and immunological synapses are crucial events of the innate and adaptive immune responses, respectively. They are triggered by distinct immune receptors and performed by different cell types. However, growing experimental evidence shows that a very close series of molecular and cellular events control these two processes. Thus, the tight and dynamic interplay between receptor signaling, actin and microtubule cytoskeleton, and targeted vesicle traffic are all critical features to build functional phagosomes and immunological synapses. Interestingly, both phagocytic cups and immunological synapses display particular spatial and temporal patterns of receptors and signaling molecules, leading to the notion of “phagocytic synapse.” Here, we discuss both types of structures, their organization, and the mechanisms by which they are generated and regulated. PMID:26858721

  12. [Immunologic indexes, enzyme status of lymphocytes and functional activity of blood neutrophils in children with infectious mononucleosis caused by Epstein-Barr virus].

    PubMed

    Kurtasova, L M; Tolstikova, A E; Savchenko, A A

    2013-01-01

    Explore the immunological parameters, levels of activity of NAD(P)-dependent dehydrogenases lymphocytes, interferon status parameters, phagocytic activity and chemiluminescence response of neutrophils in the blood of children in the acute phase of infectious mononucleosis caused by the Epstein-Barr virus. 65 children at the age of 4-6 years old with infectious mononucleosis caused by EBV in acute phase were observed. Such indexes as cell-mediated, humoral and interferon immunity, NAD(P)-depended dehydrogenases activity in blood lymphocyte, phagocytes activity, levels of spontaneous and induced chemiluminescence ofperipheral blood neutrophils were studied. Children with EVB-infection have immunophenotype spectrum changes and changes of enzymes status of blood lymphocytes against the increasing in leucocytes and the useful increasing in lymphocytes. The useful increasing in IgA, IgM, IgG contenting in serum blood were found. The decreasing of spontaneous production of IFN alpha and the decreasing of induced production of IFNalpha, IFNgamma were determined. The breach of phagocytes activity and chemiluminescent response of blood neutrophils were found. The children in the acute phase of infectious mononucleosis caused by the Epstein-Barr virus, there are changes in the immune status, changes the activity of NAD(P)-dependent dehydrogenases in blood lymphocytes, marked changes in functional and metabolic state of peripheral blood neutrophils.

  13. Regulation of Phagocyte Migration by Signal Regulatory Protein-Alpha Signaling

    PubMed Central

    Alvarez-Zarate, Julian; Matlung, Hanke L.; Matozaki, Takashi; Kuijpers, Taco W.; Maridonneau-Parini, Isabelle; van den Berg, Timo K.

    2015-01-01

    Signaling through the inhibitory receptor signal regulatory protein-alpha (SIRPα) controls effector functions in phagocytes. However, there are also indications that interactions between SIRPα and its ligand CD47 are involved in phagocyte transendothelial migration. We have investigated the involvement of SIRPα signaling in phagocyte migration in vitro and in vivo using mice that lack the SIRPα cytoplasmic tail. During thioglycolate-induced peritonitis in SIRPα mutant mice, both neutrophil and macrophage influx were found to occur, but to be significantly delayed. SIRPα signaling appeared to be essential for an optimal transendothelial migration and chemotaxis, and for the amoeboid type of phagocyte migration in 3-dimensional environments. These findings demonstrate, for the first time, that SIRPα signaling can directly control phagocyte migration, and this may contribute to the impaired inflammatory phenotype that has been observed in the absence of SIRPα signaling. PMID:26057870

  14. Regulation of Phagocyte Migration by Signal Regulatory Protein-Alpha Signaling.

    PubMed

    Alvarez-Zarate, Julian; Matlung, Hanke L; Matozaki, Takashi; Kuijpers, Taco W; Maridonneau-Parini, Isabelle; van den Berg, Timo K

    2015-01-01

    Signaling through the inhibitory receptor signal regulatory protein-alpha (SIRPα) controls effector functions in phagocytes. However, there are also indications that interactions between SIRPα and its ligand CD47 are involved in phagocyte transendothelial migration. We have investigated the involvement of SIRPα signaling in phagocyte migration in vitro and in vivo using mice that lack the SIRPα cytoplasmic tail. During thioglycolate-induced peritonitis in SIRPα mutant mice, both neutrophil and macrophage influx were found to occur, but to be significantly delayed. SIRPα signaling appeared to be essential for an optimal transendothelial migration and chemotaxis, and for the amoeboid type of phagocyte migration in 3-dimensional environments. These findings demonstrate, for the first time, that SIRPα signaling can directly control phagocyte migration, and this may contribute to the impaired inflammatory phenotype that has been observed in the absence of SIRPα signaling.

  15. Propionibacterium acnes induces an adjuvant effect in B-1 cells and affects their phagocyte differentiation via a TLR2-mediated mechanism.

    PubMed

    Gambero, Monica; Teixeira, Daniela; Butin, Liane; Ishimura, Mayari Eika; Mariano, Mario; Popi, Ana Flavia; Longo-Maugéri, Ieda Maria

    2016-09-01

    B-1 lymphocytes are present in large numbers in the mouse peritoneal cavity, as are macrophages, and are responsible for natural IgM production. These lymphocytes migrate to inflammatory foci and are also involved in innate immunity. It was also demonstrated that B-1 cells are able to differentiated into phagocytes (B-1CDP), which is characterized by expression of F4/80 and increased phagocytic activity. B-1 cell responses to antigens and adjuvants are poorly characterized. It has been shown that Propionibacterium acnes suspensions induce immunomodulatory effects in both macrophages and B-2 lymphocytes. We recently demonstrated that this bacterium has the ability to increase B-1 cell populations both in vitro and in vivo. P. acnes induces B-1CDP differentiation, increases the expression of TLR2, TLR4 and TLR9 and augments the expression of CD80, CD86 and CD40 in B-1 and B-1CDP cells. Because P. acnes has been shown to modulate TLR expression, in this study, we investigated the role of TLR2 and TLR4 in B-1 cell population, including B-1CDP differentiation and phagocytic activity in vitro and in vivo. Interestingly, we have demonstrated that TLR2 signaling could be involved in the increase in the B-1 cell population induced by P. acnes. Furthermore, the early differentiation of B-1CDP is also dependent of TLR2. It was also observed that TLR signals also interfere in the phagocytic ability of B-1 cells and their phagocytes. According to these data, it is clear that P. acnes promotes an important adjuvant effect in B-1 cells by inducing them to differentiate into B-1CDP cells and modulates their phagocytic functions both in vivo and in vitro. Moreover, most of these effects are mediated primarily via TLR2. These data reinforce the findings that such bacterial suspensions have powerful adjuvant properties. The responses of B-1 cells to exogenous stimulation indicate that these cells are important to the innate immune response. Copyright © 2016 Elsevier GmbH. All rights

  16. Robust Phagocyte Recruitment Controls the Opportunistic Fungal Pathogen Mucor circinelloides in Innate Granulomas In Vivo

    PubMed Central

    2018-01-01

    ABSTRACT Mucormycosis is an emerging fungal infection with extremely high mortality rates in patients with defects in their innate immune response, specifically in functions mediated through phagocytes. However, we currently have a limited understanding of the molecular and cellular interactions between these innate immune effectors and mucormycete spores during the early immune response. Here, the early events of innate immune recruitment in response to infection by Mucor circinelloides spores are modeled by a combined in silico modeling approach and real-time in vivo microscopy. Phagocytes are rapidly recruited to the site of infection in a zebrafish larval model of mucormycosis. This robust early recruitment protects from disease onset in vivo. In silico analysis identified that protection is dependent on the number of phagocytes at the infection site, but not the speed of recruitment. The mathematical model highlights the role of proinflammatory signals for phagocyte recruitment and the importance of inhibition of spore germination for protection from active fungal disease. These in silico data are supported by an in vivo lack of fungal spore killing and lack of reactive oxygen burst, which together result in latent fungal infection. During this latent stage of infection, spores are controlled in innate granulomas in vivo. Disease can be reactivated by immunosuppression. Together, these data represent the first in vivo real-time analysis of innate granuloma formation during the early stages of a fungal infection. The results highlight a potential latent stage during mucormycosis that should urgently be considered for clinical management of patients. PMID:29588406

  17. Robust Phagocyte Recruitment Controls the Opportunistic Fungal Pathogen Mucor circinelloides in Innate Granulomas In Vivo.

    PubMed

    Inglesfield, Sarah; Jasiulewicz, Aleksandra; Hopwood, Matthew; Tyrrell, James; Youlden, George; Mazon-Moya, Maria; Millington, Owain R; Mostowy, Serge; Jabbari, Sara; Voelz, Kerstin

    2018-03-27

    Mucormycosis is an emerging fungal infection with extremely high mortality rates in patients with defects in their innate immune response, specifically in functions mediated through phagocytes. However, we currently have a limited understanding of the molecular and cellular interactions between these innate immune effectors and mucormycete spores during the early immune response. Here, the early events of innate immune recruitment in response to infection by Mucor circinelloides spores are modeled by a combined in silico modeling approach and real-time in vivo microscopy. Phagocytes are rapidly recruited to the site of infection in a zebrafish larval model of mucormycosis. This robust early recruitment protects from disease onset in vivo In silico analysis identified that protection is dependent on the number of phagocytes at the infection site, but not the speed of recruitment. The mathematical model highlights the role of proinflammatory signals for phagocyte recruitment and the importance of inhibition of spore germination for protection from active fungal disease. These in silico data are supported by an in vivo lack of fungal spore killing and lack of reactive oxygen burst, which together result in latent fungal infection. During this latent stage of infection, spores are controlled in innate granulomas in vivo Disease can be reactivated by immunosuppression. Together, these data represent the first in vivo real-time analysis of innate granuloma formation during the early stages of a fungal infection. The results highlight a potential latent stage during mucormycosis that should urgently be considered for clinical management of patients. IMPORTANCE Mucormycosis is a dramatic fungal infection frequently leading to the death of patients. We know little about the immune response to the fungus causing this infection, although evidence points toward defects in early immune events after infection. Here, we dissect this early immune response to infectious fungal

  18. A designed glycoprotein analogue of Gc-MAF exhibits native-like phagocytic activity.

    PubMed

    Bogani, Federica; McConnell, Elizabeth; Joshi, Lokesh; Chang, Yung; Ghirlanda, Giovanna

    2006-06-07

    Rational protein design has been successfully used to create mimics of natural proteins that retain native activity. In the present work, de novo protein engineering is explored to develop a mini-protein analogue of Gc-MAF, a glycoprotein involved in the immune system activation that has shown anticancer activity in mice. Gc-MAF is derived in vivo from vitamin D binding protein (VDBP) via enzymatic processing of its glycosaccharide to leave a single GalNAc residue located on an exposed loop. We used molecular modeling tools in conjunction with structural analysis to splice the glycosylated loop onto a stable three-helix bundle (alpha3W, PDB entry 1LQ7). The resulting 69-residue model peptide, MM1, has been successfully synthesized by solid-phase synthesis both in the aglycosylated and the glycosylated (GalNAc-MM1) form. Circular dichroism spectroscopy confirmed the expected alpha-helical secondary structure. The thermodynamic stability as evaluated from chemical and thermal denaturation is comparable with that of the scaffold protein, alpha3W, indicating that the insertion of the exogenous loop of Gc-MAF did not significantly perturb the overall structure. GalNAc-MM1 retains the macrophage stimulation activity of natural Gc-MAF; in vitro tests show an identical enhancement of Fc-receptor-mediated phagocytosis in primary macrophages. GalNAc-MM1 provides a framework for the development of mutants with increased activity that could be used in place of Gc-MAF as an immunomodulatory agent in therapy.

  19. Alternative activation modifies macrophage resistance to Mycobacterium bovis.

    PubMed

    Castillo-Velázquez, Uziel; Aranday-Cortés, Elihú; Gutiérrez-Pabello, José A

    2011-07-05

    The aim of this study was to evaluate the influence of macrophage alternative activation in the intracellular pathogen natural disease resistance phenotype of the host. Macrophage monolayers from resistant (R) (3) or susceptible (S) (3) cattle donors were treated with 10 ng/ml of bovine recombinant IL-4 (rbIL-4), and infected with virulent and avirulent Mycobacterium bovis (MOI 10:1). Bactericidal assays were performed to assess the bacterial phagocytic index and intracellular survival. Total RNA was reverse transcribed and used to analyze the relative changes in gene expression of IL-10, IL-12, IL-18 IL-1β, TNF-α, MCP-1, MCP-2, IL-6, MIP-1, MIP-3, iNOS, ARGII and SLAM by real time PCR. Cell supernatants were collected and nitric oxide and arginase production was assessed. Apoptosis induction was measured by TUNEL. IL-4 treatment increased the phagocytic index in both R and S macrophages; however intracellular survival was augmented mainly in S macrophages. Alternative activation decreased gene expression of pro-inflammatory cytokines, nitric oxide production and DNA fragmentation mainly in R macrophages. On the other hand, arginase production was not different between R and S macrophages. Alternative activation modifies the macrophage response against M. bovis. IL-4 treatment minimized the functional differences that exist between R and S macrophages. Copyright © 2011. Published by Elsevier B.V.

  20. Role of the Rho GTPase Rac in the activation of the phagocyte NADPH oxidase

    PubMed Central

    Pick, Edgar

    2014-01-01

    The superoxide-generating NADPH oxidase of phagocytes consists of the membrane-associated cytochrome b558 (a heterodimer of Nox2 and p22phox) and 4 cytosolic components: p47phox, p67phox, p40phox, and the small GTPase, Rac, in complex with RhoGDI. Superoxide is produced by the NADPH-driven reduction of molecular oxygen, via a redox gradient located in Nox2. Electron flow in Nox2 is initiated by interaction with cytosolic components, which translocate to the membrane, p67phox playing the central role. The participation of Rac is expressed in the following sequence: (1) Translocation of the RacGDP-RhoGDI complex to the membrane; (2) Dissociation of RacGDP from RhoGDI; (3) GDP to GTP exchange on Rac, mediated by a guanine nucleotide exchange factor; (4) Binding of RacGTP to p67phox; (5) Induction of a conformational change in p67phox, promoting interaction with Nox2. The particular involvement of Rac in NADPH oxidase assembly serves as a paradigm for signaling by Rho GTPases, in general. PMID:24598074

  1. B-1 phagocytes: the myeloid face of B-1 cells.

    PubMed

    Popi, Ana Flavia

    2015-12-01

    The relationship between malignant B cells and macrophages has long been established. Furthermore, evolutionary studies have demonstrated that B cells from early vertebrates have both phagocytic and antibody production capabilities. In addition to their lymphoid nature, B-1 cells retain several myeloid characteristics. Various reports have demonstrated that B-1 cells can differentiate into phagocytes. However, descriptions of B-1 cells as a novel phagocyte cell member are rarely found in the literature. This review aims to present the available data regarding B-1 cell-derived phagocytes and also discusses how their existence might be relevant to hematopoiesis and immune responses. © 2015 New York Academy of Sciences.

  2. Could a B-1 cell derived phagocyte "be one" of the peritoneal macrophages during LPS-driven inflammation?

    PubMed

    Popi, Ana Flavia; Osugui, Lika; Perez, Katia Regina; Longo-Maugéri, Ieda Maria; Mariano, Mario

    2012-01-01

    The inflammatory response is driven by signals that recruit and elicit immune cells to areas of tissue damage or infection. The concept of a mononuclear phagocyte system postulates that monocytes circulating in the bloodstream are recruited to inflamed tissues where they give rise to macrophages. A recent publication demonstrated that the large increase in the macrophages observed during infection was the result of the multiplication of these cells rather than the recruitment of blood monocytes. We demonstrated previously that B-1 cells undergo differentiation to acquire a mononuclear phagocyte phenotype in vitro (B-1CDP), and we propose that B-1 cells could be an alternative origin for peritoneal macrophages. A number of recent studies that describe the phagocytic and microbicidal activity of B-1 cells in vitro and in vivo support this hypothesis. Based on these findings, we further investigated the differentiation of B-1 cells into phagocytes in vivo in response to LPS-induced inflammation. Therefore, we investigated the role of B-1 cells in the composition of the peritoneal macrophage population after LPS stimulation using osteopetrotic mice, BALB/Xid mice and the depletion of monocytes/macrophages by clodronate treatment. We show that peritoneal macrophages appear in op/op((-/-)) mice after LPS stimulation and exhibit the same Ig gene rearrangement (VH11) that is often found in B-1 cells. These results strongly suggest that op/op((-/-)) peritoneal "macrophages" are B-1CDP. Similarly, the LPS-induced increase in the macrophage population was observed even following monocyte/macrophage depletion by clodronate. After monocyte/macrophage depletion by clodronate, LPS-elicited macrophages were observed in BALB/Xid mice only following the transfer of B-1 cells. Based on these data, we confirmed that B-1 cell differentiation into phagocytes also occurs in vivo. In conclusion, the results strongly suggest that B-1 cell derived phagocytes are a component of the LPS

  3. Step-wise loss of bacterial flagellar torsion confers progressive phagocytic evasion.

    PubMed

    Lovewell, Rustin R; Collins, Ryan M; Acker, Julie L; O'Toole, George A; Wargo, Matthew J; Berwin, Brent

    2011-09-01

    Phagocytosis of bacteria by innate immune cells is a primary method of bacterial clearance during infection. However, the mechanisms by which the host cell recognizes bacteria and consequentially initiates phagocytosis are largely unclear. Previous studies of the bacterium Pseudomonas aeruginosa have indicated that bacterial flagella and flagellar motility play an important role in colonization of the host and, importantly, that loss of flagellar motility enables phagocytic evasion. Here we use molecular, cellular, and genetic methods to provide the first formal evidence that phagocytic cells recognize bacterial motility rather than flagella and initiate phagocytosis in response to this motility. We demonstrate that deletion of genes coding for the flagellar stator complex, which results in non-swimming bacteria that retain an initial flagellar structure, confers resistance to phagocytic binding and ingestion in several species of the gamma proteobacterial group of Gram-negative bacteria, indicative of a shared strategy for phagocytic evasion. Furthermore, we show for the first time that susceptibility to phagocytosis in swimming bacteria is proportional to mot gene function and, consequently, flagellar rotation since complementary genetically- and biochemically-modulated incremental decreases in flagellar motility result in corresponding and proportional phagocytic evasion. These findings identify that phagocytic cells respond to flagellar movement, which represents a novel mechanism for non-opsonized phagocytic recognition of pathogenic bacteria.

  4. Phagocytic cells contribute to the antibody-mediated elimination of pulmonary-infected SARS coronavirus.

    PubMed

    Yasui, Fumihiko; Kohara, Michinori; Kitabatake, Masahiro; Nishiwaki, Tetsu; Fujii, Hideki; Tateno, Chise; Yoneda, Misako; Morita, Kouichi; Matsushima, Kouji; Koyasu, Shigeo; Kai, Chieko

    2014-04-01

    While the 2002-2003 outbreak of severe acute respiratory syndrome (SARS) resulted in 774 deaths, patients who were affected with mild pulmonary symptoms successfully recovered. The objective of the present work was to identify, using SARS coronavirus (SARS-CoV) mouse infection models, immune factors responsible for clearing of the virus. The elimination of pulmonary SARS-CoV infection required the activation of B cells by CD4(+) T cells. Furthermore, passive immunization (post-infection) with homologous (murine) anti-SARS-CoV antiserum showed greater elimination efficacy against SARS-CoV than that with heterologous (rabbit) antiserum, despite the use of equivalent titers of neutralizing antibodies. This distinction was mediated by mouse phagocytic cells (monocyte-derived infiltrating macrophages and partially alveolar macrophages, but not neutrophils), as demonstrated both by adoptive transfer from donors and by immunological depletion of selected cell types. These results indicate that the cooperation of anti-SARS-CoV antibodies and phagocytic cells plays an important role in the elimination of SARS-CoV. Copyright © 2014 Elsevier Inc. All rights reserved.

  5. Antimicrobial and host cell-directed activities of Gly/Ser-rich peptides from salmonid cathelicidins.

    PubMed

    D'Este, Francesca; Benincasa, Monica; Cannone, Giuseppe; Furlan, Michela; Scarsini, Michele; Volpatti, Donatella; Gennaro, Renato; Tossi, Alessandro; Skerlavaj, Barbara; Scocchi, Marco

    2016-12-01

    Cathelicidins, a major family of vertebrate antimicrobial peptides (AMPs), have a recognized role in the first line of defense against infections. They have been identified in several salmonid species, where the putative mature peptides are unusually long and rich in serine and glycine residues, often arranged in short multiple repeats (RLGGGS/RPGGGS) intercalated by hydrophobic motifs. Fragments of 24-40 residues, spanning specific motifs and conserved sequences in grayling or brown, rainbow and brook trout, were chemically synthesized and examined for antimicrobial activity against relevant Gram-positive and Gram-negative salmonid pathogens, as well as laboratory reference strains. They were not active in complete medium, but showed varying potency and activity spectra in diluted media. Bacterial membrane permeabilization also occurred only under these conditions and was indicated by rapid propidium iodide uptake in peptide-treated bacteria. However, circular dichroism analyses indicated that they did not significantly adopt ordered conformations in membrane-like environments. The peptides were not hemolytic or cytotoxic to trout cells, including freshly purified head kidney leukocytes (HKL) and the fibroblastic RTG-2 cell line. Notably, when exposed to them, HKL showed increased metabolic activity, while a growth-promoting effect was observed on RTG-2 cells, suggesting a functional interaction of salmonid cathelicidins with host cells similar to that shown by mammalian ones. The three most active peptides produced a dose-dependent increase in phagocytic uptake by HKL simultaneously stimulated with bacterial particles. The peptide STF(1-37), selected for further analyses, also enhanced phagocytic uptake in the presence of autologous serum, and increased intracellular killing of live E. coli. Furthermore, when tested on HKL in combination with the immunostimulant β-glucan, it synergistically potentiated both phagocytic uptake and the respiratory burst response

  6. Cellular myeloperoxidase activity in human monocytes stimulated by hyposialylated immunoglobulins and rheumatoid factors.

    PubMed Central

    Dodon, M D; Gazzolo, L; Quash, G A

    1984-01-01

    When hyposialylated , immunoglobulins become immunogenic and tend to form aggregates. In pursuit of the possibility that hyposialylated immunoglobulins (hs-Ig) can trigger human mononuclear phagocytic cells, we have investigated the effects of such hs-Ig on the myeloperoxidase (MPO) activity of these cells. The incubation of human monocytes with aggregated hs-Ig leads to the decrease of intracellular MPO activity. This decrease is dependent on the incubation time, on the amount of hs-Ig added, and on the degree of aggregation. Incubation with unaggregated hs-Ig has a similar effect, thus providing evidence that the loss of sialic acid residues per se is enough to render these molecules capable of decreasing the MPO content of phagocytic cells. Furthermore, human rheumatoid factors, isolated from the sera of rheumatoid arthritis patients, and previously characterized as hyposailylated Ig, interact in the same way with monocytes in triggering the MPO decrease. These observations imply that hs-Ig may be considered as active stimuli in the induction of inflammatory processes, through the initiation of oxidative reactions. PMID:6329948

  7. Effect of salivary gland adenocarcinoma cell-derived alpha-N-acetylgalactosaminidase on the bioactivity of macrophage activating factor.

    PubMed

    Matsuura, Takashi; Uematsu, Takashi; Yamaoka, Minoru; Furusawa, Kiyofumi

    2004-03-01

    The aim of this study was to clarify the effects of alpha-N-acetylgalactosaminidase (alpha-NaGalase) produced by human salivary gland adenocarcinoma (SGA) cells on the bioactivity of macrophage-activating factor (GcMAF). High exo-alpha-NaGalase activity was detected in the SGA cell line HSG. HSG alpha-NaGalase had both exo- and endo-enzyme activities, cleaving the Gal-GalNAc and GalNAc residues linked to Thr/Ser but not releasing the [NeuAc2-6]GalNac residue. Furthermore, GcMAF enzymatically prepared from the Gc protein enhanced the superoxide-generation capacity and phagocytic activity of monocytes/macrophages. However, GcMAF treated with purified alpha-NaGalase did not exhibit these effects. Thus, HSG possesses the capacity to produce larger quantities of alpha-NaGalase, which inactivates GcMAF produced from Gc protein, resulting in reduced phagocytic activity and superoxide-generation capacity of monocytes/macrophages. The present data strongly suggest that HSG alpha-NaGalase acts as an immunodeficiency factor in cancer patients.

  8. Unexpected function of the phagocyte NADPH oxidase in supporting hyperglycolysis in stimulated neutrophils: key role of 6-phosphofructo-2-kinase.

    PubMed

    Baillet, Athan; Hograindleur, Marc-André; El Benna, Jamel; Grichine, Alexei; Berthier, Sylvie; Morel, Françoise; Paclet, Marie-Hélène

    2017-02-01

    The phagocyte NADPH oxidase 2 (Nox2) is an enzymatic complex that is involved in innate immunity, notably via its capacity to produce toxic reactive oxygen species. Recently, a proteomic analysis of the constitutively active Nox2 complex, isolated from neutrophil fractions, highlighted the presence of 6-phosphofructo-2-kinase (PFK-2). The purpose of this work was to study the relationship between PFK-2 and NADPH oxidase in neutrophils. Data have underlined a specific association of the active phosphorylated form of PFK-2 with Nox2 complex in stimulated neutrophils. In its active form, PFK-2 catalyzes the production of fructose-2,6-bisphosphate, which is the main allosteric activator of phosphofructo-1-kinase, the limiting enzyme in glycolysis. Pharmacologic inhibition of PFK-2 phosphorylation and cell depletion in PFK-2 by a small interfering RNA strategy led to a decrease in the glycolysis rate and a reduction in NADPH oxidase activity in stimulated cells. Surprisingly, alteration of Nox2 activity impacted the glycolysis rate, which indicated that Nox2 in neutrophils was not only required for reactive oxygen species production but was also involved in supporting the energetic metabolism increase that was induced by inflammatory conditions. PFK-2 seems to be a strategic element that links NADPH oxidase activation and glycolysis modulation, and, as such, is proposed as a potential therapeutic target in inflammatory diseases.-Baillet, A., Hograindleur, M.-A., El Benna, J., Grichine, A., Berthier, S., Morel, F., Paclet, M.-H. Unexpected function of the phagocyte NADPH oxidase in supporting hyperglycolysis in stimulated neutrophils: key role of 6-phosphofructo-2-kinase. © FASEB.

  9. The many ways tissue phagocytes respond to dying cells

    PubMed Central

    Blander, J. Magarian

    2017-01-01

    Summary Apoptosis is an important component of normal tissue physiology, and the prompt removal of apoptotic cells is equally essential to avoid the undesirable consequences of their accumulation and disintegration. Professional phagocytes are highly specialized for engulfing apoptotic cells. The recent ability to track cells that have undergone apoptosis in situ has revealed a division of labor among the tissue resident phagocytes that sample them. Macrophages are uniquely programmed to process internalized apoptotic cell-derived fatty acids, cholesterol and nucleotides, as a reflection of their dominant role in clearing the bulk of apoptotic cells. Dendritic cells carry apoptotic cells to lymph nodes where they signal the emergence and expansion of highly suppressive regulatory CD4 T cells. A broad suppression of inflammation is executed through distinct phagocyte-specific mechanisms. A clever induction of negative regulatory nodes is notable in dendritic cells serving to simultaneously shut down multiple pathways of inflammation. Several of the genes and pathways modulated in phagocytes in response to apoptotic cells have been linked to chronic inflammatory and autoimmune diseases such as atherosclerosis, inflammatory bowel disease and systemic lupus erythematosus. Our collective understanding of old and new phagocyte functions after apoptotic cell phagocytosis demonstrates the enormity of ways to mediate immune suppression and enforce tissue homeostasis. PMID:28462530

  10. Selective induction of phospholipase D1 in pathogen-activated human monocytes.

    PubMed

    Locati, M; Riboldi, E; Bonecchi, R; Transidico, P; Bernasconi, S; Haribabu, B; Morris, A J; Mantovani, A; Sozzani, S

    2001-08-15

    Phospholipase D (PLD) activation is part of the complex signalling cascade induced during phagocyte activation. Two PLD isoforms have been cloned, but their role in phagocyte functions is still poorly defined. We report that resting fresh circulating human monocytes expressed PLD1. PLD1 protein expression was rapidly down-regulated during cell culture. Lipopolysaccharide and pathogen-derived agonists (Candida albicans, arabinoside-terminated lipoarabinomannan and Gram-positive bacteria, but not mannose-capped lipoarabinomannan or double-stranded RNA) strongly induced PLD1 expression at both the mRNA and protein levels. Pro-inflammatory cytokines [interleukin (IL)-1beta and tumour necrosis factor alpha] had only a weak effect, whereas immune cytokines (IL-6 and interferon gamma), anti-inflammatory cytokines (IL-13 and IL-10) and chemoattractants (fMet-Leu-Phe and macrophage chemoattractant protein 1) were inactive. None of the agonists tested induced significant changes in the basal expression of PLD2 mRNA. Consistent with PLD1 up-regulation was the observation that PLD enzymic activity was higher in monocytes treated with active-pathogen-derived agonists than in control cells, when stimulated with PMA or with chemotactic agonists (fMet-Leu-Phe and C5a). Thus PLD2 seems to be a constitutive enzyme in circulating monocytes. Conversely, PLD1 is an inducible protein, rapidly regulated during culture conditions and selectively induced during cell activation. Therefore PLD1 might have a relevant role in immune responses against pathogens and in chronic inflammation.

  11. Step-Wise Loss of Bacterial Flagellar Torsion Confers Progressive Phagocytic Evasion

    PubMed Central

    Lovewell, Rustin R.; Collins, Ryan M.; Acker, Julie L.; O'Toole, George A.; Wargo, Matthew J.; Berwin, Brent

    2011-01-01

    Phagocytosis of bacteria by innate immune cells is a primary method of bacterial clearance during infection. However, the mechanisms by which the host cell recognizes bacteria and consequentially initiates phagocytosis are largely unclear. Previous studies of the bacterium Pseudomonas aeruginosa have indicated that bacterial flagella and flagellar motility play an important role in colonization of the host and, importantly, that loss of flagellar motility enables phagocytic evasion. Here we use molecular, cellular, and genetic methods to provide the first formal evidence that phagocytic cells recognize bacterial motility rather than flagella and initiate phagocytosis in response to this motility. We demonstrate that deletion of genes coding for the flagellar stator complex, which results in non-swimming bacteria that retain an initial flagellar structure, confers resistance to phagocytic binding and ingestion in several species of the gamma proteobacterial group of Gram-negative bacteria, indicative of a shared strategy for phagocytic evasion. Furthermore, we show for the first time that susceptibility to phagocytosis in swimming bacteria is proportional to mot gene function and, consequently, flagellar rotation since complementary genetically- and biochemically-modulated incremental decreases in flagellar motility result in corresponding and proportional phagocytic evasion. These findings identify that phagocytic cells respond to flagellar movement, which represents a novel mechanism for non-opsonized phagocytic recognition of pathogenic bacteria. PMID:21949654

  12. The protease-activated receptor-2 upregulates keratinocyte phagocytosis.

    PubMed

    Sharlow, E R; Paine, C S; Babiarz, L; Eisinger, M; Shapiro, S; Seiberg, M

    2000-09-01

    The protease-activated receptor-2 (PAR-2) belongs to the family of seven transmembrane domain receptors, which are activated by the specific enzymatic cleavage of their extracellular amino termini. Synthetic peptides corresponding to the tethered ligand domain (SLIGRL in mouse, SLIGKV in human) can activate PAR-2 without the need for receptor cleavage. PAR-2 activation is involved in cell growth, differentiation and inflammatory processes, and was shown to affect melanin and melanosome ingestion by human keratinocytes. Data presented here suggest that PAR-2 activation may regulate human keratinocyte phagocytosis. PAR-2 activation by trypsin, SLIGRL or SLIGKV increased the ability of keratinocytes to ingest fluorescently labeled microspheres or E. coli K-12 bioparticles. This PAR-2 mediated increase in keratinocyte phagocytic capability correlated with an increase in actin polymerization and *-actinin reorganization, cell surface morphological changes and increased soluble protease activity. Moreover, addition of serine protease inhibitors downmodulated both the constitutive and the PAR-2 mediated increases in phagocytosis, suggesting that serine proteases mediate this functional activity in keratinocytes. PAR-2 involvement in keratinocyte phagocytosis is a novel function for this receptor.

  13. Apoptotic cell-induced AhR activity is required for immunological tolerance and suppression of systemic lupus erythematosus in mice and humans.

    PubMed

    Shinde, Rahul; Hezaveh, Kebria; Halaby, Marie Jo; Kloetgen, Andreas; Chakravarthy, Ankur; da Silva Medina, Tiago; Deol, Reema; Manion, Kieran P; Baglaenko, Yuriy; Eldh, Maria; Lamorte, Sara; Wallace, Drew; Chodisetti, Sathi Babu; Ravishankar, Buvana; Liu, Haiyun; Chaudhary, Kapil; Munn, David H; Tsirigos, Aristotelis; Madaio, Michael; Gabrielsson, Susanne; Touma, Zahi; Wither, Joan; De Carvalho, Daniel D; McGaha, Tracy L

    2018-06-01

    The transcription factor AhR modulates immunity at multiple levels. Here we report that phagocytes exposed to apoptotic cells exhibited rapid activation of AhR, which drove production of the cytokine IL-10. Activation of AhR was dependent on interactions between apoptotic-cell DNA and the pattern-recognition receptor TLR9 that was required for the prevention of immune responses to DNA and histones in vivo. Moreover, disease progression in mouse systemic lupus erythematosus (SLE) correlated with strength of the AhR signal, and the disease course could be altered by modulation of AhR activity. Deletion of AhR in the myeloid lineage caused systemic autoimmunity in mice, and an enhanced AhR transcriptional signature correlated with disease in patients with SLE. Thus, AhR activity induced by apoptotic cell phagocytes maintains peripheral tolerance.

  14. Mononuclear phagocytic system in acute pancreatitis.

    PubMed

    Abdo, E E; Gonçalez, Y; Machado, M C; Aguirre-Costa, P L; Gonçalez, F; Sampietri, S N; Pinotti, H W

    1993-03-01

    1. Functional alterations of the mononuclear phagocytic system (MPS) may be an important factor in the pathogenesis of infection in acute pancreatitis (AP). In the present study, MPS activity was investigated in rats and hepatic blood flow (HBF) was also determined. 2. A total of 122 male Wistar rats were divided into three groups: 1, AP group (N = 51); 2, sham-operated (SO) (N = 49); 3, intact group (IG) (N = 22). AP was induced by retrograde injection of 0.5 ml of 2.5% sodium taurocholate saline into the main biliopancreatic duct under ketamine chloride anesthesia. SO animals were submitted to the same surgical steps as AP animals except for AP induction. 3. Each experimental group was subdivided into two subgroups. The first subgroup was submitted to the study of MPS activity as follows: each group was injected with colloidal 198Au and liver clearance parameters were determined 2 h (N = 11), 12 h (N = 10) and 24 h (N = 10) later in the AP group, and 2 h (N = 9), 12 h (N = 10) and 24 h (N = 11) later in the SO group. In the second subgroup, HBF was assessed using 131I-bromosulphalein at 2 h (N = 10) and 24 h (N = 10) in the AP group and at 2 h (N = 10) and 24 h (N = 10) in the SO group. The IG was submitted to both radioactive tracer studies. Each animal was used for only one experiment.(ABSTRACT TRUNCATED AT 250 WORDS)

  15. The many ways tissue phagocytes respond to dying cells.

    PubMed

    Blander, J Magarian

    2017-05-01

    Apoptosis is an important component of normal tissue physiology, and the prompt removal of apoptotic cells is equally essential to avoid the undesirable consequences of their accumulation and disintegration. Professional phagocytes are highly specialized for engulfing apoptotic cells. The recent ability to track cells that have undergone apoptosis in situ has revealed a division of labor among the tissue resident phagocytes that sample them. Macrophages are uniquely programmed to process internalized apoptotic cell-derived fatty acids, cholesterol and nucleotides, as a reflection of their dominant role in clearing the bulk of apoptotic cells. Dendritic cells carry apoptotic cells to lymph nodes where they signal the emergence and expansion of highly suppressive regulatory CD4 T cells. A broad suppression of inflammation is executed through distinct phagocyte-specific mechanisms. A clever induction of negative regulatory nodes is notable in dendritic cells serving to simultaneously shut down multiple pathways of inflammation. Several of the genes and pathways modulated in phagocytes in response to apoptotic cells have been linked to chronic inflammatory and autoimmune diseases such as atherosclerosis, inflammatory bowel disease and systemic lupus erythematosus. Our collective understanding of old and new phagocyte functions after apoptotic cell phagocytosis demonstrates the enormity of ways to mediate immune suppression and enforce tissue homeostasis. © 2017 John Wiley & Sons A/S. Published by John Wiley & Sons Ltd.

  16. Physalin B inhibits Rhodnius prolixus hemocyte phagocytosis and microaggregation by the activation of endogenous PAF-acetyl hydrolase activities.

    PubMed

    Castro, D P; Figueiredo, M B; Genta, F A; Ribeiro, I M; Tomassini, T C B; Azambuja, P; Garcia, E S

    2009-06-01

    The effects of physalin B (a natural secosteroidal chemical from Physalis angulata, Solanaceae) on phagocytosis and microaggregation by hemocytes of 5th-instar larvae of Rhodnius prolixus were investigated. In this insect, hemocyte phagocytosis and microaggregation are known to be induced by the platelet-activating factor (PAF) or arachidonic acid (AA) and regulated by phospholipase A(2) (PLA(2)) and PAF-acetyl hydrolase (PAF-AH) activities. Phagocytic activity and formation of hemocyte microaggregates by Rhodnius hemocytes were strongly blocked by oral treatment of this insect with physalin B (1mug/mL of blood meal). The inhibition induced by physalin B was reversed for both phagocytosis and microaggregation by exogenous arachidonic acid (10microg/insect) or PAF (1microg/insect) applied by hemocelic injection. Following treatment with physalin B there were no significant alterations in PLA(2) activities, but a significant enhancement of PAF-AH was observed. These results show that physalin B inhibits hemocytic activity by depressing insect PAF analogous (iPAF) levels in hemolymph and confirm the role of PAF-AH in the cellular immune reactions in R. prolixus.

  17. Mycobacterium avium biofilm attenuates mononuclear phagocyte function by triggering hyperstimulation and apoptosis during early infection.

    PubMed

    Rose, Sasha J; Bermudez, Luiz E

    2014-01-01

    Mycobacterium avium subsp. hominissuis is an opportunistic human pathogen that has been shown to form biofilm in vitro and in vivo. Biofilm formation in vivo appears to be associated with infections in the respiratory tract of the host. The reasoning behind how M. avium subsp. hominissuis biofilm is allowed to establish and persist without being cleared by the innate immune system is currently unknown. To identify the mechanism responsible for this, we developed an in vitro model using THP-1 human mononuclear phagocytes cocultured with established M. avium subsp. hominissuis biofilm and surveyed various aspects of the interaction, including phagocyte stimulation and response, bacterial killing, and apoptosis. M. avium subsp. hominissuis biofilm triggered robust tumor necrosis factor alpha (TNF-α) release from THP-1 cells as well as superoxide and nitric oxide production. Surprisingly, the hyperstimulated phagocytes did not effectively eliminate the cells of the biofilm, even when prestimulated with gamma interferon (IFN-γ) or TNF-α or cocultured with natural killer cells (which have been shown to induce anti-M. avium subsp. hominissuis activity when added to THP-1 cells infected with planktonic M. avium subsp. hominissuis). Time-lapse microscopy and the TUNEL (terminal deoxynucleotidyltransferase-mediated dUTP-biotin nick end labeling) assay determined that contact with the M. avium subsp. hominissuis biofilm led to early, widespread onset of apoptosis, which is not seen until much later in planktonic M. avium subsp. hominissuis infection. Blocking TNF-α or TNF-R1 during interaction with the biofilm significantly reduced THP-1 apoptosis but did not lead to elimination of M. avium subsp. hominissuis. Our data collectively indicate that M. avium subsp. hominissuis biofilm induces TNF-α-driven hyperstimulation and apoptosis of surveilling phagocytes, which prevents clearance of the biofilm by cells of the innate immune system and allows the biofilm

  18. Elevated Mitochondrial Reactive Oxygen Species and Cellular Redox Imbalance in Human NADPH-Oxidase-Deficient Phagocytes

    PubMed Central

    Sundqvist, Martina; Christenson, Karin; Björnsdottir, Halla; Osla, Veronica; Karlsson, Anna; Dahlgren, Claes; Speert, David P.; Fasth, Anders; Brown, Kelly L.; Bylund, Johan

    2017-01-01

    Chronic granulomatous disease (CGD) is caused by mutations in genes that encode the NADPH-oxidase and result in a failure of phagocytic cells to produce reactive oxygen species (ROS) via this enzyme system. Patients with CGD are highly susceptible to infections and often suffer from inflammatory disorders; the latter occurs in the absence of infection and correlates with the spontaneous production of inflammatory cytokines. This clinical feature suggests that NADPH-oxidase-derived ROS are not required for, or may even suppress, inflammatory processes. Experimental evidence, however, implies that ROS are in fact required for inflammatory cytokine production. By using a myeloid cell line devoid of a functional NADPH-oxidase and primary CGD cells, we analyzed intracellular oxidants, signs of oxidative stress, and inflammatory cytokine production. Herein, we demonstrate that phagocytes lacking a functional NADPH-oxidase, namely primary CGD phagocytes and a gp91phox-deficient cell line, display elevated levels of ROS derived from mitochondria. Accordingly, these cells, despite lacking the major source of cellular ROS, display clear signs of oxidative stress, including an induced expression of antioxidants and altered oxidation of cell surface thiols. These observed changes in redox state were not due to abnormalities in mitochondrial mass or membrane integrity. Finally, we demonstrate that increased mitochondrial ROS enhanced phosphorylation of ERK1/2, and induced production of IL8, findings that correlate with previous observations of increased MAPK activation and inflammatory cytokine production in CGD cells. Our data show that elevated baseline levels of mitochondria-derived oxidants lead to the counter-intuitive observation that CGD phagocytes are under oxidative stress and have enhanced MAPK signaling, which may contribute to the elevated basal production of inflammatory cytokines and the sterile inflammatory manifestations in CGD. PMID:29375548

  19. Mucorales species activation of a serum leukotactic factor.

    PubMed Central

    Marx, R S; Forsyth, K R; Hentz, S K

    1982-01-01

    Previous studies have suggested that the focal accumulation of phagocytic leukocytes is an important feature of the host response in mucormycosis. To ascertain the basis for this influx of inflammatory cells, we evaluated the effect of members of the order Mucorales, including species from the genera Rhizopus, Absidia, and Mucor, on the chemotactic activity of normal human serum for neutrophils and monocytes. Both hyphae and spores produced concentration-dependent chemotaxigenesis in serum to a maximum level equivalent to that produced by zymosan activation of serum. Chemotactic activity was similar for live and heat-killed hyphae. No leukotactic activity was demonstrated in the absence of serum. The pretreatment of serum with anti-C3 antibody, heating at 56 degrees C, or 0.01 M EDTA abolished the activity. The pretreatment of serum with 0.01 M ethylene glycol-bis(beta-aminoethyl ether)-N,N-tetraacetic acid did not abolish the activity. These data provide evidence that the leukotactic activity of Mucorales species is generated through the alternative complement pathway. PMID:6759409

  20. NADPH oxidase activation in neutrophils: Role of the Phosphorylation of its subunits.

    PubMed

    Belambri, Sahra A; Rolas, Loïc; Raad, Houssam; Hurtado-Nedelec, Margarita; Dang, Pham My-Chan; El-Benna, Jamel

    2018-05-14

    Neutrophils are key cells of innate immunity and during inflammation. Upon activation, they produce large amounts of superoxide anion (O 2 -. ) and ensuing reactive oxygen species (ROS) to kill phagocytized microbes. The enzyme responsible for O 2 -. production is called the phagocyte NADPH oxidase. This is a multicomponent enzyme system that becomes active after assembly of four cytosolic proteins (p47 phox , p67 phox , p40 phox and Rac2) with the transmembrane proteins (p22 phox and gp91 phox , which form the cytochrome b 558 ). gp91 phox represents the catalytic subunit of the NADPH oxidase and is also called NOX2. NADPH oxidase-derived ROS are essential for microbial killing and innate immunity; however, excessive ROS production induces tissue injury and prolonged inflammatory reactions that contribute to inflammatory diseases. Thus, NADPH oxidase activation must be tightly regulated in time and space in order to limit ROS production. NADPH oxidase activation is regulated by several processes such as phosphorylation of its components, exchange of GDP/GTP on Rac2 and binding of p47 phox and p40 phox to phospholipids. This review aims to provide new insights into the role of the phosphorylation of the NADPH oxidase components, i.e., gp91 phox , p22 phox , p47 phox , p67 phox and p40 phox , in the activation of this enzyme. This article is protected by copyright. All rights reserved. This article is protected by copyright. All rights reserved.

  1. Mononuclear phagocyte subpopulations in the mouse kidney.

    PubMed

    George, James F; Lever, Jeremie M; Agarwal, Anupam

    2017-04-01

    Mononuclear phagocytes are the most common cells in the kidney associated with immunity and inflammation. Although the presence of these cells in the kidney has been known for decades, the study of mononuclear phagocytes in the context of kidney function and dysfunction is still at an early stage. The purpose of this review is to summarize the present knowledge regarding classification of these cells in the mouse kidney and to identify relevant questions that would further advance the field and potentially lead to new opportunities for treatment of acute kidney injury and other kidney diseases.

  2. Simultaneous cytofluorometric measurement of phagocytosis, burst production and killing of human phagocytes using Candida albicans and Staphylococcus aureus as target organisms.

    PubMed

    Salih, H R; Husfeld, L; Adam, D

    2000-05-01

    Polymorphonuclear leukocytes (PMN) play a central role in the elimination of most extracellular pathogens, and an impairment of their functions predisposes an individual towards local and systemic bacterial and fungal infections. Here we describe a rapid and easy-to-perform cytofluorometric assay for investigation of PMN activity using Candida albicans and Staphylococcus aureus as target organisms. Phagocytes were stained with anti-CD13-RPE antibody, and microorganisms were stained with calcein-AM. Oxidative burst production was measured by oxidation of dihydroethidium. The percentage of killed target organisms after ingestion was determined by staining with ethidium-homodimer-1 after lysis of human cells. The dyes and procedures used in this method were chosen after comparison of different stains and cell preparation techniques described in previous assays. Concerning phagocytosis, the percentages of active phagocytes and of ingested microorganisms were determined. Furthermore, the method allowed measurement of the resulting percentage of PMNs producing respiratory burst, and of the percentage of killed microorganisms. We minimized artifactual changes, which might have been the reason for the difficulties and conflicting results of other cytofluorometric methods. The described method provides a new whole blood cytofluorometric assay, which combines rapid and simple handling with high reproducibility of results obtained by investigation of PMN activity using Candida albicans and Staphylococcus aureus as target organisms.

  3. Phage-Phagocyte Interactions and Their Implications for Phage Application as Therapeutics.

    PubMed

    Jończyk-Matysiak, Ewa; Weber-Dąbrowska, Beata; Owczarek, Barbara; Międzybrodzki, Ryszard; Łusiak-Szelachowska, Marzanna; Łodej, Norbert; Górski, Andrzej

    2017-06-14

    Phagocytes are the main component of innate immunity. They remove pathogens and particles from organisms using their bactericidal tools in the form of both reactive oxygen species and degrading enzymes-contained in granules-that are potentially toxic proteins. Therefore, it is important to investigate the possible interactions between phages and immune cells and avoid any phage side effects on them. Recent progress in knowledge concerning the influence of phages on phagocytes is also important as such interactions may shape the immune response. In this review we have summarized the current knowledge on phage interactions with phagocytes described so far and their potential implications for phage therapy . The data suggesting that phage do not downregulate important phagocyte functions are especially relevant for the concept of phage therapy.

  4. In vitro and in vivo transfection of primary phagocytes via microbubble-mediated intraphagosomal sonoporation.

    PubMed

    Lemmon, Jason C M; McFarland, Ryan J; Rybicka, Joanna M; Balce, Dale R; McKeown, Kyle R; Krohn, Regina M; Matsunaga, Terry O; Yates, Robin M

    2011-08-31

    The professional phagocytes, such as macrophages and dendritic cells, are the subject of numerous research efforts in immunology and cell biology. The use of primary phagocytes in these investigations however, are limited by their inherent resistance to transfection with DNA constructs. As a result, the use of phagocyte-like immortalized cell lines is widespread. While these cell lines are transfection permissive, they are generally regarded as poor biological substitutes for primary phagocytes. By exploiting the phagocytic machinery of primary phagocytes, we developed a non-viral method of DNA transfection of macrophages that employs intraphagosomal sonoporation mediated by internalized lipid-based microbubbles. This approach enables the transfection of primary phagocytes in vitro, with a modest, but reliable efficiency. Furthermore, this methodology was readily adapted to transfect murine peritoneal macrophages in vivo. This technology has immediate application to current research efforts and has potential for use in gene therapy and vaccination strategies. Copyright © 2011 Elsevier B.V. All rights reserved.

  5. Specific and non-overlapping functions of testosterone and 11-ketotestosterone in the regulation of professional phagocyte responses in the teleost fish gilthead seabream.

    PubMed

    Aguila, S; Castillo-Briceño, P; Sánchez, M; Cabas, I; García-Alcázar, A; Meseguer, J; Mulero, V; García-Ayala, A

    2013-03-01

    Sex hormones, both estrogens and androgens, have a strong impact on immunity in mammals. In fish, the role of androgens in immunity has received little attention and contradictory conclusions have been obtained. However, it is well known that sex steroids are involved in fish growth, osmoregulation and gonad remodelation. In this study, we examine the in vitro effects of testosterone and 11-ketotestosterone, the two main fish androgens, on the professional phagocytes of the teleost fish gilthead seabream (Sparus aurata L.). Although both testosterone and 11-ketotestosterone failed to modulate the respiratory burst of seabream phagocytes, testosterone but not 11-ketotestosterone was able to increase the phagocytic ability of non-activated phagocytes. Curiously, 11-ketotestosterone was more powerful than testosterone at inducing the expression of its own receptor, namely androgen receptor b (ARb), in acidophilic granulocytes (AGs), but none of them affected the basal ARb expression levels in macrophages (MØ). Furthermore, although physiological concentrations of testosterone exerted a pro-inflammatory effect on both AGs and MØs, 11-ketotestosterone showed an anti-inflammatory effect in AGs and a strong pro-inflammatory effect in MØs. Interestingly, both androgens modulated the expression of toll-like receptors in these two immune cell types, suggesting that androgens might regulate the sensitivity of phagocytes to pathogens and damage signals. Testosterone and 11-ketotestosterone have a competitive effect, at least, on the modulation of the expression of some genes. Therefore, our results show for the first time a non-overlapping role for testosterone and 11-ketotestosterone in the regulation of professional phagocyte functions in fish. Copyright © 2012 Elsevier Ltd. All rights reserved.

  6. Activation of murine invariant NKT cells promotes susceptibility to candidiasis by IL-10 induced modulation of phagocyte antifungal activity.

    PubMed

    Haraguchi, Norihiro; Kikuchi, Norihiro; Morishima, Yuko; Matsuyama, Masashi; Sakurai, Hirofumi; Shibuya, Akira; Shibuya, Kazuko; Taniguchi, Masaru; Ishii, Yukio

    2016-07-01

    Invariant NKT (iNKT) cells play an important role in a variety of antimicrobial immune responses due to their ability to produce high levels of immune-modulating cytokines. Here, we investigated the role of iNKT cells in host defense against candidiasis using Jα18-deficient mice (Jα18(-/-) ), which lack iNKT cells. Jα18(-/-) mice were more resistant to the development of lethal candidiasis than wild-type (WT) mice. In contrast, treatment of WT mice with the iNKT cell activating ligand α-galactosylceramide markedly enhanced their mortality after infection with Candida albicans. Serum IL-10 levels were significantly elevated in WT mice in response to infection with C. albicans. Futhermore, IL-10 production increased after in vitro coculture of peritoneal macrophages with iNKT cells and C. albicans. The numbers of peritoneal macrophages, the production of IL-1β and IL-18, and caspase-1 activity were also significantly elevated in Jα18(-/-) mice after infection with C. albicans. The adoptive transfer of iNKT cells or exogenous administration of IL-10 into Jα18(-/-) reversed susceptibility to candidiasis to the level of WT mice. These results suggest that activation of iNKT cells increases the initial severity of C. albicans infection, most likely mediated by IL-10 induced modulation of macrophage antifungal activity. © 2016 WILEY-VCH Verlag GmbH & Co. KGaA, Weinheim.

  7. Flow Cytometric Analysis of Mononuclear Phagocytes in Nondiseased Human Lung and Lung-Draining Lymph Nodes.

    PubMed

    Desch, A Nicole; Gibbings, Sophie L; Goyal, Rajni; Kolde, Raivo; Bednarek, Joe; Bruno, Tullia; Slansky, Jill E; Jacobelli, Jordan; Mason, Robert; Ito, Yoko; Messier, Elise; Randolph, Gwendalyn J; Prabagar, Miglena; Atif, Shaikh M; Segura, Elodie; Xavier, Ramnik J; Bratton, Donna L; Janssen, William J; Henson, Peter M; Jakubzick, Claudia V

    2016-03-15

    The pulmonary mononuclear phagocyte system is a critical host defense mechanism composed of macrophages, monocytes, monocyte-derived cells, and dendritic cells. However, our current characterization of these cells is limited because it is derived largely from animal studies and analysis of human mononuclear phagocytes from blood and small tissue resections around tumors. Phenotypic and morphologic characterization of mononuclear phagocytes that potentially access inhaled antigens in human lungs. We acquired and analyzed pulmonary mononuclear phagocytes from fully intact nondiseased human lungs (including the major blood vessels and draining lymph nodes) obtained en bloc from 72 individual donors. Differential labeling of hematopoietic cells via intrabronchial and intravenous administration of antibodies within the same lobe was used to identify extravascular tissue-resident mononuclear phagocytes and exclude cells within the vascular lumen. Multiparameter flow cytometry was used to identify mononuclear phagocyte populations among cells labeled by each route of antibody delivery. We performed a phenotypic analysis of pulmonary mononuclear phagocytes isolated from whole nondiseased human lungs and lung-draining lymph nodes. Five pulmonary mononuclear phagocytes were observed, including macrophages, monocyte-derived cells, and dendritic cells that were phenotypically distinct from cell populations found in blood. Different mononuclear phagocytes, particularly dendritic cells, were labeled by intravascular and intrabronchial antibody delivery, countering the notion that tissue and blood mononuclear phagocytes are equivalent systems. Phenotypic descriptions of the mononuclear phagocytes in nondiseased lungs provide a precedent for comparative studies in diseased lungs and potential targets for therapeutics.

  8. The Role of Phagocytes and NETs in Dermatophytosis.

    PubMed

    Yoshikawa, Fábio Seiti Yamada; De Almeida, Sandro Rogério

    2017-02-01

    Innate immunity is the host first line of defense against pathogens. However, only in recent years, we are beginning to better understand the ways it operates. A key player is this branch of the immune response that are the phagocytes, as macrophages, dendritic cells and neutrophils. These cells act as sentinels, employing specialized receptors in the sensing of invaders and host injury, and readily responding to them by production of inflammatory mediators. They afford protection not only by ingesting and destroying pathogens, but also by providing a suitable biochemical environment that shapes the adaptive response. In this review, we aim to present a broad perspective about the role of phagocytes in dermatophytosis, focusing on the mechanisms possibly involved in protective and non-protective responses. A full understanding of how phagocytes fit in the pathogenesis of these infections may open the venue for the development of new and more effective therapeutic approaches.

  9. Clearance of Dying Cells by Phagocytes: Mechanisms and Implications for Disease Pathogenesis.

    PubMed

    Fond, Aaron M; Ravichandran, Kodi S

    The efficient clearance of apoptotic cells is an evolutionarily conserved process crucial for homeostasis in multicellular organisms. The clearance involves a series of steps that ultimately facilitates the recognition of the apoptotic cell by the phagocytes and the subsequent uptake and processing of the corpse. These steps include the phagocyte sensing of "find-me" signals released by the apoptotic cell, recognizing "eat-me" signals displayed on the apoptotic cell surface, and then intracellular signaling within the phagocyte to mediate phagocytic cup formation around the corpse and corpse internalization, and the processing of the ingested contents. The engulfment of apoptotic cells by phagocytes not only eliminates debris from tissues but also produces an anti-inflammatory response that suppresses local tissue inflammation. Conversely, impaired corpse clearance can result in loss of immune tolerance and the development of various inflammation-associated disorders such as autoimmunity, atherosclerosis, and airway inflammation but can also affect cancer progression. Recent studies suggest that the clearance process can also influence antitumor immune responses. In this review, we will discuss how apoptotic cells interact with their engulfing phagocytes to generate important immune responses, and how modulation of such responses can influence pathology.

  10. Exploiting Uptake of Nanoparticles by Phagocytes for Cancer Treatment.

    PubMed

    Sheen, Mee Rie; Fiering, Steven

    2017-01-01

    Many cancers including ovarian, pancreatic, colon, liver, and stomach cancers are largely confined to the peritoneal cavity. Peritoneal tumors are directly accessible by intraperitoneal injections. Previously we demonstrated that intraperitoneal injection of nanoparticles and subsequent ingestion by tumor-associated phagocytes can be used to either directly impact tumors or stimulate antitumor immune responses. Here we outline methods to specifically utilize iron oxide nanoparticles with the ID8-Defb29/Vegf-A murine ovarian cancer model and discuss the tendency of phagocytes to ingest nanoparticles and the potential of phagocytes to carry nanoparticles to tumors resulting in direct killing of tumor cells or stimulate antitumor immune responses in peritoneal cancers. This basic approach can be modified as needed for different types of tumors and nanoparticles.

  11. Aggregation of Sea Urchin Phagocytes Is Augmented In Vitro by Lipopolysaccharide

    PubMed Central

    Majeske, Audrey J.; Bayne, Christopher J.; Smith, L. Courtney

    2013-01-01

    Development of protocols and media for culturing immune cells from marine invertebrates has not kept pace with advancements in mammalian immune cell culture, the latter having been driven by the need to understand the causes of and develop therapies for human and animal diseases. However, expansion of the aquaculture industry and the diseases that threaten these systems creates the need to develop cell and tissue culture methods for marine invertebrates. Such methods will enable us to better understand the causes of disease outbreaks and to develop means to avoid and remedy epidemics. We report a method for the short-term culture of phagocytes from the purple sea urchin, Strongylocentrotus purpuratus, by modifying an approach previously used to culture cells from another sea urchin species. The viability of cultured phagocytes from the purple sea urchin decreases from 91.6% to 57% over six days and phagocyte morphology changes from single cells to aggregates leading to the formation of syncytia-like structures. This process is accelerated in the presence of lipopolysaccharide suggesting that phagocytes are capable of detecting this molecular pattern in culture conditions. Sea urchin immune response proteins, called Sp185/333, are expressed on the surface of a subset of phagocytes and have been associated with syncytia-like structures. We evaluated their expression in cultured phagocytes to determine their possible role in cell aggregation and in the formation of syncytia-like structures. Between 0 and 3 hr, syncytia-like structures were observed in cultures when only ∼10% of the cells were positive for Sp185/333 proteins. At 24 hr, ∼90% of the nuclei were Sp185/333-positive when all of the phagocytes had aggregated into syncytia-like structures. Consequently, we conclude that the Sp185/333 proteins do not have a major role in initiating the aggregation of cultured phagocytes, however the Sp185/333 proteins are associated with the clustered nuclei within the

  12. Aggregation of sea urchin phagocytes is augmented in vitro by lipopolysaccharide.

    PubMed

    Majeske, Audrey J; Bayne, Christopher J; Smith, L Courtney

    2013-01-01

    Development of protocols and media for culturing immune cells from marine invertebrates has not kept pace with advancements in mammalian immune cell culture, the latter having been driven by the need to understand the causes of and develop therapies for human and animal diseases. However, expansion of the aquaculture industry and the diseases that threaten these systems creates the need to develop cell and tissue culture methods for marine invertebrates. Such methods will enable us to better understand the causes of disease outbreaks and to develop means to avoid and remedy epidemics. We report a method for the short-term culture of phagocytes from the purple sea urchin, Strongylocentrotus purpuratus, by modifying an approach previously used to culture cells from another sea urchin species. The viability of cultured phagocytes from the purple sea urchin decreases from 91.6% to 57% over six days and phagocyte morphology changes from single cells to aggregates leading to the formation of syncytia-like structures. This process is accelerated in the presence of lipopolysaccharide suggesting that phagocytes are capable of detecting this molecular pattern in culture conditions. Sea urchin immune response proteins, called Sp185/333, are expressed on the surface of a subset of phagocytes and have been associated with syncytia-like structures. We evaluated their expression in cultured phagocytes to determine their possible role in cell aggregation and in the formation of syncytia-like structures. Between 0 and 3 hr, syncytia-like structures were observed in cultures when only ~10% of the cells were positive for Sp185/333 proteins. At 24 hr, ~90% of the nuclei were Sp185/333-positive when all of the phagocytes had aggregated into syncytia-like structures. Consequently, we conclude that the Sp185/333 proteins do not have a major role in initiating the aggregation of cultured phagocytes, however the Sp185/333 proteins are associated with the clustered nuclei within the

  13. Induced pluripotent stem cell-derived myeloid phagocytes: disease modeling and therapeutic applications.

    PubMed

    Goodridge, Helen S

    2014-06-01

    Myeloid phagocytes (neutrophils, monocytes, macrophages and dendritic cells) have key roles in immune defense, as well as in tissue repair and remodeling. Defective or dysregulated myeloid phagocyte production or function can cause immune dysfunction, blood cell malignancies and inflammatory diseases. The tumor microenvironment can also condition myeloid phagocytes to promote tumor growth. Studies of their physiological and pathophysiological roles and the mechanisms regulating their production and function are crucial for the identification of novel therapeutic targets. In this review, we examine the use of induced pluripotent stem cells to study myeloid phagocytes in human diseases and develop future therapeutic strategies. Copyright © 2014 Elsevier Ltd. All rights reserved.

  14. Mononuclear phagocyte subpopulations in the mouse kidney

    PubMed Central

    George, James F.; Lever, Jeremie M.

    2017-01-01

    Mononuclear phagocytes are the most common cells in the kidney associated with immunity and inflammation. Although the presence of these cells in the kidney has been known for decades, the study of mononuclear phagocytes in the context of kidney function and dysfunction is still at an early stage. The purpose of this review is to summarize the present knowledge regarding classification of these cells in the mouse kidney and to identify relevant questions that would further advance the field and potentially lead to new opportunities for treatment of acute kidney injury and other kidney diseases. PMID:28100500

  15. Phage-Phagocyte Interactions and Their Implications for Phage Application as Therapeutics

    PubMed Central

    Jończyk-Matysiak, Ewa; Weber-Dąbrowska, Beata; Owczarek, Barbara; Międzybrodzki, Ryszard; Łusiak-Szelachowska, Marzanna; Łodej, Norbert; Górski, Andrzej

    2017-01-01

    Phagocytes are the main component of innate immunity. They remove pathogens and particles from organisms using their bactericidal tools in the form of both reactive oxygen species and degrading enzymes—contained in granules—that are potentially toxic proteins. Therefore, it is important to investigate the possible interactions between phages and immune cells and avoid any phage side effects on them. Recent progress in knowledge concerning the influence of phages on phagocytes is also important as such interactions may shape the immune response. In this review we have summarized the current knowledge on phage interactions with phagocytes described so far and their potential implications for phage therapy. The data suggesting that phage do not downregulate important phagocyte functions are especially relevant for the concept of phage therapy. PMID:28613272

  16. Pemphigus vulgaris: accumulation of apoptotic cells in dermis and epidermis possibly relates to pathophysiology through TNF-alpha production by phagocytes.

    PubMed

    Chiapa-Labastida, Mariana; Zentella-Dehesa, Alejandro; León-Dorantes, Gladys; Becker, Ingeborg

    2011-01-01

    Apoptotic cells are present in the epidermis of pemphigus vulgaris (PV) patients and their accumulation has been linked to chronic inflammatory disorders. TNF-α is elevated in sera of PV patients and has only been detected in acantholytic and periacantholytic keratinocytes (KC), therefore another TNF-α source might exist. We analyzed, in lesional and perilesional skin of 5 active untreated PV patients, the presence of apoptotic cells, TNF-α and phagocytic infiltrate. In vitro, we analyzed whether phagocytosis of apoptotic KCs by monocytes causes TNF-α release. We found a significant increase of apoptotic cells in the epidermis and dermis of PV patients, by TUNEL, and activated caspase-3. TNF-α was present in the skin of PV patients, especially in the dermis. Phagocytic CD14+ cells were increased, mostly in the dermis of PV patients. In vitro phagocytosis of apoptotic KCs by monocytes caused enhanced TNF-α production, which correlated with the number of apoptotic KCs in the co-culture. Thus, accumulation of apoptotic cells in PV could promote TNF-α production by monocytes, which could, in turn, cause further apoptosis, closing a vicious circle.

  17. Pioglitazone restores phagocyte mitochondrial oxidants and bactericidal capacity in Chronic Granulomatous Disease

    PubMed Central

    Fernandez-Boyanapalli, Ruby F.; Frasch, S. Courtney; Thomas, Stacey M.; Malcolm, Kenneth C.; Nicks, Michael; Harbeck, Ronald J.; Jakubzick, Claudia V.; Nemenoff, Raphael; Henson, Peter M.; Holland, Steven M.; Bratton, Donna L.

    2015-01-01

    Background Deficient production of reactive oxygen species (ROS) by the phagocyte NADPH oxidase in Chronic Granulomatous Disease (CGD) results in susceptibility to certain pathogens secondary to impaired oxidative killing and mobilization of other phagocyte defenses. PPARγ agonists including pioglitazone (Pio), approved for Type 2 diabetes therapy, alter cellular metabolism and can heighten ROS production. It was hypothesized that Pio treatment of gp91phox−/− mice, a murine model of human CGD, would enhance phagocyte oxidant production and killing of S. aureus, a significant pathogen in this disorder. Objectives We sought to determine if Pio treatment of gp91phox−/− mice enhanced phagocyte oxidant production and host defense. Methods Wild type (WT) and gp91phox−/− mice were treated with the PPARγ agonist Pio, and phagocyte ROS and killing of S. aureus investigated. Results As demonstrated by three different ROS sensing probes, short-term treatment of gp91phox−/− mice with Pio enhanced stimulated ROS production in neutrophils and monocytes from blood and neutrophils and inflammatory macrophages recruited to tissues. Mitochondria were identified as the source of ROS (mtROS). Findings were replicated in human CGD monocytes following ex vivo Pio treatment. Importantly, while mtROS were deficient in gp91phox−/− phagocytes, their restoration with treatment significantly enabled killing of S. aureus both ex vivo and in vivo. Conclusions Together, the data support the hypothesis that signaling from the NADPH oxidase under normal circumstances governs phagocyte mtROS production, and that such signaling is lacking in the absence of a functioning phagocyte oxidase. PPARγ agonism appears to bypass the need for the NADPH oxidase for enhanced mtROS production and partially restores host defense in CGD. PMID:25498313

  18. Association of the macrophage activating factor (MAF) precursor activity with polymorphism in vitamin D-binding protein.

    PubMed

    Nagasawa, Hideko; Sasaki, Hideyuki; Uto, Yoshihiro; Kubo, Shinichi; Hori, Hitoshi

    2004-01-01

    Serum vitamin D-binding protein (Gc protein or DBP) is a highly expressed polymorphic protein, which is a precursor of the inflammation-primed macrophage activating factor, GcMAF, by a cascade of carbohydrate processing reactions. In order to elucidate the relationship between Gc polymorphism and GcMAF precursor activity, we estimated the phagocytic ability of three homotypes of Gc protein, Gc1F-1F, Gc1S-1S and Gc2-2, through processing of their carbohydrate moiety. We performed Gc typing of human serum samples by isoelectric focusing (IEF). Gc protein from human serum was purified by affinity chromatography with 25-hydroxyvitamin D3-sepharose. A phagocytosis assay of Gc proteins, modified using beta-glycosidase and sialidase, was carried out. The Gc1F-1F phenotype was revealed to possess Galbeta1-4GalNAc linkage by the analysis of GcMAF precursor activity using beta1-4 linkage-specific galactosidase from jack bean. The GcMAF precursor activity of the Gc1F-1F phenotype was highest among three Gc homotypes. The Gc polymorphism and carbohydrate diversity of Gc protein are significant for its pleiotropic effects.

  19. Simultaneous flow cytometric measurement of antigen attachment to phagocytes and phagocytosis.

    PubMed

    Laopajon, Witida; Takheaw, Nuchjira; Kasinrerk, Watchara; Pata, Supansa

    2016-01-01

    The current available assays cannot differentiate the stages of phagocytosis. We, therefore, established methods for concurrent detection of antigen attachment and engulfment by phagocyte using latex beads coated with lipopolysaccharide, rabbit IgG, and carboxyfluorescein diacetate succinimidyl ester. The generated beads were incubated with whole blood at 37°C for 1 hr and stained with PE-Cy5.5 anti-rabbit IgG antibody. By flow cytometry, attachment and phagocytic processes could be detected, simultaneously. The established method is a valuable tool for diagnosis of phagocytic disorder and study of molecules involved in phagocytosis.

  20. Developmental Control of NRAMP1 (SLC11A1) Expression in Professional Phagocytes.

    PubMed

    Cellier, Mathieu F M

    2017-05-03

    NRAMP1 (SLC11A1) is a professional phagocyte membrane importer of divalent metals that contributes to iron recycling at homeostasis and to nutritional immunity against infection. Analyses of data generated by several consortia and additional studies were integrated to hypothesize mechanisms restricting NRAMP1 expression to mature phagocytes. Results from various epigenetic and transcriptomic approaches were collected for mesodermal and hematopoietic cell types and compiled for combined analysis with results of genetic studies associating single nucleotide polymorphisms (SNPs) with variations in NRAMP1 expression (eQTLs). Analyses establish that NRAMP1 is part of an autonomous topologically associated domain delimited by ubiquitous CCCTC-binding factor (CTCF) sites. NRAMP1 locus contains five regulatory regions: a predicted super-enhancer (S-E) key to phagocyte-specific expression; the proximal promoter; two intronic areas, including 3' inhibitory elements that restrict expression during development; and a block of upstream sites possibly extending the S-E domain. Also the downstream region adjacent to the 3' CTCF locus boundary may regulate expression during hematopoiesis. Mobilization of the locus 14 predicted transcriptional regulatory elements occurs in three steps, beginning with hematopoiesis; at the onset of myelopoiesis and through myelo-monocytic differentiation. Basal expression level in mature phagocytes is further influenced by genetic variation, tissue environment, and in response to infections that induce various epigenetic memories depending on microorganism nature. Constitutively associated transcription factors (TFs) include CCAAT enhancer binding protein beta (C/EBPb), purine rich DNA binding protein (PU.1), early growth response 2 (EGR2) and signal transducer and activator of transcription 1 (STAT1) while hypoxia-inducible factors (HIFs) and interferon regulatory factor 1 (IRF1) may stimulate iron acquisition in pro-inflammatory conditions. Mouse

  1. Differential effects of LPS, IFN-gamma and TNF alpha on the secretion of lysozyme by individual human mononuclear phagocytes: relationship to cell maturity.

    PubMed Central

    Lewis, C E; McCarthy, S P; Lorenzen, J; McGee, J O

    1990-01-01

    Human mononuclear phagocytes can be activated to perform a variety of complex functions by exposure to the immunomodulators, lipopolysaccharide (LPS), interferon-gamma (IFN-gamma) and tumour necrosis factor alpha (TNF alpha). Although such activation often involves the release of various cytokines by monocytes and macrophages, little is known of the effects of such signals on their secretion of lysozyme (LZM). In this study, a reverse haemolytic plaque assay for LZM secretion is coupled with immunocytochemistry for the pan macrophage (CD68) marker, EBM/11. This enabled the direct effects of LPS, IFN-gamma and TNF alpha on the secretion of LZM by individual, immunoidentified human mononuclear phagocytes to be investigated. The overall secretion of this peptide by populations of freshly isolated or 3-day cultured monocytes was augmented by exposure for 6 hr to bacterial LPS, recombinant human IFN-gamma or recombinant human TNF alpha. Extension of the culture period for monocytes from 3 to 7 days prior to use in the assay resulted in higher levels of LZM secretion, which could be further increased by TNF alpha but not by LPS or IFN-gamma. Individual peritoneal macrophages activated by inflammation in vivo were uniform in their augmented LZM responses to TNF alpha, but a small subpopulation of human peritoneal macrophages, which may represent younger 'inflammatory' exudate macrophages, was seen to be preferentially responsive to the LZM-stimulating effects of LPS and IFN-gamma. These studies suggest that (i) secretion of LZM by human mononuclear phagocytes can be regulated by LPS and IFN-gamma, although the effects of these agents may be dependent upon the state of maturation and/or differentiation of the cells, and (ii) TNF alpha is a potent stimulant of LZM secretion by monocytes and macrophages irrespective of cell maturity. Images Figure 1 Figure 1 PMID:2107146

  2. The bactericidal effects of anti-MRSA agents with rifampicin and sulfamethoxazole-trimethoprim against intracellular phagocytized MRSA.

    PubMed

    Yamaoka, Toshimori

    2007-06-01

    We experienced therapeutic failure with vancomycin in patients with serious methicillin-resistant Staphylococcus aureus (MRSA) infections, in some of whom the bacteria were found to be alive in the leukocytes. We therefore evaluated the antimicrobial activity of several anti-MRSA agents (vancomycin, linezolid, quinupristin/dalfopristin, arbekacin) and co-administered agents (rifampicin, sulfamethoxazole-trimethoprim) against clinically isolated MRSA in phagocytized human polymorphonuclear leukocytes. After allowing the leukocytes to phagocytize the bacteria, the mixture was separated into leukocytes and supernatant, to which MRSA agents were added, and incubated for 24 h. After incubation, the leukocytes were crushed and the intracellular MRSA was cultured quantitatively. Vancomycin resulted in a less than 1% survival ratio of extracellular MRSA, but it was one of the highest ratios of intracellular MRSA with 33.8% compared with other agents. The survival ratios of intracellular MRSA with vancomycin plus rifampicin and with vancomycin plus rifampicin plus sulfamethoxazole-trimethoprim were 0.78% and 1.02%, respectively, which is significantly lower than that of vancomycin. For linezolid, quinupristin/dalfopristin, and arbekacin, there were no significant differences in the survival ratios between monotherapy and combination therapy against either extracellular or intracellular MRSA. The results suggest that the concomitant use of rifampicin or rifampicin plus sulfamethoxazole/trimethoprim with vancomycin is effective for MRSA phagocytized in leukocytes when vancomycin monotherapy is not sufficiently effective. Combination therapy showed no difference in efficacy in the case of linezolid, quinupristin/dalfopristin, and arbekacin.

  3. Cellular pharmacodynamics of the novel biaryloxazolidinone radezolid: studies with infected phagocytic and nonphagocytic cells, using Staphylococcus aureus, Staphylococcus epidermidis, Listeria monocytogenes, and Legionella pneumophila.

    PubMed

    Lemaire, Sandrine; Kosowska-Shick, Klaudia; Appelbaum, Peter C; Verween, Gunther; Tulkens, Paul M; Van Bambeke, Françoise

    2010-06-01

    Radezolid is a novel biaryloxazolidinone in clinical development which shows improved activity, including against linezolid-resistant strains. In a companion paper (29), we showed that radezolid accumulates about 11-fold in phagocytic cells, with approximately 60% of the drug localized in the cytosol and approximately 40% in the lysosomes of the cells. The present study examines its activity against (i) bacteria infecting human THP-1 macrophages and located in different subcellular compartments (Listeria monocytogenes, cytosol; Legionella pneumophila, vacuoles; Staphylococcus aureus and Staphylococcus epidermidis, mainly phagolysosomal), (ii) strains of S. aureus with clinically relevant mechanisms of resistance, and (iii) isogenic linezolid-susceptible and -resistant S. aureus strains infecting a series of phagocytic and nonphagocytic cells. Radezolid accumulated to similar levels ( approximately 10-fold) in all cell types (human keratinocytes, endothelial cells, bronchial epithelial cells, osteoblasts, macrophages, and rat embryo fibroblasts). At equivalent weight concentrations, radezolid proved consistently 10-fold more potent than linezolid in all these models, irrespective of the bacterial species and resistance phenotype or of the cell type infected. This results from its higher intrinsic activity and higher cellular accumulation. Time kill curves showed that radezolid's activity was more rapid than that of linezolid both in broth and in infected macrophages. These data suggest the potential interest of radezolid for recurrent or persistent infections where intracellular foci play a determinant role.

  4. Development of a fluorescence-based in vivo phagocytosis assay to measure mononuclear phagocyte system function in the rat.

    PubMed

    Tartaro, Karrie; VanVolkenburg, Maria; Wilkie, Dean; Coskran, Timothy M; Kreeger, John M; Kawabata, Thomas T; Casinghino, Sandra

    2015-01-01

    The mononuclear phagocyte system (MPS) which provides protection against infection is made up of phagocytic cells that engulf and digest bacteria or other foreign substances. Suppression of the MPS may lead to decreased clearance of pathogenic microbes. Drug delivery systems and immunomodulatory therapeutics that target phagocytes have a potential to inhibit MPS function. Available methods to measure inhibition of MPS function use uptake of radioactively-labeled cells or labor-intensive semi-quantitative histologic techniques. The objective of this work was to develop a non-radioactive quantitative method to measure MPS function in vivo by administering heat-killed E. coli conjugated to a pH-sensitive fluorescent dye (Bioparticles(®)). Fluorescence of the Bioparticles(®) is increased at low pH when they are in phagocytic lysosomes. The amount of Bioparticles(®) phagocytosed by MPS organs in rats was determined by measuring fluorescence intensity in livers and spleens ex vivo using an IVIS(®) Spectrum Pre-clinical In Vivo Imaging System. Phagocytosis of the particles by peripheral blood neutrophils was measured by flow cytometry. To assess method sensitivity, compounds likely to suppress the MPS [clodronate-containing liposomes, carboxylate-modified latex particles, maleic vinyl ether (MVE) polymer] were administered to rats prior to injection of the Bioparticles(®). The E. coli particles consistently co-localized with macrophage markers in the liver but not in the spleen. All of the compounds tested decreased phagocytosis in the liver, but had no consistent effects on phagocytic activity in the spleen. In addition, administration of clodronate liposomes and MVE polymer increased the percentage of peripheral blood neutrophils that phagocytosed the Bioparticles(®). In conclusion, an in vivo rat model was developed that measures phagocytosis of E. coli particles in the liver and may be used to assess the impact of test compounds on MPS function. Still, the

  5. A polysaccharide from the stems of Rubus amabilis Focke and its immunological enhancement activity.

    PubMed

    Diao, Yu-Lin; Shan, Jun-Jie; Ma, Hao; Zhang, Tong; Liu, Bin

    2016-09-01

    A water-soluble polysaccharide (named RAP) was newly isolated from the stems of Rubus amabilis. Structural confirmation of the polysaccharide was provided by hydrolysis, periodate oxidation, Smith degradation, and methylation analysis, combined with nuclear magnetic resonance (NMR), capillary electrophoresis (CE), infrared spectroscopy (IR), and gas chromatography-mass spectra (GC-MS). In vitro immunological enhancement activity was characterized using the proliferative activity of spleen lymphocytes and phagocytic activity of peritoneal macrophages in mice. The polysaccharide was mainly composed of xylose, arabinose, glucose, rhamnose, galactose, mannose, glucuronic acid, and galactocuronic acid in the molar ratio of 1.0:6.9:0.8:1.1:6.9:0.3:0.5:3.3, with the average molecular weight of 26.2 kDa. The linkage types of netural monosaccharides were as follows: the arabinose was →2) Ara (1→ and galactose were Gal (1→, →3) Gal (1→, →3,6) Gal (1→, →2,3,6) Gal (1→ and →2,3,6) Galf (1→. Xyl (1→, →6) Glc (1→, →2) Glc (1→, →3) Rha (1→, Rha (1→ and Man (1→ were also found in the structure. RAP-B-2 could improve the proliferative activity of spleen T cells and B cells and boost phagocytic activity of peritoneal macrophages at the concentration of 50 μg/ml (p < 0.05, p < 0.01).

  6. Immune Defenses of the Invasive Apple Snail Pomacea canaliculata (Caenogastropoda, Ampullariidae): Phagocytic Hemocytes in the Circulation and the Kidney

    PubMed Central

    Vega, Israel A.; Castro-Vazquez, Alfredo

    2015-01-01

    Hemocytes in the circulation and kidney islets, as well as their phagocytic responses to microorganisms and fluorescent beads, have been studied in Pomacea canaliculata, using flow cytometry, light microscopy (including confocal laser scanning microscopy) and transmission electron microscopy (TEM). Three circulating hemocyte types (hyalinocytes, agranulocytes and granulocytes) were distinguished by phase contrast microscopy of living cells and after light and electron microscopy of fixed material. Also, three different populations of circulating hemocytes were separated by flow cytometry, which corresponded to the three hemocyte types. Hyalinocytes showed a low nucleus/cytoplasm ratio, and no apparent granules in stained material, but showed granules of moderate electron density under TEM (L granules) and at least some L granules appear acidic when labeled with LysoTracker Red. Both phagocytic and non-phagocytic hyalinocytes lose most (if not all) L granules when exposed to microorganisms in vitro. The phagosomes formed differed whether hyalinocytes were exposed to yeasts or to Gram positive or Gram negative bacteria. Agranulocytes showed a large nucleus/cytoplasm ratio and few or no granules. Granulocytes showed a low nucleus/cytoplasm ratio and numerous eosinophilic granules after staining. These granules are electron dense and rod-shaped under TEM (R granules). Granulocytes may show merging of R granules into gigantic ones, particularly when exposed to microorganisms. Fluorescent bead exposure of sorted hemocytes showed phagocytic activity in hyalinocytes, agranulocytes and granulocytes, but the phagocytic index was significantly higher in hyalinocytes. Extensive hemocyte aggregates ('islets') occupy most renal hemocoelic spaces and hyalinocyte-like cells are the most frequent component in them. Presumptive glycogen deposits were observed in most hyalinocytes in renal islets (they also occur in the circulation but less frequently) and may mean that hyalinocytes

  7. Immune Defenses of the Invasive Apple Snail Pomacea canaliculata (Caenogastropoda, Ampullariidae): Phagocytic Hemocytes in the Circulation and the Kidney.

    PubMed

    Cueto, Juan A; Rodriguez, Cristian; Vega, Israel A; Castro-Vazquez, Alfredo

    2015-01-01

    Hemocytes in the circulation and kidney islets, as well as their phagocytic responses to microorganisms and fluorescent beads, have been studied in Pomacea canaliculata, using flow cytometry, light microscopy (including confocal laser scanning microscopy) and transmission electron microscopy (TEM). Three circulating hemocyte types (hyalinocytes, agranulocytes and granulocytes) were distinguished by phase contrast microscopy of living cells and after light and electron microscopy of fixed material. Also, three different populations of circulating hemocytes were separated by flow cytometry, which corresponded to the three hemocyte types. Hyalinocytes showed a low nucleus/cytoplasm ratio, and no apparent granules in stained material, but showed granules of moderate electron density under TEM (L granules) and at least some L granules appear acidic when labeled with LysoTracker Red. Both phagocytic and non-phagocytic hyalinocytes lose most (if not all) L granules when exposed to microorganisms in vitro. The phagosomes formed differed whether hyalinocytes were exposed to yeasts or to Gram positive or Gram negative bacteria. Agranulocytes showed a large nucleus/cytoplasm ratio and few or no granules. Granulocytes showed a low nucleus/cytoplasm ratio and numerous eosinophilic granules after staining. These granules are electron dense and rod-shaped under TEM (R granules). Granulocytes may show merging of R granules into gigantic ones, particularly when exposed to microorganisms. Fluorescent bead exposure of sorted hemocytes showed phagocytic activity in hyalinocytes, agranulocytes and granulocytes, but the phagocytic index was significantly higher in hyalinocytes. Extensive hemocyte aggregates ('islets') occupy most renal hemocoelic spaces and hyalinocyte-like cells are the most frequent component in them. Presumptive glycogen deposits were observed in most hyalinocytes in renal islets (they also occur in the circulation but less frequently) and may mean that hyalinocytes

  8. Phagocytosis and Respiratory Burst Activity in Lumpsucker (Cyclopterus lumpus L.) Leucocytes Analysed by Flow Cytometry

    PubMed Central

    Haugland, Gyri T.; Jakobsen, Ragnhild Aakre; Vestvik, Nils; Ulven, Kristian; Stokka, Lene; Wergeland, Heidrun I.

    2012-01-01

    In the present study, we have isolated leucocytes from peripheral blood, head kidney and spleen from lumpsucker (Cyclopterus lumpus L.), and performed functional studies like phagocytosis and respiratory burst, as well as morphological and cytochemical analyses. Different leucocytes were identified, such as lymphocytes, monocytes/macrophages and polymorphonuclear cells with bean shaped or bilobed nuclei. In addition, cells with similar morphology as described for dendritic cells in trout were abundant among the isolated leucocytes. Flow cytometry was successfully used for measuring phagocytosis and respiratory burst activity. The phagocytic capacity and ability were very high, and cells with different morphology in all three leucocyte preparations phagocytised beads rapidly. Due to lack of available cell markers, the identity of the phagocytic cells could not be determined. The potent non-specific phagocytosis was in accordance with a high number of cells positive for myeloperoxidase, an enzyme involved in oxygen-dependent killing mechanism present in phagocytic cells. Further, high respiratory burst activity was present in the leucocytes samples, verifying a potent oxygen- dependent degradation. At present, the specific antibody immune response could not be measured, as immunoglobulin or B-cells have not yet been isolated. Therefore, analyses of the specific immune response in this fish species await further clarification. The present study presents the first analyses of lumpsucker immunity and also the first within the order Scopaeniformes. PMID:23112870

  9. Evolutionary Conservation of Divergent Pro-Inflammatory and Homeostatic Responses in Lamprey Phagocytes

    PubMed Central

    Havixbeck, Jeffrey J.; Rieger, Aja M.; Wong, Michael E.; Wilkie, Michael P.; Barreda, Daniel R.

    2014-01-01

    In higher vertebrates, phagocytosis plays a critical role in development and immunity, based on the internalization and removal of apoptotic cells and invading pathogens, respectively. Previous studies describe the effective uptake of these particles by lower vertebrate and invertebrate phagocytes, and identify important molecular players that contribute to this internalization. However, it remains unclear if individual phagocytes mediate internalization processes in these ancient organisms, and how this impacts the balance of pro-inflammatory and homeostatic events within their infection sites. Herein we show that individual phagocytes of the jawless vertebrate Petromyzon marinus (sea lamprey), like those of teleost fish and mice, display the capacity for divergent pro-inflammatory and homeostatic responses following internalization of zymosan and apoptotic cells, respectively. Professional phagocytes (macrophages, monocytes, neutrophils) were the primary contributors to the internalization of pro-inflammatory particles among goldfish (C. auratus) and lamprey (P. marinus) hematopoietic leukocytes. However, goldfish showed a greater ability for zymosan phagocytosis when compared to their jawless counterparts. Coupled to this increase was a significantly lower sensitivity of goldfish phagocytes to homeostatic signals derived from apoptotic cell internalization. Together, this translated into a significantly greater capacity for induction of antimicrobial respiratory burst responses compared to lamprey phagocytes, but also a decreased efficacy in apoptotic cell-driven leukocyte homeostatic mechanisms that attenuate this pro-inflammatory process. Overall, our results show the long-standing evolutionary contribution of intrinsic phagocyte mechanisms for the control of inflammation, and illustrate one effective evolutionary strategy for increased responsiveness against invading pathogens. In addition, they highlight the need for development of complementary regulatory

  10. Evolutionary conservation of divergent pro-inflammatory and homeostatic responses in Lamprey phagocytes.

    PubMed

    Havixbeck, Jeffrey J; Rieger, Aja M; Wong, Michael E; Wilkie, Michael P; Barreda, Daniel R

    2014-01-01

    In higher vertebrates, phagocytosis plays a critical role in development and immunity, based on the internalization and removal of apoptotic cells and invading pathogens, respectively. Previous studies describe the effective uptake of these particles by lower vertebrate and invertebrate phagocytes, and identify important molecular players that contribute to this internalization. However, it remains unclear if individual phagocytes mediate internalization processes in these ancient organisms, and how this impacts the balance of pro-inflammatory and homeostatic events within their infection sites. Herein we show that individual phagocytes of the jawless vertebrate Petromyzon marinus (sea lamprey), like those of teleost fish and mice, display the capacity for divergent pro-inflammatory and homeostatic responses following internalization of zymosan and apoptotic cells, respectively. Professional phagocytes (macrophages, monocytes, neutrophils) were the primary contributors to the internalization of pro-inflammatory particles among goldfish (C. auratus) and lamprey (P. marinus) hematopoietic leukocytes. However, goldfish showed a greater ability for zymosan phagocytosis when compared to their jawless counterparts. Coupled to this increase was a significantly lower sensitivity of goldfish phagocytes to homeostatic signals derived from apoptotic cell internalization. Together, this translated into a significantly greater capacity for induction of antimicrobial respiratory burst responses compared to lamprey phagocytes, but also a decreased efficacy in apoptotic cell-driven leukocyte homeostatic mechanisms that attenuate this pro-inflammatory process. Overall, our results show the long-standing evolutionary contribution of intrinsic phagocyte mechanisms for the control of inflammation, and illustrate one effective evolutionary strategy for increased responsiveness against invading pathogens. In addition, they highlight the need for development of complementary regulatory

  11. [The activating action of mercaptobenzimidazole derivatives on peritoneal macrophages].

    PubMed

    Ratnikov, V I; Ratnikova, L I

    1991-01-01

    It was established that derivatives of mercaptobenzimidazole (bemitil, methoxybemitil, 5-ethoxy-2-ethylmercaptobenzimidazole hydrochloride) in a dose of 25 mg/kg stimulate the mouse peritoneal macrophages by increasing their phagocytic activity and phagocytosis index. Among the studied agents 5-ethoxy-2-ethylmercaptobenzimidazole hydrochloride possesses the greatest effect. The increase of phagocytosis processes was shown to be accompanied with a growth of the number of macrophages reducing nitroblue tetrazolium in diphormazan and with an enhancement of secretion of lysosomal enzymes.

  12. Effects of mycobacteria on regulation of apoptosis in mononuclear phagocytes.

    PubMed Central

    Klingler, K; Tchou-Wong, K M; Brändli, O; Aston, C; Kim, R; Chi, C; Rom, W N

    1997-01-01

    Since apoptosis is observed in tuberculous granulomata, we investigated the molecular mechanisms underlying the apoptotic pathway in an in vitro model of mycobacterial infection of mononuclear phagocytes. We postulated that Mycobacterium tuberculosis could trigger the apoptotic pathway in macrophages, resulting in death of the microorganism by modulating the expression of bcl-2, bax, bcl-xL, and bcl-xS. We found that the mRNA of bcl-2, an inhibitor of apoptosis, was downregulated in peripheral blood monocytes (PBM) between 2 and 6 h following infection with M. bovis BCG or induction with heat-killed M. tuberculosis H37Ra. Western analysis showed a downregulation of the Bcl-2 protein, with a half-life of 24 h. At the same time points, there was no change in the expression of Bax or Bcl-xS, inducers of apoptosis, but Bcl-xL, another inhibitor of apoptosis, was minimally upregulated by BCG. To determine if apoptosis could be a mechanism for growth inhibition in vivo, we obtained alveolar macrophages by bronchoalveolar lavage from involved sites in patients with active pulmonary tuberculosis. Using the TUNEL (terminal deoxynucleotidyltransferase mediated nick end labeling) technique, we observed significantly more apoptosis in involved segments of five tuberculosis patients (14.8 +/- 1.9%) than in those of normal controls (<1%, P = 0.02) or in uninvolved segments (4.3 +/- 0.9%, P < 0.05). We conclude that apoptosis of mononuclear phagocytes induced by M. tuberculosis occurs in vivo and that in an in vitro model of mycobacterial infection, apoptosis may be mediated by downregulation of Bcl-2. PMID:9393826

  13. Lysosomal degradation of the carboxydextran shell of coated superparamagnetic iron oxide nanoparticles and the fate of professional phagocytes.

    PubMed

    Lunov, Oleg; Syrovets, Tatiana; Röcker, Carlheinz; Tron, Kyrylo; Nienhaus, G Ulrich; Rasche, Volker; Mailänder, Volker; Landfester, Katharina; Simmet, Thomas

    2010-12-01

    Contrast agents based on dextran-coated superparamagnetic iron oxide nanoparticles (SPIO) are internalized by professional phagocytes such as hepatic Kupffer cells, yet their role in phagocyte biology remains largely unknown. Here we investigated the effects of the SPIO ferucarbotran on murine Kupffer cells and human macrophages. Intravenous injection of ferucarbotran into mice led to rapid accumulation of the particles in phagocytes and to long-lasting increased iron deposition in liver and kidneys. Macrophages incorporate ferucarbotran in lysosomal vesicles containing α-glucosidase, which is capable of degrading the carboxydextran shell of the ferucarbotran particles. Intravenous injection of ferucarbotran into mice followed by incorporation of the nanoparticles into Kupffer cells triggered apoptosis and the subsequent depletion of Kupffer cells. In macrophages, the proinflammatory cytokine TNF-α increased the apoptosis rate, the reactive oxygen species production and the activation of c-Jun N-terminal kinase elicited by ferucarbotran, which might be mediated by the induction of cytoplasmic phospholipase A2 by TNF-α. Notably, the nanoparticle-induced apoptosis of murine Kupffer cells could be prevented by treatment of the mice with the radical scavenger edaravone. Thus, nanosized carboxydextran-coated SPIO-based contrast agents are retained for extended time periods by liver macrophages, where they elicit delayed cell death, which can be antagonized by a therapeutic radical scavenger. Copyright © 2010 Elsevier Ltd. All rights reserved.

  14. Extraction optimization of polysaccharides from Chinese rice wine from the Shaoxing region and evaluation of its immunity activities.

    PubMed

    Shen, Chi; Mao, Jian; Chen, Yongquan; Meng, Xiangyong; Ji, Zhongwei

    2015-08-15

    Chinese rice wine is well known for its unique flavor and high nutritional value. It is of interest to investigate the functional components of Chinese rice wine and their health benefits. Response surface design of three factors - pH, ethanol concentration and precipitation time - at three levels was utilized to optimize the extraction of Chinese rice wine polysaccharide (CRWP). The results indicated that the CRWP yield was 77.287% at the optimal levels for pH 8.4, ethanol concentration 88% and precipitation time 23 h. In addition, immune activity of CRWP was investigated by measuring body weight, spleen index and thymus index. Furthermore, immunity activity of CRWP was investigated by measuring lymphocyte proliferation, phagocytic index and phagocytic percentage of immunosuppressed mice. Compared with the control mice and model mice, it was found that CRWP has beneficial immune activities in vivo. These findings indicate that CRWP has immune activities in vivo by modulating the immune response, and implies full development and utilization of the nutritional value of Chinese rice wine. However, further work will be conducted in the future to elucidate the structure-bioactivity relationship for CRWP. © 2014 Society of Chemical Industry.

  15. Aqueous extract of Orostachys japonicus A. Berger exerts immunostimulatory activity in RAW 264.7 macrophages.

    PubMed

    Park, Hye-Jin; Yang, Hye Jeong; Kim, Ki Hyun; Kim, Sang Hee

    2015-07-21

    Orostachys japonicus A. Berger (Crassulaceae) (OJ), well-known as Wa-song in Korea is a medicinal plant with immunoregulatory, anti-febrile, antidote, and anti-cancer activities. This study was aimed at evaluating the immunostimulatory effect of O. japonicus A. Berger and its possible mechanisms of action. To evaluate the effect of OJ aqueous extract on macrophage activity, we evaluated the modulation of macrophage activation state by observing structural (phagocytic activities) and the production of nitric oxide increase. The effect of OJ aqueous extract on RAW264.7 cell viability were assessed using Cell Counting Kit (CCK)-8 assay. HPLC analysis was performed to identify potential active compounds of this extract. The biological investigations indicated that OJ aqueous extract, among others, possessed the highest macrophage activation as indicated by NO production yield. The results showed that OJ aqueous extract exhibited antioxidant effects, which included scavenging activities against DPPH radicals. OJ aqueous extract increased the phagocytic activity of RAW 264.7 cells against IgG-opsonized red blood cells (RBC). The level of phosphorylated Syk kinase was increased in OJ aqueous extract-treated group as compared to control. Phosphorylation of PLC-γ was increased in the OJ aqueous extract-treated groups. Quercetin-3-O-rhamnose and kaempferol-3-O-rhamnose was detected in OJ aqueous extract by HPLC analysis. OJ aqueous extract might play a pivotal ethnopharmacologic role as an immunostimulatory agent by promoting Fc gamma receptor (FcγR)-mediated phagocytosis of IgG-opsonized RBCs. On the basis of our results, OJ aqueous extract can enhance innate immunity and may serve as an adjuvant for tumor treatment. Copyright © 2015 Elsevier Ireland Ltd. All rights reserved.

  16. Staphylococcus aureus, phagocyte NADPH oxidase and chronic granulomatous disease.

    PubMed

    Buvelot, Helene; Posfay-Barbe, Klara M; Linder, Patrick; Schrenzel, Jacques; Krause, Karl-Heinz

    2017-03-01

    Dysfunction of phagocytes is a relevant risk factor for staphylococcal infection. The most common hereditary phagocyte dysfunction is chronic granulomatous disease (CGD), characterized by impaired generation of reactive oxygen species (ROS) due to loss of function mutations within the phagocyte NADPH oxidase NOX2. Phagocytes ROS generation is fundamental to eliminate pathogens and to regulate the inflammatory response to infection. CGD is characterized by recurrent and severe bacterial and fungal infections, with Staphylococcus aureus as the most frequent pathogen, and skin and lung abscesses as the most common clinical entities. Staphylococcus aureus infection may occur in virtually any human host, presumably because of the many virulence factors of the bacterium. However, in the presence of functional NOX2, staphylococcal infections remain rare and are mainly linked to breaches of the skin barrier. In contrast, in patients with CGD, S. aureus readily survives and frequently causes clinically apparent disease. Astonishingly, little is known why S. aureus, which possesses a wide range of antioxidant enzymes (e.g. catalase, SOD), is particularly sensitive to control through NOX2. In this review, we will evaluate the discovery of CGD and our present knowledge of the role of NOX2 in S. aureus infection. © FEMS 2016. All rights reserved. For permissions, please e-mail: journals.permissions@oup.com.

  17. Ovarian phagocyte subsets and their distinct tissue distribution patterns.

    PubMed

    Carlock, Colin; Wu, Jean; Zhou, Cindy; Ross, April; Adams, Henry; Lou, Yahuan

    2013-01-01

    Ovarian macrophages, which play critical roles in various ovarian events, are probably derived from multiple lineages. Thus, a systemic classification of their subsets is a necessary first step for determination of their functions. Utilizing antibodies to five phagocyte markers, i.e. IA/IE (major histocompatibility complex class II), F4/80, CD11b (Mac-1), CD11c, and CD68, this study investigated subsets of ovarian phagocytes in mice. Three-color immunofluorescence and flow cytometry, together with morphological observation on isolated ovarian cells, demonstrated complicated phenotypes of ovarian phagocytes. Four macrophage and one dendritic cell subset, in addition to many minor phagocyte subsets, were identified. A dendritic cell-like population with a unique phenotype of CD11c(high)IA/IE⁻F4/80⁻ was also frequently observed. A preliminary age-dependent study showed dramatic increases in IA/IE⁺ macrophages and IA/IE⁺ dendritic cells after puberty. Furthermore, immunofluorescences on ovarian sections showed that each subset displayed a distinct tissue distribution pattern. The pattern for each subset may hint to their role in an ovarian function. In addition, partial isolation of ovarian macrophage subset using CD11b antibodies was attempted. Establishment of this isolation method may have provided us a tool for more precise investigation of each subset's functions at the cellular and molecular levels.

  18. Continued clearance of apoptotic cells critically depends on the phagocyte Ucp2 protein.

    PubMed

    Park, Daeho; Han, Claudia Z; Elliott, Michael R; Kinchen, Jason M; Trampont, Paul C; Das, Soumita; Collins, Sheila; Lysiak, Jeffrey J; Hoehn, Kyle L; Ravichandran, Kodi S

    2011-08-21

    Rapid and efficient removal of apoptotic cells by phagocytes is important during development, tissue homeostasis and in immune responses. Efficient clearance depends on the capacity of a single phagocyte to ingest multiple apoptotic cells successively, and to process the corpse-derived cellular material. However, the factors that influence continued clearance by phagocytes are not known. Here we show that the mitochondrial membrane potential of the phagocyte critically controls engulfment capacity, with lower potential enhancing engulfment and vice versa. The mitochondrial membrane protein Ucp2, which acts to lower the mitochondrial membrane potential, was upregulated in phagocytes engulfing apoptotic cells. Loss of Ucp2 reduced phagocytic capacity, whereas Ucp2 overexpression enhanced engulfment. Mutational and pharmacological studies indicated a direct role for Ucp2-mediated mitochondrial function in phagocytosis. Macrophages from Ucp2-deficient mice were impaired in phagocytosis in vitro, and Ucp2-deficient mice showed profound in vivo defects in clearing dying cells in the thymus and testes. Collectively, these data indicate that mitochondrial membrane potential and Ucp2 are key molecular determinants of apoptotic cell clearance. As Ucp2 is linked to metabolic diseases and atherosclerosis, this newly discovered role for Ucp2 in apoptotic cell clearance has implications for the complex aetiology and pathogenesis of these diseases.

  19. The Haemophilus ducreyi LspA1 protein inhibits phagocytosis by using a new mechanism involving activation of C-terminal Src kinase.

    PubMed

    Dodd, Dana A; Worth, Randall G; Rosen, Michael K; Grinstein, Sergio; van Oers, Nicolai S C; Hansen, Eric J

    2014-05-20

    Haemophilus ducreyi causes chancroid, a sexually transmitted infection. A primary means by which this pathogen causes disease involves eluding phagocytosis; however, the molecular basis for this escape mechanism has been poorly understood. Here, we report that the LspA virulence factors of H. ducreyi inhibit phagocytosis by stimulating the catalytic activity of C-terminal Src kinase (Csk), which itself inhibits Src family protein tyrosine kinases (SFKs) that promote phagocytosis. Inhibitory activity could be localized to a 37-kDa domain (designated YL2) of the 456-kDa LspA1 protein. The YL2 domain impaired ingestion of IgG-opsonized targets and decreased levels of active SFKs when expressed in mammalian cells. YL2 contains tyrosine residues in two EPIYG motifs that are phosphorylated in mammalian cells. These tyrosine residues were essential for YL2-based inhibition of phagocytosis. Csk was identified as the predominant mammalian protein interacting with YL2, and a dominant-negative Csk rescued phagocytosis in the presence of YL2. Purified Csk phosphorylated the tyrosines in the YL2 EPIYG motifs. Phosphorylated YL2 increased Csk catalytic activity, resulting in positive feedback, such that YL2 can be phosphorylated by the same kinase that it activates. Finally, we found that the Helicobacter pylori CagA protein also inhibited phagocytosis in a Csk-dependent manner, raising the possibility that this may be a general mechanism among diverse bacteria. Harnessing Csk to subvert the Fcγ receptor (FcγR)-mediated phagocytic pathway represents a new bacterial mechanism for circumventing a crucial component of the innate immune response and may potentially affect other SFK-involved cellular pathways. Phagocytosis is a critical component of the immune system that enables pathogens to be contained and cleared. A number of bacterial pathogens have developed specific strategies to either physically evade phagocytosis or block the intracellular signaling required for

  20. Antifilarial and Antibiotic Activities of Methanolic Extracts of Melaleuca cajuputi Flowers

    PubMed Central

    Al-Abd, Nazeh M.; Nor, Zurainee Mohamed; Mansor, Marzida; Hasan, MS; Kassim, Mustafa

    2016-01-01

    We evaluated the activity of methanolic extracts of Melaleuca cajuputi flowers against the filarial worm Brugia pahangi and its bacterial endosymbiont Wolbachia. Anti-Wolbachia activity was measured in worms and in Aedes albopictus Aa23 cells by PCR, electron microscopy, and other biological assays. In particular, microfilarial release, worm motility, and viability were determined. M. cajuputi flower extracts were found to significantly reduce Wolbachia endosymbionts in Aa23 cells, Wolbachia surface protein, and microfilarial release, as well as the viability and motility of adult worms. Anti-Wolbachia activity was further confirmed by observation of degraded and phagocytized Wolbachia in worms treated with the flower extracts. The data provided in vitro and in vivo evidence that M. cajuputi flower extracts inhibit Wolbachia, an activity that may be exploited as an alternative strategy to treat human lymphatic filariasis. PMID:27417081

  1. Phagocytic response of astrocytes to damaged neighboring cells

    PubMed Central

    Cruz, Gladys Mae S.; Ro, Clarissa C.; Moncada, Emmanuel G.; Khatibzadeh, Nima; Flanagan, Lisa A.; Berns, Michael W.

    2018-01-01

    This study aims to understand the phagocytic response of astrocytes to the injury of neurons or other astrocytes at the single cell level. Laser nanosurgery was used to damage individual cells in both primary mouse cortical astrocytes and an established astrocyte cell line. In both cases, the release of material/substances from laser-irradiated astrocytes or neurons induced a phagocytic response in near-by astrocytes. Propidium iodide stained DNA originating from irradiated cells was visible in vesicles of neighboring cells, confirming phagocytosis of material from damaged cortical cells. In the presence of an intracellular pH indicator dye, newly formed vesicles correspond to acidic pH fluorescence, thus suggesting lysosome bound degradation of cellular debris. Cells with shared membrane connections prior to laser damage had a significantly higher frequency of induced phagocytosis compared to isolated cells with no shared membrane. The increase in phagocytic response of cells with a shared membrane occurred regardless of the extent of shared membrane (a thin filopodial connection vs. a cell cluster with significant shared membrane). In addition to the presence (or lack) of a membrane connection, variation in phagocytic ability was also observed with differences in injury location within the cell and distance separating isolated astrocytes. These results demonstrate the ability of an astrocyte to respond to the damage of a single cell, be it another astrocyte, or a neuron. This single-cell level of analysis results in a better understanding of the role of astrocytes to maintain homeostasis in the CNS, particularly in the sensing and removal of debris in damaged or pathologic nervous tissue. PMID:29708987

  2. Macrophages redirect phagocytosis by non-professional phagocytes and influence inflammation.

    PubMed

    Han, Claudia Z; Juncadella, Ignacio J; Kinchen, Jason M; Buckley, Monica W; Klibanov, Alexander L; Dryden, Kelly; Onengut-Gumuscu, Suna; Erdbrügger, Uta; Turner, Stephen D; Shim, Yun M; Tung, Kenneth S; Ravichandran, Kodi S

    2016-11-24

    Professional phagocytes (such as macrophages) and non-professional phagocytes (such as epithelial cells) clear billions of apoptotic cells and particles on a daily basis. Although professional and non-professional macrophages reside in proximity in most tissues, whether they communicate with each other during cell clearance, and how this might affect inflammation, is not known. Here we show that macrophages, through the release of a soluble growth factor and microvesicles, alter the type of particles engulfed by non-professional phagocytes and influence their inflammatory response. During phagocytosis of apoptotic cells or in response to inflammation-associated cytokines, macrophages released insulin-like growth factor 1 (IGF-1). The binding of IGF-1 to its receptor on non-professional phagocytes redirected their phagocytosis, such that uptake of larger apoptotic cells was reduced whereas engulfment of microvesicles was increased. IGF-1 did not alter engulfment by macrophages. Macrophages also released microvesicles, whose uptake by epithelial cells was enhanced by IGF-1 and led to decreased inflammatory responses by epithelial cells. Consistent with these observations, deletion of IGF-1 receptor in airway epithelial cells led to exacerbated lung inflammation after allergen exposure. These genetic and functional studies reveal that IGF-1- and microvesicle-dependent communication between macrophages and epithelial cells can critically influence the magnitude of tissue inflammation in vivo.

  3. Altered dynamics of Candida albicans phagocytosis by macrophages and PMNs when both phagocyte subsets are present.

    PubMed

    Rudkin, Fiona M; Bain, Judith M; Walls, Catriona; Lewis, Leanne E; Gow, Neil A R; Erwig, Lars P

    2013-10-29

    An important first line of defense against Candida albicans infections is the killing of fungal cells by professional phagocytes of the innate immune system, such as polymorphonuclear cells (PMNs) and macrophages. In this study, we employed live-cell video microscopy coupled with dynamic image analysis tools to provide insights into the complexity of C. albicans phagocytosis when macrophages and PMNs were incubated with C. albicans alone and when both phagocyte subsets were present. When C. albicans cells were incubated with only one phagocyte subtype, PMNs had a lower overall phagocytic capacity than macrophages, despite engulfing fungal cells at a higher rate once fungal cells were bound to the phagocyte surface. PMNs were more susceptible to C. albicans-mediated killing than macrophages, irrespective of the number of C. albicans cells ingested. In contrast, when both phagocyte subsets were studied in coculture, the two cell types phagocytosed and cleared C. albicans at equal rates and were equally susceptible to killing by the fungus. The increase in macrophage susceptibility to C. albicans-mediated killing was a consequence of macrophages taking up a higher proportion of hyphal cells under these conditions. In the presence of both PMNs and macrophages, C. albicans yeast cells were predominantly cleared by PMNs, which migrated at a greater speed toward fungal cells and engulfed bound cells more rapidly. These observations demonstrate that the phagocytosis of fungal pathogens depends on, and is modified by, the specific phagocyte subsets present at the site of infection. Extensive work investigating fungal cell phagocytosis by macrophages and PMNs of the innate immune system has been carried out. These studies have been informative but have examined this phenomenon only when one phagocyte subset is present. The current study employed live-cell video microscopy to break down C. albicans phagocytosis into its component parts and examine the effect of a single

  4. Effect of cefodizime and ceftriaxone on phagocytic function in patients with severe infections.

    PubMed Central

    Wenisch, C; Parschalk, B; Hasenhündl, M; Wiesinger, E; Graninger, W

    1995-01-01

    Thirty patients with severe bacterial infections were treated with 50 mg of cefodizime per kg of body weight once daily or 50 mg of ceftriaxone per kg once daily for 10 +/- 3 days. The effect of cefodizime and ceftriaxone on the phagocytic capacity and generation of reactive oxygen intermediates after phagocytosis by granulocytes was assessed prior to, during, and after therapy. Flow cytometry was used to study phagocytic capacity by measuring the uptake of fluorescein-labeled bacteria. The generation of reactive oxygen intermediates after phagocytosis was estimated by the quantification of the intracellular conversion of dihydrorhodamine 123 to rhodamine 123. Prior to therapy, patients in both groups exhibited a decreased capacity to phagocytize Escherichia coli and subsequently to generate reactive oxygen intermediates. Granulocyte function increased after the initiation of therapy and normalized within 7 days for the ceftriaxone-treated patients and within 3 days for the cefodizime group (P < 0.05). In the cefodizime group, an enhancement of phagocytic capacity was observed 14 days after the initiation of therapy (P < 0.05). Prior to therapy, phagocytic capacity was significantly correlated with the generation of reactive oxygen products (r = 0.674 and P < 0.005). PMID:7793871

  5. Efferocytosis and Outside-In Signaling by Cardiac Phagocytes. Links to Repair, Cellular Programming, and Intercellular Crosstalk in Heart

    PubMed Central

    DeBerge, Matthew; Zhang, Shuang; Glinton, Kristofor; Grigoryeva, Luba; Hussein, Islam; Vorovich, Esther; Ho, Karen; Luo, Xunrong; Thorp, Edward B.

    2017-01-01

    Phagocytic sensing and engulfment of dying cells and extracellular bodies initiate an intracellular signaling cascade within the phagocyte that can polarize cellular function and promote communication with neighboring non-phagocytes. Accumulating evidence links phagocytic signaling in the heart to cardiac development, adult myocardial homeostasis, and the resolution of cardiac inflammation of infectious, ischemic, and aging-associated etiology. Phagocytic clearance in the heart may be carried out by professional phagocytes, such as macrophages, and non-professional cells, including myofibrolasts and potentially epithelial cells. During cardiac development, phagocytosis initiates growth cues for early cardiac morphogenesis. In diseases of aging, including myocardial infarction, heightened levels of cell death require efficient phagocytic debridement to salvage further loss of terminally differentiated adult cardiomyocytes. Additional risk factors, including insulin resistance and other systemic risk factors, contribute to inefficient phagocytosis, altered phagocytic signaling, and delayed cardiac inflammation resolution. Under such conditions, inflammatory presentation of myocardial antigen may lead to autoimmunity and even possible rejection of transplanted heart allografts. Increased understanding of these basic mechanisms offers therapeutic opportunities. PMID:29163503

  6. Effects of Pectic Polysaccharides Isolated from Leek on the Production of Reactive Oxygen and Nitrogen Species by Phagocytes

    PubMed Central

    Nikolova, Mariana; Ambrozova, Gabriela; Kratchanova, Maria; Denev, Petko; Kussovski, Veselin; Ciz, Milan

    2013-01-01

    Abstract The current survey investigates the effect of four polysaccharides isolated from fresh leek or alcohol insoluble substances (AIS) of leek on the production of reactive oxygen species (ROS) and reactive nitrogen species (RNS) from phagocytes. The ability of the polysaccharides to activate serum complement was also investigated. Despite the lack of antioxidant activity, the pectic polysaccharides significantly decreased the production of ROS by human neutrophils. Polysaccharides isolated from AIS markedly activated RAW 264.7 macrophages for RNS production in a concentration-dependent manner. The Western blot analysis revealed that this effect was due to the stimulation of the inducible nitric oxide synthase protein expression of macrophages. The polysaccharides extracted from AIS with water showed the ability to fix serum complement, especially through the alternative pathway. It was found that the polysaccharide that has the highest complement-fixing effect is characterized by the highest content of uronic acids and the highest molecular weight. PMID:23905651

  7. Glucose pathways adaptation supports acquisition of activated microglia phenotype.

    PubMed

    Gimeno-Bayón, J; López-López, A; Rodríguez, M J; Mahy, N

    2014-06-01

    With its capacity to survey the environment and phagocyte debris, microglia assume a diversity of phenotypes to respond specifically through neurotrophic and toxic effects. Although these roles are well accepted, the underlying energetic mechanisms associated with microglial activation remain largely unclear. This study investigates microglia metabolic adaptation to ATP, NADPH, H(+) , and reactive oxygen species production. To this end, in vitro studies were performed with BV-2 cells before and after activation with lipopolysaccharide + interferon-γ. Nitric oxide (NO) was measured as a marker of cell activation. Our results show that microglial activation triggers a metabolic reprogramming based on an increased glucose uptake and a strengthening of anaerobic glycolysis, as well as of the pentose pathway oxidative branch, while retaining the mitochondrial activity. Based on this energy commitment, microglial defense capacity increases rapidly as well as ribose-5-phosphate and nucleic acid formation for gene transcription, essential to ensure the newly acquired functions demanded by central nervous system signaling. We also review the role of NO in this microglial energy commitment that positions cytotoxic microglia within the energetics of the astrocyte-neuron lactate shuttle. Copyright © 2014 Wiley Periodicals, Inc.

  8. Candida albicans Chitin Increases Arginase-1 Activity in Human Macrophages, with an Impact on Macrophage Antimicrobial Functions

    PubMed Central

    MacCallum, Donna M.; Brown, Gordon D.

    2017-01-01

    ABSTRACT   The opportunistic human fungal pathogen Candida albicans can cause a variety of diseases, ranging from superficial mucosal infections to life-threatening systemic infections. Phagocytic cells of the innate immune response, such as neutrophils and macrophages, are important first-line responders to an infection and generate reactive oxygen and nitrogen species as part of their protective antimicrobial response. During an infection, host cells generate nitric oxide through the enzyme inducible nitric oxide synthase (iNOS) to kill the invading pathogen. Inside the phagocyte, iNOS competes with the enzyme arginase-1 for a common substrate, the amino acid l-arginine. Several pathogenic species, including bacteria and parasitic protozoans, actively modulate the production of nitric oxide by inducing their own arginases or the host’s arginase activity to prevent the conversion of l-arginine to nitric oxide. We report here that C. albicans blocks nitric oxide production in human-monocyte-derived macrophages by induction of host arginase activity. We further determined that purified chitin (a fungal cell wall polysaccharide) and increased chitin exposure at the fungal cell wall surface induces this host arginase activity. Blocking the C. albicans-induced arginase activity with the arginase-specific substrate inhibitor Nω-hydroxy-nor-arginine (nor-NOHA) or the chitinase inhibitor bisdionin F restored nitric oxide production and increased the efficiency of fungal killing. Moreover, we determined that C. albicans influences macrophage polarization from a classically activated phenotype toward an alternatively activated phenotype, thereby reducing antimicrobial functions and mediating fungal survival. Therefore, C. albicans modulates l-arginine metabolism in macrophages during an infection, potentiating its own survival. PMID:28119468

  9. Oral Colostrum Macrophage-activating Factor for Serious Infection and Chronic Fatigue Syndrome: Three Case Reports.

    PubMed

    Inui, Toshio; Kubo, Kentaro; Kuchiike, Daisuke; Uto, Yoshihiro; Nishikata, Takahito; Sakamoto, Norihiro; Mette, Martin

    2015-08-01

    Gc protein-derived macrophage-activating factor (GcMAF) immunotherapy has been steadily advancing over the last two decades. Oral colostrum macrophage-activating factor (MAF) produced from bovine colostrum has shown high macrophage phagocytic activity. GcMAF-based immunotherapy has a wide application for use in treating many diseases via macrophage activation or for use as supportive therapy. Three case studies demonstrate that oral colostrum MAF can be used for serious infection and chronic fatigue syndrome (CFS) without adverse effects. We demonstrate that colostrum MAF shows promising clinical results in patients with infectious diseases and for symptoms of fatigue, which is common in many chronic diseases. Copyright© 2015 International Institute of Anticancer Research (Dr. John G. Delinassios), All rights reserved.

  10. Beta cells transfer vesicles containing insulin to phagocytes for presentation to T cells.

    PubMed

    Vomund, Anthony N; Zinselmeyer, Bernd H; Hughes, Jing; Calderon, Boris; Valderrama, Carolina; Ferris, Stephen T; Wan, Xiaoxiao; Kanekura, Kohsuke; Carrero, Javier A; Urano, Fumihiko; Unanue, Emil R

    2015-10-06

    Beta cells from nondiabetic mice transfer secretory vesicles to phagocytic cells. The passage was shown in culture studies where the transfer was probed with CD4 T cells reactive to insulin peptides. Two sets of vesicles were transferred, one containing insulin and another containing catabolites of insulin. The passage required live beta cells in a close cell contact interaction with the phagocytes. It was increased by high glucose concentration and required mobilization of intracellular Ca2+. Live images of beta cell-phagocyte interactions documented the intimacy of the membrane contact and the passage of the granules. The passage was found in beta cells isolated from islets of young nonobese diabetic (NOD) mice and nondiabetic mice as well as from nondiabetic humans. Ultrastructural analysis showed intraislet phagocytes containing vesicles having the distinct morphology of dense-core granules. These findings document a process whereby the contents of secretory granules become available to the immune system.

  11. Effects of Enrofloxacin on Porcine Phagocytic Function

    PubMed Central

    Schoevers, E. J.; van Leengoed, L. A. M. G.; Verheijden, J. H. M.; Niewold, T. A.

    1999-01-01

    The interaction between enrofloxacin and porcine phagocytes was studied with clinically relevant concentrations of enrofloxacin. Enrofloxacin accumulated in phagocytes, with cellular concentration/extracellular concentration ratios of 9 for polymorphonuclear leukocytes (PMNs) and 5 for alveolar macrophages (AMs). Cells with accumulated enrofloxacin brought into enrofloxacin-free medium released approximately 80% (AMs) to 90% (PMNs) of their enrofloxacin within the first 10 min, after which no further release was seen. Enrofloxacin affected neither the viability of PMNs and AMs nor the chemotaxis of PMNs at concentrations ranging from 0 to 10 μg/ml. Enrofloxacin (0.5 μg/ml) did not alter the capability of PMNs and AMs to phagocytize fluorescent microparticles or Actinobacillus pleuropneumoniae, Pasteurella multocida, and Staphylococcus aureus. Significant differences in intracellular killing were seen with enrofloxacin at 5× the MIC compared with that for controls not treated with enrofloxacin. PMNs killed all S. aureus isolates in 3 h with or without enrofloxacin. Intracellular S. aureus isolates in AMs were less susceptible than extracellular S. aureus isolates to the bactericidal effect of enrofloxacin. P. multocida was not phagocytosed by PMNs. AMs did not kill P. multocida, and similar intra- and extracellular reductions of P. multocida isolates by enrofloxacin were found. Intraphagocytic killing of A. pleuropneumoniae was significantly enhanced by enrofloxacin at 5× the MIC in both PMNs and AMs. AMs are very susceptible to the A. pleuropneumoniae cytotoxin. This suggests that in serologically naive pigs the enhancing effect of enrofloxacin on the bactericidal action of PMNs may have clinical relevance. PMID:10471554

  12. Activation of macrophages by an exopolysaccharide isolated from Antarctic Psychrobacter sp. B-3

    NASA Astrophysics Data System (ADS)

    Yu, Leiye; Sun, Guojie; Wei, Jingfang; Wang, Yingze; Du, Chao; Li, Jiang

    2016-09-01

    An exopolysaccharide (EPS) was isolated and purified from an Antarctic psychrophilic bacterium B-3, identified as Psychrobacter sp., and the activation of RAW264.7 cells by B-3 EPS was investigated. The results show that B-3 EPS, over a certain concentration range, promoted cell viability, nitric oxide production, tumor necrosis factor (TNF)α secretion, and phagocytic ability. Furthermore, TAK-242, an inhibitor of the toll-like receptor 4 (TLR4) significantly reduced nitric oxide production by these cells after stimulation with B-3 EPS. Moreover, B-3 EPS induced p65 phosphorylation and IκBα degradation in these cells. In conclusion, B-3 EPS might have activated RAW264.7 cells by combining with TLR4 on cell surface and triggering activation of NF-κB signaling pathways, implying that this EPS could activate macrophages and regulate initial immune response.

  13. Comparative studies of mononuclear phagocyte function in patients with Crohn's disease and colon neoplasms.

    PubMed Central

    Beeken, W L; St Andre-Ukena, S; Gundel, R M

    1983-01-01

    Phagocytosis and cellular cytotoxicity by mononuclear phagocytes of blood and intestinal mucosa were studied in patients with Crohn's disease and large bowel neoplasms. Antibody coated sheep erythrocytes were used for phagocytic assays and cellular cytotoxicity in vitro was measured by 24 hour isotope release from 75Selenium methionine-labelled RPMI 4788 human cancer cell cultures in the presence of mononuclear phagocyte-enriched effector populations. The mean percent of mononuclear phagocytes in Ficoll-Hypaque purified mononuclear cell suspensions of blood of healthy controls was 25.9 compared with 44.6 in patients with Crohn's disease, 45.6 in patients with colon neoplasms and 11.6 in intestinal mucosa. Phagocytic indices were similar in all groups, but the phagocytic capacity of mucosal macrophages was twice that of blood monocytes. Mean cytotoxicity of monocytes of patients with Crohn's disease was 12.8% compared with 22.9% for monocytes from normal controls, and 29.4% for patients with colon tumours. Mean cytotoxicity by mucosal macrophages was 18.0% compared with 13.2% by mucosal lymphocyte populations. Exposure of monocytes of Crohn's disease patients to bacterial lipopolysaccharide modestly increased cytotoxicity, but exposure did not alter phagocytosis by monocytes of patients or controls. The results indicate that monocytes of patients with Crohn's disease exhibit subnormal in vitro cytotoxicity. Mucosal macrophages from patients with various diseases show enhanced phagocytosis compared with blood monocytes, and they can mediate cellular cytotoxicity in vitro. PMID:6629113

  14. Inhibition of Survivin Influences the Biological Activities of Canine Histiocytic Sarcoma Cell Lines

    PubMed Central

    Hoshino, Yuki; Hosoya, Kenji; Okumura, Masahiro

    2013-01-01

    Canine histiocytic sarcoma (CHS) is an aggressive malignant neoplasm that originates from histiocytic lineage cells, including dendritic cells and macrophages, and is characterized by progressive local infiltration and a very high metastatic potential. Survivin is as an apoptotic inhibitory factor that has major functions in cell proliferation, including inhibition of apoptosis and regulation of cell division, and is expressed in most types of human and canine malignant neoplasms, including melanoma and osteosarcoma. To investigate whether survivin was expressed at high levels in CHS and whether its expression was correlated with the aggressive biological behavior of CHS, we assessed relation between survivin expression and CHS progression, as well as the effects of survivin inhibition on the biological activities of CHS cells. We comparatively analyzed the expression of 6 selected anti-apoptotic genes, including survivin, in specimens from 30 dogs with histiocytic sarcoma and performed annexin V staining to evaluate apoptosis, methylthiazole tetrazolium assays to assess cell viability and chemosensitivity, and latex bead assays to measure changes in phagocytic activities in 4 CHS cell lines and normal canine fibroblasts transfected with survivin siRNA. Survivin gene expression levels in 30 specimens were significantly higher than those of the other 6 genes. After transfection with survivin siRNA, apoptosis, cell growth inhibition, enhanced chemosensitivity, and weakened phagocytic activities were observed in all CHS cell lines. In contrast, normal canine fibroblasts were not significantly affected by survivin knockdown. These results suggested that survivin expression may mediate the aggressive biological activities of CHS and that survivin may be an effective therapeutic target for the treatment of CHS. PMID:24260303

  15. Liver injury in hypervitaminosis A: Evidence for activation of Kupffer cell function

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Sim, W.L.W.

    1988-01-01

    The most important and novel finding of this work was enhanced liver Kupffer cell phagocytic and metabolic function by hypervitaminosis A. An animal model of hypervitaminosis A was developed in male Sprague-Dawley rats gavaged with 250,000 I.U. retinol/kg body weight/day for 3 weeks. Presence of hypervitaminosis A was indicated by characteristic changes in the fur coat, presence of brittle bones and spontaneous fractures and a significant increase in plasma and liver concentrations of retinyl palmitate while retinol levels remained the same as in controls. Hypervitaminosis A did not cause severe liver abnormalities as reflected by normal plasma glutamate pyruvate transaminasemore » activity and bilirubin. The main change was a marked increase in size of the fat or Vitamin A storing cells. Measurement of clearance from blood of indocyanine green and {sup 99m}Tc-disofenin indicated this hepatocyte function was normal. Kupffer cell phagocytic function was enhanced in hypervitaminosis A as determined by clearance from blood of {sup 99m}Tc-sulfur colloid. In vitro, there was also evidence that treatment with high doses of Vitamin A activated or enhanced Kupffer cell function. Kupffer cells from control and Vitamin A treated rats were isolated by enzymatic dispersion, purified by centrifugal elutriation, and placed in culture. Activation was indicated by (1) increased phagocytosis of {sup 51}Cr-labeled opsonized sheep red blood cells (2) enhanced release of superoxide anion and (3) enhanced production of tumor cytolytic factor by Kupffer cells from Vitamin A treated rats.« less

  16. Immunomagnetic isolation of pathogen-containing phagosomes and apoptotic blebs from primary phagocytes.

    PubMed

    Steinhäuser, Christine; Dallenga, Tobias; Tchikov, Vladimir; Schaible, Ulrich E; Schütze, Stefan; Reiling, Norbert

    2014-04-02

    Macrophages and polymorphonuclear neutrophils are professional phagocytes essential in the initial host response against intracellular pathogens such as Mycobacterium tuberculosis. Phagocytosis is the first step in phagocyte-pathogen interaction, where the pathogen is engulfed into a membrane-enclosed compartment termed a phagosome. Subsequent effector functions of phagocytes result in killing and degradation of the pathogen by promoting phagosome maturation, and, terminally, phago-lysosome fusion. Intracellular pathogenic microbes use various strategies to avoid detection and elimination by phagocytes, including induction of apoptosis to escape host cells, thereby generating apoptotic blebs as shuttles to other cells for pathogens and antigens thereof. Hence, phagosomes represent compartments where host and pathogen become quite intimate, and apoptotic blebs are carrier bags of the pathogen's legacy. In order to investigate the molecular mechanisms underlying these interactions, both phagosomes and apoptotic blebs are required as purified subcellular fractions for subsequent analysis of their biochemical properties. Here, we describe a lipid-based procedure to magnetically label surfaces of either pathogenic mycobacteria or apoptotic blebs for purification by a strong magnetic field in a novel free-flow system. Copyright © 2014 John Wiley & Sons, Inc.

  17. The phagocyte respiratory burst: Historical perspectives and recent advances.

    PubMed

    Thomas, David C

    2017-12-01

    When exposed to certain stimuli, phagocytes (including neutrophils, macrophages and eosinophils) undergo marked changes in the way they handle oxygen. Firstly, their rate of oxygen uptake increases greatly. This is accompanied by (i) the production of large amounts of superoxide and hydrogen peroxide and (ii) the metabolism of large quantities of glucose through the hexose monophosphate shunt. We now know that the oxygen used is not for respiration but for the production of powerful microbiocidal agents downstream of the initial production of superoxide. Concomitantly, glucose is oxidised through the hexose monophosphate shunt to re-generate the NADPH that has been consumed through the reduction of molecular oxygen to generate superoxide. This phagocyte respiratory burst is generated by an NADPH oxidase multi-protein complex that has a catalytic core consisting of membrane-bound gp91phox (CYBB) and p22phox (CYBA) sub-units and cytosolic components p47phox (NCF1), p67phox (NCF2) and p40phox (NCF4). Finally, another cytosolic component, the small G-protein Rac (Rac2 in neutrophils and Rac1 in macrophages) is also required for full activation. The importance of the complex in host defence is underlined by chronic granulomatous disease, a severe life-limiting immunodeficiency caused by mutations in the genes encoding the individual subunits. In this review, I will discuss the experimental evidence that underlies our knowledge of the respiratory burst, outlining how elegant biochemical analysis, coupled with study of patients deficient in the various subunits has helped elucidate the function of this essential part of innate immunity. I will also discuss some exciting recent studies that shed new light on how the abundance of the various components is controlled. Finally, I will explore the emerging role of reactive oxygen species such as superoxide and hydrogen peroxide in the pathogenesis of major human diseases including auto-inflammatory diseases. Copyright © 2017

  18. Cell-free NADPH oxidase activation assays: "in vitro veritas".

    PubMed

    Pick, Edgar

    2014-01-01

    The superoxide (O2 (∙-))-generating NADPH oxidase complex of phagocytes comprises a membrane-imbedded heterodimeric flavocytochrome, known as cytochrome b 558 (consisting of Nox2 and p22 (phox) ) and four cytosolic regulatory proteins, p47 (phox) , p67 (phox) , p40 (phox) , and the small GTPase Rac. Under physiological conditions, in the resting phagocyte, O2 (∙-) generation is initiated by engagement of membrane receptors by a variety of stimuli, followed by specific signal transduction sequences leading to the translocation of the cytosolic components to the membrane and their association with the cytochrome. A consequent conformational change in Nox2 initiates the electron "flow" along a redox gradient, from NADPH to oxygen, leading to the one-electron reduction of molecular oxygen to O2 (∙-). Methodological difficulties in the dissection of this complex mechanism led to the design "cell-free" systems (also known as "broken cells" or in vitro systems). In these, membrane receptor stimulation and all or part of the signal transduction sequence are missing, the accent being placed on the actual process of "NADPH oxidase assembly," thus on the formation of the complex between cytochrome b 558 and the cytosolic components and the resulting O2 (∙-) generation. Cell-free assays consist of a mixture of the individual components of the NADPH oxidase complex, derived from resting phagocytes or in the form of purified recombinant proteins, exposed in vitro to an activating agent (distinct from and unrelated to whole cell stimulants), in the presence of NADPH and oxygen. Activation is commonly quantified by measuring the primary product of the reaction, O2 (∙-), trapped immediately after its generation by an appropriate acceptor in a kinetic assay, permitting the calculation of the linear rate of O2 (∙-) production, but numerous variations exist, based on the assessment of reaction products or the consumption of substrates. Cell-free assays played a paramount

  19. Altered Dynamics of Candida albicans Phagocytosis by Macrophages and PMNs When Both Phagocyte Subsets Are Present

    PubMed Central

    Rudkin, Fiona M.; Bain, Judith M.; Walls, Catriona; Lewis, Leanne E.; Gow, Neil A. R.; Erwig, Lars P.

    2013-01-01

    ABSTRACT An important first line of defense against Candida albicans infections is the killing of fungal cells by professional phagocytes of the innate immune system, such as polymorphonuclear cells (PMNs) and macrophages. In this study, we employed live-cell video microscopy coupled with dynamic image analysis tools to provide insights into the complexity of C. albicans phagocytosis when macrophages and PMNs were incubated with C. albicans alone and when both phagocyte subsets were present. When C. albicans cells were incubated with only one phagocyte subtype, PMNs had a lower overall phagocytic capacity than macrophages, despite engulfing fungal cells at a higher rate once fungal cells were bound to the phagocyte surface. PMNs were more susceptible to C. albicans-mediated killing than macrophages, irrespective of the number of C. albicans cells ingested. In contrast, when both phagocyte subsets were studied in coculture, the two cell types phagocytosed and cleared C. albicans at equal rates and were equally susceptible to killing by the fungus. The increase in macrophage susceptibility to C. albicans-mediated killing was a consequence of macrophages taking up a higher proportion of hyphal cells under these conditions. In the presence of both PMNs and macrophages, C. albicans yeast cells were predominantly cleared by PMNs, which migrated at a greater speed toward fungal cells and engulfed bound cells more rapidly. These observations demonstrate that the phagocytosis of fungal pathogens depends on, and is modified by, the specific phagocyte subsets present at the site of infection. PMID:24169578

  20. NADPH OXIDASE: STRUCTURE AND ACTIVATION MECHANISMS (REVIEW). NOTE I.

    PubMed

    Filip-Ciubotaru, Florina; Manciuc, Carmen; Stoleriu, Gabriela; Foia, Liliana

    2016-01-01

    NADPH oxidase (nicotinamide adenine dinucleotide phosphate-oxidase), with its generically termed NOX isoforms, is the major source of ROS (reactive oxigen species) in biological systems. ROS are small oxygen-derived molecules with an important role in various biological processes (physiological or pathological). If under physiological conditions some processes are beneficial and necessary for life, under pathophysiological conditions they are noxious, harmful. NADPH oxidases are present in phagocytes and in a wide variety of nonphagocytic cells. The enzyme generates superoxide by transferring electrons from NADPH inside the cell across the membrane and coupling them to molecular oxygen to produce superoxide anion, a reactive free-radical. Structurally, NADPH oxidase is a multicomponent enzyme which includes two integral membrane proteins, glycoprotein gp9 1 Phox and adaptor protein p22(phox), which together form the heterodimeric flavocytochrome b558 that constitutes the core of the enzyme. During the resting state, the multidomain regulatory subunits p40P(phox), p47(phox), p67(Phox) are located in the cytosol organized as a complex. The activation of phagocytic NADPH oxidase occurs through a complex series of protein interactions.

  1. Effects of the Subaleurone Layer of Rice on Macrophage Activation and Protection of Pollen Allergy in a Murine Model.

    PubMed

    Tamura, Yuki; Inagawa, Hiroyuki; Nakata, Yoko; Kohchi, Chie; Soma, Gen-Ichiro

    2015-08-01

    Oral intake of lipopolysaccharide (LPS) has been demonstrated to be effective in the prevention of various diseases. We have found that the subaleurone layer of rice contains a large amount of LPS. The aim of this study was to evaluate the role of this layer in innate immunity. Using the Saika-style rice polishing process, a sbaleurone layer and the rice retaining a subaleurone layer and polished white rice were prepared from brown rice. Using hot-water extracts from rice, LPS content was measured by the Limulus reaction and the effect of activation of macrophages was evaluated on the basis of their phagocytic activity and nitric monoxide (NO) and tumor necrosis factor (TNF) production levels. Toll-like receptor (TLR)-2-, TLR-4- and TLR-9-transfected human embryonic kidney (HEK) cells were used to identify the activation pathway. An allergy mouse model was used to evaluate the prevention of pollen allergy. When compared to polished white rice, rice retaining a subaleurone layer had a 6-fold increase in LPS and an increased macrophage activation when phagocytic activity and NO and TNF production were used as indices. TRL4 was the major pathway for such activation. Anti-allergy test by oral intake of subaleurone showed a significant preventive effect for pollen allergy. Compared to polished white rice, rice retaining a subaleurone layer contained a high level of LPS with higher macrophage activation. Furthermore, oral administration of the rice demonstrated a preventive effect for pollen allergy, thus indicating its utility as a functional food that has a regulatory effect on innate immunity. Copyright© 2015 International Institute of Anticancer Research (Dr. John G. Delinassios), All rights reserved.

  2. Photochemical Targeting Of Phagocytic Trabecular Meshwork Cells Using Chlorin E6 Coupled Microspheres

    NASA Astrophysics Data System (ADS)

    Latina, M. A.; Kobsa, P. H.; Rakestraw, S. L.; Crean, E. A.; Hasan, T.; Yarmush, M. L.

    1989-03-01

    We have investigated a novel and efficient delivery system utilizing photosensitizer-coupled-latex microspheres to photochemically target and kill phagocytic trabecular meshwork (TM) cells. TM cells are the most actively phagocytic cells within the anterior chamber of the eye and are located within an optically accessible discrete band. This delivery system, along with the property of cell photocytosis, will achieve double selectivity by combining preferential localization of the photosensitizer to the target cells with spatial localization of illumination on the target cells. All experiments were performed with preconfluent bovine TM cells, 3rd to 4th passage, plated in 15 mm wells. Chlorin e6 monoethylene diamine monoamide was conjugated to the surface of 1.0 Am MX Duke Scientific fluorescent latex microspheres. Spectroscopic analysis revealed an average of 1.3 x 10 -17 moles of chlorin e6 per microsphere. TM cells were incubated for 18 hours with 5 x 10 7 microspheres/ml in MEM with 10% FCS, washed with MEM, and irradiated through fresh media using an argon-pumped dye laser emitting .2 W at 660 nm. A dose-survival study indicated that energy doses of 10 J/cm2 or greater resulted in greater than 95% cell death as determined by ethidium bromide exclusion. Cell death could be demonstrated as early as 4 hours post-irradiation. TM cells incubated with a solution of chlorin e6 at a concentration equal to that conjugated to the microspheres showed no cell death. Unirradiated controls also showed no cell death.

  3. Transglutaminase 2 is needed for the formation of an efficient phagocyte portal in macrophages engulfing apoptotic cells.

    PubMed

    Tóth, Beáta; Garabuczi, Eva; Sarang, Zsolt; Vereb, György; Vámosi, György; Aeschlimann, Daniel; Blaskó, Bernadett; Bécsi, Bálint; Erdõdi, Ferenc; Lacy-Hulbert, Adam; Zhang, Ailiang; Falasca, Laura; Birge, Raymond B; Balajthy, Zoltán; Melino, Gerry; Fésüs, László; Szondy, Zsuzsa

    2009-02-15

    Transglutaminase 2 (TG2), a protein cross-linking enzyme with many additional biological functions, acts as coreceptor for integrin beta(3). We have previously shown that TG2(-/-) mice develop an age-dependent autoimmunity due to defective in vivo clearance of apoptotic cells. Here we report that TG2 on the cell surface and in guanine nucleotide-bound form promotes phagocytosis. Besides being a binding partner for integrin beta(3), a receptor known to mediate the uptake of apoptotic cells via activating Rac1, we also show that TG2 binds MFG-E8 (milk fat globulin EGF factor 8), a protein known to bridge integrin beta(3) to apoptotic cells. Finally, we report that in wild-type macrophages one or two engulfing portals are formed during phagocytosis of apoptotic cells that are characterized by accumulation of integrin beta(3) and Rac1. In the absence of TG2, integrin beta(3) cannot properly recognize the apoptotic cells, is not accumulated in the phagocytic cup, and its signaling is impaired. As a result, the formation of the engulfing portals, as well as the portals formed, is much less efficient. We propose that TG2 has a novel function to stabilize efficient phagocytic portals.

  4. Value of phagocyte function screening for immunotoxicity of nanoparticles in vivo.

    PubMed

    Fröhlich, Eleonore

    2015-01-01

    Nanoparticles (NPs) present in the environment and in consumer products can cause immunotoxic effects. The immune system is very complex, and in vivo studies are the gold standard for evaluation. Due to the increased amount of NPs that are being developed, cellular screening assays to decrease the amount of NPs that have to be tested in vivo are highly needed. Effects on the unspecific immune system, such as effects on phagocytes, might be suitable for screening for immunotoxicity because these cells mediate unspecific and specific immune responses. They are present at epithelial barriers, in the blood, and in almost all organs. This review summarizes the effects of carbon, metal, and metal oxide NPs used in consumer and medical applications (gold, silver, titanium dioxide, silica dioxide, zinc oxide, and carbon nanotubes) and polystyrene NPs on the immune system. Effects in animal exposures through different routes are compared to the effects on isolated phagocytes. In addition, general problems in the testing of NPs, such as unknown exposure doses, as well as interference with assays are mentioned. NPs appear to induce a specific immunotoxic pattern consisting of the induction of inflammation in normal animals and aggravation of pathologies in disease models. The evaluation of particle action on several phagocyte functions in vitro may provide an indication on the potency of the particles to induce immunotoxicity in vivo. In combination with information on realistic exposure levels, in vitro studies on phagocytes may provide useful information on the health risks of NPs.

  5. The arachidonic acid-binding protein S100A8/A9 promotes NADPH oxidase activation by interaction with p67phox and Rac-2.

    PubMed

    Kerkhoff, Claus; Nacken, Wolfgang; Benedyk, Malgorzata; Dagher, Marie Claire; Sopalla, Claudia; Doussiere, Jacques

    2005-03-01

    The Ca2+- and arachidonic acid-binding S100A8/A9 protein complex was recently identified by in vitro studies as a novel partner of the phagocyte NADPH oxidase. The present study demonstrated its functional relevance by the impaired oxidase activity in neutrophil-like NB4 cells, after specific blockage of S100A9 expression, and bone marrow polymorphonuclear neutrophils from S100A9-/- mice. The impaired oxidase activation could also be mimicked in a cell-free system by pretreatment of neutrophil cytosol with an S100A9-specific antibody. Further analyses gave insights into the molecular mechanisms by which S100A8/A9 promoted NADPH oxidase activation. In vitro analysis of oxidase activation as well as protein-protein interaction studies revealed that S100A8 is the privileged interaction partner for the NADPH oxidase complex since it bound to p67phox and Rac, whereas S100A9 did interact with neither p67phox nor p47phox. Moreover, S100A8/A9 transferred the cofactor arachidonic acid to NADPH oxidase as shown by the impotence of a mutant S100A8/A9 complex unable to bind arachidonic acid to enhance NADPH oxidase activity. It is concluded that S100A8/A9 plays an important role in phagocyte NADPH oxidase activation.

  6. Perforin-2 is essential for intracellular defense of parenchymal cells and phagocytes against pathogenic bacteria

    PubMed Central

    McCormack, Ryan M; de Armas, Lesley R; Shiratsuchi, Motoaki; Fiorentino, Desiree G; Olsson, Melissa L; Lichtenheld, Mathias G; Morales, Alejo; Lyapichev, Kirill; Gonzalez, Louis E; Strbo, Natasa; Sukumar, Neelima; Stojadinovic, Olivera; Plano, Gregory V; Munson, George P; Tomic-Canic, Marjana; Kirsner, Robert S; Russell, David G; Podack, Eckhard R

    2015-01-01

    Perforin-2 (MPEG1) is a pore-forming, antibacterial protein with broad-spectrum activity. Perforin-2 is expressed constitutively in phagocytes and inducibly in parenchymal, tissue-forming cells. In vitro, Perforin-2 prevents the intracellular replication and proliferation of bacterial pathogens in these cells. Perforin-2 knockout mice are unable to control the systemic dissemination of methicillin-resistant Staphylococcus aureus (MRSA) or Salmonella typhimurium and perish shortly after epicutaneous or orogastric infection respectively. In contrast, Perforin-2-sufficient littermates clear the infection. Perforin-2 is a transmembrane protein of cytosolic vesicles -derived from multiple organelles- that translocate to and fuse with bacterium containing vesicles. Subsequently, Perforin-2 polymerizes and forms large clusters of 100 Å pores in the bacterial surface with Perforin-2 cleavage products present in bacteria. Perforin-2 is also required for the bactericidal activity of reactive oxygen and nitrogen species and hydrolytic enzymes. Perforin-2 constitutes a novel and apparently essential bactericidal effector molecule of the innate immune system. DOI: http://dx.doi.org/10.7554/eLife.06508.001 PMID:26402460

  7. Flow microfluorometric analysis of phagocyte degranulation in bacteria-infected whole human blood cell cultures

    NASA Astrophysics Data System (ADS)

    Kravtsov, Alexander L.; Bobyleva, Elena V.; Grebenyukova, Tatyana P.; Kuznetsov, Oleg S.; Kulyash, Youri V.

    2002-07-01

    A quantitative flow microfluorometric method was used to study the intensity of human blood phagocyte degranulation in response to viable staphylococcus aureus or Yersinia pestis cells. Microorganisms were added directly to defibrinated whole blood. Uninfected and infected blood samples were incubated at 37 degrees C to 8 h. The results were recorded in dynamics after the staining of whole blood with acridine orange solution. Lymphocytes with a low azurophilic granule per cell content were discriminated from phagocytes by the measurement of single cell red cytoplasmic granule fluorescence. 30,000 cells in each sample were examined. S. aureus cells caused a dose-dependent decrease in the number of phagocytes having a high red cytoplasmic fluorescence intensity and a corresponding increase in the weakly fluorescence cell population. In the presence of an initial S. aureus-to-phagocyte ratio more than 1:1, degranulation was measured after 3 h of incubation and to 8 h the percentage of degranulated phagocytes was at least 100 percent Y. pestis cells grown for 48 h at 28 degrees C caused at same condition as the degranulation only about 50 percent of cells. Y.pestis EV cells preincubated in broth for 12 h at 37 degrees C did no stimulate the phahocyte degranulation. The results of these studies suggest that analysis of cell populations via flow microfluorimeter technology may be a powerful tool in analysis bacterial infection.

  8. Plasmodium and mononuclear phagocytes.

    PubMed

    Mac-Daniel, Laura; Ménard, Robert

    2015-01-01

    Plasmodium, the causative agent of malaria, initially multiplies inside liver cells and then in successive cycles inside erythrocytes, causing the symptoms of the disease. In this review, we discuss interactions between the extracellular and intracellular forms of the Plasmodium parasite and innate immune cells in the mammalian host, with a special emphasis on mononuclear phagocytes. We overview here what is known about the innate immune cells that interact with parasites, mechanisms used by the parasite to evade them, and the protective or detrimental contribution of these interactions on parasite progression through its life cycle and pathology in the host. Copyright © 2014 Elsevier Ltd. All rights reserved.

  9. Wright-Giemsa staining to observe phagocytes in Locusta migratoria infected with Metarhizium acridum.

    PubMed

    Yu, Ying; Cao, Yueqing; Xia, Yuxian; Liu, Feihong

    2016-09-01

    Hemocytes are the first line of defense in the invertebrate immune system. Understanding their roles in cellular immunity is important for developing more efficient mycoinsecticides. However, the exact classification of hemocytes has been inconsistent and the various types of phagocytes in Locusta migratoria are poorly defined. Herein, the Wright-Giemsa staining method and microscopy were employed to characterize the hemocytes of L. migratoria following infection by Metarhizium acridum. Hemocytes were classified into four types, including granulocytes, plasmatocytes, prohemocytes, and oenocytoids, based on size, morphology, and dye-staining properties. Each type of hemocyte was classified into several subtypes according to different ultrastructural features. At least four subtypes of granulocytes or plasmatocytes, including small-nucleus plasmatocytes, basophil vacuolated plasmatocytes, homogeneous plasmatocytes, and eosinophilic granulocytes, carried out phagocytosis. The percentage of total phagocytes increased two days after infection by M. acridum, then gradually declined during the next two days, and then increased sharply again at the fifth day. Our data suggested that plasmatocytes and granulocytes may be the major phagocytes that protect against invasion by a fungal pathogen in L. migratoria. Total hemocytes in locusts significantly increased in the initial days after infection and decreased in the late period of infection compared to controls. In the hemocoel, hyphal bodies were recognized, enwrapped, and digested by the phagocytes. Then, the broken hyphal pieces were packaged as vesicles to be secreted from the cell. Moreover, locusts might have a sensitive and efficient cellular immune system that can regulate phagocyte differentiation and proliferation before fungi colonize the host hemolymph. Copyright © 2016 Elsevier Inc. All rights reserved.

  10. The specificity of immune priming in silkworm, Bombyx mori, is mediated by the phagocytic ability of granular cells.

    PubMed

    Wu, Gongqing; Li, Mei; Liu, Yi; Ding, Ying; Yi, Yunhong

    2015-10-01

    In the past decade, the phenomenon of immune priming was documented in many invertebrates in a large number of studies; however, in most of these studies, behavioral evidence was used to identify the immune priming. The underlying mechanism and the degree of specificity of the priming response remain unclear. We studied the mechanism of immune priming in the larvae of the silkworm, Bombyx mori, and analyzed the specificity of the priming response using two closely related Gram-negative pathogenic bacteria (Photorhabdus luminescens TT01 and P. luminescens H06) and one Gram-positive pathogenic bacterium (Bacillus thuringiensis HD-1). Primed with heat-killed bacteria, the B. mori larvae were more likely to survive subsequent homologous exposure (the identical bacteria used in the priming and in the subsequent challenge) than heterologous (different bacteria used in the priming and subsequent exposure) exposure to live bacteria. This result indicated that the B. mori larvae possessed a strong immune priming response and revealed a degree of specificity to TT01, H06 and HD-1 bacteria. The degree of enhanced immune protection was positively correlated with the level of phagocytic ability of the granular cells and the antibacterial activity of the cell-free hemolymph. Moreover, the granular cells of the immune-primed larvae increased the phagocytosis of a previously encountered bacterial strain compared with other bacteria. Thus, the enhanced immune protection of the B. mori larvae after priming was mediated by the phagocytic ability of the granular cells and the antibacterial activity of the hemolymph; the specificity of the priming response was primarily attributed to the phagocytosis of bacteria by the granular cells. Copyright © 2015 Elsevier Ltd. All rights reserved.

  11. Effects of conjugated linoleic acids on growth performance, serum lysozyme activity, lymphocyte proliferation, and antibody production in broiler chicks.

    PubMed

    Zhang, Haijun; Guo, Yuming; Yuan, Jianmin

    2005-10-01

    This study was conducted to investigate the effect of dietary conjugated linoleic acids (CLA) on growth performance and immune responses in broiler chicks. A total of 240 day-old Arbor Acre male broiler chicks were randomly allotted into four dietary treatments with different inclusion levels of CLA (0, 2.5, 5.0 or 10.0 g/kg) for six weeks. Growth performance, peripheral blood lymphocyte (PBL) proliferation, lysozyme activity, phagocytic activity (carbon clearance) and serum antibody titers against Newcastle disease virus (NDV) vaccine were examined. There were no significant differences in growth performance among treatments (p > 0.05). Chicks fed CLA diets produced more lysozyme activity in serum than the control group at 2 and 6 weeks of age (p < 0.05). Dietary CLA enhanced the PBL proliferation in response to concanavalin A (ConA) at the age of 42 d (p < 0.05). Phagocytic ability was also affected by dietary CLA and chicks fed CLA diets had faster carbon clearance rate (p < 0.05), but antibody titers to NDV was not influenced by dietary CLA. The results of the study suggested that dietary CLA could enhance innate and cellular immune response in broiler chicks, and not affect the growth performance.

  12. Alarmins MRP8 and MRP14 induce stress tolerance in phagocytes under sterile inflammatory conditions.

    PubMed

    Austermann, Judith; Friesenhagen, Judith; Fassl, Selina Kathleen; Petersen, Beatrix; Ortkras, Theresa; Burgmann, Johanna; Barczyk-Kahlert, Katarzyna; Faist, Eugen; Zedler, Siegfried; Pirr, Sabine; Rohde, Christian; Müller-Tidow, Carsten; von Köckritz-Blickwede, Maren; von Kaisenberg, Constantin S; Flohé, Stefanie B; Ulas, Thomas; Schultze, Joachim L; Roth, Johannes; Vogl, Thomas; Viemann, Dorothee

    2014-12-24

    Hyporesponsiveness by phagocytes is a well-known phenomenon in sepsis that is frequently induced by low-dose endotoxin stimulation of Toll-like receptor 4 (TLR4) but can also be found under sterile inflammatory conditions. We now demonstrate that the endogenous alarmins MRP8 and MRP14 induce phagocyte hyporesponsiveness via chromatin modifications in a TLR4-dependent manner that results in enhanced survival to septic shock in mice. During sterile inflammation, polytrauma and burn trauma patients initially present with high serum concentrations of myeloid-related proteins (MRPs). Human neonatal phagocytes are primed for hyporesponsiveness by increased peripartal MRP concentrations, which was confirmed in murine neonatal endotoxinemia in wild-type and MRP14(-/-) mice. Our data therefore indicate that alarmin-triggered phagocyte tolerance represents a regulatory mechanism for the susceptibility of neonates during systemic infections and sterile inflammation. Copyright © 2014 The Authors. Published by Elsevier Inc. All rights reserved.

  13. Human dental stem cells suppress PMN activity after infection with the periodontopathogens Prevotella intermedia and Tannerella forsythia

    PubMed Central

    Hieke, Cathleen; Kriebel, Katja; Engelmann, Robby; Müller-Hilke, Brigitte; Lang, Hermann; Kreikemeyer, Bernd

    2016-01-01

    Periodontitis is characterized by inflammation associated with the colonization of different oral pathogens. We here aimed to investigate how bacteria and host cells shape their environment in order to limit inflammation and tissue damage in the presence of the pathogen. Human dental follicle stem cells (hDFSCs) were co-cultured with gram-negative P. intermedia and T. forsythia and were quantified for adherence and internalization as well as migration and interleukin secretion. To delineate hDFSC-specific effects, gingival epithelial cells (Ca9-22) were used as controls. Direct effects of hDFSCs on neutrophils (PMN) after interaction with bacteria were analyzed via chemotactic attraction, phagocytic activity and NET formation. We show that P. intermedia and T. forsythia adhere to and internalize into hDFSCs. This infection decreased the migratory capacity of the hDFSCs by 50%, did not disturb hDFSC differentiation potential and provoked an increase in IL-6 and IL-8 secretion while leaving IL-10 levels unaltered. These environmental modulations correlated with reduced PMN chemotaxis, phagocytic activity and NET formation. Our results suggest that P. intermedia and T. forsythia infected hDFSCs maintain their stem cell functionality, reduce PMN-induced tissue and bone degradation via suppression of PMN-activity, and at the same time allow for the survival of the oral pathogens. PMID:27974831

  14. Chicoric acid binds to two sites and decreases the activity of the YopH bacterial virulence factor

    PubMed Central

    Kuban-Jankowska, Alicja; Sahu, Kamlesh K.; Gorska, Magdalena; Tuszynski, Jack A.; Wozniak, Michal

    2016-01-01

    Chicoric acid (CA) is a phenolic compound present in dietary supplements with a large spectrum of biological properties reported ranging from antioxidant, to antiviral, to immunostimulatory properties. Due to the fact that chicoric acid promotes phagocytic activity and was reported as an allosteric inhibitor of the PTP1B phosphatase, we examined the effect of CA on YopH phosphatase from pathogenic bacteria, which block phagocytic processes of a host cell. We performed computational studies of chicoric acid binding to YopH as well as validation experiments with recombinant enzymes. In addition, we performed similar studies for caffeic and chlorogenic acids to compare the results. Docking experiments demonstrated that, from the tested compounds, only CA binds to both catalytic and secondary binding sites of YopH. Our experimental results showed that CA reduces activity of recombinant YopH phosphatase from Yersinia enterocolitica and human CD45 phosphatase. The inhibition caused by CA was irreversible and did not induce oxidation of catalytic cysteine. We proposed that inactivation of YopH induced by CA is involved with allosteric inhibition by interacting with essential regions responsible for ligand binding. PMID:26735581

  15. Chicoric acid binds to two sites and decreases the activity of the YopH bacterial virulence factor.

    PubMed

    Kuban-Jankowska, Alicja; Sahu, Kamlesh K; Gorska, Magdalena; Tuszynski, Jack A; Wozniak, Michal

    2016-01-19

    Chicoric acid (CA) is a phenolic compound present in dietary supplements with a large spectrum of biological properties reported ranging from antioxidant, to antiviral, to immunostimulatory properties. Due to the fact that chicoric acid promotes phagocytic activity and was reported as an allosteric inhibitor of the PTP1B phosphatase, we examined the effect of CA on YopH phosphatase from pathogenic bacteria, which block phagocytic processes of a host cell. We performed computational studies of chicoric acid binding to YopH as well as validation experiments with recombinant enzymes. In addition, we performed similar studies for caffeic and chlorogenic acids to compare the results. Docking experiments demonstrated that, from the tested compounds, only CA binds to both catalytic and secondary binding sites of YopH. Our experimental results showed that CA reduces activity of recombinant YopH phosphatase from Yersinia enterocolitica and human CD45 phosphatase. The inhibition caused by CA was irreversible and did not induce oxidation of catalytic cysteine. We proposed that inactivation of YopH induced by CA is involved with allosteric inhibition by interacting with essential regions responsible for ligand binding.

  16. Value of phagocyte function screening for immunotoxicity of nanoparticles in vivo

    PubMed Central

    Fröhlich, Eleonore

    2015-01-01

    Nanoparticles (NPs) present in the environment and in consumer products can cause immunotoxic effects. The immune system is very complex, and in vivo studies are the gold standard for evaluation. Due to the increased amount of NPs that are being developed, cellular screening assays to decrease the amount of NPs that have to be tested in vivo are highly needed. Effects on the unspecific immune system, such as effects on phagocytes, might be suitable for screening for immunotoxicity because these cells mediate unspecific and specific immune responses. They are present at epithelial barriers, in the blood, and in almost all organs. This review summarizes the effects of carbon, metal, and metal oxide NPs used in consumer and medical applications (gold, silver, titanium dioxide, silica dioxide, zinc oxide, and carbon nanotubes) and polystyrene NPs on the immune system. Effects in animal exposures through different routes are compared to the effects on isolated phagocytes. In addition, general problems in the testing of NPs, such as unknown exposure doses, as well as interference with assays are mentioned. NPs appear to induce a specific immunotoxic pattern consisting of the induction of inflammation in normal animals and aggravation of pathologies in disease models. The evaluation of particle action on several phagocyte functions in vitro may provide an indication on the potency of the particles to induce immunotoxicity in vivo. In combination with information on realistic exposure levels, in vitro studies on phagocytes may provide useful information on the health risks of NPs. PMID:26060398

  17. Phenotypic and functional consequences of different isolation protocols on skin mononuclear phagocytes.

    PubMed

    Botting, Rachel A; Bertram, Kirstie M; Baharlou, Heeva; Sandgren, Kerrie J; Fletcher, James; Rhodes, Jake W; Rana, Hafsa; Plasto, Toby M; Wang, Xin Maggie; Lim, Jake J K; Barnouti, Laith; Kohout, Mark P; Papadopoulos, Tim; Merten, Steve; Olbourne, Norman; Cunningham, Anthony L; Haniffa, Muzlifah; Harman, Andrew N

    2017-06-01

    Mononuclear phagocytes are present in skin and mucosa and represent one of the first lines of defense against invading pathogens, which they detect via an array of pathogen-binding receptors expressed on their surface. However, their extraction from tissue is difficult, and the isolation technique used has functional consequences on the cells obtained. Here, we compare mononuclear phagocytes isolated from human skin using either enzymatic digestion or spontaneous migration. Cells isolated via enzymatic digestion are in an immature state, and all subsets are easily defined. However, cells isolated by spontaneous migration are in a mature state, and CD141 cross-presenting DCs (cDC1) are more difficult to define. Different pathogen-binding receptors are susceptible to cleavage by blends of collagenase, demonstrating that great care must be taken in choosing the correct enzyme blend to digest tissue if carrying out pathogen-interaction assays. Finally, we have optimized mononuclear phagocyte culture conditions to enhance their survival after liberation from the tissue. © The Author(s).

  18. Phenotypic and functional consequences of different isolation protocols on skin mononuclear phagocytes

    PubMed Central

    Botting, Rachel A.; Bertram, Kirstie M.; Baharlou, Heeva; Sandgren, Kerrie J.; Fletcher, James; Rhodes, Jake W.; Rana, Hafsa; Plasto, Toby M.; Wang, Xin Maggie; Lim, Jake J. K.; Barnouti, Laith; Kohout, Mark P.; Papadopoulos, Tim; Merten, Steve; Olbourne, Norman; Cunningham, Anthony L.; Haniffa, Muzlifah; Harman, Andrew N.

    2017-01-01

    Mononuclear phagocytes are present in skin and mucosa and represent one of the first lines of defense against invading pathogens, which they detect via an array of pathogen-binding receptors expressed on their surface. However, their extraction from tissue is difficult, and the isolation technique used has functional consequences on the cells obtained. Here, we compare mononuclear phagocytes isolated from human skin using either enzymatic digestion or spontaneous migration. Cells isolated via enzymatic digestion are in an immature state, and all subsets are easily defined. However, cells isolated by spontaneous migration are in a mature state, and CD141 cross-presenting DCs (cDC1) are more difficult to define. Different pathogen-binding receptors are susceptible to cleavage by blends of collagenase, demonstrating that great care must be taken in choosing the correct enzyme blend to digest tissue if carrying out pathogen-interaction assays. Finally, we have optimized mononuclear phagocyte culture conditions to enhance their survival after liberation from the tissue. PMID:28270408

  19. Costunolide inhibits proinflammatory cytokines and iNOS in activated murine BV2 microglia.

    PubMed

    Rayan, Nirmala Arul; Baby, Nimmi; Pitchai, Daisy; Indraswari, Fransisca; Ling, Eng-Ang; Lu, Jia; Dheen, Thameem

    2011-06-01

    Costunolide, a sesquiterpene lactone present in Costus speciosus root exerts a variety of pharmacological activity but its effects on neuroinflammation have not been studied. Microglia, the resident phagocytic cells in the central nervous system respond to neuroinflammation and their overwhelming response in turn aggravate brain damage during infection, ischemia and neurodegenerative diseases. In this study, we report the effect of Costunolide on the production of proinflammatory mediators and mechanisms involved in BV2 microglial cells stimulated with LPS. Costunolide attenuated the expression of tumour necrosis factor-alpha, interleukin-1,6, inducible nitric oxide synthase, monocyte chemotactic protein 1 and cyclooxygenase 2 in activated microglia. This Costunolide-mediated inhibition was correspondent with the inhibition of NFkappaB activation. It has been further shown that Costunolide suppressed MAPK pathway activation by inducing MKP-1 production. Collectively our results suggest that Costunolide shows an ability to inhibit expression of multiple neuroinflammatory mediators and this is attributable to the compounds inhibition of NFkappaB and MAPK activation. This novel role of Costunolide upon investigation may aid in developing better therapeutic strategies for treatment of neuroinflammatory diseases.

  20. Peptidoglycan from the gut microbiota governs the lifespan of circulating phagocytes at homeostasis.

    PubMed

    Hergott, Christopher B; Roche, Aoife M; Tamashiro, Edwin; Clarke, Thomas B; Bailey, Aubrey G; Laughlin, Alice; Bushman, Frederic D; Weiser, Jeffrey N

    2016-05-19

    Maintenance of myeloid cell homeostasis requires continuous turnover of phagocytes from the bloodstream, yet whether environmental signals influence phagocyte longevity in the absence of inflammation remains unknown. Here, we show that the gut microbiota regulates the steady-state cellular lifespan of neutrophils and inflammatory monocytes, the 2 most abundant circulating myeloid cells and key contributors to inflammatory responses. Treatment of mice with broad-spectrum antibiotics, or with the gut-restricted aminoglycoside neomycin alone, accelerated phagocyte turnover and increased the rates of their spontaneous apoptosis. Metagenomic analyses revealed that neomycin altered the abundance of intestinal bacteria bearing γ-d-glutamyl-meso-diaminopimelic acid, a ligand for the intracellular peptidoglycan sensor Nod1. Accordingly, signaling through Nod1 was both necessary and sufficient to mediate the stimulatory influence of the flora on myeloid cell longevity. Stimulation of Nod1 signaling increased the frequency of lymphocytes in the murine intestine producing the proinflammatory cytokine interleukin 17A (IL-17A), and liberation of IL-17A was required for transmission of Nod1-dependent signals to circulating phagocytes. Together, these results define a mechanism through which intestinal microbes govern a central component of myeloid homeostasis and suggest perturbations of commensal communities can influence steady-state regulation of cell fate. © 2016 by The American Society of Hematology.

  1. Peptidoglycan from the gut microbiota governs the lifespan of circulating phagocytes at homeostasis

    PubMed Central

    Hergott, Christopher B.; Roche, Aoife M.; Tamashiro, Edwin; Clarke, Thomas B.; Bailey, Aubrey G.; Laughlin, Alice; Bushman, Frederic D.

    2016-01-01

    Maintenance of myeloid cell homeostasis requires continuous turnover of phagocytes from the bloodstream, yet whether environmental signals influence phagocyte longevity in the absence of inflammation remains unknown. Here, we show that the gut microbiota regulates the steady-state cellular lifespan of neutrophils and inflammatory monocytes, the 2 most abundant circulating myeloid cells and key contributors to inflammatory responses. Treatment of mice with broad-spectrum antibiotics, or with the gut-restricted aminoglycoside neomycin alone, accelerated phagocyte turnover and increased the rates of their spontaneous apoptosis. Metagenomic analyses revealed that neomycin altered the abundance of intestinal bacteria bearing γ-d-glutamyl-meso-diaminopimelic acid, a ligand for the intracellular peptidoglycan sensor Nod1. Accordingly, signaling through Nod1 was both necessary and sufficient to mediate the stimulatory influence of the flora on myeloid cell longevity. Stimulation of Nod1 signaling increased the frequency of lymphocytes in the murine intestine producing the proinflammatory cytokine interleukin 17A (IL-17A), and liberation of IL-17A was required for transmission of Nod1-dependent signals to circulating phagocytes. Together, these results define a mechanism through which intestinal microbes govern a central component of myeloid homeostasis and suggest perturbations of commensal communities can influence steady-state regulation of cell fate. PMID:26989200

  2. Activation of Peroxisome Proliferator-activated Receptor α Induces Lysosomal Biogenesis in Brain Cells

    PubMed Central

    Ghosh, Arunava; Jana, Malabendu; Modi, Khushbu; Gonzalez, Frank J.; Sims, Katherine B.; Berry-Kravis, Elizabeth; Pahan, Kalipada

    2015-01-01

    Lysosomes are ubiquitous membrane-enclosed organelles filled with an acidic interior and are central to the autophagic, endocytic, or phagocytic pathway. In contrast to its classical function as the waste management machinery, lysosomes are now considered to be an integral part of various cellular signaling processes. The diverse functionality of this single organelle requires a very complex and coordinated regulation of its activity with transcription factor EB (TFEB), a master regulator of lysosomal biogenesis, at its core. However, mechanisms by which TFEB is regulated are poorly understood. This study demonstrates that gemfibrozil, an agonist of peroxisome proliferator-activated receptor (PPAR) α, alone and in conjunction with all-trans-retinoic acid is capable of enhancing TFEB in brain cells. We also observed that PPARα, but not PPARβ and PPARγ, is involved in gemfibrozil-mediated up-regulation of TFEB. Reporter assay and chromatin immunoprecipitation studies confirmed the recruitment of retinoid X receptor α, PPARα, and PGC1α on the PPAR-binding site on the Tfeb promoter as well. Subsequently, the drug-mediated induction of TFEB caused an increase in lysosomal protein and the lysosomal abundance in cell. Collectively, this study reinforces the link between lysosomal biogenesis and lipid metabolism with TFEB at the crossroads. Furthermore, gemfibrozil may be of therapeutic value in the treatment of lysosomal storage disorders in which autophagy-lysosome pathway plays an important role. PMID:25750174

  3. Ganglioside accumulation in activated glia in the developing brain: comparison between WT and GalNAcT KO mice

    PubMed Central

    Saito, Mariko; Wu, Gusheng; Hui, Maria; Masiello, Kurt; Dobrenis, Kostantin; Ledeen, Robert W.; Saito, Mitsuo

    2015-01-01

    Our previous studies have shown accumulation of GM2 ganglioside during ethanol-induced neurodegeneration in the developing brain, and GM2 elevation has also been reported in other brain injuries and neurodegenerative diseases. Using GM2/GD2 synthase KO mice lacking GM2/GD2 and downstream gangliosides, the current study explored the significance of GM2 elevation in WT mice. Immunohistochemical studies indicated that ethanol-induced acute neurodegeneration in postnatal day 7 (P7) WT mice was associated with GM2 accumulation in the late endosomes/lysosomes of both phagocytic microglia and increased glial fibrillary acidic protein (GFAP)-positive astrocytes. However, in KO mice, although ethanol induced robust neurodegeneration and accumulation of GD3 and GM3 in the late endosomes/lysosomes of phagocytic microglia, it did not increase the number of GFAP-positive astrocytes, and the accumulation of GD3/GM3 in astrocytes was minimal. Not only ethanol, but also DMSO, induced GM2 elevation in activated microglia and astrocytes along with neurodegeneration in P7 WT mice, while lipopolysaccharide, which did not induce significant neurodegeneration, caused GM2 accumulation mainly in lysosomes of activated astrocytes. Thus, GM2 elevation is associated with activation of microglia and astrocytes in the injured developing brain, and GM2, GD2, or other downstream gangliosides may regulate astroglial responses in ethanol-induced neurodegeneration. PMID:26063460

  4. IGF1 Shapes Macrophage Activation in Response to Immunometabolic Challenge.

    PubMed

    Spadaro, Olga; Camell, Christina D; Bosurgi, Lidia; Nguyen, Kim Y; Youm, Yun-Hee; Rothlin, Carla V; Dixit, Vishwa Deep

    2017-04-11

    In concert with their phagocytic activity, macrophages are thought to regulate the host immunometabolic responses primarily via their ability to produce specific cytokines and metabolites. Here, we show that IL-4-differentiated, M2-like macrophages secrete IGF1, a hormone previously thought to be exclusively produced from liver. Ablation of IGF1 receptors from myeloid cells reduced phagocytosis, increased macrophages in adipose tissue, elevated adiposity, lowered energy expenditure, and led to insulin resistance in mice fed a high-fat diet. The investigation of adipose macrophage phenotype in obese myeloid IGF1R knockout (MIKO) mice revealed a reduction in transcripts associated with M2-like macrophage activation. Furthermore, the MIKO mice infected with helminth Nippostrongylus brasiliensis displayed delayed resolution from infection with normal insulin sensitivity. Surprisingly, cold challenge did not trigger an overt M2-like state and failed to induce tyrosine hydroxylase expression in adipose tissue macrophages of control or MIKO mice. These results show that IGF1 signaling shapes the macrophage-activation phenotype. Copyright © 2017 The Author(s). Published by Elsevier Inc. All rights reserved.

  5. Anti-tumour and immunomodulatory activities of oligosaccharides isolated from Panax ginseng C.A. Meyer.

    PubMed

    Jiao, Lili; Zhang, Xiaoyu; Li, Bo; Liu, Zhen; Wang, Mingzhu; Liu, Shuying

    2014-04-01

    Water-soluble ginseng oligosaccharides (WGOS) composed of D-glucose with a degree of polymerisation ranging from 2 to 14 were obtained from Panax ginseng C.A. Meyer. In this study, the anti-tumour and immunoregulatory effects of WGOS were evaluated in Hepatoma-22 (H22)-bearing mice. Treatment with WGOS inhibited tumour growth in vivo and significantly increased relative spleen and thymus weight, serum tumour necrosis factor-α level, spleen lymphocyte proliferation, natural killer cell activity, phagocytic function and nitric oxide production secreted by macrophage in H22-bearing mice. However, no direct cytotoxicity was detected. Therefore, the anti-tumour activity of WGOS may be related to their immunomodulatory effects. Copyright © 2014 Elsevier B.V. All rights reserved.

  6. 5-Aminoimidazole-4-carboxamide ribonucleoside-mediated adenosine monophosphate-activated protein kinase activation induces protective innate responses in bacterial endophthalmitis.

    PubMed

    Kumar, Ajay; Giri, Shailendra; Kumar, Ashok

    2016-12-01

    The retina is considered to be the most metabolically active tissue in the body. However, the link between energy metabolism and retinal inflammation, as incited by microbial infection such as endophthalmitis, remains unexplored. In this study, using a mouse model of Staphylococcus aureus (SA) endophthalmitis, we demonstrate that the activity (phosphorylation) of 5' adenosine monophosphate-activated protein kinase alpha (AMPKα), a cellular energy sensor and its endogenous substrate; acetyl-CoA carboxylase is down-regulated in the SA-infected retina. Intravitreal administration of an AMPK activator, 5-aminoimidazole-4-carboxamide ribonucleoside (AICAR), restored AMPKα and acetyl-CoA carboxylase phosphorylation. AICAR treatment reduced both the bacterial burden and intraocular inflammation in SA-infected eyes by inhibiting NF-kB and MAP kinases (p38 and JNK) signalling. The anti-inflammatory effects of AICAR were diminished in eyes pretreated with AMPK inhibitor, Compound C. The bioenergetics (Seahorse) analysis of SA-infected microglia and bone marrow-derived macrophages revealed an increase in glycolysis, which was reinstated by AICAR treatment. AICAR also reduced the expression of SA-induced glycolytic genes, including hexokinase 2 and glucose transporter 1 in microglia, bone marrow-derived macrophages and the mouse retina. Interestingly, AICAR treatment enhanced the bacterial phagocytic and intracellular killing activities of cultured microglia, macrophages and neutrophils. Furthermore, AMPKα1 global knockout mice exhibited increased susceptibility towards SA endophthalmitis, as evidenced by increased inflammatory mediators and bacterial burden and reduced retinal function. Together, these findings provide the first evidence that AMPK activation promotes retinal innate defence in endophthalmitis by modulating energy metabolism and that it can be targeted therapeutically to treat ocular infections. © 2016 John Wiley & Sons Ltd.

  7. Parasiticidal activity of bovine lactoperoxidase against Toxoplasma gondii.

    PubMed

    Tanaka, Tetsuya; Murakami, Shin; Kumura, Haruto; Igarashi, Ikuo; Shimazaki, Kei-Ichi

    2006-10-01

    Toxoplasma gondii is an obligatory intracellular parasitic protozoan transmitted via the ingestion of raw, infected meat that causes congenital infections. In a cell-free environment, virulent Toxoplasma was strikingly resistant to H2O2. The activity of H2O2 or H2O2 generated by glucose-glucose oxidase against the resistant tachyzoite stage of pathogenic T. gondii was enhanced by adding KI and bovine lactoperoxidase (bLPO), referred to here as the bLPO system. Replacing bLPO (heme content, 90%) with recombinant bLPO (heme content, 6%) did not enhance the parasiticidal activity with KI and H2O2. These results indicated that heme contributed to the enzyme activity and resulted in the killing of tachyzoites of T. gondii. Tachyzoites treated with the bLPO system also lost the ability to penetrate the mouse fibroblast cell line (NIH/3T3), and could be killed intracellularly after exposure by bLPO to a mouse macrophage cell line (J774A.1). These findings suggested that toxicity was mediated through small amounts of H2O2 generated by phagocytic events in naive macrophages, and by the peroxidative activity of bLPO. Our observations suggest that the bLPO system could help prevent the development of Toxoplasmosis in humans after ingesting raw, infected meat.

  8. The Peyer’s Patch Mononuclear Phagocyte System at Steady State and during Infection

    PubMed Central

    Da Silva, Clément; Wagner, Camille; Bonnardel, Johnny; Gorvel, Jean-Pierre; Lelouard, Hugues

    2017-01-01

    The gut represents a potential entry site for a wide range of pathogens including protozoa, bacteria, viruses, or fungi. Consequently, it is protected by one of the largest and most diversified population of immune cells of the body. Its surveillance requires the constant sampling of its encounters by dedicated sentinels composed of follicles and their associated epithelium located in specialized area. In the small intestine, Peyer’s patches (PPs) are the most important of these mucosal immune response inductive sites. Through several mechanisms including transcytosis by specialized epithelial cells called M-cells, access to the gut lumen is facilitated in PPs. Although antigen sampling is critical to the initiation of the mucosal immune response, pathogens have evolved strategies to take advantage of this permissive gateway to enter the host and disseminate. It is, therefore, critical to decipher the mechanisms that underlie both host defense and pathogen subversive strategies in order to develop new mucosal-based therapeutic approaches. Whereas penetration of pathogens through M cells has been well described, their fate once they have reached the subepithelial dome (SED) remains less well understood. Nevertheless, it is clear that the mononuclear phagocyte system (MPS) plays a critical role in handling these pathogens. MPS members, including both dendritic cells and macrophages, are indeed strongly enriched in the SED, interact with M cells, and are necessary for antigen presentation to immune effector cells. This review focuses on recent advances, which have allowed distinguishing the different PP mononuclear phagocyte subsets. It gives an overview of their diversity, specificity, location, and functions. Interaction of PP phagocytes with the microbiota and the follicle-associated epithelium as well as PP infection studies are described in the light of these new criteria of PP phagocyte identification. Finally, known alterations affecting the different

  9. The inflammatory role of phagocyte apoptotic pathways in rheumatic diseases.

    PubMed

    Cuda, Carla M; Pope, Richard M; Perlman, Harris

    2016-08-23

    Rheumatoid arthritis affects nearly 1% of the world's population and is a debilitating autoimmune condition that can result in joint destruction. During the past decade, inflammatory functions have been described for signalling molecules classically involved in apoptotic and non-apoptotic death pathways, including, but not limited to, Toll-like receptor signalling, inflammasome activation, cytokine production, macrophage polarization and antigen citrullination. In light of these remarkable advances in the understanding of inflammatory mechanisms of the death machinery, this Review provides a snapshot of the available evidence implicating death pathways, especially within the phagocyte populations of the innate immune system, in the perpetuation of rheumatoid arthritis and other rheumatic diseases. Elevated levels of signalling mediators of both extrinsic and intrinsic apoptosis, as well as the autophagy, are observed in the joints of patients with rheumatoid arthritis. Furthermore, risk polymorphisms are present in signalling molecules of the extrinsic apoptotic and autophagy death pathways. Although research into the mechanisms underlying these pathways has made considerable progress, this Review highlights areas where further investigation is particularly needed. This exploration is critical, as new discoveries in this field could lead to the development of novel therapies for rheumatoid arthritis and other rheumatic diseases.

  10. Effect of low power laser irradiation on macrophage phagocytic capacity

    NASA Astrophysics Data System (ADS)

    Lu, Cuixia; Song, Sheng; Tang, Yu; Zhou, Feifan

    2011-03-01

    Phagocytosis and subsequent degradation of pathogens by macrophages play a pivotal role in host innate immunity in mammals. Laser irradiation has been found to produce photobiological effects with evidence of interference with immunological functions. However, the effects of laser on the immune response have not been extensively characterized. In this study, we focused our attention on the effects of He-Ne laser on the phagocytic activity of macrophages by using flow cytometry (FCM). After irradiating at fluence of 0, 1, 2 J/cm2 with He-Ne laser (632.8 nm, 3mw), the cells were incubated with microsphere and then subjected to FACS analysis. The results showed that Low-power laser irradiation (LPLI) leads to an increase in phagocytosis on both mouse peritoneal macrophages and the murine macrophage-like cell line RAW264.7. In addition, we demonstrated that LPLI increased phagocytosis of microsphere in a dose-dependent manner, reaching a maximum at fluence of 2 J/cm2. Taken together, our results indicated that Low-power laser irradiation with appropriate dosage can enhance the phagocytosis of macrophage, and provided a theoretical base for the clinical use of the He-Ne laser.

  11. Interference of Antibacterial Agents with Phagocyte Functions: Immunomodulation or “Immuno-Fairy Tales”?

    PubMed Central

    Labro, Marie-Thérése

    2000-01-01

    Professional phagocytes (polymorphonuclear neutrophils and monocytes/macrophages) are a main component of the immune system. These cells are involved in both host defenses and various pathological settings characterized by excessive inflammation. Accordingly, they are key targets for immunomodulatory drugs, among which antibacterial agents are promising candidates. The basic and historical concepts of immunomodulation will first be briefly reviewed. Phagocyte complexity will then be unravelled (at least in terms of what we know about the origin, subsets, ambivalent roles, functional capacities, and transductional pathways of this cell and how to explore them). The core subject of this review will be the many possible interactions between antibacterial agents and phagocytes, classified according to demonstrated or potential clinical relevance (e.g., neutropenia, intracellular accumulation, and modulation of bacterial virulence). A detailed review of direct in vitro effects will be provided for the various antibacterial drug families, followed by a discussion of the clinical relevance of these effects in two particular settings: immune deficiency and inflammatory diseases. The prophylactic and therapeutic use of immunomodulatory antibiotics will be considered before conclusions are drawn about the emerging (optimistic) vision of future therapeutic prospects to deal with largely unknown new diseases and new pathogens by using new agents, new techniques, and a better understanding of the phagocyte in particular and the immune system in general. PMID:11023961

  12. NADPH Oxidase-Driven Phagocyte Recruitment Controls Candida albicans Filamentous Growth and Prevents Mortality

    PubMed Central

    Brothers, Kimberly M.; Gratacap, Remi L.; Barker, Sarah E.; Newman, Zachary R.; Norum, Ashley; Wheeler, Robert T.

    2013-01-01

    Candida albicans is a human commensal and clinically important fungal pathogen that grows as both yeast and hyphal forms during human, mouse and zebrafish infection. Reactive oxygen species (ROS) produced by NADPH oxidases play diverse roles in immunity, including their long-appreciated function as microbicidal oxidants. Here we demonstrate a non-traditional mechanistic role of NADPH oxidase in promoting phagocyte chemotaxis and intracellular containment of fungi to limit filamentous growth. We exploit the transparent zebrafish model to show that failed NADPH oxidase-dependent phagocyte recruitment to C. albicans in the first four hours post-infection permits fungi to germinate extracellularly and kill the host. We combine chemical and genetic tools with high-resolution time-lapse microscopy to implicate both phagocyte oxidase and dual-specific oxidase in recruitment, suggesting that both myeloid and non-myeloid cells promote chemotaxis. We show that early non-invasive imaging provides a robust tool for prognosis, strongly connecting effective early immune response with survival. Finally, we demonstrate a new role of a key regulator of the yeast-to-hyphal switching program in phagocyte-mediated containment, suggesting that there are species-specific methods for modulation of NADPH oxidase-independent immune responses. These novel links between ROS-driven chemotaxis and fungal dimorphism expand our view of a key host defense mechanism and have important implications for pathogenesis. PMID:24098114

  13. Activation of professional antigen presenting cells by acharan sulfate isolated from giant African snail, Achatina fulica.

    PubMed

    Kim, Hyun-Sun; Lee, Young-Hee; Lee, Young-Ran; Im, Sun-A; Lee, Jae-Kwon; Kim, Yeong Shik; Sim, Joon-Soo; Choi, Hyung Seok; Lee, Chong-Kil

    2007-07-01

    Acharan sulfate isolated from the giant African snail, Achatina fulica, has been reported to have antitumor activity in vivo. In an effort to determine the mechanisms of its antitumor activity, we examined the effects of acharan sulfate on professional antigen presenting cells (APCs). Acharan sulfate increased the phagocytic activity, the production of cytokines such as TNF-alpha and IL-1beta, and the release of nitric oxide on a macrophage cell line, Raw 264.7 cells. In addition, acharan sulfate induced phenotypic and functional maturation of immature dendritic cells (DCs). Immature DCs cultured with acharan sulfate expressed higher levels of class II MHC molecules and major co-stimulatory molecules such as B7-1, B7-2, and CD40. Functional maturation of immature DCs cultured in the presence of acharan sulfate was confirmed by the increased allostimulatory capacity and IL-12 production. These results suggest that the antitumor activity of acharan sulfate is partly due to the activation of professional antigen presenting cells.

  14. Selective Biological Responses of Phagocytes and Lungs to Purified Histones.

    PubMed

    Fattahi, Fatemeh; Grailer, Jamison J; Lu, Hope; Dick, Rachel S; Parlett, Michella; Zetoune, Firas S; Nuñez, Gabriel; Ward, Peter A

    2017-01-01

    Histones invoke strong proinflammatory responses in many different organs and cells. We assessed biological responses to purified or recombinant histones, using human and murine phagocytes and mouse lungs. H1 had the strongest ability in vitro to induce cell swelling independent of requirements for toll-like receptors (TLRs) 2 or 4. These responses were also associated with lactate dehydrogenase release. H3 and H2B were the strongest inducers of [Ca2+]i elevations in phagocytes. Cytokine and chemokine release from mouse and human phagocytes was predominately a function of H2A and H2B. Double TLR2 and TLR4 knockout (KO) mice had dramatically reduced cytokine release induced in macrophages exposed to individual histones. In contrast, macrophages from single TLR-KO mice showed few inhibitory effects on cytokine production. Using the NLRP3 inflammasome protocol, release of mature IL-1β was predominantly a feature of H1. Acute lung injury following the airway delivery of histones suggested that H1, H2A, and H2B were linked to alveolar leak of albumin and the buildup of polymorphonuclear neutrophils as well as the release of chemokines and cytokines into bronchoalveolar fluids. These results demonstrate distinct biological roles for individual histones in the context of inflammation biology and the requirement of both TLR2 and TLR4. © 2017 S. Karger AG, Basel.

  15. Activation of inflammasome signaling mediates pathology of acute P. aeruginosa pneumonia

    PubMed Central

    Cohen, Taylor S.; Prince, Alice S.

    2013-01-01

    The respiratory tract is exceptionally well defended against infection from inhaled bacteria, with multiple proinflammatory signaling cascades recruiting phagocytes to clear airway pathogens. However, organisms that efficiently activate damaging innate immune responses, such as those mediated by the inflammasome and caspase-1, may cause pulmonary damage and interfere with bacterial clearance. The extracellular, opportunistic pathogen Pseudomonas aeruginosa expresses not only pathogen-associated molecular patterns that activate NF-κB signaling in epithelial and immune cells, but also flagella that activate the NLRC4 inflammasome. We demonstrate that induction of inflammasome signaling, ascribed primarily to the alveolar macrophage, impaired P. aeruginosa clearance and was associated with increased apoptosis/pyroptosis and mortality in a murine model of acute pneumonia. Strategies that limited inflammasome activation, including infection by fliC mutants, depletion of macrophages, deletion of NLRC4, reduction of IL-1β and IL-18 production, inhibition of caspase-1, and inhibition of downstream signaling in IL-1R– or IL-18R–null mice, all resulted in enhanced bacterial clearance and diminished pathology. These results demonstrate that the inflammasome provides a potential target to limit the pathological consequences of acute P. aeruginosa pulmonary infection. PMID:23478406

  16. Supraependymal cells of hypothalamic third ventricle: identification as resident phagocytes of the brain.

    PubMed

    Bleier, R; Albrecht, R; Cruce, J A

    1975-07-25

    Cells lying on the ventricular surface of the hypothalamic ependyma of the tegu lizard exhibit the pseudopodial and flaplike processes characteristic of macrophages found elsewhere. Since they ingest latex beads, they may be considered a resident phagocytic system of the brain. The importance of ependyma and ventricular phagocytes as a first line of defense against viral invasion of the brain, as well as their role in the pathogenesis of certain virus-related diseases, is suggested by a number of experimental and clinical observations.

  17. Role of the phagocytes on embryos: some morphological aspects.

    PubMed

    Da Silva, José Roberto Machado Cunha

    2002-06-15

    Phagocytosis in embryos was studied by Elie Metchnikoff more than a century ago and is a pillar of the Phagocytic Theory. Throughout the last three decades phagocytosis in embryos has been studied from different perspectives, which this review describes and analyzes. The following branches were identified: 1) the search for the origin and first identification of well-known adult phagocytes in embryos, including their role after induced injuries; 2) the search for the occurrence of phagocytosis in embryos and its role during their physiological development; and 3) the search for phagocytosis in embryos, as a tool to study identity and self-recognition. It is possible to verify that different cell types are able to undertake phagocytosis, under a variety of different stimuli, and that the nature of what is phagocytosed also varies widely. Although the overwhelming majority of species described among metazoarians are invertebrates, most published articles in this field relate to mammals (particularly mice and humans) and birds (particularly chicks). In order to enrich this field of knowledge, research using a wider variety of vertebrate and invertebrate species should be undertaken. Furthermore, the present knowledge of phagocytosis in embryos needs a revised paradigm capable of embracing all the above-mentioned research trends under a single, more general, biological theory. In this sense, Metchnikoff's Phagocytic Theory, which is based on a broad biological paradigm and is thus capable of dealing with all research trends mentioned herein, should be revisited in order to contribute to this edification. Copyright 2002 Wiley-Liss, Inc.

  18. Contrasting Responses of Kupffer Cells and Inflammatory Mononuclear Phagocytes to Biliary Obstruction in a Mouse Model of Cholestatic Liver Injury

    PubMed Central

    Duwaerts, Caroline C.; Gehring, Stephan; Cheng, Chao-Wen; van Rooijen, Nico; Gregory, Stephen H.

    2012-01-01

    Background Biliary obstruction and cholestasis are serious complications of many liver diseases. While resident hepatic macrophages (Kupffer cells) are frequently implicated in disease progression, most studies fail to differentiate the contribution of Kupffer cells and inflammatory mononuclear phagocytes (iMNPs) that infiltrate the liver subsequent to obstruction. Aim This study was undertaken to examine the roles and potential interactions of these two disparate mononuclear phagocyte populations in hepatic injury attending cholestasis. Methods Female, C57Bl/6 mice were injected with magnetic beads on day three prior to sham operation or bile duct ligation (BDL) in order to facilitate subsequent Kupffer cell isolation. Three days post surgery, animals were euthanized, and bead-containing Kupffer cells and iMNPs were separated, purified, and analyzed. To examine the ability of Kupffer cells to modulate iMNP activity, iMNPs were isolated from the livers of intact and Kupffer cell-depleted mice on day 3 post-surgery and compared. Results Purified Kupffer cells and iMNP populations obtained from BDL mice exhibited heterogeneous morphologies rendering them visually indistinguishable. iMNPs, however, were characterized by the increased expression of Ly-6C and CD11b and the elevated production of chemokines/cytokines characteristic of inflammatory cells. In the absence of Kupffer cells, iMNPs immigrating to the liver following BDL exhibited significant decreases in CD11b and Ly-6C expression, and in pro-inflammatory chemokine/cytokine production. Conclusions Kupffer cells and iMNPs exhibit disparate biological responses to biliary obstruction and cholestasis. Kupffer cells play a key role in regulating iMNP influx and activity. PMID:23240869

  19. Interactions of phagocytes with the Lyme disease spirochete: role of the Fc receptor

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Benach, J.L.; Fleit, H.B.; Habicht, G.S.

    1984-10-01

    The phagocytic capacity of murine and human mononuclear and polymorphonuclear phagocytes (including peripheral blood monocytes and neutrophils), rabbit and murine peritoneal exudate cells, and the murine macrophage cell line P388D1 against the Lyme disease spirochete was studied. All of these cells were capable of phagocytosing the spirochete; phagocytosis was measured by the uptake of radiolabeled spirochetes, the appearance of immunofluorescent bodies in phagocytic cells, and electron microscopy. Both opsonized and nonopsonized organisms were phagocytosed. The uptake of opsonized organisms by neutrophils was blocked by a monoclonal antibody specific for the Fc receptor and by immune complexes; these findings suggested thatmore » most phagocytosis is mediated by the Fc receptor. Similarly, the uptake of opsonized organisms by human monocytes was inhibited by human monomeric IgG1 and by immune complexes. These results illustrate the role of immune phagocytosis of spirochetes in host defense against Lyme disease.« less

  20. Pranic meditation affects phagocyte functions and hormonal levels of recent practitioners.

    PubMed

    Fernandes, César A; Nóbrega, Yanna K M; Tosta, C Eduardo

    2012-08-01

    Despite the recognized importance of phagocytes in the maintenance and recovery of health, the influence of meditation on their functions is not properly established. This investigation aimed at evaluating the influence of pranic meditation on the functions of phagocytes, and on the levels of hormones that influence them. A pre-post design was adopted. The investigation was carried out at a university research laboratory. Twenty-nine (29) healthy individuals of both sexes, 24-67 years old (median 45), with no previous experience in meditation, received 3-hour-duration weekly training on pranic meditation during 10 weeks and agreed to engage in daily home practice for 20 minutes. Pranic meditation is a novel method of meditation, based on the Vedic tradition, which uses techniques of breathing and visualization for quieting the mind, and for capturing and intentionally directing prana ("vital energy") wherever necessary. For assessing phagocytosis, the production of hydrogen peroxide and nitric oxide by monocytes, and the concentrations of corticotrophin and cortisol, blood was collected at the beginning (week 1), at the middle (week 5), and by the end (week 10) of the practice period. At the same intervals, melatonin concentrations were evaluated in the saliva. Those who meditated for more than 980 minutes showed increased phagocytosis, their monocytes produced higher concentrations of hydrogen peroxide, and their plasma levels of corticotrophin were reduced. The production of nitric oxide by monocytes, and the levels of cortisol and melatonin were not modified by meditation. This is the first study to show that a short program of pranic meditation practice was able to upregulate the function and metabolism of phagocytes, in parallel with the reduction of the plasma levels of corticotrophin. The results of this study point to a possible causal effect between these events, and indicate that pranic meditation could be useful for stimulating the function and

  1. Mononuclear-macrophages but not neutrophils act as major infiltrating anti-leptospiral phagocytes during leptospirosis.

    PubMed

    Chen, Xu; Li, Shi-Jun; Ojcius, David M; Sun, Ai-Hua; Hu, Wei-Lin; Lin, Xu'ai; Yan, Jie

    2017-01-01

    To identify the major infiltrating phagocytes during leptospirosis and examine the killing mechanism used by the host to eliminate Leptospira interrogans. Major infiltrating phagocytes in Leptospira-infected C3H/HeJ mice were detected by immunohistochemistry. Chemokines and vascular endothelial cell adhesion molecules (VECAMs) of Leptospira-infected mice and leptospirosis patients were detected by microarray and immunohistochemistry. Leptospira-phagocytosing and -killing abilities of human or mouse macrophages and neutrophils, and the roles of intracellular ROS, NO and [Ca2+]i in Leptospira-killing process were evaluated by confocal microscopy and spectrofluorimetry. Peripheral blood mononuclear-macrophages rather than neutrophils were the main infiltrating phagocytes in the lungs, liver and kidneys of infected mice. Levels of macrophage- but not neutrophil-specific chemokines and VECAMs were significantly increased in the samples from infected mice and patients. All macrophages tested had a higher ability than neutrophils to phagocytose and kill leptospires. Higher ROS and NO levels and [Ca2+]i in the macrophages were involved in killing leptospires. Human macrophages displayed more phagolysosome formation and a stronger leptospire-killing ability to than mouse macrophages. Mononuclear-macrophages but not neutrophils represent the main infiltrating and anti-leptospiral phagocytes during leptospirosis. A lower level of phagosome-lysosome fusion may be responsible for the lower Leptospira-killing ability of human macrophages.

  2. M-CSF Mediates Host Defense during Bacterial Pneumonia by Promoting the Survival of Lung and Liver Mononuclear Phagocytes.

    PubMed

    Bettina, Alexandra; Zhang, Zhimin; Michels, Kathryn; Cagnina, R Elaine; Vincent, Isaah S; Burdick, Marie D; Kadl, Alexandra; Mehrad, Borna

    2016-06-15

    Gram-negative bacterial pneumonia is a common and dangerous infection with diminishing treatment options due to increasing antibiotic resistance among causal pathogens. The mononuclear phagocyte system is a heterogeneous group of leukocytes composed of tissue-resident macrophages, dendritic cells, and monocyte-derived cells that are critical in defense against pneumonia, but mechanisms that regulate their maintenance and function during infection are poorly defined. M-CSF has myriad effects on mononuclear phagocytes but its role in pneumonia is unknown. We therefore tested the hypothesis that M-CSF is required for mononuclear phagocyte-mediated host defenses during bacterial pneumonia in a murine model of infection. Genetic deletion or immunoneutralization of M-CSF resulted in reduced survival, increased bacterial burden, and greater lung injury. M-CSF was necessary for the expansion of lung mononuclear phagocytes during infection but did not affect the number of bone marrow or blood monocytes, proliferation of precursors, or recruitment of leukocytes to the lungs. In contrast, M-CSF was essential to survival and antimicrobial functions of both lung and liver mononuclear phagocytes during pneumonia, and its absence resulted in bacterial dissemination to the liver and hepatic necrosis. We conclude that M-CSF is critical to host defenses against bacterial pneumonia by mediating survival and antimicrobial functions of mononuclear phagocytes in the lungs and liver. Copyright © 2016 by The American Association of Immunologists, Inc.

  3. M-CSF mediates host defense during bacterial pneumonia by promoting the survival of lung and liver mononuclear phagocytes

    PubMed Central

    Bettina, Alexandra; Zhang, Zhimin; Michels, Kathryn; Cagnina, R. Elaine; Vincent, Isaah S.; Burdick, Marie D.; Kadl, Alexandra; Mehrad, Borna

    2016-01-01

    Gram-negative bacterial pneumonia is a common and dangerous infection with diminishing treatment options due to increasing antibiotic resistance among causal pathogens. The mononuclear phagocyte system is a heterogeneous group of leukocytes composed of tissue-resident macrophages, dendritic cells and monocyte-derived cells that are critical in defense against pneumonia, but mechanisms that regulate their maintenance and function during infection are poorly defined. Macrophage-colony stimulating factor (M-CSF) has myriad effects on mononuclear phagocytes but its role in pneumonia is unknown. We therefore tested the hypothesis that M-CSF is required for mononuclear phagocyte-mediated host defenses during bacterial pneumonia in a murine model of infection. Genetic deletion or immunoneutralization of M-CSF resulted in reduced survival, increased bacterial burden and greater lung injury. M-CSF was necessary for the expansion of lung mononuclear phagocytes during infection but did not affect the number of bone marrow or blood monocytes, the proliferation of precursors or the recruitment of leukocytes to the lungs. In contrast, M-CSF was essential to survival and anti-microbial functions of both lung and liver mononuclear phagocytes during pneumonia and its absence resulted in bacterial dissemination to the liver and hepatic necrosis. We conclude that M-CSF is critical to host defenses against bacterial pneumonia by mediating survival and anti-microbial functions of mononuclear phagocytes in the lungs and liver. PMID:27183631

  4. Antiorthostatic suspension stimulates profiles of macrophage activation in mice

    NASA Technical Reports Server (NTRS)

    Miller, E. S.; Bates, R. A.; Koebel, D. A.; Sonnenfeld, G.

    1999-01-01

    The antiorthostatic suspension model simulates certain physiological effects of spaceflight. We have previously reported BDF1 mice suspended by the tail in the antiorthostatic orientation for 4 days express high levels of resistance to virulent Listeria monocytogenesinfection. In the present study, we examined whether the increased resistance to this organism correlates with profiles of macrophage activation, given the role of the macrophage in killing this pathogen in vivo. We infected BDF1 mice with a lethal dose of virulent L. monocytogenes on day 4 of antiorthostatic suspension and 24 h later constructed profiles of macrophage activation. Viable listeria could not be detected in mice suspended in the antiorthostatic orientation 24 h after infection. Flow cytometric analysis revealed the numbers of granulocytes and mononuclear phagocytes in the spleen of infected mice were not significantly altered as a result of antiorthostatic suspension. Splenocytes from antiorthostatically suspended infected mice produced increased titers of IL-1. Serum levels of neopterin, a nucleotide metabolite secreted by activated macrophages, were enhanced in mice infected during antiorthostatic suspension, but not in antiorthostatically suspended naive mice. Splenic macrophages from mice infected on day 4 of suspension produced enhanced levels of lysozyme. In contrast to the results from antiorthostatically suspended infected mice, macrophages from antiorthostatically suspended uninfected mice did not express enhanced bactericidal activities. The collective results indicate that antiorthostatic suspension can stimulate profiles of macrophage activation which correlate with increased resistance to infection by certain classes of pathogenic bacteria.

  5. Activation of multiple pH-regulatory pathways in granulocytes by a phosphotyrosine phosphatase antagonist.

    PubMed Central

    Bianchini, L; Nanda, A; Wasan, S; Grinstein, S

    1994-01-01

    Activated phagocytes undergo a massive burst of metabolic acid generation, yet must be able to maintain their cytosolic pH (pHi) within physiological limits. Peroxides of vanadate (V(4+)-OOH), potent inhibitors of phosphotyrosine phosphatases, have recently been shown to produce activation of the respiratory burst in HL60 granulocytes. We therefore investigated the effects of V(4+)-OOH on pHi homoeostasis in HL60 granulocytes, using a pH-sensitive fluorescent dye. V(4+)-OOH stimulation induced a biphasic pH change: a transient cytosolic acidification followed by a significant alkalinization. The initial acidification was prevented by inhibition of the NADPH oxidase and was absent in undifferentiated cells lacking oxidase activity. Analysis of the alkalinization phase demonstrated the involvement of the Na+/H+ antiporter, and also provided evidence for activation of two alternative H(+)-extrusion pathways: a bafilomycin-sensitive component, likely reflecting vacuolar-type H(+)-ATPase activity, and a Zn(2+)-sensitive H(+)-conductive pathway. Our results indicate that V(4+)-OOH stimulation not only activated the NADPH oxidase but concomitantly stimulated H(+)-extrusion pathways, enabling the cells to compensate for the massive production of intracellular H+ associated with the respiratory burst. PMID:8043000

  6. Differential cell reaction upon Toll-like receptor 4 and 9 activation in human alveolar and lung interstitial macrophages

    PubMed Central

    2010-01-01

    Background Investigations on pulmonary macrophages (MΦ) mostly focus on alveolar MΦ (AM) as a well-defined cell population. Characteristics of MΦ in the interstitium, referred to as lung interstitial MΦ (IM), are rather ill-defined. In this study we therefore aimed to elucidate differences between AM and IM obtained from human lung tissue. Methods Human AM and IM were isolated from human non-tumor lung tissue from patients undergoing lung resection. Cell morphology was visualized using either light, electron or confocal microscopy. Phagocytic activity was analyzed by flow cytometry as well as confocal microscopy. Surface marker expression was measured by flow cytometry. Toll-like receptor (TLR) expression patterns as well as cytokine expression upon TLR4 or TLR9 stimulation were assessed by real time RT-PCR and cytokine protein production was measured using a fluorescent bead-based immunoassay. Results IM were found to be smaller and morphologically more heterogeneous than AM, whereas phagocytic activity was similar in both cell types. HLA-DR expression was markedly higher in IM compared to AM. Although analysis of TLR expression profiles revealed no differences between the two cell populations, AM and IM clearly varied in cell reaction upon activation. Both MΦ populations were markedly activated by LPS as well as DNA isolated from attenuated mycobacterial strains (M. bovis H37Ra and BCG). Whereas AM expressed higher amounts of inflammatory cytokines upon activation, IM were more efficient in producing immunoregulatory cytokines, such as IL10, IL1ra, and IL6. Conclusion AM appear to be more effective as a non-specific first line of defence against inhaled pathogens, whereas IM show a more pronounced regulatory function. These dissimilarities should be taken into consideration in future studies on the role of human lung MΦ in the inflammatory response. PMID:20843333

  7. Divergence of macrophage phagocytic and antimicrobial programs in leprosy.

    PubMed

    Montoya, Dennis; Cruz, Daniel; Teles, Rosane M B; Lee, Delphine J; Ochoa, Maria Teresa; Krutzik, Stephan R; Chun, Rene; Schenk, Mirjam; Zhang, Xiaoran; Ferguson, Benjamin G; Burdick, Anne E; Sarno, Euzenir N; Rea, Thomas H; Hewison, Martin; Adams, John S; Cheng, Genhong; Modlin, Robert L

    2009-10-22

    Effective innate immunity against many microbial pathogens requires macrophage programs that upregulate phagocytosis and direct antimicrobial pathways, two functions generally assumed to be coordinately regulated. We investigated the regulation of these key functions in human blood-derived macrophages. Interleukin-10 (IL-10) induced the phagocytic pathway, including the C-type lectin CD209 and scavenger receptors, resulting in phagocytosis of mycobacteria and oxidized low-density lipoprotein. IL-15 induced the vitamin D-dependent antimicrobial pathway and CD209, yet the cells were less phagocytic. The differential regulation of macrophage functional programs was confirmed by analysis of leprosy lesions: the macrophage phagocytosis pathway was prominent in the clinically progressive, multibacillary form of the disease, whereas the vitamin D-dependent antimicrobial pathway predominated in the self-limited form and in patients undergoing reversal reactions from the multibacillary to the self-limited form. These data indicate that macrophage programs for phagocytosis and antimicrobial responses are distinct and differentially regulated in innate immunity to bacterial infections.

  8. Loss of Proliferation and Antigen Presentation Activity following Internalization of Polydispersed Carbon Nanotubes by Primary Lung Epithelial Cells

    PubMed Central

    Kumari, Mandavi; Sachar, Sumedha; Saxena, Rajiv K.

    2012-01-01

    Interactions between poly-dispersed acid functionalized single walled carbon nanotubes (AF-SWCNTs) and primary lung epithelial (PLE) cells were studied. Peritoneal macrophages (PMs, known phagocytic cells) were used as positive controls in this study. Recovery of live cells from cultures of PLE cells and PMs was significantly reduced in the presence of AF-SWCNTs, in a time and dose dependent manner. Both PLE cells as well as PMs could take up fluorescence tagged AF-SWCNTs in a time dependent manner and this uptake was significantly blocked by cytochalasin D, an agent that blocks the activity of acto-myosin fibers and therefore the phagocytic activity of cells. Confocal microscopic studies confirmed that AF-SWCNTs were internalized by both PLE cells and PMs. Intra-trachially instilled AF-SWCNTs could also be taken up by lung epithelial cells as well as alveolar macrophages. Freshly isolated PLE cells had significant cell division activity and cell cycling studies indicated that treatment with AF-SWCNTs resulted in a marked reduction in S-phase of the cell cycle. In a previously standardized system to study BCG antigen presentation by PLE cells and PMs to sensitized T helper cells, AF-SWCNTs could significantly lower the antigen presentation ability of both cell types. These results show that mouse primary lung epithelial cells can efficiently internalize AF-SWCNTs and the uptake of nanotubes interfered with biological functions of PLE cells including their ability to present BCG antigens to sensitized T helper cells. PMID:22384094

  9. Inhibition of caspase activity prevents CD95-mediated hepatic microvascular perfusion failure and restores Kupffer cell clearance capacity.

    PubMed

    Wanner, G A; Mica, L; Wanner-Schmid, E; Kolb, S A; Hentze, H; Trentz, O; Ertel, W

    1999-07-01

    Using a murine model, we studied the effect of agonistic anti-CD95 antibodies (aCD95) on sinusoidal lining cells and a potential protection by caspase inhibition. C3H/HeN mice were intravenously administered aCD95 (10 microgram/mouse) or unspecific IgG (control) in the presence or absence of the caspase inhibitor z-VAD-fmk. Analysis of hepatic microcirculation using intravital fluorescence microscopy revealed severe (P<0.01) sinusoidal perfusion failure and reduced (P<0.05) phagocytic activity of Kupffer cells (KC) within 2 h. Transmission electron micrographs demonstrated loss of integrity of sinusoidal endothelial cells as early as 1 h after aCD95 application, whereas histological manifestation of hepatocellular apoptosis and hemorrhagic necrosis was most pronounced at 6 h. Blocking of caspase activity attenuated (P<0.01) both hepatic microvascular perfusion failure and KC dysfunction. Accordingly, full protection of the liver from apoptotic damage and intact microarchitecture was observed in histological sections after z-VAD-fmk treatment. Mortality rate was 40% 6 h after aCD95 administration, whereas all animals survived in the z-VAD-fmk group (P<0.05). The activation of caspases through CD95 may primarily lead to damage of sinusoidal endothelial cells and hepatic microvascular perfusion failure. Moreover, reduced phagocytic capacity of KC may contribute to accumulation of toxic metabolites released by dying cells at the local site of inflammation, further aggravating liver injury.

  10. Microbiota of the Small Intestine Is Selectively Engulfed by Phagocytes of the Lamina Propria and Peyer's Patches.

    PubMed

    Morikawa, Masatoshi; Tsujibe, Satoshi; Kiyoshima-Shibata, Junko; Watanabe, Yohei; Kato-Nagaoka, Noriko; Shida, Kan; Matsumoto, Satoshi

    2016-01-01

    Phagocytes such as dendritic cells and macrophages, which are distributed in the small intestinal mucosa, play a crucial role in maintaining mucosal homeostasis by sampling the luminal gut microbiota. However, there is limited information regarding microbial uptake in a steady state. We investigated the composition of murine gut microbiota that is engulfed by phagocytes of specific subsets in the small intestinal lamina propria (SILP) and Peyer's patches (PP). Analysis of bacterial 16S rRNA gene amplicon sequences revealed that: 1) all the phagocyte subsets in the SILP primarily engulfed Lactobacillus (the most abundant microbe in the small intestine), whereas CD11bhi and CD11bhiCD11chi cell subsets in PP mostly engulfed segmented filamentous bacteria (indigenous bacteria in rodents that are reported to adhere to intestinal epithelial cells); and 2) among the Lactobacillus species engulfed by the SILP cell subsets, L. murinus was engulfed more frequently than L. taiwanensis, although both these Lactobacillus species were abundant in the small intestine under physiological conditions. These results suggest that small intestinal microbiota is selectively engulfed by phagocytes that localize in the adjacent intestinal mucosa in a steady state. These observations may provide insight into the crucial role of phagocytes in immune surveillance of the small intestinal mucosa.

  11. Effects of PVA-coated nanoparticles on human T helper cell activity.

    PubMed

    Strehl, Cindy; Schellmann, Saskia; Maurizi, Lionel; Hofmann-Amtenbrink, Margarethe; Häupl, Thomas; Hofmann, Heinrich; Buttgereit, Frank; Gaber, Timo

    2016-03-14

    Superparamagnetic iron oxide nanoparticles (SPION) are used as high-sensitive enhancer for magnetic resonance imaging, where they represent a promising tool for early diagnosis of destructive diseases such as rheumatoid arthritis (RA). Since we could demonstrate that professional phagocytes are activated by amino-polyvinyl-alcohol-coated-SPION (a-PVA-SPION), the study here focuses on the influence of a-PVA-SPION on human T cells activity. Therefore, primary human CD4+ T cells from RA patients and healthy subjects were treated with varying doses of a-PVA-SPION for 20h or 72h. T cells were then analyzed for apoptosis, cellular energy, expression of the activation marker CD25 and cell proliferation. Although, we observed that T cells from RA patients are more susceptible to low-dose a-PVA-SPION-induced apoptosis than T cells from healthy subjects, in both groups a-PVA-SPION do not activate CD4+ T cells per se and do not influence mitogen-mediated T cells activation with regard to CD25 expression and cell proliferation. Nevertheless, our results demonstrate that CD4+ T cells from RA patients and healthy subjects differ in their response to mitogen stimulation and oxygen availability. We conclude from our data, that a-PVA-SPION do neither activate nor significantly influence mitogen-stimulated CD4+ T cells activation and have negligible influence on T cells apoptosis. Copyright © 2016 Elsevier Ireland Ltd. All rights reserved.

  12. Development of an In Vitro Model for the Multi-Parametric Quantification of the Cellular Interactions between Candida Yeasts and Phagocytes

    PubMed Central

    Noël, Thierry

    2012-01-01

    We developed a new in vitro model for a multi-parameter characterization of the time course interaction of Candida fungal cells with J774 murine macrophages and human neutrophils, based on the use of combined microscopy, fluorometry, flow cytometry and viability assays. Using fluorochromes specific to phagocytes and yeasts, we could accurately quantify various parameters simultaneously in a single infection experiment: at the individual cell level, we measured the association of phagocytes to fungal cells and phagocyte survival, and monitored in parallel the overall phagocytosis process by measuring the part of ingested fungal cells among the total fungal biomass that changed over time. Candida albicans, C. glabrata, and C. lusitaniae were used as a proof of concept: they exhibited species-specific differences in their association rate with phagocytes. The fungal biomass uptaken by the phagocytes differed significantly according to the Candida species. The measure of the survival of fungal and immune cells during the interaction showed that C. albicans was the more aggressive yeast in vitro, destroying the vast majority of the phagocytes within five hours. All three species of Candida were able to survive and to escape macrophage phagocytosis either by the intraphagocytic yeast-to-hyphae transition (C. albicans) and the fungal cell multiplication until phagocytes burst (C. glabrata, C. lusitaniae), or by the avoidance of phagocytosis (C. lusitaniae). We demonstrated that our model was sensitive enough to quantify small variations of the parameters of the interaction. The method has been conceived to be amenable to the high-throughput screening of mutants in order to unravel the molecular mechanisms involved in the interaction between yeasts and host phagocytes. PMID:22479332

  13. Heterogeneity of macrophages in injured trigeminal nerves: cytokine/chemokine expressing vs. phagocytic macrophages.

    PubMed

    Lee, SeungHwan; Zhang, Ji

    2012-08-01

    Macrophages are important immune effector cells in both innate and adaptive immune responses. Injury to peripheral nerves triggers activation of resident macrophages and infiltration of haematogenous macrophages, which they play critical roles in Wallerian degeneration and neuropathic pain. As macrophages are able to change their phenotypes in response to environment cues, we attempt to identify distinct phenotypes of macrophages in injured nerves and to understand the potential contribution of each macrophage subpopulation to the genesis of neuropathic pain associated with nerve injury. Rat mental nerves (terminal branches of trigeminal nerve) were loosely ligated. Sensitivity to mechanical stimuli at the lower lip area was monitored using calibrated von Frey Hairs. We examined the expression pattern of Iba-1, MAC1 and ED1 which allow us to reveal the immunophenotypes of macrophages at different time points post-injury. Functional status of each macrophage subpopulation was further investigated by colocalization with cytokines/chemokines, myelin basic protein and MHC II antigen, which reflect respectively secretory, phagocytic and antigen presentation properties of activated macrophages. Following nerve injury, a burst of Iba-1(+) macrophages was found in injured mental nerves. Among them, we detected two major immunophenotypes: MAC1(+) cytokines/chemokines secreting macrophages and ED1(+) phagocytic macrophages. Small, round shaped MAC1(+) macrophages were distributed essentially around the lesion site and existed only at early time points. Large, irregular and foamy ED1(+) macrophages were found among damaged nerve fibers and they persisted for at least 3 months post-injury. Although ED1(+) macrophages did not secrete inflammatory mediators, they were able to express neurotransmitter CGRP and MHC II at later time points. In parallel, we observed that mechanical allodynia developed after the nerve ligation was at its lowest level within 1 month. Although slightly

  14. Immunomodulatory potencies of isolated compounds from Crataegus azarolus through their antioxidant activities.

    PubMed

    Mustapha, Nadia; Mokdad-Bzéouich, Imèn; Sassi, Aicha; Abed, Besma; Ghedira, Kamel; Hennebelle, Thierry; Chekir-Ghedira, Leila

    2016-06-01

    The search of natural immunomodulatory agents has become an area of great interest in order to reduce damage to the human body. In this study, the immunomodulatory potential of Crataegus azarolus and its isolated hyperoside on mouse lymphocytes and macrophages in vitro was assessed. The effect of C. azarolus natural compounds on splenocytes proliferation, natural killer (NK) and cytotoxic T lymphocytes (CTL) activities, and on macrophage-mediated cytotoxicity were assessed by MTT test. Phagocytic activity and inhibition of nitric oxide (NO) release by macrophages were also evaluated. The antioxidant capacity of these products was evaluated by determining their cellular antioxidant activity (CAA) in splenocytes and macrophages. Depending on the concentrations, both ethyl acetate (EA) extract and hyperoside (Hyp) from C. azarolus affect macrophage functions by modulating their lysosomal enzyme activity and nitric oxide release. Whereas, the above-mentioned products significantly promote LPS and lectin-stimulated splenocyte proliferation, implying a potential activation of lymphocytes B and T enhancing humoral and cellular immune responses. Moreover, EA extract and Hyp could enhance the activity of NK and T lymphocytes cells, as well as the macrophages-mediated cytotoxicity against B16F10 cells. The anti-inflammatory activity was concomitant with the cellular antioxidant effect of the tested compounds against macrophages and splenocytes. Collectively, C. azarolus and its isolated hyperoside exhibited an immunomodulatory effect through their antioxidant activity. These findings suggest that C. azarolus should be explored as a novel potential immunomodulatory agent for the treatment of inflammatory diseases.

  15. High-dose catecholamine treatment decreases polymorphonuclear leukocyte phagocytic capacity and reactive oxygen production.

    PubMed Central

    Wenisch, C; Parschalk, B; Weiss, A; Zedwitz-Liebenstein, K; Hahsler, B; Wenisch, H; Georgopoulos, A; Graninger, W

    1996-01-01

    Flow cytometry was used to study phagocytic function (uptake of fluorescein isothiocyanate-labeled bacteria) and release of reactive oxygen products (dihydrorhodamine 123 converted to rhodamine 123) following phagocytosis by neutrophil granulocytes of heparinized whole blood treated with adrenaline, noradrenaline, dopamine, dobutamine, or orciprenaline. Reduced neutrophil phagocytosis and reactive oxygen production were seen at 12 micrograms of adrenaline per liter (72% each compared with control values); at 120 micrograms of noradrenaline (72% each), dobutamine (83 and 80%, respectively), and orciprenaline (81 and 80%, respectively) per liter; and at 100 micrograms of dopamine per liter (66 and 70%) (P < 0.05 for all). At these dosages, neutrophil chemotaxis was reduced to < 50% of control values for all catecholamines. Treatment with catecholamines at lower dosages had no significant effect on phagocytosis or generation of reactive oxygen products or chemotaxis. The phagocytic capacity of granulocytes was related to the generation of reactive oxygen products (r = 0.789; P < 0.05). The results demonstrate that catecholamines have a suppressive effect on the response of phagocytic cells to bacterial pathogens at high therapeutic levels in blood. PMID:8807207

  16. Heterophil Phagocytic Activity Stimulated by Lactobacillus salivarius L61 and L55 Supplementation in Broilers with Salmonella Infection.

    PubMed

    Sornplang, Pairat; Leelavatcharamas, Vichai; Soikum, Chaiyaporn

    2015-11-01

    Newborn chicks are susceptible to Salmonella enterica serovar Enteritidis (SE). The objective of this study was to evaluate the effect of Lactobacillus probiotic isolated from chicken feces on heterophil phagocytosis in broiler chicks. A total of 150 newborn broiler chicks were divided into 5 groups (30 chicks per group) as follows: group 1 (normal control), given feed and water only, group 2 (positive control) given feed, water and SE infection, group 3 (L61 treated) given feed, water, SE infection followed by Lactobacillus salivarius L61 treatment, group 4 (L55 treated) given feed, water, SE infection followed by L. salivarius L55 treatment, and group 5 given feed, water, SE infection followed by L. salivarius L61 + L55 combination treatment. After SE infection, L. salivarius treatment lasted for 7 days. The results showed that L. salivarius L61 and L. salivarius L55 treatment, either alone or combination of both, increased the survival rate after SE infection, and upregulated heterophil phagocytosis and phagocytic index (PI). Conversely, chick groups treated with Lactobacillus showed lower SE recovery rate from cecal tonsils than that of the positive control group. The PI values of the chicken group with SE infection, followed by the combination of L. salivarius L61 and L. salivarius L55 were the highest as compared to either positive control or normal control group. Two Lactobacillus strains supplementation group showed significantly (p<0.05) higher PI value at 48 h than 24 h after treatment.

  17. Comparative activation states of tumor-associated and peritoneal macrophages from mice bearing an induced fibrosarcoma.

    PubMed

    Valdez, J C; de Alderete, N; Meson, O E; Sirena, A; Perdigon, G

    1990-11-01

    Balb/c mice bearing a methylcholanthrene-induced fibrosarcoma were used to compare the activation levels of tumor-associated and peritoneal macrophages. Two stages of tumor growth were examined, namely "small" and "large" tumors, with average diameters of 10 and 30 mm, respectively. The activation state, determined by measurement of both phagocytic index and beta-glucuronidase content, was found to be markedly higher in tumor-associated macrophages than in their peritoneal counterparts and it was, in addition, independent of tumor progression. The percentage of tumor-associated macrophages, which were detected on the basis of Fc receptor expression, remained constant in the growing neoplasm, at approximately 23% of total cell population. None of these parameters were affected by inoculation with an immunopotentiating dose of heat-killed Candida albicans which, on the other hand, seemed not to alter the course of the tumor. These data suggest that within the tumor microenvironment macrophages would somehow be maintained at a constant proportion and at a highly activated state, while outside the tumor they would be at a lower activation level. Our results also suggest that TAM would not possess antitumor activity in vivo, although we have found this activity in vitro.

  18. Characterization of Two Homogalacturonan Pectins with Immunomodulatory Activity from Green Tea

    PubMed Central

    Wang, Huijun; Wei, Guodong; Liu, Fei; Banerjee, Gautam; Joshi, Manoj; Bligh, S. W. Annie; Shi, Songshan; Lian, Hui; Fan, Hongwei; Gu, Xuelan; Wang, Shunchun

    2014-01-01

    Two natural homogalacturonan (HG) pectins (MW ca. 20 kDa) were isolated from green tea based on their immunomodulatory activity. The crude tea polysaccharides (TPS1 and TPS2) were obtained from green tea leaves by hot water extraction and followed by 40% and 70% ethanol precipitation, respectively. Two homogenous water soluble polysaccharides (TPS1-2a and TPS1-2b) were obtained from TPS1 after purification with gel permeation, which gave a higher phagocytic effect than TPS2. A combination of composition, methylation and configuration analyses, as well as NMR (nuclear magnetic resonance) spectroscopy revealed that TPS1-2a and TPS1-2b were homogalacturonan (HG) pectins consisting of a backbone of 1,4-linked α-d-galacturonic acid (GalA) residues with 28.4% and 26.1% of carboxyl groups as methyl ester, respectively. The immunological assay results demonstrated that TPS1-2, which consisted mainly of HG pectins, showed phagocytosis-enhancing activity in HL-60 cells. PMID:24901527

  19. The Transcription Factor p53 Influences Microglial Activation Phenotype

    PubMed Central

    Jayadev, Suman; Nesser, Nicole K.; Hopkins, Stephanie; Myers, Scott J.; Case, Amanda; Lee, Rona J.; Seaburg, Luke A.; Uo, Takuma; Murphy, Sean P.; Morrison, Richard S.; Garden, Gwenn A.

    2011-01-01

    Several neurodegenerative diseases are influenced by the innate immune response in the central nervous system (CNS). Microglia, have pro-inflammatory and subsequently neurotoxic actions as well as anti-inflammatory functions that promote recovery and repair. Very little is known about the transcriptional control of these specific microglial behaviors. We have previously shown that in HIV associated neurocognitive disorders (HAND), the transcription factor p53 accumulates in microglia and that microglial p53 expression is required for the in vitro neurotoxicity of the HIV coat glycoprotein gp120. These findings suggested a novel function for p53 in regulating microglial activation. Here we report that in the absence of p53, microglia demonstrate a blunted response to interferon-γ, failing to increase expression of genes associated with classical macrophage activation or secrete pro-inflammatory cytokines. Microarray analysis of global gene expression profiles revealed increased expression of genes associated with anti-inflammatory functions, phagocytosis and tissue repair in p53 knockout (p53−/−) microglia compared with those cultured from strain matched p53 expressing (p53+/+) mice. We further observed that p53−/− microglia demonstrate increased phagocytic activity in vitro and expression of markers for alternative macrophage activation both in vitro and in vivo. In HAND brain tissue, the alternative activation marker CD163 was expressed in a separate subset of microglia than those demonstrating p53 accumulation. These data suggest that p53 influences microglial behavior, supporting the adoption of a pro-inflammatory phenotype, while p53 deficiency promotes phagocytosis and gene expression associated with alternative activation and anti-inflammatory functions. PMID:21598312

  20. Microbiota of the Small Intestine Is Selectively Engulfed by Phagocytes of the Lamina Propria and Peyer’s Patches

    PubMed Central

    Morikawa, Masatoshi; Tsujibe, Satoshi; Kiyoshima-Shibata, Junko; Watanabe, Yohei; Kato-Nagaoka, Noriko; Shida, Kan; Matsumoto, Satoshi

    2016-01-01

    Phagocytes such as dendritic cells and macrophages, which are distributed in the small intestinal mucosa, play a crucial role in maintaining mucosal homeostasis by sampling the luminal gut microbiota. However, there is limited information regarding microbial uptake in a steady state. We investigated the composition of murine gut microbiota that is engulfed by phagocytes of specific subsets in the small intestinal lamina propria (SILP) and Peyer’s patches (PP). Analysis of bacterial 16S rRNA gene amplicon sequences revealed that: 1) all the phagocyte subsets in the SILP primarily engulfed Lactobacillus (the most abundant microbe in the small intestine), whereas CD11bhi and CD11bhiCD11chi cell subsets in PP mostly engulfed segmented filamentous bacteria (indigenous bacteria in rodents that are reported to adhere to intestinal epithelial cells); and 2) among the Lactobacillus species engulfed by the SILP cell subsets, L. murinus was engulfed more frequently than L. taiwanensis, although both these Lactobacillus species were abundant in the small intestine under physiological conditions. These results suggest that small intestinal microbiota is selectively engulfed by phagocytes that localize in the adjacent intestinal mucosa in a steady state. These observations may provide insight into the crucial role of phagocytes in immune surveillance of the small intestinal mucosa. PMID:27701454

  1. Nanostructured delivery systems with improved leishmanicidal activity: a critical review

    PubMed Central

    Bruni, Natascia; Stella, Barbara; Giraudo, Leonardo; Della Pepa, Carlo; Gastaldi, Daniela; Dosio, Franco

    2017-01-01

    Leishmaniasis is a vector-borne zoonotic disease caused by protozoan parasites of the genus Leishmania, which are responsible for numerous clinical manifestations, such as cutaneous, visceral, and mucocutaneous leishmaniasis, depending on the site of infection for particular species. These complexities threaten 350 million people in 98 countries worldwide. Amastigotes living within macrophage phagolysosomes are the principal target of antileishmanial treatment, but these are not an easy target as drugs must overcome major structural barriers. Furthermore, limitations on current therapy are related to efficacy, toxicity, and cost, as well as the length of treatment, which can increase parasitic resistance. Nanotechnology has emerged as an attractive alternative as conventional drugs delivered by nanosized carriers have improved bioavailability and reduced toxicity, together with other characteristics that help to relieve the burden of this disease. The significance of using colloidal carriers loaded with active agents derives from the physiological uptake route of intravenous administered nanosystems (the phagocyte system). Nanosystems are thus able to promote a high drug concentration in intracellular mononuclear phagocyte system (MPS)-infected cells. Moreover, the versatility of nanometric drug delivery systems for the deliberate transport of a range of molecules plays a pivotal role in the design of therapeutic strategies against leishmaniasis. This review discusses studies on nanocarriers that have greatly contributed to improving the efficacy of antileishmaniasis drugs, presenting a critical review and some suggestions for improving drug delivery. PMID:28794624

  2. The multifaceted role of the renal mononuclear phagocyte system.

    PubMed

    Viehmann, Susanne F; Böhner, Alexander M C; Kurts, Christian; Brähler, Sebastian

    2018-04-22

    The kidney contains a large and complex network of mononuclear phagocytes, which includes dendritic cells (DCs) and macrophages (MØs). The distinction between these cell types is traditionally based on the expression of molecular markers and morphology. However, several classification systems are used in parallel to identify DCs and MØs, leading to considerable uncertainty about their identity and functional roles. The discovery that a substantial proportion of macrophages in tissues like the kidney are embryonically derived further complicates the situation. Recent studies have used newly identified transcription factors such as ZBTB46 and lineage tracing techniques for classifying mononuclear phagocytes. These approaches have shed new light on the functional specialization of these cells in health and disease, uncovered an influence of the renal microenvironment and revealed considerable cellular plasticity, especially in inflammatory situations. In this review, the current knowledge about the developmental origins and versatile functional roles of DCs and MØs in kidney homeostasis and disease is discussed. Copyright © 2018 Elsevier Inc. All rights reserved.

  3. Studies on the mechanisms of macrophage activation. I. Destruction of intracellular Leishmania enriettii in macrophages activated by cocultivation with stimulated lymphocytes.

    PubMed

    Mauel, J; Buchmüller, Y; Behin, R

    1978-08-01

    When cultures of normal mouse peritoneal macrophages were infected with the intracellular protozoan parasite Leishmania enrietti, the micro-organism was found to survive intracellularly for several days, apparently without multiplication. However, exposure of infected macrophages to certain stimuli led to rapid parasite killing and digestion, providing a sensitive assay with which the mechanisms of macrophage activation can be studied. Microbicidal activity was induced by incubation of macrophages with syngeneic spleen lymphocytes, which were stimulated either by allogeneic cells in mixed lymphocyte culture (MLC) or by the plant lectin concanavalin A (Con A). Cocultivation with MLCs led to parasite killing within 48-72 h, whereas exposure of infected cells to Con A-stimulated lymphocytes resulted in substantial destruction of the micro-organism within less than 24 h, an effect which was dependent on the presence of thymus-derived lymphocytes and was inhibited by alpha methyl-mannoside. Incubation with Con A-stimulated lymphocytes also led to lysis of part of the macrophage monolayer. However, parasite killing did not result from decreased macrophage survival, as destruction of the micro-organism was highest under culture conditions which were the least detrimental to the phagocytes. Conversely, excess numbers of Con A-stimulated lymphocytes were less efficient at inducing macrophage activation and displayed marked toxicity to the macrophage monolayer. When spleen cells were stimulated by Con A at concentrations above 10 mug/ml, a decrease was noted in the capacity of macrophages to destroy the parasite, probably reflecting a toxicity of the lectin for lymphocytes resulting in impaired activating capacity.

  4. Remodeling of the mononuclear phagocyte network underlies chronic inflammation and disease progression in heart failure: critical importance of the cardiosplenic axis.

    PubMed

    Ismahil, Mohamed Ameen; Hamid, Tariq; Bansal, Shyam S; Patel, Bindiya; Kingery, Justin R; Prabhu, Sumanth D

    2014-01-17

    The role of mononuclear phagocytes in chronic heart failure (HF) is unknown. Our aim was to delineate monocyte, macrophage, and dendritic cell trafficking in HF and define the contribution of the spleen to cardiac remodeling. We evaluated C57Bl/6 mice with chronic HF 8 weeks after coronary ligation. As compared with sham-operated controls, HF mice exhibited: (1) increased proinflammatory CD11b+ F4/80+ CD206- macrophages and CD11b+ F4/80+ Gr-1(hi) monocytes in the heart and peripheral blood, respectively, and reduced CD11b+ F4/80+ Gr-1(hi) monocytes in the spleen; (2) significantly increased CD11c+ B220- classical dendritic cells and CD11c+ low)B220+ plasmacytoid dendritic cells in both the heart and spleen, and increased classic dendritic cells and plasmacytoid dendritic cells in peripheral blood and bone marrow, respectively; (3) increased CD4+ helper and CD8+ cytotoxic T-cells in the spleen; and (4) profound splenic remodeling with abundant white pulp follicles, markedly increased size of the marginal zone and germinal centers, and increased expression of alarmins. Splenectomy in mice with established HF reversed pathological cardiac remodeling and inflammation. Splenocytes adoptively transferred from mice with HF, but not from sham-operated mice, homed to the heart and induced long-term left ventricular dilatation, dysfunction, and fibrosis in naive recipients. Recipient mice also exhibited monocyte activation and splenic remodeling similar to HF mice. Activation of mononuclear phagocytes is central to the progression of cardiac remodeling in HF, and heightened antigen processing in the spleen plays a critical role in this process. Splenocytes (presumably splenic monocytes and dendritic cells) promote immune-mediated injurious responses in the failing heart and retain this memory on adoptive transfer.

  5. Regulation of CYBB Gene Expression in Human Phagocytes by a Distant Upstream NF-κB Binding Site.

    PubMed

    Frazão, Josias B; Thain, Alison; Zhu, Zhiqing; Luengo, Marcos; Condino-Neto, Antonio; Newburger, Peter E

    2015-09-01

    The human CYBB gene encodes the gp91-phox component of the phagocyte oxidase enzyme complex, which is responsible for generating superoxide and other downstream reactive oxygen species essential to microbial killing. In the present study, we have identified by sequence analysis a putative NF-κB binding site in a DNase I hypersensitive site, termed HS-II, located in the distant 5' flanking region of the CYBB gene. Electrophoretic mobility assays showed binding of the sequence element by recombinant NF-κB protein p50 and by proteins in nuclear extract from the HL-60 myeloid leukemia cell line corresponding to p50 and to p50/p65 heterodimers. Chromatin immunoprecipitation demonstrated NF-κB binding to the site in intact HL-60 cells. Chromosome conformation capture (3C) assays demonstrated physical interaction between the NF-κB binding site and the CYBB promoter region. Inhibition of NF-κB activity by salicylate reduced CYBB expression in peripheral blood neutrophils and differentiated U937 monocytic leukemia cells. U937 cells transfected with a mutant inhibitor of κB "super-repressor" showed markedly diminished CYBB expression. Luciferase reporter analysis of the NF-κB site linked to the CYBB 5' flanking promoter region revealed enhanced expression, augmented by treatment with interferon-γ. These studies indicate a role for this distant, 15 kb upstream, binding site in NF-κB regulation of the CYBB gene, an essential component of phagocyte-mediated host defense. © 2015 Wiley Periodicals, Inc.

  6. Aloe arborescens Polysaccharides: In Vitro Immunomodulation and Potential Cytotoxic Activity.

    PubMed

    Nazeam, Jilan A; Gad, Haidy A; Esmat, Ahmed; El-Hefnawy, Hala M; Singab, Abdel-Naser B

    2017-05-01

    Different polysaccharides were isolated from the leaves of Aloe arborescens using the gradient power of hydrogen followed by antitumor and immunomodulatory assay. The total polysaccharide content of different fractions, water-soluble polysaccharide (WAP), acid-soluble polysaccharide (ACP), and alkaline-soluble polysaccharide (ALP), was estimated using a phenol-sulfuric acid spectrophotometric method. WAP possessed a higher content of mannose and glucose than either ACP or ALP. In vitro antitumor activity was investigated in three different cancer cell lines, and in vitro immunomodulatory potential was assessed through phagocytosis and lymphocyte transformation assay. The results showed that WAP and ALP exhibited the most significant cytotoxicity against HepG2 human liver cancer cells, with IC 50 values of 26.14 and 21.46 μg/mL, respectively. In contrast, ALP was able to enhance lymphocyte transformation, whereas WAP had the most potent phagocytic activity. Molecular weight, total sugar and uronic acid content, Fourier transform-infrared analysis, and linkage type of bioactive polysaccharides were investigated. These findings revealed that the potential antitumor activity of the natural agents WAP and ALP was through an immunomodulation mechanism, which verifies the use of the plant as adjuvant supplement for cancer patients suffering immunosuppression during chemotherapy.

  7. Characterization, antioxidant activity and immunomodulatory activity of polysaccharides from the swollen culms of Zizania latifolia.

    PubMed

    Wang, Mingchun; Zhu, Peilei; Zhao, Shiwei; Nie, Chenzhipeng; Wang, Naifu; Du, Xianfeng; Zhou, Yibin

    2017-02-01

    The swollen culms of Zizania latifolia have been used as a vegetable and traditional herbal medicine in China, Japan, Korea and Southeast Asia countries. Up to date, there is little information about the polysaccharides from the swollen culms of Zizania latifolia and their potential bioactivities. In the present study, water extractable polysaccharide (ZLPs-W) and alkali extractable polysaccharide (ZLPs-A) was sequentially prepared from the swollen culms of Zizania latifolia. Both of ZLPs-W and ZLPs-A was found to be non-starch polydisperse heterpolysaccharide with β-type glycosidic linkage. ZLPs-W with triple helix conformation mainly composed of GalA, Glc and Gal. ZLPs-A without triple helix conformation mainly composed of Glc, Gal, Xyl and Ara. In in vitro antioxidant assay, ZLPs-W and ZLPs-A exhibited good scavenging activities. The EC50 of DPPH radical, superoxide radical and hydroxy radical scavenging activities for ZLPs-A is 1.87, 1.13 and 0.38mg/mL compared with that for ZLPs-W is 2.95, 3.99 and 0.5mg/mL, respectively. Moreover, in vitro cell assay revealed that ZLPs-W without cytotoxicity has higher immunomodulatory activity than ZLPs-A in terms of stimulation of phagocytic ability and NO production in murine macrophage RAW 264.7. At the treated concentration of 400μg/mL and 100μg/mL, ZLPs-W induced a highest phagocytosis index (1.76) and NO product (29.12μmol/L), respectively. The results suggest that polysaccharide from the swollen culms of Zizania latifolia could be explored as potential natural antioxidant and immunomodulatory agents in medicine or functional food fields. Copyright © 2016 Elsevier B.V. All rights reserved.

  8. The effect of mineral trioxide aggregate on phagocytic activity and production of reactive oxygen, nitrogen species and arginase activity by M1 and M2 macrophages.

    PubMed

    Rezende, T M B; Vieira, L Q; Cardoso, F P; Oliveira, R R; de Oliveira Mendes, S T; Jorge, M L R; Ribeiro Sobrinho, A P

    2007-08-01

    To assess the influence of co-culture with mineral trioxide aggregate (MTA) on phagocytosis and the production of reactive oxygen intermediates (ROI) and nitrogen (NO) species and the arginase activity by M1 and M2 peritoneal macrophages. Cellular viability, adherence and phagocytosis of Saccharomyces boulardii were assayed in the presence of MTA. Macrophages were stimulated with zymosan for ROI assays and with Fusobacterium nucleatum and Peptostreptococcus anaerobius and IFN-gamma for NO production and arginase activity, when in contact with capillaries containing MTA. Data were analysed by T, anova, Kruskall-Wallis and Mann-Whitney tests. M2 macrophages displayed greater cellular viability in polypropylene tubes, greater ability to ingest yeast and smaller production of ROI and higher arginase activity when compared with M1 macrophages. Both macrophages, M1 and M2, presented similar cell adherence and NO production. The addition of bacterial preparations to macrophages interfered with NO and arginase productions. MTA did not interfere with any of the parameters measured. Phagocytosis and the ability of the two macrophage subtypes to eliminate microbes were not affected by MTA.

  9. Cocaine promotes oxidative stress and microglial-macrophage activation in rat cerebellum

    PubMed Central

    López-Pedrajas, Rosa; Ramírez-Lamelas, Dolores T.; Muriach, Borja; Sánchez-Villarejo, María V.; Almansa, Inmaculada; Vidal-Gil, Lorena; Romero, Francisco J.; Barcia, Jorge M.; Muriach, María

    2015-01-01

    Different mechanisms have been suggested for cocaine neurotoxicity, including oxidative stress alterations. Nuclear factor kappa B (NF-κB), considered a sensor of oxidative stress and inflammation, is involved in drug toxicity and addiction. NF-κB is a key mediator for immune responses that induces microglial/macrophage activation under inflammatory processes and neuronal injury/degeneration. Although cerebellum is commonly associated to motor control, muscular tone, and balance. Its relation with addiction is getting relevance, being associated to compulsive and perseverative behaviors. Some reports indicate that cerebellar microglial activation induced by cannabis or ethanol, promote cerebellar alterations and these alterations could be associated to addictive-related behaviors. After considering the effects of some drugs on cerebellum, the aim of the present work analyzes pro-inflammatory changes after cocaine exposure. Rats received daily 15 mg/kg cocaine i.p., for 18 days. Reduced and oxidized forms of glutathione (GSH) and oxidized glutathione (GSSG), glutathione peroxidase (GPx) activity and glutamate were determined in cerebellar homogenates. NF-κB activity, CD68, and GFAP expression were determined. Cerebellar GPx activity and GSH/GSSG ratio are significantly decreased after cocaine exposure. A significant increase of glutamate concentration is also observed. Interestingly, increased NF-κB activity is also accompanied by an increased expression of the lysosomal mononuclear phagocytic marker ED1 without GFAP alterations. Current trends in addiction biology are focusing on the role of cerebellum on addictive behaviors. Cocaine-induced cerebellar changes described herein fit with previosus data showing cerebellar alterations on addict subjects and support the proposed role of cerebelum in addiction. PMID:26283916

  10. Cocaine promotes oxidative stress and microglial-macrophage activation in rat cerebellum.

    PubMed

    López-Pedrajas, Rosa; Ramírez-Lamelas, Dolores T; Muriach, Borja; Sánchez-Villarejo, María V; Almansa, Inmaculada; Vidal-Gil, Lorena; Romero, Francisco J; Barcia, Jorge M; Muriach, María

    2015-01-01

    Different mechanisms have been suggested for cocaine neurotoxicity, including oxidative stress alterations. Nuclear factor kappa B (NF-κB), considered a sensor of oxidative stress and inflammation, is involved in drug toxicity and addiction. NF-κB is a key mediator for immune responses that induces microglial/macrophage activation under inflammatory processes and neuronal injury/degeneration. Although cerebellum is commonly associated to motor control, muscular tone, and balance. Its relation with addiction is getting relevance, being associated to compulsive and perseverative behaviors. Some reports indicate that cerebellar microglial activation induced by cannabis or ethanol, promote cerebellar alterations and these alterations could be associated to addictive-related behaviors. After considering the effects of some drugs on cerebellum, the aim of the present work analyzes pro-inflammatory changes after cocaine exposure. Rats received daily 15 mg/kg cocaine i.p., for 18 days. Reduced and oxidized forms of glutathione (GSH) and oxidized glutathione (GSSG), glutathione peroxidase (GPx) activity and glutamate were determined in cerebellar homogenates. NF-κB activity, CD68, and GFAP expression were determined. Cerebellar GPx activity and GSH/GSSG ratio are significantly decreased after cocaine exposure. A significant increase of glutamate concentration is also observed. Interestingly, increased NF-κB activity is also accompanied by an increased expression of the lysosomal mononuclear phagocytic marker ED1 without GFAP alterations. Current trends in addiction biology are focusing on the role of cerebellum on addictive behaviors. Cocaine-induced cerebellar changes described herein fit with previosus data showing cerebellar alterations on addict subjects and support the proposed role of cerebelum in addiction.

  11. High-mobility group box 1 is an important mediator of microglial activation induced by cortical spreading depression.

    PubMed

    Takizawa, Tsubasa; Shibata, Mamoru; Kayama, Yohei; Shimizu, Toshihiko; Toriumi, Haruki; Ebine, Taeko; Unekawa, Miyuki; Koh, Anri; Yoshimura, Akihiko; Suzuki, Norihiro

    2017-03-01

    Single episodes of cortical spreading depression (CSD) are believed to cause typical migraine aura, whereas clusters of spreading depolarizations have been observed in cerebral ischemia and subarachnoid hemorrhage. We recently demonstrated that the release of high-mobility group box 1 (HMGB1) from cortical neurons after CSD in a rodent model is dependent on the number of CSD episodes, such that only multiple CSD episodes can induce significant HMGB1 release. Here, we report that only multiple CSD inductions caused microglial hypertrophy (activation) accompanied by a greater impact on the transcription activity of the HMGB1 receptor genes, TLR2 and TLR4, while the total number of cortical microglia was not affected. Both an HMGB1-neurtalizing antibody and the HMGB1 inhibitor glycyrrhizin abrogated multiple CSD-induced microglial hypertrophy. Moreover, multiple CSD inductions failed to induce microglial hypertrophy in TLR2/4 double knockout mice. These results strongly implicate the HMGB1-TLR2/4 axis in the activation of microglia following multiple CSD inductions. Increased expression of the lysosomal acid hydrolase cathepsin D was detected in activated microglia by immunostaining, suggesting that lysosomal phagocytic activity may be enhanced in multiple CSD-activated microglia.

  12. Molecular Interface of S100A8 with Cytochrome b558 and NADPH Oxidase Activation

    PubMed Central

    Berthier, Sylvie; Hograindleur, Marc-André; Paclet, Marie-Hélène; Polack, Benoît; Morel, Françoise

    2012-01-01

    S100A8 and S100A9 are two calcium binding Myeloid Related Proteins, and important mediators of inflammatory diseases. They were recently introduced as partners for phagocyte NADPH oxidase regulation. However, the precise mechanism of their interaction remains elusive. We had for aim (i) to evaluate the impact of S100 proteins on NADPH oxidase activity; (ii) to characterize molecular interaction of either S100A8, S100A9, or S100A8/S100A9 heterocomplex with cytochrome b 558; and (iii) to determine the S100A8 consensus site involved in cytochrome b 558/S100 interface. Recombinant full length or S100A9-A8 truncated chimera proteins and ExoS-S100 fusion proteins were expressed in E. coli and in P. aeruginosa respectively. Our results showed that S100A8 is the functional partner for NADPH oxidase activation contrary to S100A9, however, the loading with calcium and a combination with phosphorylated S100A9 are essential in vivo. Endogenous S100A9 and S100A8 colocalize in differentiated and PMA stimulated PLB985 cells, with Nox2/gp91phox and p22phox. Recombinant S100A8, loaded with calcium and fused with the first 129 or 54 N-terminal amino acid residues of the P. aeruginosa ExoS toxin, induced a similar oxidase activation in vitro, to the one observed with S100A8 in the presence of S100A9 in vivo. This suggests that S100A8 is the essential component of the S100A9/S100A8 heterocomplex for oxidase activation. In this context, recombinant full-length rS100A9-A8 and rS100A9-A8 truncated 90 chimera proteins as opposed to rS100A9-A8 truncated 86 and rS100A9-A8 truncated 57 chimeras, activate the NADPH oxidase function of purified cytochrome b 558 suggesting that the C-terminal region of S100A8 is directly involved in the molecular interface with the hemoprotein. The data point to four strategic 87HEES90 amino acid residues of the S100A8 C-terminal sequence that are involved directly in the molecular interaction with cytochrome b558 and then in the phagocyte NADPH oxidase

  13. Immunomodulatory activity of methanolic extracts of fruits and bark of Ficus glomerata Roxb. in mice and on human neutrophils.

    PubMed

    Heroor, Sanjeev; Beknal, Arun Kumar; Mahurkar, Nitin

    2013-01-01

    To evaluate the immunomodulatory activity of methanolic extracts of fruit and bark of Ficus glomerata Roxb. on cyclophosphamide-induced myelosuppression in mice and the phagocytic effect on human neutrophils. Methanolic extracts of fruits and bark of Ficus glomerata Roxb. at two dose levels of 250 and 500 mg/kg p.o. were administered for 13 days to albino mice and cyclophosphamide (30 mg/kg i.p.) was administered on 11th, 12th, and 13th days, 1 hour after the administration of the respective treatment. On 14th day blood was collected and the hematological parameters were evaluated. The two extracts in the concentration range 100, 50, 25, 12 and 6.25 μg were also tested for phagocytic effect on human neutrophils using the in vitro models-nitroblue tetrazolium (NBT) dye test, phagocytosis of Candida albicans, and chemotaxis assay. Methanolic extracts of fruit and bark of Ficus glomerata Roxb. showed significant counteracting effect (P < 0.01) to cyclophosphamide-induced reduction in total WBC, differential leucocyte count, platelet counts, RBC counts, and hemoglobin levels. The extracts of the plant in the concentration range 100, 50, 25, 12, and 6.25 μg also showed significant (P < 0.01) phagocytic effect on human neutrophils in the parameters studied. Methanolic extracts of fruits and bark of Ficus glomerata Roxb. exhibited immunomodulatory property in both in vivo and in vitro models.

  14. The structure of mononuclear phagocytes differentiating in vivo. III. The effect of particulate foreign substances.

    PubMed

    Goldner, R D; Adams, D O

    1977-11-01

    The response of mononuclear phagocytes to three inert particles--barium sulfate, talc, and thorium dioxide--was studied by correlated light and electron microscopy. All three particles induced maturation of the mononuclear phagocytes, which proceeded to the stage of the mature macrophage and required 7 to 9 days. Once established, maturation persisted as long as 45 days, as did the inert particles. The resultant lesions, dense aggregates of mature macrophages, were termed mature granulomas. The resultant maturation differed from that produced by digestible bacteria in tempo and extent but not in pattern.

  15. Antibacterial activity of hemocyanin from red swamp crayfish (Procambarus clarkii).

    PubMed

    Qin, Zhendong; Babu, V Sarath; Wan, Quanyuan; Muhammad, Asim; Li, Jun; Lan, Jiangfeng; Lin, Li

    2018-04-01

    Hemocyanins (HMC): the copper-containing respiratory proteins present in invertebrate hemolymph, which plays many essential roles in the immune system. Currently, little is known about the HMC domains of Procambarus clarkii (P. clarkii) and their function in antimicrobial immune response. In this present study, we comparatively studied the expression pattern of native PcHMC with the three recombinant proteins of variable domains of crayfish hemocyanin (PcHMC-N, N-terminal domain of hemocyanin; PcHMC-T, tyrosinase domain of hemocyanin; PcHMC-C, C-terminal domain of hemocyanin). The results showed that three purified recombinant proteins had a strong binding to various bacteria and lipopolysaccharides that further highly agglutinated. The HMCs recombinant proteins showed strong antibacterial activity against V. parahaemolyticus and S. aureus by bacterial growth inhibition, phenoloxidase (PO) and phagocytosis assays. Specifically, rPcHMC1-T and rPcHMC1-C inhibited both the bacteria efficiently, rPcHMC1-T was highly upregulated the PO activity than the other recombinant proteins. Whereas, recombinant proteins pretreated crayfish hemocytes participated in phagocytosis activity, rPcHMC1-N and rPcHMC1-C proteins had a profound effect than the rPcHMC1-T on S. aureus and V. parahaemolyticus phagocytosis. The crayfish hemocyanin domains clearly exhibited antibacterial and phagocytic activities against both the bacteria, suggesting that its variable domains of hemocyanin have the different function on specific pathogen during the assault of pathogens. Copyright © 2018 Elsevier Ltd. All rights reserved.

  16. [Immune regulation activity and mechanism of Tibetan Kefir exopolysaccharide fractions].

    PubMed

    Meng, Li; Zhang, Lanwei

    2009-12-01

    To investigate the effects and mechanism on immune regulation activity in mice of two Tibetan Kefir exoploysaccharides (EPS) with different molecular weight of 0.1 x 10(5) - 3 x 10(5) (fraction 1) and 1.8 x 10(3) (fraction 2). The immune regulation activity experiment was carried out in vitro based on the Functional Assessment Procedure and Test Methods of Health Food, which was issued by Ministry of Health of China. First, we treated mice subjects with EPS at doses of 40 mg/kg, 80 mg/kg, 120 mg/kg through ig. Then we detected the index of immune organs, the ability of antibody production (tested by HC50), activity of NK cell, delayed type hypersensitivity (DTH) and phagocytosis of macrophage in mice. Finally, we examined the expression of Erk protein in Macrophages by Western Blot assay. Fraction 1 could promote HC50, activity of NK cell and DTH in mice which low dose showed better. Fraction 2 could promote DTH, phagocytosis of macrophage which high dose showed better. The expression of Erk and COX-2 had the same trend with Phagocytic index. We verified the two fractions of Tibetan Kefir EPS could enhance immune functions in mice. Fraction 1 regulated immune function through NK cell and B cell while fraction 2 through macrophage cell and T cell. The effects to macrophage of Tibetan Kefir EPS in mice may realize through extra cellular signal-regulated kinase Erk pathway.

  17. Defining Mononuclear Phagocyte Subset Homology Across Several Distant Warm-Blooded Vertebrates Through Comparative Transcriptomics

    PubMed Central

    Vu Manh, Thien-Phong; Elhmouzi-Younes, Jamila; Urien, Céline; Ruscanu, Suzana; Jouneau, Luc; Bourge, Mickaël; Moroldo, Marco; Foucras, Gilles; Salmon, Henri; Marty, Hélène; Quéré, Pascale; Bertho, Nicolas; Boudinot, Pierre; Dalod, Marc; Schwartz-Cornil, Isabelle

    2015-01-01

    Mononuclear phagocytes are organized in a complex system of ontogenetically and functionally distinct subsets, that has been best described in mouse and to some extent in human. Identification of homologous mononuclear phagocyte subsets in other vertebrate species of biomedical, economic, and environmental interest is needed to improve our knowledge in physiologic and physio-pathologic processes, and to design intervention strategies against a variety of diseases, including zoonotic infections. We developed a streamlined approach combining refined cell sorting and integrated comparative transcriptomics analyses which revealed conservation of the mononuclear phagocyte organization across human, mouse, sheep, pigs and, in some respect, chicken. This strategy should help democratizing the use of omics analyses for the identification and study of cell types across tissues and species. Moreover, we identified conserved gene signatures that enable robust identification and universal definition of these cell types. We identified new evolutionarily conserved gene candidates and gene interaction networks for the molecular regulation of the development or functions of these cell types, as well as conserved surface candidates for refined subset phenotyping throughout species. A phylogenetic analysis revealed that orthologous genes of the conserved signatures exist in teleost fishes and apparently not in Lamprey. PMID:26150816

  18. The antioxidant activity of allylpyrocatechol is mediated via decreased generation of free radicals along with escalation of antioxidant mechanisms.

    PubMed

    Sarkar, Debjani; Kundu, Sunanda; De, Soumita; Hariharan, Chellaram; Saha, Piu; Manna, Alak; Chattopadhyay, Subrata; Chatterjee, Mitali

    2013-03-01

    Allylpyrocatechol (APC) is responsible for the antiinflammatory activity exhibited by the methanolic extract of leaves of Piper betle. As antiinflammatory compounds may display antioxidant properties and vice versa, we investigated the antioxidant effect of APC. APC effectively reduced phorbol-myristate-acetate-induced generation of reactive oxygen species and superoxide in murine peritoneal macrophages as well as inhibited Escherichia-coli-induced phagocytic activity of macrophages. Furthermore, pBluescript SK(+) plasmid DNA damage induced by addition of sodium ascorbate was attenuated by APC as it inhibited transformation of the supercoiled form to a relaxed form. In addition, APC increased the enzymatic (catalase) and nonenzymatic (GSH) antioxidant components of murine macrophages. Taken together, APC exhibited an antioxidant activity which was mediated both via decreased generation of free radicals along with increase in cellular antioxidants. Copyright © 2012 John Wiley & Sons, Ltd.

  19. Cefoperazone Prevents the Inactivation of α1-Antitrypsin by Activated Neutrophils

    PubMed Central

    Dallegri, Franco; Dapino, Patrizia; Arduino, Nicoletta; Bertolotto, Maria; Ottonello, Luciano

    1999-01-01

    At sites of neutrophilic inflammation, tissue injury by neutrophil elastase is favored by phagocyte-induced hypochlorous acid-dependent inactivation of the natural elastase inhibitor α1-antitrypsin. In the present study, cefoperazone prevented α1-antitrypsin inactivation by neutrophils and reduced the recovery of hypochlorous acid from these cells. Moreover, the antibiotic reduced the free elastase activity in a neutrophil suspension supplemented with α1-antitrypsin without affecting the cells’ ability to release elastase. These data suggest that the drug inactivates hypochlorous acid before its reaction with α1-antitrypsin, thereby permitting the antiprotease-mediated blockade of released elastase. In conclusion, cefoperazone appears to have the potential for limiting elastase-antielastase imbalances, attenuating the related tissue injury at sites of inflammation. PMID:10471586

  20. Therapeutic potential of carbohydrates as regulators of macrophage activation.

    PubMed

    Lundahl, Mimmi L E; Scanlan, Eoin M; Lavelle, Ed C

    2017-12-15

    It is well established for a broad range of disease states, including cancer and Mycobacterium tuberculosis infection, that pathogenesis is bolstered by polarisation of macrophages towards an anti-inflammatory phenotype, known as M2. As these innate immune cells are relatively long-lived, their re-polarisation to pro-inflammatory, phagocytic and bactericidal "classically activated" M1 macrophages is an attractive therapeutic approach. On the other hand, there are scenarios where the resolving inflammation, wound healing and tissue remodelling properties of M2 macrophages are beneficial - for example the successful introduction of biomedical implants. Although there are numerous endogenous and exogenous factors that have an impact on the macrophage polarisation spectrum, this review will focus specifically on prominent macrophage-modulating carbohydrate motifs with a view towards highlighting structure-function relationships and therapeutic potential. Copyright © 2017 Elsevier Inc. All rights reserved.

  1. The Phagocytic Function of Macrophage-Enforcing Innate Immunity and Tissue Homeostasis.

    PubMed

    Hirayama, Daisuke; Iida, Tomoya; Nakase, Hiroshi

    2017-12-29

    Macrophages are effector cells of the innate immune system that phagocytose bacteria and secrete both pro-inflammatory and antimicrobial mediators. In addition, macrophages play an important role in eliminating diseased and damaged cells through their programmed cell death. Generally, macrophages ingest and degrade dead cells, debris, tumor cells, and foreign materials. They promote homeostasis by responding to internal and external changes within the body, not only as phagocytes, but also through trophic, regulatory, and repair functions. Recent studies demonstrated that macrophages differentiate from hematopoietic stem cell-derived monocytes and embryonic yolk sac macrophages. The latter mainly give rise to tissue macrophages. Macrophages exist in all vertebrate tissues and have dual functions in host protection and tissue injury, which are maintained at a fine balance. Tissue macrophages have heterogeneous phenotypes in different tissue environments. In this review, we focused on the phagocytic function of macrophage-enforcing innate immunity and tissue homeostasis for a better understanding of the role of tissue macrophages in several pathological conditions.

  2. Microglial activation in white matter lesions and nonlesional white matter of ageing brains.

    PubMed

    Simpson, J E; Ince, P G; Higham, C E; Gelsthorpe, C H; Fernando, M S; Matthews, F; Forster, G; O'Brien, J T; Barber, R; Kalaria, R N; Brayne, C; Shaw, P J; Stoeber, K; Williams, G H; Lewis, C E; Wharton, S B

    2007-12-01

    White matter lesions (WML), a common feature in brain ageing, are classified as periventricular (PVL) or deep subcortical (DSCL), depending on their anatomical location. Microglial activation is implicated in a number of neurodegenerative diseases, but the microglial response in WML is poorly characterized and its role in pathogenesis unknown. We have characterized the microglial response in WML and control white matter using immunohistochemistry to markers of microglial activation and of proliferation. WML of brains from an unbiased population-based autopsy cohort (Medical Research Council's Cognitive Function and Ageing Study) were identified by post mortem magnetic resonance imaging and sampled for histology. PVL contain significantly more activated microglia, expressing major histocompatibility complex (MHC) class II and the costimulatory molecules B7-2 and CD40, than either control white matter (WM) or DSCL. Furthermore, we show that significantly more microglia express the replication licensing protein minichromosome maintenance protein 2 within PVL, suggesting this is a more proliferation-permissive environment than DSCL. Although microglial activation occurs in both PVL and DSCL, our findings suggest a difference in pathogenesis between these lesion-types: the ramified, activated microglia associated with PVL may reflect immune activation resulting from disruption of the blood brain barrier, while the microglia within DSCL may reflect an innate, amoeboid phagocytic phenotype. We also show that microglia in control WM from lesional cases express significantly more MHC II than control WM from nonlesional ageing brain, suggesting that WML occur in a 'field-effect' of abnormal WM.

  3. Do not let death do us part: 'find-me' signals in communication between dying cells and the phagocytes.

    PubMed

    Medina, C B; Ravichandran, K S

    2016-06-01

    The turnover and clearance of cells is an essential process that is part of many physiological and pathological processes. Improper or deficient clearance of apoptotic cells can lead to excessive inflammation and autoimmune disease. The steps involved in cell clearance include: migration of the phagocyte toward the proximity of the dying cells, specific recognition and internalization of the dying cell, and degradation of the corpse. The ability of phagocytes to recognize and react to dying cells to perform efficient and immunologically silent engulfment has been well-characterized in vitro and in vivo. However, how apoptotic cells themselves initiate the corpse removal and also influence the cells within the neighboring environment during clearance was less understood. Recent exciting observations suggest that apoptotic cells can attract phagocytes through the regulated release of 'find-me' signals. More recent studies also suggest that these find-me signals can have additional roles outside of phagocyte attraction to help orchestrate engulfment. This review will discuss our current understanding of the different find-me signals released by apoptotic cells, how they may be relevant in vivo, and their additional roles in facilitating engulfment.

  4. African Trypanosomiasis-Associated Anemia: The Contribution of the Interplay between Parasites and the Mononuclear Phagocyte System

    PubMed Central

    Stijlemans, Benoit; De Baetselier, Patrick; Magez, Stefan; Van Ginderachter, Jo A.; De Trez, Carl

    2018-01-01

    African trypanosomosis (AT) is a chronically debilitating parasitic disease of medical and economic importance for the development of sub-Saharan Africa. The trypanosomes that cause this disease are extracellular protozoan parasites that have developed efficient immune escape mechanisms to manipulate the entire host immune response to allow parasite survival and transmission. During the early stage of infection, a profound pro-inflammatory type 1 activation of the mononuclear phagocyte system (MPS), involving classically activated macrophages (i.e., M1), is required for initial parasite control. Yet, the persistence of this M1-type MPS activation in trypanosusceptible animals causes immunopathology with anemia as the most prominent pathological feature. By contrast, in trypanotolerant animals, there is an induction of IL-10 that promotes the induction of alternatively activated macrophages (M2) and collectively dampens tissue damage. A comparative gene expression analysis between M1 and M2 cells identified galectin-3 (Gal-3) and macrophage migration inhibitory factor (MIF) as novel M1-promoting factors, possibly acting synergistically and in concert with TNF-α during anemia development. While Gal-3 enhances erythrophagocytosis, MIF promotes both myeloid cell recruitment and iron retention within the MPS, thereby depriving iron for erythropoiesis. Hence, the enhanced erythrophagocytosis and suppressed erythropoiesis lead to anemia. Moreover, a thorough investigation using MIF-deficient mice revealed that the underlying mechanisms in AT-associated anemia development in trypanosusceptible and tolerant animals are quite distinct. In trypanosusceptible animals, anemia resembles anemia of inflammation, while in trypanotolerant animals’ hemodilution, mainly caused by hepatosplenomegaly, is an additional factor contributing to anemia. In this review, we give an overview of how trypanosome- and host-derived factors can contribute to trypanosomosis-associated anemia

  5. New activity of yamamarin, an insect pentapeptide, on immune system of mealworm, Tenebrio molitor.

    PubMed

    Walkowiak-Nowicka, K; Nowicki, G; Kuczer, M; Rosiński, G

    2017-09-12

    In insects, two types of the immune responses, cellular and humoral, constitute a defensive barrier against various parasites and pathogens. In response to pathogens, insects produce a wide range of immune agents that act on pathogens directly, such as cecropins or lysozyme, or indirectly by the stimulation of hemocyte migration or by increasing phenoloxidase (PO) activity. Recently, many new immunologically active substances from insects, such as peptides and polypeptides, have been identified. Nevertheless, in the most cases, their physiological functions are not fully known. One such substance is yamamarin - a pentapeptide isolated from the silk moth Antheraea yamamai. This yamamarin possesses strong antiproliferative properties and is probably involved in diapause regulation. Here, we examined the immunotropic activity of yamamarin by testing its impact on selected functions of the immune system in heterologous bioassays with the beetle Tenebrio molitor, commonly known as a stored grains pest. Our results indicate that the pentapeptide affects the activity of immune processes in the beetle. We show that yamamarin induces changes in both humoral and cellular responses. The yamamarin increases the activity of PO, as well as causes changes in the hemocyte cytoskeleton and stimulates phagocytic activity. We detected an increased number of apoptotic hemocytes, however after the yamamarin injection, no significant variations in the antibacterial activity in the hemolymph were observed. The obtained data suggest that yamamarin could be an important controller of the immune system in T. molitor.

  6. Immunomodulatory activities of different solvent extracts from Tricholoma matsutake (S. Ito et S. Imai) singer (higher basidiomycetes) on normal mice.

    PubMed

    Yin, Xiulian; You, Qinghong; Jiang, Zhonghai

    2012-01-01

    The immunomodulatory activities of different solvent extracts from the culinary-medicinal mushroom Tricholoma matsutake were studied in vivo in normal mice. The extracts were prepared using different solvents in an order of increasing polarity. The immunomodulatory activities were investigated by measuring the thymus and spleen index, phagocytic rate of macrophage phagocytosis, delayed-type hypersensitivity, plaque-forming cell, and proliferation of splenocytes. Results demonstrated that water extract (WE) and n-butyl alcohol extract (BAE) of T. matsutake could enhance the immunity of mice significantly compared with the control group. Main components of WE and BAE were polysaccharides, proteins, and flavonoids; we presume that these may be the main immunomodulating and immuno-enhancing agents in T. matsutake.

  7. Anti-leukemic activity and tolerability of anti-human CD47 monoclonal antibodies

    PubMed Central

    Pietsch, E C; Dong, J; Cardoso, R; Zhang, X; Chin, D; Hawkins, R; Dinh, T; Zhou, M; Strake, B; Feng, P-H; Rocca, M; Santos, C Dos; Shan, X; Danet-Desnoyers, G; Shi, F; Kaiser, E; Millar, H J; Fenton, S; Swanson, R; Nemeth, J A; Attar, R M

    2017-01-01

    CD47, a broadly expressed cell surface protein, inhibits cell phagocytosis via interaction with phagocyte-expressed SIRPα. A variety of hematological malignancies demonstrate elevated CD47 expression, suggesting that CD47 may mediate immune escape. We discovered three unique CD47-SIRPα blocking anti-CD47 monoclonal antibodies (mAbs) with low nano-molar affinity to human and cynomolgus monkey CD47, and no hemagglutination and platelet aggregation activity. To characterize the anti-cancer activity elicited by blocking CD47, the mAbs were cloned into effector function silent and competent Fc backbones. Effector function competent mAbs demonstrated potent activity in vitro and in vivo, while effector function silent mAbs demonstrated minimal activity, indicating that blocking CD47 only leads to a therapeutic effect in the presence of Fc effector function. A non-human primate study revealed that the effector function competent mAb IgG1 C47B222-(CHO) decreased red blood cells (RBC), hematocrit and hemoglobin by >40% at 1 mg/kg, whereas the effector function silent mAb IgG2σ C47B222-(CHO) had minimal impact on RBC indices at 1 and 10 mg/kg. Taken together, our findings suggest that targeting CD47 is an attractive therapeutic anti-cancer approach. However, the anti-cancer activity observed with anti-CD47 mAbs is Fc effector dependent as are the side effects observed on RBC indices. PMID:28234345

  8. Translational Advancement of Somatostatin Gene Delivery for Disease Modification and Cognitive Sparing in Intractable Epilepsy

    DTIC Science & Technology

    2015-09-01

    morphological analysis revealed significantly more activated (p < 0.001) and highly activated ( phagocytic ; p < 0.05) microglia in the dentate gyri of...process with small cell bodies (Figure 10A). Activated microglia exhibit less ramified processes and larger nuclei (Figure 10B) and phagocytic microglia...significantly increases in the dentate gyri of kindled rats along with the total number of highly activated or phagocytic microglia. We are currently

  9. Enhanced alveolar monocytic phagocyte (macrophage) proliferation in tobacco and marijuana smokers

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Barbers, R.G.; Evans, M.J.; Gong, H. Jr.

    We tested the hypothesis that enhanced cell division accounted for the augmented numbers of monocytic phagocytes with characteristics attributed to alveolar macrophages (AM) found in the lungs of habitual tobacco (T) and marijuana (M) smokers. The monocytic phagocytes, that is, alveolar macrophages, were obtained by bronchoalveolar lavage (BAL) from 12 nonsmoking subjects; 10 subjects who smoked T only (TS); 13 subjects who smoked M only (MS); and 6 smokers of both T and M (MTS). The replication of these cells was determined by measuring the incorporation of ({sup 3}H)thymidine into the DNA of dividing cells and visually counting 2,000 cellsmore » on autoradiographically prepared cytocentrifuge cell preparations. This study demonstrated that the number of ({sup 3}H)thymidine-labeled monocytic phagocytes with characteristics of alveolar macrophages from either TS or MS have a higher proliferative index compared to cells (macrophages) from nonsmokers, p less than 0.05 by one-way ANOVA. The total number of BAL macrophages that are in mitosis in TS (17.90 +/- 4.50 labeled AM x 10(3)/ml) or MTS (10.50 +/- 4.20 labeled AM x 10(3)/ml) are 18- and 10-fold greater, respectively, than the number obtained from nonsmokers (1.01 +/- 0.18 labeled AM x 10(3)/ml). Interestingly, the number of ({sup 3}H)thymidine-labeled macrophages from MS (2.90 +/- 0.66 labeled AM x 10(3)/ml) are also greater than the number obtained from nonsmokers, although this is not statistically significant. The stimulus augmenting alveolar macrophage replication is as yet unknown but may likely be found in the T or M smoke.« less

  10. Effects of Pfaffia paniculata (Brazilian ginseng) extract on macrophage activity.

    PubMed

    Pinello, Kátia Cristina; Fonseca, Evelise de S M; Akisue, Gokithi; Silva, Ana Paula; Salgado Oloris, Silvia Catarina; Sakai, Mônica; Matsuzaki, Patrícia; Nagamine, Márcia Kazumi; Palermo Neto, João; Dagli, Maria Lúcia Zaidan

    2006-02-16

    The roots of Pfaffia paniculata (Brazilian ginseng) have been indicated for the treatment of several diseases and as an analgesic and antiinflamatory drug. Treatment of mice with 200 mg/kg of the powdered root of P. paniculata reduced the Ehrlich ascitic volume [Matsuzaki, P., Akisue, G., Salgado Oloris, S.C., Gorniak, S.L., Zaidan Dagli, M.L., 2003. Effect of Pffafia paniculata (Brazilian ginseng) on the Ehrlich tumor on its ascitic form. Life Sciences, Dec 19; 74 (5), 573-579.]. One of the putative means to control the Ehrlich tumor growth is by increasing macrophage activity [Kleeb, S.R., Xavier, J.G., Frussa-Filho, R., Dagli, M.L.Z., 1997. Effect of haloperidol on the development of the solid Ehrlich tumor in mice. Life Sciences, 60 (4/5), 69-742.]. The aim of this study was to investigate experimentally the effects of the methanolic extract of P. paniculata roots on macrophage activity. Male mice received, by gavage, once a day, different doses (100, 250, or 500 mg/kg) of the methanolic extract of P. paniculata or filtered water, as control, for 10 days. Macrophage activity was evaluated through the phagocytosis index (PI), spreading index (SI), production of peroxide oxigen and nitric oxide. The peritoneal cells were activated with ip inoculation of Ehrlich ascitic cells, 24 h before the macrophage harvesting. The methanolic extract raised significantly the SI of mice from group of 500 mg/kg in comparison with the control group and group of 100 mg/kg. This raise of SI possibly induced the higher phagocytic activity observed in the experimental situation. Increased macrophage activity may be one of the effects contributing to inhibition of the Ehrlich ascitic tumor growth in mice.

  11. Foveolar cells phagocytose apoptotic neutrophils in chronic active Helicobacter pylori gastritis.

    PubMed

    Caruso, R A; Fedele, F; Di Bella, C; Mazzon, E; Rigoli, L

    2012-11-01

    The recognition and removal of apoptotic inflammatory cells by tissue macrophages and non-professional phagocytes, in a process called efferocytosis, is required for resolution of inflammation and is actively anti-inflammatory. We have previously demonstrated phagocytosis of apoptotic neutrophils by tumor cells in human gastric carcinoma, but to date, there have been no studies investigating this process in chronic active Helicobacter pylori gastritis. Biopsy specimens from 28 subjects with or without H. pylori infection and active inflammation were examined and graded according to the updated Sydney system. Light microscopy, electron microscopy, and Terminal Deoxynucleotidyltransferase-Mediated UTP End Labeling staining were used to identify apoptosis. H. pylori infection was detected by histology and by molecular assay in 16 out of 28 cases. DNA from paraffin-embedded gastric biopsies was amplified using primers specific for cagA, for the cag "empty site" as well as for the s and m alleles of vacA. The more virulent cagA-positive strains were found in five out of nine patients with chronic active gastritis. The vacA s1/m1 and s2/m1 genotypes were more common in nine patients with chronic active gastritis, while the vacA s2/m2 genotype was more frequent in seven patients with chronic inactive gastritis. Apoptotic neutrophils were also detected within the cytoplasmic vacuoles of the foveolar cells of nine cases with chronic active gastritis. Transmission electron micrographs revealed further apoptotic neutrophils within spacious phagosomes of foveolar cells in a similar manner to those described in late-phase efferocytosis both in vivo and in vitro. These new observations expand the morphological spectrum of gastritis in patients infected with more virulent H. pylori strains, compatible with an anti-inflammatory role for the gastric epithelial cells in their removal of apoptotic neutrophils during active chronic gastritis.

  12. Monocyte activation by smooth muscle cell-derived matrices.

    PubMed

    Kaufmann, J; Jorgensen, R W; Martin, B M; Franzblau, C

    1990-12-01

    Mononuclear phagocytes adhere to and penetrate the vessel wall endothelium and contact the subendothelial space prior to the development of the atherosclerotic plaque. In an attempt to model the early events of plaque development we used an elastin-rich, multicomponent, cell-derived matrix from neonatal rat aortic smooth muscle cells as a substratum for monocytes. Using this model, we show that human monocyte morphology and metabolism are markedly altered by the matrix substratum. When a mixed mononuclear cell population is seeded on matrix or plastic, only monocytes adhere to the matrix surface. In contrast, lymphocytes as well as monocytes adhere to the plastic surface. The matrix-adherent monocytes develop large intracellular granules and form extensive clusters of individual cells. Metabolically, these cells develop sodium fluoride resistant non-specific esterase activity and their media contain more growth factor activity and PGE2. Although total protein synthesis is equivalent in both cultures, the matrix contact induces an increase in specific proteins in the media. We also show that a purified alpha-elastin substratum induces some, but not all, of the monocyte changes seen when using the matrix substratum. Using the alpha-elastin substratum, there is selective adhesion of monocytes and increased growth factor activity, however, the cells are morphologically different from the matrix-adherent cells. Thus, the use of the smooth muscle cell-derived matrix, in conjunction with purified matrix components, serves as a model that can provide insight into the mechanisms of monocyte adhesion and stimulation by the matrix environment that exists in vivo. Such mechanisms may be particularly important in atherogenesis.

  13. Candida albicans Chitin Increases Arginase-1 Activity in Human Macrophages, with an Impact on Macrophage Antimicrobial Functions.

    PubMed

    Wagener, Jeanette; MacCallum, Donna M; Brown, Gordon D; Gow, Neil A R

    2017-01-24

    The opportunistic human fungal pathogen Candida albicans can cause a variety of diseases, ranging from superficial mucosal infections to life-threatening systemic infections. Phagocytic cells of the innate immune response, such as neutrophils and macrophages, are important first-line responders to an infection and generate reactive oxygen and nitrogen species as part of their protective antimicrobial response. During an infection, host cells generate nitric oxide through the enzyme inducible nitric oxide synthase (iNOS) to kill the invading pathogen. Inside the phagocyte, iNOS competes with the enzyme arginase-1 for a common substrate, the amino acid l-arginine. Several pathogenic species, including bacteria and parasitic protozoans, actively modulate the production of nitric oxide by inducing their own arginases or the host's arginase activity to prevent the conversion of l-arginine to nitric oxide. We report here that C. albicans blocks nitric oxide production in human-monocyte-derived macrophages by induction of host arginase activity. We further determined that purified chitin (a fungal cell wall polysaccharide) and increased chitin exposure at the fungal cell wall surface induces this host arginase activity. Blocking the C. albicans-induced arginase activity with the arginase-specific substrate inhibitor Nω-hydroxy-nor-arginine (nor-NOHA) or the chitinase inhibitor bisdionin F restored nitric oxide production and increased the efficiency of fungal killing. Moreover, we determined that C. albicans influences macrophage polarization from a classically activated phenotype toward an alternatively activated phenotype, thereby reducing antimicrobial functions and mediating fungal survival. Therefore, C. albicans modulates l-arginine metabolism in macrophages during an infection, potentiating its own survival. The availability and metabolism of amino acids are increasingly recognized as crucial regulators of immune functions. In acute infections, the conversion

  14. [Effect of hydroxyethyl starch, oxypolygelatin and human albumin on the phagocytic function of the reticuloendothelial system in healthy subjects].

    PubMed

    Lenz, G; Hempel, V; Junger, H; Werle, H; Buckenmaier, P

    1986-07-01

    RES phagocytic function was determined in healthy volunteers prior to and up to 5 h after application of 10 ml/kg body weight of 6% hydroxyethyl starch (450,000; 0.7), 5.5% oxypolygelatin (30,000), or 5.0% human albumin solution. Phagocytosis (phagocytic index K) was evaluated in vivo by intravascular lipid clearance (Lipofundin clearance test). Immediately after infusion, the phagocytic rate increased by 30% in the hydroxyethyl starch group (n = 10; p less than 0.05), 14% in the oxypolygelatin group (n = 10; ns), and 24% in the albumin group (n = 8; ns). 2 h after infusion phagocytosis was still increased by 35% in the hydroxyethyl starch group (n = 10; p less than 0.05), by 18% in the oxypolygelatin group (n = 10; ns), and 13% in the albumin group (n = 8; ns). 5 h after infusion, K values had returned to normal in the albumin group (n = 4), but were still increased by 40% in the hydroxyethyl starch group (n = 4; ns). No statistically significant differences could be established among the 3 groups. The increase in the phagocytic rate, particularly after application of hydroxyethyl starch, might be explained by a dilution effect.

  15. Do not let death do us part: ‘find-me' signals in communication between dying cells and the phagocytes

    PubMed Central

    Medina, C B; Ravichandran, K S

    2016-01-01

    The turnover and clearance of cells is an essential process that is part of many physiological and pathological processes. Improper or deficient clearance of apoptotic cells can lead to excessive inflammation and autoimmune disease. The steps involved in cell clearance include: migration of the phagocyte toward the proximity of the dying cells, specific recognition and internalization of the dying cell, and degradation of the corpse. The ability of phagocytes to recognize and react to dying cells to perform efficient and immunologically silent engulfment has been well-characterized in vitro and in vivo. However, how apoptotic cells themselves initiate the corpse removal and also influence the cells within the neighboring environment during clearance was less understood. Recent exciting observations suggest that apoptotic cells can attract phagocytes through the regulated release of ‘find-me' signals. More recent studies also suggest that these find-me signals can have additional roles outside of phagocyte attraction to help orchestrate engulfment. This review will discuss our current understanding of the different find-me signals released by apoptotic cells, how they may be relevant in vivo, and their additional roles in facilitating engulfment. PMID:26891690

  16. Negative regulation of glial engulfment activity by Draper terminates glial responses to axon injury

    PubMed Central

    Logan, Mary A.; Hackett, Rachel; Doherty, Johnna; Sheehan, Amy; Speese, Sean D.; Freeman, Marc R.

    2012-01-01

    Neuronal injury elicits potent cellular responses from glia, but molecular pathways modulating glial activation, phagocytic function, and termination of reactive responses remain poorly defined. Here we show that positive or negative regulation of glial reponses to axon injury are molecularly encoded by unique isoforms of the Drosophila engulfment receptor Draper. Draper-I promotes engulfment of axonal debris through an immunoreceptor tyrosine-based activation motif (ITAM). In contrast, Draper-II, an alternative splice variant, potently inhibits glial engulfment function. Draper-II suppresses Draper-I signaling through a novel immunoreceptor tyrosine-based inhibitory motif (ITIM)-like domain and the tyrosine phosphatase Corkscrew (Csw). Intriguingly, loss of Draper-II/Csw signaling prolongs expression of glial engulfment genes after axotomy and reduces the ability of glia to respond to secondary axotomy. Our work highlights a novel role for Draper-II in inhibiting glial responses to neurodegeneration, and indicates a balance of opposing Draper-I/-II signaling events is essential to maintain glial sensitivity to brain injury. PMID:22426252

  17. Assessment and comparison of in vitro immunoregulatory activity of three astaxanthin stereoisomers

    NASA Astrophysics Data System (ADS)

    Sun, Weihong; Xing, Lihong; Lin, Hong; Leng, Kailiang; Zhai, Yuxiu; Liu, Xiaofang

    2016-04-01

    In recent years, the immune-modulatory role of all- trans astaxanthin from different pigment sources has been studied. It was reported that all- trans astaxanthin might exist as three stereoisomers, and the composition of all- trans stereoisomers in natural materials differs from that of synthetic products. However, the different biological effects of various all- trans stereoisomers still remain unclear. In the present study, we evaluated the bioactivity of three astaxanthin stereoisomers, ( 3S, 3'S)- trans-, ( 3R,3'R)- trans-and meso-trans-astaxanthin, in regulating cell-mediated immune response using mice lymphocytes and peritoneal exudates cells (PECs) systems. After the treatment with three astaxanthin stereoisomers (20 μmol L-1), the lymphocyte proliferation capacity, neutral red phagocytosis of PECs and natural killer (NK) cell cytotoxic activity were comparatively assessed. The results showed that all three astaxanthin stereoisomers significantly promoted lymphocyte proliferation, phagocytic capacity of PECs, and cytotoxic activity of NK cells. Moreover, the ( 3S,3'S)-trans-astaxanthin exhibited a much higher response than others.

  18. Differentiation-promoting activity of pomegranate (Punica granatum) fruit extracts in HL-60 human promyelocytic leukemia cells.

    PubMed

    Kawaii, Satoru; Lansky, Ephraim P

    2004-01-01

    Differentiation refers to the ability of cancer cells to revert to their normal counterparts, and its induction represents an important noncytotoxic therapy for leukemia, and also breast, prostate, and other solid malignancies. Flavonoids are a group of differentiation-inducing chemicals with a potentially lower toxicology profile than retinoids. Flavonoid-rich polyphenol fractions from the pomegranate (Punica granatum) fruit exert anti-proliferative, anti-invasive, anti-eicosanoid, and pro-apoptotic actions in breast and prostate cancer cells and anti-angiogenic activities in vitro and in vivo. Here we tested flavonoid-rich fractions from fresh (J) and fermented (W) pomegranate juice and from an aqueous extraction of pomegranate pericarps (P) as potential differentiation-promoting agents of human HL-60 promyelocytic leukemia cells. Four assays were used to assess differentiation: nitro blue tetrazolium reducing activity, nonspecific esterase activity, specific esterase activity, and phagocytic activity. In addition, the effect of these extracts on HL-60 proliferation was evaluated. Extracts W and P were strong promoters of differentiation in all settings, with extract J showing only a relatively mild differentiation-promoting effect. The extracts had proportional inhibitory effects on HL-60 cell proliferation. The results highlight an important, previously unknown, mechanism of the cancer preventive and suppressive potential of pomegranate fermented juice and pericarp extracts.

  19. Polymeric nanoparticles affect the intracellular delivery, antiretroviral activity and cytotoxicity of the microbicide drug candidate dapivirine.

    PubMed

    das Neves, José; Michiels, Johan; Ariën, Kevin K; Vanham, Guido; Amiji, Mansoor; Bahia, Maria Fernanda; Sarmento, Bruno

    2012-06-01

    To assess the intracellular delivery, antiretroviral activity and cytotoxicity of poly(ε-caprolactone) (PCL) nanoparticles containing the antiretroviral drug dapivirine. Dapivirine-loaded nanoparticles with different surface properties were produced using three surface modifiers: poloxamer 338 NF (PEO), sodium lauryl sulfate (SLS) and cetyl trimethylammonium bromide (CTAB). The ability of nanoparticles to promote intracellular drug delivery was assessed in different cell types relevant for vaginal HIV transmission/microbicide development. Also, antiretroviral activity of nanoparticles was determined in different cell models, as well as their cytotoxicity. Dapivirine-loaded nanoparticles were readily taken up by different cells, with particular kinetics depending on the cell type and nanoparticles, resulting in enhanced intracellular drug delivery in phagocytic cells. Different nanoparticles showed similar or improved antiviral activity compared to free drug. There was a correlation between increased antiviral activity and increased intracellular drug delivery, particularly when cell models were submitted to a single initial short-course treatment. PEO-PCL and SLS-PCL nanoparticles consistently showed higher selectivity index values than free drug, contrasting with high cytotoxicity of CTAB-PCL. These results provide evidence on the potential of PCL nanoparticles to affect in vitro toxicity and activity of dapivirine, depending on surface engineering. Thus, this formulation approach may be a promising strategy for the development of next generation microbicides.

  20. Studies on palauan medicinal herbs. II. Activation of mouse macrophages RAW 264.7 by Ongael, leaves of Phaleria cumingii (Meisn.) F. Vill. and its acylglucosylsterols.

    PubMed

    Matsuda, Hideaki; Tokunaga, Masashi; Iwahashi, Hiroyasu; Naruto, Shunsuke; Yagi, Hideki; Masuko, Takashi; Kubo, Michinori

    2005-05-01

    The extract of Ongael [leaves of Phaleria cumingii (MEISN.) F. VILL.], a Palauan medicinal herb, enhanced an in vitro phagocytic activity of mouse macrophages RAW 264.7 cells (RAW 264.7). Activity-guided fractionation of the Ongael extract by the in vitro phagocytosis assay using RAW 264.7 led to the isolation of a mixture of acylglucosylsterols (1) as an active constituent along with other inactive constituents, tetracosanol and mangiferin. On the basis of chemical modifications and spectral analyses, the compound 1 was deduced to be a mixture of the known 3-O-(6-O-acyl-beta-D-glucosyl)-beta-sitosterols, the acyl moiety being mainly palmitoyl (57%), oleoyl (12%) and alpha-linolenoyl (12%) with small amount of stearoyl (7%) and linoleoyl (4%).

  1. THE CONTRIBUTION OF TYRO3 FAMILY RECEPTOR TYROSINE KINASES TO THE HETEROGENEITY OF APOPTOTIC CELL UPTAKE BY MONONUCLEAR PHAGOCYTES

    PubMed Central

    Curtis, Jeffrey L.; Todt, Jill C.; Hu, Bin; Osterholzer, John J.; Freeman, Christine M.

    2014-01-01

    Mononuclear phagocytes comprise a mobile, broadly dispersed and highly adaptable system that lies at the very epicenter of host defense against pathogens and the interplay of the innate and adaptive arms of immunity. Understanding the molecular mechanisms that control the response of mononuclear phagocytes to apoptotic cells and the anti-inflammatory consequences of that response is an important goal with implications for multiple areas of biomedical sciences. This review details current understanding of the heterogeneity of apoptotic cell uptake by different members of the mononuclear phagocyte family in humans and mice. It also recounts the unique role of the Tyro3 family of receptor tyrosine kinases, best characterized for Mertk, in the signal transduction leading both to apoptotic cell ingestion and the anti-inflammatory effects that result. PMID:19273223

  2. The biological function of antibodies induced by the RTS,S/AS01 malaria vaccine candidate is determined by their fine specificity.

    PubMed

    Chaudhury, Sidhartha; Ockenhouse, Christian F; Regules, Jason A; Dutta, Sheetij; Wallqvist, Anders; Jongert, Erik; Waters, Norman C; Lemiale, Franck; Bergmann-Leitner, Elke

    2016-05-31

    Recent vaccine studies have shown that the magnitude of an antibody response is often insufficient to explain efficacy, suggesting that characteristics regarding the quality of the antibody response, such as its fine specificity and functional activity, may play a major role in protection. Previous studies of the lead malaria vaccine candidate, RTS,S, have shown that circumsporozoite protein (CSP)-specific antibodies and CD4(+) T cell responses are associated with protection, however the role of fine specificity and biological function of CSP-specific antibodies remains to be elucidated. Here, the relationship between fine specificity, opsonization-dependent phagocytic activity and protection in RTS,S-induced antibodies is explored. A new method for measuring the phagocytic activity mediated by CSP-specific antibodies in THP-1 cells is presented and applied to samples from a recently completed phase 2 RTS,S/AS01 clinical trial. The fine specificity of the antibody response was assessed using ELISA against three antigen constructs of CSP: the central repeat region, the C-terminal domain and the full-length protein. A multi-parameter analysis of phagocytic activity and fine-specificity data was carried out to identify potential correlates of protection in RTS,S. Results from the newly developed assay revealed that serum samples from RTS,S recipients displayed a wide range of robust and repeatable phagocytic activity. Phagocytic activity was correlated with full-length CSP and C-terminal specific antibody titres, but not to repeat region antibody titres, suggesting that phagocytic activity is primarily driven by C-terminal antibodies. Although no significant difference in overall phagocytic activity was observed with respect to protection, phagocytic activity expressed as 'opsonization index', a relative measure that normalizes phagocytic activity with CS antibody titres, was found to be significantly lower in protected subjects than non-protected subjects

  3. Cytotoxic activities of CD8+ T cells collaborate with macrophages to protect against blood-stage murine malaria

    PubMed Central

    Imai, Takashi; Ishida, Hidekazu; Suzue, Kazutomo; Taniguchi, Tomoyo; Okada, Hiroko; Shimokawa, Chikako; Hisaeda, Hajime

    2015-01-01

    The protective immunity afforded by CD8+ T cells against blood-stage malaria remains controversial because no MHC class I molecules are displayed on parasite-infected human erythrocytes. We recently reported that rodent malaria parasites infect erythroblasts that express major histocompatibility complex (MHC) class I antigens, which are recognized by CD8+ T cells. In this study, we demonstrate that the cytotoxic activity of CD8+ T cells contributes to the protection of mice against blood-stage malaria in a Fas ligand (FasL)-dependent manner. Erythroblasts infected with malarial parasites express the death receptor Fas. CD8+ T cells induce the externalization of phosphatidylserine (PS) on the infected erythroblasts in a cell-to-cell contact-dependent manner. PS enhances the engulfment of the infected erythroid cells by phagocytes. As a PS receptor, T-cell immunoglobulin-domain and mucin-domain-containing molecule 4 (Tim-4) contributes to the phagocytosis of malaria-parasite-infected cells. Our findings provide insight into the molecular mechanisms underlying the protective immunity exerted by CD8+ T cells in collaboration with phagocytes. DOI: http://dx.doi.org/10.7554/eLife.04232.001 PMID:25760084

  4. [Number, activity and thermostability of the electrophoretic forms of acid phosphatase in Amoeba proteus, cultured at different temperatures].

    PubMed

    Sopina, V A

    2001-01-01

    In free-living amoebae (Amoeba proteus, strain B), cultured at 10 and 25 degrees C, we compared the number, activity, and thermostability of separate electromorphs of Triton-soluble acid phosphatase (AcP) revealed by disc-electrophoresis in polyacrylamide gel using 2-naphthyl phosphate (pH 4.0) as a substrate. No differences in the number of AcP electromorphs and their mobility were observed at both these temperatures. The total activity of AcP electromorphas per unit of cellular protein and their total thermostability were lower in amoebae acclimated to 10 degrees C than to 25 degrees C. The above decrease may be a consequence of a simultaneous decrease in the activity and thermostability of two tartrate-sensitive electromorphs, both being of lysosomal nature. The total activity and thermostability of tartrate-resistant AcP electromorphs did not differ in amoebae acclimated to the two above temperatures. In amoebae cultured at 10 degrees C the fall of activity and thermostability of lysosomal AcP correlates with the decrease in their primary cell thermoresistance and phagocytic activity. The obtained results confirm the earlier conclusion (Vysotskaya et al., 1994) that lysosomes may be involved in acclimation of electrothermal animals to changing environmental temperatures.

  5. Every day I'm rufflin': Calcium sensing and actin dynamics in the growth factor-independent membrane ruffling of professional phagocytes.

    PubMed

    Schlam, Daniel; Canton, Johnathan

    2017-04-03

    Professional phagocytes continuously extend dynamic, actin-driven membrane protrusions. These protrusions, often referred to as membrane ruffles, serve a critical role in the essential phagocyte processes of macropinocytosis and phagocytosis. Small GTPases, such as RAC1/2, spatially and temporally regulate membrane ruffle formation. We have recently shown that extracellular calcium regulates the elaboration of membrane ruffles primarily through the synthesis of phosphatidic acid (PtdOH) at the plasma membrane. RAC1/2 guanine nucleotide exchange factors harbouring polybasic stretches are recruited by PtdOH to sites of ruffle formation. Here we discuss our findings and offer perspectives on how the regulation of dynamic actin structures at the plasma membrane by small GTPases is a critical component of phagocyte function.

  6. The Biological Function of Antibodies Induced by the RTS,S/AS01 Malaria Vaccine Candidate is Determined by Their Fine Specificity

    DTIC Science & Technology

    2016-05-31

    specificity, opsonization‑dependent phagocytic activity and protection in RTS,S‑induced antibodies is explored. Methods: A new method for measuring...the phagocytic activity mediated by CSP‑specific antibodies in THP‑1 cells is presented and applied to samples from a recently completed phase 2 RTS,S...repeat region, the C‑terminal domain and the full‑length protein. A multi‑parameter analysis of phagocytic activity and fine‑specific‑ ity data was

  7. Enhancement of anti-Aeromonas salmonicida activity in Atlantic salmon (Salmo salar) macrophages by a mannose-binding lectin

    USGS Publications Warehouse

    Ottinger, C.A.; Johnson, S.C.; Ewart, K.V.; Brown, L.L.; Ross, N.W.

    1999-01-01

    We investigated the effects of a calcium-dependent mannose-binding lectin isolated from the serum of Atlantic salmon on Aeromonassalmonicida viability and the anti-A. salmonicida activity of Atlantic salmon macrophages. In the absence of other factors, binding of this lectin at concentrations of 0.8, 4.0 and 20.0 ng ml−1 to virulent A. salmonicida failed to significantly reduce (P>0.05) cell viability. However, binding of the lectin to A. salmonicida did result in significant (P≤0.05) dose-dependent increases in phagocytosis, and bactericidal activity. Significant increases (P≤0.05) were also observed in phagocyte respiratory burst activity within the lectin concentration range of 4.0–20.0 ng ml−1 but the stimulation was not dose dependent at these lectin concentrations. At the lowest lectin concentration tested (0.32 ng ml−1), a significant decrease (P≤0.05) in respiratory burst was observed. The structure and activity of this lectin are similar to that of mammalian mannose-binding lectins, which are known to play a pivotal role in innate immunity. The presence of this lectin may be an important defense mechanism against Gram-negative bacteria such as A. salmonicida.

  8. Effects of β-glucans from Coriolus versicolor on macrophage phagocytosis are related to the Akt and CK2/Ikaros.

    PubMed

    Kang, Se Chan; Koo, Hyun Jung; Park, Sulkyung; Lim, Jung Dae; Kim, Ye-Jin; Kim, Taeseong; Namkoong, Seung; Jang, Ki-Hyo; Pyo, Suhkneung; Jang, Seon-A; Sohn, Eun-Hwa

    2013-06-01

    Coriolus versicolor has been known to be an immune stimulator effects. For further understanding of the phagocytic activity and the intracellular mechanisms of β-glucan from C. versicolor (CVG), we examined the phagocytic activity, phosphorylation of Akt and CK2, nucleus translocation of p65 and Ikaros activity in β-glucan-treated macrophages using RT-PCR, western blotting, and IP assay. The role of Ikaros in regulating phagocytic effects of CVG was also determined using Ikaros dominant negative isoform cells. This study suggests that CK2/Ikaros are positive regulators and novel signaling pathway involved in phagocytosis and contributes to elucidating the mechanism underlying phagocytic activity induced by β-glucan. Copyright © 2013 Elsevier B.V. All rights reserved.

  9. In vivo chemotherapeutic insight of a novel isocoumarin (3-hexyl-5,7-dimethoxy-isochromen-1-one): Genotoxicity, cell death induction, leukometry and phagocytic evaluation.

    PubMed

    Araújo, Flávio Henrique Souza de; Figueiredo, Débora Rojas de; Auharek, Sarah Alves; Pesarini, João Renato; Meza, Alisson; Gomes, Roberto da Silva; Monreal, Antônio Carlos Duenhas; Antoniolli-Silva, Andréia Conceição Milan Brochado; Lima, Dênis Pires de; Kassuya, Candida Aparecida Leite; Beatriz, Adilson; Oliveira, Rodrigo Juliano

    Chemotherapy is one of the major approaches for the treatment of cancer. Therefore, the development of new chemotherapy drugs is an important aspect of medicinal chemistry. Chemotherapeutic agents include isocoumarins, which are privileged structures with potential antitumoral activity. Herein, a new 3-substituted isocoumarin was synthesized from 2-iodo-3,5-dimethoxy-benzoic acid and oct-1-yne in a cross-coupling Sonogashira reaction followed by a copper iodide-catalyzed intramolecular cyclization as key step using MeOH/Et3N as the solvent system. The present study also evaluated the leukometry, phagocytic activity, genotoxic potential and cell death induction of three different doses (5 mg/kg, 10 mg/kg and 20 mg/kg) of this newly synthesized isocoumarin, alone and in combination with the commercial chemotherapeutic agents cyclophosphamide (100 mg/kg) and cisplatin (6 mg/kg) in male Swiss mice. The results suggest that the isocoumarin has genotoxicity and causes cell death. Noteworthy, this new compound can increase splenic phagocytosis and lymphocyte frequency, which are related to immunomodulatory activity. When combined with either cyclophosphamide or cisplatin, chemopreventive activity led to a reduction in the effects of both chemotherapeutic drugs. Thus, the new isocoumarin is not a candidate for chemotherapeutic adjuvant in treatments using cyclophosphamide or cisplatin. Nevertheless, the compound itself is an important prototype for the development of new antitumor drugs.

  10. Evaluation of immunomodulatory activity of two potential probiotic Lactobacillus strains by in vivo tests.

    PubMed

    Ren, Dayong; Li, Chang; Qin, Yanqing; Yin, Ronglan; Du, Shouwen; Liu, Hongfeng; Zhang, Yanfang; Wang, Cuiyan; Rong, Fengjun; Jin, Ningyi

    2015-10-01

    Here we evaluate the immunomodulatory function of two potential probiotic strains, Lactobacillus salivarius CICC 23174 and Lactobacillus plantarum CGMCC 1.557. Mice were fed with each Lactobacillus strain at different doses for several consecutive days. The effects of the two probiotic strains on immune organs, immune cells and immune molecules were investigated on days 10 and 20. Both Lactobacillus strains increased the spleen index, improved the spleen lymphocyte transformation rate, enhanced sIgA production and improved the number of CD11c(+) CD80(+) double-positive cells. L. plantarum CGMCC 1.557 was the more active strain in enhancing the phagocytic activity of macrophages, while, L. salivarius CICC 23174 was the more effective strain at maintaining the Th1/Th2 balance. This study suggests that these two Lactobacillus strains have beneficial effects on regulation of immune responses, which has promising implications for the development of ecological agents and functional foods. Copyright © 2015 Elsevier Ltd. All rights reserved.

  11. Identification of Scedosporium boydii catalase A1 gene, a reactive oxygen species detoxification factor highly expressed in response to oxidative stress and phagocytic cells.

    PubMed

    Mina, Sara; Staerck, Cindy; d'Almeida, Sènan M; Marot, Agnès; Delneste, Yves; Calenda, Alphonse; Tabiasco, Julie; Bouchara, Jean-Philippe; Fleury, Maxime J J

    2015-12-01

    Scedosporium boydii is an opportunistic filamentous fungus which may be responsible for a large variety of infections in both immunocompetent and immunocompromised individuals. This fungus belongs to the Scedosporium apiospermum species complex which usually ranks second among the filamentous fungi colonizing the airways of patients with cystic fibrosis (CF). Species of the S. apiospermum complex are able to chronically colonize the CF airways suggesting pathogenic mechanisms allowing persistence and growth of these fungi in the respiratory tract. Few putative virulence factors have been purified and characterized so far in the S. apiospermum complex including a cytosolic Cu,Zn-superoxide dismutase (SOD) and a monofunctional catalase (catalase A1). Upon microbial infection, host phagocytes release reactive oxygen species (ROS), such as hydrogen peroxide, as part of the antimicrobial response. Catalases are known to protect pathogens against ROS by degradation of the hydrogen peroxide. Here, we identified the S. boydii catalase A1 gene (CATA1) and investigated its expression in response to the environmental conditions encountered in the CF airways and to the oxidative stress. Results showed that S. boydii CATA1 gene expression is not affected by hypoxia, hypercapnia or pH changes. In contrast, CATA1 gene was overexpressed in response to a chemically induced oxidative stress with a relative gene expression 37-fold higher in the presence of 250 μM H(2)O(2), 20-fold higher with 250 μM menadione and 5-fold higher with 2 mM paraquat. Moreover, S. boydii CATA1 gene expression progressively increased upon exposure to activated THP-1-derived macrophages, reaching a maximum after 12 h (26 fold). Activated HL60-derived neutrophils and activated human peripheral blood neutrophils more rapidly induced S. boydii CATA1 gene overexpression, a maximum gene expression level being reached at 75 min (17 fold) and 60 min (15 fold), respectively. In contrast expression of the gene

  12. Acid phosphatase activity in liver macrophage aggregates as a marker for pollution-induced immunomodulation of the non-specific immune response in fish

    NASA Astrophysics Data System (ADS)

    Broeg, Katja

    2003-10-01

    The activity of acid phosphatase in liver macrophage aggregates (MA-AP) of different fish species was used as a marker for a pollution-induced modulation of the digestive capacity of phagocytes, since functions of the non-specific immune response play a central role in the maintenance of animals' health. Based upon the investigation of more than 900 individual flounders (Platichthys flesus) and mullets (Liza aurata), natural variations, gender-specific differences and pollution-induced alterations in AP activity are demonstrated in this study. MA-AP activity was dependent on temperature and season but, nevertheless, distinctions between differently polluted areas were visible in all sampling campaigns with lowest MA-AP activity in fish from the polluted areas of the German Bight and the Israeli coast of the Mediterranean Sea. For organochlorine contaminants, as well as for mercury and copper, a significant correlation could be observed between residue concentrations in fish tissues and MA-AP activity. In all cases, except mercury which showed a positive correlation, AP activity was suppressed in animals with a high contaminant burden. MA-AP activity turned out to give reliable and consistent results for a quantification of immunomodulation in both fish species.

  13. Redox Active Thiol Sensors of Oxidative and Nitrosative Stress

    PubMed Central

    2012-01-01

    Abstract Significance: The reactivity of the thiol in the side chain of cysteines is exploited by bacterial regulatory proteins that sense and respond to reactive oxygen and nitrogen species. Recent Advances: Charged residues and helix dipoles diminish the pKa of redox active cysteines, resulting in a thiolate that is stabilized by neighboring polar amino acids. The reaction of peroxides with thiolates generates a sulfenic acid (–SOH) intermediate that often gives rise to a reversible disulfide bond. Peroxide-induced intramolecular and intermolecular disulfides and intermolecular mixed disulfides modulate the signaling activity of members of the LysR/OxyR, MarR/OhrR, and RsrA family of transcriptional regulators. Thiol-dependent regulators also help bacteria resist the nitrosative and nitroxidative stress. −SOHs, mixed disulfides, and S-nitrosothiols are some of the post-translational modifications induced by nitrogen oxides in the thiol groups of OxyR and SsrB bacterial regulatory proteins. Sulfenylation, disulfide bond formation, S-thiolation, and S-nitrosylation are reversible modifications amenable to feedback regulation by antioxidant and antinitrosative repair systems. The structural and functional changes engaged in the thiol-dependent sensing of reactive species have been adopted by several regulators to foster bacterial virulence during exposure to products of NADPH phagocyte oxidase and inducible nitric oxide synthase. Critical Issues: Investigations with LysR/OxyR, MarR/OhrR, and RsrA family members have helped in an understanding of the mechanisms by which thiols in regulatory proteins react with reactive species, thereby activating antioxidant and antinitrosative gene expression. Future Directions: To define the determinants that provide selectivity of redox active thiolates for some reactive species but not others is an important challenge for future investigations. Antioxid. Redox Signal. 17, 1201–1214. PMID:22257022

  14. Programmed death 1-mediated T cell exhaustion during visceral leishmaniasis impairs phagocyte function.

    PubMed

    Esch, Kevin J; Juelsgaard, Rachel; Martinez, Pedro A; Jones, Douglas E; Petersen, Christine A

    2013-12-01

    Control of Leishmania infantum infection is dependent upon Th1 CD4(+) T cells to promote macrophage intracellular clearance of parasites. Deficient CD4(+) T cell effector responses during clinical visceral leishmaniasis (VL) are associated with elevated production of IL-10. In the primary domestic reservoir of VL, dogs, we define occurrence of both CD4(+) and CD8(+) T cell exhaustion as a significant stepwise loss of Ag-specific proliferation and IFN-γ production, corresponding to increasing VL symptoms. Exhaustion was associated with a 4-fold increase in the population of T cells with surface expression of programmed death 1 (PD-1) between control and symptomatic populations. Importantly, exhausted populations of CD8(+) T cells and to a lesser extent CD4(+) T cells were present prior to onset of clinical VL. VL-exhausted T cells did not undergo significant apoptosis ex vivo after Ag stimulation. Ab block of PD-1 ligand, B7.H1, promoted return of CD4(+) and CD8(+) T cell function and dramatically increased reactive oxygen species production in cocultured monocyte-derived phagocytes. As a result, these phagocytes had decreased parasite load. To our knowledge, we demonstrate for the first time that pan-T cell, PD-1-mediated, exhaustion during VL influenced macrophage-reactive oxygen intermediate production. Blockade of the PD-1 pathway improved the ability of phagocytes isolated from dogs presenting with clinical VL to clear intracellular parasites. T cell exhaustion during symptomatic canine leishmaniasis has implications for the response to vaccination and therapeutic strategies for control of Leishmania infantum in this important reservoir species.

  15. Single sea urchin phagocytes express messages of a single sequence from the diverse Sp185/333 gene family in response to bacterial challenge.

    PubMed

    Majeske, Audrey J; Oren, Matan; Sacchi, Sandro; Smith, L Courtney

    2014-12-01

    Immune systems in animals rely on fast and efficient responses to a wide variety of pathogens. The Sp185/333 gene family in the purple sea urchin, Strongylocentrotus purpuratus, consists of an estimated 50 (±10) members per genome that share a basic gene structure but show high sequence diversity, primarily due to the mosaic appearance of short blocks of sequence called elements. The genes show significantly elevated expression in three subpopulations of phagocytes responding to marine bacteria. The encoded Sp185/333 proteins are highly diverse and have central effector functions in the immune system. In this study we report the Sp185/333 gene expression in single sea urchin phagocytes. Sea urchins challenged with heat-killed marine bacteria resulted in a typical increase in coelomocyte concentration within 24 h, which included an increased proportion of phagocytes expressing Sp185/333 proteins. Phagocyte fractions enriched from coelomocytes were used in limiting dilutions to obtain samples of single cells that were evaluated for Sp185/333 gene expression by nested RT-PCR. Amplicon sequences showed identical or nearly identical Sp185/333 amplicon sequences in single phagocytes with matches to six known Sp185/333 element patterns, including both common and rare element patterns. This suggested that single phagocytes show restricted expression from the Sp185/333 gene family and infers a diverse, flexible, and efficient response to pathogens. This type of expression pattern from a family of immune response genes in single cells has not been identified previously in other invertebrates. Copyright © 2014 by The American Association of Immunologists, Inc.

  16. Cellular accumulation and pharmacodynamic evaluation of the intracellular activity of CEM-101, a novel fluoroketolide, against Staphylococcus aureus, Listeria monocytogenes, and Legionella pneumophila in human THP-1 macrophages.

    PubMed

    Lemaire, Sandrine; Van Bambeke, Françoise; Tulkens, Paul M

    2009-09-01

    CEM-101 is a novel fluoroketolide with lower MICs than those of telithromycin and macrolides. Our aim was to assess the cellular accumulation and intracellular activity of CEM-101 using models developed for analyzing the pharmacokinetics and pharmacological properties of antibiotics against phagocytized bacteria. We used THP-1 macrophages and Staphylococcus aureus (ATCC 25923 [methicillin (meticillin) sensitive]), Listeria monocytogenes (strain EGD), and Legionella pneumophila (ATCC 33153). CEM-101 reached cellular-to-extracellular-concentration ratios of about 350 within 24 h (versus approximately 20, 30, and 160 for telithromycin, clarithromycin, and azithromycin, respectively). This intracellular accumulation was suppressed by incubation at a pH of < or = 6 and by monensin (proton ionophore) and was unaffected by verapamil (P-glycoprotein inhibitor; twofold accumulation increase for azithromycin) or gemfibrozil. While keeping with the general properties of the macrolide antibiotics in terms of maximal efficacy (Emax; approximately 1-log10-CFU decrease compared to the postphagocytosis inoculum after a 24-h incubation), CEM-101 showed significantly greater potency against phagocytized S. aureus than telithromycin, clarithromycin, and azithromycin (for which the 50% effective concentration [EC50] and static concentrations were about 3-, 6-, and 15-fold lower, respectively). CEM-101 was also about 50-fold and 100-fold more potent than azithromycin against phagocytized L. monocytogenes and L. pneumophila, respectively. These differences in EC50s and static concentrations between drugs were minimized when data were expressed as multiples of the MIC, demonstrating the critical role of intrinsic drug activity (MIC) in eliciting the antibacterial intracellular effects, whereas accumulation per se was unimportant. CEM-101 should show enhanced in vivo potency if used at doses similar to those of the comparators tested here.

  17. Evaluating the Effects of Stressors on Immune Function during Simulated Dives in Marine Mammals

    DTIC Science & Technology

    2015-04-24

    differed the most from all other exposures. In contrast, human cells tended to display either smaller decreases, or increases, in phagocytic activity...phagocytosis similar to baseline samples; decreased phagocytic activity for the dive periods of pressure exposures, with increased activity following the

  18. Hacker within! Ehrlichia chaffeensis Effector Driven Phagocyte Reprogramming Strategy

    PubMed Central

    Lina, Taslima T.; Farris, Tierra; Luo, Tian; Mitra, Shubhajit; Zhu, Bing; McBride, Jere W.

    2016-01-01

    Ehrlichia chaffeensis is a small, gram negative, obligately intracellular bacterium that preferentially infects mononuclear phagocytes. It is the etiologic agent of human monocytotropic ehrlichiosis (HME), an emerging life-threatening tick-borne zoonosis. Mechanisms by which E. chaffeensis establishes intracellular infection, and avoids host defenses are not well understood, but involve functionally relevant host-pathogen interactions associated with tandem and ankyrin repeat effector proteins. In this review, we discuss the recent advances in our understanding of the molecular and cellular mechanisms that underlie Ehrlichia host cellular reprogramming strategies that enable intracellular survival. PMID:27303657

  19. Incidence of mastitis and activity of milk neutrophils in Tharparkar cows reared under semi-arid conditions.

    PubMed

    Alhussien, Mohanned; Manjari, P; Mohammed, Seid; Sheikh, Aasif Ahmad; Reddi, Srinu; Dixit, Satpal; Dang, Ajay K

    2016-08-01

    Rearing of indigenous Tharparkar (TP) cows (native of arid Thar deserts) under high humid conditions (>75 % humidity) has increased the incidence of mammary infections in them. A study was undertaken to see the number, activity, and expression of milk neutrophils isolated from healthy and mastitic cows. There was a significant (P < 0.05) influx in milk somatic cell counts (SCC) and neutrophils in sub-clinical and clinical mastitis cows. No change was observed in the phagocytic activity (PA) of milk neutrophils between healthy and sub-clinical mastitis (SCM) cows, but these activities decreased significantly (P < 0.05) in clinical cases. Chemotactic activity showed a significant difference between all the groups. Lactose varied significantly (P < 0.05) between healthy, sub-clinical, and clinical mastitis (CM) cows. Expression of chemokine receptor (CXCR1) was more in mastitis cows and also higher as compared to CXCR2. No change was observed in cluster of differentiation molecule (CD62L) among all the three groups of TP cows. Expression of interleukin (IL-8) and CD11b was low in healthy cows, increased significantly (P < 0.05) in both sub-clinical and mastitis cows. This study indicates that low producing TP cows are also prone to mammary infections when reared under semi-arid conditions.

  20. Tachykinin activation of human alveolar macrophages in tobacco smoke and sarcoidosis: a phenotypical and functional study.

    PubMed

    Brunelleschi, S; Guidotto, S; Viano, I; Fantozzi, R; Pozzi, E; Ghio, P; Albera, C

    1996-10-01

    Substance P (SP) and neurokinin A (NKA), which exert bronchoconstrictor effects on human airways, are known to interact with inflammatory and immune cells, including monocyte macrophages. We have evaluated the effects of SP, NKA and the NK2 selective agonist [beta-Ala8]-NKA(4-10) on alveolar macrophages (AM) isolated from 4 healthy smokers and 4 non-smoker active pulmonary sarcoid patients. An accumulation of activated mononuclear phagocytes, as well as elevated angiotensin-converting enzyme (ACE) activity, has been evidenced in both clinical conditions. The phenotype of AMs in the studied subjects was characterized by an elevated expression of CD68+, HLA-DR+ and CD14+, CD14+ being significantly less in sarcoidosis as compared to smokers. SP, NKA and the NK2 selective agonist evoked superoxide anion (O2-) production in AMs obtained from sarcoid patients or healthy smokers. While SP acted in a non-dose-dependent manner in both conditions, NKA and [beta-Ala8]-NKA(4-10) evoked a dose-dependent respiratory burst (ED50 = 0.25 and 0.26 nM, respectively) in smokers, but not in sarcoidosis. The more marked phenotypical expression correlated well with the ability of NK2 receptors to activate AMs in smoker subjects.

  1. Inhibition of Placenta Growth Factor Reduces Subretinal Mononuclear Phagocyte Accumulation in Choroidal Neovascularization.

    PubMed

    Crespo-Garcia, Sergio; Corkhill, Caitlin; Roubeix, Christophe; Davids, Anja-Maria; Kociok, Norbert; Strauss, Olaf; Joussen, Antonia M; Reichhart, Nadine

    2017-10-01

    The cellular immune response driven by mononuclear phagocytes (MPs) is crucial for choroidal neovascularization (CNV) progression. Case reports show that a switch from pure anti-vascular endothelial growth factor-A (VEGF-A) intravitreal treatment to aflibercept, a drug with combined anti-VEGF-A and anti-placenta growth factor (PlGF) activity, can be beneficial for patients who do not respond to anti-VEGF-A alone. Since MPs harbor VEGFR1, we hypothesize that the interplay of P1GF/vascular endothelial growth factor receptor 1 (VEGFR1) in immune cells plays a pivotal role for CNV. CNV was induced with laser, and immune cells and neovascularization were analyzed in vivo and ex vivo. Immunohistochemistry was employed for protein detection. Differential expression of angiogenic factors and macrophage polarization markers were assessed by quantitative PCR (qPCR). One day after laser, intravitreal injection of aflibercept or anti-PlGF was performed. In the early inflammatory phase after laser, Plgf but not Vegfa was significantly upregulated. VEGF-A upregulation is limited to the scar, whereas PlGF shows a wider distribution. M1 (proinflammatory) macrophage markers were upregulated in the early phase of CNV. However, M2 (proangiogenic) markers showed more inconsistent dynamics. We demonstrated that both aflibercept and anti-PlGF treatments decrease the overall amount of activated subretinal MPs, and especially of those expressing PlGF. These data correlated with a reduction in leakage associated to CNV. Aflibercept showed a stronger reduction in both parameters. The results hint at an interplay between PlGF/VEGFR1 and MPs that is important in the early phase of CNV. A combined inhibition of VEGF-A and PlGF is superior to a specific anti-PlGF treatment in terms of subretinal MP recruitment.

  2. Magnetic Labeling of Activated Microglia in Experimental Gliomas1

    PubMed Central

    Fleige, Gerrit; Nolte, Christiane; Synowitz, Michael; Seeberger, Florian; Kettenmann, Helmut; Zimmer, Claus

    2001-01-01

    Abstract Microglia, as intrinsic immunoeffector cells of the central nervous system (CNS), play a very sensitive, crucial role in the response to almost any brain pathology where they are activated to a phagocytic state. Based on the characteristic features of activated microglia, we investigated whether these cells can be visualized with magnetic resonance imaging (MRI) using ultrasmall superparamagnetic iron oxides (USPIOs). The hypothesis of this study was that MR microglia visualization could not only reveal the extent of the tumor, but also allow for assessing the status of immunologic defense. Using USPIOs in cell culture experiments and in a rat glioma model, we showed that microglia can be labeled magnetically. Labeled microglia are detected by confocal microscopy within and around tumors in a typical border-like pattern. Quantitative in vitro studies revealed that microglia internalize amounts of USPIOs that are significantly higher than those incorporated by tumor cells and astrocytes. Labeled microglia can be detected and quantified with MRI in cell phantoms, and the extent of the tumor can be seen in glioma-bearing rats in vivo. We conclude that magnetic labeling of microglia provides a potential tool for MRI of gliomas, which reflects tumor morphology precisely. Furthermore, the results suggest that MRI may yield functional data on the immunologic reaction of the CNS. PMID:11774031

  3. Activities of tigecycline and comparators against Legionella pneumophila and Legionella micdadei extracellularly and in human monocyte-derived macrophages.

    PubMed

    Bopp, Lawrence H; Baltch, Aldona L; Ritz, William J; Michelsen, Phyllis B; Smith, Raymond P

    2011-01-01

    The activity of tigecycline against Legionellae, which are intracellular pathogens, was evaluated intracellularly in human phagocytes and extracellularly, and compared to the activities of erythromycin and levofloxacin. Clinical isolates of L. pneumophila serogroups 1, 5, and 6 and L. micdadei were tested in time-kill experiments. Extracellular experiments were done using buffered yeast extract broth. For intracellular assays, monolayers of human monocyte-derived macrophages (MDM) were infected with L. pneumophila or L. micdadei. Antibiotics (0.05-2.5 × MIC) were then added. MDM were lysed at 0, 24, 48, and 72 h and viable bacteria in the lysates were enumerated. Based on multiples of the MICs, tigecycline was less active extracellularly than levofloxacin or erythromycin. However, intracellular killing of both L. pneumophila and L. micdadei by tigecycline at 72 h was greater than for erythromycin or levofloxacin. Currently, evidence does not support the use of tigecycline as a first-line drug for treatment of Legionella infections. However, since Legionellae are intracellular pathogens, these results suggest that tigecycline should be effective for treatment of infections caused by these bacteria. Published by Elsevier Inc.

  4. The zipper mechanism in phagocytosis: energetic requirements and variability in phagocytic cup shape

    PubMed Central

    2010-01-01

    Background Phagocytosis is the fundamental cellular process by which eukaryotic cells bind and engulf particles by their cell membrane. Particle engulfment involves particle recognition by cell-surface receptors, signaling and remodeling of the actin cytoskeleton to guide the membrane around the particle in a zipper-like fashion. Despite the signaling complexity, phagocytosis also depends strongly on biophysical parameters, such as particle shape, and the need for actin-driven force generation remains poorly understood. Results Here, we propose a novel, three-dimensional and stochastic biophysical model of phagocytosis, and study the engulfment of particles of various sizes and shapes, including spiral and rod-shaped particles reminiscent of bacteria. Highly curved shapes are not taken up, in line with recent experimental results. Furthermore, we surprisingly find that even without actin-driven force generation, engulfment proceeds in a large regime of parameter values, albeit more slowly and with highly variable phagocytic cups. We experimentally confirm these predictions using fibroblasts, transfected with immunoreceptor FcγRIIa for engulfment of immunoglobulin G-opsonized particles. Specifically, we compare the wild-type receptor with a mutant receptor, unable to signal to the actin cytoskeleton. Based on the reconstruction of phagocytic cups from imaging data, we indeed show that cells are able to engulf small particles even without support from biological actin-driven processes. Conclusions This suggests that biochemical pathways render the evolutionary ancient process of phagocytic highly robust, allowing cells to engulf even very large particles. The particle-shape dependence of phagocytosis makes a systematic investigation of host-pathogen interactions and an efficient design of a vehicle for drug delivery possible. PMID:21059234

  5. Alarmin S100A8/S100A9 as a biomarker for molecular imaging of local inflammatory activity.

    PubMed

    Vogl, Thomas; Eisenblätter, Michel; Völler, Tom; Zenker, Stefanie; Hermann, Sven; van Lent, Peter; Faust, Andreas; Geyer, Christiane; Petersen, Beatrix; Roebrock, Kirsten; Schäfers, Michael; Bremer, Christoph; Roth, Johannes

    2014-08-06

    Inflammation has a key role in the pathogenesis of various human diseases. The early detection, localization and monitoring of inflammation are crucial for tailoring individual therapies. However, reliable biomarkers to detect local inflammatory activities and to predict disease outcome are still missing. Alarmins, which are locally released during cellular stress, are early amplifiers of inflammation. Here, using optical molecular imaging, we demonstrate that the alarmin S100A8/S100A9 serves as a sensitive local and systemic marker for the detection of even sub-clinical disease activity in inflammatory and immunological processes like irritative and allergic contact dermatitis. In a model of collagen-induced arthritis, we use S100A8/S100A9 imaging to predict the development of disease activity. Furthermore, S100A8/S100A9 can act as a very early and sensitive biomarker in experimental leishmaniasis for phagocyte activation linked to an effective Th1-response. In conclusion, the alarmin S100A8/S100A9 is a valuable and sensitive molecular target for novel imaging approaches to monitor clinically relevant inflammatory disorders on a molecular level.

  6. Pomegranate (Punica granatum) Juice Shows Antioxidant Activity against Cutaneous Leishmaniasis-Induced Oxidative Stress in Female BALB/c Mice

    PubMed Central

    Alkathiri, Badriah; Metwally, Dina M.; Al-Olayan, Ebtesam M.; Bakhrebah, Muhammed A.

    2017-01-01

    Leishmania species are parasites that multiply within phagocytes and cause several clinical diseases characterized by single or multiple ulcerations. One of the complications that can induce tissue damage and the resulting scars is caused by secondary bacterial infections. Studies to find new, effective, and safe oral drugs for treating leishmaniasis are being conducted since several decades, owing to the problems associated with the use of antimonials available. Previously, the antiparasitic and antioxidant properties of Punica granatum (pomegranate, P. granatum) have been reported. Therefore, in the present study, we aimed to investigate the antileishmanial activity of pomegranate aqueous juice in vitro and in female BALB/c mice. A 3-(4.5-dimethylthiazol-2-yl)-2,5-diphenyltetrazolium bromide (MTT) assay in Leishmania major promastigotes and alterations in the antioxidant status, liver function, and skin histological changes in L. major-infected mice orally treated with pomegranate juice alone and in combination with the antibiotic ciprofloxacin, were used to investigate the in vitro and in vivo antileishmanial activity of pomegranate juice, respectively. Oral P. granatum juice treatment significantly reduced the average size of cutaneous leishmaniasis lesions compared with that of the untreated mice. This antileishmanial activity of P. granatum was associated with enhanced antioxidant enzyme activities. Histopathological evaluation proved the antileishmanial activity of P. granatum, but did not reveal changes in the treated animals, compared to the positive control. In conclusion, P. granatum shows high and fast antileishmanial activity probably by boosting the endogenous antioxidant activity. PMID:29258248

  7. C-reactive protein enhances IgG-mediated phagocyte responses and thrombocytopenia.

    PubMed

    Kapur, Rick; Heitink-Pollé, Katja M J; Porcelijn, Leendert; Bentlage, Arthur E H; Bruin, Marrie C A; Visser, Remco; Roos, Dirk; Schasfoort, Richard B M; de Haas, Masja; van der Schoot, C Ellen; Vidarsson, Gestur

    2015-03-12

    Immune-mediated platelet destruction is most frequently caused by allo- or autoantibodies via Fcγ receptor-dependent phagocytosis. Disease severity can be predicted neither by antibody isotype nor by titer, indicating that other factors play a role. Here we show that the acute phase protein C-reactive protein (CRP), a ligand for Fc receptors on phagocytes, enhances antibody-mediated platelet destruction by human phagocytes in vitro and in vivo in mice. Without antiplatelet antibodies, CRP was found to be inert toward platelets, but it bound to phosphorylcholine exposed after oxidation triggered by antiplatelet antibodies, thereby enhancing platelet phagocytosis. CRP levels were significantly elevated in patients with allo- and autoantibody-mediated thrombocytopenias compared with healthy controls. Within a week, intravenous immunoglobulin treatment in children with newly diagnosed immune thrombocytopenia led to significant decrease of CRP levels, increased platelet numbers, and clinically decreased bleeding severity. Furthermore, the higher the level of CRP at diagnosis, the longer it took before stable platelet counts were reached. These data suggest that CRP amplifies antibody-mediated platelet destruction and may in part explain the aggravation of thrombocytopenia on infections. Hence, targeting CRP could offer new therapeutic opportunities for these patients. © 2015 by The American Society of Hematology.

  8. Activation of immunity, immune response, antioxidant ability, and resistance against Vibrio alginolyticus in white shrimp Litopenaeus vannamei decrease under long-term culture at low pH.

    PubMed

    Chen, Yu-Yuan; Chen, Jiann-Chu; Tseng, Kuei-Chi; Lin, Yong-Chin; Huang, Chien-Lun

    2015-10-01

    The growth, activation of immunity, immune parameters, and transcript levels of cytMnSOD, mtMnSOD, ecCuZnSOD, glutathione peroxidase (GPx), catalase, lysozyme, and penaeidin 3a were examined in white shrimp Litopenaeus vannamei reared at pH 6.8 and 8.1 after 24 weeks. No significant difference in growth was observed between the two groups. An in vitro study indicated that phenoloxidase activity and respiratory bursts (RB, release of the superoxide anion) were significantly higher in the haemocytes of pH 8.1 shrimp (shrimp reared at pH 8.1) than in pH 6.8 shrimp (shrimp reared at pH 6.8). An in vivo study indicated that the levels of immune parameters of pH 8.1 shrimp were significantly higher than in pH 6.8 shrimp, and the transcript levels of cytMnSOD, ecCuZnSOD, glutathione peroxidase, lysozyme, and penaeidin 3a were down-regulated in pH 6.8 shrimp. In another experiment, shrimp reared at pH 6.8 and 8.1 for 24 weeks were challenged with Vibrio alginolyticus. The mortality rate of pH 6.8 shrimp was significantly higher than in pH 8.1 shrimp over 12-168 h. Phagocytic activity, phagocytic index, and clearance efficiency to V. alginolyticus were significantly lower in pH 6.8 shrimp. We concluded that shrimp under long-term culture at pH 6.8 exhibited decreased resistance against V. alginolyticus as evidenced by reductions in the activation of immunity and immune parameters together with decreased transcript levels of cytMnSOD, ecCuZnSOD, GPx, lysozyme, and penaeidin 3a. Copyright © 2015 Elsevier Ltd. All rights reserved.

  9. Activated Microglia Desialylate and Phagocytose Cells via Neuraminidase, Galectin-3, and Mer Tyrosine Kinase

    PubMed Central

    Nomura, Koji; Vilalta, Anna; Allendorf, David H.; Hornik, Tamara C.

    2017-01-01

    Activated microglia can phagocytose dying, stressed, or excess neurons and synapses via the phagocytic receptor Mer tyrosine kinase (MerTK). Galectin-3 (Gal-3) can cross-link surface glycoproteins by binding galactose residues that are normally hidden below terminal sialic acid residues. Gal-3 was recently reported to opsonize cells via activating MerTK. We found that LPS-activated BV-2 microglia rapidly released Gal-3, which was blocked by calcineurin inhibitors. Gal-3 bound to MerTK on microglia and to stressed PC12 (neuron-like) cells, and it increased microglial phagocytosis of PC12 cells or primary neurons, which was blocked by inhibition of MerTK. LPS-activated microglia exhibited a sialidase activity that desialylated PC12 cells and could be inhibited by Tamiflu, a neuraminidase (sialidase) inhibitor. Sialidase treatment of PC12 cells enabled Gal-3 to bind and opsonize the live cells for phagocytosis by microglia. LPS-induced microglial phagocytosis of PC12 was prevented by small interfering RNA knockdown of Gal-3 in microglia, lactose inhibition of Gal-3 binding, inhibition of neuraminidase with Tamiflu, or inhibition of MerTK by UNC569. LPS-induced phagocytosis of primary neurons by primary microglia was also blocked by inhibition of MerTK. We conclude that activated microglia release Gal-3 and a neuraminidase that desialylates microglial and PC12 surfaces, enabling Gal-3 binding to PC12 cells and their phagocytosis via MerTK. Thus, Gal-3 acts as an opsonin of desialylated surfaces, and inflammatory loss of neurons or synapses may potentially be blocked by inhibiting neuraminidases, Gal-3, or MerTK. PMID:28500071

  10. Inhibitory Effect of the Ethanol Extract of a Rice Bran Mixture Comprising Angelica gigas, Cnidium officinale, Artemisia princeps, and Camellia sinensis on Brucella abortus Uptake by Professional and Nonprofessional Phagocytes.

    PubMed

    Hop, Huynh Tan; Arayan, Lauren Togonon; Reyes, Alisha Wehdnesday Bernardo; Huy, Tran Xuan Ngoc; Baek, Eun Jin; Min, WonGi; Lee, Hu Jang; Lee, Chun Hee; Rhee, Man Hee; Kim, Suk

    2017-10-28

    In this study, we evaluated the inhibitory effect of a rice bran mixture extract (RBE) on Brucella abortus pathogenesis in professional (RAW 264.7) and nonprofessional (HeLa) phagocytes. We fermented the rice bran mixture and then extracted it with 50% ethanol followed by gas chromatography-mass spectrometry to identify the components in RBE. Our results clearly showed that RBE caused a significant reduction in the adherence of B. abortus in both cell lines. Furthermore, analysis of phagocytic signaling proteins by western blot assay revealed that RBE pretreatment resulted in inhibition of phosphorylation of JNK, ERK, and p38, leading to decline of internalization compared with the controls. Additionally, the intensity of F-actin observed by fluorescence microscopy and FACS was remarkably reduced in RBE-pretreated cells compared with control cells. However, the intracellular replication of B. abortus within phagocytes was not affected by RBE. Taken together, these findings suggest that the phagocytic receptor blocking and suppressive effects of RBE on the MAPK-linked phagocytic signaling pathway could negatively affect the invasion of B. abortus into phagocytes.

  11. Interleukin-17 Promotes Neutrophil-Mediated Immunity by Activating Microvascular Pericytes and Not Endothelium

    PubMed Central

    Liu, Rebecca; Lauridsen, Holly M.; Amezquita, Robert A.; Pierce, Richard W.; Jane-wit, Dan; Fang, Caodi; Pellowe, Amanda S.; Kirkiles-Smith, Nancy C.; Gonzalez, Anjelica L.; Pober, Jordan S.

    2016-01-01

    A classical hallmark of acute inflammation is neutrophil infiltration of tissues, a multi-step process that involves sequential cell-cell interactions of circulating leukocytes with interleukin (IL)-1- or tumor necrosis factor-α (TNF)-activated microvascular endothelial cells (ECs) and pericytes (PCs) that form the wall of the postcapillary venules. The initial infiltrating cells accumulate perivascularly in close proximity to PCs. IL-17, a pro-inflammatory cytokine that acts on target cells via a heterodimeric receptor formed by IL-17RA and IL-17RC subunits, also promotes neutrophilic inflammation but its effects on vascular cells are less clear. We report that both cultured human ECs and PCs strongly express IL-17RC and, while neither cell type expresses much IL-17RA, PCs express significantly more than ECs. IL-17, alone or synergistically with TNF, significantly alters inflammatory gene expression in cultured human PCs but not ECs. RNA-seq analysis identifies many IL-17-induced transcripts in PCs encoding proteins known to stimulate neutrophil-mediated immunity. Conditioned media (CM) from IL-17-activated PCs, but not ECs, induce pertussis toxin-sensitive neutrophil polarization, likely mediated by PC-secreted chemokines, and also stimulate neutrophil production of pro-inflammatory molecules, including TNF, IL-1α, IL-1β, and IL-8. Furthermore, IL-17-activated PCs but not ECs can prolong neutrophil survival by producing G-CSF and GM-CSF, delaying the mitochondria outer membrane permeabilization and caspase 9 activation. Importantly, neutrophils exhibit enhanced phagocytic capacity after activation by CM from IL-17-treated PCs. We conclude that PCs, not ECs, are the major target of IL-17 within the microvessel wall and that IL-17-activated PCs can modulate neutrophil functions within the perivascular tissue space. PMID:27534549

  12. Differential activation of peritoneal cells by subcutaneous treatment of rats with cryptococcal antigens.

    PubMed

    Baronetti, José L; Chiapello, Laura S; Garro, Ana P; Masih, Diana T

    2009-08-01

    Previous studies in our laboratory have shown that the subcutaneous pretreatment of rats with heat-killed cells (HKC) of Cryptococcus neoformans emulsified in complete Freund adjuvant (CFA) promotes protective immunity against an intraperitoneal challenge with C. neoformans. In contrast, subcutaneous treatment with the capsular polysaccharide (PSC) emulsified in CFA exacerbates the cryptococcal infection. The purpose of this study was to analyze the mechanisms involved in these phenomena. Adherent peritoneal cells from rats treated with HKC-CFA showed upregulated ED2, CD80, and CD86 expression; an increase in the level of production of anticryptococcal metabolites; and the enhanced production of interleukin-12 (IL-12) in comparison with the findings for cells from rats treated with CFA-phosphate-buffered saline (PBS). Adherent peritoneal cells from rats treated with PSC-CFA, however, also presented upregulated ED2, CD80, and CD86 expression compared to the level of expression for peritoneal cells from controls, but these cells showed an increase in arginase activity and decreased levels of production of IL-12 and tumor necrosis factor (TNF) compared with the activity and levels of production by peritoneal cells from CFA-PBS-treated rats. In addition, treatment with HKC-CFA resulted in a rise in the phagocytic and anticryptococcal activities of adherent peritoneal cells compared to those for control rats. However, adherent peritoneal cells from rats treated with PSC-CFA presented a reduction in anticryptococcal activity in comparison with that for cells from animals treated with CFA-PBS. These results show the differential activation between adherent peritoneal cells from HKC-CFA- and PSC-CFA-treated rats, with this differential activation at the primary site of infection possibly being responsible, at least in part, for the phenomena of protection and exacerbation observed in our model.

  13. Enveloped viruses disable innate immune responses in dendritic cells by direct activation of TAM receptors.

    PubMed

    Bhattacharyya, Suchita; Zagórska, Anna; Lew, Erin D; Shrestha, Bimmi; Rothlin, Carla V; Naughton, John; Diamond, Michael S; Lemke, Greg; Young, John A T

    2013-08-14

    Upon activation by the ligands Gas6 and Protein S, Tyro3/Axl/Mer (TAM) receptor tyrosine kinases promote phagocytic clearance of apoptotic cells and downregulate immune responses initiated by Toll-like receptors and type I interferons (IFNs). Many enveloped viruses display the phospholipid phosphatidylserine on their membranes, through which they bind Gas6 and Protein S and engage TAM receptors. We find that ligand-coated viruses activate TAM receptors on dendritic cells (DCs), dampen type I IFN signaling, and thereby evade host immunity and promote infection. Upon virus challenge, TAM-deficient DCs display type I IFN responses that are elevated in comparison to wild-type cells. As a consequence, TAM-deficient DCs are relatively resistant to infection by flaviviruses and pseudotyped retroviruses, but infection can be restored with neutralizing type I IFN antibodies. Correspondingly, a TAM kinase inhibitor antagonizes the infection of wild-type DCs. Thus, TAM receptors are engaged by viruses in order to attenuate type I IFN signaling and represent potential therapeutic targets. Copyright © 2013 Elsevier Inc. All rights reserved.

  14. Syzygium cumini (L.) Skeels essential oil and its major constituent α-pinene exhibit anti-Leishmania activity through immunomodulation in vitro.

    PubMed

    Rodrigues, Klinger Antonio da Franca; Amorim, Layane Valéria; Dias, Clarice Noleto; Moraes, Denise Fernandes Coutinho; Carneiro, Sabrina Maria Portela; Carvalho, Fernando Aécio de Amorim

    2015-02-03

    Syzygium cumini (L.) Skeels (Myrtaceae), commonly known as "jambolão" in Brazil is widely used in folk medicine against leishmaniasis, inflammation, chronic diarrhea, and ulcers. It is one of the most commonly used plants for the treatment of diabetes worldwide. In previous studies, Syzygium cumini was shown to possess antihyperlipidemic and anti-allergic properties, and to exhibit good performance as an antimicrobial agent against bacteria, fungi, and protozoa parasites of the genus Leishmania and Trypanosoma. This study was aimed at evaluating the effects of S. cumini essential oil (ScEO) and its major component α-pinene on Leishmania (Leishmania) amazonensis, as well as their cytotoxicity and possible mechanisms of action. To evaluate the anti-proliferative effect on Leishmania, effects on promastigote and axenic amastigote forms were assessed using tetrazolium salt (MTT) assay. The intramacrophagic amastigotes were exposed to ScEO and α-pinene to determine the survival index. To gain insight into the mechanism of action involved in the effect on the samples, we evaluated the modulation of macrophage activation state by observing structural (phagocytic and lysosomal activities) and cellular (nitric oxide increase) changes. To assess the safety profile of ScEO and α-pinene, murine macrophages and human red blood cells were treated with ScEO and α-pinene and the selectivity index was calculated for each treatment. α-Pinene was effective against Leishmania amazonensis promastigote forms, with a half-maximal inhibitory concentration (IC50) value of 19.7µg/mL. α-Pinene was more active (IC50 values of 16.1 and 15.6µg/mL against axenic and intracellular amastigotes, respectively) than ScEO (IC50 values of 43.9 and 38.1µg/mL against axenic and intracellular amastigotes, respectively). Our results showed that the anti-Leishmania effects were mediated by immunomodulatory activity, as evidenced by the observed increases in both phagocytic and lysosomal activity

  15. Nanoblinker: Brownian Motion Powered Bio-Nanomachine for FRET Detection of Phagocytic Phase of Apoptosis

    PubMed Central

    Minchew, Candace L.; Didenko, Vladimir V.

    2014-01-01

    We describe a new type of bio-nanomachine which runs on thermal noise. The machine is solely powered by the random motion of water molecules in its environment and does not ever require re-fuelling. The construct, which is made of DNA and vaccinia virus topoisomerase protein, can detect DNA damage by employing fluorescence. It uses Brownian motion as a cyclic motor to continually separate and bring together two types of fluorescent hairpins participating in FRET. This bio-molecular oscillator is a fast and specific sensor of 5′OH double-strand DNA breaks present in phagocytic phase of apoptosis. The detection takes 30 s in solution and 3 min in cell suspensions. The phagocytic phase is critical for the effective execution of apoptosis as it ensures complete degradation of the dying cells’ DNA, preventing release of pathological, viral and tumor DNA and self-immunization. The construct can be used as a smart FRET probe in studies of cell death and phagocytosis. PMID:25268504

  16. Cellular cooperation in lymphocyte activation. III. B-cell helper effect in the enhancement of T-cell response.

    PubMed

    Kasahara, T; Kin, K; Itoh, Y; Kawai, T; Kano, Y; Shioiri-Nakano, K

    1979-01-01

    T and B cells were purified from human tonsil and peripheral blood by the removal of phagocytic cells, followed by filtration through a nylon fiber column (NC) and E-rosette formation. Purified T and B cells contained less than 1% of other cell types. The responses of T cells to concanavalin A (Con A) and soluble protein A were greatly enhanced in the presence of autologous B cells. Participation of B cells in T-cell enhancement was confirmed by the following observations: (a) purified B copulation, which was separated further from adherent B cells, retained its enhancing activity. (b) Another adherent cell-free B-cell preparation, which was purified from the NC-passed fraction, and (c) no T lymphoid but some B lymphoid cell lines, elicited strong T-cell enhancement. It was also found that the enhancing capacity of B cells required no metabolic activity, but rather an intact cell form and direct cell-to-cell contact with responding cells. The stimulatory determinants on B cells were resistant to trypsin and neuraminidase treatment. In this paper a hypothesis will be presented that at least two signals are prerequisite for the effective activation of T cells.

  17. Anti-inflammatory actions of a taurine analogue, ethane β-sultam, in phagocytic cells, in vivo and in vitro.

    PubMed

    Ward, Roberta J; Lallemand, Frederic; de Witte, Philippe; Crichton, Robert R; Piette, Jacques; Tipton, Keith; Hemmings, Karl; Pitard, Arnaud; Page, Mike; Della Corte, Laura; Taylor, Deanna; Dexter, David

    2011-03-15

    The ability of a taurine prodrug, ethane β-sultam, to reduce cellular inflammation has been investigated, in vitro, in primary cultures of alveolar macrophages and an immortilised N9 microglial cell line and in vivo in an animal model of inflammation and control rats. Ethane β-sultam showed enhanced ability to reduce the inflammatory response in alveolar macrophages, as assayed by the lipopolysaccharide-stimulated-nitric oxide release, (LPS stimulated-NO), in comparison to taurine both in vitro (10 nM, 50 nM) and in vivo (0.15 mmol/kg/day by gavage). In addition, ethane β-sultam, (50, 100 and 1000 nM) significantly reduced LPS-stimulated glutamate release from N9 microglial cells to a greater extent than taurine. The anti-inflammatory response of taurine was shown to be mediated via stabilisation of IkBα. The use of a taurine prodrug as therapeutic agents, for the treatment of neurological conditions, such as Parkinson's and Alzheimer's disease and alcoholic brain damage, where activated phagocytic cells contribute to the pathogenesis, may be of great potential. Copyright © 2011 Elsevier Inc. All rights reserved.

  18. C-type lectin Mincle is an activating receptor for pathogenic fungus, Malassezia

    PubMed Central

    Yamasaki, Sho; Matsumoto, Makoto; Takeuchi, Osamu; Matsuzawa, Tetsuhiro; Ishikawa, Eri; Sakuma, Machie; Tateno, Hiroaki; Uno, Jun; Hirabayashi, Jun; Mikami, Yuzuru; Takeda, Kiyoshi; Akira, Shizuo; Saito, Takashi

    2009-01-01

    Mincle (also called as Clec4e and Clecsf9) is a C-type lectin receptor expressed in activated phagocytes. Recently, we have demonstrated that Mincle is an FcRγ-associated activating receptor that senses damaged cells. To search an exogenous ligand(s), we screened pathogenic fungi using cell line expressing Mincle, FcRγ, and NFAT-GFP reporter. We found that Mincle specifically recognizes the Malassezia species among 50 different fungal species tested. Malassezia is a pathogenic fungus that causes skin diseases, such as tinea versicolor and atopic dermatitis, and fatal sepsis. However, the specific receptor on host cells has not been identified. Mutation of the putative mannose-binding motif within C-type lectin domain of Mincle abrogated Malassezia recognition. Analyses of glycoconjugate microarray revealed that Mincle selectively binds to α-mannose but not mannan. Thus, Mincle may recognize specific geometry of α-mannosyl residues on Malassezia species and use this to distinguish them from other fungi. Malassezia activated macrophages to produce inflammatory cytokines/chemokines. To elucidate the physiological function of Mincle, Mincle-deficient mice were established. Malassezia-induced cytokine/chemokine production by macrophages from Mincle−/− mice was significantly impaired. In vivo inflammatory responses against Malassezia was also impaired in Mincle−/− mice. These results indicate that Mincle is the first specific receptor for Malassezia species to be reported and plays a crucial role in immune responses to this fungus. PMID:19171887

  19. Studies on Antiviral and Immuno-Regulation Activity of Low Molecular Weight Fucoidan from Laminaria japonica

    NASA Astrophysics Data System (ADS)

    Sun, Taohua; Zhang, Xinhui; Miao, Ying; Zhou, Yang; Shi, Jie; Yan, Meixing; Chen, Anjin

    2018-06-01

    The antiviral activity in vitro and in vivo and the effect of the immune system of two fucoidan fractions with low molecular weight and different sulfate content from Laminaria japonica (LMW fucoidans) were investigated in order to examine the possible mechanism. In vitro, I-type influenza virus, adenovirus and Parainfluenza virus I were used to infect Hep-2, Hela and MDCK cells, respectively. And 50% tissue culture infective dose was calculated to detect the antiviral activity of two LMW fucoidans. The results indicated that compared with the control group, 2 kinds of LMW fucoidans had remarkable antiviral activity in vitro in middle and high doses, while at low doses, the antiviral activity of 2 kinds of LMW fucoidans was not statistically different from that in the blank control group. And there was no statistically difference between two LMW fucoidans in antiviral activity. In vivo, LMW fucoidans could prolong the survival time of virus-infected mice, and could improve the lung index of virus-infected mice significantly, which have statistical differences with the control group significantly ( p < 0.01). However, the survival time of the two LMW fucoidans was not statistically significant ( p > 0.05). In this study, it was shown that both of two LMW fucoidans (LF1, LF2) could increase the thymus index, spleen index, phagocytic index, phagocytosis coefficient and half hemolysin value in middle and high doses, which suggested that LMW fucoidans could play an antiviral role by improving the quality of immune organs, improving immune cell phagocytosis and humoral immunity.

  20. Cellular Accumulation and Pharmacodynamic Evaluation of the Intracellular Activity of CEM-101, a Novel Fluoroketolide, against Staphylococcus aureus, Listeria monocytogenes, and Legionella pneumophila in Human THP-1 Macrophages ▿ †

    PubMed Central

    Lemaire, Sandrine; Van Bambeke, Françoise; Tulkens, Paul M.

    2009-01-01

    CEM-101 is a novel fluoroketolide with lower MICs than those of telithromycin and macrolides. Our aim was to assess the cellular accumulation and intracellular activity of CEM-101 using models developed for analyzing the pharmacokinetics and pharmacological properties of antibiotics against phagocytized bacteria. We used THP-1 macrophages and Staphylococcus aureus (ATCC 25923 [methicillin (meticillin) sensitive]), Listeria monocytogenes (strain EGD), and Legionella pneumophila (ATCC 33153). CEM-101 reached cellular-to-extracellular-concentration ratios of about 350 within 24 h (versus approximately 20, 30, and 160 for telithromycin, clarithromycin, and azithromycin, respectively). This intracellular accumulation was suppressed by incubation at a pH of ≤6 and by monensin (proton ionophore) and was unaffected by verapamil (P-glycoprotein inhibitor; twofold accumulation increase for azithromycin) or gemfibrozil. While keeping with the general properties of the macrolide antibiotics in terms of maximal efficacy (Emax; approximately 1-log10-CFU decrease compared to the postphagocytosis inoculum after a 24-h incubation), CEM-101 showed significantly greater potency against phagocytized S. aureus than telithromycin, clarithromycin, and azithromycin (for which the 50% effective concentration [EC50] and static concentrations were about 3-, 6-, and 15-fold lower, respectively). CEM-101 was also about 50-fold and 100-fold more potent than azithromycin against phagocytized L. monocytogenes and L. pneumophila, respectively. These differences in EC50s and static concentrations between drugs were minimized when data were expressed as multiples of the MIC, demonstrating the critical role of intrinsic drug activity (MIC) in eliciting the antibacterial intracellular effects, whereas accumulation per se was unimportant. CEM-101 should show enhanced in vivo potency if used at doses similar to those of the comparators tested here. PMID:19564365

  1. Immunobiological Activity of Synthetically Prepared Immunodominant Galactomannosides Structurally Mimicking Aspergillus Galactomannan

    PubMed Central

    Paulovičová, Ema; Paulovičová, Lucia; Hrubiško, Martin; Krylov, Vadim B.; Argunov, Dmitry A.; Nifantiev, Nikolay E.

    2017-01-01

    The study is oriented at the in vitro evaluation of the immunobiological activity and efficacy of synthetically prepared isomeric pentasaccharides representing fragments of Aspergillus fumigatus cell-wall galactomannan and containing β-(1→5)-linked tetragalactofuranoside chain attached to O-6 (GM-1) or O-3 (GM-2) of a spacer-armed mannopyranoside residue. These compounds were studied as biotinylated conjugates which both demonstrated immunomodulatory activities on the RAW 264.7 cell line murine macrophages as in vitro innate immunity cell model. Immunobiological studies revealed time- and concentration-dependent efficient immunomodulation. The proliferation of RAW 264.7 macrophages was induced at higher concentration (100 µg/mL) of studied glycoconjugates and longer exposure (48 h), with more pronounced efficacy for GM-1. The increase of proliferation followed the previous increase of IL-2 production. The cytokine profile of the macrophages treated with the glycoconjugates was predominantly pro-inflammatory Th1 type with significant increase of TNFα, IL-6, and IL-12 release for both glycoconjugates. The RAW 264.7 macrophages production of free radicals was not significantly affected by glycoconjugates stimulation. The phagocytic activity of RAW 264.7 cells was reduced following GM-1 treatment and was significantly increased after 24 h stimulation with GM-2, contrary to 48 h stimulation. Moreover, the synthetically prepared galactomannoside derivatives have been evaluated as efficient serodiagnostic antigens recognized by specific Ig isotypes, and significant presence of specific IgM antibodies in serum of patients suffering from vulvovaginitis was observed. PMID:29081774

  2. In vitro modification of Candida albicans invasiveness.

    PubMed

    Fontenla de Petrino, S E; de Jorrat, M E; Sirena, A; Valdez, J C; Mesón, O

    1986-05-01

    Candida albicans produces germ-tubes (GT) when it is incubated in animal or human serum. This dimorphism is responsible for its invasive ability. The purpose of the present paper is (1) to evaluate the ability of rat peritoneal macrophages to inhibit GT production of ingested Candida albicans, obtained from immunized rats and then activated in vitro with Candida-induced lymphokines; (2) to determinate any possible alteration of phagocytic and candidacidal activities. The phagocytes were obtained from rats immunized with viable C. albicans. Some of them were exposed to Candida-induced lymphokines in order to activate the macrophages in vitro. The monolayers of activated, immune and normal macrophages were infected with a C. albicans suspension during 4 hr. Activated macrophages presented not only the highest phagocytic and candidacidal activities but a noticeable inhibition of GT formation and incremented candidacidal activity.

  3. Antitumor effects and immune regulation activities of a purified polysaccharide extracted from Juglan regia.

    PubMed

    Ruijun, Wang; Shi, Wang; Yijun, Xia; Mengwuliji, Tu; Lijuan, Zhang; Yumin, Wang

    2015-01-01

    A water-soluble polysaccharide, named as JRP1, was extracted and fractioned from the epicarp of immature fruit of Juglans mandshurica Maxim. The determination of the monosaccharide composition in JRP1 with gas chromatography (GC) showed that JRP1 was composed of Gal (43.1%), Glu (23.6%), Ara (16.2%), Rha (9.8%) and Fru (7.3%). The results in vitro showed that 25, 50 and 100 μg/mL of JRP1 could present a significant inhibition on the growth of S180 cells, and furthermore, a significant improvement on the proliferation ability of lymphocytes and the phagocytic activity of macrophages. The results in vivo showed that compared with those in the control group, the inhibition rates of different doses of JRP1 on S180 cells in the tumor-bearing mice were 35.3%, 40.6% and 48.1%, respectively, and serum immune cytokine levels such as IL-2, TNF-α and IFN-γ were significantly improved. Our results confirm that JRP1 has the activities of effective antitumor and immunomodulatory function. Copyright © 2014 Elsevier B.V. All rights reserved.

  4. Conservative Mechanisms of Extracellular Trap Formation by Annelida Eisenia andrei: Serine Protease Activity Requirement

    PubMed Central

    Ortmann, Weronika; Kolaczkowska, Elzbieta

    2016-01-01

    Formation of extracellular traps (ETs) capturing and immobilizing pathogens is now a well-established defense mechanism added to the repertoire of vertebrate phagocytes. These ETs are composed of extracellular DNA (extDNA), histones and antimicrobial proteins. Formation of mouse and human ETs depends on enzymes (i) facilitating decondensation of chromatin by citrullination of histones, and (ii) serine proteases degrading histones. In invertebrates, initial reports revealed existence of ETs composed of extDNA and histones, and here we document for the first time that also coelomocytes, immunocompetent cells of an earthworm Eisenia andrei, cast ETs which successfully trap bacteria in a reactive oxygen species (ROS)-dependent and -independent manner. Importantly, the formation of ETs was observed not only when coelomocytes were studied ex vivo, but also in vivo, directly in the earthworm coelom. These ETs were composed of extDNA, heat shock proteins (HSP27) and H3 histones. Furthermore, the formation of E. andrei ETs depended on activity of serine proteases, including elastase-like activity. Moreover, ETs interconnected and hold together aggregating coelomocytes, a processes proceeding encapsulation. In conclusion, the study confirms ET formation by earthworms, and unravels mechanisms leading to ET formation and encapsulation in invertebrates. PMID:27416067

  5. Assessment of Antibody-based Drugs Effects on Murine Bone Marrow and Peritoneal Macrophage Activation.

    PubMed

    Kozicky, Lisa; Sly, Laura M

    2017-12-26

    Macrophages are phagocytic innate immune cells, which initiate immune responses to pathogens and contribute to healing and tissue restitution. Macrophages are equally important in turning off inflammatory responses. We have shown that macrophages stimulated with intravenous immunoglobulin (IVIg) can produce high amounts of the anti-inflammatory cytokine, interleukin 10 (IL-10), and low levels of pro-inflammatory cytokines in response to bacterial lipopolysaccharides (LPS). IVIg is a polyvalent antibody, primarily immunoglobulin Gs (IgGs), pooled from the plasma of more than 1,000 blood donors. It is used to supplement antibodies in patients with immune deficiencies or to suppress immune responses in patients with autoimmune or inflammatory conditions. Infliximab, a therapeutic anti-tumor necrosis factor alpha (TNFα) antibody, has also been shown to activate macrophages to produce IL-10 in response to inflammatory stimuli. IVIg and other antibody-based biologics can be tested to determine their effects on macrophage activation. This paper describes methods for derivation, stimulation, and assessment of murine bone marrow macrophages activated by antibodies in vitro and murine peritoneal macrophages activated with antibodies in vivo. Finally, we demonstrate the use of western blotting to determine the contribution of specific cell signaling pathways to anti-inflammatory macrophage activity. These protocols can be used with genetically modified mice, to determine the effect of a specific protein(s) on anti-inflammatory macrophage activation. These techniques can also be used to assess whether specific biologics may act by changing macrophages to an IL-10-producing anti-inflammatory activation state that reduces inflammatory responses in vivo. This can provide information on the role of macrophage activation in the efficacy of biologics during disease models in mice, and provide insight into a potential new mechanism of action in people. Conversely, this may caution

  6. Dynamic acquisition of HTLV-1 tax protein by mononuclear phagocytes: Role in neurologic disease.

    PubMed

    Matsuura, Eiji; Enose-Akahata, Yoshimi; Yao, Karen; Oh, Unsong; Tanaka, Yuetsu; Takashima, Hiroshi; Jacobson, Steven

    2017-03-15

    Pathology of HTLV-1 associated myelopathy/Tropical spastic paraparesis (HAM/TSP) is believed to be the result of "bystander damage" involving effector CD8 (+) T lymphocytes (CTLs) killing of virus infected cells. But the specific cellular events leading up to tissue injury are still unclear. Here, we developed the Microscopy Imaging of Cytotoxic T lymphocyte assay with Fluorescence emission (MI-CaFé), an optimized visualization analysis to explore the interactions between CTLs and virus infected or viral antigen presenting target cells. Various cell-to-cell formations can be observed and our results demonstrate elevated frequencies of CTL-target cell conjugates in HAM/TSP patient PBMCs compared to control PBMCs. Furthermore, HTLV-1 Tax protein expression can be localized at the cell-cell junctions and also tracked moving from an infected cell to a CD14 (+) mononuclear phagocyte (MP). Activation of CD14 (+) MPs in HAM/TSP patient PBMCs and antigenic presentation of HTLV-1 Tax by MPs can be inferred by their spontaneous cytotoxicity after 18h of in vitro culture. Given that CD4 (+) T lymphocytes are the primary reservoirs of HTLV-1 and MPs are scavenger cells responsible for pathogen clearance, spontaneous cytotoxicity against MPs in HAM/TSP PBMCs suggests a mechanism of chronic inflammation, secondary to low level of persistent virus infection within the central nervous system. Published by Elsevier B.V.

  7. Activation of bovine neutrophils by Brucella spp.

    PubMed

    Keleher, Lauren L; Skyberg, Jerod A

    2016-09-01

    Brucellosis is a globally important zoonotic infectious disease caused by gram negative bacteria of the genus Brucella. While many species of Brucella exist, Brucella melitensis, Brucella abortus, and Brucella suis are the most common pathogens of humans and livestock. The virulence of Brucella is largely influenced by its ability to evade host factors, including phagocytic killing mechanisms, which are critical for the host response to infection. The aim of this study was to characterize the bovine neutrophil response to virulent Brucella spp. Here, we found that virulent strains of smooth B. abortus, B. melitensis, B. suis, and virulent, rough, strains of Brucella canis possess similar abilities to resist killing by resting, or IFN-γ-activated, bovine neutrophils. Bovine neutrophils responded to infection with a time-dependent oxidative burst that varied little between Brucella spp. Inhibition of TAK1, or SYK kinase blunted the oxidative burst of neutrophils in response to Brucella infection. Interestingly, Brucella spp. did not induce robust death of bovine neutrophils. These results indicate that bovine neutrophils respond similarly to virulent Brucella spp. In addition, virulent Brucella spp., including naturally rough strains of B. canis, have a conserved ability to resist killing by bovine neutrophils. Copyright © 2016 Elsevier B.V. All rights reserved.

  8. Involvement of activated leukocytes in the regulation of plasma levels of acute phase proteins in microgravity simulation experiments

    NASA Astrophysics Data System (ADS)

    Larina, Olga; Bekker, Anna; Turin-Kuzmin, Alexey

    2016-07-01

    experiment. The effects obtained in this survey suggest the enhancement of the synthesis of active oxygen species by blood phagocytes at the initial stages of adaptation to immersion conditions. The gain of chemiluminescence signal correlated with maximal augment in APP concentrations registered in the course of 4-day immersion. Moreover, in the only case with zero effects in chemiluminescent reply stable APP levels were obtained. The data from functional studies performed with phagocytic cells in the experiment with dry immersion corroborate their implication in acute phase mechanisms participating in the adaptation to simulated microgravity conditions.

  9. TEMPORAL CHANGES IN PH WITHIN THE PHAGOCYTIC VACUOLE OF THE POLYMORPHONUCLEAR NEUTROPHILIC LEUKOCYTE

    PubMed Central

    Jensen, Michael S.; Bainton, Dorothy F.

    1973-01-01

    Although previous workers have established that the pH of the phagocytic vacuole of the polymorphonuclear (PMN) leukocyte changes from neutral to acid, the time course of conversion has not been investigated. The present experiments were initiated to study pH changes immediately after phagocytosis. Peritoneal exudates were induced in rats; 4 h later, yeast stained with pH indicators was injected intraperitoneally, and the exudate was retrieved at 30-s intervals and examined by light microscopy. Results revealed that (a) within 3 min, pH dropped to ∼6.5, as indicated by the change in color of neutral red-stained yeast; (b) within 7–15 min, pH dropped progressively to ∼4.0, as indicated by color change in bromcresol green-stained yeast; (c) pH did not fall below 4, since no color change was observed up to 24 h when bromphenol blue-stained yeast was used. The finding that intravacuolar acidity increases rapidly after phagocytosis is undoubtedly important with respect to PMN leukocyte function in killing and digesting microorganisms, for many PMN leukocyte granule enzymes (i.e., peroxidase and lysosomal enzymes) are activated at acid pH (∼4.5). It follows that temporal changes in pH and maximal pH depression should be considered in studies of intraleukocytic microbicidal mechanisms, since a defect in these factors could result in impaired PMN leukocyte function. PMID:4118890

  10. Postnatal development of leukocyte subset composition and activity in dogs.

    PubMed

    Toman, M; Faldyna, M; Knotigova, P; Pokorova, D; Sinkora, J

    2002-09-10

    The aim of the presentation is to summarise our data on the counts and activity of circulating canine leukocytes at birth and on their changes in the first 3 months of life. On day 1, neutrophil counts were almost three times higher than lymphocyte counts. During the first week of life, a decrease of neutrophil and an increase of lymphocyte counts, resulting in a predominance of lymphocytes, were observed. Neutrophil counts reached values comparable with those in adults in 1 month. Lymphocyte counts were higher than those in adults during the first 3 months. From birth to the age of 3 months, the phagocytic activity of neutrophils was nonsignificantly higher than in young adults. When compared with adults, the peripheral blood of new-born pups contained a lower proportion of T lymphocytes (detected by CD3 and CD5 markers), with a very low percentage of CD8(+) cells and a higher proportion of CD21(+) B lymphocytes. The counts of individual subsets levelled out during the first 3 months of life, although the proportion of CD21(+) B cells remained higher all the time. Lymphocytes of new-born pups were able to respond to nonspecific mitogen stimulation. Spontaneous proliferation in vitro was higher during the first week of life. Although in vitro stimulation of lymphocytes with Concanavalin A in some pups was comparable with that of adult dogs, mean activity was weaker. Pups with zero or very low levels of maternal antibodies were able to develop specific immune responses to a parvovirus antigen as early as at 2 weeks of age. On the basis of these data, we assume that pups are born with an immune system that can respond to external stimuli. Nevertheless its development continues in the postnatal period and some parameters differ from adult values for at least 3 months after birth.

  11. Origin of the phagocytic respiratory burst and its role in gut epithelial phagocytosis in a basal chordate.

    PubMed

    Yang, Ping; Huang, Shengfeng; Yan, Xinyu; Huang, Guangrui; Dong, Xiangru; Zheng, Tingting; Yuan, Dongjuan; Wang, Ruihua; Li, Rui; Tan, Ying; Xu, Anlong

    2014-05-01

    The vertebrate phagocytic respiratory burst (PRB) is a highly specific and efficient mechanism for reactive oxygen species (ROS) production. This mechanism is mediated by NADPH oxidase 2 (NOX2) and used by vertebrate phagocytic leukocytes to destroy internalized microbes. Here we demonstrate the presence of the PRB in a basal chordate, the amphioxus Branchiostoma belcheri tsingtauense (bbt). We show that using the antioxidant NAC to scavenge the production of ROS significantly decreased the survival rates of infected amphioxus, indicating that ROS are indispensable for efficient antibacterial responses. Amphioxus NOX enzymes and cytosolic factors were found to colocalize in the epithelial cells of the gill, intestine, and hepatic cecum and could be upregulated after exposure to microbial pathogens. The ROS production in epithelial cell lysates could be reconstructed by supplementing recombinant cytosolic factors, including bbt-p47phox, bbt-p67phox, bbt-p47phox, and bbt-Rac; the restored ROS production could be inhibited by anti-bbt-NOX2 and anti-bbt-p67phox antibodies. We also reveal that the gut epithelial lining cells of the amphioxus are competent at bacterial phagocytosis, and there is evidence that the PRB machinery could participate in the initiation of this phagocytic process. In conclusion, we report the presence of the classical PRB machinery in nonvertebrates and provide the first evidence for the possible role of PRB in epithelial cell immunity and phagocytosis. Copyright © 2014 Elsevier Inc. All rights reserved.

  12. Ehrlichia Activation of Wnt-PI3K-mTOR Signaling Inhibits Autolysosome Generation and Autophagic Destruction by the Mononuclear Phagocyte

    PubMed Central

    Luo, Tian; Velayutham, Thangam-Sudha; Das, Seema

    2017-01-01

    ABSTRACT In multicellular organisms, autophagy is induced as an innate defense mechanism. Notably, the obligate intracellular bacterium Ehrlichia chaffeensis resides in early endosome-like vacuoles and circumvents lysosomal fusion through an unknown mechanism, thereby avoiding destruction in the autophagolysosome. In this report, we reveal that Wnt signaling plays a crucial role in inhibition of lysosomal fusion and autolysosomal destruction of ehrlichiae. During early infection, autophagosomes fuse with ehrlichial vacuoles to form an amphisome indicated by the presence of autophagy markers such as LC3 (microtubule-associated protein 1 light chain 3), Beclin-1, and p62. LC3 colocalized with ehrlichial morulae on days 1, 2, and 3 postinfection, and increased LC3II levels were detected during infection, reaching a maximal level on day 3. Ehrlichial vacuoles did not colocalize with the lysosomal marker LAMP2, and lysosomes were redistributed and dramatically reduced in level in the infected cells. An inhibitor specific for the Wnt receptor signaling component Dishevelled induced lysosomal fusion with ehrlichial inclusions corresponding to p62 degradation and promoted transcription factor EB (TFEB) nuclear localization. E. chaffeensis infection activated the phosphatidylinositol 3-kinase (PI3K)–Akt–mTOR (mechanistic target of rapamycin) pathway, and activation was induced by three ehrlichial tandem repeat protein (TRP) effectors, with TRP120 inducing the strongest activation. Moreover, induction of glycogen synthase kinase-3 (GSK3) performed using a Wnt inhibitor and small interfering RNA (siRNA) knockdown of critical components of PI3K-GSK3-mTOR signaling decreased ehrlichial survival. This report reveals Ehrlichia exploitation of the evolutionarily conserved Wnt pathway to inhibit autolysosome generation, thereby leading to evasion of this important innate immune defense mechanism. PMID:28993455

  13. Immunomodulation of RAW 264.7 murine macrophage functions and antioxidant activities of 11 plant extracts.

    PubMed

    Ghonime, Mohammed; Emara, Mohamed; Shawky, Riham; Soliman, Hesham; El-Domany, Ramadan; Abdelaziz, Ahmed

    2015-01-01

    A group of 11 medicinal plants, including Lavandula pubescens, Trigonella foenugricium, Salsola schweinforthi, Calligonum comosum, Silene succulenta, Silene villosa, Bogonvillea glabra, Cakile maritime, Gomphrene celesoids, Mirabilis jalaba, and Silene nocturna growing in Egypt, were extracted and examined for their immunomodulatory and antioxidant activities. RAW 264.7 cells were recruited to investigate the immunomodulatory effect through multiple parameters analysis. First, the proliferation index of macrophages cells was evaluated revealing that Trigonella foenugricium, Silene succulenta and Silene villosa have a significant cytotoxic effect on RAW cells. Interestingly, we observed enhancement of macrophages phagocytic function of by all extracts except Cakile maritime, Gomphrena celosioides and Silene nocturna. Afterwards, macrophages were challenged by incubation with LPS and the effect of various extracts on inflammatory responses was investigated; the generation of NO from activated macrophage was substantially suppressed by 7 extracts namely, Trigonella foenugricium, Calligonum comosum, Silene succulenta, Bougainvillea glabra, Mirabilis jalaba, Gomphrena celosioides and Silene nocturna. TNF-α was decreased by percentage range from 3.8 to 85.8% and Trigonella foenugricium extract showed the highest inhibition of TNF-α release. All extracts except Trigonella foenugricium, Salsola schweinforthi, Silene succulenta and Mirabilis jalaba significantly inhibited COX-2 production from stimulated macrophage. Moreover, evaluating the potential antioxidant activity of these extracts showed that Trigonella foenugricium, Salsola schweinforthi, Calligonum comosum, Bogonvillea glabra and Mirabilis jalaba exhibited some antioxidant activities. Taken together, our results suggest that some of these extracts may have a considerable antinflammatory and antioxidant effects and may be a potential therapeutic choice in the treatment of inflammatory diseases.

  14. Apolipoprotein E promotes subretinal mononuclear phagocyte survival and chronic inflammation in age-related macular degeneration.

    PubMed

    Levy, Olivier; Calippe, Bertrand; Lavalette, Sophie; Hu, Shulong J; Raoul, William; Dominguez, Elisa; Housset, Michael; Paques, Michel; Sahel, José-Alain; Bemelmans, Alexis-Pierre; Combadiere, Christophe; Guillonneau, Xavier; Sennlaub, Florian

    2015-02-01

    Physiologically, the retinal pigment epithelium (RPE) expresses immunosuppressive signals such as FAS ligand (FASL), which prevents the accumulation of leukocytes in the subretinal space. Age-related macular degeneration (AMD) is associated with a breakdown of the subretinal immunosuppressive environment and chronic accumulation of mononuclear phagocytes (MPs). We show that subretinal MPs in AMD patients accumulate on the RPE and express high levels of APOE. MPs of Cx3cr1(-/-) mice that develop MP accumulation on the RPE, photoreceptor degeneration, and increased choroidal neovascularization similarly express high levels of APOE. ApoE deletion in Cx3cr1(-/-) mice prevents pathogenic age- and stress-induced subretinal MP accumulation. We demonstrate that increased APOE levels induce IL-6 in MPs via the activation of the TLR2-CD14-dependent innate immunity receptor cluster. IL-6 in turn represses RPE FasL expression and prolongs subretinal MP survival. This mechanism may account, in part, for the MP accumulation observed in Cx3cr1(-/-) mice. Our results underline the inflammatory role of APOE in sterile inflammation in the immunosuppressive subretinal space. They provide rationale for the implication of IL-6 in AMD and open avenues toward therapies inhibiting pathogenic chronic inflammation in late AMD. © 2015 The Authors. Published under the terms of the CC BY 4.0 license.

  15. The dynamics of heat shock system activation in Monomac-6 cells upon Helicobacter pylori infection.

    PubMed

    Pierzchalski, P; Jastrzebska, M; Link-Lenczowski, P; Leja-Szpak, A; Bonior, J; Jaworek, J; Okon, K; Wojcik, P

    2014-12-01

    Immune system cells, particularly phagocytes, are exposed to direct contact with pathogens. Because of its nature - elimination of pathogenes - their cytoprotective systems supposed to be quick and forceful. Physiological consequence of phagocytosis for the phagocyte is the apoptotic death to prevent the eventual survival of bacteria as intracellular parasites. However, in some cases, defense systems used by the bacteria force the immune cells to prolong the contact with the pathogen for its effective elimination. Experiments were performed on Monomac-6 cells exposed to live CagA, VacA expressing Helicobacter pylori (H. pylori) over different period of time. Total cellular RNA, cytoplasmic and nuclear proteins were isolated for polymerase chain reaction, Western-blot and electrophoretic mobility shift assay, respectively. We found that Monomac-6 cells infection with H. pylori resulted in the translocation of the entire cellular content of the heat shock protein 70 (HSP70) into the cytoplasm, where its presence could protect cell against toxic products of engulfed bacteria and premature apoptosis. At the same time the nuclear translocation of heat shock factor 1 (HSF-1) and activation of HSP70 gene transcription was noticed. Action of HSP70 might to postpone monocyte apoptosis through protecting cytoplasmic and nuclear proteins from damaging effect of bacterial products, what could be the defending mechanism against the toxic stress caused by engulfed bacteria and provide the immune cell with the sufficient amount of time required for neutralization of the bacteria from phagosomes, even at the expense of temporary lack of the protection of nuclear proteins.

  16. Phagocytosis in pup and adult harbour, grey and harp seals.

    PubMed

    Frouin, Héloïse; Lebeuf, Michel; Hammill, Mike; Fournier, Michel

    2010-04-15

    Knowledge on pinniped immunology is still in its infancy. For instance, age-related and developmental aspects of the immune system in pinnipeds need to be better described. The present study examined the phagocytic activity and efficiency of harbour, grey and harp seal leukocytes. In the first part of the study, peripheral blood was collected from captive female harbour seals of various ages. Data showed an age-related decrease in phagocytosis in female harbour seals from sub-adult to adulthood. In the second part of the study, changes in phagocytosis were quantified during lactation in wild newborn harbour, grey and harp seals and in their mothers (harp and grey seals). In newborns of the same age, leukocytes of harbour and harp seals phagocytosed less than those of grey seal pups. The phagocytic activity and efficiency increased significantly from early to mid-lactation in newborn harbour seals, and from early to late lactation in newborn grey seals, which could suggest that the transfer of phagocytosis-promoting factor(s) in colostrum is an important feature of temporary protection for pups. In contrast, no changes in phagocytic activity and efficiency were observed in lactating females of the two seal species, harp and grey, examined. At late lactation, phagocytic activity in both grey and harp seal pups and phagocytic efficiency in grey seal pups were significantly higher than in their mothers. These results could reflect either the capacity of phagocytes of the newborn harp and grey seals to respond to pathogens. Results from this study suggest that the phagocytosis of the seal species examined is not fully developed at birth as it generally increases in pups during lactation. Thereafter, the phagocytic activity of seals appears to decrease throughout adulthood. Copyright 2009 Elsevier B.V. All rights reserved.

  17. Csf1r-mApple Transgene Expression and Ligand Binding In Vivo Reveal Dynamics of CSF1R Expression within the Mononuclear Phagocyte System.

    PubMed

    Hawley, Catherine A; Rojo, Rocio; Raper, Anna; Sauter, Kristin A; Lisowski, Zofia M; Grabert, Kathleen; Bain, Calum C; Davis, Gemma M; Louwe, Pieter A; Ostrowski, Michael C; Hume, David A; Pridans, Clare; Jenkins, Stephen J

    2018-03-15

    CSF1 is the primary growth factor controlling macrophage numbers, but whether expression of the CSF1 receptor differs between discrete populations of mononuclear phagocytes remains unclear. We have generated a Csf1r -mApple transgenic fluorescent reporter mouse that, in combination with lineage tracing, Alexa Fluor 647-labeled CSF1-Fc and CSF1, and a modified Δ Csf1- enhanced cyan fluorescent protein (ECFP) transgene that lacks a 150 bp segment of the distal promoter, we have used to dissect the differentiation and CSF1 responsiveness of mononuclear phagocyte populations in situ. Consistent with previous Csf1r- driven reporter lines, Csf1r -mApple was expressed in blood monocytes and at higher levels in tissue macrophages, and was readily detectable in whole mounts or with multiphoton microscopy. In the liver and peritoneal cavity, uptake of labeled CSF1 largely reflected transgene expression, with greater receptor activity in mature macrophages than monocytes and tissue-specific expression in conventional dendritic cells. However, CSF1 uptake also differed between subsets of monocytes and discrete populations of tissue macrophages, which in macrophages correlated with their level of dependence on CSF1 receptor signaling for survival rather than degree of transgene expression. A double Δ Csf1r -ECFP- Csf1r -mApple transgenic mouse distinguished subpopulations of microglia in the brain, and permitted imaging of interstitial macrophages distinct from alveolar macrophages, and pulmonary monocytes and conventional dendritic cells. The Csf1r- mApple mice and fluorescently labeled CSF1 will be valuable resources for the study of macrophage and CSF1 biology, which are compatible with existing EGFP-based reporter lines. Copyright © 2018 The Authors.

  18. Effects of Pseudoalteromonas sp. BC228 on digestive enzyme activity and immune response of juvenile sea cucumber ( Apostichopus japonicus)

    NASA Astrophysics Data System (ADS)

    Ma, Yuexin; Sun, Feixue; Zhang, Congyao; Bao, Pengyun; Cao, Shuqing; Zhang, Meiyan

    2014-12-01

    A marine bacterium, Pseudoalteromonas sp. BC228 was supplemented to feed in a feeding experiment aiming to determine its ability of enhancing the digestive enzyme activity and immune response of juvenile Apostichopus japonicus. Sea cucumber individuals were fed with the diets containing 0 (control), 105, 107 and 109 CFU g-1 diet of BC228 for 45 days. Results showed that intestinal trypsin and lipase activities were significantly enhanced by 107 and 109 CFU g-1 diet of BC228 in comparison with control ( P < 0.01). The phagocytic activity in the coelomocytes of sea cucumber fed the diet supplemented with 107 CFU g-1 diet of BC228 was significantly higher than that of those fed control diet ( P < 0.05). In addition, 105 and 107 CFU g-1 diet of BC228 significantly enhanced lysozyme and phenoloxidase activities in the coelomic fluid of sea cucumber, respectively, in comparison with other diets ( P < 0.01). Sea cucumbers, 10 each diet, were challenged with Vibrio splendidus NB13 after 45 days of feeding. It was found that the cumulative incidence and mortality of sea cucumber fed with BC228 containing diets were lower than those of animals fed control diet. Our findings evidenced that BC228 supplemented in diets improved the digestive enzyme activity of juvenile sea cucumber, stimulated its immune response and enhanced its resistance to the infection of V. splendidus.

  19. Effects of Acer okamotoanum sap on the function of polymorphonuclear neutrophilic leukocytes in vitro and in vivo.

    PubMed

    An, Beum-Soo; Kang, Ji-Houn; Yang, Hyun; Yang, Mhan-Pyo; Jeung, Eui-Bae

    2013-02-01

    Sap is a plant fluid that primarily consists of water and small amounts of mineral elements, sugars, hormones and other nutrients. Acer mono (A. mono) is an endemic Korean mono maple which was recently suggested to have health benefits due to its abundant calcium and magnesium ion content. In the present study, we examined the effects of sap from Acer okamotoanum (A. okamotoanum) on the phagocytic response of mouse neutrophils in vivo and rat and canine neutrophils in vitro. We tested the regulation of phagocytic activity, oxidative burst activity (OBA) and the levels of filamentous polymeric actin (F-actin) in the absence and presence of dexamethasone (DEX) in vitro and in vivo. Our results showed that DEX primarily reduced OBA in the mouse neutrophils, and that this was reversed in the presence of the sap. By contrast, the phagocytic activity of the mouse cells was not regulated by either DEX or the sap. Rat and canine polymorphonuclear neutrophilic leukocytes (PMNs) responded in vitro to the sap in a similar manner by increasing OBA. However, regulation of phagocytic activity by the sap was different between the species. In canine PMNs, phagocytic activity was enhanced by the sap at a high dose, while it did not significantly modulate this activity in rat PMNs. These findings suggest that the sap of A. okamotoanum stimulates neutrophil activity in the mouse, rat and canine by increasing OBA in vivo and in vitro, and thus may have a potential antimicrobial effect in the PMNs of patients with infections.

  20. Mycobacterium tuberculosis surface protein Rv0227c contains high activity binding peptides which inhibit cell invasion.

    PubMed

    Rodríguez, Diana Marcela; Ocampo, Marisol; Curtidor, Hernando; Vanegas, Magnolia; Patarroyo, Manuel Elkin; Patarroyo, Manuel Alfonso

    2012-12-01

    Mycobacterium tuberculosis surface proteins involved in target cell invasion may be identified as a strategy for developing subunit-based, chemically-synthesized vaccines. The Rv0227c protein was thus selected to assess its role in the invasion and infection of Mycobacterium tuberculosis target cells. Results revealed Rv0227c localization on mycobacterial surface by immunoelectron microscopy and Western blot. Receptor-ligand assays using 20-mer, non-overlapping peptides covering the complete Rv0227c protein sequence revealed three high activity binding peptides for U937 phagocytic cells and seven for A549 cells. Peptide 16944 significantly inhibited mycobacterial entry to both cell lines while 16943 and 16949 only managed to inhibit entrance to U937 cells and 16951 to A549 cells. The Jnet bioinformatics tool predicted secondary structure elements for the complete protein, agreeing with elements determined for such chemically-synthesized peptides. It was thus concluded that high activity binding peptides which were able to inhibit mycobacterial entry to target cells are of great importance when selecting peptide candidates for inclusion in an anti-tuberculosis vaccine. Copyright © 2012 Elsevier Inc. All rights reserved.

  1. Characterization of polysaccharides extracted from Platycodon grandiflorus (Jacq.) A.DC. affecting activation of chicken peritoneal macrophages.

    PubMed

    Zheng, Pimiao; Fan, Wentao; Wang, Shenghua; Hao, Pan; Wang, Yang; Wan, Huiyu; Hao, Zhihui; Liu, Jianzhu; Zhao, Xiaona

    2017-03-01

    Polysaccharides were isolated from Platycodon grandiflorus (Jacq.) A.DC. (PG) and the effects of three polysaccharides (PGPS 80 , PGPS 60 , PGPS t ) on their immunological activities were studied. The structure identification of PGPSs was assessed using physicochemical and spectral methods. Results showed that PGPS t (2.67×10 5 Da) compared to PGPS 80 (1.01×10 5 Da) and PGPS 60 (1.12×10 5 Da) has relatively higher average molecular weight(Mw) at the first peak with a narrower molecular weight distribution and all consisted of glucose, mannose, arabinose, galactose, xylose and rhamnose in different mass percentages. PGPS 80 and PGPS t linked mainly by 1,3-and 1,6-β-d-Galp residues. The immunological efficacy of PGPSs was performed on chicken peritoneal macrophages. Results showed that PGPS t significantly increased phagocytic rates, proliferation and NO production, stimulated macrophages to produce cytokines, including TNF-α, IL-1β and IL-6 as well as stimulated macrophages to express the maturation markers CD80 and CD86. These findings suggest that PGPS t exerted significant immunological activity and might be associated with special characters. Copyright © 2016 Elsevier B.V. All rights reserved.

  2. Clusterin in the protein corona plays a key role in the stealth effect of nanoparticles against phagocytes.

    PubMed

    Aoyama, Michihiko; Hata, Katsutomo; Higashisaka, Kazuma; Nagano, Kazuya; Yoshioka, Yasuo; Tsutsumi, Yasuo

    2016-11-25

    In biological fluids, nanoparticles interact with biological components such as proteins, and a layer called the "protein corona" forms around the nanoparticles. It is believed that the composition of the protein corona affects the cellular uptake and in vivo biodistribution of nanoparticles; however, the key proteins of the protein corona that control the biological fate of nanoparticles remain unclear. Recently, it was reported that clusterin binding to pegylated nanoparticles is important for the stealth effect of pegylated nanoparticles in phagocytes. However, the effect of clusterin on non-pegylated nanoparticles is unknown, although it is known that clusterin is present in the protein corona of non-pegylated nanoparticles. Here, we assessed the stealth effect of clusterin in the corona of non-pegylated silver nanoparticles and silica nanoparticles. We found that serum- and plasma-protein corona inhibited the cellular uptake of silver nanoparticles and silica nanoparticles in phagocytes and that the plasma-protein corona showed a greater stealth effect compared with the serum-protein corona. Clusterin was present in both the serum- and plasma-protein corona, but was present at a higher level in the plasma-protein corona than in the serum-protein corona. Clusterin binding to silver nanoparticles and silica nanoparticles suppressed the cellular uptake of nanoparticles in human macrophage-like cells (THP-1 cells). Although further studies are required to determine how clusterin suppresses non-specific cellular uptake in phagocytes, our data suggest that clusterin plays a key role in the stealth effect of not only pegylated nanoparticles but also non-pegylated nanoparticles. Copyright © 2016 Elsevier Inc. All rights reserved.

  3. Immunomodulatory effect of prolactin on Atlantic salmon (Salmo salar) macrophage function.

    PubMed

    Paredes, Marco; Gonzalez, Katerina; Figueroa, Jaime; Montiel-Eulefi, Enrique

    2013-10-01

    The in vitro and in vivo effect of prolactin (PRL) on kidney macrophages from Atlantic salmon (Salmo salar) was investigated under the assumption that PRL stimulates immune innate response in mammals. Kidney macrophages were treated two ways: first, cultured in RPMI 1640 medium containing 10, 25, 50 and 100 ng/mL of PRL and second, isolated from a fish with a PRL-injected dose of 100 ng/Kg. Reduced nitro blue tetrazolium (formazan) was used to produce intracellular superoxide anion. Phagocytic activity of PRL was determined in treated cells by optical microscopy observation of phagocytized Congo red-stained yeast. Kidney lysozyme activity was measured in PRL-injected fish. In vitro and in vivo macrophages treated with PRL presented an enhanced superoxide anion production, elevated phagocytic index and increased phagocytic activity. Treated fish showed higher levels of lysozyme activity in the head kidney compared to the control. These results indicate that PRL-stimulated innate immune response in Atlantic salmon and future studies will allow us to assess the possibility of using PRL as an immunostimulant in the Chilean salmon industry.

  4. RhoA/ROCK downregulates FPR2-mediated NADPH oxidase activation in mouse bone marrow granulocytes.

    PubMed

    Filina, Julia V; Gabdoulkhakova, Aida G; Safronova, Valentina G

    2014-10-01

    Polymorphonuclear neutrophils (PMNs) express the high and low affinity receptors to formylated peptides (mFPR1 and mFPR2 in mice, accordingly). RhoA/ROCK (Rho activated kinase) pathway is crucial for cell motility and oxidase activity regulated via FPRs. There are contradictory data on RhoA-mediated regulation of NADPH oxidase activity in phagocytes. We have shown divergent Rho GTPases signaling via mFPR1 and mFPR2 to NADPH oxidase in PMNs from inflammatory site. The present study was aimed to find out the role of RhoA/ROCK in the respiratory burst activated via mFPR1 and mFPR2 in the bone marrow PMNs. Different kinetics of RhoA activation were detected with 0.1μM fMLF and 1μM WKYMVM operating via mFPR1 and mFPR2, accordingly. RhoA was translocated in fMLF-activated cells towards the cell center and juxtamembrane space versus uniform allocation in the resting cells. Specific inhibition of RhoA by CT04, Rho inhibitor I, weakly depressed the respiratory burst induced via mFPR1, but significantly increased the one induced via mFPR2. Inhibition of ROCK, the main effector of RhoA, by Y27632 led to the same effect on the respiratory burst. Regulation of mFPR2-induced respiratory response by ROCK was impossible under the cytoskeleton disruption by cytochalasin D, whereas it persisted in the case of mFPR1 activation. Thus we suggest RhoA to be one of the regulatory and signal transduction components in the respiratory burst through FPRs in the mouse bone marrow PMNs. Both mFPR1 and mFPR2 binding with a ligand trigger the activation of RhoA. FPR1 signaling through RhoA/ROCK increases NADPH-oxidase activity. But in FPR2 action RhoA/ROCK together with cytoskeleton-linked systems down-regulates NADPH-oxidase. This mechanism could restrain the reactive oxygen species dependent damage of own tissues during the chemotaxis of PMNs and in the resting cells. Copyright © 2014 Elsevier Inc. All rights reserved.

  5. Phagocytosis-dependent activation of a TLR9–BTK–calcineurin–NFAT pathway co-ordinates innate immunity to Aspergillus fumigatus

    PubMed Central

    Herbst, Susanne; Shah, Anand; Mazon Moya, Maria; Marzola, Vanessa; Jensen, Barbara; Reed, Anna; Birrell, Mark A; Saijo, Shinobu; Mostowy, Serge; Shaunak, Sunil; Armstrong-James, Darius

    2015-01-01

    Transplant recipients on calcineurin inhibitors are at high risk of invasive fungal infection. Understanding how calcineurin inhibitors impair fungal immunity is a key priority for defining risk of infection. Here, we show that the calcineurin inhibitor tacrolimus impairs clearance of the major mould pathogen Aspergillus fumigatus from the airway, by inhibiting macrophage inflammatory responses. This leads to defective early neutrophil recruitment and fungal clearance. We confirm these findings in zebrafish, showing an evolutionarily conserved role for calcineurin signalling in neutrophil recruitment during inflammation. We find that calcineurin–NFAT activation is phagocytosis dependent and collaborates with NF-κB for TNF-α production. For yeast zymosan particles, activation of macrophage calcineurin–NFAT occurs via the phagocytic Dectin-1–spleen tyrosine kinase pathway, but for A. fumigatus, activation occurs via a phagosomal TLR9-dependent and Bruton's tyrosine kinase-dependent signalling pathway that is independent of MyD88. We confirm the collaboration between NFAT and NF-κB for TNF-α production in primary alveolar macrophages. These observations identify inhibition of a newly discovered macrophage TLR9–BTK–calcineurin–NFAT signalling pathway as a key immune defect that leads to organ transplant-related invasive aspergillosis. PMID:25637383

  6. EVALUATION OF ACTIVATED BIOFILTRATION AND ACTIVATED BIOFILTRATION/ACTIVATED SLUDGE TECHNOLOGIES

    EPA Science Inventory

    The paper presents the results of a review and investigation of the activated biofilter (ABF) and activated biofilter/activated sludge (ABF/AS) technologies and a review of operating records of several municipal plants in the U.S. using these technologies. The overall objective o...

  7. Recovery of rat alveolar macrophages by bronchoalveolar lavage under normal and activated conditions.

    PubMed Central

    Rehn, B; Bruch, J; Zou, T; Hobusch, G

    1992-01-01

    When rat (female Wistar) lungs were lavaged (bronchoalveolar lavage, BAL) six times with physiological saline, approximately the same number of alveolar macrophages (AM) were found in the first and second BAL, whereas in the third fourth, fifth, and sixth BAL, the number of AM decreased exponentially. Morphometric counting of the number of AM in histological sections of lung tissue showed that only 14% of the AM population had been recovered by BAL. Although additives to the BAL fluid such as lidocaine and/or fetal calf serum increased the AM count in the first washing considerably, the total number of AM washed out remained unaltered. Addition of the phagocytosis stimulant zymosan increased the AM count in BAL by a factor of more than 2. On stimulation of the lungs with an inert dust (silicon carbide), the AM count in the BAL and the lung was only slightly increased 8 weeks after intratracheal instillation. In contrast, after exposure to fibrogenic and cytotoxic quartz, the AM count in BAL and lung was significantly increased, and the recovery of AM had also increased by a factor of approximately 2. The experiments show that it is the micromilieu of the alveoli and the condition of the AM (certain physiological activation states, such as phagocytic activity) that essentially determine the degree of recovery. PMID:1396444

  8. Anti-Inflammatory Effects of Lactobacillus Rahmnosus and Bifidobacterium Breve on Cigarette Smoke Activated Human Macrophages.

    PubMed

    Mortaz, Esmaeil; Adcock, Ian M; Ricciardolo, Fabio L M; Varahram, Mohammad; Jamaati, Hamidreza; Velayati, Ali Akbar; Folkerts, Gert; Garssen, Johan

    2015-01-01

    Chronic obstructive pulmonary disease (COPD) is a major global health problem with cigarette smoke (CS) as the main risk factor for its development. Airway inflammation in COPD involves the increased expression of inflammatory mediators such as CXCL-8 and IL-1β which are important mediators for neutrophil recruitment. Macrophages are an important source of these mediators in COPD. Lactobacillus rhamnosus (L. rhamnosus) and Befidobacterium breve (B. breve) attenuate the development of 'allergic asthma' in animals but their effects in COPD are unknown. To determine the anti-inflammatory effects of L. rhamnosus and B. breve on CS and Toll-like receptor (TLR) activation. We stimulated the human macrophage cell line THP-1 with CS extract in the presence and absence of L. rhamnosus and B. breve and measured the expression and release of inflammatory mediators by RT-qPCR and ELISA respectively. An activity assay and Western blotting were used to examine NF-κB activation. Both L. rhamnosus and B. breve were efficiently phagocytized by human macrophages. L. rhamnosus and B. breve significantly suppressed the ability of CS to induce the expression of IL-1β, IL-6, IL-10, IL-23, TNFα, CXCL-8 and HMGB1 release (all p<0.05) in human THP-1 macrophages. Similar suppression of TLR4- and TLR9-induced CXCL8 expression was also observed (p<0.05). The effect of L. rhamnosus and B. breve on inflammatory mediator release was associated with the suppression of CS-induced NF-κB activation (p<0.05). This data indicate that these probiotics may be useful anti-inflammatory agents in CS-associated disease such as COPD.

  9. Dysregulation of the Cytokine GM-CSF Induces Spontaneous Phagocyte Invasion and Immunopathology in the Central Nervous System.

    PubMed

    Spath, Sabine; Komuczki, Juliana; Hermann, Mario; Pelczar, Pawel; Mair, Florian; Schreiner, Bettina; Becher, Burkhard

    2017-02-21

    Chronic inflammatory diseases are influenced by dysregulation of cytokines. Among them, granulocyte macrophage colony stimulating factor (GM-CSF) is crucial for the pathogenic function of T cells in preclinical models of autoimmunity. To study the impact of dysregulated GM-CSF expression in vivo, we generated a transgenic mouse line allowing the induction of GM-CSF expression in mature, peripheral helper T (Th) cells. Antigen-independent GM-CSF release led to the invasion of inflammatory myeloid cells into the central nervous system (CNS), which was accompanied by the spontaneous development of severe neurological deficits. CNS-invading phagocytes produced reactive oxygen species and exhibited a distinct genetic signature compared to myeloid cells invading other organs. We propose that the CNS is particularly vulnerable to the attack of monocyte-derived phagocytes and that the effector functions of GM-CSF-expanded myeloid cells are in turn guided by the tissue microenvironment. Copyright © 2017 Elsevier Inc. All rights reserved.

  10. Inhibition of caspase-1 or gasdermin-D enable caspase-8 activation in the Naip5/NLRC4/ASC inflammasome

    PubMed Central

    Pereira, Marcelo S. F.; Manin, Graziele Z.; Cunha, Larissa D.

    2017-01-01

    Legionella pneumophila is a Gram-negative, flagellated bacterium that survives in phagocytes and causes Legionnaires’ disease. Upon infection of mammalian macrophages, cytosolic flagellin triggers the activation of Naip/NLRC4 inflammasome, which culminates in pyroptosis and restriction of bacterial replication. Although NLRC4 and caspase-1 participate in the same inflammasome, Nlrc4-/- mice and their macrophages are more permissive to L. pneumophila replication compared with Casp1/11-/-. This feature supports the existence of a pathway that is NLRC4-dependent and caspase-1/11-independent. Here, we demonstrate that caspase-8 is recruited to the Naip5/NLRC4/ASC inflammasome in response to flagellin-positive bacteria. Accordingly, caspase-8 is activated in Casp1/11-/- macrophages in a process dependent on flagellin, Naip5, NLRC4 and ASC. Silencing caspase-8 in Casp1/11-/- cells culminated in macrophages that were as susceptible as Nlrc4-/- for the restriction of L. pneumophila replication. Accordingly, macrophages and mice deficient in Asc/Casp1/11-/- were more susceptible than Casp1/11-/- and as susceptible as Nlrc4-/- for the restriction of infection. Mechanistically, we found that caspase-8 activation triggers gasdermin-D-independent pore formation and cell death. Interestingly, caspase-8 is recruited to the Naip5/NLRC4/ASC inflammasome in wild-type macrophages, but it is only activated when caspase-1 or gasdermin-D is inhibited. Our data suggest that caspase-8 activation in the Naip5/NLRC4/ASC inflammasome enable induction of cell death when caspase-1 or gasdermin-D is suppressed. PMID:28771586

  11. Inhibition of caspase-1 or gasdermin-D enable caspase-8 activation in the Naip5/NLRC4/ASC inflammasome.

    PubMed

    Mascarenhas, Danielle P A; Cerqueira, Daiane M; Pereira, Marcelo S F; Castanheira, Fernanda V S; Fernandes, Talita D; Manin, Graziele Z; Cunha, Larissa D; Zamboni, Dario S

    2017-08-01

    Legionella pneumophila is a Gram-negative, flagellated bacterium that survives in phagocytes and causes Legionnaires' disease. Upon infection of mammalian macrophages, cytosolic flagellin triggers the activation of Naip/NLRC4 inflammasome, which culminates in pyroptosis and restriction of bacterial replication. Although NLRC4 and caspase-1 participate in the same inflammasome, Nlrc4-/- mice and their macrophages are more permissive to L. pneumophila replication compared with Casp1/11-/-. This feature supports the existence of a pathway that is NLRC4-dependent and caspase-1/11-independent. Here, we demonstrate that caspase-8 is recruited to the Naip5/NLRC4/ASC inflammasome in response to flagellin-positive bacteria. Accordingly, caspase-8 is activated in Casp1/11-/- macrophages in a process dependent on flagellin, Naip5, NLRC4 and ASC. Silencing caspase-8 in Casp1/11-/- cells culminated in macrophages that were as susceptible as Nlrc4-/- for the restriction of L. pneumophila replication. Accordingly, macrophages and mice deficient in Asc/Casp1/11-/- were more susceptible than Casp1/11-/- and as susceptible as Nlrc4-/- for the restriction of infection. Mechanistically, we found that caspase-8 activation triggers gasdermin-D-independent pore formation and cell death. Interestingly, caspase-8 is recruited to the Naip5/NLRC4/ASC inflammasome in wild-type macrophages, but it is only activated when caspase-1 or gasdermin-D is inhibited. Our data suggest that caspase-8 activation in the Naip5/NLRC4/ASC inflammasome enable induction of cell death when caspase-1 or gasdermin-D is suppressed.

  12. Genetics Home Reference: chronic granulomatous disease

    MedlinePlus

    ... is primarily active in immune system cells called phagocytes. These cells catch and destroy foreign invaders such as bacteria and fungi. Within phagocytes, NADPH oxidase is involved in the production of ...

  13. Nucleotides released by apoptotic cells act as a find-me signal to promote phagocytic clearance.

    PubMed

    Elliott, Michael R; Chekeni, Faraaz B; Trampont, Paul C; Lazarowski, Eduardo R; Kadl, Alexandra; Walk, Scott F; Park, Daeho; Woodson, Robin I; Ostankovich, Marina; Sharma, Poonam; Lysiak, Jeffrey J; Harden, T Kendall; Leitinger, Norbert; Ravichandran, Kodi S

    2009-09-10

    Phagocytic removal of apoptotic cells occurs efficiently in vivo such that even in tissues with significant apoptosis, very few apoptotic cells are detectable. This is thought to be due to the release of 'find-me' signals by apoptotic cells that recruit motile phagocytes such as monocytes, macrophages and dendritic cells, leading to the prompt clearance of the dying cells. However, the identity and in vivo relevance of such find-me signals are not well understood. Here, through several lines of evidence, we identify extracellular nucleotides as a critical apoptotic cell find-me signal. We demonstrate the caspase-dependent release of ATP and UTP (in equimolar quantities) during the early stages of apoptosis by primary thymocytes and cell lines. Purified nucleotides at these concentrations were sufficient to induce monocyte recruitment comparable to that of apoptotic cell supernatants. Enzymatic removal of ATP and UTP (by apyrase or the expression of ectopic CD39) abrogated the ability of apoptotic cell supernatants to recruit monocytes in vitro and in vivo. We then identified the ATP/UTP receptor P2Y(2) as a critical sensor of nucleotides released by apoptotic cells using RNA interference-mediated depletion studies in monocytes, and macrophages from P2Y(2)-null mice. The relevance of nucleotides in apoptotic cell clearance in vivo was revealed by two approaches. First, in a murine air-pouch model, apoptotic cell supernatants induced a threefold greater recruitment of monocytes and macrophages than supernatants from healthy cells did; this recruitment was abolished by depletion of nucleotides and was significantly decreased in P2Y(2)(-/-) (also known as P2ry2(-/-)) mice. Second, clearance of apoptotic thymocytes was significantly impaired by either depletion of nucleotides or interference with P2Y receptor function (by pharmacological inhibition or in P2Y(2)(-/-) mice). These results identify nucleotides as a critical find-me cue released by apoptotic cells to

  14. Interaction between Salmonella typhimurium and phagocytic cells in pigs. Phagocytosis, oxidative burst and killing in polymorphonuclear leukocytes and monocytes.

    PubMed

    Riber, U; Lind, P

    1999-02-22

    Interactions between Salmonella typhimurium and peripheral blood leucocytes from healthy, Salmonella-free pigs were investigated in vitro. Both granulocytes and monocytes phagocytized FITC-labelled heat-killed Salmonella bacteria as shown by flow cytometry. Phagocytosis in whole blood and isolated leucocytes was measured as acquired fluorescence in the leukocytes and was both time and dose related. Living, serum-opsonized Salmonella bacteria induced a dose-dependent oxidative burst in PMNs and monocytes as measured by luminol-enhanced chemiluminescence (LC). When opsonized in normal serum the Salmonella bacteria, in the range of 2-5 x 10(7) cfu, induced a LC response in monocytes comparable to the level of responses induced by phorbol myristate acetate (PMA) and opsonized zymosan, and the Salmonella-induced response was only marginally reduced by superoxide dismutase (SOD). Intracellular killing of Salmonella by monocytes was assessed from plate colony counts of lysed monocytes and showed that Salmonella typhimurium was able to survive and proliferate in adherent monocytes in vitro despite a reduction in intracellular cfu during the first hour's incubation in cells from some pigs. Experiments with the exhaustion of oxidative burst in non-adherent monocytes were performed by prestimulation with PMA, heat-killed Salmonella or buffer. Prestimulation with PMA led to a strong reduction in oxidative burst induced by living opsonized Salmonella bacteria, whereas prestimulation with heat-killed bacteria gave rise to an enhanced response. In these experiments intracellular killing of the added living Salmonella gave variable results, in that monocytes from two out of three pigs showed no essential change in intracellular bactericidal activity, but with cells from one pig a less pronounced bactericidal activity was found after prestimulation with PMA.

  15. Flagellar motility is a key determinant of the magnitude of the inflammasome response to Pseudomonas aeruginosa.

    PubMed

    Patankar, Yash R; Lovewell, Rustin R; Poynter, Matthew E; Jyot, Jeevan; Kazmierczak, Barbara I; Berwin, Brent

    2013-06-01

    We previously demonstrated that bacterial flagellar motility is a fundamental mechanism by which host phagocytes bind and ingest bacteria. Correspondingly, loss of bacterial motility, consistently observed in clinical isolates from chronic Pseudomonas aeruginosa infections, enables bacteria to evade association and ingestion of P. aeruginosa by phagocytes both in vitro and in vivo. Since bacterial interactions with the phagocyte cell surface are required for type three secretion system-dependent NLRC4 inflammasome activation by P. aeruginosa, we hypothesized that reduced bacterial association with phagocytes due to loss of bacterial motility, independent of flagellar expression, will lead to reduced inflammasome activation. Here we report that inflammasome activation is reduced in response to nonmotile P. aeruginosa. Nonmotile P. aeruginosa elicits reduced IL-1β production as well as caspase-1 activation by peritoneal macrophages and bone marrow-derived dendritic cells in vitro. Importantly, nonmotile P. aeruginosa also elicits reduced IL-1β levels in vivo in comparison to those elicited by wild-type P. aeruginosa. This is the first demonstration that loss of bacterial motility results in reduced inflammasome activation and antibacterial IL-1β host response. These results provide a critical insight into how the innate immune system responds to bacterial motility and, correspondingly, how pathogens have evolved mechanisms to evade the innate immune system.

  16. Flagellar Motility Is a Key Determinant of the Magnitude of the Inflammasome Response to Pseudomonas aeruginosa

    PubMed Central

    Patankar, Yash R.; Lovewell, Rustin R.; Poynter, Matthew E.; Jyot, Jeevan; Kazmierczak, Barbara I.

    2013-01-01

    We previously demonstrated that bacterial flagellar motility is a fundamental mechanism by which host phagocytes bind and ingest bacteria. Correspondingly, loss of bacterial motility, consistently observed in clinical isolates from chronic Pseudomonas aeruginosa infections, enables bacteria to evade association and ingestion of P. aeruginosa by phagocytes both in vitro and in vivo. Since bacterial interactions with the phagocyte cell surface are required for type three secretion system-dependent NLRC4 inflammasome activation by P. aeruginosa, we hypothesized that reduced bacterial association with phagocytes due to loss of bacterial motility, independent of flagellar expression, will lead to reduced inflammasome activation. Here we report that inflammasome activation is reduced in response to nonmotile P. aeruginosa. Nonmotile P. aeruginosa elicits reduced IL-1β production as well as caspase-1 activation by peritoneal macrophages and bone marrow-derived dendritic cells in vitro. Importantly, nonmotile P. aeruginosa also elicits reduced IL-1β levels in vivo in comparison to those elicited by wild-type P. aeruginosa. This is the first demonstration that loss of bacterial motility results in reduced inflammasome activation and antibacterial IL-1β host response. These results provide a critical insight into how the innate immune system responds to bacterial motility and, correspondingly, how pathogens have evolved mechanisms to evade the innate immune system. PMID:23529619

  17. Oxidatively modified phosphatidylserines on the surface of apoptotic cells are essential phagocytic ‘eat-me' signals: cleavage and inhibition of phagocytosis by Lp-PLA2

    PubMed Central

    Tyurin, V A; Balasubramanian, K; Winnica, D; Tyurina, Y Y; Vikulina, A S; He, R R; Kapralov, A A; Macphee, C H; Kagan, V E

    2014-01-01

    Diversified anionic phospholipids, phosphatidylserines (PS), externalized to the surface of apoptotic cells are universal phagocytic signals. However, the role of major PS metabolites, such as peroxidized species of PS (PSox) and lyso-PS, in the clearance of apoptotic cells has not been rigorously evaluated. Here, we demonstrate that H2O2 was equally effective in inducing apoptosis and externalization of PS in naive HL60 cells and in cells enriched with oxidizable polyunsaturated species of PS (supplemented with linoleic acid (LA)). Despite this, the uptake of LA-supplemented cells by RAW264.7 and THP-1 macrophages was more than an order of magnitude more effective than that of naive cells. A similar stimulation of phagocytosis was observed with LA-enriched HL60 cells and Jurkat cells triggered to apoptosis with staurosporine. This was due to the presence of PSox on the surface of apoptotic LA-supplemented cells (but not of naive cells). This enhanced phagocytosis was dependent on activation of the intrinsic apoptotic pathway, as no stimulation of phagocytosis occurred in LA-enriched cells challenged with Fas antibody. Incubation of apoptotic cells with lipoprotein-associated phospholipase A2 (Lp-PLA2), a secreted enzyme with high specificity towards PSox, hydrolyzed peroxidized PS species in LA-supplemented cells resulting in the suppression of phagocytosis to the levels observed for naive cells. This suppression of phagocytosis by Lp-PLA2 was blocked by a selective inhibitor of Lp-PLA2, SB-435495. Screening of possible receptor candidates revealed the ability of several PS receptors and bridging proteins to recognize both PS and PSox, albeit with diverse selectivity. We conclude that PSox is an effective phagocytic ‘eat-me' signal that participates in the engulfment of cells undergoing intrinsic apoptosis. PMID:24464221

  18. Investigating the function of a novel protein from Anoectochilus formosanus which induced macrophage differentiation through TLR4-mediated NF-κB activation.

    PubMed

    Kuan, Yen-Chou; Lee, Wan-Tzu; Hung, Chih-Liang; Yang, Ching; Sheu, Fuu

    2012-09-01

    Anoectochilus formosanus is a therapeutic orchid appreciated as a traditional Chinese medicine in Asia. The extracts of A. formosanus have been reported to possess hepatoprotective, anti-inflammatory, and anti-tumor activates. A novel protein was isolated from A. formosanus, and its immunomodulatory effect on murine peritoneal macrophage was investigated. Macrophages obtained from ascites of thioglycollate-induced BALB/c were co-cultured with IPAF (0-20 μg/ml) for 24 h and then harvested for flow cytometry analysis. The cytokine/chemokine production was measured by real time PCR and ELISA. The interaction between IPAF and toll like receptors (TLRs) was investigated by TLR gene knockout (KO) mice and fluorescence labeled IPAF. The activation of NF-κB was assessed by EMSA. IPAF stimulated the TNF-α and IL-1β production, upregulated the CD86 and MHC II expression, and enhanced the phagocytic activity of macrophages. IPAF induced gene expression of IL-12 and Th1-assosiated cytokines/chemokines. The stimulating effect of IPAF was impaired, and the IPAF-macrophage interaction was reduced in TLR4(-/-) C57BL/10ScNJ mice. In addition, IPAF stimulated expressions of TLR signal-related genes and the activation of NF-κB. IPAF could induce classical activated macrophage differentiation via TLR4-dependent NF-κB activation and had potential of IPAF to modulate the Th1 response. These findings provided valuable information regarding the immune modulatory mechanism of A. formosanus, and indicated the possibility of IPAF as a potential peptide drug. Copyright © 2012 Elsevier B.V. All rights reserved.

  19. Differentiation and Glucocorticoid Regulated Apopto-Phagocytic Gene Expression Patterns in Human Macrophages. Role of Mertk in Enhanced Phagocytosis

    PubMed Central

    Zahuczky, Gábor; Kristóf, Endre; Majai, Gyöngyike; Fésüs, László

    2011-01-01

    The daily clearance of physiologically dying cells is performed safely mainly by cells in the mononuclear phagocyte system. They can recognize and engulf dying cells utilizing several cooperative mechanisms. In our study we show that the expression of a broad range of apopto-phagocytic genes is strongly up-regulated during differentiation of human monocytes to macrophages with different donor variability. The glucocorticoid dexamethasone has a profound effect on this process by selectively up-regulating six genes and down-regulating several others. The key role of the up-regulated mer tyrosine kinase (Mertk) in dexamethasone induced enhancement of phagocytosis could be demonstrated in human monocyte derived macrophages by gene silencing as well as blocking antibodies, and also in a monocyte-macrophage like cell line. However, the additional role of other glucocorticoid induced elements must be also considered since the presence of autologous serum during phagocytosis could almost completely compensate for the blocked function of Mertk. PMID:21731712

  20. Eros is a novel transmembrane protein that controls the phagocyte respiratory burst and is essential for innate immunity.

    PubMed

    Thomas, David C; Clare, Simon; Sowerby, John M; Pardo, Mercedes; Juss, Jatinder K; Goulding, David A; van der Weyden, Louise; Storisteanu, Daniel; Prakash, Ananth; Espéli, Marion; Flint, Shaun; Lee, James C; Hoenderdos, Kim; Kane, Leanne; Harcourt, Katherine; Mukhopadhyay, Subhankar; Umrania, Yagnesh; Antrobus, Robin; Nathan, James A; Adams, David J; Bateman, Alex; Choudhary, Jyoti S; Lyons, Paul A; Condliffe, Alison M; Chilvers, Edwin R; Dougan, Gordon; Smith, Kenneth G C

    2017-04-03

    The phagocyte respiratory burst is crucial for innate immunity. The transfer of electrons to oxygen is mediated by a membrane-bound heterodimer, comprising gp91 phox and p22 phox subunits. Deficiency of either subunit leads to severe immunodeficiency. We describe Eros (essential for reactive oxygen species), a protein encoded by the previously undefined mouse gene bc017643 , and show that it is essential for host defense via the phagocyte NAPDH oxidase. Eros is required for expression of the NADPH oxidase components, gp91 phox and p22 phox Consequently, Eros -deficient mice quickly succumb to infection. Eros also contributes to the formation of neutrophil extracellular traps (NETS) and impacts on the immune response to melanoma metastases. Eros is an ortholog of the plant protein Ycf4, which is necessary for expression of proteins of the photosynthetic photosystem 1 complex, itself also an NADPH oxio-reductase. We thus describe the key role of the previously uncharacterized protein Eros in host defense. © 2017 Thomas et al.

  1. Eros is a novel transmembrane protein that controls the phagocyte respiratory burst and is essential for innate immunity

    PubMed Central

    Thomas, David C.; Clare, Simon; Sowerby, John M.; Juss, Jatinder K.; Goulding, David A.; van der Weyden, Louise; Prakash, Ananth; Harcourt, Katherine; Mukhopadhyay, Subhankar; Antrobus, Robin; Bateman, Alex

    2017-01-01

    The phagocyte respiratory burst is crucial for innate immunity. The transfer of electrons to oxygen is mediated by a membrane-bound heterodimer, comprising gp91phox and p22phox subunits. Deficiency of either subunit leads to severe immunodeficiency. We describe Eros (essential for reactive oxygen species), a protein encoded by the previously undefined mouse gene bc017643, and show that it is essential for host defense via the phagocyte NAPDH oxidase. Eros is required for expression of the NADPH oxidase components, gp91phox and p22phox. Consequently, Eros-deficient mice quickly succumb to infection. Eros also contributes to the formation of neutrophil extracellular traps (NETS) and impacts on the immune response to melanoma metastases. Eros is an ortholog of the plant protein Ycf4, which is necessary for expression of proteins of the photosynthetic photosystem 1 complex, itself also an NADPH oxio-reductase. We thus describe the key role of the previously uncharacterized protein Eros in host defense. PMID:28351984

  2. Investigation of Functional Activity of Cells in Granulomatous Inflammatory Lesions from Mice with Latent Tuberculous Infection in the New Ex Vivo Model

    PubMed Central

    2013-01-01

    The new ex vivo model system measuring functional input of individual granuloma cells to formation of granulomatous inflammatory lesions in mice with latent tuberculous infection has been developed and described in the current study. Monolayer cultures of cells that migrated from individual granulomas were established in the proposed culture settings for mouse spleen and lung granulomas induced by in vivo exposure to BCG vaccine. The cellular composition of individual granulomas was analyzed. The expression of the leukocyte surface markers such as phagocytic receptors CD11b, CD11c, CD14, and CD16/CD32 and the expression of the costimulatory molecules CD80, CD83, and CD86 were tested as well as the production of proinflammatory cytokines (IFNγ and IL-1α) and growth factors (GM-CSF and FGFb) for cells of individual granulomas. The colocalization of the phagocytic receptors and costimulatory molecules in the surface microdomains of granuloma cells (with and without acid-fast BCG-mycobacteria) has also been detected. It was found that some part of cytokine macrophage producers have carried acid-fast mycobacteria. Detected modulation in dynamics of production of pro-inflammatory cytokines, growth factors, and leukocyte surface markers by granuloma cells has indicated continued processes of activation and deactivation of granuloma inflammation cells during the latent tuberculous infection progress in mice. PMID:24198843

  3. C1q-Mediated Complement Activation and C3 Opsonization Trigger Recognition of Stealth Poly(2-methyl-2-oxazoline)-Coated Silica Nanoparticles by Human Phagocytes.

    PubMed

    Tavano, Regina; Gabrielli, Luca; Lubian, Elisa; Fedeli, Chiara; Visentin, Silvia; Polverino De Laureto, Patrizia; Arrigoni, Giorgio; Geffner-Smith, Alessandra; Chen, Fangfang; Simberg, Dmitri; Morgese, Giulia; Benetti, Edmondo M; Wu, Linping; Moghimi, Seyed Moein; Mancin, Fabrizio; Papini, Emanuele

    2018-05-23

    Poly(2-methyl-2-oxazoline) (PMOXA) is an alternative promising polymer to poly(ethylene glycol) (PEG) for design and engineering of macrophage-evading nanoparticles (NPs). Although PMOXA-engineered NPs have shown comparable pharmacokinetics and in vivo performance to PEGylated stealth NPs in the murine model, its interaction with elements of the human innate immune system has not been studied. From a translational angle, we studied the interaction of fully characterized PMOXA-coated vinyltriethoxysilane-derived organically modified silica NPs (PMOXA-coated NPs) of approximately 100 nm in diameter with human complement system, blood leukocytes, and macrophages and compared their performance with PEGylated and uncoated NP counterparts. Through detailed immunological and proteomic profiling, we show that PMOXA-coated NPs extensively trigger complement activation in human sera exclusively through the classical pathway. Complement activation is initiated by the sensing molecule C1q, where C1q binds with high affinity ( K d = 11 ± 1 nM) to NP surfaces independent of immunoglobulin binding. C1q-mediated complement activation accelerates PMOXA opsonization with the third complement protein (C3) through the amplification loop of the alternative pathway. This promoted NP recognition by human blood leukocytes and monocyte-derived macrophages. The macrophage capture of PMOXA-coated NPs correlates with sera donor variability in complement activation and opsonization but not with other major corona proteins, including clusterin and a wide range of apolipoproteins. In contrast to these observations, PMOXA-coated NPs poorly activated the murine complement system and were marginally recognized by mouse macrophages. These studies provide important insights into compatibility of engineered NPs with elements of the human innate immune system for translational steps.

  4. Active-oxygen scavenging activity of plant extracts.

    PubMed

    Masaki, H; Sakaki, S; Atsumi, T; Sakurai, H

    1995-01-01

    To find antioxidative compounds present in plants, 65 types of plant extract were tested using the neotetrazolium method for evidence of superoxide anion-scavenging effects and 7 plant extracts were selected for further investigation. The activity of active-oxygen scavengers such as superoxide anion radicals, hydroxyl radicals, singlet oxygens and lipid peroxides in the 7 plant extracts (Aeseclus hippocastanum L., Hamamelis virginiana L. Polygonum cuspidatum Sieb., Quercus robur L., Rosemarinous officinalis L., Salvia officinalis L. and Sanguisorba officinalis L.) was examined in detail by both ESR spin-trapping and malondialdehyde generation. Furthermore, the active-oxygen scavenging activity of these plant extracts was evaluated using a murine dermal fibroblast culture system. Both Aeseclus hippocastanum L. and Hamamelis virginia L. were found to have strong active-oxygen scavenging activity of and protective activity against cell damage induced by active oxygen. Both Aeseclus hippocastanum L. and Hamamelis virginiana L. are proposed as potent plant extracts with potential application as anti-aging or anti-wrinkle material for the skin.

  5. From The Cover: Poly- amino ester-containing microparticles enhance the activity of nonviral genetic vaccines

    NASA Astrophysics Data System (ADS)

    Little, Steven R.; Lynn, David M.; Ge, Qing; Anderson, Daniel G.; Puram, Sidharth V.; Chen, Jianzhu; Eisen, Herman N.; Langer, Robert

    2004-06-01

    Current nonviral genetic vaccine systems are less effective than viral vaccines, particularly in cancer systems where epitopes can be weakly immunogenic and antigen-presenting cell processing and presentation to T cells is down-regulated. A promising nonviral delivery method for genetic vaccines involves microencapsulation of antigen-encoding DNA, because such particles protect plasmid payloads and target them to phagocytic antigen-presenting cells. However, conventional microparticle formulations composed of poly lactic-co-glycolic acid take too long to release encapsulated payload and fail to induce high levels of target gene expression. Here, we describe a microparticle-based DNA delivery system composed of a degradable, pH-sensitive poly- amino ester and poly lactic-co-glycolic acid. These formulations generate an increase of 3-5 orders of magnitude in transfection efficiency and are potent activators of dendritic cells in vitro. When used as vaccines in vivo, these microparticle formulations, unlike conventional formulations, induce antigen-specific rejection of transplanted syngenic tumor cells.

  6. A Prenylated p47phox-p67phox-Rac1 Chimera Is a Quintessential NADPH Oxidase Activator

    PubMed Central

    Mizrahi, Ariel; Berdichevsky, Yevgeny; Casey, Patrick J.; Pick, Edgar

    2010-01-01

    The superoxide-generating NADPH oxidase complex of resting phagocytes includes cytochrome b559, a membrane-associated heterodimer composed of two subunits (Nox2 and p22phox), and four cytosolic proteins (p47phox, p67phox, Rac, and p40phox). Upon stimulation, the cytosolic components translocate to the membrane, as the result of a series of interactions among the cytosolic components and among the cytosolic components and cytochrome b559 and its phospholipid environment. We described the construction of a tripartite chimera (trimera) consisting of strategic domains of p47phox, p67phox, and Rac1, in which interactions among cytosolic components were replaced by fusion (Berdichevsky, Y., Mizrahi, A., Ugolev, Y., Molshanski-Mor, S., and Pick, E. (2007) J. Biol. Chem. 282, 22122–22139). We now fused green fluorescent protein (GFP) to the N terminus of the trimera and found the following. 1) The GFP-p47phox-p67phox-Rac1 trimera activates the oxidase in amphiphile-dependent and -independent (anionic phospholipid-enriched membrane) cell-free systems. 2) Geranylgeranylation of the GFP-trimera makes it a potent oxidase activator in unmodified (native) membranes and in the absence of amphiphile. 3) Prenylated GFP-trimera binds spontaneously to native membranes (as assessed by gel filtration and in-line fluorometry), forming a tight complex capable of NADPH-dependent, activator-independent superoxide production at rates similar to those measured in canonical cell-free systems. 4) Prenylation of the GFP-trimera supersedes completely the dependence of oxidase activation on the p47phox phox homology domain and, partially, on the Rac1 polybasic domain, but the requirement for Trp193 in p47phox persists. Prenylated GFP-p47phox-p67phox-Rac1 trimera acts as a quintessential single molecule oxidase activator of potential use in high throughput screening of inhibitors. PMID:20529851

  7. Inflammatory Role of Macrophage Xanthine Oxidoreductase in Pulmonary Hypertension: Implications for Novel Therapeutic Approaches

    DTIC Science & Technology

    2015-10-01

    Lung Inflammation, Uric Acid, Chronic Obstructive Pulmonary Disease, Mononuclear Phagocyte , Monosodium Urate, XOR WT, XOR KO, Wistar Kyoto, Pulmonary...0451 Annual Report (Year 1) 4 Mononuclear Phagocyte XOR Activity and Superoxide Generation Were Reduced by

  8. Na+/H+ exchange activity during phagocytosis in human neutrophils: role of Fcgamma receptors and tyrosine kinases

    PubMed Central

    1996-01-01

    In neutrophils, binding and phagocytosis facilitate subsequent intracellular killing of microorganisms. Activity of Na+/H+ exchangers (NHEs) participates in these events, especially in regulation of intracellular pH (pHi) by compensating for the H+ load generated by the respiratory burst. Despite the importance of these functions, comparatively little is known regarding the nature and regulation of NHE(s) in neutrophils. The purpose of this study was to identify which NHE(s) are expressed in neutrophils and to elucidate the mechanisms regulating their activity during phagocytosis. Exposure of cells to the phagocytic stimulus opsonized zymosan (OpZ) induced a transient cytosolic acidification followed by a prolonged alkalinization. The latter was inhibited in Na+-free medium and by amiloride analogues and therefore was due to activation of Na+/H+ exchange. Reverse transcriptase PCR and cDNA sequencing demonstrated that mRNA for the NHE-1 but not for NHE-2, 3, or 4 isoforms of the exchanger was expressed. Immunoblotting of purified plasma membranes with isoform- specific antibodies confirmed the presence of NHE-1 protein in neutrophils. Since phagocytosis involves Fcgamma (FcgammaR) and complement receptors such as CR3 (a beta2 integrin) which are linked to pathways involving alterations in intracellular [Ca2+]i and tyrosine phosphorylation, we studied these pathways in relation to activation of NHE-1. Cross-linking of surface bound antibodies (mAb) directed against FcgammaRs (FcgammaRII > FcgammaRIII) but not beta2 integrins induced an amiloride-sensitive cytosolic alkalinization. However, anti-beta2 integrin mAb diminished OpZ-induced alkalinization suggesting that NHE- 1 activation involved cooperation between integrins and FcgammaRs. The tyrosine kinase inhibitors genistein and herbimycin blocked cytosolic alkalinization after OpZ or FcgammaR cross-linking suggesting that tyrosine phosphorylation was involved in NHE-I activation. An increase in [Ca2+]i was not

  9. Protection of ornamental gold fish Carassius auratus against Aeromonas hydrophila by treating Ixora coccinea active principles.

    PubMed

    Anusha, Paulraj; Thangaviji, Vijayaragavan; Velmurugan, Subramanian; Michaelbabu, Mariavincent; Citarasu, Thavasimuthu

    2014-02-01

    Herbals such as Ixora coccinea, Daemia extensa and Tridax procumbens were selected to screen in vitro antibacterial and immunostimulant activity against the freshwater fish pathogen Aeromonas hydrophila using different organic polar and non-polar solvents. Initial screening results revealed that, ethyl acetate extracts and its purified fraction of I. coccinea was able to suppress the A. hydrophila strains at more than 15 mm of zone of inhibition and positive immunostimulant activity. The purified active fraction, which eluted from H40: EA60 mobile phase was structurally characterized by GC-MS analysis. Two compounds such as Diethyl Phthalate (1,2-Benzene dicarboxylic acid, monobutyl ester) and Dibutyl Phthalate were characterized using NIST database search. In order to study the in vivo immunostimulant influence of the compounds, the crude extracts (ICE) and purified fractions (ICF) were incorporated to the artificial diets at the concentration of 400 mg kg⁻¹ and fed to the ornamental gold fish Carassius auratus for 30 days. After termination of feeding experiment, they were challenged with highly virulent A. hydrophila AHV-1 which was isolated from infected gold fish and studied the survival, specific bacterial load reduction, serum biochemistry, haematology, immunology and histological parameters. The control diet fed fishes succumbed to death within five days at 100% mortality whereas ICE and ICF fed groups survived 60 and 80% respectively after 10 days. The diets also helped to decrease the Aeromonas load after challenge and significantly (P ≤ 0.01) improved the serum albumin, globulin and protein. The diets also helped to increase the RBC and haemoglobin level significantly (P ≤ 0.05) from the control group. Surprisingly the immunological parameters like phagocytic activity, serum bactericidal activity and lysozyme activity were significantly increased (P ≤ 0.001) in the experimental diets. Macrophages and erythrocytes were abundantly expressed in the

  10. Distinct innate immune phagocyte responses to Aspergillus fumigatus conidia and hyphae in zebrafish larvae.

    PubMed

    Knox, Benjamin P; Deng, Qing; Rood, Mary; Eickhoff, Jens C; Keller, Nancy P; Huttenlocher, Anna

    2014-10-01

    Aspergillus fumigatus is the most common filamentous fungal pathogen of immunocompromised hosts, resulting in invasive aspergillosis (IA) and high mortality rates. Innate immunity is known to be the predominant host defense against A. fumigatus; however, innate phagocyte responses to A. fumigatus in an intact host and their contributions to host survival remain unclear. Here, we describe a larval zebrafish A. fumigatus infection model amenable to real-time imaging of host-fungal interactions in live animals. Following infection with A. fumigatus, innate phagocyte populations exhibit clear preferences for different fungal morphologies: macrophages rapidly phagocytose conidia and form aggregates around hyphae, while the neutrophil response is dependent upon the presence of hyphae. Depletion of macrophages rendered host larvae susceptible to invasive disease. Moreover, a zebrafish model of human leukocyte adhesion deficiency with impaired neutrophil function also resulted in invasive disease and impaired host survival. In contrast, macrophage-deficient but not neutrophil-deficient larvae exhibited attenuated disease following challenge with a less virulent (ΔlaeA) strain of A. fumigatus, which has defects in secondary metabolite production. Taking these results together, we have established a new vertebrate model for studying innate immune responses to A. fumigatus that reveals distinct roles for neutrophils and macrophages in mediating host defense against IA. Copyright © 2014, American Society for Microbiology. All Rights Reserved.

  11. Size, charge and concentration dependent uptake of iron oxide particles by non-phagocytic cells.

    PubMed

    Thorek, Daniel L J; Tsourkas, Andrew

    2008-09-01

    A promising new direction for contrast-enhanced magnetic resonance (MR) imaging involves tracking the migration and biodistribution of superparamagnetic iron oxide (SPIO)-labeled cells in vivo. Despite the large number of cell labeling studies that have been performed with SPIO particles of differing size and surface charge, it remains unclear which SPIO configuration provides optimal contrast in non-phagocytic cells. This is largely because contradictory findings have stemmed from the variability and imprecise control over surface charge, the general need and complexity of transfection and/or targeting agents, and the limited number of particle configurations examined in any given study. In the present study, we systematically evaluated the cellular uptake of SPIO in non-phagocytic T cells over a continuum of particle sizes ranging from 33nm to nearly 1.5microm, with precisely controlled surface properties, and without the need for transfection agents. SPIO labeling of T cells was analyzed by flow cytometry and contrast enhancement was determined by relaxometry. SPIO uptake was dose-dependent and exhibited sigmoidal charge dependence, which was shown to saturate at different levels of functionalization. Efficient labeling of cells was observed for particles up to 300nm, however, micron-sized particle uptake was limited. Our results show that an unconventional highly cationic particle configuration at 107nm maximized MR contrast of T cells, outperforming the widely utilized USPIO (<50nm).

  12. Size, Charge and Concentration Dependent Uptake of Iron Oxide Particles by Non-Phagocytic Cells

    PubMed Central

    Thorek, Daniel L.J.; Tsourkas, Andrew

    2008-01-01

    A promising new direction for contrast-enhanced magnetic resonance (MR) imaging involves tracking the migration and biodistribution of superparamagnetic iron oxide (SPIO)-labeled cells in vivo. Despite the large number of cell labeling studies that have been performed with SPIO particles of differing size and surface charge, it remains unclear which SPIO configuration provides optimal contrast in non-phagocytic cells. This is largely because contradictory findings have stemmed from the variability and imprecise control over surface charge, the general need and complexity of transfection and/or targeting agents, and the limited number of particle configurations examined in any given study. In the present study, we systematically evaluated the cellular uptake of SPIO in non-phagocytic T cells over a continuum of particle sizes ranging from 33 nm to nearly 1.5 μm, with precisely controlled surface properties, and without the need for transfection agents. SPIO labeling of T cells was analyzed by flow cytometry and contrast enhancement was determined by relaxometry. SPIO uptake was dose dependent and exhibited sigmoidal charge dependence, which was shown to saturate at different levels of functionalization. Efficient labeling of cells was observed for particles up to 300nm, however micron-sized particle uptake was limited. Our results show that an unconventional highly cationic particle configuration at 107 nm maximized MR contrast of T cells, outperforming the widely utilized USPIO (<50 nm). PMID:18533252

  13. Anti-Inflammatory Effects of Lactobacillus Rahmnosus and Bifidobacterium Breve on Cigarette Smoke Activated Human Macrophages

    PubMed Central

    Mortaz, Esmaeil; Adcock, Ian M.; Ricciardolo, Fabio L. M.; Varahram, Mohammad; Jamaati, Hamidreza; Velayati, Ali Akbar; Folkerts, Gert; Garssen, Johan

    2015-01-01

    Background Chronic obstructive pulmonary disease (COPD) is a major global health problem with cigarette smoke (CS) as the main risk factor for its development. Airway inflammation in COPD involves the increased expression of inflammatory mediators such as CXCL-8 and IL-1β which are important mediators for neutrophil recruitment. Macrophages are an important source of these mediators in COPD. Lactobacillus rhamnosus (L. rhamnosus) and Befidobacterium breve (B. breve) attenuate the development of ‘allergic asthma’ in animals but their effects in COPD are unknown. Objective To determine the anti-inflammatory effects of L. rhamnosus and B. breve on CS and Toll-like receptor (TLR) activation. Design We stimulated the human macrophage cell line THP-1 with CS extract in the presence and absence of L. rhamnosus and B. breve and measured the expression and release of inflammatory mediators by RT-qPCR and ELISA respectively. An activity assay and Western blotting were used to examine NF-κB activation. Results Both L. rhamnosus and B. breve were efficiently phagocytized by human macrophages. L. rhamnosus and B. breve significantly suppressed the ability of CS to induce the expression of IL-1β, IL-6, IL-10, IL-23, TNFα, CXCL-8 and HMGB1 release (all p<0.05) in human THP-1 macrophages. Similar suppression of TLR4- and TLR9-induced CXCL8 expression was also observed (p<0.05). The effect of L. rhamnosus and B. breve on inflammatory mediator release was associated with the suppression of CS-induced NF-κB activation (p<0.05). Conclusions This data indicate that these probiotics may be useful anti-inflammatory agents in CS-associated disease such as COPD. PMID:26317628

  14. Multifunctional hybrid micelles with tunable active targeting and acid/phosphatase-stimulated drug release for enhanced tumor suppression.

    PubMed

    Liu, Xuhan; Li, Yinghuan; Tan, Xi; Rao, Rong; Ren, Yuanyuan; Liu, Lingyan; Yang, Xiangliang; Liu, Wei

    2018-03-01

    Therapeutic efficacy of conventional single PEGylated polymeric micelles is significantly reduced by limited endocytosis and intracellular drug release. To improve drug delivery efficiency, poly (ethylene glycol)-block-poly (l-lactic acid)/(Arg-Gly-Asp-Phe)-poly (aminoethyl ethylene phosphate)-block-poly (l-lactic acid) (PEG-PLLA/RGDF-PAEEP-PLLA) hybrid micelles with tunable active targeting and acid/phosphatase-stimulated drug release are developed. The optimized hybrid micelles with 6 wt % of RGDF have favorable in vitro and in vivo activities. The hybrid micelles could temporarily shield the targeting efficacy of RGDF at pH 7.4 due to the steric effect exerted by concealment of RGDF peptides in the PEG corona, which strongly decreases the clearance by mononuclear phagocyte system and consequently improves the tumor accumulation. Inside the solid tumor with a lower acidic pH, the hybrid micelles restore the active tumor targeting property with exposed RGDF on the surface of the micelles because of the increased protonation and stretching degree of PAEEP blocks. RGDF-mediated endocytosis improves the tumor cell uptake. The hybrid micelles would also enhance intracellular drug release because of the hydrolysis of the acid/phosphatase-sensitivity of PAEEP blocks in endo/lysosome. Systemic administration of the hybrid micelles significantly inhibits tumor growth by 96% due to the integration of enhanced circulation time, tumor accumulation, cell uptake and intracellular drug release. Copyright © 2017 Elsevier Ltd. All rights reserved.

  15. Extract of Pelargonium sidoides (EPs 7630) improves phagocytosis, oxidative burst, and intracellular killing of human peripheral blood phagocytes in vitro.

    PubMed

    Conrad, Andreas; Hansmann, Cathrin; Engels, Inge; Daschner, Franz D; Frank, Uwe

    2007-01-01

    Clinical data show that EPs 7630, an aqueous ethanolic extract from the roots of Pelargonium sidoides, can be used for the treatment of upper respiratory tract infections (URTI). The biological effects of the preparation have not been fully investigated. The objective of this study was to examine the impact of EPs 7630 on the activity of human peripheral blood phagocytes (PBP). A whole blood-based, flow cytometric assay was used to simultaneously assess phagocytosis and oxidative burst. Calcein-AM stained Candida albicans (DSM 1386) were used as target organisms. Oxidative burst was measured by addition of dihydroethidium (DHE). Target organisms and whole blood were co-incubated and analyzed after 0, 2, 4, 6, 10, and 30 min. Intracellular killing of the target organisms was evaluated by determining the number of surviving yeast cells after co-incubation of C. albicans and human whole blood. EPs 7630 was applied in therapeutically relevant concentrations between 0 and 30 microg/ml. Compared with controls EPs 7630 increased the number of phagocytosing PBP during the observed time points between 2 and 10 min in a concentration-dependent manner, with a maximum enhancement of 56% at 2 min (p=0.002). The application of EPs 7630 also led to a significant increase in the number of burst-active PBP for all time points observed beyond 2 min (p<0.001). The maximum augmentation was 120% after application of 30 microg/ml EPs 7630 at 4 min. Using a microbiological assay, intracellular killing was also enhanced by EPs 7630. This was expressed by a significant reduction in the number of surviving target organisms (p<0.001). The maximum reduction in viable yeast cells (-31%) was observed after co-incubation for 120 min with the highest concentration of EPs 7630 (30 microg/ml). In conclusion, the positive effects of EPs 7630 on phagocytosis, oxidative burst, and intracellular killing of yeast cells as test organisms are important components of the compound's biological activity. Our

  16. RpoS contributes to phagocyte oxidase-mediated stress resistance during urinary tract infection by Escherichia coli CFT073.

    PubMed

    Hryckowian, Andrew J; Welch, Rodney A

    2013-02-12

    Uropathogenic Escherichia coli (UPEC) is the most common causative agent of community-acquired urinary tract infection (UTI). In order to cause UTI, UPEC must endure stresses ranging from nutrient limitation to host immune components. RpoS (σ(S)), the general stress response sigma factor, directs gene expression under a variety of inhibitory conditions. Our study of rpoS in UPEC strain CFT073 began after we discovered an rpoS-frameshift mutation in one of our laboratory stocks of "wild-type" CFT073. We demonstrate that an rpoS-deletion mutation in CFT073 leads to a colonization defect during UTI of CBA/J mice at 48 hours postinfection (hpi). There is no difference between the growth rates of CFT073 and CFT073 rpoS in urine. This indicates that rpoS is needed for replication and survival in the host rather than being needed to address limitations imposed by urine nutrients. Consistent with previous observations in E. coli K-12, CFT073 rpoS is more sensitive to oxidative stress than the wild type. We demonstrate that peroxide levels are elevated in voided urine from CFT073-infected mice compared to urine from mock-infected mice, which supports the notion that oxidative stress is generated by the host in response to UPEC. In mice that lack phagocyte oxidase, the enzyme complex expressed by phagocytes that produces superoxide, the competitive defect of CFT073 rpoS in bladder colonization is lost. These results demonstrate that σ(S) is important for UPEC survival under conditions of phagocyte oxidase-generated stress during UTI. Though σ(S) affects the pathogenesis of other bacterial species, this is the first work that directly implicates σ(S) as important for UPEC pathogenesis. UPEC must cope with a variety of stressful conditions in the urinary tract during infection. RpoS (σ(S)), the general stress response sigma factor, is known to direct the expression of many genes under a variety of stressful conditions in laboratory-adapted E. coli K-12. Here, we show that

  17. Effect of potential probiotic Rhodotorula benthica D30 on the growth performance, digestive enzyme activity and immunity in juvenile sea cucumber Apostichopus japonicus.

    PubMed

    Wang, Ji-hui; Zhao, Liu-qun; Liu, Jin-feng; Wang, Han; Xiao, Shan

    2015-04-01

    The effects of dietary addition of yeast Rhodotorula benthica (R. benthica) D30 which isolated from local sea mud at levels of 0 (control), 10(5), 10(6) and 10(7) CFU/g feed on the growth performance, digestive enzyme activity, immunity and disease resistance of juvenile sea cucumber Apostichopus japonicus were investigated. It was shown that dietary addition of R. benthica D30 significantly increased the growth rates of sea cucumbers (p < 0.05). The amylase activity, cellulase activity and alginase activity were increased for the animals from three probiotics treated groups. And with the supplemented concentration increased, the values of those digestive enzyme activities increased as well. Dietary addition of R. benthica D30 at the level of 10(7) CFU significantly increased the lysozyme, phagocytic and total nitric oxide synthase activity of A. japonicus (p < 0.05). While, the highest values of the phenoloxidase and alkaline phosphatase activity were found in sea cucumbers fed with R. benthica D30 at the level of 10(6) CFU. Whereas adding R. benthica D30 to diet had no significant effects on the total coelomocyte counts and acid phosphatase activity of A. japonicus (p > 0.05). It was observed that adding R. benthica D30 could significantly decrease the cumulative mortality of sea cucumbers. The present study demonstrated that dietary addition of R. benthica D30 could increase growth performance and some digestive enzyme activities, improve immunity and disease resistance of A. japonicus. And the medium (10(6) CFU) and high (10(7) CFU) additional levels showed better effects. It suggests that yeast R. benthica D30 could be a good probiotic for aquaculture. Copyright © 2015 Elsevier Ltd. All rights reserved.

  18. Leishmanicidal activity of the Agaricus blazei Murill in different Leishmania species.

    PubMed

    Valadares, Diogo G; Duarte, Mariana C; Oliveira, Jamil S; Chávez-Fumagalli, Miguel A; Martins, Vivian T; Costa, Lourena E; Leite, João Paulo V; Santoro, Marcelo M; Régis, Wiliam C B; Tavares, Carlos A P; Coelho, Eduardo A F

    2011-12-01

    Leishmaniasis is a major public health problem, and the alarming spread of parasite resistance underlines the importance of discovering new therapeutic products. The present study aims to investigate the in vitro leishmanicidal activity of an Agaricus blazei Murill mushroom extract as compared to different Leishmania species and stages. The water extract proved to be effective against promastigote and amastigote-like stages of Leishmania amazonensis, L. chagasi, and L. major, with IC(50) (50% inhibitory concentration) values of 67.5, 65.8, and 56.8 μg/mL for promastigotes, and 115.4, 112.3, and 108.4 μg/mL for amastigotes-like respectively. The infectivity of the three Leishmania species before and after treatment with the water extract was analyzed, and it could be observed that 82%, 57%, and 73% of the macrophages were infected with L. amazonensis, L. major, and L. chagasi, respectively. However, when parasites were pre-incubated with the water extract, and later used to infect macrophages, they were able to infect only 12.7%, 24.5%, and 19.7% of the phagocytic cells for L. amazonensis, L. chagasi, and L. major, respectively. In other experiments, macrophages were infected with L. amazonensis, L. chagasi, or L. major, and later treated with the aforementioned extract, presented reductions of 84.4%, 79.6%, and 85.3% in the parasite burden after treatment. A confocal microscopy revealed the loss of the viability of the parasites within the infected macrophages after treatment with the water extract. The applied extract presented a low cytotoxicity in murine macrophages and a null hemolytic activity in type O(+) human red blood cells. No nitric oxide (NO) production, nor inducible nitric oxide syntase expression, could be observed in macrophages after stimulation with the water extract, suggesting that biological activity may be due to direct mechanisms other than macrophage activation by means of NO production. In conclusion, the results demonstrate that the A

  19. Golgi-Associated Protein Kinase C-ε Is Delivered to Phagocytic Cups: Role of Phosphatidylinositol 4-Phosphate.

    PubMed

    Hanes, Cheryl M; D'Amico, Anna E; Ueyama, Takehiko; Wong, Alexander C; Zhang, Xuexin; Hynes, W Frederick; Barroso, Margarida M; Cady, Nathaniel C; Trebak, Mohamed; Saito, Naoaki; Lennartz, Michelle R

    2017-07-01

    Protein kinase C-ε (PKC-ε) at phagocytic cups mediates the membrane fusion necessary for efficient IgG-mediated phagocytosis. The C1B and pseudosubstrate (εPS) domains are necessary and sufficient for this concentration. C1B binds diacylglycerol; the docking partner for εPS is unknown. Liposome assays revealed that the εPS binds phosphatidylinositol 4-phosphate (PI4P) and PI(3,5)P 2 Wortmannin, but not LY294002, inhibits PKC-ε concentration at cups and significantly reduces the rate of phagocytosis. As Wortmannin inhibits PI4 kinase, we hypothesized that PI4P mediates the PKC-ε concentration at cups and the rate of phagocytosis. PKC-ε colocalizes with the trans -Golgi network (TGN) PI4P reporter, P4M, suggesting it is tethered at the TGN. Real-time imaging of GFP-PKC-ε-expressing macrophages revealed a loss of Golgi-associated PKC-ε during phagocytosis, consistent with a Golgi-to-phagosome translocation. Treatment with PIK93, a PI4 kinase inhibitor, reduces PKC-ε at both the TGN and the cup, decreases phagocytosis, and prevents the increase in capacitance that accompanies membrane fusion. Finally, expression of the Golgi-directed PI4P phosphatase, hSac1-K2A, recapitulates the PIK93 phenotype, confirming that Golgi-associated PI4P is critical for efficient phagocytosis. Together these data are consistent with a model in which PKC-ε is tethered to the TGN via an εPS-PI4P interaction. The TGN-associated pool of PKC-ε concentrates at the phagocytic cup where it mediates the membrane fusion necessary for phagocytosis. The novelty of these data lies in the demonstration that εPS binds PI4P and PI(3,5)P 2 and that PI4P is necessary for PKC-ε localization at the TGN, its translocation to the phagocytic cup, and the membrane fusion required for efficient Fc [γ] receptor-mediated phagocytosis. Copyright © 2017 by The American Association of Immunologists, Inc.

  20. Anti-Leishmania activity of essential oil of Myracrodruon urundeuva (Engl.) Fr. All.: Composition, cytotoxity and possible mechanisms of action.

    PubMed

    Carvalho, C E S; Sobrinho-Junior, E P C; Brito, L M; Nicolau, L A D; Carvalho, T P; Moura, A K S; Rodrigues, K A F; Carneiro, S M P; Arcanjo, D D R; Citó, A M G L; Carvalho, F A A

    2017-04-01

    Myracrodruon urundeuva (Engl.) Fr. All., commonly known as "aroeira-do-sertão", is a medicinal plant from Anacardiaceae family. In this study, the chemical composition of M. urundeuva essential oil (MuEO) was evaluated by gas chromatography-mass spectrometry (GC-MS), as well as its anti-Leishmania potential, cytotoxicity, and macrophage activation capability as possible antiprotozoal mechanism of action were assessed. Fourteen compounds were identified, which constituted 94.87% of total oil composition. The most abundant components were monoterpenes (80.35%), with β-myrcene (42.46%), α-myrcene (37.23%), and caryophyllene (4.28%) as the major constituents. The MuEO inhibited the growth of promastigotes (IC 50 205 ± 13.4 μg mL -1 ), axenic amastigotes (IC 50 104.5 ± 11.82 μg mL -1 ) and decreased percentage of macrophage infection and number of amastigotes per macrophage (IC 50 of 44.5 ± 4.37 μg⋅mL -1 ), suggesting significant anti-Leishmania activity. The cytotoxicity of MuEO was assessed by MTT test in Balb/c murine macrophages and by human erythrocytes lysis assay and low cytotoxicity for these cells was observed. The CC 50 value against macrophages were 550 ± 29.21 μg mL -1 , while cytotoxicity for erythrocytes was around 20% at the highest concentration assessed, with HC 50  > 800 μg mL -1 . While MuEO-induced anti-Leishmania activity is not mediated by increases in both lysosomal activity and nitric oxide production in macrophages, the results suggest the antiamastigote activity is associated with an immunomodulatory activity of macrophages due to an increase of phagocytic capability induced by MuEO. Thus, MuEO presented significant activity against Leishmania amazonensis, probably modulating the activation of macrophages, with low cytotoxicity to murine macrophages and human erythrocytes. Copyright © 2017 Elsevier Inc. All rights reserved.

  1. High vancomycin MICs within the susceptible range in Staphylococcus aureus bacteraemia isolates are associated with increased cell wall thickness and reduced intracellular killing by human phagocytes.

    PubMed

    Falcón, Rocío; Martínez, Alba; Albert, Eliseo; Madrid, Silvia; Oltra, Rosa; Giménez, Estela; Soriano, Mario; Vinuesa, Víctor; Gozalbo, Daniel; Gil, María Luisa; Navarro, David

    2016-05-01

    Vancomycin minimum inhibitory concentrations (MICs) at the upper end of the susceptible range for Staphylococcus aureus have been associated with poor clinical outcomes of bloodstream infections. We tested the hypothesis that high vancomycin MICs in S. aureus bacteraemia isolates are associated with increased cell wall thickness and suboptimal bacterial internalisation or lysis by human phagocytes. In total, 95 isolates were evaluated. Original vancomycin MICs were determined by Etest. The susceptibility of S. aureus isolates to killing by phagocytes was assessed in a human whole blood assay. Internalisation of bacterial cells by phagocytes was investigated by flow cytometry. Cell wall thickness was evaluated by transmission electron microscopy. Genotypic analysis of S. aureus isolates was performed using a DNA microarray system. Vancomycin MICs were significantly higher (P=0.006) in isolates that were killed suboptimally (killing index <60%) compared with those killed efficiently (killing index >70%) and tended to correlate inversely (P=0.08) with the killing indices. Isolates in both killing groups were internalised by human neutrophils and monocytes with comparable efficiency. The cell wall was significantly thicker (P=0.03) in isolates in the low killing group. No genotypic differences were found between the isolates in both killing groups. In summary, high vancomycin MICs in S. aureus bacteraemia isolates were associated with increased cell wall thickness and reduced intracellular killing by phagocytes. Copyright © 2016 Elsevier B.V. and the International Society of Chemotherapy. All rights reserved.

  2. Monocyte-lymphocyte fusion induced by the HIV-1 envelope generates functional heterokaryons with an activated monocyte-like phenotype

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Martínez-Méndez, David; Rivera-Toledo, Evelyn; Ortega, Enrique

    Enveloped viruses induce cell-cell fusion when infected cells expressing viral envelope proteins interact with target cells, or through the contact of cell-free viral particles with adjoining target cells. CD4{sup +} T lymphocytes and cells from the monocyte-macrophage lineage express receptors for HIV envelope protein. We have previously reported that lymphoid Jurkat T cells expressing the HIV-1 envelope protein (Env) can fuse with THP-1 monocytic cells, forming heterokaryons with a predominantly myeloid phenotype. This study shows that the expression of monocytic markers in heterokaryons is stable, whereas the expression of lymphoid markers is mostly lost. Like THP-1 cells, heterokaryons exhibited FcγR-dependentmore » phagocytic activity and showed an enhanced expression of the activation marker ICAM-1 upon stimulation with PMA. In addition, heterokaryons showed morphological changes compatible with maturation, and high expression of the differentiation marker CD11b in the absence of differentiation-inducing agents. No morphological change nor increase in CD11b expression were observed when an HIV-fusion inhibitor blocked fusion, or when THP-1 cells were cocultured with Jurkat cells expressing a non-fusogenic Env protein, showing that differentiation was not induced merely by cell-cell interaction but required cell-cell fusion. Inhibition of TLR2/TLR4 signaling by a TIRAP inhibitor greatly reduced the expression of CD11b in heterokaryons. Thus, lymphocyte-monocyte heterokaryons induced by HIV-1 Env are stable and functional, and fusion prompts a phenotype characteristic of activated monocytes via intracellular TLR2/TLR4 signaling. - Highlights: • Jurkat T cells expressing the HIV-1 envelope fuse with THP-1 monocytes. • Heterokaryons display a dominant myeloid phenotype and monocyte function. • Heterokaryons exhibit activation features in the absence of activation agents. • Activation is not due to cell-cell interaction but requires cell-cell fusion.

  3. Automated activity-aware prompting for activity initiation.

    PubMed

    Holder, Lawrence B; Cook, Diane J

    2013-01-01

    Performing daily activities without assistance is important to maintaining an independent functional lifestyle. As a result, automated activity prompting systems can potentially extend the period of time that adults can age in place. In this paper we introduce AP, an algorithm to automate activity prompting based on smart home technology. AP learns prompt rules based on the time when activities are typically performed as well as the relationship between activities that normally occur in a sequence. We evaluate the AP algorithm based on smart home datasets and demonstrate its ability to operate within a physical smart environment.

  4. Toll like receptor 4 (TLR4) mediates the stimulating activities of chitosan oligosaccharide on macrophages.

    PubMed

    Zhang, Pei; Liu, Weizhi; Peng, Yanfei; Han, Baoqin; Yang, Yan

    2014-11-01

    The in vivo and in vitro immunostimulating properties of chitosan oligosaccharide (COS) prepared by enzymatic hydrolysis of chitosan and the mechanisms mediating the effects were investigated. Our data showed that the highly active chitosanase isolated could hydrolyze chitosan to the polymerization degree of 3-8. The resulting COS was an efficient immunostimulator. COS markedly enhanced the proliferation and neutral red phagocytosis by RAW 264.7 macrophages. The production of nitric oxide (NO) and tumor necrosis factor alpha (TNF-α) by macrophages was significantly increased after incubation with COS. Oral administration of COS in mice could increase spleen index and serum immunoglobin G (IgG) contents. COS was labeled with FITC to study the pinocytosis by macrophages. Results showed that FITC-COS was phagocyted by macrophages and anti-murine TLR4 antibody completely blocked FITC-COS pinocytosis. RT-PCR indicated that COS treatment of macrophages significantly increased TLR4 and inducible nitric oxide synthase (iNOS) mRNA levels. When cells were pretreated with anti-murine TLR4 antibody, the effect of COS on TLR4 and iNOS mRNA induction was decreased. COS-induced NO secretion by macrophages was also markedly decreased by anti-murine TLR4 antibody pretreatment. In conclusion, the present study revealed that COS possesses potent immune-stimulating properties by activating TLR4 on macrophages. Copyright © 2014 Elsevier B.V. All rights reserved.

  5. In Vitro and In Vivo studies of monoclonal antibodies with prominent bactericidal activity against Burkholderia pseudomallei and Burkholderia mallei.

    PubMed

    Zhang, Shimin; Feng, Shaw-Huey; Li, Bingjie; Kim, Hyung-Yong; Rodriguez, Joe; Tsai, Shien; Lo, Shyh-Ching

    2011-05-01

    Our laboratory has developed more than a hundred mouse monoclonal antibodies (MAbs) against Burkholderia pseudomallei and Burkholderia mallei. These antibodies have been categorized into different groups based on their specificities and the biochemical natures of their target antigens. The current study first examined the bactericidal activities of a number of these MAbs by an in vitro opsonic assay. Then, the in vivo protective efficacy of selected MAbs was evaluated using BALB/c mice challenged intranasally with a lethal dose of the bacteria. The opsonic assay using dimethyl sulfoxide-treated human HL-60 cells as phagocytes revealed that 19 out of 47 tested MAbs (40%) have prominent bactericidal activities against B. pseudomallei and/or B. mallei. Interestingly, all MAbs with strong opsonic activities are those with specificity against either the capsular polysaccharides (PS) or the lipopolysaccharides (LPS) of the bacteria. On the other hand, none of the MAbs reacting to bacterial proteins or glycoproteins showed prominent bactericidal activity. Further study revealed that the antigenic epitopes on either the capsular PS or LPS molecules were readily available for binding in intact bacteria, while the epitopes on proteins/glycoproteins were less accessible to the MAbs. Our in vivo study showed that four MAbs reactive to either the capsular PS or LPS were highly effective in protecting mice against lethal bacterial challenge. The result is compatible with that of our in vitro study. The MAbs with the highest protective efficacy are those reactive to either the capsular PS or LPS of the Burkholderia bacteria.

  6. In Vitro and In Vivo Studies of Monoclonal Antibodies with Prominent Bactericidal Activity against Burkholderia pseudomallei and Burkholderia mallei▿

    PubMed Central

    Zhang, Shimin; Feng, Shaw-Huey; Li, Bingjie; Kim, Hyung-Yong; Rodriguez, Joe; Tsai, Shien; Lo, Shyh-Ching

    2011-01-01

    Our laboratory has developed more than a hundred mouse monoclonal antibodies (MAbs) against Burkholderia pseudomallei and Burkholderia mallei. These antibodies have been categorized into different groups based on their specificities and the biochemical natures of their target antigens. The current study first examined the bactericidal activities of a number of these MAbs by an in vitro opsonic assay. Then, the in vivo protective efficacy of selected MAbs was evaluated using BALB/c mice challenged intranasally with a lethal dose of the bacteria. The opsonic assay using dimethyl sulfoxide-treated human HL-60 cells as phagocytes revealed that 19 out of 47 tested MAbs (40%) have prominent bactericidal activities against B. pseudomallei and/or B. mallei. Interestingly, all MAbs with strong opsonic activities are those with specificity against either the capsular polysaccharides (PS) or the lipopolysaccharides (LPS) of the bacteria. On the other hand, none of the MAbs reacting to bacterial proteins or glycoproteins showed prominent bactericidal activity. Further study revealed that the antigenic epitopes on either the capsular PS or LPS molecules were readily available for binding in intact bacteria, while the epitopes on proteins/glycoproteins were less accessible to the MAbs. Our in vivo study showed that four MAbs reactive to either the capsular PS or LPS were highly effective in protecting mice against lethal bacterial challenge. The result is compatible with that of our in vitro study. The MAbs with the highest protective efficacy are those reactive to either the capsular PS or LPS of the Burkholderia bacteria. PMID:21450976

  7. Antimicrobial Activity of Mast Cells: Role and Relevance of Extracellular DNA Traps

    PubMed Central

    Möllerherm, Helene; von Köckritz-Blickwede, Maren; Branitzki-Heinemann, Katja

    2016-01-01

    Mast cells (MCs) have been shown to release their nuclear DNA and subsequently form mast cell extracellular traps (MCETs) comparable to neutrophil extracellular traps, which are able to entrap and kill various microbes. The formation of extracellular traps is associated with the disruption of the nuclear membrane, which leads to mixing of nuclear compounds with granule components and causes the death of the cell, a process called ETosis. The question arises why do MCs release MCETs although they are very well known as multifunctional long-living sentinel cells? MCs are known to play a role during allergic reactions and certain parasitic infections. Nonetheless, they are also critical components of the early host innate immune response to bacterial and fungal pathogens: MCs contribute to the initiation of the early immune response by recruiting effector cells including neutrophils and macrophages by locally releasing inflammatory mediators, such as TNF-α. Moreover, various studies demonstrate that MCs are able to eliminate microbes through intracellular as well as extracellular antimicrobial mechanisms, including MCET formation similar to that of professional phagocytes. Recent literature leads to the suggestion that MCET formation is not the result of a passive release of DNA and granule proteins during cellular disintegration, but rather an active and controlled process in response to specific stimulation, which contributes to the innate host defense. This review will discuss the different known aspects of the antimicrobial activities of MCs with a special focus on MCETs, and their role and relevance during infection and inflammation. PMID:27486458

  8. Pore-formation by adenylate cyclase toxoid activates dendritic cells to prime CD8+ and CD4+ T cells.

    PubMed

    Svedova, Martina; Masin, Jiri; Fiser, Radovan; Cerny, Ondrej; Tomala, Jakub; Freudenberg, Marina; Tuckova, Ludmila; Kovar, Marek; Dadaglio, Gilles; Adkins, Irena; Sebo, Peter

    2016-04-01

    The adenylate cyclase toxin-hemolysin (CyaA) of Bordetella pertussis is a bi-functional leukotoxin. It penetrates myeloid phagocytes expressing the complement receptor 3 and delivers into their cytosol its N-terminal adenylate cyclase enzyme domain (~400 residues). In parallel, ~1300 residue-long RTX hemolysin moiety of CyaA forms cation-selective pores and permeabilizes target cell membrane for efflux of cytosolic potassium ions. The non-enzymatic CyaA-AC(-) toxoid, has repeatedly been successfully exploited as an antigen delivery tool for stimulation of adaptive T-cell immune responses. We show that the pore-forming activity confers on the CyaA-AC(-) toxoid a capacity to trigger Toll-like receptor and inflammasome signaling-independent maturation of CD11b-expressing dendritic cells (DC). The DC maturation-inducing potency of mutant toxoid variants in vitro reflected their specifically enhanced or reduced pore-forming activity and K(+) efflux. The toxoid-induced in vitro phenotypic maturation of DC involved the activity of mitogen activated protein kinases p38 and JNK and comprised increased expression of maturation markers, interleukin 6, chemokines KC and LIX and granulocyte-colony-stimulating factor secretion, prostaglandin E2 production and enhancement of chemotactic migration of DC. Moreover, i.v. injected toxoids induced maturation of splenic DC in function of their cell-permeabilizing capacity. Similarly, the capacity of DC to stimulate CD8(+) and CD4(+) T-cell responses in vitro and in vivo was dependent on the pore-forming activity of CyaA-AC(-). This reveals a novel self-adjuvanting capacity of the CyaA-AC(-) toxoid that is currently under clinical evaluation as a tool for delivery of immunotherapeutic anti-cancer CD8(+) T-cell vaccines into DC.

  9. Large-scale physical activity data reveal worldwide activity inequality

    PubMed Central

    Althoff, Tim; Sosič, Rok; Hicks, Jennifer L.; King, Abby C.; Delp, Scott L.; Leskovec, Jure

    2018-01-01

    Understanding the basic principles that govern physical activity is needed to curb the global pandemic of physical inactivity1–7 and the 5.3 million deaths per year associated with in-activity2. Our knowledge, however, remains limited owing to the lack of large-scale measurements of physical activity patterns across free-living populations worldwide1, 6. Here, we leverage the wide usage of smartphones with built-in accelerometry to measure physical activity at planetary scale. We study a dataset consisting of 68 million days of physical activity for 717,527 people, giving us a window into activity in 111 countries across the globe. We find inequality in how activity is distributed within countries and that this inequality is a better predictor of obesity prevalence in the population than average activity volume. Reduced activity in females contributes to a large portion of the observed activity inequality. Aspects of the built environment, such as the walkability of a city, were associated with less gender gap in activity and activity inequality. In more walkable cities, activity is greater throughout the day and throughout the week, across age, gender, and body mass index (BMI) groups, with the greatest increases in activity for females. Our findings have implications for global public health policy and urban planning and highlight the role of activity inequality and the built environment for improving physical activity and health. PMID:28693034

  10. The CD14+CD16+ Inflammatory Monocyte Subset Displays Increased Mitochondrial Activity and Effector Function During Acute Plasmodium vivax Malaria

    PubMed Central

    Antonelli, Lis R. V.; Leoratti, Fabiana M. S.; Costa, Pedro A. C.; Rocha, Bruno C.; Diniz, Suelen Q.; Tada, Mauro S.; Pereira, Dhelio B.; Teixeira-Carvalho, Andrea; Golenbock, Douglas T.; Gonçalves, Ricardo; Gazzinelli, Ricardo T.

    2014-01-01

    Infection with Plasmodium vivax results in strong activation of monocytes, which are important components of both the systemic inflammatory response and parasite control. The overall goal of this study was to define the role of monocytes during P. vivax malaria. Here, we demonstrate that P. vivax–infected patients display significant increase in circulating monocytes, which were defined as CD14+CD16− (classical), CD14+CD16+ (inflammatory), and CD14loCD16+ (patrolling) cells. While the classical and inflammatory monocytes were found to be the primary source of pro-inflammatory cytokines, the CD16+ cells, in particular the CD14+CD16+ monocytes, expressed the highest levels of activation markers, which included chemokine receptors and adhesion molecules. Morphologically, CD14+ were distinguished from CD14lo monocytes by displaying larger and more active mitochondria. CD14+CD16+ monocytes were more efficient in phagocytizing P. vivax-infected reticulocytes, which induced them to produce high levels of intracellular TNF-α and reactive oxygen species. Importantly, antibodies specific for ICAM-1, PECAM-1 or LFA-1 efficiently blocked the phagocytosis of infected reticulocytes by monocytes. Hence, our results provide key information on the mechanism by which CD14+CD16+ cells control parasite burden, supporting the hypothesis that they play a role in resistance to P. vivax infection. PMID:25233271

  11. Activation of Ran GTPase by a Legionella Effector Promotes Microtubule Polymerization, Pathogen Vacuole Motility and Infection

    PubMed Central

    Rothmeier, Eva; Pfaffinger, Gudrun; Hoffmann, Christine; Harrison, Christopher F.; Grabmayr, Heinrich; Repnik, Urska; Hannemann, Mandy; Wölke, Stefan; Bausch, Andreas; Griffiths, Gareth; Müller-Taubenberger, Annette; Itzen, Aymelt; Hilbi, Hubert

    2013-01-01

    The causative agent of Legionnaires' disease, Legionella pneumophila, uses the Icm/Dot type IV secretion system (T4SS) to form in phagocytes a distinct “Legionella-containing vacuole” (LCV), which intercepts endosomal and secretory vesicle trafficking. Proteomics revealed the presence of the small GTPase Ran and its effector RanBP1 on purified LCVs. Here we validate that Ran and RanBP1 localize to LCVs and promote intracellular growth of L. pneumophila. Moreover, the L. pneumophila protein LegG1, which contains putative RCC1 Ran guanine nucleotide exchange factor (GEF) domains, accumulates on LCVs in an Icm/Dot-dependent manner. L. pneumophila wild-type bacteria, but not strains lacking LegG1 or a functional Icm/Dot T4SS, activate Ran on LCVs, while purified LegG1 produces active Ran(GTP) in cell lysates. L. pneumophila lacking legG1 is compromised for intracellular growth in macrophages and amoebae, yet is as cytotoxic as the wild-type strain. A downstream effect of LegG1 is to stabilize microtubules, as revealed by conventional and stimulated emission depletion (STED) fluorescence microscopy, subcellular fractionation and Western blot, or by microbial microinjection through the T3SS of a Yersinia strain lacking endogenous effectors. Real-time fluorescence imaging indicates that LCVs harboring wild-type L. pneumophila rapidly move along microtubules, while LCVs harboring ΔlegG1 mutant bacteria are stalled. Together, our results demonstrate that Ran activation and RanBP1 promote LCV formation, and the Icm/Dot substrate LegG1 functions as a bacterial Ran activator, which localizes to LCVs and promotes microtubule stabilization, LCV motility as well as intracellular replication of L. pneumophila. PMID:24068924

  12. New method for estimating digestion of Paracoccidioides brasiliensis by phagocytic cells in vitro.

    PubMed Central

    Goihman-Yahr, M; Essenfeld-Yahr, E; Albornoz, M C; Yarzábal, L; de Gómez, M H; San Martín, B; Ocanto, A; Convit, J

    1979-01-01

    We describe a method by which phagocytosis and digestion of Paracoccidioides brasiliensis yeast cells by polymorphonuclear leukocytes or other phagocytic cells may be estimated. Suspensions of P. brasiliensis in its yeastlike phase were sonicated, counted, and incubated with known numbers of peripheral blood polymorphonuclear leukocytes. At given intervals, cytocentrifuge droplets were stained by a variation of Papanicolaou's method. Stained preparations were examined with phase-contrast optics. Digested organisms showed total or partial disappearance of protoplasm. Green-stained cell walls resisted digestion. The proportion of digested cells as a function of time was estimated. Images PMID:90683

  13. Characterization and immunomodulatory activity of an exopolysaccharide produced by Lactobacillus plantarum JLK0142 isolated from fermented dairy tofu.

    PubMed

    Wang, Ji; Wu, Tong; Fang, Xiaobin; Min, Weihong; Yang, Zhennai

    2018-04-21

    A purified neutral exopolysaccharide (EPS) designated as EPS0142 was obtained from Lactobacillus plantarum JLK0142. EPS0142 consisted of glucose and galactose in an approximate molar ratio of 2.13:1.06 and had a molecular weight of 1.34 × 10 5  Da. The FT-IR spectrum showed that EPS0142 had a typical polysaccharide absorption pattern. 1 H NMR and 13 C NMR spectra analysis showed the presence of N-acetylated sugar residues. EPS0142 had no toxic effects on RAW 264.7 cells and significantly improved their phagocytic activity and NO secretion in vitro. Further in vivo studies revealed that the spleen index and splenic lymphocyte proliferation activities of the cyclophosphamide-induced immunosuppression mice treated with a middle-dose (50 mg/kg body weight) or a high-dose (100 mg/kg body weight) of EPS0142 were significantly increased (P < 0.01). In addition, the intestinal immunoglobulin A (sIgA) content and the serum levels of the cytokines, IL-2 and TNF-α, were also significantly (P < 0.05) improved in the high-dose EPS0142 group compared to that in the model control group. These data indicate that the EPS isolated from L. plantarum JLK0142 can effectively improve the immunomodulatory activity of RAW 264.7 cells and stimulate the immune system in cyclophosphamide-induced immunosuppressed mice. Copyright © 2018. Published by Elsevier B.V.

  14. Roles of phagocytosis activating protein (PAP) in Aeromonas hydrophila infected Cyprinus carpio.

    PubMed

    Wonglapsuwan, Monwadee; Kongmee, Pataraporn; Suanyuk, Naraid; Chotigeat, Wilaiwan

    2016-06-01

    Cyprinus carpio (koi) is one of the most popular ornamental fish. A major problem for C. carpio farming is bacterial infections especially by Aeromonas hydrophila. Previously studies had shown that the Phagocytosis Activating Protein (PAP) gene was involved in the innate immune response of animals. Therefore, we attempted to identify a role for the PAP gene in the immunology of C. carpio. The expression of the PAP was found in C. carpio whole blood and increased when the fish were stimulated by inactivated A. hydrophila. In addition, PAP-phMGFP DNA was injected as an immunostimulant. The survival rate and the phagocytic index were significantly increased in the A. hydrophila infected fish that received the PAP-phMGFP DNA immunostimulant. A chitosan-PAP-phMGFP nanoparticle was then developed and feeded into fish which infected with A. hydrophila. These fish had a significantly lower mortality rate than the control. Therefore, this research confirmed a key role for PAP in protection fish from bacterial infection and the chitosan-PAP-phMGFP nanoparticle could be a good prototype for fish immunostimulant in the future. Copyright © 2016 Elsevier Ltd. All rights reserved.

  15. Inorganic nanoparticles and the immune system: detection, selective activation and tolerance

    NASA Astrophysics Data System (ADS)

    Bastús, Neus G.; Sánchez-Tilló, Ester; Pujals, Silvia; Comenge, Joan; Giralt, Ernest; Celada, Antonio; Lloberas, Jorge; Puntes, Victor F.

    2012-03-01

    The immune system is the responsible for body integrity and prevention of external invasion. On one side, nanoparticles are no triggers that the immune system is prepared to detect, on the other side it is known that foreign bodies, not only bacteria, viruses and parasites, but also inorganic matter, can cause various pathologies such as silicosis, asbestosis or inflammatory reactions. Therefore, nanoparticles entering the body, after interaction with proteins, will be either recognized as self-agents or detected by the immune system, encompassing immunostimulation or immunosuppression responses. The nature of these interactions seems to be dictated not specially by the composition of the material but by modifications of NP coating (composition, surface charge and structure). Herein, we explore the use of gold nanoparticles as substrates to carry multifunctional ligands to manipulate the immune system in a controlled manner, from undetection to immunostimulation. Murine bone marrow macrophages can be activated with artificial nanometric objects consisting of a gold nanoparticle functionalized with peptides. In the presence of some conjugates, macrophage proliferation was stopped and pro-inflammatory cytokines were induced. The biochemical type of response depended on the type of conjugated peptide and was correlated with the degree of ordering in the peptide coating. These findings help to illustrate the basic requirements involved in medical NP conjugate design to either activate the immune system or hide from it, in order to reach their targets before being removed by phagocytes. Additionally, it opens up the possibility to modulate the immune response in order to suppress unwanted responses resulting from autoimmunity, or allergy or to stimulate protective responses against pathogens.

  16. Is Enhanced Physical Activity Possible Using Active Videogames?

    PubMed

    Baranowski, Tom; Baranowski, Janice; O'Connor, Teresia; Lu, Amy Shirong; Thompson, Debbe

    2012-06-01

    Our research indicated that 10-12-year-old children receiving two active Wii ™ (Nintendo ® ; Nintendo of America, Inc., Redmond, WA) console videogames were no more physically active than children receiving two inactive videogames. Research is needed on how active videogames may increase physical activity.

  17. Spores of two probiotic Bacillus species enhance cellular immunity in BALB/C mice.

    PubMed

    Gong, Li; Huang, Qin; Fu, Aikun; Wu, YanPing; Li, Yali; Xu, Xiaogang; Huang, Yi; Yu, Dongyou; Li, Weifen

    2018-01-01

    Previous studies found that Bacillus subtilis BS02 and B. subtilis subsp. natto BS04 isolated in our laboratory could activate the immune response of murine macrophages in vitro. This study aims to investigate the effects of dietary supplementation with Bacillus species spores on the systemic cellular immune response in BALB/C mice. Results showed that both B. subtilis BS02 and B. subtilis natto BS04 enhanced the phagocytic function of the mononuclear phagocyte system (MPS) and the cytotoxicity of natural killer (NK) cells. In addition, B. subtilis BS02 could increase the respiratory burst activity of blood phagocytes. Furthermore, B. subtilis BS02 and B. subtilis natto BS04 increased the percentage of gamma-interferon-producing CD4 + cells and CD8 + T-cells, but only BS04 increased the percentage of CD3 + cells and CD3 +  CD4 + cells in splenocytes. However, there were no effects on other subsets of splenic lymphocytes and mitogen-induced splenic lymphocyte proliferation. All data suggested that oral administration of B. subtilis BS02 or B. subtilis natto BS04 could significantly enhance cellular immunity in BALB/C mice by increasing phagocytic activity of MPS and cytotoxic activity of NK cells in a strain-specific manner.

  18. Is active travel associated with greater physical activity? The contribution of commuting and non-commuting active travel to total physical activity in adults.

    PubMed

    Sahlqvist, Shannon; Song, Yena; Ogilvie, David

    2012-09-01

    To complement findings that active travel reduces the risk of morbidity and mortality from chronic diseases, an understanding of the mechanisms through which active travel may lead to improved health is required. The aim of this study is to examine the descriptive epidemiology of all active travel and its associations with recreational and total physical activity in a sample of adults in the UK. In April 2010, data were collected from 3516 adults as part of the baseline survey for the iConnect study in the UK. Travel and recreational physical activity were assessed using detailed seven-day recall instruments. Linear regression analyses, controlling for demographic characteristics, examined associations between active travel, defined as any walking and cycling for transport, and recreational and total physical activity. 65% of respondents (mean age 50.5 years) reported some form of active travel, accumulating an average of 195 min/week (standard deviation=188.6). There were no differences in the recreational physical activity levels of respondents by travel mode category. Adults who used active travel did however report significantly higher total physical activity than those who did not. Substantial physical activity can be accumulated through active travel which also contributes to greater total physical activity. Copyright © 2012 Elsevier Inc. All rights reserved.

  19. Is Enhanced Physical Activity Possible Using Active Videogames?

    PubMed Central

    Baranowski, Janice; O'Connor, Teresia; Lu, Amy Shirong; Thompson, Debbe

    2012-01-01

    Abstract Our research indicated that 10–12-year-old children receiving two active Wii™ (Nintendo®; Nintendo of America, Inc., Redmond, WA) console videogames were no more physically active than children receiving two inactive videogames. Research is needed on how active videogames may increase physical activity. PMID:24416640

  20. Activin A increases phagocytosis of Escherichia coli K1 by primary murine microglial cells activated by toll-like receptor agonists.

    PubMed

    Diesselberg, Catharina; Ribes, Sandra; Seele, Jana; Kaufmann, Annika; Redlich, Sandra; Bunkowski, Stephanie; Hanisch, Uwe-Karsten; Michel, Uwe; Nau, Roland; Schütze, Sandra

    2018-06-07

    Bacterial meningitis is associated with high mortality and long-term neurological sequelae. Increasing the phagocytic activity of microglia could improve the resistance of the CNS against infections. We studied the influence of activin A, a member of the TGF-β family with known immunoregulatory and neuroprotective effects, on the functions of microglial cells in vitro. Primary murine microglial cells were treated with activin A (0.13 ng/ml-13 μg/ml) alone or in combination with agonists of TLR2, 4, and 9. Phagocytosis of Escherichia coli K1 as well as release of TNF-α, IL-6, CXCL1, and NO was assessed. Activin A dose-dependently enhanced the phagocytosis of Escherichia coli K1 by microglial cells activated by agonists of TLR2, 4, and 9 without further increasing NO and proinflammatory cytokine release. Cell viability of microglial cells was not affected by activin A. Priming of microglial cells with activin A could increase the elimination of bacteria in bacterial CNS infections. This preventive strategy could improve the resistance of the brain to infections, particularly in elderly and immunocompromised patients.

  1. Myeloperoxidase-Mediated Iodination by Granulocytes INTRACELLULAR SITE OF OPERATION AND SOME REGULATING FACTORS

    PubMed Central

    Root, Richard K.; Stossel, Thomas P.

    1974-01-01

    The intracellular site of operation of the myeloperoxidase-H2O2-halide antibacterial system of granulocytes has been determined by utilizing measurements of the fixation of iodide to trichloracetic acid (TCA) precipitates of subcellular fractions, including intact phagocytic vesicles. Na125I was added to suspensions of guinea pig granulocytes in Krebs-Ringer phosphate buffer, and they were then permitted to phagocytize different particles. Phagocytic vesicles were formed by allowing cells to ingest a paraffin oil emulsion (POE) and collected by flotation on sucrose after homogenization. Measurement of 125I bound to TCA precipitates of the different fractions and the homogenates disclosed that the lysosome-rich fraction obtained by centrifugation from control (nonphagocytizing) cells accounted for a mean 93.1% of the total cellular activity. With phagocytosis of POE, TCA-precipitable iodination increased two- to sevenfold, and the lysosomal contribution fell to a mean 36.9% of the total. The appearance of activity within phagocytic vesicles accounted for almost the entire increase seen with phagocytosis (a mean 75.7%), and iodide was bound within these structures with high specific activity. More iodide was taken up by cells than fixed, regardless of iodide concentration, and was distributed widely throughout the cell rather than selectively trapped within the vesicles. The amount of iodide taken up and fixed varied considerably with the phagocytic particle employed. Yeast particles were found to stimulate iodination to a far greater degree than the ingestion of POE or latex. Such observations are consistent with the concept that the ingested particle is a major recipient of the iodination process. Measurements of metabolic activities related to the formation and utilization of peroxide by cells phagocytizing different particles were made and correlated with iodination. The findings suggest that mechanisms must exist within granulocytes to collect or perhaps even

  2. Specifically targeted delivery of protein to phagocytic macrophages

    PubMed Central

    Yu, Min; Chen, Zeming; Guo, Wenjun; Wang, Jin; Feng, Yupeng; Kong, Xiuqi; Hong, Zhangyong

    2015-01-01

    Macrophages play important roles in the pathogenesis of various diseases, and are important potential therapeutic targets. Furthermore, macrophages are key antigen-presenting cells and important in vaccine design. In this study, we report on the novel formulation (bovine serum albumin [BSA]-loaded glucan particles [GMP-BSA]) based on β-glucan particles from cell walls of baker’s yeast for the targeted delivery of protein to macrophages. Using this formulation, chitosan, tripolyphosphate, and alginate were used to fabricate colloidal particles with the model protein BSA via electrostatic interactions, which were caged and incorporated BSA very tightly within the β-glucan particle shells. The prepared GMP-BSA exhibited good protein-release behavior and avoided protein leakage. The particles were also highly specific to phagocytic macrophages, such as Raw 264.7 cells, primary bone marrow-derived macrophages, and peritoneal exudate macrophages, whereas the particles were not taken up by nonphagocytic cells, including NIH3T3, AD293, HeLa, and Caco-2. We hypothesize that these tightly encapsulated protein-loaded glucan particles deliver various types of proteins to macrophages with notably high selectivity, and may have broad applications in targeted drug delivery or vaccine design against macrophages. PMID:25784802

  3. The oxygen-centered radicals scavenging activity of sulfasalazine and its metabolites. A direct protection of the bowel.

    PubMed

    Prónai, L; Yukinobu, I; Láng, I; Fehér, J

    1992-01-01

    Oxygen-centered radicals, such as superoxide (O2-) and hydroxyl radicals (.OH) generated by phagocytes have been suggested to be involved in the pathogenesis of chronic inflammations of the bowel, such as Crohn's disease and colitis ulcerosa. Recently, sulfasalazine (SASP) and its metabolites have been reported to exert their effects as a direct scavenger of oxygen-centered radicals in the bowel. To scavenge oxygen-centered radicals in vivo, however, SASP and its metabolites have to react with O2- and/or .OH in vitro very rapidly, furthermore they have to reach an appropriate (possible millimolar) concentration range at the site of inflammation. To test this possibility, we investigated the direct O2- and .OH scavenging activity of SASP and its metabolites using the specific electron paramagnetic resonance/spin trapping method, and we compared the 50% inhibition rates of SASP and its metabolites with their known concentrations in the bowel and in the human plasma. It was found that SASP and its metabolites, such as 5-amino-salicylic acid (5-ASA), and acetyl-5-amino-salicylic acid (AC-5-ASA), but not sulfapyridine (SP) and acetyl-sulfapyridine (Ac-SP) have a direct O2- and .OH scavenging activity in vitro systems. Among the compounds, SASP and 5-ASA can reach a concentration which is appropriate to scavenge oxygen-centered radicals in the bowel but not in the human plasma. It was concluded that the in vivo antiinflammatory effects of SASP and its metabolites are, at least partly, due to the direct oxygen-centered scavenging activity of these drugs.

  4. Immunostimulatory activities of a decapeptide derived from Alcaligenes faecalis FY-3 to crucian carp.

    PubMed

    Wang, G-X; Li, F-Y; Cui, J; Wang, Y; Liu, Y-T; Han, J; Lei, Y

    2011-07-01

    A strain was isolated from a soil sample collected from Weihe river in Shaanxi province (108°03'E 34°14'N), which was identified as Alcaligenes faecalis by 16S rRNA analysis. A compound M showing potent immune activity was isolated from secondary metabolites of the strain through bioassay-guided isolation techniques. The structure of the compound M was elucidated using FT-IR, EI-MS, 1H NMR and 13C NMR spectra and identified as cyclo-(L-Pro-Gly)5 which was first time reported as a natural product. We evaluated the immune effects of the cyclo-(L-Pro-Gly)5 on the basis of serum lysozyme activity, bacterial agglutination titre assay, superoxide anion production and phagocytic activity assay, and they were found to be significantly increased by cyclo-(L-Pro-Gly)5. The effects of cyclo-(L-Pro-Gly)5 on immune-related gene expression were further investigated. The outcomes of real-time quantitative polymerase chain reaction (RQ-PCR) proved that the transcribing level of interleukin 6β (IL-6β) and inducible nitric oxide synthase 1β (iNOS-1β) mRNA in the blood leucocytes have been augmented by cyclo-(L-Pro-Gly)5. The challenge experiment showed that crucian carp injected the cyclo-(L-Pro-Gly)5 had significantly (P < 0.05) lower cumulative mortality (13.0%) compared with the control (45.4%) after infection with live Aeromonas hydrophila. These results suggested that cyclo-(L-Pro-Gly)5 is a possible immunostimulant and may strengthen the immune response and protect the heath status of crucian carp against A. hydrophila. © 2011 The Authors. Scandinavian Journal of Immunology © 2011 Blackwell Publishing Ltd.

  5. Mononuclear Phagocytes Are Dispensable for Cardiac Remodeling in Established Pressure-Overload Heart Failure

    PubMed Central

    Patel, Bindiya; Ismahil, Mohamed Ameen; Hamid, Tariq; Bansal, Shyam S.; Prabhu, Sumanth D.

    2017-01-01

    Background Although cardiac and splenic mononuclear phagocytes (MPs), i.e., monocytes, macrophages and dendritic cells (DCs), are key contributors to cardiac remodeling after myocardial infarction, their role in pressure-overload remodeling is unclear. We tested the hypothesis that these immune cells are required for the progression of remodeling in pressure-overload heart failure (HF), and that MP depletion would ameliorate remodeling. Methods and Results C57BL/6 mice were subjected to transverse aortic constriction (TAC) or sham operation, and assessed for alterations in MPs. As compared with sham, TAC mice exhibited expansion of circulating LyC6hi monocytes and pro-inflammatory CD206− cardiac macrophages early (1 w) after pressure-overload, prior to significant hypertrophy and systolic dysfunction, with subsequent resolution during chronic HF. In contrast, classical DCs were expanded in the heart in a biphasic manner, with peaks both early, analogous to macrophages, and late (8 w), during established HF. There was no significant expansion of circulating DCs, or Ly6C+ monocytes and DCs in the spleen. Periodic systemic MP depletion from 2 to 16 w after TAC in macrophage Fas-induced apoptosis (MaFIA) transgenic mice did not alter cardiac remodeling progression, nor did splenectomy in mice with established HF after TAC. Lastly, adoptive transfer of splenocytes from TAC HF mice into naïve recipients did not induce immediate or long-term cardiac dysfunction in recipient mice. Conclusions Mononuclear phagocytes populations expand in a phasic manner in the heart during pressure-overload. However, they are dispensable for the progression of remodeling and failure once significant hypertrophy is evident and blood monocytosis has normalized. PMID:28125666

  6. Pathogen response-like recruitment and activation of neutrophils by sterile immunogenic dying cells drives neutrophil-mediated residual cell killing

    PubMed Central

    Garg, Abhishek D; Vandenberk, Lien; Fang, Shentong; Fasche, Tekele; Van Eygen, Sofie; Maes, Jan; Van Woensel, Matthias; Koks, Carolien; Vanthillo, Niels; Graf, Norbert; de Witte, Peter; Van Gool, Stefaan; Salven, Petri; Agostinis, Patrizia

    2017-01-01

    Innate immune sensing of dying cells is modulated by several signals. Inflammatory chemokines-guided early recruitment, and pathogen-associated molecular patterns-triggered activation, of major anti-pathogenic innate immune cells like neutrophils distinguishes pathogen-infected stressed/dying cells from sterile dying cells. However, whether certain sterile dying cells stimulate innate immunity by partially mimicking pathogen response-like recruitment/activation of neutrophils remains poorly understood. We reveal that sterile immunogenic dying cancer cells trigger (a cell autonomous) pathogen response-like chemokine (PARC) signature, hallmarked by co-release of CXCL1, CCL2 and CXCL10 (similar to cells infected with bacteria or viruses). This PARC signature recruits preferentially neutrophils as first innate immune responders in vivo (in a cross-species, evolutionarily conserved manner; in mice and zebrafish). Furthermore, key danger signals emanating from these dying cells, that is, surface calreticulin, ATP and nucleic acids stimulate phagocytosis, purinergic receptors and toll-like receptors (TLR) i.e. TLR7/8/9-MyD88 signaling on neutrophil level, respectively. Engagement of purinergic receptors and TLR7/8/9-MyD88 signaling evokes neutrophil activation, which culminates into H2O2 and NO-driven respiratory burst-mediated killing of viable residual cancer cells. Thus sterile immunogenic dying cells perform 'altered-self mimicry' in certain contexts to exploit neutrophils for phagocytic targeting of dead/dying cancer cells and cytotoxic targeting of residual cancer cells. PMID:28234357

  7. Expression of scavenger receptor‐AI promotes alternative activation of murine macrophages to limit hepatic inflammation and fibrosis

    PubMed Central

    Labonte, Adam C.; Sung, Sun‐Sang J.; Jennelle, Lucas T.; Dandekar, Aditya P.

    2016-01-01

    The liver maintains an immunologically tolerant environment as a result of continuous exposure to food and bacterial constituents from the digestive tract. Hepatotropic pathogens can take advantage of this niche and establish lifelong chronic infections causing hepatic fibrosis and hepatocellular carcinoma. Macrophages (Mϕ) play a critical role in regulation of immune responses to hepatic infection and regeneration of tissue. However, the factors crucial for Mϕ in limiting hepatic inflammation or resolving liver damage have not been fully understood. In this report, we demonstrate that expression of C‐type lectin receptor scavenger receptor‐AI (SR‐AI) is crucial for promoting M2‐like Mϕ activation and polarization during hepatic inflammation. Liver Mϕ uniquely up‐regulated SR‐AI during hepatotropic viral infection and displayed increased expression of alternative Mϕ activation markers, such as YM‐1, arginase‐1, and interleukin‐10 by activation of mer receptor tyrosine kinase associated with inhibition of mammalian target of rapamycin. Expression of these molecules was reduced on Mϕ obtained from livers of infected mice deficient for the gene encoding SR‐AI (msr1). Furthermore, in vitro studies using an SR‐AI‐deficient Mϕ cell line revealed impeded M2 polarization and decreased phagocytic capacity. Direct stimulation with virus was sufficient to activate M2 gene expression in the wild‐type (WT) cell line, but not in the knockdown cell line. Importantly, tissue damage and fibrosis were exacerbated in SR‐AI–/– mice following hepatic infection and adoptive transfer of WT bone‐marrow–derived Mϕ conferred protection against fibrosis in these mice. Conclusion: SR‐AI expression on liver Mϕ promotes recovery from infection‐induced tissue damage by mediating a switch to a proresolving Mϕ polarization state. (Hepatology 2017;65:32‐43). PMID:27770558

  8. CD18 activation epitopes induced by leukocyte activation.

    PubMed

    Beals, C R; Edwards, A C; Gottschalk, R J; Kuijpers, T W; Staunton, D E

    2001-12-01

    The cell surface adhesion molecule LFA-1 coordinates leukocyte trafficking and is a costimulatory molecule for T cell activation. We developed a panel of mAbs that recognize activation epitopes on the CD18 subunit, and show that stimulation of T lymphocytes appears to be accompanied by a conformational change in a subpopulation of LFA-1 that does not require ligand binding. Activation epitope up-regulation requires divalent cations, is sensitive to cellular signal transduction events, and correlates with cell adhesion. In addition, the stimulated appearance of these activation epitopes is absent in cell lines from patients with leukocyte adhesion deficiency-1/variant that has previously been shown to be defective in LFA-1 activation. Thus, these activation epitope Abs can be used to dissect signal transmission to CD18. Evidence suggests that these CD18 activation epitopes are induced early in cellular activation and are independent of actin rearrangement necessary for avid adhesion. We have also determined that function-blocking CD18 Abs inhibit the induction of activation epitopes. One activation epitope Ab binds to a site on CD18 distinct from that of the blocking Abs, indicating that the blocking Abs suppress a conformational change in LFA-1. We also find that these neoepitopes are present on rLFA-1 with high affinity for ICAM-1 and their binding is modulated in parallel with the affinity of LFA-1 for ICAM-1. Collectively, these neoepitope Abs identify a subpopulation of LFA-1 most likely with high affinity for ICAM-1 and necessary for LFA-1 function.

  9. Active nematic gels as active relaxing solids

    NASA Astrophysics Data System (ADS)

    Turzi, Stefano S.

    2017-11-01

    I propose a continuum theory for active nematic gels, defined as fluids or suspensions of orientable rodlike objects endowed with active dynamics, that is based on symmetry arguments and compatibility with thermodynamics. The starting point is our recent theory that models (passive) nematic liquid crystals as relaxing nematic elastomers. The interplay between viscoelastic response and active dynamics of the microscopic constituents is naturally taken into account. By contrast with standard theories, activity is not introduced as an additional term of the stress tensor, but it is added as an external remodeling force that competes with the passive relaxation dynamics and drags the system out of equilibrium. In a simple one-dimensional channel geometry, we show that the interaction between nonuniform nematic order and activity results in either a spontaneous flow of particles or a self-organization into subchannels flowing in opposite directions.

  10. Gamma Band Activity in the Reticular Activating System

    PubMed Central

    Urbano, Francisco J.; Kezunovic, Nebojsa; Hyde, James; Simon, Christen; Beck, Paige; Garcia-Rill, Edgar

    2012-01-01

    This review considers recent evidence showing that cells in three regions of the reticular activating system (RAS) exhibit gamma band activity, and describes the mechanisms behind such manifestation. Specifically, we discuss how cells in the mesopontine pedunculopontine nucleus (PPN), intralaminar parafascicular nucleus (Pf), and pontine subcoeruleus nucleus dorsalis (SubCD) all fire in the beta/gamma band range when maximally activated, but no higher. The mechanisms behind this ceiling effect have been recently elucidated. We describe recent findings showing that every cell in the PPN have high-threshold, voltage-dependent P/Q-type calcium channels that are essential, while N-type calcium channels are permissive, to gamma band activity. Every cell in the Pf also showed that P/Q-type and N-type calcium channels are responsible for this activity. On the other hand, every SubCD cell exhibited sodium-dependent subthreshold oscillations. A novel mechanism for sleep–wake control based on well-known transmitter interactions, electrical coupling, and gamma band activity is described. The data presented here on inherent gamma band activity demonstrates the global nature of sleep–wake oscillation that is orchestrated by brainstem–thalamic mechanism, and questions the undue importance given to the hypothalamus for regulation of sleep–wakefulness. The discovery of gamma band activity in the RAS follows recent reports of such activity in other subcortical regions like the hippocampus and cerebellum. We hypothesize that, rather than participating in the temporal binding of sensory events as seen in the cortex, gamma band activity manifested in the RAS may help stabilize coherence related to arousal, providing a stable activation state during waking and paradoxical sleep. Most of our thoughts and actions are driven by pre-conscious processes. We speculate that continuous sensory input will induce gamma band activity in the RAS that could participate in the processes of

  11. In vitro effects of virgin microplastics on fish head-kidney leucocyte activities.

    PubMed

    Espinosa, Cristóbal; García Beltrán, José María; Esteban, María Angeles; Cuesta, Alberto

    2018-04-01

    Microplastics are well-documented pollutants in the marine environment that result from production or fragmentation of larger plastic items. The knowledge about the direct effects of microplastics on immunity, including fish, is still very limited. We investigated the in vitro effects of microplastics [polyvinylchloride (PVC) and polyethylene (PE)] on gilthead seabream (Sparus aurata) and European sea bass (Dicentrarchus labrax) head-kidney leucocytes (HKLs). After 1 and 24 h of exposure of HKLs with 0 (control), 1, 10 and 100 mg mL -1 MPs in a rotatory system, cell viability, innate immune parameters (phagocytic, respiratory burst and peroxidase activities) and the expression of genes related to inflammation (il1b), oxidative stress (nrf2, prdx3), metabolism of xenobiotics (cyp1a1, mta) and cell apoptosis (casp3) were studied. Microplastics failed to affect the cell viability of HKLs. In addition, they provoke very few significant effects on the main cellular innate immune activities, as decrease on phagocytosis or increase in the respiratory burst of HKLs with the highest dose of microplastics tested. Furthermore, microplastics failed to affect the expression of the selected genes on sea bass or seabream, except the nrf2 which was up-regulated in seabream HKLs incubated with the highest doses. Present results seem to suggest that continue exposure of fish to PVC or PE microplastics could impair fish immune parameters probably due to the oxidative stress produced in the fish leucocytes. Copyright © 2017 Elsevier Ltd. All rights reserved.

  12. Modulation of mononuclear phagocyte inflammatory response by liposome-encapsulated voltage gated sodium channel inhibitor ameliorates myocardial ischemia/reperfusion injury in rats.

    PubMed

    Zhou, Xin; Luo, Yue-Chen; Ji, Wen-Jie; Zhang, Li; Dong, Yan; Ge, Lan; Lu, Rui-Yi; Sun, Hai-Ying; Guo, Zao-Zeng; Yang, Guo-Hong; Jiang, Tie-Min; Li, Yu-Ming

    2013-01-01

    Emerging evidence shows that anti-inflammatory strategies targeting inflammatory monocyte subset could reduce excessive inflammation and improve cardiovascular outcomes. Functional expression of voltage-gated sodium channels (VGSCs) have been demonstrated in monocytes and macrophages. We hypothesized that mononuclear phagocyte VGSCs are a target for monocyte/macrophage phenotypic switch, and liposome mediated inhibition of mononuclear phagocyte VGSC may attenuate myocardial ischemia/reperfusion (I/R) injury and improve post-infarction left ventricular remodeling. Thin film dispersion method was used to prepare phenytoin (PHT, a non-selective VGSC inhibitor) entrapped liposomes. Pharmacokinetic study revealed that the distribution and elimination half-life of PHT entrapped liposomes were shorter than those of free PHT, indicating a rapid uptake by mononuclear phagocytes after intravenous injection. In rat peritoneal macrophages, several VGSC α subunits (NaV1.1, NaV1.3, NaV1.4, NaV1.5, NaV1.6, NaV1.7, NaVX, Scn1b, Scn3b and Scn4b) and β subunits were expressed at mRNA level, and PHT could suppress lipopolysaccharide induced M1 polarization (decreased TNF-α and CCL5 expression) and facilitate interleukin-4 induced M2 polarization (increased Arg1 and TGF-β1 expression). In vivo study using rat model of myocardial I/R injury, demonstrated that PHT entrapped liposome could partially suppress I/R injury induced CD43+ inflammatory monocyte expansion, along with decreased infarct size and left ventricular fibrosis. Transthoracic echocardiography and invasive hemodynamic analysis revealed that PHT entrapped liposome treatment could attenuate left ventricular structural and functional remodeling, as shown by increased ejection fraction, reduced end-systolic and end-diastolic volume, as well as an amelioration of left ventricular systolic (+dP/dt max) and diastolic (-dP/dt min) functions. Our work for the first time demonstrates the therapeutic potential of VGSC antagonism

  13. Potent antitumor activity of a urokinase-activated engineered anthrax toxin

    NASA Astrophysics Data System (ADS)

    Liu, Shihui; Aaronson, Hannah; Mitola, David J.; Leppla, Stephen H.; Bugge, Thomas H.

    2003-01-01

    The acquisition of cell-surface urokinase plasminogen activator activity is a hallmark of malignancy. We generated an engineered anthrax toxin that is activated by cell-surface urokinase in vivo and displays limited toxicity to normal tissue but broad and potent tumoricidal activity. Native anthrax toxin protective antigen, when administered with a chimeric anthrax toxin lethal factor, Pseudomonas exotoxin fusion protein, was extremely toxic to mice, causing rapid and fatal organ damage. Replacing the furin activation sequence in anthrax toxin protective antigen with an artificial peptide sequence efficiently activated by urokinase greatly attenuated toxicity to mice. In addition, the mutation conferred cell-surface urokinase-dependent toxin activation in vivo, as determined by using a panel of plasminogen, plasminogen activator, plasminogen activator receptor, and plasminogen activator inhibitor-deficient mice. Surprisingly, toxin activation critically depended on both urokinase plasminogen activator receptor and plasminogen in vivo, showing that both proteins are essential cofactors for the generation of cell-surface urokinase. The engineered toxin displayed potent tumor cell cytotoxicity to a spectrum of transplanted tumors of diverse origin and could eradicate established solid tumors. This tumoricidal activity depended strictly on tumor cell-surface plasminogen activation. The data show that a simple change of protease activation specificity converts anthrax toxin from a highly lethal to a potent tumoricidal agent.

  14. Evaluating Active U: an internet-mediated physical activity program

    PubMed Central

    Buis, Lorraine R; Poulton, Timothy A; Holleman, Robert G; Sen, Ananda; Resnick, Paul J; Goodrich, David E; Palma-Davis, LaVaughn; Richardson, Caroline R

    2009-01-01

    Background Engaging in regular physical activity can be challenging, particularly during the winter months. To promote physical activity at the University of Michigan during the winter months, an eight-week Internet-mediated program (Active U) was developed providing participants with an online physical activity log, goal setting, motivational emails, and optional team participation and competition. Methods This study is a program evaluation of Active U. Approximately 47,000 faculty, staff, and graduate students were invited to participate in the online Active U intervention in the winter of 2007. Participants were assigned a physical activity goal and were asked to record each physical activity episode into the activity log for eight weeks. Statistics for program reach, effectiveness, adoption, and implementation were calculated using the Re-Aim framework. Multilevel regression analyses were used to assess the decline in rates of data entry and goal attainment during the program, to assess the likelihood of joining a team by demographic characteristics, to test the association between various predictors and the number of weeks an individual met his or her goal, and to analyze server load. Results Overall, 7,483 individuals registered with the Active U website (≈16% of eligible), and 79% participated in the program by logging valid data at least once. Staff members, older participants, and those with a BMI < 25 were more likely to meet their weekly physical activity goals, and average rate of meeting goals was higher among participants who joined a competitive team compared to those who participated individually (IRR = 1.28, P < .001). Conclusion Internet-mediated physical activity interventions that focus on physical activity logging and goal setting while incorporating team competition may help a significant percentage of the target population maintain their physical activity during the winter months. PMID:19744311

  15. Youth Physical Activity Resources Use and Activity Measured by Accelerometry

    PubMed Central

    Maslow, Andréa L.; Colabianchi, Natalie

    2014-01-01

    Objectives To examine whether utilization of physical activity resources (eg, parks) was associated with daily physical activity measured by accelerometry. Methods 111 adolescents completed a travel diary with concurrent accelerometry. The main exposure was self-reported utilization of a physical activity resource (none/1+ resources). The main outcomes were total minutes spent in daily 1) moderate-vigorous physical activity and 2) vigorous physical activity. Results Utilizing a physical activity resource was significantly associated with total minutes in moderate-vigorous physical activity. African-Americans and males had significantly greater moderate-vigorous physical activity. Conclusions Results from this study support the development and use of physical activity resources. PMID:21204684

  16. Youth physical activity resource use and activity measured by accelerometry.

    PubMed

    Maslow, Andréa L; Colabianchi, Natalie

    2011-01-01

    To examine whether use of physical activity resources (eg, parks) was associated with daily physical activity measured by accelerometry. One hundred eleven adolescents completed a travel diary with concurrent accelerometry. The main exposure was self-reported use of a physical activity resource (none /1+ resources). The main outcomes were total minutes spent in daily (1) moderate-vigorous physical activity and (2) vigorous physical activity. Using a physical activity resource was significantly associated with total minutes in moderate-vigorous physical activity. African Americans and males had significantly greater moderate-vigorous physical activity. Results from this study support the development and use of physical activity resources.

  17. Prothrombin activation on the activated platelet surface optimizes expression of procoagulant activity

    PubMed Central

    Wood, Jeremy P.; Silveira, Jay R.; Maille, Nicole M.; Haynes, Laura M.

    2011-01-01

    Effective hemostasis relies on the timely formation of α-thrombin via prothrombinase, a Ca2+-dependent complex of factors Va and Xa assembled on the activated platelet surface, which cleaves prothrombin at Arg271 and Arg320. Whereas initial cleavage at Arg271 generates the inactive intermediate prethrombin-2, initial cleavage at Arg320 generates the enzymatically active intermediate meizothrombin. To determine which of these intermediates is formed when prothrombin is processed on the activated platelet surface, the cleavage of prothrombin, and prothrombin mutants lacking either one of the cleavage sites, was monitored on the surface of either thrombin- or collagen-activated platelets. Regardless of the agonist used, prothrombin was initially cleaved at Arg271 generating prethrombin-2, with α-thrombin formation quickly after via cleavage at Arg320. The pathway used was independent of the source of factor Va (plasma- or platelet-derived) and was unaffected by soluble components of the platelet releasate. When both cleavage sites are presented within the same substrate molecule, Arg271 effectively competes against Arg320 (with an apparent IC50 = 0.3μM), such that more than 90% to 95% of the initial cleavage occurs at Arg271. We hypothesize that use of the prethrombin-2 pathway serves to optimize the procoagulant activity expressed by activated platelets, by limiting the anticoagulant functions of the alternate intermediate, meizothrombin. PMID:21131592

  18. Prothrombin activation on the activated platelet surface optimizes expression of procoagulant activity.

    PubMed

    Wood, Jeremy P; Silveira, Jay R; Maille, Nicole M; Haynes, Laura M; Tracy, Paula B

    2011-02-03

    Effective hemostasis relies on the timely formation of α-thrombin via prothrombinase, a Ca(2+)-dependent complex of factors Va and Xa assembled on the activated platelet surface, which cleaves prothrombin at Arg271 and Arg320. Whereas initial cleavage at Arg271 generates the inactive intermediate prethrombin-2, initial cleavage at Arg320 generates the enzymatically active intermediate meizothrombin. To determine which of these intermediates is formed when prothrombin is processed on the activated platelet surface, the cleavage of prothrombin, and prothrombin mutants lacking either one of the cleavage sites, was monitored on the surface of either thrombin- or collagen-activated platelets. Regardless of the agonist used, prothrombin was initially cleaved at Arg271 generating prethrombin-2, with α-thrombin formation quickly after via cleavage at Arg320. The pathway used was independent of the source of factor Va (plasma- or platelet-derived) and was unaffected by soluble components of the platelet releasate. When both cleavage sites are presented within the same substrate molecule, Arg271 effectively competes against Arg320 (with an apparent IC(50) = 0.3μM), such that more than 90% to 95% of the initial cleavage occurs at Arg271. We hypothesize that use of the prethrombin-2 pathway serves to optimize the procoagulant activity expressed by activated platelets, by limiting the anticoagulant functions of the alternate intermediate, meizothrombin.

  19. Stated Uptake of Physical Activity Rewards Programmes Among Active and Insufficiently Active Full-Time Employees.

    PubMed

    Ozdemir, Semra; Bilger, Marcel; Finkelstein, Eric A

    2017-10-01

    Employers are increasingly relying on rewards programmes in an effort to promote greater levels of activity among employees; however, if enrolment in these programmes is dominated by active employees, then they are unlikely to be a good use of resources. This study uses a stated-preference survey to better understand who participates in rewards-based physical activity programmes, and to quantify stated uptake by active and insufficiently active employees. The survey was fielded to a national sample of 950 full-time employees in Singapore between 2012 and 2013. Participants were asked to choose between hypothetical rewards programmes that varied along key dimensions and whether or not they would join their preferred programme if given the opportunity. A mixed logit model was used to analyse the data and estimate predicted uptake for specific programmes. We then simulated employer payments based on predictions for the percentage of each type of employee likely to meet the activity goal. Stated uptake ranged from 31 to 67% of employees, depending on programme features. For each programme, approximately two-thirds of those likely to enrol were insufficiently active. Results showed that insufficiently active employees, who represent the majority, are attracted to rewards-based physical activity programmes, and at approximately the same rate as active employees, even when enrolment fees are required. This suggests that a programme with generous rewards and a modest enrolment fee may have strong employee support and be within the range of what employers may be willing to spend.

  20. Genetic Phagocyte NADPH Oxidase Deficiency Enhances Nonviable Candida albicans-Induced Inflammation in Mouse Lungs.

    PubMed

    Endo, Daiki; Fujimoto, Kenta; Hirose, Rika; Yamanaka, Hiroko; Homme, Mizuki; Ishibashi, Ken-Ichi; Miura, Noriko; Ohno, Naohito; Aratani, Yasuaki

    2017-02-01

    Patients with chronic granulomatous disease (CGD) have mutated phagocyte NADPH oxidase, resulting in reduced production of reactive oxygen species (ROS). While the mechanism underlying hyperinfection in CGD is well understood, the basis for inflammatory disorders that arise in the absence of evident infection has not been fully explained. This study aimed to evaluate the effect of phagocyte NADPH oxidase deficiency on lung inflammation induced by nonviable Candida albicans (nCA). Mice deficient in this enzyme (CGD mice) showed more severe neutrophilic pneumonia than nCA-treated wild-type mice, which exhibited significantly higher lung concentrations of interleukin (IL)-1β, tumor necrosis factor (TNF)-α, and keratinocyte-derived chemokine (KC). Neutralization of these proinflammatory mediators significantly reduced neutrophil infiltration. In vitro, production of IL-1β and TNF-α from neutrophils and that of KC from macrophages was enhanced in nCA-stimulated neutrophils from CGD mice. Expression of IL-1β mRNA was higher in the stimulated CGD neutrophils than in the stimulated wild-type cells, concomitant with upregulation of nuclear factor (NF)-κB and its upstream regulator extracellular-signal regulated kinase (ERK) 1/2. Pretreatment with an NADPH oxidase inhibitor significantly enhanced IL-1β production in the wild-type neutrophils stimulated with nCA. These results suggest that lack of ROS production because of NADPH oxidase deficiency results in the production of higher levels of proinflammatory mediators from neutrophils and macrophages, which may at least partly contribute to the exacerbation of nCA-induced lung inflammation in CGD mice.