Science.gov

Sample records for activity quantitative estimates

  1. Health Impacts of Increased Physical Activity from Changes in Transportation Infrastructure: Quantitative Estimates for Three Communities.

    PubMed

    Mansfield, Theodore J; MacDonald Gibson, Jacqueline

    2015-01-01

    Recently, two quantitative tools have emerged for predicting the health impacts of projects that change population physical activity: the Health Economic Assessment Tool (HEAT) and Dynamic Modeling for Health Impact Assessment (DYNAMO-HIA). HEAT has been used to support health impact assessments of transportation infrastructure projects, but DYNAMO-HIA has not been previously employed for this purpose nor have the two tools been compared. To demonstrate the use of DYNAMO-HIA for supporting health impact assessments of transportation infrastructure projects, we employed the model in three communities (urban, suburban, and rural) in North Carolina. We also compared DYNAMO-HIA and HEAT predictions in the urban community. Using DYNAMO-HIA, we estimated benefit-cost ratios of 20.2 (95% C.I.: 8.7-30.6), 0.6 (0.3-0.9), and 4.7 (2.1-7.1) for the urban, suburban, and rural projects, respectively. For a 40-year time period, the HEAT predictions of deaths avoided by the urban infrastructure project were three times as high as DYNAMO-HIA's predictions due to HEAT's inability to account for changing population health characteristics over time. Quantitative health impact assessment coupled with economic valuation is a powerful tool for integrating health considerations into transportation decision-making. However, to avoid overestimating benefits, such quantitative HIAs should use dynamic, rather than static, approaches.

  2. Health Impacts of Increased Physical Activity from Changes in Transportation Infrastructure: Quantitative Estimates for Three Communities

    PubMed Central

    Mansfield, Theodore J.; MacDonald Gibson, Jacqueline

    2015-01-01

    Recently, two quantitative tools have emerged for predicting the health impacts of projects that change population physical activity: the Health Economic Assessment Tool (HEAT) and Dynamic Modeling for Health Impact Assessment (DYNAMO-HIA). HEAT has been used to support health impact assessments of transportation infrastructure projects, but DYNAMO-HIA has not been previously employed for this purpose nor have the two tools been compared. To demonstrate the use of DYNAMO-HIA for supporting health impact assessments of transportation infrastructure projects, we employed the model in three communities (urban, suburban, and rural) in North Carolina. We also compared DYNAMO-HIA and HEAT predictions in the urban community. Using DYNAMO-HIA, we estimated benefit-cost ratios of 20.2 (95% C.I.: 8.7–30.6), 0.6 (0.3–0.9), and 4.7 (2.1–7.1) for the urban, suburban, and rural projects, respectively. For a 40-year time period, the HEAT predictions of deaths avoided by the urban infrastructure project were three times as high as DYNAMO-HIA's predictions due to HEAT's inability to account for changing population health characteristics over time. Quantitative health impact assessment coupled with economic valuation is a powerful tool for integrating health considerations into transportation decision-making. However, to avoid overestimating benefits, such quantitative HIAs should use dynamic, rather than static, approaches. PMID:26504832

  3. [Quantitative estimation of connection of the heart rate rhythm with motor activity in rat fetuses].

    PubMed

    Vdovichenko, N D; Timofeeva, O P; Bursian, A V

    2014-01-01

    In rat fetuses at E17-20 with preserved placental circulation with use of mathematical analysis there were revealed value and character of connections of slow wave oscillations of the heart rhythm with motor activity for 30 min of observation. In the software "PowerGraph 3.3.8", normalization and filtration of the studied signals were performed at three frequency diapasons: D1 - 0.02-0.2 Hz (5-50 s), D2 - 0.0083-0.02 Hz (50 s-2 min), and D3 - 0.0017-0.0083 Hz (2-10 min). The EMG curves filtrated by diapasons or piezograms were compared with periodograms in the corresponding diapasons of the heart rhythm variations. In the software "Origin 8.0", quantitative estimation of the degree of intersystemic interrelations for each frequency diapason was performed by Pearson correlation of coefficient, by the correlation connection value, and by the time shift of maximum of cross-correlation function. It has been established that in the frequency D1, regardless of age, the connection of heart rhythm oscillations with motor activity is expressed weakly. In the frequency diapason D2, the connection in most cases is located in the zone of weak and moderate correlations. In the multiminute diapason (D3), the connection is more pronounced. The number of animals that have a significant value of the correlation connection rises. The fetal MA fires in the decasecond diapason in all age groups are accompanied by short-time decelerations of the heart rhythms. In the minute diapason, there is observed a transition from positive connections at E17 and E18 to the negative ones at E19-20. Results of the study are considered in association with age-related changes of ratios of positive and negative oscillations of the heart rhythm change depending on the character of motor activity.

  4. Estimating the Potential Toxicity of Chemicals Associated with Hydraulic Fracturing Operations Using Quantitative Structure-Activity Relationship Modeling.

    PubMed

    Yost, Erin E; Stanek, John; DeWoskin, Robert S; Burgoon, Lyle D

    2016-07-19

    The United States Environmental Protection Agency (EPA) identified 1173 chemicals associated with hydraulic fracturing fluids, flowback, or produced water, of which 1026 (87%) lack chronic oral toxicity values for human health assessments. To facilitate the ranking and prioritization of chemicals that lack toxicity values, it may be useful to employ toxicity estimates from quantitative structure-activity relationship (QSAR) models. Here we describe an approach for applying the results of a QSAR model from the TOPKAT program suite, which provides estimates of the rat chronic oral lowest-observed-adverse-effect level (LOAEL). Of the 1173 chemicals, TOPKAT was able to generate LOAEL estimates for 515 (44%). To address the uncertainty associated with these estimates, we assigned qualitative confidence scores (high, medium, or low) to each TOPKAT LOAEL estimate, and found 481 to be high-confidence. For 48 chemicals that had both a high-confidence TOPKAT LOAEL estimate and a chronic oral reference dose from EPA's Integrated Risk Information System (IRIS) database, Spearman rank correlation identified 68% agreement between the two values (permutation p-value =1 × 10(-11)). These results provide support for the use of TOPKAT LOAEL estimates in identifying and prioritizing potentially hazardous chemicals. High-confidence TOPKAT LOAEL estimates were available for 389 of 1026 hydraulic fracturing-related chemicals that lack chronic oral RfVs and OSFs from EPA-identified sources, including a subset of chemicals that are frequently used in hydraulic fracturing fluids.

  5. Quantitative estimation of minimum offset for multichannel surface-wave survey with actively exciting source

    USGS Publications Warehouse

    Xu, Y.; Xia, J.; Miller, R.D.

    2006-01-01

    Multichannel analysis of surface waves is a developing method widely used in shallow subsurface investigations. The field procedures and related parameters are very important for successful applications. Among these parameters, the source-receiver offset range is seldom discussed in theory and normally determined by empirical or semi-quantitative methods in current practice. This paper discusses the problem from a theoretical perspective. A formula for quantitatively evaluating a layered homogenous elastic model was developed. The analytical results based on simple models and experimental data demonstrate that the formula is correct for surface wave surveys for near-surface applications. ?? 2005 Elsevier B.V. All rights reserved.

  6. Estimating the persistence of organic contaminants in indirect potable reuse systems using quantitative structure activity relationship (QSAR).

    PubMed

    Lim, Seung Joo; Fox, Peter

    2012-09-01

    Predictions from the quantitative structure activity relationship (QSAR) model EPI Suite were modified to estimate the persistence of organic contaminants in indirect potable reuse systems. The modified prediction included the effects of sorption, biodegradation, and oxidation that may occur during sub-surface transport. A retardation factor was used to simulate the mobility of adsorbed compounds during sub-surface transport to a recovery well. A set of compounds with measured persistent properties during sub-surface transport was used to validate the results of the modifications to the predictions of EPI Suite. A comparison of the predicted values and measured values was done and the residual sum of the squares showed the importance of including oxidation and sorption. Sorption was the most important factor to include in predicting the fates of organic chemicals in the sub-surface environment.

  7. ESTIMATION OF MICROBIAL REDUCTIVE TRANSFORMATION RATES FOR CHLORINATED BENZENES AND PHENOLS USING A QUANTITATIVE STRUCTURE-ACTIVITY RELATIONSHIP APPROACH

    EPA Science Inventory

    A set of literature data was used to derive several quantitative structure-activity relationships (QSARs) to predict the rate constants for the microbial reductive dehalogenation of chlorinated aromatics. Dechlorination rate constants for 25 chloroaromatics were corrected for th...

  8. Quantitative estimates of relationships between geomagnetic activity and equatorial spread-F as determined by TID occurrence levels

    NASA Astrophysics Data System (ADS)

    Bowman, G. G.; Mortimer, I. K.

    2000-06-01

    Using a world-wide set of stations for 15 years, quantitative estimates of changes to equatorial spread-F (ESF) occurrence rates obtained from ionogram scalings, have been determined for a range of geomagnetic activity (GA) levels, as well as for four different levels of solar activity. Average occurrence rates were used as a reference. The percentage changes vary significantly depending on these subdivisions. For example for very high GA the inverse association is recorded by a change of -33% for Rz≥ 150, and -10% for Rz< 50. Using data for 9 years for the equatorial station, Huancayo, these measurements of ESF, which indicate the presence of TIDs, have also been investigated by somewhat similar analyses. Additional parameters were used which involved the local times of GA, with the ESF being examined separately for occurrence pre-midnight (PM) and after-midnight (AM). Again the negative changes were most pronounced for high GA in Rz-max years (-21%). This result is for PM ESF for GA at a local time of 1700. There were increased ESF levels (+31%) for AM ESF in Rz-min years for high GA around 2300 LT. This additional knowledge of the influence of GA on ESF occurrence involving not only percentage changes, but these values for a range of parameter levels, may be useful if ever short-term forecasts are needed. There is some discussion on comparisons which can be made between ESF results obtained by coherent scatter from incoherent-scatter equipment and those obtained by ionosondes.

  9. A Comparison of Three Quantitative Methods to Estimate G6PD Activity in the Chittagong Hill Tracts, Bangladesh

    PubMed Central

    Ley, Benedikt; Alam, Mohammad Shafiul; O’Donnell, James J.; Hossain, Mohammad Sharif; Kibria, Mohammad Golam; Jahan, Nusrat; Khan, Wasif A.; Thriemer, Kamala; Chatfield, Mark D.; Price, Ric N.; Richards, Jack S.

    2017-01-01

    Background Glucose-6-phosphate-dehydrogenase-deficiency (G6PDd) is a major risk factor for primaquine-induced haemolysis. There is a need for improved point-of-care and laboratory-based G6PD diagnostics to unsure safe use of primaquine. Methods G6PD activities of participants in a cross-sectional survey in Bangladesh were assessed using two novel quantitative assays, the modified WST-8 test and the CareStart™ G6PD Biosensor (Access Bio), The results were compared with a gold standard UV spectrophotometry assay (Randox). The handheld CareStart™ Hb instrument (Access Bio) is designed to be a companion instrument to the CareStart™ G6PD biosensor, and its performance was compared to the well-validated HemoCue™ method. All quantitative G6PD results were normalized with the HemoCue™ result. Results A total of 1002 individuals were enrolled. The adjusted male median (AMM) derived by spectrophotometry was 7.03 U/g Hb (interquartile range (IQR): 5.38–8.69), by WST-8 was 7.03 U/g Hb (IQR: 5.22–8.16) and by Biosensor was 8.61 U/g Hb (IQR: 6.71–10.08). The AMM between spectrophotometry and WST-8 did not differ (p = 1.0) but differed significantly between spectrophotometry and Biosensor (p<0.01). Both, WST-8 and Biosensor were correlated with spectrophotometry (rs = 0.5 and rs = 0.4, both p<0.001). The mean difference in G6PD activity was -0.12 U/g Hb (95% limit of agreement (95% LoA): -5.45 to 5.20) between spectrophotometry and WST-8 and -1.74U/g Hb (95% LoA: -7.63 to 4.23) between spectrophotometry and Biosensor. The WST-8 identified 55.1% (49/89) and the Biosensor 19.1% (17/89) of individuals with G6PD activity <30% by spectrophotometry. Areas under the ROC curve did not differ significantly for the WST-8 and Biosensor irrespective of the cut-off activity applied (all p>0.05). Sensitivity and specificity for detecting G6PD activity <30% was 0.55 (95% confidence interval (95%CI): 0.44–0.66) and 0.98 (95%CI: 0.97–0.99) respectively for the WST-8 and 0

  10. Evaluation of quantitative imaging methods for organ activity and residence time estimation using a population of phantoms having realistic variations in anatomy and uptake

    SciTech Connect

    He Bin; Du Yong; Segars, W. Paul; Wahl, Richard L.; Sgouros, George; Jacene, Heather; Frey, Eric C.

    2009-02-15

    Estimating organ residence times is an essential part of patient-specific dosimetry for radioimmunotherapy (RIT). Quantitative imaging methods for RIT are often evaluated using a single physical or simulated phantom but are intended to be applied clinically where there is variability in patient anatomy, biodistribution, and biokinetics. To provide a more relevant evaluation, the authors have thus developed a population of phantoms with realistic variations in these factors and applied it to the evaluation of quantitative imaging methods both to find the best method and to demonstrate the effects of these variations. Using whole body scans and SPECT/CT images, organ shapes and time-activity curves of 111In ibritumomab tiuxetan were measured in dosimetrically important organs in seven patients undergoing a high dose therapy regimen. Based on these measurements, we created a 3D NURBS-based cardiac-torso (NCAT)-based phantom population. SPECT and planar data at realistic count levels were then simulated using previously validated Monte Carlo simulation tools. The projections from the population were used to evaluate the accuracy and variation in accuracy of residence time estimation methods that used a time series of SPECT and planar scans. Quantitative SPECT (QSPECT) reconstruction methods were used that compensated for attenuation, scatter, and the collimator-detector response. Planar images were processed with a conventional (CPlanar) method that used geometric mean attenuation and triple-energy window scatter compensation and a quantitative planar (QPlanar) processing method that used model-based compensation for image degrading effects. Residence times were estimated from activity estimates made at each of five time points. The authors also evaluated hybrid methods that used CPlanar or QPlanar time-activity curves rescaled to the activity estimated from a single QSPECT image. The methods were evaluated in terms of mean relative error and standard deviation of the

  11. Estimating the Potential Toxicity of Chemicals Associated with Hydraulic Fracturing Operations Using Quantitative Structure-Activity Relationship Modeling

    EPA Pesticide Factsheets

    Researchers facilitated evaluation of chemicals that lack chronic oral toxicity values using a QSAR model to develop estimates of potential toxicity for chemicals used in HF fluids or found in flowback or produced water

  12. Two quantitative approaches for estimating content validity.

    PubMed

    Wynd, Christine A; Schmidt, Bruce; Schaefer, Michelle Atkins

    2003-08-01

    Instrument content validity is often established through qualitative expert reviews, yet quantitative analysis of reviewer agreements is also advocated in the literature. Two quantitative approaches to content validity estimations were compared and contrasted using a newly developed instrument called the Osteoporosis Risk Assessment Tool (ORAT). Data obtained from a panel of eight expert judges were analyzed. A Content Validity Index (CVI) initially determined that only one item lacked interrater proportion agreement about its relevance to the instrument as a whole (CVI = 0.57). Concern that higher proportion agreement ratings might be due to random chance stimulated further analysis using a multirater kappa coefficient of agreement. An additional seven items had low kappas, ranging from 0.29 to 0.48 and indicating poor agreement among the experts. The findings supported the elimination or revision of eight items. Pros and cons to using both proportion agreement and kappa coefficient analysis are examined.

  13. Rapid Quantitative Pharmacodynamic Imaging with Bayesian Estimation

    PubMed Central

    Koller, Jonathan M.; Vachon, M. Jonathan; Bretthorst, G. Larry; Black, Kevin J.

    2016-01-01

    We recently described rapid quantitative pharmacodynamic imaging, a novel method for estimating sensitivity of a biological system to a drug. We tested its accuracy in simulated biological signals with varying receptor sensitivity and varying levels of random noise, and presented initial proof-of-concept data from functional MRI (fMRI) studies in primate brain. However, the initial simulation testing used a simple iterative approach to estimate pharmacokinetic-pharmacodynamic (PKPD) parameters, an approach that was computationally efficient but returned parameters only from a small, discrete set of values chosen a priori. Here we revisit the simulation testing using a Bayesian method to estimate the PKPD parameters. This improved accuracy compared to our previous method, and noise without intentional signal was never interpreted as signal. We also reanalyze the fMRI proof-of-concept data. The success with the simulated data, and with the limited fMRI data, is a necessary first step toward further testing of rapid quantitative pharmacodynamic imaging. PMID:27092045

  14. Activities: Visualization, Estimation, Computation.

    ERIC Educational Resources Information Center

    Maletsky, Evan M.

    1982-01-01

    The material is designed to help students build a cone model, visualize how its dimensions change as its shape changes, estimate maximum volume position, and develop problem-solving skills. Worksheets designed for duplication for classroom use are included. Part of the activity involves student analysis of a BASIC program. (MP)

  15. The Mapping Model: A Cognitive Theory of Quantitative Estimation

    ERIC Educational Resources Information Center

    von Helversen, Bettina; Rieskamp, Jorg

    2008-01-01

    How do people make quantitative estimations, such as estimating a car's selling price? Traditionally, linear-regression-type models have been used to answer this question. These models assume that people weight and integrate all information available to estimate a criterion. The authors propose an alternative cognitive theory for quantitative…

  16. Quantitative Activities for Introductory Astronomy

    NASA Astrophysics Data System (ADS)

    Keohane, Jonathan W.; Bartlett, J. L.; Foy, J. P.

    2010-01-01

    We present a collection of short lecture-tutorial (or homework) activities, designed to be both quantitative and accessible to the introductory astronomy student. Each of these involves interpreting some real data, solving a problem using ratios and proportionalities, and making a conclusion based on the calculation. Selected titles include: "The Mass of Neptune” "The Temperature on Titan” "Rocks in the Early Solar System” "Comets Hitting Planets” "Ages of Meteorites” "How Flat are Saturn's Rings?” "Tides of the Sun and Moon on the Earth” "The Gliese 581 Solar System"; "Buckets in the Rain” "How Hot, Bright and Big is Betelgeuse?” "Bombs and the Sun” "What Forms Stars?” "Lifetimes of Cars and Stars” "The Mass of the Milky” "How Old is the Universe?” "Is The Universe Speeding up or Slowing Down?"

  17. Quantitative estimation of infarct size by simultaneous dual radionuclide single photon emission computed tomography: comparison with peak serum creatine kinase activity

    SciTech Connect

    Kawaguchi, K.; Sone, T.; Tsuboi, H.; Sassa, H.; Okumura, K.; Hashimoto, H.; Ito, T.; Satake, T. )

    1991-05-01

    To test the hypothesis that simultaneous dual energy single photon emission computed tomography (SPECT) with technetium-99m (99mTc) pyrophosphate and thallium-201 (201TI) can provide an accurate estimate of the size of myocardial infarction and to assess the correlation between infarct size and peak serum creatine kinase activity, 165 patients with acute myocardial infarction underwent SPECT 3.2 +/- 1.3 (SD) days after the onset of acute myocardial infarction. In the present study, the difference in the intensity of 99mTc-pyrophosphate accumulation was assumed to be attributable to difference in the volume of infarcted myocardium, and the infarct volume was corrected by the ratio of the myocardial activity to the osseous activity to quantify the intensity of 99mTc-pyrophosphate accumulation. The correlation of measured infarct volume with peak serum creatine kinase activity was significant (r = 0.60, p less than 0.01). There was also a significant linear correlation between the corrected infarct volume and peak serum creatine kinase activity (r = 0.71, p less than 0.01). Subgroup analysis showed a high correlation between corrected volume and peak creatine kinase activity in patients with anterior infarctions (r = 0.75, p less than 0.01) but a poor correlation in patients with inferior or posterior infarctions (r = 0.50, p less than 0.01). In both the early reperfusion and the no reperfusion groups, a good correlation was found between corrected infarct volume and peak serum creatine kinase activity (r = 0.76 and r = 0.76, respectively; p less than 0.01).

  18. The quantitative estimation of IT-related risk probabilities.

    PubMed

    Herrmann, Andrea

    2013-08-01

    How well can people estimate IT-related risk? Although estimating risk is a fundamental activity in software management and risk is the basis for many decisions, little is known about how well IT-related risk can be estimated at all. Therefore, we executed a risk estimation experiment with 36 participants. They estimated the probabilities of IT-related risks and we investigated the effect of the following factors on the quality of the risk estimation: the estimator's age, work experience in computing, (self-reported) safety awareness and previous experience with this risk, the absolute value of the risk's probability, and the effect of knowing the estimates of the other participants (see: Delphi method). Our main findings are: risk probabilities are difficult to estimate. Younger and inexperienced estimators were not significantly worse than older and more experienced estimators, but the older and more experienced subjects better used the knowledge gained by knowing the other estimators' results. Persons with higher safety awareness tend to overestimate risk probabilities, but can better estimate ordinal ranks of risk probabilities. Previous own experience with a risk leads to an overestimation of its probability (unlike in other fields like medicine or disasters, where experience with a disease leads to more realistic probability estimates and nonexperience to an underestimation).

  19. Quantitative linkage: a statistical procedure for its detection and estimation.

    PubMed

    Hill, A P

    1975-05-01

    A new approach for detecting and estimating quantitative linkage which uses sibship data is presented. Using a nested analysis of variance design (with marker genotype nested within sibship), it is shown that under the null hypothesis of no linkage, the expected between marker genotype within sibship mean square (EMSbeta) is equal to the expected within marker genotype within sibship mean square (EMSe), while under the alternative hypothesis of linkage, the first is greater than the second. Thus the regular F-ratio, MSbeta/MSe, can be used to test for quantitative linkage. This is true for both backcross and intercross matings and whether or not there is dominance at the marker locus. A second test involving the comparison of the within marker genotype within sibship variances is available for intercross matings. A maximum likelihood procedure for the estimation for the recombination frequency is also presented.

  20. Mapping quantitative trait Loci using generalized estimating equations.

    PubMed Central

    Lange, C; Whittaker, J C

    2001-01-01

    A number of statistical methods are now available to map quantitative trait loci (QTL) relative to markers. However, no existing methodology can simultaneously map QTL for multiple nonnormal traits. In this article we rectify this deficiency by developing a QTL-mapping approach based on generalized estimating equations (GEE). Simulation experiments are used to illustrate the application of the GEE-based approach. PMID:11729173

  1. Quantitative volumetric breast density estimation using phase contrast mammography

    NASA Astrophysics Data System (ADS)

    Wang, Zhentian; Hauser, Nik; Kubik-Huch, Rahel A.; D'Isidoro, Fabio; Stampanoni, Marco

    2015-05-01

    Phase contrast mammography using a grating interferometer is an emerging technology for breast imaging. It provides complementary information to the conventional absorption-based methods. Additional diagnostic values could be further obtained by retrieving quantitative information from the three physical signals (absorption, differential phase and small-angle scattering) yielded simultaneously. We report a non-parametric quantitative volumetric breast density estimation method by exploiting the ratio (dubbed the R value) of the absorption signal to the small-angle scattering signal. The R value is used to determine breast composition and the volumetric breast density (VBD) of the whole breast is obtained analytically by deducing the relationship between the R value and the pixel-wise breast density. The proposed method is tested by a phantom study and a group of 27 mastectomy samples. In the clinical evaluation, the estimated VBD values from both cranio-caudal (CC) and anterior-posterior (AP) views are compared with the ACR scores given by radiologists to the pre-surgical mammograms. The results show that the estimated VBD results using the proposed method are consistent with the pre-surgical ACR scores, indicating the effectiveness of this method in breast density estimation. A positive correlation is found between the estimated VBD and the diagnostic ACR score for both the CC view (p=0.033 ) and AP view (p=0.001 ). A linear regression between the results of the CC view and AP view showed a correlation coefficient γ = 0.77, which indicates the robustness of the proposed method and the quantitative character of the additional information obtained with our approach.

  2. Computer Monte Carlo simulation in quantitative resource estimation

    USGS Publications Warehouse

    Root, D.H.; Menzie, W.D.; Scott, W.A.

    1992-01-01

    The method of making quantitative assessments of mineral resources sufficiently detailed for economic analysis is outlined in three steps. The steps are (1) determination of types of deposits that may be present in an area, (2) estimation of the numbers of deposits of the permissible deposit types, and (3) combination by Monte Carlo simulation of the estimated numbers of deposits with the historical grades and tonnages of these deposits to produce a probability distribution of the quantities of contained metal. Two examples of the estimation of the number of deposits (step 2) are given. The first example is for mercury deposits in southwestern Alaska and the second is for lode tin deposits in the Seward Peninsula. The flow of the Monte Carlo simulation program is presented with particular attention to the dependencies between grades and tonnages of deposits and between grades of different metals in the same deposit. ?? 1992 Oxford University Press.

  3. Quantitative estimation of poikilocytosis by the coherent optical method

    NASA Astrophysics Data System (ADS)

    Safonova, Larisa P.; Samorodov, Andrey V.; Spiridonov, Igor N.

    2000-05-01

    The investigation upon the necessity and the reliability required of the determination of the poikilocytosis in hematology has shown that existing techniques suffer from grave shortcomings. To determine a deviation of the erythrocytes' form from the normal (rounded) one in blood smears it is expedient to use an integrative estimate. The algorithm which is based on the correlation between erythrocyte morphological parameters with properties of the spatial-frequency spectrum of blood smear is suggested. During analytical and experimental research an integrative form parameter (IFP) which characterizes the increase of the relative concentration of cells with the changed form over 5% and the predominating type of poikilocytes was suggested. An algorithm of statistically reliable estimation of the IFP on the standard stained blood smears has been developed. To provide the quantitative characterization of the morphological features of cells a form vector has been proposed, and its validity for poikilocytes differentiation was shown.

  4. Handling uncertainty in quantitative estimates in integrated resource planning

    SciTech Connect

    Tonn, B.E.; Wagner, C.G.

    1995-01-01

    This report addresses uncertainty in Integrated Resource Planning (IRP). IRP is a planning and decisionmaking process employed by utilities, usually at the behest of Public Utility Commissions (PUCs), to develop plans to ensure that utilities have resources necessary to meet consumer demand at reasonable cost. IRP has been used to assist utilities in developing plans that include not only traditional electricity supply options but also demand-side management (DSM) options. Uncertainty is a major issue for IRP. Future values for numerous important variables (e.g., future fuel prices, future electricity demand, stringency of future environmental regulations) cannot ever be known with certainty. Many economically significant decisions are so unique that statistically-based probabilities cannot even be calculated. The entire utility strategic planning process, including IRP, encompasses different types of decisions that are made with different time horizons and at different points in time. Because of fundamental pressures for change in the industry, including competition in generation, gone is the time when utilities could easily predict increases in demand, enjoy long lead times to bring on new capacity, and bank on steady profits. The purpose of this report is to address in detail one aspect of uncertainty in IRP: Dealing with Uncertainty in Quantitative Estimates, such as the future demand for electricity or the cost to produce a mega-watt (MW) of power. A theme which runs throughout the report is that every effort must be made to honestly represent what is known about a variable that can be used to estimate its value, what cannot be known, and what is not known due to operational constraints. Applying this philosophy to the representation of uncertainty in quantitative estimates, it is argued that imprecise probabilities are superior to classical probabilities for IRP.

  5. The Evolution of Solar Flux: Quantitative Estimates for Planetary Studies

    NASA Astrophysics Data System (ADS)

    Claire, M.; Sheets, J.; Cohen, M.; Ribas, I.; Meadows, V. S.; Catling, D. C.

    2012-12-01

    The Sun has a profound impact on planetary atmospheres, driving such diverse processes as the vertical temperature profile, molecular reaction rates, and atmospheric escape. Understanding the time-dependence of the solar flux is therefore essential to understanding atmospheric evolution of planets and satellites in the solar system. We present numerical models of the solar flux applicable temporally and spatially throughout the solar system (Claire et al. ApJ, 2012, in press.) We combine data from the Sun and solar analogs to estimate enhanced FUV and Xray continuum and strong line fluxes for the young Sun. In addition, we describe a new parameterization for the near UV, where both the chromosphere and photosphere contribute to the flux, and use Kurucz models to estimate variable visible and infrared fluxes. The modeled fluxes are valid at nanometer resolution from 0.1 nm through the infrared, and from 0.6 Gyr through 6.7 Gyr, with extensions from the solar zero age main sequence to 8.0 Gyr (subject to additional uncertainties). This work enables quantitative estimates of the wavelength dependence of solar flux for a range of paleodates that are relevant to studies of the chemical evolution of planetary atmospheres in the solar system (or around other G-type stars). We apply this parameterization to an early Earth photochemical model, which reveals changes in photolysis reaction rates significant larger than the intrinsic model uncertainties.

  6. Quantitative Compactness Estimates for Hamilton-Jacobi Equations

    NASA Astrophysics Data System (ADS)

    Ancona, Fabio; Cannarsa, Piermarco; Nguyen, Khai T.

    2016-02-01

    We study quantitative compactness estimates in {W^{1,1}_{loc}} for the map {S_t}, {t > 0} that is associated with the given initial data {u_0in Lip (R^N)} for the corresponding solution {S_t u_0} of a Hamilton-Jacobi equation u_t+Hbig(nabla_{x} ubig)=0, qquad t≥ 0,quad xinR^N, with a uniformly convex Hamiltonian {H=H(p)}. We provide upper and lower estimates of order {1/\\varepsilon^N} on the Kolmogorov {\\varepsilon}-entropy in {W^{1,1}} of the image through the map S t of sets of bounded, compactly supported initial data. Estimates of this type are inspired by a question posed by Lax (Course on Hyperbolic Systems of Conservation Laws. XXVII Scuola Estiva di Fisica Matematica, Ravello, 2002) within the context of conservation laws, and could provide a measure of the order of "resolution" of a numerical method implemented for this equation.

  7. Quantitative assessment of growth plate activity

    SciTech Connect

    Harcke, H.T.; Macy, N.J.; Mandell, G.A.; MacEwen, G.D.

    1984-01-01

    In the immature skeleton the physis or growth plate is the area of bone least able to withstand external forces and is therefore prone to trauma. Such trauma often leads to premature closure of the plate and results in limb shortening and/or angular deformity (varus or valgus). Active localization of bone seeking tracers in the physis makes bone scintigraphy an excellent method for assessing growth plate physiology. To be most effective, however, physeal activity should be quantified so that serial evaluations are accurate and comparable. The authors have developed a quantitative method for assessing physeal activity and have applied it ot the hip and knee. Using computer acquired pinhole images of the abnormal and contralateral normal joints, ten regions of interest are placed at key locations around each joint and comparative ratios are generated to form a growth plate profile. The ratios compare segmental physeal activity to total growth plate activity on both ipsilateral and contralateral sides and to adjacent bone. In 25 patients, ages 2 to 15 years, with angular deformities of the legs secondary to trauma, Blount's disease, and Perthes disease, this technique is able to differentiate abnormal segmental physeal activity. This is important since plate closure does not usually occur uniformly across the physis. The technique may permit the use of scintigraphy in the prediction of early closure through the quantitative analysis of serial studies.

  8. Estimation of methanogen biomass via quantitation of coenzyme M

    USGS Publications Warehouse

    Elias, Dwayne A.; Krumholz, Lee R.; Tanner, Ralph S.; Suflita, Joseph M.

    1999-01-01

    Determination of the role of methanogenic bacteria in an anaerobic ecosystem often requires quantitation of the organisms. Because of the extreme oxygen sensitivity of these organisms and the inherent limitations of cultural techniques, an accurate biomass value is very difficult to obtain. We standardized a simple method for estimating methanogen biomass in a variety of environmental matrices. In this procedure we used the thiol biomarker coenzyme M (CoM) (2-mercaptoethanesulfonic acid), which is known to be present in all methanogenic bacteria. A high-performance liquid chromatography-based method for detecting thiols in pore water (A. Vairavamurthy and M. Mopper, Anal. Chim. Acta 78:363–370, 1990) was modified in order to quantify CoM in pure cultures, sediments, and sewage water samples. The identity of the CoM derivative was verified by using liquid chromatography-mass spectroscopy. The assay was linear for CoM amounts ranging from 2 to 2,000 pmol, and the detection limit was 2 pmol of CoM/ml of sample. CoM was not adsorbed to sediments. The methanogens tested contained an average of 19.5 nmol of CoM/mg of protein and 0.39 ± 0.07 fmol of CoM/cell. Environmental samples contained an average of 0.41 ± 0.17 fmol/cell based on most-probable-number estimates. CoM was extracted by using 1% tri-(N)-butylphosphine in isopropanol. More than 90% of the CoM was recovered from pure cultures and environmental samples. We observed no interference from sediments in the CoM recovery process, and the method could be completed aerobically within 3 h. Freezing sediment samples resulted in 46 to 83% decreases in the amounts of detectable CoM, whereas freezing had no effect on the amounts of CoM determined in pure cultures. The method described here provides a quick and relatively simple way to estimate methanogenic biomass.

  9. Quantitative estimates of the volatility of ambient organic aerosol

    NASA Astrophysics Data System (ADS)

    Cappa, C. D.; Jimenez, J. L.

    2010-01-01

    Measurements of the sensitivity of organic aerosol (OA, and its components) mass to changes in temperature were recently reported by Huffman et al. (2009) using a tandem thermodenuder-aerosol mass spectrometer (TD-AMS) system in Mexico City and the Los Angeles area. Here, we use these measurements to derive quantitative estimates of aerosol volatility within the framework of absorptive partitioning theory using a kinetic model of aerosol evaporation in the TD. OA volatility distributions (or "basis-sets") are determined using several assumptions as to the enthalpy of vaporization (ΔHvap). We present two definitions of "non-volatile OA," one being a global and one a local definition. Based on these definitions, our analysis indicates that a substantial fraction of the organic aerosol is comprised of non-volatile components that will not evaporate under any atmospheric conditions, on the order of 50-80% when the most realistic ΔHvap assumptions are considered. The sensitivity of the total OA mass to dilution and ambient changes in temperature has been assessed for the various ΔHvap assumptions. The temperature sensitivity is relatively independent of the particular ΔHvap assumptions whereas dilution sensitivity is found to be greatest for the low (ΔHvap = 50 kJ/mol) and lowest for the high (ΔHvap = 150 kJ/mol) assumptions. This difference arises from the high ΔHvap assumptions yielding volatility distributions with a greater fraction of non-volatile material than the low ΔHvap assumptions. If the observations are fit using a 1 or 2-component model the sensitivity of the OA to dilution is unrealistically high. An empirical method introduced by Faulhaber et al. (2009) has also been used to independently estimate a volatility distribution for the ambient OA and is found to give results consistent with the high and variable ΔHvap assumptions. Our results also show that the amount of semivolatile gas-phase organics in equilibrium with the OA could range from ~20

  10. Quantitative estimates of the volatility of ambient organic aerosol

    NASA Astrophysics Data System (ADS)

    Cappa, C. D.; Jimenez, J. L.

    2010-06-01

    Measurements of the sensitivity of organic aerosol (OA, and its components) mass to changes in temperature were recently reported by Huffman et al.~(2009) using a tandem thermodenuder-aerosol mass spectrometer (TD-AMS) system in Mexico City and the Los Angeles area. Here, we use these measurements to derive quantitative estimates of aerosol volatility within the framework of absorptive partitioning theory using a kinetic model of aerosol evaporation in the TD. OA volatility distributions (or "basis-sets") are determined using several assumptions as to the enthalpy of vaporization (ΔHvap). We present two definitions of "non-volatile OA," one being a global and one a local definition. Based on these definitions, our analysis indicates that a substantial fraction of the organic aerosol is comprised of non-volatile components that will not evaporate under any atmospheric conditions; on the order of 50-80% when the most realistic ΔHvap assumptions are considered. The sensitivity of the total OA mass to dilution and ambient changes in temperature has been assessed for the various ΔHvap assumptions. The temperature sensitivity is relatively independent of the particular ΔHvap assumptions whereas dilution sensitivity is found to be greatest for the low (ΔHvap = 50 kJ/mol) and lowest for the high (ΔHvap = 150 kJ/mol) assumptions. This difference arises from the high ΔHvap assumptions yielding volatility distributions with a greater fraction of non-volatile material than the low ΔHvap assumptions. If the observations are fit using a 1 or 2-component model the sensitivity of the OA to dilution is unrealistically high. An empirical method introduced by Faulhaber et al. (2009) has also been used to independently estimate a volatility distribution for the ambient OA and is found to give results consistent with the high and variable ΔHvap assumptions. Our results also show that the amount of semivolatile gas-phase organics in equilibrium with the OA could range from ~20

  11. Quantitative modeling of multiscale neural activity

    NASA Astrophysics Data System (ADS)

    Robinson, Peter A.; Rennie, Christopher J.

    2007-01-01

    The electrical activity of the brain has been observed for over a century and is widely used to probe brain function and disorders, chiefly through the electroencephalogram (EEG) recorded by electrodes on the scalp. However, the connections between physiology and EEGs have been chiefly qualitative until recently, and most uses of the EEG have been based on phenomenological correlations. A quantitative mean-field model of brain electrical activity is described that spans the range of physiological and anatomical scales from microscopic synapses to the whole brain. Its parameters measure quantities such as synaptic strengths, signal delays, cellular time constants, and neural ranges, and are all constrained by independent physiological measurements. Application of standard techniques from wave physics allows successful predictions to be made of a wide range of EEG phenomena, including time series and spectra, evoked responses to stimuli, dependence on arousal state, seizure dynamics, and relationships to functional magnetic resonance imaging (fMRI). Fitting to experimental data also enables physiological parameters to be infered, giving a new noninvasive window into brain function, especially when referenced to a standardized database of subjects. Modifications of the core model to treat mm-scale patchy interconnections in the visual cortex are also described, and it is shown that resulting waves obey the Schroedinger equation. This opens the possibility of classical cortical analogs of quantum phenomena.

  12. Transient stochastic downscaling of quantitative precipitation estimates for hydrological applications

    NASA Astrophysics Data System (ADS)

    Nogueira, M.; Barros, A. P.

    2015-10-01

    Rainfall fields are heavily thresholded and highly intermittent resulting in large areas of zero values. This deforms their stochastic spatial scale-invariant behavior, introducing scaling breaks and curvature in the spatial scale spectrum. To address this problem, spatial scaling analysis was performed inside continuous rainfall features (CRFs) delineated via cluster analysis. The results show that CRFs from single realizations of hourly rainfall display ubiquitous multifractal behavior that holds over a wide range of scales (from ≈1 km up to 100's km). The results further show that the aggregate scaling behavior of rainfall fields is intrinsically transient with the scaling parameters explicitly dependent on the atmospheric environment. These findings provide a framework for robust stochastic downscaling, bridging the gap between spatial scales of observed and simulated rainfall fields and the high-resolution requirements of hydrometeorological and hydrological studies. Here, a fractal downscaling algorithm adapted to CRFs is presented and applied to generate stochastically downscaled hourly rainfall products from radar derived Stage IV (∼4 km grid resolution) quantitative precipitation estimates (QPE) over the Integrated Precipitation and Hydrology Experiment (IPHEx) domain in the southeast USA. The methodology can produce large ensembles of statistically robust high-resolution fields without additional data or any calibration requirements, conserving the coarse resolution information and generating coherent small-scale variability and field statistics, hence adding value to the original fields. Moreover, it is computationally inexpensive enabling fast production of high-resolution rainfall realizations with latency adequate for forecasting applications. When the transient nature of the scaling behavior is considered, the results show a better ability to reproduce the statistical structure of observed rainfall compared to using fixed scaling parameters

  13. Quantitative CT: technique dependence of volume estimation on pulmonary nodules

    NASA Astrophysics Data System (ADS)

    Chen, Baiyu; Barnhart, Huiman; Richard, Samuel; Colsher, James; Amurao, Maxwell; Samei, Ehsan

    2012-03-01

    Current estimation of lung nodule size typically relies on uni- or bi-dimensional techniques. While new three-dimensional volume estimation techniques using MDCT have improved size estimation of nodules with irregular shapes, the effect of acquisition and reconstruction parameters on accuracy (bias) and precision (variance) of the new techniques has not been fully investigated. To characterize the volume estimation performance dependence on these parameters, an anthropomorphic chest phantom containing synthetic nodules was scanned and reconstructed with protocols across various acquisition and reconstruction parameters. Nodule volumes were estimated by a clinical lung analysis software package, LungVCAR. Precision and accuracy of the volume assessment were calculated across the nodules and compared between protocols via a generalized estimating equation analysis. Results showed that the precision and accuracy of nodule volume quantifications were dependent on slice thickness, with different dependences for different nodule characteristics. Other parameters including kVp, pitch, and reconstruction kernel had lower impact. Determining these technique dependences enables better volume quantification via protocol optimization and highlights the importance of consistent imaging parameters in sequential examinations.

  14. Quantitative estimation of sampling uncertainties for mycotoxins in cereal shipments.

    PubMed

    Bourgeois, F S; Lyman, G J

    2012-01-01

    Many countries receive shipments of bulk cereals from primary producers. There is a volume of work that is on-going that seeks to arrive at appropriate standards for the quality of the shipments and the means to assess the shipments as they are out-loaded. Of concern are mycotoxin and heavy metal levels, pesticide and herbicide residue levels, and contamination by genetically modified organisms (GMOs). As the ability to quantify these contaminants improves through improved analytical techniques, the sampling methodologies applied to the shipments must also keep pace to ensure that the uncertainties attached to the sampling procedures do not overwhelm the analytical uncertainties. There is a need to understand and quantify sampling uncertainties under varying conditions of contamination. The analysis required is statistical and is challenging as the nature of the distribution of contaminants within a shipment is not well understood; very limited data exist. Limited work has been undertaken to quantify the variability of the contaminant concentrations in the flow of grain coming from a ship and the impact that this has on the variance of sampling. Relatively recent work by Paoletti et al. in 2006 [Paoletti C, Heissenberger A, Mazzara M, Larcher S, Grazioli E, Corbisier P, Hess N, Berben G, Lübeck PS, De Loose M, et al. 2006. Kernel lot distribution assessment (KeLDA): a study on the distribution of GMO in large soybean shipments. Eur Food Res Tech. 224:129-139] provides some insight into the variation in GMO concentrations in soybeans on cargo out-turn. Paoletti et al. analysed the data using correlogram analysis with the objective of quantifying the sampling uncertainty (variance) that attaches to the final cargo analysis, but this is only one possible means of quantifying sampling uncertainty. It is possible that in many cases the levels of contamination passing the sampler on out-loading are essentially random, negating the value of variographic quantitation of

  15. Quantitative evaluation of activation state in functional brain imaging.

    PubMed

    Hu, Zhenghui; Ni, Pengyu; Liu, Cong; Zhao, Xiaohu; Liu, Huafeng; Shi, Pengcheng

    2012-10-01

    Neuronal activity can evoke the hemodynamic change that gives rise to the observed functional magnetic resonance imaging (fMRI) signal. These increases are also regulated by the resting blood volume fraction (V (0)) associated with regional vasculature. The activation locus detected by means of the change in the blood-oxygen-level-dependent (BOLD) signal intensity thereby may deviate from the actual active site due to varied vascular density in the cortex. Furthermore, conventional detection techniques evaluate the statistical significance of the hemodynamic observations. In this sense, the significance level relies not only upon the intensity of the BOLD signal change, but also upon the spatially inhomogeneous fMRI noise distribution that complicates the expression of the results. In this paper, we propose a quantitative strategy for the calibration of activation states to address these challenging problems. The quantitative assessment is based on the estimated neuronal efficacy parameter [Formula: see text] of the hemodynamic model in a voxel-by-voxel way. It is partly immune to the inhomogeneous fMRI noise by virtue of the strength of the optimization strategy. Moreover, it is easy to incorporate regional vascular information into the activation detection procedure. By combining MR angiography images, this approach can remove large vessel contamination in fMRI signals, and provide more accurate functional localization than classical statistical techniques for clinical applications. It is also helpful to investigate the nonlinear nature of the coupling between synaptic activity and the evoked BOLD response. The proposed method might be considered as a potentially useful complement to existing statistical approaches.

  16. Methodology significantly affects genome size estimates: quantitative evidence using bryophytes.

    PubMed

    Bainard, Jillian D; Fazekas, Aron J; Newmaster, Steven G

    2010-08-01

    Flow cytometry (FCM) is commonly used to determine plant genome size estimates. Methodology has improved and changed during the past three decades, and researchers are encouraged to optimize protocols for their specific application. However, this step is typically omitted or undescribed in the current plant genome size literature, and this omission could have serious consequences for the genome size estimates obtained. Using four bryophyte species (Brachythecium velutinum, Fissidens taxifolius, Hedwigia ciliata, and Thuidium minutulum), three methodological approaches to the use of FCM in plant genome size estimation were tested. These included nine different buffers (Baranyi's, de Laat's, Galbraith's, General Purpose, LB01, MgSO(4), Otto's, Tris.MgCl(2), and Woody Plant), seven propidium iodide (PI) staining periods (5, 10, 15, 20, 45, 60, and 120 min), and six PI concentrations (10, 25, 50, 100, 150, and 200 microg ml(-1)). Buffer, staining period and staining concentration all had a statistically significant effect (P = 0.05) on the genome size estimates obtained for all four species. Buffer choice and PI concentration had the greatest effect, altering the 1C-values by as much as 8% and 14%, respectively. As well, the quality of the data varied with the different methodology used. Using the methodology determined to be the most accurate in this study (LB01 buffer and PI staining for 20 min at 150 microg ml(-1)), three new genome size estimates were obtained: B. velutinum: 0.46 pg, H. ciliata: 0.30 pg, and T. minutulum: 0.46 pg. While the peak quality of flow cytometry histograms is important, researchers must consider that changes in methodology can also affect the relative peak positions and therefore the genome size estimates obtained for plants using FCM.

  17. Improved dose-volume histogram estimates for radiopharmaceutical therapy by optimizing quantitative SPECT reconstruction parameters

    NASA Astrophysics Data System (ADS)

    Cheng, Lishui; Hobbs, Robert F.; Segars, Paul W.; Sgouros, George; Frey, Eric C.

    2013-06-01

    In radiopharmaceutical therapy, an understanding of the dose distribution in normal and target tissues is important for optimizing treatment. Three-dimensional (3D) dosimetry takes into account patient anatomy and the nonuniform uptake of radiopharmaceuticals in tissues. Dose-volume histograms (DVHs) provide a useful summary representation of the 3D dose distribution and have been widely used for external beam treatment planning. Reliable 3D dosimetry requires an accurate 3D radioactivity distribution as the input. However, activity distribution estimates from SPECT are corrupted by noise and partial volume effects (PVEs). In this work, we systematically investigated OS-EM based quantitative SPECT (QSPECT) image reconstruction in terms of its effect on DVHs estimates. A modified 3D NURBS-based Cardiac-Torso (NCAT) phantom that incorporated a non-uniform kidney model and clinically realistic organ activities and biokinetics was used. Projections were generated using a Monte Carlo (MC) simulation; noise effects were studied using 50 noise realizations with clinical count levels. Activity images were reconstructed using QSPECT with compensation for attenuation, scatter and collimator-detector response (CDR). Dose rate distributions were estimated by convolution of the activity image with a voxel S kernel. Cumulative DVHs were calculated from the phantom and QSPECT images and compared both qualitatively and quantitatively. We found that noise, PVEs, and ringing artifacts due to CDR compensation all degraded histogram estimates. Low-pass filtering and early termination of the iterative process were needed to reduce the effects of noise and ringing artifacts on DVHs, but resulted in increased degradations due to PVEs. Large objects with few features, such as the liver, had more accurate histogram estimates and required fewer iterations and more smoothing for optimal results. Smaller objects with fine details, such as the kidneys, required more iterations and less

  18. The Centiloid Project: Standardizing Quantitative Amyloid Plaque Estimation by PET

    PubMed Central

    Klunk, William E.; Koeppe, Robert A.; Price, Julie C.; Benzinger, Tammie; Devous, Michael D.; Jagust, William; Johnson, Keith; Mathis, Chester A.; Minhas, Davneet; Pontecorvo, Michael J.; Rowe, Christopher C.; Skovronsky, Daniel; Mintun, Mark

    2014-01-01

    Although amyloid imaging with PiB-PET, and now with F-18-labelled tracers, has produced remarkably consistent qualitative findings across a large number of centers, there has been considerable variability in the exact numbers reported as quantitative outcome measures of tracer retention. In some cases this is as trivial as the choice of units, in some cases it is scanner dependent, and of course, different tracers yield different numbers. Our working group was formed to standardize quantitative amyloid imaging measures by scaling the outcome of each particular analysis method or tracer to a 0 to 100 scale, anchored by young controls (≤45 years) and typical Alzheimer’s disease patients. The units of this scale have been named “Centiloids.” Basically, we describe a “standard” method of analyzing PiB PET data and then a method for scaling any “non-standard” method of PiB PET analysis (or any other tracer) to the Centiloid scale. PMID:25443857

  19. Distance estimation from acceleration for quantitative evaluation of Parkinson tremor.

    PubMed

    Jeon, Hyoseon; Kim, Sang Kyong; Jeon, BeomSeok; Park, Kwang Suk

    2011-01-01

    The purpose of this paper is to assess Parkinson tremor estimating actual distance amplitude. We propose a practical, useful and simple method for evaluating Parkinson tremor with distance value. We measured resting tremor of 7 Parkinson Disease (PD) patients with triaxial accelerometer. Resting tremor of participants was diagnosed by Unified Parkinson's Disease Rating Scale (UPDRS) by neurologist. First, we segmented acceleration signal during 7 seconds from recorded data. To estimate a displacement of tremor, we performed double integration from the acceleration. Prior to double integration, moving average method was used to reduce an error of integral constant. After estimation of displacement, we calculated tremor distance during 1s from segmented signal using Euclidean distance. We evaluated the distance values compared with UPDRS. Averaged moving distance during 1 second corresponding to UPDRS 1 was 11.52 mm, that of UPDRS 2 was 33.58 mm and tremor distance of UPDRS 3 was 382.22 mm. Estimated moving distance during 1s was proportional to clinical rating scale--UPDRS.

  20. Quantitative estimation of source complexity in tsunami-source inversion

    NASA Astrophysics Data System (ADS)

    Dettmer, Jan; Cummins, Phil R.; Hawkins, Rhys; Jakir Hossen, M.

    2016-04-01

    This work analyses tsunami waveforms to infer the spatiotemporal evolution of sea-surface displacement (the tsunami source) caused by earthquakes or other sources. Since the method considers sea-surface displacement directly, no assumptions about the fault or seafloor deformation are required. While this approach has no ability to study seismic aspects of rupture, it greatly simplifies the tsunami source estimation, making it much less dependent on subjective fault and deformation assumptions. This results in a more accurate sea-surface displacement evolution in the source region. The spatial discretization is by wavelet decomposition represented by a trans-D Bayesian tree structure. Wavelet coefficients are sampled by a reversible jump algorithm and additional coefficients are only included when required by the data. Therefore, source complexity is consistent with data information (parsimonious) and the method can adapt locally in both time and space. Since the source complexity is unknown and locally adapts, no regularization is required, resulting in more meaningful displacement magnitudes. By estimating displacement uncertainties in a Bayesian framework we can study the effect of parametrization choice on the source estimate. Uncertainty arises from observation errors and limitations in the parametrization to fully explain the observations. As a result, parametrization choice is closely related to uncertainty estimation and profoundly affects inversion results. Therefore, parametrization selection should be included in the inference process. Our inversion method is based on Bayesian model selection, a process which includes the choice of parametrization in the inference process and makes it data driven. A trans-dimensional (trans-D) model for the spatio-temporal discretization is applied here to include model selection naturally and efficiently in the inference by sampling probabilistically over parameterizations. The trans-D process results in better

  1. A NOVEL TECHNIQUE FOR QUANTITATIVE ESTIMATION OF UPTAKE OF DIESEL EXHAUST PARTICLES BY LUNG CELLS

    EPA Science Inventory

    While airborne particulates like diesel exhaust particulates (DEP) exert significant toxicological effects on lungs, quantitative estimation of accumulation of DEP inside lung cells has not been reported due to a lack of an accurate and quantitative technique for this purpose. I...

  2. Quantitative Method of Measuring Metastatic Activity

    NASA Technical Reports Server (NTRS)

    Morrison, Dennis R. (Inventor)

    1999-01-01

    The metastatic potential of tumors can be evaluated by the quantitative detection of urokinase and DNA. The cell sample selected for examination is analyzed for the presence of high levels of urokinase and abnormal DNA using analytical flow cytometry and digital image analysis. Other factors such as membrane associated uroldnase, increased DNA synthesis rates and certain receptors can be used in the method for detection of potentially invasive tumors.

  3. The APEX Quantitative Proteomics Tool: Generating protein quantitation estimates from LC-MS/MS proteomics results

    PubMed Central

    Braisted, John C; Kuntumalla, Srilatha; Vogel, Christine; Marcotte, Edward M; Rodrigues, Alan R; Wang, Rong; Huang, Shih-Ting; Ferlanti, Erik S; Saeed, Alexander I; Fleischmann, Robert D; Peterson, Scott N; Pieper, Rembert

    2008-01-01

    Background Mass spectrometry (MS) based label-free protein quantitation has mainly focused on analysis of ion peak heights and peptide spectral counts. Most analyses of tandem mass spectrometry (MS/MS) data begin with an enzymatic digestion of a complex protein mixture to generate smaller peptides that can be separated and identified by an MS/MS instrument. Peptide spectral counting techniques attempt to quantify protein abundance by counting the number of detected tryptic peptides and their corresponding MS spectra. However, spectral counting is confounded by the fact that peptide physicochemical properties severely affect MS detection resulting in each peptide having a different detection probability. Lu et al. (2007) described a modified spectral counting technique, Absolute Protein Expression (APEX), which improves on basic spectral counting methods by including a correction factor for each protein (called Oi value) that accounts for variable peptide detection by MS techniques. The technique uses machine learning classification to derive peptide detection probabilities that are used to predict the number of tryptic peptides expected to be detected for one molecule of a particular protein (Oi). This predicted spectral count is compared to the protein's observed MS total spectral count during APEX computation of protein abundances. Results The APEX Quantitative Proteomics Tool, introduced here, is a free open source Java application that supports the APEX protein quantitation technique. The APEX tool uses data from standard tandem mass spectrometry proteomics experiments and provides computational support for APEX protein abundance quantitation through a set of graphical user interfaces that partition thparameter controls for the various processing tasks. The tool also provides a Z-score analysis for identification of significant differential protein expression, a utility to assess APEX classifier performance via cross validation, and a utility to merge multiple

  4. A Quantitative Model to Estimate Drug Resistance in Pathogens

    PubMed Central

    Baker, Frazier N.; Cushion, Melanie T.; Porollo, Aleksey

    2016-01-01

    Pneumocystis pneumonia (PCP) is an opportunistic infection that occurs in humans and other mammals with debilitated immune systems. These infections are caused by fungi in the genus Pneumocystis, which are not susceptible to standard antifungal agents. Despite decades of research and drug development, the primary treatment and prophylaxis for PCP remains a combination of trimethoprim (TMP) and sulfamethoxazole (SMX) that targets two enzymes in folic acid biosynthesis, dihydrofolate reductase (DHFR) and dihydropteroate synthase (DHPS), respectively. There is growing evidence of emerging resistance by Pneumocystis jirovecii (the species that infects humans) to TMP-SMX associated with mutations in the targeted enzymes. In the present study, we report the development of an accurate quantitative model to predict changes in the binding affinity of inhibitors (Ki, IC50) to the mutated proteins. The model is based on evolutionary information and amino acid covariance analysis. Predicted changes in binding affinity upon mutations highly correlate with the experimentally measured data. While trained on Pneumocystis jirovecii DHFR/TMP data, the model shows similar or better performance when evaluated on the resistance data for a different inhibitor of PjDFHR, another drug/target pair (PjDHPS/SMX) and another organism (Staphylococcus aureus DHFR/TMP). Therefore, we anticipate that the developed prediction model will be useful in the evaluation of possible resistance of the newly sequenced variants of the pathogen and can be extended to other drug targets and organisms. PMID:28018911

  5. Possibility of quantitative estimation of blood cell forms by the spatial-frequency spectrum analysis

    NASA Astrophysics Data System (ADS)

    Spiridonov, Igor N.; Safonova, Larisa P.; Samorodov, Andrey V.

    2000-05-01

    At present in hematology there are no quantitative estimates of such important for the cell classification parameters: cell form and nuclear form. Due to the absence of the correlation between morphological parameters and parameters measured by hemoanalyzers, both flow cytometers and computer recognition systems, do not provide the completeness of the clinical blood analysis. Analysis of the spatial-frequency spectra of blood samples (smears and liquid probes) permit the estimate the forms quantitatively. On the results of theoretical and experimental researches carried out an algorithm of the form quantitative estimation by means of SFS parameters has been created. The criteria of the quality of these estimates have been proposed. A test bench based on the coherent optical and digital processors. The received results could be applied for the automated classification of ether normal or pathological blood cells in the standard blood smears.

  6. Quantitative ultrasound estimates from populations of scatterers with continuous size distributions - Effects of the size estimator algorithm

    PubMed Central

    Oelze, Michael

    2012-01-01

    Quantitative ultrasonic techniques using backscatter coefficients (BSCs) may fail to produce physically meaningful estimates of effective scatterer diameter (ESD) when the analysis media contains scatterers of different sizes. In this work, three different estimator algorithms were used to produce estimates of ESD. The performance of the three estimators was compared over different frequency bands using simulations and experiments with physical phantoms. All estimators produced ESD estimates by comparing the estimated BSCs with a scattering model based on the backscattering cross-section of a single spherical fluid scatterer. The first estimator consisted of minimizing the average square deviation of the ratio between the estimated BSCs and the scattering model with both expressed in decibels. The second and third estimators consisted of minimizing the mean square error between the estimated BSCs and a linear transformation of the scattering model with and without considering an intercept, respectively. Simulations were conducted over several analysis bandwidths between 1 and 40 MHz from populations of scatterers with either a uniform size distribution or a distribution based on the inverse cubic of the size. Diameters of the distributions ranged between [25, 100], [25, 50], [50, 100], and [50, 75] μm. Experimental results were obtained from two gelatin phantoms containing Sephadex spheres ranging in diameter from 28 to 130 μm and 70 to 130 μm, respectively, and 5, 7.5, 10, and 13 MHz focused transducers. Significant differences in the performances of the ESD estimator algorithms as a function of the analysis frequency were observed. Specifically, the third estimator exhibited potential to produce physically meaningful ESD estimates even for large ka values when using a single-size scattering model if sufficient analysis bandwidth was available. PMID:23007782

  7. Quantitative ultrasound estimates from populations of scatterers with continuous size distributions: effects of the size estimator algorithm.

    PubMed

    Lavarello, Roberto; Oelze, Michael

    2012-09-01

    Quantitative ultrasonic techniques using backscatter coefficients (BSCs) may fail to produce physically meaningful estimates of effective scatterer diameter (ESD) when the analysis media contains scatterers of different sizes. In this work, three different estimator algorithms were used to produce estimates of ESD. The performance of the three estimators was compared over different frequency bands using simulations and experiments with physical phantoms. All estimators produced ESD estimates by comparing the estimated BSCs with a scattering model based on the backscattering cross section of a single spherical fluid scatterer. The first estimator consisted of minimizing the average square deviation of the logarithmically compressed ratio between the estimated BSCs and the scattering model. The second and third estimators consisted of minimizing the mean square error between the estimated BSCs and a linear transformation of the scattering model with and without considering an intercept, respectively. Simulations were conducted over several analysis bandwidths between 1 and 40 MHz from populations of scatterers with either a uniform size distribution or a distribution based on the inverse cubic of the size. Diameters of the distributions ranged between [25, 100], [25, 50], [50, 100], and [50, 75] μm. Experimental results were obtained from two gelatin phantoms containing cross-linked dextran gel spheres ranging in diameter from 28 to 130 μm and 70 to 130 μm, respectively, and 5-, 7.5-, 10-, and 13-MHz focused transducers. Significant differences in the performances of the ESD estimator algorithms as a function of the analysis frequency were observed. Specifically, the third estimator exhibited potential to produce physically meaningful ESD estimates even for large ka values when using a single-size scattering model if sufficient analysis bandwidth was available.

  8. "Help Wanted, Inquire Within": Estimation. Activities and Thoughts That Emphasize Dealing Sensibly with Numbers through the Processes of Estimation. (Grades 1-6). Title I Elementary Mathematics Program.

    ERIC Educational Resources Information Center

    Gronert, Joie; Marshall, Sally

    Developed for elementary teachers, this activity unit is designed to teach students the importance of estimation in developing quantitative thinking. Nine ways in which estimation is useful to students are listed, and five general guidelines are offered to the teacher for planning estimation activities. Specific guidelines are provided for…

  9. Accurate and quantitative polarization-sensitive OCT by unbiased birefringence estimator with noise-stochastic correction

    NASA Astrophysics Data System (ADS)

    Kasaragod, Deepa; Sugiyama, Satoshi; Ikuno, Yasushi; Alonso-Caneiro, David; Yamanari, Masahiro; Fukuda, Shinichi; Oshika, Tetsuro; Hong, Young-Joo; Li, En; Makita, Shuichi; Miura, Masahiro; Yasuno, Yoshiaki

    2016-03-01

    Polarization sensitive optical coherence tomography (PS-OCT) is a functional extension of OCT that contrasts the polarization properties of tissues. It has been applied to ophthalmology, cardiology, etc. Proper quantitative imaging is required for a widespread clinical utility. However, the conventional method of averaging to improve the signal to noise ratio (SNR) and the contrast of the phase retardation (or birefringence) images introduce a noise bias offset from the true value. This bias reduces the effectiveness of birefringence contrast for a quantitative study. Although coherent averaging of Jones matrix tomography has been widely utilized and has improved the image quality, the fundamental limitation of nonlinear dependency of phase retardation and birefringence to the SNR was not overcome. So the birefringence obtained by PS-OCT was still not accurate for a quantitative imaging. The nonlinear effect of SNR to phase retardation and birefringence measurement was previously formulated in detail for a Jones matrix OCT (JM-OCT) [1]. Based on this, we had developed a maximum a-posteriori (MAP) estimator and quantitative birefringence imaging was demonstrated [2]. However, this first version of estimator had a theoretical shortcoming. It did not take into account the stochastic nature of SNR of OCT signal. In this paper, we present an improved version of the MAP estimator which takes into account the stochastic property of SNR. This estimator uses a probability distribution function (PDF) of true local retardation, which is proportional to birefringence, under a specific set of measurements of the birefringence and SNR. The PDF was pre-computed by a Monte-Carlo (MC) simulation based on the mathematical model of JM-OCT before the measurement. A comparison between this new MAP estimator, our previous MAP estimator [2], and the standard mean estimator is presented. The comparisons are performed both by numerical simulation and in vivo measurements of anterior and

  10. Designing a Quantitative Structure-Activity Relationship for the ...

    EPA Pesticide Factsheets

    Toxicokinetic models serve a vital role in risk assessment by bridging the gap between chemical exposure and potentially toxic endpoints. While intrinsic metabolic clearance rates have a strong impact on toxicokinetics, limited data is available for environmentally relevant chemicals including nearly 8000 chemicals tested for in vitro bioactivity in the Tox21 program. To address this gap, a quantitative structure-activity relationship (QSAR) for intrinsic metabolic clearance rate was developed to offer reliable in silico predictions for a diverse array of chemicals. Models were constructed with curated in vitro assay data for both pharmaceutical-like chemicals (ChEMBL database) and environmentally relevant chemicals (ToxCast screening) from human liver microsomes (2176 from ChEMBL) and human hepatocytes (757 from ChEMBL and 332 from ToxCast). Due to variability in the experimental data, a binned approach was utilized to classify metabolic rates. Machine learning algorithms, such as random forest and k-nearest neighbor, were coupled with open source molecular descriptors and fingerprints to provide reasonable estimates of intrinsic metabolic clearance rates. Applicability domains defined the optimal chemical space for predictions, which covered environmental chemicals well. A reduced set of informative descriptors (including relative charge and lipophilicity) and a mixed training set of pharmaceuticals and environmentally relevant chemicals provided the best intr

  11. A QUANTITATIVE APPROACH FOR ESTIMATING EXPOSURE TO PESTICIDES IN THE AGRICULTURAL HEALTH STUDY

    EPA Science Inventory

    We developed a quantitative method to estimate chemical-specific pesticide exposures in a large prospective cohort study of over 58,000 pesticide applicators in North Carolina and Iowa. An enrollment questionnaire was administered to applicators to collect basic time- and inten...

  12. Quantitative Estimates of the Social Benefits of Learning, 1: Crime. Wider Benefits of Learning Research Report.

    ERIC Educational Resources Information Center

    Feinstein, Leon

    The cost benefits of lifelong learning in the United Kingdom were estimated, based on quantitative evidence. Between 1975-1996, 43 police force areas in England and Wales were studied to determine the effect of wages on crime. It was found that a 10 percent rise in the average pay of those on low pay reduces the overall area property crime rate by…

  13. On sweat analysis for quantitative estimation of dehydration during physical exercise.

    PubMed

    Ring, Matthias; Lohmueller, Clemens; Rauh, Manfred; Eskofier, Bjoern M

    2015-08-01

    Quantitative estimation of water loss during physical exercise is of importance because dehydration can impair both muscular strength and aerobic endurance. A physiological indicator for deficit of total body water (TBW) might be the concentration of electrolytes in sweat. It has been shown that concentrations differ after physical exercise depending on whether water loss was replaced by fluid intake or not. However, to the best of our knowledge, this fact has not been examined for its potential to quantitatively estimate TBW loss. Therefore, we conducted a study in which sweat samples were collected continuously during two hours of physical exercise without fluid intake. A statistical analysis of these sweat samples revealed significant correlations between chloride concentration in sweat and TBW loss (r = 0.41, p <; 0.01), and between sweat osmolality and TBW loss (r = 0.43, p <; 0.01). A quantitative estimation of TBW loss resulted in a mean absolute error of 0.49 l per estimation. Although the precision has to be improved for practical applications, the present results suggest that TBW loss estimation could be realizable using sweat samples.

  14. Quantitative Risk reduction estimation Tool For Control Systems, Suggested Approach and Research Needs

    SciTech Connect

    Miles McQueen; Wayne Boyer; Mark Flynn; Sam Alessi

    2006-03-01

    For the past year we have applied a variety of risk assessment technologies to evaluate the risk to critical infrastructure from cyber attacks on control systems. More recently, we identified the need for a stand alone control system risk reduction estimation tool to provide owners and operators of control systems with a more useable, reliable, and credible method for managing the risks from cyber attack. Risk is defined as the probability of a successful attack times the value of the resulting loss, typically measured in lives and dollars. Qualitative and ad hoc techniques for measuring risk do not provide sufficient support for cost benefit analyses associated with cyber security mitigation actions. To address the need for better quantitative risk reduction models we surveyed previous quantitative risk assessment research; evaluated currently available tools; developed new quantitative techniques [17] [18]; implemented a prototype analysis tool to demonstrate how such a tool might be used; used the prototype to test a variety of underlying risk calculational engines (e.g. attack tree, attack graph); and identified technical and research needs. We concluded that significant gaps still exist and difficult research problems remain for quantitatively assessing the risk to control system components and networks, but that a useable quantitative risk reduction estimation tool is not beyond reach.

  15. Software Size Estimation Using Activity Point

    NASA Astrophysics Data System (ADS)

    Densumite, S.; Muenchaisri, P.

    2017-03-01

    Software size is widely recognized as an important parameter for effort and cost estimation. Currently there are many methods for measuring software size including Source Line of Code (SLOC), Function Points (FP), Netherlands Software Metrics Users Association (NESMA), Common Software Measurement International Consortium (COSMIC), and Use Case Points (UCP). SLOC is physically counted after the software is developed. Other methods compute size from functional, technical, and/or environment aspects at early phase of software development. In this research, activity point approach is proposed to be another software size estimation method. Activity point is computed using activity diagram and adjusted with technical complexity factors (TCF), environment complexity factors (ECF), and people risk factors (PRF). An evaluation of the approach is present.

  16. Rapid Detection and Quantitative Estimation of Type A Botulinum Toxin by Electroimmunodiffusion

    PubMed Central

    Miller, Carol A.; Anderson, Arthur W.

    1971-01-01

    An experimental system is described for the detection and quantitative estimation of type A botulinum toxin by electroimmunodiffusion. The method is shown to be rapid, specific, and quantitative. As little as 14 mouse LD50 per 0.1 ml of type A toxin was detected within 2 hr. When applied to experimentally contaminated foods such as canned tuna, pumpkin, spinach, green beans, and sausage, the technique detected botulinum toxin rapidly and identified it as to type and quantity. A specific rabbit type A antitoxin was produced for this in vitro system since the equine antitoxin (Center for Disease Control) tested in this experiment was found to be unsuitable. Images PMID:5005291

  17. Estimating bioerosion rate on fossil corals: a quantitative approach from Oligocene reefs (NW Italy)

    NASA Astrophysics Data System (ADS)

    Silvestri, Giulia

    2010-05-01

    Bioerosion of coral reefs, especially when related to the activity of macroborers, is considered to be one of the major processes influencing framework development in present-day reefs. Macroboring communities affecting both living and dead corals are widely distributed also in the fossil record and their role is supposed to be analogously important in determining flourishing vs demise of coral bioconstructions. Nevertheless, many aspects concerning environmental factors controlling the incidence of bioerosion, shifting in composition of macroboring communities and estimation of bioerosion rate in different contexts are still poorly documented and understood. This study presents an attempt to quantify bioerosion rate on reef limestones characteristic of some Oligocene outcrops of the Tertiary Piedmont Basin (NW Italy) and deposited under terrigenous sedimentation within prodelta and delta fan systems. Branching coral rubble-dominated facies have been recognized as prevailing in this context. Depositional patterns, textures, and the generally low incidence of taphonomic features, such as fragmentation and abrasion, suggest relatively quiet waters where coral remains were deposited almost in situ. Thus taphonomic signatures occurring on corals can be reliably used to reconstruct environmental parameters affecting these particular branching coral assemblages during their life and to compare them with those typical of classical clear-water reefs. Bioerosion is sparsely distributed within coral facies and consists of a limited suite of traces, mostly referred to clionid sponges and polychaete and sipunculid worms. The incidence of boring bivalves seems to be generally lower. Together with semi-quantitative analysis of bioerosion rate along vertical logs and horizontal levels, two quantitative methods have been assessed and compared. These consist in the elaboration of high resolution scanned thin sections through software for image analysis (Photoshop CS3) and point

  18. Quantitative structure-activity relationships for fluoroelastomer/chlorofluorocarbon systems

    SciTech Connect

    Paciorek, K.J.L.; Masuda, S.R.; Nakahara, J.H. ); Snyder, C.E. Jr.; Warner, W.M. )

    1991-12-01

    This paper reports on swell, tensile, and modulus data that were determined for a fluoroelastomer after exposure to a series of chlorofluorocarbon model fluids. Quantitative structure-activity relationships (QSAR) were developed for the swell as a function of the number of carbons and chlorines and for tensile strength as a function of carbon number and chlorine positions in the chlorofluorocarbons.

  19. Data depth, data completeness, and their influence on quantitative genetic estimation in two contrasting bird populations.

    PubMed

    Quinn, J L; Charmantier, A; Garant, D; Sheldon, B C

    2006-05-01

    Evolutionary biologists increasingly use pedigree-based quantitative genetic methods to address questions about the evolutionary dynamics of traits in wild populations. In many cases, phenotypic data may have been collected only for recent parts of the study. How does this influence the performance of the models used to analyse these data? Here we explore how data depth (number of years) and completeness (number of observations) influence estimates of genetic variance and covariance within the context of an existing pedigree. Using long-term data from the great tit Parus major and the mute swan Cygnus olor, species with different life-histories, we examined the effect of manipulating the amount of data included on quantitative genetic parameter estimates. Manipulating data depth and completeness had little influence on estimated genetic variances, heritabilities, or genetic correlations, but (as expected) did influence confidence in these estimates. Estimated breeding values in the great tit were not influenced by data depth but were in the mute swan, probably because of differences in pedigree structure. Our analyses suggest the 'rule of thumb' that data from 3 years and a minimum of 100 individuals per year are needed to estimate genetic parameters with acceptable confidence, and that using pedigree data is worthwhile, even if phenotypes are only available toward the tips of the pedigree.

  20. Estimating quantitative genetic parameters in wild populations: a comparison of pedigree and genomic approaches.

    PubMed

    Bérénos, Camillo; Ellis, Philip A; Pilkington, Jill G; Pemberton, Josephine M

    2014-07-01

    The estimation of quantitative genetic parameters in wild populations is generally limited by the accuracy and completeness of the available pedigree information. Using relatedness at genomewide markers can potentially remove this limitation and lead to less biased and more precise estimates. We estimated heritability, maternal genetic effects and genetic correlations for body size traits in an unmanaged long-term study population of Soay sheep on St Kilda using three increasingly complete and accurate estimates of relatedness: (i) Pedigree 1, using observation-derived maternal links and microsatellite-derived paternal links; (ii) Pedigree 2, using SNP-derived assignment of both maternity and paternity; and (iii) whole-genome relatedness at 37 037 autosomal SNPs. In initial analyses, heritability estimates were strikingly similar for all three methods, while standard errors were systematically lower in analyses based on Pedigree 2 and genomic relatedness. Genetic correlations were generally strong, differed little between the three estimates of relatedness and the standard errors declined only very slightly with improved relatedness information. When partitioning maternal effects into separate genetic and environmental components, maternal genetic effects found in juvenile traits increased substantially across the three relatedness estimates. Heritability declined compared to parallel models where only a maternal environment effect was fitted, suggesting that maternal genetic effects are confounded with direct genetic effects and that more accurate estimates of relatedness were better able to separate maternal genetic effects from direct genetic effects. We found that the heritability captured by SNP markers asymptoted at about half the SNPs available, suggesting that denser marker panels are not necessarily required for precise and unbiased heritability estimates. Finally, we present guidelines for the use of genomic relatedness in future quantitative genetics

  1. Quantitative Estimation of Trace Chemicals in Industrial Effluents with the Sticklet Transform Method

    SciTech Connect

    Mehta, N C; Scharlemann, E T; Stevens, C G

    2001-04-02

    Application of a novel transform operator, the Sticklet transform, to the quantitative estimation of trace chemicals in industrial effluent plumes is reported. The sticklet transform is a superset of the well-known derivative operator and the Haar wavelet, and is characterized by independently adjustable lobe width and separation. Computer simulations demonstrate that they can make accurate and robust concentration estimates of multiple chemical species in industrial effluent plumes in the presence of strong clutter background, interferent chemicals and random noise. In this paper they address the application of the sticklet transform in estimating chemical concentrations in effluent plumes in the presence of atmospheric transmission effects. They show that this transform retains the ability to yield accurate estimates using on-plume/off-plume measurements that represent atmospheric differentials up to 10% of the full atmospheric attenuation.

  2. Poisson Parameters of Antimicrobial Activity: A Quantitative Structure-Activity Approach

    PubMed Central

    Sestraş, Radu E.; Jäntschi, Lorentz; Bolboacă, Sorana D.

    2012-01-01

    A contingency of observed antimicrobial activities measured for several compounds vs. a series of bacteria was analyzed. A factor analysis revealed the existence of a certain probability distribution function of the antimicrobial activity. A quantitative structure-activity relationship analysis for the overall antimicrobial ability was conducted using the population statistics associated with identified probability distribution function. The antimicrobial activity proved to follow the Poisson distribution if just one factor varies (such as chemical compound or bacteria). The Poisson parameter estimating antimicrobial effect, giving both mean and variance of the antimicrobial activity, was used to develop structure-activity models describing the effect of compounds on bacteria and fungi species. Two approaches were employed to obtain the models, and for every approach, a model was selected, further investigated and found to be statistically significant. The best predictive model for antimicrobial effect on bacteria and fungi species was identified using graphical representation of observed vs. calculated values as well as several predictive power parameters. PMID:22606039

  3. Quantitative observations of cavitation activity in a viscoelastic medium.

    PubMed

    Collin, Jamie R T; Coussios, Constantin C

    2011-11-01

    Quantitative experimental observations of single-bubble cavitation in viscoelastic media that would enable validation of existing models are presently lacking. In the present work, single bubble cavitation is induced in an agar gel using a 1.15 MHz high intensity focused ultrasound transducer, and observed using a focused single-element passive cavitation detection (PCD) transducer. To enable quantitative observations, a full receive calibration is carried out of a spherically focused PCD system by a bistatic scattering substitution technique that uses an embedded spherical scatterer and a hydrophone. Adjusting the simulated pressure received by the PCD by the transfer function on receive and the frequency-dependent attenuation of agar gel enables direct comparison of the measured acoustic emissions with those predicted by numerical modeling of single-bubble cavitation using a modified Keller-Miksis approach that accounts for viscoelasticity of the surrounding medium. At an incident peak rarefactional pressure near the cavitation threshold, period multiplying is observed in both experiment and numerical model. By comparing the two sets of results, an estimate of the equilibrium bubble radius in the experimental observations can be made, with potential for extension to material parameter estimation. Use of these estimates yields good agreement between model and experiment.

  4. Estimation of undiscovered deposits in quantitative mineral resource assessments-examples from Venezuela and Puerto Rico

    USGS Publications Warehouse

    Cox, D.P.

    1993-01-01

    Quantitative mineral resource assessments used by the United States Geological Survey are based on deposit models. These assessments consist of three parts: (1) selecting appropriate deposit models and delineating on maps areas permissive for each type of deposit; (2) constructing a grade-tonnage model for each deposit model; and (3) estimating the number of undiscovered deposits of each type. In this article, I focus on the estimation of undiscovered deposits using two methods: the deposit density method and the target counting method. In the deposit density method, estimates are made by analogy with well-explored areas that are geologically similar to the study area and that contain a known density of deposits per unit area. The deposit density method is useful for regions where there is little or no data. This method was used to estimate undiscovered low-sulfide gold-quartz vein deposits in Venezuela. Estimates can also be made by counting targets such as mineral occurrences, geophysical or geochemical anomalies, or exploration "plays" and by assigning to each target a probability that it represents an undiscovered deposit that is a member of the grade-tonnage distribution. This method is useful in areas where detailed geological, geophysical, geochemical, and mineral occurrence data exist. Using this method, porphyry copper-gold deposits were estimated in Puerto Rico. ?? 1993 Oxford University Press.

  5. Quantitative Structure-Antifungal Activity Relationships for cinnamate derivatives.

    PubMed

    Saavedra, Laura M; Ruiz, Diego; Romanelli, Gustavo P; Duchowicz, Pablo R

    2015-12-01

    Quantitative Structure-Activity Relationships (QSAR) are established with the aim of analyzing the fungicidal activities of a set of 27 active cinnamate derivatives. The exploration of more than a thousand of constitutional, topological, geometrical and electronic molecular descriptors, which are calculated with Dragon software, leads to predictions of the growth inhibition on Pythium sp and Corticium rolfsii fungi species, in close agreement to the experimental values extracted from the literature. A set containing 21 new structurally related cinnamate compounds is prepared. The developed QSAR models are applied to predict the unknown fungicidal activity of this set, showing that cinnamates like 38, 28 and 42 are expected to be highly active for Pythium sp, while this is also predicted for 28 and 34 in C. rolfsii.

  6. Improvement and quantitative performance estimation of the back support muscle suit.

    PubMed

    Muramatsu, Y; Umehara, H; Kobayashi, H

    2013-01-01

    We have been developing the wearable muscle suit for direct and physical motion supports. The use of the McKibben artificial muscle has opened the way to the introduction of "muscle suits" compact, lightweight, reliable, wearable "assist-bots" enabling manual worker to lift and carry weights. Since back pain is the most serious problem for manual worker, improvement of the back support muscle suit under the feasibility study and quantitative estimation are shown in this paper. The structure of the upper body frame, the method to attach to the body, and the axes addition were explained as for the improvement. In the experiments, we investigated quantitative performance results and efficiency of the back support muscle suit in terms of vertical lifting of heavy weights by employing integral electromyography (IEMG). The results indicated that the values of IEMG were reduced by about 40% by using the muscle suit.

  7. Direct Estimation of Optical Parameters From Photoacoustic Time Series in Quantitative Photoacoustic Tomography.

    PubMed

    Pulkkinen, Aki; Cox, Ben T; Arridge, Simon R; Goh, Hwan; Kaipio, Jari P; Tarvainen, Tanja

    2016-11-01

    Estimation of optical absorption and scattering of a target is an inverse problem associated with quantitative photoacoustic tomography. Conventionally, the problem is expressed as two folded. First, images of initial pressure distribution created by absorption of a light pulse are formed based on acoustic boundary measurements. Then, the optical properties are determined based on these photoacoustic images. The optical stage of the inverse problem can thus suffer from, for example, artefacts caused by the acoustic stage. These could be caused by imperfections in the acoustic measurement setting, of which an example is a limited view acoustic measurement geometry. In this work, the forward model of quantitative photoacoustic tomography is treated as a coupled acoustic and optical model and the inverse problem is solved by using a Bayesian approach. Spatial distribution of the optical properties of the imaged target are estimated directly from the photoacoustic time series in varying acoustic detection and optical illumination configurations. It is numerically demonstrated, that estimation of optical properties of the imaged target is feasible in limited view acoustic detection setting.

  8. The new approach of polarimetric attenuation correction for improving radar quantitative precipitation estimation(QPE)

    NASA Astrophysics Data System (ADS)

    Gu, Ji-Young; Suk, Mi-Kyung; Nam, Kyung-Yeub; Ko, Jeong-Seok; Ryzhkov, Alexander

    2016-04-01

    To obtain high-quality radar quantitative precipitation estimation data, reliable radar calibration and efficient attenuation correction are very important. Because microwave radiation at shorter wavelength experiences strong attenuation in precipitation, accounting for this attenuation is the essential work at shorter wavelength radar. In this study, the performance of different attenuation/differential attenuation correction schemes at C band is tested for two strong rain events which occurred in central Oklahoma. And also, a new attenuation correction scheme (combination of self-consistency and hot-spot concept methodology) that separates relative contributions of strong convective cells and the rest of the storm to the path-integrated total and differential attenuation is among the algorithms explored. A quantitative use of weather radar measurement such as rainfall estimation relies on the reliable attenuation correction. We examined the impact of attenuation correction on estimates of rainfall in heavy rain events by using cross-checking with S-band radar measurements which are much less affected by attenuation and compared the storm rain totals obtained from the corrected Z and KDP and rain gages in these cases. This new approach can be utilized at shorter wavelength radars efficiently. Therefore, it is very useful to Weather Radar Center of Korea Meteorological Administration preparing X-band research dual Pol radar network.

  9. Multipoint linkage mapping using sibpairs: non-parametric estimation of trait effects with quantitative covariates.

    PubMed

    Chiou, Jeng-Min; Liang, Kung-Yee; Chiu, Yen-Feng

    2005-01-01

    Multipoint linkage analysis using sibpair designs remains a common approach to help investigators to narrow chromosomal regions for traits (either qualitative or quantitative) of interest. Despite its popularity, the success of this approach depends heavily on how issues such as genetic heterogeneity, gene-gene, and gene-environment interactions are properly handled. If addressed properly, the likelihood of detecting genetic linkage and of efficiently estimating the location of the trait locus would be enhanced, sometimes drastically. Previously, we have proposed an approach to deal with these issues by modeling the genetic effect of the target trait locus as a function of covariates pertained to the sibpairs. Here the genetic effect is simply the probability that a sibpair shares the same allele at the trait locus from their parents. Such modeling helps to divide the sibpairs into more homogeneous subgroups, which in turn helps to enhance the chance to detect linkage. One limitation of this approach is the need to categorize the covariates so that a small and fixed number of genetic effect parameters are introduced. In this report, we take advantage of the fact that nowadays multiple markers are readily available for genotyping simultaneously. This suggests that one could estimate the dependence of the generic effect on the covariates nonparametrically. We present an iterative procedure to estimate (1) the genetic effect nonparametrically and (2) the location of the trait locus through estimating functions developed by Liang et al. ([2001a] Hum Hered 51:67-76). We apply this new method to the linkage study of schizophrenia to illustrate how the onset ages of each sibpair may help to address the issue of genetic heterogeneity. This analysis sheds new light on the dependence of the trait effect on onset ages from affected sibpairs, an observation not revealed previously. In addition, we have carried out some simulation work, which suggests that this method provides

  10. Novel Sessile Drop Software for Quantitative Estimation of Slag Foaming in Carbon/Slag Interactions

    NASA Astrophysics Data System (ADS)

    Khanna, Rita; Rahman, Mahfuzur; Leow, Richard; Sahajwalla, Veena

    2007-08-01

    Novel video-processing software has been developed for the sessile drop technique for a rapid and quantitative estimation of slag foaming. The data processing was carried out in two stages: the first stage involved the initial transformation of digital video/audio signals into a format compatible with computing software, and the second stage involved the computation of slag droplet volume and area of contact in a chosen video frame. Experimental results are presented on slag foaming from synthetic graphite/slag system at 1550 °C. This technique can be used for determining the extent and stability of foam as a function of time.

  11. Quantitative estimation of hemorrhage in chronic subdural hematoma using the /sup 51/Cr erythrocyte labeling method

    SciTech Connect

    Ito, H.; Yamamoto, S.; Saito, K.; Ikeda, K.; Hisada, K.

    1987-06-01

    Red cell survival studies using an infusion of chromium-51-labeled erythrocytes were performed to quantitatively estimate hemorrhage in the chronic subdural hematoma cavity of 50 patients. The amount of hemorrhage was determined during craniotomy. Between 6 and 24 hours after infusion of the labeled red cells, hemorrhage accounted for a mean of 6.7% of the hematoma content, indicating continuous or intermittent hemorrhage into the cavity. The clinical state of the patients and the density of the chronic subdural hematoma on computerized tomography scans were related to the amount of hemorrhage. Chronic subdural hematomas with a greater amount of hemorrhage frequently consisted of clots rather than fluid.

  12. High throughput, quantitative analysis of human osteoclast differentiation and activity.

    PubMed

    Diepenhorst, Natalie A; Nowell, Cameron J; Rueda, Patricia; Henriksen, Kim; Pierce, Tracie; Cook, Anna E; Pastoureau, Philippe; Sabatini, Massimo; Charman, William N; Christopoulos, Arthur; Summers, Roger J; Sexton, Patrick M; Langmead, Christopher J

    2017-02-15

    Osteoclasts are multinuclear cells that degrade bone under both physiological and pathophysiological conditions. Osteoclasts are therefore a major target of osteoporosis therapeutics aimed at preserving bone. Consequently, analytical methods for osteoclast activity are useful for the development of novel biomarkers and/or pharmacological agents for the treatment of osteoporosis. The nucleation state of an osteoclast is indicative of its maturation and activity. To date, activity is routinely measured at the population level with only approximate consideration of the nucleation state (an 'osteoclast population' is typically defined as cells with ≥3 nuclei). Using a fluorescent substrate for tartrate-resistant acid phosphatase (TRAP), a routinely used marker of osteoclast activity, we developed a multi-labelled imaging method for quantitative measurement of osteoclast TRAP activity at the single cell level. Automated image analysis enables interrogation of large osteoclast populations in a high throughput manner using open source software. Using this methodology, we investigated the effects of receptor activator of nuclear factor kappa-B ligand (RANK-L) on osteoclast maturation and activity and demonstrated that TRAP activity directly correlates with osteoclast maturity (i.e. nuclei number). This method can be applied to high throughput screening of osteoclast-targeting compounds to determine changes in maturation and activity.

  13. Application of quantitative structure-property relationship analysis to estimate the vapor pressure of pesticides.

    PubMed

    Goodarzi, Mohammad; Coelho, Leandro dos Santos; Honarparvar, Bahareh; Ortiz, Erlinda V; Duchowicz, Pablo R

    2016-06-01

    The application of molecular descriptors in describing Quantitative Structure Property Relationships (QSPR) for the estimation of vapor pressure (VP) of pesticides is of ongoing interest. In this study, QSPR models were developed using multiple linear regression (MLR) methods to predict the vapor pressure values of 162 pesticides. Several feature selection methods, namely the replacement method (RM), genetic algorithms (GA), stepwise regression (SR) and forward selection (FS), were used to select the most relevant molecular descriptors from a pool of variables. The optimum subset of molecular descriptors was used to build a QSPR model to estimate the vapor pressures of the selected pesticides. The Replacement Method improved the predictive ability of vapor pressures and was more reliable for the feature selection of these selected pesticides. The results provided satisfactory MLR models that had a satisfactory predictive ability, and will be important for predicting vapor pressure values for compounds with unknown values. This study may open new opportunities for designing and developing new pesticide.

  14. Quantitative Cyber Risk Reduction Estimation Methodology for a Small Scada Control System

    SciTech Connect

    Miles A. McQueen; Wayne F. Boyer; Mark A. Flynn; George A. Beitel

    2006-01-01

    We propose a new methodology for obtaining a quick quantitative measurement of the risk reduction achieved when a control system is modified with the intent to improve cyber security defense against external attackers. The proposed methodology employs a directed graph called a compromise graph, where the nodes represent stages of a potential attack and the edges represent the expected time-to-compromise for differing attacker skill levels. Time-to-compromise is modeled as a function of known vulnerabilities and attacker skill level. The methodology was used to calculate risk reduction estimates for a specific SCADA system and for a specific set of control system security remedial actions. Despite an 86% reduction in the total number of vulnerabilities, the estimated time-to-compromise was increased only by about 3 to 30% depending on target and attacker skill level.

  15. Target identification with quantitative activity based protein profiling (ABPP).

    PubMed

    Chen, Xiao; Wong, Yin Kwan; Wang, Jigang; Zhang, Jianbin; Lee, Yew-Mun; Shen, Han-Ming; Lin, Qingsong; Hua, Zi-Chun

    2017-02-01

    As many small bioactive molecules fulfill their functions through interacting with protein targets, the identification of such targets is crucial in understanding their mechanisms of action (MOA) and side effects. With technological advancements in target identification, it has become possible to accurately and comprehensively study the MOA and side effects of small molecules. While small molecules with therapeutic potential were derived solely from nature in the past, the remodeling and synthesis of such molecules have now been made possible. Presently, while some small molecules have seen successful application as drugs, the majority remain undeveloped, requiring further understanding of their MOA and side effects to fully tap into their potential. Given the typical promiscuity of many small molecules and the complexity of the cellular proteome, a high-flux and high-accuracy method is necessary. While affinity chromatography approaches combined with MS have had successes in target identification, limitations associated with nonspecific results remain. To overcome these complications, quantitative chemical proteomics approaches have been developed including metabolic labeling, chemical labeling, and label-free methods. These new approaches are adopted in conjunction with activity-based protein profiling (ABPP), allowing for a rapid process and accurate results. This review will briefly introduce the principles involved in ABPP, then summarize current advances in quantitative chemical proteomics approaches as well as illustrate with examples how ABPP coupled with quantitative chemical proteomics has been used to detect the targets of drugs and other bioactive small molecules including natural products.

  16. Partitioning and lipophilicity in quantitative structure-activity relationships.

    PubMed Central

    Dearden, J C

    1985-01-01

    The history of the relationship of biological activity to partition coefficient and related properties is briefly reviewed. The dominance of partition coefficient in quantitation of structure-activity relationships is emphasized, although the importance of other factors is also demonstrated. Various mathematical models of in vivo transport and binding are discussed; most of these involve partitioning as the primary mechanism of transport. The models describe observed quantitative structure-activity relationships (QSARs) well on the whole, confirming that partitioning is of key importance in in vivo behavior of a xenobiotic. The partition coefficient is shown to correlate with numerous other parameters representing bulk, such as molecular weight, volume and surface area, parachor and calculated indices such as molecular connectivity; this is especially so for apolar molecules, because for polar molecules lipophilicity factors into both bulk and polar or hydrogen bonding components. The relationship of partition coefficient to chromatographic parameters is discussed, and it is shown that such parameters, which are often readily obtainable experimentally, can successfully supplant partition coefficient in QSARs. The relationship of aqueous solubility with partition coefficient is examined in detail. Correlations are observed, even with solid compounds, and these can be used to predict solubility. The additive/constitutive nature of partition coefficient is discussed extensively, as are the available schemes for the calculation of partition coefficient. Finally the use of partition coefficient to provide structural information is considered. It is shown that partition coefficient can be a valuable structural tool, especially if the enthalpy and entropy of partitioning are available. PMID:3905374

  17. Quantitative genetic activity graphical profiles for use in chemical evaluation

    SciTech Connect

    Waters, M.D.; Stack, H.F.; Garrett, N.E.; Jackson, M.A.

    1990-12-31

    A graphic approach, terms a Genetic Activity Profile (GAP), was developed to display a matrix of data on the genetic and related effects of selected chemical agents. The profiles provide a visual overview of the quantitative (doses) and qualitative (test results) data for each chemical. Either the lowest effective dose or highest ineffective dose is recorded for each agent and bioassay. Up to 200 different test systems are represented across the GAP. Bioassay systems are organized according to the phylogeny of the test organisms and the end points of genetic activity. The methodology for producing and evaluating genetic activity profile was developed in collaboration with the International Agency for Research on Cancer (IARC). Data on individual chemicals were compiles by IARC and by the US Environmental Protection Agency (EPA). Data are available on 343 compounds selected from volumes 1-53 of the IARC Monographs and on 115 compounds identified as Superfund Priority Substances. Software to display the GAPs on an IBM-compatible personal computer is available from the authors. Structurally similar compounds frequently display qualitatively and quantitatively similar profiles of genetic activity. Through examination of the patterns of GAPs of pairs and groups of chemicals, it is possible to make more informed decisions regarding the selection of test batteries to be used in evaluation of chemical analogs. GAPs provided useful data for development of weight-of-evidence hazard ranking schemes. Also, some knowledge of the potential genetic activity of complex environmental mixtures may be gained from an assessment of the genetic activity profiles of component chemicals. The fundamental techniques and computer programs devised for the GAP database may be used to develop similar databases in other disciplines. 36 refs., 2 figs.

  18. [Quantitative estimation source of urban atmospheric CO2 by carbon isotope composition].

    PubMed

    Liu, Wei; Wei, Nan-Nan; Wang, Guang-Hua; Yao, Jian; Zeng, You-Shi; Fan, Xue-Bo; Geng, Yan-Hong; Li, Yan

    2012-04-01

    To effectively reduce urban carbon emissions and verify the effectiveness of currently project for urban carbon emission reduction, quantitative estimation sources of urban atmospheric CO2 correctly is necessary. Since little fractionation of carbon isotope exists in the transportation from pollution sources to the receptor, the carbon isotope composition can be used for source apportionment. In the present study, a method was established to quantitatively estimate the source of urban atmospheric CO2 by the carbon isotope composition. Both diurnal and height variations of concentrations of CO2 derived from biomass, vehicle exhaust and coal burning were further determined for atmospheric CO2 in Jiading district of Shanghai. Biomass-derived CO2 accounts for the largest portion of atmospheric CO2. The concentrations of CO2 derived from the coal burning are larger in the night-time (00:00, 04:00 and 20:00) than in the daytime (08:00, 12:00 and 16:00), and increase with the increase of height. Those derived from the vehicle exhaust decrease with the height increase. The diurnal and height variations of sources reflect the emission and transport characteristics of atmospheric CO2 in Jiading district of Shanghai.

  19. ADMIT: a toolbox for guaranteed model invalidation, estimation and qualitative–quantitative modeling

    PubMed Central

    Streif, Stefan; Savchenko, Anton; Rumschinski, Philipp; Borchers, Steffen; Findeisen, Rolf

    2012-01-01

    Summary: Often competing hypotheses for biochemical networks exist in the form of different mathematical models with unknown parameters. Considering available experimental data, it is then desired to reject model hypotheses that are inconsistent with the data, or to estimate the unknown parameters. However, these tasks are complicated because experimental data are typically sparse, uncertain, and are frequently only available in form of qualitative if–then observations. ADMIT (Analysis, Design and Model Invalidation Toolbox) is a MatLabTM-based tool for guaranteed model invalidation, state and parameter estimation. The toolbox allows the integration of quantitative measurement data, a priori knowledge of parameters and states, and qualitative information on the dynamic or steady-state behavior. A constraint satisfaction problem is automatically generated and algorithms are implemented for solving the desired estimation, invalidation or analysis tasks. The implemented methods built on convex relaxation and optimization and therefore provide guaranteed estimation results and certificates for invalidity. Availability: ADMIT, tutorials and illustrative examples are available free of charge for non-commercial use at http://ifatwww.et.uni-magdeburg.de/syst/ADMIT/ Contact: stefan.streif@ovgu.de PMID:22451270

  20. Estimating effects of a single gene and polygenes on quantitative traits from a diallel design.

    PubMed

    Lou, Xiang-Yang; Yang, Mark C K

    2006-01-01

    A genetic model is developed with additive and dominance effects of a single gene and polygenes as well as general and specific reciprocal effects for the progeny from a diallel mating design. The methods of ANOVA, minimum norm quadratic unbiased estimation (MINQUE), restricted maximum likelihood estimation (REML), and maximum likelihood estimation (ML) are suggested for estimating variance components, and the methods of generalized least squares (GLS) and ordinary least squares (OLS) for fixed effects, while best linear unbiased prediction, linear unbiased prediction (LUP), and adjusted unbiased prediction are suggested for analyzing random effects. Monte Carlo simulations were conducted to evaluate the unbiasedness and efficiency of statistical methods involving two diallel designs with commonly used sample sizes, 6 and 8 parents, with no and missing crosses, respectively. Simulation results show that GLS and OLS are almost equally efficient for estimation of fixed effects, while MINQUE (1) and REML are better estimators of the variance components and LUP is most practical method for prediction of random effects. Data from a Drosophila melanogaster experiment (Gilbert 1985a, Theor appl Genet 69:625-629) were used as a working example to demonstrate the statistical analysis. The new methodology is also applicable to screening candidate gene(s) and to other mating designs with multiple parents, such as nested (NC Design I) and factorial (NC Design II) designs. Moreover, this methodology can serve as a guide to develop new methods for detecting indiscernible major genes and mapping quantitative trait loci based on mixture distribution theory. The computer program for the methods suggested in this article is freely available from the authors.

  1. Estimation of Exercise Intensity in “Exercise and Physical Activity Reference for Health Promotion”

    NASA Astrophysics Data System (ADS)

    Ohkubo, Tomoyuki; Kurihara, Yosuke; Kobayashi, Kazuyuki; Watanabe, Kajiro

    To maintain or promote the health condition of elderly citizens is quite important for Japan. Given the circumstances, the Ministry of Health, Labour and Welfare has established the standards for the activities and exercises for promoting the health, and quantitatively determined the exercise intensity on 107 items of activities. This exercise intensity, however, requires recording the type and the duration of the activity to be calculated. In this paper, the exercise intensities are estimated using 3D accelerometer for 25 daily activities. As the result, the exercise intensities were estimated to be within the root mean square error of 0.83 METs for all 25 activities.

  2. A Novel Method of Quantitative Anterior Chamber Depth Estimation Using Temporal Perpendicular Digital Photography

    PubMed Central

    Zamir, Ehud; Kong, George Y.X.; Kowalski, Tanya; Coote, Michael; Ang, Ghee Soon

    2016-01-01

    Purpose We hypothesize that: (1) Anterior chamber depth (ACD) is correlated with the relative anteroposterior position of the pupillary image, as viewed from the temporal side. (2) Such a correlation may be used as a simple quantitative tool for estimation of ACD. Methods Two hundred sixty-six phakic eyes had lateral digital photographs taken from the temporal side, perpendicular to the visual axis, and underwent optical biometry (Nidek AL scanner). The relative anteroposterior position of the pupillary image was expressed using the ratio between: (1) lateral photographic temporal limbus to pupil distance (“E”) and (2) lateral photographic temporal limbus to cornea distance (“Z”). In the first chronological half of patients (Correlation Series), E:Z ratio (EZR) was correlated with optical biometric ACD. The correlation equation was then used to predict ACD in the second half of patients (Prediction Series) and compared to their biometric ACD for agreement analysis. Results A strong linear correlation was found between EZR and ACD, R = −0.91, R2 = 0.81. Bland-Altman analysis showed good agreement between predicted ACD using this method and the optical biometric ACD. The mean error was −0.013 mm (range −0.377 to 0.336 mm), standard deviation 0.166 mm. The 95% limits of agreement were ±0.33 mm. Conclusions Lateral digital photography and EZR calculation is a novel method to quantitatively estimate ACD, requiring minimal equipment and training. Translational Relevance EZ ratio may be employed in screening for angle closure glaucoma. It may also be helpful in outpatient medical clinic settings, where doctors need to judge the safety of topical or systemic pupil-dilating medications versus their risk of triggering acute angle closure glaucoma. Similarly, non ophthalmologists may use it to estimate the likelihood of acute angle closure glaucoma in emergency presentations. PMID:27540496

  3. Application of short-wave infrared (SWIR) spectroscopy in quantitative estimation of clay mineral contents

    NASA Astrophysics Data System (ADS)

    You, Jinfeng; Xing, Lixin; Liang, Liheng; Pan, Jun; Meng, Tao

    2014-03-01

    Clay minerals are significant constituents of soil which are necessary for life. This paper studied three types of clay minerals, kaolinite, illite, and montmorillonite, for they are not only the most common soil forming materials, but also important indicators of soil expansion and shrinkage potential. These clay minerals showed diagnostic absorption bands resulting from vibrations of hydroxyl groups and structural water molecules in the SWIR wavelength region. The short-wave infrared reflectance spectra of the soil was obtained from a Portable Near Infrared Spectrometer (PNIS, spectrum range: 1300~2500 nm, interval: 2 nm). Due to the simplicity, quickness, and the non-destructiveness analysis, SWIR spectroscopy has been widely used in geological prospecting, chemical engineering and many other fields. The aim of this study was to use multiple linear regression (MLR) and partial least squares (PLS) regression to establish the optimizing quantitative estimation models of the kaolinite, illite and montmorillonite contents from soil reflectance spectra. Here, the soil reflectance spectra mainly refers to the spectral reflectivity of soil (SRS) corresponding to the absorption-band position (AP) of kaolinite, illite, and montmorillonite representative spectra from USGS spectral library, the SRS corresponding to the AP of soil spectral and soil overall spectrum reflectance values. The optimal estimation models of three kinds of clay mineral contents showed that the retrieval accuracy was satisfactory (Kaolinite content: a Root Mean Square Error of Calibration (RMSEC) of 1.671 with a coefficient of determination (R2) of 0.791; Illite content: a RMSEC of 1.126 with a R2 of 0.616; Montmorillonite content: a RMSEC of 1.814 with a R2 of 0.707). Thus, the reflectance spectra of soil obtained form PNIS could be used for quantitative estimation of kaolinite, illite and montmorillonite contents in soil.

  4. Quantitative analysis of axonal fiber activation evoked by deep brain stimulation via activation density heat maps

    PubMed Central

    Hartmann, Christian J.; Chaturvedi, Ashutosh; Lujan, J. Luis

    2015-01-01

    Background: Cortical modulation is likely to be involved in the various therapeutic effects of deep brain stimulation (DBS). However, it is currently difficult to predict the changes of cortical modulation during clinical adjustment of DBS. Therefore, we present a novel quantitative approach to estimate anatomical regions of DBS-evoked cortical modulation. Methods: Four different models of the subthalamic nucleus (STN) DBS were created to represent variable electrode placements (model I: dorsal border of the posterolateral STN; model II: central posterolateral STN; model III: central anteromedial STN; model IV: dorsal border of the anteromedial STN). Axonal fibers of passage near each electrode location were reconstructed using probabilistic tractography and modeled using multi-compartment cable models. Stimulation-evoked activation of local axon fibers and corresponding cortical projections were modeled and quantified. Results: Stimulation at the border of the STN (models I and IV) led to a higher degree of fiber activation and associated cortical modulation than stimulation deeply inside the STN (models II and III). A posterolateral target (models I and II) was highly connected to cortical areas representing motor function. Additionally, model I was also associated with strong activation of fibers projecting to the cerebellum. Finally, models III and IV showed a dorsoventral difference of preferentially targeted prefrontal areas (models III: middle frontal gyrus; model IV: inferior frontal gyrus). Discussion: The method described herein allows characterization of cortical modulation across different electrode placements and stimulation parameters. Furthermore, knowledge of anatomical distribution of stimulation-evoked activation targeting cortical regions may help predict efficacy and potential side effects, and therefore can be used to improve the therapeutic effectiveness of individual adjustments in DBS patients. PMID:25713510

  5. Using extended genealogy to estimate components of heritability for 23 quantitative and dichotomous traits.

    PubMed

    Zaitlen, Noah; Kraft, Peter; Patterson, Nick; Pasaniuc, Bogdan; Bhatia, Gaurav; Pollack, Samuela; Price, Alkes L

    2013-05-01

    Important knowledge about the determinants of complex human phenotypes can be obtained from the estimation of heritability, the fraction of phenotypic variation in a population that is determined by genetic factors. Here, we make use of extensive phenotype data in Iceland, long-range phased genotypes, and a population-wide genealogical database to examine the heritability of 11 quantitative and 12 dichotomous phenotypes in a sample of 38,167 individuals. Most previous estimates of heritability are derived from family-based approaches such as twin studies, which may be biased upwards by epistatic interactions or shared environment. Our estimates of heritability, based on both closely and distantly related pairs of individuals, are significantly lower than those from previous studies. We examine phenotypic correlations across a range of relationships, from siblings to first cousins, and find that the excess phenotypic correlation in these related individuals is predominantly due to shared environment as opposed to dominance or epistasis. We also develop a new method to jointly estimate narrow-sense heritability and the heritability explained by genotyped SNPs. Unlike existing methods, this approach permits the use of information from both closely and distantly related pairs of individuals, thereby reducing the variance of estimates of heritability explained by genotyped SNPs while preventing upward bias. Our results show that common SNPs explain a larger proportion of the heritability than previously thought, with SNPs present on Illumina 300K genotyping arrays explaining more than half of the heritability for the 23 phenotypes examined in this study. Much of the remaining heritability is likely to be due to rare alleles that are not captured by standard genotyping arrays.

  6. Quantitative structure-activity relationship studies on nitrofuranyl antitubercular agents

    PubMed Central

    Hevener, Kirk E.; Ball, David M.; Buolamwini, John K.

    2008-01-01

    A series of nitrofuranylamide and related aromatic compounds displaying potent activity against M. tuberculosis has been investigated utilizing 3-Dimensional Quantitative Structure-Activity Relationship (3D-QSAR) techniques. Comparative Molecular Field Analysis (CoMFA) and Comparative Molecular Similarity Indices Analysis (CoMSIA) methods were used to produce 3D-QSAR models that correlated the Minimum Inhibitory Concentration (MIC) values against M. tuberculosis with the molecular structures of the active compounds. A training set of 95 active compounds was used to develop the models, which were then evaluated by a series of internal and external cross-validation techniques. A test set of 15 compounds was used for the external validation. Different alignment and ionization rules were investigated as well as the effect of global molecular descriptors including lipophilicity (cLogP, LogD), Polar Surface Area (PSA), and steric bulk (CMR), on model predictivity. Models with greater than 70% predictive ability, as determined by external validation, and high internal validity (cross validated r2 > .5) have been developed. Incorporation of lipophilicity descriptors into the models had negligible effects on model predictivity. The models developed will be used to predict the activity of proposed new structures and advance the development of next generation nitrofuranyl and related nitroaromatic anti-tuberculosis agents. PMID:18701298

  7. Spectral Feature Analysis for Quantitative Estimation of Cyanobacteria Chlorophyll-A

    NASA Astrophysics Data System (ADS)

    Lin, Yi; Ye, Zhanglin; Zhang, Yugan; Yu, Jie

    2016-06-01

    In recent years, lake eutrophication caused a large of Cyanobacteria bloom which not only brought serious ecological disaster but also restricted the sustainable development of regional economy in our country. Chlorophyll-a is a very important environmental factor to monitor water quality, especially for lake eutrophication. Remote sensed technique has been widely utilized in estimating the concentration of chlorophyll-a by different kind of vegetation indices and monitoring its distribution in lakes, rivers or along coastline. For each vegetation index, its quantitative estimation accuracy for different satellite data might change since there might be a discrepancy of spectral resolution and channel center between different satellites. The purpose this paper is to analyze the spectral feature of chlorophyll-a with hyperspectral data (totally 651 bands) and use the result to choose the optimal band combination for different satellites. The analysis method developed here in this study could be useful to recognize and monitor cyanobacteria bloom automatically and accrately. In our experiment, the reflectance (from 350nm to 1000nm) of wild cyanobacteria in different consistency (from 0 to 1362.11ug/L) and the corresponding chlorophyll-a concentration were measured simultaneously. Two kinds of hyperspectral vegetation indices were applied in this study: simple ratio (SR) and narrow band normalized difference vegetation index (NDVI), both of which consists of any two bands in the entire 651 narrow bands. Then multivariate statistical analysis was used to construct the linear, power and exponential models. After analyzing the correlation between chlorophyll-a and single band reflectance, SR, NDVI respetively, the optimal spectral index for quantitative estimation of cyanobacteria chlorophyll-a, as well corresponding central wavelength and band width were extracted. Results show that: Under the condition of water disturbance, SR and NDVI are both suitable for quantitative

  8. New service interface for River Forecasting Center derived quantitative precipitation estimates

    USGS Publications Warehouse

    Blodgett, David L.

    2013-01-01

    For more than a decade, the National Weather Service (NWS) River Forecast Centers (RFCs) have been estimating spatially distributed rainfall by applying quality-control procedures to radar-indicated rainfall estimates in the eastern United States and other best practices in the western United States to producea national Quantitative Precipitation Estimate (QPE) (National Weather Service, 2013). The availability of archives of QPE information for analytical purposes has been limited to manual requests for access to raw binary file formats that are difficult for scientists who are not in the climatic sciences to work with. The NWS provided the QPE archives to the U.S. Geological Survey (USGS), and the contents of the real-time feed from the RFCs are being saved by the USGS for incorporation into the archives. The USGS has applied time-series aggregation and added latitude-longitude coordinate variables to publish the RFC QPE data. Web services provide users with direct (index-based) data access, rendered visualizations of the data, and resampled raster representations of the source data in common geographic information formats.

  9. Reef-associated crustacean fauna: biodiversity estimates using semi-quantitative sampling and DNA barcoding

    NASA Astrophysics Data System (ADS)

    Plaisance, L.; Knowlton, N.; Paulay, G.; Meyer, C.

    2009-12-01

    The cryptofauna associated with coral reefs accounts for a major part of the biodiversity in these ecosystems but has been largely overlooked in biodiversity estimates because the organisms are hard to collect and identify. We combine a semi-quantitative sampling design and a DNA barcoding approach to provide metrics for the diversity of reef-associated crustacean. Twenty-two similar-sized dead heads of Pocillopora were sampled at 10 m depth from five central Pacific Ocean localities (four atolls in the Northern Line Islands and in Moorea, French Polynesia). All crustaceans were removed, and partial cytochrome oxidase subunit I was sequenced from 403 individuals, yielding 135 distinct taxa using a species-level criterion of 5% similarity. Most crustacean species were rare; 44% of the OTUs were represented by a single individual, and an additional 33% were represented by several specimens found only in one of the five localities. The Northern Line Islands and Moorea shared only 11 OTUs. Total numbers estimated by species richness statistics (Chao1 and ACE) suggest at least 90 species of crustaceans in Moorea and 150 in the Northern Line Islands for this habitat type. However, rarefaction curves for each region failed to approach an asymptote, and Chao1 and ACE estimators did not stabilize after sampling eight heads in Moorea, so even these diversity figures are underestimates. Nevertheless, even this modest sampling effort from a very limited habitat resulted in surprisingly high species numbers.

  10. A method for estimating the effective number of loci affecting a quantitative character.

    PubMed

    Slatkin, Montgomery

    2013-11-01

    A likelihood method is introduced that jointly estimates the number of loci and the additive effect of alleles that account for the genetic variance of a normally distributed quantitative character in a randomly mating population. The method assumes that measurements of the character are available from one or both parents and an arbitrary number of full siblings. The method uses the fact, first recognized by Karl Pearson in 1904, that the variance of a character among offspring depends on both the parental phenotypes and on the number of loci. Simulations show that the method performs well provided that data from a sufficient number of families (on the order of thousands) are available. This method assumes that the loci are in Hardy-Weinberg and linkage equilibrium but does not assume anything about the linkage relationships. It performs equally well if all loci are on the same non-recombining chromosome provided they are in linkage equilibrium. The method can be adapted to take account of loci already identified as being associated with the character of interest. In that case, the method estimates the number of loci not already known to affect the character. The method applied to measurements of crown-rump length in 281 family trios in a captive colony of African green monkeys (Chlorocebus aethiopus sabaeus) estimates the number of loci to be 112 and the additive effect to be 0.26 cm. A parametric bootstrap analysis shows that a rough confidence interval has a lower bound of 14 loci.

  11. Quantitative estimation of surface ocean productivity and bottom water oxygen concentration using benthic foraminifera

    NASA Astrophysics Data System (ADS)

    Loubere, Paul

    1994-10-01

    An electronic supplement of this material may be obtained on adiskette or Anonymous FTP from KOSMOS.AGU.ORG. (LOGIN toAGU's FTP account using ANONYMOUS as the usemame andGUEST as the password. Go to the right directory by typing CDAPEND. Type LS to see what files are available. Type GET and thename of the file to get it. Finally, type EXIT to leave the system.)(Paper 94PA01624, Quantitative estimation of surface oceanproductivity and bottom water concentration using benthicforaminifera, by P. Loubere). Diskette may be ordered from AmericanGeophysical Union, 2000 Florida Avenue, N.W., Washington, DC20009; $15.00. Payment must accompany order.Quantitative estimation of surface ocean productivity and bottom water oxygen concentration with benthic foraminifera was attempted using 70 samples from equatorial and North Pacific surface sediments. These samples come from a well defined depth range in the ocean, between 2200 and 3200 m, so that depth related factors do not interfere with the estimation. Samples were selected so that foraminifera were well preserved in the sediments and temperature and salinity were nearly uniform (T = 1.5° C; S = 34.6‰). The sample set was also assembled so as to minimize the correlation often seen between surface ocean productivity and bottom water oxygen values (r² = 0.23 for prediction purposes in this case). This procedure reduced the chances of spurious results due to correlations between the environmental variables. The samples encompass a range of productivities from about 25 to >300 gC m-2 yr-1, and a bottom water oxygen range from 1.8 to 3.5 ml/L. Benthic foraminiferal assemblages were quantified using the >62 µm fraction of the sediments and 46 taxon categories. MANOVA multivariate regression was used to project the faunal matrix onto the two environmental dimensions using published values for productivity and bottom water oxygen to calibrate this operation. The success of this regression was measured with the multivariate r

  12. Quantitative Functional Imaging Using Dynamic Positron Computed Tomography and Rapid Parameter Estimation Techniques

    NASA Astrophysics Data System (ADS)

    Koeppe, Robert Allen

    Positron computed tomography (PCT) is a diagnostic imaging technique that provides both three dimensional imaging capability and quantitative measurements of local tissue radioactivity concentrations in vivo. This allows the development of non-invasive methods that employ the principles of tracer kinetics for determining physiological properties such as mass specific blood flow, tissue pH, and rates of substrate transport or utilization. A physiologically based, two-compartment tracer kinetic model was derived to mathematically describe the exchange of a radioindicator between blood and tissue. The model was adapted for use with dynamic sequences of data acquired with a positron tomograph. Rapid estimation techniques were implemented to produce functional images of the model parameters by analyzing each individual pixel sequence of the image data. A detailed analysis of the performance characteristics of three different parameter estimation schemes was performed. The analysis included examination of errors caused by statistical uncertainties in the measured data, errors in the timing of the data, and errors caused by violation of various assumptions of the tracer kinetic model. Two specific radioindicators were investigated. ('18)F -fluoromethane, an inert freely diffusible gas, was used for local quantitative determinations of both cerebral blood flow and tissue:blood partition coefficient. A method was developed that did not require direct sampling of arterial blood for the absolute scaling of flow values. The arterial input concentration time course was obtained by assuming that the alveolar or end-tidal expired breath radioactivity concentration is proportional to the arterial blood concentration. The scale of the input function was obtained from a series of venous blood concentration measurements. The method of absolute scaling using venous samples was validated in four studies, performed on normal volunteers, in which directly measured arterial concentrations

  13. Immunohistochemical quantitation of oestrogen receptors and proliferative activity in oestrogen receptor positive breast cancer.

    PubMed Central

    Jensen, V; Ladekarl, M

    1995-01-01

    AIM--To evaluate the effect of the duration of formalin fixation and of tumour heterogeneity on quantitative estimates of oestrogen receptor content (oestrogen receptor index) and proliferative activity (MIB-1 index) in breast cancer. METHODS--Two monoclonal antibodies, MIB-1 and oestrogen receptor, were applied to formalin fixed, paraffin wax embedded tissue from 25 prospectively collected oestrogen receptor positive breast carcinomas, using a microwave antigen retrieval method. Tumour tissue was allocated systematically to different periods of fixation to ensure minimal intraspecimen variation. The percentages of MIB-1 positive and oestrogen receptor positive nuclei were estimated in fields of vision sampled systematically from the entire specimen and from the whole tumour area of one "representative" cross-section. RESULTS--No correlation was found between the oestrogen receptor and MIB-1 indices and the duration of formalin fixation. The estimated MIB-1 and oestrogen receptor indices in tissue sampled systematically from the entire tumour were closely correlated with estimates obtained in a "representative" section. The intra- and interobserver correlation of the MIB-1 index was good, although a slight systematical error at the second assessment of the intraobserver study was noted. CONCLUSION--Quantitative estimates of oestrogen receptor content and proliferative activity are not significantly influenced by the period of fixation in formalin, varying from less than four hours to more than 48 hours. The MIB-1 and the oestrogen receptor indices obtained in a "representative" section do not deviate significantly from average indices determined in tissue samples from the entire tumour. Finally, the estimation of MIB-1 index is reproducible, justifying its routine use. PMID:7629289

  14. Estimation of humoral activity of Eleutherococcus senticosus.

    PubMed

    Drozd, Janina; Sawicka, Teresa; Prosińska, Joanna

    2002-01-01

    The aim of the present work was an estimation of the influence of two plant pharmaceutical preparations containing an extract from the root of Eleutherococcus senticosus: Argoeleuter tablets and Immuplant tablets, on the humoral response of immunological system. Experiments were performed with female Balb/c mice six weeks old. In order to reveal the influence of taking preparations, containing an extract from Eleutherococcus senticosus on some elements of the immunological system, three ways of their administration have been compared: before illness, during illness and a combination of both. The obtained results allow formulating the following conclusions: - the pharmaceutical preparations, containing the extract from Eleutherococcus senticosus administered orally, influence on the increase of the level of immunoglobulins comprised in the mice's blood serum, - the pharmaceutical preparations act with different power, not fully dependent on the content of marker of the active substance - eleutheroside E, - dosage of the preparations containing the extract from Eleutherococcus senticosus should not be established basing only on the extract content, - best curative results, measured as the stimulation of humoral response of the organism were obtained when a given preparation was administered therapeutically, even though the combined administration - prophylactically with prolonged administration during illness also is correct.

  15. Comparison of quantitative structure-activity relationship model performances on carboquinone derivatives.

    PubMed

    Bolboacă, Sorana-Daniela; Jäntschi, Lorentz

    2009-10-14

    Quantitative structure-activity relationship (qSAR) models are used to understand how the structure and activity of chemical compounds relate. In the present study, 37 carboquinone derivatives were evaluated and two different qSAR models were developed using members of the Molecular Descriptors Family (MDF) and the Molecular Descriptors Family on Vertices (MDFV). The usual parameters of regression models and the following estimators were defined and calculated in order to analyze the validity and to compare the models: Akaike's information criteria (three parameters), Schwarz (or Bayesian) information criterion, Amemiya prediction criterion, Hannan-Quinn criterion, Kubinyi function, Steiger's Z test, and Akaike's weights. The MDF and MDFV models proved to have the same estimation ability of the goodness-of-fit according to Steiger's Z test. The MDFV model proved to be the best model for the considered carboquinone derivatives according to the defined information and prediction criteria, Kubinyi function, and Akaike's weights.

  16. Method for quantitative estimation of position perception using a joystick during linear movement.

    PubMed

    Wada, Y; Tanaka, M; Mori, S; Chen, Y; Sumigama, S; Naito, H; Maeda, M; Yamamoto, M; Watanabe, S; Kajitani, N

    1996-12-01

    We designed a method for quantitatively estimating self-motion perceptions during passive body movement on a sled. The subjects were instructed to tilt a joystick in proportion to perceived displacement from a giving starting position during linear movement with varying displacements of 4 m, 10 m and 16 m induced by constant acceleration of 0.02 g, 0.05 g and 0.08 g along the antero-posterior axis. With this method, we could monitor not only subjective position perceptions but also response latencies for the beginning (RLbgn) and end (RLend) of the linear movement. Perceived body position fitted Stevens' power law, where R=kSn (R is output of the joystick, k is a constant, S is the displacement from the linear movement and n is an exponent). RLbgn decreased as linear acceleration increased. We conclude that this method is useful in analyzing the features and sensitivities of self-motion perceptions during movement.

  17. Accuracy in the estimation of quantitative minimal area from the diversity/area curve.

    PubMed

    Vives, Sergi; Salicrú, Miquel

    2005-05-01

    The problem of representativity is fundamental in ecological studies. A qualitative minimal area that gives a good representation of species pool [C.M. Bouderesque, Methodes d'etude qualitative et quantitative du benthos (en particulier du phytobenthos), Tethys 3(1) (1971) 79] can be discerned from a quantitative minimal area which reflects the structural complexity of community [F.X. Niell, Sobre la biologia de Ascophyllum nosodum (L.) Le Jolis en Galicia, Invest. Pesq. 43 (1979) 501]. This suggests that the populational diversity can be considered as the value of the horizontal asymptote corresponding to the curve sample diversity/biomass [F.X. Niell, Les applications de l'index de Shannon a l'etude de la vegetation interdidale, Soc. Phycol. Fr. Bull. 19 (1974) 238]. In this study we develop a expression to determine minimal areas and use it to obtain certain information about the community structure based on diversity/area curve graphs. This expression is based on the functional relationship between the expected value of the diversity and the sample size used to estimate it. In order to establish the quality of the estimation process, we obtained the confidence intervals as a particularization of the functional (h-phi)-entropies proposed in [M. Salicru, M.L. Menendez, D. Morales, L. Pardo, Asymptotic distribution of (h,phi)-entropies, Commun. Stat. (Theory Methods) 22 (7) (1993) 2015]. As an example used to demonstrate the possibilities of this method, and only for illustrative purposes, data about a study on the rocky intertidal seawed populations in the Ria of Vigo (N.W. Spain) are analyzed [F.X. Niell, Estudios sobre la estructura, dinamica y produccion del Fitobentos intermareal (Facies rocosa) de la Ria de Vigo. Ph.D. Mem. University of Barcelona, Barcelona, 1979].

  18. Fatalities in high altitude mountaineering: a review of quantitative risk estimates.

    PubMed

    Weinbruch, Stephan; Nordby, Karl-Christian

    2013-12-01

    Quantitative estimates for mortality in high altitude mountaineering are reviewed. Special emphasis is placed on the heterogeneity of the risk estimates and on confounding. Crude estimates for mortality are on the order of 1/1000 to 40/1000 persons above base camp, for both expedition members and high altitude porters. High altitude porters have mostly a lower risk than expedition members (risk ratio for all Nepalese peaks requiring an expedition permit: 0.73; 95 % confidence interval 0.59-0.89). The summit bid is generally the most dangerous part of an expedition for members, whereas most high altitude porters die during route preparation. On 8000 m peaks, the mortality during descent from summit varies between 4/1000 and 134/1000 summiteers (members plus porters). The risk estimates are confounded by human and environmental factors. Information on confounding by gender and age is contradictory and requires further work. There are indications for safety segregation of men and women, with women being more risk averse than men. Citizenship appears to be a significant confounder. Prior high altitude mountaineering experience in Nepal has no protective effect. Commercial expeditions in the Nepalese Himalayas have a lower mortality than traditional expeditions, though after controlling for confounding, the difference is not statistically significant. The overall mortality is increasing with increasing peak altitude for expedition members but not for high altitude porters. In the Nepalese Himalayas and in Alaska, a significant decrease of mortality with calendar year was observed. A few suggestions for further work are made at the end of the article.

  19. Robust quantitative parameter estimation by advanced CMP measurements for vadose zone hydrological studies

    NASA Astrophysics Data System (ADS)

    Koyama, C.; Wang, H.; Khuut, T.; Kawai, T.; Sato, M.

    2015-12-01

    Soil moisture plays a crucial role in the understanding of processes in the vadose zone hydrology. In the last two decades ground penetrating radar (GPR) has been widely discussed has nondestructive measurement technique for soil moisture data. Especially the common mid-point (CMP) technique, which has been used in both seismic and GPR surveys to investigate the vertical velocity profiles, has a very high potential for quantitaive obervsations from the root zone to the ground water aquifer. However, the use is still rather limited today and algorithms for robust quantitative paramter estimation are lacking. In this study we develop an advanced processing scheme for operational soil moisture reetrieval at various depth. Using improved signal processing, together with a semblance - non-normalized cross-correlation sum combined stacking approach and the Dix formula, the interval velocities for multiple soil layers are obtained from the RMS velocities allowing for more accurate estimation of the permittivity at the reflecting point. Where the presence of a water saturated layer, like a groundwater aquifer, can be easily identified by its RMS velocity due to the high contrast compared to the unsaturated zone. By using a new semi-automated measurement technique the acquisition time for a full CMP gather with 1 cm intervals along a 10 m profile can be reduced significantly to under 2 minutes. The method is tested and validated under laboratory conditions in a sand-pit as well as on agricultural fields and beach sand in the Sendai city area. Comparison between CMP estimates and TDR measurements yield a very good agreement with RMSE of 1.5 Vol.-%. The accuracy of depth estimation is validated with errors smaller than 2%. Finally, we demonstrate application of the method in a test site in semi-arid Mongolia, namely the Orkhon River catchment in Bulgan, using commercial 100 MHz and 500 MHz RAMAC GPR antennas. The results demonstrate the suitability of the proposed method for

  20. Estimation of multipath transmission parameters for quantitative ultrasound measurements of bone.

    PubMed

    Dencks, Stefanie; Schmitz, Georg

    2013-09-01

    When applying quantitative ultrasound (QUS) measurements to bone for predicting osteoporotic fracture risk, the multipath transmission of sound waves frequently occurs. In the last 10 years, the interest in separating multipath QUS signals for their analysis awoke, and led to the introduction of several approaches. Here, we compare the performances of the two fastest algorithms proposed for QUS measurements of bone: the modified least-squares Prony method (MLSP), and the space alternating generalized expectation maximization algorithm (SAGE) applied in the frequency domain. In both approaches, the parameters of the transfer functions of the sound propagation paths are estimated. To provide an objective measure, we also analytically derive the Cramér-Rao lower bound of variances for any estimator and arbitrary transmit signals. In comparison with results of Monte Carlo simulations, this measure is used to evaluate both approaches regarding their accuracy and precision. Additionally, with simulations using typical QUS measurement settings, we illustrate the limitations of separating two superimposed waves for varying parameters with focus on their temporal separation. It is shown that for good SNRs around 100 dB, MLSP yields better results when two waves are very close. Additionally, the parameters of the smaller wave are more reliably estimated. If the SNR decreases, the parameter estimation with MLSP becomes biased and inefficient. Then, the robustness to noise of the SAGE clearly prevails. Because a clear influence of the interrelation between the wavelength of the ultrasound signals and their temporal separation is observable on the results, these findings can be transferred to QUS measurements at other sites. The choice of the suitable algorithm thus depends on the measurement conditions.

  1. Modeling the nucleophilic reactivity of small organochlorine electrophiles: A mechanistically based quantitative structure-activity relationship

    SciTech Connect

    Verhaar, H.J.M.; Seinen, W.; Hermens, J.L.M.; Rorije, E.; Borkent, H.

    1996-06-01

    Environmental pollutants can be divided into four broad categories, narcosis-type chemicals, less inert (polar narcosis) chemicals, reactive chemicals, and specifically acting chemicals. For narcosis-type, or baseline, chemicals and for less inert chemicals, adequate quantitative structure-activity relationships (QSARs) are available for estimation of toxicity to aquatic species. This is not the case for reactive chemicals and specifically acting chemicals. A possible approach to develop aquatic toxicity QSARs for reactive chemicals based on simple considerations regarding their reactivity is given. It is shown that quantum chemical calculations on reaction transition states can be used to quantitatively predict the reactivity of sets of reactive chemicals. These predictions can then be used to develop aquatic toxicity QSARs.

  2. Quantitative structure activity relationship studies of mushroom tyrosinase inhibitors

    NASA Astrophysics Data System (ADS)

    Xue, Chao-Bin; Luo, Wan-Chun; Ding, Qi; Liu, Shou-Zhu; Gao, Xing-Xiang

    2008-05-01

    Here, we report our results from quantitative structure-activity relationship studies on tyrosinase inhibitors. Interactions between benzoic acid derivatives and tyrosinase active sites were also studied using a molecular docking method. These studies indicated that one possible mechanism for the interaction between benzoic acid derivatives and the tyrosinase active site is the formation of a hydrogen-bond between the hydroxyl (aOH) and carbonyl oxygen atoms of Tyr98, which stabilized the position of Tyr98 and prevented Tyr98 from participating in the interaction between tyrosinase and ORF378. Tyrosinase, also known as phenoloxidase, is a key enzyme in animals, plants and insects that is responsible for catalyzing the hydroxylation of tyrosine into o-diphenols and the oxidation of o-diphenols into o-quinones. In the present study, the bioactivities of 48 derivatives of benzaldehyde, benzoic acid, and cinnamic acid compounds were used to construct three-dimensional quantitative structure-activity relationship (3D-QSAR) models using comparative molecular field (CoMFA) and comparative molecular similarity indices (CoMSIA) analyses. After superimposition using common substructure-based alignments, robust and predictive 3D-QSAR models were obtained from CoMFA ( q 2 = 0.855, r 2 = 0.978) and CoMSIA ( q 2 = 0.841, r 2 = 0.946), with 6 optimum components. Chemical descriptors, including electronic (Hammett σ), hydrophobic (π), and steric (MR) parameters, hydrogen bond acceptor (H-acc), and indicator variable ( I), were used to construct a 2D-QSAR model. The results of this QSAR indicated that π, MR, and H-acc account for 34.9, 31.6, and 26.7% of the calculated biological variance, respectively. The molecular interactions between ligand and target were studied using a flexible docking method (FlexX). The best scored candidates were docked flexibly, and the interaction between the benzoic acid derivatives and the tyrosinase active site was elucidated in detail. We believe

  3. Quantitative assessment of Mycoplasma hemadsorption activity by flow cytometry.

    PubMed

    García-Morales, Luis; González-González, Luis; Costa, Manuela; Querol, Enrique; Piñol, Jaume

    2014-01-01

    A number of adherent mycoplasmas have developed highly complex polar structures that are involved in diverse aspects of the biology of these microorganisms and play a key role as virulence factors by promoting adhesion to host cells in the first stages of infection. Attachment activity of mycoplasma cells has been traditionally investigated by determining their hemadsorption ability to red blood cells and it is a distinctive trait widely examined when characterizing the different mycoplasma species. Despite the fact that protocols to qualitatively determine the hemadsorption or hemagglutination of mycoplasmas are straightforward, current methods when investigating hemadsorption at the quantitative level are expensive and poorly reproducible. By using flow cytometry, we have developed a procedure to quantify rapidly and accurately the hemadsorption activity of mycoplasmas in the presence of SYBR Green I, a vital fluorochrome that stains nucleic acids, allowing to resolve erythrocyte and mycoplasma cells by their different size and fluorescence. This method is very reproducible and permits the kinetic analysis of the obtained data and a precise hemadsorption quantification based on standard binding parameters such as the dissociation constant K d. The procedure we developed could be easily implemented in a standardized assay to test the hemadsorption activity of the growing number of clinical isolates and mutant strains of different mycoplasma species, providing valuable data about the virulence of these microorganisms.

  4. The quantitative precipitation estimation system for Dallas-Fort Worth (DFW) urban remote sensing network

    NASA Astrophysics Data System (ADS)

    Chen, Haonan; Chandrasekar, V.

    2015-12-01

    The Dallas-Fort Worth (DFW) urban radar network consists of a combination of high resolution X band radars and a standard National Weather Service (NWS) Next-Generation Radar (NEXRAD) system operating at S band frequency. High spatiotemporal-resolution quantitative precipitation estimation (QPE) is one of the important applications of such a network. This paper presents a real-time QPE system developed by the Collaborative Adaptive Sensing of the Atmosphere (CASA) Engineering Research Center for the DFW urban region using both the high resolution X band radar network and the NWS S band radar observations. The specific dual-polarization radar rainfall algorithms at different frequencies (i.e., S- and X-band) and the fusion methodology combining observations at different temporal resolution are described. Radar and rain gauge observations from four rainfall events in 2013 that are characterized by different meteorological phenomena are used to compare the rainfall estimation products of the CASA DFW QPE system to conventional radar products from the national radar network provided by NWS. This high-resolution QPE system is used for urban flash flood mitigations when coupled with hydrological models.

  5. Improved radar data processing algorithms for quantitative rainfall estimation in real time.

    PubMed

    Krämer, S; Verworn, H R

    2009-01-01

    This paper describes a new methodology to process C-band radar data for direct use as rainfall input to hydrologic and hydrodynamic models and in real time control of urban drainage systems. In contrast to the adjustment of radar data with the help of rain gauges, the new approach accounts for the microphysical properties of current rainfall. In a first step radar data are corrected for attenuation. This phenomenon has been identified as the main cause for the general underestimation of radar rainfall. Systematic variation of the attenuation coefficients within predefined bounds allows robust reflectivity profiling. Secondly, event specific R-Z relations are applied to the corrected radar reflectivity data in order to generate quantitative reliable radar rainfall estimates. The results of the methodology are validated by a network of 37 rain gauges located in the Emscher and Lippe river basins. Finally, the relevance of the correction methodology for radar rainfall forecasts is demonstrated. It has become clearly obvious, that the new methodology significantly improves the radar rainfall estimation and rainfall forecasts. The algorithms are applicable in real time.

  6. Quantitative estimation of transmembrane ion transport in rat renal collecting duct principal cells.

    PubMed

    Ilyaskin, Alexander V; Karpov, Denis I; Medvedev, Dmitriy A; Ershov, Alexander P; Baturina, Galina S; Katkova, Liubov E; Solenov, Evgeniy I

    2014-01-01

    Kidney collecting duct principal cells play a key role in regulated tubular reabsorption of water and sodium and secretion of potassium. The importance of this function for the maintenance of the osmotic homeostasis of the whole organism motivates extensive study of the ion transport properties of collecting duct principal cells. We performed experimental measurements of cell volume and intracellular sodium concentration in rat renal collecting duct principal cells from the outer medulla (OMCD) and used a mathematical model describing transmembrane ion fluxes to analyze the experimental data. The sodium and chloride concentrations ([Na+]in = 37.3 ± 3.3 mM, [Cl-]in = 32.2 ± 4.0 mM) in OMCD cells were quantitatively estimated. Correspondence between the experimentally measured cell physiological characteristics and the values of model permeability parameters was established. Plasma membrane permeabilities and the rates of transmembrane fluxes for sodium, potassium and chloride ions were estimated on the basis of ion substitution experiments and model predictions. In particular, calculated sodium (PNa), potassium (PK) and chloride (PCl) permeabilities were equal to 3.2 × 10-6 cm/s, 1.0 × 10-5 cm/s and 3.0 × 10-6 cm/s, respectively. This approach sets grounds for utilization of experimental measurements of intracellular sodium concentration and cell volume to quantify the ion permeabilities of OMCD principal cells and aids us in understanding the physiology of the adjustment of renal sodium and potassium excretion.

  7. Lake Number, a quantitative indicator of mixing used to estimate changes in dissolved oxygen

    USGS Publications Warehouse

    Robertson, Dale M.; Imberger, Jorg

    1994-01-01

    Lake Number, LN, values are shown to be quantitative indicators of deep mixing in lakes and reservoirs that can be used to estimate changes in deep water dissolved oxygen (DO) concentrations. LN is a dimensionless parameter defined as the ratio of the moments about the center of volume of the water body, of the stabilizing force of gravity associated with density stratification to the destabilizing forces supplied by wind, cooling, inflow, outflow, and other artificial mixing devices. To demonstrate the universality of this parameter, LN values are used to describe the extent of deep mixing and are compared with changes in DO concentrations in three reservoirs in Australia and four lakes in the U.S.A., which vary in productivity and mixing regimes. A simple model is developed which relates changes in LN values, i.e., the extent of mixing, to changes in near bottom DO concentrations. After calibrating the model for a specific system, it is possible to use real-time LN values, calculated using water temperature profiles and surface wind velocities, to estimate changes in DO concentrations (assuming unchanged trophic conditions).

  8. SHAVE: shrinkage estimator measured for multiple visits increases power in GWAS of quantitative traits

    PubMed Central

    Meirelles, Osorio D; Ding, Jun; Tanaka, Toshiko; Sanna, Serena; Yang, Hsih-Te; Dudekula, Dawood B; Cucca, Francesco; Ferrucci, Luigi; Abecasis, Goncalo; Schlessinger, David

    2013-01-01

    Measurement error and biological variability generate distortions in quantitative phenotypic data. In longitudinal studies with repeated measurements, the multiple measurements provide a route to reduce noise and correspondingly increase the strength of signals in genome-wide association studies (GWAS).To optimize noise correction, we have developed Shrunken Average (SHAVE), an approach using a Bayesian Shrinkage estimator. This estimator uses regression toward the mean for every individual as a function of (1) their average across visits; (2) their number of visits; and (3) the correlation between visits. Computer simulations support an increase in power, with results very similar to those expected by the assumptions of the model. The method was applied to a real data set for 14 anthropomorphic traits in ∼6000 individuals enrolled in the SardiNIA project, with up to three visits (measurements) for each participant. Results show that additional measurements have a large impact on the strength of GWAS signals, especially when participants have different number of visits, with SHAVE showing a clear increase in power relative to single visits. In addition, we have derived a relation to assess the improvement in power as a function of number of visits and correlation between visits. It can also be applied in the optimization of experimental designs or usage of measuring devices. SHAVE is fast and easy to run, written in R and freely available online. PMID:23092954

  9. Estimation of transgene copy number in transformed citrus plants by quantitative multiplex real-time PCR.

    PubMed

    Omar, Ahmad A; Dekkers, Marty G H; Graham, James H; Grosser, Jude W

    2008-01-01

    Quantitative real-time PCR (qRT-PCR) was adapted to estimate transgene copy number of the rice Xa21 gene in transgenic citrus plants. This system used TaqMan qRT-PCR and the endogenous citrus gene encoding for lipid transfer protein (LTP). Transgenic "Hamlin" sweet orange plants were generated using two different protoplast-GFP transformation systems: cotransformation and single plasmid transformation. A dilution series of genomic DNA from one of the transgenic lines was used to generate a standard curve for the endogenous LTP and the transgene Xa21. This standard curve was used for relative quantification of the endogenous gene and the transgene. Copy numbers of the transgene Xa21 detected from qRT-PCR analysis correlated with that from Southern blot analysis (r = 0.834). Thus, qRT-PCR is an efficient means of estimating copy number in transgenic citrus plants. This analysis can be performed at much earlier stages of transgenic plant development than southern blot analysis, which expedites investigation of transgenes in slow-growing woody plants.

  10. Improved quantitative visualization of hypervelocity flow through wavefront estimation based on shadow casting of sinusoidal gratings.

    PubMed

    Medhi, Biswajit; Hegde, Gopalakrishna M; Gorthi, Sai Siva; Reddy, Kalidevapura Jagannath; Roy, Debasish; Vasu, Ram Mohan

    2016-08-01

    A simple noninterferometric optical probe is developed to estimate wavefront distortion suffered by a plane wave in its passage through density variations in a hypersonic flow obstructed by a test model in a typical shock tunnel. The probe has a plane light wave trans-illuminating the flow and casting a shadow of a continuous-tone sinusoidal grating. Through a geometrical optics, eikonal approximation to the distorted wavefront, a bilinear approximation to it is related to the location-dependent shift (distortion) suffered by the grating, which can be read out space-continuously from the projected grating image. The processing of the grating shadow is done through an efficient Fourier fringe analysis scheme, either with a windowed or global Fourier transform (WFT and FT). For comparison, wavefront slopes are also estimated from shadows of random-dot patterns, processed through cross correlation. The measured slopes are suitably unwrapped by using a discrete cosine transform (DCT)-based phase unwrapping procedure, and also through iterative procedures. The unwrapped phase information is used in an iterative scheme, for a full quantitative recovery of density distribution in the shock around the model, through refraction tomographic inversion. Hypersonic flow field parameters around a missile-shaped body at a free-stream Mach number of ∼8 measured using this technique are compared with the numerically estimated values. It is shown that, while processing a wavefront with small space-bandwidth product (SBP) the FT inversion gave accurate results with computational efficiency; computation-intensive WFT was needed for similar results when dealing with larger SBP wavefronts.

  11. Quantitative estimate of commercial fish enhancement by seagrass habitat in southern Australia

    NASA Astrophysics Data System (ADS)

    Blandon, Abigayil; zu Ermgassen, Philine S. E.

    2014-03-01

    Seagrass provides many ecosystem services that are of considerable value to humans, including the provision of nursery habitat for commercial fish stock. Yet few studies have sought to quantify these benefits. As seagrass habitat continues to suffer a high rate of loss globally and with the growing emphasis on compensatory restoration, valuation of the ecosystem services associated with seagrass habitat is increasingly important. We undertook a meta-analysis of juvenile fish abundance at seagrass and control sites to derive a quantitative estimate of the enhancement of juvenile fish by seagrass habitats in southern Australia. Thirteen fish of commercial importance were identified as being recruitment enhanced in seagrass habitat, twelve of which were associated with sufficient life history data to allow for estimation of total biomass enhancement. We applied von Bertalanffy growth models and species-specific mortality rates to the determined values of juvenile enhancement to estimate the contribution of seagrass to commercial fish biomass. The identified species were enhanced in seagrass by 0.98 kg m-2 y-1, equivalent to ˜$A230,000 ha-1 y-1. These values represent the stock enhancement where all fish species are present, as opposed to realized catches. Having accounted for the time lag between fish recruiting to a seagrass site and entering the fishery and for a 3% annual discount rate, we find that seagrass restoration efforts costing $A10,000 ha-1 have a potential payback time of less than five years, and that restoration costing $A629,000 ha-1 can be justified on the basis of enhanced commercial fish recruitment where these twelve fish species are present.

  12. Anticancer Activity of Estradiol Derivatives: A Quantitative Structure--Activity Relationship Approach

    NASA Astrophysics Data System (ADS)

    Muranaka, Ken

    2001-10-01

    Commercial packages to implement modern QSAR (quantitative structure-activity relationship) techniques are highly priced; however, the essence of QSAR can be taught without them. Microsoft Excel was used to analyze published data on anticancer activities of estradiol analogs by a QSAR approach. The resulting QSAR equations highly correlate the structural features and physicochemical properties of the analogs with the observed biological activities by multiple linear regression.

  13. Quantitative phase imaging technologies to assess neuronal activity (Conference Presentation)

    NASA Astrophysics Data System (ADS)

    Thouvenin, Olivier; Fink, Mathias; Boccara, Claude

    2016-03-01

    Active neurons tends to have a different dynamical behavior compared to resting ones. Non-exhaustively, vesicular transport towards the synapses is increased, since axonal growth becomes slower. Previous studies also reported small phase variations occurring simultaneously with the action potential. Such changes exhibit times scales ranging from milliseconds to several seconds on spatial scales smaller than the optical diffraction limit. Therefore, QPI systems are of particular interest to measure neuronal activity without labels. Here, we report the development of two new QPI systems that should enable the detection of such activity. Both systems can acquire full field phase images with a sub nanometer sensitivity at a few hundreds of frames per second. The first setup is a synchronous combination of Full Field Optical Coherence Tomography (FF-OCT) and Fluorescence wide field imaging. The latter modality enables the measurement of neurons electrical activity using calcium indicators. In cultures, FF-OCT exhibits similar features to Digital Holographic Microscopy (DHM), except from complex computational reconstruction. However, FF-OCT is of particular interest in order to measure phase variations in tissues. The second setup is based on a Quantitative Differential Interference Contrast setup mounted in an epi-illumination configuration with a spectrally incoherent illumination. Such a common path interferometer exhibits a very good mechanical stability, and thus enables the measurement of phase images during hours. Additionally, such setup can not only measure a height change, but also an optical index change for both polarization. Hence, one can measure simultaneously a phase change and a birefringence change.

  14. Quantitative structure-activity relationships for organophosphates binding to acetylcholinesterase.

    PubMed

    Ruark, Christopher D; Hack, C Eric; Robinson, Peter J; Anderson, Paul E; Gearhart, Jeffery M

    2013-02-01

    Organophosphates are a group of pesticides and chemical warfare nerve agents that inhibit acetylcholinesterase, the enzyme responsible for hydrolysis of the excitatory neurotransmitter acetylcholine. Numerous structural variants exist for this chemical class, and data regarding their toxicity can be difficult to obtain in a timely fashion. At the same time, their use as pesticides and military weapons is widespread, which presents a major concern and challenge in evaluating human toxicity. To address this concern, a quantitative structure-activity relationship (QSAR) was developed to predict pentavalent organophosphate oxon human acetylcholinesterase bimolecular rate constants. A database of 278 three-dimensional structures and their bimolecular rates was developed from 15 peer-reviewed publications. A database of simplified molecular input line entry notations and their respective acetylcholinesterase bimolecular rate constants are listed in Supplementary Material, Table I. The database was quite diverse, spanning 7 log units of activity. In order to describe their structure, 675 molecular descriptors were calculated using AMPAC 8.0 and CODESSA 2.7.10. Orthogonal projection to latent structures regression, bootstrap leave-random-many-out cross-validation and y-randomization were used to develop an externally validated consensus QSAR model. The domain of applicability was assessed by the William's plot. Six external compounds were outside the warning leverage indicating potential model extrapolation. A number of compounds had residuals >2 or <-2, indicating potential outliers or activity cliffs. The results show that the HOMO-LUMO energy gap contributed most significantly to the binding affinity. A mean training R (2) of 0.80, a mean test set R (2) of 0.76 and a consensus external test set R (2) of 0.66 were achieved using the QSAR. The training and external test set RMSE values were found to be 0.76 and 0.88. The results suggest that this QSAR model can be used in

  15. Improved activity estimation with MC-JOSEM versus TEW-JOSEM in 111In SPECT.

    PubMed

    Ouyang, Jinsong; El Fakhri, Georges; Moore, Stephen C

    2008-05-01

    We have previously developed a fast Monte Carlo (MC)-based joint ordered-subset expectation maximization (JOSEM) iterative reconstruction algorithm, MC-JOSEM. A phantom study was performed to compare quantitative imaging performance of MC-JOSEM with that of a triple-energy-window approach (TEW) in which estimated scatter was also included additively within JOSEM, TEW-JOSEM. We acquired high-count projections of a 5.5 cm3 sphere of 111In at different locations in the water-filled torso phantom; high-count projections were then obtained with 111In only in the liver or only in the soft-tissue background compartment, so that we could generate synthetic projections for spheres surrounded by various activity distributions. MC scatter estimates used by MC-JOSEM were computed once after five iterations of TEW-JOSEM. Images of different combinations of liver/background and sphere/background activity concentration ratios were reconstructed by both TEW-JOSEM and MC-JOSEM for 40 iterations. For activity estimation in the sphere, MC-JOSEM always produced better relative bias and relative standard deviation than TEW-JOSEM for each sphere location, iteration number, and activity combination. The average relative bias of activity estimates in the sphere for MC-JOSEM after 40 iterations was -6.9%, versus -15.8% for TEW-JOSEM, while the average relative standard deviation of the sphere activity estimates was 16.1% for MC-JOSEM, versus 27.4% for TEW-JOSEM. Additionally, the average relative bias of activity concentration estimates in the liver and the background for MC-JOSEM after 40 iterations was -3.9%, versus -12.2% for TEW-JOSEM, while the average relative standard deviation of these estimates was 2.5% for MC-JOSEM, versus 3.4% for TEW-JOSEM. MC-JOSEM is a promising approach for quantitative activity estimation in 111In SPECT.

  16. Quantitative coronary angiography using image recovery techniques for background estimation in unsubtracted images

    SciTech Connect

    Wong, Jerry T.; Kamyar, Farzad; Molloi, Sabee

    2007-10-15

    Densitometry measurements have been performed previously using subtracted images. However, digital subtraction angiography (DSA) in coronary angiography is highly susceptible to misregistration artifacts due to the temporal separation of background and target images. Misregistration artifacts due to respiration and patient motion occur frequently, and organ motion is unavoidable. Quantitative densitometric techniques would be more clinically feasible if they could be implemented using unsubtracted images. The goal of this study is to evaluate image recovery techniques for densitometry measurements using unsubtracted images. A humanoid phantom and eight swine (25-35 kg) were used to evaluate the accuracy and precision of the following image recovery techniques: Local averaging (LA), morphological filtering (MF), linear interpolation (LI), and curvature-driven diffusion image inpainting (CDD). Images of iodinated vessel phantoms placed over the heart of the humanoid phantom or swine were acquired. In addition, coronary angiograms were obtained after power injections of a nonionic iodinated contrast solution in an in vivo swine study. Background signals were estimated and removed with LA, MF, LI, and CDD. Iodine masses in the vessel phantoms were quantified and compared to known amounts. Moreover, the total iodine in left anterior descending arteries was measured and compared with DSA measurements. In the humanoid phantom study, the average root mean square errors associated with quantifying iodine mass using LA and MF were approximately 6% and 9%, respectively. The corresponding average root mean square errors associated with quantifying iodine mass using LI and CDD were both approximately 3%. In the in vivo swine study, the root mean square errors associated with quantifying iodine in the vessel phantoms with LA and MF were approximately 5% and 12%, respectively. The corresponding average root mean square errors using LI and CDD were both 3%. The standard deviations

  17. Improving high-resolution quantitative precipitation estimation via fusion of multiple radar-based precipitation products

    NASA Astrophysics Data System (ADS)

    Rafieeinasab, Arezoo; Norouzi, Amir; Seo, Dong-Jun; Nelson, Brian

    2015-12-01

    For monitoring and prediction of water-related hazards in urban areas such as flash flooding, high-resolution hydrologic and hydraulic modeling is necessary. Because of large sensitivity and scale dependence of rainfall-runoff models to errors in quantitative precipitation estimates (QPE), it is very important that the accuracy of QPE be improved in high-resolution hydrologic modeling to the greatest extent possible. With the availability of multiple radar-based precipitation products in many areas, one may now consider fusing them to produce more accurate high-resolution QPE for a wide spectrum of applications. In this work, we formulate and comparatively evaluate four relatively simple procedures for such fusion based on Fisher estimation and its conditional bias-penalized variant: Direct Estimation (DE), Bias Correction (BC), Reduced-Dimension Bias Correction (RBC) and Simple Estimation (SE). They are applied to fuse the Multisensor Precipitation Estimator (MPE) and radar-only Next Generation QPE (Q2) products at the 15-min 1-km resolution (Experiment 1), and the MPE and Collaborative Adaptive Sensing of the Atmosphere (CASA) QPE products at the 15-min 500-m resolution (Experiment 2). The resulting fused estimates are evaluated using the 15-min rain gauge observations from the City of Grand Prairie in the Dallas-Fort Worth Metroplex (DFW) in north Texas. The main criterion used for evaluation is that the fused QPE improves over the ingredient QPEs at their native spatial resolutions, and that, at the higher resolution, the fused QPE improves not only over the ingredient higher-resolution QPE but also over the ingredient lower-resolution QPE trivially disaggregated using the ingredient high-resolution QPE. All four procedures assume that the ingredient QPEs are unbiased, which is not likely to hold true in reality even if real-time bias correction is in operation. To test robustness under more realistic conditions, the fusion procedures were evaluated with and

  18. Quantitative estimation of undiscovered mineral resources - a case study of US Forest Service Wilderness tracts in the Pacific Mountain system.

    USGS Publications Warehouse

    Drew, L.J.

    1986-01-01

    The need by land managers and planners for more quantitative measures of mineral values has prompted scientists at the U.S. Geological Survey to test a probabilistic method of mineral resource assessment on a portion of the wilderness lands that have been studied during the past 20 years. A quantitative estimate of undiscovered mineral resources is made by linking the techniques of subjective estimation, geologic mineral deposit models, and Monte Carlo simulation. The study considers 91 U.S. Forest Service wilderness tracts in California, Nevada, Oregon, and Washington. -from Authors

  19. Improving Satellite Quantitative Precipitation Estimation Using GOES-Retrieved Cloud Optical Depth

    SciTech Connect

    Stenz, Ronald; Dong, Xiquan; Xi, Baike; Feng, Zhe; Kuligowski, Robert J.

    2016-02-01

    To address significant gaps in ground-based radar coverage and rain gauge networks in the U.S., geostationary satellite quantitative precipitation estimates (QPEs) such as the Self-Calibrating Multivariate Precipitation Retrievals (SCaMPR) can be used to fill in both the spatial and temporal gaps of ground-based measurements. Additionally, with the launch of GOES-R, the temporal resolution of satellite QPEs may be comparable to that of Weather Service Radar-1988 Doppler (WSR-88D) volume scans as GOES images will be available every five minutes. However, while satellite QPEs have strengths in spatial coverage and temporal resolution, they face limitations particularly during convective events. Deep Convective Systems (DCSs) have large cloud shields with similar brightness temperatures (BTs) over nearly the entire system, but widely varying precipitation rates beneath these clouds. Geostationary satellite QPEs relying on the indirect relationship between BTs and precipitation rates often suffer from large errors because anvil regions (little/no precipitation) cannot be distinguished from rain-cores (heavy precipitation) using only BTs. However, a combination of BTs and optical depth (τ) has been found to reduce overestimates of precipitation in anvil regions (Stenz et al. 2014). A new rain mask algorithm incorporating both τ and BTs has been developed, and its application to the existing SCaMPR algorithm was evaluated. The performance of the modified SCaMPR was evaluated using traditional skill scores and a more detailed analysis of performance in individual DCS components by utilizing the Feng et al. (2012) classification algorithm. SCaMPR estimates with the new rain mask applied benefited from significantly reduced overestimates of precipitation in anvil regions and overall improvements in skill scores.

  20. Logarithmic quantitation model using serum ferritin to estimate iron overload in secondary haemochromatosis.

    PubMed

    Güngör, T; Rohrbach, E; Solem, E; Kaltwasser, J P; Kornhuber, B

    1996-04-01

    Nineteen children and adolescents receiving repeated transfusions and subcutaneous desferrioxamine treatment were investigated in an attempt to quantitate iron overload non-invasively. Before patients were started on desferrioxamine individual relationships were correlated for 12 to 36 months between transfused iron, absorbed iron estimated gastrointestinally, and increasing serum ferritin concentrations. Patients with inflammation, increased liver enzymes, or haemolysis were excluded from analysis. The relationship between the variables could be described by a logarithmic regression curve (y = transfused iron [plus eventually gastrointestinally absorbed iron] = iron overload = a+b log [x = serum ferritin]) for each individual patient. All patients showed close correlation (R2) between x and y (median R2 of 0.909, 0.98, and 0.92 in thalassaemia, aplastic anaemia, and sickle cell anaemia patients, respectively). When started on desferrioxamine, current serum ferritin concentrations were used to derive the iron overload from each individual regression curve. The derived estimated iron overload ranged from 0.6 g to 31 g. Left ventricular dilatation was observed in three patients with beta thalassaemia and in one patient with aplastic anaemia with median iron overload of 20.7 (14.1-31.3) g and 24.0 g respectively. Hypothyroidism was found in four patients with beta thalassaemia and one patient with aplastic anaemia with iron overload between 14.7 (6.8 and 26.1) g and 15.1 g respectively. Human growth hormone deficiency was detected in three patients with beta thalassaemia with an iron overload of 4.2 (3.5-6.8) g; all three patients had excellent desferrioxamine compliance.

  1. Quantitative estimation of the viability of Toxoplasma gondii oocysts in soil.

    PubMed

    Lélu, Maud; Villena, Isabelle; Dardé, Marie-Laure; Aubert, Dominique; Geers, Régine; Dupuis, Emilie; Marnef, Francine; Poulle, Marie-Lazarine; Gotteland, Cécile; Dumètre, Aurélien; Gilot-Fromont, Emmanuelle

    2012-08-01

    Toxoplasma gondii oocysts spread in the environment are an important source of toxoplasmosis for humans and animal species. Although the life expectancy of oocysts has been studied through the infectivity of inoculated soil samples, the survival dynamics of oocysts in the environment are poorly documented. The aim of this study was to quantify oocyst viability in soil over time under two rain conditions. Oocysts were placed in 54 sentinel chambers containing soil and 18 sealed water tubes, all settled in two containers filled with soil. Containers were watered to simulate rain levels of arid and wet climates and kept at stable temperature for 21.5 months. At nine sampling dates during this period, we sampled six chambers and two water tubes. Three methods were used to measure oocyst viability: microscopic counting, quantitative PCR (qPCR), and mouse inoculation. In parallel, oocysts were kept refrigerated during the same period to analyze their detectability over time. Microscopic counting, qPCR, and mouse inoculation all showed decreasing values over time and highly significant differences between the decreases under dry and damp conditions. The proportion of oocysts surviving after 100 days was estimated to be 7.4% (95% confidence interval [95% CI] = 5.1, 10.8) under dry conditions and 43.7% (5% CI = 35.6, 53.5) under damp conditions. The detectability of oocysts by qPCR over time decreased by 0.5 cycle threshold per 100 days. Finally, a strong correlation between qPCR results and the dose infecting 50% of mice was found; thus, qPCR results may be used as an estimate of the infectivity of soil samples.

  2. Quantitative Estimation of the Viability of Toxoplasma gondii Oocysts in Soil

    PubMed Central

    Villena, Isabelle; Dardé, Marie-Laure; Aubert, Dominique; Geers, Régine; Dupuis, Emilie; Marnef, Francine; Poulle, Marie-Lazarine; Gotteland, Cécile; Dumètre, Aurélien

    2012-01-01

    Toxoplasma gondii oocysts spread in the environment are an important source of toxoplasmosis for humans and animal species. Although the life expectancy of oocysts has been studied through the infectivity of inoculated soil samples, the survival dynamics of oocysts in the environment are poorly documented. The aim of this study was to quantify oocyst viability in soil over time under two rain conditions. Oocysts were placed in 54 sentinel chambers containing soil and 18 sealed water tubes, all settled in two containers filled with soil. Containers were watered to simulate rain levels of arid and wet climates and kept at stable temperature for 21.5 months. At nine sampling dates during this period, we sampled six chambers and two water tubes. Three methods were used to measure oocyst viability: microscopic counting, quantitative PCR (qPCR), and mouse inoculation. In parallel, oocysts were kept refrigerated during the same period to analyze their detectability over time. Microscopic counting, qPCR, and mouse inoculation all showed decreasing values over time and highly significant differences between the decreases under dry and damp conditions. The proportion of oocysts surviving after 100 days was estimated to be 7.4% (95% confidence interval [95% CI] = 5.1, 10.8) under dry conditions and 43.7% (5% CI = 35.6, 53.5) under damp conditions. The detectability of oocysts by qPCR over time decreased by 0.5 cycle threshold per 100 days. Finally, a strong correlation between qPCR results and the dose infecting 50% of mice was found; thus, qPCR results may be used as an estimate of the infectivity of soil samples. PMID:22582074

  3. Improving quantitative structure-activity relationships through multiobjective optimization.

    PubMed

    Nicolotti, Orazio; Giangreco, Ilenia; Miscioscia, Teresa Fabiola; Carotti, Angelo

    2009-10-01

    A multiobjective optimization algorithm was proposed for the automated integration of structure- and ligand-based molecular design. Driven by a genetic algorithm, the herein proposed approach enabled the detection of a number of trade-off QSAR models accounting simultaneously for two independent objectives. The first was biased toward best regressions among docking scores and biological affinities; the second minimized the atom displacements from a properly established crystal-based binding topology. Based on the concept of dominance, 3D QSAR equivalent models profiled the Pareto frontier and were, thus, designated as nondominated solutions of the search space. K-means clustering was, then, operated to select a representative subset of the available trade-off models. These were effectively subjected to GRID/GOLPE analyses for quantitatively featuring molecular determinants of ligand binding affinity. More specifically, it was demonstrated that a) diverse binding conformations occurred on the basis of the ligand ability to profitably contact different part of protein binding site; b) enzyme selectivity was better approached and interpreted by combining diverse equivalent models; and c) trade-off models were successful and even better than docking virtual screening, in retrieving at high sensitivity active hits from a large pool of chemically similar decoys. The approach was tested on a large series, very well-known to QSAR practitioners, of 3-amidinophenylalanine inhibitors of thrombin and trypsin, two serine proteases having rather different biological actions despite a high sequence similarity.

  4. A Novel Two-Step Hierarchial Quantitative Structure-Activity ...

    EPA Pesticide Factsheets

    Background: Accurate prediction of in vivo toxicity from in vitro testing is a challenging problem. Large public–private consortia have been formed with the goal of improving chemical safety assessment by the means of high-throughput screening. Methods and results: A database containing experimental cytotoxicity values for in vitro half-maximal inhibitory concentration (IC50) and in vivo rodent median lethal dose (LD50) for more than 300 chemicals was compiled by Zentralstelle zur Erfassung und Bewertung von Ersatz- und Ergaenzungsmethoden zum Tierversuch (ZEBET ; National Center for Documentation and Evaluation of Alternative Methods to Animal Experiments) . The application of conventional quantitative structure–activity relationship (QSAR) modeling approaches to predict mouse or rat acute LD50 values from chemical descriptors of ZEBET compounds yielded no statistically significant models. The analysis of these data showed no significant correlation between IC50 and LD50. However, a linear IC50 versus LD50 correlation could be established for a fraction of compounds. To capitalize on this observation, we developed a novel two-step modeling approach as follows. First, all chemicals are partitioned into two groups based on the relationship between IC50 and LD50 values: One group comprises compounds with linear IC50 versus LD50 relationships, and another group comprises the remaining compounds. Second, we built conventional binary classification QSAR models t

  5. Quantitative Estimation of the Climatic Effects of Carbon Transferred by International Trade

    PubMed Central

    Wei, Ting; Dong, Wenjie; Moore, John; Yan, Qing; Song, Yi; Yang, Zhiyong; Yuan, Wenping; Chou, Jieming; Cui, Xuefeng; Yan, Xiaodong; Wei, Zhigang; Guo, Yan; Yang, Shili; Tian, Di; Lin, Pengfei; Yang, Song; Wen, Zhiping; Lin, Hui; Chen, Min; Feng, Guolin; Jiang, Yundi; Zhu, Xian; Chen, Juan; Wei, Xin; Shi, Wen; Zhang, Zhiguo; Dong, Juan; Li, Yexin; Chen, Deliang

    2016-01-01

    Carbon transfer via international trade affects the spatial pattern of global carbon emissions by redistributing emissions related to production of goods and services. It has potential impacts on attribution of the responsibility of various countries for climate change and formulation of carbon-reduction policies. However, the effect of carbon transfer on climate change has not been quantified. Here, we present a quantitative estimate of climatic impacts of carbon transfer based on a simple CO2 Impulse Response Function and three Earth System Models. The results suggest that carbon transfer leads to a migration of CO2 by 0.1–3.9 ppm or 3–9% of the rise in the global atmospheric concentrations from developed countries to developing countries during 1990–2005 and potentially reduces the effectiveness of the Kyoto Protocol by up to 5.3%. However, the induced atmospheric CO2 concentration and climate changes (e.g., in temperature, ocean heat content, and sea-ice) are very small and lie within observed interannual variability. Given continuous growth of transferred carbon emissions and their proportion in global total carbon emissions, the climatic effect of traded carbon is likely to become more significant in the future, highlighting the need to consider carbon transfer in future climate negotiations. PMID:27329411

  6. Estimating background-subtracted fluorescence transients in calcium imaging experiments: a quantitative approach.

    PubMed

    Joucla, Sébastien; Franconville, Romain; Pippow, Andreas; Kloppenburg, Peter; Pouzat, Christophe

    2013-08-01

    Calcium imaging has become a routine technique in neuroscience for subcellular to network level investigations. The fast progresses in the development of new indicators and imaging techniques call for dedicated reliable analysis methods. In particular, efficient and quantitative background fluorescence subtraction routines would be beneficial to most of the calcium imaging research field. A background-subtracted fluorescence transients estimation method that does not require any independent background measurement is therefore developed. This method is based on a fluorescence model fitted to single-trial data using a classical nonlinear regression approach. The model includes an appropriate probabilistic description of the acquisition system's noise leading to accurate confidence intervals on all quantities of interest (background fluorescence, normalized background-subtracted fluorescence time course) when background fluorescence is homogeneous. An automatic procedure detecting background inhomogeneities inside the region of interest is also developed and is shown to be efficient on simulated data. The implementation and performances of the proposed method on experimental recordings from the mouse hypothalamus are presented in details. This method, which applies to both single-cell and bulk-stained tissues recordings, should help improving the statistical comparison of fluorescence calcium signals between experiments and studies.

  7. Quantitative Simulations of MST Visual Receptive Field Properties Using a Template Model of Heading Estimation

    NASA Technical Reports Server (NTRS)

    Stone, Leland S.; Perrone, J. A.

    1997-01-01

    We previously developed a template model of primate visual self-motion processing that proposes a specific set of projections from MT-like local motion sensors onto output units to estimate heading and relative depth from optic flow. At the time, we showed that that the model output units have emergent properties similar to those of MSTd neurons, although there was little physiological evidence to test the model more directly. We have now systematically examined the properties of the model using stimulus paradigms used by others in recent single-unit studies of MST: 1) 2-D bell-shaped heading tuning. Most MSTd neurons and model output units show bell-shaped heading tuning. Furthermore, we found that most model output units and the finely-sampled example neuron in the Duffy-Wurtz study are well fit by a 2D gaussian (sigma approx. 35deg, r approx. 0.9). The bandwidth of model and real units can explain why Lappe et al. found apparent sigmoidal tuning using a restricted range of stimuli (+/-40deg). 2) Spiral Tuning and Invariance. Graziano et al. found that many MST neurons appear tuned to a specific combination of rotation and expansion (spiral flow) and that this tuning changes little for approx. 10deg shifts in stimulus placement. Simulations of model output units under the same conditions quantitatively replicate this result. We conclude that a template architecture may underlie MT inputs to MST.

  8. Quantitative Estimation of the Climatic Effects of Carbon Transferred by International Trade

    NASA Astrophysics Data System (ADS)

    Wei, Ting; Dong, Wenjie; Moore, John; Yan, Qing; Song, Yi; Yang, Zhiyong; Yuan, Wenping; Chou, Jieming; Cui, Xuefeng; Yan, Xiaodong; Wei, Zhigang; Guo, Yan; Yang, Shili; Tian, Di; Lin, Pengfei; Yang, Song; Wen, Zhiping; Lin, Hui; Chen, Min; Feng, Guolin; Jiang, Yundi; Zhu, Xian; Chen, Juan; Wei, Xin; Shi, Wen; Zhang, Zhiguo; Dong, Juan; Li, Yexin; Chen, Deliang

    2016-06-01

    Carbon transfer via international trade affects the spatial pattern of global carbon emissions by redistributing emissions related to production of goods and services. It has potential impacts on attribution of the responsibility of various countries for climate change and formulation of carbon-reduction policies. However, the effect of carbon transfer on climate change has not been quantified. Here, we present a quantitative estimate of climatic impacts of carbon transfer based on a simple CO2 Impulse Response Function and three Earth System Models. The results suggest that carbon transfer leads to a migration of CO2 by 0.1–3.9 ppm or 3–9% of the rise in the global atmospheric concentrations from developed countries to developing countries during 1990–2005 and potentially reduces the effectiveness of the Kyoto Protocol by up to 5.3%. However, the induced atmospheric CO2 concentration and climate changes (e.g., in temperature, ocean heat content, and sea-ice) are very small and lie within observed interannual variability. Given continuous growth of transferred carbon emissions and their proportion in global total carbon emissions, the climatic effect of traded carbon is likely to become more significant in the future, highlighting the need to consider carbon transfer in future climate negotiations.

  9. Quantitative Estimation of the Climatic Effects of Carbon Transferred by International Trade.

    PubMed

    Wei, Ting; Dong, Wenjie; Moore, John; Yan, Qing; Song, Yi; Yang, Zhiyong; Yuan, Wenping; Chou, Jieming; Cui, Xuefeng; Yan, Xiaodong; Wei, Zhigang; Guo, Yan; Yang, Shili; Tian, Di; Lin, Pengfei; Yang, Song; Wen, Zhiping; Lin, Hui; Chen, Min; Feng, Guolin; Jiang, Yundi; Zhu, Xian; Chen, Juan; Wei, Xin; Shi, Wen; Zhang, Zhiguo; Dong, Juan; Li, Yexin; Chen, Deliang

    2016-06-22

    Carbon transfer via international trade affects the spatial pattern of global carbon emissions by redistributing emissions related to production of goods and services. It has potential impacts on attribution of the responsibility of various countries for climate change and formulation of carbon-reduction policies. However, the effect of carbon transfer on climate change has not been quantified. Here, we present a quantitative estimate of climatic impacts of carbon transfer based on a simple CO2 Impulse Response Function and three Earth System Models. The results suggest that carbon transfer leads to a migration of CO2 by 0.1-3.9 ppm or 3-9% of the rise in the global atmospheric concentrations from developed countries to developing countries during 1990-2005 and potentially reduces the effectiveness of the Kyoto Protocol by up to 5.3%. However, the induced atmospheric CO2 concentration and climate changes (e.g., in temperature, ocean heat content, and sea-ice) are very small and lie within observed interannual variability. Given continuous growth of transferred carbon emissions and their proportion in global total carbon emissions, the climatic effect of traded carbon is likely to become more significant in the future, highlighting the need to consider carbon transfer in future climate negotiations.

  10. Simultaneous estimation of multiple quantitative trait loci and growth curve parameters through hierarchical Bayesian modeling

    PubMed Central

    Sillanpää, M J; Pikkuhookana, P; Abrahamsson, S; Knürr, T; Fries, A; Lerceteau, E; Waldmann, P; García-Gil, M R

    2012-01-01

    A novel hierarchical quantitative trait locus (QTL) mapping method using a polynomial growth function and a multiple-QTL model (with no dependence in time) in a multitrait framework is presented. The method considers a population-based sample where individuals have been phenotyped (over time) with respect to some dynamic trait and genotyped at a given set of loci. A specific feature of the proposed approach is that, instead of an average functional curve, each individual has its own functional curve. Moreover, each QTL can modify the dynamic characteristics of the trait value of an individual through its influence on one or more growth curve parameters. Apparent advantages of the approach include: (1) assumption of time-independent QTL and environmental effects, (2) alleviating the necessity for an autoregressive covariance structure for residuals and (3) the flexibility to use variable selection methods. As a by-product of the method, heritabilities and genetic correlations can also be estimated for individual growth curve parameters, which are considered as latent traits. For selecting trait-associated loci in the model, we use a modified version of the well-known Bayesian adaptive shrinkage technique. We illustrate our approach by analysing a sub sample of 500 individuals from the simulated QTLMAS 2009 data set, as well as simulation replicates and a real Scots pine (Pinus sylvestris) data set, using temporal measurements of height as dynamic trait of interest. PMID:21792229

  11. Mycobactericidal activity of selected disinfectants using a quantitative suspension test.

    PubMed

    Griffiths, P A; Babb, J R; Fraise, A P

    1999-02-01

    In this study, a quantitative suspension test carried out under both clean and dirty conditions was used to assess the activity of various instrument and environmental disinfectants against the type strain NCTC 946 and an endoscope washer disinfector isolate of Mycobacterium chelonae, Mycobacterium fortuitum NCTC 10,394, Mycobacterium tuberculosis H37 Rv NCTC 7416 and a clinical isolate of Mycobacterium avium-intracellulare (MAI). The disinfectants tested were; a chlorine releasing agent, sodium dichloroisocyanurate (NaDCC) at 1000 ppm and 10,000 ppm av Cl; chlorine dioxide at 1100 ppm av ClO2 (Tristel, MediChem International Limited); 70% industrial methylated spirits (IMS); 2% alkaline glutaraldehyde (Asep, Galan); 10% succinedialdehyde and formaldehyde mixture (Gigasept, Schulke & Mayr); 0.35% peracetic acid (NuCidex, Johnson & Johnson); and a peroxygen compound at 1% and 3% (Virkon, Antec International). Results showed that the clinical isolate of MAI was much more resistant than M. tuberculosis to all the disinfectants, while the type strains of M. chelonae and M. fortuitum were far more sensitive. The washer disinfector isolate of M. chelonae was extremely resistant to 2% alkaline activated glutaraldehyde and appeared to be slightly more resistant than the type strain to Nu-Cidex, Gigasept, Virkon and the lower concentration of NaDCC. This study has shown peracetic acid (Nu-Cidex), chlorine dioxide (Tristel), alcohol (IMS) and high concentrations of a chlorine releasing agent (NaDCC) are rapidly mycobactericidal. Glutaraldehyde, although effective, is a slow mycobactericide. Gigasept and Virkon are poor mycobactericidal agents and are not therefore recommended for instruments or spillage if mycobacteria are likely to be present.

  12. A note on estimating the posterior density of a quantitative trait locus from a Markov chain Monte Carlo sample.

    PubMed

    Hoti, Fabian J; Sillanpää, Mikko J; Holmström, Lasse

    2002-04-01

    We provide an overview of the use of kernel smoothing to summarize the quantitative trait locus posterior distribution from a Markov chain Monte Carlo sample. More traditional distributional summary statistics based on the histogram depend both on the bin width and on the sideway shift of the bin grid used. These factors influence both the overall mapping accuracy and the estimated location of the mode of the distribution. Replacing the histogram by kernel smoothing helps to alleviate these problems. Using simulated data, we performed numerical comparisons between the two approaches. The results clearly illustrate the superiority of the kernel method. The kernel approach is particularly efficient when one needs to point out the best putative quantitative trait locus position on the marker map. In such situations, the smoothness of the posterior estimate is especially important because rough posterior estimates easily produce biased mode estimates. Different kernel implementations are available from Rolf Nevanlinna Institute's web page (http://www.rni.helsinki.fi/;fjh).

  13. Revised activation estimates for silicon carbide

    SciTech Connect

    Heinisch, H.L.; Cheng, E.T.; Mann, F.M.

    1996-10-01

    Recent progress in nuclear data development for fusion energy systems includes a reevaluation of neutron activation cross sections for silicon and aluminum. Activation calculations using the newly compiled Fusion Evaluated Nuclear Data Library result in calculated levels of {sup 26}Al in irradiated silicon that are about an order of magnitude lower than the earlier calculated values. Thus, according to the latest internationally accepted nuclear data, SiC is much more attractive as a low activation material, even in first wall applications.

  14. Improved quantitative precipitation estimation over complex terrain using cloud-to-ground lightning data

    NASA Astrophysics Data System (ADS)

    Minjarez-Sosa, Carlos Manuel

    Thunderstorms that occur in areas of complex terrain are a major severe weather hazard in the intermountain western U.S. Short-term quantitative estimation (QPE) of precipitation in complex terrain is a pressing need to better forecast flash flooding. Currently available techniques for QPE, that utilize a combination of rain gauge and weather radar information, may underestimate precipitation in areas where gauges do not exist or there is radar beam blockage. These are typically very mountainous and remote areas, that are quite vulnerable to flash flooding because of the steep topography. Lightning has been one of the novel ways suggested by the scientific community as an alternative to estimate precipitation over regions that experience convective precipitation, especially those continental areas with complex topography where the precipitation sensor measurements are scarce. This dissertation investigates the relationship between cloud-to-ground lightning and precipitation associated with convection with the purpose of estimating precipitation- mainly over areas of complex terrain which have precipitation sensor coverage problems (e.g. Southern Arizona). The results of this research are presented in two papers. The first, entitled Toward Development of Improved QPE in Complex Terrain Using Cloud-to-Ground Lighting Data: A case Study for the 2005 Monsoon in Southern Arizona, was published in the Journal of Hydrometeorology in December 2012. This initial study explores the relationship between cloud-to-ground lightning occurrences and multi-sensor gridded precipitation over southern Arizona. QPE is performed using a least squares approach for several time resolutions (seasonal---June, July and August---24 hourly and hourly) and for a 8 km grid size. The paper also presents problems that arise when the time resolution is increased, such as the spatial misplacing of discrete lightning events with gridded precipitation and the need to define a "diurnal day" that is

  15. Quantitative estimates of past changes in ITCZ position and cross-equatorial atmospheric heat transport

    NASA Astrophysics Data System (ADS)

    McGee, D.; Donohoe, A.; Marshall, J.; Ferreira, D.

    2012-12-01

    The mean position and seasonal migration of the Intertropical Convergence Zone (ITCZ) govern the intensity, spatial distribution and seasonality of precipitation throughout the tropics as well as the magnitude and direction of interhemispheric atmospheric heat transport (AHT). As a result of these links to global tropical precipitation and hemispheric heat budgets, paleoclimate studies have commonly sought to use reconstructions of local precipitation and surface winds to identify past shifts in the ITCZ's mean position or seasonal extent. Records indicate close ties between ITCZ position and interhemispheric surface temperature gradients in past climates, with the ITCZ shifting toward the warmer hemisphere. This shift would increase AHT into the cooler hemisphere to at least partially compensate for cooling there. Despite widespread qualitative evidence consistent with ITCZ shifts, few proxy records offer quantitative estimates of the distance of these shifts or of the associated changes in AHT. Here we present a strategy for placing quantitative limits on past changes in mean annual ITCZ position and interhemispheric AHT based on explorations of the modern seasonal cycle and models of present and past climates. We use reconstructions of tropical sea surface temperature gradients to place bounds on globally averaged ITCZ position and interhemispheric AHT during the Last Glacial Maximum, Heinrich Stadial 1, and the Mid-Holocene (6 ka). Though limited by the small number of SST records available, our results suggest that past shifts in the global mean ITCZ were small, typically less than 1 degree of latitude. Past changes in interhemispheric AHT may have been substantial, with anomalies approximately equal to the magnitude of modern interhemispheric AHT. Using constraints on the invariance of the total (ocean+atmosphere) heat transport we suggest possible bounds on fluctuations of the OHT and AMOC during Heinrich Stadial 1. We also explore ITCZ shifts in models and

  16. Using Modified Contour Deformable Model to Quantitatively Estimate Ultrasound Parameters for Osteoporosis Assessment

    NASA Astrophysics Data System (ADS)

    Chen, Yung-Fu; Du, Yi-Chun; Tsai, Yi-Ting; Chen, Tainsong

    Osteoporosis is a systemic skeletal disease, which is characterized by low bone mass and micro-architectural deterioration of bone tissue, leading to bone fragility. Finding an effective method for prevention and early diagnosis of the disease is very important. Several parameters, including broadband ultrasound attenuation (BUA), speed of sound (SOS), and stiffness index (STI), have been used to measure the characteristics of bone tissues. In this paper, we proposed a method, namely modified contour deformable model (MCDM), bases on the active contour model (ACM) and active shape model (ASM) for automatically detecting the calcaneus contour from quantitative ultrasound (QUS) parametric images. The results show that the difference between the contours detected by the MCDM and the true boundary for the phantom is less than one pixel. By comparing the phantom ROIs, significant relationship was found between contour mean and bone mineral density (BMD) with R=0.99. The influence of selecting different ROI diameters (12, 14, 16 and 18 mm) and different region-selecting methods, including fixed region (ROI fix ), automatic circular region (ROI cir ) and calcaneal contour region (ROI anat ), were evaluated for testing human subjects. Measurements with large ROI diameters, especially using fixed region, result in high position errors (10-45%). The precision errors of the measured ultrasonic parameters for ROI anat are smaller than ROI fix and ROI cir . In conclusion, ROI anat provides more accurate measurement of ultrasonic parameters for the evaluation of osteoporosis and is useful for clinical application.

  17. Comparative Application of PLS and PCR Methods to Simultaneous Quantitative Estimation and Simultaneous Dissolution Test of Zidovudine - Lamivudine Tablets.

    PubMed

    Üstündağ, Özgür; Dinç, Erdal; Özdemir, Nurten; Tilkan, M Günseli

    2015-01-01

    In the development strategies of new drug products and generic drug products, the simultaneous in-vitro dissolution behavior of oral dosage formulations is the most important indication for the quantitative estimation of efficiency and biopharmaceutical characteristics of drug substances. This is to force the related field's scientists to improve very powerful analytical methods to get more reliable, precise and accurate results in the quantitative analysis and dissolution testing of drug formulations. In this context, two new chemometric tools, partial least squares (PLS) and principal component regression (PCR) were improved for the simultaneous quantitative estimation and dissolution testing of zidovudine (ZID) and lamivudine (LAM) in a tablet dosage form. The results obtained in this study strongly encourage us to use them for the quality control, the routine analysis and the dissolution test of the marketing tablets containing ZID and LAM drugs.

  18. Rapid and Quantitative Assay of Amyloid-Seeding Activity in Human Brains Affected with Prion Diseases

    PubMed Central

    Takatsuki, Hanae; Satoh, Katsuya; Sano, Kazunori; Fuse, Takayuki; Nakagaki, Takehiro; Mori, Tsuyoshi; Ishibashi, Daisuke; Mihara, Ban; Takao, Masaki; Iwasaki, Yasushi; Yoshida, Mari; Atarashi, Ryuichiro; Nishida, Noriyuki

    2015-01-01

    The infectious agents of the transmissible spongiform encephalopathies are composed of amyloidogenic prion protein, PrPSc. Real-time quaking-induced conversion can amplify very small amounts of PrPSc seeds in tissues/body fluids of patients or animals. Using this in vitro PrP-amyloid amplification assay, we quantitated the seeding activity of affected human brains. End-point assay using serially diluted brain homogenates of sporadic Creutzfeldt–Jakob disease patients demonstrated that 50% seeding dose (SD50) is reached approximately 1010/g brain (values varies 108.79–10.63/g). A genetic case (GSS-P102L) yielded a similar level of seeding activity in an autopsy brain sample. The range of PrPSc concentrations in the samples, determined by dot-blot assay, was 0.6–5.4 μg/g brain; therefore, we estimated that 1 SD50 unit was equivalent to 0.06–0.27 fg of PrPSc. The SD50 values of the affected brains dropped more than three orders of magnitude after autoclaving at 121°C. This new method for quantitation of human prion activity provides a new way to reduce the risk of iatrogenic prion transmission. PMID:26070208

  19. Quantitative structure-activity relationship models of chemical transformations from matched pairs analyses.

    PubMed

    Beck, Jeremy M; Springer, Clayton

    2014-04-28

    The concepts of activity cliffs and matched molecular pairs (MMP) are recent paradigms for analysis of data sets to identify structural changes that may be used to modify the potency of lead molecules in drug discovery projects. Analysis of MMPs was recently demonstrated as a feasible technique for quantitative structure-activity relationship (QSAR) modeling of prospective compounds. Although within a small data set, the lack of matched pairs, and the lack of knowledge about specific chemical transformations limit prospective applications. Here we present an alternative technique that determines pairwise descriptors for each matched pair and then uses a QSAR model to estimate the activity change associated with a chemical transformation. The descriptors effectively group similar transformations and incorporate information about the transformation and its local environment. Use of a transformation QSAR model allows one to estimate the activity change for novel transformations and therefore returns predictions for a larger fraction of test set compounds. Application of the proposed methodology to four public data sets results in increased model performance over a benchmark random forest and direct application of chemical transformations using QSAR-by-matched molecular pairs analysis (QSAR-by-MMPA).

  20. MIRD pamphlet no. 16: Techniques for quantitative radiopharmaceutical biodistribution data acquisition and analysis for use in human radiation dose estimates.

    PubMed

    Siegel, J A; Thomas, S R; Stubbs, J B; Stabin, M G; Hays, M T; Koral, K F; Robertson, J S; Howell, R W; Wessels, B W; Fisher, D R; Weber, D A; Brill, A B

    1999-02-01

    This report describes recommended techniques for radiopharmaceutical biodistribution data acquisition and analysis in human subjects to estimate radiation absorbed dose using the Medical Internal Radiation Dose (MIRD) schema. The document has been prepared in a format to address two audiences: individuals with a primary interest in designing clinical trials who are not experts in dosimetry and individuals with extensive experience with dosimetry-based protocols and calculational methodology. For the first group, the general concepts involved in biodistribution data acquisition are presented, with guidance provided for the number of measurements (data points) required. For those with expertise in dosimetry, highlighted sections, examples and appendices have been included to provide calculational details, as well as references, for the techniques involved. This document is intended also to serve as a guide for the investigator in choosing the appropriate methodologies when acquiring and preparing product data for review by national regulatory agencies. The emphasis is on planar imaging techniques commonly available in most nuclear medicine departments and laboratories. The measurement of the biodistribution of radiopharmaceuticals is an important aspect in calculating absorbed dose from internally deposited radionuclides. Three phases are presented: data collection, data analysis and data processing. In the first phase, data collection, the identification of source regions, the determination of their appropriate temporal sampling and the acquisition of data are discussed. In the second phase, quantitative measurement techniques involving imaging by planar scintillation camera, SPECT and PET for the calculation of activity in source regions as a function of time are discussed. In addition, nonimaging measurement techniques, including external radiation monitoring, tissue-sample counting (blood and biopsy) and excreta counting are also considered. The third phase, data

  1. Quantitative shape analysis with weighted covariance estimates for increased statistical efficiency

    PubMed Central

    2013-01-01

    Background The introduction and statistical formalisation of landmark-based methods for analysing biological shape has made a major impact on comparative morphometric analyses. However, a satisfactory solution for including information from 2D/3D shapes represented by ‘semi-landmarks’ alongside well-defined landmarks into the analyses is still missing. Also, there has not been an integration of a statistical treatment of measurement error in the current approaches. Results We propose a procedure based upon the description of landmarks with measurement covariance, which extends statistical linear modelling processes to semi-landmarks for further analysis. Our formulation is based upon a self consistent approach to the construction of likelihood-based parameter estimation and includes corrections for parameter bias, induced by the degrees of freedom within the linear model. The method has been implemented and tested on measurements from 2D fly wing, 2D mouse mandible and 3D mouse skull data. We use these data to explore possible advantages and disadvantages over the use of standard Procrustes/PCA analysis via a combination of Monte-Carlo studies and quantitative statistical tests. In the process we show how appropriate weighting provides not only greater stability but also more efficient use of the available landmark data. The set of new landmarks generated in our procedure (‘ghost points’) can then be used in any further downstream statistical analysis. Conclusions Our approach provides a consistent way of including different forms of landmarks into an analysis and reduces instabilities due to poorly defined points. Our results suggest that the method has the potential to be utilised for the analysis of 2D/3D data, and in particular, for the inclusion of information from surfaces represented by multiple landmark points. PMID:23548043

  2. Tracking of EEG activity using motion estimation to understand brain wiring.

    PubMed

    Nisar, Humaira; Malik, Aamir Saeed; Ullah, Rafi; Shim, Seong-O; Bawakid, Abdullah; Khan, Muhammad Burhan; Subhani, Ahmad Rauf

    2015-01-01

    The fundamental step in brain research deals with recording electroencephalogram (EEG) signals and then investigating the recorded signals quantitatively. Topographic EEG (visual spatial representation of EEG signal) is commonly referred to as brain topomaps or brain EEG maps. In this chapter, full search full search block motion estimation algorithm has been employed to track the brain activity in brain topomaps to understand the mechanism of brain wiring. The behavior of EEG topomaps is examined throughout a particular brain activation with respect to time. Motion vectors are used to track the brain activation over the scalp during the activation period. Using motion estimation it is possible to track the path from the starting point of activation to the final point of activation. Thus it is possible to track the path of a signal across various lobes.

  3. Identification and uncertainty estimation of vertical reflectivity profiles using a Lagrangian approach to support quantitative precipitation measurements by weather radar

    NASA Astrophysics Data System (ADS)

    Hazenberg, P.; Torfs, P. J. J. F.; Leijnse, H.; Delrieu, G.; Uijlenhoet, R.

    2013-09-01

    This paper presents a novel approach to estimate the vertical profile of reflectivity (VPR) from volumetric weather radar data using both a traditional Eulerian as well as a newly proposed Lagrangian implementation. For this latter implementation, the recently developed Rotational Carpenter Square Cluster Algorithm (RoCaSCA) is used to delineate precipitation regions at different reflectivity levels. A piecewise linear VPR is estimated for either stratiform or neither stratiform/convective precipitation. As a second aspect of this paper, a novel approach is presented which is able to account for the impact of VPR uncertainty on the estimated radar rainfall variability. Results show that implementation of the VPR identification and correction procedure has a positive impact on quantitative precipitation estimates from radar. Unfortunately, visibility problems severely limit the impact of the Lagrangian implementation beyond distances of 100 km. However, by combining this procedure with the global Eulerian VPR estimation procedure for a given rainfall type (stratiform and neither stratiform/convective), the quality of the quantitative precipitation estimates increases up to a distance of 150 km. Analyses of the impact of VPR uncertainty shows that this aspect accounts for a large fraction of the differences between weather radar rainfall estimates and rain gauge measurements.

  4. Quantitative estimation of pulegone in Mentha longifolia growing in Saudi Arabia. Is it safe to use?

    PubMed

    Alam, Prawez; Saleh, Mahmoud Fayez; Abdel-Kader, Maged Saad

    2016-03-01

    Our TLC study of the volatile oil isolated from Mentha longifolia showed a major UV active spot with higher Rf value than menthol. Based on the fact that the components of the oil from same plant differ quantitatively due to environmental conditions, the major spot was isolated using different chromatographic techniques and identified by spectroscopic means as pulegone. The presence of pulegone in M. longifolia, a plant widely used in Saudi Arabia, raised a hot debate due to its known toxicity. The Scientific Committee on Food, Health & Consumer Protection Directorate General, European Commission set a limit for the presence of pulegone in foodstuffs and beverages. In this paper we attempted to determine the exact amount of pulegone in different extracts, volatile oil as well as tea flavoured with M. longifolia (Habak) by densitometric HPTLC validated methods using normal phase (Method I) and reverse phase (Method II) TLC plates. The study indicated that the style of use of Habak in Saudi Arabia resulted in much less amount of pulegone than the allowed limit.

  5. Recapturing Quantitative Biology.

    ERIC Educational Resources Information Center

    Pernezny, Ken; And Others

    1996-01-01

    Presents a classroom activity on estimating animal populations. Uses shoe boxes and candies to emphasize the importance of mathematics in biology while introducing the methods of quantitative ecology. (JRH)

  6. Quantitative structure-activity relationships for the in vitro antimycobacterial activity of pyrazinoic acid esters.

    PubMed

    Bergmann, K E; Cynamon, M H; Welch, J T

    1996-08-16

    Substituted pyrazinoic acid esters have previously been reported to have in vitro activity against Mycobacterium avium and Mycobacterium kansasii as well as Mycobacterium tuberculosis. Modification of both the pyrazine nucleus and the ester functionality was successful in expanding the antimycobacterial activity associated with pyrazinamide to include M. avium and M. kansasii, organisms usually not susceptible to pyrazinamide. In an attempt to understand the relationship between the activity of the esters with the needed biostability, a quantitative structure-activity relationship has been developed. This derived relationship is consistent with the observation that tert-butyl 5-chloropyrazinoate (13) and 2'-(2'-methyldecyl) 5-chloropyrazinoate (25), compounds which are both 100-fold more active than pyrazinamide against M. tuberculosis and possess a serum stability 900-1000 times greater than the lead compounds in the series.

  7. Estimating phytoplankton photosynthesis by active fluorescence

    SciTech Connect

    Falkowski, P.G.; Kolber, Z.

    1992-01-01

    Photosynthesis can be described by target theory, At low photon flux densities, photosynthesis is a linear function of irradiance (I), The number of reaction centers (n), their effective absorption capture cross section {sigma}, and a quantum yield {phi}. As photosynthesis becomes increasingly light saturated, an increased fraction of reaction centers close. At light saturation the maximum photosynthetic rate is given as the product of the number of reaction centers (n) and their maximum electron transport rate (I/{tau}). Using active fluorometry it is possible to measure non-destructively and in real time the fraction of open or closed reaction centers under ambient irradiance conditions in situ, as well as {sigma} and {phi} {tau} can be readily, calculated from knowledge of the light saturation parameter, I{sub k} (which can be deduced by in situ by active fluorescence measurements) and {sigma}. We built a pump and probe fluorometer, which is interfaced with a CTD. The instrument measures the fluorescence yield of a weak probe flash preceding (f{sub 0}) and succeeding (f{sub 0}) a saturating pump flash. Profiles of the these fluorescence yields are used to derive the instantaneous rate of gross photosynthesis in natural phytoplankton communities without any incubation. Correlations with short-term simulated in situ radiocarbon measurements are extremely high. The average slope between photosynthesis derived from fluorescence and that measured by radiocarbon is 1.15 and corresponds to the average photosynthetic quotient. The intercept is about 15% of the maximum radiocarbon uptake and corresponds to the average net community respiration. Profiles of photosynthesis and sections showing the variability in its composite parameters reveal a significant effect of nutrient availability on biomass specific rates of photosynthesis in the ocean.

  8. Estimating phytoplankton photosynthesis by active fluorescence

    SciTech Connect

    Falkowski, P.G.; Kolber, Z.

    1992-10-01

    Photosynthesis can be described by target theory, At low photon flux densities, photosynthesis is a linear function of irradiance (I), The number of reaction centers (n), their effective absorption capture cross section {sigma}, and a quantum yield {phi}. As photosynthesis becomes increasingly light saturated, an increased fraction of reaction centers close. At light saturation the maximum photosynthetic rate is given as the product of the number of reaction centers (n) and their maximum electron transport rate (I/{tau}). Using active fluorometry it is possible to measure non-destructively and in real time the fraction of open or closed reaction centers under ambient irradiance conditions in situ, as well as {sigma} and {phi} {tau} can be readily, calculated from knowledge of the light saturation parameter, I{sub k} (which can be deduced by in situ by active fluorescence measurements) and {sigma}. We built a pump and probe fluorometer, which is interfaced with a CTD. The instrument measures the fluorescence yield of a weak probe flash preceding (f{sub 0}) and succeeding (f{sub 0}) a saturating pump flash. Profiles of the these fluorescence yields are used to derive the instantaneous rate of gross photosynthesis in natural phytoplankton communities without any incubation. Correlations with short-term simulated in situ radiocarbon measurements are extremely high. The average slope between photosynthesis derived from fluorescence and that measured by radiocarbon is 1.15 and corresponds to the average photosynthetic quotient. The intercept is about 15% of the maximum radiocarbon uptake and corresponds to the average net community respiration. Profiles of photosynthesis and sections showing the variability in its composite parameters reveal a significant effect of nutrient availability on biomass specific rates of photosynthesis in the ocean.

  9. Assimilation of radar quantitative precipitation estimations in the Canadian Precipitation Analysis (CaPA)

    NASA Astrophysics Data System (ADS)

    Fortin, Vincent; Roy, Guy; Donaldson, Norman; Mahidjiba, Ahmed

    2015-12-01

    The Canadian Precipitation Analysis (CaPA) is a data analysis system used operationally at the Canadian Meteorological Center (CMC) since April 2011 to produce gridded 6-h and 24-h precipitation accumulations in near real-time on a regular grid covering all of North America. The current resolution of the product is 10-km. Due to the low density of the observational network in most of Canada, the system relies on a background field provided by the Regional Deterministic Prediction System (RDPS) of Environment Canada, which is a short-term weather forecasting system for North America. For this reason, the North American configuration of CaPA is known as the Regional Deterministic Precipitation Analysis (RDPA). Early in the development of the CaPA system, weather radar reflectivity was identified as a very promising additional data source for the precipitation analysis, but necessary quality control procedures and bias-correction algorithms were lacking for the radar data. After three years of development and testing, a new version of CaPA-RDPA system was implemented in November 2014 at CMC. This version is able to assimilate radar quantitative precipitation estimates (QPEs) from all 31 operational Canadian weather radars. The radar QPE is used as an observation source and not as a background field, and is subject to a strict quality control procedure, like any other observation source. The November 2014 upgrade to CaPA-RDPA was implemented at the same time as an upgrade to the RDPS system, which brought minor changes to the skill and bias of CaPA-RDPA. This paper uses the frequency bias indicator (FBI), the equitable threat score (ETS) and the departure from the partial mean (DPM) in order to assess the improvements to CaPA-RDPA brought by the assimilation of radar QPE. Verification focuses on the 6-h accumulations, and is done against a network of 65 synoptic stations (approximately two stations per radar) that were withheld from the station data assimilated by Ca

  10. Recovering the primary geochemistry of Jack Hills zircons through quantitative estimates of chemical alteration

    NASA Astrophysics Data System (ADS)

    Bell, Elizabeth A.; Boehnke, Patrick; Harrison, T. Mark

    2016-10-01

    Despite the robust nature of zircon in most crustal and surface environments, chemical alteration, especially associated with radiation damaged regions, can affect its geochemistry. This consideration is especially important when drawing inferences from the detrital record where the original rock context is missing. Typically, alteration is qualitatively diagnosed through inspection of zircon REE patterns and the style of zoning shown by cathodoluminescence imaging, since fluid-mediated alteration often causes a flat, high LREE pattern. Due to the much lower abundance of LREE in zircon relative both to other crustal materials and to the other REE, disturbance to the LREE pattern is the most likely first sign of disruption to zircon trace element contents. Using a database of 378 (148 new) trace element and 801 (201 new) oxygen isotope measurements on zircons from Jack Hills, Western Australia, we propose a quantitative framework for assessing chemical contamination and exchange with fluids in this population. The Light Rare Earth Element Index is scaled on the relative abundance of light to middle REE, or LREE-I = (Dy/Nd) + (Dy/Sm). LREE-I values vary systematically with other known contaminants (e.g., Fe, P) more faithfully than other suggested proxies for zircon alteration (Sm/La, various absolute concentrations of LREEs) and can be used to distinguish primary compositions when textural evidence for alteration is ambiguous. We find that zircon oxygen isotopes do not vary systematically with placement on or off cracks or with degree of LREE-related chemical alteration, suggesting an essentially primary signature. By omitting zircons affected by LREE-related alteration or contamination by mineral inclusions, we present the best estimate for the primary igneous geochemistry of the Jack Hills zircons. This approach increases the available dataset by allowing for discrimination of on-crack analyses (and analyses with ambiguous or no information on spot placement or

  11. The impacts of climatological adjustment of quantitative precipitation estimates on the accuracy of flash flood detection

    NASA Astrophysics Data System (ADS)

    Zhang, Yu; Reed, Sean; Gourley, Jonathan J.; Cosgrove, Brian; Kitzmiller, David; Seo, Dong-Jun; Cifelli, Robert

    2016-10-01

    The multisensor Quantitative Precipitation Estimates (MQPEs) created by the US National Weather Service (NWS) are subject to a non-stationary bias. This paper quantifies the impacts of climatological adjustment of MQPEs alone, as well as the compound impacts of adjustment and model calibration, on the accuracy of simulated flood peak magnitude and that in detecting flood events. Our investigation is based on 19 watersheds in the mid-Atlantic region of US, which are grouped into small (<500 km2) and large (>500 km2) watersheds. NWS archival MQPEs over 1997-2013 for this region are adjusted to match concurrent gauge-based monthly precipitation accumulations. Then raw and adjusted MQPEs serve as inputs to the NWS distributed hydrologic model-threshold frequency framework (DHM-TF). Two experiments via DHM-TF are performed. The first one examines the impacts of adjustment alone through uncalibrated model simulations, whereas the second one focuses on the compound effects of adjustment and calibration on the detection of flood events. Uncalibrated model simulations show broad underestimation of flood peaks for small watersheds and overestimation those for large watersheds. Prior to calibration, adjustment alone tends to reduce the magnitude of simulated flood peaks for small and large basins alike, with 95% of all watersheds experienced decline over 2004-2013. A consequence is that a majority of small watersheds experience no improvement, or deterioration in bias (0% of basins experiencing improvement). By contrast, most (73%) of larger ones exhibit improved bias. Outcomes of the detection experiment show that the role of adjustment is not diminished by calibration for small watersheds, with only 25% of which exhibiting reduced bias after adjustment with calibrated parameters. Furthermore, it is shown that calibration is relatively effective in reducing false alarms (e.g., false alarm rate is down from 0.28 to 0.19 after calibration for small watersheds with calibrated

  12. Be the Volume: A Classroom Activity to Visualize Volume Estimation

    ERIC Educational Resources Information Center

    Mikhaylov, Jessica

    2011-01-01

    A hands-on activity can help multivariable calculus students visualize surfaces and understand volume estimation. This activity can be extended to include the concepts of Fubini's Theorem and the visualization of the curves resulting from cross-sections of the surface. This activity uses students as pillars and a sheet or tablecloth for the…

  13. The ACCE method: an approach for obtaining quantitative or qualitative estimates of residual confounding that includes unmeasured confounding

    PubMed Central

    Smith, Eric G.

    2015-01-01

    Background:  Nonrandomized studies typically cannot account for confounding from unmeasured factors.  Method:  A method is presented that exploits the recently-identified phenomenon of  “confounding amplification” to produce, in principle, a quantitative estimate of total residual confounding resulting from both measured and unmeasured factors.  Two nested propensity score models are constructed that differ only in the deliberate introduction of an additional variable(s) that substantially predicts treatment exposure.  Residual confounding is then estimated by dividing the change in treatment effect estimate between models by the degree of confounding amplification estimated to occur, adjusting for any association between the additional variable(s) and outcome. Results:  Several hypothetical examples are provided to illustrate how the method produces a quantitative estimate of residual confounding if the method’s requirements and assumptions are met.  Previously published data is used to illustrate that, whether or not the method routinely provides precise quantitative estimates of residual confounding, the method appears to produce a valuable qualitative estimate of the likely direction and general size of residual confounding. Limitations:  Uncertainties exist, including identifying the best approaches for: 1) predicting the amount of confounding amplification, 2) minimizing changes between the nested models unrelated to confounding amplification, 3) adjusting for the association of the introduced variable(s) with outcome, and 4) deriving confidence intervals for the method’s estimates (although bootstrapping is one plausible approach). Conclusions:  To this author’s knowledge, it has not been previously suggested that the phenomenon of confounding amplification, if such amplification is as predictable as suggested by a recent simulation, provides a logical basis for estimating total residual confounding. The method's basic approach is

  14. Report: quantitative estimation of beta-sitosterol, lupeol, quercetin and quercetin glycosides from leaflets of Soymida febrifuga using HPTLC technique.

    PubMed

    Attarde, D L; Aurangabadkar, V M; Belsare, D P; Pal, S C

    2008-07-01

    Soymida febrifuga (Meliaceae) dried leaflets (10 gm) were extracted with petroleum ether. Unsaponifiable matter quantitatively used for sample preparation, labeled as SF-U. Another 10 gm leaflet powder was extracted with methanol and quantitatively used for sample preparation labeled as SF-A. Sample and standard solution were dosage on three different plates and developed in its respective mobile phase plates were scanned using TLC scanner III and estimated using integration software CATs 4.05. Calculations for percentage were done considering standard and sample R(f), AUC and dilution factor. Estimation of beta Sitosterol, Lupeol, Quercetin, Quercetin-3-O-galactoside, Quercetin-3-O-xyloside and Quercetin-3-O-rutinoside were determined as 0.02146% w/w, 0.0377% w/w, 0.4079% w/w, 0.6197% w/w, 2.974% w/w and 3.235% w/w respectively with the help of HPLC techniques.

  15. NEXRAD quantitative precipitation estimates, data acquisition, and processing for the DuPage County, Illinois, streamflow-simulation modeling system

    USGS Publications Warehouse

    Ortel, Terry W.; Spies, Ryan R.

    2015-11-19

    Next-Generation Radar (NEXRAD) has become an integral component in the estimation of precipitation (Kitzmiller and others, 2013). The high spatial and temporal resolution of NEXRAD has revolutionized the ability to estimate precipitation across vast regions, which is especially beneficial in areas without a dense rain-gage network. With the improved precipitation estimates, hydrologic models can produce reliable streamflow forecasts for areas across the United States. NEXRAD data from the National Weather Service (NWS) has been an invaluable tool used by the U.S. Geological Survey (USGS) for numerous projects and studies; NEXRAD data processing techniques similar to those discussed in this Fact Sheet have been developed within the USGS, including the NWS Quantitative Precipitation Estimates archive developed by Blodgett (2013).

  16. [Quantitative estimation of vegetation cover and management factor in USLE and RUSLE models by using remote sensing data: a review].

    PubMed

    Wu, Chang-Guang; Li, Sheng; Ren, Hua-Dong; Yao, Xiao-Hua; Huang, Zi-Jie

    2012-06-01

    Soil loss prediction models such as universal soil loss equation (USLE) and its revised universal soil loss equation (RUSLE) are the useful tools for risk assessment of soil erosion and planning of soil conservation at regional scale. To make a rational estimation of vegetation cover and management factor, the most important parameters in USLE or RUSLE, is particularly important for the accurate prediction of soil erosion. The traditional estimation based on field survey and measurement is time-consuming, laborious, and costly, and cannot rapidly extract the vegetation cover and management factor at macro-scale. In recent years, the development of remote sensing technology has provided both data and methods for the estimation of vegetation cover and management factor over broad geographic areas. This paper summarized the research findings on the quantitative estimation of vegetation cover and management factor by using remote sensing data, and analyzed the advantages and the disadvantages of various methods, aimed to provide reference for the further research and quantitative estimation of vegetation cover and management factor at large scale.

  17. Quantitative evaluation of hidden defects in cast iron components using ultrasound activated lock-in vibrothermography

    SciTech Connect

    Montanini, R.; Freni, F.; Rossi, G. L.

    2012-09-15

    This paper reports one of the first experimental results on the application of ultrasound activated lock-in vibrothermography for quantitative assessment of buried flaws in complex cast parts. The use of amplitude modulated ultrasonic heat generation allowed selective response of defective areas within the part, as the defect itself is turned into a local thermal wave emitter. Quantitative evaluation of hidden damages was accomplished by estimating independently both the area and the depth extension of the buried flaws, while x-ray 3D computed tomography was used as reference for sizing accuracy assessment. To retrieve flaw's area, a simple yet effective histogram-based phase image segmentation algorithm with automatic pixels classification has been developed. A clear correlation was found between the thermal (phase) signature measured by the infrared camera on the target surface and the actual mean cross-section area of the flaw. Due to the very fast cycle time (<30 s/part), the method could potentially be applied for 100% quality control of casting components.

  18. Estimating distributions out of qualitative and (semi)quantitative microbiological contamination data for use in risk assessment.

    PubMed

    Busschaert, P; Geeraerd, A H; Uyttendaele, M; Van Impe, J F

    2010-04-15

    A framework using maximum likelihood estimation (MLE) is used to fit a probability distribution to a set of qualitative (e.g., absence in 25 g), semi-quantitative (e.g., presence in 25 g and absence in 1g) and/or quantitative test results (e.g., 10 CFU/g). Uncertainty about the parameters of the variability distribution is characterized through a non-parametric bootstrapping method. The resulting distribution function can be used as an input for a second order Monte Carlo simulation in quantitative risk assessment. As an illustration, the method is applied to two sets of in silico generated data. It is demonstrated that correct interpretation of data results in an accurate representation of the contamination level distribution. Subsequently, two case studies are analyzed, namely (i) quantitative analyses of Campylobacter spp. in food samples with nondetects, and (ii) combined quantitative, qualitative, semiquantitative analyses and nondetects of Listeria monocytogenes in smoked fish samples. The first of these case studies is also used to illustrate what the influence is of the limit of quantification, measurement error, and the number of samples included in the data set. Application of these techniques offers a way for meta-analysis of the many relevant yet diverse data sets that are available in literature and (inter)national reports of surveillance or baseline surveys, therefore increases the information input of a risk assessment and, by consequence, the correctness of the outcome of the risk assessment.

  19. Reproducibility of CSF quantitative culture methods for estimating rate of clearance in cryptococcal meningitis.

    PubMed

    Dyal, Jonathan; Akampurira, Andrew; Rhein, Joshua; Morawski, Bozena M; Kiggundu, Reuben; Nabeta, Henry W; Musubire, Abdu K; Bahr, Nathan C; Williams, Darlisha A; Bicanic, Tihana; Larsen, Robert A; Meya, David B; Boulware, David R

    2016-05-01

    Quantitative cerebrospinal fluid (CSF) cultures provide a measure of disease severity in cryptococcal meningitis. The fungal clearance rate by quantitative cultures has become a primary endpoint for phase II clinical trials. This study determined the inter-assay accuracy of three different quantitative culture methodologies. Among 91 participants with meningitis symptoms in Kampala, Uganda, during August-November 2013, 305 CSF samples were prospectively collected from patients at multiple time points during treatment. Samples were simultaneously cultured by three methods: (1) St. George's 100 mcl input volume of CSF with five 1:10 serial dilutions, (2) AIDS Clinical Trials Group (ACTG) method using 1000, 100, 10 mcl input volumes, and two 1:100 dilutions with 100 and 10 mcl input volume per dilution on seven agar plates; and (3) 10 mcl calibrated loop of undiluted and 1:100 diluted CSF (loop). Quantitative culture values did not statistically differ between St. George-ACTG methods (P= .09) but did for St. George-10 mcl loop (P< .001). Repeated measures pairwise correlation between any of the methods was high (r≥0.88). For detecting sterility, the ACTG-method had the highest negative predictive value of 97% (91% St. George, 60% loop), but the ACTG-method had occasional (∼10%) difficulties in quantification due to colony clumping. For CSF clearance rate, St. George-ACTG methods did not differ overall (mean -0.05 ± 0.07 log10CFU/ml/day;P= .14) on a group level; however, individual-level clearance varied. The St. George and ACTG quantitative CSF culture methods produced comparable but not identical results. Quantitative cultures can inform treatment management strategies.

  20. Teratogenic potency of valproate analogues evaluated by quantitative estimation of cellular morphology in vitro.

    PubMed

    Berezin, V; Kawa, A; Bojic, U; Foley, A; Nau, H; Regan, C; Edvardsen, K; Bock, E

    1996-10-01

    To develop a simple prescreening system for teratogenicity testing, a novel in vitro assay was established using computer assisted microscopy allowing automatic delineation of contours of stained cells and thereby quantitative determination of cellular morphology. The effects of valproic acid (VPA) and analogues with high as well as low teratogenic activities-(as previously determined in vivo)-were used as probes for study of the discrimination power of the in vitro model. VPA, a teratogenic analogue (+/-)-4-en-VPA, and a non-teratogenic analogue (E)-2-en-VPA, as well as the purified (S)- and (R)-enantiomers of 4-yn-VPA (teratogenic and non-teratogenic, respectively), were tested for their effects on cellular morphology of cloned mouse fibroblastoid L-cell lines, neuroblastoma N2a cells, and rat glioma BT4Cn cells, and were found to induce varying increases in cellular area: Furthermore, it was demonstrated that under the chosen conditions the increase in area correlated statistically significantly with the teratogenic potency of the employed compounds. Setting the cellular area of mouse L-cells to 100% under control conditions, the most pronounced effect was observed for (S)-4-yn-VPA (211%, P = < 0.001) followed by VPA (186%, P < 0.001), 4-en-VPA (169%, P < 0.001) and non-teratogenic 2-en-VPA (137%, P < 0.005) and (R)-4-yn-VPA (105%). This effect was independent of the choice of substrata, since it was observed on L-cells grown on plastic, fibronectin, laminin and Matrigel. However, when VPA-treated cells were exposed to an arginyl-glycyl-aspartate (RGD)-containing peptide to test whether VPA treatment was able to modulate RGD-dependent integrin interactions with components of the extracellular matrix, hardly any effect could be observed, whereas control cells readily detached from the substratum, indicating a changed substrate adhesion of the VPA-treated cells. The data thus indicate that measurement of cellular area may serve as a simple in vitro test in the

  1. The Overall Impact of Testing on Medical Student Learning: Quantitative Estimation of Consequential Validity

    ERIC Educational Resources Information Center

    Kreiter, Clarence D.; Green, Joseph; Lenoch, Susan; Saiki, Takuya

    2013-01-01

    Given medical education's longstanding emphasis on assessment, it seems prudent to evaluate whether our current research and development focus on testing makes sense. Since any intervention within medical education must ultimately be evaluated based upon its impact on student learning, this report seeks to provide a quantitative accounting of…

  2. Using Active Learning to Teach Concepts and Methods in Quantitative Biology.

    PubMed

    Waldrop, Lindsay D; Adolph, Stephen C; Diniz Behn, Cecilia G; Braley, Emily; Drew, Joshua A; Full, Robert J; Gross, Louis J; Jungck, John A; Kohler, Brynja; Prairie, Jennifer C; Shtylla, Blerta; Miller, Laura A

    2015-11-01

    This article provides a summary of the ideas discussed at the 2015 Annual Meeting of the Society for Integrative and Comparative Biology society-wide symposium on Leading Students and Faculty to Quantitative Biology through Active Learning. It also includes a brief review of the recent advancements in incorporating active learning approaches into quantitative biology classrooms. We begin with an overview of recent literature that shows that active learning can improve students' outcomes in Science, Technology, Engineering and Math Education disciplines. We then discuss how this approach can be particularly useful when teaching topics in quantitative biology. Next, we describe some of the recent initiatives to develop hands-on activities in quantitative biology at both the graduate and the undergraduate levels. Throughout the article we provide resources for educators who wish to integrate active learning and technology into their classrooms.

  3. Quantitative Structure Activity Relationship Models for the Antioxidant Activity of Polysaccharides

    PubMed Central

    Nie, Kaiying; Wang, Zhaojing

    2016-01-01

    In this study, quantitative structure activity relationship (QSAR) models for the antioxidant activity of polysaccharides were developed with 50% effective concentration (EC50) as the dependent variable. To establish optimum QSAR models, multiple linear regressions (MLR), support vector machines (SVM) and artificial neural networks (ANN) were used, and 11 molecular descriptors were selected. The optimum QSAR model for predicting EC50 of DPPH-scavenging activity consisted of four major descriptors. MLR model gave EC50 = 0.033Ara-0.041GalA-0.03GlcA-0.025PC+0.484, and MLR fitted the training set with R = 0.807. ANN model gave the improvement of training set (R = 0.96, RMSE = 0.018) and test set (R = 0.933, RMSE = 0.055) which indicated that it was more accurately than SVM and MLR models for predicting the DPPH-scavenging activity of polysaccharides. 67 compounds were used for predicting EC50 of the hydroxyl radicals scavenging activity of polysaccharides. MLR model gave EC50 = 0.12PC+0.083Fuc+0.013Rha-0.02UA+0.372. A comparison of results from models indicated that ANN model (R = 0.944, RMSE = 0.119) was also the best one for predicting the hydroxyl radicals scavenging activity of polysaccharides. MLR and ANN models showed that Ara and GalA appeared critical in determining EC50 of DPPH-scavenging activity, and Fuc, Rha, uronic acid and protein content had a great effect on the hydroxyl radicals scavenging activity of polysaccharides. The antioxidant activity of polysaccharide usually was high in MW range of 4000–100000, and the antioxidant activity could be affected simultaneously by other polysaccharide properties, such as uronic acid and Ara. PMID:27685320

  4. Estimating ROI activity concentration with photon-processing and photon-counting SPECT imaging systems

    NASA Astrophysics Data System (ADS)

    Jha, Abhinav K.; Frey, Eric C.

    2015-03-01

    Recently a new class of imaging systems, referred to as photon-processing (PP) systems, are being developed that uses real-time maximum-likelihood (ML) methods to estimate multiple attributes per detected photon and store these attributes in a list format. PP systems could have a number of potential advantages compared to systems that bin photons based on attributes such as energy, projection angle, and position, referred to as photon-counting (PC) systems. For example, PP systems do not suffer from binning-related information loss and provide the potential to extract information from attributes such as energy deposited by the detected photon. To quantify the effects of this advantage on task performance, objective evaluation studies are required. We performed this study in the context of quantitative 2-dimensional single-photon emission computed tomography (SPECT) imaging with the end task of estimating the mean activity concentration within a region of interest (ROI). We first theoretically outline the effect of null space on estimating the mean activity concentration, and argue that due to this effect, PP systems could have better estimation performance compared to PC systems with noise-free data. To evaluate the performance of PP and PC systems with noisy data, we developed a singular value decomposition (SVD)-based analytic method to estimate the activity concentration from PP systems. Using simulations, we studied the accuracy and precision of this technique in estimating the activity concentration. We used this framework to objectively compare PP and PC systems on the activity concentration estimation task. We investigated the effects of varying the size of the ROI and varying the number of bins for the attribute corresponding to the angular orientation of the detector in a continuously rotating SPECT system. The results indicate that in several cases, PP systems offer improved estimation performance compared to PC systems.

  5. Antitumor activity of 3,4-ethylenedioxythiophene derivatives and quantitative structure-activity relationship analysis

    NASA Astrophysics Data System (ADS)

    Jukić, Marijana; Rastija, Vesna; Opačak-Bernardi, Teuta; Stolić, Ivana; Krstulović, Luka; Bajić, Miroslav; Glavaš-Obrovac, Ljubica

    2017-04-01

    The aim of this study was to evaluate nine newly synthesized amidine derivatives of 3,4- ethylenedioxythiophene (3,4-EDOT) for their cytotoxic activity against a panel of human cancer cell lines and to perform a quantitative structure-activity relationship (QSAR) analysis for the antitumor activity of a total of 27 3,4-ethylenedioxythiophene derivatives. Induction of apoptosis was investigated on the selected compounds, along with delivery options for the optimization of activity. The best obtained QSAR models include the following group of descriptors: BCUT, WHIM, 2D autocorrelations, 3D-MoRSE, GETAWAY descriptors, 2D frequency fingerprint and information indices. Obtained QSAR models should be relieved in elucidation of important physicochemical and structural requirements for this biological activity. Highly potent molecules have a symmetrical arrangement of substituents along the x axis, high frequency of distance between N and O atoms at topological distance 9, as well as between C and N atoms at topological distance 10, and more C atoms located at topological distances 6 and 3. Based on the conclusion given in the QSAR analysis, a new compound with possible great activity was proposed.

  6. Utilization of quantitative structure-activity relationships (QSARs) in risk assessment: Alkylphenols

    SciTech Connect

    Beck, B.D.; Toole, A.P.; Callahan, B.G.; Siddhanti, S.K. )

    1991-12-01

    Alkylphenols are a class of environmentally pervasive compounds, found both in natural (e.g., crude oils) and in anthropogenic (e.g., wood tar, coal gasification waste) materials. Despite the frequent environmental occurrence of these chemicals, there is a limited toxicity database on alkylphenols. The authors have therefore developed a 'toxicity equivalence approach' for alkylphenols which is based on their ability to inhibit, in a specific manner, the enzyme cyclooxygenase. Enzyme-inhibiting ability for individual alkylphenols can be estimated based on the quantitative structure-activity relationship developed by Dewhirst (1980) and is a function of the free hydroxyl group, electron-donating ring substituents, and hydrophobic aromatic ring substituents. The authors evaluated the toxicological significance of cyclooxygenase inhibition by comparison of the inhibitory capacity of alkylphenols with the inhibitory capacity of acetylsalicylic acid, or aspirin, a compound whose low-level effects are due to cyclooxygenase inhibition. Since nearly complete absorption for alkylphenols and aspirin is predicted, based on estimates of hydrophobicity and fraction of charged molecules at gastrointestinal pHs, risks from alkylphenols can be expressed directly in terms of 'milligram aspirin equivalence,' without correction for absorption differences. They recommend this method for assessing risks of mixtures of alkylphenols, especially for those compounds with no chronic toxicity data.38 references.

  7. A biphasic parameter estimation method for quantitative analysis of dynamic renal scintigraphic data

    NASA Astrophysics Data System (ADS)

    Koh, T. S.; Zhang, Jeff L.; Ong, C. K.; Shuter, B.

    2006-06-01

    Dynamic renal scintigraphy is an established method in nuclear medicine, commonly used for the assessment of renal function. In this paper, a biphasic model fitting method is proposed for simultaneous estimation of both vascular and parenchymal parameters from renal scintigraphic data. These parameters include the renal plasma flow, vascular and parenchymal mean transit times, and the glomerular extraction rate. Monte Carlo simulation was used to evaluate the stability and confidence of the parameter estimates obtained by the proposed biphasic method, before applying the method on actual patient study cases to compare with the conventional fitting approach and other established renal indices. The various parameter estimates obtained using the proposed method were found to be consistent with the respective pathologies of the study cases. The renal plasma flow and extraction rate estimated by the proposed method were in good agreement with those previously obtained using dynamic computed tomography and magnetic resonance imaging.

  8. PREDICTING TOXICOLOGICAL ENDPOINTS OF CHEMICALS USING QUANTITATIVE STRUCTURE-ACTIVITY RELATIONSHIPS (QSARS)

    EPA Science Inventory

    Quantitative structure-activity relationships (QSARs) are being developed to predict the toxicological endpoints for untested chemicals similar in structure to chemicals that have known experimental toxicological data. Based on a very large number of predetermined descriptors, a...

  9. Quantitative Structure--Activity Relationship Modeling of Rat Acute Toxicity by Oral Exposure

    EPA Science Inventory

    Background: Few Quantitative Structure-Activity Relationship (QSAR) studies have successfully modeled large, diverse rodent toxicity endpoints. Objective: In this study, a combinatorial QSAR approach has been employed for the creation of robust and predictive models of acute toxi...

  10. Modeling real-time PCR kinetics: Richards reparametrized equation for quantitative estimation of European hake (Merluccius merluccius).

    PubMed

    Sánchez, Ana; Vázquez, José A; Quinteiro, Javier; Sotelo, Carmen G

    2013-04-10

    Real-time PCR is the most sensitive method for detection and precise quantification of specific DNA sequences, but it is not usually applied as a quantitative method in seafood. In general, benchmark techniques, mainly cycle threshold (Ct), are the routine method for quantitative estimations, but they are not the most precise approaches for a standard assay. In the present work, amplification data from European hake (Merluccius merluccius) DNA samples were accurately modeled by three sigmoid reparametrized equations, where the lag phase parameter (λc) from the Richards equation with four parameters was demonstrated to be the perfect substitute for Ct for PCR quantification. The concentrations of primers and probes were subsequently optimized by means of that selected kinetic parameter. Finally, the linear correlation among DNA concentration and λc was also confirmed.

  11. Ultrasonic 3-D Vector Flow Method for Quantitative In Vivo Peak Velocity and Flow Rate Estimation.

    PubMed

    Holbek, Simon; Ewertsen, Caroline; Bouzari, Hamed; Pihl, Michael Johannes; Hansen, Kristoffer Lindskov; Stuart, Matthias Bo; Thomsen, Carsten; Nielsen, Michael Bachmann; Jensen, Jorgen Arendt

    2017-03-01

    Current clinical ultrasound (US) systems are limited to show blood flow movement in either 1-D or 2-D. In this paper, a method for estimating 3-D vector velocities in a plane using the transverse oscillation method, a 32×32 element matrix array, and the experimental US scanner SARUS is presented. The aim of this paper is to estimate precise flow rates and peak velocities derived from 3-D vector flow estimates. The emission sequence provides 3-D vector flow estimates at up to 1.145 frames/s in a plane, and was used to estimate 3-D vector flow in a cross-sectional image plane. The method is validated in two phantom studies, where flow rates are measured in a flow-rig, providing a constant parabolic flow, and in a straight-vessel phantom ( ∅=8 mm) connected to a flow pump capable of generating time varying waveforms. Flow rates are estimated to be 82.1 ± 2.8 L/min in the flow-rig compared with the expected 79.8 L/min, and to 2.68 ± 0.04 mL/stroke in the pulsating environment compared with the expected 2.57 ± 0.08 mL/stroke. Flow rates estimated in the common carotid artery of a healthy volunteer are compared with magnetic resonance imaging (MRI) measured flow rates using a 1-D through-plane velocity sequence. Mean flow rates were 333 ± 31 mL/min for the presented method and 346 ± 2 mL/min for the MRI measurements.

  12. Modeling Bone Surface Morphology: A Fully Quantitative Method for Age-at-Death Estimation Using the Pubic Symphysis.

    PubMed

    Slice, Dennis E; Algee-Hewitt, Bridget F B

    2015-07-01

    The pubic symphysis is widely used in age estimation for the adult skeleton. Standard practice requires the visual comparison of surface morphology against criteria representing predefined phases and the estimation of case-specific age from an age range associated with the chosen phase. Known problems of method and observer error necessitate alternative tools to quantify age-related change in pubic morphology. This paper presents an objective, fully quantitative method for estimating age-at-death from the skeleton, which exploits a variance-based score of surface complexity computed from vertices obtained from a scanner sampling the pubic symphysis. For laser scans from 41 modern American male skeletons, this method produces results that are significantly associated with known age-at-death (RMSE = 17.15 years). Chronological age is predicted, therefore, equally well, if not, better, with this robust, objective, and fully quantitative method than with prevailing phase-aging systems. This method contributes to forensic casework by responding to medico-legal expectations for evidence standards.

  13. A Unified Maximum Likelihood Framework for Simultaneous Motion and $T_{1}$ Estimation in Quantitative MR $T_{1}$ Mapping.

    PubMed

    Ramos-Llorden, Gabriel; den Dekker, Arnold J; Van Steenkiste, Gwendolyn; Jeurissen, Ben; Vanhevel, Floris; Van Audekerke, Johan; Verhoye, Marleen; Sijbers, Jan

    2017-02-01

    In quantitative MR T1 mapping, the spin-lattice relaxation time T1 of tissues is estimated from a series of T1 -weighted images. As the T1 estimation is a voxel-wise estimation procedure, correct spatial alignment of the T1 -weighted images is crucial. Conventionally, the T1 -weighted images are first registered based on a general-purpose registration metric, after which the T1 map is estimated. However, as demonstrated in this paper, such a two-step approach leads to a bias in the final T1 map. In our work, instead of considering motion correction as a preprocessing step, we recover the motion-free T1 map using a unified estimation approach. In particular, we propose a unified framework where the motion parameters and the T1 map are simultaneously estimated with a Maximum Likelihood (ML) estimator. With our framework, the relaxation model, the motion model as well as the data statistics are jointly incorporated to provide substantially more accurate motion and T1 parameter estimates. Experiments with realistic Monte Carlo simulations show that the proposed unified ML framework outperforms the conventional two-step approach as well as state-of-the-art model-based approaches, in terms of both motion and T1 map accuracy and mean-square error. Furthermore, the proposed method was additionally validated in a controlled experiment with real T1 -weighted data and with two in vivo human brain T1 -weighted data sets, showing its applicability in real-life scenarios.

  14. Statistical estimation of correlated genome associations to a quantitative trait network.

    PubMed

    Kim, Seyoung; Xing, Eric P

    2009-08-01

    Many complex disease syndromes, such as asthma, consist of a large number of highly related, rather than independent, clinical or molecular phenotypes. This raises a new technical challenge in identifying genetic variations associated simultaneously with correlated traits. In this study, we propose a new statistical framework called graph-guided fused lasso (GFlasso) to directly and effectively incorporate the correlation structure of multiple quantitative traits such as clinical metrics and gene expressions in association analysis. Our approach represents correlation information explicitly among the quantitative traits as a quantitative trait network (QTN) and then leverages this network to encode structured regularization functions in a multivariate regression model over the genotypes and traits. The result is that the genetic markers that jointly influence subgroups of highly correlated traits can be detected jointly with high sensitivity and specificity. While most of the traditional methods examined each phenotype independently and combined the results afterwards, our approach analyzes all of the traits jointly in a single statistical framework. This allows our method to borrow information across correlated phenotypes to discover the genetic markers that perturb a subset of the correlated traits synergistically. Using simulated datasets based on the HapMap consortium and an asthma dataset, we compared the performance of our method with other methods based on single-marker analysis and regression-based methods that do not use any of the relational information in the traits. We found that our method showed an increased power in detecting causal variants affecting correlated traits. Our results showed that, when correlation patterns among traits in a QTN are considered explicitly and directly during a structured multivariate genome association analysis using our proposed methods, the power of detecting true causal SNPs with possibly pleiotropic effects increased

  15. Methods for the quantitative comparison of molecular estimates of clade age and the fossil record.

    PubMed

    Clarke, Julia A; Boyd, Clint A

    2015-01-01

    Approaches quantifying the relative congruence, or incongruence, of molecular divergence estimates and the fossil record have been limited. Previously proposed methods are largely node specific, assessing incongruence at particular nodes for which both fossil data and molecular divergence estimates are available. These existing metrics, and other methods that quantify incongruence across topologies including entirely extinct clades, have so far not taken into account uncertainty surrounding both the divergence estimates and the ages of fossils. They have also treated molecular divergence estimates younger than previously assessed fossil minimum estimates of clade age as if they were the same as cases in which they were older. However, these cases are not the same. Recovered divergence dates younger than compared oldest known occurrences require prior hypotheses regarding the phylogenetic position of the compared fossil record and standard assumptions about the relative timing of morphological and molecular change to be incorrect. Older molecular dates, by contrast, are consistent with an incomplete fossil record and do not require prior assessments of the fossil record to be unreliable in some way. Here, we compare previous approaches and introduce two new descriptive metrics. Both metrics explicitly incorporate information on uncertainty by utilizing the 95% confidence intervals on estimated divergence dates and data on stratigraphic uncertainty concerning the age of the compared fossils. Metric scores are maximized when these ranges are overlapping. MDI (minimum divergence incongruence) discriminates between situations where molecular estimates are younger or older than known fossils reporting both absolute fit values and a number score for incompatible nodes. DIG range (divergence implied gap range) allows quantification of the minimum increase in implied missing fossil record induced by enforcing a given set of molecular-based estimates. These metrics are used

  16. Commercial Activities in Primary Schools: A Quantitative Study

    ERIC Educational Resources Information Center

    Raine, Gary

    2007-01-01

    The commercialisation of schools is a controversial issue, but very little is known about the actual situation in UK schools. The aim of this study was to investigate, with particular reference to health education and health promotion, commercial activities and their regulation in primary schools in the Yorkshire and Humber region of the UK. A…

  17. Quantitative determination of effective nibbling activities contaminating restriction endonuclease preparations.

    PubMed

    Hashimoto-Gotoh, T

    1995-10-10

    A simple and sensitive procedure with which to detect residual exonucleolytic nibbling activities contaminating restriction endonuclease preparations is described. The procedure uses the kyosei-plasmid, pKF4, which confers kanamycin resistance and enforces streptomycin sensitivity encoded by the trp promoter/operator-driven rpsL+amber(PO(trp)-rpsL+4(am)) gene onto Escherichia coli streptomycin-resistant, amber-suppressive, trp repressor-negative strains such as TH5. When TH5 cells transformed by pKF4 were selected on agar medium containing kanamycin plus streptomycin, the efficiency of transformation plating was substantially lower than that on agar containing kanamycin alone. However, when pKF4 DNA was digested by restriction enzymes that cut once per molecule within PO(trp)-rpsL+4(am) and relegated, the plating efficiency increased depending on the degree of contamination of exonucleolytic nibbling activities in the enzyme preparations, due to deletion mutation at the ligand junction. Plating efficiency was converted to "effective nibbling activity" corresponding to Bal31 nuclease-equivalent units. Using this procedure, effective nibbling activities were detected in 17 of 34 commercial samples of restriction enzymes tested. The method is simple and more sensitive than the procedures used by the commercial suppliers and it is applicable to the quality control testing of more than 100 restriction enzymes.

  18. FPGA-Based Fused Smart-Sensor for Tool-Wear Area Quantitative Estimation in CNC Machine Inserts

    PubMed Central

    Trejo-Hernandez, Miguel; Osornio-Rios, Roque Alfredo; de Jesus Romero-Troncoso, Rene; Rodriguez-Donate, Carlos; Dominguez-Gonzalez, Aurelio; Herrera-Ruiz, Gilberto

    2010-01-01

    Manufacturing processes are of great relevance nowadays, when there is a constant claim for better productivity with high quality at low cost. The contribution of this work is the development of a fused smart-sensor, based on FPGA to improve the online quantitative estimation of flank-wear area in CNC machine inserts from the information provided by two primary sensors: the monitoring current output of a servoamplifier, and a 3-axis accelerometer. Results from experimentation show that the fusion of both parameters makes it possible to obtain three times better accuracy when compared with the accuracy obtained from current and vibration signals, individually used. PMID:22319304

  19. FPGA-based fused smart-sensor for tool-wear area quantitative estimation in CNC machine inserts.

    PubMed

    Trejo-Hernandez, Miguel; Osornio-Rios, Roque Alfredo; de Jesus Romero-Troncoso, Rene; Rodriguez-Donate, Carlos; Dominguez-Gonzalez, Aurelio; Herrera-Ruiz, Gilberto

    2010-01-01

    Manufacturing processes are of great relevance nowadays, when there is a constant claim for better productivity with high quality at low cost. The contribution of this work is the development of a fused smart-sensor, based on FPGA to improve the online quantitative estimation of flank-wear area in CNC machine inserts from the information provided by two primary sensors: the monitoring current output of a servoamplifier, and a 3-axis accelerometer. Results from experimentation show that the fusion of both parameters makes it possible to obtain three times better accuracy when compared with the accuracy obtained from current and vibration signals, individually used.

  20. Comparison between geochemical and biological estimates of subsurface microbial activities.

    PubMed

    Phelps, T J; Murphy, E M; Pfiffner, S M; White, D C

    1994-01-01

    Geochemical and biological estimates of in situ microbial activities were compared from the aerobic and microaerophilic sediments of the Atlantic Coastal Plain. Radioisotope time-course experiments suggested oxidation rates greater than millimolar quantities per year for acetate and glucose. Geochemical analyses assessing oxygen consumption, soluble organic carbon utilization, sulfate reduction, and carbon dioxide production suggested organic oxidation rates of nano- to micromolar quantities per year. Radiotracer timecourse experiments appeared to overestimate rates of organic carbon oxidation, sulfate reduction, and biomass production by a factor of 10(3)-10(6) greater than estimates calculated from groundwater analyses. Based on the geochemical evidence, in situ microbial metabolism was estimated to be in the nano- to micromolar range per year, and the average doubling time for the microbial community was estimated to be centuries.

  1. A quantitative framework for estimating risk of collision between marine mammals and boats

    USGS Publications Warehouse

    Martin, Julien; Sabatier, Quentin; Gowan, Timothy A.; Giraud, Christophe; Gurarie, Eliezer; Calleson, Scott; Ortega-Ortiz, Joel G.; Deutsch, Charles J.; Rycyk, Athena; Koslovsky, Stacie M.

    2016-01-01

    By applying encounter rate theory to the case of boat collisions with marine mammals, we gained new insights about encounter processes between wildlife and watercraft. Our work emphasizes the importance of considering uncertainty when estimating wildlife mortality. Finally, our findings are relevant to other systems and ecological processes involving the encounter between moving agents.

  2. Quantitative estimates of reaction induced pressures: an example from the Norwegian Caledonides.

    NASA Astrophysics Data System (ADS)

    Vrijmoed, Johannes C.; Podladchikov, Yuri Y.

    2013-04-01

    Estimating the pressure and temperature of metamorphic rocks is fundamental to the understanding of geodynamics. It is therefore important to determine the mechanisms that were responsible for the pressure and temperature obtained from metamorphic rocks. Both pressure and temperature increase with depth in the Earth. Whereas temperature can vary due to local heat sources such as magmatic intrusions, percolation of hot fluids or deformation in shear zones, pressure in petrology is generally assumed to vary homogeneously with depth. However, fluid injection into veins, development of pressure shadows around porphyroblasts, fracturing and folding of rocks all involve variations in stress and therefore also in pressure (mean stress). Volume change during phase transformations or mineral reactions have the potential to build pressure if they proceed faster than the minerals or rocks can deform to accommodate the volume change. This mechanism of pressure generation does not require the rocks to be under differential stress, it may lead however to the development of local differential stress. The Western Gneiss Region (WGR) is a basement window within the Norwegian Caledonides. This area is well known for its occurrences of HP to UHP rocks, mainly found as eclogite boudins and lenses and more rarely within felsic gneisses. Present observations document a regional metamorphic gradient increasing towards the NW, and structures in the field can account for the exhumation of the (U)HP rocks from ~2.5 to 3 GPa. Locally however, mineralogical and geothermobarometric evidence points to metamorphic pressure up to 4 GPa. These locations present an example of local extreme pressure excursions from the regional and mostly coherent metamorphic gradient that are difficult to account for by present day structural field observations. Detailed structural, petrological, mineralogical, geochemical and geochronological study at the Svartberget UHP diamond locality have shown the injection

  3. Quantitative measurements of active Ionian volcanoes in Galileo NIMS data

    NASA Astrophysics Data System (ADS)

    Saballett, Sebastian; Rathbun, Julie A.; Lopes, Rosaly M. C.; Spencer, John R.

    2016-10-01

    Io is the most volcanically active body in our solar system. The spatial distribution of volcanoes a planetary body's surface gives clues into its basic inner workings (i.e., plate tectonics on earth). Tidal heating is the major contributor to active surface geology in the outer solar system, and yet its mechanism is not completely understood. Io's volcanoes are the clearest signature of tidal heating and measurements of the total heat output and how it varies in space and time are useful constraints on tidal heating. Hamilton et al. (2013) showed through a nearest neighbor analysis that Io's hotspots are globally random, but regionally uniform near the equator. Lopes-Gautier et al. (1999) compared the locations of hotspots detected by NIMS to the spatial variation of heat flow predicted by two end-member tidal heating models. They found that the distribution of hotspots is more consistent with tidal heating occurring in asthenosphere rather than the mantle. Hamilton et al. (2013) demonstrate that clustering of hotspots also supports a dominant role for asthenosphere heating. These studies were unable to account for the relative brightness of the hotspots. Furthermore, studies of the temporal variability of Ionian volcanoes have yielded substantial insight into their nature. The Galileo Near Infrared Mapping Spectrometer (NIMS) gave us a large dataset from which to observe active volcanic activity. NIMS made well over 100 observations of Io over an approximately 10-year time frame. With wavelengths spanning from 0.7 to 5.2 microns, it is ideally suited to measure blackbody radiation from surfaces with temperatures over 300 K. Here, we report on our effort to determine the activity level of each hotspot observed in the NIMS data. We decide to use 3.5 micron brightness as a proxy for activity level because it will be easy to compare to, and incorporate, ground-based observations. We fit a 1-temperature blackbody to spectra in each grating position and averaged the

  4. Human ECG signal parameters estimation during controlled physical activity

    NASA Astrophysics Data System (ADS)

    Maciejewski, Marcin; Surtel, Wojciech; Dzida, Grzegorz

    2015-09-01

    ECG signal parameters are commonly used indicators of human health condition. In most cases the patient should remain stationary during the examination to decrease the influence of muscle artifacts. During physical activity, the noise level increases significantly. The ECG signals were acquired during controlled physical activity on a stationary bicycle and during rest. Afterwards, the signals were processed using a method based on Pan-Tompkins algorithms to estimate their parameters and to test the method.

  5. Interspecies quantitative structure-activity-activity relationships (QSAARs) for prediction of acute aquatic toxicity of aromatic amines and phenols.

    PubMed

    Furuhama, A; Hasunuma, K; Aoki, Y

    2015-01-01

    We propose interspecies quantitative structure-activity-activity relationships (QSAARs), that is, QSARs with descriptors, to estimate species-specific acute aquatic toxicity. Using training datasets consisting of more than 100 aromatic amines and phenols, we found that the descriptors that predicted acute toxicities to fish (Oryzias latipes) and algae were daphnia toxicity, molecular weight (an indicator of molecular size and uptake) and selected indicator variables that discriminated between the absence or presence of various substructures. Molecular weight and the selected indicator variables improved the goodness-of-fit of the fish and algae toxicity prediction models. External validations of the QSAARs proved that algae toxicity could be predicted within 1.0 log unit and revealed structural profiles of outlier chemicals with respect to fish toxicity. In addition, applicability domains based on leverage values provided structural alerts for the predicted fish toxicity of chemicals with more than one hydroxyl or amino group attached to an aromatic ring, but not for fluoroanilines, which were not included in the training dataset. Although these simple QSAARs have limitations, their applicability is defined so clearly that they may be practical for screening chemicals with molecular weights of ≤364.9.

  6. EIA Completes Corrections to Drilling Activity Estimates Series

    EIA Publications

    1999-01-01

    The Energy Information Administration (EIA) has published monthly and annual estimates of oil and gas drilling activity since 1978. These data are key information for many industry analysts, serving as a leading indicator of trends in the industry and a barometer of general industry status.

  7. EIA Corrects Errors in Its Drilling Activity Estimates Series

    EIA Publications

    1998-01-01

    The Energy Information Administration (EIA) has published monthly and annual estimates of oil and gas drilling activity since 1978. These data are key information for many industry analysts, serving as a leading indicator of trends in the industry and a barometer of general industry status.

  8. Quantitative PCR estimates Angiostrongylus cantonensis (rat lungworm) infection levels in semi-slugs (Parmarion martensi)

    PubMed Central

    Jarvi, Susan I.; Farias, Margaret E.M.; Howe, Kay; Jacquier, Steven; Hollingsworth, Robert; Pitt, William

    2013-01-01

    The life cycle of the nematode Angiostrongylus cantonensis involves rats as the definitive host and slugs and snails as intermediate hosts. Humans can become infected upon ingestion of intermediate or paratenic (passive carrier) hosts containing stage L3 A. cantonensis larvae. Here, we report a quantitative PCR (qPCR) assay that provides a reliable, relative measure of parasite load in intermediate hosts. Quantification of the levels of infection of intermediate hosts is critical for determining A. cantonensis intensity on the Island of Hawaii. The identification of high intensity infection ‘hotspots’ will allow for more effective targeted rat and slug control measures. qPCR appears more efficient and sensitive than microscopy and provides a new tool for quantification of larvae from intermediate hosts, and potentially from other sources as well. PMID:22902292

  9. Skill Assessment of An Hybrid Technique To Estimate Quantitative Precipitation Forecast For Galicia (nw Spain)

    NASA Astrophysics Data System (ADS)

    Lage, A.; Taboada, J. J.

    Precipitation is the most obvious of the weather elements in its effects on normal life. Numerical weather prediction (NWP) is generally used to produce quantitative precip- itation forecast (QPF) beyond the 1-3 h time frame. These models often fail to predict small-scale variations of rain because of spin-up problems and their coarse spatial and temporal resolution (Antolik, 2000). Moreover, there are some uncertainties about the behaviour of the NWP models in extreme situations (de Bruijn and Brandsma, 2000). Hybrid techniques, combining the benefits of NWP and statistical approaches in a flexible way, are very useful to achieve a good QPF. In this work, a new technique of QPF for Galicia (NW of Spain) is presented. This region has a percentage of rainy days per year greater than 50% with quantities that may cause floods, with human and economical damages. The technique is composed of a NWP model (ARPS) and a statistical downscaling process based on an automated classification scheme of at- mospheric circulation patterns for the Iberian Peninsula (J. Ribalaygua and R. Boren, 1995). Results show that QPF for Galicia is improved using this hybrid technique. [1] Antolik, M.S. 2000 "An Overview of the National Weather Service's centralized statistical quantitative precipitation forecasts". Journal of Hydrology, 239, pp:306- 337. [2] de Bruijn, E.I.F and T. Brandsma "Rainfall prediction for a flooding event in Ireland caused by the remnants of Hurricane Charley". Journal of Hydrology, 239, pp:148-161. [3] Ribalaygua, J. and Boren R. "Clasificación de patrones espaciales de precipitación diaria sobre la España Peninsular". Informes N 3 y 4 del Servicio de Análisis e Investigación del Clima. Instituto Nacional de Meteorología. Madrid. 53 pp.

  10. Quantitative television fluoroangiography - the optical measurement of dye concentrations and estimation of retinal blood flow

    SciTech Connect

    Greene, M.; Thomas, A.L. Jr.

    1985-06-01

    The development of a system for the measurement of dye concentrations from single retinal vessels during retinal fluorescein angiography is presented and discussed. The system uses a fundus camera modified for TV viewing. Video gating techniques define the areas of the retina to be studied, and video peak detection yields dye concentrations from retinal vessels. The time course of dye concentration is presented and blood flow into the retina is estimated by a time of transit technique.

  11. Methane emission estimation from landfills in Korea (1978-2004): quantitative assessment of a new approach.

    PubMed

    Kim, Hyun-Sun; Yi, Seung-Muk

    2009-01-01

    Quantifying methane emission from landfills is important to evaluating measures for reduction of greenhouse gas (GHG) emissions. To quantify GHG emissions and identify sensitive parameters for their measurement, a new assessment approach consisting of six different scenarios was developed using Tier 1 (mass balance method) and Tier 2 (the first-order decay method) methodologies for GHG estimation from landfills, suggested by the Intergovernmental Panel on Climate Change (IPCC). Methane emissions using Tier 1 correspond to trends in disposed waste amount, whereas emissions from Tier 2 gradually increase as disposed waste decomposes over time. The results indicate that the amount of disposed waste and the decay rate for anaerobic decomposition were decisive parameters for emission estimation using Tier 1 and Tier 2. As for the different scenarios, methane emissions were highest under Scope 1 (scenarios I and II), in which all landfills in Korea were regarded as one landfill. Methane emissions under scenarios III, IV, and V, which separated the dissimilated fraction of degradable organic carbon (DOC(F)) by waste type and/or revised the methane correction factor (MCF) by waste layer, were underestimated compared with scenarios II and III. This indicates that the methodology of scenario I, which has been used in most previous studies, may lead to an overestimation of methane emissions. Additionally, separate DOC(F) and revised MCF were shown to be important parameters for methane emission estimation from landfills, and revised MCF by waste layer played an important role in emission variations. Therefore, more precise information on each landfill and careful determination of parameter values and characteristics of disposed waste in Korea should be used to accurately estimate methane emissions from landfills.

  12. Coupling radar and lightning data to improve the quantitative estimation of precipitation

    NASA Astrophysics Data System (ADS)

    François, B.; Molinié, G.; Betz, H. D.

    2009-09-01

    Forecasts in hydrology require rainfall intensity estimations at temporal scale of few tens of minutes and at spatial scales of few kilometer squares. Radars are the most efficient apparatus to provide such data. However, estimate the rainfall intensity (R) from the radar reflectivity (Z) is based on empirical Z-R relationships which are not robusts. Indeed, the Z-R relationships depend on hydrometeor types. The role of Lightning flashes in thunderclouds is to relax the electrical constraints. Generations of thundercloud electrical charges are due to thermodynamical and microphysical processes. Based on these physical considerations, Blyth et al. (2001) have derived a relationship between the product of ascending and descending hydrometeor fluxes and the lightning flash rate. Deierling et al. (2008) succesfully applied this relationship to data from the STERAO-A and STEPS field campains. We have applied the methodology described in Deierling et al. (2008) to operational radar (Météo-France network) and lightning (LINET) data. As these data don't allow to compute the ascending hydrometeor flux and as the descending mass flux is highly parameterized, thundercloud simulations (MésoNH) are used to assess the role of ascending fluxes and the estimated precipitating fluxes. In order to assess the budget of the Blyth et al. (2008) equation terms, the electrified version of MésoNH, including lightning, is run.

  13. [Non-parametric Bootstrap estimation on the intraclass correlation coefficient generated from quantitative hierarchical data].

    PubMed

    Liang, Rong; Zhou, Shu-dong; Li, Li-xia; Zhang, Jun-guo; Gao, Yan-hui

    2013-09-01

    This paper aims to achieve Bootstraping in hierarchical data and to provide a method for the estimation on confidence interval(CI) of intraclass correlation coefficient(ICC).First, we utilize the mixed-effects model to estimate data from ICC of repeated measurement and from the two-stage sampling. Then, we use Bootstrap method to estimate CI from related ICCs. Finally, the influences of different Bootstraping strategies to ICC's CIs are compared. The repeated measurement instance show that the CI of cluster Bootsraping containing the true ICC value. However, when ignoring the hierarchy characteristics of data, the random Bootsraping method shows that it has the invalid CI. Result from the two-stage instance shows that bias observed between cluster Bootstraping's ICC means while the ICC of the original sample is the smallest, but with wide CI. It is necessary to consider the structure of data as important, when hierarchical data is being resampled. Bootstrapping seems to be better on the higher than that on lower levels.

  14. Towards a quantitative kinetic theory of polar active matter

    NASA Astrophysics Data System (ADS)

    Ihle, T.

    2014-06-01

    A recent kinetic approach for Vicsek-like models of active particles is reviewed. The theory is based on an exact Chapman- Kolmogorov equation in phase space. It can handle discrete time dynamics and "exotic" multi-particle interactions. A nonlocal mean-field theory for the one-particle distribution function is obtained by assuming molecular chaos. The Boltzmann approach of Bertin, et al., Phys. Rev. E 74, 022101 (2006) and J. Phys. A 42, 445001 (2009), is critically assessed and compared to the current approach. In Boltzmann theory, a collision starts when two particles enter each others action spheres and is finished when their distance exceeds the interaction radius. The average duration of such a collision, τ0, is measured for the Vicsek model with continuous time-evolution. If the noise is chosen to be close to the flocking threshold, the average time between collisions is found to be roughly equal to τ0 at low densities. Thus, the continuous-time Vicsek-model near the flocking threshold cannot be accurately described by a Boltzmann equation, even at very small density because collisions take so long that typically other particles join in, rendering Boltzmann's binary collision assumption invalid. Hydrodynamic equations for the phase space approach are derived by means of a Chapman-Enskog expansion. The equations are compared to the Toner-Tu theory of polar active matter. New terms, absent in the Toner-Tu theory, are highlighted. Convergence problems of Chapman-Enskog and similar gradient expansions are discussed.

  15. Quantitative Estimate of the Relation Between Rolling Resistance on Fuel Consumption of Class 8 Tractor Trailers Using Both New and Retreaded Tires (SAE Paper 2014-01-2425)

    EPA Science Inventory

    Road tests of class 8 tractor trailers were conducted by the US Environmental Protection Agency on new and retreaded tires of varying rolling resistance in order to provide estimates of the quantitative relationship between rolling resistance and fuel consumption.

  16. Quantitative estimates of tropical temperature change in lowland Central America during the last 42 ka

    NASA Astrophysics Data System (ADS)

    Grauel, Anna-Lena; Hodell, David A.; Bernasconi, Stefano M.

    2016-03-01

    Determining the magnitude of tropical temperature change during the last glacial period is a fundamental problem in paleoclimate research. Large discrepancies exist in estimates of tropical cooling inferred from marine and terrestrial archives. Here we present a reconstruction of temperature for the last 42 ka from a lake sediment core from Lake Petén Itzá, Guatemala, located at 17°N in lowland Central America. We compared three independent methods of glacial temperature reconstruction: pollen-based temperature estimates, tandem measurements of δ18O in biogenic carbonate and gypsum hydration water, and clumped isotope thermometry. Pollen provides a near-continuous record of temperature change for most of the glacial period but the occurrence of a no-analog pollen assemblage during cold, dry stadials renders temperature estimates unreliable for these intervals. In contrast, the gypsum hydration and clumped isotope methods are limited mainly to the stadial periods when gypsum and biogenic carbonate co-occur. The combination of palynological and geochemical methods leads to a continuous record of tropical temperature change in lowland Central America over the last 42 ka. Furthermore, the gypsum hydration water method and clumped isotope thermometry provide independent estimates of not only temperature, but also the δ18O of lake water that is dependent on the hydrologic balance between evaporation and precipitation over the lake surface and its catchment. The results show that average glacial temperature was cooler in lowland Central America by 5-10 °C relative to the Holocene. The coldest and driest times occurred during North Atlantic stadial events, particularly Heinrich stadials (HSs), when temperature decreased by up to 6 to 10 °C relative to today. This magnitude of cooling is much greater than estimates derived from Caribbean marine records and model simulations. The extreme dry and cold conditions during HSs in the lowland Central America were associated

  17. Estimating evaporative vapor generation from automobiles based on parking activities.

    PubMed

    Dong, Xinyi; Tschantz, Michael; Fu, Joshua S

    2015-07-01

    A new approach is proposed to quantify the evaporative vapor generation based on real parking activity data. As compared to the existing methods, two improvements are applied in this new approach to reduce the uncertainties: First, evaporative vapor generation from diurnal parking events is usually calculated based on estimated average parking duration for the whole fleet, while in this study, vapor generation rate is calculated based on parking activities distribution. Second, rather than using the daily temperature gradient, this study uses hourly temperature observations to derive the hourly incremental vapor generation rates. The parking distribution and hourly incremental vapor generation rates are then adopted with Wade-Reddy's equation to estimate the weighted average evaporative generation. We find that hourly incremental rates can better describe the temporal variations of vapor generation, and the weighted vapor generation rate is 5-8% less than calculation without considering parking activity.

  18. Using multiple linear regression model to estimate thunderstorm activity

    NASA Astrophysics Data System (ADS)

    Suparta, W.; Putro, W. S.

    2017-03-01

    This paper is aimed to develop a numerical model with the use of a nonlinear model to estimate the thunderstorm activity. Meteorological data such as Pressure (P), Temperature (T), Relative Humidity (H), cloud (C), Precipitable Water Vapor (PWV), and precipitation on a daily basis were used in the proposed method. The model was constructed with six configurations of input and one target output. The output tested in this work is the thunderstorm event when one-year data is used. Results showed that the model works well in estimating thunderstorm activities with the maximum epoch reaching 1000 iterations and the percent error was found below 50%. The model also found that the thunderstorm activities in May and October are detected higher than the other months due to the inter-monsoon season.

  19. Comparison of Multiple Quantitative Precipitation Estimates for Warm-Season Flood Forecasting in the Colorado Front Range

    NASA Astrophysics Data System (ADS)

    Moreno, H. A.; Vivoni, E. R.; Gochis, D. J.

    2010-12-01

    Quantitative Precipitation Estimates (QPEs) from ground and satellite platforms can potentially serve as input to hydrologic models used for flood forecasting in mountainous watersheds. This work compares the impact of ten different high-resolution (4-km and hourly) precipitation products on flood forecast skill in a large region of the Colorado Front Range. These products range from radar fields (Level II, Stage III and IV) to satellite estimates (HydroEstimator, AutoEstimator, Blend, GMSRA, PERSIANN-CCS). We examine QPE skill relative to ground rain gauges to detect error characteristics during the 2004 summer season which exhibited above-average precipitation accumulations in the region. We then quantify flood forecast skill by using the TIN-based Real time Integrated Basin Simulator (tRIBS) as an analysis tool in four mountain basins. The structural features of radar and satellite precipitation products determine the timing and magnitude of simulated summer floods in the study basins. Use of ground-based radar and multi-sensor satellite estimates minimize streamflow differences at the outlet locations compared to satellite-only QPEs which tend to underestimate total rainfall volumes, resulting in significant hydrologic response uncertainties. Given the generally low rainfall estimates from satellite-only products, a mean field bias correction is applied to all products and results are compared against non-corrected precipitation products. An exploratory analysis is conducted to assess precipitation volume differences between the bias-corrected and raw satellite products. Probability density functions of the differences allow examining the links between QPE bias, the diurnal precipitation cycle and topographic position. Analysis of the spatiotemporal precipitation and streamflow patterns help identify benefits and shortcomings of high-resolution QPEs for summer storms in mountainous areas.

  20. The Use of Multi-Sensor Quantitative Precipitation Estimates for Deriving Extreme Precipitation Frequencies with Application in Louisiana

    NASA Astrophysics Data System (ADS)

    El-Dardiry, Hisham Abd El-Kareem

    The Radar-based Quantitative Precipitation Estimates (QPE) is one of the NEXRAD products that are available in a high temporal and spatial resolution compared with gauges. Radar-based QPEs have been widely used in many hydrological and meteorological applications; however, a few studies have focused on using radar QPE products in deriving of Precipitation Frequency Estimates (PFE). Accurate and regionally specific information on PFE is critically needed for various water resources engineering planning and design purposes. This study focused first on examining the data quality of two main radar products, the near real-time Stage IV QPE product, and the post real-time RFC/MPE product. Assessment of the Stage IV product showed some alarming data artifacts that contaminate the identification of rainfall maxima. Based on the inter-comparison analysis of the two products, Stage IV and RFC/MPE, the latter was selected for the frequency analysis carried out throughout the study. The precipitation frequency analysis approach used in this study is based on fitting Generalized Extreme Value (GEV) distribution as a statistical model for the hydrologic extreme rainfall data that based on Annual Maximum Series (AMS) extracted from 11 years (2002-2012) over a domain covering Louisiana. The parameters of the GEV model are estimated using method of linear moments (L-moments). Two different approaches are suggested for estimating the precipitation frequencies; Pixel-Based approach, in which PFEs are estimated at each individual pixel and Region-Based approach in which a synthetic sample is generated at each pixel by using observations from surrounding pixels. The region-based technique outperforms the pixel based estimation when compared with results obtained by NOAA Atlas 14; however, the availability of only short record of observations and the underestimation of radar QPE for some extremes causes considerable reduction in precipitation frequencies in pixel-based and region

  1. Long-term accounting for raindrop size distribution variations improves quantitative precipitation estimation by weather radar

    NASA Astrophysics Data System (ADS)

    Hazenberg, Pieter; Leijnse, Hidde; Uijlenhoet, Remko

    2016-04-01

    Weather radars provide information on the characteristics of precipitation at high spatial and temporal resolution. Unfortunately, rainfall measurements by radar are affected by multiple error sources. The current study is focused on the impact of variations of the raindrop size distribution on radar rainfall estimates. Such variations lead to errors in the estimated rainfall intensity (R) and specific attenuation (k) when using fixed relations for the conversion of the observed reflectivity (Z) into R and k. For non-polarimetric radar, this error source has received relatively little attention compared to other error sources. We propose to link the parameters of the Z-R and Z-k relations directly to those of the normalized gamma DSD. The benefit of this procedure is that it reduces the number of unknown parameters. In this work, the DSD parameters are obtained using 1) surface observations from a Parsivel and Thies LPM disdrometer, and 2) a Monte Carlo optimization procedure using surface rain gauge observations. The impact of both approaches for a given precipitation type is assessed for 45 days of summertime precipitation observed in The Netherlands. Accounting for DSD variations using disdrometer observations leads to an improved radar QPE product as compared to applying climatological Z-R and Z-k relations. This especially holds for situations where widespread stratiform precipitation is observed. The best results are obtained when the DSD parameters are optimized. However, the optimized Z-R and Z-k relations show an unrealistic variability that arises from uncorrected error sources. As such, the optimization approach does not result in a realistic DSD shape but instead also accounts for uncorrected error sources resulting in the best radar rainfall adjustment. Therefore, to further improve the quality of preciptitation estimates by weather radar, usage should either be made of polarimetric radar or by extending the network of disdrometers.

  2. Quantitative estimation of IgE and IgD by laser nephelometry.

    PubMed

    Bergmann, K C; Crisci, C D; Jinnouchi, H; Oehling, A

    1979-01-01

    The advantages and disadvantages of Laser Nephelometry (LN) in the determination of IgD and IgE are reported. Two laser nephelometer models (Behringwerke/Marburg), different batches of LN cuvettes, WHO reference standard sera, rabbit anti-human antisera and randomly selected allergic patients' sera were used for the standardization of the method. Cuvette blank values were significantly lower in the new model of laser nephelometer and the precision of these measurements was very high when two different cuvette charges were compared. In the determination of IgE by LN, it was possible to detect levels down to 125 IU/ml, the accuracy of the estimations varying between 4.8 and 8.2% and the repeatability between 3.2 and 24.4%, the highest variation coefficient being obtained in low level samples. The overall agreement between LN and RIST in 55 serum samples was 71%, and at concentrations below 200 IU/ml (normal) and above 400 IU/ml (increased) 80% and 85% respectively. In the determination of IgD by LN, the accuracy of the estimations was also very good (2.4 to 7.8%) and the variation coefficient varied between 2.8 and 13.3%. In the comparison of IgD estimations with LN and radial immunodiffusion in 27 samples a correlation coefficient of r = 0.82 was obtained. Although normal adult IgE values cannot be analysed, the clinically important increased IgE levels are correctly determined by LN. The method is more sensitive than the Mancini technique for IgE determination and in comparison with RIST, though low values are not obtained, LN is quicker, simpler and cheaper.

  3. Noise estimation from averaged diffusion weighted images: Can unbiased quantitative decay parameters assist cancer evaluation?

    PubMed Central

    Dikaios, Nikolaos; Punwani, Shonit; Hamy, Valentin; Purpura, Pierpaolo; Rice, Scott; Forster, Martin; Mendes, Ruheena; Taylor, Stuart; Atkinson, David

    2014-01-01

    Purpose Multiexponential decay parameters are estimated from diffusion-weighted-imaging that generally have inherently low signal-to-noise ratio and non-normal noise distributions, especially at high b-values. Conventional nonlinear regression algorithms assume normally distributed noise, introducing bias into the calculated decay parameters and potentially affecting their ability to classify tumors. This study aims to accurately estimate noise of averaged diffusion-weighted-imaging, to correct the noise induced bias, and to assess the effect upon cancer classification. Methods A new adaptation of the median-absolute-deviation technique in the wavelet-domain, using a closed form approximation of convolved probability-distribution-functions, is proposed to estimate noise. Nonlinear regression algorithms that account for the underlying noise (maximum probability) fit the biexponential/stretched exponential decay models to the diffusion-weighted signal. A logistic-regression model was built from the decay parameters to discriminate benign from metastatic neck lymph nodes in 40 patients. Results The adapted median-absolute-deviation method accurately predicted the noise of simulated (R2 = 0.96) and neck diffusion-weighted-imaging (averaged once or four times). Maximum probability recovers the true apparent-diffusion-coefficient of the simulated data better than nonlinear regression (up to 40%), whereas no apparent differences were found for the other decay parameters. Conclusions Perfusion-related parameters were best at cancer classification. Noise-corrected decay parameters did not significantly improve classification for the clinical data set though simulations show benefit for lower signal-to-noise ratio acquisitions. PMID:23913479

  4. An efficient automatic workload estimation method based on electrodermal activity using pattern classifier combinations.

    PubMed

    Ghaderyan, Peyvand; Abbasi, Ataollah

    2016-12-01

    Automatic workload estimation has received much attention because of its application in error prevention, diagnosis, and treatment of neural system impairment. The development of a simple but reliable method using minimum number of psychophysiological signals is a challenge in automatic workload estimation. To address this challenge, this paper presented three different decomposition techniques (Fourier, cepstrum, and wavelet transforms) to analyze electrodermal activity (EDA). The efficiency of various statistical and entropic features was investigated and compared. To recognize different levels of an arithmetic task, the features were processed by principal component analysis and machine-learning techniques. These methods have been incorporated into a workload estimation system based on two types: feature-level and decision-level combinations. The results indicated the reliability of the method for automatic and real-time inference of psychological states. This method provided a quantitative estimation of the workload levels and a bias-free evaluation approach. The high-average accuracy of 90% and cost effective requirement were the two important attributes of the proposed workload estimation system. New entropic features were proved to be more sensitive measures for quantifying time and frequency changes in EDA. The effectiveness of these measures was also compared with conventional tonic EDA measures, demonstrating the superiority of the proposed method in achieving accurate estimation of workload levels.

  5. Quantitative estimation of temperature variations in plantar angiosomes: a study case for diabetic foot.

    PubMed

    Peregrina-Barreto, H; Morales-Hernandez, L A; Rangel-Magdaleno, J J; Avina-Cervantes, J G; Ramirez-Cortes, J M; Morales-Caporal, R

    2014-01-01

    Thermography is a useful tool since it provides information that may help in the diagnostic of several diseases in a noninvasive and fast way. Particularly, thermography has been applied in the study of the diabetic foot. However, most of these studies report only qualitative information making it difficult to measure significant parameters such as temperature variations. These variations are important in the analysis of the diabetic foot since they could bring knowledge, for instance, regarding ulceration risks. The early detection of ulceration risks is considered an important research topic in the medicine field, as its objective is to avoid major complications that might lead to a limb amputation. The absence of symptoms in the early phase of the ulceration is conceived as the main disadvantage to provide an opportune diagnostic in subjects with neuropathy. Since the relation between temperature and ulceration risks is well established in the literature, a methodology that obtains quantitative temperature differences in the plantar area of the diabetic foot to detect ulceration risks is proposed in this work. Such methodology is based on the angiosome concept and image processing.

  6. Raman spectroscopy of human skin: looking for a quantitative algorithm to reliably estimate human age

    NASA Astrophysics Data System (ADS)

    Pezzotti, Giuseppe; Boffelli, Marco; Miyamori, Daisuke; Uemura, Takeshi; Marunaka, Yoshinori; Zhu, Wenliang; Ikegaya, Hiroshi

    2015-06-01

    The possibility of examining soft tissues by Raman spectroscopy is challenged in an attempt to probe human age for the changes in biochemical composition of skin that accompany aging. We present a proof-of-concept report for explicating the biophysical links between vibrational characteristics and the specific compositional and chemical changes associated with aging. The actual existence of such links is then phenomenologically proved. In an attempt to foster the basics for a quantitative use of Raman spectroscopy in assessing aging from human skin samples, a precise spectral deconvolution is performed as a function of donors' ages on five cadaveric samples, which emphasizes the physical significance and the morphological modifications of the Raman bands. The outputs suggest the presence of spectral markers for age identification from skin samples. Some of them appeared as authentic "biological clocks" for the apparent exactness with which they are related to age. Our spectroscopic approach yields clear compositional information of protein folding and crystallization of lipid structures, which can lead to a precise identification of age from infants to adults. Once statistically validated, these parameters might be used to link vibrational aspects at the molecular scale for practical forensic purposes.

  7. Quantitatively estimating defects in graphene devices using discharge current analysis method

    PubMed Central

    Jung, Ukjin; Lee, Young Gon; Kang, Chang Goo; Lee, Sangchul; Kim, Jin Ju; Hwang, Hyeon June; Lim, Sung Kwan; Ham, Moon-Ho; Lee, Byoung Hun

    2014-01-01

    Defects of graphene are the most important concern for the successful applications of graphene since they affect device performance significantly. However, once the graphene is integrated in the device structures, the quality of graphene and surrounding environment could only be assessed using indirect information such as hysteresis, mobility and drive current. Here we develop a discharge current analysis method to measure the quality of graphene integrated in a field effect transistor structure by analyzing the discharge current and examine its validity using various device structures. The density of charging sites affecting the performance of graphene field effect transistor obtained using the discharge current analysis method was on the order of 1014/cm2, which closely correlates with the intensity ratio of the D to G bands in Raman spectroscopy. The graphene FETs fabricated on poly(ethylene naphthalate) (PEN) are found to have a lower density of charging sites than those on SiO2/Si substrate, mainly due to reduced interfacial interaction between the graphene and the PEN. This method can be an indispensable means to improve the stability of devices using a graphene as it provides an accurate and quantitative way to define the quality of graphene after the device fabrication. PMID:24811431

  8. Quantitatively estimating defects in graphene devices using discharge current analysis method.

    PubMed

    Jung, Ukjin; Lee, Young Gon; Kang, Chang Goo; Lee, Sangchul; Kim, Jin Ju; Hwang, Hyeon June; Lim, Sung Kwan; Ham, Moon-Ho; Lee, Byoung Hun

    2014-05-08

    Defects of graphene are the most important concern for the successful applications of graphene since they affect device performance significantly. However, once the graphene is integrated in the device structures, the quality of graphene and surrounding environment could only be assessed using indirect information such as hysteresis, mobility and drive current. Here we develop a discharge current analysis method to measure the quality of graphene integrated in a field effect transistor structure by analyzing the discharge current and examine its validity using various device structures. The density of charging sites affecting the performance of graphene field effect transistor obtained using the discharge current analysis method was on the order of 10(14)/cm(2), which closely correlates with the intensity ratio of the D to G bands in Raman spectroscopy. The graphene FETs fabricated on poly(ethylene naphthalate) (PEN) are found to have a lower density of charging sites than those on SiO2/Si substrate, mainly due to reduced interfacial interaction between the graphene and the PEN. This method can be an indispensable means to improve the stability of devices using a graphene as it provides an accurate and quantitative way to define the quality of graphene after the device fabrication.

  9. Quantitatively estimating defects in graphene devices using discharge current analysis method

    NASA Astrophysics Data System (ADS)

    Jung, Ukjin; Lee, Young Gon; Kang, Chang Goo; Lee, Sangchul; Kim, Jin Ju; Hwang, Hyeon June; Lim, Sung Kwan; Ham, Moon-Ho; Lee, Byoung Hun

    2014-05-01

    Defects of graphene are the most important concern for the successful applications of graphene since they affect device performance significantly. However, once the graphene is integrated in the device structures, the quality of graphene and surrounding environment could only be assessed using indirect information such as hysteresis, mobility and drive current. Here we develop a discharge current analysis method to measure the quality of graphene integrated in a field effect transistor structure by analyzing the discharge current and examine its validity using various device structures. The density of charging sites affecting the performance of graphene field effect transistor obtained using the discharge current analysis method was on the order of 1014/cm2, which closely correlates with the intensity ratio of the D to G bands in Raman spectroscopy. The graphene FETs fabricated on poly(ethylene naphthalate) (PEN) are found to have a lower density of charging sites than those on SiO2/Si substrate, mainly due to reduced interfacial interaction between the graphene and the PEN. This method can be an indispensable means to improve the stability of devices using a graphene as it provides an accurate and quantitative way to define the quality of graphene after the device fabrication.

  10. Quantitative estimation of channeling from early glycolytic intermediates to CO in intact Escherichia coli.

    PubMed

    Shearer, Georgia; Lee, Jennifer C; Koo, Jia-An; Kohl, Daniel H

    2005-07-01

    A pathway intermediate is said to be 'channeled' when an intermediate just made in a pathway has a higher probability of being a substrate for the next pathway enzyme compared with a molecule of the same species from the aqueous cytoplasm. Channeling is an important phenomenon because it might play a significant role in the regulation of metabolism. Whereas the usual mechanism proposed for channeling is the (often) transient interaction of sequential pathway enzymes, many of the supporting data come from results with pure enzymes and dilute cell extracts. Even when isotope dilution techniques have utilized whole-cell systems, most often only a qualitative assessment of channeling has been reported. Here we develop a method for making a quantitative calculation of the fraction channeled in glycolysis from in vivo isotope dilution experiments. We show that fructose-1,6-bisphosphate, in whole cells of Escherichia coli, was strongly channeled all the way to CO2, whereas fructose-6-phosphate was not. Because the signature of channeling is lost if any downstream intermediate prior to CO2 equilibrates with molecules in the aqueous cytosol, it was not possible to evaluate whether glucose-6-phosphate was channeled in its transformation to fructose-6-phosphate. The data also suggest that, in addition to pathway enzymes being associated with one another, some are free in the aqueous cytosol. How sensitive the degree of channeling is to growth or experimental conditions remains to be determined.

  11. Integral quantification accuracy estimation for reporter ion-based quantitative proteomics (iQuARI).

    PubMed

    Vaudel, Marc; Burkhart, Julia M; Radau, Sonja; Zahedi, René P; Martens, Lennart; Sickmann, Albert

    2012-10-05

    With the increasing popularity of comparative studies of complex proteomes, reporter ion-based quantification methods such as iTRAQ and TMT have become commonplace in biological studies. Their appeal derives from simple multiplexing and quantification of several samples at reasonable cost. This advantage yet comes with a known shortcoming: precursors of different species can interfere, thus reducing the quantification accuracy. Recently, two methods were brought to the community alleviating the amount of interference via novel experimental design. Before considering setting up a new workflow, tuning the system, optimizing identification and quantification rates, etc. one legitimately asks: is it really worth the effort, time and money? The question is actually not easy to answer since the interference is heavily sample and system dependent. Moreover, there was to date no method allowing the inline estimation of error rates for reporter quantification. We therefore introduce a method called iQuARI to compute false discovery rates for reporter ion based quantification experiments as easily as Target/Decoy FDR for identification. With it, the scientist can accurately estimate the amount of interference in his sample on his system and eventually consider removing shadows subsequently, a task for which reporter ion quantification might not be the solution of choice.

  12. Estimating the age of healthy infants from quantitative myelin water fraction maps.

    PubMed

    Dean, Douglas C; O'Muircheartaigh, Jonathan; Dirks, Holly; Waskiewicz, Nicole; Lehman, Katie; Walker, Lindsay; Piryatinsky, Irene; Deoni, Sean C L

    2015-04-01

    The trajectory of the developing brain is characterized by a sequence of complex, nonlinear patterns that occur at systematic stages of maturation. Although significant prior neuroimaging research has shed light on these patterns, the challenge of accurately characterizing brain maturation, and identifying areas of accelerated or delayed development, remains. Altered brain development, particularly during the earliest stages of life, is believed to be associated with many neurological and neuropsychiatric disorders. In this work, we develop a framework to construct voxel-wise estimates of brain age based on magnetic resonance imaging measures sensitive to myelin content. 198 myelin water fraction (VF(M) ) maps were acquired from healthy male and female infants and toddlers, 3 to 48 months of age, and used to train a sigmoidal-based maturational model. The validity of the approach was then established by testing the model on 129 different VF(M) datasets. Results revealed the approach to have high accuracy, with a mean absolute percent error of 13% in males and 14% in females, and high predictive ability, with correlation coefficients between estimated and true ages of 0.945 in males and 0.94 in females. This work represents a new approach toward mapping brain maturity, and may provide a more faithful staging of brain maturation in infants beyond chronological or gestation-corrected age, allowing earlier identification of atypical regional brain development.

  13. Geosynchronous SAR Orbit Estimation Based on Active Radar Calibrators

    NASA Astrophysics Data System (ADS)

    Leanza, Antonio; Monti Guarnieri, Andrea; Boroquets Ibars, Antoni

    2016-08-01

    The Geosynchronous SAR (GEOSAR) is a system designed for continuous monitoring of a fixed region of the Earth. Differently from LEOSAR, the GEOSAR system requires very long times to form its Synthetic Aperture (SA). This entails the onset of several decorrelation sources, such as atmosphere propagation, orbit perturbations, clock drifts, that have to be compensated to avoid defocusing. In this paper, in particular, it is proposed a solution to cope with the phase error introduced by orbit perturbations within the SA by means of some Active Radar Calibrators (ARC) deployed at convenient positions in the illuminated area. Each ARC provides two-way pulse by pulse echo delay and carrier phase observations used to track the satellite position. The estimation follows an iterative approach whose steps are dividing the SA in sub-apertures, performing the estimation for each sub-aperture, applying the estimated orbit correction and repeating for longer sub-apertures.

  14. Noninvasive and quantitative intracranial pressure estimation using ultrasonographic measurement of optic nerve sheath diameter

    PubMed Central

    Wang, Li-juan; Yao, Yan; Feng, Liang-shu; Wang, Yu-zhi; Zheng, Nan-nan; Feng, Jia-chun; Xing, Ying-qi

    2017-01-01

    We aimed to quantitatively assess intracranial pressure (ICP) using optic nerve sheath diameter (ONSD) measurements. We recruited 316 neurology patients in whom ultrasonographic ONSD was measured before lumbar puncture. They were randomly divided into a modeling and a test group at a ratio of 7:3. In the modeling group, we conducted univariate and multivariate analyses to assess associations between ICP and ONSD, age, sex, BMI, mean arterial blood pressure, diastolic blood pressure. We derived the mathematical function “Xing & Wang” from the modelling group to predict ICP and evaluated the function in the test group. In the modeling group, ICP was strongly correlated with ONSD (r = 0.758, p < 0.001), and this association was independent of other factors. The mathematical function was ICP = −111.92 + 77.36 × ONSD (Durbin-Watson value = 1.94). In the test group, a significant correlation was found between the observed and predicted ICP (r = 0.76, p < 0.001). Bland-Altman analysis yielded a mean difference between measurements of −0.07 ± 41.55 mmH2O. The intraclass correlation coefficient and its 95%CIs for noninvasive ICP assessments using our prediction model was 0.86 (0.79–0.90). Ultrasonographic ONSD measurements provide a potential noninvasive method to quantify ICP that can be conducted at the bedside. PMID:28169341

  15. Quantitative estimate of pion fluctuation and its multiplicity dependence in nuclear collisions

    NASA Astrophysics Data System (ADS)

    Ghosh, Dipak; Deb, Argha; Dutta, Srimonti

    2009-02-01

    This paper presents the results of an investigation on the multiplicity dependence of the fluctuation pattern of pions for the entire accelerator energy range from 2.1 to 200 AGeV. The data set for produced pions is divided into four sets depending on the number of shower tracks ns. Analysis is carried out in two-dimensional η-phi space with the Hurst exponent to take care of the anisotropy of the phase space. The Hurst exponent is extracted by fitting one-dimensional factorial moment saturation curves to Ochs' saturation formula. The values of the effective fluctuation strength α eff are estimated and multiplicity dependence is studied w.r.t. α eff and the Hurst exponent H. It is highly interesting to observe that both fluctuation strength and degree of anisotropy (characterized by H) depend on pion multiplicity. The multiplicity dependence is more pronounced at lower projectile energy. The results of the study are discussed in detail.

  16. On-line, adaptive state estimator for active noise control

    NASA Technical Reports Server (NTRS)

    Lim, Tae W.

    1994-01-01

    Dynamic characteristics of airframe structures are expected to vary as aircraft flight conditions change. Accurate knowledge of the changing dynamic characteristics is crucial to enhancing the performance of the active noise control system using feedback control. This research investigates the development of an adaptive, on-line state estimator using a neural network concept to conduct active noise control. In this research, an algorithm has been developed that can be used to estimate displacement and velocity responses at any locations on the structure from a limited number of acceleration measurements and input force information. The algorithm employs band-pass filters to extract from the measurement signal the frequency contents corresponding to a desired mode. The filtered signal is then used to train a neural network which consists of a linear neuron with three weights. The structure of the neural network is designed as simple as possible to increase the sampling frequency as much as possible. The weights obtained through neural network training are then used to construct the transfer function of a mode in z-domain and to identify modal properties of each mode. By using the identified transfer function and interpolating the mode shape obtained at sensor locations, the displacement and velocity responses are estimated with reasonable accuracy at any locations on the structure. The accuracy of the response estimates depends on the number of modes incorporated in the estimates and the number of sensors employed to conduct mode shape interpolation. Computer simulation demonstrates that the algorithm is capable of adapting to the varying dynamic characteristics of structural properties. Experimental implementation of the algorithm on a DSP (digital signal processing) board for a plate structure is underway. The algorithm is expected to reach the sampling frequency range of about 10 kHz to 20 kHz which needs to be maintained for a typical active noise control

  17. Quantitative estimation of 3-D fiber course in gross histological sections of the human brain using polarized light.

    PubMed

    Axer, H; Axer, M; Krings, T; Keyserlingk, D G

    2001-02-15

    Series of polarized light images can be used to achieve quantitative estimates of the angles of inclination (z-direction) and direction (in xy-plane) of central nervous fibers in histological sections of the human brain. (1) The corpus callosum of a formalin-fixed human brain was sectioned at different angles of inclination of nerve fibers and at different thicknesses of the samples. The minimum, and maximum intensities, and their differences revealed a linear relationship to the angle of inclination of fibers. It was demonstrated that sections with a thickness of 80--120 microm are best suited for estimating the angle of inclination. (2) Afterwards the optic tracts of eight formalin-fixed human brains were sliced at different angles of fiber inclination at 100 microm. Measurements of intensity in 30 pixels in each section were used to calculate a linear function of calibration. The maximum intensities and the differences between maximum and minimum values measured with two polars only were best suited for estimation of fiber inclination. (3) Gross histological brain slices of formalin-fixed human brains were digitized under azimuths from 0 to 80 degrees using two polars only. These sequences were used to estimate the inclination of fibers (in z-direction). The same slices were digitized under azimuths from 0 to 160 degrees in steps of 20 degrees using a quarter wave plate additionally. These sequences were used to estimate the direction of the fibers in xy-direction. The method can be used to produce maps of fiber orientation in gross histological sections of the human brain similar to the fiber orientation maps derived by diffusion weighted magnetic resonance imaging.

  18. A quantitative framework to estimate the relative importance of environment, spatial variation and patch connectivity in driving community composition.

    PubMed

    Monteiro, Viviane F; Paiva, Paulo C; Peres-Neto, Pedro R

    2017-03-01

    Perhaps the most widely used quantitative approach in metacommunity ecology is the estimation of the importance of local environment vs. spatial structuring using the variation partitioning framework. Contrary to metapopulation models, however, current empirical studies of metacommunity structure using variation partitioning assume a space-for-dispersal substitution due to the lack of analytical frameworks that incorporate patch connectivity predictors of dispersal dynamics. Here, a method is presented that allows estimating the relative importance of environment, spatial variation and patch connectivity in driving community composition variation within metacommunities. The proposed approach is illustrated by a study designed to understand the factors driving the structure of a soft-bottom marine polychaete metacommunity. Using a standard variation partitioning scheme (i.e. where only environmental and spatial predictors are used), only about 13% of the variation in metacommunity structure was explained. With the connectivity set of predictors, the total amount of explained variation increased up to 51% of the variation. These results highlight the importance of considering predictors of patch connectivity rather than just spatial predictors. Given that information on connectivity can be estimated by commonly available data on species distributions for a number of taxa, the framework presented here can be readily applied to past studies as well, facilitating a more robust evaluation of the factors contributing to metacommunity structure.

  19. Validation of Body Condition Indices and Quantitative Magnetic Resonance in Estimating Body Composition in a Small Lizard

    PubMed Central

    WARNER, DANIEL A.; JOHNSON, MARIA S.; NAGY, TIM R.

    2017-01-01

    Measurements of body condition are typically used to assess an individual’s quality, health, or energetic state. Most indices of body condition are based on linear relationships between body length and mass. Although these indices are simple to obtain, nonlethal, and useful indications of energetic state, their accuracy at predicting constituents of body condition (e.g., fat and lean mass) are often unknown. The objectives of this research were to (1) validate the accuracy of another simple and noninvasive method, quantitative magnetic resonance (QMR), at estimating body composition in a small-bodied lizard, Anolis sagrei, and (2) evaluate the accuracy of two indices of body condition (based on length–mass relationships) at predicting body fat, lean, and water mass. Comparisons of results from QMR scans to those from chemical carcass analysis reveal that QMR measures body fat, lean, and water mass with excellent accuracy in male and female lizards. With minor calibration from regression equations, QMR will be a reliable method of estimating body composition of A. sagrei. Body condition indices were positively related to absolute estimates of each constituent of body composition, but these relationships showed considerable variation around regression lines. In addition, condition indices did not predict fat, lean, or water mass when adjusted for body mass. Thus, our results emphasize the need for caution when interpreting body condition based upon linear measurements of animals. Overall, QMR provides an alternative noninvasive method for accurately measuring fat, lean, and water mass in these small-bodied animals. PMID:28035770

  20. Quantitative estimation of land surface characteristic parameters and evapotranspiration in the Nagqu river basin over the Tibetan Plateau

    NASA Astrophysics Data System (ADS)

    Zhong, Lei; Ma, Yaoming; Su, Z. Bob; Ma, Weiqiang; Zou, Mijun; Wang, Binbin; Han, Cunbo; Hu, Yuanyuan

    2016-04-01

    Evapotranspiration is an important component of the water cycle in the Tibetan Plateau. It is controlled by many hydrological and meteorological factors. Therefore, it is of great significance to estimate the evapotranspiration accurately and continuously. It is also drawing much attention of scientific community to understand land surface parameters and land-atmosphere water exchange processes in small watershed-scale areas. Based on in-situ conventional meteorological data in the Nagqu river basin and surrounding regions, the point-scale evapotranspiration distribution characteristics in the study area were quantitatively estimated while the main meteorological factors affecting the evaporation process were analyzed. Both polar orbiting and geostationary satellite data with different spatial resolutions (such as Landsat, SPOT, MODIS, FY-2C) were used to derive the surface characteristics in the river basin simultaneously. A time series processing was applied to remove the cloud cover and reconstruct data series. Combined with the meteorological observation data in Nagqu river basin and surrounding regions, evapotranspiration in the small watershed area of alpine region was estimated and validated by remote sensing parameterization scheme. Thus typical spatio-temporal variation characteristics of evapotranspiration in small watershed of an alpine region were successfully revealed.

  1. Optimizing Estimated Loss Reduction for Active Sampling in Rank Learning

    DTIC Science & Technology

    2008-01-01

    ranging from the income level to age and her preference order over a set of products (e.g. movies in Netflix ). The ranking task is to learn a map- ping...learners in RankBoost. However, in both cases, the proposed strategy selects the samples which are estimated to produce a faster convergence from the...steps in Section 5. 2. Related Work A number of strategies have been proposed for active learning in the classification framework. Some of those center

  2. Parametric estimation of sample entropy for physical activity recognition.

    PubMed

    Aktaruzzaman, Md; Scarabottolo, Nello; Sassi, Roberto

    2015-08-01

    Insufficient amount of physical activity, and hence storage of calories may lead depression, obesity, cardiovascular diseases, and diabetes. The amount of consumed calorie depends on the type of activity. The recognition of physical activity is very important to estimate the amount of calories spent by a subject every day. There are some research works already published in the literature for activity recognition through accelerometers (body worn sensors). The accuracy of any recognition system depends on the robustness of selected features and classifiers. The typical features reported for most physical activities recognitions are autoregressive coefficients (ARcoeffs), signal magnitude area (SMA), tilt angle (TA), and standard deviation (STD). In this study, we have studied the feasibility of using single value of sample entropy estimated parametrically (SETH) of an AR model instead of ARcoeffs. After feasibility study, we also compared the recognition accuracies between two popular classifiers ı.e. artificial neural network (ANN) and support vector machines (SVM). The recognition accuracies using linear structure (where all types of activities are classified using a single classifier) and hierarchical structure (where activities are first divided into static and dynamic events, and then activities of each event are classified in the second stage). The study showed that the use of SETH provides similar recognition accuracy (69.82%) as provided by ARcoeffs (67.67%) using ANN. The linear structure of SVM performs better (average accuracy of SVM: 98.22%) than linear ANN (average accuracy with ANN: 94.78%). The use of hierarchical structure of ANN increases the average recognition accuracy of static activities to about 100%. However, no significant changes are observed using hierarchical SVM than the linear one.

  3. Synthesis, photodynamic activity, and quantitative structure-activity relationship modelling of a series of BODIPYs.

    PubMed

    Caruso, Enrico; Gariboldi, Marzia; Sangion, Alessandro; Gramatica, Paola; Banfi, Stefano

    2017-02-01

    Here we report the synthesis of eleven new BODIPYs (14-24) characterized by the presence of an aromatic ring on the 8 (meso) position and of iodine atoms on the pyrrolic 2,6 positions. These molecules, together with twelve BODIPYs already reported by us (1-12), represent a large panel of BODIPYs showing different atoms or groups as substituent of the aromatic moiety. Two physico-chemical features ((1)O2 generation rate and lipophilicity), which can play a fundamental role in the outcome as photosensitizers, have been studied. The in vitro photo-induced cell-killing efficacy of 23 PSs was studied on the SKOV3 cell line treating the cells for 24h in the dark then irradiating for 2h with a green LED device (fluence 25.2J/cm(2)). The cell-killing efficacy was assessed with the MTT test and compared with that one of meso un-substituted compound (13). In order to understand the possible effect of the substituents, a predictive quantitative structure-activity relationship (QSAR) regression model, based on theoretical holistic molecular descriptors, was developed. The results clearly indicate that the presence of an aromatic ring is fundamental for an excellent photodynamic response, whereas the electronic effects and the position of the substituents on the aromatic ring do not influence the photodynamic efficacy.

  4. Antiproliferative Pt(IV) complexes: synthesis, biological activity, and quantitative structure-activity relationship modeling.

    PubMed

    Gramatica, Paola; Papa, Ester; Luini, Mara; Monti, Elena; Gariboldi, Marzia B; Ravera, Mauro; Gabano, Elisabetta; Gaviglio, Luca; Osella, Domenico

    2010-09-01

    Several Pt(IV) complexes of the general formula [Pt(L)2(L')2(L'')2] [axial ligands L are Cl-, RCOO-, or OH-; equatorial ligands L' are two am(m)ine or one diamine; and equatorial ligands L'' are Cl- or glycolato] were rationally designed and synthesized in the attempt to develop a predictive quantitative structure-activity relationship (QSAR) model. Numerous theoretical molecular descriptors were used alongside physicochemical data (i.e., reduction peak potential, Ep, and partition coefficient, log Po/w) to obtain a validated QSAR between in vitro cytotoxicity (half maximal inhibitory concentrations, IC50, on A2780 ovarian and HCT116 colon carcinoma cell lines) and some features of Pt(IV) complexes. In the resulting best models, a lipophilic descriptor (log Po/w or the number of secondary sp3 carbon atoms) plus an electronic descriptor (Ep, the number of oxygen atoms, or the topological polar surface area expressed as the N,O polar contribution) is necessary for modeling, supporting the general finding that the biological behavior of Pt(IV) complexes can be rationalized on the basis of their cellular uptake, the Pt(IV)-->Pt(II) reduction, and the structure of the corresponding Pt(II) metabolites. Novel compounds were synthesized on the basis of their predicted cytotoxicity in the preliminary QSAR model, and were experimentally tested. A final QSAR model, based solely on theoretical molecular descriptors to ensure its general applicability, is proposed.

  5. Quantitative estimation of UV light dose concomitant to irradiation with ionizing radiation

    NASA Astrophysics Data System (ADS)

    Petin, Vladislav G.; Morozov, Ivan I.; Kim, Jin Kyu; Semkina, Maria A.

    2011-01-01

    A simple mathematical model for biological estimation of UV light dose concomitant to ionizing radiation was suggested. This approach was applied to determine the dependency of equivalent UV light dose accompanied by 100 Gy of ionizing radiation on energy of sparsely ionizing radiation and on volume of the exposed cell suspension. It was revealed that the relative excitation contribution to the total lethal effect and the value of UV dose was greatly increased with an increase in energy of ionizing radiation and volume of irradiated suspensions. It is concluded that these observations are in agreement with the supposition that Čerenkov emission is responsible for the production of UV light damage and the phenomenon of photoreactivation observed after ionizing exposure of bacterial and yeast cells hypersensitive to UV light. A possible synergistic interaction of the damages produced by ionizations and excitations as well as a probable participation of UV component of ionizing radiation in the mechanism of hormesis and adaptive response observed after ionizing radiation exposure is discussed.

  6. The interannual trend and preliminary quantitative estimation of the oceans condition in the Bohai Sea area

    NASA Astrophysics Data System (ADS)

    Yang, Yang; Yang, Jin-kun; Miao, Qing-sheng; Gao, Xiu-min

    2017-01-01

    After different frequency observed temperature data of Bohai sea marine observation stations was analyzed, results showed that daily average sea surface temperature value obtained from 3-hour-observations (08h, 14h, 20h) which was slightly lower than that from 24-hour-observations. The general gap was within 0.10°, while the value was 0.05° for the monthly mean temperature. Daily average sea surface temperature values of 3-hour-observations have a little effect both in statistical properties and the accuracy of statistical data, which does not affect the representativeness of the data. It can be used in studying long time series problems. Analyzing the trend of the SST data changes in 1960-2012 and the SAT data changes in 1965-2012 by using the linear tendency estimate and cumulative distance square method, it can prove that SST annual variation rate was 0.010°/a, with a total increase of 0.53° in last 53 years; and SAT annual variation rate was 0.043°/a, with a total increase of 2.06° in last 48 years. Although the long-term trend of these two factors is significantly increased, but there was a significant mutation around 1987. From 1960 to 1987, it had a downward trend, after 1987 it began to grow, the upward trend has not diminished until 2009.

  7. Validation of Quantitative Structure-Activity Relationship (QSAR) Model for Photosensitizer Activity Prediction

    PubMed Central

    Frimayanti, Neni; Yam, Mun Li; Lee, Hong Boon; Othman, Rozana; Zain, Sharifuddin M.; Rahman, Noorsaadah Abd.

    2011-01-01

    Photodynamic therapy is a relatively new treatment method for cancer which utilizes a combination of oxygen, a photosensitizer and light to generate reactive singlet oxygen that eradicates tumors via direct cell-killing, vasculature damage and engagement of the immune system. Most of photosensitizers that are in clinical and pre-clinical assessments, or those that are already approved for clinical use, are mainly based on cyclic tetrapyrroles. In an attempt to discover new effective photosensitizers, we report the use of the quantitative structure-activity relationship (QSAR) method to develop a model that could correlate the structural features of cyclic tetrapyrrole-based compounds with their photodynamic therapy (PDT) activity. In this study, a set of 36 porphyrin derivatives was used in the model development where 24 of these compounds were in the training set and the remaining 12 compounds were in the test set. The development of the QSAR model involved the use of the multiple linear regression analysis (MLRA) method. Based on the method, r2 value, r2 (CV) value and r2 prediction value of 0.87, 0.71 and 0.70 were obtained. The QSAR model was also employed to predict the experimental compounds in an external test set. This external test set comprises 20 porphyrin-based compounds with experimental IC50 values ranging from 0.39 μM to 7.04 μM. Thus the model showed good correlative and predictive ability, with a predictive correlation coefficient (r2 prediction for external test set) of 0.52. The developed QSAR model was used to discover some compounds as new lead photosensitizers from this external test set. PMID:22272096

  8. Quantitative structure-activity relationship analysis of acute toxicity of diverse chemicals to Daphnia magna with whole molecule descriptors.

    PubMed

    Moosus, M; Maran, U

    2011-10-01

    Quantitative structure-activity relationship analysis and estimation of toxicological effects at lower-mid trophic levels provide first aid means to understand the toxicity of chemicals. Daphnia magna serves as a good starting point for such toxicity studies and is also recognized for regulatory use in estimating the risk of chemicals. The ECOTOX database was queried and analysed for available data and a homogenous subset of 253 compounds for the endpoint LC50 48 h was established. A four-parameter quantitative structure-activity relationship was derived (coefficient of determination, r (2) = 0.740) for half of the compounds and internally validated (leave-one-out cross-validated coefficient of determination, [Formula: see text] = 0.714; leave-many-out coefficient of determination, [Formula: see text] = 0.738). External validation was carried out with the remaining half of the compounds (coefficient of determination for external validation, [Formula: see text] = 0.634). Two of the descriptors in the model (log P, average bonding information content) capture the structural characteristics describing penetration through bio-membranes. Another two descriptors (energy of highest occupied molecular orbital, weighted partial negative surface area) capture the electronic structural characteristics describing the interaction between the chemical and its hypothetic target in the cell. The applicability domain was subsequently analysed and discussed.

  9. Estimating Active Transportation Behaviors to Support Health Impact Assessment in the United States

    PubMed Central

    Mansfield, Theodore J.; Gibson, Jacqueline MacDonald

    2016-01-01

    Health impact assessment (HIA) has been promoted as a means to encourage transportation and city planners to incorporate health considerations into their decision-making. Ideally, HIAs would include quantitative estimates of the population health effects of alternative planning scenarios, such as scenarios with and without infrastructure to support walking and cycling. However, the lack of baseline estimates of time spent walking or biking for transportation (together known as “active transportation”), which are critically related to health, often prevents planners from developing such quantitative estimates. To address this gap, we use data from the 2009 US National Household Travel Survey to develop a statistical model that estimates baseline time spent walking and biking as a function of the type of transportation used to commute to work along with demographic and built environment variables. We validate the model using survey data from the Raleigh–Durham–Chapel Hill, NC, USA, metropolitan area. We illustrate how the validated model could be used to support transportation-related HIAs by estimating the potential health benefits of built environment modifications that support walking and cycling. Our statistical model estimates that on average, individuals who commute on foot spend an additional 19.8 (95% CI 16.9–23.2) minutes per day walking compared to automobile commuters. Public transit riders walk an additional 5.0 (95% CI 3.5–6.4) minutes per day compared to automobile commuters. Bicycle commuters cycle for an additional 28.0 (95% CI 17.5–38.1) minutes per day compared to automobile commuters. The statistical model was able to predict observed transportation physical activity in the Raleigh–Durham–Chapel Hill region to within 0.5 MET-hours per day (equivalent to about 9 min of daily walking time) for 83% of observations. Across the Raleigh–Durham–Chapel Hill region, an estimated 38 (95% CI 15–59) premature deaths potentially could

  10. Estimating Active Transportation Behaviors to Support Health Impact Assessment in the United States.

    PubMed

    Mansfield, Theodore J; Gibson, Jacqueline MacDonald

    2016-01-01

    Health impact assessment (HIA) has been promoted as a means to encourage transportation and city planners to incorporate health considerations into their decision-making. Ideally, HIAs would include quantitative estimates of the population health effects of alternative planning scenarios, such as scenarios with and without infrastructure to support walking and cycling. However, the lack of baseline estimates of time spent walking or biking for transportation (together known as "active transportation"), which are critically related to health, often prevents planners from developing such quantitative estimates. To address this gap, we use data from the 2009 US National Household Travel Survey to develop a statistical model that estimates baseline time spent walking and biking as a function of the type of transportation used to commute to work along with demographic and built environment variables. We validate the model using survey data from the Raleigh-Durham-Chapel Hill, NC, USA, metropolitan area. We illustrate how the validated model could be used to support transportation-related HIAs by estimating the potential health benefits of built environment modifications that support walking and cycling. Our statistical model estimates that on average, individuals who commute on foot spend an additional 19.8 (95% CI 16.9-23.2) minutes per day walking compared to automobile commuters. Public transit riders walk an additional 5.0 (95% CI 3.5-6.4) minutes per day compared to automobile commuters. Bicycle commuters cycle for an additional 28.0 (95% CI 17.5-38.1) minutes per day compared to automobile commuters. The statistical model was able to predict observed transportation physical activity in the Raleigh-Durham-Chapel Hill region to within 0.5 MET-hours per day (equivalent to about 9 min of daily walking time) for 83% of observations. Across the Raleigh-Durham-Chapel Hill region, an estimated 38 (95% CI 15-59) premature deaths potentially could be avoided if the entire

  11. Quantitative estimates of metamorphic equilibria: Tallassee synform, Dadeville belt, Alabama's Inner Piedmont

    SciTech Connect

    Drummond, M.S.; Neilson, M.J. . Dept. of Geology)

    1993-03-01

    The Tallassee synform is the major structural feature in the western part of the Dadeville belt. This megascopic F2 structure folds amphibolite (Ropes Creek Amphibolite) and metasedimentary units (Agricola Schist, AS), as well as tonalitic (Camp Hill Gneiss, CHG), granitic (Chattasofka Creek Gneiss, CCG), and mafic-ultramafic plutons (Doss Mt. and Slaughters suites). Acadian-age prograde regional metamorphism preceded the F2 folding event, producing the pervasive S1 foliation and metamorphic recrystallization. Prograde mineralogy in the metapelites and metagraywackes of the AS includes garnet, biotite, muscovite, plagioclase, kyanite, sillimanite, and epidote. The intrusive rocks, both felsic and mafic-ultramafic, are occasionally garnetiferous and provide suitable mineral assemblages for P-T evaluation. The AS yields a range of T-P from 512--635C and 5.1--5.5 kb. Muscovite from the AS exhibits an increase in Ti content from 0.07 to 0.15 Ti/22 O formula unit with progressively increasing T's from 512 to 635C. This observation is consistent with other studies that show increasing Ti content with increasing grade. A CHG sample records an average metamorphic T-P of 604C and 5.79 kb. Hornblende-garnet pairs from a Doss Mt. amphibolite sample provides an average metamorphic T of 607C. These data are consistent with regional Barrovian-type middle to upper amphibolite facies metamorphism for the Tallassee synform. Peak metamorphism is represented by kyanite-sillimanite zone conditions and localized migmatization of the AS. The lithotectonic belts bounding the Dadeville belt to the NW and SE are the eastern Blue Ridge and Opelika belts. Studies have shown that these belts have also experienced Acadian-age amphibolite facies metamorphism with comparable P-T estimates to those presented here. These data suggest that the eastern Blue Ridge and Inner Piedmont of AL experienced the same pervasive dynamothermal Barrovian-type metamorphic episode during Acadian orogenesis.

  12. Quantitative analysis of O-isopropyl methylphosphonic acid in serum samples of Japanese citizens allegedly exposed to sarin: estimation of internal dosage.

    PubMed

    Noort, D; Hulst, A G; Platenburg, D H; Polhuijs, M; Benschop, H P

    1998-10-01

    A convenient and rapid micro-anion exchange liquid chromatography (LC) tandem electrospray mass spectrometry (MS) procedure was developed for quantitative analysis in serum of O-isopropyl methylphosphonic acid (IMPA), the hydrolysis product of the nerve agent sarin. The mass spectrometric procedure involves negative or positive ion electrospray ionization and multiple reaction monitoring (MRM) detection. The method could be successfully applied to the analysis of serum samples from victims of the Tokyo subway attack and of an earlier incident at Matsumoto, Japan. IMPA levels ranging from 2 to 135 ng/ml were found. High levels of IMPA appear to correlate with low levels of residual butyrylcholinesterase activity in the samples and vice versa. Based on our analyses, the internal and exposure doses of the victims were estimated. In several cases, the doses appeared to be substantially higher than the assumed lethal doses in man.

  13. Quantitative assessment of the microbial risk of leafy greens from farm to consumption: preliminary framework, data, and risk estimates.

    PubMed

    Danyluk, Michelle D; Schaffner, Donald W

    2011-05-01

    This project was undertaken to relate what is known about the behavior of Escherichia coli O157:H7 under laboratory conditions and integrate this information to what is known regarding the 2006 E. coli O157:H7 spinach outbreak in the context of a quantitative microbial risk assessment. The risk model explicitly assumes that all contamination arises from exposure in the field. Extracted data, models, and user inputs were entered into an Excel spreadsheet, and the modeling software @RISK was used to perform Monte Carlo simulations. The model predicts that cut leafy greens that are temperature abused will support the growth of E. coli O157:H7, and populations of the organism may increase by as much a 1 log CFU/day under optimal temperature conditions. When the risk model used a starting level of -1 log CFU/g, with 0.1% of incoming servings contaminated, the predicted numbers of cells per serving were within the range of best available estimates of pathogen levels during the outbreak. The model predicts that levels in the field of -1 log CFU/g and 0.1% prevalence could have resulted in an outbreak approximately the size of the 2006 E. coli O157:H7 outbreak. This quantitative microbial risk assessment model represents a preliminary framework that identifies available data and provides initial risk estimates for pathogenic E. coli in leafy greens. Data gaps include retail storage times, correlations between storage time and temperature, determining the importance of E. coli O157:H7 in leafy greens lag time models, and validation of the importance of cross-contamination during the washing process.

  14. Merging Radar Quantitative Precipitation Estimates (QPEs) from the High-resolution NEXRAD Reanalysis over CONUS with Rain-gauge Observations

    NASA Astrophysics Data System (ADS)

    Prat, O. P.; Nelson, B. R.; Stevens, S. E.; Nickl, E.; Seo, D. J.; Kim, B.; Zhang, J.; Qi, Y.

    2015-12-01

    The processing of radar-only precipitation via the reanalysis from the National Mosaic and Multi-Sensor Quantitative (NMQ/Q2) based on the WSR-88D Next-generation Radar (Nexrad) network over the Continental United States (CONUS) is completed for the period covering from 2002 to 2011. While this constitutes a unique opportunity to study precipitation processes at higher resolution than conventionally possible (1-km, 5-min), the long-term radar-only product needs to be merged with in-situ information in order to be suitable for hydrological, meteorological and climatological applications. The radar-gauge merging is performed by using rain gauge information at daily (Global Historical Climatology Network-Daily: GHCN-D), hourly (Hydrometeorological Automated Data System: HADS), and 5-min (Automated Surface Observing Systems: ASOS; Climate Reference Network: CRN) resolution. The challenges related to incorporating differing resolution and quality networks to generate long-term large-scale gridded estimates of precipitation are enormous. In that perspective, we are implementing techniques for merging the rain gauge datasets and the radar-only estimates such as Inverse Distance Weighting (IDW), Simple Kriging (SK), Ordinary Kriging (OK), and Conditional Bias-Penalized Kriging (CBPK). An evaluation of the different radar-gauge merging techniques is presented and we provide an estimate of uncertainty for the gridded estimates. In addition, comparisons with a suite of lower resolution QPEs derived from ground based radar measurements (Stage IV) are provided in order to give a detailed picture of the improvements and remaining challenges.

  15. Quantitative structure-activity relationships and docking studies of calcitonin gene-related peptide antagonists.

    PubMed

    Kyani, Anahita; Mehrabian, Mohadeseh; Jenssen, Håvard

    2012-02-01

    Defining the role of calcitonin gene-related peptide in migraine pathogenesis could lead to the application of calcitonin gene-related peptide antagonists as novel migraine therapeutics. In this work, quantitative structure-activity relationship modeling of biological activities of a large range of calcitonin gene-related peptide antagonists was performed using a panel of physicochemical descriptors. The computational studies evaluated different variable selection techniques and demonstrated shuffling stepwise multiple linear regression to be superior over genetic algorithm-multiple linear regression. The linear quantitative structure-activity relationship model revealed better statistical parameters of cross-validation in comparison with the non-linear support vector regression technique. Implementing only five peptide descriptors into this linear quantitative structure-activity relationship model resulted in an extremely robust and highly predictive model with calibration, leave-one-out and leave-20-out validation R(2) of 0.9194, 0.9103, and 0.9214, respectively. We performed docking of the most potent calcitonin gene-related peptide antagonists with the calcitonin gene-related peptide receptor and demonstrated that peptide antagonists act by blocking access to the peptide-binding cleft. We also demonstrated the direct contact of residues 28-37 of the calcitonin gene-related peptide antagonists with the receptor. These results are in agreement with the conclusions drawn from the quantitative structure-activity relationship model, indicating that both electrostatic and steric factors should be taken into account when designing novel calcitonin gene-related peptide antagonists.

  16. On the precision of automated activation time estimation

    NASA Technical Reports Server (NTRS)

    Kaplan, D. T.; Smith, J. M.; Rosenbaum, D. S.; Cohen, R. J.

    1988-01-01

    We examined how the assignment of local activation times in epicardial and endocardial electrograms is affected by sampling rate, ambient signal-to-noise ratio, and sinx/x waveform interpolation. Algorithms used for the estimation of fiducial point locations included dV/dtmax, and a matched filter detection algorithm. Test signals included epicardial and endocardial electrograms overlying both normal and infarcted regions of dog myocardium. Signal-to-noise levels were adjusted by combining known data sets with white noise "colored" to match the spectral characteristics of experimentally recorded noise. For typical signal-to-noise ratios and sampling rates, the template-matching algorithm provided the greatest precision in reproducibly estimating fiducial point location, and sinx/x interpolation allowed for an additional significant improvement. With few restrictions, combining these two techniques may allow for use of digitization rates below the Nyquist rate without significant loss of precision.

  17. Quantitative estimation of foot-flat and stance phase of gait using foot-worn inertial sensors.

    PubMed

    Mariani, Benoit; Rouhani, Hossein; Crevoisier, Xavier; Aminian, Kamiar

    2013-02-01

    Time periods composing stance phase of gait can be clinically meaningful parameters to reveal differences between normal and pathological gait. This study aimed, first, to describe a novel method for detecting stance and inner-stance temporal events based on foot-worn inertial sensors; second, to extract and validate relevant metrics from those events; and third, to investigate their suitability as clinical outcome for gait evaluations. 42 subjects including healthy subjects and patients before and after surgical treatments for ankle osteoarthritis performed 50-m walking trials while wearing foot-worn inertial sensors and pressure insoles as a reference system. Several hypotheses were evaluated to detect heel-strike, toe-strike, heel-off, and toe-off based on kinematic features. Detected events were compared with the reference system on 3193 gait cycles and showed good accuracy and precision. Absolute and relative stance periods, namely loading response, foot-flat, and push-off were then estimated, validated, and compared statistically between populations. Besides significant differences observed in stance duration, the analysis revealed differing tendencies with notably a shorter foot-flat in healthy subjects. The result indicated which features in inertial sensors' signals should be preferred for detecting precisely and accurately temporal events against a reference standard. The system is suitable for clinical evaluations and provides temporal analysis of gait beyond the common swing/stance decomposition, through a quantitative estimation of inner-stance phases such as foot-flat.

  18. Development of combination tapered fiber-optic biosensor dip probe for quantitative estimation of interleukin-6 in serum samples

    NASA Astrophysics Data System (ADS)

    Wang, Chun Wei; Manne, Upender; Reddy, Vishnu B.; Oelschlager, Denise K.; Katkoori, Venkat R.; Grizzle, William E.; Kapoor, Rakesh

    2010-11-01

    A combination tapered fiber-optic biosensor (CTFOB) dip probe for rapid and cost-effective quantification of proteins in serum samples has been developed. This device relies on diode laser excitation and a charged-coupled device spectrometer and functions on a technique of sandwich immunoassay. As a proof of principle, this technique was applied in a quantitative estimation of interleukin IL-6. The probes detected IL-6 at picomolar levels in serum samples obtained from a patient with lupus, an autoimmune disease, and a patient with lymphoma. The estimated concentration of IL-6 in the lupus sample was 5.9 +/- 0.6 pM, and in the lymphoma sample, it was below the detection limit. These concentrations were verified by a procedure involving bead-based xMAP technology. A similar trend in the concentrations was observed. The specificity of the CTFOB dip probes was assessed by analysis with receiver operating characteristics. This analysis suggests that the dip probes can detect 5-pM or higher concentration of IL-6 in these samples with specificities of 100%. The results provide information for guiding further studies in the utilization of these probes to quantify other analytes in body fluids with high specificity and sensitivity.

  19. 76 FR 9637 - Proposed Information Collection (Veteran Suicide Prevention Online Quantitative Surveys) Activity...

    Federal Register 2010, 2011, 2012, 2013, 2014

    2011-02-18

    ... AFFAIRS Proposed Information Collection (Veteran Suicide Prevention Online Quantitative Surveys) Activity... outreach efforts on the prevention of suicide among Veterans and their families. DATES: Written comments...). Type of Review: New collection. Abstract: VA's top priority is the prevention of Veterans suicide....

  20. QUANTITATIVE STRUCTURE-ACTIVITY RELATIONSHIPS FOR CHEMICAL REDUCTIONS OF ORGANIC CONTAMINANTS

    EPA Science Inventory

    Sufficient kinetic data on abiotic reduction reactions involving organic contaminants are now available that quantitative structure-activity relationships (QSARs) for these reactions can be developed. Over 50 QSARs have been reported, most in just the last few years, and they ar...

  1. Identification of Human Gustatory Cortex by Activation Likelihood Estimation

    PubMed Central

    Veldhuizen, Maria G.; Albrecht, Jessica; Zelano, Christina; Boesveldt, Sanne; Breslin, Paul; Lundström, Johan N.

    2010-01-01

    Over the last two decades, neuroimaging methods have identified a variety of taste-responsive brain regions. Their precise location, however, remains in dispute. For example, taste stimulation activates areas throughout the insula and overlying operculum, but identification of subregions has been inconsistent. Furthermore, literature reviews and summaries of gustatory brain activations tend to reiterate rather than resolve this ambiguity. Here we used a new meta-analytic method [activation likelihood estimation (ALE)] to obtain a probability map of the location of gustatory brain activation across fourteen studies. The map of activation likelihood values can also serve as a source of independent coordinates for future region-of-interest analyses. We observed significant cortical activation probabilities in: bilateral anterior insula and overlying frontal operculum, bilateral mid dorsal insula and overlying Rolandic operculum, and bilateral posterior insula/parietal operculum/postcentral gyrus, left lateral orbitofrontal cortex (OFC), right medial OFC, pregenual anterior cingulate cortex (prACC) and right mediodorsal thalamus. This analysis confirms the involvement of multiple cortical areas within insula and overlying operculum in gustatory processing and provides a functional “taste map” which can be used as an inclusive mask in the data analyses of future studies. In light of this new analysis, we discuss human central processing of gustatory stimuli and identify topics where increased research effort is warranted. PMID:21305668

  2. Toxicity Estimation Software Tool (TEST)

    EPA Science Inventory

    The Toxicity Estimation Software Tool (TEST) was developed to allow users to easily estimate the toxicity of chemicals using Quantitative Structure Activity Relationships (QSARs) methodologies. QSARs are mathematical models used to predict measures of toxicity from the physical c...

  3. Research on the quantitative structure-carcinogenic activity relationship of N-nitroso compounds.

    PubMed

    Li-Jiao, Zhao; Ru-Gang, Zhong; Yan, Zhen; Qian-Huan, Dai

    2005-01-01

    According to the results of quantitative pattern recognition for 153 N-nitroso compounds (NNCs) based on Di-region theory, it is put forward that the esters formed from the metabolism of NNCs on ..- or ..-position could be alkylating agents of DNA bases with the anchimeric assistance of the N-nitroso group. This viewpoint, combined with the conception of ..-metabolism activation, can explain the structurecarcinogenic activity relationship reasonably. Quantum chemistry ab initio calculations are carried out to study the activity of different metabolites of NNCs in direct alkylation and the anchimeric assistant processes. By ONIOM method, a QM/MM calculation is carried out to study the crosslink of DNA base pair by methylalkylnitrosamines. Based on the computational results, the quantitative structure and carcinogenic activity relationship of 58 N-nitrosoureas that have got animal carcinogenicity tests reported are studied.

  4. Quantitative description of induced seismic activity before and after the 2011 Tohoku-Oki earthquake by nonstationary ETAS models

    NASA Astrophysics Data System (ADS)

    Kumazawa, Takao; Ogata, Yosihiko

    2013-12-01

    The epidemic-type aftershock sequence (ETAS) model is extended for application to nonstationary seismic activity, including transient swarm activity or seismicity anomalies, in a seismogenic region. The time-dependent rates of both background seismicity and aftershock productivity in the ETAS model are optimally estimated from hypocenter data. These rates can provide quantitative evidence for abrupt or gradual changes in shear stress and/or fault strength due to aseismic transient causes such as triggering by remote earthquakes, slow slips, or fluid intrusions within the region. This extended model is applied to data sets from several seismic events including swarms that were induced by the M9.0 Tohoku-Oki earthquake of 2011.

  5. PEPIS: A Pipeline for Estimating Epistatic Effects in Quantitative Trait Locus Mapping and Genome-Wide Association Studies.

    PubMed

    Zhang, Wenchao; Dai, Xinbin; Wang, Qishan; Xu, Shizhong; Zhao, Patrick X

    2016-05-01

    The term epistasis refers to interactions between multiple genetic loci. Genetic epistasis is important in regulating biological function and is considered to explain part of the 'missing heritability,' which involves marginal genetic effects that cannot be accounted for in genome-wide association studies. Thus, the study of epistasis is of great interest to geneticists. However, estimating epistatic effects for quantitative traits is challenging due to the large number of interaction effects that must be estimated, thus significantly increasing computing demands. Here, we present a new web server-based tool, the Pipeline for estimating EPIStatic genetic effects (PEPIS), for analyzing polygenic epistatic effects. The PEPIS software package is based on a new linear mixed model that has been used to predict the performance of hybrid rice. The PEPIS includes two main sub-pipelines: the first for kinship matrix calculation, and the second for polygenic component analyses and genome scanning for main and epistatic effects. To accommodate the demand for high-performance computation, the PEPIS utilizes C/C++ for mathematical matrix computing. In addition, the modules for kinship matrix calculations and main and epistatic-effect genome scanning employ parallel computing technology that effectively utilizes multiple computer nodes across our networked cluster, thus significantly improving the computational speed. For example, when analyzing the same immortalized F2 rice population genotypic data examined in a previous study, the PEPIS returned identical results at each analysis step with the original prototype R code, but the computational time was reduced from more than one month to about five minutes. These advances will help overcome the bottleneck frequently encountered in genome wide epistatic genetic effect analysis and enable accommodation of the high computational demand. The PEPIS is publically available at http://bioinfo.noble.org/PolyGenic_QTL/.

  6. PEPIS: A Pipeline for Estimating Epistatic Effects in Quantitative Trait Locus Mapping and Genome-Wide Association Studies

    PubMed Central

    Dai, Xinbin; Wang, Qishan; Xu, Shizhong; Zhao, Patrick X.

    2016-01-01

    The term epistasis refers to interactions between multiple genetic loci. Genetic epistasis is important in regulating biological function and is considered to explain part of the ‘missing heritability,’ which involves marginal genetic effects that cannot be accounted for in genome-wide association studies. Thus, the study of epistasis is of great interest to geneticists. However, estimating epistatic effects for quantitative traits is challenging due to the large number of interaction effects that must be estimated, thus significantly increasing computing demands. Here, we present a new web server-based tool, the Pipeline for estimating EPIStatic genetic effects (PEPIS), for analyzing polygenic epistatic effects. The PEPIS software package is based on a new linear mixed model that has been used to predict the performance of hybrid rice. The PEPIS includes two main sub-pipelines: the first for kinship matrix calculation, and the second for polygenic component analyses and genome scanning for main and epistatic effects. To accommodate the demand for high-performance computation, the PEPIS utilizes C/C++ for mathematical matrix computing. In addition, the modules for kinship matrix calculations and main and epistatic-effect genome scanning employ parallel computing technology that effectively utilizes multiple computer nodes across our networked cluster, thus significantly improving the computational speed. For example, when analyzing the same immortalized F2 rice population genotypic data examined in a previous study, the PEPIS returned identical results at each analysis step with the original prototype R code, but the computational time was reduced from more than one month to about five minutes. These advances will help overcome the bottleneck frequently encountered in genome wide epistatic genetic effect analysis and enable accommodation of the high computational demand. The PEPIS is publically available at http://bioinfo.noble.org/PolyGenic_QTL/. PMID:27224861

  7. MSFC solar activity predictions for satellite orbital lifetime estimation

    NASA Technical Reports Server (NTRS)

    Fuler, H. C.; Lundquist, C. A.; Vaughan, W. W.

    1979-01-01

    The procedure to predict solar activity indexes for use in upper atmosphere density models is given together with an example of the performance. The prediction procedure employs a least square linear regression model to generate the predicted smoothed vinculum R sub 13 and geomagnetic vinculum A sub p(13) values. Linear regression equations are then employed to compute corresponding vinculum F sub 10.7(13) solar flux values from the predicted vinculum R sub 13 values. The output is issued principally for satellite orbital lifetime estimations.

  8. Specularly modified vegetation indices to estimate photosynthetic activity

    NASA Technical Reports Server (NTRS)

    Rondeaux, G.; Vanderbilt, V. C.

    1993-01-01

    The hypothesis tested was that some part of the ecosystem-dependent variability of vegetation indices was attributable to the effects of light specularly reflected by leaves. 'Minus specular' indices were defined excluding effects of specular light which contains no cellular pigment information. Results, both empirical and theoretical, show that the 'minus specular' indices, when compared to the traditional vegetation indices, potentially provide better estimates of the photosynthetic activity within a canopy - and therefore canopy primary production - specifically as a function of sun and view angles.

  9. Three-dimensional quantitative structure-activity relationships of steroid aromatase inhibitors

    NASA Astrophysics Data System (ADS)

    Oprea, Tudor I.; García, Angel E.

    1996-06-01

    Inhibition of aromatase, a cytochrome P450 that converts androgens to estrogens, is relevant in the therapeutic control of breast cancer. We investigate this inhibition using a three-dimensional quantitative structure-activity relationship (3D QSAR) method known as Comparative Molecular Field Analysis, CoMFA [Cramer III, R.D. et al., J. Am. Chem. Soc., 110 (1988) 5959]. We analyzed the data for 50 steroid inhibitors [Numazawa, M. et al., J. Med. Chem., 37 (1994) 2198, and references cited therein] assayed against androstenedione on human placental microsomes. An initial CoMFA resulted in a three-component model for log(1/Ki), with an explained variance r2 of 0.885, and a cross-validated q2 of 0.673. Chemometric studies were performed using GOLPE [Baroni, M. et al., Quant. Struct.-Act. Relatsh., 12 (1993) 9]. The CoMFA/GOLPE model is discussed in terms of robustness, predictivity, explanatory power and simplicity. After randomized exclusion of 25 or 10 compounds (repeated 25 times), the q2 for one component was 0.62 and 0.61, respectively, while r2 was 0.674. We demonstrate that the predictive r2 based on the mean activity (Ym) of the training set is misleading, while the test set Ym-based predictive r2 index gives a more accurate estimate of external predictivity. Using CoMFA, the observed differences in aromatase inhibition among C6-substituted steroids are rationalized at the atomic level. The CoMFA fields are consistent with known, potent inhibitors of aromatase, not included in the model. When positioned in the same alignment, these compounds have distinct features that overlap with the steric and electrostatic fields obtained in the CoMFA model. The presence of two hydrophobic binding pockets near the aromatase active site is discussed: a steric bulk tolerant one, common for C4, C6-alpha and C7-alpha substitutents, and a smaller one at the C6-beta region.

  10. Improved accuracy of quantitative parameter estimates in dynamic contrast-enhanced CT study with low temporal resolution

    SciTech Connect

    Kim, Sun Mo; Jaffray, David A.

    2016-01-15

    quantitative histogram parameters of volume transfer constant [standard deviation (SD), 98th percentile, and range], rate constant (SD), blood volume fraction (mean, SD, 98th percentile, and range), and blood flow (mean, SD, median, 98th percentile, and range) for sampling intervals between 10 and 15 s. Conclusions: The proposed method of PCA filtering combined with the AIF estimation technique allows low frequency scanning for DCE-CT study to reduce patient radiation dose. The results indicate that the method is useful in pixel-by-pixel kinetic analysis of DCE-CT data for patients with cervical cancer.

  11. Validation of a novel method for retrospectively estimating nutrient intake during pregnancy using a semi-quantitative food frequency questionnaire

    PubMed Central

    Mejía-Rodríguez, Fabiola; Orjuela, Manuela A.; García-Guerra, Armando; Quezada-Sanchez, Amado David; Neufeld, Lynnette M.

    2011-01-01

    Objective Case control studies evaluating the relationship between dietary intake of specific nutrients and risk of congenital, neonatal or early childhood disease require the ability to rank relative maternal dietary intake during pregnancy. Such studies are limited by the lack of validated instruments for assessing gestational dietary intake several years post-partum. This study aims to validate a semi-quantitative interview-administered food frequency questionnaire (FFQ) for retrospectively estimating nutrient intake at two critical time points during pregnancy. Methods The FFQ was administered to women (N=84), who 4 to 6 years earlier had participated in a prospective study to evaluate dietary intake during pregnancy. The FFQ queried participants about intake during the previous month (FFQ-month). This was then used as a reference point to estimate consumption by trimester (FFQ-pregnancy). The resulting data were compared to data collected during the original study from two 24-hour recalls (24hr-original) using Spearman correlation and Wilcoxon sign-rank-test. Results Total energy intake as estimated by the retrospective and original instruments did not differ and was only weakly correlated in the trimesters (1st & 3rd) as a whole (r = 0.18-32), though more strongly correlated when restricted to the first half of the 1st trimester (r=0.32) and later half of the 3rd trimester (r=0.87). After energy adjustment, correlation between the 24hR-original and FFQ-pregnancy in the 3rd trimester were r=0.25 (p<0.05) for dietary intake of vitamin A, and r=0.26 (p<0.05) for folate, and r= 0.23-0.77 (p<0.005) for folate, and vitamins A, B6 and B12 in the 1st and 3rd trimester after including vitamin supplement intake. Conclusions The FFQ-pregnancy provides a consistent estimate of maternal intake of key micronutrients during pregnancy and permits accurate ranking of intake 4-6 years post-partum. PMID:22116778

  12. Quantitative structure-antifungal activity relationships of some benzohydrazides against Botrytis cinerea.

    PubMed

    Reino, José L; Saiz-Urra, Liane; Hernandez-Galan, Rosario; Aran, Vicente J; Hitchcock, Peter B; Hanson, James R; Gonzalez, Maykel Perez; Collado, Isidro G

    2007-06-27

    Fourteen benzohydrazides have been synthesized and evaluated for their in vitro antifungal activity against the phytopathogenic fungus Botrytis cinerea. The best antifungal activity was observed for the N',N'-dibenzylbenzohydrazides 3b-d and for the N-aminoisoindoline-derived benzohydrazide 5. A quantitative structure-activity relationship (QSAR) study has been developed using a topological substructural molecular design (TOPS-MODE) approach to interpret the antifungal activity of these synthetic compounds. The model described 98.3% of the experimental variance, with a standard deviation of 4.02. The influence of an ortho substituent on the conformation of the benzohydrazides was investigated by X-ray crystallography and supported by QSAR study. Several aspects of the structure-activity relationships are discussed in terms of the contribution of different bonds to the antifungal activity, thereby making the relationships between structure and biological activity more transparent.

  13. Towards a quantitative, measurement-based estimate of the uncertainty in photon mass attenuation coefficients at radiation therapy energies

    NASA Astrophysics Data System (ADS)

    Ali, E. S. M.; Spencer, B.; McEwen, M. R.; Rogers, D. W. O.

    2015-02-01

    In this study, a quantitative estimate is derived for the uncertainty in the XCOM photon mass attenuation coefficients in the energy range of interest to external beam radiation therapy—i.e. 100 keV (orthovoltage) to 25 MeV—using direct comparisons of experimental data against Monte Carlo models and theoretical XCOM data. Two independent datasets are used. The first dataset is from our recent transmission measurements and the corresponding EGSnrc calculations (Ali et al 2012 Med. Phys. 39 5990-6003) for 10-30 MV photon beams from the research linac at the National Research Council Canada. The attenuators are graphite and lead, with a total of 140 data points and an experimental uncertainty of ˜0.5% (k = 1). An optimum energy-independent cross section scaling factor that minimizes the discrepancies between measurements and calculations is used to deduce cross section uncertainty. The second dataset is from the aggregate of cross section measurements in the literature for graphite and lead (49 experiments, 288 data points). The dataset is compared to the sum of the XCOM data plus the IAEA photonuclear data. Again, an optimum energy-independent cross section scaling factor is used to deduce the cross section uncertainty. Using the average result from the two datasets, the energy-independent cross section uncertainty estimate is 0.5% (68% confidence) and 0.7% (95% confidence). The potential for energy-dependent errors is discussed. Photon cross section uncertainty is shown to be smaller than the current qualitative ‘envelope of uncertainty’ of the order of 1-2%, as given by Hubbell (1999 Phys. Med. Biol 44 R1-22).

  14. Quantitative structure-activity studies of octopaminergic agonists and antagonists against nervous system of Locusta migratoria.

    PubMed

    Hirashima, A; Pan, C; Shinkai, K; Tomita, J; Kuwano, E; Taniguchi, E; Eto, M

    1998-07-01

    The quantitative structure activity relationship (QSAR) of octopaminergic agonists and antagonists against the thoracic nerve cord of the migratory locust, Locusta migratoria L., was analyzed using physicochemical parameters and regression analysis. The hydrophobic effect, dipole moment, and shape index were important in terms of Ki: the more hydrophobic, the greater dipole moment, and the smaller shape index of the molecules, the greater the activity. A receptor surface model (RSM) was generated using some subset of the most active structures. Three-dimensional energetics descriptors were calculated from RSM/ligand interaction and these three-dimensional descriptors were used in QSAR analysis. This data set was studied further using molecular shape analysis.

  15. A computational quantitative structure-activity relationship study of carbamate anticonvulsants using quantum pharmacological methods.

    PubMed

    Knight, J L; Weaver, D F

    1998-10-01

    A pattern recognition quantitative structure-activity relationship (QSAR) study has been performed to determine the molecular features of carbamate anticonvulsants which influence biological activity. Although carbamates, such as felbamate, have been used to treat epilepsy, their mechanisms of efficacy and toxicity are not completely understood. Quantum and classical mechanics calculations have been exploited to describe 46 carbamate drugs. Employing a principal component analysis and multiple linear regression calculations, five crucial structural descriptors were identified which directly relate to the bioactivity of the carbamate family. With the resulting mathematical model, the biological activity of carbamate analogues can be predicted with 85-90% accuracy.

  16. Methods for Quantitative Detection of Antibody-induced Complement Activation on Red Blood Cells

    PubMed Central

    Meulenbroek, Elisabeth M.; Wouters, Diana; Zeerleder, Sacha

    2014-01-01

    Antibodies against red blood cells (RBCs) can lead to complement activation resulting in an accelerated clearance via complement receptors in the liver (extravascular hemolysis) or leading to intravascular lysis of RBCs. Alloantibodies (e.g. ABO) or autoantibodies to RBC antigens (as seen in autoimmune hemolytic anemia, AIHA) leading to complement activation are potentially harmful and can be - especially when leading to intravascular lysis - fatal1. Currently, complement activation due to (auto)-antibodies on RBCs is assessed in vitro by using the Coombs test reflecting complement deposition on RBC or by a nonquantitative hemolytic assay reflecting RBC lysis1-4. However, to assess the efficacy of complement inhibitors, it is mandatory to have quantitative techniques. Here we describe two such techniques. First, an assay to detect C3 and C4 deposition on red blood cells that is induced by antibodies in patient serum is presented. For this, FACS analysis is used with fluorescently labeled anti-C3 or anti-C4 antibodies. Next, a quantitative hemolytic assay is described. In this assay, complement-mediated hemolysis induced by patient serum is measured making use of spectrophotometric detection of the released hemoglobin. Both of these assays are very reproducible and quantitative, facilitating studies of antibody-induced complement activation. PMID:24514151

  17. Quantitative estimate of fs-laser induced refractive index changes in the bulk of various transparent materials

    NASA Astrophysics Data System (ADS)

    Mermillod-Blondin, A.; Seuthe, T.; Eberstein, M.; Grehn, M.; Bonse, J.; Rosenfeld, A.

    2014-05-01

    Over the past years, many applications based on laser-induced refractive index changes in the volume of transparent materials have been demonstrated. Ultrashort pulse lasers offer the possibility to process bulky transparent materials in three dimensions, suggesting that direct laser writing will play a decisive role in the development of integrated micro-optics. At the present time, applications such as 3D long term data storage or embedded laser marking are already into the phase of industrial development. However, a quantitative estimate of the laser-induced refractive index change is still very challenging to obtain. On another hand, several microscopy techniques have been recently developed to characterize bulk refractive index changes in-situ. They have been mostly applied to biological purposes. Among those, spatial light interference microscopy (SLIM), offers a very good robustness with minimal post acquisition data processing. In this paper, we report on using SLIM to measure fs-laser induced refractive index changes in different common glassy materials, such as fused silica and borofloat glass (B33). The advantages of SLIM over classical phase-contrast microscopy are discussed.

  18. Development and validation of the liquid chromatography-tandem mass spectrometry method for quantitative estimation of candesartan from human plasma

    PubMed Central

    Prajapati, Shailesh T.; Patel, Pratik K.; Patel, Marmik; Chauhan, Vijendra B.; Patel, Chhaganbhai N.

    2011-01-01

    Introduction: A simple and sensitive liquid chromatography-tandem mass spectrometry method was developed and validated for estimation of candesartan in human plasma using the protein precipitation technique. Materials and Methods: The chromatographic separation was performed on reverse phase using a Betasil C8 (100 × 2.1 mm) 5-μm column, mobile phase of methanol:ammonium tri-floro acetate buffer with formic acid (60:40 v/v) and flow rate of 0.45 ml/min. The protonated analyte was quantitated in positive ionization by multiple reaction monitoring with a mass spectrometer. The mass transitions m/z 441.2 → 263.2 and 260.2 → 116.1 were used to measure candesartan by using propranolol as an internal standard. Results: The linearity of the developed method was achieved in the range of 1.2–1030 ng/ml (r2 ≥ 0.9996) for candesartan. Conclusion: The developed method is simple, rapid, accurate, cost-effective and specific; hence, it can be applied for routine analysis in pharmaceutical industries. PMID:23781443

  19. Spectral estimators of absorbed photosynthetically active radiation in corn canopies

    NASA Technical Reports Server (NTRS)

    Gallo, K. P.; Daughtry, C. S. T.; Bauer, M. E.

    1985-01-01

    Most models of crop growth and yield require an estimate of canopy leaf area index (LAI) or absorption of radiation. Relationships between photosynthetically active radiation (PAR) absorbed by corn canopies and the spectral reflectance of the canopies were investigated. Reflectance factor data were acquired with a Landsat MSS band radiometer. From planting to silking, the three spectrally predicted vegetation indices examined were associated with more than 95 percent of the variability in absorbed PAR. The relationships developed between absorbed PAR and the three indices were evaluated with reflectance factor data acquired from corn canopies planted in 1979 through 1982. Seasonal cumulations of measured LAI and each of the three indices were associated with greater than 50 percent of the variation in final grain yields from the test years. Seasonal cumulations of daily absorbed PAR were associated with up to 73 percent of the variation in final grain yields. Absorbed PAR, cumulated through the growing season, is a better indicator of yield than cumulated leaf area index. Absorbed PAR may be estimated reliably from spectral reflectance data of crop canopies.

  20. Spectral estimators of absorbed photosynthetically active radiation in corn canopies

    NASA Technical Reports Server (NTRS)

    Gallo, K. P.; Daughtry, C. S. T.; Bauer, M. E.

    1984-01-01

    Most models of crop growth and yield require an estimate of canopy leaf area index (LAI) or absorption of radiation. Relationships between photosynthetically active radiation (PAR) absorbed by corn canopies and the spectral reflectance of the canopies were investigated. Reflectance factor data were acquired with a LANDSAT MSS band radiometer. From planting to silking, the three spectrally predicted vegetation indices examined were associated with more than 95% of the variability in absorbed PAR. The relationships developed between absorbed PAR and the three indices were evaluated with reflectance factor data acquired from corn canopies planted in 1979 through 1982. Seasonal cumulations of measured LAI and each of the three indices were associated with greater than 50% of the variation in final grain yields from the test years. Seasonal cumulations of daily absorbed PAR were associated with up to 73% of the variation in final grain yields. Absorbed PAR, cumulated through the growing season, is a better indicator of yield than cumulated leaf area index. Absorbed PAR may be estimated reliably from spectral reflectance data of crop canopies.

  1. Estimation of photosynthetically active radiation absorbed at the surface

    NASA Astrophysics Data System (ADS)

    Li, Zhanqing; Moreau, Louis; Cihlar, Josef

    1997-12-01

    This paper presents a validation and application of an algorithm by Li and Moreau [1996] for retrieving photosynthetically active radiation (PAR) absorbed at the surface (APARSFC). APARSFC is a key input to estimating PAR absorbed by the green canopy during photosynthesis. Extensive ground-based and space-borne observations collected during the BOREAS experiment in 1994 were processed, colocated, and analyzed. They include downwelling and upwelling PAR observed at three flux towers, aerosol optical depth from ground-based photometers, and satellite reflectance measurements at the top of the atmosphere. The effects of three-dimensional clouds, aerosols, and bidirectional dependence on the retrieval of APARSFC were examined. While the algorithm is simple and has only three input parameters, the comparison between observed and estimated APARSFC shows a small bias error (<10 W m-2) and moderate random error (36 W m-2 for clear, 61 W m-2 for cloudy). Temporal and/or spatial mismatch between satellite and surface observations is a major cause of the random error, especially when broken clouds are present. The algorithm was subsequently employed to map the distribution of monthly mean APARSFC over the 1000×1000 km2 BOREAS region. Considerable spatial variation is found due to variable cloudiness, forest fires, and nonuniform surface albedo.

  2. Quantitative estimation of landslide risk from rapid debris slides on natural slopes in the Nilgiri hills, India

    NASA Astrophysics Data System (ADS)

    Jaiswal, P.; van Westen, C. J.; Jetten, V.

    2011-06-01

    A quantitative procedure for estimating landslide risk to life and property is presented and applied in a mountainous area in the Nilgiri hills of southern India. Risk is estimated for elements at risk located in both initiation zones and run-out paths of potential landslides. Loss of life is expressed as individual risk and as societal risk using F-N curves, whereas the direct loss of properties is expressed in monetary terms. An inventory of 1084 landslides was prepared from historical records available for the period between 1987 and 2009. A substantially complete inventory was obtained for landslides on cut slopes (1042 landslides), while for natural slopes information on only 42 landslides was available. Most landslides were shallow translational debris slides and debris flowslides triggered by rainfall. On natural slopes most landslides occurred as first-time failures. For landslide hazard assessment the following information was derived: (1) landslides on natural slopes grouped into three landslide magnitude classes, based on landslide volumes, (2) the number of future landslides on natural slopes, obtained by establishing a relationship between the number of landslides on natural slopes and cut slopes for different return periods using a Gumbel distribution model, (3) landslide susceptible zones, obtained using a logistic regression model, and (4) distribution of landslides in the susceptible zones, obtained from the model fitting performance (success rate curve). The run-out distance of landslides was assessed empirically using landslide volumes, and the vulnerability of elements at risk was subjectively assessed based on limited historic incidents. Direct specific risk was estimated individually for tea/coffee and horticulture plantations, transport infrastructures, buildings, and people both in initiation and run-out areas. Risks were calculated by considering the minimum, average, and maximum landslide volumes in each magnitude class and the

  3. Quantitative assessment on soil enzyme activities of heavy metal contaminated soils with various soil properties.

    PubMed

    Xian, Yu; Wang, Meie; Chen, Weiping

    2015-11-01

    Soil enzyme activities are greatly influenced by soil properties and could be significant indicators of heavy metal toxicity in soil for bioavailability assessment. Two groups of experiments were conducted to determine the joint effects of heavy metals and soil properties on soil enzyme activities. Results showed that arylsulfatase was the most sensitive soil enzyme and could be used as an indicator to study the enzymatic toxicity of heavy metals under various soil properties. Soil organic matter (SOM) was the dominant factor affecting the activity of arylsulfatase in soil. A quantitative model was derived to predict the changes of arylsulfatase activity with SOM content. When the soil organic matter content was less than the critical point A (1.05% in our study), the arylsulfatase activity dropped rapidly. When the soil organic matter content was greater than the critical point A, the arylsulfatase activity gradually rose to higher levels showing that instead of harm the soil microbial activities were enhanced. The SOM content needs to be over the critical point B (2.42% in our study) to protect its microbial community from harm due to the severe Pb pollution (500mgkg(-1) in our study). The quantitative model revealed the pattern of variation of enzymatic toxicity due to heavy metals under various SOM contents. The applicability of the model under wider soil properties need to be tested. The model however may provide a methodological basis for ecological risk assessment of heavy metals in soil.

  4. Estimating the toxicities of organic chemicals to bioluminescent bacteria and activated sludge.

    PubMed

    Ren, Shijin; Frymier, Paul D

    2002-10-01

    Toxicity assays based on bioluminescent bacteria have several advantages including a quick response and an easily measured signal. The Shk1 assay is a procedure for wastewater toxicity testing based on the bioluminescent bacterium Shk1. Using the Shk1 assay, the toxicity of 98 organic chemicals were measured and EC50 values were obtained. Quantitative structure-activity relationship (QSAR) models based on the logarithm of the octanol-water partition coefficient (log(Kow)) were developed for individual groups of organic chemicals with different functional groups. The correlation coefficients for different groups of organic compounds varied between 0.69 and 0.99. An overall QSAR model without discriminating the functional groups, which can be used for a quick estimate of the toxicities of organic chemicals, was also developed and model predictions were compared to experimental data. The model accuracy was found to be one order of magnitude from the observed values.

  5. Towards cheminformatics-based estimation of drug therapeutic index: Predicting the protective index of anticonvulsants using a new quantitative structure-index relationship approach.

    PubMed

    Chen, Shangying; Zhang, Peng; Liu, Xin; Qin, Chu; Tao, Lin; Zhang, Cheng; Yang, Sheng Yong; Chen, Yu Zong; Chui, Wai Keung

    2016-06-01

    The overall efficacy and safety profile of a new drug is partially evaluated by the therapeutic index in clinical studies and by the protective index (PI) in preclinical studies. In-silico predictive methods may facilitate the assessment of these indicators. Although QSAR and QSTR models can be used for predicting PI, their predictive capability has not been evaluated. To test this capability, we developed QSAR and QSTR models for predicting the activity and toxicity of anticonvulsants at accuracy levels above the literature-reported threshold (LT) of good QSAR models as tested by both the internal 5-fold cross validation and external validation method. These models showed significantly compromised PI predictive capability due to the cumulative errors of the QSAR and QSTR models. Therefore, in this investigation a new quantitative structure-index relationship (QSIR) model was devised and it showed improved PI predictive capability that superseded the LT of good QSAR models. The QSAR, QSTR and QSIR models were developed using support vector regression (SVR) method with the parameters optimized by using the greedy search method. The molecular descriptors relevant to the prediction of anticonvulsant activities, toxicities and PIs were analyzed by a recursive feature elimination method. The selected molecular descriptors are primarily associated with the drug-like, pharmacological and toxicological features and those used in the published anticonvulsant QSAR and QSTR models. This study suggested that QSIR is useful for estimating the therapeutic index of drug candidates.

  6. Ranking of hair dye substances according to predicted sensitization potency: quantitative structure-activity relationships.

    PubMed

    Søsted, H; Basketter, D A; Estrada, E; Johansen, J D; Patlewicz, G Y

    2004-01-01

    Allergic contact dermatitis following the use of hair dyes is well known. Many chemicals are used in hair dyes and it is unlikely that all cases of hair dye allergy can be diagnosed by means of patch testing with p-phenylenediamine (PPD). The objectives of this study are to identify all hair dye substances registered in Europe and to provide their tonnage data. The sensitization potential of each substance was then estimated by using a quantitative structure-activity relationship (QSAR) model and the substances were ranked according to their predicted potency. A cluster analysis was performed in order to help select a number of chemically diverse hair dye substances that could be used in subsequent clinical work. Various information sources, including the Inventory of Cosmetics Ingredients, new regulations on cosmetics, data on total use and ChemId (the Chemical Search Input website provided by the National Library of Medicine), were used in order to identify the names and structures of the hair dyes. A QSAR model, developed with the help of experimental local lymph node assay data and topological sub-structural molecular descriptors (TOPS-MODE), was used in order to predict the likely sensitization potential. Predictions for sensitization potential were made for the 229 substances that could be identified by means of a chemical structure, the majority of these hair dyes (75%) being predicted to be strong/moderate sensitizers. Only 22% were predicted to be weak sensitizers and 3% were predicted to be extremely weak or non-sensitizing. Eight of the most widely used hair dye substances were predicted to be strong/moderate sensitizers, including PPD - which is the most commonly used hair dye allergy marker in patch testing. A cluster analysis by using TOPS-MODE descriptors as inputs helped us group the hair dye substances according to their chemical similarity. This would facilitate the selection of potential substances for clinical patch testing. A patch-test series

  7. Finding Biomass Degrading Enzymes Through an Activity-Correlated Quantitative Proteomics Platform (ACPP).

    PubMed

    Ma, Hongyan; Delafield, Daniel G; Wang, Zhe; You, Jianlan; Wu, Si

    2017-04-01

    The microbial secretome, known as a pool of biomass (i.e., plant-based materials) degrading enzymes, can be utilized to discover industrial enzyme candidates for biofuel production. Proteomics approaches have been applied to discover novel enzyme candidates through comparing protein expression profiles with enzyme activity of the whole secretome under different growth conditions. However, the activity measurement of each enzyme candidate is needed for confident "active" enzyme assignments, which remains to be elucidated. To address this challenge, we have developed an Activity-Correlated Quantitative Proteomics Platform (ACPP) that systematically correlates protein-level enzymatic activity patterns and protein elution profiles using a label-free quantitative proteomics approach. The ACPP optimized a high performance anion exchange separation for efficiently fractionating complex protein samples while preserving enzymatic activities. The detected enzymatic activity patterns in sequential fractions using microplate-based assays were cross-correlated with protein elution profiles using a customized pattern-matching algorithm with a correlation R-score. The ACPP has been successfully applied to the identification of two types of "active" biomass-degrading enzymes (i.e., starch hydrolysis enzymes and cellulose hydrolysis enzymes) from Aspergillus niger secretome in a multiplexed fashion. By determining protein elution profiles of 156 proteins in A. niger secretome, we confidently identified the 1,4-α-glucosidase as the major "active" starch hydrolysis enzyme (R = 0.96) and the endoglucanase as the major "active" cellulose hydrolysis enzyme (R = 0.97). The results demonstrated that the ACPP facilitated the discovery of bioactive enzymes from complex protein samples in a high-throughput, multiplexing, and untargeted fashion. Graphical Abstract ᅟ.

  8. Finding Biomass Degrading Enzymes Through an Activity-Correlated Quantitative Proteomics Platform (ACPP)

    NASA Astrophysics Data System (ADS)

    Ma, Hongyan; Delafield, Daniel G.; Wang, Zhe; You, Jianlan; Wu, Si

    2017-01-01

    The microbial secretome, known as a pool of biomass (i.e., plant-based materials) degrading enzymes, can be utilized to discover industrial enzyme candidates for biofuel production. Proteomics approaches have been applied to discover novel enzyme candidates through comparing protein expression profiles with enzyme activity of the whole secretome under different growth conditions. However, the activity measurement of each enzyme candidate is needed for confident "active" enzyme assignments, which remains to be elucidated. To address this challenge, we have developed an Activity-Correlated Quantitative Proteomics Platform (ACPP) that systematically correlates protein-level enzymatic activity patterns and protein elution profiles using a label-free quantitative proteomics approach. The ACPP optimized a high performance anion exchange separation for efficiently fractionating complex protein samples while preserving enzymatic activities. The detected enzymatic activity patterns in sequential fractions using microplate-based assays were cross-correlated with protein elution profiles using a customized pattern-matching algorithm with a correlation R-score. The ACPP has been successfully applied to the identification of two types of "active" biomass-degrading enzymes (i.e., starch hydrolysis enzymes and cellulose hydrolysis enzymes) from Aspergillus niger secretome in a multiplexed fashion. By determining protein elution profiles of 156 proteins in A. niger secretome, we confidently identified the 1,4-α-glucosidase as the major "active" starch hydrolysis enzyme (R = 0.96) and the endoglucanase as the major "active" cellulose hydrolysis enzyme (R = 0.97). The results demonstrated that the ACPP facilitated the discovery of bioactive enzymes from complex protein samples in a high-throughput, multiplexing, and untargeted fashion.

  9. Acaricidal and quantitative structure activity relationship of monoterpenes against the two-spotted spider mite, Tetranychus urticae.

    PubMed

    Badawy, Mohamed E I; El-Arami, Sailan A A; Abdelgaleil, Samir A M

    2010-11-01

    The acaricidal activity of 12 monoterpenes against the two-spotted spider mite, Tetranychus urticae Koch, was examined using fumigation and direct contact application methods. Cuminaldehyde and (-)-linalool showed the highest fumigant toxicity with LC(50) = 0.31 and 0.56 mg/l, respectively. The other monoterpenes exhibited a strong fumigant toxicity, the LC(50) values ranging from 1.28 to 8.09 mg/l, except camphene, which was the least effective (LC(50) = 61.45 mg/l). Based on contact activity, the results were rather different: menthol displayed the highest acaricidal activity (LC(50) = 128.53 mg/l) followed by thymol (172.0 mg/l), geraniol (219.69 mg/l) and (-)-limonene (255.44 mg/l); 1-8-cineole, cuminaldehyde and (-)-linalool showed moderate toxicity. At 125 mg/l, (-)-Limonene and (-)-carvone caused the highest egg mortality among the tested compounds (70.6 and 66.9% mortality, respectively). In addition, the effect of molecular descriptors was also analyzed using the quantitative structure activity relationship (QSAR) procedure. The QSAR model showed excellent agreement between the estimated and experimentally measured toxicity parameter (LC(50)) for the tested monoterpenes and the fumigant activity increased significantly with the vapor pressure. Comparing the results of the fumigant and contact toxicity assays of monoterpenes against T. urticae with the results of acetylcholinesterase (AChE) inhibitory effect revealed that some of the tested compounds showed a strong acaricidal activity and a potent AChE inhibitory activity, such as cuminaldehyde, (-)-linalool, (-)-limonene and menthol. However, other compounds such as (-)-carvone revealed a strong fumigant activity but a weak AChE inhibitory activity.

  10. Quantitative Evaluation of Landsat 7 ETM+ SLC-off Images for Surface Velocity Estimation of Mountain Glaciers

    NASA Astrophysics Data System (ADS)

    Jiang, L.; Sun, Y.; Liu, L.; Wang, S.; Wang, H.

    2014-12-01

    In many cases the Landsat mission series (Landsat 1-5, 7 and 8) provide our only detailed and consistent data source for mapping the global glacier changes over the last 40 years. However, the scan-line corrector (SLC) of the ETM+ sensor on board Landsat 7 permanently failed, resulting in wedge-shaped data gaps in SLC-off images that caused roughly 22% of the pixels to be missed. The SLC failure has left a serious problem for the glacial applications of ETM+ data, particularly for monitoring long-term glacier dynamics in High Asian Mountain where has few available data due to the frequently cloudy covers. This study aims to evaluate the potential of the Landsat 7 SLC-off images in deriving surface velocities of mountain glaciers. A pair of SLC-off images over the Siachen glacier acquired in Aug 2009 and 2010 was used for this purpose. Firstly, two typical filling-gap methods, the localized linear histogram match (LLHM) and the weighted liner regression (WLR), were utilized to recover the mentioned SLC-off images. Subsequently these recovered pairs were applied for deriving glacier-surface velocities with the COSI-Corr feature tracking procedure. Finally, the glacier velocity results were quantitatively compared with that of a pair of Landsat-5 TM images acquired nearly at the same time with the SLC-off pair. Our results show that (1) the WLR method achieves a better performance of gap recovering than the LLHM method, (2) the surface velocities estimated with the recovered SLC-off images are highly agreement with those of the TM images, and (3) the annual mean velocity of the Siachen glacier is approximately 70 m/yr between 2009 and 2010 with a maximum of 280 m/yr close to the glacial equilibrium line that are similar with the results in previous studies. Therefore, if a suitable filling-gap method is adopted, e.g. the WLR method, it is highly feasible that the ETM+ SLC-off data can be utilized to estimate the surface velocities of mountain glaciers.

  11. Quantitative estimation of Tropical Rainfall Mapping Mission precipitation radar signals from ground-based polarimetric radar observations

    NASA Astrophysics Data System (ADS)

    Bolen, Steven M.; Chandrasekar, V.

    2003-06-01

    The Tropical Rainfall Mapping Mission (TRMM) is the first mission dedicated to measuring rainfall from space using radar. The precipitation radar (PR) is one of several instruments aboard the TRMM satellite that is operating in a nearly circular orbit with nominal altitude of 350 km, inclination of 35°, and period of 91.5 min. The PR is a single-frequency Ku-band instrument that is designed to yield information about the vertical storm structure so as to gain insight into the intensity and distribution of rainfall. Attenuation effects on PR measurements, however, can be significant and as high as 10-15 dB. This can seriously impair the accuracy of rain rate retrieval algorithms derived from PR signal returns. Quantitative estimation of PR attenuation is made along the PR beam via ground-based polarimetric observations to validate attenuation correction procedures used by the PR. The reflectivity (Zh) at horizontal polarization and specific differential phase (Kdp) are found along the beam from S-band ground radar measurements, and theoretical modeling is used to determine the expected specific attenuation (k) along the space-Earth path at Ku-band frequency from these measurements. A theoretical k-Kdp relationship is determined for rain when Kdp ≥ 0.5°/km, and a power law relationship, k = a Zhb, is determined for light rain and other types of hydrometers encountered along the path. After alignment and resolution volume matching is made between ground and PR measurements, the two-way path-integrated attenuation (PIA) is calculated along the PR propagation path by integrating the specific attenuation along the path. The PR reflectivity derived after removing the PIA is also compared against ground radar observations.

  12. Rapid and quantitative measuring of telomerase activity using an electrochemiluminescent sensor

    NASA Astrophysics Data System (ADS)

    Zhou, Xiaoming; Xing, Da; Zhu, Debin; Jia, Li

    2007-11-01

    Telomerase, a ribonucleoprotein enzyme that adds telomeric repeats to the 3'end of chromosomal DNA for maintaining chromosomal integrity and stability. This strong association of telomerase activity with tumors establishing it is the most widespread cancer marker. A number of assays based on the polymerase chain reaction (PCR) have been developed for the evaluation of telomerase activity. However, those methods require gel electrophoresis and some staining procedures. We developed an electrochemiluminescent (ECL) sensor for the measuring of telomerase activity to overcome these problems such as troublesome post-PCR procedures and semi-quantitative assessment in the conventional method. In this assay 5'-biotinylated telomerase synthesis (TS) primer serve as the substrate for the extension of telomeric repeats under telomerase. The extension products were amplified with this TS primer and a tris-(2'2'-bipyridyl) ruthenium (TBR)-labeled reversed primer. The amplified products was separated and enriched in the surface of electrode by streptavidin-coated magnetic beads, and detected by measuring the ECL signals of the TBR labeled. Measuring telomerase activity use the sensor is easy, sensitive, rapid, and applicable to quantitative analysis, should be clinically useful for the detection and monitoring of telomerase activity.

  13. Altered resting-state functional activity in posttraumatic stress disorder: A quantitative meta-analysis

    PubMed Central

    Wang, Ting; Liu, Jia; Zhang, Junran; Zhan, Wang; Li, Lei; Wu, Min; Huang, Hua; Zhu, Hongyan; Kemp, Graham J.; Gong, Qiyong

    2016-01-01

    Many functional neuroimaging studies have reported differential patterns of spontaneous brain activity in posttraumatic stress disorder (PTSD), but the findings are inconsistent and have not so far been quantitatively reviewed. The present study set out to determine consistent, specific regional brain activity alterations in PTSD, using the Effect Size Signed Differential Mapping technique to conduct a quantitative meta-analysis of resting-state functional neuroimaging studies of PTSD that used either a non-trauma (NTC) or a trauma-exposed (TEC) comparison control group. Fifteen functional neuroimaging studies were included, comparing 286 PTSDs, 203 TECs and 155 NTCs. Compared with NTC, PTSD patients showed hyperactivity in the right anterior insula and bilateral cerebellum, and hypoactivity in the dorsal medial prefrontal cortex (mPFC); compared with TEC, PTSD showed hyperactivity in the ventral mPFC. The pooled meta-analysis showed hypoactivity in the posterior insula, superior temporal, and Heschl’s gyrus in PTSD. Additionally, subgroup meta-analysis (non-medicated subjects vs. NTC) identified abnormal activation in the prefrontal-limbic system. In meta-regression analyses, mean illness duration was positively associated with activity in the right cerebellum (PTSD vs. NTC), and illness severity was negatively associated with activity in the right lingual gyrus (PTSD vs. TEC). PMID:27251865

  14. Impact of high 131I-activities on quantitative 124I-PET

    NASA Astrophysics Data System (ADS)

    Braad, P. E. N.; Hansen, S. B.; Høilund-Carlsen, P. F.

    2015-07-01

    Peri-therapeutic 124 I-PET/CT is of interest as guidance for radioiodine therapy. Unfortunately, image quality is complicated by dead time effects and increased random coincidence rates from high 131 I-activities. A series of phantom experiments with clinically relevant 124 I/131 I-activities were performed on a clinical PET/CT-system. Noise equivalent count rate (NECR) curves and quantitation accuracy were determined from repeated scans performed over several weeks on a decaying NEMA NU-2 1994 cylinder phantom initially filled with 25 MBq 124 I and 1250 MBq 131 I. Six spherical inserts with diameters 10-37 mm were filled with 124 I (0.45 MBq ml-1 ) and 131 I (22 MBq ml-1 ) and placed inside the background of the NEMA/IEC torso phantom. Contrast recovery, background variability and the accuracy of scatter and attenuation corrections were assessed at sphere-to-background activity ratios of 20, 10 and 5. Results were compared to pure 124 I-acquisitions. The quality of 124 I-PET images in the presence of high 131 I-activities was good and image quantification unaffected except at very high count rates. Quantitation accuracy and contrast recovery were uninfluenced at 131 I-activities below 1000 MBq, whereas image noise was slightly increased. The NECR peaked at 550 MBq of 131 I, where it was 2.8 times lower than without 131 I in the phantom. Quantitative peri-therapeutic 124 I-PET is feasible.

  15. Impact of high (131)I-activities on quantitative (124)I-PET.

    PubMed

    Braad, P E N; Hansen, S B; Høilund-Carlsen, P F

    2015-07-07

    Peri-therapeutic (124)I-PET/CT is of interest as guidance for radioiodine therapy. Unfortunately, image quality is complicated by dead time effects and increased random coincidence rates from high (131)I-activities. A series of phantom experiments with clinically relevant (124)I/(131)I-activities were performed on a clinical PET/CT-system. Noise equivalent count rate (NECR) curves and quantitation accuracy were determined from repeated scans performed over several weeks on a decaying NEMA NU-2 1994 cylinder phantom initially filled with 25 MBq (124)I and 1250 MBq (131)I. Six spherical inserts with diameters 10-37 mm were filled with (124)I (0.45 MBq ml(-1)) and (131)I (22 MBq ml(-1)) and placed inside the background of the NEMA/IEC torso phantom. Contrast recovery, background variability and the accuracy of scatter and attenuation corrections were assessed at sphere-to-background activity ratios of 20, 10 and 5. Results were compared to pure (124)I-acquisitions. The quality of (124)I-PET images in the presence of high (131)I-activities was good and image quantification unaffected except at very high count rates. Quantitation accuracy and contrast recovery were uninfluenced at (131)I-activities below 1000 MBq, whereas image noise was slightly increased. The NECR peaked at 550 MBq of (131)I, where it was 2.8 times lower than without (131)I in the phantom. Quantitative peri-therapeutic (124)I-PET is feasible.

  16. Electron-density descriptors as predictors in quantitative structure--activity/property relationships and drug design.

    PubMed

    Matta, Chérif F; Arabi, Alya A

    2011-06-01

    The use of electron density-based molecular descriptors in drug research, particularly in quantitative structure--activity relationships/quantitative structure--property relationships studies, is reviewed. The exposition starts by a discussion of molecular similarity and transferability in terms of the underlying electron density, which leads to a qualitative introduction to the quantum theory of atoms in molecules (QTAIM). The starting point of QTAIM is the topological analysis of the molecular electron-density distributions to extract atomic and bond properties that characterize every atom and bond in the molecule. These atomic and bond properties have considerable potential as bases for the construction of robust quantitative structure--activity/property relationships models as shown by selected examples in this review. QTAIM is applicable to the electron density calculated from quantum-chemical calculations and/or that obtained from ultra-high resolution x-ray diffraction experiments followed by nonspherical refinement. Atomic and bond properties are introduced followed by examples of application of each of these two families of descriptors. The review ends with a study whereby the molecular electrostatic potential, uniquely determined by the density, is used in conjunction with atomic properties to elucidate the reasons for the biological similarity of bioisosteres.

  17. Quantitative estimation of IL-6 in serum/plasma samples using a rapid and cost-effective fiber optic dip-probe

    NASA Astrophysics Data System (ADS)

    Wang, Chun-Wei; Manne, Upender; Reddy, Vishnu B.; Kapoor, Rakesh

    2010-02-01

    A rapid and cost-effective combination tapered fiber-optic biosensor (CTFOB) dip-probe was used for quantitative estimation of interleukin (IL)-6 in serum/plasma samples. Sandwich immunoassay was used as the detection technique. Probes could successfully detect presence of IL-6 in two serum samples, non-neoplastic autoimmune patient (lupus) sample and lymphoma patient sample. The estimated amount of IL-6 in lupus patient sample was 4.8 +/- 0.9 pM and in lymphoma patient sample was 2 +/- 1 pM. It is demonstrated that the developed CTFOB dip-probe is capable of quantitative estimation of proteins in serum/plasma samples with high specificity.

  18. Quantitative structure-activity relationships of antimicrobial fatty acids and derivatives against Staphylococcus aureus *

    PubMed Central

    Zhang, Hui; Zhang, Lu; Peng, Li-juan; Dong, Xiao-wu; Wu, Di; Wu, Vivian Chi-Hua; Feng, Feng-qin

    2012-01-01

    Fatty acids and derivatives (FADs) are resources for natural antimicrobials. In order to screen for additional potent antimicrobial agents, the antimicrobial activities of FADs against Staphylococcus aureus were examined using a microplate assay. Monoglycerides of fatty acids were the most potent class of fatty acids, among which monotridecanoin possessed the most potent antimicrobial activity. The conventional quantitative structure-activity relationship (QSAR) and comparative molecular field analysis (CoMFA) were performed to establish two statistically reliable models (conventional QSAR: R 2=0.942, Q 2 LOO=0.910; CoMFA: R 2=0.979, Q 2=0.588, respectively). Improved forecasting can be achieved by the combination of these two models that provide a good insight into the structure-activity relationships of the FADs and that may be useful to design new FADs as antimicrobial agents. PMID:22302421

  19. Quantitative measurement of speech sound distortions with the aid of minimum variance spectral estimation method for dentistry use.

    PubMed

    Bereteu, L; Drăgănescu, G E; Stănescu, D; Sinescu, C

    2011-12-01

    In this paper, we search an adequate quantitative method based on minimum variance spectral analysis in order to reflect the dependence of the speech quality on the correct positioning of the dental prostheses. We also search some quantitative parameters, which reflect the correct position of dental prostheses in a sensitive manner.

  20. The analysis of the trigger action exerted by electromagnetic fields on a geological medium: Quantitative estimates of the interaction

    NASA Astrophysics Data System (ADS)

    Avagimov, A. A.; Zeigarnik, V. A.

    2016-03-01

    By analyzing the threshold levels of the triggering action, we quantitatively substantiate the changes in the energy of the triggering impact for the cases of the initiation of the lowand high-energy earthquakes depending on the seismic activity of the medium. The analysis is based on the data on the seismicity caused by the high-power electric pulses and geomagnetic field of the magnetic storms with sudden commencement. The analysis of the threshold levels of the triggering action indicates that the energy level required for triggering grows with the increase in the energy class of the earthquake. This is inconsistent with the facts of initiation of strong earthquakes by physical fields in the absence of evident high-energy sources of triggering. The probable explanation suggests that if the source of a strong earthquake is adjoined by local potential sources, the rupturing of one of the local potential sources caused by an energetically weak pulsed impact of the physical fields by the triggering scenario leads to the initiation of a strong earthquake.

  1. Quantitative structure-activity relationship modeling of antioxidant activities of hydroxybenzalacetones using quantum chemical, physicochemical and spatial descriptors.

    PubMed

    Mitra, Indrani; Saha, Achintya; Roy, Kunal

    2009-05-01

    We have modeled antioxidant activities of hydroxybenzalacetones against lipid peroxidation induced by t-butyl hydroperoxide (pC1), gamma-irradiation (pC2) and also their 1,1-diphenyl-2-picryl hydrazyl (DPPH) free radical scavenging activity (pC3) using quantitative structure-activity relationship technique. The quantitative structure-activity relationship models were developed using different statistical methods like stepwise multiple linear regression, genetic function approximation and genetic partial least squares with descriptors of different categories (quantum chemical, physicochemical, spatial and substituent constants). The models were validated by internal validation and randomization techniques. The model predictivity was judged on the basis of their cross-validated squared correlation coefficient (Q2) and modified r2 (r m 2) values. The best models for the two responses, pC1 and pC2, were obtained by genetic partial least squares technique while the best model for the third response, pC3, was obtained by genetic function approximation technique. The developed models suggest that the distribution of charges on the phenolic nucleus and the phenolic oxygen as well as the charged surface areas of the molecules together with the geometry and orientation of the substituents significantly influence all the three types of responses (pC1, pC2 and pC3). The developed models may be used to design hydroxybenzalacetones with better antioxidant activities.

  2. Quantitation of human MAO A and B in liver, intestine and placenta: Reassessment of activity

    SciTech Connect

    Riley, L.A.

    1989-01-01

    Monoamine oxidases (MAO) oxidize a variety of exogenous and endogenous amines including neurotransmitters such as serotonin, dopamine and norepinephrine as well as the potent dopaminergic neurotoxin 1-methyl-4-phenyl-1,2,5,6-tetrahydropyridine (MPTP). The two forms of MAO (A and B) differ in molecular weight and inhibitor selectivity, and are differentially expressed in the nervous system and many other tissues. Although some substrates are preferentially oxidized by one form of MAO, substrates that can be oxidized by only one MAO form have not been reported. How well each MAO oxidizes various substrates has not been thoroughly characterized because of difficulties in separating and quantitating MAO A and B active sites. By immunoblotting SDS-polyacrylamide gels of mitochondrial extracts with monoclonal antibodies specific for each form of MAO, MAO B protein was detected in intestine and placenta, tissues that have been reported to contain MAO A activity. An improved procedure was developed for quantitating the ratio and amounts of MAO A and B active sites, using the ligand ({sup 3}H)-pargyline to label MAO and specific monoclonal antibodies to separate MAO A from B. Data from liver, placenta and platelets were used to re-evaluate the molecular activity of both MAO A and B for six commonly studied substrates.

  3. Optimal stimulus scheduling for active estimation of evoked brain networks

    NASA Astrophysics Data System (ADS)

    Kafashan, MohammadMehdi; Ching, ShiNung

    2015-12-01

    Objective. We consider the problem of optimal probing to learn connections in an evoked dynamic network. Such a network, in which each edge measures an input-output relationship between sites in sensor/actuator-space, is relevant to emerging applications in neural mapping and neural connectivity estimation. Approach. We show that the problem of scheduling nodes to a probe (i.e., stimulate) amounts to a problem of optimal sensor scheduling. Main results. By formulating the evoked network in state-space, we show that the solution to the greedy probing strategy has a convenient form and, under certain conditions, is optimal over a finite horizon. We adopt an expectation maximization technique to update the state-space parameters in an online fashion and demonstrate the efficacy of the overall approach in a series of detailed numerical examples. Significance. The proposed method provides a principled means to actively probe time-varying connections in neuronal networks. The overall method can be implemented in real time and is particularly well-suited to applications in stimulation-based cortical mapping in which the underlying network dynamics are changing over time.

  4. Relationship between N2O Fluxes from an Almond Soil and Denitrifying Bacterial Populations Estimated by Quantitative PCR

    NASA Astrophysics Data System (ADS)

    Matiasek, M.; Suddick, E. C.; Smart, D. R.; Scow, K. M.

    2008-12-01

    Cultivated soils emit substantial quantities of nitrous oxide (N2O), a greenhouse gas with almost 300 times the radiative forcing potential of CO2. Agriculture-related activities generate from 6 to 35 Tg N2O-N per year, or about 60 to 70% of global production. The microbial processes of nitrification, denitrification and nitrifier denitrification are major biogenic sources of N2O to the atmosphere from soils. Denitrification is considered the major source of N2O especially when soils are wet. The microbial N transformations that produce N2O depend primarily on nitrogen (N) fertilizer, with water content, available carbon and soil temperature being secondary controllers. Despite the fact that microbial processes are responsible for N2O emissions, very little is known about the numbers or types of populations involved. The objective of this study was to relate changes in denitrifying population densities, using quantitative PCR (qPCR) of functional genes, to N2O emissions in a fertilized almond orchard. Quantitative PCR targeted three specific genes involved in denitrification: nirS, nirK and nosZ. Copy numbers of the genes were related back to population densities and the portion of organisms likely to produce nitrous oxide. The study site, a 21.7 acre almond orchard fitted with micro-sprinklers, was fertigated (irrigated and fertilized simultaneously) with 50 lbs/acre sodium nitrate in late March 2008, then irrigated weekly. Immediately after the initial fertigation, fluxes of N2O and CO2, moisture content, inorganic N and denitrification gene copy numbers were measured 6 times over 24 days. Despite the fact that N2O emissions increased following fertigation, there was no consistent increase in any of the targeted genes. The genes nirK and nirS ranged from 0.4-1.4 × 107 and 0.4-1.4 × 108, whereas nosZ ranged from 2-8 × 106 copy numbers per g soil, respectively. Considerable variation, compounded by the small sample sizes used for DNA analysis, made it difficult

  5. The complexities of measuring access to parks and physical activity sites in New York City: a quantitative and qualitative approach

    PubMed Central

    Maroko, Andrew R; Maantay, Juliana A; Sohler, Nancy L; Grady, Kristen L; Arno, Peter S

    2009-01-01

    Background Proximity to parks and physical activity sites has been linked to an increase in active behaviors, and positive impacts on health outcomes such as lower rates of cardiovascular disease, diabetes, and obesity. Since populations with a low socio-economic status as well as racial and ethnic minorities tend to experience worse health outcomes in the USA, access to parks and physical activity sites may be an environmental justice issue. Geographic Information systems were used to conduct quantitative and qualitative analyses of park accessibility in New York City, which included kernel density estimation, ordinary least squares (global) regression, geographically weighted (local) regression, and longitudinal case studies, consisting of field work and archival research. Accessibility was measured by both density of park acreage and density of physical activity sites. Independent variables included percent non-Hispanic black, percent Hispanic, percent below poverty, percent of adults without high school diploma, percent with limited English-speaking ability, and population density. Results The ordinary least squares linear regression found weak relationships in both the park acreage density and the physical activity site density models (Ra2 = .11 and .23, respectively; AIC = 7162 and 3529, respectively). Geographically weighted regression, however, suggested spatial non-stationarity in both models, indicating disparities in accessibility that vary over space with respect to magnitude and directionality of the relationships (AIC = 2014 and -1241, respectively). The qualitative analysis supported the findings of the local regression, confirming that although there is a geographically inequitable distribution of park space and physical activity sites, it is not globally predicted by race, ethnicity, or socio-economic status. Conclusion The combination of quantitative and qualitative analyses demonstrated the complexity of the issues around racial and ethnic

  6. Quantitative Structure-Cytotoxic Activity Relationship 1-(Benzoyloxy)urea and Its Derivative

    PubMed Central

    Hardjono, Suko; Siswodihardjo, Siswandono; Pramono, Purwanto; Darmanto, Win

    2016-01-01

    Drug development is originally carried out on a trial and error basis and it is cost-prohibitive. To minimize the trial and error risks, drug design is needed. One of the compound development processes to get a new drug is by designing a structure modification of the mother compound whose activities are recognized. A substitution of the mother compounds alters the physicochemical properties: lipophilic, electronic and steric properties. In Indonesia, one of medical treatments to cure cancer is through chemotherapy and hydroxyurea. Some derivatives, phenylthiourea, phenylurea, benzoylurea, thiourea and benzoylphenylurea, have been found to be anticancer drug candidates. To predict the activity of the drug compound before it is synthesized, the in-silico test is required. From the test, Rerank Score which is the energy of interaction between the receptor and the ligand molecule is then obtained. Hydroxyurea derivatives were synthesized by modifying Schotten-Baumann’s method by the addition of benzoyl group and its homologs resulted in the increase of lipophilic, electronic and steric properties, and cytotoxic activity. Synthesized compounds were 1-(benzoyloxy)urea and its derivatives. Structure characterization was obtained by the spectrum of UV, IR, H NMR, C NMR and Mass Spectrometer. Anticancer activity was carried out using MTT method on HeLa cells. The Quantitative Structure-Cytotoxic Activity Relationships of 1-(benzoyloxy)urea compound and its derivatives was calculated using SPSS. The chemical structure was described, namely: ClogP, π, σ, RS, CMR and Es; while, the cytotoxic activity was indicated by log (1 / IC50). The results show that the best equation of Quantitative Structure-Cytotoxic Activity Relationships (QSAR) of 1- (benzoyloxy)urea compound and its derivatives is Log 1/IC50 = - 0.205 (+ 0.068) σ – 0.051 (+ 0.022) Es – 1.911 (+ 0.020) PMID:27222144

  7. Effects of scatter modeling on time-activity curves estimated directly from dynamic SPECT projections

    SciTech Connect

    Reutter, Bryan W.; Gullberg, Grant T.; Huesman, Ronald H.

    2003-10-29

    Quantitative analysis of uptake and washout of cardiac single photon emission computed tomography (SPECT) radiopharmaceuticals has the potential to provide better contrast between healthy and diseased tissue, compared to conventional reconstruction of static images. Previously, we used B-splines to model time-activity curves (TACs) for segmented volumes of interest and developed fast least-squares algorithms to estimate spline TAC coefficients and their statistical uncertainties directly from dynamic SPECT projection data. This previous work incorporated physical effects of attenuation and depth-dependent collimator response. In the present work, we incorporate scatter and use a computer simulation to study how scatter modeling affects directly estimated TACs and subsequent estimates of compartmental model parameters. An idealized single-slice emission phantom was used to simulate a 15 min dynamic {sup 99m}Tc-teboroxime cardiac patient study in which 500,000 events containing scatter were detected from the slice. When scatter was modeled, unweighted least-squares estimates of TACs had root mean square (RMS) error that was less than 0.6% for normal left ventricular myocardium, blood pool, liver, and background tissue volumes and averaged 3% for two small myocardial defects. When scatter was not modeled, RMS error increased to average values of 16% for the four larger volumes and 35% for the small defects. Noise-to-signal ratios (NSRs) for TACs ranged between 1-18% for the larger volumes and averaged 110% for the small defects when scatter was modeled. When scatter was not modeled, NSR improved by average factors of 1.04 for the larger volumes and 1.25 for the small defects, as a result of the better-posed (though more biased) inverse problem. Weighted least-squares estimates of TACs had slightly better NSR and worse RMS error, compared to unweighted least-squares estimates. Compartmental model uptake and washout parameter estimates obtained from the TACs were less

  8. Quantitative and Temporal Requirements Revealed for Zap-70 Catalytic Activity During T Cell Development

    PubMed Central

    Au-Yeung, Byron B.; Melichar, Heather J.; Ross, Jenny O.; Cheng, Debra A.; Zikherman, Julie; Shokat, Kevan M.; Robey, Ellen A.; Weiss, Arthur

    2014-01-01

    The catalytic activity of Zap-70 is crucial for T cell receptor (TCR) signaling, but the quantitative and temporal requirements for its function in thymocyte development are not known. Using a chemical-genetic system to selectively and reversibly inhibit Zap-70 catalytic activity in a model of synchronized thymic selection, we showed that CD4+CD8+ thymocytes integrate multiple, transient, Zap-70-dependent signals over more than 36 h to reach a cumulative threshold for positive selection, whereas one hour of signaling was sufficient for negative selection. Titration of Zap-70 activity resulted in graded reductions in positive and negative selection but did not decrease the cumulative TCR signals integrated by positively selected OT-I cells, revealing heterogeneity, even among CD4+CD8+ thymocytes expressing identical TCRs undergoing positive selection. PMID:24908390

  9. Quantitation of fibroblast activation protein (FAP)-specific protease activity in mouse, baboon and human fluids and organs.

    PubMed

    Keane, Fiona M; Yao, Tsun-Wen; Seelk, Stefanie; Gall, Margaret G; Chowdhury, Sumaiya; Poplawski, Sarah E; Lai, Jack H; Li, Youhua; Wu, Wengen; Farrell, Penny; Vieira de Ribeiro, Ana Julia; Osborne, Brenna; Yu, Denise M T; Seth, Devanshi; Rahman, Khairunnessa; Haber, Paul; Topaloglu, A Kemal; Wang, Chuanmin; Thomson, Sally; Hennessy, Annemarie; Prins, John; Twigg, Stephen M; McLennan, Susan V; McCaughan, Geoffrey W; Bachovchin, William W; Gorrell, Mark D

    2013-01-01

    The protease fibroblast activation protein (FAP) is a specific marker of activated mesenchymal cells in tumour stroma and fibrotic liver. A specific, reliable FAP enzyme assay has been lacking. FAP's unique and restricted cleavage of the post proline bond was exploited to generate a new specific substrate to quantify FAP enzyme activity. This sensitive assay detected no FAP activity in any tissue or fluid of FAP gene knockout mice, thus confirming assay specificity. Circulating FAP activity was ∼20- and 1.3-fold less in baboon than in mouse and human plasma, respectively. Serum and plasma contained comparable FAP activity. In mice, the highest levels of FAP activity were in uterus, pancreas, submaxillary gland and skin, whereas the lowest levels were in brain, prostate, leukocytes and testis. Baboon organs high in FAP activity included skin, epididymis, bladder, colon, adipose tissue, nerve and tongue. FAP activity was greatly elevated in tumours and associated lymph nodes and in fungal-infected skin of unhealthy baboons. FAP activity was 14- to 18-fold greater in cirrhotic than in non-diseased human liver, and circulating FAP activity was almost doubled in alcoholic cirrhosis. Parallel DPP4 measurements concorded with the literature, except for the novel finding of high DPP4 activity in bile. The new FAP enzyme assay is the first to be thoroughly characterised and shows that FAP activity is measurable in most organs and at high levels in some. This new assay is a robust tool for specific quantitation of FAP enzyme activity in both preclinical and clinical samples, particularly liver fibrosis.

  10. Quantitative control of active targeting of nanocarriers to tumor cells through optimization of folate ligand density.

    PubMed

    Tang, Zhaomin; Li, Dan; Sun, Huili; Guo, Xing; Chen, Yuping; Zhou, Shaobing

    2014-09-01

    The active targeting delivery system has been widely studied in cancer therapy by utilizing folate (FA) ligands to generate specific interaction between nanocarriers and folate receptors (FRs) on tumor cell. However, there is little work that has been published to investigate the influence of the definite density of the FA ligands on the active targeting of nanocarriers. In this study, we have combined magnetic-guided iron oxide nanoparticles with FA ligands, adjusted the FA ligand density and then studied the resulting effects on the active targeting ability of this dual-targeting drug delivery system to tumor cells. We have also optimized the FA ligand density of the drug delivery system for their active targeting to FR-overexpressing tumor cells in vitro. Prussian blue staining, semi-thin section of cells observed with transmission electron microscopy (TEM) and inductively coupled plasma-atomic emission spectroscopy (ICP-AES) have shown that the optimal FA density is from 2.3 × 10(18) to 2.5 × 10(18) per gram nanoparticles ((g·NPs)(-1)). We have further tried to qualitatively and quantitatively control the active targeting and delivering of drugs to tumors on 4T1-bearing BALB/c mice. As expected, the in vivo experimental results have also demonstrated that the FA density of the magnetic nanoparticles (MNPs) could be optimized for a more easily binding to tumor cells via the multivalent linkages and more readily internalization through the FR-mediated endocytosis. Our study can provide a strategy to quantitatively control the active targeting of nanocarriers to tumor cells for cancer therapy.

  11. Towards a Quantitative Use of Satellite Remote Sensing in Crop Growth Models for Large Scale Agricultural Production Estimate (Invited)

    NASA Astrophysics Data System (ADS)

    Defourny, P.

    2013-12-01

    such the Green Area Index (GAI), fAPAR and fcover usually retrieved from MODIS, MERIS, SPOT-Vegetation described the quality of the green vegetation development. The GLOBAM (Belgium) and EU FP-7 MOCCCASIN projects (Russia) improved the standard products and were demonstrated over large scale. The GAI retrieved from MODIS time series using a purity index criterion depicted successfully the inter-annual variability. Furthermore, the quantitative assimilation of these GAI time series into a crop growth model improved the yield estimate over years. These results showed that the GAI assimilation works best at the district or provincial level. In the context of the GEO Ag., the Joint Experiment of Crop Assessment and Monitoring (JECAM) was designed to enable the global agricultural monitoring community to compare such methods and results over a variety of regional cropping systems. For a network of test sites around the world, satellite and field measurements are currently collected and will be made available for collaborative effort. This experiment should facilitate international standards for data products and reporting, eventually supporting the development of a global system of systems for agricultural crop assessment and monitoring.

  12. Synthesis and quantitative structure activity relationship (QSAR) of arylidene (benzimidazol-1-yl)acetohydrazones as potential antibacterial agents.

    PubMed

    El-Kilany, Yeldez; Nahas, Nariman M; Al-Ghamdi, Mariam A; Badawy, Mohamed E I; El Ashry, El Sayed H

    2015-01-01

    Ethyl (benzimidazol-1-yl)acetate was subjected to hydrazinolysis with hydrazine hydrate to give (benzimidazol-1-yl)acetohydrazide. The latter was reacted with various aromatic aldehydes to give the respective arylidene (1H-benzimidazol-1-yl)acetohydrazones. Solutions of the prepared hydrazones were found to contain two geometric isomers. Similarly (2-methyl-benzimidazol-1-yl)acetohydrazide was reacted with various aldehydes to give the corresponding hydrazones. The antibacterial activity was evaluated in vitro by minimum inhibitory concentration (MIC) against Agrobacterium tumefaciens (A. tumefaciens), Erwinia carotovora (E. carotovora), Corynebacterium fascians (C. fascians) and Pseudomonas solanacearum (P. solanacearum). MIC result demonstrated that salicylaldehyde(1H-benzimidazol-1-yl)acetohydrazone (4) was the most active compound (MIC = 20, 35, 25 and 30 mg/L against A. tumefaciens, C. fascians, E. carotovora and P. solanacearum, respectively). Quantitative structure activity relationship (QSAR) investigation using Hansch analysis was applied to find out the correlation between antibacterial activity and physicochemical properties. Various physicochemical descriptors and experimentally determined MIC values for different microorganisms were used as independent and dependent variables, respectively. pMICs of the compounds exhibited good correlation (r = 0.983, 0.914, 0.960 and 0.958 for A. tumefaciens, C. fascians, E. carotovora and P. solanacearum, respectively) with the prediction made by the model. QSAR study revealed that the hydrophobic parameter (ClogP), the aqueous solubility (LogS), calculated molar refractivity, topological polar surface area and hydrogen bond acceptor were found to have overall significant correlation with antibacterial activity. The statistical results of training set, correlation coefficient (r and r (2)), the ratio between regression and residual variances (f, Fisher's statistic), the standard error of estimates and

  13. Estimation of genetic parameters and their sampling variances of quantitative traits in the type 2 modified augmented design

    Technology Transfer Automated Retrieval System (TEKTRAN)

    We proposed a method to estimate the error variance among non-replicated genotypes, thus to estimate the genetic parameters by using replicated controls. We derived formulas to estimate sampling variances of the genetic parameters. Computer simulation indicated that the proposed methods of estimatin...

  14. Daphnia and fish toxicity of (benzo)triazoles: validated QSAR models, and interspecies quantitative activity-activity modelling.

    PubMed

    Cassani, Stefano; Kovarich, Simona; Papa, Ester; Roy, Partha Pratim; van der Wal, Leon; Gramatica, Paola

    2013-08-15

    Due to their chemical properties synthetic triazoles and benzo-triazoles ((B)TAZs) are mainly distributed to the water compartments in the environment, and because of their wide use the potential effects on aquatic organisms are cause of concern. Non testing approaches like those based on quantitative structure-activity relationships (QSARs) are valuable tools to maximize the information contained in existing experimental data and predict missing information while minimizing animal testing. In the present study, externally validated QSAR models for the prediction of acute (B)TAZs toxicity in Daphnia magna and Oncorhynchus mykiss have been developed according to the principles for the validation of QSARs and their acceptability for regulatory purposes, proposed by the Organization for Economic Co-operation and Development (OECD). These models are based on theoretical molecular descriptors, and are statistically robust, externally predictive and characterized by a verifiable structural applicability domain. They have been applied to predict acute toxicity for over 300 (B)TAZs without experimental data, many of which are in the pre-registration list of the REACH regulation. Additionally, a model based on quantitative activity-activity relationships (QAAR) has been developed, which allows for interspecies extrapolation from daphnids to fish. The importance of QSAR/QAAR, especially when dealing with specific chemical classes like (B)TAZs, for screening and prioritization of pollutants under REACH, has been highlighted.

  15. Cortical Up State Activity Is Enhanced After Seizures: A Quantitative Analysis

    PubMed Central

    Gerkin, Richard C.; Clem, Roger L.; Shruti, Sonal; Kass, Robert E.; Barth, Alison L.

    2011-01-01

    In the neocortex, neurons participate in epochs of elevated activity, or Up states, during periods of quiescent wakefulness, slow-wave sleep, and general anesthesia. The regulation of firing during and between Up states is of great interest because it can reflect the underlying connectivity and excitability of neurons within the network. Automated analysis of the onset and characteristics of Up state firing across different experiments and conditions requires a robust and accurate method for Up state detection. Using measurements of membrane potential mean and variance calculated from whole-cell recordings of neurons from control and postseizure tissue, the authors have developed such a method. This quantitative and automated method is independent of cell- or condition-dependent variability in underlying noise or tonic firing activity. Using this approach, the authors show that Up state frequency and firing rates are significantly increased in layer 2/3 neocortical neurons 24 hours after chemo-convulsant-induced seizure. Down states in postseizure tissue show greater membrane-potential variance characterized by increased synaptic activity. Previously, the authors have found that postseizure increase in excitability is linked to a gain-of-function in BK channels, and blocking BK channels in vitro and in vivo can decrease excitability and eliminate seizures. Thus, the authors also assessed the effect of BK-channel antagonists on Up state properties in control and postseizure neurons. These data establish a robust and broadly applicable algorithm for Up state detection and analysis, provide a quantitative description of how prior seizures increase spontaneous firing activity in cortical networks, and show how BK-channel antagonists reduce this abnormal activity. PMID:21127407

  16. Toxicity challenges in environmental chemicals: Prediction of human plasma protein binding through quantitative structure-activity relationship (QSAR) models

    EPA Science Inventory

    The present study explores the merit of utilizing available pharmaceutical data to construct a quantitative structure-activity relationship (QSAR) for prediction of the fraction of a chemical unbound to plasma protein (Fub) in environmentally relevant compounds. Independent model...

  17. Application of (13)C ramp CPMAS NMR with phase-adjusted spinning sidebands (PASS) for the quantitative estimation of carbon functional groups in natural organic matter.

    PubMed

    Ikeya, Kosuke; Watanabe, Akira

    2016-01-01

    The composition of carbon (C) functional groups in natural organic matter (NOM), such as dissolved organic matter, soil organic matter, and humic substances, is frequently estimated using solid-state (13)C NMR techniques. A problem associated with quantitative analysis using general cross polarization/magic angle spinning (CPMAS) spectra is the appearance of spinning side bands (SSBs) split from the original center peaks of sp (2) hybridized C species (i.e., aromatic and carbonyl C). Ramp CP/phase-adjusted side band suppressing (PASS) is a pulse sequence that integrates SSBs separately and quantitatively recovers them into their inherent center peaks. In the present study, the applicability of ramp CP/PASS to NOM analysis was compared with direct polarization (DPMAS), another quantitative method but one that requires a long operation time, and/or a ramp CP/total suppression side band (ramp CP/TOSS) technique, a popular but non-quantitative method for deleting SSBs. The test materials were six soil humic acid samples with various known degrees of aromaticity and two fulvic acids. There were no significant differences in the relative abundance of alkyl C, O-alkyl C, and aromatic C between the ramp CP/PASS and DPMAS methods, while the signal intensities corresponding to aromatic C in the ramp CP/TOSS spectra were consistently less than the values obtained in the ramp CP/PASS spectra. These results indicate that ramp CP/PASS can be used to accurately estimate the C composition of NOM samples.

  18. Quantitative perturbation-based analysis of gene expression predicts enhancer activity in early Drosophila embryo

    PubMed Central

    Sayal, Rupinder; Dresch, Jacqueline M; Pushel, Irina; Taylor, Benjamin R; Arnosti, David N

    2016-01-01

    Enhancers constitute one of the major components of regulatory machinery of metazoans. Although several genome-wide studies have focused on finding and locating enhancers in the genomes, the fundamental principles governing their internal architecture and cis-regulatory grammar remain elusive. Here, we describe an extensive, quantitative perturbation analysis targeting the dorsal-ventral patterning gene regulatory network (GRN) controlled by Drosophila NF-κB homolog Dorsal. To understand transcription factor interactions on enhancers, we employed an ensemble of mathematical models, testing effects of cooperativity, repression, and factor potency. Models trained on the dataset correctly predict activity of evolutionarily divergent regulatory regions, providing insights into spatial relationships between repressor and activator binding sites. Importantly, the collective predictions of sets of models were effective at novel enhancer identification and characterization. Our study demonstrates how experimental dataset and modeling can be effectively combined to provide quantitative insights into cis-regulatory information on a genome-wide scale. DOI: http://dx.doi.org/10.7554/eLife.08445.001 PMID:27152947

  19. Polar bear hepatic cytochrome P450: Immunochemical quantitation, EROD/PROD activity and organochlorines

    SciTech Connect

    Letcher, R.J.; Norstrom, R.J. |

    1994-12-31

    Polar bears (Ursus maritimus) are an ubiquitous mammal atop the arctic marine food chain and bioaccumulate lipophilic environmental contaminants. Antibodies prepared against purified rat liver cytochrome P450-1 Al, -1 A2, -2Bl and -3Al enzymes have been found to cross-react with structurally-related orthologues present in the hepatic microsomes of wild polar bears, immunochemically determined levels of P450-1 A and -2B proteins in polar bear liver relative to liver of untreated rats suggested enzyme induction, probably as a result of exposure to xenobiotic contaminants. Optical density quantitation of the most immunochemically responsive isozymes P450-I Al, -IA2 and -2Bi to polygonal rabbit anti-rat P450-IA/IA2 sera and -2BI antibodies in hepatic microsomes of 13 adult male polar bars from the Resolute Bay area of the Canadian Arctic is presented. Correlations with EROD and PROD catalytic activities and levels of organochlorines, such as polychlorinated biphenyls (PCBs), 1,1-dichloro-2,2-bis(4-chlorophenyl)ethene (p,p-DDE) and their methyl sulfone (MeSO2-) metabolites are made to determine if compound-specific enzyme induction linkages exist. Inter-species immunochemical quantitation of isozymic P450 cytochromes can serve as an indicator of exposure to biologically active contaminant.

  20. Development and validation of quantitative structure-activity relationship models for compounds acting on serotoninergic receptors.

    PubMed

    Zydek, Grażyna; Brzezińska, Elżbieta

    2012-01-01

    A quantitative structure-activity relationship (QSAR) study has been made on 20 compounds with serotonin (5-HT) receptor affinity. Thin-layer chromatographic (TLC) data and physicochemical parameters were applied in this study. RP2 TLC 60F(254) plates (silanized) impregnated with solutions of propionic acid, ethylbenzene, 4-ethylphenol, and propionamide (used as analogues of the key receptor amino acids) and their mixtures (denoted as S1-S7 biochromatographic models) were used in two developing phases as a model of drug-5-HT receptor interaction. The semiempirical method AM1 (HyperChem v. 7.0 program) and ACD/Labs v. 8.0 program were employed to calculate a set of physicochemical parameters for the investigated compounds. Correlation and multiple linear regression analysis were used to search for the best QSAR equations. The correlations obtained for the compounds studied represent their interactions with the proposed biochromatographic models. The good multivariate relationships (R(2) = 0.78-0.84) obtained by means of regression analysis can be used for predicting the quantitative effect of biological activity of different compounds with 5-HT receptor affinity. "Leave-one-out" (LOO) and "leave-N-out" (LNO) cross-validation methods were used to judge the predictive power of final regression equations.

  1. Influence of drinking water composition on quantitation and biological activity of dissolved microcystin (cyanotoxin).

    PubMed

    Oliveira, Ana C P; Magalhães, Valéria F; Soares, Raquel M; Azevedo, Sandra M F O

    2005-04-01

    Toxic cyanobacteria in aquatic environments have been implicated in many poisoning incidents of livestock, wildlife, and domestic animals. Microcystins (MCYSTs) in water supplies represent a risk to public health. This work investigated the effect of water composition on the quantitation and biological activity of MCYSTs analyzed by different methods (HPLC, ELISA, and protein phosphatase 1 inhibition assay). Different MCYST concentrations were added to deionized water and quantified, confirming the efficiency of these analytical methods. MCYST concentrations diluted in drinking water had reduced detection by all methods tested. The drinking water used contained a free chlorine concentration of 2.5 mg/L and an Fe concentration of 0.45 mg/L, and the conductivity was 69.8 microS cm(-1), whereas in deionized water, free chlorine and Fe were not detectable, and the conductivity was 1.6 microS cm(-1). Drinking water also interfered with the biological activity of MYCSTs, as these toxins showed reduced protein phosphatase-1 inhibition. A free chlorine concentration of 2.5 mg/L in deionized water was completely effective in preventing any detection of 10 microg/L of added MCYSTs. Fe and Al ions also were very effective in reducing MCYST detection. The chemical composition of drinking water thus affected MCYST detection, indicating a significant reduction in quantitation of this molecule either because of its decomposition or through complexation with metal ions.

  2. Evaluation of a method for activity estimation in Sm-153 EDTMP imaging

    SciTech Connect

    Vanzi, Eleonora; Genovesi, Dario; Di Martino, Fabio

    2009-04-15

    Absolute activity evaluation is fundamental for internal radionuclide dosimetry when patient-specific therapy optimization is wanted. Often, quantification is attempted with 3D SPECT image based (IB) methods, but the true concentration values can be underestimated due to the partial volume effect (PVE). This is especially true when small diffuse lesions are present. In this paper, we describe a 3D region of interest (ROI) based quantification method (LS-ROI), which estimates the ROI concentration values directly from the projection data acquired in the tomographic scan once ROIs have been segmented on a CT and/or a SPECT image. The method, which has inherent PVE correction capabilities, was applied both on simulated and on real phantom data. Simulations reflected the case of a patient with bone metastases treated with {sup 153}Sm-EDTMP: Both the activity in the metastases and the total retention in the skeleton were evaluated. Thirty noisy data sets were produced in order to evaluate the accuracy and precision of the method. The effect of region segmentation errors on estimated concentrations was thoroughly investigated. Real data were acquired on a NEMA phantom, where a cylindrical central region (283 cm{sup 3}) simulated the bone and two spheres (10.3 and 25.5 cm{sup 3}) simulated the metastases. The results obtained with the LS-ROI method were compared with those of a conventional 3D IB method and those of a quantitative conjugate view approach derived from LS-ROI and applied to the anterior and posterior views acquired in the tomographic scan (LS-ROI anterior-posterior: LS-ROI-AP). Simulations showed that when the geometry of regions is known, the LS-ROI method recovered the simulated concentration values within 20%, while the IB method underestimated the concentration in high activity small lesions by as much as 49%. Segmentation errors, up to 44% of the true region volume, produced a higher variation in LS-ROI estimates than in IB ones; however, the overall

  3. Comparison of quantitative k-edge empirical estimators using an energy-resolved photon-counting detector

    NASA Astrophysics Data System (ADS)

    Zimmerman, Kevin C.; Gilat Schmidt, Taly

    2016-03-01

    Using an energy-resolving photon counting detector, the amount of k-edge material in the x-ray path can be estimated using a process known as material decomposition. However, non-ideal effects within the detector make it difficult to accurately perform this decomposition. This work evaluated the k-edge material decomposition accuracy of two empirical estimators. A neural network estimator and a linearized maximum likelihood estimator with error look-up tables (A-table method) were evaluated through simulations and experiments. Each estimator was trained on system-specific calibration data rather than specific modeling of non-ideal detector effects or the x-ray source spectrum. Projections through a step-wedge calibration phantom consisting of different path lengths through PMMA, aluminum, and a k-edge material was used to train the estimators. The estimators were tested by decomposing data acquired through different path lengths of the basis materials. The estimators had similar performance in the chest phantom simulations with gadolinium. They estimated four of the five densities of gadolinium with less than 2mg/mL bias. The neural networks estimates demonstrated lower bias but higher variance than the A-table estimates in the iodine contrast agent simulations. The neural networks had an experimental variance lower than the CRLB indicating it is a biased estimator. In the experimental study, the k-edge material contribution was estimated with less than 14% bias for the neural network estimator and less than 41% bias for the A-table method.

  4. A Rapid and Quantitative Flow Cytometry Method for the Analysis of Membrane Disruptive Antimicrobial Activity

    PubMed Central

    O’Brien-Simpson, Neil M.; Pantarat, Namfon; Attard, Troy J.; Walsh, Katrina A.; Reynolds, Eric C.

    2016-01-01

    We describe a microbial flow cytometry method that quantifies within 3 hours antimicrobial peptide (AMP) activity, termed Minimum Membrane Disruptive Concentration (MDC). Increasing peptide concentration positively correlates with the extent of bacterial membrane disruption and the calculated MDC is equivalent to its MBC. The activity of AMPs representing three different membranolytic modes of action could be determined for a range of Gram positive and negative bacteria, including the ESKAPE pathogens, E. coli and MRSA. By using the MDC50 concentration of the parent AMP, the method provides high-throughput, quantitative screening of AMP analogues. A unique feature of the MDC assay is that it directly measures peptide/bacteria interactions and lysed cell numbers rather than bacteria survival as with MIC and MBC assays. With the threat of multi-drug resistant bacteria, this high-throughput MDC assay has the potential to aid in the development of novel antimicrobials that target bacteria with improved efficacy. PMID:26986223

  5. Quantitative structure-activity relationships of selective antagonists of glucagon receptor using QuaSAR descriptors.

    PubMed

    Manoj Kumar, Palanivelu; Karthikeyan, Chandrabose; Hari Narayana Moorthy, Narayana Subbiah; Trivedi, Piyush

    2006-11-01

    In the present paper, quantitative structure activity relationship (QSAR) approach was applied to understand the affinity and selectivity of a novel series of triaryl imidazole derivatives towards glucagon receptor. Statistically significant and highly predictive QSARs were derived for glucagon receptor inhibition by triaryl imidazoles using QuaSAR descriptors of molecular operating environment (MOE) employing computer-assisted multiple regression procedure. The generated QSAR models revealed that factors related to hydrophobicity, molecular shape and geometry predominantly influences glucagon receptor binding affinity of the triaryl imidazoles indicating the relevance of shape specific steric interactions between the molecule and the receptor. Further, QSAR models formulated for selective inhibition of glucagon receptor over p38 mitogen activated protein (MAP) kinase of the compounds in the series highlights that the same structural features, which influence the glucagon receptor affinity, also contribute to their selective inhibition.

  6. Introduction to the Symposium "Leading Students and Faculty to Quantitative Biology through Active Learning".

    PubMed

    Waldrop, Lindsay D; Miller, Laura A

    2015-11-01

    The broad aim of this symposium and set of associated papers is to motivate the use of inquiry-based, active-learning teaching techniques in undergraduate quantitative biology courses. Practical information, resources, and ready-to-use classroom exercises relevant to physicists, mathematicians, biologists, and engineers are presented. These resources can be used to address the lack of preparation of college students in STEM fields entering the workforce by providing experience working on interdisciplinary and multidisciplinary problems in mathematical biology in a group setting. Such approaches can also indirectly help attract and retain under-represented students who benefit the most from "non-traditional" learning styles and strategies, including inquiry-based, collaborative, and active learning.

  7. Identifying hazard parameter to develop quantitative and dynamic hazard map of an active volcano in Indonesia

    NASA Astrophysics Data System (ADS)

    Suminar, Wulan; Saepuloh, Asep; Meilano, Irwan

    2016-05-01

    Analysis of hazard assessment to active volcanoes is crucial for risk management. The hazard map of volcano provides information to decision makers and communities before, during, and after volcanic crisis. The rapid and accurate hazard assessment, especially to an active volcano is necessary to be developed for better mitigation on the time of volcanic crises in Indonesia. In this paper, we identified the hazard parameters to develop quantitative and dynamic hazard map of an active volcano. The Guntur volcano in Garut Region, West Java, Indonesia was selected as study area due population are resided adjacent to active volcanoes. The development of infrastructures, especially related to tourism at the eastern flank from the Summit, are growing rapidly. The remote sensing and field investigation approaches were used to obtain hazard parameters spatially. We developed a quantitative and dynamic algorithm to map spatially hazard potential of volcano based on index overlay technique. There were identified five volcano hazard parameters based on Landsat 8 and ASTER imageries: volcanic products including pyroclastic fallout, pyroclastic flows, lava and lahar, slope topography, surface brightness temperature, and vegetation density. Following this proposed technique, the hazard parameters were extracted, indexed, and calculated to produce spatial hazard values at and around Guntur Volcano. Based on this method, the hazard potential of low vegetation density is higher than high vegetation density. Furthermore, the slope topography, surface brightness temperature, and fragmental volcanic product such as pyroclastics influenced to the spatial hazard value significantly. Further study to this proposed approach will be aimed for effective and efficient analyses of volcano risk assessment.

  8. Modelling Activities In Kinematics Understanding quantitative relations with the contribution of qualitative reasoning

    NASA Astrophysics Data System (ADS)

    Orfanos, Stelios

    2010-01-01

    In Greek traditional teaching a lot of significant concepts are introduced with a sequence that does not provide the students with all the necessary information required to comprehend. We consider that understanding concepts and the relations among them is greatly facilitated by the use of modelling tools, taking into account that the modelling process forces students to change their vague, imprecise ideas into explicit causal relationships. It is not uncommon to find students who are able to solve problems by using complicated relations without getting a qualitative and in-depth grip on them. Researchers have already shown that students often have a formal mathematical and physical knowledge without a qualitative understanding of basic concepts and relations." The aim of this communication is to present some of the results of our investigation into modelling activities related to kinematical concepts. For this purpose, we have used ModellingSpace, an environment that was especially designed to allow students from eleven to seventeen years old to express their ideas and gradually develop them. The ModellingSpace enables students to build their own models and offers the choice of observing directly simulations of real objects and/or all the other alternative forms of representations (tables of values, graphic representations and bar-charts). The students -in order to answer the questions- formulate hypotheses, they create models, they compare their hypotheses with the representations of their models and they modify or create other models when their hypotheses did not agree with the representations. In traditional ways of teaching, students are educated to utilize formulas as the most important strategy. Several times the students recall formulas in order to utilize them, without getting an in-depth understanding on them. Students commonly use the quantitative type of reasoning, since it is primarily used in teaching, although it may not be fully understood by them

  9. Quantitative structure-activity relationship study using refractotopological state atom index on some neonicotinoid insecticides.

    PubMed

    Debnath, Bikash; Gayen, Shovanlal; Basu, Anindya; Ghosh, Balaram; Srikanth, Kolluru; Jha, Tarun

    2004-12-01

    Importance of atom-level topological descriptors like electrotopological state atom (E-state) index in QSAR study is increasing. These descriptors help to relate structure and activity at atomic/fragmental level. In view of the earlier success of E-state index on some azidopyridinyl neonicotinoid insecticides, a relatively new atom-level topological descriptor; refractotopological state atom (R-state) index was used in this work. This was used to identify the important atoms/fragments related to dispersive/van der Waals interactions of neonicotinoids with the nicotinic acetylcholine receptor (nAChR). This study showed the structural requirements for the mammal alpha(4)beta(2) and Drosophila nAChR agonistic activity. It also revealed that substituted imine, nitromethylene at X-position were selective to the insecticidal activity. Azido substitution at pyridine ring of neonicotinoids disfavored the binding with the receptors. This study confirmed the validity of the R-state index as a new tool for quantitative structure-activity relationships. It has the ability to find out the required structural features as well as to predict the activity of the neonicotinoids.

  10. Application of quantitative structure activity relationship (QSAR) models to predict ozone toxicity in the lung.

    PubMed

    Kafoury, Ramzi M; Huang, Ming-Ju

    2005-08-01

    The sequence of events leading to ozone-induced airway inflammation is not well known. To elucidate the molecular and cellular events underlying ozone toxicity in the lung, we hypothesized that lipid ozonation products (LOPs) generated by the reaction of ozone with unsaturated fatty acids in the epithelial lining fluid and cell membranes play a key role in mediating ozone-induced airway inflammation. To test our hypothesis, we ozonized 1-palmitoyl-2-oleoyl-sn-glycero-3-phosphatidylcholine (POPC) and generated LOPs. Confluent human bronchial epithelial cells were exposed to the derivatives of ozonized POPC-9-oxononanoyl, 9-hydroxy-9-hydroperoxynonanoyl, and 8-(5-octyl-1,2,4-trioxolan-3-yl-)octanoyl-at a concentration of 10 muM, and the activity of phospholipases A2 (PLA2), C (PLC), and D (PLD) was measured (1, 0.5, and 1 h, respectively). Quantitative structure-activity relationship (QSAR) models were utilized to predict the biological activity of LOPs in airway epithelial cells. The QSAR results showed a strong correlation between experimental and computed activity (r = 0.97, 0.98, 0.99, for PLA2, PLC, and PLD, respectively). The results indicate that QSAR models can be utilized to predict the biological activity of the various ozone-derived LOP species in the lung.

  11. Docking and quantitative structure-activity relationship of oxadiazole derivates as inhibitors of GSK3β.

    PubMed

    Quesada-Romero, Luisa; Caballero, Julio

    2014-02-01

    The binding modes of 42 oxadiazole derivates inside glycogen synthase kinase 3 beta (GSK3β were determined using docking experiments; thus, the preferred active conformations of these inhibitors are proposed. We found that these compounds adopt a scorpion-shaped conformation and they accept a hydrogen bond (HB) from the residue Val135 of the GSK3β ATP-binding site hinge region. In addition, quantitative structure-activity relationship (QSAR) models were constructed to explain the trend of the GSK3β inhibitory activities for the studied compounds. In a first approach, three-dimensional (3D) vectors were calculated using docking conformations and, by using multiple-linear regression, we assessed that GETAWAY vectors were able to describe the reported biological activities. In other QSAR approach, SMILES-based optimal descriptors were calculated. The best model included three-SMILES elements SSSβ leading to the identification of key molecular features that contribute to a high GSK3β inhibitory activity.

  12. Quantitative Estimation of the Amount of Fibrosis in the Rat Liver Using Fractal Dimension of the Shape of Power Spectrum

    NASA Astrophysics Data System (ADS)

    Kikuchi, Tsuneo; Nakazawa, Toshihiro; Furukawa, Tetsuo; Higuchi, Toshiyuki; Maruyama, Yukio; Sato, Sojun

    1995-05-01

    This paper describes the quantitative measurement of the amount of fibrosis in the rat liver using the fractal dimension of the shape of power spectrum. The shape of the power spectrum of the scattered echo from biotissues is strongly affected by its internal structure. The fractal dimension, which is one of the important parameters of the fractal theory, is useful to express the complexity of shape of figures such as the power spectrum. From in vitro experiments using rat liver, it was found that this method can be used to quantitatively measure the amount of fibrosis in the liver, and has the possibility for use in the diagnosis of human liver cirrhosis.

  13. Estimation of the genome sizes of the chigger mites Leptotrombidium pallidum and Leptotrombidium scutellare based on quantitative PCR and k-mer analysis

    PubMed Central

    2014-01-01

    Background Leptotrombidium pallidum and Leptotrombidium scutellare are the major vector mites for Orientia tsutsugamushi, the causative agent of scrub typhus. Before these organisms can be subjected to whole-genome sequencing, it is necessary to estimate their genome sizes to obtain basic information for establishing the strategies that should be used for genome sequencing and assembly. Method The genome sizes of L. pallidum and L. scutellare were estimated by a method based on quantitative real-time PCR. In addition, a k-mer analysis of the whole-genome sequences obtained through Illumina sequencing was conducted to verify the mutual compatibility and reliability of the results. Results The genome sizes estimated using qPCR were 191 ± 7 Mb for L. pallidum and 262 ± 13 Mb for L. scutellare. The k-mer analysis-based genome lengths were estimated to be 175 Mb for L. pallidum and 286 Mb for L. scutellare. The estimates from these two independent methods were mutually complementary and within a similar range to those of other Acariform mites. Conclusions The estimation method based on qPCR appears to be a useful alternative when the standard methods, such as flow cytometry, are impractical. The relatively small estimated genome sizes should facilitate whole-genome analysis, which could contribute to our understanding of Arachnida genome evolution and provide key information for scrub typhus prevention and mite vector competence. PMID:24947244

  14. Identification of hematomas in mild traumatic brain injury using an index of quantitative brain electrical activity.

    PubMed

    Prichep, Leslie S; Naunheim, Rosanne; Bazarian, Jeffrey; Mould, W Andrew; Hanley, Daniel

    2015-01-01

    Rapid identification of traumatic intracranial hematomas following closed head injury represents a significant health care need because of the potentially life-threatening risk they present. This study demonstrates the clinical utility of an index of brain electrical activity used to identify intracranial hematomas in traumatic brain injury (TBI) presenting to the emergency department (ED). Brain electrical activity was recorded from a limited montage located on the forehead of 394 closed head injured patients who were referred for CT scans as part of their standard ED assessment. A total of 116 of these patients were found to be CT positive (CT+), of which 46 patients with traumatic intracranial hematomas (CT+) were identified for study. A total of 278 patients were found to be CT negative (CT-) and were used as controls. CT scans were subjected to quantitative measurements of volume of blood and distance of bleed from recording electrodes by blinded independent experts, implementing a validated method for hematoma measurement. Using an algorithm based on brain electrical activity developed on a large independent cohort of TBI patients and controls (TBI-Index), patients were classified as either positive or negative for structural brain injury. Sensitivity to hematomas was found to be 95.7% (95% CI = 85.2, 99.5), specificity was 43.9% (95% CI = 38.0, 49.9). There was no significant relationship between the TBI-Index and distance of the bleed from recording sites (F = 0.044, p = 0.833), or volume of blood measured F = 0.179, p = 0.674). Results of this study are a validation and extension of previously published retrospective findings in an independent population, and provide evidence that a TBI-Index for structural brain injury is a highly sensitive measure for the detection of potentially life-threatening traumatic intracranial hematomas, and could contribute to the rapid, quantitative evaluation and treatment of such patients.

  15. An Improved Flow Cytometry Method For Precise Quantitation Of Natural-Killer Cell Activity

    NASA Technical Reports Server (NTRS)

    Crucian, Brian; Nehlsen-Cannarella, Sandra; Sams, Clarence

    2006-01-01

    The ability to assess NK cell cytotoxicity using flow cytometry has been previously described and can serve as a powerful tool to evaluate effector immune function in the clinical setting. Previous methods used membrane permeable dyes to identify target cells. The use of these dyes requires great care to achieve optimal staining and results in a broad spectral emission that can make multicolor cytometry difficult. Previous methods have also used negative staining (the elimination of target cells) to identify effector cells. This makes a precise quantitation of effector NK cells impossible due to the interfering presence of T and B lymphocytes, and the data highly subjective to the variable levels of NK cells normally found in human peripheral blood. In this study an improved version of the standard flow cytometry assay for NK activity is described that has several advantages of previous methods. Fluorescent antibody staining (CD45FITC) is used to positively identify target cells in place of membranepermeable dyes. Fluorescent antibody staining of target cells is less labor intensive and more easily reproducible than membrane dyes. NK cells (true effector lymphocytes) are also positively identified by fluorescent antibody staining (CD56PE) allowing a simultaneous absolute count assessment of both NK cells and target cells. Dead cells are identified by membrane disruption using the DNA intercalating dye PI. Using this method, an exact NK:target ratio may be determined for each assessment, including quantitation of NK target complexes. Backimmunoscatter gating may be used to track live vs. dead Target cells via scatter properties. If desired, NK activity may then be normalized to standardized ratios for clinical comparisons between patients, making the determination of PBMC counts or NK cell percentages prior to testing unnecessary. This method provides an exact cytometric determination of NK activity that highly reproducible and may be suitable for routine use in the

  16. A simplified method for quantitative assessment of the relative health and safety risk of environmental management activities

    SciTech Connect

    Eide, S.A.; Smith, T.H.; Peatross, R.G.; Stepan, I.E.

    1996-09-01

    This report presents a simplified method to assess the health and safety risk of Environmental Management activities of the US Department of Energy (DOE). The method applies to all types of Environmental Management activities including waste management, environmental restoration, and decontamination and decommissioning. The method is particularly useful for planning or tradeoff studies involving multiple conceptual options because it combines rapid evaluation with a quantitative approach. The method is also potentially applicable to risk assessments of activities other than DOE Environmental Management activities if rapid quantitative results are desired.

  17. Identification and quantitation of extractables from cellulose acetate butyrate (CAB) and estimation of their in vivo exposure levels.

    PubMed

    Ma, Decheng; Wasylaschuk, Walter R; Beasley, Christopher; Zhao, Zhongxi Zack; Harmon, Paul A; Ballard, John M; Pitzenberger, Steven M; Varga, Sandor L; Reed, Robert A

    2004-06-29

    The purpose of this study was to qualitatively and quantitatively determine potential cellulose acetate butyrate (CAB) extractables in a way to meaningfully predict the in vivo exposure resulting from clinical administration. Extractions of CAB-381-20 were performed in several solvent systems, consistently resulting in the detection of three extractables. The extractables have been identified as acetic acid, butyric acid, and E-2-ethyl-2-hexenoic acid (E-EHA) by LC/UV, LC/MS and NMR. Extraction studies of CAB powders in acetonitrile/phosphate buffer demonstrated quantitative extraction in 1 h for acetic acid (approximately 150 microg/g), butyric acid (approximately 200 microg/g), and EHA (approximately 20 microg/g). Subsequently, extraction studies for CAB powders and coated tablets in USP simulated gastric and intestinal fluids were performed to evaluate potential in vivo exposure. Similarly, acetic and butyric acids were quantitatively extracted from CAB-381-20 powder after 24 h exposure in both USP simulated fluids. The amounts of EHA extracted from CAB powder after 24 h were determined to be 2 and 16 microg/g in USP simulated gastric and intestinal fluids, respectively. After 24 h exposure in USP simulated fluids, the maximum amount of EHA extracted corresponds to < 0.3 microg of EHA per tablet. Pepsin and pancreatin in USP simulated fluids had no effect on EHA extraction and quantitation.

  18. Dissecting eukaryotic cells by coherent phase microscopy: quantitative analysis of quiescent and activated T lymphocytes

    NASA Astrophysics Data System (ADS)

    Tychinsky, Vladimir P.; Kretushev, Alexander V.; Vyshenskaya, Tatiana V.; Shtil, Alexander A.

    2012-07-01

    We present a concept for quantitative characterization of a functional state of an individual eukaryotic cell based on interference imaging. The informative parameters of the phase images of quiescent and mitogen-activated T lymphocytes included the phase thickness, phase volume, the area, and the size of organelles. These parameters were obtained without a special hypothesis about cell structure. Combinations of these parameters generated a ``phase portrait'' of the cell. A simplified spherical multilayer optic model of a T lymphocyte was used to calculate the refractivity profile, to identify structural elements of the image with the organelles, and to interpret the parameters of the phase portrait. The values of phase image parameters underwent characteristic changes in the course of mitogenic stimulation of T cells; thereby, the functional state of individual cells can be described using these parameters. Because the values of the components of the phase portrait are measured in absolute units, it is possible to compare the parameters of images obtained with different interference microscopes. Thus, the analysis of phase portraits provides a new and perspective approach for quantitative, real-time analysis of subcellular structure and physiologic state of an individual cell.

  19. A quantitative speciation model for the adsorption of organic pollutants on activated carbon.

    PubMed

    Grivé, M; García, D; Domènech, C; Richard, L; Rojo, I; Martínez, X; Rovira, M

    2013-01-01

    Granular activated carbon (GAC) is commonly used as adsorbent in water treatment plants given its high capacity for retaining organic pollutants in aqueous phase. The current knowledge on GAC behaviour is essentially empirical, and no quantitative description of the chemical relationships between GAC surface groups and pollutants has been proposed. In this paper, we describe a quantitative model for the adsorption of atrazine onto GAC surface. The model is based on results of potentiometric titrations and three types of adsorption experiments which have been carried out in order to determine the nature and distribution of the functional groups on the GAC surface, and evaluate the adsorption characteristics of GAC towards atrazine. Potentiometric titrations have indicated the existence of at least two different families of chemical groups on the GAC surface, including phenolic- and benzoic-type surface groups. Adsorption experiments with atrazine have been satisfactorily modelled with the geochemical code PhreeqC, assuming that atrazine is sorbed onto the GAC surface in equilibrium (log Ks = 5.1 ± 0.5). Independent thermodynamic calculations suggest a possible adsorption of atrazine on a benzoic derivative. The present work opens a new approach for improving the adsorption capabilities of GAC towards organic pollutants by modifying its chemical properties.

  20. Quantitative structure-activity relationships of imidazole-containing farnesyltransferase inhibitors using different chemometric methods.

    PubMed

    Shayanfar, Ali; Ghasemi, Saeed; Soltani, Somaieh; Asadpour-Zeynali, Karim; Doerksen, Robert J; Jouyban, Abolghasem

    2013-05-01

    Farnesyltranseferase inhibitors (FTIs) are one of the most promising classes of anticancer agents, but though some compounds in this category are in clinical trials there are no marketed drugs in this class yet. Quantitative structure activity relationship (QSAR) models can be used for predicting the activity of FTI candidates in early stages of drug discovery. In this study 192 imidazole-containing FTIs were obtained from the literature, structures of the molecules were optimized using Hyperchem software, and molecular descriptors were calculated using Dragon software. The most suitable descriptors were selected using genetic algorithms-partial least squares (GA-PLS) and stepwise regression, and indicated that the volume, shape and polarity of the FTIs are important for their activities. 2D-QSAR models were prepared using both linear methods, i.e., multiple linear regression (MLR), and non-linear methods, i.e., artificial neural networks (ANN) and support vector machines (SVM). The proposed QSAR models were validated using internal and external validation methods. The results show that the proposed 2D-QSAR models are valid and that they can be applied to predict the activities of imidazole-containing FTIs. The prediction capability of the 2D-QSAR (linear and non-linear) models is comparable to and somewhat better than that of previous 3D-QSAR models and the non-linear models are more accurate than the linear models.

  1. Technology Efficacy in Active Prosthetic Knees for Transfemoral Amputees: A Quantitative Evaluation

    PubMed Central

    El-Sayed, Amr M.; Abu Osman, Noor Azuan

    2014-01-01

    Several studies have presented technological ensembles of active knee systems for transfemoral prosthesis. Other studies have examined the amputees' gait performance while wearing a specific active prosthesis. This paper combined both insights, that is, a technical examination of the components used, with an evaluation of how these improved the gait of respective users. This study aims to offer a quantitative understanding of the potential enhancement derived from strategic integration of core elements in developing an effective device. The study systematically discussed the current technology in active transfemoral prosthesis with respect to its functional walking performance amongst above-knee amputee users, to evaluate the system's efficacy in producing close-to-normal user performance. The performances of its actuator, sensory system, and control technique that are incorporated in each reported system were evaluated separately and numerical comparisons were conducted based on the percentage of amputees' gait deviation from normal gait profile points. The results identified particular components that contributed closest to normal gait parameters. However, the conclusion is limitedly extendable due to the small number of studies. Thus, more clinical validation of the active prosthetic knee technology is needed to better understand the extent of contribution of each component to the most functional development. PMID:25110727

  2. Monocular distance estimation from optic flow during active landing maneuvers.

    PubMed

    van Breugel, Floris; Morgansen, Kristi; Dickinson, Michael H

    2014-06-01

    Vision is arguably the most widely used sensor for position and velocity estimation in animals, and it is increasingly used in robotic systems as well. Many animals use stereopsis and object recognition in order to make a true estimate of distance. For a tiny insect such as a fruit fly or honeybee, however, these methods fall short. Instead, an insect must rely on calculations of optic flow, which can provide a measure of the ratio of velocity to distance, but not either parameter independently. Nevertheless, flies and other insects are adept at landing on a variety of substrates, a behavior that inherently requires some form of distance estimation in order to trigger distance-appropriate motor actions such as deceleration or leg extension. Previous studies have shown that these behaviors are indeed under visual control, raising the question: how does an insect estimate distance solely using optic flow? In this paper we use a nonlinear control theoretic approach to propose a solution for this problem. Our algorithm takes advantage of visually controlled landing trajectories that have been observed in flies and honeybees. Finally, we implement our algorithm, which we term dynamic peering, using a camera mounted to a linear stage to demonstrate its real-world feasibility.

  3. Quantitative structure property relationships for the adsorption of pharmaceuticals onto activated carbon.

    PubMed

    Dickenson, E R V; Drewes, J E

    2010-01-01

    Isotherms were determined for the adsorption of five pharmaceutical residues, primidone, carbamazepine, ibuprofen, naproxen and diclofenac, to Calgon Filtrasorb 300 powdered activated carbon (PAC). The sorption behavior was examined in ultra-pure and wastewater effluent organic matter (EfOM) matrices, where more sorption was observed in the ultra-pure water for PAC doses greater than 10 mg/L suggesting the presence of EfOM hinders the sorption of the pharmaceuticals to the PAC. Adsorption behaviors were described by the Freundlich isotherm model. Quantitative structure property relationships (QSPRs) in the form of polyparameter linear solvation energy relationships were developed for simulating the Freundlich adsorption capacity in both ultra-pure and EfOM matrices. The significant 3D-based descriptors for the QSPRs were the molar volume, polarizability and hydrogen-bond donor parameters.

  4. Quantitative Structure‐activity Relationship (QSAR) Models for Docking Score Correction

    PubMed Central

    Yamasaki, Satoshi; Yasumatsu, Isao; Takeuchi, Koh; Kurosawa, Takashi; Nakamura, Haruki

    2016-01-01

    Abstract In order to improve docking score correction, we developed several structure‐based quantitative structure activity relationship (QSAR) models by protein‐drug docking simulations and applied these models to public affinity data. The prediction models used descriptor‐based regression, and the compound descriptor was a set of docking scores against multiple (∼600) proteins including nontargets. The binding free energy that corresponded to the docking score was approximated by a weighted average of docking scores for multiple proteins, and we tried linear, weighted linear and polynomial regression models considering the compound similarities. In addition, we tried a combination of these regression models for individual data sets such as IC50, Ki, and %inhibition values. The cross‐validation results showed that the weighted linear model was more accurate than the simple linear regression model. Thus, the QSAR approaches based on the affinity data of public databases should improve docking scores. PMID:28001004

  5. A descriptor of amino acids: SVRG and its application to peptide quantitative structure-activity relationship.

    PubMed

    Tong, J; Che, T; Li, Y; Wang, P; Xu, X; Chen, Y

    2011-01-01

    In this work, a descriptor, SVRG (principal component scores vector of radial distribution function descriptors and geometrical descriptors), was derived from principal component analysis (PCA) of a matrix of two structural variables of coded amino acids, including radial distribution function index (RDF) and geometrical index. SVRG scales were then applied in three panels of peptide quantitative structure-activity relationships (QSARs) which were modelled by partial least squares regression (PLS). The obtained models with the correlation coefficient (R²(cum)), cross-validation correlation coefficient (Q²(LOO)) were 0.910 and 0.863 for 48 bitter-tasting dipeptides; 0.968 and 0.931 for 21 oxytocin analogues; and 0.992 and 0.954 for 20 thromboplastin inhibitors. Satisfactory results showed that SVRG contained much chemical information relating to bioactivities. The approach may be a useful structural expression methodology for studies on peptide QSAR.

  6. In vivo toxicity of nitroaromatics: A comprehensive quantitative structure-activity relationship study.

    PubMed

    Gooch, Aminah; Sizochenko, Natalia; Rasulev, Bakhtiyor; Gorb, Leonid; Leszczynski, Jerzy

    2017-02-07

    The toxicity data of 90 nitroaromatic compounds related to their 50% lethal dose concentration for rats (LD50) were analyzed to develop quantitative structure-activity relationship (QSAR) models. Quantum-chemically calculated descriptors together with molecular descriptors generated by DRAGON, PaDEL, and HiT-QSAR software were utilized to build QSAR models. Quality and validity of the models were determined by internal and external validation techniques. The results show that the toxicity of nitroaromatic compounds depends on various factors, such as the number of nitro-groups, the topological state, and the presence of certain structural fragments. The developed models based on the largest (to date) dataset of nitroaromatics in vivo toxicity showed a good predictive ability. The results provide important input that could be applied in a preliminary assessment of nitroaromatic compounds' toxicity to mammals. Environ Toxicol Chem 2017;9999:1-7. © 2017 SETAC.

  7. Quantitative super-resolution imaging of Bruchpilot distinguishes active zone states

    NASA Astrophysics Data System (ADS)

    Ehmann, Nadine; van de Linde, Sebastian; Alon, Amit; Ljaschenko, Dmitrij; Keung, Xi Zhen; Holm, Thorge; Rings, Annika; Diantonio, Aaron; Hallermann, Stefan; Ashery, Uri; Heckmann, Manfred; Sauer, Markus; Kittel, Robert J.

    2014-08-01

    The precise molecular architecture of synaptic active zones (AZs) gives rise to different structural and functional AZ states that fundamentally shape chemical neurotransmission. However, elucidating the nanoscopic protein arrangement at AZs is impeded by the diffraction-limited resolution of conventional light microscopy. Here we introduce new approaches to quantify endogenous protein organization at single-molecule resolution in situ with super-resolution imaging by direct stochastic optical reconstruction microscopy (dSTORM). Focusing on the Drosophila neuromuscular junction (NMJ), we find that the AZ cytomatrix (CAZ) is composed of units containing ~137 Bruchpilot (Brp) proteins, three quarters of which are organized into about 15 heptameric clusters. We test for a quantitative relationship between CAZ ultrastructure and neurotransmitter release properties by engaging Drosophila mutants and electrophysiology. Our results indicate that the precise nanoscopic organization of Brp distinguishes different physiological AZ states and link functional diversification to a heretofore unrecognized neuronal gradient of the CAZ ultrastructure.

  8. Quantitative estimation of bioclimatic parameters from presence/absence vegetation data in North America by the modern analog technique

    USGS Publications Warehouse

    Thompson, R.S.; Anderson, K.H.; Bartlein, P.J.

    2008-01-01

    The method of modern analogs is widely used to obtain estimates of past climatic conditions from paleobiological assemblages, and despite its frequent use, this method involved so-far untested assumptions. We applied four analog approaches to a continental-scale set of bioclimatic and plant-distribution presence/absence data for North America to assess how well this method works under near-optimal modern conditions. For each point on the grid, we calculated the similarity between its vegetation assemblage and those of all other points on the grid (excluding nearby points). The climate of the points with the most similar vegetation was used to estimate the climate at the target grid point. Estimates based the use of the Jaccard similarity coefficient had smaller errors than those based on the use of a new similarity coefficient, although the latter may be more robust because it does not assume that the "fossil" assemblage is complete. The results of these analyses indicate that presence/absence vegetation assemblages provide a valid basis for estimating bioclimates on the continental scale. However, the accuracy of the estimates is strongly tied to the number of species in the target assemblage, and the analog method is necessarily constrained to produce estimates that fall within the range of observed values. We applied the four modern analog approaches and the mutual overlap (or "mutual climatic range") method to estimate bioclimatic conditions represented by the plant macrofossil assemblage from a packrat midden of Last Glacial Maximum age from southern Nevada. In general, the estimation approaches produced similar results in regard to moisture conditions, but there was a greater range of estimates for growing-degree days. Despite its limitations, the modern analog technique can provide paleoclimatic reconstructions that serve as the starting point to the interpretation of past climatic conditions.

  9. Quantitative Single-Embryo Profile of Drosophila Genome Activation and the Dorsal-Ventral Patterning Network.

    PubMed

    Sandler, Jeremy E; Stathopoulos, Angelike

    2016-04-01

    During embryonic development of Drosophila melanogaster, the maternal-to-zygotic transition (MZT) marks a significant and rapid turning point when zygotic transcription begins and control of development is transferred from maternally deposited transcripts. Characterizing the sequential activation of the genome during the MZT requires precise timing and a sensitive assay to measure changes in expression. We utilized the NanoString nCounter instrument, which directly counts messenger RNA transcripts without reverse transcription or amplification, to study >70 genes expressed along the dorsal-ventral (DV) axis of early Drosophila embryos, dividing the MZT into 10 time points. Transcripts were quantified for every gene studied at all time points, providing the first dataset of absolute numbers of transcripts during Drosophila development. We found that gene expression changes quickly during the MZT, with early nuclear cycle 14 (NC14) the most dynamic time for the embryo. twist is one of the most abundant genes in the entire embryo and we use mutants to quantitatively demonstrate how it cooperates with Dorsal to activate transcription and is responsible for some of the rapid changes in transcription observed during early NC14. We also uncovered elements within the gene regulatory network that maintain precise transcript levels for sets of genes that are spatiotemporally cotranscribed within the presumptive mesoderm or dorsal ectoderm. Using these new data, we show that a fine-scale, quantitative analysis of temporal gene expression can provide new insights into developmental biology by uncovering trends in gene networks, including coregulation of target genes and specific temporal input by transcription factors.

  10. Quantitative detection of powdered activated carbon in wastewater treatment plant effluent by thermogravimetric analysis (TGA).

    PubMed

    Krahnstöver, Therese; Plattner, Julia; Wintgens, Thomas

    2016-09-15

    For the elimination of potentially harmful micropollutants, powdered activated carbon (PAC) adsorption is applied in many wastewater treatment plants (WWTP). This holds the risk of PAC leakage into the WWTP effluent and desorption of contaminants into natural water bodies. In order to assess a potential PAC leakage, PAC concentrations below several mg/L have to be detected in the WWTP effluent. None of the methods that are used for water analysis today are able to differentiate between activated carbon and solid background matrix. Thus, a selective, quantitative and easily applicable method is still needed for the detection of PAC residues in wastewater. In the present study, a method was developed to quantitatively measure the PAC content in wastewater by using filtration and thermogravimetric analysis (TGA), which is a well-established technique for the distinction between different solid materials. For the sample filtration, quartz filters with a temperature stability up to 950 °C were used. This allowed for sensitive and well reproducible measurements, as the TGA was not affected by the presence of the filter. The sample's mass fractions were calculated by integrating the mass decrease rate obtained by TGA in specific, clearly identifiable peak areas. A two-step TGA heating method consisting of N2 and O2 atmospheres led to a good differentiation between PAC and biological background matrix, thanks to the reduction of peak overlapping. A linear correlation was found between a sample's PAC content and the corresponding peak areas under N2 and O2, the sample volume and the solid mass separated by filtration. Based on these findings, various wastewater samples from different WWTPs were then analyzed by TGA with regard to their PAC content. It was found that, compared to alternative techniques such as measurement of turbidity or total suspended solids, the newly developed TGA method allows for a quantitative and selective detection of PAC concentrations down to 0

  11. A rapid quantitative assay for the detection of mammalian heparanase activity.

    PubMed Central

    Freeman, C; Parish, C R

    1997-01-01

    Heparan sulphate (HS) is an important component of the extracellular matrix and the vasculature basal laminar which functions as a barrier to the extravasation of metastatic and inflammatory cells. Cleavage of HS by endoglycosidase or heparanase activity produced by invading cells may assist in the disassembly of the extracellular matrix and basal laminar, and thereby facilitate cell migration. Heparanase activity has previously been shown to be related to the metastatic potential of murine and human melanoma cell lines [Nakajima, Irimura and Nicolson (1988) J. Cell. Biochem. 36, 157-167]. To determine heparanase activity, porcine mucosal HS was partially de-N-acetylated and re-N-acetylated with [3H]acetic anhydride to yield a radiolabelled substrate. This procedure prevented the masking of, or possible formation of, new heparanase-sensitive cleavage sites as has been observed with previous methods of radiolabelling. Heparanase activity in a variety of tissues and cell homogenates including human platelets, colonic carcinoma cells, umbilical vein endothelial cells and rat mammary adenocarcinoma cells (both metastatic and non-metastatic variants) and liver homogenates all degraded the substrate in a stepwise fashion from 18.5 to approximately 13, 8 and finally to 4.5 kDa fragments, as assessed by gel-filtration analysis, confirming the substrate as suitable for the detection of heparanase activity present in a variety of cells and tissues. A rapid quantitative assay was developed with the HS substrate using a novel method for separating degradation products from the substrate by taking advantage of the decreased affinity of the heparanase-cleaved products for the HS-binding plasma protein chicken histidine-rich glycoprotein (cHRG). Incubation mixtures were applied to cHRG-Sepharose columns, with unbound material corresponding to heparanase-degradation products. Heparanase activity was determined for a variety of human, rat and murine cell and tissue homogenates. The

  12. Effect of Magnitude Estimation of Pleasantness and Intensity on fMRI Activation to Taste.

    PubMed

    Cerf-Ducastel, B; Haase, L; Murphy, C

    2012-03-01

    The goal of the present study was to investigate whether the psychophysical evaluation of taste stimuli using magnitude estimation influences the pattern of cortical activation observed with neuroimaging. That is, whether different brain areas are involved in the magnitude estimation of pleasantness relative to the magnitude estimation of intensity. fMRI was utilized to examine the patterns of cortical activation involved in magnitude estimation of pleasantness and intensity during hunger in response to taste stimuli. During scanning, subjects were administered taste stimuli orally and were asked to evaluate the perceived pleasantness or intensity using the general Labeled Magnitude Scale (Green 1996, Bartoshuk et al. 2004). Image analysis was conducted using AFNI. Magnitude estimation of intensity and pleasantness shared common activations in the insula, rolandic operculum, and the medio dorsal nucleus of the thalamus. Globally, magnitude estimation of pleasantness produced significantly more activation than magnitude estimation of intensity. Areas differentially activated during magnitude estimation of pleasantness versus intensity included, e.g., the insula, the anterior cingulate gyrus, and putamen; suggesting that different brain areas were recruited when subjects made magnitude estimates of intensity and pleasantness. These findings demonstrate significant differences in brain activation during magnitude estimation of intensity and pleasantness to taste stimuli. An appreciation for the complexity of brain response to taste stimuli may facilitate a clearer understanding of the neural mechanisms underlying eating behavior and over consumption.

  13. Quantitation of Na+, K+-atpase Enzymatic Activity in Tissues of the Mammalian Vestibular System

    NASA Technical Reports Server (NTRS)

    Kerr, T. P.

    1985-01-01

    In order to quantify vestibular Na(+), K(+)-ATPase, a microassay technique was developed which is sufficiently sensitive to measure the enzymatic activity in tissue from a single animal. The assay was used to characterize ATPase in he vestibular apparatus of the Mongolian gerbil. The quantitative procedure employs NPP (5 mM) as synthetic enzyme substrate. The assay relies upon spectrophotometric measurement (410 nm) of nitrophenol (NP) released by enzymatic hydrolysis of the substrate. Product formation in the absence of ouabain reflects both specific (Na(+), K(+)-ATPase) and non-specific (Mg(++)-ATPase) enzymatic activity. By measuring the accumulation of reaction product (NP) at three-minute intervals during the course of incubation, it is found that the overall enzymatic reaction proceeds linearly for at least 45 minutes. It is therefore possible to determine two separate reaction rates from a single set of tissues. Initial results indicate that total activity amounts to 53.3 + or - 11.2 (S.E.M.) nmol/hr/mg dry tissue, of which approximately 20% is ouabain-sensitive.

  14. Improving quantitative structure-activity relationship models using Artificial Neural Networks trained with dropout

    NASA Astrophysics Data System (ADS)

    Mendenhall, Jeffrey; Meiler, Jens

    2016-02-01

    Dropout is an Artificial Neural Network (ANN) training technique that has been shown to improve ANN performance across canonical machine learning (ML) datasets. Quantitative Structure Activity Relationship (QSAR) datasets used to relate chemical structure to biological activity in Ligand-Based Computer-Aided Drug Discovery pose unique challenges for ML techniques, such as heavily biased dataset composition, and relatively large number of descriptors relative to the number of actives. To test the hypothesis that dropout also improves QSAR ANNs, we conduct a benchmark on nine large QSAR datasets. Use of dropout improved both enrichment false positive rate and log-scaled area under the receiver-operating characteristic curve (logAUC) by 22-46 % over conventional ANN implementations. Optimal dropout rates are found to be a function of the signal-to-noise ratio of the descriptor set, and relatively independent of the dataset. Dropout ANNs with 2D and 3D autocorrelation descriptors outperform conventional ANNs as well as optimized fingerprint similarity search methods.

  15. Variant for estimating the activity of tropical cyclone groups in the world ocean

    NASA Astrophysics Data System (ADS)

    Yaroshevich, M. I.

    2016-12-01

    It is especially important to know the character and the intensity level of tropical cyclone (TC) activity when the system for estimating the cyclonic danger and risk is formed. During seasons of increased cyclonic activity, when several TCs are simultaneously active, the total energy effect of the cyclone group joint action is not estimated numerically. Cyclonic activity is as a rule characterized by the number of TCs that occur in the considered zone. A variant of the criterion, according to which relative cyclonic activity is estimated, is presented.

  16. Quantitatively accurate activity measurements with a dedicated cardiac SPECT camera: Physical phantom experiments

    SciTech Connect

    Pourmoghaddas, Amir Wells, R. Glenn

    2016-01-15

    Purpose: Recently, there has been increased interest in dedicated cardiac single photon emission computed tomography (SPECT) scanners with pinhole collimation and improved detector technology due to their improved count sensitivity and resolution over traditional parallel-hole cameras. With traditional cameras, energy-based approaches are often used in the clinic for scatter compensation because they are fast and easily implemented. Some of the cardiac cameras use cadmium-zinc-telluride (CZT) detectors which can complicate the use of energy-based scatter correction (SC) due to the low-energy tail—an increased number of unscattered photons detected with reduced energy. Modified energy-based scatter correction methods can be implemented, but their level of accuracy is unclear. In this study, the authors validated by physical phantom experiments the quantitative accuracy and reproducibility of easily implemented correction techniques applied to {sup 99m}Tc myocardial imaging with a CZT-detector-based gamma camera with multiple heads, each with a single-pinhole collimator. Methods: Activity in the cardiac compartment of an Anthropomorphic Torso phantom (Data Spectrum Corporation) was measured through 15 {sup 99m}Tc-SPECT acquisitions. The ratio of activity concentrations in organ compartments resembled a clinical {sup 99m}Tc-sestamibi scan and was kept consistent across all experiments (1.2:1 heart to liver and 1.5:1 heart to lung). Two background activity levels were considered: no activity (cold) and an activity concentration 1/10th of the heart (hot). A plastic “lesion” was placed inside of the septal wall of the myocardial insert to simulate the presence of a region without tracer uptake and contrast in this lesion was calculated for all images. The true net activity in each compartment was measured with a dose calibrator (CRC-25R, Capintec, Inc.). A 10 min SPECT image was acquired using a dedicated cardiac camera with CZT detectors (Discovery NM530c, GE

  17. Temporal quantitative phosphoproteomics of ADP stimulation reveals novel central nodes in platelet activation and inhibition

    PubMed Central

    Beck, Florian; Geiger, Jörg; Gambaryan, Stepan; Solari, Fiorella A.; Dell’Aica, Margherita; Loroch, Stefan; Mattheij, Nadine J.; Mindukshev, Igor; Pötz, Oliver; Jurk, Kerstin; Burkhart, Julia M.; Fufezan, Christian; Heemskerk, Johan W. M.; Walter, Ulrich

    2017-01-01

    Adenosine diphosphate (ADP) enhances platelet activation by virtually any other stimulant to complete aggregation. It binds specifically to the G-protein–coupled membrane receptors P2Y1 and P2Y12, stimulating intracellular signaling cascades, leading to integrin αIIbβ3 activation, a process antagonized by endothelial prostacyclin. P2Y12 inhibitors are among the most successful antiplatelet drugs, however, show remarkable variability in efficacy. We reasoned whether a more detailed molecular understanding of ADP-induced protein phosphorylation could identify (1) critical hubs in platelet signaling toward aggregation and (2) novel molecular targets for antiplatelet treatment strategies. We applied quantitative temporal phosphoproteomics to study ADP-mediated signaling at unprecedented molecular resolution. Furthermore, to mimic the antagonistic efficacy of endothelial-derived prostacyclin, we determined how Iloprost reverses ADP-mediated signaling events. We provide temporal profiles of 4797 phosphopeptides, 608 of which showed significant regulation. Regulated proteins are implicated in well-known activating functions such as degranulation and cytoskeletal reorganization, but also in less well-understood pathways, involving ubiquitin ligases and GTPase exchange factors/GTPase-activating proteins (GEF/GAP). Our data demonstrate that ADP-triggered phosphorylation occurs predominantly within the first 10 seconds, with many short rather than sustained changes. For a set of phosphorylation sites (eg, PDE3ASer312, CALDAG-GEFISer587, ENSASer109), we demonstrate an inverse regulation by ADP and Iloprost, suggesting that these are central modulators of platelet homeostasis. This study demonstrates an extensive spectrum of human platelet protein phosphorylation in response to ADP and Iloprost, which inversely overlap and represent major activating and inhibitory pathways. PMID:28060719

  18. A Quantitative Structure Activity Relationship for acute oral toxicity of pesticides on rats: Validation, domain of application and prediction.

    PubMed

    Hamadache, Mabrouk; Benkortbi, Othmane; Hanini, Salah; Amrane, Abdeltif; Khaouane, Latifa; Si Moussa, Cherif

    2016-02-13

    Quantitative Structure Activity Relationship (QSAR) models are expected to play an important role in the risk assessment of chemicals on humans and the environment. In this study, we developed a validated QSAR model to predict acute oral toxicity of 329 pesticides to rats because a few QSAR models have been devoted to predict the Lethal Dose 50 (LD50) of pesticides on rats. This QSAR model is based on 17 molecular descriptors, and is robust, externally predictive and characterized by a good applicability domain. The best results were obtained with a 17/9/1 Artificial Neural Network model trained with the Quasi Newton back propagation (BFGS) algorithm. The prediction accuracy for the external validation set was estimated by the Q(2)ext and the root mean square error (RMS) which are equal to 0.948 and 0.201, respectively. 98.6% of external validation set is correctly predicted and the present model proved to be superior to models previously published. Accordingly, the model developed in this study provides excellent predictions and can be used to predict the acute oral toxicity of pesticides, particularly for those that have not been tested as well as new pesticides.

  19. Quantitative structure-activity relationships and mixture toxicity of organic chemicals in Photobacterium phosphoreum: the Microtox test

    SciTech Connect

    Hermens, J.; Busser, F.; Leeuwangh, P.; Musch, A.

    1985-02-01

    Quantitative structure-activity relationships were calculated for the inhibition of bioluminescence of Photobacterium phosphoreum by 22 nonreactive organic chemicals. The inhibition was measured using the Microtox test and correlated with the partition coefficient between n-octanol and water (Poct), molar refractivity (MR), and molar volume (MW/d). At log Poct less than 1 and greater than 3, deviations from linearity were observed. Introduction of MR and MW/d improved the quality of the relationships. The influences of MR or MW/d may be related with an interaction of the tested chemicals to the enzyme system which produces the light emission. The sensitivity of the Microtox test to the 22 tested compounds is comparable to a 14-day acute mortality test with guppies for chemicals with log Poct less than 4. The inhibition of bioluminescence by a mixture of the tested compounds was slightly less than was expected in case of concentration addition. The Microtox test can give a good estimate of the total aspecific minimum toxicity of polluted waters. When rather lipophilic compounds or pollutants with more specific modes of action are present, this test will underestimate the toxicity to other aquatic life.

  20. Geophysical Monitoring of Active Infiltration Experiments for Recharge Estimation: Gains and Pains

    NASA Astrophysics Data System (ADS)

    Noell, U.; Lamparter, A.; Houben, G.; Koeniger, P.; Stoeckl, L.; Guenther, T.

    2014-12-01

    Drinking water supply on the island of Langeoog, North Sea, solely depends on groundwater from a freshwater lens. The correct estimation of the recharge rate is critical for a sustainable use of the resource. Extensive hydrogeological and geophysical studies have revealed differences in groundwater recharge by a factor of two and more between the top of the dunes and the dune valleys. The most convincing proof of these differences in recharge is based on isotope analysis (age dating) but boreholes are scarce and a direct proof of recharge is desired. For this purpose active infiltration experiments are performed and geophysically monitored. Former applications of this method in sand and loess soil gave evidence for the applicability of the geophysical observation when combined with tensiometers installed in situ at depth. These results showed firstly that in sandy soil the water reaches the groundwater table quicker than anticipated due to the water repellent characteristic of the dry sand, inhibiting the lateral spreading of the water. The studies also revealed that in loess preferential flow is initiated by ponding and that sprinkling caused very slow movement of water within the unsaturated zone and the water remained near the surface. On the island of Langeoog field experiments underlined the importance of water repellency on the dune surface, indicating that the rain water runs off superficially into the dune valleys where higher recharge is found. The active infiltration zone of the experiment covers an area of some 7m² and includes steeper parts of the dune. The infiltration will vary depending on rainfall intensity and duration, original water content and vegetation cover. What results can we reliably expect from the active experiment and what additional measurements are required to back up the findings? Results are ambiguous with regard to the quantitative assessment but the processes can be visualized by geophysical monitoring in situ.

  1. The influence of the design matrix on treatment effect estimates in the quantitative analyses of single-subject experimental design research.

    PubMed

    Moeyaert, Mariola; Ugille, Maaike; Ferron, John M; Beretvas, S Natasha; Van den Noortgate, Wim

    2014-09-01

    The quantitative methods for analyzing single-subject experimental data have expanded during the last decade, including the use of regression models to statistically analyze the data, but still a lot of questions remain. One question is how to specify predictors in a regression model to account for the specifics of the design and estimate the effect size of interest. These quantitative effect sizes are used in retrospective analyses and allow synthesis of single-subject experimental study results which is informative for evidence-based decision making, research and theory building, and policy discussions. We discuss different design matrices that can be used for the most common single-subject experimental designs (SSEDs), namely, the multiple-baseline designs, reversal designs, and alternating treatment designs, and provide empirical illustrations. The purpose of this article is to guide single-subject experimental data analysts interested in analyzing and meta-analyzing SSED data.

  2. The effects of dominance, regular inbreeding and sampling design on Q(ST), an estimator of population differentiation for quantitative traits.

    PubMed

    Goudet, Jérôme; Büchi, Lucie

    2006-02-01

    To test whether quantitative traits are under directional or homogenizing selection, it is common practice to compare population differentiation estimates at molecular markers (F(ST)) and quantitative traits (Q(ST)). If the trait is neutral and its determinism is additive, then theory predicts that Q(ST) = F(ST), while Q(ST) > F(ST) is predicted under directional selection for different local optima, and Q(ST) < F(ST) is predicted under homogenizing selection. However, nonadditive effects can alter these predictions. Here, we investigate the influence of dominance on the relation between Q(ST) and F(ST) for neutral traits. Using analytical results and computer simulations, we show that dominance generally deflates Q(ST) relative to F(ST). Under inbreeding, the effect of dominance vanishes, and we show that for selfing species, a better estimate of Q(ST) is obtained from selfed families than from half-sib families. We also compare several sampling designs and find that it is always best to sample many populations (>20) with few families (five) rather than few populations with many families. Provided that estimates of Q(ST) are derived from individuals originating from many populations, we conclude that the pattern Q(ST) > F(ST), and hence the inference of directional selection for different local optima, is robust to the effect of nonadditive gene actions.

  3. Secular trends of infectious disease mortality in The Netherlands, 1911-1978: quantitative estimates of changes coinciding with the introduction of antibiotics.

    PubMed

    Mackenbach, J P; Looman, C W

    1988-09-01

    Secular trends of mortality from 21 infectious diseases in the Netherlands were studied by inspection of age/sex-standardized mortality curves and by log-linear regression analysis. An attempt was made to obtain quantitative estimates for changes coinciding with the introduction of antibiotics. Two possible types of effect were considered: a sharp reduction of mortality at the moment of the introduction of antibiotics, and a longer lasting (acceleration of) mortality decline after the introduction. Changes resembling the first type of effect were possibly present for many infectious diseases, but were difficult to measure exactly, due to late effects on mortality of World War II. Changes resembling the second type of effect were present in 16 infectious diseases and were sometimes quite large. For example, estimated differences in per cent per annum mortality change were 10% or larger for puerperal fever, scarlet fever, rheumatic fever, erysipelas, otitis media, tuberculosis, and bacillary dysentery. No acceleration of mortality decline after the introduction of antibiotics was present in mortality from 'all other diseases'. Although the exact contribution of antibiotics to the observed changes cannot be inferred from this time trend analysis, the quantitative estimates of the changes show that even a partial contribution would represent a substantial effect of antibiotics on mortality from infectious diseases in the Netherlands.

  4. Shared spatial effects on quantitative genetic parameters: accounting for spatial autocorrelation and home range overlap reduces estimates of heritability in wild red deer.

    PubMed

    Stopher, Katie V; Walling, Craig A; Morris, Alison; Guinness, Fiona E; Clutton-Brock, Tim H; Pemberton, Josephine M; Nussey, Daniel H

    2012-08-01

    Social structure, limited dispersal, and spatial heterogeneity in resources are ubiquitous in wild vertebrate populations. As a result, relatives share environments as well as genes, and environmental and genetic sources of similarity between individuals are potentially confounded. Quantitative genetic studies in the wild therefore typically account for easily captured shared environmental effects (e.g., parent, nest, or region). Fine-scale spatial effects are likely to be just as important in wild vertebrates, but have been largely ignored. We used data from wild red deer to build "animal models" to estimate additive genetic variance and heritability in four female traits (spring and rut home range size, offspring birth weight, and lifetime breeding success). We then, separately, incorporated spatial autocorrelation and a matrix of home range overlap into these models to estimate the effect of location or shared habitat on phenotypic variation. These terms explained a substantial amount of variation in all traits and their inclusion resulted in reductions in heritability estimates, up to an order of magnitude up for home range size. Our results highlight the potential of multiple covariance matrices to dissect environmental, social, and genetic contributions to phenotypic variation, and the importance of considering fine-scale spatial processes in quantitative genetic studies.

  5. Using an Active Sensor to Estimate Orchard Grass (Dactylis glomerata L.) Dry Matter Yield and Quality

    Technology Transfer Automated Retrieval System (TEKTRAN)

    Remote sensing in the form of active sensors could be used to estimate forage biomass on spatial and temporal scales. The objective of this study is to use canopy reflectance measurements from an active remote sensor to compare different vegetation indices as a means of estimating final dry matter y...

  6. Estimating discharged plutonium using measurements of structural material activation products

    SciTech Connect

    Charlton, W. S.; Lumley-Woodyear, A. de; Budlong-Sylvester, K. W.

    2002-01-01

    As the US and Russia move to lower numbers of deployed nuclear weapons, transparency regarding the quantity of weapons usable fissile material available in each country may become more important. In some cases detailed historical information regarding material production at individual facilities may be incomplete or not readily available, e.g., at decommissioned facilities. In such cases tools may be needed to produce estimates of aggregate material production as part of a bilateral agreement. Such measurement techniques could also provide increased confidence in declared production quantities.

  7. Quantitative estimates of the risk of new outbreaks of foot-and-mouth disease as a result of burning pyres.

    PubMed

    Jones, R; Kelly, L; French, N; England, T; Livesey, C; Wooldridge, M

    2004-02-07

    The risk of dispersing foot-and-mouth disease virus into the atmosphere, and spreading it to susceptible holdings as a result of burning large numbers of carcases together on open pyres, has been estimated for six selected pyres burned during the 2001 outbreak in the UK. The probability of an animal or holding becoming infected was dependent on the estimated level of exposure to the virus predicted from the concentrations of virus calculated by the Met Office, Bracknell. In general, the probability of infection per animal and per holding decreased as their distance from the pyre increased. In the case of two of the pyres, a holding under the pyre plumes became infected on a date consistent with when the pyre was lit. However, by calculating their estimated probability of infection from the pyres it was concluded that it was unlikely that in either case the pyre was the source of infection.

  8. Using Skin Sympathetic Nerve Activity to Estimate Stellate Ganglion Nerve Activity in Dogs

    PubMed Central

    Jiang, Zhaolei; Zhao, Ye; Doytchinova, Anisiia; Kamp, Nicholas J.; Tsai, Wei-Chung; Yuan, Yuan; Adams, David; Wagner, David; Shen, Changyu; Chen, Lan S.; Everett, Thomas H.; Lin, Shien-Fong; Chen, Peng-Sheng

    2015-01-01

    Background Stellate ganglion nerve activity (SGNA) is important in cardiac arrhythmogenesis. However, direct recording of SGNA requires access to the thoracic cavity. Skin of upper thorax is innervated by sympathetic nerve fibers originating from the stellate ganglia (SG) and is easily accessible. Objective To test the hypothesis that thoracic skin nerve activity (SKNA) can be used to estimate SGNA. Methods We recorded SGNA and SKNAs using surface electrocardiogram leads in 5 anesthetized and 4 ambulatory dogs. Apamin injected into the right SG abruptly increased both right SGNA and SKNA in 5 anesthetized dogs. We integrated nerve activities and averaged heart rate in each one-min window over 10 min. We implanted a radiotransmitter to record left SGNA in 4 ambulatory dogs, including two normal dogs, one dog with myocardial infarction and one dog with intermittent rapid atrial pacing. After 2 weeks of recovery, we simultaneously recorded the SKNA and left SGNA continuously for 30 min when the dogs were ambulatory. Results There was a positive correlation (average r=0.877, 95% confidence interval (CI) 0.732 to 1.000, p<0.05 for each dog) between integrated SKNA (iSKNA) and SGNA (iSGNA) and between iSKNA and heart rate (average r=0.837, 95% CI 0.752 to 0.923, p<0.05). Similar to that found in the anesthetized dogs, there was a positive correlation (average r=0.746, 95% CI 0.527 to 0.964, p<0.05) between iSKNA and iSGNA and between iSKNA and heart rate (average r=0.706, 95% CI 0.484 to 0.927, p<0.05). Conclusions SKNAs can be used to estimate SGNA in dogs. PMID:25681792

  9. Quantitative Structure Activity Relationship for Inhibition of Human Organic Cation/Carnitine Transporter (OCTN2)

    PubMed Central

    Diao, Lei; Ekins, Sean; Polli, James E.

    2010-01-01

    Organic cation/carnitine transporter (OCTN2; SLC22A5) is an important transporter for L-carnitine homeostasis, but can be inhibited by drugs, which may cause L-carnitine deficiency and possibly other OCTN2-mediated drug-drug interactions. One objective was to develop a quantitative structure–activity relationship (QSAR) of OCTN2 inhibitors, in order to predict and identify other potential OCTN2 inhibitors and infer potential clinical interactions. A second objective was to assess two high renal clearance drugs that interact with OCTN2 in vitro (cetirizine and cephaloridine) for possible OCTN2-mediated drug-drug interactions. Using previously generated in vitro data of 22 drugs, a 3D quantitative pharmacophore model and a Bayesian machine learning model were developed. The four pharmacophore features include two hydrophobic groups, one hydrogen-bond acceptor, and one positive ionizable center. The Bayesian machine learning model was developed using simple interpretable descriptors and function class fingerprints of maximum diameter 6 (FCFP_6). An external test set of 27 molecules, including 15 newly identified OCTN2 inhibitors, and a literature test set of 22 molecules were used to validate both models. The computational models afforded good capability to identify structurally diverse OCTN2 inhibitors, providing a valuable tool to predict new inhibitors efficiently. Inhibition results confirmed our previously observed association between rhabdomyolysis and Cmax/Ki ratio. The two high renal clearance drugs cetirizine and cephaloridine were found not to be OCTN2 substrates and their diminished elimination by other drugs is concluded not to be mediated by OCTN2. PMID:20831193

  10. Quantitative and integrative analysis of paracrine hepatocyte activation by nonparenchymal cells upon lipopolysaccharide induction.

    PubMed

    Beuke, Katharina; Schildberg, Frank A; Pinna, Federico; Albrecht, Ute; Liebe, Roman; Bissinger, Michaela; Schirmacher, Peter; Dooley, Steven; Bode, Johannes G; Knolle, Percy A; Kummer, Ursula; Breuhahn, Kai; Sahle, Sven

    2017-03-01

    Gut-derived bacterial lipopolysaccharides (LPS) stimulate the secretion of tumour necrosis factor (TNF) from liver macrophages (MCs), liver sinusoidal endothelial cells (LSECs) and hepatic stellate cells (HSCs), which control the acute phase response in hepatocytes through activation of the NF-κB pathway. The individual and cooperative impact of nonparenchymal cells on this clinically relevant response has not been analysed in detail due to technical limitations. To gain an integrative view on this complex inter- and intracellular communication, we combined a multiscale mathematical model with quantitative, time-resolved experimental data of different primary murine liver cell types. We established a computational model for TNF-induced NF-κB signalling in hepatocytes, accurately describing dose-responsiveness for physiologically relevant cytokine concentrations. TNF secretion profiles were quantitatively measured for all nonparenchymal cell types upon LPS stimulation. This novel approach allowed the analysis of individual and collective paracrine TNF-mediated NF-κB induction in hepatocytes, revealing strongest effects of MCs and LSECs on hepatocellular NF-κB signalling. Simulations suggest that both cell types act together to maximize the NF-κB pathway response induced by low LPS concentrations (0.1 and 1 ng/mL). Higher LPS concentrations (≥ 5 ng/mL) induced sufficient TNF levels from MCs or LSECs to induce a strong and nonadjustable pathway response. Importantly, these simulations also revealed that the initial cytokine secretion (1-2 h after stimulation) rather than final TNF level (10 h after stimulation) defines the hepatocellular NF-κB response. This raises the question whether the current experimental standard of single high-dose cytokine administration is suitable to mimic in vivo cytokine exposure.

  11. Chemical graphs, molecular matrices and topological indices in chemoinformatics and quantitative structure-activity relationships.

    PubMed

    Ivanciuc, Ovidiu

    2013-06-01

    Chemical and molecular graphs have fundamental applications in chemoinformatics, quantitative structureproperty relationships (QSPR), quantitative structure-activity relationships (QSAR), virtual screening of chemical libraries, and computational drug design. Chemoinformatics applications of graphs include chemical structure representation and coding, database search and retrieval, and physicochemical property prediction. QSPR, QSAR and virtual screening are based on the structure-property principle, which states that the physicochemical and biological properties of chemical compounds can be predicted from their chemical structure. Such structure-property correlations are usually developed from topological indices and fingerprints computed from the molecular graph and from molecular descriptors computed from the three-dimensional chemical structure. We present here a selection of the most important graph descriptors and topological indices, including molecular matrices, graph spectra, spectral moments, graph polynomials, and vertex topological indices. These graph descriptors are used to define several topological indices based on molecular connectivity, graph distance, reciprocal distance, distance-degree, distance-valency, spectra, polynomials, and information theory concepts. The molecular descriptors and topological indices can be developed with a more general approach, based on molecular graph operators, which define a family of graph indices related by a common formula. Graph descriptors and topological indices for molecules containing heteroatoms and multiple bonds are computed with weighting schemes based on atomic properties, such as the atomic number, covalent radius, or electronegativity. The correlation in QSPR and QSAR models can be improved by optimizing some parameters in the formula of topological indices, as demonstrated for structural descriptors based on atomic connectivity and graph distance.

  12. Measurement of ice nucleation-active bacteria on plants and in precipitation by quantitative PCR.

    PubMed

    Hill, Thomas C J; Moffett, Bruce F; Demott, Paul J; Georgakopoulos, Dimitrios G; Stump, William L; Franc, Gary D

    2014-02-01

    Ice nucleation-active (INA) bacteria may function as high-temperature ice-nucleating particles (INP) in clouds, but their effective contribution to atmospheric processes, i.e., their potential to trigger glaciation and precipitation, remains uncertain. We know little about their abundance on natural vegetation, factors that trigger their release, or persistence of their ice nucleation activity once airborne. To facilitate these investigations, we developed two quantitative PCR (qPCR) tests of the ina gene to directly count INA bacteria in environmental samples. Each of two primer pairs amplified most alleles of the ina gene and, taken together, they should amplify all known alleles. To aid primer design, we collected many new INA isolates. Alignment of their partial ina sequences revealed new and deeply branching clades, including sequences from Pseudomonas syringae pv. atropurpurea, Ps. viridiflava, Pantoea agglomerans, Xanthomonas campestris, and possibly Ps. putida, Ps. auricularis, and Ps. poae. qPCR of leaf washings recorded ∼10(8) ina genes g(-1) fresh weight of foliage on cereals and 10(5) to 10(7) g(-1) on broadleaf crops. Much lower populations were found on most naturally occurring vegetation. In fresh snow, ina genes from various INA bacteria were detected in about half the samples but at abundances that could have accounted for only a minor proportion of INP at -10°C (assuming one ina gene per INA bacterium). Despite this, an apparent biological source contributed an average of ∼85% of INP active at -10°C in snow samples. In contrast, a thunderstorm hail sample contained 0.3 INA bacteria per INP active at -10°C, suggesting a significant contribution to this sample.

  13. Measurement of Ice Nucleation-Active Bacteria on Plants and in Precipitation by Quantitative PCR

    PubMed Central

    Moffett, Bruce F.; DeMott, Paul J.; Georgakopoulos, Dimitrios G.; Stump, William L.; Franc, Gary D.

    2014-01-01

    Ice nucleation-active (INA) bacteria may function as high-temperature ice-nucleating particles (INP) in clouds, but their effective contribution to atmospheric processes, i.e., their potential to trigger glaciation and precipitation, remains uncertain. We know little about their abundance on natural vegetation, factors that trigger their release, or persistence of their ice nucleation activity once airborne. To facilitate these investigations, we developed two quantitative PCR (qPCR) tests of the ina gene to directly count INA bacteria in environmental samples. Each of two primer pairs amplified most alleles of the ina gene and, taken together, they should amplify all known alleles. To aid primer design, we collected many new INA isolates. Alignment of their partial ina sequences revealed new and deeply branching clades, including sequences from Pseudomonas syringae pv. atropurpurea, Ps. viridiflava, Pantoea agglomerans, Xanthomonas campestris, and possibly Ps. putida, Ps. auricularis, and Ps. poae. qPCR of leaf washings recorded ∼108 ina genes g−1 fresh weight of foliage on cereals and 105 to 107 g−1 on broadleaf crops. Much lower populations were found on most naturally occurring vegetation. In fresh snow, ina genes from various INA bacteria were detected in about half the samples but at abundances that could have accounted for only a minor proportion of INP at −10°C (assuming one ina gene per INA bacterium). Despite this, an apparent biological source contributed an average of ∼85% of INP active at −10°C in snow samples. In contrast, a thunderstorm hail sample contained 0.3 INA bacteria per INP active at −10°C, suggesting a significant contribution to this sample. PMID:24317082

  14. Odor-active constituents in fresh pineapple (Ananas comosus [L.] Merr.) by quantitative and sensory evaluation.

    PubMed

    Tokitomo, Yukiko; Steinhaus, Martin; Büttner, Andrea; Schieberle, Peter

    2005-07-01

    By application of aroma extract dilution analysis (AEDA) to an aroma distillate prepared from fresh pineapple using solvent-assisted flavor evaporation (SAFE), 29 odor-active compounds were detected in the flavor dilution (FD) factor range of 2 to 4,096. Quantitative measurements performed by stable isotope dilution assays (SIDA) and a calculation of odor activity values (OAVs) of 12 selected odorants revealed the following compounds as key odorants in fresh pineapple flavor: 4-hydroxy-2,5-dimethyl-3(2H)-furanone (HDF; sweet, pineapple-like, caramel-like), ethyl 2-methylpropanoate (fruity), ethyl 2-methylbutanoate (fruity) followed by methyl 2-methylbutanoate (fruity, apple-like) and 1-(E,Z)-3,5-undecatriene (fresh, pineapple-like). A mixture of these 12 odorants in concentrations equal to those in the fresh pineapple resulted in an odor profile similar to that of the fresh juice. Furthermore, the results of omission tests using the model mixture showed that HDF and ethyl 2-methylbutanoate are character impact odorants in fresh pineapple.

  15. Quantitative proteomics reveals the induction of mitophagy in tumor necrosis factor-α-activated (TNFα) macrophages.

    PubMed

    Bell, Christina; English, Luc; Boulais, Jonathan; Chemali, Magali; Caron-Lizotte, Olivier; Desjardins, Michel; Thibault, Pierre

    2013-09-01

    Macrophages play an important role in innate and adaptive immunity as professional phagocytes capable of internalizing and degrading pathogens to derive antigens for presentation to T cells. They also produce pro-inflammatory cytokines such as tumor necrosis factor alpha (TNF-α) that mediate local and systemic responses and direct the development of adaptive immunity. The present work describes the use of label-free quantitative proteomics to profile the dynamic changes of proteins from resting and TNF-α-activated mouse macrophages. These analyses revealed that TNF-α activation of macrophages led to the down-regulation of mitochondrial proteins and the differential regulation of several proteins involved in vesicle trafficking and immune response. Importantly, we found that the down-regulation of mitochondria proteins occurred through mitophagy and was specific to TNF-α, as other cytokines such as IL-1β and IFN-γ had no effect on mitochondria degradation. Furthermore, using a novel antigen presentation system, we observed that the induction of mitophagy by TNF-α enabled the processing and presentation of mitochondrial antigens at the cell surface by MHC class I molecules. These findings highlight an unsuspected role of TNF-α in mitophagy and expanded our understanding of the mechanisms responsible for MHC presentation of self-antigens.

  16. Quantitative structure-activity relationship analysis of β-amyloid aggregation inhibitors

    NASA Astrophysics Data System (ADS)

    Stempler, Shiri; Levy-Sakin, Michal; Frydman-Marom, Anat; Amir, Yaniv; Scherzer-Attali, Roni; Buzhansky, Ludmila; Gazit, Ehud; Senderowitz, Hanoch

    2011-02-01

    Inhibiting the aggregation process of the β-amyloid peptide is a promising strategy in treating Alzheimer's disease. In this work, we have collected a dataset of 80 small molecules with known inhibition levels and utilized them to develop two comprehensive quantitative structure-activity relationship models: a Bayesian model and a decision tree model. These models have exhibited high predictive accuracy: 87% of the training and test sets using the Bayesian model and 89 and 93% of the training and test sets, respectively, by the decision tree model. Subsequently these models were used to predict the activities of several new potential β-amyloid aggregation inhibitors and these predictions were indeed validated by in vitro experiments. Key chemical features correlated with the inhibition ability were identified. These include the electro-topological state of carbonyl groups, AlogP and the number of hydrogen bond donor groups. The results demonstrate the feasibility of the developed models as tools for rapid screening, which could help in the design of novel potential drug candidates for Alzheimer's disease.

  17. Quantitative genetic analysis of copia retrotransposon activity in inbred Drosophila melanogaster lines.

    PubMed Central

    Nuzhdin, S V; Pasyukova, E G; Morozova, E A; Flavell, A J

    1998-01-01

    The rates of transcription and transposition of retrotransposons vary between lines of Drosophila melanogaster. We have studied the genetics of differences in copia retrotransposon activity by quantitative trait loci (QTL) mapping. Ninety-eight recombinant inbred lines were constructed from two parental lines exhibiting a 10-fold difference in copia transcript level and a 100-fold difference in transposition rate. The lines were scored for 126 molecular markers, copia transcript level, and rate of copia transposition. Transcript level correlated with copia copy number, and the difference in copia copy number between parental lines accounted for 45.1% of copia transcript-level difference. Most of the remaining difference was accounted for by two transcript-level QTL mapping to cytological positions 27B-30D and 50F-57C on the second chromosome, which accounted for 11.5 and 30.4%, respectively. copia transposition rate was controlled by interacting QTL mapping to the region 27B-48D on the second and 61A-65A and 97D-100A on the third chromosome. The genes controlling copia transcript level are thus not necessarily those involved in controlling copia transposition rate. Segregation of modifying genes, rather than mutations, might explain the variability in copia retrotransposon activity between lines. PMID:9755206

  18. Quantitative Secretome Analysis of Activated Jurkat Cells Using Click Chemistry-Based Enrichment of Secreted Glycoproteins.

    PubMed

    Witzke, Kathrin E; Rosowski, Kristin; Müller, Christian; Ahrens, Maike; Eisenacher, Martin; Megger, Dominik A; Knobloch, Jürgen; Koch, Andrea; Bracht, Thilo; Sitek, Barbara

    2017-01-06

    Quantitative secretome analyses are a high-performance tool for the discovery of physiological and pathophysiological changes in cellular processes. However, serum supplements in cell culture media limit secretome analyses, but serum depletion often leads to cell starvation and consequently biased results. To overcome these limiting factors, we investigated a model of T cell activation (Jurkat cells) and performed an approach for the selective enrichment of secreted proteins from conditioned medium utilizing metabolic marking of newly synthesized glycoproteins. Marked glycoproteins were labeled via bioorthogonal click chemistry and isolated by affinity purification. We assessed two labeling compounds conjugated with either biotin or desthiobiotin and the respective secretome fractions. 356 proteins were quantified using the biotin probe and 463 using desthiobiotin. 59 proteins were found differentially abundant (adjusted p-value ≤0.05, absolute fold change ≥1.5) between inactive and activated T cells using the biotin method and 86 using the desthiobiotin approach, with 31 mutual proteins cross-verified by independent experiments. Moreover, we analyzed the cellular proteome of the same model to demonstrate the benefit of secretome analyses and provide comprehensive data sets of both. 336 proteins (61.3%) were quantified exclusively in the secretome. Data are available via ProteomeXchange with identifier PXD004280.

  19. A Caco-2 cell-based quantitative antioxidant activity assay for antioxidants.

    PubMed

    Wan, Hongxia; Liu, Dong; Yu, Xiangying; Sun, Haiyan; Li, Yan

    2015-05-15

    A Caco-2 cell-based antioxidant activity (CAA) assay for quantitative evaluation of antioxidants was developed by optimizing seeding density and culture time of Caco-2 cells, incubation time and concentration of fluorescent probe (2',7'-dichlorofluorescin diacetate, DCFH-DA), incubation way and incubation time of antioxidants (pure phytochemicals) and DCFH-DA with cells, and detection time of fluorescence. Results showed that the CAA assay was of good reproducibility and could be used to evaluate the antioxidant activity of antioxidants at the following conditions: seeding density of 5 × 10(4)/well, cell culture time of 24h, co-incubation of 60 μM DCFH-DA and pure phytochemicals with Caco-2 cells for 20 min and fluorescence recorded for 90 min. Additionally, a significant correlation was observed between CAA values and rat plasma ORAC values following the intake of antioxidants for selected pure phytochemicals (R(2) = 0.815, p < 0.01), demonstrating the good biological relevance of CAA assay.

  20. Quantitative trait locus analysis of symbiotic nitrogen fixation activity in the model legume Lotus japonicus.

    PubMed

    Tominaga, Akiyoshi; Gondo, Takahiro; Akashi, Ryo; Zheng, Shao-Hui; Arima, Susumu; Suzuki, Akihiro

    2012-05-01

    Many legumes form nitrogen-fixing root nodules. An elevation of nitrogen fixation in such legumes would have significant implications for plant growth and biomass production in agriculture. To identify the genetic basis for the regulation of nitrogen fixation, quantitative trait locus (QTL) analysis was conducted with recombinant inbred lines derived from the cross Miyakojima MG-20 × Gifu B-129 in the model legume Lotus japonicus. This population was inoculated with Mesorhizobium loti MAFF303099 and grown for 14 days in pods containing vermiculite. Phenotypic data were collected for acetylene reduction activity (ARA) per plant (ARA/P), ARA per nodule weight (ARA/NW), ARA per nodule number (ARA/NN), NN per plant, NW per plant, stem length (SL), SL without inoculation (SLbac-), shoot dry weight without inoculation (SWbac-), root length without inoculation (RLbac-), and root dry weight (RWbac-), and finally 34 QTLs were identified. ARA/P, ARA/NN, NW, and SL showed strong correlations and QTL co-localization, suggesting that several plant characteristics important for symbiotic nitrogen fixation are controlled by the same locus. QTLs for ARA/P, ARA/NN, NW, and SL, co-localized around marker TM0832 on chromosome 4, were also co-localized with previously reported QTLs for seed mass. This is the first report of QTL analysis for symbiotic nitrogen fixation activity traits.

  1. Calcaneal Quantitative Ultrasound Indicates Reduced Bone Status Among Physically Active Adult Forager-Horticulturalists

    PubMed Central

    Stieglitz, Jonathan; Madimenos, Felicia; Kaplan, Hillard; Gurven, Michael

    2016-01-01

    Sedentary lifestyle contributes to osteoporosis and fragility fracture risks among modern humans, but whether such risks are prevalent in physically active pre-industrial societies with lower life expectancies is unclear. Osteoporosis should be readily observable in pre-industrial societies if it was regularly experienced over human history. In this study of 142 older adult Tsimane forager-horticulturalists (mean age±SD=62.1±8.6, range=50-85, 51% female) we use calcaneal quantitative ultrasonography (qUS) to assess bone status, document prevalence of adults with reduced bone status, and identify factors (demographic, anthropometric, immunological, kinesthetic) associated with reduced bone status. Men (23%) are as likely as women (25%) to have reduced bone status, although age-related decline in qUS parameters is attenuated for men. Adiposity and fat-free mass positively co-vary with qUS parameters for women but not men. Leukocyte count is inversely associated with qUS parameters controlling for potential confounders; leukocyte count is positively correlated within adults over time, and adults with persistently low counts have higher adjusted qUS parameters (6-8%) than adults with a high count. Reduced bone status characteristic of osteoporosis is common among active Tsimane with minimal exposure to osteoporosis risk factors found in industrialized societies, but with energetic constraints and high pathogen burden. PMID:26460548

  2. A Concurrent Mixed Methods Approach to Examining the Quantitative and Qualitative Meaningfulness of Absolute Magnitude Estimation Scales in Survey Research

    ERIC Educational Resources Information Center

    Koskey, Kristin L. K.; Stewart, Victoria C.

    2014-01-01

    This small "n" observational study used a concurrent mixed methods approach to address a void in the literature with regard to the qualitative meaningfulness of the data yielded by absolute magnitude estimation scaling (MES) used to rate subjective stimuli. We investigated whether respondents' scales progressed from less to more and…

  3. Quantitative Estimates of the Social Benefits of Learning, 2: Health (Depression and Obesity). Wider Benefits of Learning Research Report.

    ERIC Educational Resources Information Center

    Feinstein, Leon

    This report used information from two United Kingdom national cohorts to estimate the magnitude of the effects of learning on depression and obesity. Members of the two cohorts were surveyed in 1999-00, when those in the 1970 cohort were age 33 years and those in the 1958 cohort were age 42 years. Overall, education was an important risk factor…

  4. Quantitative, nondestructive estimates of coarse root biomass in a temperate pine forest using 3-D ground-penetrating radar (GPR)

    NASA Astrophysics Data System (ADS)

    Molon, Michelle; Boyce, Joseph I.; Arain, M. Altaf

    2017-01-01

    Coarse root biomass was estimated in a temperate pine forest using high-resolution (1 GHz) 3-D ground-penetrating radar (GPR). GPR survey grids were acquired across a 400 m2 area with varying line spacing (12.5 and 25 cm). Root volume and biomass were estimated directly from the 3-D radar volume by using isometric surfaces calculated with the marching cubes algorithm. Empirical relations between GPR reflection amplitude and root diameter were determined for 14 root segments (0.1-10 cm diameter) reburied in a 6 m2 experimental test plot and surveyed at 5-25 cm line spacing under dry and wet soil conditions. Reburied roots >1.4 cm diameter were detectable as continuous root structures with 5 cm line separation. Reflection amplitudes were strongly controlled by soil moisture and decreased by 40% with a twofold increase in soil moisture. GPR line intervals of 12.5 and 25 cm produced discontinuous mapping of roots, and GPR coarse root biomass estimates (0.92 kgC m-2) were lower than those obtained previously with a site-specific allometric equation due to nondetection of vertical roots and roots <1.5 cm diameter. The results show that coarse root volume and biomass can be estimated directly from interpolated 3-D GPR volumes by using a marching cubes approach, but mapping of roots as continuous structures requires high inline sampling and line density (<5 cm). The results demonstrate that 3-D GPR is viable approach for estimating belowground carbon and for mapping tree root architecture. This methodology can be applied more broadly in other disciplines (e.g., archaeology and civil engineering) for imaging buried structures.

  5. Apparent Polyploidization after Gamma Irradiation: Pitfalls in the Use of Quantitative Polymerase Chain Reaction (qPCR) for the Estimation of Mitochondrial and Nuclear DNA Gene Copy Numbers

    PubMed Central

    Kam, Winnie W. Y.; Lake, Vanessa; Banos, Connie; Davies, Justin; Banati, Richard

    2013-01-01

    Quantitative polymerase chain reaction (qPCR) has been widely used to quantify changes in gene copy numbers after radiation exposure. Here, we show that gamma irradiation ranging from 10 to 100 Gy of cells and cell-free DNA samples significantly affects the measured qPCR yield, due to radiation-induced fragmentation of the DNA template and, therefore, introduces errors into the estimation of gene copy numbers. The radiation-induced DNA fragmentation and, thus, measured qPCR yield varies with temperature not only in living cells, but also in isolated DNA irradiated under cell-free conditions. In summary, the variability in measured qPCR yield from irradiated samples introduces a significant error into the estimation of both mitochondrial and nuclear gene copy numbers and may give spurious evidence for polyploidization. PMID:23722662

  6. Quantitative determination of dimethicone in commercial tablets and capsules by Fourier transform infrared spectroscopy and antifoaming activity test.

    PubMed

    Torrado, G; García-Arieta, A; de los Ríos, F; Menéndez, J C; Torrado, S

    1999-03-01

    Fourier transform infrared (FTIR) spectroscopy and antifoaming activity test have been employed for the quantitative analysis of dimethicone. Linearity, accuracy and precision are presented for both methods. These methods have been also used to compare different dimethicone-containing proprietary medicines. FTIR spectroscopy has shown to be adequate for quantitation of dimethicone in commercial tablets and capsules in order to comply with USP requirements. The antifoaming activity test is able to detect incompatibilities between dimethicone and other constituents. The presence of certain enzymes in some medicinal products increases the defoaming properties of these formulations.

  7. A meta-analysis of neuroimaging studies on divergent thinking using activation likelihood estimation.

    PubMed

    Wu, Xin; Yang, Wenjing; Tong, Dandan; Sun, Jiangzhou; Chen, Qunlin; Wei, Dongtao; Zhang, Qinglin; Zhang, Meng; Qiu, Jiang

    2015-07-01

    In this study, an activation likelihood estimation (ALE) meta-analysis was used to conduct a quantitative investigation of neuroimaging studies on divergent thinking. Based on the ALE results, the functional magnetic resonance imaging (fMRI) studies showed that distributed brain regions were more active under divergent thinking tasks (DTTs) than those under control tasks, but a large portion of the brain regions were deactivated. The ALE results indicated that the brain networks of the creative idea generation in DTTs may be composed of the lateral prefrontal cortex, posterior parietal cortex [such as the inferior parietal lobule (BA 40) and precuneus (BA 7)], anterior cingulate cortex (ACC) (BA 32), and several regions in the temporal cortex [such as the left middle temporal gyrus (BA 39), and left fusiform gyrus (BA 37)]. The left dorsolateral prefrontal cortex (BA 46) was related to selecting the loosely and remotely associated concepts and organizing them into creative ideas, whereas the ACC (BA 32) was related to observing and forming distant semantic associations in performing DTTs. The posterior parietal cortex may be involved in the semantic information related to the retrieval and buffering of the formed creative ideas, and several regions in the temporal cortex may be related to the stored long-term memory. In addition, the ALE results of the structural studies showed that divergent thinking was related to the dopaminergic system (e.g., left caudate and claustrum). Based on the ALE results, both fMRI and structural MRI studies could uncover the neural basis of divergent thinking from different aspects (e.g., specific cognitive processing and stable individual difference of cognitive capability).

  8. Quantitative estimation of climatic parameters from vegetation data in North America by the mutual climatic range technique

    USGS Publications Warehouse

    Anderson, Katherine H.; Bartlein, Patrick J.; Strickland, Laura E.; Pelltier, Richard T.; Thompson, Robert S.; Shafer, Sarah L.

    2012-01-01

    The mutual climatic range (MCR) technique is perhaps the most widely used method for estimating past climatic parameters from fossil assemblages, largely because it can be conducted on a simple list of the taxa present in an assemblage. When applied to plant macrofossil data, this unweighted approach (MCRun) will frequently identify a large range for a given climatic parameter where the species in an assemblage can theoretically live together. To narrow this range, we devised a new weighted approach (MCRwt) that employs information from the modern relations between climatic parameters and plant distributions to lessen the influence of the "tails" of the distributions of the climatic data associated with the taxa in an assemblage. To assess the performance of the MCR approaches, we applied them to a set of modern climatic data and plant distributions on a 25-km grid for North America, and compared observed and estimated climatic values for each grid point. In general, MCRwt was superior to MCRun in providing smaller anomalies, less bias, and better correlations between observed and estimated values. However, by the same measures, the results of Modern Analog Technique (MAT) approaches were superior to MCRwt. Although this might be reason to favor MAT approaches, they are based on assumptions that may not be valid for paleoclimatic reconstructions, including that: 1) the absence of a taxon from a fossil sample is meaningful, 2) plant associations were largely unaffected by past changes in either levels of atmospheric carbon dioxide or in the seasonal distributions of solar radiation, and 3) plant associations of the past are adequately represented on the modern landscape. To illustrate the application of these MCR and MAT approaches to paleoclimatic reconstructions, we applied them to a Pleistocene paleobotanical assemblage from the western United States. From our examinations of the estimates of modern and past climates from vegetation assemblages, we conclude that

  9. Quantitative estimation of climatic parameters from vegetation data in North America by the mutual climatic range technique

    NASA Astrophysics Data System (ADS)

    Thompson, R. S.; Anderson, K. H.; Pelltier, R. T.; Strickland, L. E.; Bartlein, P. J.; Shafer, S. L.

    2012-09-01

    The mutual climatic range (MCR) technique is perhaps the most widely used method for estimating past climatic parameters from fossil assemblages, largely because it can be conducted on a simple list of the taxa present in an assemblage. When applied to plant macrofossil data, this unweighted approach (MCRun) will frequently identify a large range for a given climatic parameter where the species in an assemblage can theoretically live together. To narrow this range, we devised a new weighted approach (MCRwt) that employs information from the modern relations between climatic parameters and plant distributions to lessen the influence of the "tails" of the distributions of the climatic data associated with the taxa in an assemblage. To assess the performance of the MCR approaches, we applied them to a set of modern climatic data and plant distributions on a 25-km grid for North America, and compared observed and estimated climatic values for each grid point. In general, MCRwt was superior to MCRun in providing smaller anomalies, less bias, and better correlations between observed and estimated values. However, by the same measures, the results of Modern Analog Technique (MAT) approaches were superior to MCRwt. Although this might be reason to favor MAT approaches, they are based on assumptions that may not be valid for paleoclimatic reconstructions, including that: 1) the absence of a taxon from a fossil sample is meaningful, 2) plant associations were largely unaffected by past changes in either levels of atmospheric carbon dioxide or in the seasonal distributions of solar radiation, and 3) plant associations of the past are adequately represented on the modern landscape. To illustrate the application of these MCR and MAT approaches to paleoclimatic reconstructions, we applied them to a Pleistocene paleobotanical assemblage from the western United States. From our examinations of the estimates of modern and past climates from vegetation assemblages, we conclude that

  10. Quantitative estimation of granitoid composition from thermal infrared multispectral scanner (TIMS) data, Desolation Wilderness, northern Sierra Nevada, California

    NASA Technical Reports Server (NTRS)

    Sabine, Charles; Realmuto, Vincent J.; Taranik, James V.

    1994-01-01

    We have produced images that quantitatively depict modal and chemical parameters of granitoids using an image processing algorithm called MINMAP that fits Gaussian curves to normalized emittance spectra recovered from thermal infrared multispectral scanner (TIMS) radiance data. We applied the algorithm to TIMS data from the Desolation Wilderness, an extensively glaciated area near the northern end of the Sierra Nevada batholith that is underlain by Jurassic and Cretaceous plutons that range from diorite and anorthosite to leucogranite. The wavelength corresponding to the calculated emittance minimum lambda(sub min) varies linearly with quartz content, SiO2, and other modal and chemical parameters. Thematic maps of quartz and silica content derived from lambda(sub min) values distinguish bodies of diorite from surrounding granite, identify outcrops of anorthosite, and separate felsic, intermediate, and mafic rocks.

  11. Quantitative estimation of the spin-wave features supported by a spin-torque-driven magnetic waveguide

    SciTech Connect

    Consolo, Giancarlo Currò, Carmela; Valenti, Giovanna

    2014-12-07

    The main features of the spin-waves excited at the threshold via spin-polarized currents in a one-dimensional normally-to-plane magnetized waveguide are quantitatively determined both analytically and numerically. In particular, the dependence of the threshold current, frequency, wavenumber, and decay length is investigated as a function of the size of the nanocontact area through which the electric current is injected. From the analytical viewpoint, such a goal has required to solve the linearized Landau-Lifshitz-Gilbert-Slonczewski equation together with boundary and matching conditions associated with the waveguide geometry. Owing to the complexity of the resulting transcendent system, particular solutions have been obtained in the cases of elongated and contracted nanocontacts. These results have been successfully compared with those arising from numerical integration of the abovementioned transcendent system and with micromagnetic simulations. This quantitative agreement has been achieved thanks to the model here considered which takes explicitly into account the diagonal demagnetizing factors of a rectangular prism as well as the dependence of the relaxation rate on the wavenumber. Our analysis confirmed that the spin-wave features supported by such a waveguide geometry are significantly different from the ones observed in classical two-dimensional nanocontact devices. Moreover, it has been proved that the characteristic parameters depend strongly on the material properties and on the modulus of external field, but they could be independent of the nanocontact length. Finally, it is shown that spin-transfer oscillators based on contracted nanocontacts have a better capability to transmit spin-waves over large distances.

  12. Hawaii Clean Energy Initiative (HCEI) Scenario Analysis: Quantitative Estimates Used to Facilitate Working Group Discussions (2008-2010)

    SciTech Connect

    Braccio, R.; Finch, P.; Frazier, R.

    2012-03-01

    This report provides details on the Hawaii Clean Energy Initiative (HCEI) Scenario Analysis to identify potential policy options and evaluate their impact on reaching the 70% HECI goal, present possible pathways to attain the goal based on currently available technology, with an eye to initiatives under way in Hawaii, and provide an 'order-of-magnitude' cost estimate and a jump-start to action that would be adjusted with a better understanding of the technologies and market.

  13. Quantitative estimation of farmland soil loss by wind-erosion using improved particle-size distribution comparison method (IPSDC)

    NASA Astrophysics Data System (ADS)

    Rende, Wang; Zhongling, Guo; Chunping, Chang; Dengpan, Xiao; Hongjun, Jiang

    2015-12-01

    The rapid and accurate estimation of soil loss by wind erosion still remains challenge. This study presents an improved scheme for estimating the soil loss by wind erosion of farmland. The method estimates the soil loss by wind erosion based on a comparison of the relative contents of erodible and non-erodible particles between the surface and sub-surface layers of the farmland ploughed layer after wind erosion. It is based on the features that the soil particle-size distribution of the sampling soil layer (approximately 2 cm) is relatively uniform, and that on the surface layer, wind erosion causes the relative numbers of erodible and non-erodible particles to decrease and increase, respectively. Estimations were performed using this method for the wind erosion periods (WEP) from Oct. of 2012 to May of 2013 and from Oct. of 2013 to April of 2014 and a large wind-erosion event (WEE) on May 3, 2014 in the Bashang area of Hebei Province. The results showed that the average soil loss of farmland by wind erosion from Oct. of 2012 to May of 2013 was 2852.14 g/m2 with an average depth of 0.21 cm, while soil loss by wind from Oct. of 2013 to April of 2014 was 1199.17 g/m2 with a mean depth of 0.08 cm. During the severe WEE on May 3, 2014, the average soil loss of farmland by wind erosion was 1299.19 g/m2 with an average depth of 0.10 cm. The soil loss by wind erosion of ploughed and raked fields (PRF) was approximately twice as large as that of oat-stubble fields (OSF). The improved method of particle-size distribution comparison (IPSDC) has several advantages. It can not only calculate the wind erosion amount, but also the wind deposition amount. Slight changes in the sampling thickness and in the particle diameter range of the non-erodible particles will not obviously influence the results. Furthermore, the method is convenient, rapid, simple to implement. It is suitable for estimating the soil loss or deposition by wind erosion of farmland with flat surfaces and high

  14. Quantitative assessment of the diagnostic role of human telomerase activity from pancreatic juice in pancreatic cancer.

    PubMed

    Wang, Siliang; Chen, Xiaodong; Tang, Meiyue

    2014-08-01

    Many studies have shown that human telomerase activity could play potential role as a diagnostic biomarker of pancreatic cancer (PaC). The aim of this meta-analysis is to summarize the clinical value of human telomerase activity in the diagnosis of PaC. Eligible studies from PubMed, Embase, the Cochrane Library, Web of Science, Ovid, Sci Verse, Science Direct, Scopus, BioMed Central, Biosis previews, Chinese Biomedical Literature Database (CBM), Chinese National Knowledge Infrastructure (CNKI), Technology of Chongqing (VIP), and Wan Fang databases were searched concerning the diagnostic value of human telomerase activity in PaC without language restriction. The quality of each study was scored with the Quality Assessment of Diagnostic Accuracy Studies (QUADAS). Sensitivity, specificity, positive and negative likelihood ratios (PLR and NLR, respectively), and diagnostic odds ratio (DOR) for human telomerase activity in the diagnosis of PaC were pooled. Summary receiver operating characteristic (SROC) curve analysis and the area under the curve (AUC) were used to estimate the overall test performance. Evidence of heterogeneity was evaluated using the Chi-square and I (2) test. Meta-Disc 1.4 and Stata 12.0 software were used to analyze the data. Nine studies with a total 186 PaC patients and 132 control individuals were included in this meta-analysis. All of the included studies are of high quality (QUADAS score ≥10). The summary estimate was 0.83 (95 % confidence interval (CI), 95 % CI = 0.77-0.88) for sensitivity and 0.72 (95 % CI = 0.64-0.79) for specificity. The positive likelihood (PLR), negative likelihood (NLR), and diagnostic odds (DOR) ratios were 3 (95 % CI = 1.67-5.41), 0.25 (95 % CI = 0.13-0.46), and 3 (95 % CI = 4.91-43.23), respectively. The area under the summary ROC curve (AUC) and Q* index for the diagnosis of PaC were 0.88 and 0.81, respectively. Our study demonstrates that telomerase could be a useful tumor marker for Pa

  15. Development of response surface methodology for optimization of extraction parameters and quantitative estimation of embelin from Embelia ribes Burm by high performance liquid chromatography

    PubMed Central

    Alam, Md. Shamsir; Damanhouri, Zoheir A.; Ahmad, Aftab; Abidin, Lubna; Amir, Mohd; Aqil, Mohd; Khan, Shah Alam; Mujeeb, Mohd

    2015-01-01

    Background: Embelia ribes Burm is widely used medicinal plant for the treatment of different types of disorders in the Indian traditional systems of medicine. Objective: The present work was aimed to optimize the extraction parameters of embelin from E. ribes fruits and also to quantify embelin content in different extracts of the plant. Materials and Methods: Optimization of extraction parameters such as solvent: drug ratio, temperature and time were carried out by response surface methodology (RSM). Quantitative estimation of embelin in different extracts of E. ribes fruits was done through high performance liquid chromatography. Results: The optimal conditions determined for extraction of embelin through RSM were; extraction time (27.50 min), extraction temperature 45°C and solvent: drug ratio (8:1). Under the optimized conditions, the embelin yield (32.71%) was equitable to the expected yield (31.07%, P > 0.05). These results showed that the developed model is satisfactory and suitable for the extraction process of embelin. The analysis of variance showed a high goodness of model fit and the accomplishment of the RSM method for improving embelin extraction from the fruits of E. ribes. Conclusion: It is concluded that this may be a useful method for the extraction and quantitative estimation of embelin from the fruits of E. ribes. PMID:26109763

  16. A semianalytical algorithm for quantitatively estimating sediment and atmospheric deposition flux from MODIS-derived sea ice albedo in the Bohai Sea, China

    NASA Astrophysics Data System (ADS)

    Xu, Zhantang; Hu, Shuibo; Wang, Guifen; Zhao, Jun; Yang, Yuezhong; Cao, Wenxi; Lu, Peng

    2016-05-01

    Quantitative estimates of particulate matter [PM) concentration in sea ice using remote sensing data is helpful for studies of sediment transport and atmospheric dust deposition flux. In this study, the difference between the measured dirty and estimated clean albedo of sea ice was calculated and a relationship between the albedo difference and PM concentration was found using field and laboratory measurements. A semianalytical algorithm for estimating PM concentration in sea ice was established. The algorithm was then applied to MODIS data over the Bohai Sea, China. Comparisons between MODIS derived and in situ measured PM concentration showed good agreement, with a mean absolute percentage difference of 31.2%. From 2005 to 2010, the MODIS-derived annual average PM concentration was approximately 0.025 g/L at the beginning of January. After a month of atmospheric dust deposition, it increased to 0.038 g/L. Atmospheric dust deposition flux was estimated to be 2.50 t/km2/month, similar to 2.20 t/km2/month reported in a previous study. The result was compared with on-site measurements at a nearby ground station. The ground station was close to industrial and residential areas, where larger dust depositions occurred than in the sea, but although there were discrepancies between the absolute magnitudes of the two data sets, they demonstrated similar trends.

  17. A field instrument for quantitative determination of beryllium by activation analysis

    USGS Publications Warehouse

    Vaughn, William W.; Wilson, E.E.; Ohm, J.M.

    1960-01-01

    A low-cost instrument has been developed for quantitative determinations of beryllium in the field by activation analysis. The instrument makes use of the gamma-neutron reaction between gammas emitted by an artificially radioactive source (Sb124) and beryllium as it occurs in nature. The instrument and power source are mounted in a panel-type vehicle. Samples are prepared by hand-crushing the rock to approximately ?-inch mesh size and smaller. Sample volumes are kept constant by means of a standard measuring cup. Instrument calibration, made by using standards of known BeO content, indicates the analyses are reproducible and accurate to within ? 0.25 percent BeO in the range from 1 to 20 percent BeO with a sample counting time of 5 minutes. Sensitivity of the instrument maybe increased somewhat by increasing the source size, the sample size, or by enlarging the cross-sectional area of the neutron-sensitive phosphor normal to the neutron flux.

  18. Quantitative structure-activity relationship of organophosphate compounds based on molecular interaction fields descriptors.

    PubMed

    Zhao, Jinsong; Yu, Shuxia

    2013-03-01

    By using multi-block partial least-squares (MBPLS) method, quantitative structure-activity relationship (QSAR) between 35 organophosphate compounds (OP) and their 24h acute toxicities towards the housefly (Musca nebulo L.) was built on the molecular interaction fields (MIF) descriptors, which were obtained with O, N and DRY as probes, and then normalised with block unscaled weights (BUW) technique. The best QSAR model had 8 principal components, with the coefficient of determination R(2)=0.995 and that of leave-one-out cross-validation Q(2)=0.865, and the corresponding standard deviation of error 0.076 and 0.361, respectively. Block importance in the prediction (BIP) for O, N and DRY probe were 1.030, 0.962 and 1.007, respectively. Contour map of variable coefficients showed that hydrogen bonding between the O atom in PO and the NH groups in acetylcholinesterase (AChE) played an important role in the interaction between OP and AChE. Meanwhile, the hydrophobicity of OP also had significant contribution. QSAR based on the MIF descriptors could be a potential means to interpret the mechanisms of ligand-receptor interaction when the receptor was well known.

  19. Blood-brain barrier permeability mechanisms in view of quantitative structure-activity relationships (QSAR).

    PubMed

    Bujak, Renata; Struck-Lewicka, Wiktoria; Kaliszan, Michał; Kaliszan, Roman; Markuszewski, Michał J

    2015-04-10

    The goal of the present paper was to develop a quantitative structure-activity relationship (QSAR) method using a simple statistical approach, such as multiple linear regression (MLR) for predicting the blood-brain barrier (BBB) permeability of chemical compounds. The "best" MLR models, comprised logP and either molecular mass (M) or isolated atomic energy (E(isol)), tested on a structurally diverse set of 66 compounds, is characterized the by correlation coefficients (R) around 0.8. The obtained models were validated using leave-one-out (LOO) cross-validation technique and the correlation coefficient of leave-one-out- R(LOO)(2) (Q(2)) was at least 0.6. Analysis of a case from legal medicine demonstrated informative value of our QSAR model. To best authors' knowledge the present study is a first application of the developed QSAR models of BBB permeability to case from the legal medicine. Our data indicate that molecular energy-related descriptors, in combination with the well-known descriptors of lipophilicity may have a supportive value in predicting blood-brain distribution, which is of utmost importance in drug development and toxicological studies.

  20. Quantitative structure-activity relationships for nasal pungency thresholds of volatile organic compounds.

    PubMed

    Hau, K M; Connell, D W; Richardson, B J

    1999-01-01

    A model was developed for describing the triggering of nasal pungency in humans, based on the partition of volatile organic compounds (VOCs) between the air phase and the biophase. Two partition parameters are used in the model: the water-air partition coefficient and the octanol-water partition coefficient. The model was validated using data from the literature, principally on alcohols, acetates and ketones. The model suggests that all test compounds, regardless of their chemical functional groups, bind to a common receptor site within the hydrophobic interior of the bilayer membrane of the trigeminal nerve endings. There is probably only a slight, non-specific interaction between the VOC molecule and the receptor molecule, whereas this type of non-specific interaction for the detection of odor is much stronger. In practical terms, the suggestion that all VOCs share a common irritation receptor site implies that nasal-pungency thresholds of individual VOCs may be additive. Quantitative structure-activity relationships (QSARs) for nasal-pungency thresholds were also developed from the model, which can be used to predict nasal-pungency thresholds of common VOCs. Although the present model does not offer additional precision over that of M.H. Abraham et al., 1996, Fundam. Appl. Toxicol. 31, 71-76, it requires fewer descriptors and offers a physiological basis to the QSAR. Another advantage of the present model is that it also provides a basis for comparison between the olfactory process and nasal pungency.

  1. Quantitative structure-activity relationships for the toxicity of chlorophenols to mammalian submitochondrial particles.

    PubMed

    Argese, E; Bettiol, C; Giurin, G; Miana, P

    1999-04-01

    The toxicity of a series of chlorophenols, determined by a short-term in vitro assay utilizing mammalian submitochondrial particles, was related to the physicochemical and structural properties of these compounds. Quantitative Structure-Activity Relationships were defined by correlating EC50 values with six molecular descriptors, chosen to represent lipophilic, electronic and steric effects: the n-octanol/water partition coefficient (log Kow), the constant of Hammett (sigma sigma), the acid dissociation constant (pKa), the first order valence molecular connectivity index (1 chi v), the perimeter of the efficacious section (sigma D) and the melting point (m.p.). The results of regression analysis showed that log Kow is the most successful descriptor, indicating that the ability of chlorophenols to partition into the lipid bilayer of the mitochondrial membrane has an important role in determining their toxic effects. These results are consistent with a molecular mechanism of uncoupling action based on the chemiosmotic theory and on the protonophoric properties of chlorophenols. The quality of the QSAR models confirms the suitability of the SMP assay as a short-term prediction tool for aquatic toxicity of environmental pollutants acting on respiratory functions.

  2. Investigation and prediction of protein precipitation by polyethylene glycol using quantitative structure-activity relationship models.

    PubMed

    Hämmerling, Frank; Ladd Effio, Christopher; Andris, Sebastian; Kittelmann, Jörg; Hubbuch, Jürgen

    2017-01-10

    Precipitation of proteins is considered to be an effective purification method for proteins and has proven its potential to replace costly chromatography processes. Besides salts and polyelectrolytes, polymers, such as polyethylene glycol (PEG), are commonly used for precipitation applications under mild conditions. Process development, however, for protein precipitation steps still is based mainly on heuristic approaches and high-throughput experimentation due to a lack of understanding of the underlying mechanisms. In this work we apply quantitative structure-activity relationships (QSARs) to model two parameters, the discontinuity point m* and the β-value, that describe the complete precipitation curve of a protein under defined conditions. The generated QSAR models are sensitive to the protein type, pH, and ionic strength. It was found that the discontinuity point m* is mainly dependent on protein molecular structure properties and electrostatic surface properties, whereas the β-value is influenced by the variance in electrostatics and hydrophobicity on the protein surface. The models for m* and the β-value exhibit a good correlation between observed and predicted data with a coefficient of determination of R(2)≥0.90 and, hence, are able to accurately predict precipitation curves for proteins. The predictive capabilities were demonstrated for a set of combinations of protein type, pH, and ionic strength not included in the generation of the models and good agreement between predicted and experimental data was achieved.

  3. Quantitative Structure-Activity Relationships for the Nucleophilicity of Trivalent Boron Compounds.

    PubMed

    García-López, Diego; Cid, Jessica; Marqués, Ruben; Fernández, Elena; Carbó, Jorge J

    2017-04-11

    We describe herein the development of quantitative structure-activity relationships (QSAR) for the nucleophilicity of trivalent boron compounds covering boryl fragments bonded to alkali and alkaline-earth metals, to transition metals, and to sp(3) boron units in diboron reagents. We used the charge of the boryl fragment (q[B]) and the boron p/s population ratio (p/s) to describe the electronic structures of boryl moieties, whereas the distance-weighted volume (Vw ) descriptor was used to evaluate the steric effects. The three-term easy-to-interpret QSAR model showed statistical significance and predictive ability (r(2) =0.88, q(2) =0.83). The use of chemically meaningful descriptors has allowed identification of the factors governing the boron nucleophilicity and indicates that the most efficient nucleophiles are those with enhanced the polarization of the B-X bond towards the boron atom and reduced steric bulk. A detailed analysis of the potential energy surfaces of different types of boron substituents has provided insight into the mechanism and established an order of nucleophilicity for boron in B-X: X=Li>Cu>B(sp(3) )>Pd. Finally, we used the QSAR model to make a priori predictions of experimentally untested compounds.

  4. Quantitative estimates of Mid- to late Holocene Climate Variability in northeastern Siberia inferred from chironomids in lake sediments

    NASA Astrophysics Data System (ADS)

    Nazarova, Larisa; Diekmann, Bernhard; Pestrjakova, Ludmila; Herzschuh, Ulrike; Subetto, Dmitry

    2010-05-01

    Yakutia (Russia, northeastern part of Eurasia) represents one of Earths most extreme climatic settings in the world with deep-reaching frozen ground and a semiarid continental climate with highest seasonal temperature contrasts in the northern hemisphere. The amplitude of temperature variations around the year sometimes exceeds 100oC. There are few examples of quantitative palaeoecological studies in Siberia and these data have to be tested by quantitative studies from other sites in this region, inferred from different proxies and using regional calibration datasets and temperature models that are still lacking. Chironomid midges (Insecta, Diptera, Chironomidae) have been widely used to reconstruct past climate variability in many areas of Western Europe and North America. A chironomid-mean July air temperature inference model has been developed, based on a modern calibration set of 200 lakes sampled along a transect from 110° to 159° E and 61° to73° N in northern Russia. The inference model was applied to sediment cores from 2 lakes in the Central Yakutia in order to reconstruct past July air temperatures. The lacustrine records span mid- to late Holocene. The downcore variability in the chironomid assemblages and the composition of organic matter give evidence of climate-driven and interrelated changes in biological productivity, lacustrine trophic states, and lake-level fluctuations. Three phases of the climate development in Central Yakutia can be derived from the geochemical composition of the lake cores and according to the inferred from chironomid assemblages mean July air ToC. Content of organic matters reached maximal values in the period between 7000-4500 yBP. Sedimentation rate is especially high, numerous molluscs shells are found in sediments. All this along with the reconstructed air temperature confirmed that Mid Holocene optimum in Central Yakutia took place in this period with the maximal temperatures up to 4oC above present day ToC. Strong

  5. Methodology for a bounding estimate of activation source-term.

    PubMed

    Culp, Todd

    2013-02-01

    Sandia National Laboratories' Z-Machine is the world's most powerful electrical device, and experiments have been conducted that make it the world's most powerful radiation source. Because Z-Machine is used for research, an assortment of materials can be placed into the machine; these materials can be subjected to a range of nuclear reactions, producing an assortment of activation products. A methodology was developed to provide a systematic approach to evaluate different materials to be introduced into the machine as wire arrays. This methodology is based on experiment specific characteristics, physical characteristics of specific radionuclides, and experience with Z-Machine. This provides a starting point for bounding calculations of radionuclide source-term that can be used for work planning, development of work controls, and evaluating materials for introduction into the machine.

  6. Method to quantitatively estimate wavelength-dependent scattering properties from multidiameter single fiber reflectance spectra measured in a turbid medium.

    PubMed

    Kanick, Stephen C; Gamm, Ute A; Sterenborg, Henricus J C M; Robinson, Dominic J; Amelink, Arjen

    2011-08-01

    This study utilizes experimentally validated Monte Carlo simulations to identify a mathematical formulation of the reflectance intensity collected by a single fiber probe expressed in terms of the reduced scattering coefficient (μs'), fiber diameter d(fiber), and a property of the first two moments of the scattering phase function (γ). This model is then utilized to accurately obtain wavelength-dependent estimates of μs'(λ) and γ(λ) from multiple single fiber spectral measurements of a turbid medium obtained with different diameters. This method returns accurate descriptions (mean residual <3%) of both μs' and γ across the biologically relevant range.

  7. Maximum-likelihood estimation of familial correlations from multivariate quantitative data on pedigrees: a general method and examples.

    PubMed Central

    Rao, D C; Vogler, G P; McGue, M; Russell, J M

    1987-01-01

    A general method for maximum-likelihood estimation of familial correlations from pedigree data is presented. The method is applicable to any type of data structure, including pedigrees in which variable numbers of individuals are present within classes of relatives, data in which multiple phenotypic measures are obtained on each individual, and multiple group analyses in which some correlations are equated across groups. The method is applied to data on high-density lipoprotein cholesterol and total cholesterol levels obtained from participants in the Swedish Twin Family Study. Results indicate that there is strong familial resemblance for both traits but little cross-trait resemblance. PMID:3687943

  8. Modeling number of bacteria per food unit in comparison to bacterial concentration in quantitative risk assessment: impact on risk estimates.

    PubMed

    Pouillot, Régis; Chen, Yuhuan; Hoelzer, Karin

    2015-02-01

    When developing quantitative risk assessment models, a fundamental consideration for risk assessors is to decide whether to evaluate changes in bacterial levels in terms of concentrations or in terms of bacterial numbers. Although modeling bacteria in terms of integer numbers may be regarded as a more intuitive and rigorous choice, modeling bacterial concentrations is more popular as it is generally less mathematically complex. We tested three different modeling approaches in a simulation study. The first approach considered bacterial concentrations; the second considered the number of bacteria in contaminated units, and the third considered the expected number of bacteria in contaminated units. Simulation results indicate that modeling concentrations tends to overestimate risk compared to modeling the number of bacteria. A sensitivity analysis using a regression tree suggests that processes which include drastic scenarios consisting of combinations of large bacterial inactivation followed by large bacterial growth frequently lead to a >10-fold overestimation of the average risk when modeling concentrations as opposed to bacterial numbers. Alternatively, the approach of modeling the expected number of bacteria in positive units generates results similar to the second method and is easier to use, thus potentially representing a promising compromise.

  9. Counseling Persons with Comorbid Disorders: A Quantitative Comparison of Counselor Active Rehabilitation Service and Standard Rehabilitation Counseling Approaches

    ERIC Educational Resources Information Center

    Ferdinandi, Andrew D.; Li, Ming Hui

    2007-01-01

    The purpose of this quantitative study was to investigate the effect of counselor active rehabilitation service compared with the effect of standard rehabilitation counseling in assisting individuals with coexisting psychiatric and substance abuse disorders in attaining desired life roles. This study was conducted during a 6-month period in a…

  10. A quantitative structure-activity relationship to predict efficacy of granular activated carbon adsorption to control emerging contaminants.

    PubMed

    Kennicutt, A R; Morkowchuk, L; Krein, M; Breneman, C M; Kilduff, J E

    2016-08-01

    A quantitative structure-activity relationship was developed to predict the efficacy of carbon adsorption as a control technology for endocrine-disrupting compounds, pharmaceuticals, and components of personal care products, as a tool for water quality professionals to protect public health. Here, we expand previous work to investigate a broad spectrum of molecular descriptors including subdivided surface areas, adjacency and distance matrix descriptors, electrostatic partial charges, potential energy descriptors, conformation-dependent charge descriptors, and Transferable Atom Equivalent (TAE) descriptors that characterize the regional electronic properties of molecules. We compare the efficacy of linear (Partial Least Squares) and non-linear (Support Vector Machine) machine learning methods to describe a broad chemical space and produce a user-friendly model. We employ cross-validation, y-scrambling, and external validation for quality control. The recommended Support Vector Machine model trained on 95 compounds having 23 descriptors offered a good balance between good performance statistics, low error, and low probability of over-fitting while describing a wide range of chemical features. The cross-validated model using a log-uptake (qe) response calculated at an aqueous equilibrium concentration (Ce) of 1 μM described the training dataset with an r(2) of 0.932, had a cross-validated r(2) of 0.833, and an average residual of 0.14 log units.

  11. Quantitative structure-activity relationship modelling of oral acute toxicity and cytotoxic activity of fragrance materials in rodents.

    PubMed

    Papa, E; Luini, M; Gramatica, P

    2009-10-01

    Fragrance materials are used as ingredients in many consumer and personal care products. The wide and daily use of these substances, as well as their mainly uncontrolled discharge through domestic sewage, make fragrance materials both potential indoor and outdoor air pollutants which are also connected to possible toxic effects on humans (asthma, allergies, headaches). Unfortunately, little is known about the environmental fate and toxicity of these substances. However, the use of alternative, predictive approaches, such as quantitative structure-activity relationships (QSARs), can help in filling the data gap and in the characterization of the environmental and toxicological profile of these substances. In the proposed study, ordinary least squares regression-based QSAR models were developed for three toxicological endpoints: mouse oral LD(50), inhibition of NADH-oxidase (EC(50) NADH-Ox) and the effect on mitochondrial membrane potential (EC(50) DeltaPsim). Theoretical molecular descriptors were calculated by using DRAGON software, and the best QSAR models were developed according to the principles defined by the Organization for Economic Co-operation and Development.

  12. Non-Exercise Estimation of VO[subscript 2]max Using the International Physical Activity Questionnaire

    ERIC Educational Resources Information Center

    Schembre, Susan M.; Riebe, Deborah A.

    2011-01-01

    Non-exercise equations developed from self-reported physical activity can estimate maximal oxygen uptake (VO[subscript 2]max) as well as sub-maximal exercise testing. The International Physical Activity Questionnaire is the most widely used and validated self-report measure of physical activity. This study aimed to develop and test a VO[subscript…

  13. Estimating Toxicity Pathway Activating Doses for High Throughput Chemical Risk Assessments

    EPA Science Inventory

    Estimating a Toxicity Pathway Activating Dose (TPAD) from in vitro assays as an analog to a reference dose (RfD) derived from in vivo toxicity tests would facilitate high throughput risk assessments of thousands of data-poor environmental chemicals. Estimating a TPAD requires def...

  14. Augmented multivariate image analysis applied to quantitative structure-activity relationship modeling of the phytotoxicities of benzoxazinone herbicides and related compounds on problematic weeds.

    PubMed

    Freitas, Mirlaine R; Matias, Stella V B G; Macedo, Renato L G; Freitas, Matheus P; Venturin, Nelson

    2013-09-11

    Two of major weeds affecting cereal crops worldwide are Avena fatua L. (wild oat) and Lolium rigidum Gaud. (rigid ryegrass). Thus, development of new herbicides against these weeds is required; in line with this, benzoxazinones, their degradation products, and analogues have been shown to be important allelochemicals and natural herbicides. Despite earlier structure-activity studies demonstrating that hydrophobicity (log P) of aminophenoxazines correlates to phytotoxicity, our findings for a series of benzoxazinone derivatives do not show any relationship between phytotoxicity and log P nor with other two usual molecular descriptors. On the other hand, a quantitative structure-activity relationship (QSAR) analysis based on molecular graphs representing structural shape, atomic sizes, and colors to encode other atomic properties performed very accurately for the prediction of phytotoxicities of these compounds against wild oat and rigid ryegrass. Therefore, these QSAR models can be used to estimate the phytotoxicity of new congeners of benzoxazinone herbicides toward A. fatua L. and L. rigidum Gaud.

  15. Quantitative estimation of the contribution of dust sources to Chinese loess using detrital zircon U-Pb age patterns

    NASA Astrophysics Data System (ADS)

    Zhang, Hanzhi; Lu, Huayu; Xu, Xisheng; Liu, Xiaoming; Yang, Tao; Stevens, Thomas; Bird, Anna; Xu, Zhiwei; Zhang, Tian; Lei, Fang; Feng, Han

    2016-11-01

    The origin and provenance of the loess deposits of the Chinese Loess Plateau (CLP) are still debated. In order to pinpoint the dust sources, surface samples from the piedmont of the Northeastern Tibetan Plateau, the Gobi Altai Mountains, and modern eolian dunes from the Tengger desert and Mu Us sand field were analyzed by using the detrital zircon dating technique. In order to quantitatively discriminate the content of different potential sources, zircon grains of different ages were grouped according to their tectonic origin. Zircon grains aged from 1300 to 550 Ma were assigned to the Northeastern Tibetan Plateau, and grains aged from 550 to 0 Ma to the Northeastern Tibetan Plateau or the Gobi Altai Mountains, or to a combination of the two. Zircon ages of around 2.8 Ga to 1.3 Ga may be a mixture of sources from the Northeastern Tibetan Plateau, Gobi Altai Mountains, or North China Craton. Sediments from the Tengger desert and Mu Us sand field consist of a mixture of the three sources and exhibit a high degree of spatial variability in terms of their source. In the northern part of the two deserts, 43-83% of the sediments are derived from the Gobi Altai Mountains, while in the south, material from the Northeastern Tibetan Plateau comprises 51-98% of the sediments. Loess deposits from the CLP also comprise a mixture of the three different sources, with material from the Northeastern Tibetan Plateau making the dominant contribution (65-100%), with material from the North China Craton and the Gobi Altai Mountains comprising 0-35% and 0-40% of the loess deposits, respectively. The contributions from the three sources to the loess deposits on CLP vary spatially. Application of the novel statistical method of provenance group analysis demonstrates that the loess deposits comprise a mixture of material from a broad region of northern China and that the Northeastern Tibetan Plateau material makes the dominant contribution.

  16. Forensic Comparison and Matching of Fingerprints: Using Quantitative Image Measures for Estimating Error Rates through Understanding and Predicting Difficulty

    PubMed Central

    Kellman, Philip J.; Mnookin, Jennifer L.; Erlikhman, Gennady; Garrigan, Patrick; Ghose, Tandra; Mettler, Everett; Charlton, David; Dror, Itiel E.

    2014-01-01

    Latent fingerprint examination is a complex task that, despite advances in image processing, still fundamentally depends on the visual judgments of highly trained human examiners. Fingerprints collected from crime scenes typically contain less information than fingerprints collected under controlled conditions. Specifically, they are often noisy and distorted and may contain only a portion of the total fingerprint area. Expertise in fingerprint comparison, like other forms of perceptual expertise, such as face recognition or aircraft identification, depends on perceptual learning processes that lead to the discovery of features and relations that matter in comparing prints. Relatively little is known about the perceptual processes involved in making comparisons, and even less is known about what characteristics of fingerprint pairs make particular comparisons easy or difficult. We measured expert examiner performance and judgments of difficulty and confidence on a new fingerprint database. We developed a number of quantitative measures of image characteristics and used multiple regression techniques to discover objective predictors of error as well as perceived difficulty and confidence. A number of useful predictors emerged, and these included variables related to image quality metrics, such as intensity and contrast information, as well as measures of information quantity, such as the total fingerprint area. Also included were configural features that fingerprint experts have noted, such as the presence and clarity of global features and fingerprint ridges. Within the constraints of the overall low error rates of experts, a regression model incorporating the derived predictors demonstrated reasonable success in predicting objective difficulty for print pairs, as shown both in goodness of fit measures to the original data set and in a cross validation test. The results indicate the plausibility of using objective image metrics to predict expert performance and

  17. A quantitative estimate of the function of soft-bottom sheltered coastal areas as essential flatfish nursery habitat

    NASA Astrophysics Data System (ADS)

    Trimoreau, E.; Archambault, B.; Brind'Amour, A.; Lepage, M.; Guitton, J.; Le Pape, O.

    2013-11-01

    Essential fish habitat suitability (EFHS) models and geographic information system (GIS) were combined to describe nursery habitats for three flatfish species (Solea solea, Pleuronectes platessa, Dicologlossa cuneata) in the Bay of Biscay (Western Europe), using physical parameters known or suspected to influence juvenile flatfish spatial distribution and density (i.e. bathymetry, sediment, estuarine influence and wave exposure). The effects of habitat features on juvenile distribution were first calculated from EFHS models, used to identify the habitats in which juvenile are concentrated. The EFHS model for S. solea confirmed previous findings regarding its preference for shallow soft bottom areas and provided new insights relating to the significant effect of wave exposure on nursery habitat suitability. The two other models extended these conclusions with some discrepancies among species related to their respective niches. Using a GIS, quantitative density maps were produced from EFHS models predictions. The respective areas of the different habitats were determined and their relative contributions (density × area) to the total amount of juveniles were calculated at the scale of stock management, in the Bay of Biscay. Shallow and muddy areas contributed to 70% of total juvenile relative abundance whereas only representing 16% of the coastal area, suggesting that they should be considered as essential habitats for these three flatfish species. For S. solea and P. platessa, wave exposure explained the propensity for sheltered areas, where concentration of juveniles was higher. Distribution maps of P. platessa and D. cuneata juveniles also revealed opposite spatial and temporal trends which were explained by the respective biogeographical distributions of these two species, close to their southern and northern limit respectively, and by their responses to hydroclimatic trends.

  18. Forensic comparison and matching of fingerprints: using quantitative image measures for estimating error rates through understanding and predicting difficulty.

    PubMed

    Kellman, Philip J; Mnookin, Jennifer L; Erlikhman, Gennady; Garrigan, Patrick; Ghose, Tandra; Mettler, Everett; Charlton, David; Dror, Itiel E

    2014-01-01

    Latent fingerprint examination is a complex task that, despite advances in image processing, still fundamentally depends on the visual judgments of highly trained human examiners. Fingerprints collected from crime scenes typically contain less information than fingerprints collected under controlled conditions. Specifically, they are often noisy and distorted and may contain only a portion of the total fingerprint area. Expertise in fingerprint comparison, like other forms of perceptual expertise, such as face recognition or aircraft identification, depends on perceptual learning processes that lead to the discovery of features and relations that matter in comparing prints. Relatively little is known about the perceptual processes involved in making comparisons, and even less is known about what characteristics of fingerprint pairs make particular comparisons easy or difficult. We measured expert examiner performance and judgments of difficulty and confidence on a new fingerprint database. We developed a number of quantitative measures of image characteristics and used multiple regression techniques to discover objective predictors of error as well as perceived difficulty and confidence. A number of useful predictors emerged, and these included variables related to image quality metrics, such as intensity and contrast information, as well as measures of information quantity, such as the total fingerprint area. Also included were configural features that fingerprint experts have noted, such as the presence and clarity of global features and fingerprint ridges. Within the constraints of the overall low error rates of experts, a regression model incorporating the derived predictors demonstrated reasonable success in predicting objective difficulty for print pairs, as shown both in goodness of fit measures to the original data set and in a cross validation test. The results indicate the plausibility of using objective image metrics to predict expert performance and

  19. Toxicity of substituted anilines to Pseudokirchneriella subcapitata and quantitative structure-activity relationship analysis for polar narcotics.

    PubMed

    Chen, Chung-Yuan; Ko, Chia-Wen; Lee, Po-I

    2007-06-01

    This study evaluated the toxic effects of substituted anilines on Pseudokirchneriella subcapitata with the use of a closed algal toxicity testing technique with no headspace. Two response endpoints (i.e., dissolved oxygen production [DO] and algal growth rate) were used to evaluate the toxicity of anilines. Both DO and growth rate endpoints revealed similar sensitivity to the effects of anilines. However, trichloroanilines showed stronger inhibitory effects on microalgal photosynthetic reactions than that on algal growth. For various aquatic organisms, the relative sensitivity relationship for anilines is Daphnia magna > luminescent bacteria (Microtox) > or = Pocelia reticulata > or = Pseudokirchneriella subcapitata > or = fathead minnow > Tetrahymena pyriformis. The susceptibility of P. subcapitata to anilines is similar to fish, but P. subcapitata is apparently less sensitive than the water flea. The lack of correlation between the toxicity revealed by different aquatic organisms (microalgae, D. magna, luminescent bacteria, and P. reticulata) suggests that anilines might have different metabolic routes in these organisms. Both hydrogen bonding donor capacity (the lowest unoccupied molecular orbital energy, Elumo) and hydrophobicity (1-octanol:water partition coefficient, Kow) were found to provide satisfactory descriptions for the toxicity of polar narcotics (substituted anilines and chlorophenols). Quantitative structure-activity relationships (QSARs) based on Elumo, log Kow, or both values were established with r2 values varying from 0.75 to 0.92. The predictive power for the QSAR models were found to be satisfactory through leave-one-out cross-validation. Such relationships could provide useful information for the estimation of toxicity for other polar narcotic compounds.

  20. Minimizing within-experiment and within-group effects in Activation Likelihood Estimation meta-analyses.

    PubMed

    Turkeltaub, Peter E; Eickhoff, Simon B; Laird, Angela R; Fox, Mick; Wiener, Martin; Fox, Peter

    2012-01-01

    Activation Likelihood Estimation (ALE) is an objective, quantitative technique for coordinate-based meta-analysis (CBMA) of neuroimaging results that has been validated for a variety of uses. Stepwise modifications have improved ALE's theoretical and statistical rigor since its introduction. Here, we evaluate two avenues to further optimize ALE. First, we demonstrate that the maximum contribution of an experiment makes to an ALE map is related to the number of foci it reports and their proximity. We present a modified ALE algorithm that eliminates these within-experiment effects. However, we show that these effects only account for 2-3% of cumulative ALE values, and removing them has little impact on thresholded ALE maps. Next, we present an alternate organizational approach to datasets that prevents subject groups with multiple experiments in a dataset from influencing ALE values more than others. This modification decreases cumulative ALE values by 7-9%, changes the relative magnitude of some clusters, and reduces cluster extents. Overall, differences between results of the standard approach and these new methods were small. This finding validates previous ALE reports against concerns that they were driven by within-experiment or within-group effects. We suggest that the modified ALE algorithm is theoretically advantageous compared with the current algorithm, and that the alternate organization of datasets is the most conservative approach for typical ALE analyses and other CBMA methods. Combining the two modifications minimizes both within-experiment and within-group effects, optimizing the degree to which ALE values represent concordance of findings across independent reports.

  1. Quantitative testing of the methodology for genome size estimation in plants using flow cytometry: a case study of the Primulina genus.

    PubMed

    Wang, Jing; Liu, Juan; Kang, Ming

    2015-01-01

    Flow cytometry (FCM) is a commonly used method for estimating genome size in many organisms. The use of FCM in plants is influenced by endogenous fluorescence inhibitors and may cause an inaccurate estimation of genome size; thus, falsifying the relationship between genome size and phenotypic traits/ecological performance. Quantitative optimization of FCM methodology minimizes such errors, yet there are few studies detailing this methodology. We selected the genus Primulina, one of the most representative and diverse genera of the Old World Gesneriaceae, to evaluate the methodology effect on determining genome size. Our results showed that buffer choice significantly affected genome size estimation in six out of the eight species examined and altered the 2C-value (DNA content) by as much as 21.4%. The staining duration and propidium iodide (PI) concentration slightly affected the 2C-value. Our experiments showed better histogram quality when the samples were stained for 40 min at a PI concentration of 100 μg ml(-1). The quality of the estimates was not improved by 1-day incubation in the dark at 4°C or by centrifugation. Thus, our study determined an optimum protocol for genome size measurement in Primulina: LB01 buffer supplemented with 100 μg ml(-1) PI and stained for 40 min. This protocol also demonstrated a high universality in other Gesneriaceae genera. We report the genome size of nine Gesneriaceae species for the first time. The results showed substantial genome size variation both within and among the species, with the 2C-value ranging between 1.62 and 2.71 pg. Our study highlights the necessity of optimizing the FCM methodology prior to obtaining reliable genome size estimates in a given taxon.

  2. Quantitative structure–activity relationship analysis of the pharmacology of para-substituted methcathinone analogues

    PubMed Central

    Bonano, J S; Banks, M L; Kolanos, R; Sakloth, F; Barnier, M L; Glennon, R A; Cozzi, N V; Partilla, J S; Baumann, M H; Negus, S S

    2015-01-01

    Background and Purpose Methcathinone (MCAT) is a potent monoamine releaser and parent compound to emerging drugs of abuse including mephedrone (4-CH3 MCAT), the para-methyl analogue of MCAT. This study examined quantitative structure–activity relationships (QSAR) for MCAT and six para-substituted MCAT analogues on (a) in vitro potency to promote monoamine release via dopamine and serotonin transporters (DAT and SERT, respectively), and (b) in vivo modulation of intracranial self-stimulation (ICSS), a behavioural procedure used to evaluate abuse potential. Neurochemical and behavioural effects were correlated with steric (Es), electronic (σp) and lipophilic (πp) parameters of the para substituents. Experimental Approach For neurochemical studies, drug effects on monoamine release through DAT and SERT were evaluated in rat brain synaptosomes. For behavioural studies, drug effects were tested in male Sprague-Dawley rats implanted with electrodes targeting the medial forebrain bundle and trained to lever-press for electrical brain stimulation. Key Results MCAT and all six para-substituted analogues increased monoamine release via DAT and SERT and dose- and time-dependently modulated ICSS. In vitro selectivity for DAT versus SERT correlated with in vivo efficacy to produce abuse-related ICSS facilitation. In addition, the Es values of the para substituents correlated with both selectivity for DAT versus SERT and magnitude of ICSS facilitation. Conclusions and Implications Selectivity for DAT versus SERT in vitro is a key determinant of abuse-related ICSS facilitation by these MCAT analogues, and steric aspects of the para substituent of the MCAT scaffold (indicated by Es) are key determinants of this selectivity. PMID:25438806

  3. Quantitative Determination of Stilbenoids and Dihydroisocoumarins in Shorea roxburghii and Evaluation of Their Hepatoprotective Activity

    PubMed Central

    Ninomiya, Kiyofumi; Chaipech, Saowanee; Kunikata, Yusuke; Yagi, Ryohei; Pongpiriyadacha, Yutana; Muraoka, Osamu; Morikawa, Toshio

    2017-01-01

    A simultaneous quantitative analytical method for 13 stilbenoids including (−)-hopeaphenol (1), (+)-isohopeaphenol (2), hemsleyanol D (3), (−)-ampelopsin H (4), vaticanols A (5), E (6), and G (7), (+)-α-viniferin (8), pauciflorol A (9), hopeafuran (10), (−)-balanocarpol (11), (−)-ampelopsin A (12), and trans-resveratrol 10-C-β-d-glucopyranoside (13), and two dihydroisocoumarins, phayomphenols A1 (14) and A2 (15) in the extract of Shorea roxburghii (dipterocarpaceae) was developed. According to the established protocol, distributions of these 15 polyphenols (1–15) in the bark and wood parts of S. roxburghii and a related plant Cotylelobium melanoxylon were evaluated. In addition, the principal polyphenols (1, 2, 8, 13–15) exhibited hepatoprotective effects against d-galactosamine (d-galN)/lipopolysaccharide (LPS)-induced liver injury in mice at a dose of 100 or 200 mg/kg, p.o. To characterize the mechanisms of action, the isolates were examined in in vitro studies assessing their effects on (i) d-GalN-induced cytotoxicity in primary cultured mouse hepatocytes; (ii) LPS-induced nitric oxide (NO) production in mouse peritoneal macrophages; and (iii) tumor necrosis factor-α (TNF-α)-induced cytotoxicity in L929 cells. The mechanisms of action of these polyphenols (1, 2, and 8) were suggested to be dependent on the inhibition of LPS-induced macrophage activation and reduction of sensitivity of hepatocytes to TNF-α. However, none of the isolates reduced the cytotoxicity caused by d-GalN. PMID:28230758

  4. Quantitative structure-activity relationships (QSARs) for estrogen binding to the estrogen receptor: predictions across species.

    PubMed Central

    Tong, W; Perkins, R; Strelitz, R; Collantes, E R; Keenan, S; Welsh, W J; Branham, W S; Sheehan, D M

    1997-01-01

    The recognition of adverse effects due to environmental endocrine disruptors in humans and wildlife has focused attention on the need for predictive tools to select the most likely estrogenic chemicals from a very large number of chemicals for subsequent screening and/or testing for potential environmental toxicity. A three-dimensional quantitative structure-activity relationship (QSAR) model using comparative molecular field analysis (CoMFA) was constructed based on relative binding affinity (RBA) data from an estrogen receptor (ER) binding assay using calf uterine cytosol. The model demonstrated significant correlation of the calculated steric and electrostatic fields with RBA and yielded predictions that agreed well with experimental values over the entire range of RBA values. Analysis of the CoMFA three-dimensional contour plots revealed a consistent picture of the structural features that are largely responsible for the observed variations in RBA. Importantly, we established a correlation between the predicted RBA values for calf ER and their actual RBA values for human ER. These findings suggest a means to begin to construct a more comprehensive estrogen knowledge base by combining RBA assay data from multiple species in 3D-QSAR based predictive models, which could then be used to screen untested chemicals for their potential to bind to the ER. Another QSAR model was developed based on classical physicochemical descriptors generated using the CODESSA (Comprehensive Descriptors for Structural and Statistical Analysis) program. The predictive ability of the CoMFA model was superior to the corresponding CODESSA model. Images Figure 2. Figure 3. Figure 4. Figure 5. PMID:9353176

  5. Quantitative estimate of heat flow from a mid-ocean ridge axial valley, Raven field, Juan de Fuca Ridge: Observations and inferences

    NASA Astrophysics Data System (ADS)

    Salmi, Marie S.; Johnson, H. Paul; Tivey, Maurice A.; Hutnak, Michael

    2014-09-01

    A systematic heat flow survey using thermal blankets within the Endeavour segment of the Juan de Fuca Ridge axial valley provides quantitative estimates of the magnitude and distribution of conductive heat flow at a mid-ocean ridge, with the goal of testing current models of hydrothermal circulation present within newly formed oceanic crust. Thermal blankets were deployed covering an area of 700 by 450 m in the Raven Hydrothermal vent field area located 400 m north of the Main Endeavour hydrothermal field. A total of 176 successful blanket deployment sites measured heat flow values that ranged from 0 to 31 W m-2. Approximately 53% of the sites recorded values lower than 100 mW m-2, suggesting large areas of seawater recharge and advective extraction of lithospheric heat. High heat flow values were concentrated around relatively small "hot spots." Integration of heat flow values over the Raven survey area gives an estimate of conductive heat output of 0.3 MW, an average of 0.95 W m-2, over the survey area. Fluid circulation cell dimensions and scaling equations allow calculation of a Rayleigh number of approximately 700 in Layer 2A. The close proximity of high and low heat flow areas, coupled with previous estimates of surficial seafloor permeability, argues for the presence of small-scale hydrothermal fluid circulation cells within the high-porosity uppermost crustal layer of the axial seafloor.

  6. Comparison of optical microscopy and quantitative polymerase chain reaction for estimating parasitaemia in patients with kala-azar and modelling infectiousness to the vector Lutzomyia longipalpis

    PubMed Central

    Silva, Jailthon C; Zacarias, Danielle A; Silva, Vladimir C; Rolão, Nuno; Costa, Dorcas L; Costa, Carlos HN

    2016-01-01

    Currently, the only method for identifying infective hosts with Leishmania infantum to the vector Lutzomyia longipalpis is xenodiagnosis. More recently, quantitative polymerase chain reaction (qPCR) has been used to model human reservoir competence by assuming that detection of parasite DNA indicates the presence of viable parasites for infecting vectors. Since this assumption has not been proven, this study aimed to verify this hypothesis. The concentration of amastigotes in the peripheral blood of 30 patients with kala-azar was microscopically verified by leukoconcentration and was compared to qPCR estimates. Parasites were identified in 4.8 mL of peripheral blood from 67% of the patients, at a very low concentration (average 0.3 parasites/mL). However, qPCR showed 93% sensitivity and the estimated parasitaemia was over a thousand times greater, both in blood and plasma, with higher levels in plasma than in blood. Furthermore, the microscopic count of circulating parasites and the qPCR parasitaemia estimates were not mathematically compatible with the published proportions of infected sandflies in xenodiagnostic studies. These findings suggest that qPCR does not measure the concentration of circulating parasites, but rather measures DNA from other sites, and that blood might not be the main source of infection for vectors. PMID:27439033

  7. Quantitative volcanic susceptibility analysis of Lanzarote and Chinijo Islands based on kernel density estimation via a linear diffusion process.

    PubMed

    Galindo, I; Romero, M C; Sánchez, N; Morales, J M

    2016-06-06

    Risk management stakeholders in high-populated volcanic islands should be provided with the latest high-quality volcanic information. We present here the first volcanic susceptibility map of Lanzarote and Chinijo Islands and their submarine flanks based on updated chronostratigraphical and volcano structural data, as well as on the geomorphological analysis of the bathymetric data of the submarine flanks. The role of the structural elements in the volcanic susceptibility analysis has been reviewed: vents have been considered since they indicate where previous eruptions took place; eruptive fissures provide information about the stress field as they are the superficial expression of the dyke conduit; eroded dykes have been discarded since they are single non-feeder dykes intruded in deep parts of Miocene-Pliocene volcanic edifices; main faults have been taken into account only in those cases where they could modified the superficial movement of magma. The application of kernel density estimation via a linear diffusion process for the volcanic susceptibility assessment has been applied successfully to Lanzarote and could be applied to other fissure volcanic fields worldwide since the results provide information about the probable area where an eruption could take place but also about the main direction of the probable volcanic fissures.

  8. Quantitative volcanic susceptibility analysis of Lanzarote and Chinijo Islands based on kernel density estimation via a linear diffusion process

    NASA Astrophysics Data System (ADS)

    Galindo, I.; Romero, M. C.; Sánchez, N.; Morales, J. M.

    2016-06-01

    Risk management stakeholders in high-populated volcanic islands should be provided with the latest high-quality volcanic information. We present here the first volcanic susceptibility map of Lanzarote and Chinijo Islands and their submarine flanks based on updated chronostratigraphical and volcano structural data, as well as on the geomorphological analysis of the bathymetric data of the submarine flanks. The role of the structural elements in the volcanic susceptibility analysis has been reviewed: vents have been considered since they indicate where previous eruptions took place; eruptive fissures provide information about the stress field as they are the superficial expression of the dyke conduit; eroded dykes have been discarded since they are single non-feeder dykes intruded in deep parts of Miocene-Pliocene volcanic edifices; main faults have been taken into account only in those cases where they could modified the superficial movement of magma. The application of kernel density estimation via a linear diffusion process for the volcanic susceptibility assessment has been applied successfully to Lanzarote and could be applied to other fissure volcanic fields worldwide since the results provide information about the probable area where an eruption could take place but also about the main direction of the probable volcanic fissures.

  9. Anatomical and Functional Estimations of Brachial Artery Diameter and Elasticity Using Oscillometric Measurements with a Quantitative Approach.

    PubMed

    Yoshinaga, Keiichiro; Fujii, Satoshi; Tomiyama, Yuuki; Takeuchi, Keisuke; Tamaki, Nagara

    2016-07-01

    Noninvasive vascular function measurement plays an important role in detecting early stages of atherosclerosis and in evaluating therapeutic responses. In this regard, recently, new vascular function measurements have been developed. These new measurements have been used to evaluate vascular function in coronary arteries, large aortic arteries, or peripheral arteries. Increasing vascular diameter represents vascular remodeling related to atherosclerosis. Attenuated vascular elasticity may be a reliable marker for atherosclerotic risk assessment. However, previous measurements for vascular diameter and vascular elasticity have been complex, operator-dependent, or invasive. Therefore, simple and reliable approaches have been sought. We recently developed a new automated oscillometric method to measure the estimated area (eA) of a brachial artery and its volume elastic modulus (VE). In this review, we further report on this new measurement and other vascular measurements. We report on the reliability of the new automated oscillometric measurement of eA and VE. Based on our findings, this measurement technique should be a reliable approach, and this modality may have practical application to automatically assess muscular artery diameter and elasticity in clinical or epidemiological settings. In this review, we report the characteristics of our new oscillometric measurements and other related vascular function measurements.

  10. Anatomical and Functional Estimations of Brachial Artery Diameter and Elasticity Using Oscillometric Measurements with a Quantitative Approach

    PubMed Central

    Yoshinaga, Keiichiro; Fujii, Satoshi; Tomiyama, Yuuki; Takeuchi, Keisuke; Tamaki, Nagara

    2016-01-01

    Noninvasive vascular function measurement plays an important role in detecting early stages of atherosclerosis and in evaluating therapeutic responses. In this regard, recently, new vascular function measurements have been developed. These new measurements have been used to evaluate vascular function in coronary arteries, large aortic arteries, or peripheral arteries. Increasing vascular diameter represents vascular remodeling related to atherosclerosis. Attenuated vascular elasticity may be a reliable marker for atherosclerotic risk assessment. However, previous measurements for vascular diameter and vascular elasticity have been complex, operator-dependent, or invasive. Therefore, simple and reliable approaches have been sought. We recently developed a new automated oscillometric method to measure the estimated area (eA) of a brachial artery and its volume elastic modulus (VE). In this review, we further report on this new measurement and other vascular measurements. We report on the reliability of the new automated oscillometric measurement of eA and VE. Based on our findings, this measurement technique should be a reliable approach, and this modality may have practical application to automatically assess muscular artery diameter and elasticity in clinical or epidemiological settings. In this review, we report the characteristics of our new oscillometric measurements and other related vascular function measurements. PMID:27493898

  11. Quantitative thermography for the estimation of the U-value: state of the art and a case study

    NASA Astrophysics Data System (ADS)

    Nardi, Iole; Sfarra, Stefano; Ambrosini, Dario

    2014-11-01

    Energy consumption of buildings could be significantly reduced by improving the efficiency of the envelope. Currently, the estimation of the energy performance of existing buildings requires the knowledge of the overall heat transfer coefficient (U-value) of the walls. U-values can be calculated through a theoretical approach, knowing the thermal conductivity and thickness of each material that constitutes the wall stratigraphy, from project data or coring. Alternatively, U-values can be obtained experimentally, through the ISO recommended heat flow meter measurements. Although generally accepted, the heat flow meter method suffers from some disadvantages. Recently, an alternative approach based on infrared thermography (IRT) has been proposed for in situ measurements. Main advantages of this new approach are non invasivity and the possibility of inspecting relatively large areas in real time. In this paper, after a brief description of the state of the art in the field of U-value measurement by IRT, a case study is described. In particular, the results obtained by IRT on an existing building are compared with U-values given by the standard ISO calculation and heat flow meter measurements; advantages and limitations of the new method are outlined. Some suggestions for a successful exploiting of the IRT approach are also given.

  12. Development and Validation of an RP-HPLC Method for Quantitative Estimation of Eslicarbazepine Acetate in Bulk Drug and Tablets.

    PubMed

    Singh, M; Kumar, L; Arora, P; Mathur, S C; Saini, P K; Singh, R M; Singh, G N

    2013-11-01

    A convenient, simple, accurate, precise and reproducible RP-HPLC method was developed and validated for the estimation of eslicarbazepine acetate in bulk drug and tablet dosage form. Objective was achieved under optimised chromatographic conditions on Dionex RP-HPLC system with Dionex C18 column (250×4.6 mm, 5 μm particle size) using mobile phase composed of methanol and ammonium acetate (0.005 M) in the ratio of 70:30 v/v. The separation was achieved using an isocratic elution method with a flow rate of 1.0 ml/ min at room temperature. The effluent was monitored at 230 nm using diode array detector. The retention time of eslicarbazepine acetate is found to be 4.9 min and the standard calibration plot was linear over a concentration range of 10-90 μg/ml with r(2)=0.9995. The limit of detection and quantification were found to be 3.144 and 9.52 μg/ml, respectively. The amount of eslicarbazepine acetate in bulk and tablet dosage form was found to be 99.19 and 97.88%, respectively. The method was validated statistically using the percent relative standard deviation and the values are found to be within the limits. The recovery studies were performed and the percentage recoveries were found to be 98.33± 0.5%.

  13. [Quantitative criteria for the estimation of the effectiveness of bioluminescence expression in natural and transgenic luminescent bacteria].

    PubMed

    Gusev, A A; Kargatova, T V; Medvedeva, S E; Popova, L Iu

    2008-01-01

    Computation coefficients for estimating the effectiveness of bioluminescence expression in natural luminescent bacteria P. leiognathi 54 and transgenic strain E. coli Z905/pPHL7 bearing lux-operon in multicopy plasmid are suggested, and their use on the molecular, cell, and population levels was considered. It was shown that, on the population level, all transgenic variants got the better of natural variants of P. leiognathi 54 irrespective of the type of lux-operon regulation. On the cell level, in the bright and dim variants of the transgenic strain, the effectiveness of bioluminescence expression increases by several orders. On the level of one lux-operon, the effectiveness of expression of the bright variant of transgenic strain is substantially higher than in the natural bright variant; in dim variants, the efficiency values are similar, and the effectiveness of bioluminescence expression in the dark variant of E. coli Z905-2 /pPHL7 is by two orders lower than that in the dark variant of P. leiognathi 54.

  14. Quantitative volcanic susceptibility analysis of Lanzarote and Chinijo Islands based on kernel density estimation via a linear diffusion process

    PubMed Central

    Galindo, I.; Romero, M. C.; Sánchez, N.; Morales, J. M.

    2016-01-01

    Risk management stakeholders in high-populated volcanic islands should be provided with the latest high-quality volcanic information. We present here the first volcanic susceptibility map of Lanzarote and Chinijo Islands and their submarine flanks based on updated chronostratigraphical and volcano structural data, as well as on the geomorphological analysis of the bathymetric data of the submarine flanks. The role of the structural elements in the volcanic susceptibility analysis has been reviewed: vents have been considered since they indicate where previous eruptions took place; eruptive fissures provide information about the stress field as they are the superficial expression of the dyke conduit; eroded dykes have been discarded since they are single non-feeder dykes intruded in deep parts of Miocene-Pliocene volcanic edifices; main faults have been taken into account only in those cases where they could modified the superficial movement of magma. The application of kernel density estimation via a linear diffusion process for the volcanic susceptibility assessment has been applied successfully to Lanzarote and could be applied to other fissure volcanic fields worldwide since the results provide information about the probable area where an eruption could take place but also about the main direction of the probable volcanic fissures. PMID:27265878

  15. Measuring slope to improve energy expenditure estimates during field-based activities.

    PubMed

    Duncan, Glen E; Lester, Jonathan; Migotsky, Sean; Higgins, Lisa; Borriello, Gaetano

    2013-03-01

    This technical note describes methods to improve activity energy expenditure estimates by using a multi-sensor board (MSB) to measure slope. Ten adults walked over a 4-km (2.5-mile) course wearing an MSB and mobile calorimeter. Energy expenditure was estimated using accelerometry alone (base) and 4 methods to measure slope. The barometer and global positioning system methods improved accuracy by 11% from the base (p < 0.05) to 86% overall. Measuring slope using the MSB improves energy expenditure estimates during field-based activities.

  16. Structural similarity based kriging for quantitative structure activity and property relationship modeling.

    PubMed

    Teixeira, Ana L; Falcao, Andre O

    2014-07-28

    Structurally similar molecules tend to have similar properties, i.e. closer molecules in the molecular space are more likely to yield similar property values while distant molecules are more likely to yield different values. Based on this principle, we propose the use of a new method that takes into account the high dimensionality of the molecular space, predicting chemical, physical, or biological properties based on the most similar compounds with measured properties. This methodology uses ordinary kriging coupled with three different molecular similarity approaches (based on molecular descriptors, fingerprints, and atom matching) which creates an interpolation map over the molecular space that is capable of predicting properties/activities for diverse chemical data sets. The proposed method was tested in two data sets of diverse chemical compounds collected from the literature and preprocessed. One of the data sets contained dihydrofolate reductase inhibition activity data, and the second molecules for which aqueous solubility was known. The overall predictive results using kriging for both data sets comply with the results obtained in the literature using typical QSPR/QSAR approaches. However, the procedure did not involve any type of descriptor selection or even minimal information about each problem, suggesting that this approach is directly applicable to a large spectrum of problems in QSAR/QSPR. Furthermore, the predictive results improve significantly with the similarity threshold between the training and testing compounds, allowing the definition of a confidence threshold of similarity and error estimation for each case inferred. The use of kriging for interpolation over the molecular metric space is independent of the training data set size, and no reparametrizations are necessary when more compounds are added or removed from the set, and increasing the size of the database will consequentially improve the quality of the estimations. Finally it is shown

  17. Time estimation during prolonged sleep deprivation and its relation to activation measures.

    PubMed

    Miró, Elena; Cano, M Carmen; Espinosa-Fernández, Lourdes; Buela-Casal, Gualberto

    2003-01-01

    This is the first study to analyze variations in time estimation during 60 h of sleep deprivation and the relation between time estimation performance and the activation measures of skin resistance level, body temperature, and Stanford Sleepiness Scale (SSS) scores. Among 30 healthy participants 18 to 24 years of age, for a 10-s interval using the production method, we found a lengthening in time estimations that was modulated by circadian oscillations. No differences in gender were found in the time estimation task during sleep deprivation. The variations in time estimation correlated significantly with body temperature, skin resistance level, and SSS throughout the sleep deprivation period. When body temperature is elevated, indicating a high level of activation, the interval tends to be underestimated, and vice versa. When the skin resistance level or SSS is elevated (low activation), time estimation is lengthened, and vice versa. This lengthening is important because many everyday situations involve duration estimation under moderate to severe sleep loss. Actual or potential applications of this research include transportation systems, emergency response work, sporting activities, and industrial settings in which accuracy in anticipation or coincidence timing is important for safety or efficiency.

  18. Quantitative estimate of Antarctic Intermediate Water contributions from the Drake Passage and the southwest Indian Ocean to the South Atlantic

    NASA Astrophysics Data System (ADS)

    You, Yuzhu

    2002-04-01

    Recently obtained World Ocean Circulation Experiment (WOCE) bottle sections and a pre-WOCE bottle data set are used in a water mass mixing model. The mixing scheme comprises three intermediate water sources: Antarctic Intermediate Water (AAIW) from the northern Drake Passage, a combination source of the Indian Ocean intermediate waters entering from south of Africa, and a transformed end-member of the former two sources. I call them dAAIW, iAAIW, and aAAIW, respectively. The dAAIW originates from the southeast South Pacific, enters the South Atlantic in the northern Drake Passage, and is modified in the Falkland Current loop. The iAAIW is a combination of the Indian Ocean sources including Red Sea Intermediate Water, Indonesian Intermediate Water, and AAIW formed locally in the south central Indian Ocean and transformed dAAIW that has returned following a loop through the Indian Ocean. The aAAIW is a transformed end-member of a mixture of dAAIW and iAAIW located in the eastern tropical South Atlantic, characterized by an oxygen minimum and nutrient maxima. Although aAAIW is not an import source like dAAIW and iAAIW, it spans property fields to extrema as a result of water mass mixing and transformation processes and therefore must be included in the basin-wide water mass mixing scheme. The study is performed on five neutral surfaces that encompass the AAIW layer from 700 to 1200 dbar in the subtropical latitudes with a distance of about 100 dbar between a pair of surfaces. Four conservative variables of potential temperature, salinity, initial phosphate (PO4o), and NO and one conservative dynamical tracer fN2 (where f is the Coriolis frequency and N2 is the squared buoyancy frequency) are used as input information to the mixing model. The model-derived mixing fraction gives a quantitative description of AAIW sources when they are mapped onto neutral surfaces. The contoured pattern of mixing fraction shows water mass spreading paths, thus implying circulation and

  19. Comparison Of Quantitative Precipitation Estimates Derived From Rain Gauge And Radar Derived Algorithms For Operational Flash Flood Support.

    NASA Astrophysics Data System (ADS)

    Streubel, D. P.; Kodama, K.

    2014-12-01

    To provide continuous flash flood situational awareness and to better differentiate severity of ongoing individual precipitation events, the National Weather Service Research Distributed Hydrologic Model (RDHM) is being implemented over Hawaii and Alaska. In the implementation process of RDHM, three gridded precipitation analyses are used as forcing. The first analysis is a radar only precipitation estimate derived from WSR-88D digital hybrid reflectivity, a Z-R relationship and aggregated into an hourly ¼ HRAP grid. The second analysis is derived from a rain gauge network and interpolated into an hourly ¼ HRAP grid using PRISM climatology. The third analysis is derived from a rain gauge network where rain gauges are assigned static pre-determined weights to derive a uniform mean areal precipitation that is applied over a catchment on a ¼ HRAP grid. To assess the effect of different QPE analyses on the accuracy of RDHM simulations and to potentially identify a preferred analysis for operational use, each QPE was used to force RDHM to simulate stream flow for 20 USGS peak flow events. An evaluation of the RDHM simulations was focused on peak flow magnitude, peak flow timing, and event volume accuracy to be most relevant for operational use. Results showed RDHM simulations based on the observed rain gauge amounts were more accurate in simulating peak flow magnitude and event volume relative to the radar derived analysis. However this result was not consistent for all 20 events nor was it consistent for a few of the rainfall events where an annual peak flow was recorded at more than one USGS gage. Implications of this indicate that a more robust QPE forcing with the inclusion of uncertainty derived from the three analyses may provide a better input for simulating extreme peak flow events.

  20. A first calibration of nonmarine ostracod species for the quantitative estimation of Pleistocene climate change in southern Africa

    NASA Astrophysics Data System (ADS)

    Horne, D. J.; Martens, K.

    2009-04-01

    Although qualitative statements have been made about general climatic conditions in southern Africa during the Pleistocene, there are few quantifiable palaeoclimatic data based on field evidence, especially regarding whether the area was wetter or drier during the Last Glacial Maximum. Such information is critical in validating models of climate change, both in spatial and temporal dimensions. As an essential preliminary step towards palaeoclimate reconstructions using fossil ostracods from cored lake sediment sequences, we have calibrated a training set of living ostracod species' distributions against a modern climate dataset and other available environmental data. The modern ostracod dataset is based on the collections in the Royal Belgian Institute of Natural Sciences in Brussels, which constitutes the most diverse and comprehensive collection of southern African nonmarine ostracods available anywhere in the world. To date, c. 150 nominal species have been described from southern Africa (Martens, 2001) out of c. 450 species in the total Afrotropical area (Martens et al., 2008). Here we discuss the potential value and limitations of the training set for the estimation of past climatic parameters including air temperature (July and January means, maxima and minima, Mean Annual Air Temperature), precipitation, water conductivity and pH. The next step will be to apply the Mutual Ostracod Temperature Range method (Horne, 2007; Horne & Mezquita, 2008) to the palaeoclimatic analysis of fossil ostracod assemblages from sequences recording the Last Glacial Maximum in southern Africa. Ultimately this work will contribute to the development of a glacier-climate modelling project based on evidence of former niche glaciation of the Drakensberg Escarpment. Horne, D. J. 2007. A Mutual Temperature Range method for Quaternary palaeoclimatic analysis using European nonmarine Ostracoda. Quaternary Science Reviews, 26, 1398-1415. Horne, D. J. & Mezquita, F. 2008. Palaeoclimatic

  1. Uptake and recycling of lead by boreal forest plants: Quantitative estimates from a site in northern Sweden

    NASA Astrophysics Data System (ADS)

    Klaminder, Jonatan; Bindler, Richard; Emteryd, Ove; Renberg, Ingemar

    2005-05-01

    As a consequence of deposition of atmospheric pollution, the lead concentration in the mor layer (the organic horizon) of remote boreal forest soils in Sweden is raised far above natural levels. How the mor will respond to decreased atmospheric pollution is not well known and is dependent on future deposition rates, downward migration losses and upward fluxes in the soil profile. Plants may contribute to the upward flux of lead by 'pumping' lead back to the mor surface through root uptake and subsequent litter fall. We use lead concentration and stable isotope ( 206Pb, 207Pb and 208Pb) measurements of forest vegetation to quantify plant uptake rates from the soil and direct from the atmosphere at two sites in northern Sweden; an undisturbed mature forest and a disturbed site with Scots pine ( Pinus sylvestris) growing on a recently exposed mineral soil (C-horizon) containing a minimum of atmospherically derived pollution lead. Analyses of forest mosses from a herbarium collection (spanning the last ˜100 yr) and soil matrix samples suggest that the atmospheric lead deposited on plants and soil has an average 206Pb/ 207Pb ratio of 1.15, while lead derived from local soil minerals has an average ratio of ˜1.47. Since the biomass of trees and field layer shrubs has an average 206Pb/ 207Pb ratio of ˜1.25, this indicates that 70% ± 10% of the inventory of 1 ± 0.8 mg Pb m -2 stored in plants in the mature forest originates from pollution. Needles, bark and apical stemwood of the pine growing on the disturbed soil, show lower 206Pb/ 207Pb ratios (as low as 1.21) than the roots and basal stemwood (having ratios > 1.36), which indicate that plants are able to incorporate lead directly from the atmosphere (˜50% of the total tree uptake). By partitioning the total uptake of lead into uptake from the atmosphere and different soil layers using an isotopic mixing model, we estimate that ˜0.03 ± 0.01, 0.02 ± 0.01 and 0.05 ± 0.01 mg Pb m -2 yr -1 (mean ± SD), is taken up

  2. Quantitative characterization of capsaicin-induced TRPV1 ion channel activation in HEK293 cells by impedance spectroscopy.

    PubMed

    Weyer, Maxi; Jahnke, Heinz-Georg; Krinke, Dana; Zitzmann, Franziska D; Hill, Kerstin; Schaefer, Michael; Robitzki, Andrea A

    2016-11-01

    The analysis of receptor activity, especially in its native cellular environment, has always been of great interest to evaluate its intrinsic but also downstream biological activity. An important group of cellular receptors are ion channels. Since they are involved in a broad range of crucial cell functions, they represent important therapeutic targets. Thus, novel analytical techniques for the quantitative monitoring and screening of biological receptor activity are of great interest. In this context, we developed an impedance spectroscopy-based label-free and non-invasive monitoring system that enabled us to analyze the activation of the transient receptor potential channel Vanilloid 1 (TRPV1) in detail. TRPV1 channel activation by capsaicin resulted in a reproducible impedance decrease. Moreover, concentration response curves with an EC50 value of 0.9 μM could be determined. Control experiments with non TRPV1 channel expressing HEK cells as well as experiments with the TRPV1 channel blocker ruthenium red validated the specificity of the observed impedance decrease. More strikingly, through correlative studies with a cytoskeleton restructuring inhibitor mixture and equivalent circuit analysis of the acquired impedance spectra, we could quantitatively discriminate between the direct TRPV1 channel activation and downstream-induced biological effects. In summary, we developed a quantitative impedimetric monitoring system for the analysis of TRPV1 channel activity as well as downstream-induced biological activity in living cells. It has the capabilities to identify novel ion channel activators as well as inhibitors for the TRPV1 channel but could also easily be applied to other ion channel-based receptors.

  3. Quantitative structure-activity relationship study of P2X7 receptor inhibitors using combination of principal component analysis and artificial intelligence methods.

    PubMed

    Ahmadi, Mehdi; Shahlaei, Mohsen

    2015-01-01

    P2X7 antagonist activity for a set of 49 molecules of the P2X7 receptor antagonists, derivatives of purine, was modeled with the aid of chemometric and artificial intelligence techniques. The activity of these compounds was estimated by means of combination of principal component analysis (PCA), as a well-known data reduction method, genetic algorithm (GA), as a variable selection technique, and artificial neural network (ANN), as a non-linear modeling method. First, a linear regression, combined with PCA, (principal component regression) was operated to model the structure-activity relationships, and afterwards a combination of PCA and ANN algorithm was employed to accurately predict the biological activity of the P2X7 antagonist. PCA preserves as much of the information as possible contained in the original data set. Seven most important PC's to the studied activity were selected as the inputs of ANN box by an efficient variable selection method, GA. The best computational neural network model was a fully-connected, feed-forward model with 7-7-1 architecture. The developed ANN model was fully evaluated by different validation techniques, including internal and external validation, and chemical applicability domain. All validations showed that the constructed quantitative structure-activity relationship model suggested is robust and satisfactory.

  4. Ecosystem services - from assessements of estimations to quantitative, validated, high-resolution, continental-scale mapping via airborne LIDAR

    NASA Astrophysics Data System (ADS)

    Zlinszky, András; Pfeifer, Norbert

    2016-04-01

    service potential" which is the ability of the local ecosystem to deliver various functions (water retention, carbon storage etc.), but can't quantify how much of these are actually used by humans or what the estimated monetary value is. Due to its ability to measure both terrain relief and vegetation structure in high resolution, airborne LIDAR supports direct quantification of the properties of an ecosystem that lead to it delivering a given service (such as biomass, water retention, micro-climate regulation or habitat diversity). In addition, its high resolution allows direct calibration with field measurements: routine harvesting-based ecological measurements, local biodiversity indicator surveys or microclimate recordings all take place at the human scale and can be directly linked to the local value of LIDAR-based indicators at meter resolution. Therefore, if some field measurements with standard ecological methods are performed on site, the accuracy of LIDAR-based ecosystem service indicators can be rigorously validated. With this conceptual and technical approach high resolution ecosystem service assessments can be made with well established credibility. These would consolidate the concept of ecosystem services and support both scientific research and evidence-based environmental policy at local and - as data coverage is continually increasing - continental scale.

  5. Quantitative Collection and Enzymatic Activity of Glucose Oxidase Nanotubes Fabricated by Templated Layer-by-Layer Assembly.

    PubMed

    Zhang, Shouwei; Demoustier-Champagne, Sophie; Jonas, Alain M

    2015-08-10

    We report on the fabrication of enzyme nanotubes in nanoporous polycarbonate membranes via the layer-by-layer (LbL) alternate assembly of polyethylenimine (PEI) and glucose oxidase (GOX), followed by dissolution of the sacrificial template in CH2Cl2, collection, and final dispersion in water. An adjuvant-assisted filtration methodology is exploited to extract quantitatively the nanotubes without loss of activity and morphology. Different water-soluble CH2Cl2-insoluble adjuvants are tested for maximal enzyme activity and nanotube stability; whereas NaCl disrupts the tubes by screening electrostatic interactions, the high osmotic pressure created by fructose also contributes to loosening the nanotubular structures. These issues are solved when using neutral, high molar mass dextran. The enzymatic activity of intact free nanotubes in water is then quantitatively compared to membrane-embedded nanotubes, showing that the liberated nanotubes have a higher catalytic activity in proportion to their larger exposed surface. Our study thus discloses a robust and general methodology for the fabrication and quantitative collection of enzymatic nanotubes and shows that LbL assembly provides access to efficient enzyme carriers for use as catalytic swarming agents.

  6. Preliminary Phytochemical Screening, Quantitative Analysis of Alkaloids, and Antioxidant Activity of Crude Plant Extracts from Ephedra intermedia Indigenous to Balochistan.

    PubMed

    Gul, Rahman; Jan, Syed Umer; Faridullah, Syed; Sherani, Samiullah; Jahan, Nusrat

    2017-01-01

    The aim of this study was to evaluate the antioxidant activity, screening the phytogenic chemical compounds, and to assess the alkaloids present in the E. intermedia to prove its uses in Pakistani folk medicines for the treatment of asthma and bronchitis. Antioxidant activity was analyzed by using 2,2-diphenyl-1-picryl-hydrazyl-hydrate assay. Standard methods were used for the identification of cardiac glycosides, phenolic compounds, flavonoids, anthraquinones, and alkaloids. High performance liquid chromatography (HPLC) was used for quantitative purpose of ephedrine alkaloids in E. intermedia. The quantitative separation was confirmed on Shimadzu 10AVP column (Shampack) of internal diameter (id) 3.0 mm and 50 mm in length. The extract of the solute in flow rate of 1 ml/min at the wavelength 210 nm and methanolic extract showed the antioxidant activity and powerful oxygen free radicals scavenging activities and the IC50 for the E. intermedia plant was near to the reference standard ascorbic acid. The HPLC method was useful for the quantitative purpose of ephedrine (E) and pseudoephedrine (PE) used for 45 samples of one species collected from central habitat in three districts (Ziarat, Shairani, and Kalat) of Balochistan. Results showed that average alkaloid substance in E. intermedia was as follows: PE (0.209%, 0.238%, and 0.22%) and E (0.0538%, 0.0666%, and 0.0514%).

  7. Preliminary Phytochemical Screening, Quantitative Analysis of Alkaloids, and Antioxidant Activity of Crude Plant Extracts from Ephedra intermedia Indigenous to Balochistan

    PubMed Central

    Jan, Syed Umer; Faridullah, Syed; Sherani, Samiullah; Jahan, Nusrat

    2017-01-01

    The aim of this study was to evaluate the antioxidant activity, screening the phytogenic chemical compounds, and to assess the alkaloids present in the E. intermedia to prove its uses in Pakistani folk medicines for the treatment of asthma and bronchitis. Antioxidant activity was analyzed by using 2,2-diphenyl-1-picryl-hydrazyl-hydrate assay. Standard methods were used for the identification of cardiac glycosides, phenolic compounds, flavonoids, anthraquinones, and alkaloids. High performance liquid chromatography (HPLC) was used for quantitative purpose of ephedrine alkaloids in E. intermedia. The quantitative separation was confirmed on Shimadzu 10AVP column (Shampack) of internal diameter (id) 3.0 mm and 50 mm in length. The extract of the solute in flow rate of 1 ml/min at the wavelength 210 nm and methanolic extract showed the antioxidant activity and powerful oxygen free radicals scavenging activities and the IC50 for the E. intermedia plant was near to the reference standard ascorbic acid. The HPLC method was useful for the quantitative purpose of ephedrine (E) and pseudoephedrine (PE) used for 45 samples of one species collected from central habitat in three districts (Ziarat, Shairani, and Kalat) of Balochistan. Results showed that average alkaloid substance in E. intermedia was as follows: PE (0.209%, 0.238%, and 0.22%) and E (0.0538%, 0.0666%, and 0.0514%). PMID:28386582

  8. Quantitative profile of cardiolipin and group treponemal IgD antibodies in syphilis estimated by single radial immunodiffusion technique (SRID).

    PubMed

    Ionescu, A D; Petcovici, M; Ionescu-Dorohoi, T

    1989-01-01

    150 serum samples (reactive in VDRL, Reiter-ELISA, FTA-Abs tests), from male patients 25-45 years old, in various stages of syphilis whether treated or untreated, were tested for IgD by SRID. On 154 sera from healthy males 25-45 years old, the reference normal values for IgD levels were established, as: 0-131.2 IU/ml with a mean of 29.92 +/- 29.61 IU/ml. Cardiolipin and group treponemal fraction values for IgD class were obtained by assessing the difference between the immunodiffusion diameter values produced by sera before and after complete absorption with VDRL antigen or delipidated T. reiteri suspension. The individual, mean +/- SD values (expressed in IU/ml) and the percentage of cardiolipin and treponemal IgD of the total IgD class were calculated for each stage. The mean value of the total IgD class, excepting secondary syphilis (sigma 2) 52.53 +/- 26.66 IU/ml), did not overstep the normal levels but all minimal individual values from syphilitic patients (7.09-14.89 IU/ml) surpassed significantly the normal minimal values which were less than or equal to 3.54 IU/ml. The total lack of cardiolipin (IgD and the presence of group treponemal IgD in all sera of the syphilis stages studied were manifest. The group treponemal IgD mean values ranged between 7-9 IU/ml, with a maximum of 19.32 +/- 10.58 IU/ml in sigma 2 followed by latent syphilis (sigma lat) with a mean value of 9.37 +/- 4.9 IU/ml. A significant percentage of treponemal IgD vs total IgD was recorded: primary syphilis (sigma 1) 32.01%, primary-secondary syphilis (sigma 1-2) 28.76%, sigma 2 36.77%, sigma lat and treated persistent seroreactive syphilis (sigma t+) 29.61%. The high proportion of treponemal IgD in latent and treated persistent reactive syphilis suggests a steady activation of B lymphocytes by treponemal antigens and presumably is an expression of an active infectious process. The absence of cardiolipin IgD and the presence of only the treponemal IgD, in all sera from all stages, might

  9. Quantitative structure-activity relationship of the curcumin-related compounds using various regression methods

    NASA Astrophysics Data System (ADS)

    Khazaei, Ardeshir; Sarmasti, Negin; Seyf, Jaber Yousefi

    2016-03-01

    Quantitative structure activity relationship were used to study a series of curcumin-related compounds with inhibitory effect on prostate cancer PC-3 cells, pancreas cancer Panc-1 cells, and colon cancer HT-29 cells. Sphere exclusion method was used to split data set in two categories of train and test set. Multiple linear regression, principal component regression and partial least squares were used as the regression methods. In other hand, to investigate the effect of feature selection methods, stepwise, Genetic algorithm, and simulated annealing were used. In two cases (PC-3 cells and Panc-1 cells), the best models were generated by a combination of multiple linear regression and stepwise (PC-3 cells: r2 = 0.86, q2 = 0.82, pred_r2 = 0.93, and r2m (test) = 0.43, Panc-1 cells: r2 = 0.85, q2 = 0.80, pred_r2 = 0.71, and r2m (test) = 0.68). For the HT-29 cells, principal component regression with stepwise (r2 = 0.69, q2 = 0.62, pred_r2 = 0.54, and r2m (test) = 0.41) is the best method. The QSAR study reveals descriptors which have crucial role in the inhibitory property of curcumin-like compounds. 6ChainCount, T_C_C_1, and T_O_O_7 are the most important descriptors that have the greatest effect. With a specific end goal to design and optimization of novel efficient curcumin-related compounds it is useful to introduce heteroatoms such as nitrogen, oxygen, and sulfur atoms in the chemical structure (reduce the contribution of T_C_C_1 descriptor) and increase the contribution of 6ChainCount and T_O_O_7 descriptors. Models can be useful in the better design of some novel curcumin-related compounds that can be used in the treatment of prostate, pancreas, and colon cancers.

  10. Atmospheric Correction of Satellite GF-1/WFV Imagery and Quantitative Estimation of Suspended Particulate Matter in the Yangtze Estuary

    PubMed Central

    Shang, Pei; Shen, Fang

    2016-01-01

    The Multispectral Wide Field of View (WFV) camera on the Chinese GF-1 satellite, launched in 2013, has advantages of high spatial resolution (16 m), short revisit period (4 days) and wide scene swath (800 km) compared to the Landsat-8/OLI, which make it an ideal means of monitoring spatial-temporal changes of Suspended Particulate Matter (SPM) in large estuaries like the Yangtze Estuary. However, a lack of proper atmospheric correction methods has limited its application in water quality assessment. We propose an atmospheric correction method based on a look up table coupled by the atmosphere radiative transfer model (6S) and the water semi-empirical radiative transfer (SERT) model for inversion of water-leaving reflectance from GF-1 top-of-atmosphere radiance, and then retrieving SPM concentration from water-leaving radiance reflectance of the Yangtze Estuary and its adjacent sea. Results are validated by the Landsat-8/OLI imagery together with autonomous fixed station data, and influences of human activities (e.g., waterway construction and shipping) on SPM distribution are analyzed. PMID:27897987

  11. Benzimidazole-Based Quinazolines: In Vitro Evaluation, Quantitative Structure-Activity Relationship, and Molecular Modeling as Aurora Kinase Inhibitors.

    PubMed

    Sharma, Alka; Luxami, Vijay; Saxena, Sanjai; Paul, Kamaldeep

    2016-03-01

    A series of benzimidazole-based quinazoline derivatives with different substitutions of primary and secondary amines at the C2 position (1-12) were evaluated for their Aurora kinase inhibitory activities. All compounds except for 3 and 6 showed good activity against Aurora kinase inhibitors, with IC50 values in the range of 0.035-0.532 μM. The ligand efficiency (LE) of the compounds with Aurora A kinase was also determined. The structure-activity relationship and the quantitative structure-activity relationship revealed that the Aurora inhibitory activities of these derivatives primarily depend on the different substitutions of the amine present at the C2 position of the quinazoline core. Molecular docking studies in the active binding site also provided theoretical support for the experimental biological data acquired. The current study identifies a novel class of Aurora kinase inhibitors, which can further be used for the treatment of cancer.

  12. Standard Addition Quantitative Real-Time PCR (SAQPCR): A Novel Approach for Determination of Transgene Copy Number Avoiding PCR Efficiency Estimation

    PubMed Central

    Zhu, Changqing; Wang, Weiwei; Grierson, Donald; Xu, Changjie; Chen, Kunsong

    2013-01-01

    Quantitative real-time polymerase chain reaction (qPCR) has been previously applied to estimate transgene copy number in transgenic plants. However, the results can be erroneous owing to inaccurate estimation of PCR efficiency. Here, a novel qPCR approach, named standard addition qPCR (SAQPCR), was devised to accurately determine transgene copy number without the necessity of obtaining PCR efficiency data. The procedures and the mathematical basis for the approach are described. A recombinant plasmid harboring both the internal reference gene and the integrated target gene was constructed to serve as the standard DNA. It was found that addition of suitable amounts of standard DNA to test samples did not affect PCR efficiency, and the guidance for selection of suitable cycle numbers for analysis was established. Samples from six individual T0 tomato (Solanum lycopersicum) plants were analyzed by SAQPCR, and the results confirmed by Southern blot analysis. The approach produced accurate results and required only small amounts of plant tissue. It can be generally applied to analysis of different plants and transgenes. In addition, it can also be applied to zygosity analysis. PMID:23308234

  13. Quantitative microbial risk assessment to estimate health risks attributable to water supply: can the technique be applied in developing countries with limited data?

    PubMed

    Howard, Guy; Pedley, Steve; Tibatemwa, Sarah

    2006-03-01

    In the 3rd edition of its Guidelines for Drinking-Water Quality (2004) (GDWQ) the World Health Organization (WHO) promotes the use of risk assessment coupled with risk management for the control of water safety in drinking water supplies. Quantitative microbial risk assessment (QMRA) provides a tool for estimating the disease-burden from pathogenic microorganisms in water using information about the distribution and occurrence of the pathogen or an appropriate surrogate. This information may then be used to inform decisions about appropriate management of the water supply system. Although QMRA has been used to estimate disease burden from water supplies in developed countries, the method has not been evaluated in developing countries where relevant data may be scarce. In this paper, we describe a simplified risk assessment procedure to calculate the disease burden from three reference pathogens--pathogenic Escherichia coli, Cryptosporidium parvum and rotavirus--in water supplies in Kampala, Uganda. The study shows how QMRA can be used in countries with limited data, and that the outcome can provide valuable information for the management of water supplies.

  14. Quantitative estimation of diphtheria and tetanus toxoids. 2. Single radial immuno-diffusion tests (Mancini) and rocket immuno-electrophoresis test in comparison with the flocculation test.

    PubMed

    Ljungqvist, L; Lyng, J

    1987-01-01

    The concentration in Lf units, of an unknown diphtheria or tetanus toxoid preparation is estimated in the flocculation test relative to reference preparations of tetanus and diphtheria antitoxins, respectively. By replacing the antitoxin reference preparations with toxoid reference preparations it should be possible to use immunological methods other than the flocculation test for the quantitative estimation of toxoids in Lf units. A number of diphtheria and tetanus toxoids were tested by rocket immuno-electrophoresis and single radial immuno-diffusion (Mancini test). The concentrations of the unknown toxoids were expressed relative to a diphtheria toxoid calibrated in Lf units (DIFT) and a tetanus toxoid calibrated in Lf units (TEFT), respectively. These two toxoid preparations are regarded as candidates for establishment as international standard preparations. The results obtained in the two tests were compared with those obtained in the flocculation test. In most cases the differences between the results did not exceed 10%. It is concluded, therefore, that the rocket electrophoresis or the radial immuno-diffusion tests can be used as alternatives to the flocculation test.

  15. The Role of Hemispheral Asymmetry and Regional Activity of Quantitative EEG in Children with Stuttering

    ERIC Educational Resources Information Center

    Ozge, Aynur; Toros, Fevziye; Comelekoglu, Ulku

    2004-01-01

    We investigated the role of delayed cerebral maturation, hemisphere asymmetry and regional differences in children with stuttering and healthy controls during resting state and hyperventilation, using conventional EEG techniques and quantitative EEG (QEEG) analysis. This cross-sectional case control study included 26 children with stuttering and…

  16. Effects of Drawing on Alpha Activity: A Quantitative EEG Study with Implications for Art Therapy

    ERIC Educational Resources Information Center

    Belkofer, Christopher M.; Van Hecke, Amy Vaughan; Konopka, Lukasz M.

    2014-01-01

    Little empirical evidence exists as to how materials used in art therapy affect the brain and its neurobiological functioning. This pre/post within-groups study utilized the quantitative electroencephalogram (qEEG) to measure residual effects in the brain after 20 minutes of drawing. EEG recordings were conducted before and after participants (N =…

  17. Quantitative assessment of future development of cooper/silver resources in the Kootenai National Forest, Idaho/Montana: Part I-Estimation of the copper and silver endowments

    USGS Publications Warehouse

    Spanski, G.T.

    1992-01-01

    Faced with an ever-increasing diversity of demand for the use of public lands, managers and planners are turning more often to a multiple-use approach to meet those demands. This approach requires the uses to be mutually compatible and to utilize the more valuable attributes or resource values of the land. Therefore, it is imperative that planners be provided with all available information on attribute and resource values in a timely fashion and in a format that facilitates a comparative evaluation. The Kootenai National Forest administration enlisted the U.S. Geological Survey and U.S. Bureau of Mines to perform a quantitative assessment of future copper/silver production potential within the forest from sediment-hosted copper deposits in the Revett Formation that are similar to those being mined at the Troy Mine near Spar Lake. The U.S. Geological Survey employed a quantitative assessment technique that compared the favorable host terrane in the Kootenai area with worldwide examples of known sediment-hosted copper deposits. The assessment produced probabilistic estimates of the number of undiscovered deposits that may be present in the area and of the copper and silver endowment that might be contained in them. Results of the assessment suggest that the copper/silver deposit potential is highest in the southwestern one-third of the forest. In this area there is an estimated 50 percent probability of at least 50 additional deposits occurring mostly within approximately 260,000 acres where the Revett Formation is thought to be present in the subsurface at depths of less than 1,500 meters. A Monte Carlo type simulation using data on the grade and tonnage characteristics of other known silver-rich, sediment-hosted copper deposits predicts a 50 percent probability that these undiscovered deposits will contain at least 19 million tonnes of copper and 100,000 tonnes of silver. Combined with endowments estimated for identified, but not thoroughly explored deposits, and

  18. A wide range of activity duration cutoffs provided unbiased estimates of exposure to computer use.

    PubMed

    Chang, Che-Hsu; Johnson, Peter W; Dennerlein, Jack T

    2008-12-01

    Integrative computer usage monitors have become widely used in epidemiologic studies to investigate the exposure-response relationship of computer-related musculoskeletal disorders. These software programs typically estimate the exposure duration of computer use by summing precisely recorded durations of input device activities and durations of inactivity periods shorter than a predetermined activity duration cutoff value, usually 30 or 60 sec. The goal of this study was to systematically compare the validity of a wide range of cutoff values. Computer use activity of 20 office workers was observed for 4 consecutive hours using both a video camera and a usage monitor. Video recordings from the camera were analyzed using specific observational criteria to determine computer use duration. This observed duration then served as the reference and was compared with 238 estimates of computer use duration calculated from the usage monitor data using activity duration cutoffs ranging from 3 to 240 sec in 1-sec increments. Estimates calculated with cutoffs ranging from 28 to 60 sec were highly correlated with the observed duration (Spearman's correlation 0.87 to 0.92) and had nearly ideal linear relationships with the observed duration (slopes and r-squares close to one, and intercepts close to zero). For the same range of cutoff values, when the observed and estimated durations were compared for dichotomous exposure classification across participants, minimal exposure misclassification was observed. It is concluded that activity duration cutoffs ranging from 28 to 60 sec provided unbiased estimates of computer use duration.

  19. Application of Quantitative Structure–Activity Relationship Models of 5-HT1A Receptor Binding to Virtual Screening Identifies Novel and Potent 5-HT1A Ligands

    PubMed Central

    2015-01-01

    The 5-hydroxytryptamine 1A (5-HT1A) serotonin receptor has been an attractive target for treating mood and anxiety disorders such as schizophrenia. We have developed binary classification quantitative structure–activity relationship (QSAR) models of 5-HT1A receptor binding activity using data retrieved from the PDSP Ki database. The prediction accuracy of these models was estimated by external 5-fold cross-validation as well as using an additional validation set comprising 66 structurally distinct compounds from the World of Molecular Bioactivity database. These validated models were then used to mine three major types of chemical screening libraries, i.e., drug-like libraries, GPCR targeted libraries, and diversity libraries, to identify novel computational hits. The five best hits from each class of libraries were chosen for further experimental testing in radioligand binding assays, and nine of the 15 hits were confirmed to be active experimentally with binding affinity better than 10 μM. The most active compound, Lysergol, from the diversity library showed very high binding affinity (Ki) of 2.3 nM against 5-HT1A receptor. The novel 5-HT1A actives identified with the QSAR-based virtual screening approach could be potentially developed as novel anxiolytics or potential antischizophrenic drugs. PMID:24410373

  20. Estimation of the activity generated by neutron activation in control rods of a BWR.

    PubMed

    Ródenas, José; Gallardo, Sergio; Abarca, Agustín; Juan, Violeta

    2010-01-01

    Control rods are activated by neutron reactions into the reactor. The activation is produced mainly in stainless steel and its impurities. The dose produced by this activity is not important inside the reactor, but it has to be taken into account when the rod is withdrawn from the reactor. Activation reactions produced have been modelled by the MCNP5 code based on the Monte Carlo method. The code gives the number of reactions that can be converted into activity.

  1. Three-dimensional ventricular activation imaging by means of equivalent current source modeling and estimation.

    PubMed

    Liu, Z; Liu, C; He, B

    2006-01-01

    This paper presents a novel electrocardiographic inverse approach for imaging the 3-D ventricular activation sequence based on the modeling and estimation of the equivalent current density throughout the entire myocardial volume. The spatio-temporal coherence of the ventricular excitation process is utilized to derive the activation time from the estimated time course of the equivalent current density. At each time instant during the period of ventricular activation, the distributed equivalent current density is noninvasively estimated from body surface potential maps (BSPM) using a weighted minimum norm approach with a spatio-temporal regularization strategy based on the singular value decomposition of the BSPMs. The activation time at any given location within the ventricular myocardium is determined as the time point with the maximum local current density estimate. Computer simulation has been performed to evaluate the capability of this approach to image the 3-D ventricular activation sequence initiated from a single pacing site in a physiologically realistic cellular automaton heart model. The simulation results demonstrate that the simulated "true" activation sequence can be accurately reconstructed with an average correlation coefficient of 0.90, relative error of 0.19, and the origin of ventricular excitation can be localized with an average localization error of 5.5 mm for 12 different pacing sites distributed throughout the ventricles.

  2. Shielding and activity estimator for template-based nuclide identification methods

    SciTech Connect

    Nelson, Karl Einar

    2013-04-09

    According to one embodiment, a method for estimating an activity of one or more radio-nuclides includes receiving one or more templates, the one or more templates corresponding to one or more radio-nuclides which contribute to a probable solution, receiving one or more weighting factors, each weighting factor representing a contribution of one radio-nuclide to the probable solution, computing an effective areal density for each of the one more radio-nuclides, computing an effective atomic number (Z) for each of the one more radio-nuclides, computing an effective metric for each of the one or more radio-nuclides, and computing an estimated activity for each of the one or more radio-nuclides. In other embodiments, computer program products, systems, and other methods are presented for estimating an activity of one or more radio-nuclides.

  3. Quantitative structure-activity relationship (QSAR) study of a series of benzimidazole derivatives as inhibitors of Saccharomyces cerevisiae.

    PubMed

    Podunavac-Kuzmanović, Sonja O; Cvetković, Dragoljub D; Jevrić, Lidija R; Uzelac, Natasa J

    2013-01-01

    A quantitative structure activity relationship (QSAR) has been carried out on a series of benzimidazole derivatives to identify the structural requirements for their inhibitory activity against yeast Saccharomyces cerevisiae. A multiple linear regression (MLR) procedure was used to model the relationships between various physicochemical, steric, electronic, and structural molecular descriptors and antifungal activity of benzimidazole derivatives. The QSAR expressions were generated using a training set of 16 compounds and the predictive ability of the resulting models was evaluated against a test set of 8 compounds. The best QSAR models were further validated by leave one out technique as well as by the calculation of statistical parameters for the established theoretical models. Therefore, satisfactory relationships between antifungal activity and molecular descriptors were found. QSAR analysis reveals that lipophilicity descriptor (logP), dipole moment (DM) and surface area grid (SAG) govern the inhibitory activity of compounds studied against Saccharomyces cerevisiae.

  4. Low cost quantitative digital imaging as an alternative to qualitative in vivo bioassays for analysis of active aflatoxin B1.

    PubMed

    Rasooly, Reuven; Do, Paula M; Hernlem, Bradley J

    2016-06-15

    Aflatoxin B1 (AFB1) producing fungi contaminate food and feed and are a major health concern. To minimize the sources and incidence of AFB1 illness there is a need to develop affordable, sensitive mobile devices for detection of active AFB1. In the present study we used a low cost fluorescence detector and describe two quantitative assays for detection of detoxified and active AFB1 demonstrating that AFB1 concentration can be measured as intensity of fluorescence. When the assay plate containing increasing concentrations of AFB1 is illuminated with a 366 nm ultraviolet lamp, AFB1 molecules absorb photons and emit blue light with peak wavelength of 432 nm. The fluorescence intensity increased in dose dependent manner. However, this method cannot distinguish between active AFB1 which poses a threat to health, and the detoxified AFB1 which exhibits no toxicity. To measure the toxin activity, we used a cell based assay that makes quantification more robust and is capable of detecting multiple samples simultaneously. It is an alternative to the qualitative duckling bioassay which is the "gold-standard" assay currently being used for quantitative analysis of active AFB1. AFB1 was incubated with transduced Vero cells expressing the green fluorescence protein (GFP) gene. After excitation with blue light at 475 nm, cells emitted green light with emission peak at 509 nm. The result shows that AFB1 inhibits protein expression in a concentration dependent manner resulting in proportionately less GFP fluorescence in cells exposed to AFB1. The result also indicates strong positive linear relationship with R(2)=0.90 between the low cost CCD camera and a fluorometer, which costs 100 times more than a CCD camera. This new analytical method for measuring active AFB1 is low in cost and combined with in vitro assay, is quantitative. It also does not require the use of animals and may be useful especially for laboratories in regions with limited resources.

  5. Dynamic contrast-enhanced ultrasound of the bowel wall with quantitative assessment of Crohn’s disease activity in childhood

    PubMed Central

    Vidmar, Dubravka; Urlep, Darja; Dezman, Rok

    2016-01-01

    Abstract Background Contrast-enhanced ultrasound (CEUS) has become an established non-invasive, patient-friendly imaging technique which improves the characterization of lesions. In addition, dynamic contrast-enhanced ultrasound (DCE-US) provides valuable information concerning perfusion of examined organs. This review addresses current applications of CEUS in children, focused on DCE-US of the bowel wall in patients with Crohn disease, which enables realtime assessment of the bowel wall vascularity with semi-quantitative and quantitative assessment of disease activity and response to medical treatment. Conclusions Crohn’s disease is a chronic inflammatory relapsing disease. Frequent imaging re-evaluation is necessary. Therefore, imaging should be as little invasive as possible, children friendly with high diagnostic accuracy. US with wide varieties of techniques, including CEUS/DCE-US, can provide an important contribution for diagnosing and monitoring a disease activity. Even if the use of US contrast agent is off-label in children, it is welcome and widely accepted for intravesical use, and a little less for intravenous use, manly in evaluation of parenchymal lesions. To our knowledge this is the first time that the use of DCE-US in the evaluation of activity of small bowel Crohn disease with quantitative assessment of kinetic parameters is being described in children. Even if the results of the value and accuracy of different quantitative kinetic parameters in published studies in adult population often contradict one another there is a great potential of DCE-US to become a part of the entire sonographic evaluation not only in adults, but also in children. Further control studies should be performed. PMID:27904441

  6. Use of near-infrared for quantitative measurement of viscosity and concentration of active ingredient in pharmaceutical gel.

    PubMed

    Donoso, M; Ghaly, E S

    2006-01-01

    Near infrared (NIR) spectroscopy is gaining worldwide interest as an analytical tool for quality control of raw materials, intermediate products, and final dosage forms. This technique can be used without sample preparation, therefore, avoiding the need for reagents and solvents. Quantitative NIR analyses involve calibration by sophisticated mathematical techniques that have been used extensively since the advent of microcomputing and chemometrics. The main objective of this investigation was to use transmission near-Infrared spectroscopy to measure the potency of an active ingredient in a topical gel preparation. A second objective was to evaluate the effect of gel viscosity on the NIR reflectance spectra. Four gel formulations with different ibuprofen concentrations were used for quantitative determination of the active ingredient, and five gel formulations with different viscosity values were used for the evaluation of the effect of viscosity change on the near-infrared reflectance spectra. The laboratory ibuprofen quantitative determination was compared to near-infrared transmission data using linear, quadratic, cubic and partial least square techniques to determine the relationship between ultraviolet (UV) determination and near-infrared spectra. For viscosity, the laboratory data were compared to near-infrared diffuse reflectance data using the same techniques used to determine the relationship between Brookfield viscometer determination and near-infrared spectra. The results demonstrated that an increase in ibuprofen concentration and viscosity produced an increase in near-infrared absorbance. Series of model equations were developed from the calibration of laboratory vs. the near-infrared data for each formulation. The near-infrared spectroscopy method is an alternative method that does not require sample pretreatment for quantitative measurement of active ingredient and viscosity of pharmaceutical gel.

  7. Quantitative Laser Biospeckle Method for the Evaluation of the Activity of Trypanosoma cruzi Using VDRL Plates and Digital Analysis

    PubMed Central

    Grassi, Hilda Cristina; García, Lisbette C.; Lobo-Sulbarán, María Lorena; Velásquez, Ana; Andrades-Grassi, Francisco A.; Cabrera, Humberto; Andrades-Grassi, Jesús E.; Andrades, Efrén D. J.

    2016-01-01

    In this paper we report a quantitative laser Biospeckle method using VDRL plates to monitor the activity of Trypanosoma cruzi and the calibration conditions including three image processing algorithms and three programs (ImageJ and two programs designed in this work). Benznidazole was used as a test drug. Variable volume (constant density) and variable density (constant volume) were used for the quantitative evaluation of parasite activity in calibrated wells of the VDRL plate. The desiccation process within the well was monitored as a function of volume and of the activity of the Biospeckle pattern of the parasites as well as the quantitative effect of the surface parasite quantity (proportion of the object’s plane). A statistical analysis was performed with ANOVA, Tukey post hoc and Descriptive Statistics using R and R Commander. Conditions of volume (100μl) and parasite density (2-4x104 parasites/well, in exponential growth phase), assay time (up to 204min), frame number (11 frames), algorithm and program (RCommander/SAGA) for image processing were selected to test the effect of variable concentrations of benznidazole (0.0195 to 20μg/mL / 0.075 to 76.8μM) at various times (1, 61, 128 and 204min) on the activity of the Biospeckle pattern. The flat wells of the VDRL plate were found to be suitable for the quantitative calibration of the activity of Trypanosoma cruzi using the appropriate algorithm and program. Under these conditions, benznidazole produces at 1min an instantaneous effect on the activity of the Biospeckle pattern of T. cruzi, which remains with a similar profile up to 1 hour. A second effect which is dependent on concentrations above 1.25μg/mL and is statistically different from the effect at lower concentrations causes a decrease in the activity of the Biospeckle pattern. This effect is better detected after 1 hour of drug action. This behavior may be explained by an instantaneous effect on a membrane protein of Trypanosoma cruzi that could

  8. Estimation of dynamic time activity curves from dynamic cardiac SPECT imaging

    NASA Astrophysics Data System (ADS)

    Hossain, J.; Du, Y.; Links, J.; Rahmim, A.; Karakatsanis, N.; Akhbardeh, A.; Lyons, J.; Frey, E. C.

    2015-04-01

    Whole-heart coronary flow reserve (CFR) may be useful as an early predictor of cardiovascular disease or heart failure. Here we propose a simple method to extract the time-activity curve, an essential component needed for estimating the CFR, for a small number of compartments in the body, such as normal myocardium, blood pool, and ischemic myocardial regions, from SPECT data acquired with conventional cameras using slow rotation. We evaluated the method using a realistic simulation of 99mTc-teboroxime imaging. Uptake of 99mTc-teboroxime based on data from the literature were modeled. Data were simulated using the anatomically-realistic 3D NCAT phantom and an analytic projection code that realistically models attenuation, scatter, and the collimator-detector response. The proposed method was then applied to estimate time activity curves (TACs) for a set of 3D volumes of interest (VOIs) directly from the projections. We evaluated the accuracy and precision of estimated TACs and studied the effects of the presence of perfusion defects that were and were not modeled in the estimation procedure. The method produced good estimates of the myocardial and blood-pool TACS organ VOIs, with average weighted absolute biases of less than 5% for the myocardium and 10% for the blood pool when the true organ boundaries were known and the activity distributions in the organs were uniform. In the presence of unknown perfusion defects, the myocardial TAC was still estimated well (average weighted absolute bias <10%) when the total reduction in myocardial uptake (product of defect extent and severity) was ≤5%. This indicates that the method was robust to modest model mismatch such as the presence of moderate perfusion defects and uptake nonuniformities. With larger defects where the defect VOI was included in the estimation procedure, the estimated normal myocardial and defect TACs were accurate (average weighted absolute bias ≈5% for a defect with 25% extent and 100% severity).

  9. The Work and Home Activities Questionnaire: Energy Expenditure Estimates and Association With Percent Body Fat

    PubMed Central

    Block, Gladys; Jensen, Christopher D.; Block, Torin J.; Norris, Jean; Dalvi, Tapashi B.; Fung, Ellen B.

    2015-01-01

    Background Understanding and increasing physical activity requires assessment of occupational, home, leisure and sedentary activities. Methods A physical activity questionnaire was developed using data from a large representative U.S. sample; includes occupational, leisure and home-based domains; and produces estimates of energy expenditure, percent body fat, minutes in various domains, and meeting recommendations. It was tested in 396 persons, mean age 44 years. Estimates were evaluated in relation to percent body fat measured by dual-energy x-ray absorptiometry. Results Median energy expenditure was 2,365 kcal (women) and 2.960 kcal (men). Women spent 35.1 minutes/day in moderate household activities, 13.0 minutes in moderate leisure and 4.0 minutes in vigorous activities. Men spent 18.0, 22.5 and 15.6 minutes/day in those activities, respectively. Men and women spent 276.4 and 257.0 minutes/day in sedentary activities. Respondents who met recommendations through vigorous activities had significantly lower percent body fat than those who did not, while meeting recommendations only through moderate activities was not associated with percent body fat. Predicted and observed percent body fat correlated at r = .73 and r = .82 for men and women respectively, P < .0001. Conclusions This questionnaire may be useful for understanding health effects of different components of activity, and for interventions to increase activity levels. PMID:19998851

  10. Quantitative detection and biological propagation of scrapie seeding activity in vitro facilitate use of prions as model pathogens for disinfection.

    PubMed

    Pritzkow, Sandra; Wagenführ, Katja; Daus, Martin L; Boerner, Susann; Lemmer, Karin; Thomzig, Achim; Mielke, Martin; Beekes, Michael

    2011-01-01

    Prions are pathogens with an unusually high tolerance to inactivation and constitute a complex challenge to the re-processing of surgical instruments. On the other hand, however, they provide an informative paradigm which has been exploited successfully for the development of novel broad-range disinfectants simultaneously active also against bacteria, viruses and fungi. Here we report on the development of a methodological platform that further facilitates the use of scrapie prions as model pathogens for disinfection. We used specifically adapted serial protein misfolding cyclic amplification (PMCA) for the quantitative detection, on steel wires providing model carriers for decontamination, of 263K scrapie seeding activity converting normal protease-sensitive into abnormal protease-resistant prion protein. Reference steel wires carrying defined amounts of scrapie infectivity were used for assay calibration, while scrapie-contaminated test steel wires were subjected to fifteen different procedures for disinfection that yielded scrapie titre reductions of ≤10(1)- to ≥10(5.5)-fold. As confirmed by titration in hamsters the residual scrapie infectivity on test wires could be reliably deduced for all examined disinfection procedures, from our quantitative seeding activity assay. Furthermore, we found that scrapie seeding activity present in 263K hamster brain homogenate or multiplied by PMCA of scrapie-contaminated steel wires both triggered accumulation of protease-resistant prion protein and was further propagated in a novel cell assay for 263K scrapie prions, i.e., cerebral glial cell cultures from hamsters. The findings from our PMCA- and glial cell culture assays revealed scrapie seeding activity as a biochemically and biologically replicative principle in vitro, with the former being quantitatively linked to prion infectivity detected on steel wires in vivo. When combined, our in vitro assays provide an alternative to titrations of biological scrapie

  11. Inhibitory Activity of Human Immunodeficiency Virus Aspartyl Protease Inhibitors against Encephalitozoon intestinalis Evaluated by Cell Culture-Quantitative PCR Assay

    PubMed Central

    Menotti, Jean; Santillana-Hayat, Maud; Cassinat, Bruno; Sarfati, Claudine; Derouin, Francis; Molina, Jean-Michel

    2005-01-01

    Immune reconstitution might not be the only factor contributing to the low prevalence of microsporidiosis in human immunodeficiency virus (HIV)-infected patients treated with protease inhibitors, as these drugs may exert a direct inhibitory effect against fungi and protozoa. In this study, we developed a cell culture-quantitative PCR assay to quantify Encephalitozoon intestinalis growth in U-373-MG human glioblastoma cells and used this assay to evaluate the activities of six HIV aspartyl protease inhibitors against E. intestinalis. A real-time quantitative PCR assay targeted the E. intestinalis small-subunit rRNA gene. HIV aspartyl protease inhibitors were tested over serial concentrations ranging from 0.2 to 10 mg/liter, with albendazole used as a control. Ritonavir, lopinavir, and saquinavir were able to inhibit E. intestinalis growth, with 50% inhibitory concentrations of 1.5, 2.2, and 4.6 mg/liter, respectively, whereas amprenavir, indinavir, and nelfinavir had no inhibitory effect. Pepstatin A, a reference aspartyl protease inhibitor, could also inhibit E. intestinalis growth, suggesting that HIV protease inhibitors may act through the inhibition of an E. intestinalis-encoded aspartyl protease. These results showed that some HIV protease inhibitors can inhibit E. intestinalis growth at concentrations that are achievable in vivo and that the real-time quantitative PCR assay that we used is a valuable tool for the in vitro assessment of the activities of drugs against E. intestinalis. PMID:15917534

  12. Cortical connective field estimates from resting state fMRI activity.

    PubMed

    Gravel, Nicolás; Harvey, Ben; Nordhjem, Barbara; Haak, Koen V; Dumoulin, Serge O; Renken, Remco; Curčić-Blake, Branislava; Cornelissen, Frans W

    2014-01-01

    One way to study connectivity in visual cortical areas is by examining spontaneous neural activity. In the absence of visual input, such activity remains shaped by the underlying neural architecture and, presumably, may still reflect visuotopic organization. Here, we applied population connective field (CF) modeling to estimate the spatial profile of functional connectivity in the early visual cortex during resting state functional magnetic resonance imaging (RS-fMRI). This model-based analysis estimates the spatial integration between blood-oxygen level dependent (BOLD) signals in distinct cortical visual field maps using fMRI. Just as population receptive field (pRF) mapping predicts the collective neural activity in a voxel as a function of response selectivity to stimulus position in visual space, CF modeling predicts the activity of voxels in one visual area as a function of the aggregate activity in voxels in another vi