Science.gov

Sample records for activity rapidly decreased

  1. Rapid decrease in active tension generated by C2C12 myotubes after termination of artificial exercise.

    PubMed

    Fujita, Hideaki; Hirano, Minoru; Shimizu, Kazunori; Nagamori, Eiji

    2010-12-01

    We found that the active tension of C2C12 myotubes that had been subjected to artificial exercise for ~10 days decreased rapidly after termination of the artificial exercise. When differentiated C2C12 myotubes were subjected to continuous 1 Hz artificial exercise for ~10 days, the active tension increased to ~4× compared to that before application of the artificial exercise, as reported previously. On termination of artificial exercise, the active tension decreased rapidly, the level reaching that before application of the artificial exercise within 8 h. Concomitant with the decrease in the active tension, an increase in the amount of ubiquitinated proteins was observed. Real time RT-PCR revealed that the expression of several genes associated with atrophy, namely Smc6, Vegfa, Jarid2, Kitl, Cds2, Inmt, Fasn, Neurl, Topors, and Cul2, were also changed after termination of artificial exercise. These results indicate that termination of artificial exercise induced atrophy-like responses of C2C12 myotubes. Here we found that during the decrease in active tension, the sarcomere structure, especially the thin filament structure, decayed rapidly after termination of artificial exercise. On reapplication of the artificial exercise, the active tension was restored rapidly, within 8 h, concomitant with reformation of the sarcomere structure. These results indicate that disassembly of the sarcomere structure may be one of the reasons for the active tension decrease during disuse muscle atrophy.

  2. Rapid Active Sampling Package

    NASA Technical Reports Server (NTRS)

    Peters, Gregory

    2010-01-01

    A field-deployable, battery-powered Rapid Active Sampling Package (RASP), originally designed for sampling strong materials during lunar and planetary missions, shows strong utility for terrestrial geological use. The technology is proving to be simple and effective for sampling and processing materials of strength. Although this originally was intended for planetary and lunar applications, the RASP is very useful as a powered hand tool for geologists and the mining industry to quickly sample and process rocks in the field on Earth. The RASP allows geologists to surgically acquire samples of rock for later laboratory analysis. This tool, roughly the size of a wrench, allows the user to cut away swaths of weathering rinds, revealing pristine rock surfaces for observation and subsequent sampling with the same tool. RASPing deeper (.3.5 cm) exposes single rock strata in-situ. Where a geologist fs hammer can only expose unweathered layers of rock, the RASP can do the same, and then has the added ability to capture and process samples into powder with particle sizes less than 150 microns, making it easier for XRD/XRF (x-ray diffraction/x-ray fluorescence). The tool uses a rotating rasp bit (or two counter-rotating bits) that resides inside or above the catch container. The container has an open slot to allow the bit to extend outside the container and to allow cuttings to enter and be caught. When the slot and rasp bit are in contact with a substrate, the bit is plunged into it in a matter of seconds to reach pristine rock. A user in the field may sample a rock multiple times at multiple depths in minutes, instead of having to cut out huge, heavy rock samples for transport back to a lab for analysis. Because of the speed and accuracy of the RASP, hundreds of samples can be taken in one day. RASP-acquired samples are small and easily carried. A user can characterize more area in less time than by using conventional methods. The field-deployable RASP used a Ni

  3. Decreased fibrinolytic activity in juvenile chronic arthritis.

    PubMed

    Mussoni, L; Pintucci, G; Romano, G; De Benedetti, F; Massa, M; Martini, A

    1990-12-01

    The basal fibrinolytic activity in 17 children with active juvenile chronic arthritis (JCA) was investigated. It was found that patients with JCA, and particularly those with the systemic form, show decreased plasma fibrinolytic activity and a marked increase in plasminogen activator inhibitor. Additionally, it was found that patients with systemic JCA, but not those with the polyarticular or pauciarticular form, have increased circulating levels of tissue-type plasminogen activator, and endothelial cell protein, suggesting possible endothelial cell participation in systemic JCA.

  4. Hypnotic induction decreases anterior default mode activity.

    PubMed

    McGeown, William J; Mazzoni, Giuliana; Venneri, Annalena; Kirsch, Irving

    2009-12-01

    The 'default mode' network refers to cortical areas that are active in the absence of goal-directed activity. In previous studies, decreased activity in the 'default mode' has always been associated with increased activation in task-relevant areas. We show that the induction of hypnosis can reduce anterior default mode activity during rest without increasing activity in other cortical regions. We assessed brain activation patterns of high and low suggestible people while resting in the fMRI scanner and while engaged in visual tasks, in and out of hypnosis. High suggestible participants in hypnosis showed decreased brain activity in the anterior parts of the default mode circuit. In low suggestible people, hypnotic induction produced no detectable changes in these regions, but instead deactivated areas involved in alertness. The findings indicate that hypnotic induction creates a distinctive and unique pattern of brain activation in highly suggestible subjects. PMID:19782614

  5. Decreased fibrinolytic activity in juvenile chronic arthritis.

    PubMed Central

    Mussoni, L; Pintucci, G; Romano, G; De Benedetti, F; Massa, M; Martini, A

    1990-01-01

    The basal fibrinolytic activity in 17 children with active juvenile chronic arthritis (JCA) was investigated. It was found that patients with JCA, and particularly those with the systemic form, show decreased plasma fibrinolytic activity and a marked increase in plasminogen activator inhibitor. Additionally, it was found that patients with systemic JCA, but not those with the polyarticular or pauciarticular form, have increased circulating levels of tissue-type plasminogen activator, and endothelial cell protein, suggesting possible endothelial cell participation in systemic JCA. PMID:2125408

  6. Decreased chewing activity during mouth breathing.

    PubMed

    Hsu, H-Y; Yamaguchi, K

    2012-08-01

    This study examined the effect of mouth breathing on the strength and duration of vertical effect on the posterior teeth using related functional parameters during 3 min of gum chewing in 39 nasal breathers. A CO(2) sensor was placed over the mouth to detect expiratory airflow. When no airflow was detected from the mouth throughout the recording period, the subject was considered a nasal breather and enrolled in the study. Electromyographic (EMG) activity was recorded during 3 min of gum chewing. The protocol was repeated with the nostrils occluded. The strength of the vertical effect was obtained as integrated masseter muscle EMG activity, and the duration of vertical effect was also obtained as chewing stroke count, chewing cycle variation and EMG activity duration above baseline. Baseline activity was obtained from the isotonic EMG activity during jaw movement at 1.6 Hz without making tooth contact. The duration represented the percentage of the active period above baseline relative to the 3-min chewing period. Paired t-test and repeated analysis of variance were used to compare variables between nasal and mouth breathing. The integrated EMG activity and the duration of EMG activity above baseline, chewing stroke count and chewing cycle significantly decreased during mouth breathing compared with nasal breathing (P<0.05). Chewing cycle variance during mouth breathing was significantly greater than nasal breathing (P<0.05). Mouth breathing reduces the vertical effect on the posterior teeth, which can affect the vertical position of posterior teeth negatively, leading to malocclusion.

  7. Sudden collapse of vacuoles in Saintpaulia sp. palisade cells induced by a rapid temperature decrease.

    PubMed

    Kadohama, Noriaki; Goh, Tatsuaki; Ohnishi, Miwa; Fukaki, Hidehiro; Mimura, Tetsuro; Suzuki, Yoshihiro

    2013-01-01

    It is well known that saintpaulia leaf is damaged by the rapid temperature decrease when cold water is irrigated onto the leaf surface. We investigated this temperature sensitivity and the mechanisms of leaf damage in saintpaulia (Saintpaulia sp. cv. 'Iceberg') and other Gesneriaceae plants. Saintpaulia leaves were damaged and discolored when subjected to a rapid decrease in temperature, but not when the temperature was decreased gradually. Sensitivity to rapid temperature decrease increased within 10 to 20 min during pre-incubation at higher temperature. Injury was restricted to the palisade mesophyll cells, where there was an obvious change in the color of the chloroplasts. During a rapid temperature decrease, chlorophyll fluorescence monitored by a pulse amplitude modulated fluorometer diminished and did not recover even after rewarming to the initial temperature. Isolated chloroplasts were not directly affected by the rapid temperature decrease. Intracellular pH was monitored with a pH-dependent fluorescent dye. In palisade mesophyll cells damaged by rapid temperature decrease, the cytosolic pH decreased and the vacuolar membrane collapsed soon after a temperature decrease. In isolated chloroplasts, chlorophyll fluorescence declined when the pH of the medium was lowered. These results suggest that a rapid temperature decrease directly or indirectly affects the vacuolar membrane, resulting in a pH change in the cytosol that subsequently affects the chloroplasts in palisade mesophyll cells. We further confirmed that the same physiological damage occurs in other Gesneriaceae plants. These results strongly suggested that the vacuoles of palisade mesophyll cells collapsed during the initial phase of leaf injury.

  8. Sudden collapse of vacuoles in Saintpaulia sp. palisade cells induced by a rapid temperature decrease.

    PubMed

    Kadohama, Noriaki; Goh, Tatsuaki; Ohnishi, Miwa; Fukaki, Hidehiro; Mimura, Tetsuro; Suzuki, Yoshihiro

    2013-01-01

    It is well known that saintpaulia leaf is damaged by the rapid temperature decrease when cold water is irrigated onto the leaf surface. We investigated this temperature sensitivity and the mechanisms of leaf damage in saintpaulia (Saintpaulia sp. cv. 'Iceberg') and other Gesneriaceae plants. Saintpaulia leaves were damaged and discolored when subjected to a rapid decrease in temperature, but not when the temperature was decreased gradually. Sensitivity to rapid temperature decrease increased within 10 to 20 min during pre-incubation at higher temperature. Injury was restricted to the palisade mesophyll cells, where there was an obvious change in the color of the chloroplasts. During a rapid temperature decrease, chlorophyll fluorescence monitored by a pulse amplitude modulated fluorometer diminished and did not recover even after rewarming to the initial temperature. Isolated chloroplasts were not directly affected by the rapid temperature decrease. Intracellular pH was monitored with a pH-dependent fluorescent dye. In palisade mesophyll cells damaged by rapid temperature decrease, the cytosolic pH decreased and the vacuolar membrane collapsed soon after a temperature decrease. In isolated chloroplasts, chlorophyll fluorescence declined when the pH of the medium was lowered. These results suggest that a rapid temperature decrease directly or indirectly affects the vacuolar membrane, resulting in a pH change in the cytosol that subsequently affects the chloroplasts in palisade mesophyll cells. We further confirmed that the same physiological damage occurs in other Gesneriaceae plants. These results strongly suggested that the vacuoles of palisade mesophyll cells collapsed during the initial phase of leaf injury. PMID:23451194

  9. Sudden Collapse of Vacuoles in Saintpaulia sp. Palisade Cells Induced by a Rapid Temperature Decrease

    PubMed Central

    Kadohama, Noriaki; Goh, Tatsuaki; Ohnishi, Miwa; Fukaki, Hidehiro; Mimura, Tetsuro; Suzuki, Yoshihiro

    2013-01-01

    It is well known that saintpaulia leaf is damaged by the rapid temperature decrease when cold water is irrigated onto the leaf surface. We investigated this temperature sensitivity and the mechanisms of leaf damage in saintpaulia (Saintpaulia sp. cv. ‘Iceberg’) and other Gesneriaceae plants. Saintpaulia leaves were damaged and discolored when subjected to a rapid decrease in temperature, but not when the temperature was decreased gradually. Sensitivity to rapid temperature decrease increased within 10 to 20 min during pre-incubation at higher temperature. Injury was restricted to the palisade mesophyll cells, where there was an obvious change in the color of the chloroplasts. During a rapid temperature decrease, chlorophyll fluorescence monitored by a pulse amplitude modulated fluorometer diminished and did not recover even after rewarming to the initial temperature. Isolated chloroplasts were not directly affected by the rapid temperature decrease. Intracellular pH was monitored with a pH-dependent fluorescent dye. In palisade mesophyll cells damaged by rapid temperature decrease, the cytosolic pH decreased and the vacuolar membrane collapsed soon after a temperature decrease. In isolated chloroplasts, chlorophyll fluorescence declined when the pH of the medium was lowered. These results suggest that a rapid temperature decrease directly or indirectly affects the vacuolar membrane, resulting in a pH change in the cytosol that subsequently affects the chloroplasts in palisade mesophyll cells. We further confirmed that the same physiological damage occurs in other Gesneriaceae plants. These results strongly suggested that the vacuoles of palisade mesophyll cells collapsed during the initial phase of leaf injury. PMID:23451194

  10. Increased flexibility decreases antifreeze protein activity

    PubMed Central

    Patel, Shruti N; Graether, Steffen P

    2010-01-01

    Antifreeze proteins protect several cold-blooded organisms from subzero environments by preventing death from freezing. The Type I antifreeze protein (AFP) isoform from Pseudopleuronectes americanus, named HPLC6, is a 37-residue protein that is a single α-helix. Mutational analysis of the protein showed that its alanine-rich face is important for binding to and inhibiting the growth of macromolecular ice. Almost all structural studies of HPLC6 involve the use of chemically synthesized protein as it requires a native N-terminal aspartate and an amidated C-terminus for full activity. Here, we examine the role of C-terminal amide and C-terminal arginine side chain in the activity, structure, and dynamics of nonamidated Arg37 HPLC6, nonamidated HPLC6 Ala37, amidated HPLC6 Ala37, and fully native HPLC6 using a recombinant bacterial system. The thermal hysteresis (TH) activities of the nonamidated mutants are 35% lower compared with amidated proteins, but analysis of the NMR data and circular dichroism spectra shows that they are all still α-helical. Relaxation data from the two nonamidated mutants indicate that the C-terminal residues are considerably more flexible than the rest of the protein because of the loss of the amide group, whereas the amidated Ala37 mutant has a C-terminus that is as rigid as the wild-type protein and has high TH activity. We propose that an increase in flexibility of the AFP causes it to lose activity because its dynamic nature prevents it from binding strongly to the ice surface. PMID:20936690

  11. 43 CFR 4110.3-2 - Decreasing active use.

    Code of Federal Regulations, 2014 CFR

    2014-10-01

    ... 43 Public Lands: Interior 2 2014-10-01 2014-10-01 false Decreasing active use. 4110.3-2 Section... Qualifications and Preference § 4110.3-2 Decreasing active use. (a) The authorized officer may suspend active use... site inventory, or other acceptable methods, the authorized officer will reduce active use,...

  12. 43 CFR 4110.3-2 - Decreasing active use.

    Code of Federal Regulations, 2011 CFR

    2011-10-01

    ... 43 Public Lands: Interior 2 2011-10-01 2011-10-01 false Decreasing active use. 4110.3-2 Section... Qualifications and Preference § 4110.3-2 Decreasing active use. (a) The authorized officer may suspend active use... site inventory, or other acceptable methods, the authorized officer will reduce active use,...

  13. 43 CFR 4110.3-2 - Decreasing active use.

    Code of Federal Regulations, 2013 CFR

    2013-10-01

    ... 43 Public Lands: Interior 2 2013-10-01 2013-10-01 false Decreasing active use. 4110.3-2 Section... Qualifications and Preference § 4110.3-2 Decreasing active use. (a) The authorized officer may suspend active use... site inventory, or other acceptable methods, the authorized officer will reduce active use,...

  14. 43 CFR 4110.3-2 - Decreasing active use.

    Code of Federal Regulations, 2012 CFR

    2012-10-01

    ... 43 Public Lands: Interior 2 2012-10-01 2012-10-01 false Decreasing active use. 4110.3-2 Section... Qualifications and Preference § 4110.3-2 Decreasing active use. (a) The authorized officer may suspend active use... site inventory, or other acceptable methods, the authorized officer will reduce active use,...

  15. Masoprocol decreases rat lipolytic activity by decreasing the phosphorylation of HSL.

    PubMed

    Gowri, M S; Azhar, R K; Kraemer, F B; Reaven, G M; Azhar, S

    2000-09-01

    Masoprocol (nordihydroguaiaretic acid), a lipoxygenase inhibitor isolated from the creosote bush, has been shown to decrease adipose tissue lipolytic activity both in vivo and in vitro. The present study was initiated to test the hypothesis that the decrease in lipolytic activity by masoprocol resulted from modulation of adipose tissue hormone-sensitive lipase (HSL) activity. The results indicate that oral administration of masoprocol to rats with fructose-induced hypertriglyceridemia significantly decreased their serum free fatty acid (FFA; P < 0.05), triglyceride (TG; P < 0.001), and insulin (P < 0.05) concentrations. In addition, isoproterenol-induced lipolytic rate and HSL activity were significantly lower (P < 0.001) in adipocytes isolated from masoprocol compared with vehicle-treated rats and was associated with a decrease in HSL protein. Incubation of masoprocol with adipocytes from chow-fed rats significantly inhibited isoproterenol-induced lipolytic activity and HSL activity, associated with a decrease in the ability of isoproterenol to phosphorylate HSL. Masoprocol had no apparent effect on adipose tissue phosphatidylinositol 3-kinase activity, but okadaic acid, a serine/threonine phosphatase inhibitor, blocked the antilipolytic effect of masoprocol. The results of these in vitro and in vivo experiments suggest that the antilipolytic activity of masoprocol is secondary to its ability to inhibit HSL phosphorylation, possibly by increasing phosphatase activity. As a consequence, masoprocol administration results in lower serum FFA and TG concentrations in hypertriglyceridemic rodents.

  16. Pressure overload stimulated cardiac hypertrophy leads to a rapid decrease in the mRNA for creatine kinase

    SciTech Connect

    Boheler, K.; Popovich, B.; Dillmann, W.H.

    1987-05-01

    Cardiac hypertrophy (CH) leads to a decrease in creatine kinase (CK) enzymatic activity. To determine if the mRNA for CK also decreases with CH, they performed the following studies. Cardiac RNA was isolated from rats subjected to either abdominal aortic stenosis (AS) or sham surgery. Through Northern blot analysis, total cardiac RNA was quantitated with a CK specific /sup 32/P-labelled cDNA clone. At 3 and 8 days post-constriction, the mRNA for CK decreases by 54.6 +/- 7% and 65.3 +/- 18% respectively, whereas the heart weight increases by 19% and 37% relative to controls. Further studies indicate that CK mRNA also decreases by 41.8% in hypothyroid rats (Tx) but decreases by a total of 68.1% in Tx rats subjected to 8 days of AS. Pressure overload stimulated CH leads to a rapid decrease in CK mRNA in normal and Tx rats. This CK mRNA decrease may account for the decreased efficiency of contraction seen in CH.

  17. Retinoic acid treatment of fibroblasts causes a rapid decrease in ( sup 3 H)inositol uptake

    SciTech Connect

    Sinha, R.; Creek, K.E.; Silverman-Jones, C.; de Luca, L.M. )

    1989-04-01

    NIH 3T3 fibroblasts treated with all-trans-retinoic acid (RA) showed a dramatic decrease in the uptake of ({sup 3}H)inositol compared to solvent-treated controls. The onset of RA-induced inhibition of ({sup 3}H)inositol uptake was rapid with a 10-15% decrease occurring after 2-3 h of RA exposure and 60-70% reduction after 16 h of RA treatment. A progressive dose-dependent decrease in inositol uptake was found as the concentration of RA increased from 10{sup {minus}8} to 10{sup {minus}5} M and the effect was fully reversible within 48 h after RA removal. RA inhibition of inositol uptake was also observed in 3T3-Swiss and Balb/3T3 cells but not in two virally transformed 3T3 cell lines. Phlorizin, amiloride, and monensin inhibited inositol uptake by 66, 74, and 58%, respectively, and this inhibition was additive when the cells were treated with RA as well as these inhibitors. A decreased incorporation of ({sup 3}H)inositol into polyphosphoinositides was also observed in RA-treated cells but not to the same extent as for ({sup 3}H)inositol uptake. In conclusion, RA treatment of 3T3 fibroblasts decreases the uptake of ({sup 3}H)inositol by up to 70% within 8 to 10 h at near physiological concentrations in a reversible and specific manner.

  18. Rapid decrease of radar cross section of meteor head echo observed by the MU radar

    NASA Astrophysics Data System (ADS)

    Nakamura, T.; Nishio, M.; Sato, T.; Tsutsumi, S.; Tsuda, T.; Fushimi, K.

    The meteor head echo observation using the MU (Middle and Upper atmosphere) radar (46.5M Hz, 1MW), Shigaraki, Japan, was carried out simultaneously with a high sensitive ICCD (Image-intensified CCD) camera observation in November 2001. The time records were synchronized using GPS satellite signals, in order to compare instantaneous radar and optical meteor magnitudes. 26 faint meteors were successfully observed simultaneously by both equipments. Detailed comparison of the time variation of radar echo intensity and absolute optical magnitude showed that the radar scattering cross section is likely to decrease rapidly by 5 - 20 dB without no corresponding magnitude variation in the optical data. From a simple modeling, we concluded that such decrease of RCS (radar cross section ) is probably due to the transition from overdense head echo to underd ense head echo.

  19. Uav Data Processing for Rapid Mapping Activities

    NASA Astrophysics Data System (ADS)

    Tampubolon, W.; Reinhardt, W.

    2015-08-01

    During disaster and emergency situations, geospatial data plays an important role to serve as a framework for decision support system. As one component of basic geospatial data, large scale topographical maps are mandatory in order to enable geospatial analysis within quite a number of societal challenges. The increasing role of geo-information in disaster management nowadays consequently needs to include geospatial aspects on its analysis. Therefore different geospatial datasets can be combined in order to produce reliable geospatial analysis especially in the context of disaster preparedness and emergency response. A very well-known issue in this context is the fast delivery of geospatial relevant data which is expressed by the term "Rapid Mapping". Unmanned Aerial Vehicle (UAV) is the rising geospatial data platform nowadays that can be attractive for modelling and monitoring the disaster area with a low cost and timely acquisition in such critical period of time. Disaster-related object extraction is of special interest for many applications. In this paper, UAV-borne data has been used for supporting rapid mapping activities in combination with high resolution airborne Interferometric Synthetic Aperture Radar (IFSAR) data. A real disaster instance from 2013 in conjunction with Mount Sinabung eruption, Northern Sumatra, Indonesia, is used as the benchmark test for the rapid mapping activities presented in this paper. On this context, the reliable IFSAR dataset from airborne data acquisition in 2011 has been used as a comparable dataset for accuracy investigation and assessment purpose in 3 D reconstructions. After all, this paper presents a proper geo-referencing and feature extraction method of UAV data to support rapid mapping activities.

  20. Endothelial cell and model membranes respond to shear stress by rapidly decreasing the order of their lipid phases.

    PubMed

    Yamamoto, Kimiko; Ando, Joji

    2013-03-01

    Endothelial cells (ECs) sense shear stress and transduce blood flow information into functional responses that play important roles in vascular homeostasis and pathophysiology. A unique feature of shear-stress-sensing is the involvement of many different types of membrane-bound molecules, including receptors, ion channels and adhesion proteins, but the mechanisms remain unknown. Because cell membrane properties affect the activities of membrane-bound proteins, shear stress might activate various membrane-bound molecules by altering the physical properties of EC membranes. To determine how shear stress influences the cell membrane, cultured human pulmonary artery ECs were exposed to shear stress and examined for changes in membrane lipid order and fluidity by Laurdan two-photon imaging and FRAP measurements. Upon shear stress stimulation, the lipid order of EC membranes rapidly decreased in an intensity-dependent manner, and caveolar membrane domains changed from the liquid-ordered state to the liquid-disordered state. Notably, a similar decrease in lipid order occurred when the artificial membranes of giant unilamellar vesicles were exposed to shear stress, suggesting that this is a physical phenomenon. Membrane fluidity increased over the entire EC membranes in response to shear stress. Addition of cholesterol to ECs abolished the effects of shear stress on membrane lipid order and fluidity and markedly suppressed ATP release, which is a well-known EC response to shear stress and is involved in shear-stress Ca(2+) signaling. These findings indicate that EC membranes directly respond to shear stress by rapidly decreasing their lipid phase order and increasing their fluidity; these changes could be linked to shear-stress-sensing and response mechanisms. PMID:23378020

  1. Endothelial cell and model membranes respond to shear stress by rapidly decreasing the order of their lipid phases.

    PubMed

    Yamamoto, Kimiko; Ando, Joji

    2013-03-01

    Endothelial cells (ECs) sense shear stress and transduce blood flow information into functional responses that play important roles in vascular homeostasis and pathophysiology. A unique feature of shear-stress-sensing is the involvement of many different types of membrane-bound molecules, including receptors, ion channels and adhesion proteins, but the mechanisms remain unknown. Because cell membrane properties affect the activities of membrane-bound proteins, shear stress might activate various membrane-bound molecules by altering the physical properties of EC membranes. To determine how shear stress influences the cell membrane, cultured human pulmonary artery ECs were exposed to shear stress and examined for changes in membrane lipid order and fluidity by Laurdan two-photon imaging and FRAP measurements. Upon shear stress stimulation, the lipid order of EC membranes rapidly decreased in an intensity-dependent manner, and caveolar membrane domains changed from the liquid-ordered state to the liquid-disordered state. Notably, a similar decrease in lipid order occurred when the artificial membranes of giant unilamellar vesicles were exposed to shear stress, suggesting that this is a physical phenomenon. Membrane fluidity increased over the entire EC membranes in response to shear stress. Addition of cholesterol to ECs abolished the effects of shear stress on membrane lipid order and fluidity and markedly suppressed ATP release, which is a well-known EC response to shear stress and is involved in shear-stress Ca(2+) signaling. These findings indicate that EC membranes directly respond to shear stress by rapidly decreasing their lipid phase order and increasing their fluidity; these changes could be linked to shear-stress-sensing and response mechanisms.

  2. Selenium bond decreases ON resistance of light-activated switch

    NASA Technical Reports Server (NTRS)

    1965-01-01

    Vitrified amorphous selenium bond decreases the ON resistance of a gallium arsenide-silicon light-activated, low-level switch. The switch is used under a pulse condition to prolong switch life and minimize errors due to heating, devitrification, and overdrawing.

  3. Why does serotonergic activity drastically decrease during REM sleep?

    PubMed

    Sato, Kohji

    2013-10-01

    Here, I postulate two hypotheses that can explain the missing link between sleep and the serotonergic system in terms of spine homeostasis and memory consolidation. As dendritic spines contain many kinds of serotonin receptors, and the activation of serotonin receptors generally increases the number of spines in the cortex and hippocampus, I postulate that serotonin neurons are down-regulated during sleep to decrease spine number, which consequently maintains the total spine number at a constant level. Furthermore, since synaptic consolidation during REM sleep needs long-term potentiation (LTP), and serotonin is reported to inhibit LTP in the cortex, I postulate that serotonergic activity must drastically decrease during REM sleep to induce LTP and do memory consolidation. Until now, why serotonergic neurons show these dramatic changes in the sleep-wake cycle remains unexplained; however, making these hypotheses, I can confer physiological meanings on these dramatic changes of serotonergic neurons in terms of spine homeostasis and memory consolidation.

  4. Exendin-4 Decreases Amphetamine-induced Locomotor Activity

    PubMed Central

    Erreger, Kevin; Davis, Adeola R.; Poe, Amanda M.; Greig, Nigel H.; Stanwood, Gregg D.; Galli, Aurelio

    2012-01-01

    Glucagon-like peptide-1 (GLP-1) is released in response to nutrient ingestion and is a regulator of energy metabolism and consummatory behaviors through both peripheral and central mechanisms. The GLP-1 receptor (GLP-1R) is widely distributed in the central nervous system, however little is known about how GLP-1Rs regulate ambulatory behavior. The abused psychostimulant amphetamine (AMPH) promotes behavioral locomotor activity primarily by inducing the release of the neurotransmitter dopamine. Here, we identify the GLP-1R agonist exendin-4 (Ex-4) as a modulator of behavioral activation by AMPH. We report that in rats a single acute administration of Ex-4 decreases both basal locomotor activity as well as AMPH-induced locomotor activity. Ex-4 did not induce behavioral responses reflecting anxiety or aversion. Our findings implicate GLP-1R signaling as a novel modulator of psychostimulant-induced behavior and therefore a potential therapeutic target for psychostimulant abuse. PMID:22465309

  5. Berberine Suppresses Adipocyte Differentiation via Decreasing CREB Transcriptional Activity

    PubMed Central

    Deng, Ruyuan; Wang, Ning; Zhang, Yuqing; Wang, Yao; Liu, Yun; Li, Fengying; Wang, Xiao; Zhou, Libin

    2015-01-01

    Berberine, one of the major constituents of Chinese herb Rhizoma coptidis, has been demonstrated to lower blood glucose, blood lipid, and body weight in patients with type 2 diabetes mellitus. The anti-obesity effect of berberine has been attributed to its anti-adipogenic activity. However, the underlying molecular mechanism remains largely unknown. In the present study, we found that berberine significantly suppressed the expressions of CCAAT/enhancer-binding protein (C/EBP)α, peroxisome proliferators-activated receptor γ2 (PPARγ2), and other adipogenic genes in the process of adipogenesis. Berberine decreased cAMP-response element-binding protein (CREB) phosphorylation and C/EBPβ expression at the early stage of 3T3-L1 preadipocyte differentiation. In addition, CREB phosphorylation and C/EBPβ expression induced by 3-isobutyl-1-methylxanthine (IBMX) and forskolin were also attenuated by berberine. The binding activities of cAMP responsive element (CRE) stimulated by IBMX and forskolin were inhibited by berberine. The binding of phosphorylated CREB to the promoter of C/EBPβ was abrogated by berberine after the induction of preadipocyte differentiation. These results suggest that berberine blocks adipogenesis mainly via suppressing CREB activity, which leads to a decrease in C/EBPβ-triggered transcriptional cascades. PMID:25928058

  6. The rapid decrease in astrocyte-associated dystroglycan expression by focal cerebral ischemia is protease-dependent

    PubMed Central

    Milner, Richard; Hung, Stephanie; Wang, Xiaoyun; Spatz, Maria; Zoppo, Gregory J del

    2008-01-01

    During focal cerebral ischemia, the detachment of astrocytes from the microvascular basal lamina is not completely explained by known integrin receptor expression changes. Here, the impact of experimental ischemia (oxygen–glucose deprivation (OGD)) on dystroglycan expression by murine endothelial cells and astrocytes grown on vascular matrix laminin, perlecan, or collagen and the impact of middle cerebral artery occlusion on αβ-dystroglycan within cerebral microvessels of the nonhuman primate were examined. Dystroglycan was expressed on all cerebral microvessels in cortical gray and white matter, and the striatum. Astrocyte adhesion to basal lamina proteins was managed in part by α-dystroglycan, while ischemia significantly reduced expression of dystroglycan both in vivo and in vitro. Furthermore, dystroglycan and integrin α6β4 expressions on astrocyte end-feet decreased in parallel both in vivo and in vitro. The rapid loss of astrocyte dystroglycan during OGD appears protease-dependent, involving an matrix metalloproteinase-like activity. This may explain the rapid detachment of astrocytes from the microvascular basal lamina during ischemic injury, which could contribute to significant changes in microvascular integrity. PMID:18030304

  7. Decreased microglial activation in MS patients treated with glatiramer acetate

    PubMed Central

    Ratchford, John N.; Endres, Christopher J.; Hammoud, Dima A.; Pomper, Martin G.; Shiee, Navid; McGready, John; Pham, Dzung L.; Calabresi, Peter A.

    2012-01-01

    Activated microglia are thought to be an important contributor to tissue damage in multiple sclerosis (MS). The level of microglial activation can be measured non-invasively using [11C]-R-PK11195, a radiopharmaceutical for positron emission tomography (PET). Prior studies have identified abnormalities in the level of [11C]-R-PK11195 uptake in patients with MS, but treatment effects have not been evaluated. Nine previously untreated relapsing-remitting MS patients underwent PET and magnetic resonance imaging (MRI) of the brain at baseline and after one year of treatment with glatiramer acetate. Parametric maps of [11C]-R-PK11195 uptake were obtained for baseline and post-treatment PET scans, and the change in [11C]-R-PK11195 uptake pre- to post-treatment was evaluated across the whole brain. Region of interest analysis was also applied to selected subregions. Whole brain [11C]-R-PK11195 binding potential per unit volume decreased 3.17% (95% CI: −0.74%, −5.53%) between baseline and one year (p = 0.018). A significant decrease was noted in cortical gray matter and cerebral white matter, and a trend towards decreased uptake was seen in the putamen and thalamus. The results are consistent with a reduction in inflammation due to treatment with glatiramer acetate, though a larger controlled study would be required to prove that association. Future research will focus on whether the level of baseline microglial activation predicts future tissue damage in MS and whether [11C]-R-PK11195 uptake in cortical gray matter correlates with cortical lesion load. PMID:22160466

  8. Decrease of fibrinolytic activity in human endothelial cells by arsenite.

    PubMed

    Jiang, Shinn-Jong; Lin, Tsun-Mei; Wu, Hua-Lin; Han, Huai-Song; Shi, Guey-Yueh

    2002-01-01

    Blackfoot disease (BFD) is an endemic peripheral vascular occlusive disease that occurred in the southwest coast of Taiwan. It is believed that arsenic in the drinking water from artesian wells plays an important role in the development of the disease. We have previously shown that BFD patients had significant lower tissue-type plasminogen activator (t-PA) antigen level and higher plasminogen activator inhibitor, Type 1 (PAI-1) antigen level than normal controls. The purpose of this study was to investigate the effects of arsenite on the fibrinolytic and anticoagulant activities of cultured macrovascular and microvascular endothelial cells. Incubation of human microvascular endothelial cells (HMEC-1), but not human umbilical vein endothelial cells (HUVECs), with arsenite caused a decrease of t-PA mRNA level, a rise of both PAI-1 mRNA level and PAI activity. Arsenite could also inhibit the thrombomodulin (TM) mRNA expression and reduce the TM antigen level in HMEC-1. In conclusion, arsenite had a greater effect on HMEC-1 as compared to HUVECs in lowering the fibrinolytic activity and may be responsible for the reduced capacity of fibrinolysis associated with BFD.

  9. Decreased Prolidase Activity in Patients with Posttraumatic Stress Disorder

    PubMed Central

    Bulut, Mahmut; Atli, Abdullah; Kaplan, İbrahim; Kaya, Mehmet Cemal; Bez, Yasin; Özdemir, Pınar Güzel; Sır, Aytekin

    2016-01-01

    Objective Many neurochemical systems have been implicated in the development of Posttraumatic Stress Disorder (PTSD). The prolidase enzyme is a cytosolic exopeptidase that detaches proline or hydroxyproline from the carboxyl terminal position of dipeptides. Prolidase has important biological effects, and to date, its role in the etiology of PTSD has not been studied. In the present study, we aimed to evaluate prolidase activity in patients with PTSD. Methods The study group consisted of patients who were diagnosed with PTSD after the earthquake that occurred in the province of Van in Turkey in 2011 (n=25); the first control group consisted of patients who experienced the earthquake but did not show PTSD symptoms (n=26) and the second control group consisted of patients who have never been exposed to a traumatic event (n=25). Prolidase activities in the patients and the control groups were determined by the ELISA method using commercial kits. Results Prolidase activity in the patient group was significantly lower when compared to the control groups. Prolidase activity was also significantly lower in the traumatized healthy subjects compared to the other healthy group (p<0.01). Conclusion The findings of the present study suggest that the decrease in prolidase activity may have neuroprotective effects in patients with PTSD. PMID:27482243

  10. Decreased dopamine activity predicts relapse in methamphetamine abusers

    SciTech Connect

    Wang G. J.; Wang, G.-J.; Smith, L.; Volkow, N.D.; Telang, F.; Logan, J.; Tomasi, D.; Wong, C.T.; Hoffman, W.; Jayne, M.; Alia-Klein, N.; Thanos, P.; Fowler, J.S.

    2011-01-20

    Studies in methamphetamine (METH) abusers showed that the decreases in brain dopamine (DA) function might recover with protracted detoxification. However, the extent to which striatal DA function in METH predicts recovery has not been evaluated. Here we assessed whether striatal DA activity in METH abusers is associated with clinical outcomes. Brain DA D2 receptor (D2R) availability was measured with positron emission tomography and [{sup 11}C]raclopride in 16 METH abusers, both after placebo and after challenge with 60 mg oral methylphenidate (MPH) (to measure DA release) to assess whether it predicted clinical outcomes. For this purpose, METH abusers were tested within 6 months of last METH use and then followed up for 9 months of abstinence. In parallel, 15 healthy controls were tested. METH abusers had lower D2R availability in caudate than in controls. Both METH abusers and controls showed decreased striatal D2R availability after MPH and these decreases were smaller in METH than in controls in left putamen. The six METH abusers who relapsed during the follow-up period had lower D2R availability in dorsal striatum than in controls, and had no D2R changes after MPH challenge. The 10 METH abusers who completed detoxification did not differ from controls neither in striatal D2R availability nor in MPH-induced striatal DA changes. These results provide preliminary evidence that low striatal DA function in METH abusers is associated with a greater likelihood of relapse during treatment. Detection of the extent of DA dysfunction may be helpful in predicting therapeutic outcomes.

  11. Biofidelic white matter heterogeneity decreases computational model predictions of white matter strains during rapid head rotations.

    PubMed

    Maltese, Matthew R; Margulies, Susan S

    2016-11-01

    The finite element (FE) brain model is used increasingly as a design tool for developing technology to mitigate traumatic brain injury. We developed an ultra high-definition FE brain model (>4 million elements) from CT and MRI scans of a 2-month-old pre-adolescent piglet brain, and simulated rapid head rotations. Strain distributions in the thalamus, coronal radiata, corpus callosum, cerebral cortex gray matter, brainstem and cerebellum were evaluated to determine the influence of employing homogeneous brain moduli, or distinct experimentally derived gray and white matter property representations, where some white matter regions are stiffer and others less stiff than gray matter. We find that constitutive heterogeneity significantly lowers white matter deformations in all regions compared with homogeneous properties, and should be incorporated in FE model injury prediction.

  12. Liver Stiffness Decreases Rapidly in Response to Successful Hepatitis C Treatment and Then Plateaus

    PubMed Central

    Bichoupan, Kian; Sefcik, Roberta; Doobay, Kamini; Chang, Sanders; DelBello, David; Harty, Alyson; Dieterich, Douglas T.; Perumalswami, Ponni V.; Branch, Andrea D.

    2016-01-01

    Background and Aim To investigate the impact of a sustained virological response (SVR) to hepatitis C virus (HCV) treatment on liver stiffness (LS). Methods LS, measured by transient elastography (FibroScan), demographic and laboratory data of patients treated with interferon (IFN)-containing or IFN-free regimens who had an SVR24 (undetectable HCV viral load 24 weeks after the end of treatment) were analyzed using two-tailed paired t-tests, Mann-Whitney Wilcoxon Signed-rank tests and linear regression. Two time intervals were investigated: pre-treatment to SVR24 and SVR24 to the end of follow-up. LS scores ≥ 12.5 kPa indicated LS-defined cirrhosis. A p-value below 0.05 was considered statistically significant. Results The median age of the patients (n = 100) was 60 years [IQR (interquartile range) 54–64); 72% were male; 60% were Caucasian; and 42% had cirrhosis pre-treatment according to the FibroScan measurement. The median LS score dropped from 10.40 kPa (IQR: 7.25–18.60) pre-treatment to 7.60 kPa (IQR: 5.60–12.38) at SVR24, p <0.01. Among the 42 patients with LS-defined cirrhosis pre-treatment, 25 (60%) of patients still had LS scores ≥ 12.5 kPa at SVR24, indicating the persistence of cirrhosis. The median change in LS was similar in patients receiving IFN-containing and IFN-free regimens: -1.95 kPa (IQR: -5.75 –-0.38) versus -2.40 kPa (IQR: -7.70 –-0.23), p = 0.74. Among 56 patients with a post-SVR24 LS measurement, the LS score changed by an additional -0.90 kPa (IQR: -2.98–0.5) during a median follow-up time of 1.17 (IQR: 0.88–1.63) years, which was not a statistically significant decrease (p = 0.99). Conclusions LS decreased from pre-treatment to SVR24, but did not decrease significantly during additional follow-up. Earlier treatment may be needed to reduce the burden of liver disease. PMID:27442255

  13. Rapid copper acquisition by developing murine mesothelioma: decreasing bioavailable copper slows tumor growth, normalizes vessels and promotes T cell infiltration.

    PubMed

    Crowe, Andrew; Jackaman, Connie; Beddoes, Katie M; Ricciardo, Belinda; Nelson, Delia J

    2013-01-01

    Copper, an essential trace element acquired through nutrition, is an important co-factor for pro-angiogenic factors including vascular endothelial growth factor (VEGF). Decreasing bioavailable copper has been used as an anti-angiogenic and anti-cancer strategy with promising results. However, the role of copper and its potential as a therapy in mesothelioma is not yet well understood. Therefore, we monitored copper levels in progressing murine mesothelioma tumors and analyzed the effects of lowering bioavailable copper. Copper levels in tumors and organs were assayed using atomic absorption spectrophotometry. Mesothelioma tumors rapidly sequestered copper at early stages of development, the copper was then dispersed throughout growing tumor tissues. These data imply that copper uptake may play an important role in early tumor development. Lowering bioavailable copper using the copper chelators, penicillamine, trientine or tetrathiomolybdate, slowed in vivo mesothelioma growth but did not provide any cures similar to using cisplatin chemotherapy or anti-VEGF receptor antibody therapy. The impact of copper lowering on tumor blood vessels and tumor infiltrating T cells was measured using flow cytometry and confocal microscopy. Copper lowering was associated with reduced tumor vessel diameter, reduced endothelial cell proliferation (reduced Ki67 expression) and lower surface ICAM/CD54 expression implying reduced endothelial cell activation, in a process similar to endothelial normalization. Copper lowering was also associated with a CD4(+) T cell infiltrate. In conclusion, these data suggest copper lowering is a potentially useful anti-mesothelioma treatment strategy that slows tumor growth to provide a window of opportunity for inclusion of other treatment modalities to improve patient outcomes.

  14. Rapid acquisition of decreased carbapenem susceptibility in a strain of Klebsiella pneumoniae arising during meropenem therapy.

    PubMed

    Findlay, J; Hamouda, A; Dancer, S J; Amyes, S G B

    2012-02-01

    A strain of Klebsiella pneumoniae (K1) was isolated from a catheterized patient with a urinary tract infection. The patient was subsequently treated with meropenem, after which K. pneumoniae (K2) was once again isolated from the patient's urine. Susceptibility testing showed that strain K1 was fully susceptible to carbapenem antibiotics with the exception of ertapenem, to which it exhibited intermediate resistance, whilst K2 was resistant to ertapenem and meropenem. From pulsed-field gel electrophoresis profiling both strains exhibited identical banding patterns. Both contained CTX-M-15, OXA-1, SHV-1 and TEM-1 β-lactamase genes following PCR analyses. Outer membrane protein analysis demonstrated that K1 and K2 lacked an OMP of c. 40 kDa, with an additional OMP of c. 36 kDa missing from K2. Mutation studies showed that the K2 OMP phenotype could be selected by single-step carbapenem-resistant mutants of K1. Expression of transcriptional activator ramA and efflux pump component gene acrA were up-regulated in both strains by RT-PCR. Neither strain expressed ompK35, but ompK36 was found in both. Sequence analysis revealed gene sequences of ompK35, ompK36 and ramR in both strains; notably, ramR contained a mutation resulting in a premature stop codon. Transconjugation studies demonstrated transfer of a plasmid into E. coli encoding the CTX-M-15, TEM-1 and OXA-1 β-lactamases. We concluded that the carbapenem-resistant phenotype observed from this patient was attributable to a combination of CTX-M-15 β-lactamase, up-regulated efflux and altered outer membrane permeability, and that K2 arose from K1 as a direct result of meropenem therapy.

  15. Potential of activated carbon to decrease 2,4,6-trinitrotoluene toxicity and accelerate soil decontamination.

    PubMed

    Vasilyeva, G K; Kreslavski, V D; Oh, B T; Shea, P J

    2001-05-01

    Activated carbon can be used to decrease 2,4,6-trinitrotoluene (TNT) toxicity and promote bioremediation of highly contaminated soil. Adding activated carbon at 0.25, 0.75, and 1.0% (w/w) to Sharpsburg soil contaminated with 500, 1,000, and 2,000 mg TNT/kg decreased concentrations of TNT and its transformation products in soil solution to 5 mg/L or less, resulting in low toxicity to corn plants (Zea mays L.) and soil microorganisms. As much as 50% of the added TNT was rapidly bound to the soil-activated carbon matrix. Simultaneous accumulation of 2,4,6-trinitrobenzaldehyde (TNBAld) indicated that the activated carbon promoted oxidation of TNT. Some of the TNBAld was further oxidized to 1,3,5-trinitrobenzene, followed by reduction to 3,5-dinitroaniline. Reversibly bound TNT was gradually transformed to 2-amino-4,6-dinitrotoluene and 4-amino-2,6-dinitrotoluene, and both were bound to the soil-activated carbon matrix. The transformation and binding of TNT to soil were further promoted by incorporating shredded corn plants after growing for 52 d in the activated carbon-amended soil. After 120 d, these amendments reduced extractable TNT and transformation products by 91% in soil containing 2,000 mg TNT/kg, compared to 55% in unamended soil. These results demonstrate the potential use of activated carbon in combination with plants to promote in situ bioremediation of soils highly contaminated with explosives.

  16. Decreased physical activity in Pima Indian compared with Caucasian children.

    PubMed

    Fontvieille, A M; Kriska, A; Ravussin, E

    1993-08-01

    Since reduced physical activity might be a risk factor for body weight gain, we studied the relationship between physical activity and body composition in 43 Pima Indian children (22 male/21 female, mean +/- s.d.: 9.9 +/- 1.1 years) and 42 Caucasian children (21 male/21 female, 9.7 +/- 1.2 years). A list of usual sport leisure activities was established (e.g. bicycling, swimming, basketball) and the subjects were asked how much time they had devoted to each activity over the past week and the last year. Data on time spent playing outside (excluding sport leisure activities for the estimation of physical activity) and watching television/videos were also collected. Pima Indians were taller (143 +/- 9 vs. 137 +/- 8 cm, P < 0.001), heavier (48.6 +/- 15.8 vs. 32.9 +/- 7.8 kg, P < 0.0001) and fatter (39 +/- 16 vs. 24 +/- 7% fat, P < 0.001) than Caucasians. Pima Indian girls showed significantly lower past year and past week sport leisure activity than Caucasian girls (P < 0.01) and spent significantly more time watching television/videos (P < 0.05). Pima boys also showed significantly lower past week sport leisure activity than Caucasian boys (P < 0.05). In Pima Indian boys, past year sport leisure activity correlated negatively (P < 0.05) with body mass index (r = -0.49) and percentage body fat (r = -0.56). However, such correlations were not found in Pima Indian girls, possibly due their very low levels of activity.(ABSTRACT TRUNCATED AT 250 WORDS)

  17. Src activity increases and Yes activity decreases during mitosis of human colon carcinoma cells.

    PubMed Central

    Park, J; Cartwright, C A

    1995-01-01

    Src and Yes protein-tyrosine kinase activities are elevated in malignant and premalignant tumors of the colon. To determine whether Src activity is elevated throughout the human colon carcinoma cell cycle as it is in polyomavirus middle T antigen- or F527 Src-transformed cells, and whether Yes activity, which is lower than that of Src in the carcinoma cells, is regulated differently, we measured their activities in cycling cells. We observed that the activities of both kinases were higher throughout all phases of the HT-29 colon carcinoma cell cycle than in corresponding phases of the fibroblast cycle. In addition, during mitosis of HT-29 cells, Src specific activity increased two- to threefold more, while Yes activity and abundance decreased threefold. The decreased steady-state protein levels of Yes during mitosis appeared to be due to both decreased synthesis and increased degradation of the protein. Inhibition of tyrosine but not serine/threonine phosphatases abolished the mitotic activation of Src. Mitotic Src was phosphorylated at novel serine and threonine sites and dephosphorylated at Tyr-527. Two cellular proteins (p160 and p180) were phosphorylated on tyrosine only during mitosis. Tyrosine phosphorylation of several other proteins decreased during mitosis. Thus, Src in HT-29 colon carcinoma cells, similar to Src complexed to polyomavirus middle T antigen or activated by mutation at Tyr-527, is highly active in all phases of the cell cycle. Moreover, Src activity further increases during mitosis, whereas Yes activity and abundance decrease. Thus, Src and Yes appear to be regulated differently during mitosis of HT-29 colon carcinoma cells. PMID:7739521

  18. Insulin-induced decrease in protein phosphorylation in rat adipocytes not explained by decreased A-kinase activity

    SciTech Connect

    Egan, J.J.; Greenberg, A.S.; Chang, M.K.; Londos, C.

    1987-05-01

    In isolated rat adipocytes, insulin inhibits lipolysis to a greater extent than would be predicted by the decrease in (-/+)cAMP activity ratio of cAMP-dependent protein kinase (A-kinase), from which it was speculated that insulin promotes the dephosphorylation of hormone-sensitive lipase. They have examined the phosphorylation state of cellular proteins under conditions of varying A-kinase activities in the presence and absence of insulin. Protein phosphorylation was determined by SDS-PAGE electrophoresis of extracts from /sup 32/P-loaded cells; glycerol and A-kinase activity ratios were measured in the cytosolic extracts from control, non-radioactive cells. Increased protein phosphorylation in general occurred over the same range of A-kinase activity ratios, 0.1-0.3, associated with increased glycerol release. The insulin-induced decrease in lipolysis was associated with a decrease in the /sup 32/P content of several proteins, an effect not explained by the modest reduction in A-kinase activity by insulin. This effect of insulin on protein phosphorylation was lost as the A-kinase activity ratios exceeded 0.5. The results suggest that insulin promotes the dephosphorylation of those adipocyte proteins which are subject to phosphorylation by A-kinase.

  19. Decrease in gamma-band activity tracks sequence learning

    PubMed Central

    Madhavan, Radhika; Millman, Daniel; Tang, Hanlin; Crone, Nathan E.; Lenz, Fredrick A.; Tierney, Travis S.; Madsen, Joseph R.; Kreiman, Gabriel; Anderson, William S.

    2015-01-01

    Learning novel sequences constitutes an example of declarative memory formation, involving conscious recall of temporal events. Performance in sequence learning tasks improves with repetition and involves forming temporal associations over scales of seconds to minutes. To further understand the neural circuits underlying declarative sequence learning over trials, we tracked changes in intracranial field potentials (IFPs) recorded from 1142 electrodes implanted throughout temporal and frontal cortical areas in 14 human subjects, while they learned the temporal-order of multiple sequences of images over trials through repeated recall. We observed an increase in power in the gamma frequency band (30–100 Hz) in the recall phase, particularly in areas within the temporal lobe including the parahippocampal gyrus. The degree of this gamma power enhancement decreased over trials with improved sequence recall. Modulation of gamma power was directly correlated with the improvement in recall performance. When presenting new sequences, gamma power was reset to high values and decreased again after learning. These observations suggest that signals in the gamma frequency band may play a more prominent role during the early steps of the learning process rather than during the maintenance of memory traces. PMID:25653598

  20. Stereotypic wheel running decreases cortical activity in mice

    PubMed Central

    Fisher, Simon P.; Cui, Nanyi; McKillop, Laura E.; Gemignani, Jessica; Bannerman, David M.; Oliver, Peter L.; Peirson, Stuart N.; Vyazovskiy, Vladyslav V.

    2016-01-01

    Prolonged wakefulness is thought to gradually increase ‘sleep need' and influence subsequent sleep duration and intensity, but the role of specific waking behaviours remains unclear. Here we report the effect of voluntary wheel running during wakefulness on neuronal activity in the motor and somatosensory cortex in mice. We find that stereotypic wheel running is associated with a substantial reduction in firing rates among a large subpopulation of cortical neurons, especially at high speeds. Wheel running also has longer-term effects on spiking activity across periods of wakefulness. Specifically, cortical firing rates are significantly higher towards the end of a spontaneous prolonged waking period. However, this increase is abolished when wakefulness is dominated by running wheel activity. These findings indicate that wake-related changes in firing rates are determined not only by wake duration, but also by specific waking behaviours. PMID:27748455

  1. Experimental evaluation of decrease in bacterial activity due to cell death and activity decay in activated sludge.

    PubMed

    Hao, Xiaodi; Wang, Qilin; Zhang, Xiangping; Cao, Yali; van Mark Loosdrecht, C M

    2009-08-01

    Decrease in bacterial activity (cell decay) in activated sludge can be attributed to cell death (reduction in the amount of active bacteria) and activity decay (reduction in the specific activity of active bacteria). The aim of this study was to experimentally differentiate between cell death and activity decay as a source of decrease in microbial activity. By means of measuring maximal oxygen uptake rates, verifying membrane integrity by live/dead staining and verifying presence of 16S rRNA with fluorescence in-situ hybridization, the decay rates and the death rates of ammonium oxidizing bacteria (AOB), nitrite oxidizing bacteria (NOB) and ordinary heterotrophic organisms (OHOs) were determined respectively in a nitrifying sequencing batch reactor (SBR) and a heterotrophic SBR. The experiments revealed that in the nitrifying system activity decay contributed 47% and 82% to the decreased activities of AOB and NOB and that cell death was responsible for 53% and 18% of decreases in their respective activities. In the heterotrophic system, activity decay took a share of 78% in the decreased activity of OHOs, and cell death was only responsible for 22% of decrease in their activity. The difference between the importance of cell death on the decreased activities of AOB and OHOs might be caused by the mechanisms of substrate storage and/or cryptic growth/death-regeneration of OHOs. The different nutrient sources for AOB and NOB might be the reason for a relatively smaller fraction of cell death in NOB.

  2. Endothelial cell phagocytosis of senescent neutrophils decreases procoagulant activity.

    PubMed

    Gao, Chunyan; Xie, Rui; Li, Wen; Zhou, Jin; Liu, Shuchuan; Cao, Fenglin; Liu, Yue; Ma, Ruishuang; Si, Yu; Liu, Yan; Bi, Yayan; Gilbert, Gary E; Shi, Jialan

    2013-06-01

    Abundant senescent neutrophils traverse the vascular compartment and may contribute to pathologic conditions. For example, they become procoagulant when undergoing apoptosis and may contribute to thrombosis or inflammation. Our previous studies demonstrated a dominant clearance pathway in which the neutrophils can be phagocytosed by liver macrophages. The aim of this study was to explore an alternate pathway of neutrophil clearance by endothelial cells. Phagocytosis of the neutrophils by endothelial cells was performed using various experimental approaches includingflow cytometry, confocal microscopy and electron microscopy assays in vitro and in vivo. Procoagulant activity of cultured neutrophils was evaluated by coagulation time, factor Xase and prothrombinase assays. Lactadherin functioned as a novel probe for the detection of phosphatidylserine on apoptotic cells, an opsonin (bridge) between apoptotic cell and phagocyte for promoting phagocytosis, and an efficient anticoagulant for inhibition of factor Xase and thrombin formation. When cultured, purified human neutrophils spontaneously entered apoptosis and developed procoagulant activity that was directly related to the degree of phosphatidylserine exposure. Co-culture of aged neutrophils and endothelial cells resulted in phagocytosis of the neutrophils and prolonged coagulation time. Lactadherin diminished the procoagulant activity and increased the rate of neutrophil clearance. In vivo, neutrophils were sequestered by endothelial cells after blockade of Kupffer cells, a process that was dependent upon both phosphatidylserine exposure and P-selectin expression. Thus, the ability of endothelial cells to clear senescent neutrophils may limit the procoagulant and/or inflammatory impact of these cells.

  3. Decrease in T Cell Activation and Calcium Flux during Clinorotation

    NASA Technical Reports Server (NTRS)

    Sams, Clarence; Holtzclaw, J. David

    2006-01-01

    We investigated the effect of altered gravitational environments on T cell activation. We isolated human, naive T cells (CD3+CD14-CD19-CD16-CD56-CD25-CD69-CD45RA-) following IRB approved protocols. These purified T cells were then incubated with 6 mm polystyrene beads coated with OKT3 (Ortho Biotech, Raritan, NJ) and antiCD28 (Becton Dickinson (BD), San Jose, CA) at 37 C for 24 hours. Antibodies were at a 1:1 ratio and the bead-to-cell ratio was 2:1. Four incubation conditions existed: 1) static or "1g"; 2) centrifugation at 10 relative centrifugal force (RCF) or "10g"; 3) clinorotation at 25 RPM (functional weightlessness or "0g"); and 4) clinorotation at 80 RPM ("1g" plus net shear force approx.30 dynes/sq cm). Following incubation, T cells were stained for CD25 expression (BD) and intracellular calcium (ratio of Fluo4 to Fura Red, Molecular Probes, Eugene, OR) and analyzed by flow cytometry (Coulter EPICS XL, Miami, FL). Results: Static or "1g" T cells had the highest level of CD25 expression and intracellular calcium. T cells centrifuged at 10 RCF ("10g") had lower CD25 expression and calcium levels compared to the static control. However, cells centrifuged at 10 RCF had higher CD25 expression and calcium levels than those exposed to 24 RPM clinorotation ("0g"). T cells exposed to 24 RPM clinorotation had lower CD25 expression, but the approximately the same calcium levels than T cells exposed to 80 RPM clinorotation. These data suggest that stress-activated calcium channel exist in T cells and may play a role during T cell activation.

  4. Rapid decrease in tumor perfusion following VEGF blockade predicts long-term tumor growth inhibition in preclinical tumor models.

    PubMed

    Eichten, Alexandra; Adler, Alexander P; Cooper, Blerta; Griffith, Jennifer; Wei, Yi; Yancopoulos, George D; Lin, Hsin Chieh; Thurston, Gavin

    2013-04-01

    Vascular endothelial growth factor (VEGF) is a key upstream mediator of tumor angiogenesis, and blockade of VEGF can inhibit tumor angiogenesis and decrease tumor growth. However, not all tumors respond well to anti-VEGF therapy. Despite much effort, identification of early response biomarkers that correlate with long-term efficacy of anti-VEGF therapy has been difficult. These difficulties arise in part because the functional effects of VEGF inhibition on tumor vessels are still unclear. We therefore assessed rapid molecular, morphologic and functional vascular responses following treatment with aflibercept (also known as VEGF Trap or ziv-aflibercept in the United States) in preclinical tumor models with a range of responses to anti-VEGF therapy, including Colo205 human colorectal carcinoma (highly sensitive), C6 rat glioblastoma (moderately sensitive), and HT1080 human fibrosarcoma (resistant), and correlated these changes to long-term tumor growth inhibition. We found that an overall decrease in tumor vessel perfusion, assessed by dynamic contrast-enhanced ultrasound (DCE-US), and increases in tumor hypoxia correlated well with long-term tumor growth inhibition, whereas changes in vascular gene expression and microvessel density did not. Our findings support previous clinical studies showing that decreased tumor perfusion after anti-VEGF therapy (measured by DCE-US) correlated with response. Thus, measuring tumor perfusion changes shortly after treatment with VEGF inhibitors, or possibly other anti-angiogenic therapies, may be useful to predict treatment efficacy. PMID:23238831

  5. Polyphenols decreased liver NADPH oxidase activity, increased muscle mitochondrial biogenesis and decreased gastrocnemius age-dependent autophagy in aged rats.

    PubMed

    Laurent, Caroline; Chabi, Beatrice; Fouret, Gilles; Py, Guillaume; Sairafi, Badie; Elong, Cecile; Gaillet, Sylvie; Cristol, Jean Paul; Coudray, Charles; Feillet-Coudray, Christine

    2012-09-01

    This study explored major systems of reactive oxygen species (ROS) production and their consequences on oxidative stress, mitochondriogenesis and muscle metabolism in aged rats, and evaluated the efficiency of 30-day oral supplementation with a moderate dose of a red grape polyphenol extract (RGPE) on these parameters. In the liver of aged rats, NADPH oxidase activity was increased and mitochondrial respiratory chain complex activities were altered, while xanthine oxidase activity remained unchanged. In muscles, only mitochondrial activity was modified with aging. The oral intake of RGPE decreased liver NADPH oxidase activity in the aged rats without affecting global oxidative stress, suggesting that NADPH oxidase was probably not the dominant detrimental source of production of O(2)·(-) in the liver. Interestingly, RGPE supplementation increased mitochondrial biogenesis and improved antioxidant status in the gastrocnemius of aged rats, while it had no significant effect in soleus. RGPE supplementation also decreased age-dependent autophagy in gastrocnemius of aged rats. These results extended existing findings on the beneficial effects of RGPE on mitochondriogenesis and muscle metabolism in aged rats.

  6. Response of canopy nitrogen uptake to a rapid decrease in bulk nitrate deposition in two eastern Canadian boreal forests.

    PubMed

    Houle, D; Marty, C; Duchesne, L

    2015-01-01

    A few studies have reported a recent and rapid decline in NO3(-) deposition in eastern North America. Whether this trend can be observed at remote boreal sites with low rates of N deposition and how it could impact canopy uptake (CU) of N remain unknown. Here we report trends between 1997/1999 and 2012 for precipitation, throughfall N deposition as well as inorganic N CU for two boreal forest sites of Quebec, Canada, with contrasted N deposition rates and tree species composition. NO3(-) bulk deposition declined by approximately 50% at both sites over the studied period while no change was observed for NH4(+). As a result, the contribution of NH4(+) to inorganic N deposition changed from ~33% to more than 50% during the study period. On average, 52-59% of N deposition was intercepted by the canopy, the retention being higher for NH4(+) (60-67%) than for NO3(-) (45-54%). The decrease in NO3(-) bulk deposition and the increase in the NH4(+):NO3(-) ratio had important impacts on N-canopy interactions. The contribution of NH4(+) CU to that of total inorganic N CU increased at both sites but the trend was significant only at Tirasse (lowest N deposition). At this site, absolute NO3(-) CU significantly decreased (as did total N CU) during the study period, a consequence of the strong relationship (r(2) = 0.88) between NO3(-) bulk deposition and NO3(-) CU. Our data suggest that N interactions with forest canopies may change rapidly with changes in N deposition as well as with tree species composition.

  7. Response of canopy nitrogen uptake to a rapid decrease in bulk nitrate deposition in two eastern Canadian boreal forests.

    PubMed

    Houle, D; Marty, C; Duchesne, L

    2015-01-01

    A few studies have reported a recent and rapid decline in NO3(-) deposition in eastern North America. Whether this trend can be observed at remote boreal sites with low rates of N deposition and how it could impact canopy uptake (CU) of N remain unknown. Here we report trends between 1997/1999 and 2012 for precipitation, throughfall N deposition as well as inorganic N CU for two boreal forest sites of Quebec, Canada, with contrasted N deposition rates and tree species composition. NO3(-) bulk deposition declined by approximately 50% at both sites over the studied period while no change was observed for NH4(+). As a result, the contribution of NH4(+) to inorganic N deposition changed from ~33% to more than 50% during the study period. On average, 52-59% of N deposition was intercepted by the canopy, the retention being higher for NH4(+) (60-67%) than for NO3(-) (45-54%). The decrease in NO3(-) bulk deposition and the increase in the NH4(+):NO3(-) ratio had important impacts on N-canopy interactions. The contribution of NH4(+) CU to that of total inorganic N CU increased at both sites but the trend was significant only at Tirasse (lowest N deposition). At this site, absolute NO3(-) CU significantly decreased (as did total N CU) during the study period, a consequence of the strong relationship (r(2) = 0.88) between NO3(-) bulk deposition and NO3(-) CU. Our data suggest that N interactions with forest canopies may change rapidly with changes in N deposition as well as with tree species composition. PMID:25407617

  8. A stable phage lysin (Cpl-1) dimer with increased antipneumococcal activity and decreased plasma clearance.

    PubMed

    Resch, Gregory; Moreillon, Philippe; Fischetti, Vincent A

    2011-12-01

    Bacteriophages (phages) produce endolysins (lysins) as part of their lytic cycle in order to degrade the peptidoglycan layer of the infected bacteria for subsequent release of phage progeny. Because these enzymes maintain their lytic and lethal activity against Gram-positive bacteria when added extrinsically to the cells, they have been actively exploited as novel anti-infectives, sometimes termed enzybiotics. As with other relatively small peptides, one issue in their clinical development is their rapid inactivation through proteolytic degradation, immunological blockage and renal clearance. The antipneumococcal lysin Cpl-1 was shown to escape both proteolysis and immunological blockage. However, its short plasma half-life (20.5 min in mice) may represent a shortcoming for clinical usefulness. Here we report the construction of a Cpl-1 dimer with a view to increasing both the antipneumococcal specific activity and plasma half-life of Cpl-1. Dimerisation was achieved by introducing specific cysteine residues at the C-terminal end of the enzyme, thus favouring disulphide bonding. Compared with the native monomer, the constructed dimer demonstrated a two-fold increase in specific antipneumococcal activity and a ca. ten-fold decrease in plasma clearance. As several lysins are suspected to dimerise on contact with their cell wall substrate to be fully active, stable pre-dimerised enzymes may represent a more efficient alternative to the native monomer. PMID:21982146

  9. Trajectory Hunting: Analysis of UARS Measurements showing Rapid Chlorine Activation

    NASA Technical Reports Server (NTRS)

    Danilin, M.Y.; Santee, M. L.; Rodriquez, J. M.; Ko, M. K. W.; Mergenthaler, J. M.; Kumer, J. B.; Tabazadeh, A.

    1998-01-01

    Trajectory hunting (i.e., a technique to find air parcels sampled at least twice over the course of a few days) is applied to analyze Upper Atmosphere Research Satellite (UARS) measurements in conjunction with the AER photochemical box model. In this study, we investigate rapid chlorine activation in the Arctic lower stratosphere on 29 Dec 1992 associated with a polar stratospheric cloud (PSC) event. Six air parcels that have been sampled twice were followed along 5-day trajectories at the 465 K (approximately 46 mb) and 585 K (approximately 22 mb) levels. A detailed sensitivity study with the AER. photochemical box model along these trajectories leads to the following conclusions for the episode considered: (1) model results are in better agreement with UARS measurements at these levels if the UKMO temperature is decreased by at least 1-2 K; (2) the NAT (nitric acid trihydrate) PSC formation scheme produces results in better agreement with observations than the STS (supercooled ternary solution) scheme; (3) the model can explain the UARS measurements at 585 K, but under-estimates the ClO abundance at 465 K, suggesting some inconsistency between the UARS measurements at this level.

  10. Trajectory Hunting: Analysis of UARS Measurements Showing Rapid Chlorine Activation

    NASA Technical Reports Server (NTRS)

    Danilin, M. Y.; Santee, M. L.; Rodriquez, J. M.; Ko, M. K. W.; Mergenthaler, J. M.; Kumer, J. B.; Tabazadeh, A.

    1998-01-01

    Trajectory hunting (i.e., a technique to find air parcels sampled at least twice over the course of a few days) is applied to analyze Upper Atmosphere Research Satellite (UARS) measurements in conjunction with the AER photochemical box model. In this study, we investigate rapid chlorine activation in the Arctic lower stratosphere on 29 Dec. 1992 associated with a polar stratospheric cloud (PSC) event. Six air parcels that have been sampled twice were followed along 5-day trajectories at the 465 K (approx. 46 mb) and 585 K (approxi. 22 mb) levels. A detailed sensitivity study with the AER photochemical box model along these trajectories leads to the following conclusions for the episode considered: 1) model results are in better agreement with UARS measurements at these levels if the U.K. Meteorological Office (UKMO) temperature is decreased by at least 1-2 K; 2) the NAT (nitric acid trihydrate) PSC formation scheme produces results in better agreement with observations than the STS (supercooled ternary solution) scheme; 3) the model can explain the UARS measurements at 585 K, but under-estimates the ClO abundance at 465 K, suggesting some inconsistency between the UARS measurements at this level.

  11. Aerobic training in rats increases skeletal muscle sphingomyelinase and serine palmitoyltransferase activity, while decreasing ceramidase activity.

    PubMed

    Błachnio-Zabielska, Agnieszka; Zabielski, Piotr; Baranowski, Marcin; Gorski, Jan

    2011-03-01

    Sphingolipids are important components of cell membranes that may also serve as cell signaling molecules; ceramide plays a central role in sphingolipid metabolism. The aim of this study was to examine the effect of 5 weeks of aerobic training on key enzymes and intermediates of ceramide metabolism in skeletal muscles. The experiments were carried out on rats divided into two groups: (1) sedentary and (2) trained for 5 weeks (on a treadmill). The activity of serine palmitoyltransferase (SPT), neutral and acid sphingomyelinase (nSMase and aSMase), neutral and alkaline ceramidases (nCDase and alCDase) and the content of sphingolipids was determined in three types of skeletal muscle. We also measured the fasting plasma insulin and glucose concentration for calculating HOMA-IR (homeostasis model assessment) for estimating insulin resistance. We found that the activities of aSMase and SPT increase in muscle in the trained group. These changes were followed by elevation in the content of sphinganine. The activities of both isoforms of ceramidase were reduced in muscle in the trained group. Although the activities of SPT and SMases increased and the activity of CDases decreased, the ceramide content did not change in any of the studied muscle. Although ceramide level did not change, we noticed increased insulin sensitivity in trained animals. It is concluded that training affects the activity of key enzymes of ceramide metabolism but also activates other metabolic pathways which affect ceramide metabolism in skeletal muscles.

  12. Sulforaphane increases the efficacy of anti-androgens by rapidly decreasing androgen receptor levels in prostate cancer cells.

    PubMed

    Khurana, Namrata; Talwar, Sudha; Chandra, Partha K; Sharma, Pankaj; Abdel-Mageed, Asim B; Mondal, Debasis; Sikka, Suresh C

    2016-10-01

    Prostate cancer (PCa) cells utilize androgen for their growth. Hence, androgen deprivation therapy (ADT) using anti-androgens, e.g. bicalutamide (BIC) and enzalutamide (ENZ), is a mainstay of treatment. However, the outgrowth of castration resistant PCa (CRPC) cells remains a significant problem. These CRPC cells express androgen receptor (AR) and utilize the intratumoral androgen towards their continued growth and invasion. Sulforaphane (SFN), a naturally occurring isothiocyanate found in cruciferous vegetables, can decrease AR protein levels. In the present study, we tested the combined efficacy of anti-androgens and SFN in suppressing PCa cell growth, motility and clonogenic ability. Both androgen-dependent (LNCaP) and androgen-independent (C4-2B) cells were used to monitor the effects of BIC and ENZ, alone and in combination with SFN. Co-exposure to SFN significantly (p<0.005) enhanced the anti-proliferative effects of anti-androgens and downregulated expression of the AR-responsive gene, prostate specific antigen (PSA) (p<0.05). Exposure to SFN decreased AR protein levels in a time- and dose-dependent manner with almost no AR detected at 24 h with 15 µM SFN (p<0.005). This rapid and potent AR suppression by SFN occurred by both AR protein degradation, as suggested by cycloheximide (CHX) co-exposure studies, and by suppression of AR gene expression, as evident from quantitative RT-PCR experiments. Pre-exposure to SFN also reduced R1881-stimulated nuclear localization of AR, and combined treatment with SFN and anti-androgens abrogated the mitogenic effects of this AR-agonist (p<0.005). Wound-healing assays revealed that co-exposure to SFN and anti-androgens can significantly (p<0.005) reduce PCa cell migration. In addition, long-term exposures (14 days) to much lower concentrations of these agents, SFN (0.2 µM), BIC (1 µM) and/or ENZ (0.4 µM) significantly (p<0.005) decreased the number of colony forming units (CFUs). These findings clearly suggest that

  13. Rapid PCR amplification protocols decrease the turn-around time for detection of antibiotic resistance genes in Gram-negative pathogens.

    PubMed

    Geyer, Chelsie N; Hanson, Nancy D

    2013-10-01

    A previously designed end-point multiplex PCR assay and singleplex assays used to detect β-lactamase genes were evaluated using rapid PCR amplification methodology. Amplification times were 16-18 minutes with an overall detection time of 1.5 hours. Rapid PCR amplifications could decrease the time required to identify resistance mechanisms in Gram-negative organisms.

  14. Peripheral sounds rapidly activate visual cortex: evidence from electrocorticography.

    PubMed

    Brang, David; Towle, Vernon L; Suzuki, Satoru; Hillyard, Steven A; Di Tusa, Senneca; Dai, Zhongtian; Tao, James; Wu, Shasha; Grabowecky, Marcia

    2015-11-01

    Neurophysiological studies with animals suggest that sounds modulate activity in primary visual cortex in the presence of concurrent visual stimulation. Noninvasive neuroimaging studies in humans have similarly shown that sounds modulate activity in visual areas even in the absence of visual stimuli or visual task demands. However, the spatial and temporal limitations of these noninvasive methods prevent the determination of how rapidly sounds activate early visual cortex and what information about the sounds is relayed there. Using spatially and temporally precise measures of local synaptic activity acquired from depth electrodes in humans, we demonstrate that peripherally presented sounds evoke activity in the anterior portion of the contralateral, but not ipsilateral, calcarine sulcus within 28 ms of sound onset. These results suggest that auditory stimuli rapidly evoke spatially specific activity in visual cortex even in the absence of concurrent visual stimulation or visual task demands. This rapid auditory-evoked activation of primary visual cortex is likely to be mediated by subcortical pathways or direct cortical projections from auditory to visual areas. PMID:26334017

  15. Fast ventral stream neural activity enables rapid visual categorization.

    PubMed

    Cauchoix, Maxime; Crouzet, Sébastien M; Fize, Denis; Serre, Thomas

    2016-01-15

    Primates can recognize objects embedded in complex natural scenes in a glimpse. Rapid categorization paradigms have been extensively used to study our core perceptual abilities when the visual system is forced to operate under strong time constraints. However, the neural underpinning of rapid categorization remains to be understood, and the incredible speed of sight has yet to be reconciled with modern ventral stream cortical theories of object recognition. Here we recorded multichannel subdural electrocorticogram (ECoG) signals from intermediate areas (V4/PIT) of the ventral stream of the visual cortex while monkeys were actively engaged in a rapid animal/non-animal categorization task. A traditional event-related potential (ERP) analysis revealed short visual latencies (<50-70ms) followed by a rapidly developing visual selectivity (within ~20-30ms) for most electrodes. A multi-variate pattern analysis (MVPA) technique further confirmed that reliable animal/non-animal category information was possible from this initial ventral stream neural activity (within ~90-100ms). Furthermore, this early category-selective neural activity was (a) unaffected by the presentation of a backward (pattern) mask, (b) generalized to novel (unfamiliar) stimuli and (c) co-varied with behavioral responses (both accuracy and reaction times). Despite the strong prevalence of task-related information on the neural signal, task-irrelevant visual information could still be decoded independently of monkey behavior. Monkey behavioral responses were also found to correlate significantly with human behavioral responses for the same set of stimuli. Together, the present study establishes that rapid ventral stream neural activity induces a visually selective signal subsequently used to drive rapid visual categorization and that this visual strategy may be shared between human and non-human primates. PMID:26477655

  16. An Asp7Gly substitution in PPARG is associated with decreased transcriptional activation activity.

    PubMed

    Hua, Liushuai; Wang, Jing; Li, Mingxun; Sun, Xiaomei; Zhang, Liangzhi; Lei, Chuzhao; Lan, Xianyong; Fang, Xingtang; Zhao, Xin; Chen, Hong

    2014-01-01

    As the master regulator of adipogenesis, peroxisome proliferator-activated receptor gamma (PPARG) is required for the accumulation of adipose tissue and hence contributes to obesity. A previous study showed that the substitution of +20A>G in PPARG changed the 7(th) amino acid from Asp to Gly, creating a mutant referred to as PPARG Asp7Gly. In this study, association analysis indicated that PPARG Asp7Gly was associated with lower body height, body weight and heart girth in cattle (P<0.05). Overexpression of PPARG in NIH3T3-L1 cells showed that the Asp7Gly substitution may cause a decrease in its adipogenic ability and the mRNA levels of CIDEC (cell death-inducing DFFA-like effector c) and aP2, which are all transcriptionally activated by PPARG during adipocyte differentiation. A dual-luciferase reporter assay was used to analyze the promoter activity of CIDEC. The results confirmed that the mutant PPARG exhibited weaker transcriptional activation activity than the wild type (P<0.05). These findings likely explain the associations between the Asp7Gly substitution and the body measurements. Additionally, the Asp7Gly mutation may be used in molecular marker assisted selection (MAS) of cattle breeding in the future. PMID:24466299

  17. Traumatic brain injury decreases AMP-activated protein kinase activity and pharmacological enhancement of its activity improves cognitive outcome.

    PubMed

    Hill, Julia L; Kobori, Nobuhide; Zhao, Jing; Rozas, Natalia S; Hylin, Michael J; Moore, Anthony N; Dash, Pramod K

    2016-10-01

    Prolonged metabolic suppression in the brain is a well-characterized secondary pathology of both experimental and clinical traumatic brain injury (TBI). AMP-activated kinase (AMPK) acts as a cellular energy sensor that, when activated, regulates various metabolic and catabolic pathways to decrease ATP consumption and increase ATP synthesis. As energy availability after TBI is suppressed, we questioned if increasing AMPK activity after TBI would improve cognitive outcome. TBI was delivered using the electromagnetic controlled cortical impact model on male Sprague-Dawley rats (275-300 g) and C57BL/6 mice (20-25 g). AMPK activity within the injured parietal cortex and ipsilateral hippocampus was inferred by western blots using phospho-specific antibodies. The consequences of acute manipulation of AMPK signaling on cognitive function were assessed using the Morris water maze task. We found that AMPK activity is decreased as a result of injury, as indicated by reduced AMPK phosphorylation and corresponding changes in the phosphorylation of its downstream targets: ribosomal protein S6 and Akt Substrate of 160 kDa (AS160). Increasing AMPK activity after injury using the drugs 5-amino-1-β-d-ribofuranosyl-imidazole-4-carboxamide or metformin did not affect spatial learning, but significantly improved spatial memory. Taken together, our results suggest that decreased AMPK activity after TBI may contribute to the cellular energy crisis in the injured brain, and that AMPK activators may have therapeutic utility. Increased phosphorylation of Thr172 activates AMP-activated protein kinase (AMPK) under conditions of low cellular energy availability. This leads to inhibition of energy consuming, while activating energy generating, processes. Hill et al., present data to indicate that TBI decreases Thr172 phosphorylation and that its stimulation by pharmacological agents offers neuroprotection and improves memory. These results suggest that decreased AMPK phosphorylation after

  18. Microglial activation decreases retention of the protease inhibitor saquinavir: implications for HIV treatment

    PubMed Central

    2013-01-01

    Background Active HIV infection within the central nervous system (CNS) is confined primarily to microglia. The glial cell compartment acts as a viral reservoir behind the blood-brain barrier. It provides an additional roadblock to effective pharmacological treatment via expression of multiple drug efflux transporters, including P-glycoprotein. HIV/AIDS patients frequently suffer bacterial and viral co-infections, leading to deregulation of glial cell function and release of pro-inflammatory mediators including cytokines, chemokines, and nitric oxide. Methods To better define the role of inflammation in decreased HIV drug accumulation into CNS targets, accumulation of the antiretroviral saquinavir was examined in purified cultures of rodent microglia exposed to the prototypical inflammatory mediator lipopolysaccharide (LPS). Results [3H]-Saquinavir accumulation by microglia was rapid, and was increased up to two-fold in the presence of the specific P-glycoprotein inhibitor, PSC833. After six or 24 hours of exposure to 10 ng/ml LPS, saquinavir accumulation was decreased by up to 45%. LPS did not directly inhibit saquinavir transport, and did not affect P-glycoprotein protein expression. LPS exposure did not alter RNA and/or protein expression of other transporters including multidrug resistance-associated protein 1 and several solute carrier uptake transporters. Conclusions The decrease in saquinavir accumulation in microglia following treatment with LPS is likely multi-factorial, since drug accumulation was attenuated by inhibitors of NF-κβ and the MEK1/2 pathway in the microglia cell line HAPI, and in primary microglia cultures from toll-like receptor 4 deficient mice. These data provide new pharmacological insights into why microglia act as a difficult-to-treat viral sanctuary site. PMID:23642074

  19. Rapid optical determination of β-lactamase and antibiotic activity

    PubMed Central

    2014-01-01

    Background The absence of rapid tests evaluating antibiotic susceptibility results in the empirical prescription of antibiotics. This can lead to treatment failures due to escalating antibiotic resistance, and also furthers the emergence of drug-resistant bacteria. This study reports a rapid optical method to detect β-lactamase and thereby assess activity of β-lactam antibiotics, which could provide an approach for targeted prescription of antibiotics. The methodology is centred on a fluorescence quenching based probe (β-LEAF – β-Lactamase Enzyme Activated Fluorophore) that mimics the structure of β-lactam antibiotics. Results The β-LEAF assay was performed for rapid determination of β-lactamase production and activity of β-lactam antibiotic (cefazolin) on a panel of Staphylococcus aureus ATCC strains and clinical isolates. Four of the clinical isolates were determined to be lactamase producers, with the capacity to inactivate cefazolin, out of the twenty-five isolates tested. These results were compared against gold standard methods, nitrocefin disk test for β-lactamase detection and disk diffusion for antibiotic susceptibility, showing results to be largely consistent. Furthermore, in the sub-set of β-lactamase producers, it was demonstrated and validated that multiple antibiotics (cefazolin, cefoxitin, cefepime) could be assessed simultaneously to predict the antibiotic that would be most active for a given bacterial isolate. Conclusions The study establishes the rapid β-LEAF assay for β-lactamase detection and prediction of antibiotic activity using S. aureus clinical isolates. Although the focus in the current study is β-lactamase-based resistance, the overall approach represents a broad diagnostic platform. In the long-term, these studies form the basis for the development of assays utilizing a broader variety of targets, pathogens and drugs. PMID:24708478

  20. Rapid suppression of 7-dehydrocholesterol reductase activity in keratinocytes by vitamin D.

    PubMed

    Zou, Ling; Porter, Todd D

    2015-04-01

    7-Dehydrocholesterol (7DHC) serves as the sterol substrate for both cholesterol and vitamin D3 (cholecalciferol) synthesis. The pivotal enzyme in these two pathways is 7-dehydrocholesterol reductase (DHCR7), which converts 7DHC to cholesterol. Treatment of adult human epidermal keratinocytes (HEKa) with 10μM cholecalciferol resulted in a rapid decrease in DHCR7 activity (19% of control activity at 2h). This loss of activity was observed only in HEKa cells, a primary cell line cultured from normal human skin, and not in an immortalized skin cell line (HaCaT cells) nor in two hepatoma cell lines. The decrease in DHCR7 activity was not due to direct inhibition or to dephosphorylation of the enzyme, and enzyme protein levels were not decreased. 25-Hydroxyvitamin D3 had a lesser effect on DHCR7 activity, while 1α,25-dihydroxyvitamin D3 had no effect on DHCR7, indicating that the vitamin D receptor is not involved. Treatment with cholecalciferol did not lead to the accumulation of 7-dehydrocholesterol, and a 50% decrease in lanosterol synthesis in these cells suggests that cholecalciferol down-regulates the entire cholesterolgenic pathway. As vitamin D has been reported to be an inhibitor of hedgehog (Hh) signaling through Smo, we tested the effect of cyclopamine, an established inhibitor of the Hh pathway, on DHCR7 activity. Cyclopamine (10μM) also rapidly decreased DHCR7 activity (50% of control activity at 3h), suggesting that vitamin D3 may modulate DHCR7 activity and cholesterol/vitamin D3 synthesis by inhibiting hedgehog signaling. This article is part of a Special Issue entitled '17th Vitamin D Workshop'.

  1. Decreased ADAMTS 13 Activity is Associated With Disease Severity and Outcome in Pediatric Severe Sepsis.

    PubMed

    Lin, Jainn-Jim; Chan, Oi-Wa; Hsiao, Hsiang-Ju; Wang, Yu; Hsia, Shao-Hsuan; Chiu, Cheng-Hsun

    2016-04-01

    Decreased ADAMTS 13 activity has been reported in severe sepsis and in sepsis-induced disseminated intravascular coagulation. This study aimed to investigate the role of ADAMTS 13 in different pediatric sepsis syndromes and evaluate its relationship with disease severity and outcome. We prospectively collected cases of sepsis treated in a pediatric intensive care unit, between July 2012 and June 2014 in Chang Gung Children's Hospital in Taoyuan, Taiwan. Clinical characteristics and ADAMTS-13 activity were analyzed. All sepsis syndromes had decreased ADAMTS 13 activity on days 1 and 3 of admission compared to healthy controls. Patients with septic shock had significantly decreased ADAMTS 13 activity on days 1 and 3 compared to those with sepsis and severe sepsis. There was a significant negative correlation between ADAMTS 13 activity on day 1 and day 1 PRISM-II, PELOD, P-MOD, and DIC scores. Patients with mortality had significantly decreased ADAMTS 13 activity on day 1 than survivors, but not on day 3. Different pediatric sepsis syndromes have varying degrees of decreased ADAMTS 13 activity. ADAMTS 13 activity is strongly negatively correlated with disease severity of pediatric sepsis syndrome, whereas decreased ADAMTS 13 activity on day 1 is associated with increased risk of mortality. PMID:27100422

  2. A rapid method for the determination of honey diastase activity.

    PubMed

    Sakač, Nikola; Sak-Bosnar, Milan

    2012-05-15

    A new rapid method for the determination of honey diastase activity using direct potentiometric principles has been proposed. A platinum redox sensor has been used to quantify the amount of free triiodide released from a starch triiodide complex after starch hydrolysis by honey diastase. The method was tested on honey samples with varying diastase activities. The first 5 min of data for each sample were used for linear regression analysis in order to calculate diastase activity. The new method was compared with classical Schade and commercial Phadebas procedures. The results showed good correlations with both methods and offered a simple method for unit conversion to DN units for diastase activity, making the method suitable for routine analysis.

  3. Decreased fibrinolytic activity and increased platelet function in hypertension. Possible influence of calcium antagonism.

    PubMed

    Gleerup, G; Winther, K

    1991-02-01

    Twelve patients with mild hypertension were compared, after 14 days of placebo, with an age- and gender-matched group of 12 healthy volunteers for platelet aggregability and fibrinolytic activity. Following this, 10 of the 12 hypertensives were treated with the calcium antagonist isradipine for 12 months. Blood was drawn for determinations of platelet aggregation and fibrinolytic activity after two weeks and 12 months of treatment. Platelet aggregation tended to increase in the hypertensives compared with controls, indicated by a lowering of the adenosine diphosphate (ADP) threshold value for irreversible aggregation. Tissue-plasminogen activator (t-PA) activity was significantly decreased in hypertensives compared to controls (P less than .05). During therapy, platelet aggregation decreased and t-PA activity increased (P less than .05). The present data suggest that fibrinolytic activity is decreased and platelet aggregation increased in mild hypertension. Besides the blood pressure-lowering effect, isradipine may protect against thromboembolic diseases by modifying platelet function and fibrinolytic activity.

  4. Sensor web enables rapid response to volcanic activity

    USGS Publications Warehouse

    Davies, Ashley G.; Chien, Steve; Wright, Robert; Miklius, Asta; Kyle, Philip R.; Welsh, Matt; Johnson, Jeffrey B.; Tran, Daniel; Schaffer, Steven R.; Sherwood, Robert

    2006-01-01

    Rapid response to the onset of volcanic activity allows for the early assessment of hazard and risk [Tilling, 1989]. Data from remote volcanoes and volcanoes in countries with poor communication infrastructure can only be obtained via remote sensing [Harris et al., 2000]. By linking notifications of activity from ground-based and spacebased systems, these volcanoes can be monitored when they erupt.Over the last 18 months, NASA's Jet Propulsion Laboratory (JPL) has implemented a Volcano Sensor Web (VSW) in which data from ground-based and space-based sensors that detect current volcanic activity are used to automatically trigger the NASA Earth Observing 1 (EO-1) spacecraft to make highspatial-resolution observations of these volcanoes.

  5. Retrotransposon activation followed by rapid repression in introgressed rice plants.

    PubMed

    Liu, B; Wendel, J F

    2000-10-01

    Plant retrotransposons are largely inactive during normal development, but may be activated by stresses. Both copia-like and gypsy-like retrotransposons of rice were activated by introgression of DNA from the wild species Zizania latifolia Griseb. The copy number increase was associated with cytosine methylation changes of the elements. Activity of the elements was ephemeral, as evidenced by nearly identical genomic Southern hybridization patterns among randomly chosen individuals both within and between generations for a given line, and the absence of transcripts based on Northern analysis. DNA hypermethylation, internal sequence deletion, and possibly other mechanisms are likely responsible for the rapid element repression. Implications of the retroelement dynamics on plant genome evolution are discussed. PMID:11081978

  6. Tennis in hot and cool conditions decreases the rapid muscle torque production capacity of the knee extensors but not of the plantar flexors

    PubMed Central

    Girard, Olivier; Racinais, Sébastien; Périard, Julien D

    2014-01-01

    Objectives To assess the time course of changes in rapid muscle force/torque production capacity and neuromuscular activity of lower limb muscles in response to prolonged (∼2 h) match-play tennis under heat stress. Methods The rates of torque development (RTD) and electromyographic activity (EMG; ie, root mean square) rise were recorded from 0 to 30, –50, –100 and –200 ms during brief (3–5 s) explosive maximal isometric voluntary contractions (MVC) of the knee extensors (KE) and plantar flexors (PF), along with the peak RTD within the entirety of the torque-time curve. These values were recorded in 12 male tennis players before (prematch) and after (postmatch, 24 and 48 h) match-play in HOT (∼37°C) and COOL (∼22°C) conditions. Results The postmatch core temperature was greater in the HOT (∼39.4°C) vs COOL (∼38.7°C) condition (p<0.05). Reductions in KE RTD occurred within the 0–200 ms epoch after contraction onset postmatch and at 24 h, compared with prematch, independent of environmental conditions (p<0.05). A similar reduction in the KE peak RTD was also observed postmatch relative to prematch (p<0.05). No differences in KE RTD values were observed after normalisation to MVC torque. Furthermore, the rate of KE EMG activity rise remained unchanged. Conversely, the PF contractile RTD and rate of EMG activity rise were unaffected by the exercise or environmental conditions. Conclusions In the KE, a reduction in maximal torque production capacity following prolonged match-play tennis appears to account for the decrease in the rate of torque development, independent of environmental conditions, while remaining unchanged in the PF. PMID:24668381

  7. The Effects of a Rapid Response Team on Decreasing Cardiac Arrest Rates and Improving Outcomes for Cardiac Arrests Outside Critical Care Areas.

    PubMed

    Angel, Melissa; Ghneim, Mira; Song, Juhee; Brocker, Jason; Tipton, Phyllis Hart; Davis, Matthew

    2016-01-01

    A retrospective study was conducted to determine the effects of a well-functioning rapid response team (RRT) within one facility. A well-functioning RRT was associated with fewer cardiac arrests outside critical care settings and decreased critical care length of stay. PMID:27522841

  8. Limitation of dietary copper and zinc decreases superoxide dismutase activity in the onion fly, Delia antiqua.

    PubMed

    Matsuo, T; Ooe, S; Ishikawa, Y

    1997-06-01

    Larvae of the onion fly, Delia antiqua, have lower superoxide dismutase (SOD) activity when they are fed a defined synthetic diet that contains no copper or zinc. SOD activity was rapidly recovered when these larvae were fed onion bulbs. Addition of copper and zinc to the synthetic diet also led to the recovery of SOD activity. Results of an immunoblotting analysis using anti-D. antiqua CuZnSOD mouse monoclonal antibody suggest that this alteration of SOD activity is dependent on the amount of CuZnSOD. PMID:9172377

  9. Active Control of Automotive Intake Noise under Rapid Acceleration using the Co-FXLMS Algorithm

    NASA Astrophysics Data System (ADS)

    Lee, Hae-Jin; Lee, Gyeong-Tae; Oh, Jae-Eung

    The method of reducing automotive intake noise can be classified by passive and active control techniques. However, passive control has a limited effect of noise reduction at low frequency range (below 500 Hz) and is limited by the space of the engine room. However, active control can overcome these passive control limitations. The active control technique mostly uses the Least-Mean-Square (LMS) algorithm, because the LMS algorithm can easily obtain the complex transfer function in real-time, particularly when the Filtered-X LMS (FXLMS) algorithm is applied to an active noise control (ANC) system. However, the convergence performance of the LMS algorithm decreases significantly when the FXLMS algorithm is applied to the active control of intake noise under rapidly accelerating driving conditions. Therefore, in this study, the Co-FXLMS algorithm was proposed to improve the control performance of the FXLMS algorithm during rapid acceleration. The Co-FXLMS algorithm is realized by using an estimate of the cross correlation between the adaptation error and the filtered input signal to control the step size. The performance of the Co-FXLMS algorithm is presented in comparison with that of the FXLMS algorithm. Experimental results show that active noise control using Co-FXLMS is effective in reducing automotive intake noise during rapid acceleration.

  10. Activation of membrane-associated estrogen receptors decreases food and water intake in ovariectomized rats.

    PubMed

    Santollo, Jessica; Marshall, Anikó; Daniels, Derek

    2013-01-01

    Estradiol (E2) decreases food and water intake in a variety of species, including rats. Available evidence suggests that this is mediated by genomic mechanisms that are most often attributed to nuclear estrogen receptors. More recent studies indicate that membrane-associated estrogen receptors (mERs) also can influence gene expression through the activation of transcription factors, yet it is unclear whether mERs are involved in mediating the hypophagic and antidipsetic effects of E2. In the present experiments, we injected E2 or a membrane-impermeable form of E2 (E2-BSA) into the lateral cerebral ventricle of ovariectomized female rats and evaluated the effect on 23 h food and water intake. First, we found that higher doses of E2 were necessary to reduce water intake than were sufficient to reduce food intake. Analysis of drinking microstructure revealed that the decrease in water intake after E2 treatment was mediated by both a decrease in burst number and burst size. Next, the activation of mERs with E2-BSA decreased both overnight food and water intake and analysis of drinking microstructure indicated that the decreased water intake resulted from a decrease in burst number. Finally, E2-BSA did not condition a taste aversion, suggesting that the inhibitory effects on food and water intake were not secondary to malaise. Together these findings suggest that activation of mERs is sufficient to decrease food and water intake in female rats.

  11. Internal motions prime cIAP1 for rapid activation.

    PubMed

    Phillips, Aaron H; Schoeffler, Allyn J; Matsui, Tsutomu; Weiss, Thomas M; Blankenship, John W; Zobel, Kerry; Giannetti, Anthony M; Dueber, Erin C; Fairbrother, Wayne J

    2014-12-01

    Cellular inhibitor of apoptosis 1 (cIAP1) is a ubiquitin ligase with critical roles in the control of programmed cell death and NF-κB signaling. Under normal conditions, the protein exists as an autoinhibited monomer, but proapoptotic signals lead to its dimerization, activation and proteasomal degradation. This view of cIAP1 as a binary switch has been informed by static structural studies that cannot access the protein's dynamics. Here, we use NMR spectroscopy to study micro- and millisecond motions of specific domain interfaces in human cIAP1 and use time-resolved small-angle X-ray scattering to observe the global conformational changes necessary for activation. Although motions within each interface of the 'closed' monomer are insufficient to activate cIAP1, they enable associations with catalytic partners and activation factors. We propose that these internal motions facilitate rapid peptide-induced opening and dimerization of cIAP1, which undergoes a dramatic spring-loaded structural transition. PMID:25383668

  12. Phosphorylation by protein kinase C decreases catalytic activity of avian phospholipase C-beta.

    PubMed Central

    Filtz, T M; Cunningham, M L; Stanig, K J; Paterson, A; Harden, T K

    1999-01-01

    The potential role of protein kinase C (PKC)-promoted phosphorylation has been examined in the G-protein-regulated inositol lipid signalling pathway. Incubation of [32P]Pi-labelled turkey erythrocytes with either the P2Y1 receptor agonist 2-methylthioadenosine triphosphate (2MeSATP) or with PMA resulted in a marked increase in incorporation of 32P into the G-protein-activated phospholipase C PLC-betaT. Purified PLC-betaT also was phosphorylated by PKC in vitro to a stoichiometry (mean+/-S. E.M.) of 1.06+/-0.2 mol of phosphate/mol of PLC-betaT. Phosphorylation by PKC was isoenzyme-specific because, under identical conditions, mammalian PLC-beta2 also was phosphorylated to a stoichiometry near unity, whereas mammalian PLC-beta1 was not phosphorylated by PKC. The effects of PKC-promoted phosphorylation on enzyme activity were assessed by reconstituting purified PLC-betaT with turkey erythrocyte membranes devoid of endogenous PLC activity. Phosphorylation resulted in a decrease in basal activity, AlF4(-)-stimulated activity, and activity stimulated by 2MeSATP plus guanosine 5'-[gamma-thio]triphosphate in the reconstituted membranes. The decreases in enzyme activities were proportional to the extent of PKC-promoted phosphorylation. Catalytic activity assessed by using mixed detergent/phospholipid micelles also was decreased by up to 60% by phosphorylation. The effect of phosphorylation on Gqalpha-stimulated PLC-betaT in reconstitution experiments with purified proteins was not greater than that observed on basal activity alone. Taken together, these results illustrate that PKC phosphorylates PLC-betaT in vivo and to a physiologically relevant stoichiometry in vitro. Phosphorylation is accompanied by a concomitant loss of enzyme activity, reflected as a decrease in overall catalytic activity rather than as a specific modification of G-protein-regulated activity. PMID:10024500

  13. Correlations Decrease with Propagation of Spiking Activity in the Mouse Barrel Cortex

    PubMed Central

    Ranganathan, Gayathri Nattar; Koester, Helmut Joachim

    2011-01-01

    Propagation of suprathreshold spiking activity through neuronal populations is important for the function of the central nervous system. Neural correlations have an impact on cortical function particularly on the signaling of information and propagation of spiking activity. Therefore we measured the change in correlations as suprathreshold spiking activity propagated between recurrent neuronal networks of the mammalian cerebral cortex. Using optical methods we recorded spiking activity from large samples of neurons from two neural populations simultaneously. The results indicate that correlations decreased as spiking activity propagated from layer 4 to layer 2/3 in the rodent barrel cortex. PMID:21629764

  14. Noise power associated with decreased task-induced variability of brain electrical activity in schizophrenia.

    PubMed

    Molina, Vicente; Bachiller, Alejandro; Suazo, Vanessa; Lubeiro, Alba; Poza, Jesús; Hornero, Roberto

    2016-02-01

    In schizophrenia, both increased baseline metabolic and electroencephalographic (EEG) activities as well as decreased task-related modulation of neural dynamics have been reported. Noise power (NP) can measure the background EEG activity during task performance, and Shannon entropy (SE) is useful for quantifying the global modulation of EEG activity with a high temporal resolution. In this study, we have assessed the possible relationship between increased NP in theta and gamma bands and decreased SE modulation in 24 patients with schizophrenia and 26 controls over the parietal and central regions during a P300 task. SE modulation was calculated as the change from baseline to the active epoch (i.e., 150-550 ms following the target stimulus onset). Patients with schizophrenia displayed statistically significant higher NP values and lower SE modulation than healthy controls. We found a significant association between gamma NP and SE in all of the participants. Specifically, a NP increase in the gamma band was followed by a decrease in SE change. These results support the notion that an excess of gamma activity, unlocked to the task being performed, is accompanied by a decreased modulation of EEG activity in schizophrenia.

  15. Decreasing excessive media usage while increasing physical activity: a single-subject research study.

    PubMed

    Larwin, Karen H; Larwin, David A

    2008-11-01

    The Kaiser Family Foundation released a report entitled Kids and Media Use in the United States that concluded that children's use of media--including television, computers, Internet, video games, and phones--may be one of the primary contributor's to the poor fitness and obesity of many of today's adolescents. The present study examines the potential of increasing physical activity and decreasing media usage in a 14-year-old adolescent female by making time spent on the Internet and/or cell phone contingent on physical activity. Results of this investigation indicate that requiring the participant to earn her media-usage time did correspond with an increase in physical activity and a decrease in media-usage time relative to baseline measures. Five weeks after cessation of the intervention, the participant's new level of physical activity was still being maintained. One year after the study, the participant's level of physical activity continued to increase. PMID:18544746

  16. Prenatal protein malnutrition decreases KCNJ3 and 2DG activity in rat prefrontal cortex.

    PubMed

    Amaral, A C; Jakovcevski, M; McGaughy, J A; Calderwood, S K; Mokler, D J; Rushmore, R J; Galler, J R; Akbarian, S A; Rosene, D L

    2015-02-12

    Prenatal protein malnutrition (PPM) in rats causes enduring changes in brain and behavior including increased cognitive rigidity and decreased inhibitory control. A preliminary gene microarray screen of PPM rat prefrontal cortex (PFC) identified alterations in KCNJ3 (GIRK1/Kir3.1), a gene important for regulating neuronal excitability. Follow-up with polymerase chain reaction and Western blot showed decreased KCNJ3 expression in the PFC, but not hippocampus or brainstem. To verify localization of the effect to the PFC, baseline regional brain activity was assessed with (14)C-2-deoxyglucose. Results showed decreased activation in the PFC but not hippocampus. Together these findings point to the unique vulnerability of the PFC to the nutritional insult during early brain development, with enduring effects in adulthood on KCNJ3 expression and baseline metabolic activity. PMID:25446346

  17. Prenatal Protein Malnutrition Decreases KCNJ3 and 2DG Activity in Rat Prefrontal Cortex

    PubMed Central

    Amaral, A.C.; Jakovcevski, M.; McGaughy, J.A.; Calderwood, S.K.; Mokler, D.J.; Rushmore, R.J.; Galler, J.R.; Akbarian, S.A.; Rosene, D.L.

    2014-01-01

    Prenatal protein malnutrition (PPM) in rats causes enduring changes in brain and behavior including increased cognitive rigidity and decreased inhibitory control. A preliminary gene microarray screen of PPM rat prefrontal cortex (PFC) identified alterations in KCNJ3 (GIRK1/Kir3.1), a gene important for regulating neuronal excitability. Follow-up with polymerase chain reaction and Western blot showed decreased KCNJ3 expression in PFC, but not hippocampus or brainstem. To verify localization of the effect to the PFC, baseline regional brain activity was assessed with 14C-2-deoxyglucose. Results showed decreased activation in PFC but not hippocampus. Together these findings point to the unique vulnerability of the PFC to the nutritional insult during early brain development, with enduring effects in adulthood on KCNJ3 expression and baseline metabolic activity. PMID:25446346

  18. Prenatal protein malnutrition decreases KCNJ3 and 2DG activity in rat prefrontal cortex.

    PubMed

    Amaral, A C; Jakovcevski, M; McGaughy, J A; Calderwood, S K; Mokler, D J; Rushmore, R J; Galler, J R; Akbarian, S A; Rosene, D L

    2015-02-12

    Prenatal protein malnutrition (PPM) in rats causes enduring changes in brain and behavior including increased cognitive rigidity and decreased inhibitory control. A preliminary gene microarray screen of PPM rat prefrontal cortex (PFC) identified alterations in KCNJ3 (GIRK1/Kir3.1), a gene important for regulating neuronal excitability. Follow-up with polymerase chain reaction and Western blot showed decreased KCNJ3 expression in the PFC, but not hippocampus or brainstem. To verify localization of the effect to the PFC, baseline regional brain activity was assessed with (14)C-2-deoxyglucose. Results showed decreased activation in the PFC but not hippocampus. Together these findings point to the unique vulnerability of the PFC to the nutritional insult during early brain development, with enduring effects in adulthood on KCNJ3 expression and baseline metabolic activity.

  19. Rapid assessment of disaster damage using social media activity.

    PubMed

    Kryvasheyeu, Yury; Chen, Haohui; Obradovich, Nick; Moro, Esteban; Van Hentenryck, Pascal; Fowler, James; Cebrian, Manuel

    2016-03-01

    Could social media data aid in disaster response and damage assessment? Countries face both an increasing frequency and an increasing intensity of natural disasters resulting from climate change. During such events, citizens turn to social media platforms for disaster-related communication and information. Social media improves situational awareness, facilitates dissemination of emergency information, enables early warning systems, and helps coordinate relief efforts. In addition, the spatiotemporal distribution of disaster-related messages helps with the real-time monitoring and assessment of the disaster itself. We present a multiscale analysis of Twitter activity before, during, and after Hurricane Sandy. We examine the online response of 50 metropolitan areas of the United States and find a strong relationship between proximity to Sandy's path and hurricane-related social media activity. We show that real and perceived threats, together with physical disaster effects, are directly observable through the intensity and composition of Twitter's message stream. We demonstrate that per-capita Twitter activity strongly correlates with the per-capita economic damage inflicted by the hurricane. We verify our findings for a wide range of disasters and suggest that massive online social networks can be used for rapid assessment of damage caused by a large-scale disaster.

  20. Rapid assessment of disaster damage using social media activity

    PubMed Central

    Kryvasheyeu, Yury; Chen, Haohui; Obradovich, Nick; Moro, Esteban; Van Hentenryck, Pascal; Fowler, James; Cebrian, Manuel

    2016-01-01

    Could social media data aid in disaster response and damage assessment? Countries face both an increasing frequency and an increasing intensity of natural disasters resulting from climate change. During such events, citizens turn to social media platforms for disaster-related communication and information. Social media improves situational awareness, facilitates dissemination of emergency information, enables early warning systems, and helps coordinate relief efforts. In addition, the spatiotemporal distribution of disaster-related messages helps with the real-time monitoring and assessment of the disaster itself. We present a multiscale analysis of Twitter activity before, during, and after Hurricane Sandy. We examine the online response of 50 metropolitan areas of the United States and find a strong relationship between proximity to Sandy’s path and hurricane-related social media activity. We show that real and perceived threats, together with physical disaster effects, are directly observable through the intensity and composition of Twitter’s message stream. We demonstrate that per-capita Twitter activity strongly correlates with the per-capita economic damage inflicted by the hurricane. We verify our findings for a wide range of disasters and suggest that massive online social networks can be used for rapid assessment of damage caused by a large-scale disaster. PMID:27034978

  1. Rapid assessment of disaster damage using social media activity.

    PubMed

    Kryvasheyeu, Yury; Chen, Haohui; Obradovich, Nick; Moro, Esteban; Van Hentenryck, Pascal; Fowler, James; Cebrian, Manuel

    2016-03-01

    Could social media data aid in disaster response and damage assessment? Countries face both an increasing frequency and an increasing intensity of natural disasters resulting from climate change. During such events, citizens turn to social media platforms for disaster-related communication and information. Social media improves situational awareness, facilitates dissemination of emergency information, enables early warning systems, and helps coordinate relief efforts. In addition, the spatiotemporal distribution of disaster-related messages helps with the real-time monitoring and assessment of the disaster itself. We present a multiscale analysis of Twitter activity before, during, and after Hurricane Sandy. We examine the online response of 50 metropolitan areas of the United States and find a strong relationship between proximity to Sandy's path and hurricane-related social media activity. We show that real and perceived threats, together with physical disaster effects, are directly observable through the intensity and composition of Twitter's message stream. We demonstrate that per-capita Twitter activity strongly correlates with the per-capita economic damage inflicted by the hurricane. We verify our findings for a wide range of disasters and suggest that massive online social networks can be used for rapid assessment of damage caused by a large-scale disaster. PMID:27034978

  2. Sub-chronic exposure to methylmercury at low levels decreases butyrylcholinesterase activity in rats.

    PubMed

    Valentini, Juliana; Vicentini, Juliana; Grotto, Denise; Tonello, Raquel; Garcia, Solange C; Barbosa, Fernando

    2010-02-01

    In this study, we examined the effects of low levels and sub-chronic exposure to methylmercury (MeHg) on butyrylcholinesterase (BuChE) activity in rats. Moreover, we examined the relationship between BuChE activity and oxidative stress biomarkers [delta-aminolevulinic acid dehydratase (delta-ALA-D) and malondialdehyde levels (MDA)] in the same animals. Rats were separated into three groups (eight animals per group): (Group I) received water by gavage; (Group II) received MeHg (30 microg/kg/day) by gavage; (Group III) received MeHg (100 microg/kg/day). The time of exposure was 90 days. BuChE and ALA-D activities were measured in serum and blood, respectively; whereas MDA levels were measured in plasma. We found BuChE and ALA-D activities decreased in groups II and III compared to the control group. Moreover, we found an interesting negative correlation between plasmatic BuChE activity and MDA (r = -0.85; p < 0.01) and a positive correlation between plasmatic BuChE activity and ALA-D activities (r = 0.78; p < 0.01), thus suggesting a possible relationship between oxidative damage promoted by MeHg exposure and the decrease of BuChE activity. In conclusion, long-term exposure to low doses of MeHg decreases plasmatic BuChE activity. Moreover, the decrease in the enzyme is strongly correlated with the oxidative stress promoted by the metal exposure. This preliminary finding highlights a possible mechanism for MeHg to reduce BuChE activity in plasma. Additionally, this enzyme could be an auxiliary biomarker on the evaluation of MeHg exposure.

  3. Decreased motor activity of hyperactive children on dextroamphetamine during active gym program.

    PubMed

    Rapoport, J L; Tepsic, P N; Grice, J; Johnson, C; Langer, D

    1980-07-01

    The motor activity of 10 hyperactive boys was measured during eight 1-hour active gym classes. Children received either dextroaomphetamine (0.5 mg/kg) or placebo elixir before each class, in a double-blind design. The program for each of the classes was participation in the active sports: hockey, basketball, and/or roller skating; the "task" throughout each hour was to play vigorously and continuously. The boys' mean hourly activity following amphetamine was slightly but significantly less than that following placebo. This finding is contradictory to the hypothesis that improved attention to an active task on stimulant would result in increased motor activity, and suggests the possibility of an independent direct effect of amphetamine on the motor system.

  4. Hypoxic preconditioning decreases nuclear factor κB activity via Disrupted in Schizophrenia-1.

    PubMed

    Liu, Jia-Ren; Liu, Qian; Khoury, Joseph; Li, Yue-Jin; Han, Xiao-Hui; Li, Jing; Ibla, Juan C

    2016-01-01

    Nuclear factor κB is a key mediator of inflammation during conditions of hypoxia. Here, we used models of hypoxic pre-conditioning as mechanism to decrease nuclear factor κB activity induced by hypoxia. Our initial studies suggested that Disrupted in Schizophrenia-1 may be induced by hypoxic pre-conditioning and possibly involved in the regulation of nuclear factor κB. In this study we used Disrupted in Schizophrenia-1 exogenous over-expression and knock-down to determine its effect on ataxia telangiectasia mutated--nuclear factor κB activation cascade. Our results demonstrated that hypoxic pre-conditioning significantly increased the expression of Disrupted in Schizophrenia-1 at mRNA and protein levels both in vitro and in vivo. Over-expression of Disrupted in Schizophrenia-1 significantly attenuated the hypoxia-mediated ataxia telangiectasia mutated phosphorylation and prevented its cytoplasm translocation where it functions to activate nuclear factor κB. We further determined that Disrupted in Schizophrenia-1 activated the protein phosphatase 2A, preventing the phosphorylation of ataxia telangiectasia mutated serine-1981, the main regulatory site of ataxia telangiectasia mutated activity. Cellular levels of Disrupted in Schizophrenia-1 protein significantly decreased nuclear factor κB activation profiles and pro-inflammatory gene expression. Taken together, these results demonstrate that hypoxic pre-conditioning decreases the activation of nuclear factor κB through the transcriptional induction of Disrupted in Schizophrenia-1.

  5. Increased physical activity decreases hepatic free fatty acid uptake: a study in human monozygotic twins

    PubMed Central

    Hannukainen, Jarna C; Nuutila, Pirjo; Ronald, Borra; Kaprio, Jaakko; Kujala, Urho M; Janatuinen, Tuula; Heinonen, Olli J; Kapanen, Jukka; Viljanen, Tapio; Haaparanta, Merja; Rönnemaa, Tapani; Parkkola, Riitta; Knuuti, Juhani; Kalliokoski, Kari K

    2007-01-01

    Exercise is considered to be beneficial for free fatty acid (FFA) metabolism, although reports of the effects of increased physical activity on FFA uptake and oxidation in different tissues in vivo in humans have been inconsistent. To investigate the heredity-independent effects of physical activity and fitness on FFA uptake in skeletal muscle, the myocardium, and liver we used positron emission tomography (PET) in nine healthy young male monozygotic twin pairs discordant for physical activity and fitness. The cotwins with higher physical activity constituting the more active group had a similar body mass index but less body fat and 18 ± 10% higher V˙O2,max (P < 0.001) compared to the less active brothers with lower physical activity. Low-intensity knee-extension exercise increased skeletal muscle FFA and oxygen uptake six to 10 times compared to resting values but no differences were observed between the groups at rest or during exercise. At rest the more active group had lower hepatic FFA uptake compared to the less active group (5.5 ± 4.3 versus 9.0 ± 6.1 μmol (100 ml)−1 min−1, P = 0.04). Hepatic FFA uptake associated significantly with body fat percentage (P = 0.05). Myocardial FFA uptake was similar between the groups. In conclusion, in the absence of the confounding effects of genetic factors, moderately increased physical activity and aerobic fitness decrease body adiposity even in normal-weighted healthy young adult men. Further, increased physical activity together with decreased intra-abdominal adiposity seems to decrease hepatic FFA uptake but has no effects on skeletal muscle or myocardial FFA uptake. PMID:17053033

  6. Local imipenem activity against Pseudomonas aeruginosa decreases in vivo in the presence of siliconized latex.

    PubMed

    Pichardo, C; Conejo, M C; Docobo-Pérez, F; Velasco, C; López-Rojas, R; García, I; Pachón-Ibáñez, M E; Rodríguez, J M; Pachón, J; Pascual, A

    2011-02-01

    Zinc eluted from siliconized latex (SL) increases resistance of Pseudomonas aeruginosa to imipenem in vitro. A foreign body peritonitis model was used to evaluate the activity of imipenem using SL or silicone (S) implants. No differences were observed in mortality, positive blood cultures and tissue bacterial counts between SL and S implants. Implant-associated counts, however, were significantly higher in the SL group. It is concluded that SL decreases the activity of imipenem against P. aeruginosa. PMID:20936490

  7. Decreasing Sports Activity with Increasing Age? Findings from a 20-Year Longitudinal and Cohort Sequence Analysis

    ERIC Educational Resources Information Center

    Breuer, Christoph; Wicker, Pamela

    2009-01-01

    According to cross-sectional studies in sport science literature, decreasing sports activity with increasing age is generally assumed. In this paper, the validity of this assumption is checked by applying more effective methods of analysis, such as longitudinal and cohort sequence analyses. With the help of 20 years' worth of data records from the…

  8. Decreased Activation of Subcortical Brain Areas in the Motor Fatigue State: An fMRI Study.

    PubMed

    Hou, Li J; Song, Zheng; Pan, Zhu J; Cheng, Jia L; Yu, Yong; Wang, Jun

    2016-01-01

    One aspect of motor fatigue is the exercise-induced reduction of neural activity to voluntarily drive the muscle or muscle group. Functional magnetic resonance imaging provides access to investigate the neural activation on the whole brain level and studies observed changes of activation intensity after exercise-induced motor fatigue in the sensorimotor cortex. However, in human, little evidence exists to demonstrate the role of subcortical brain regions in motor fatigue, which is contradict to abundant researches in rodent indicating that during simple movement, the activity of the basal ganglia is modulated by the state of motor fatigue. Thus, in present study, we explored the effect of motor fatigue on subcortical areas in human. A series of fMRI data were collected from 11 healthy subjects while they were executing simple motor tasks in two conditions: before and under the motor fatigue state. The results showed that in both conditions, movements evoked activation volumes in the sensorimotor areas, SMA, cerebellum, thalamus, and basal ganglia. Of primary importance are the results that the intensity and size of activation volumes in the subcortical areas (i.e., thalamus and basal ganglia areas) are significantly decreased during the motor fatigue state, implying that motor fatigue disturbs the motor control processing in a way that both sensorimotor areas and subcortical brain areas are less active. Further study is needed to clarify how subcortical areas contribute to the overall decreased activity of CNS during motor fatigue state.

  9. Decreased Activation of Subcortical Brain Areas in the Motor Fatigue State: An fMRI Study

    PubMed Central

    Hou, Li J.; Song, Zheng; Pan, Zhu J.; Cheng, Jia L.; Yu, Yong; Wang, Jun

    2016-01-01

    One aspect of motor fatigue is the exercise-induced reduction of neural activity to voluntarily drive the muscle or muscle group. Functional magnetic resonance imaging provides access to investigate the neural activation on the whole brain level and studies observed changes of activation intensity after exercise-induced motor fatigue in the sensorimotor cortex. However, in human, little evidence exists to demonstrate the role of subcortical brain regions in motor fatigue, which is contradict to abundant researches in rodent indicating that during simple movement, the activity of the basal ganglia is modulated by the state of motor fatigue. Thus, in present study, we explored the effect of motor fatigue on subcortical areas in human. A series of fMRI data were collected from 11 healthy subjects while they were executing simple motor tasks in two conditions: before and under the motor fatigue state. The results showed that in both conditions, movements evoked activation volumes in the sensorimotor areas, SMA, cerebellum, thalamus, and basal ganglia. Of primary importance are the results that the intensity and size of activation volumes in the subcortical areas (i.e., thalamus and basal ganglia areas) are significantly decreased during the motor fatigue state, implying that motor fatigue disturbs the motor control processing in a way that both sensorimotor areas and subcortical brain areas are less active. Further study is needed to clarify how subcortical areas contribute to the overall decreased activity of CNS during motor fatigue state. PMID:27536264

  10. Decreased Activation of Subcortical Brain Areas in the Motor Fatigue State: An fMRI Study.

    PubMed

    Hou, Li J; Song, Zheng; Pan, Zhu J; Cheng, Jia L; Yu, Yong; Wang, Jun

    2016-01-01

    One aspect of motor fatigue is the exercise-induced reduction of neural activity to voluntarily drive the muscle or muscle group. Functional magnetic resonance imaging provides access to investigate the neural activation on the whole brain level and studies observed changes of activation intensity after exercise-induced motor fatigue in the sensorimotor cortex. However, in human, little evidence exists to demonstrate the role of subcortical brain regions in motor fatigue, which is contradict to abundant researches in rodent indicating that during simple movement, the activity of the basal ganglia is modulated by the state of motor fatigue. Thus, in present study, we explored the effect of motor fatigue on subcortical areas in human. A series of fMRI data were collected from 11 healthy subjects while they were executing simple motor tasks in two conditions: before and under the motor fatigue state. The results showed that in both conditions, movements evoked activation volumes in the sensorimotor areas, SMA, cerebellum, thalamus, and basal ganglia. Of primary importance are the results that the intensity and size of activation volumes in the subcortical areas (i.e., thalamus and basal ganglia areas) are significantly decreased during the motor fatigue state, implying that motor fatigue disturbs the motor control processing in a way that both sensorimotor areas and subcortical brain areas are less active. Further study is needed to clarify how subcortical areas contribute to the overall decreased activity of CNS during motor fatigue state. PMID:27536264

  11. Azolla filiculoides Nitrogenase Activity Decrease Induced by Inoculation with Chlamydomonas sp.

    PubMed

    Habte, M

    1986-11-01

    Experiments were conducted to determine the influence of Chlamydomonas sp. on nitrogen fixation (C(2)H(2) --> C(2)H(4)) in Azolla filiculoides and on the nitrogen fixation and growth of free-living Anabaena azollae 2B organisms. Inoculation of azolla medium with Chlamydomonas sp. was associated with decreased nitrogenase activity in A. filiculoides and with increases in the density of a fungal population identified as Acremonium sp. Subsequent inoculation of azolla medium with this fungus was also accompanied by a significant decrease in nitrogenase activity of A. filiculoides. However, the extent of depression of nitrogenase activity was significantly higher when azolla medium was inoculated with Chlamydomonas sp. than when it was inoculated with Acremonium sp. Inoculation of nitrogen-free Stanier medium with either Acremonium sp. or Chlamydomonas sp. did not adversely affect the growth or nitrogenase activity of free-living A. azollae. Decreased nitrogenase activity in A. filiculoides is apparently related to the adverse influence of the green alga and the fungus on the macrosymbiont. The mechanisms that might be involved are discussed. PMID:16347211

  12. Azolla filiculoides Nitrogenase Activity Decrease Induced by Inoculation with Chlamydomonas sp. †

    PubMed Central

    Habte, Mitiku

    1986-01-01

    Experiments were conducted to determine the influence of Chlamydomonas sp. on nitrogen fixation (C2H2 → C2H4) in Azolla filiculoides and on the nitrogen fixation and growth of free-living Anabaena azollae 2B organisms. Inoculation of azolla medium with Chlamydomonas sp. was associated with decreased nitrogenase activity in A. filiculoides and with increases in the density of a fungal population identified as Acremonium sp. Subsequent inoculation of azolla medium with this fungus was also accompanied by a significant decrease in nitrogenase activity of A. filiculoides. However, the extent of depression of nitrogenase activity was significantly higher when azolla medium was inoculated with Chlamydomonas sp. than when it was inoculated with Acremonium sp. Inoculation of nitrogen-free Stanier medium with either Acremonium sp. or Chlamydomonas sp. did not adversely affect the growth or nitrogenase activity of free-living A. azollae. Decreased nitrogenase activity in A. filiculoides is apparently related to the adverse influence of the green alga and the fungus on the macrosymbiont. The mechanisms that might be involved are discussed. PMID:16347211

  13. MIF-1 (Pro-Leu-Gly-NH2) decreases activity in Siamese fighting fish (Betta splendens).

    PubMed

    Brown, M M; Sardenga, P B; Olson, G A; Delatte, S W; Olson, R D

    1984-04-01

    The effects of MIF-1 (Pro-Leu-Gly-NH2) on activity and aggression of male Siamese Fighting Fish ( Betta splendens) were considered. Animals were given intraperitoneal injections of 0.0 or 10.0 mg/kg MIF-1. After a 10-minute delay, they were placed in a 10 gallon aquarium and their activity was monitored for 60 minutes. Although aggressive responses in the presence of suitable opponents were not reliably affected, as significant decrease in general activity was produced. This is compatible with differential effects of MIF-1 across species.

  14. Modeling of the atmospheric response to a strong decrease of the solar activity

    NASA Astrophysics Data System (ADS)

    Rozanov, Eugene V.; Egorova, Tatiana A.; Shapiro, Alexander I.; Schmutz, Werner K.

    2012-07-01

    We estimate the consequences of a potential strong decrease of the solar activity using the model simulations of the future driven by pure anthropogenic forcing as well as its combination with different solar activity related factors: total solar irradiance, spectral solar irradiance, energetic electron precipitation, solar protons and galactic cosmic rays. The comparison of the model simulations shows that introduced strong decrease of solar activity can lead to some delay of the ozone recovery and partially compensate greenhouse warming acting in the direction opposite to anthropogenic effects. The model results also show that all considered solar forcings are important in different atmospheric layers and geographical regions. However, in the global scale the solar irradiance variability can be considered as the most important solar forcing. The obtained results constitute probably the upper limit of the possible solar influence. Development of the better constrained set of future solar forcings is necessary to address the problem of future climate and ozone layer with more confidence.

  15. Aldosterone impairs vascular reactivity by decreasing glucose-6-phosphate dehydrogenase activity

    PubMed Central

    Leopold, Jane A.; Dam, Aamir; Maron, Bradley A.; Scribner, Anne W.; Liao, Ronglih; Handy, Diane E.; Stanton, Robert C.; Pitt, Bertram; Loscalzo, Joseph

    2013-01-01

    Hyperaldosteronism is associated with impaired vascular reactivity; however, the mechanism by which aldosterone promotes endothelial dysfunction remains unknown. Glucose-6-phosphate dehydrogenase (G6pd), the principal source of Nadph, modulates vascular function by limiting oxidant stress to preserve bioavailable nitric oxide (NO•). In these studies, we show that aldosterone (10−9-10−7 mol/l) decreases endothelial G6pd expression and activity in vitro resulting in increased oxidant stress and decreased cGMP levels similar to what is observed in G6pd-deficient cells. Aldosterone decreases G6pd expression by protein kinase A activation to increase expression of Crem, which interferes with Creb binding to the G6pd promoter. In vivo, infusion of aldosterone decreases vascular G6pd expression and impairs vascular reactivity. These effects are abrogated by spironolactone or vascular gene transfer of G6pd. These studies demonstrate that aldosterone induces a G6pd-deficient phenotype to impair endothelial function; aldosterone antagonism or gene transfer of G6pd improves vascular reactivity by restoring G6pd activity. PMID:17273168

  16. The ocular inflammatory response to endotoxin is not altered when glutathione peroxidase activity is decreased

    SciTech Connect

    Grimes, A.M.; McGahan, M.C.; Smith, M.G. )

    1991-03-11

    Selenium (Se) is an essential trace element and an integral part of the enzyme glutathione peroxidase (GPx). GPx is an antioxidant which scavenges both hydroperoxide and lipid peroxides. The purpose of the current study was to determine if decreased GPx activity affects the ocular inflammatory response. New Zealand White rabbits were fed either a purified Se deficient or Se adequate diet for 9 weeks. After 9 weeks, plasma Se levels were 0.151 {plus minus} 0.0130 {mu}g/ml in the deficient diet group compared to 0.217 {plus minus} 0.015 {plus minus} 0.87 U compared with 25.43 {plus minus} 1.77 U in the basal diet group. At this point, ocular inflammation was induced by intravitreal injection of endotoxin. Twenty-four hours later, despite a 40% decrease in plasma and a 30% decrease in intraocular fluid GPx activity, there was no significant difference in inflammatory parameters between the groups. However, it is possible that a further decrease in GPx activity could have some effect on the inflammatory response.

  17. Effects of decreasing sedentary behavior and increasing activity on weight change in obese children.

    PubMed

    Epstein, L H; Valoski, A M; Vara, L S; McCurley, J; Wisniewski, L; Kalarchian, M A; Klein, K R; Shrager, L R

    1995-03-01

    Obese children 8-12 years old from 61 families were randomized to treatment groups that targeted increased exercise, decreased sedentary behaviors, or both (combined group) to test the influence of reinforcing children to be more active or less sedentary on child weight change. Significant decreases in percentage overweight were observed after 4 months between the sedentary and the exercise groups (-19.9 vs. -13.2). At 1 year, the sedentary group had a greater decrease in percentage overweight than did the combined and the exercise groups (-18.7 vs. -10.3 and -8.7) and greater decrease in percentage of body fat (-4.7 vs. -1.3). All groups improved fitness during treatment and follow-up. Children in the sedentary group increased their liking for high-intensity activity and reported lower caloric intake than did children in the exercise group. These results support the goal of reducing time spent in sedentary activities to improve weight loss.

  18. Infection by bacterial pathogens expressing type III secretion decreases luciferase activity: ramifications for reporter gene studies.

    PubMed

    Savkovic, S D; Koutsouris, A; Wu, G; Hecht, G

    2000-09-01

    Pathogenic microbes influence gene regulation in eukaryotic hosts. Reporter gene studies can define the roles of promoter regulatory sequences. The effect of pathogenic bacteria on reporter genes has not been examined. The aim of this study was to identify which reporter genes are reliable in studies concerning host gene regulation by bacterial pathogens expressing type III secretory systems. Human intestinal epithelial cells, T84, Caco-2 and HT-29, were transfected with plasmids containing luciferase (luc), chloramphenicol acetyltransferase (CAT) or beta-galactosidase (beta-gal) as reporter genes driven by the inducible interleukin-8 (IL-8) or constitutively active simian virus 40 (SV40) promoter. Cells were infected with enteropathogenic E. coli or Salmonella typhimurium, and the reporter activity was assessed. Luc activity significantly decreased following infection, regardless of the promoter. The activity of recombinant luc was nearly ablated by incubation with either EPEC or Salmonella in a cell-free system. Activity was partially preserved by protease inhibitors, and immunoblot analysis showed a decreased amount and molecular weight of recombinant luc, suggesting protein degradation. Neither beta-gal nor CAT activity was altered by infection. Disruption of type III secretion prevented the loss of luc activity. We conclude that CAT or beta-gal, but not luc, can be used as reliable reporter genes to assess the impact of pathogenic microbes, especially those expressing type III secretion on host cell gene regulation.

  19. Rapid toxicity testing based on mitochondrial respiratory activity

    SciTech Connect

    Haubenstricker, M.E. ); Holodnick, S.E.; Mancy, K.H. ); Brabec, M.J. )

    1990-05-01

    The need exists for rapid and inexpensive methods to determine the health effects of environmental contaminants on biological systems. One of the current research approaches for assessing cytotoxicity is to monitor the respiratory activity of the mitochondrion, a sensitive, nonspecific subcellular target site. Detected changes in mitochondrial function after the addition of a test chemical could be correlated to toxic effects. Mitochondrial respiration can be characterized by three indices: state 3 and state 4 respiratory rates, and the respiratory control ratio (RCR). State 4, the idle or resting state, results when coupled mitochondrial respire in a medium containing inorganic phosphate and a Kreb's cycle substrate in the absence of a phosphate acceptor such as adenosine diphosphate (ADP). In the presence of ADP the respiration rate increases to a maximum (state 3), accompanied by phosphorylation of ADP to adenosine triphosphate (ATP). The ratio of state 3 to state 4, or RCR, indicates how tightly the oxidative phosphorylation process is coupled. The synthesis of ATP by mitochondria is influenced by a number of compounds, most of which are either uncouplers or inhibitors.

  20. Oxidative stress is decreased in physically active sickle cell SAD mice.

    PubMed

    Charrin, Emmanuelle; Aufradet, Emeline; Douillard, Aymeric; Romdhani, Aymen; Souza, Genevieve De; Bessaad, Amine; Faes, Camille; Chirico, Erica N; Pialoux, Vincent; Martin, Cyril

    2015-03-01

    Oxidative stress plays a crucial role in sickle cell disease (SCD) physiopathology. Given that chronic physical activity is known to decrease reactive oxygen species (ROS) and increase nitric oxide (NO) bioavailability in healthy subjects and in patients with cardiovascular or inflammatory pathologies, modulating these factors involved in the severity of the pathology could also be beneficial in SCD. This study aimed to determine if 8 weeks of increased physical activity (PA) by voluntary wheel running affects the hypoxia/reoxygenation (H/R) responses by reducing oxidative stress and increasing NO synthesis in sickle SAD mice. Nitrite/nitrate (NOx) concentrations, NOS3 mRNA expression and phosphorylated-endothelial nitric oxide synthase immunostaining were increased in the lungs of the PA groups after H/R stress. Moreover, lipid peroxidation in the heart was decreased in PA SAD mice. The improvement of antioxidant activity at rest and the decrease in haemolysis may explain this reduced oxidative stress. These results suggest that physical activity probably diminishes some deleterious effects of H/R stress in SAD mice and could be protective against vascular occlusions. PMID:25382268

  1. SARS-CoV proteins decrease levels and activity of human ENaC via activation of distinct PKC isoforms

    PubMed Central

    Ji, Hong-Long; Song, Weifeng; Gao, Zhiqian; Su, Xue-Feng; Nie, Hong-Guang; Jiang, Yi; Peng, Ji-Bin; He, Yu-Xian; Liao, Ying; Zhou, Yong-Jian; Tousson, Albert; Matalon, Sadis

    2009-01-01

    Among the multiple organ disorders caused by the severe acute respiratory syndrome coronavirus (SARS-CoV), acute lung failure following atypical pneumonia is the most serious and often fatal event. We hypothesized that two of the hydrophilic structural coronoviral proteins (S and E) would regulate alveolar fluid clearance by decreasing the cell surface expression and activity of amiloride-sensitive epithelial sodium (Na+) channels (ENaC), the rate-limiting protein in transepithelial Na+ vectorial transport across distal lung epithelial cells. Coexpression of either S or E protein with human α-, β-, and γ-ENaC in Xenopus oocytes led to significant decreases of both amiloride-sensitive Na+ currents and γ-ENaC protein levels at their plasma membranes. S and E proteins decreased the rate of ENaC exocytosis and either had no effect (S) or decreased (E) rates of endocytosis. No direct interactions among SARS-CoV E protein with either α- or γ-ENaC were indentified. Instead, the downregulation of ENaC activity by SARS proteins was partially or completely restored by administration of inhibitors of PKCα/β1 and PKCζ. Consistent with the whole cell data, expression of S and E proteins decreased ENaC single-channel activity in oocytes, and these effects were partially abrogated by PKCα/β1 inhibitors. Finally, transfection of human airway epithelial (H441) cells with SARS E protein decreased whole cell amiloride-sensitive currents. These findings indicate that lung edema in SARS infection may be due at least in part to activation of PKC by SARS proteins, leading to decreasing levels and activity of ENaC at the apical surfaces of lung epithelial cells. PMID:19112100

  2. Decrease of lactase activity in the small intestine of jejunum-bypassed rats.

    PubMed

    Shinohara, H; Goda, T; Takase, S

    1992-08-01

    The effect of jejunum-bypass operation on lactase in rat small intestine was examined. Three groups of four or five rats were designated as jejunum-bypassed, sham-operated and normal rats. All animals including normal rats received by pair-feeding 5% glucose/1% NaCl for 5 days following the operation; thereafter they were fed ad libitum the laboratory chow diet. Three weeks after the jejunal bypass operation, the proximal ileum exhibited a hyperplasia as evidenced by a concomitant increase in mucosal contents of both total proteins and DNA. The specific activity of lactase in this segment was significantly lower in the operated rats than sham-operated controls, whereas the specific activity of sucrase in this segment was significantly elevated. The reduction of lactase activity was also evident in the proximal jejunal segment as well as in the distal jejunum which was deprived of luminal nutrition, suggesting that some hormonal factor(s) might be involved in the decrease of lactase activity in jejunum-bypassed animals. Electroimmunoassay revealed that the amount of immunoreactive lactase also declined in the operated rats relative to the sham-operated controls. Our results thus suggest that lactase activity in residual ileum is not only unable to compensate for the loss of digestive-absorptive surface of jejunum, but lactase activity even decreases following jejunum-bypass operation.

  3. Decrease in respiration activity related to prodigiosin synthesis in Serratia marcescens.

    PubMed

    Kobayashi, N; Ichikawa, Y

    1985-01-01

    Variation in the cell respiration rate of pigmented and nonpigmented strains of Serratia marcescens was exhibited. The respiration rate of a pigmented strain decreased earlier than that of nonpigmented strains in the late exponential or early stationary phase. However when prodigiosin synthesis was not induced by exchange of carbon sources in the medium, the decrease in the respiration rate of the pigmented strain was the same as that of nonpigmented strains. Measurement of the oxygen consumption rate in the sonicated cell membrane by adding NADH solution showed that the rate in the pigmented strain was lower than that in nonpigmented strains. Furthermore, the cell membrane of prodigiosin-induced organisms was more sensitive to respiration inhibitors than that of pigment-noninduced organisms of the pigmented strain. These results showed that the respiration activity was decreased by prodigiosin synthesis in S. marcescens.

  4. Sleep Restriction Decreases the Physical Activity of Adults at Risk for Type 2 Diabetes

    PubMed Central

    Bromley, Lindsay E.; Booth, John N.; Kilkus, Jennifer M.; Imperial, Jacqueline G.; Penev, Plamen D.

    2012-01-01

    Study Objective: To test the hypothesis that recurrent sleep curtailment will result in decreased physical activity in adults at risk for type 2 diabetes. Design: Two-condition 2-period randomized crossover study. Setting: University General Clinical Research Center. Participants: Eighteen healthy patients with parental history of type 2 diabetes (9 females and 9 males, age 27 yr [standard deviation 3], body mass index 23.7 [2.3] kg/m2). Interventions: Two week-long inpatient sessions with 8.5 or 5.5-hr nighttime sleep opportunity. Participants who exercised regularly (39%) could follow their usual exercise routines during both sessions. Measurements and Results: Sleep and total body movement were measured by wrist actigraphy and waist accelerometry. Subjective mood and vigor was assessed using visual analog scales. The main outcome was the comparison of total activity counts between sleep conditions. Ancillary endpoints included changes in sedentary, light, and moderate plus vigorous activity, and their association with changes in mood and vigor. Daily sleep was reduced by 2.3 hr (P < 0.001) and total activity counts were 31% lower (P = 0.020) during the 5.5-hr time-in-bed condition. This was accompanied by a 24% reduction in moderate-plus-vigorous activity time (P = 0.005) and more sedentary behavior (+21 min/day; P = 0.020). The decrease in daily activity during the 5.5-hr time-in-bed condition was seen mostly in participants who exercised regularly (-39 versus −4% in exercisers versus nonexercisers; P = 0.027). Sleep loss-related declines in physical activity correlated strongly with declines in subjective vigor (R = 0.90; P < 0.001). Conclusions: Experimental sleep restriction results in decreased amount and intensity of physical activity in adults at risk for type 2 diabetes. Citation: Bromley LE; Booth JN; Kilkus JM; Imperial JG; Penev PD. Sleep restriction decreases the physical activity of adults at risk for type 2 diabetes. SLEEP 2012

  5. Increasing or decreasing interest in activities: the role of regulatory fit.

    PubMed

    Higgins, E Tory; Cesario, Joseph; Hagiwara, Nao; Spiegel, Scott; Pittman, Thane

    2010-04-01

    What makes people's interest in doing an activity increase or decrease? Regulatory fit theory (E. T. Higgins, 2000) provides a new perspective on this classic issue by emphasizing the relation between people's activity orientation, such as thinking of an activity as fun, and the manner of activity engagement that the surrounding situation supports. These situational factors include whether a reward for good performance, expected (Study 1) or unexpected (Study 2), is experienced as enjoyable or as serious and whether the free-choice period that measures interest in the activity is experienced as enjoyable or as serious (Study 3). Studies 1-3 found that participants were more likely to do a fun activity again when these situational factors supported a manner of doing the activity that fit the fun orientation-a reward or free-choice period framed as enjoyable. This effect was not because interest in doing an activity again is simply greater in an enjoyable than a serious surrounding situation because it did not occur, and even reversed, when the activity orientation was important rather than fun, where now a serious manner of engagement provides the fit (Study 4a and 4b).

  6. Gestational diabetes mellitus (GDM) decreases butyrylcholinesterase (BChE) activity and changes its relationship with lipids

    PubMed Central

    Guimarães, Larissa O.; de Andrade, Fabiana A.; Bono, Gleyse F.; Setoguchi, Thaís E.; Brandão, Mariana B.; Chautard-Freire-Maia, Eleidi A.; dos Santos, Izabella C.R.; Picheth, Geraldo; Faria, Ana Cristina R. de A.; Réa, Rosângela R.; Souza, Ricardo L.R.; Furtado-Alle, Lupe

    2014-01-01

    Many conditions interfere with butyrylcholinesterase (BChE) activity, e.g., pregnancy or presence of the BCHE gene variant −116A can decrease activity whereas obesity and types I and II diabetes mellitus can increase activity. In this study, we examined BChE activity, −116A and 1615A BCHE gene variants, and anthropometric and biochemical variables associated with diabetes in patients with gestational diabetes mellitus (GDM) and in healthy pregnant women. BChE activity was measured spectrophotometrically using propionylthiocholine as substrate and genotyping of the −116 and 1615 sites of the BCHE gene was done with a TaqMan SNP genotyping assay. Three groups were studied: 150 patients with GDM, 295 healthy pregnant women and 156 non-pregnant healthy women. Mean BChE activity was significantly lower in healthy pregnant women than in women from the general population and was further reduced in GDM patients. BChE activity was significantly reduced in carriers of −116A in GDM patients and healthy pregnant women. Although GDM patients had a significantly higher mean body mass index (BMI) and triglycerides than healthy pregnant women, they had lower mean BChE activity, suggesting that the lowering effect of GDM on BChE activity was stronger than the characteristic enhancing effect of increased BMI and triglycerides. PMID:24688284

  7. Decreased electrophysiological activity represents the conscious state of emptiness in meditation.

    PubMed

    Hinterberger, Thilo; Schmidt, Stephanie; Kamei, Tsutomu; Walach, Harald

    2014-01-01

    Many neuroscientific theories explain consciousness with higher order information processing corresponding to an activation of specific brain areas and processes. In contrast, most forms of meditation ask for a down-regulation of certain mental processing activities while remaining fully conscious. To identify the physiological properties of conscious states with decreased mental and cognitive processing, the electrical brain activity (64 channels of EEG) of 50 participants of various meditation proficiencies was measured during distinct and idiosyncratic meditative tasks. The tasks comprised a wakeful "thoughtless emptiness (TE)," a "focused attention," and an "open monitoring" task asking for mindful presence in the moment and in the environment without attachment to distracting thoughts. Our analysis mainly focused on 30 highly experienced meditators with at least 5 years and 1000 h of meditation experience. Spectral EEG power comparisons of the TE state with the resting state or other forms of meditation showed decreased activities in specific frequency bands. In contrast to a focused attention task the TE task showed significant central and parietal gamma decreases (p < 0.05). Compared to open monitoring TE expressed decreased alpha and beta amplitudes, mainly in parietal areas (p < 0.01). TE presented significantly less delta (p < 0.001) and theta (p < 0.05) waves than a wakeful closed eyes resting condition. A group of participants with none or little meditation practice did not present those differences significantly. Our findings indicate that a conscious state of TE reached by experienced meditators is characterized by reduced high-frequency brain processing with simultaneous reduction of the low frequencies. This suggests that such a state of meditative conscious awareness might be different from higher cognitive and mentally focused states but also from states of sleep and drowsiness.

  8. Decreased electrophysiological activity represents the conscious state of emptiness in meditation

    PubMed Central

    Hinterberger, Thilo; Schmidt, Stephanie; Kamei, Tsutomu; Walach, Harald

    2014-01-01

    Many neuroscientific theories explain consciousness with higher order information processing corresponding to an activation of specific brain areas and processes. In contrast, most forms of meditation ask for a down-regulation of certain mental processing activities while remaining fully conscious. To identify the physiological properties of conscious states with decreased mental and cognitive processing, the electrical brain activity (64 channels of EEG) of 50 participants of various meditation proficiencies was measured during distinct and idiosyncratic meditative tasks. The tasks comprised a wakeful “thoughtless emptiness (TE),” a “focused attention,” and an “open monitoring” task asking for mindful presence in the moment and in the environment without attachment to distracting thoughts. Our analysis mainly focused on 30 highly experienced meditators with at least 5 years and 1000 h of meditation experience. Spectral EEG power comparisons of the TE state with the resting state or other forms of meditation showed decreased activities in specific frequency bands. In contrast to a focused attention task the TE task showed significant central and parietal gamma decreases (p < 0.05). Compared to open monitoring TE expressed decreased alpha and beta amplitudes, mainly in parietal areas (p < 0.01). TE presented significantly less delta (p < 0.001) and theta (p < 0.05) waves than a wakeful closed eyes resting condition. A group of participants with none or little meditation practice did not present those differences significantly. Our findings indicate that a conscious state of TE reached by experienced meditators is characterized by reduced high-frequency brain processing with simultaneous reduction of the low frequencies. This suggests that such a state of meditative conscious awareness might be different from higher cognitive and mentally focused states but also from states of sleep and drowsiness. PMID:24596562

  9. Progesterone directly and rapidly inhibits GnRH neuronal activity via progesterone receptor membrane component 1.

    PubMed

    Bashour, Nicholas Michael; Wray, Susan

    2012-09-01

    GnRH neurons are essential for reproduction, being an integral component of the hypothalamic-pituitary-gonadal axis. Progesterone (P4), a steroid hormone, modulates reproductive behavior and is associated with rapid changes in GnRH secretion. However, a direct action of P4 on GnRH neurons has not been previously described. Receptors in the progestin/adipoQ receptor family (PAQR), as well as progesterone receptor membrane component 1 (PgRMC1) and its partner serpin peptidase inhibitor, clade E (nexin, plasminogen activator inhibitor type 1) mRNA binding protein 1 (SERBP1), have been shown to mediate rapid progestin actions in various tissues, including the brain. This study shows that PgRMC1 and SERBP1, but not PAQR, are expressed in prenatal GnRH neurons. Expression of PgRMC1 and SERBP1 was verified in adult mouse GnRH neurons. To investigate the effect of P4 on GnRH neuronal activity, calcium imaging was used on primary GnRH neurons maintained in explants. Application of P4 significantly decreased the activity of GnRH neurons, independent of secretion of gamma-aminobutyric acidergic and glutamatergic input, suggesting a direct action of P4 on GnRH neurons. Inhibition was not blocked by RU486, an antagonist of the classic nuclear P4 receptor. Inhibition was also maintained after uncoupling of the inhibitory regulative G protein (G(i/o)), the signal transduction pathway used by PAQR. However, AG-205, a PgRMC1 ligand and inhibitor, blocked the rapid P4-mediated inhibition, and inhibition of protein kinase G, thought to be activated downstream of PgRMC1, also blocked the inhibitory activity of P4. These data show for the first time that P4 can act directly on GnRH neurons through PgRMC1 to inhibit neuronal activity.

  10. An Acute Lateral Ankle Sprain Significantly Decreases Physical Activity across the Lifespan.

    PubMed

    Hubbard-Turner, Tricia; Wikstrom, Erik A; Guderian, Sophie; Turner, Michael J

    2015-09-01

    We do not know the impact an ankle sprain has on physical activity levels across the lifespan. With the negative consequences of physical inactivity well established, understanding the effect of an ankle sprain on this outcome is critical. The objective of this study was to measure physical activity across the lifespan after a single ankle sprain in an animal model. Thirty male mice (CBA/J) were randomly placed into one of three groups: the transected calcaneofibular ligament (CFL) group, the transected anterior talofibular ligament (ATFL)/CFL group, and a SHAM group. Three days after surgery, all of the mice were individually housed in a cage containing a solid surface running wheel. Physical activity levels were recorded and averaged every week across the mouse's lifespan. The SHAM mice ran significantly more distance each day compared to the remaining two running groups (post hoc p = 0.011). Daily duration was different between the three running groups (p = 0.048). The SHAM mice ran significantly more minutes each day compared to the remaining two running groups (post hoc p=0.046) while the ATFL/CFL mice ran significantly less minutes each day (post hoc p = 0.028) compared to both the SHAM and CFL only group. The SHAM mice ran at a faster daily speed versus the remaining two groups of mice (post hoc p = 0.019) and the ATFL/CFL mice ran significantly slower each day compared to the SHAM and CFL group (post hoc p = 0.005). The results of this study indicate that a single ankle sprain significantly decreases physical activity across the lifespan in mice. This decrease in physical activity can potentially lead to the development of numerous chronic diseases. An ankle sprain thus has the potential to lead to significant long term health risks if not treated appropriately. Key pointsA single ankle significantly decreased physical activity levels in mice across the lifespan.Decreased physical activity could significantly negatively impact overall health if not modified

  11. Lead exposure is associated with decreased serum paraoxonase 1 (PON1) activity and genotypes.

    PubMed

    Li, Wan-Fen; Pan, Mei-Hung; Chung, Meng-Chu; Ho, Chi-Kung; Chuang, Hung-Yi

    2006-08-01

    Lead exposure causes cardiac and vascular damage in experimental animals. However, there is considerable debate regarding the causal relationship between lead exposure and cardiovascular dysfunction in humans. Paraoxonase 1 (PON1), a high-density lipoprotein-associated antioxidant enzyme, is capable of hydrolyzing oxidized lipids and thus protects against atherosclerosis. Previous studies have shown that lead and several other metal ions are able to inhibit PON1 activity in vitro. To investigate whether lead exposure has influence on serum PON1 activity, we conducted a cross-sectional study of workers from a lead battery manufactory and lead recycling plant. Blood samples were analyzed for whole-blood lead levels, serum PON1 activity, and three common PON1 polymorphisms (Q192R, L55M, -108C/T). The mean blood lead level (+/-SD) of this cohort was 27.1+/-15 microg/dL. Multiple linear regression analysis showed that blood lead levels were significantly associated with decreased serum PON1 activity (p<0.001) in lead workers. This negative correlation was more evident for workers who carry the R192 allele, which has been suggested to be a risk factor for coronary heart disease. Taken together, our results suggest that the decrease in serum PON1 activity due to lead exposure may render individuals more susceptible to atherosclerosis, particularly subjects who are homozygous for the R192 allele.

  12. Exercise Decreases Risk of Future Active Disease in Inflammatory Bowel Disease Patients in Remission

    PubMed Central

    Jones, Patricia D.; Kappelman, Michael D.; Martin, Christopher F.; Chen, Wenli; Sandler, Robert S.; Long, Millie D.

    2015-01-01

    Background Although exercise impacts quality of life in patients with inflammatory bowel disease (IBD), little is known about its role in disease activity. Among IBD patients in remission, we aimed to evaluate the association between exercise and subsequent active disease. Methods We performed a prospective study using the Crohn's and Colitis Foundation of America (CCFA) Partners Internet-based cohort of individuals with self-reported IBD. We identified participants in remission, defined as short Crohn's disease activity index (sCDAI) <150 or simple clinical colitis activity index (SCCAI) ≤2. The primary exposure was exercise status, measured using the validated Godin leisure time activity index. The primary study outcome, assessed after six months, was active disease defined using the above disease activity index thresholds. We used bivariate and multivariate analyses to describe the independent association between exercise and risk of active disease. Results We identified 1308 patients with Crohn's Disease (CD) and 549 with ulcerative or indeterminate colitis (UC/IC) in remission, of whom 227(17.4%) with CD and 135 (24.6%) with UC/IC developed active disease after 6 months. Higher exercise level was associated with decreased risk of active disease for CD (adjusted RR 0.72, 95% CI 0.55-0.94) and UC/IC (adjusted RR 0.78, 95% CI 0.54-1.13). Conclusions In patients with CD in remission, those with higher exercise levels were significantly less likely to develop active disease at six months. In patients with UC/IC in remission, patients with higher exercise levels were less likely to develop active disease at six months, however this was not statistically significant. PMID:25723616

  13. Crystallization and activation of silicon by microwave rapid annealing

    NASA Astrophysics Data System (ADS)

    Kimura, Shunsuke; Ota, Kosuke; Hasumi, Masahiko; Suzuki, Ayuta; Ushijima, Mitsuru; Sameshima, Toshiyuki

    2016-07-01

    A combination of the carbon-powder absorber with microwave irradiation is proposed as a rapid heat method. 2-μm-diameter carbon powders with a packing density of 0.08 effectively absorbed 2.45 GHz 1000-W-microwave and heated themselves to 1163 °C for 26 s. The present heat treatment recrystallized n-type crystalline silicon surfaces implanted with 1.0 × 10^{15}hbox {-cm}^{-2}-boron and phosphorus atoms with crystalline volume ratios of 0.99 and 0.93, respectively, by microwave irradiation at 1000 W for 20 s. Activation and carrier generation were simultaneously achieved with a sheet resistivity of 62 Ω / hbox {sq}. A high photo-induced-carrier effective lifetime of 1.0 × 10^{-4} s was also achieved. Typical electrical current-rectified characteristic and solar cell characteristic with an efficiency of 12.1 % under 100-mW/cm2-air-mass-1.5 illumination were obtained. Moreover, heat treatment with microwave irradiation at 1000 W for 22 s successfully crystallized silicon thin films with thicknesses ranging from 2.4 to 50 nm formed on quartz substrates. Nano-crystalline cluster structure with a high volume ratio of 50 % was formed in the 1.8-nm (initial 2.4-nm)-thick silicon films. Photoluminescence around 1.77 eV was observed for the 1.8-nm-thick silicon films annealed at 260 °C in 1.3 × 106-Pa-H2O-vapor for 3 h after the microwave heating.

  14. Cell Motility Is Decreased in Macrophages Activated by Cancer Cell-Conditioned Medium

    PubMed Central

    Go, Ahreum; Ryu, Yun-Kyoung; Lee, Jae-Wook; Moon, Eun-Yi

    2013-01-01

    Macrophages play a role in innate immune responses to various foreign antigens. Many products from primary tumors influence the activation and transmigration of macrophages. Here, we investigated a migration of macrophages stimulated with cancer cell culture-conditioned medium (CM). Macrophage activation by treatment with CM of B16F10 cells were judged by the increase in protein levels of inducible nitric oxide synthase (iNOS) and cyclooxygenase 2 (COX2). The location where macrophages were at 4 h-incubation with control medium or CM was different from where they were at 5 h-incubation in culture dish. Percentage of superimposed macrophages at every 1 h interval was gradually increased by CM treatment as compared to control. Total coverage of migrated track expressed in coordinates was smaller and total distance of migration was shorter in CM-treated macrophages than that in control. Rac1 activity in CM-treated macrophages was also decreased as compared to that in control. When macrophages were treated with CM in the presence of dexamethasone (Dex), an increase in COX2 protein levels, and a decrease in Rac1 activity and total coverage of migration were reversed. In the meanwhile, biphasic changes were detected by Dex treatment in section distance of migration at each time interval, which was more decreased at early time and then increased at later time. Taken together, data demonstrate that macrophage motility could be reduced in accordance with activation in response to cancer cell products. It suggests that macrophage motility could be a novel marker to monitor cancer-associated inflammatory diseases and the efficacy of anti-inflammatory agents. PMID:24404340

  15. Music Attenuated a Decrease in Parasympathetic Nervous System Activity after Exercise

    PubMed Central

    Miura, Misa; Ito, Osamu; Kohzuki, Masahiro

    2016-01-01

    Music and exercise can both affect autonomic nervous system activity. However, the effects of the combination of music and exercise on autonomic activity are poorly understood. Additionally, it remains unknown whether music affects post-exercise orthostatic tolerance. The aim of this study was to evaluate the effects of music on autonomic nervous system activity in orthostatic tolerance after exercise. Twenty-six healthy graduate students participated in four sessions in a random order on four separate days: a sedentary session, a music session, a bicycling session, and a bicycling with music session. Participants were asked to listen to their favorite music and to exercise on a cycle ergometer. We evaluated autonomic nervous system activity before and after each session using frequency analysis of heart rate variability. High frequency power, an index of parasympathetic nervous system activity, was significantly increased in the music session. Heart rate was increased, and high frequency power was decreased, in the bicycling session. There was no significant difference in high frequency power before and after the bicycling with music session, although heart rate was significantly increased. Additionally, both music and exercise did not significantly affect heart rate, systolic blood pressure or also heart rate variability indices in the orthostatic test. These data suggest that music increased parasympathetic activity and attenuated the exercise-induced decrease in parasympathetic activity without altering the orthostatic tolerance after exercise. Therefore, music may be an effective approach for improving post-exercise parasympathetic reactivation, resulting in a faster recovery and a reduction in cardiac stress after exercise. PMID:26840532

  16. Music Attenuated a Decrease in Parasympathetic Nervous System Activity after Exercise.

    PubMed

    Jia, Tiantian; Ogawa, Yoshiko; Miura, Misa; Ito, Osamu; Kohzuki, Masahiro

    2016-01-01

    Music and exercise can both affect autonomic nervous system activity. However, the effects of the combination of music and exercise on autonomic activity are poorly understood. Additionally, it remains unknown whether music affects post-exercise orthostatic tolerance. The aim of this study was to evaluate the effects of music on autonomic nervous system activity in orthostatic tolerance after exercise. Twenty-six healthy graduate students participated in four sessions in a random order on four separate days: a sedentary session, a music session, a bicycling session, and a bicycling with music session. Participants were asked to listen to their favorite music and to exercise on a cycle ergometer. We evaluated autonomic nervous system activity before and after each session using frequency analysis of heart rate variability. High frequency power, an index of parasympathetic nervous system activity, was significantly increased in the music session. Heart rate was increased, and high frequency power was decreased, in the bicycling session. There was no significant difference in high frequency power before and after the bicycling with music session, although heart rate was significantly increased. Additionally, both music and exercise did not significantly affect heart rate, systolic blood pressure or also heart rate variability indices in the orthostatic test. These data suggest that music increased parasympathetic activity and attenuated the exercise-induced decrease in parasympathetic activity without altering the orthostatic tolerance after exercise. Therefore, music may be an effective approach for improving post-exercise parasympathetic reactivation, resulting in a faster recovery and a reduction in cardiac stress after exercise.

  17. Selective decrease of Na+/k+ -ATPase activity in the brain of hypothyroid rats.

    PubMed

    Pacheco-Rosado, Jorge; Arias-Citalán, G; Ortiz-Butrón, R; Rodríquez-Páez, L

    2005-01-01

    The present work was performed in order to know if mild hypothyroidism in rats modifies the activity of the Na+/K+ -ATPase in different regions of the brain. Male Wistar rats (300-350 g) were randomly divided into three groups: (1) control group (n=8) drank tap water. (2) hypothyroid group (n=8) treated with 60 mg/kg of methimazole in drinking water; and (3) replaced group (n=8) treated with 60 mg/kg of methimazole plus 35 microg/kg of thyroid hormone (T3) in drinking water. After four weeks of treatment, the rats of all groups were sacrificed by decapitation. The cortex, amygdala, hippocampus and cerebellum were dissected and frozen at -70 degrees C until assay. For enzymatic assay, the tissues were homogenized. The Na+/K+ -ATPase activity was determined by quantifying inorganic phosphate after the samples were incubated with ATP in the presence and absence of 1 mM ouabain. The Na+/K+ -ATPase activity is expressed as pmoles Pi/hr/mg protein. The results showed that the Na+/K+ -ATPase activity in the cortex, amygdala and hippocampus, but not in cerebellum, was lower in hypothyroid group than in control group (p<0.05). The co-administration of methimazole and T3 avoided the decrease of Na+/K+ -ATPase activity, except in amygdala. According to the results obtained we concluded that methimazole treatment decreased the Na+/K+- ATPase activity in the brain's regions which are related to seizures onset. That decrement in enzyme activity was avoided with the coadministration of thyroid hormone.

  18. Membrane-bound complement regulatory activity is decreased on vaccinia virus-infected cells.

    PubMed Central

    Baranyi, L; Okada, N; Baranji, K; Takizawa, H; Okada, H

    1994-01-01

    Decay accelerating factor (DAF), membrane cofactor protein (MCP), complement receptor 1 and mouse Crry are cell surface-bound complement regulatory proteins capable of inhibiting C3 convertase activity on cell membranes, and therefore provide a substantial protection from attack by homologous complement activated either by the classical or by the alternative pathway. Decrease in complement regulatory activity might lead to spontaneous complement deposition and subsequent cell injury. MoAb 5I2 can inhibit the complement regulatory activity of molecules on rat cells, resulting in deposition of homologous complement. The antigen recognized by 5I2 MoAb in rats is homologous to mouse Crry. Fifteen to 20 h after infection with vaccinia virus, in vitro cultured KDH-8 rat hepatoma cells show a strong decrease in expression of Crry-like antigen, and proved to be sensitive to complement deposition when 1:5 diluted normal rat serum was added to the culture medium as a source of complement. Addition of complement to the cultured KDH-8 cells infected with a very low dose of vaccinia virus (1 plaque-forming unit (PFU)/1000 cells) substantially reduced spreading of virus infection in the cell culture, while inactivation of complement by heat or zymosan treatment abrogated the protective effect. PMID:7923872

  19. Effects of decreased muscle activity on developing axial musculature in nicb107 mutant zebrafish (Danio rerio).

    PubMed

    van der Meulen, T; Schipper, H; van Leeuwen, J L; Kranenbarg, S

    2005-10-01

    The present paper discusses the effects of decreased muscle activity (DMA) on embryonic development in the zebrafish. Wild-type zebrafish embryos become mobile around 18 h post-fertilisation, long before the axial musculature is fully differentiated. As a model for DMA, the nic(b107) mutant was used. In nic(b107) mutant embryos, muscle fibres are mechanically intact and able to contract, but neuronal signalling is defective and the fibres are not activated, rendering the embryos immobile. Despite the immobility, distinguished slow and fast muscle fibres developed at the correct location in the axial muscles, helical muscle fibre arrangements were detected and sarcomere architecture was generated. However, in nic(b107) mutant embryos the notochord is flatter and the cross-sectional body shape more rounded, also affecting muscle fibre orientation. The stacking of sarcomeres and myofibril arrangement show a less regular pattern. Finally, expression levels of several genes were changed. Together, these changes in expression indicate that muscle growth is not impeded and energy metabolism is not changed by the decrease in muscle activity but that the composition of muscle is altered. In addition, skin stiffness is affected. In conclusion, the lack of muscle fibre activity did not prevent the basal muscle components developing but influenced further organisation and differentiation of these components. PMID:16169945

  20. Silencing of Doublecortin-Like (DCL) Results in Decreased Mitochondrial Activity and Delayed Neuroblastoma Tumor Growth

    PubMed Central

    Verissimo, Carla S.; Elands, Rachel; Cheng, Sou; Saaltink, Dirk-Jan; ter Horst, Judith P.; Alme, Maria N.; Pont, Chantal; van de Water, Bob; Håvik, Bjarte; Fitzsimons, Carlos P.; Vreugdenhil, Erno

    2013-01-01

    Doublecortin-like (DCL) is a microtubule-binding protein crucial for neuroblastoma (NB) cell proliferation. We have investigated whether the anti-proliferative effect of DCL knockdown is linked to reduced mitochondrial activity. We found a delay in tumor development after DCL knockdown in vivo in doxycycline-inducible NB tumor xenografts. To understand the mechanisms underlying this tumor growth retardation we performed a series of in vitro experiments in NB cell lines. DCL colocalizes with mitochondria, interacts with the mitochondrial outer membrane protein OMP25/ SYNJ2BP and DCL knockdown results in decreased expression of genes involved in oxidative phosphorylation. Moreover, DCL knockdown decreases cytochrome c oxidase activity and ATP synthesis. We identified the C-terminal Serine/Proline-rich domain and the second microtubule-binding area as crucial DCL domains for the regulation of cytochrome c oxidase activity and ATP synthesis. Furthermore, DCL knockdown causes a significant reduction in the proliferation rate of NB cells under an energetic challenge induced by low glucose availability. Together with our previous studies, our results corroborate DCL as a key player in NB tumor growth in which DCL controls not only mitotic spindle formation and the stabilization of the microtubule cytoskeleton, but also regulates mitochondrial activity and energy availability, which makes DCL a promising molecular target for NB therapy. PMID:24086625

  1. Smelling lavender and rosemary increases free radical scavenging activity and decreases cortisol level in saliva.

    PubMed

    Atsumi, Toshiko; Tonosaki, Keiichi

    2007-02-28

    Free radicals/reactive oxygen species are related to many biological phenomena such as inflammation, aging, and carcinogenesis. The body possesses various antioxidative systems (free radical scavenging activity, FRSA) for preventing oxidative stress, and saliva contains such activity. In the present study, we measured the total salivary FRSA induced after the smelling of lavender and rosemary essential oils that are widely used in aromatherapy. Various physiologically active substances in saliva such as cortisol, secretory IgA, and alpha-amylase activity were found to be correlated with aroma-induced FRSA. The subjects (22 healthy volunteers) sniffed aroma for 5 min, and each subject's saliva was collected immediately. FRSA was measured using 1,1-diphenyl-2-picrylhydrazyl. The FRSA values were increased by stimulation with low concentrations (1000 times dilution) of lavender or by high-concentrations (10 times dilution) of rosemary. In contrast, both lavender and rosemary stimulations decreased cortisol levels. A significant inverse correlation was observed between the FRSA values and the cortisol levels with each concentration of rosemary stimulation. No significant changes were noted in sIgA or alpha-amylase. These findings clarify that lavender and rosemary enhance FRSA and decrease the stress hormone, cortisol, which protects the body from oxidative stress. PMID:17291597

  2. Decreased Fronto-Limbic Activation and Disrupted Semantic-Cued List Learning in Major Depressive Disorder

    PubMed Central

    Kassel, Michelle T.; Rao, Julia A.; Walker, Sara J.; Briceño, Emily M.; Gabriel, Laura B.; Weldon, Anne L.; Avery, Erich T.; Haase, Brennan D.; Peciña, Marta; Considine, Ciaran M.; Noll, Douglas C.; Bieliauskas, Linas A.; Starkman, Monica N.; Zubieta, Jon-Kar; Welsh, Robert C.; Giordani, Bruno; Weisenbach, Sara L.; Langenecker, Scott A.

    2016-01-01

    Objective Individuals with Major Depressive Disorder (MDD) demonstrate poorer learning and memory skills relative to never-depressed comparisons (NDC). Previous studies report decreased volume and disrupted function of frontal lobes and hippocampi in MDD during memory challenge. However, it has been difficult to dissociate contributions of short-term memory and executive functioning to memory difficulties from those that might be attributable to long-term memory deficits. Method Adult males (MDD, n=19; NDC, n=22) and females (MDD, n=23; NDC, n=19) performed the Semantic List Learning Task (SLLT) during fMRI. The SLLT Encoding condition consists of 15 lists, each containing 14 words. After each list, a Distractor condition occurs, followed by cued Silent Rehearsal instructions. Post-scan recall and recognition were collected. Groups were compared using block (Encoding-Silent Rehearsal) and event-related (Words Recalled) models. Results MDD displayed lower recall relative to NDC. NDC displayed greater activation in several temporal, frontal, and parietal regions, for both Encoding-Silent Rehearsal and the Words Recalled analyses. Groups also differed in activation patterns in regions of the Papez circuit in planned analyses. The majority of activation differences were not related to performance, presence of medications, presence of comorbid anxiety disorder, or decreased gray matter volume in MDD. Conclusions Adults with MDD exhibit memory difficulties during a task designed to reduce the contribution of individual variability from short-term memory and executive functioning processes, parallel with decreased activation in memory and executive functioning circuits. Ecologically valid long-term memory tasks are imperative for uncovering neural correlates of memory performance deficits in adults with MDD. PMID:26831638

  3. Protein Kinase Activity Decreases with Higher Braak Stages of Alzheimer’s Disease Pathology

    PubMed Central

    Rosenberger, Andrea F.N.; Hilhorst, Riet; Coart, Elisabeth; García Barrado, Leandro; Naji, Faris; Rozemuller, Annemieke J.M.; van der Flier, Wiesje M.; Scheltens, Philip; Hoozemans, Jeroen J.M.; van der Vies, Saskia M.

    2015-01-01

    Alzheimer’s disease (AD) is characterized by a long pre-clinical phase (20–30 years), during which significant brain pathology manifests itself. Disease mechanisms associated with pathological hallmarks remain elusive. Most processes associated with AD pathogenesis, such as inflammation, synaptic dysfunction, and hyper-phosphorylation of tau are dependent on protein kinase activity. The objective of this study was to determine the involvement of protein kinases in AD pathogenesis. Protein kinase activity was determined in postmortem hippocampal brain tissue of 60 patients at various stages of AD and 40 non-demented controls (Braak stages 0-VI) using a peptide-based microarray platform. We observed an overall decrease of protein kinase activity that correlated with disease progression. The phosphorylation of 96.7% of the serine/threonine peptides and 37.5% of the tyrosine peptides on the microarray decreased significantly with increased Braak stage (p-value <0.01). Decreased activity was evident at pre-clinical stages of AD pathology (Braak I-II). Increased phosphorylation was not observed for any peptide. STRING analysis in combination with pathway analysis and identification of kinases responsible for peptide phosphorylation showed the interactions between well-known proteins in AD pathology, including the Ephrin-receptor A1 (EphA1), a risk gene for AD, and sarcoma tyrosine kinase (Src), which is involved in memory formation. Additionally, kinases that have not previously been associated with AD were identified, e.g., protein tyrosine kinase 6 (PTK6/BRK), feline sarcoma oncogene kinase (FES), and fyn-associated tyrosine kinase (FRK). The identified protein kinases are new biomarkers and potential drug targets for early (pre-clinical) intervention. PMID:26519433

  4. Involvement of Ca2+ in Vacuole Degradation Caused by a Rapid Temperature Decrease in Saintpaulia Palisade Cells: A Case of Gene Expression Analysis in a Specialized Small Tissue.

    PubMed

    Ohnishi, Miwa; Kadohama, Noriaki; Suzuki, Yoshihiro; Kajiyama, Tomoharu; Shichijo, Chizuko; Ishizaki, Kimitsune; Fukaki, Hidehiro; Iida, Hidetoshi; Kambara, Hideki; Mimura, Tetsuro

    2015-07-01

    Saintpaulia (African violet) leaves are known to be damaged by a rapid temperature decrease when cold water is applied to the leaf surface; the injury is ascribed to the chloroplast damage caused by the cytosolic pH decrease following the degradation of the vacuolar membrane in the palisade cells. In this report, we present evidence for the involvement of Ca(2+) in facilitating the collapse of the vacuolar membrane and in turn in the temperature sensitivity of Saintpaulia leaves. In the presence of a Ca(2+) chelator (EGTA) or certain Ca(2+) channel inhibitors (Gd(3+) or La(3+)) but not others (verapamil or nifedipine), the pH of the vacuole, monitored through BCECF (2',7'-bis(carboxyethyl)-4 or 5-carboxyfluorescein) fluorescence, did not increase in response to a rapid temperature drop. These pharmacological observations are consistent with the involvement of mechanosensitive Ca(2+) channels in the collapse of the vacuolar membrane. The high level of expression of an MCA- (Arabidopsis mechanosensitive Ca(2+) channel) like gene, a likely candidate for a mechanosensitive Ca(2+) channel(s) in plant cells, was confirmed in the palisade tissue in Saintpaulia leaves by using a newly developed method of gene expression analysis for the specialized small tissues.

  5. Involvement of Ca2+ in Vacuole Degradation Caused by a Rapid Temperature Decrease in Saintpaulia Palisade Cells: A Case of Gene Expression Analysis in a Specialized Small Tissue.

    PubMed

    Ohnishi, Miwa; Kadohama, Noriaki; Suzuki, Yoshihiro; Kajiyama, Tomoharu; Shichijo, Chizuko; Ishizaki, Kimitsune; Fukaki, Hidehiro; Iida, Hidetoshi; Kambara, Hideki; Mimura, Tetsuro

    2015-07-01

    Saintpaulia (African violet) leaves are known to be damaged by a rapid temperature decrease when cold water is applied to the leaf surface; the injury is ascribed to the chloroplast damage caused by the cytosolic pH decrease following the degradation of the vacuolar membrane in the palisade cells. In this report, we present evidence for the involvement of Ca(2+) in facilitating the collapse of the vacuolar membrane and in turn in the temperature sensitivity of Saintpaulia leaves. In the presence of a Ca(2+) chelator (EGTA) or certain Ca(2+) channel inhibitors (Gd(3+) or La(3+)) but not others (verapamil or nifedipine), the pH of the vacuole, monitored through BCECF (2',7'-bis(carboxyethyl)-4 or 5-carboxyfluorescein) fluorescence, did not increase in response to a rapid temperature drop. These pharmacological observations are consistent with the involvement of mechanosensitive Ca(2+) channels in the collapse of the vacuolar membrane. The high level of expression of an MCA- (Arabidopsis mechanosensitive Ca(2+) channel) like gene, a likely candidate for a mechanosensitive Ca(2+) channel(s) in plant cells, was confirmed in the palisade tissue in Saintpaulia leaves by using a newly developed method of gene expression analysis for the specialized small tissues. PMID:25941231

  6. Experimental evaluation of decrease in the activities of polyphosphate/glycogen-accumulating organisms due to cell death and activity decay in activated sludge.

    PubMed

    Hao, Xiaodi; Wang, Qilin; Cao, Yali; van Loosdrecht, Mark C M

    2010-06-15

    Decrease in bacterial activity (biomass decay) in activated sludge can result from cell death (reduction in the amount of active bacteria) and activity decay (reduction in the specific activity of active bacteria). The goal of this study was to experimentally differentiate between cell death and activity decay as the cause of decrease in bacterial activity. By means of measuring maximal anaerobic phosphate release rates, verifying membrane integrity by live/dead staining and verifying presence of 16S rRNA with fluorescence in situ hybridization (FISH), the decay rates and death rates of polyphosphate-accumulating organisms (PAOs) in a biological nutrient removal (BNR) system and a laboratory phosphate removing sequencing batch reactor (SBR) system were determined, respectively, under famine conditions. In addition, the decay rate and death rate of glycogen-accumulating organisms (GAOs) in a SBR system with an enrichment culture of GAOs were also measured under famine conditions. Hereto the maximal anaerobic volatile fatty acid uptake rates, live/dead staining, and FISH were used. The experiments revealed that in the BNR and enriched PAO-SBR systems, activity decay contributed 58% and 80% to the decreased activities of PAOs, and that cell death was responsible for 42% and 20% of decreases in their respective activities. In the enriched GAOs system, activity decay constituted a proportion of 74% of the decreased activity of GAOs, and cell death only accounted for 26% of the decrease of their activity.

  7. Social interaction reward decreases p38 activation in the nucleus accumbens shell of rats.

    PubMed

    Salti, Ahmad; Kummer, Kai K; Sadangi, Chinmaya; Dechant, Georg; Saria, Alois; El Rawas, Rana

    2015-12-01

    We have previously shown that animals acquired robust conditioned place preference (CPP) to either social interaction alone or cocaine alone. Recently it has been reported that drugs of abuse abnormally activated p38, a member of mitogen-activated protein kinase family, in the nucleus accumbens. In this study, we aimed to investigate the expression of the activated form of p38 (pp38) in the nucleus accumbens shell and core of rats expressing either cocaine CPP or social interaction CPP 1 h, 2 h and 24 h after the CPP test. We hypothesized that cocaine CPP will increase pp38 in the nucleus accumbens shell/core as compared to social interaction CPP. Surprisingly, we found that 24 h after social interaction CPP, pp38 neuronal levels were decreased in the nucleus accumbens shell to the level of naïve rats. Control saline rats that received saline in both compartments of the CPP apparatus and cocaine CPP rats showed similar enhanced p38 activation as compared to naïve and social interaction CPP rats. We also found that the percentage of neurons expressing dopaminergic receptor D2R and pp38 was also decreased in the shell of the nucleus accumbens of social interaction CPP rats as compared to controls. Given the emerging role of p38 in stress/anxiety behaviors, these results suggest that (1) social interaction reward has anti-stress effects; (2) cocaine conditioning per se does not affect p38 activation and that (3) marginal stress is sufficient to induce p38 activation in the shell of the nucleus accumbens.

  8. Transglutaminase activity is decreased in large arteries from hypertensive rats compared with normotensive controls

    PubMed Central

    Johnson, Kyle B.; Hitomi, Kiyotaka; Tykocki, Nathan R.; Thompson, Janice M.; Watts, Stephanie W.

    2015-01-01

    Transglutaminases (TGs) catalyze the formation of covalent cross-links between glutamine residues and amine groups. This cross-linking activity has been implicated in arterial remodeling. Because hypertension is characterized by arterial remodeling, we hypothesized that TG activity, expression, and functionality would be increased in the aorta, but not in the vena cava (which does not undergo remodeling), from hypertensive rats relative to normotensive rats. Spontaneously hypertensive stroke-prone rats (SHRSP) and DOCA-salt rats as well as their respective normotensive Wistar-Kyoto or Sprague-Dawley counterparts were used. Immunohistochemistry and Western blot analysis measured the presence and expression of TG1 and TG2, in situ activity assays quantified active TGs, and isometric contractility was used to measure TG functionality. Contrary to our hypothesis, the activity (52% DOCA-salt vs. control rats and 56% SHRSP vs. control rats, P < 0.05), expression (TG1: 54% DOCA-salt vs. control rats, P > 0.05, and TG2: 77% DOCA-salt vs. control rats, P < 0.05), and functionality of TG1 and TG2 were decreased in the aorta, but not in the vena cava, from hypertensive rats. Mass spectrometry identified proteins uniquely amidated by TGs in the aorta that play roles in cytoskeletal regulation, redox regulation, and DNA/RNA/protein synthesis and regulation and in the vena cava that play roles in cytoskeletal regulation, coagulation regulation, and cell metabolism. Consistent with the idea that growing cells lose TG2 expression, vascular smooth muscle cells placed in culture lost TG2 expression. We conclude that the expression, activity, and functionality of TG1 and TG2 are decreased in the aorta, but not in the vena cava, from hypertensive rats compared with control rats. PMID:25599570

  9. Social interaction reward decreases p38 activation in the nucleus accumbens shell of rats

    PubMed Central

    Salti, Ahmad; Kummer, Kai K.; Sadangi, Chinmaya; Dechant, Georg; Saria, Alois; El Rawas, Rana

    2016-01-01

    We have previously shown that animals acquired robust conditioned place preference (CPP) to either social interaction alone or cocaine alone. Recently it has been reported that drugs of abuse abnormally activated p38, a member of mitogen-activated protein kinase family, in the nucleus accumbens. In this study, we aimed to investigate the expression of the activated form of p38 (pp38) in the nucleus accumbens shell and core of rats expressing either cocaine CPP or social interaction CPP 1 h, 2 h and 24 h after the CPP test. We hypothesized that cocaine CPP will increase pp38 in the nucleus accumbens shell/core as compared to social interaction CPP. Surprisingly, we found that 24 h after social interaction CPP, pp38 neuronal levels were decreased in the nucleus accumbens shell to the level of naïve rats. Control saline rats that received saline in both compartments of the CPP apparatus and cocaine CPP rats showed similar enhanced p38 activation as compared to naïve and social interaction CPP rats. We also found that the percentage of neurons expressing dopaminergic receptor D2R and pp38 was also decreased in the shell of the nucleus accumbens of social interaction CPP rats as compared to controls. Given the emerging role of p38 in stress/anxiety behaviors, these results suggest that (1) social interaction reward has anti-stress effects; (2) cocaine conditioning per se does not affect p38 activation and that (3) marginal stress is sufficient to induce p38 activation in the shell of the nucleus accumbens. PMID:26300300

  10. Social interaction reward decreases p38 activation in the nucleus accumbens shell of rats.

    PubMed

    Salti, Ahmad; Kummer, Kai K; Sadangi, Chinmaya; Dechant, Georg; Saria, Alois; El Rawas, Rana

    2015-12-01

    We have previously shown that animals acquired robust conditioned place preference (CPP) to either social interaction alone or cocaine alone. Recently it has been reported that drugs of abuse abnormally activated p38, a member of mitogen-activated protein kinase family, in the nucleus accumbens. In this study, we aimed to investigate the expression of the activated form of p38 (pp38) in the nucleus accumbens shell and core of rats expressing either cocaine CPP or social interaction CPP 1 h, 2 h and 24 h after the CPP test. We hypothesized that cocaine CPP will increase pp38 in the nucleus accumbens shell/core as compared to social interaction CPP. Surprisingly, we found that 24 h after social interaction CPP, pp38 neuronal levels were decreased in the nucleus accumbens shell to the level of naïve rats. Control saline rats that received saline in both compartments of the CPP apparatus and cocaine CPP rats showed similar enhanced p38 activation as compared to naïve and social interaction CPP rats. We also found that the percentage of neurons expressing dopaminergic receptor D2R and pp38 was also decreased in the shell of the nucleus accumbens of social interaction CPP rats as compared to controls. Given the emerging role of p38 in stress/anxiety behaviors, these results suggest that (1) social interaction reward has anti-stress effects; (2) cocaine conditioning per se does not affect p38 activation and that (3) marginal stress is sufficient to induce p38 activation in the shell of the nucleus accumbens. PMID:26300300

  11. Higher respiratory activity decreases mitochondrial reactive oxygen release and increases life span in Saccharomyces cerevisiae.

    PubMed

    Barros, Mario H; Bandy, Brian; Tahara, Erich B; Kowaltowski, Alicia J

    2004-11-26

    Increased replicative longevity in Saccharomyces cerevisiae because of calorie restriction has been linked to enhanced mitochondrial respiratory activity. Here we have further investigated how mitochondrial respiration affects yeast life span. We found that calorie restriction by growth in low glucose increased respiration but decreased mitochondrial reactive oxygen species production relative to oxygen consumption. Calorie restriction also enhanced chronological life span. The beneficial effects of calorie restriction on mitochondrial respiration, reactive oxygen species release, and replicative and chronological life span could be mimicked by uncoupling agents such as dinitrophenol. Conversely, chronological life span decreased in cells treated with antimycin (which strongly increases mitochondrial reactive oxygen species generation) or in yeast mutants null for mitochondrial superoxide dismutase (which removes superoxide radicals) and for RTG2 (which participates in retrograde feedback signaling between mitochondria and the nucleus). These results suggest that yeast aging is linked to changes in mitochondrial metabolism and oxidative stress and that mild mitochondrial uncoupling can increase both chronological and replicative life span.

  12. Alteration of decreased plasma NO metabolites and platelet NO synthase activity by paroxetine in depressed patients.

    PubMed

    Chrapko, Wendy; Jurasz, Paul; Radomski, Marek W; Archer, Stephen L; Newman, Stephen C; Baker, Glen; Lara, Nathalie; Le Mellédo, Jean-Michel

    2006-06-01

    Although major depression (MD) and cardiovascular disease (CVD) have been conclusively linked in the literature, the mechanism associating MD and CVD is yet undetermined. The purpose of this paper is to further investigate a potential mechanism involving nitric oxide (NO) and to examine the effect of the selective serotonin reuptake inhibitor paroxetine on NO production by both platelets and the endothelium. In total, 17 subjects with MD and 12 healthy controls (HCs) with no known history of cardiovascular illness completed the study. Paroxetine was administered to both the MD patients and HCs over an 8-week period, and then medication was discontinued. Blood samples were taken at various times throughout paroxetine treatment and after discontinuation. Plasma NO metabolite (NOx) levels were measured by a chemiluminescence method. Platelet endothelial NO synthase (eNOS) activity was examined through the conversion of L-[14C]arginine to L-[(14)C]citrulline. Data were analyzed using t-tests and a linear mixed effects model. Baseline levels of both plasma NOx and platelet NOS activity were significantly lower in subjects with MD compared to HCs. Throughout paroxetine treatment, plasma NOx levels increased in both HCs and MD patients. However, platelet eNOS activity decreased in HCs, while no statistically significant change was evidenced in MD patients. These data suggest that, in MD patients, decreased peripheral production of NO, a potential contributor to increased cardiovascular risk, is modified by administration of the antidepressant paroxetine. PMID:16319917

  13. Ketogenic diet decreases oxidative stress and improves mitochondrial respiratory complex activity.

    PubMed

    Greco, Tiffany; Glenn, Thomas C; Hovda, David A; Prins, Mayumi L

    2016-09-01

    Cerebral metabolism of ketones after traumatic brain injury (TBI) improves neuropathology and behavior in an age-dependent manner. Neuroprotection is attributed to improved cellular energetics, although other properties contribute to the beneficial effects. Oxidative stress is responsible for mitochondrial dysfunction after TBI. Ketones decrease oxidative stress, increase antioxidants and scavenge free radicals. It is hypothesized that ketogenic diet (KD) will decrease post-TBI oxidative stress and improve mitochondria. Postnatal day 35 (PND35) male rats were given sham or controlled cortical impact (CCI) injury and placed on standard (STD) or KD. Ipsilateral cortex homogenates and mitochondria were assayed for markers of oxidative stress, antioxidant expression and mitochondrial function. Oxidative stress was significantly increased at 6 and 24 h post-injury and attenuated by KD while inducing protein expression of antioxidants, NAD(P)H dehydrogenase quinone 1 (NQO1) and superoxide dismutase (SOD1/2). Complex I activity was inhibited in STD and KD groups at 6 h and normalized by 24 h. KD significantly improved Complex II-III activity that was reduced in STD at 6 h. Activity remained reduced at 24 h in STD and unchanged in KD animals. These results strongly suggest that ketones improve post-TBI cerebral metabolism by providing alternative substrates and through antioxidant properties, preventing oxidative stress-mediated mitochondrial dysfunction.

  14. The antibacterial activity and toxicity of enrofloxacin are decreased by nanocellulose conjugated with aminobenzyl purin.

    PubMed

    Yasini, Seyed Ali; Zadeh, Mohammad Hossein Balal; Shahdadi, Hossein

    2015-11-01

    The first aim of this study was to synthesize nanocellulose conjugated with aminobenzyl purin (NCABP), and the second aim was to evaluate the effect of NCABP on both toxicity and antibacterial activity of enrofloxacin. Here, the adsorption of enrofloxacin by NCABP was first modeled by molecular dynamic (MD) simulation. In the next step, NCABP was synthesized, and was exposed to enrofloxacin, 1000 μg mL(-1), at various conditions. Then, the quantity of adsorption and release was separately measured. Furthermore, both toxicity and antibacterial activity of NCABP, enrofloxacin, and (NCABP+enrofloxacin) were separately evaluated. In this study, MD simulation clearly showed the adsorption after 50 picoseconds. The adsorption tests revealed that the increase of incubation time and NCABP concentration, at range of 50-200 μg mL(-1), led to increase of adsorption. Moreover, the decrease of pH led to increase of adsorption. Interestingly, NCABP could adsorb enrofloxacin, up to 1000 μg mL(-1), in different types of meat. Moreover, the increase of incubation time and temperature did not release enrofloxacin, but the increase of pH increased release. This study showed that both toxicity and antibacterial activity of enrofloxacin were decreased when exposed together with NCABP. PMID:26295691

  15. Antinociceptive activity of (-)-carvone: evidence of association with decreased peripheral nerve excitability.

    PubMed

    Gonçalves, Juan Carlos Ramos; Oliveira, Fernando de Sousa; Benedito, Rubens Batista; de Sousa, Damião Pergentino; de Almeida, Reinaldo Nóbrega; de Araújo, Demetrius Antônio Machado

    2008-05-01

    (-)-Carvone is a monoterpene ketone that is the main active component of Mentha plant species like Mentha spicata. This study aimed to investigate the antinociceptive activity of (-)-carvone using different experimental models of pain and to investigate whether such effects might be involved in the nervous excitability elicited by others monoterpenes. In the acetic acid-induced writhing test, we observed that (-)-carvone-treated mice exhibited a significant decrease in the number of writhes when 100 and 200 mg/kg was administered. It was also demonstrated that (-)-carvone inhibited the licking response of the injected paw when 100 and 200 mg/kg was administered (i.p.) to mice in the first and second phases of the formalin test. Since naloxone (5 mg/kg, s.c.), an opioid antagonist, showed no influence on the antinociceptive action of (-)-carvone (100 mg/kg), this suggested nonparticipation of the opioid system in the modulation of pain induced by (-)-carvone. Such results were unlikely to be provoked by motor abnormality, since (-)-carvone-treated mice did not exhibit any performance alteration on the Rota-rod apparatus. Because the antinociceptive effects could be associated with neuronal excitability inhibition, we performed the single sucrose gap technique and observed that (-)-carvone (10 mM) was able to reduce the excitability of the isolated sciatic nerve through a diminution of the compound action potential amplitude by about 50% from control recordings. We conclude that (-)-carvone has antinociceptive activity associated with decreased peripheral nerve excitability.

  16. Topical Application of Ice-Nucleating-Active Bacteria Decreases Insect Cold Tolerance †

    PubMed Central

    Strong-Gunderson, Janet M.; Lee, Richard E.; Lee, Marcia R.

    1992-01-01

    The majority of overwintering insects avoid lethal freezing by lowering the temperature at which ice spontaneously nucleates within their body fluids. We examined the effect of ice-nucleating-active bacteria on the cold-hardiness of the lady beetle, Hippodamia convergens, a freeze-intolerant species that overwinters by supercooling to ca. −16°C. Topical application of the ice-nucleating-active bacteria Pseudomonas syringae increased the supercooling point to temperatures as high as −3°C. This decrease in cold tolerance was maintained for at least 3 days after treatment. Various treatment doses (108, 106, and 104 bacteria per ml) and modes of action (bacterial ingestion and topical application) were also compared. At the highest concentration of topically applied P. syringae, 50% of the beetles froze between −2 and −4°C. After topical application at the lowest concentration, 50% of the individuals froze by −11°C. In contrast, beetles fed bacteria at this concentration did not begin to freeze until −10°C, and 50% were frozen only at temperatures of −13°C or less. In addition to reducing the supercooling capacity in H. convergens, ice-nucleating-active bacteria also significantly reduced the cold-hardiness of four additional insects. These data demonstrate that ice-nucleating-active bacteria can be used to elevate the supercooling point and thereby decrease insect cold tolerance. The results of this study support the proposition that ice-nucleating-active bacteria may be used as a biological insecticide for the control of insect pests during the winter. Images PMID:16348764

  17. Why even active people get fatter--the asymmetric effects ofincreasing and decreasing exercise

    SciTech Connect

    Williams, Paul T.

    2006-01-06

    Background: Public health policies for preventing obesityneed guidelines for active individuals who are at risk due to exerciserecidivism. Methods: Changes in adiposity were compared to the runningdistances at baseline and follow-up in men and women whose reportedexercise increased (N=4,632 and 1,953, respectively) or decreased (17,280and 5,970, respectively) during 7.7 years of follow-up. Results: PerDelta km/wk, decreases in running distance caused over four-fold greaterweight gain between 0-8 km/wk (slope+-SE, males: -0.068+ -0.005 kg/m2,females: -0.080+-0.01 kg/m2) than between 32-48 km/wk (-0.017+-0.002 and-0.010+-0.005 kg/m2, respectively). In contrast, increases in runningdistance produced the smallest weight losses between 0-8 km/wk andstatistically significant weight loss only above 16 km/wk in males and 32km/wk in females. Above 32 km/wk (30 kcal/kg) in men and 16 km/wk (15kcal/kg) in women, weight loss from increasing exercise was equal to orgreater than weight gained with decreasing exercise, otherwise weightgain exceeded weight loss. Substantial weight gain occurred in runnerswho quit running, which would be mostly retained with resumed activity.Conclusion: Public health recommendations should warn against the risksof irreversible weight gain with exercise cessation. Weight gained due toreductions in exercise below 30 kcal/kg in men and 15 kcal/kg in womenmay not be reversed by resuming prior activity. Current IOM guidelines(i.e., maintain total energy expenditure at 160 percent of basal) agreewith the men s exercise threshold for symmetric weight change withchanging exercise levels.

  18. Using an Alternate Reality Game to Increase Physical Activity and Decrease Obesity Risk of College Students

    PubMed Central

    Johnston, Jeanne D.; Massey, Anne P.; Marker-Hoffman, Rickie Lee

    2012-01-01

    Background This quasi-experimental study investigated a game intervention—specifically, an alternate reality game (ARG)—as a means to influence college students’ physical activity (PA). An ARG is an interactive narrative that takes place in the real world and uses multiple media to reveal a story. Method Three sections of a college health course (n = 115 freshman students) were assigned either to a game group that played the ARG or to a comparison group that learned how to use exercise equipment in weekly laboratory sessions. Pre- and post-intervention measures included weight, waist circumference, body mass index (BMI), percentage body fat (PBF), and self-reported moderate physical activity (MPA) and vigorous physical activity (VPA), and PA (steps/week). Results A significant group x time interaction (p = .001) was detected for PA, with a significant increase in PA for the game (p < .001) versus a significant decrease (p = .001) for the comparison group. Significant within-group increases for weight (p = .001), BMI (p = .001), and PBF (p = .001) were detected. A significant group x time interaction (p = .001) was detected when analyzing self-reported VPA, with both groups reporting decreases in VPA over time; however, the decrease was only significant for the comparison group (p < .001). No significant group differences were found for MPA. Conclusions It is important that any intervention meet the needs and interests of its target population. Here, the ARG was designed in light of the learning preferences of today’s college students—collaborative and social, experiential and media-rich. Our results provide preliminary evidence that a game intervention can positively influence PA within the college student population. PMID:22920809

  19. The Experimental Research (In Vitro) of Carrageenans and Fucoidans to Decrease Activity of Hantavirus.

    PubMed

    Pavliga, Stanislav N; Kompanets, Galina G; Tsygankov, Vasiliy Yu

    2016-06-01

    The effect of carrageenans and fucoidans on the activity of Hantavirus is studied. It has been found that among carrageenans a significant antiviral effect is exerted by the ι-type, which decreases the viral titer by 2.5 log focus forming units per mL; among fucoidans, by a preparation from Laminaria cichorioides, which reduces the number of infected cells from 27.0 to 5.3 after pretreatment of both the macrophage culture and Hantavirus. The antiviral effect of fucoidan from Laminaria japonica is shown to grow in direct proportion to the increase of dose of the preparation. PMID:26943130

  20. Apoptotic Volume Decrease (AVD) Is Independent of Mitochondrial Dysfunction and Initiator Caspase Activation.

    PubMed

    Maeno, Emi; Tsubata, Takeshi; Okada, Yasunobu

    2012-12-05

    Persistent cell shrinkage is a major hallmark of apoptotic cell death. The early-phase shrinkage, which starts within 30-120 min after apoptotic stimulation and is called apoptotic volume decrease (AVD), is known to be accomplished by activation of K+ channels and volume-sensitive outwardly rectifying (VSOR) Cl- channels in a manner independent of caspase-3 activation. However, it is controversial whether AVD depends on apoptotic dysfunction of mitochondria and activation of initiator caspases. Here, we observed that AVD is induced not only by a mitochondrial apoptosis inducer, staurosporine (STS), in mouse B lymphoma WEHI-231 cells, but also by ligation of the death receptor Fas in human B lymphoblastoid SKW6.4 cells, which undergo Fas-mediated apoptosis without involving mitochondria. Overexpression of Bcl-2 failed to inhibit the STS-induced AVD in WEHI-231 cells. These results indicate that AVD does not require the mitochondrial pathway of apoptosis. In human epithelial HeLa cells stimulated with anti-Fas antibody or STS, the AVD induction was found to precede activation of caspase-8 and caspase-9 and to be resistant to pan-caspase blockers. Thus, it is concluded that the AVD induction is an early event independent of the mitochondrial apoptotic signaling pathway and initiator caspase activation.

  1. Loss of the Capsule Increases the Adherence Activity but Decreases the Virulence of Avibacterium paragallinarum.

    PubMed

    Tu, Tzu-Yi; Hsieh, Ming-Kun; Tan, Duen-Huey; Ou, Shan-Chia; Shien, Jui-Hung; Yen, Ting-Ying; Chang, Poa-Chun

    2015-03-01

    Avibacterium paragallinarum is the causative agent of infectious coryza, an important respiratory disease of chickens. The capsule is an important virulence determinant of many pathogenic bacteria, but the function of the capsule in Av. paragallinarum is not well defined. In this study, acapsular mutants of Av. paragallinarum were constructed by inactivation of the hctA gene using the TargeTron gene knockout system. The acapsular mutants were found to have greater hemagglutination activity than did the wild-type strain. Further, acapsular mutants exhibited an increased ability to adhere to DF-1 cells and to form biofilms on abiotic surfaces. Virulence assays showed that acapsular mutants were less virulent than the wild-type strain. Taken together, these results indicated that loss of capsule increases hemagglutination and adhesion activities but decreases the virulence of Av. paragallinarum. These results could be valuable to further elucidate the function of the capsule and the mechanism of pathogenicity of Av. paragallinarum.

  2. A Decrease in Brain Activation Associated with Driving When Listening to Someone Speak

    PubMed Central

    Just, Marcel Adam; Keller, Timothy A.; Cynkar, Jacquelyn

    2009-01-01

    Behavioral studies have shown that engaging in a secondary task, such as talking on a cellular telephone, disrupts driving performance. This study used functional magnetic resonance imaging (fMRI) to investigate the impact of concurrent auditory language comprehension on the brain activity associated with a simulated driving task. Participants steered a vehicle along a curving virtual road, either undisturbed or while listening to spoken sentences that they judged as true or false. The dual task condition produced a significant deterioration in driving accuracy caused by the processing of the auditory sentences. At the same time, the parietal lobe activation associated with spatial processing in the undisturbed driving task decreased by 37% when participants concurrently listened to sentences. The findings show that language comprehension performed concurrently with driving draws mental resources away from the driving and produces deterioration in driving performance, even when it does not require holding or dialing a phone. PMID:18353285

  3. Hypothermia Increases Tissue Plasminogen Activator Expression and Decreases Post-Operative Intra-Abdominal Adhesion

    PubMed Central

    Lee, Chien-Chang; Wang, Hsuan-Mao; Chou, Tzung-Hsin; Wu, Meng-Che; Hsueh, Kuang-Lung; Chen, Shyr-Chyr

    2016-01-01

    Background Therapeutic hypothermia during operation decreases postoperative intra-abdominal adhesion formation. We sought to determine the most appropriate duration of hypothermia, and whether hypothermia affects the expression of tissue plasminogen activator (tPA). Methods 80 male BALB/c mice weighing 25–30 g are randomized into one of five groups: adhesion model with infusion of 15°C saline for 15 minutes (A); 30 minutes (B); 45 minute (C); adhesion model without infusion of cold saline (D); and sham operation without infusion of cold saline (E). Adhesion scores and tPA levels in the peritoneum fluid levels were analyzed on postoperative days 1, 7, and 14. Results On day 14, the cold saline infusion groups (A, B, and C) had lower adhesion scores than the without infusion of cold saline group (D). However, only group B (cold saline infusion for 30 minutes) had a significantly lower adhesion scores than group D. Also, group B was found to have 3.4 fold, 2.3 fold, and 2.2 fold higher levels of tPA than group D on days 1, 7, and 14 respectively. Conclusions Our results suggest that cold saline infusion for 30 minutes was the optimum duration to decrease postoperative intra-abdominal adhesion formation. The decrease in the adhesion formations could be partly due to an increase in the level of tPA. PMID:27583464

  4. Decreased histone deacetylase 2 impairs Nrf2 activation by oxidative stress

    SciTech Connect

    Mercado, Nicolas; Thimmulappa, Rajesh; Thomas, Catherine M.R.; Fenwick, Peter S.; Chana, Kirandeep K.; Donnelly, Louise E.; Biswal, Shyam; Ito, Kazuhiro; Barnes, Peter J.

    2011-03-11

    Research highlights: {yields} Nrf2 anti-oxidant function is impaired when HDAC activity is inhibited. {yields} HDAC inhibition decreases Nrf2 protein stability. {yields} HDAC2 is involved in reduced Nrf2 stability and both correlate in COPD samples. {yields} HDAC inhibition increases Nrf2 acetylation. -- Abstract: Nuclear factor erythroid 2-related factor 2 (Nrf2) plays a crucial role in cellular defence against oxidative stress by inducing the expression of multiple anti-oxidant genes. However, where high levels of oxidative stress are observed, such as chronic obstructive pulmonary disease (COPD), Nrf2 activity is reduced, although the molecular mechanism for this defect is uncertain. Here, we show that down-regulation of histone deacetylase (HDAC) 2 causes Nrf2 instability, resulting in reduced anti-oxidant gene expression and increase sensitivity to oxidative stress. Although Nrf2 protein was clearly stabilized after hydrogen peroxide (H{sub 2}O{sub 2}) stimulation in a bronchial epithelial cell line (BEAS2B), Nrf2 stability was decreased and Nrf2 acetylation increased in the presence of an HDAC inhibitor, trichostatin A (TSA). TSA also reduced Nrf2-regulated heme-oxygenase-1 (HO-1) expression in these cells, and this was confirmed in acute cigarette-smoke exposed mice in vivo. HDAC2 knock-down by RNA interference resulted in reduced H{sub 2}O{sub 2}-induced Nrf2 protein stability and activity in BEAS2B cells, whereas HDAC1 knockdown had no effect. Furthermore, monocyte-derived macrophages obtained from healthy volunteers (non-smokers and smokers) and COPD patients showed a significant correlation between HDAC2 expression and Nrf2 expression (r = 0.92, p < 0.0001). Thus, reduced HDAC2 activity in COPD may account for increased Nrf2 acetylation, reduced Nrf2 stability and impaired anti oxidant defences.

  5. Lithocholic acid decreases expression of bile salt export pump through farnesoid X receptor antagonist activity.

    PubMed

    Yu, Jinghua; Lo, Jane-L; Huang, Li; Zhao, Annie; Metzger, Edward; Adams, Alan; Meinke, Peter T; Wright, Samuel D; Cui, Jisong

    2002-08-30

    Bile salt export pump (BSEP) is a major bile acid transporter in the liver. Mutations in BSEP result in progressive intrahepatic cholestasis, a severe liver disease that impairs bile flow and causes irreversible liver damage. BSEP is a target for inhibition and down-regulation by drugs and abnormal bile salt metabolites, and such inhibition and down-regulation may result in bile acid retention and intrahepatic cholestasis. In this study, we quantitatively analyzed the regulation of BSEP expression by FXR ligands in primary human hepatocytes and HepG2 cells. We demonstrate that BSEP expression is dramatically regulated by ligands of the nuclear receptor farnesoid X receptor (FXR). Both the endogenous FXR agonist chenodeoxycholate (CDCA) and synthetic FXR ligand GW4064 effectively increased BSEP mRNA in both cell types. This up-regulation was readily detectable at as early as 3 h, and the ligand potency for BSEP regulation correlates with the intrinsic activity on FXR. These results suggest BSEP as a direct target of FXR and support the recent report that the BSEP promoter is transactivated by FXR. In contrast to CDCA and GW4064, lithocholate (LCA), a hydrophobic bile acid and a potent inducer of cholestasis, strongly decreased BSEP expression. Previous studies did not identify LCA as an FXR antagonist ligand in cells, but we show here that LCA is an FXR antagonist with partial agonist activity in cells. In an in vitro co-activator association assay, LCA decreased CDCA- and GW4064-induced FXR activation with an IC(50) of 1 microm. In HepG2 cells, LCA also effectively antagonized GW4064-enhanced FXR transactivation. These data suggest that the toxic and cholestatic effect of LCA in animals may result from its down-regulation of BSEP through FXR. Taken together, these observations indicate that FXR plays an important role in BSEP gene expression and that FXR ligands may be potential therapeutic drugs for intrahepatic cholestasis.

  6. Altered polymorphonuclear leukocyte Fc gamma R expression contributes to decreased candicidal activity during intraabdominal sepsis

    SciTech Connect

    Simms, H.H.; D'Amico, R.; Monfils, P.; Burchard, K.W. )

    1991-03-01

    We investigated the effects of untreated intraabdominal sepsis on polymorphonuclear leukocyte (PMN) candicidal activity. Two groups of swine were studied. Group I (n=6) underwent sham laparotomy, group II (n=7) underwent cecal ligation and incision. Untreated intraabdominal sepsis resulted in a progressive decrease in PMN candicidal activity. Concomitant rosetting and phagocytosis assays demonstrated a decrease in both the attachment and phagocytosis of Candida albicans opsonized with both normal and septic swine serum by PMNs in group II. Iodine 125-labeled swine immunoglobulin G (IgG) and fluorescein isothioalanate (FITC)-labeled swine IgG were used to investigate Fc gamma receptor ligand interactions. Scatchard analyses demonstrated a progressive decline in both the binding affinity constant and number of IgG molecules bound per PMN. Stimulation of the oxidative burst markedly reduced 125I-labeled IgG binding in both group I and group II, with a greater decrement being seen in animals with intraabdominal sepsis. Further, in group II, PMN recycling of the Fc gamma receptor to the cell surface after generation of the oxidative burst was reduced by postoperative day 4. Binding of monoclonal antibodies to Fc gamma receptor II, but not Fc gamma receptor I/III markedly reduced intracellular candicidal activity. Immunofluorescence studies revealed a homogeneous pattern of FITC-IgG uptake by nearly all group I PMNs, whereas by postoperative day 8 a substantial number of PMNs from group II failed to internalize the FITC-IgG. These studies suggest that untreated intraabdominal sepsis reduces PMN candicidal activity and that this is due, in part, to altered PMN Fc gamma receptor ligand interactions.

  7. Aging causes decreased resistance to multiple stresses and a failure to activate specific stress response pathways

    PubMed Central

    Bergsma, Alexis L.; Senchuk, Megan M.; Van Raamsdonk, Jeremy M.

    2016-01-01

    In this work, we examine the relationship between stress resistance and aging. We find that resistance to multiple types of stress peaks during early adulthood and then declines with age. To dissect the underlying mechanisms, we use C. elegans transcriptional reporter strains that measure the activation of different stress responses including: the heat shock response, mitochondrial unfolded protein response, endoplasmic reticulum unfolded protein response, hypoxia response, SKN-1-mediated oxidative stress response, and the DAF-16-mediated stress response. We find that the decline in stress resistance with age is at least partially due to a decreased ability to activate protective mechanisms in response to stress. In contrast, we find that any baseline increase in stress caused by the advancing age is too mild to detectably upregulate any of the stress response pathways. Further exploration of how worms respond to stress with increasing age revealed that the ability to mount a hormetic response to heat stress is also lost with increasing age. Overall, this work demonstrates that resistance to all types of stress declines with age. Based on our data, we speculate that the decrease in stress resistance with advancing age results from a genetically-programmed inactivation of stress response pathways, not accumulation of damage. PMID:27053445

  8. Inhibition of nuclear factor-kappa B activation decreases survival of Mycobacterium tuberculosis in human macrophages.

    PubMed

    Bai, Xiyuan; Feldman, Nicole E; Chmura, Kathryn; Ovrutsky, Alida R; Su, Wen-Lin; Griffin, Laura; Pyeon, Dohun; McGibney, Mischa T; Strand, Matthew J; Numata, Mari; Murakami, Seiji; Gaido, Loretta; Honda, Jennifer R; Kinney, William H; Oberley-Deegan, Rebecca E; Voelker, Dennis R; Ordway, Diane J; Chan, Edward D

    2013-01-01

    Nuclear factor-kappa B (NFκB) is a ubiquitous transcription factor that mediates pro-inflammatory responses required for host control of many microbial pathogens; on the other hand, NFκB has been implicated in the pathogenesis of other inflammatory and infectious diseases. Mice with genetic disruption of the p50 subunit of NFκB are more likely to succumb to Mycobacterium tuberculosis (MTB). However, the role of NFκB in host defense in humans is not fully understood. We sought to examine the role of NFκB activation in the immune response of human macrophages to MTB. Targeted pharmacologic inhibition of NFκB activation using BAY 11-7082 (BAY, an inhibitor of IκBα kinase) or an adenovirus construct with a dominant-negative IκBα significantly decreased the number of viable intracellular mycobacteria recovered from THP-1 macrophages four and eight days after infection. The results with BAY were confirmed in primary human monocyte-derived macrophages and alveolar macrophages. NFκB inhibition was associated with increased macrophage apoptosis and autophagy, which are well-established killing mechanisms of intracellular MTB. Inhibition of the executioner protease caspase-3 or of the autophagic pathway significantly abrogated the effects of BAY. We conclude that NFκB inhibition decreases viability of intracellular MTB in human macrophages via induction of apoptosis and autophagy.

  9. Inhibition of nuclear factor-kappa B activation decreases survival of Mycobacterium tuberculosis in human macrophages.

    PubMed

    Bai, Xiyuan; Feldman, Nicole E; Chmura, Kathryn; Ovrutsky, Alida R; Su, Wen-Lin; Griffin, Laura; Pyeon, Dohun; McGibney, Mischa T; Strand, Matthew J; Numata, Mari; Murakami, Seiji; Gaido, Loretta; Honda, Jennifer R; Kinney, William H; Oberley-Deegan, Rebecca E; Voelker, Dennis R; Ordway, Diane J; Chan, Edward D

    2013-01-01

    Nuclear factor-kappa B (NFκB) is a ubiquitous transcription factor that mediates pro-inflammatory responses required for host control of many microbial pathogens; on the other hand, NFκB has been implicated in the pathogenesis of other inflammatory and infectious diseases. Mice with genetic disruption of the p50 subunit of NFκB are more likely to succumb to Mycobacterium tuberculosis (MTB). However, the role of NFκB in host defense in humans is not fully understood. We sought to examine the role of NFκB activation in the immune response of human macrophages to MTB. Targeted pharmacologic inhibition of NFκB activation using BAY 11-7082 (BAY, an inhibitor of IκBα kinase) or an adenovirus construct with a dominant-negative IκBα significantly decreased the number of viable intracellular mycobacteria recovered from THP-1 macrophages four and eight days after infection. The results with BAY were confirmed in primary human monocyte-derived macrophages and alveolar macrophages. NFκB inhibition was associated with increased macrophage apoptosis and autophagy, which are well-established killing mechanisms of intracellular MTB. Inhibition of the executioner protease caspase-3 or of the autophagic pathway significantly abrogated the effects of BAY. We conclude that NFκB inhibition decreases viability of intracellular MTB in human macrophages via induction of apoptosis and autophagy. PMID:23634218

  10. Inhibition of Nuclear Factor-Kappa B Activation Decreases Survival of Mycobacterium tuberculosis in Human Macrophages

    PubMed Central

    Chmura, Kathryn; Ovrutsky, Alida R.; Su, Wen-Lin; Griffin, Laura; Pyeon, Dohun; McGibney, Mischa T.; Strand, Matthew J.; Numata, Mari; Murakami, Seiji; Gaido, Loretta; Honda, Jennifer R.; Kinney, William H.; Oberley-Deegan, Rebecca E.; Voelker, Dennis R.; Ordway, Diane J.; Chan, Edward D.

    2013-01-01

    Nuclear factor-kappa B (NFκB) is a ubiquitous transcription factor that mediates pro-inflammatory responses required for host control of many microbial pathogens; on the other hand, NFκB has been implicated in the pathogenesis of other inflammatory and infectious diseases. Mice with genetic disruption of the p50 subunit of NFκB are more likely to succumb to Mycobacterium tuberculosis (MTB). However, the role of NFκB in host defense in humans is not fully understood. We sought to examine the role of NFκB activation in the immune response of human macrophages to MTB. Targeted pharmacologic inhibition of NFκB activation using BAY 11-7082 (BAY, an inhibitor of IκBα kinase) or an adenovirus construct with a dominant-negative IκBα significantly decreased the number of viable intracellular mycobacteria recovered from THP-1 macrophages four and eight days after infection. The results with BAY were confirmed in primary human monocyte-derived macrophages and alveolar macrophages. NFκB inhibition was associated with increased macrophage apoptosis and autophagy, which are well-established killing mechanisms of intracellular MTB. Inhibition of the executioner protease caspase-3 or of the autophagic pathway significantly abrogated the effects of BAY. We conclude that NFκB inhibition decreases viability of intracellular MTB in human macrophages via induction of apoptosis and autophagy. PMID:23634218

  11. Reduced systolic pressure load decreases cell-cycle activity in the fetal sheep heart.

    PubMed

    O'Tierney, P F; Anderson, D F; Faber, J J; Louey, S; Thornburg, K L; Giraud, G D

    2010-08-01

    The fetal heart is highly sensitive to changes in mechanical load. We have previously demonstrated that increased cardiac load can stimulate cell cycle activity and maturation of immature cardiomyocytes, but the effects of reduced load are not known. Sixteen fetal sheep were given either continuous intravenous infusion of lactated Ringer solution (LR) or enalaprilat, an angiotensin-converting enzyme inhibitor beginning at 127 days gestational age. After 8 days, fetal arterial pressure in the enalaprilat-infused fetuses (23.8 +/- 2.8 mmHg) was lower than that of control fetuses (47.5 +/- 4.7 mmHg) (P < 0.0001). Although the body weights of the two groups of fetuses were similar, the heart weight-to-body weight ratios of the enalaprilat-infused fetuses were less than those of the LR-infused fetuses (5.6 +/- 0.5 g/kg vs. 7.0 +/- 0.6 g/kg, P < 0.0001). Dimensions of ventricular myocytes were not different between control and enalaprilat-infused fetuses. However, there was a significant decrease in cell cycle activity in both the right ventricle (P < 0.005) and the left ventricle (P < 0.002) of the enalaprilat-infused fetuses. Thus, we conclude a sustained reduction in systolic pressure load decreases hyperplastic growth in the fetal heart. PMID:20484695

  12. P2Y2 receptor activation decreases blood pressure via intermediate conductance potassium channels and connexin 37

    PubMed Central

    Dominguez Rieg, J. A.; Burt, J. M.; Ruth, P.; Rieg, T.

    2015-01-01

    Aims Nucleotides are important paracrine regulators of vascular tone. We previously demonstrated that activation of P2Y2 receptors causes an acute, NO-independent decrease in blood pressure, indicating this signalling pathway requires an endothelial-derived hyperpolarization (EDH) response. To define the mechanisms by which activation of P2Y2 receptors initiates EDH and vasodilation, we studied intermediate-conductance (KCa3.1, expressed in endothelial cells) and big-conductance potassium channels (KCa1.1, expressed in smooth muscle cells) as well as components of the myoendothelial gap junction, connexins 37 and 40 (Cx37, Cx40), all hypothesized to be part of the EDH response. Methods We compared the effects of a P2Y2/4 receptor agonist in wild-type (WT) mice and in mice lacking KCa3.1, KCa1.1, Cx37 or Cx40 under anaesthesia, while monitoring intra-arterial blood pressure and heart rate. Results Acute activation of P2Y2/4 receptors (0.01–3 mg kg−1 body weight i.v.) caused a biphasic blood pressure response characterized by a dose-dependent and rapid decrease in blood pressure in WT (maximal response % of baseline at 3 mg kg−1: −38 ± 1%) followed by a consecutive increase in blood pressure (+44 ± 11%). The maximal responses in KCa3.1−/− and Cx37−/− were impaired (−13 ± 5, +17 ± 7 and −27 ± 1, +13 ± 3% respectively), whereas the maximal blood pressure decrease in response to acetylcholine at 3 µg kg−1 was not significantly different (WT: −53 ± 3%; KCa3.1−/−: −52 ± 3; Cx37−/−: −53 ± 3%). KCa1.1−/− and Cx40−/− showed an identical biphasic response to P2Y2/4 receptor activation compared to WT. Conclusions The data suggest that the P2Y2/4 receptor activation elicits blood pressure responses via distinct mechanisms involving KCa3.1 and Cx37. PMID:25545736

  13. Decreased resting-state brain activity complexity in schizophrenia characterized by both increased regularity and randomness.

    PubMed

    Yang, Albert C; Hong, Chen-Jee; Liou, Yin-Jay; Huang, Kai-Lin; Huang, Chu-Chung; Liu, Mu-En; Lo, Men-Tzung; Huang, Norden E; Peng, Chung-Kang; Lin, Ching-Po; Tsai, Shih-Jen

    2015-06-01

    Schizophrenia is characterized by heterogeneous pathophysiology. Using multiscale entropy (MSE) analysis, which enables capturing complex dynamics of time series, we characterized MSE patterns of blood-oxygen-level-dependent (BOLD) signals across different time scales and determined whether BOLD activity in patients with schizophrenia exhibits increased complexity (increased entropy in all time scales), decreased complexity toward regularity (decreased entropy in all time scales), or decreased complexity toward uncorrelated randomness (high entropy in short time scales followed by decayed entropy as the time scale increases). We recruited 105 patients with schizophrenia with an age of onset between 18 and 35 years and 210 age- and sex-matched healthy volunteers. Results showed that MSE of BOLD signals in patients with schizophrenia exhibited two routes of decreased BOLD complexity toward either regular or random patterns. Reduced BOLD complexity toward regular patterns was observed in the cerebellum and temporal, middle, and superior frontal regions, and reduced BOLD complexity toward randomness was observed extensively in the inferior frontal, occipital, and postcentral cortices as well as in the insula and middle cingulum. Furthermore, we determined that the two types of complexity change were associated differently with psychopathology; specifically, the regular type of BOLD complexity change was associated with positive symptoms of schizophrenia, whereas the randomness type of BOLD complexity was associated with negative symptoms of the illness. These results collectively suggested that resting-state dynamics in schizophrenia exhibit two routes of pathologic change toward regular or random patterns, which contribute to the differences in syndrome domains of psychosis in patients with schizophrenia.

  14. Activated carbon decreases invasive plant growth by mediating plant-microbe interactions.

    PubMed

    Nolan, Nicole E; Kulmatiski, Andrew; Beard, Karen H; Norton, Jeanette M

    2014-01-01

    There is growing appreciation for the idea that plant-soil interactions (e.g. allelopathy and plant-microbe feedbacks) may explain the success of some non-native plants. Where this is the case, native plant restoration may require management tools that change plant-soil interactions. Activated carbon (AC) is one such potential tool. Previous research has shown the potential for high concentrations of AC to restore native plant growth to areas dominated by non-natives on a small scale (1 m × 1 m plots). Here we (i) test the efficacy of different AC concentrations at a larger scale (15 m × 15 m plots), (ii) measure microbial responses to AC treatment and (iii) use a greenhouse experiment to identify the primary mechanism, allelopathy versus microbial changes, through which AC impacts native and non-native plant growth. Three years after large-scale applications, AC treatments decreased non-native plant cover and increased the ratio of native to non-native species cover, particularly at concentrations >400 g m(-2). Activated carbon similarly decreased non-native plant growth in the greenhouse. This effect, however, was only observed in live soils, suggesting that AC effects were microbially mediated and not caused by direct allelopathy. Bacterial community analysis of field soils indicated that AC increased the relative abundance of an unidentified bacterium and an Actinomycetales and decreased the relative abundance of a Flavobacterium, suggesting that these organisms may play a role in AC effects on plant growth. Results support the idea that manipulations of plant-microbe interactions may provide novel and effective ways of directing plant growth and community development (e.g. native plant restoration). PMID:25387751

  15. Activated carbon decreases invasive plant growth by mediating plant–microbe interactions

    PubMed Central

    Nolan, Nicole E.; Kulmatiski, Andrew; Beard, Karen H.; Norton, Jeanette M.

    2015-01-01

    There is growing appreciation for the idea that plant–soil interactions (e.g. allelopathy and plant–microbe feedbacks) may explain the success of some non-native plants. Where this is the case, native plant restoration may require management tools that change plant–soil interactions. Activated carbon (AC) is one such potential tool. Previous research has shown the potential for high concentrations of AC to restore native plant growth to areas dominated by non-natives on a small scale (1 m × 1 m plots). Here we (i) test the efficacy of different AC concentrations at a larger scale (15 m × 15 m plots), (ii) measure microbial responses to AC treatment and (iii) use a greenhouse experiment to identify the primary mechanism, allelopathy versus microbial changes, through which AC impacts native and non-native plant growth. Three years after large-scale applications, AC treatments decreased non-native plant cover and increased the ratio of native to non-native species cover, particularly at concentrations >400 g m−2. Activated carbon similarly decreased non-native plant growth in the greenhouse. This effect, however, was only observed in live soils, suggesting that AC effects were microbially mediated and not caused by direct allelopathy. Bacterial community analysis of field soils indicated that AC increased the relative abundance of an unidentified bacterium and an Actinomycetales and decreased the relative abundance of a Flavobacterium, suggesting that these organisms may play a role in AC effects on plant growth. Results support the idea that manipulations of plant–microbe interactions may provide novel and effective ways of directing plant growth and community development (e.g. native plant restoration). PMID:25387751

  16. Pyruvate dehydrogenase activity and quantity decreases after coronary artery bypass grafting: a prospective observational study

    PubMed Central

    Andersen, Lars W.; Liu, Xiaowen; Peng, Teng J.; Giberson, Tyler A.; Khabbaz, Kamal R.; Donnino, Michael W.

    2014-01-01

    Introduction Pyruvate dehydrogenase (PDH) is a key gatekeeper enzyme in aerobic metabolism. The main purpose of this study was to determine if PDH activity is affected by major stress in the form of coronary artery bypass grafting (CABG) which has previously been used as a model of critical illness. Methods We conducted a prospective, observational study of patients undergoing CABG at an urban, tertiary care hospital. We included adult patients undergoing CABG with or without concomitant valve surgery. Measurements of PDH activity and quantity and thiamine were obtained prior to surgery, at the completion of surgery, and 6 hours post-surgery. Results Fourteen patients were enrolled (age: 67 ± 10 years, 21 % female). Study subjects had a mean 41.7 % (SD: 27.7) reduction in PDH activity after surgery and a mean 32.0% (SD: 31.4) reduction 6 hours after surgery (p < 0.001). Eight patients were thiamine deficient (≤ 7 nmol/L) after surgery compared to none prior to surgery (p = 0.002). Thiamine level was a significantly associated with PDH quantity at all time points (p = 0.01). Post-surgery lactate levels were inversely correlated with post-surgery thiamine levels (r = −0.58 and p = 0.04). Conclusion The stress of major surgery causes decreased PDH activity and quantity, and depletion of thiamine levels. PMID:25526377

  17. AMPK over-activation leads to accumulation of α-synuclein oligomers and decrease of neurites

    PubMed Central

    Jiang, Peizhou; Gan, Ming; Ebrahim, Abdul Shukkur; Castanedes-Casey, Monica; Dickson, Dennis W.; Yen, Shu-Hui C.

    2012-01-01

    Neuronal inclusions of α-synuclein (α-syn), termed Lewy bodies, are a hallmark of Parkinson disease (PD). Increased α-syn levels can occur in brains of aging human and neurotoxin treated mice. Since previous studies have shown increased brain lactate levels in aging brains, in PD affected subjects when compared to age-matched controls, and in mice treated with MPTP, we tested the effects of lactate exposure on α-syn in a cell based-study. We demonstrated that (i) lactate treatment led to α-syn accumulation and oligomerization in a time- and concentration-dependent manner, (ii) such alterations were mediated via adenosine-monophosphate activated protein kinase (AMPK) and associated with increasing cytoplasmic phosphorylated AMPK levels, (iii) AMPK activation facilitated α-syn accumulation and phosphorylation, (iv) lactate treatment or overexpression of active form of AMPK decreased α-syn turnover and neurite outgrowth and (v) Lewy body-bearing neurons displayed abnormal cytoplasmic distribution of phosphorylated AMPK, which normally is located in nuclei. Together, our results suggest that chronic neuronal accumulation of α-syn induced by lactate-triggered AMPK activation in aging brains may be a novel mechanism underlying α-synucleionpathies in PD and related disorders. PMID:23200460

  18. Subanesthetic doses of ketamine transiently decrease serotonin transporter activity: a PET study in conscious monkeys.

    PubMed

    Yamamoto, Shigeyuki; Ohba, Hiroyuki; Nishiyama, Shingo; Harada, Norihiro; Kakiuchi, Takeharu; Tsukada, Hideo; Domino, Edward F

    2013-12-01

    Subanesthetic doses of ketamine, an N-methyl-D-aspartic acid (NMDA) antagonist, have a rapid antidepressant effect which lasts for up to 2 weeks. However, the neurobiological mechanism regarding this effect remains unclear. In the present study, the effects of subanesthetic doses of ketamine on serotonergic systems in conscious monkey brain were investigated. Five young monkeys underwent four positron emission tomography measurements with [(11)C]-3-amino-4-(2-dimethylaminomethyl-phenylsulfanyl)benzonitrile ([(11)C]DASB) for the serotonin transporter (SERT), during and after intravenous infusion of vehicle or ketamine hydrochloride in a dose of 0.5 or 1.5 mg/kg for 40 min, and 24 h post infusion. Global reduction of [(11)C]DASB binding to SERT was observed during ketamine infusion in a dose-dependent manner, but not 24 h later. The effect of ketamine on the serotonin 1A receptor (5-HT1A-R) and dopamine transporter (DAT) was also investigated in the same subjects studied with [(11)C]DASB. No significant changes were observed in either 5-HT1A-R or DAT binding after ketamine infusion. Microdialysis analysis indicated that ketamine infusion transiently increased serotonin levels in the extracellular fluid of the prefrontal cortex. The present study demonstrates that subanesthetic ketamine selectively enhanced serotonergic transmission by inhibition of SERT activity. This action coexists with the rapid antidepressant effect of subanesthetic doses of ketamine. Further studies are needed to investigate whether the transient combination of SERT and NMDA reception inhibition enhances each other's antidepressant actions. PMID:23880871

  19. Inhibition of fatty acid oxidation activates transforming growth factor-beta in cerebrospinal fluid and decreases spontaneous motor activity.

    PubMed

    Fujikawa, Teppei; Fujita, Ryo; Iwaki, Yoko; Matsumura, Shigenobu; Fushiki, Tohru; Inoue, Kazuo

    2010-10-01

    We have previously reported that transforming growth factor (TGF)-beta in the cerebrospinal fluid (CSF) is involved in the mechanism underlying the regulation of spontaneous motor activity (SMA) by the central nervous system after exercise. However, it remained unclear what physiological condition triggers the activation of TGF-beta. We hypothesized that the shortage of energy derived from fatty acid (FA) oxidation observed in the early phase of exercise activated TGF-beta in the CSF. To test this hypothesis, we investigated whether mercaptoacetate (MA), an inhibitor of FA oxidation, could induce an activation of TGF-beta in the CSF and a decrease in SMA. Intraperitoneal (i.p.) administration of MA activated TGF-beta in CSF in rats and depressed SMA; 2-deoxyglucose, an inhibitor of carbohydrate oxidation, on the other hand, depressed SMA but failed to activate CSF TGF-beta. Intracisternal administration of anti-TGF-beta antibody abolished the depressive effect of MA on SMA. We also found that the depression of SMA and the activation of TGF-beta in the CSF by i.p. MA administration were eliminated by vagotomy. Our data suggest that TGF-beta in the CSF is activated by the inhibition of FA oxidation via the vagus nerve and that this subsequently induces depression of SMA.

  20. Impact of the Mycobaterium africanum West Africa 2 Lineage on TB Diagnostics in West Africa: Decreased Sensitivity of Rapid Identification Tests in The Gambia

    PubMed Central

    Ofori-Anyinam, Boatema; Kanuteh, Fatoumatta; Okoi, Catherine; Dolganov, Gregory; Schoolnik, Gary; Secka, Ousman; Antonio, Martin; de Jong, Bouke C.; Gehre, Florian

    2016-01-01

    Background MPT64 rapid speciation tests are increasingly being used in diagnosis of tuberculosis (TB). Mycobacterium africanum West Africa 2 (Maf 2) remains an important cause of TB in West Africa and causes one third of disease in The Gambia. Since the introduction of MPT64 antigen tests, a higher than expected rate of suspected non-tuberculous mycobacteria (NTM) was seen among AFB smear positive TB suspects, which led us to prospectively assess sensitivity of the MPT64 antigen test in our setting. Methodology/Principal Findings We compared the abundance of mRNA encoded by the mpt64 gene in sputa of patients with untreated pulmonary TB caused by Maf 2 and Mycobacterium tuberculosis (Mtb). Subsequently, prospectively collected sputum samples from presumptive TB patients were inoculated in the BACTEC MGIT 960 System. One hundred and seventy-three acid fast bacilli (AFB)-positive and blood agar negative MGIT cultures were included in the study. Cultures were tested on the day of MGIT positivity with the BD MGIT TBc Identification Test. A random set of positives and all negatives were additionally tested with the SD Bioline Ag MPT64 Rapid. MPT64 negative cultures were further incubated at 37°C and retested until positive. Bacteria were spoligotyped and assigned to different lineages. Maf 2 isolates were 2.52-fold less likely to produce a positive test result and sensitivity ranged from 78.4% to 84.3% at the beginning and end of the recommended 10 day testing window, respectively. There was no significant difference between the tests. We further showed that the decreased rapid test sensitivity was attributable to variations in mycobacterial growth behavior and the smear grades of the patient. Conclusions/Significance In areas where Maf 2 is endemic MPT64 tests should be cautiously used and MPT64 negative results confirmed by a second technique, such as nucleic acid amplification tests, to avoid their misclassification as NTMs. PMID:27387550

  1. CB1 receptor deficiency decreases wheel-running activity: consequences on emotional behaviours and hippocampal neurogenesis.

    PubMed

    Dubreucq, Sarah; Koehl, Muriel; Abrous, Djoher N; Marsicano, Giovanni; Chaouloff, Francis

    2010-07-01

    Chronic voluntary wheel-running activity has been reported to hypersensitise central CB1 receptors in mice. On the other hand, pharmacological findings suggest that the CB1 receptor could be involved in wheel-running behaviour and in running-induced neurogenesis in the hippocampus. We analysed wheel-running behaviour for 6 weeks and measured its consequences on hippocampal neurogenesis in CB1 knockout (CB1(-/-)) animals, compared to wild-type (CB1(+/+)) littermates. Because wheel running has been shown to affect locomotor reactivity in novel environments, memory for aversive events and depression-like behaviours, we also assessed these behaviours in control and running CB1(+/+) and CB1(-/-) mice. When compared with running CB1(+/+) mice, the distance covered weekly by CB1(-/-) mice was decreased by 30-40%, an observation accounted for by decreased time spent and maximal velocity on the wheels. Analyses of running distances with respect to the light/dark cycle revealed that mutant covered less distance throughout both the inactive and the active phases of that cycle. Locomotion in an activity cage, exploration in an open field, and immobility time in the forced swim test proved insensitive to chronic wheel running in either genotype. Wheel running, per se, did not influence the expression and extinction of cued fear memory but counteracted in a time-dependent manner the deficiency of extinction measured in CB1(-/-) mice. Hippocampal neurogenesis, assessed by doublecortin labelling of immature neurons in the dentate gyrus, was lowered by 40% in control CB1(-/-) mice, compared to control CB1(+/+) mice. Although CB1(-/-) mice ran less than their wild-type littermates, the 6-week running protocol increased neurogenesis to similar extents (37-39%) in both genotypes. This study suggests that mouse CB1 receptors control wheel running but not its neurogenic consequences in the hippocampus.

  2. PGE2 decreases reactivity of human platelets by activating EP2 and EP4

    PubMed Central

    Smith, James P.; Haddad, Elias V.; Downey, Jason D.; Breyer, Richard M.; Boutaud, O.

    2010-01-01

    Introduction: Platelet hyperreactivity associates with cardiovascular events in humans. Studies in mice and humans suggest that prostaglandin E2 (PGE2) regulates platelet activation. In mice, activation of the PGE2 receptor subtype 3 (EP3) promotes thrombosis, but the significance of EP3 in humans is less well understood. Objectives: To characterize the regulation of thromboxane-dependent human platelet activation by PGE2. Patients/Methods: Platelets collected from nineteen healthy adults were studied using an agonist of the thromboxane receptor (U46,619), PGE2, and selective agonists and/or antagonists of the EP receptor subtypes. Platelet activation was assayed by (1) optical aggregometry, (2) measurement of dense granule release, and (3) single-platelet counting. Results: Healthy volunteers demonstrated significant interindividual variation in platelet response to PGE2. PGE2 completely inhibited U46,619-induced platelet aggregation and ATP release in 26% of subjects; the remaining 74% had partial or no response to PGE2. Antagonism of EP4 abolished the inhibitory effect of PGE2. In all volunteers, a selective EP2 agonist inhibited U46,619-induced aggregation. Furthermore, the selective EP3 antagonist DG-041 converted all PGE2 nonresponders to full responders. Conclusions: There is significant interindividual variation of platelet response to PGE2 in humans. The balance between EP2, EP3, and EP4 activation determines its net effect. PGE2 can prevent thromboxane-induced platelet aggregation in an EP4-dependent manner. EP3 antagonism converts platelets of nonresponders to a PGE2-responsive phenotype. These data suggest that therapeutic targeting of EP pathways may have cardiovascular benefit by decreasing platelet reactivity. PMID:20451959

  3. Ankyrin domain of myosin 16 influences motor function and decreases protein phosphatase catalytic activity.

    PubMed

    Kengyel, András; Bécsi, Bálint; Kónya, Zoltán; Sellers, James R; Erdődi, Ferenc; Nyitrai, Miklós

    2015-05-01

    The unconventional myosin 16 (Myo16), which may have a role in regulation of cell cycle and cell proliferation, can be found in both the nucleus and the cytoplasm. It has a unique, eight ankyrin repeat containing pre-motor domain, the so-called ankyrin domain (My16Ank). Ankyrin repeats are present in several other proteins, e.g., in the regulatory subunit (MYPT1) of the myosin phosphatase holoenzyme, which binds to the protein phosphatase-1 catalytic subunit (PP1c). My16Ank shows sequence similarity to MYPT1. In this work, the interactions of recombinant and isolated My16Ank were examined in vitro. To test the effects of My16Ank on myosin motor function, we used skeletal muscle myosin or nonmuscle myosin 2B. The results showed that My16Ank bound to skeletal muscle myosin (K D ≈ 2.4 µM) and the actin-activated ATPase activity of heavy meromyosin (HMM) was increased in the presence of My16Ank, suggesting that the ankyrin domain can modulate myosin motor activity. My16Ank showed no direct interaction with either globular or filamentous actin. We found, using a surface plasmon resonance-based binding technique, that My16Ank bound to PP1cα (K D ≈ 540 nM) and also to PP1cδ (K D ≈ 600 nM) and decreased its phosphatase activity towards the phosphorylated myosin regulatory light chain. Our results suggest that one function of the ankyrin domain is probably to regulate the function of Myo16. It may influence the motor activity, and in complex with the PP1c isoforms, it can play an important role in the targeted dephosphorylation of certain, as yet unidentified, intracellular proteins.

  4. Thyrotrophin-releasing hormone decreases feeding and increases body temperature, activity and oxygen consumption in Siberian hamsters.

    PubMed

    Schuhler, S; Warner, A; Finney, N; Bennett, G W; Ebling, F J P; Brameld, J M

    2007-04-01

    Thyrotrophin-releasing hormone (TRH) is known to play an important role in the control of food intake and energy metabolism in addition to its actions on the pituitary-thyroid axis. We have previously shown that central administration of TRH decreases food intake in Siberian hamsters. This species is being increasingly used as a physiological rodent model in which to understand hypothalamic control of long-term changes in energy balance because it accumulates fat reserves in long summer photoperiods, and decreases food intake and body weight when exposed to short winter photoperiods. The objectives of our study in Siberian hamsters were: (i) to investigate whether peripheral administration of TRH would mimic the effects of central administration of TRH on food intake and whether these effects would differ dependent upon the ambient photoperiod; (ii) to determine whether TRH would have an effect on energy expenditure; and (iii) to investigate the potential sites of action of TRH. Both peripheral (5-50 mg/kg body weight; i.p.) and central (0.5 microg/ml; i.c.v.) administration of TRH decreased food intake, and increased locomotor activity, body temperature and oxygen consumption in the Siberian hamster, with a rapid onset and short duration of action. Systemic treatment with TRH was equally effective in suppressing feeding regardless of ambient photoperiod. The acute effects of TRH are likely to be centrally mediated and independent of its role in the control of the production of thyroid hormones. We conclude that TRH functions to promote a catabolic energetic state by co-ordinating acute central and chronic peripheral (thyroid-mediated) function.

  5. Observed and projected decrease in Northern Hemisphere extratropical cyclone activity in summer and its impacts on maximum temperature

    NASA Astrophysics Data System (ADS)

    Chang, Edmund K. M.; Ma, Chen-Geng; Zheng, Cheng; Yau, Albert M. W.

    2016-03-01

    Extratropical cyclones cause much of the high-impact weather over the midlatitudes. With increasing greenhouse gases, enhanced high-latitude warming will lead to weaker cyclone activity. Here we show that between 1979 and 2014, the number of strong cyclones in Northern Hemisphere in summer has decreased at a rate of 4% per decade, with even larger decrease found near northeastern North America. Climate models project a decrease in summer cyclone activity, but the observed decreasing rate is near the fastest projected. Decrease in summer cyclone activity will lead to decrease in cloud cover, giving rise to higher maximum temperature, potentially enhancing the increase in maximum temperature by 0.5 K or more over some regions. We also show that climate models may have biases in simulating the positive relationship between cyclone activity and cloud cover, potentially underestimating the impacts of cyclone decrease on accentuating the future increase in maximum temperature.

  6. Impaired ALDH2 activity decreases the mitochondrial respiration in H9C2 cardiomyocytes.

    PubMed

    Mali, Vishal R; Deshpande, Mandar; Pan, Guodong; Thandavarayan, Rajarajan A; Palaniyandi, Suresh S

    2016-02-01

    Reactive oxygen species (ROS)-mediated reactive aldehydes induce cellular stress. In cardiovascular diseases such as ischemia-reperfusion injury, lipid-peroxidation derived reactive aldehydes such as 4-hydroxy-2-nonenal (4HNE) are known to contribute to the pathogenesis. 4HNE is involved in ROS formation, abnormal calcium handling and more importantly defective mitochondrial respiration. Aldehyde dehydrogenase (ALDH) superfamily contains NAD(P)(+)-dependent isozymes which can detoxify endogenous and exogenous aldehydes into non-toxic carboxylic acids. Therefore we hypothesize that 4HNE afflicts mitochondrial respiration and leads to cell death by impairing ALDH2 activity in cultured H9C2 cardiomyocyte cell lines. H9C2 cardiomyocytes were treated with 25, 50 and 75 μM 4HNE and its vehicle, ethanol as well as 25, 50 and 75 μM disulfiram (DSF), an inhibitor of ALDH2 and its vehicle (DMSO) for 4 h. 4HNE significantly decreased ALDH2 activity, ALDH2 protein levels, mitochondrial respiration and mitochondrial respiratory reserve capacity, and increased 4HNE adduct formation and cell death in cultured H9C2 cardiomyocytes. ALDH2 inhibition by DSF and ALDH2 siRNA attenuated ALDH2 activity besides reducing ALDH2 levels, mitochondrial respiration and mitochondrial respiratory reserve capacity and increased cell death. Our results indicate that ALDH2 impairment can lead to poor mitochondrial respiration and increased cell death in cultured H9C2 cardiomyocytes.

  7. Music improves verbal memory encoding while decreasing prefrontal cortex activity: an fNIRS study.

    PubMed

    Ferreri, Laura; Aucouturier, Jean-Julien; Muthalib, Makii; Bigand, Emmanuel; Bugaiska, Aurelia

    2013-01-01

    Listening to music engages the whole brain, thus stimulating cognitive performance in a range of non-purely musical activities such as language and memory tasks. This article addresses an ongoing debate on the link between music and memory for words. While evidence on healthy and clinical populations suggests that music listening can improve verbal memory in a variety of situations, it is still unclear what specific memory process is affected and how. This study was designed to explore the hypothesis that music specifically benefits the encoding part of verbal memory tasks, by providing a richer context for encoding and therefore less demand on the dorsolateral prefrontal cortex (DLPFC). Twenty-two healthy young adults were subjected to functional near-infrared spectroscopy (fNIRS) imaging of their bilateral DLPFC while encoding words in the presence of either a music or a silent background. Behavioral data confirmed the facilitating effect of music background during encoding on subsequent item recognition. fNIRS results revealed significantly greater activation of the left hemisphere during encoding (in line with the HERA model of memory lateralization) and a sustained, bilateral decrease of activity in the DLPFC in the music condition compared to silence. These findings suggest that music modulates the role played by the DLPFC during verbal encoding, and open perspectives for applications to clinical populations with prefrontal impairments, such as elderly adults or Alzheimer's patients. PMID:24339807

  8. Mitofusin 2 decreases intracellular lipids in macrophages by regulating peroxisome proliferator-activated receptor-γ

    SciTech Connect

    Liu, Chun; Ge, Beihai; He, Chao; Zhang, Yi; Liu, Xiaowen; Liu, Kejian; Qian, Cuiping; Zhang, Yu; Peng, Wenzhong; Guo, Xiaomei

    2014-07-18

    Highlights: • Mfn2 decreases cellular lipid accumulation by activating cholesterol transporters. • PPARγ is involved in the Mfn2-mediated increase of cholesterol transporter expressions. • Inactivation of ERK1/2 and p38 is involved in Mfn2-induced PPARγ expression. - Abstract: Mitofusin 2 (Mfn2) inhibits atherosclerotic plaque formation, but the underlying mechanism remains elusive. This study aims to reveal how Mfn2 functions in the atherosclerosis. Mfn2 expression was found to be significantly reduced in arterial atherosclerotic lesions of both mice and human compared with healthy counterparts. Here, we observed that Mfn2 increased cellular cholesterol transporter expression in macrophages by upregulating peroxisome proliferator-activated receptor-γ, an effect achieved at least partially by inhibiting extracellular signal-regulated kinase1/2 (ERK1/2) and p38 mitogen-activated protein kinases (MAPKs) pathway. These findings provide insights into potential mechanisms of Mfn2-mediated alterations in cholesterol transporter expression, which may have significant implications for the treatment of atherosclerotic heart disease.

  9. Music improves verbal memory encoding while decreasing prefrontal cortex activity: an fNIRS study.

    PubMed

    Ferreri, Laura; Aucouturier, Jean-Julien; Muthalib, Makii; Bigand, Emmanuel; Bugaiska, Aurelia

    2013-01-01

    Listening to music engages the whole brain, thus stimulating cognitive performance in a range of non-purely musical activities such as language and memory tasks. This article addresses an ongoing debate on the link between music and memory for words. While evidence on healthy and clinical populations suggests that music listening can improve verbal memory in a variety of situations, it is still unclear what specific memory process is affected and how. This study was designed to explore the hypothesis that music specifically benefits the encoding part of verbal memory tasks, by providing a richer context for encoding and therefore less demand on the dorsolateral prefrontal cortex (DLPFC). Twenty-two healthy young adults were subjected to functional near-infrared spectroscopy (fNIRS) imaging of their bilateral DLPFC while encoding words in the presence of either a music or a silent background. Behavioral data confirmed the facilitating effect of music background during encoding on subsequent item recognition. fNIRS results revealed significantly greater activation of the left hemisphere during encoding (in line with the HERA model of memory lateralization) and a sustained, bilateral decrease of activity in the DLPFC in the music condition compared to silence. These findings suggest that music modulates the role played by the DLPFC during verbal encoding, and open perspectives for applications to clinical populations with prefrontal impairments, such as elderly adults or Alzheimer's patients.

  10. Music improves verbal memory encoding while decreasing prefrontal cortex activity: an fNIRS study

    PubMed Central

    Ferreri, Laura; Aucouturier, Jean-Julien; Muthalib, Makii; Bigand, Emmanuel; Bugaiska, Aurelia

    2013-01-01

    Listening to music engages the whole brain, thus stimulating cognitive performance in a range of non-purely musical activities such as language and memory tasks. This article addresses an ongoing debate on the link between music and memory for words. While evidence on healthy and clinical populations suggests that music listening can improve verbal memory in a variety of situations, it is still unclear what specific memory process is affected and how. This study was designed to explore the hypothesis that music specifically benefits the encoding part of verbal memory tasks, by providing a richer context for encoding and therefore less demand on the dorsolateral prefrontal cortex (DLPFC). Twenty-two healthy young adults were subjected to functional near-infrared spectroscopy (fNIRS) imaging of their bilateral DLPFC while encoding words in the presence of either a music or a silent background. Behavioral data confirmed the facilitating effect of music background during encoding on subsequent item recognition. fNIRS results revealed significantly greater activation of the left hemisphere during encoding (in line with the HERA model of memory lateralization) and a sustained, bilateral decrease of activity in the DLPFC in the music condition compared to silence. These findings suggest that music modulates the role played by the DLPFC during verbal encoding, and open perspectives for applications to clinical populations with prefrontal impairments, such as elderly adults or Alzheimer’s patients. PMID:24339807

  11. Plasmonic color filters to decrease ambient light errors on active type dual band infrared image sensors

    NASA Astrophysics Data System (ADS)

    Lyu, Hong-Kun; Park, Young-Jin; Cho, Hui-Sup; Jo, Sung-Hyun; Lee, Hee-Ho; Shin, Jang-Kyoo

    2014-09-01

    In this paper, we proposed the plasmonic color filters to decrease ambient light errors on active type dual band infrared image sensors for a large-area multi-touch display system. Although the strong point of the touch display system in the area of education and exhibition there are some limits of the ambient light. When an unexpected ambient light incidents into the display the touch recognition system can make errors classifying the touch point in the unexpected ambient light area. We proposed a new touch recognition image sensor system to decrease the ambient light error and investigated the optical transmission properties of plasmonic color filters for IR image sensor. To find a proper structure of the plasmonic color filters we used a commercial computer simulation tool utilizing finite-difference time-domain (FDTD) method as several thicknesses and whit the cover passivation layer or not. Gold (Au) applied for the metal film and the dispersion information associated with was derived from the Lorentz-Drude model. We also described the mechanism applied the double band filter on the IR image sensors.

  12. Music Training Enhances Rapid Neural Plasticity of N1 and P2 Source Activation for Unattended Sounds

    PubMed Central

    Seppänen, Miia; Hämäläinen, Jarmo; Pesonen, Anu-Katriina; Tervaniemi, Mari

    2012-01-01

    Neurocognitive studies have demonstrated that long-term music training enhances the processing of unattended sounds. It is not clear, however, whether music training also modulates rapid (within tens of minutes) neural plasticity for sound encoding. To study this phenomenon, we examined whether adult musicians display enhanced rapid neural plasticity compared to non-musicians. More specifically, we compared the modulation of P1, N1, and P2 responses to standard sounds between four unattended passive blocks. Among the standard sounds, infrequently presented deviant sounds were presented (the so-called oddball paradigm). In the middle of the experiment (after two blocks), an active task was presented. Source analysis for event-related potentials (ERPs) showed that N1 and P2 source activation was selectively decreased in musicians after 15 min of passive exposure to sounds and that P2 source activation was found to be re-enhanced after the active task in musicians. Additionally, ERP analysis revealed that in both musicians and non-musicians, P2 ERP amplitude was enhanced after 15 min of passive exposure but only at the frontal electrodes. Furthermore, in musicians, the N1 ERP was enhanced after the active discrimination task but only at the parietal electrodes. Musical training modulates the rapid neural plasticity reflected in N1 and P2 source activation for unattended regular standard sounds. Enhanced rapid plasticity of N1 and P2 is likely to reflect faster auditory perceptual learning in musicians. PMID:22435057

  13. BPA Directly Decreases GnRH Neuronal Activity via Noncanonical Pathway.

    PubMed

    Klenke, Ulrike; Constantin, Stephanie; Wray, Susan

    2016-05-01

    Peripheral feedback of gonadal estrogen to the hypothalamus is critical for reproduction. Bisphenol A (BPA), an environmental pollutant with estrogenic actions, can disrupt this feedback and lead to infertility in both humans and animals. GnRH neurons are essential for reproduction, serving as an important link between brain, pituitary, and gonads. Because GnRH neurons express several receptors that bind estrogen, they are potential targets for endocrine disruptors. However, to date, direct effects of BPA on GnRH neurons have not been shown. This study investigated the effects of BPA on GnRH neuronal activity using an explant model in which large numbers of primary GnRH neurons are maintained and express many of the receptors found in vivo. Because oscillations in intracellular calcium have been shown to correlate with electrical activity in GnRH neurons, calcium imaging was used to assay the effects of BPA. Exposure to 50μM BPA significantly decreased GnRH calcium activity. Blockage of γ-aminobutyric acid ergic and glutamatergic input did not abrogate the inhibitory BPA effect, suggesting direct regulation of GnRH neurons by BPA. In addition to estrogen receptor-β, single-cell RT-PCR analysis confirmed that GnRH neurons express G protein-coupled receptor 30 (G protein-coupled estrogen receptor 1) and estrogen-related receptor-γ, all potential targets for BPA. Perturbation studies of the signaling pathway revealed that the BPA-mediated inhibition of GnRH neuronal activity occurred independent of estrogen receptors, GPER, or estrogen-related receptor-γ, via a noncanonical pathway. These results provide the first evidence of a direct effect of BPA on GnRH neurons. PMID:26934298

  14. BPA Directly Decreases GnRH Neuronal Activity via Noncanonical Pathway.

    PubMed

    Klenke, Ulrike; Constantin, Stephanie; Wray, Susan

    2016-05-01

    Peripheral feedback of gonadal estrogen to the hypothalamus is critical for reproduction. Bisphenol A (BPA), an environmental pollutant with estrogenic actions, can disrupt this feedback and lead to infertility in both humans and animals. GnRH neurons are essential for reproduction, serving as an important link between brain, pituitary, and gonads. Because GnRH neurons express several receptors that bind estrogen, they are potential targets for endocrine disruptors. However, to date, direct effects of BPA on GnRH neurons have not been shown. This study investigated the effects of BPA on GnRH neuronal activity using an explant model in which large numbers of primary GnRH neurons are maintained and express many of the receptors found in vivo. Because oscillations in intracellular calcium have been shown to correlate with electrical activity in GnRH neurons, calcium imaging was used to assay the effects of BPA. Exposure to 50μM BPA significantly decreased GnRH calcium activity. Blockage of γ-aminobutyric acid ergic and glutamatergic input did not abrogate the inhibitory BPA effect, suggesting direct regulation of GnRH neurons by BPA. In addition to estrogen receptor-β, single-cell RT-PCR analysis confirmed that GnRH neurons express G protein-coupled receptor 30 (G protein-coupled estrogen receptor 1) and estrogen-related receptor-γ, all potential targets for BPA. Perturbation studies of the signaling pathway revealed that the BPA-mediated inhibition of GnRH neuronal activity occurred independent of estrogen receptors, GPER, or estrogen-related receptor-γ, via a noncanonical pathway. These results provide the first evidence of a direct effect of BPA on GnRH neurons.

  15. Is Pedometer-Determined Physical Activity Decreasing in Czech Adults? Findings from 2008 to 2013

    PubMed Central

    Pelclová, Jana; Frömel, Karel; Řepka, Emil; Bláha, Ladislav; Suchomel, Aleš; Fojtík, Igor; Feltlová, Dana; Valach, Petr; Horák, Svatopluk; Nykodým, Jiří; Vorlíček, Michal

    2016-01-01

    Objective measured trend data are important for public health practice. However, these data are rare for an adult population. Therefore, the aim of this study was to describe time trends in pedometer-determined physical activity of Czech adults (25–65 years) from 2008 to 2013. Participants were Czech national citizens whose physical activity was assessed objectively using a Yamax Digiwalker SW-700 pedometer (Yamax Corporation, Tokyo, Japan) for seven consecutive days in the period 2008 to 2013. The final sample was 4647 Czech adults [M age 41.4 ± 10 years; M body mass index (BMI) 25.1 ± 3.7 kg/m2]. The results showed that men took more steps/day (M (Mean) = 10,014; 95% CI (Confidence Interval) = 9864–10,164) than women (M = 9448; 95% CI = 9322–9673) in all age and BMI groups. Mean steps/day declined from 2008 to 2013 by 852 steps/day in men and 1491 steps/day in women. In the whole sample, the proportion of participants who had a sedentary lifestyle (<5000 steps/day) increased by 5.8%; the proportion taking ≥10,000 steps/day decreased by 15.8%. In 2013, men and women were 2.67 and 2.05 times, respectively, more likely to have a physically inactive lifestyle (<7500 steps/day) than in 2008. Conversely, in 2008, men and women were 1.68 and 2.46 times, respectively, less likely to have very active lifestyle (>12,500 steps/day). In conclusion, this study suggests that there has been a substantial reduction in physical activity in Czech adults over time. PMID:27783062

  16. Decreased Pregnane X Receptor Expression in Children with Active Crohn’s Disease

    PubMed Central

    Vyhlidal, Carrie; Friesen, Craig; Hildreth, Amber; Singh, Vivekanand; Daniel, James; Kearns, Gregory L.; Leeder, J. Steven

    2016-01-01

    Expression of the pregnane X receptor (PXR) has been reported to be decreased in animal models of inflammatory bowel disease (IBD). To investigate the differential expression of PXR in children with Crohn’s disease, a type of IBD, RNA was extracted from archived intestinal biopsies from 18 children with Crohn’s disease (CD) and 12 age- and sex-matched controls (aged 7–17yrs). The aim of this investigation was to compare the relative mRNA expression of PXR, cytochrome p450 3A4 (CYP3A4), and villin 1 (VIL1) (a marker of epithelial cell integrity) in the inflamed terminal ileum (TI) versus noninflamed duodenum of children with CD. Relative expression was determined via reverse transcription real-time quantitative polymerase chain reaction, data normalized to glyceraldehyde 3-phosphate dehydrogenase, and differences in gene expression explored via paired t tests. PXR expression was decreased in the inflamed TI versus noninflamed duodenum (TI = 1.88 ± 0.89 versus duodenum = 2.5 ± 0.67; P < 0.001) in CD, but not controls (TI = 2.11 ± 0.41 versus duodenum = 2.26 ± 0.61; P = 0.52). CYP3A4 expression was decreased in CD (TI = –0.89 ± 3.11 versus duodenum = 1.90 ± 2.29; P < 0.05), but not controls (TI = 2.46 ± 0.51 versus duodenum = 2.60 ± 0.60; P = 0.61), as was VIL1 (CD TI = 3.80 ± 0.94 versus duodenum = 4.61 ± 0.52; P < 0.001; controls TI = 4.30 ± 0.35 versus duodenum = 4.47 ± 0.40; P = 0.29). PXR expression correlated with VIL1 (r = 0.78, P = 0.01) and CYP3A4 (r = 0.52, P = 0.01) expression. In conclusion, PXR, CYP3A4, and VIL1 expression was decreased only in the actively inflamed small intestinal tissue in children with CD. Our findings suggest that inflammation has the potential to influence expression of genes, and potentially intestinal proteins, important to drug disposition and response. The observed differential patterns of gene expression support further investigation of the role of PXR in the pathogenesis and/or treatment of pediatric Crohn

  17. Aluminum-induced decrease in CO2 assimilation in citrus seedlings is unaccompanied by decreased activities of key enzymes involved in CO2 assimilation.

    PubMed

    Chen, Li-Song; Qi, Yi-Ping; Smith, Brandon Rhett; Liu, Xing-Hui

    2005-03-01

    'Cleopatra' tangerine (Citrus reshni Hort. ex Tanaka) seedlings were irrigated daily for 8 weeks with 1/4 strength Hoagland's nutrient solution containing 0 (control) or 2 mM aluminum (Al). Leaves from Al-treated plants had decreased CO2 assimilation and stomatal conductance, but increased intercellular CO2 concentrations compared with control leaves. On a leaf area basis, 2 mM Al increased activities of key enzymes in the Calvin cycle, including ribulose-1,5-bisphosphate carboxylase/oxygenase (Rubisco), NADP-glyceraldehyde-3-phosphate dehydrogenase (GAPDH), phosphoribulokinase (PRK), stromal fructose-1,6-bisphosphatase (FBPase), and a key enzyme in starch synthesis, ADP-glucose pyrophosphorylase (AGPase), compared with control leaves. Aluminum had no effect on cytosolic FBPase activity, but it decreased sucrose phosphate synthase (SPS) activity. Aluminum had no effect on area-based concentrations of carbohydrates, glucose-6-phosphate (G6P) and fructose 6-phosphate (F6P) or the G6P:F6P ratio, but it decreased the area-based concentration of 3-phosphoglycerate (PGA). Photochemical quenching coefficient (qP) and electron transport rate through PSII were greatly reduced by Al. Non-photochemical quenching coefficient (NPQ) was less affected by Al than qP and electron transport rate through PSII. We conclude that the reduced rate of CO2 assimilation in Al-treated leaves was probably caused by a combination of factors such as reduced electron transport rate through PSII, increased closure of PSII reaction centers and increased photorespiration.

  18. cAMP-dependent protein kinase activation decreases cytokine release in bronchial epithelial cells

    PubMed Central

    Poole, Jill A.; Nordgren, Tara M.; DeVasure, Jane M.; Heires, Art J.; Bailey, Kristina L.; Romberger, Debra J.

    2014-01-01

    Lung injury caused by inhalation of dust from swine-concentrated animal-feeding operations (CAFO) involves the release of inflammatory cytokine interleukin 8 (IL-8), which is mediated by protein kinase C-ε (PKC-ε) in airway epithelial cells. Once activated by CAFO dust, PKC-ε is responsible for slowing cilia beating and reducing cell migration for wound repair. Conversely, the cAMP-dependent protein kinase (PKA) stimulates contrasting effects, such as increased cilia beating and an acceleration of cell migration for wound repair. We hypothesized that a bidirectional mechanism involving PKA and PKC regulates epithelial airway inflammatory responses. To test this hypothesis, primary human bronchial epithelial cells and BEAS-2B cells were treated with hog dust extract (HDE) in the presence or absence of cAMP. PKC-ε activity was significantly reduced in cells that were pretreated for 1 h with 8-bromoadenosine 3′,5′-cyclic monophosphate (8-Br-cAMP) before exposure to HDE (P < 0.05). HDE-induced IL-6, and IL-8 release was significantly lower in cells that were pretreated with 8-Br-cAMP (P < 0.05). To exclude exchange protein activated by cAMP (EPAC) involvement, cells were pretreated with either 8-Br-cAMP or 8-(4-chlorophenylthio)-2'-O-methyladenosine-3',5'-cyclic monophosphate (8-CPT-2Me-cAMP) (EPAC agonist). 8-CPT-2Me-cAMP did not activate PKA and did not reduce HDE-stimulated IL-6 release. In contrast, 8-Br-cAMP decreased HDE-stimulated tumor necrosis factor (TNF)-α-converting enzyme (TACE; ADAM-17) activity and subsequent TNF-α release (P < 0.001). 8-Br-cAMP also blocked HDE-stimulated IL-6 and keratinocyte-derived chemokine release in precision-cut mouse lung slices (P < 0.05). These data show bidirectional regulation of PKC-ε via a PKA-mediated inhibition of TACE activity resulting in reduced PKC-ε-mediated release of IL-6 and IL-8. PMID:25150062

  19. cAMP-dependent protein kinase activation decreases cytokine release in bronchial epithelial cells.

    PubMed

    Wyatt, Todd A; Poole, Jill A; Nordgren, Tara M; DeVasure, Jane M; Heires, Art J; Bailey, Kristina L; Romberger, Debra J

    2014-10-15

    Lung injury caused by inhalation of dust from swine-concentrated animal-feeding operations (CAFO) involves the release of inflammatory cytokine interleukin 8 (IL-8), which is mediated by protein kinase C-ε (PKC-ε) in airway epithelial cells. Once activated by CAFO dust, PKC-ε is responsible for slowing cilia beating and reducing cell migration for wound repair. Conversely, the cAMP-dependent protein kinase (PKA) stimulates contrasting effects, such as increased cilia beating and an acceleration of cell migration for wound repair. We hypothesized that a bidirectional mechanism involving PKA and PKC regulates epithelial airway inflammatory responses. To test this hypothesis, primary human bronchial epithelial cells and BEAS-2B cells were treated with hog dust extract (HDE) in the presence or absence of cAMP. PKC-ε activity was significantly reduced in cells that were pretreated for 1 h with 8-bromoadenosine 3',5'-cyclic monophosphate (8-Br-cAMP) before exposure to HDE (P < 0.05). HDE-induced IL-6, and IL-8 release was significantly lower in cells that were pretreated with 8-Br-cAMP (P < 0.05). To exclude exchange protein activated by cAMP (EPAC) involvement, cells were pretreated with either 8-Br-cAMP or 8-(4-chlorophenylthio)-2'-O-methyladenosine-3',5'-cyclic monophosphate (8-CPT-2Me-cAMP) (EPAC agonist). 8-CPT-2Me-cAMP did not activate PKA and did not reduce HDE-stimulated IL-6 release. In contrast, 8-Br-cAMP decreased HDE-stimulated tumor necrosis factor (TNF)-α-converting enzyme (TACE; ADAM-17) activity and subsequent TNF-α release (P < 0.001). 8-Br-cAMP also blocked HDE-stimulated IL-6 and keratinocyte-derived chemokine release in precision-cut mouse lung slices (P < 0.05). These data show bidirectional regulation of PKC-ε via a PKA-mediated inhibition of TACE activity resulting in reduced PKC-ε-mediated release of IL-6 and IL-8. PMID:25150062

  20. HSP90 inhibitors decrease AID levels and activity in mice and in human cells.

    PubMed

    Montamat-Sicotte, Damien; Litzler, Ludivine C; Abreu, Cecilia; Safavi, Shiva; Zahn, Astrid; Orthwein, Alexandre; Müschen, Markus; Oppezzo, Pablo; Muñoz, Denise P; Di Noia, Javier M

    2015-08-01

    Activation induced deaminase (AID) initiates somatic hypermutation and class switch recombination of the Ig genes in antigen-activated B cells, underpinning antibody affinity maturation and isotype switching. AID can also be pathogenic by contributing to autoimmune diseases and oncogenic mutations. Moreover, AID can exert noncanonical functions when aberrantly expressed in epithelial cells. The lack of specific inhibitors prevents therapeutic applications to modulate AID functions. Here, we have exploited our previous finding that the HSP90 molecular chaperoning pathway stabilizes AID in B cells, to test whether HSP90 inhibitors could target AID in vivo. We demonstrate that chronic administration of HSP90 inhibitors decreases AID protein levels and isotype switching in immunized mice. HSP90 inhibitors also reduce disease severity in a mouse model of acute B-cell lymphoblastic leukemia in which AID accelerates disease progression. We further show that human AID protein levels are sensitive to HSP90 inhibition in normal and leukemic B cells, and that HSP90 inhibition prevents AID-dependent epithelial to mesenchymal transition in a human breast cancer cell line in vitro. Thus, we provide proof-of-concept that HSP90 inhibitors indirectly target AID in vivo and that endogenous human AID is widely sensitive to them, which could have therapeutic applications.

  1. Decreasing CNPY2 Expression Diminishes Colorectal Tumor Growth and Development through Activation of p53 Pathway.

    PubMed

    Yan, Ping; Gong, Hui; Zhai, Xiaoyan; Feng, Yi; Wu, Jun; He, Sheng; Guo, Jian; Wang, Xiaoxia; Guo, Rui; Xie, Jun; Li, Ren-Ke

    2016-04-01

    Neovascularization drives tumor development, and angiogenic factors are important neovascularization initiators. We recently identified the secreted angiogenic factor CNPY2, but its involvement in cancer has not been explored. Herein, we investigate CNPY2's role in human colorectal cancer (CRC) development. Tumor samples were obtained from CRC patients undergoing surgery. Canopy 2 (CNPY2) expression was analyzed in tumor and adjacent normal tissue. Stable lines of human HCT116 cells expressing CNPY2 shRNA or control shRNA were established. To determine CNPY2's effects on tumor xenografts in vivo, human CNPY2 shRNA HCT116 cells and controls were injected into nude mice, separately. Cellular apoptosis, growth, and angiogenesis in the xenografts were evaluated. CNPY2 expression was significantly higher in CRC tissues. CNPY2 knockdown in HCT116 cells inhibited growth and migration and promoted apoptosis. In xenografts, CNPY2 knockdown prevented tumor growth and angiogenesis and promoted apoptosis. Knockdown of CNPY2 in the HCT116 CRC cell line reversibly increased p53 activity. The p53 activation increased cyclin-dependent kinase inhibitor p21 and decreased cyclin-dependent kinase 2, thereby inhibiting tumor cell growth, inducing cell apoptosis, and reducing angiogenesis both in vitro and in vivo. CNPY2 may play a critical role in CRC development by enhancing cell proliferation, migration, and angiogenesis and by inhibiting apoptosis through negative regulation of the p53 pathway. Therefore, CNPY2 may represent a novel CRC therapeutic target and prognostic indicator. PMID:26835537

  2. PTEN downregulates p75NTR expression by decreasing DNA-binding activity of Sp1

    SciTech Connect

    Rankin, Sherri L.; Guy, Clifford S.; Mearow, Karen M.

    2009-02-13

    p75NTR is expressed throughout the nervous system and its dysregulation is associated with pathological conditions. We have recently demonstrated a signalling cascade initiated by laminin (LN), which upregulates PTEN and downregulates p75NTR. Here we investigate the mechanism by which PTEN modulates p75NTR. Studies using PTEN mutants show that its protein phosphatase activity directly modulates p75NTR protein expression. Nuclear relocalization of PTEN subsequent to LN stimulation suggests transcriptional control of p75NTR expression, which was confirmed following EMSA and ChIP analysis of Sp1 transcription factor binding activity. LN and PTEN independently decrease the DNA-binding ability of PTEN to the p75NTR promoter. Sp1 regulation of p75NTR occurs via dephosphorylation of Sp1, thus reducing p75NTR transcription and protein expression. This mechanism represents a novel regulatory pathway which controls the expression level of a receptor with broad implications not only for the development of the nervous system but also for progression of pathological conditions.

  3. Hormonal control in a state of decreased activation: potentiation of arginine vasopressin secretion.

    PubMed

    O'Halloran, J P; Jevning, R; Wilson, A F; Skowsky, R; Walsh, R N; Alexander, C

    1985-10-01

    Behaviorally induced stress is associated with increased arginine vasopressin (AVP) secretion. In this report we describe a phasic conditioned response of AVP secretion yielding 2.6-7.1 times normal plasma concentration of this hormone in association with a physiological state of decreased activation, that associated with the mental technique of "transcendental meditation" (TM) in long-term practitioners (6-8 years of regular elicitation). Such a very large phasic response of AVP was previously unknown in the normal physiology of AVP. This elevation was not accompanied by elevation of plasma osmolality. Unstylized ordinary eyes closed rest in a separate group of subjects studied in the same manner was associated with normal plasma AVP concentration. Galvanic skin resistance (GSR) increased during both TM and rest with significantly larger increase associated with TM. Other measures of activation, including muscle metabolism, and the Spielberger Anxiety Inventory indicated marked relaxation in association with TM. In previous research it has been shown that blood pressure does not change acutely during this behavior. These observations indicate that neither stress nor operation of other usual homeostatic control mechanisms are responsible for elevated for AVP in the meditators. It is speculated that the apparently unique mechanism of TM-induced AVP secretion may be more specifically related to the behavioral effects of meditation.

  4. Loss of rostral brainstem cholinergic activity results in decreased ultrasonic vocalization behavior and altered sensorimotor gating.

    PubMed

    Machold, Robert P

    2013-11-01

    The parabigeminal (PBG), pedunculopontine (PPTg), and laterodorsal tegmental (LDTg) nuclei located in the rostral brainstem are the primary sources of the neurotransmitter acetylcholine (ACh) for the midbrain and thalamus, and as part of the ascending reticular activating system, these cholinergic signaling pathways regulate mouse behavioral responses to sensory stimuli. Here, I report that mice harboring a conditional deletion of ACh synthesis specifically within these nuclei (ChAT(En1 KO)) exhibit decreased ultrasonic vocalizations both as pups and adults, consistent with their previously reported hypoactivity when exploring the novel environment of the open field arena. Furthermore, in prepulse inhibition (PPI) tests, ChAT(En1 KO) animals exhibited increased sensorimotor gating in comparison to control littermates. These data suggest that ACh signaling arising from the rostral brainstem modulates animal behavior in part by tuning the levels of sensorimotor gating. Thus, the net effect of this cholinergic activity is to increase sensitivity to environmental stimuli, and loss of this pathway contributes to the hypoactivity in these mutants by raising the sensory threshold for eliciting exploratory behaviors.

  5. Fasciola hepatica Kunitz Type Molecule Decreases Dendritic Cell Activation and Their Ability to Induce Inflammatory Responses

    PubMed Central

    Falcón, Cristian R.; Masih, Diana; Gatti, Gerardo; Sanchez, María Cecilia; Motrán, Claudia C.; Cervi, Laura

    2014-01-01

    The complete repertoire of proteins with immunomodulatory activity in Fasciola hepatica (Fh) has not yet been fully described. Here, we demonstrated that Fh total extract (TE) reduced LPS-induced DC maturation, and the DC ability to induce allogeneic responses. After TE fractionating, a fraction lower than 10 kDa (F<10 kDa) was able to maintain the TE properties to modulate the DC pro- and anti-inflammatory cytokine production induced by LPS. In addition, TE or F<10 kDa treatment decreased the ability of immature DC to stimulate the allogeneic responses and induced a novo allogeneic CD4+CD25+Foxp3+ T cells. In contrast, treatment of DC with T/L or F<10 kDa plus LPS (F<10/L) induced a regulatory IL-27 dependent mechanism that diminished the proliferative and Th1 and Th17 allogeneic responses. Finally, we showed that a Kunitz type molecule (Fh-KTM), present in F<10 kDa, was responsible for suppressing pro-inflammatory cytokine production in LPS-activated DC, by printing tolerogenic features on DC that impaired their ability to induce inflammatory responses. These results suggest a modulatory role for this protein, which may be involved in the immune evasion mechanisms of the parasite. PMID:25486609

  6. HSP90 inhibitors decrease AID levels and activity in mice and in human cells

    PubMed Central

    Montamat-Sicotte, Damien; Liztler, Ludivine C; Abreu, Cecilia; Safavi, Shiva; Zahn, Astrid; Orthwein, Alexandre; Muschen, Markus; Oppezzo, Pablo; Muñoz, Denise P; Di Noia, Javier M

    2015-01-01

    Activation induced deaminase (AID) initiates somatic hypermutation and class switch recombination of the Ig genes in antigen-activated B cells, underpinning antibody affinity maturation and isotype switching. AID can also be pathogenic by contributing to autoimmune diseases and oncogenic mutations. Moreover, AID can exert non-canonical functions when aberrantly expressed in epithelial cells. The lack of specific inhibitors prevents therapeutic applications to modulate AID functions. Here, we have exploited our previous finding that the HSP90 molecular chaperoning pathway stabilizes AID in B cells, to test whether HSP90 inhibitors could target AID in vivo. We demonstrate that chronic administration of HSP90 inhibitors decreases AID protein levels and isotype switching in immunized mice. HSP90 inhibitors also reduce disease severity in a mouse model of acute B-cell lymphoblastic leukemia in which AID accelerates disease progression. We further show that human AID protein levels are sensitive to HSP90 inhibition in normal and leukemic B cells, and that HSP90 inhibition prevents AID-dependent epithelial to mesenchymal transition in a human breast cancer cell line in vitro. Thus, we provide proof-of-concept that HSP90 inhibitors indirectly target AID in vivo and that endogenous human AID is widely sensitive to them, which could have therapeutic applications. PMID:25912253

  7. Erythropoietin stimulation decreases hepcidin expression through hematopoietic activity on bone marrow cells in mice.

    PubMed

    Sasaki, Yusuke; Noguchi-Sasaki, Mariko; Yasuno, Hideyuki; Yorozu, Keigo; Shimonaka, Yasushi

    2012-12-01

    Erythropoiesis-stimulating agents (ESA) are now central to the treatment of renal anemia and are associated with improved clinical outcomes. It is well known that erythropoietin (EPO) is a key regulator of erythropoiesis through its promotion of red blood cell production. In order to investigate the role of ESA on iron metabolism, we analyzed the regulation of the iron regulatory hormone hepcidin by ESA treatment in a bone marrow transplant model in mouse. After treating C57BL/6 mice with continuous erythropoietin receptor activator (C.E.R.A.), recombinant human epoetin-β (rhEPO), or recombinant human carbamylated epoetin-β (rhCEPO), we investigated serum hepcidin concentrations and parameters of erythropoiesis. Serum hepcidin concentrations after rhEPO treatment were analyzed in mice subjected to total body irradiation followed by bone marrow transplantation. C.E.R.A. administration caused long-term downregulation of serum hepcidin levels. Serum hepcidin levels in rhEPO-treated mice decreased significantly, whereas there was no change in rhCEPO-treated mice. The reduction in circulating hepcidin levels after rhEPO administration was not observed in irradiated mice. Finally, bone marrow transplantation recovered the response to rhEPO administration that downregulates hepcidin concentration in irradiated mice. These results indicate that ESA treatment downregulates serum hepcidin concentrations, mainly by indirect mechanisms affecting hematopoietic activity in bone marrow cells. PMID:23160767

  8. Possibility of decreasing the activation energy of resistivity of mullite by doping with nickel ion

    NASA Astrophysics Data System (ADS)

    Roy, D.; Das, S.; Nandy, P.

    2012-12-01

    Monophasic mullite samples doped with 0.002 M, 0.02 M, 0.1 M, 0.15 M and 0.2 M of NiCl2 were prepared via sol-gel technique. The prepared gels were dried, grinded, pressed into pellets and sintered at 400 °C, 800 °C, 1000 °C and 1300 °C. The electrical resistivity and activation energy of the composites have been measured and the variation of resistivity with concentration of the nickel ion doping has been investigated. The resistivity decreases with the concentration of nickel ions. X-ray analysis confirms the presence of Ni2+ ions in mullite. The Ni2+ ion, which substitutes Al3+ ion in the octahedral site of mullite structure, can be considered as an efficient factor in reducing the resistivity. The mullite unit cell parameters suggest predominant incorporation of NiCl2 in a glassy phase. The lowest activation energy of resistivity ( E act ) that was achieved is 1.22 eV at 0.02 M.

  9. Rapid toxicity testing based on yeast respiratory activity

    SciTech Connect

    Haubenstricker, M.E. ); Meier, P.G.; Mancy, K.H. ); Brabec, M.J. )

    1990-05-01

    Rapid and economical techniques are needed to determine the effects of environmental contaminants. At present, the main methods to assess the impact of pollutants are based on chemical analysis of the samples. Invertebrate and vertebrate exposures have been used over the last two decades in assessing acute and chronic toxicities. However, these tests are labor intensive and require several days to complete. An alternative to whole organism exposure is to determine toxic effects in monocellular systems. Another approach for assessing toxicity is to monitor sensitive, nonspecific, subcellular target sites such as mitochondria. Changes in mitochondrial function which could indicate a toxic effect can be demonstrated readily after addition of a foreign substance. In initial assessments of various chemicals, rat liver mitochondria (RLM) were evaluated as a biological sensor of toxicity. False toxicity assessments will result if these ions are present even though they are generally considered nontoxic. Because of these disadvantages, an alternative mitochondrial system, such as found in bakers yeast, was evaluated.

  10. Rapid dimerization of quercetin through an oxidative mechanism in the presence of serum albumin decreases its ability to induce cytotoxicity in MDA-MB-231 cells.

    PubMed

    Pham, Anh; Bortolazzo, Anthony; White, J Brandon

    2012-10-19

    Quercetin is a member of the flavonoid family and has been previously shown to have a variety of anti-cancer activities. We and others have reported anti-proliferation, cell cycle arrest, and induction of apoptosis of cancer cells after treatment with quercetin. Quercetin has also been shown to undergo oxidation. However, it is unclear if quercetin or one of its oxidized forms is responsible for cell death. Here we report that quercetin rapidly oxidized in cell culture media to form a dimer. The quercetin dimer is identical to a dimer that is naturally produced by onions. The quercetin dimer and quercetin-3-O-glucopyranoside are unable to cross the cell membrane and do not kill MDA-MB-231 cells. Finally, supplementing the media with ascorbic acid increases quercetin's ability to induce cell death probably by reduction oxidative dimerization. Our results suggest that an unmodified quercetin is the compound that elicits cell death. PMID:23000408

  11. Increasing brain angiotensin converting enzyme 2 activity decreases anxiety-like behavior in male mice by activating central Mas receptors.

    PubMed

    Wang, Lei; de Kloet, Annette D; Pati, Dipanwita; Hiller, Helmut; Smith, Justin A; Pioquinto, David J; Ludin, Jacob A; Oh, S Paul; Katovich, Michael J; Frazier, Charles J; Raizada, Mohan K; Krause, Eric G

    2016-06-01

    Over-activation of the brain renin-angiotensin system (RAS) has been implicated in the etiology of anxiety disorders. Angiotensin converting enzyme 2 (ACE2) inhibits RAS activity by converting angiotensin-II, the effector peptide of RAS, to angiotensin-(1-7), which activates the Mas receptor (MasR). Whether increasing brain ACE2 activity reduces anxiety by stimulating central MasR is unknown. To test the hypothesis that increasing brain ACE2 activity reduces anxiety-like behavior via central MasR stimulation, we generated male mice overexpressing ACE2 (ACE2 KI mice) and wild type littermate controls (WT). ACE2 KI mice explored the open arms of the elevated plus maze (EPM) significantly more than WT, suggesting increasing ACE2 activity is anxiolytic. Central delivery of diminazene aceturate, an ACE2 activator, to C57BL/6 mice also reduced anxiety-like behavior in the EPM, but centrally administering ACE2 KI mice A-779, a MasR antagonist, abolished their anxiolytic phenotype, suggesting that ACE2 reduces anxiety-like behavior by activating central MasR. To identify the brain circuits mediating these effects, we measured Fos, a marker of neuronal activation, subsequent to EPM exposure and found that ACE2 KI mice had decreased Fos in the bed nucleus of stria terminalis but had increased Fos in the basolateral amygdala (BLA). Within the BLA, we determined that ∼62% of GABAergic neurons contained MasR mRNA and expression of MasR mRNA was upregulated by ACE2 overexpression, suggesting that ACE2 may influence GABA neurotransmission within the BLA via MasR activation. Indeed, ACE2 overexpression was associated with increased frequency of spontaneous inhibitory postsynaptic currents (indicative of presynaptic release of GABA) onto BLA pyramidal neurons and central infusion of A-779 eliminated this effect. Collectively, these results suggest that ACE2 may reduce anxiety-like behavior by activating central MasR that facilitate GABA release onto pyramidal neurons within the

  12. Decreased expression of mitochondrial aldehyde dehydrogenase-2 induces liver injury via activation of the mitogen-activated protein kinase pathway.

    PubMed

    Zhong, Zibiao; Ye, Shaojun; Xiong, Yan; Wu, Lianxi; Zhang, Meng; Fan, Xiaoli; Li, Ling; Fu, Zhen; Wang, Huanglei; Chen, Mingyun; Yan, Xiaomin; Huang, Wei; Ko, Dicken Shiu-Chung; Wang, Yanfeng; Ye, Qifa

    2016-01-01

    The aim of this study was to determine the role of ALDH2 in the injury of liver from brain-dead donors. Using brain-dead rabbit model and hypoxia model, levels of ALDH2 and apoptosis in tissues and cell lines were determined by Western blot, flow cytometry (FCM), and transferase (TdT)-mediated biotin-16-dUTP nick-end labeling (TUNEL) assays. After the expression of ALDH2 during hypoxia had been inhibited or activated, the accumulations of 4-hydroxynonenal (4-HNE) and molecules involved in mitogen-activated protein kinase (MAPK) signaling pathway were analyzed using ELISA kit and Western blot. The low expression of phosphorylated ALDH2 in liver was time-dependent in the brain-dead rabbit model. Immunohistochemistry showed ALDH2 was primarily located in endothelial, and the rates of cell apoptosis in the donation after brain-death (DBD) rabbit groups significantly increased with time. Following the treatment of inhibitor of ALDH2, daidzein, in combination with hypoxia for 8 h, the apoptosis rate and the levels of 4-HNE, P-JNK, and cleaved caspase-3 significantly increased in contrast to that in hypoxic HUVECs; however, they all decreased after treatment with Alda-1 and hypoxia compared with that in hypoxic HUVECs (P < 0.05). Instead, the levels of P-P38, P-ERK, P-JNK, and cleaved caspase-3 decreased and the ratio of bcl-2/bax increased with ad-ALDH2 (10(6) pfu/ml) in combination with hypoxia for 8 h, which significantly alleviated in contrast to that in hypoxic HUVECs. We found low expression of ALDH2 and high rates of apoptosis in the livers of brain-dead donor rabbits. Furthermore, decreased ALDH2 led to apoptosis in HUVECs through MAPK pathway.

  13. Selective activation of the extended ventrolateral preoptic nucleus during rapid eye movement sleep.

    PubMed

    Lu, Jun; Bjorkum, Alvhild A; Xu, Man; Gaus, Stephanie E; Shiromani, Priyattam J; Saper, Clifford B

    2002-06-01

    We found previously that damage to a cluster of sleep-active neurons (Fos-positive during sleep) in the ventrolateral preoptic nucleus (VLPO) decreases non-rapid eye movement (NREM) sleep in rats, whereas injury to the sleep-active cells extending dorsally and medially from the VLPO cluster (the extended VLPO) diminishes REM sleep. These results led us to examine whether neurons in the extended VLPO are activated during REM sleep and the connectivity of these neurons with pontine sites implicated in producing REM sleep: the laterodorsal tegmental nucleus (LDT), dorsal raphe nucleus (DRN), and locus ceruleus (LC). After periods of dark exposure that triggered enrichment of REM sleep, the number of Fos-positive cells in the extended VLPO was highly correlated with REM but not NREM sleep. In contrast, the number of Fos-positive cells in the VLPO cluster was correlated with NREM but not REM sleep. Sixty percent of sleep-active cells in the extended VLPO and 90% of sleep-active cells in the VLPO cluster in dark-treated animals contained galanin mRNA. Retrograde tracing from the LDT, DRN, and LC demonstrated more labeled cells in the extended VLPO than the VLPO cluster, and 50% of these in the extended VLPO were sleep-active. Anterograde tracing showed that projections from the extended VLPO and VLPO cluster targeted the cell bodies and dendrites of DRN serotoninergic neurons and LC noradrenergic neurons but were not apposed to cholinergic neurons in the LDT. The connections and physiological activity of the extended VLPO suggest a specialized role in the regulation of REM sleep.

  14. Muscle activation characteristics of the front leg during baseball swings with timing correction for sudden velocity decrease.

    PubMed

    Ohta, Yoichi; Nakamoto, Hiroki; Ishii, Yasumitsu; Ikudome, Sachi; Takahashi, Kyohei; Shima, Norihiro

    2014-01-01

    This study aimed to clarify the activation characteristics of the vastus lateralis muscle in the front leg during timing correction for a sudden decrease in the velocity of a target during baseball swings. Eleven male collegiate baseball players performed coincident timing tasks that comprised constant velocity of 8 m/s (unchanged) and a sudden decrease in velocity from 8 to 4 m/s (decreased velocity). Electromyography (EMG) revealed that the muscle activation was typically monophasic when responding unchanged conditions. The type of muscle activation during swings in response to decreased velocity condition was both monophasic and biphasic. When biphasic activation appeared in response to decreased velocity, the impact time and the time to peak EMG amplitude were significantly prolonged and the timing error was significantly smaller than that of monophasic activation. However, the EMG onset from the target start was consistent both monophasic and biphasic activation in response to conditions of decreased velocity. In addition, batters with small timing errors in response to decreased velocity were more likely to generate biphasic EMG activation. These findings indicated that timing correction for a sudden decrease in the velocity of an oncoming target is achieved by modifying the muscle activation characteristics of the vastus lateralis muscle of front leg from monophasic to biphasic to delay reaching peak muscle activation and thus prolong impact time. Therefore, the present findings suggests that the extent of timing errors in response to decreased velocity is influenced by the ability to correct muscle activation after its initiation rather than by delaying the initiation timing of muscle activation during baseball swings.

  15. Muscle activation characteristics of the front leg during baseball swings with timing correction for sudden velocity decrease.

    PubMed

    Ohta, Yoichi; Nakamoto, Hiroki; Ishii, Yasumitsu; Ikudome, Sachi; Takahashi, Kyohei; Shima, Norihiro

    2014-01-01

    This study aimed to clarify the activation characteristics of the vastus lateralis muscle in the front leg during timing correction for a sudden decrease in the velocity of a target during baseball swings. Eleven male collegiate baseball players performed coincident timing tasks that comprised constant velocity of 8 m/s (unchanged) and a sudden decrease in velocity from 8 to 4 m/s (decreased velocity). Electromyography (EMG) revealed that the muscle activation was typically monophasic when responding unchanged conditions. The type of muscle activation during swings in response to decreased velocity condition was both monophasic and biphasic. When biphasic activation appeared in response to decreased velocity, the impact time and the time to peak EMG amplitude were significantly prolonged and the timing error was significantly smaller than that of monophasic activation. However, the EMG onset from the target start was consistent both monophasic and biphasic activation in response to conditions of decreased velocity. In addition, batters with small timing errors in response to decreased velocity were more likely to generate biphasic EMG activation. These findings indicated that timing correction for a sudden decrease in the velocity of an oncoming target is achieved by modifying the muscle activation characteristics of the vastus lateralis muscle of front leg from monophasic to biphasic to delay reaching peak muscle activation and thus prolong impact time. Therefore, the present findings suggests that the extent of timing errors in response to decreased velocity is influenced by the ability to correct muscle activation after its initiation rather than by delaying the initiation timing of muscle activation during baseball swings. PMID:25918848

  16. Muscle Activation Characteristics of the Front Leg During Baseball Swings with Timing Correction for Sudden Velocity Decrease

    PubMed Central

    Ohta, Yoichi; Nakamoto, Hiroki; Ishii, Yasumitsu; Ikudome, Sachi; Takahashi, Kyohei; Shima, Norihiro

    2015-01-01

    This study aimed to clarify the activation characteristics of the vastus lateralis muscle in the front leg during timing correction for a sudden decrease in the velocity of a target during baseball swings. Eleven male collegiate baseball players performed coincident timing tasks that comprised constant velocity of 8 m/s (unchanged) and a sudden decrease in velocity from 8 to 4 m/s (decreased velocity). Electromyography (EMG) revealed that the muscle activation was typically monophasic when responding unchanged conditions. The type of muscle activation during swings in response to decreased velocity condition was both monophasic and biphasic. When biphasic activation appeared in response to decreased velocity, the impact time and the time to peak EMG amplitude were significantly prolonged and the timing error was significantly smaller than that of monophasic activation. However, the EMG onset from the target start was consistent both monophasic and biphasic activation in response to conditions of decreased velocity. In addition, batters with small timing errors in response to decreased velocity were more likely to generate biphasic EMG activation. These findings indicated that timing correction for a sudden decrease in the velocity of an oncoming target is achieved by modifying the muscle activation characteristics of the vastus lateralis muscle of front leg from monophasic to biphasic to delay reaching peak muscle activation and thus prolong impact time. Therefore, the present findings suggests that the extent of timing errors in response to decreased velocity is influenced by the ability to correct muscle activation after its initiation rather than by delaying the initiation timing of muscle activation during baseball swings. PMID:25918848

  17. Decreased Circulating T Regulatory Cells in Egyptian Patients with Nonsegmental Vitiligo: Correlation with Disease Activity

    PubMed Central

    Hegab, Doaa Salah; Attia, Mohamed Attia Saad

    2015-01-01

    Background. Vitiligo is an acquired depigmentary skin disorder resulting from autoimmune destruction of melanocytes. Regulatory T cells (Tregs), specifically CD4+CD25+ and Forkhead box P3+ (FoxP3+) Tregs, acquired notable attention because of their role in a variety of autoimmune pathologies. Dysregulation of Tregs may be one of the factors that can break tolerance to melanocyte self-antigens and contribute to vitiligo pathogenesis. Methods. In order to sustain the role of Tregs in pathogenesis and disease activity of vitiligo, surface markers for CD4+CD25+ and FoxP3+ peripheral Tregs were evaluated by flow cytometry in 80 Egyptian patients with nonsegmental vitiligo in addition to 60 healthy control subjects and correlated with clinical findings. Results. Vitiligo patients had significantly decreased numbers of both peripheral CD4+CD25+ and FoxP3+ T cells compared to control subjects (11.49%  ± 8.58% of CD4+ T cells versus 21.20%  ± 3.08%, and 1.09%  ± 0.96% versus 1.44%  ± 0.24%, resp., P < 0.05 for both). Peripheral numbers of CD4+CD25+ and FoxP3+ Tregs correlated negatively with VIDA score. Conclusion. Treg depletion with impaired immune downregulatory function might play a key role in the autoimmune conditions beyond nonsegmental vitiligo particularly in active cases. Effective Treg cell-based immunotherapies might be a future hope for patients with progressive vitiligo. PMID:26788051

  18. Decreased Circulating T Regulatory Cells in Egyptian Patients with Nonsegmental Vitiligo: Correlation with Disease Activity.

    PubMed

    Hegab, Doaa Salah; Attia, Mohamed Attia Saad

    2015-01-01

    Background. Vitiligo is an acquired depigmentary skin disorder resulting from autoimmune destruction of melanocytes. Regulatory T cells (Tregs), specifically CD4(+)CD25(+) and Forkhead box P3(+) (FoxP3(+)) Tregs, acquired notable attention because of their role in a variety of autoimmune pathologies. Dysregulation of Tregs may be one of the factors that can break tolerance to melanocyte self-antigens and contribute to vitiligo pathogenesis. Methods. In order to sustain the role of Tregs in pathogenesis and disease activity of vitiligo, surface markers for CD4(+)CD25(+) and FoxP3(+) peripheral Tregs were evaluated by flow cytometry in 80 Egyptian patients with nonsegmental vitiligo in addition to 60 healthy control subjects and correlated with clinical findings. Results. Vitiligo patients had significantly decreased numbers of both peripheral CD4(+)CD25(+) and FoxP3(+) T cells compared to control subjects (11.49%  ± 8.58% of CD4(+) T cells versus 21.20%  ± 3.08%, and 1.09%  ± 0.96% versus 1.44%  ± 0.24%, resp., P < 0.05 for both). Peripheral numbers of CD4(+)CD25(+) and FoxP3(+) Tregs correlated negatively with VIDA score. Conclusion. Treg depletion with impaired immune downregulatory function might play a key role in the autoimmune conditions beyond nonsegmental vitiligo particularly in active cases. Effective Treg cell-based immunotherapies might be a future hope for patients with progressive vitiligo. PMID:26788051

  19. Effect of a nutritional shift on the degradation of abnormal proteins in the mouse liver. Decreased degradation during rapid liver growth.

    PubMed Central

    Amils, R; Conde, R D; Scornik, O A

    1977-01-01

    1. The intravenous injection of puromycin to mice 0.5 min after administration of radioactive leucine resulted in the release of labelled ribosome-bound nascent protein chains with the next 0.5 min. 2. During the subsequent 13 min, 40% of the liver protein radioactivity disappeared. The rate of this process was already maximal 0.5 min after the injection of puromycin, with no apparent lag. 3. Evidence is presented that this phenomenon represents the selective degradation of puromycinyl-peptides: (a) the magnitude of this fraction corresponded to the calculated proportion of protein radioactivity in nascent chains at the time of the puromycin effect; (b) the size distribution of the proteins disappearing between 2 and 14 min was smaller than that of those retained at 14 min; and (c) when the injection of puromycin was delayed for 5 min, or when the leucine pulse was interrupted by the injection of cycloheximide (rather than puromycin), the fraction disappearing within 14 min was much smaller. 4. The degradation of puromycinyl-peptides was much slower in the rapidly growing livers of animals recovering from a protein depletion than in the protein-depleted controls. It is concluded that the large decrease in the overall rates of total liver protein degradation previously described during liver growth is a general phenomenon, also affecting the rate of scavenging of abnormal proteins. PMID:880243

  20. Globus Pallidus Interna in Tourette Syndrome: Decreased Local Activity and Disrupted Functional Connectivity

    PubMed Central

    Ji, Gong-Jun; Liao, Wei; Yu, Yang; Miao, Huan-Huan; Feng, Yi-Xuan; Wang, Kai; Feng, Jian-Hua; Zang, Yu-Feng

    2016-01-01

    Globus pallidus interna (GPi) is an effective deep brain stimulation site for the treatment of Tourette syndrome (TS), and plays a crucial role in the pathophysiology of TS. To investigate the functional network feature of GPi in TS patients, we retrospectively studied 24 boys with ‘pure’ TS and 32 age-/education-matched healthy boys by resting state functional magnetic resonance images. Amplitude of low-frequency fluctuation (ALFF) and functional connectivity were used to estimate the local activity in GPi and its functional coordinate with the whole brain regions, respectively. We found decreased ALFF in patients’ bilateral GPi, which was also negatively correlated with clinical symptoms. Functional connectivity analysis indicated abnormal regions within motor and motor-control networks in patients (inferior part of sensorimotor area, cerebellum, prefrontal cortex, cingulate gyrus, caudate nucleus, and brain stem). Transcranial magnetic stimulation sites defined by previous studies (“hand knob” area, premotor area, and supplementary motor area) did not show significantly different functional connectivity with GPi between groups. In summary, this study characterized the disrupted functional network of GPi and provided potential regions-of-interest for further basic and clinical studies on TS. PMID:27799898

  1. Modulation of red cell metabolism by states of decreased activation: comparison between states.

    PubMed

    Jevning, R; Wilson, A F; Pirkle, H; Guich, S; Walsh, R N

    1985-11-01

    Marked decline of red cell metabolism has been described during the acute state of decreased activation associated with the stylized mental technique of transcendental meditation (TM) in long-term meditators (5-10 years regular elicitation, TM instructors). It is not known whether unstylized rest is accompanied by a similar effect and it is not known what effector(s) may contribute to red cell metabolic changes in these states. In the present study ordinary, unstylized rest was found to be accompanied by small increase of red cell glycolytic rate. Apparently, either repeated elicitation of TM behavior or some special feature of this practice become associated with new mechanisms of metabolic control than those previously in operation. Although the data of this study do not permit isolation of the precise psychological determinants of this effect, the range of possible physiological effectors can be delimited. Blood pH, PCO2, PO2, and phosphate can be eliminated as significant for red cell metabolic control during both TM and rest, and based upon related studies, several known hormones such as insulin, T3, T4, arginine vasopressin, oxytocin, prolactin and growth hormone can also be eliminated as responsible effector(s).

  2. Active Prompting to Decrease Cell Phone Use and Increase Seat Belt Use While Driving

    PubMed Central

    Clayton, Michael; Helms, Bridgett; Simpson, Cathy

    2006-01-01

    Automobile crashes are the leading cause of death for those aged 3 to 33, with 43,005 (118 per day) Americans killed in 2002 alone. Seat belt use reduces the risk of serious injury in an accident, and refraining from using a cell phone while driving reduces the risk of an accident. Cell phone use while driving increases accident rates, and leads to 2,600 U.S. fatalities each year. An active prompting procedure was employed to increase seat belt use and decrease cell phone use among drivers exiting a university parking lot. A multiple baseline with reversal design was used to evaluate the presentation of two signs: “Please Hang Up, I Care” and “Please Buckle Up, I Care.” The proportion of drivers who complied with the seat belt prompt was high and in line with previous research. The proportion of drivers who hung up their cell phones in response to the prompt was about equal to that of the seat belt prompt. A procedure that reduces cell phone use among automobile drivers is a significant contribution to the behavioral safety literature. PMID:17020214

  3. Brainstem glycinergic neurons and their activation during active (rapid eye movement) sleep in the cat.

    PubMed

    Morales, F R; Sampogna, S; Rampon, C; Luppi, P H; Chase, M H

    2006-09-29

    It is well established that, during rapid eye movement (REM) sleep, somatic motoneurons are subjected to a barrage of inhibitory synaptic potentials that are mediated by glycine. However, the source of this inhibition, which is crucial for the maintenance and preservation of REM sleep, has not been identified. Consequently, the present study was undertaken to determine in cats the location of the glycinergic neurons, that are activated during active sleep, and are responsible for the postsynaptic inhibition of motoneurons that occurs during this state. For this purpose, a pharmacologically-induced state of active sleep (AS-carbachol) was employed. Antibodies against glycine-conjugated proteins were used to identify glycinergic neurons and immunocytochemical techniques to label the Fos protein were employed to identify activated neurons. Two distinct populations of glycinergic neurons that expressed c-fos were distinguished. One population was situated within the nucleus reticularis gigantocellularis (NRGc) and nucleus magnocellularis (Mc) in the rostro-ventral medulla; this group of neurons extended caudally to the ventral portion of the nucleus paramedianus reticularis (nPR). Forty percent of the glycinergic neurons in the NRGc and Mc and 25% in the nPR expressed c-fos during AS-carbachol. A second population was located in the caudal medulla adjacent to the nucleus ambiguus (nAmb), wherein 40% of the glycinergic cells expressed c-fos during AS-carbachol. Neither population of glycinergic cells expressed c-fos during quiet wakefulness or quiet (non-rapid eye movement) sleep. We suggest that the population of glycinergic neurons in the NRGc, Mc, and nPR participates in the inhibition of somatic brainstem motoneurons during active sleep. These neurons may also be responsible for the inhibition of sensory and other processes during this state. It is likely that the group of glycinergic neurons adjacent to the nucleus ambiguus (nAmb) is responsible for the active

  4. Brainstem glycinergic neurons and their activation during active (rapid eye movement) sleep in the cat.

    PubMed

    Morales, F R; Sampogna, S; Rampon, C; Luppi, P H; Chase, M H

    2006-09-29

    It is well established that, during rapid eye movement (REM) sleep, somatic motoneurons are subjected to a barrage of inhibitory synaptic potentials that are mediated by glycine. However, the source of this inhibition, which is crucial for the maintenance and preservation of REM sleep, has not been identified. Consequently, the present study was undertaken to determine in cats the location of the glycinergic neurons, that are activated during active sleep, and are responsible for the postsynaptic inhibition of motoneurons that occurs during this state. For this purpose, a pharmacologically-induced state of active sleep (AS-carbachol) was employed. Antibodies against glycine-conjugated proteins were used to identify glycinergic neurons and immunocytochemical techniques to label the Fos protein were employed to identify activated neurons. Two distinct populations of glycinergic neurons that expressed c-fos were distinguished. One population was situated within the nucleus reticularis gigantocellularis (NRGc) and nucleus magnocellularis (Mc) in the rostro-ventral medulla; this group of neurons extended caudally to the ventral portion of the nucleus paramedianus reticularis (nPR). Forty percent of the glycinergic neurons in the NRGc and Mc and 25% in the nPR expressed c-fos during AS-carbachol. A second population was located in the caudal medulla adjacent to the nucleus ambiguus (nAmb), wherein 40% of the glycinergic cells expressed c-fos during AS-carbachol. Neither population of glycinergic cells expressed c-fos during quiet wakefulness or quiet (non-rapid eye movement) sleep. We suggest that the population of glycinergic neurons in the NRGc, Mc, and nPR participates in the inhibition of somatic brainstem motoneurons during active sleep. These neurons may also be responsible for the inhibition of sensory and other processes during this state. It is likely that the group of glycinergic neurons adjacent to the nucleus ambiguus (nAmb) is responsible for the active

  5. Kepler Observations of Rapid Optical Variability in Active Galactic Nuclei

    NASA Technical Reports Server (NTRS)

    Mushotzky, R. F.; Edelson, R.; Baumgartner, W. H.; Gandhi, P.

    2012-01-01

    Over three quarters in 2010 - 2011, Kepler monitored optical emission from four active galactic nuclei (AGN) with approx 30 min sampling, > 90% duty cycle and approx < 0.1% repeatability. These data determined the AGN optical fluctuation power spectral density functions (PSDs) over a wide range in temporal frequency. Fits to these PSDs yielded power law slopes of -2.6 to -3.3, much steeper than typically seen in the X-rays. We find evidence that individual AGN exhibit intrinsically different PSD slopes. The steep PSD fits are a challenge to recent AGN variability models but seem consistent with first order MRI theoretical calculations of accretion disk fluctuations.

  6. Method of rapid assessment of photocatalytic activities of self-cleaning films.

    PubMed

    Mills, Andrew; Wang, Jishun; McGrady, Mark

    2006-09-21

    An ink, comprising the redox dye resazurin (Rz) and the sacrificial electron donor glycerol, is shown to be capable of the rapid assessment of the photocatalytic activities of self-cleaning films. In the key initial stage of photocatalysis the ink changes from blue to pink. Prolonged irradiation bleaches the ink and eventually mineralizes it. The kinetics of the initial photoinduced color change is studied as a function of UV irradiance, [glycerol], [Rz], and temperature. The results reveal an apparent approximate quantum yield of 3.5 x 10(-3) and an initial rate, r(i), which increases with [glycerol] and decreases with [Rz]. It is proposed that the reduction of Rz, dispersed throughout the thick (ca. 590 nm) indicator film, may take place either via the diffusion of the dye molecules in the ink film to the surface of the underlying semiconductor layer and their subsequent reaction with photogenerated electrons and/or via the diffusion of alpha-hydroxyalkyl radicals, produced by the oxidation of the glycerol by photogenerated holes, or hydroxy radicals, away from the surface of the semiconductor into the ink film and their subsequent reaction with the dye molecules therein. The decrease in r(i) with [Rz] appears to be due to dimer formation, with the latter impeding the reduction process. The activation energy for the initial color-change process is low, ca. 9.1 +/- 0.1 kJ mol(-1) and not unlike many other photocatalytic processes. The initial rate of dye reduction appears to be directly related to the rate of destruction of stearic acid. The ink can be applied by spin-coating, stamping, or writing, using a felt-tip pen. The efficacy of such an ink for assessing the photocatalytic activity of any photocatalytic film, including those employed on commercial self-cleaning glasses, tiles, and paving stones, is discussed briefly.

  7. Rapid estrogen signaling negatively regulates PTEN activity through phosphorylation in endometrial cancer cells

    PubMed Central

    Scully, Melanie M.; Palacios-Helgeson, Leslie K.; Wah, Lah S.; Jackson, Twila A.

    2014-01-01

    Hyperestrogenicity is a risk factor for endometrial cancer. 17β-estradiol (E2) is known to stimulate both genomic and nongenomic estrogen receptor-α (ERα) actions in a number of reproductive tissues. However, the contributions of transcription-independent ERα signaling on normal and malignant endometrium are not fully understood. Phosphatase and tensin homolog (PTEN) is a tumor suppressor that decreases cellular mitosis primarily through negative regulation of the phosphoinositide 3-kinase/AKT signaling axis. PTEN levels are elevated during the E2 dominated, mitotically active, proliferative phase of the menstrual cycle, indicating possible hormonal regulation of PTEN in the uterus. In order to determine if rapid E2 signaling regulates PTEN, we used ERα positive, PTEN positive, endometrial cells. We show that cytosolic E2/ERα signaling leads to increased phosphorylation of PTEN at key regulatory residues. Importantly, E2 stimulation decreased PTEN lipid phosphatase activity and caused consequent increases in phospho-AKT. We further demonstrate that cytosolic ERα forms a complex with PTEN in an E2-dependent manner, and that ERα constitutively complexes with protein kinase2-α (CK2α), a kinase previously shown to phosphorylate the C-terminal tail of PTEN. These results provide mechanistic support for an E2-dependent, ERα cytosolic signaling complex that negatively regulates PTEN activity through carboxy terminus phosphorylation. Using an animal model, we show that sustained E2 signaling results in increased phospho-PTEN (S380, T382, T383), total PTEN and phospho-AKT (S473). Taken together, we provide a novel mechanism in which transcription-independent E2/ERα signaling may promote a pro-tumorigenic environment in the endometrium. PMID:24844349

  8. Rapid Response to Anomalous Activity in Jupiter's Atmosphere

    NASA Astrophysics Data System (ADS)

    Beebe, Reta

    1997-07-01

    The well-documented record of aperiodic disturbances within Jupiter's atmosphere reveals that their onset is marked by an intensely white cloud that expands and interacts with the local winds. These storms are associated with large-scale variability of the Jovian cloud deck, and could play a significant role in the heat balance of the atmosphere. Although the Galileo mission will be active during Cycle 6, it cannot readily respond to the events and will be on the dark side of the planet most of the time. Disturbances include plume-like systems at 23 deg. N and 7 deg. N planetographic latitude near the peak of eastward jets and active convective sites near +/-15 deg. latitude in regions of cyclonic shear {descending flow}. Center-to-limb observations reveal the initial white cloud is bright near the limb, indicating penetration to high altitude and possible tropospheric heating and interruption of cold trapping of ammonia. Horizontal rates of expansion are on the order of 10-20 m s^-1 allowing the initial storm site to be identifiable for 2-3 weeks. Longitudinal positions will be obtained by groundbased observers using visual timings of central meridian crossings and analysis of CCD images. They will report to Beebe who will determine the magnitude of the disturbance and, if appropriate, alert Noll to request a Target of Opportunity. Observations with the STIS and WFPC2 will quantify the extent of ammonia upwelling, delineate interaction with the local wind field, and provide information on vertical structure of the disturbance.

  9. Ovine maternal nutrient restriction from mid to late gestation decreases heptic progesterone inactivating enzyme activity

    Technology Transfer Automated Retrieval System (TEKTRAN)

    Previously we have shown increased concentrations of progesterone and decreased liver weight in mid to late pregnant ewes provided a nutrient restricted vs. adequate diet. This alteration in peripheral progesterone could be due to increased synthesis and/or decreased clearance of progesterone. There...

  10. Decrease of physical activity level in adolescents with limb fractures: an accelerometry-based activity monitor study

    PubMed Central

    2011-01-01

    Background Immobilization and associated periods of inactivity can cause osteopenia, the physiological response of the bone to disuse. Mechanical loading plays an essential role in maintaining bone integrity. Skeletal fractures represent one cause of reduction of the physical activity (PA) level in adolescents. The purpose of this study was to quantify the reduction of PA in adolescents with limb fractures during the cast immobilization period compared with healthy controls. Methods Two hundred twenty adolescents were divided into three groups: those with upper limb fractures (50 cases); lower limb fractures (50 cases); and healthy cases (120 cases). Patients and their healthy peers were matched for gender, age, and seasonal assessment of PA. PA level was assessed during cast immobilization by accelerometer. Time spent in PA in each of the different intensity levels - sedentary, light, moderate, and vigorous - was determined for each participant and expressed in minutes and as a percentage of total valid time. Results Reduction in PA during cast immobilization was statistically significant in patients with limb fractures compared to healthy controls. The total PA count (total number of counts/min) was significantly lower in those with upper and lower limb fractures (-30.1% and -62.4%, respectively) compared with healthy controls (p < 0.0001 and p = 0.0003, respectively). Time spent in moderate-to-vigorous PA by patients with upper and lower limb injuries decreased by 36.9% (p = 0.0003) and 76.6% (p < 0.0001), respectively, and vigorous PA was reduced by 41.4% (p = 0.0008) and 84.4% (p < 0.0001), respectively. Conclusions PA measured by accelerometer is a useful and valid tool to assess the decrease of PA level in adolescents with limb fractures. As cast immobilization and reduced PA are known to induce bone mineral loss, this study provides important information to quantify the decrease of skeletal loading in this patient population. The observed reduction of high

  11. Rapidly assessing the activation conditions and porosity of metal-organic frameworks using thermogravimetric analysis

    SciTech Connect

    McDonald, TM; Bloch, ED; Long, JR

    2015-01-01

    A methodology utilizing a thermogravimetric analyzer to monitor propane uptake following incremental increases of the temperature is demonstrated as a means of rapidly identifying porous materials and determining the optimum activation conditions of metal-organic frameworks.

  12. Light-Activated Rapid-Response Polyvinylidene-Fluoride-Based Flexible Films.

    PubMed

    Tai, Yanlong; Lubineau, Gilles; Yang, Zhenguo

    2016-06-01

    The design strategy and mechanical response mechanism of light-activated, rapid-response, flexible films are presented. Practical applications as a microrobot and a smart spring are demonstrated. PMID:27061392

  13. Rapid dimerization of quercetin through an oxidative mechanism in the presence of serum albumin decreases its ability to induce cytotoxicity in MDA-MB-231 cells

    SciTech Connect

    Pham, Anh; Bortolazzo, Anthony; White, J. Brandon

    2012-10-19

    Highlights: Black-Right-Pointing-Pointer Quercetin cannot be detected intracellularly despite killing MDA-MB-231 cells. Black-Right-Pointing-Pointer Quercetin forms a heterodimer through oxidation in media with serum. Black-Right-Pointing-Pointer The quercetin heterodimer does not kill MDA-MB-231 cells. Black-Right-Pointing-Pointer Ascorbic acid stabilizes quercetin increasing cell death in quercetin treated cells. Black-Right-Pointing-Pointer Quercetin, and not a modified form, is responsible for apoptosis and cell death. -- Abstract: Quercetin is a member of the flavonoid family and has been previously shown to have a variety of anti-cancer activities. We and others have reported anti-proliferation, cell cycle arrest, and induction of apoptosis of cancer cells after treatment with quercetin. Quercetin has also been shown to undergo oxidation. However, it is unclear if quercetin or one of its oxidized forms is responsible for cell death. Here we report that quercetin rapidly oxidized in cell culture media to form a dimer. The quercetin dimer is identical to a dimer that is naturally produced by onions. The quercetin dimer and quercetin-3-O-glucopyranoside are unable to cross the cell membrane and do not kill MDA-MB-231 cells. Finally, supplementing the media with ascorbic acid increases quercetin's ability to induce cell death probably by reduction oxidative dimerization. Our results suggest that an unmodified quercetin is the compound that elicits cell death.

  14. A Knockout Mutation of a Constitutive GPCR in Tetrahymena Decreases Both G-Protein Activity and Chemoattraction

    PubMed Central

    Lampert, Thomas J.; Coleman, Kevin D.; Hennessey, Todd M.

    2011-01-01

    Although G-protein coupled receptors (GPCRs) are a common element in many chemosensory transduction pathways in eukaryotic cells, no GPCR or regulated G-protein activity has yet been shown in any ciliate. To study the possible role for a GPCR in the chemoresponses of the ciliate Tetrahymena, we have generated a number of macronuclear gene knockouts of putative GPCRs found in the Tetrahymena Genome database. One of these knockout mutants, called G6, is a complete knockout of a gene that we call GPCR6 (TTHERM_00925490). Based on sequence comparisons, the Gpcr6p protein belongs to the Rhodopsin Family of GPCRs. Notably, Gpcr6p shares highest amino acid sequence homologies to GPCRs from Paramecium and several plants. One of the phenotypes of the G6 mutant is a decreased responsiveness to the depolarizing ions Ba2+ and K+, suggesting a decrease in basal excitability (decrease in Ca2+ channel activity). The other major phenotype of G6 is a loss of chemoattraction to lysophosphatidic acid (LPA) and proteose peptone (PP), two known chemoattractants in Tetrahymena. Using microsomal [35S]GTPγS binding assays, we found that wild-type (CU427) have a prominent basal G-protein activity. This activity is decreased to the same level by pertussis toxin (a G-protein inhibitor), addition of chemoattractants, or the G6 mutant. Since the basal G-protein activity is decreased by the GPCR6 knockout, it is likely that this gene codes for a constitutively active GPCR in Tetrahymena. We propose that chemoattractants like LPA and PP cause attraction in Tetrahymena by decreasing the basal G-protein stimulating activity of Gpcr6p. This leads to decreased excitability in wild-type and longer runs of smooth forward swimming (less interrupted by direction changes) towards the attractant. Therefore, these attractants may work as inverse agonists through the constitutively active Gpcr6p coupled to a pertussis-sensitive G-protein. PMID:22140501

  15. Nutrient enrichment induces dormancy and decreases diversity of active bacteria in salt marsh sediments

    PubMed Central

    Kearns, Patrick J.; Angell, John H.; Howard, Evan M.; Deegan, Linda A.; Stanley, Rachel H. R.; Bowen, Jennifer L.

    2016-01-01

    Microorganisms control key biogeochemical pathways, thus changes in microbial diversity, community structure and activity can affect ecosystem response to environmental drivers. Understanding factors that control the proportion of active microbes in the environment and how they vary when perturbed is critical to anticipating ecosystem response to global change. Increasing supplies of anthropogenic nitrogen to ecosystems globally makes it imperative that we understand how nutrient supply alters active microbial communities. Here we show that nitrogen additions to salt marshes cause a shift in the active microbial community despite no change in the total community. The active community shift causes the proportion of dormant microbial taxa to double, from 45 to 90%, and induces diversity loss in the active portion of the community. Our results suggest that perturbations to salt marshes can drastically alter active microbial communities, however these communities may remain resilient by protecting total diversity through increased dormancy. PMID:27666199

  16. Nutrient enrichment induces dormancy and decreases diversity of active bacteria in salt marsh sediments

    NASA Astrophysics Data System (ADS)

    Kearns, Patrick J.; Angell, John H.; Howard, Evan M.; Deegan, Linda A.; Stanley, Rachel H. R.; Bowen, Jennifer L.

    2016-09-01

    Microorganisms control key biogeochemical pathways, thus changes in microbial diversity, community structure and activity can affect ecosystem response to environmental drivers. Understanding factors that control the proportion of active microbes in the environment and how they vary when perturbed is critical to anticipating ecosystem response to global change. Increasing supplies of anthropogenic nitrogen to ecosystems globally makes it imperative that we understand how nutrient supply alters active microbial communities. Here we show that nitrogen additions to salt marshes cause a shift in the active microbial community despite no change in the total community. The active community shift causes the proportion of dormant microbial taxa to double, from 45 to 90%, and induces diversity loss in the active portion of the community. Our results suggest that perturbations to salt marshes can drastically alter active microbial communities, however these communities may remain resilient by protecting total diversity through increased dormancy.

  17. Decrease in serum cortisol during yoga exercise is correlated with alpha wave activation.

    PubMed

    Kamei, T; Toriumi, Y; Kimura, H; Ohno, S; Kumano, H; Kimura, K

    2000-06-01

    We examined changes in brain waves and blood levels of serum cortisol during yoga exercise in 7 yoga instructors and found that alpha waves increased and serum cortisol decreased. These two measures were negatively correlated (r = -.83). Comparison with a control group of nonpractitioners is desirable.

  18. Hepatocyte nuclear factor 4 response to injury involves a rapid decrease in DNA binding and transactivation via a JAK2 signal transduction pathway.

    PubMed Central

    Li, Xuemei; Salisbury-Rowswell, John; Murdock, Alan D; Forse, R Armour; Burke, Peter A

    2002-01-01

    The injury response is a complex set of events, which represents the reaction of a biological system to a perceived change in its environment in an attempt to maintain system integrity. Isolation of individual events or components of this response cannot describe the overall process, but may reflect general mechanisms that have evolved over time to solve the complex requirements of the injury response. The process, generally termed the acute phase response, is a series of organ-specific responses that begin shortly after a systemic injury. In the liver, this response involves both dramatic inductions and reductions in specific sets of genes, and an overall widespread global change in proteins produced. This can be thought of as a phenotypic change or 'reprogramming' of the liver. These changes in protein production are modulated and regulated at the level of transcription and involve significant manipulations of transcriptional regulatory mechanisms. Hepatocyte nuclear factor 4 (HNF-4) is a liver enriched transcription factor that regulates a large number of liver-specific genes, which play important roles in the critical pathways modulated by the response to injury. HNF-4 also performs an essential role in overall development and is critical for the normal expression of multiple genes in the developed liver, as well as being upstream of HNF-1 in a transcriptional hierarchy that drives hepatocyte differentiation. The role of HNF-4 in regulating liver-specific transcriptional changes directed by injury remains to be defined. In our cell-culture and whole-animal models, we demonstrate that the binding activity of HNF-4 decreases quickly after injury due to post-translational modification by phosphorylation. The mechanisms by which HNF-4 is modified after injury involve the activation of Janus kinase 2 (JAK2) signal transduction pathways, but the direct or indirect interaction of JAK2 with HNF-4 remains to be defined. PMID:12106016

  19. Rapid X-Ray Variability of Active Galaxies. Ph.D. Thesis

    NASA Technical Reports Server (NTRS)

    Tennant, A. F., Jr.

    1983-01-01

    Active galactic nuclei are luminous sources of X-rays. The thesis that the X-rays are generated within 10 gravitational radii from the central object is tested. A very sensitive search for rapid ( 1 day) X-ray variability from active galaxies was made.

  20. Decreasing Stereotypy in Preschoolers with Autism Spectrum Disorder: The Role of Increased Physical Activity and Function

    ERIC Educational Resources Information Center

    McLaughlin, Constance Ann Hylton

    2010-01-01

    This study used increased physical activity during recess to reduce stereotypy in preschoolers with Autism Spectrum Disorder. Results indicate increasing physical activity can be used as an intervention to reduce automatically maintained stereotypy in preschoolers with ASD. The intervention had a lesser effect on a preschooler whose stereotypy was…

  1. Experimental evidence for shallow, slow-moving landslides activated by a decrease in ground temperature

    NASA Astrophysics Data System (ADS)

    Shibasaki, Tatsuya; Matsuura, Sumio; Okamoto, Takashi

    2016-07-01

    In order to understand the trigger mechanism of slow-moving landslides occurring in the early cold season from late autumn to winter, we investigated the effect of temperature on the shear strength of slip surface soils. Displacement-controlled and shear stress-controlled box shear experiments were performed on undisturbed slip zone soils under residual strength conditions. Test results conducted at temperatures from 9 to 25°C showed remarkable shear strength reductions with decreasing temperature. Creep-like slow shear displacements were induced by a decrease in temperature. These temperature-dependent shear behaviors are attributed to the rheological properties of hydrous smectite that dominantly compose the soil material along the failure surface. Our experimental results imply that ground temperature conditions influence slope instability, especially for shallow landslides occurring in smectite-bearing rock areas.

  2. Rapid Decreasing in the Orbital Period of the Detached White Dwarf-main Sequence Binary SDSS J143547.87+373338.5

    NASA Astrophysics Data System (ADS)

    Qian, S.-B.; Han, Z.-T.; Soonthornthum, B.; Zhu, L.-Y.; He, J.-J.; Rattanasoon, S.; Aukkaravittayapun, S.; Liao, W.-P.; Zhao, E.-G.; Zhang, J.; Fernández Lajús, E.

    2016-02-01

    SDSS J143547.87+373338.5 is a detached eclipsing binary that contains a white dwarf with a mass of 0.5 M⊙ and a fully convective star with a mass of 0.21 M⊙. The eclipsing binary was monitored photometrically from 2009 March 24 to 2015 April 10, by using two 2.4-m telescopes in China and in Thailand. The changes in the orbital period are analyzed based on eight newly determined eclipse times together with those compiled from the literature. It is found that the observed-calculated (O-C) diagram shows a downward parabolic change that reveals a continuous period decrease at a rate of \\dot{P}=-8.04× {10}-11 s s-1. According to the standard theory of cataclysmic variables, angular momentum loss (AML) via magnetic braking (MB) is stopped for fully convective stars. However, this period decrease is too large to be caused by AML via gravitational radiation (GR), indicating that there could be some extra source of AML beyond GR, but the predicted mass-loss rates from MB seem unrealistically large. The other possibility is that the O-C diagram may show a cyclic oscillation with a period of 7.72 years and a small amplitude of 0.ͩ000525. The cyclic change can be explained as the light-travel-time effect via the presence of a third body because the required energy for the magnetic activity cycle is much larger than that radiated from the secondary in a whole cycle. The mass of the potential third body is determined to be {M}3{sin}{i}\\prime =0.0189(+/- 0.0016) M⊙ when a total mass of 0.71 M⊙ for SDSS J143547.87+373338.5 is adopted. For orbital inclinations {i}\\prime ≥slant 15\\buildrel{\\circ}\\over{.} 9, it would be below the stable hydrogen-burning limit of M3 ˜ 0.072 M⊙, and thus the third body would be a brown dwarf.

  3. DELTAMETHRIN AND PERMETHRIN DECREASE SPONTANEOUS ACTIVITY IN NEURONAL NETWORKS IN VITRO.

    EPA Science Inventory

    Effects of pyrethroid insecticides on spontaneous electrical activity were investigated in primary cultures of cortical or spinal cord neurons grown on microelectrode arrays. Bicuculline (40 ¿M) was utilized to block fast GABAergic transmission, and concentration-dependent effect...

  4. BLOOD AND BRAIN CONCENTRATIONS OF BIFENTHRIN CORRELATE WITH DECREASED MOTOR ACTIVITY INDEPENDENT OF TIME OF EXPOSURE

    EPA Science Inventory

    Pyrethroids are neurotoxic insecticides used in a variety of agricultural and household activities. Due to the phase-out of organophosphate pesticides, the use of pyrethroids has increased. The potential for human exposure to pyrethroids has prompted pharmacodynamic and pharmac...

  5. Decreased Flight Activity in Culex pipiens (Diptera: Culicidae) Naturally Infected With Culex flavivirus.

    PubMed

    Newman, Christina M; Anderson, Tavis K; Goldberg, Tony L

    2016-01-01

    Insect-specific flaviviruses (ISFVs) commonly infect vectors of mosquito-borne arboviruses. To investigate whether infection with an ISFV might affect mosquito flight behavior, we quantified flight behavior in Culex pipiens L. naturally infected with Culex flavivirus (CxFV). We observed a significant reduction in the scotophase (dark hours) flight activity of CxFV-positive mosquitoes relative to CxFV-negative mosquitoes, but only a marginal reduction in photophase (light hours) flight activity, and no change in the circadian pattern of flight activity. These results suggest that CxFV infection alters the flight activity of naturally infected Cx. pipiens most dramatically when these vectors are likely to be host seeking and may therefore affect the transmission of medically important arboviruses.

  6. Intracellular ATP Decrease Mediates NLRP3 Inflammasome Activation upon Nigericin and Crystal Stimulation.

    PubMed

    Nomura, Johji; So, Alexander; Tamura, Mizuho; Busso, Nathalie

    2015-12-15

    Activation of the nucleotide-binding oligomerization domain-like receptor family, pyrin domain-containing 3 (NLRP3) inflammasome initiates an inflammatory response, which is associated with host defense against pathogens and the progression of chronic inflammatory diseases such as gout and atherosclerosis. The NLRP3 inflammasome mediates caspase-1 activation and subsequent IL-1β processing in response to various stimuli, including extracellular ATP, although the roles of intracellular ATP (iATP) in NLRP3 activation remain unclear. In this study, we found that in activated macrophages artificial reduction of iATP by 2-deoxyglucose, a glycolysis inhibitor, caused mitochondrial membrane depolarization, leading to IL-1β secretion via NLRP3 and caspase-1 activation. Additionally, the NLRP3 activators nigericin and monosodium urate crystals lowered iATP through K(+)- and Ca(2+)-mediated mitochondrial dysfunction, suggesting a feedback loop between iATP loss and lowering of mitochondrial membrane potential. These results demonstrate the fundamental roles of iATP in the maintenance of mitochondrial function and regulation of IL-1β secretion, and they suggest that maintenance of the intracellular ATP pools could be a strategy for countering NLRP3-mediated inflammation. PMID:26546608

  7. Lithium treatment decreases activities of tau kinases in a murine model of senescence.

    PubMed

    Tajes, Marta; Gutierrez-Cuesta, Javier; Folch, Jaume; Ferrer, Isidre; Caballero, Beatriz; Smith, Mark A; Casadesus, Gemma; Camins, Antoni; Pallás, Mercé

    2008-06-01

    Lithium modulates glycogen synthase kinase 3beta (GSK-3beta), a kinase involved in Alzheimer disease-related tau pathology. To investigate mechanisms of aging and the potential therapy of lithium in neurodegenerative disease, we treated senescence-accelerated mouse (SAM)P8 mice, a murine model of senescence, and mice of the control SAMR1 strain with lithium. The treatment reduced hippocampal caspase 3 and calpain activation, indicating that it provides neuroprotection. Lithium also reduced both the levels and activity of GSK-3beta and the activity of cyclin-dependent kinase 5 and reduced hyperphosphorylation of 3 different phosphoepitopes of tau: Ser199, Ser212, and Ser396. In lithium-treated primary cultures of SAMP8 and SAMR1 cerebellar neurons, there was a marked reduction in protease activity mediated by calpain and caspase 3. Both lithium and SB415286, a specific inhibitor of GSK-3beta, reduced apoptosis in vitro. Taken together, these in vivo and in vitro findings of lithium-mediated reductions in GSK-3beta and cyclin-dependent kinase 5 activities, tau phosphorylation, apoptotic activity, and cell death provide a strong rationale for the use of lithium as a potential treatment in neurodegenerative diseases.

  8. Changes in Microbial Extracellular Enzyme Activity Associated with Decreasing Organic Matter Particle Size in a Louisiana Cypress Swamp

    NASA Astrophysics Data System (ADS)

    Vallaire, S.; Jackson, C. R.

    2005-05-01

    Microbial extracellular enzymes are vital to the decomposition of fine particulate organic matter (FPOM) in aquatic systems. However, little is known about variations in the activity of these enzymes with decreasing FPOM size, and even less is known about the importance of these enzymes in the decomposition of FPOM in wetland sediments. Three sediment samples were collected from a Louisiana cypress swamp and sieved into five size ranges, consisting of course particulate organic matter (>1 mm), and four different sizes of FPOM: 0.5-1mm, 0.25-0.5mm, 0.125-0.25mm, and 0.063-0.125mm. For each size range, we assayed the activities of six enzymes involved in lignocellulose decomposition. Activities of beta-glucosidase, beta-xylosidase, cellobiohydrolase, and beta-N-acetylglucosaminidase were strongly correlated with each other, and the activities of all four hydrolytic enzymes began to decrease in activity on FPOM less than 0.5mm. Peroxidase activity was generally low, but peaked on 0.125-0.25mm particles. Phenol oxidase activity was not detected in any samples, regardless of particle size. These results show that changes in microbial enzyme activity occur as FPOM decreases in size, particularly on particles below a 0.25-0.5mm threshold. These changes may reflect differences in both the microbial community and the nature of the FPOM.

  9. Age-related decrease in physical activity and functional fitness among elderly men and women

    PubMed Central

    Milanović, Zoran; Pantelić, Saša; Trajković, Nebojša; Sporiš, Goran; Kostić, Radmila; James, Nic

    2013-01-01

    Aim To determine differences in physical activity level and functional fitness between young elderly (60–69 years) and old elderly (70–80 years) people with the hypothesis that an age-related decline would be found. Methods A total of 1288 participants’ level of physical activity was evaluated using the International Physical Activity Questionnaire: 594 were male (mean ± standard deviation: body height 175.62 ± 9.78 cm; body weight 82.26 ± 31.33 kg) and 694 female (mean ± standard deviation: body height 165.17 ± 23.12 cm; body weight 69.74 ± 12.44 kg). Functional fitness was also estimated using the Senior Fitness Test: back scratch, chair sit and reach, 8-foot up and go, chair stand up for 30 seconds, arm curl, and 2-minute step test. Results Significant differences (P < 0.05) were found for all Senior Fitness tests between young elderly (60–69 years) and old elderly (70–80) men. Similar results were found for the women, except no significant differences were found for the chair sit and reach and the 2-minute step test. From the viewpoint of energy consumption estimated by the International Physical Activity Questionnaire, moderate physical activity is dominant. In addition, with aging, among men and women older than 60 years, the value of the Metabolic Equivalent of Task in total physical activity significantly reduces (P < 0.05). Conclusions This study found that the reduction in physical activity level and functional fitness was equal for both men and women and was due to the aging process. These differences between young and old elderly people were due to the reduction of muscle strength in both upper and lower limbs and changes in body-fat percentage, flexibility, agility, and endurance. PMID:23723694

  10. Inhibition of prolidase activity by nickel causes decreased growth of proline auxotrophic CHO cells.

    PubMed

    Miltyk, Wojciech; Surazynski, Arkadiusz; Kasprzak, Kazimierz S; Fivash, Matthew J; Buzard, Gregory S; Phang, James M

    2005-04-15

    Occupational exposure to nickel has been epidemiologically linked to increased cancer risk in the respiratory tract. Nickel-induced cell transformation is associated with both genotoxic and epigenetic mechanisms that are poorly understood. Prolidase [E.C.3.4.13.9] is a cytosolic Mn(II)-activated metalloproteinase that specifically hydrolyzes imidodipeptides with C-terminal proline or hydroxyproline and plays an important role in the recycling of proline for protein synthesis and cell growth. Prolidase also provides free proline as substrate for proline oxidase, whose gene is activated by p53 during apoptosis. The inhibition of prolidase activity by nickel has not yet been studied. We first showed that Ni(II) chloride specifically inhibited prolidase activity in CHO-K1 cells in situ. This interpretation was possible because CHO-K1 cells are proline auxotrophs requiring added free proline or proline released from added Gly-Pro by prolidase. In a dose-dependent fashion, Ni(II) inhibited growth on Gly-Pro but did not inhibit growth on proline, thereby showing inhibition of prolidase in situ in the absence of nonspecific toxicity. Studies using cell-free extracts showed that Ni(II) inhibited prolidase activity when present during prolidase activation with Mn(II) or during incubation with Gly-Pro. In kinetic studies, we found that Ni(II) inhibition of prolidase varied with respect to Mn(II) concentration. Analysis of these data suggested that increasing concentrations of Mn(II) stabilized the enzyme protein against Ni(II) inhibition. Because prolidase is an important enzyme in collagen metabolism, inhibition of the enzyme activity by nickel could alter the metabolism of collagen and other matrix proteins, and thereby alter cell-matrix and cell-cell interactions involved in gene expression, genomic stability, cellular differentiation, and cell proliferation. PMID:15696600

  11. Decreased Ventral Striatal Activity with Impulse Control Disorders in Parkinson’s Disease

    PubMed Central

    Rao, Hengyi; Mamikonyan, Eugenia; Detre, John A.; Siderowf, Andrew D.; Stern, Matthew B.; Potenza, Marc N.; Weintraub, Daniel

    2010-01-01

    Purpose A range of impulse control disorders (ICDs) are reported to occur in Parkinson’s disease (PD). However, alterations in brain activity at rest and during risk taking occurring with ICDs in PD are not well understood. Methods We used both arterial spin labeling (ASL) perfusion fMRI to directly quantify resting cerebral blood flow (CBF) and blood oxygenation level dependent (BOLD) fMRI to measure neural responses to risk taking during performance on the Balloon Analogue Risk Task (BART). Results 18 PD patients, either with a diagnosis of one or more ICDs (N=9) or no lifetime ICD history (N=9), participated. BOLD fMRI data demonstrated that PD patients without an ICD activate the mesocorticolimbic pathway during risk taking. Compared with non-ICD patients, ICD patients demonstrated significantly diminished BOLD activity in the right ventral striatum during risk taking and significantly reduced resting CBF in the right ventral striatum. Conclusion ICDs in PD are associated with reduced right ventral striatal activity at rest and diminished striatal activation during risk taking, suggesting that a common neural mechanism may underlie ICDs in individuals with PD and those without PD. Thus, treatments for ICDs in non-PD patients warrant consideration in PD patients with ICDs. PMID:20589879

  12. Decreased ventral striatal activity with impulse control disorders in Parkinson's disease.

    PubMed

    Rao, Hengyi; Mamikonyan, Eugenia; Detre, John A; Siderowf, Andrew D; Stern, Matthew B; Potenza, Marc N; Weintraub, Daniel

    2010-08-15

    A range of impulse control disorders (ICDs) are reported to occur in Parkinson's disease (PD). However, alterations in brain activity at rest and during risk taking occurring with ICDs in PD are not well understood. We used both arterial spin labeling perfusion functional magnetic resonance imaging (fMRI) to directly quantify resting cerebral blood flow (CBF) and blood oxygenation level dependent (BOLD) fMRI to measure neural responses to risk taking during performance on the Balloon Analogue Risk Task (BART). Eighteen PD patients, either with a diagnosis of one or more ICDs (N = 9) or no lifetime ICD history (N = 9), participated. BOLD fMRI data demonstrated that PD patients without an ICD activate the mesocorticolimbic pathway during risk taking. Compared with non-ICD patients, ICD patients demonstrated significantly diminished BOLD activity in the right ventral striatum during risk taking and significantly reduced resting CBF in the right ventral striatum. ICDs in PD are associated with reduced right ventral striatal activity at rest and diminished striatal activation during risk taking, suggesting that a common neural mechanism may underlie ICDs in individuals with PD and those without PD. Thus, treatments for ICDs in non-PD patients warrant consideration in PD patients with ICDs. PMID:20589879

  13. Activation of NMDA receptors prevents excessive metabolic decrease in hypoxic rat pups.

    PubMed

    Baig, Mirza Shafiulla; Joseph, Vincent

    2006-05-01

    We tested the hypothesis that glutamate NMDA receptors may help maintain metabolic rate and body temperature during acute or chronic hypoxic exposure in newborn rats. We recorded ventilation, metabolism ((.)V(O(2)) -- ((.)V(CO(2)) and rectal temperature, under normoxia, acute hypoxia (30 min -- 12% O(2)), or following 10 days of chronic hypoxia, in 10 days old male and female rats, receiving saline i.p. injection or the NMDA receptor antagonist MK-801. Acute hypoxia decreased rectal temperature and metabolism, and increased ventilation, and (.)V(E)/((.)V(O(2) and (.)V(E)/((.)V(CO(2) to the same extent in males and females. MK-801 injection amplified the metabolic decrease under acute (in males and females) and chronic (in males) hypoxia, prevented the increase of minute ventilation, while (.)V(E)/((.)V(O(2) or (.)V(E)/((.)V(CO(2)remained constant. Hence, NMDA glutamate receptors help to maintain metabolic rate, minute ventilation and body temperature at a determined level in acute (males and females) and chronic hypoxia (males only).

  14. Metabolic control in a state of decreased activation: modulation of red cell metabolism.

    PubMed

    Jevning, R; Wilson, A F; Pirkle, H; O'Halloran, J P; Walsh, R N

    1983-11-01

    Very little is known in depth of the biochemical and physiological changes induced at the cellular level by human behavioral states. For study of the physiology of behavior at this level, the erythrocyte may be useful, because it is readily available and its metabolism and metabolic control are comparatively well understood. In this report we describe a marked decline of red cell glycolytic rate induced by the transcendental meditation technique (TM). This decline was significantly correlated with decreased plasma lactate concentration and with relaxation as indicated by electrodermal response. The occurrence of sleep was not correlated with the metabolic changes. The observed lack of variation of blood pH, blood gases, glucose, and hematocrit in this behavior implies that the decrease of erythrocyte metabolism is not an epiphenomenon of respiratory change or substrate availability. Based upon further measurements indicating persisting alteration of the red blood cell, we suggest the possibility of attachment of a humoral agent(s) to the cell in the mechanism of this effect. This behavioral effect is unique, and the effector(s) responsible may increase our understanding of metabolic control of the erythrocyte and of TM.

  15. Neuronal Activity and Glutamate Uptake Decrease Mitochondrial Mobility in Astrocytes and Position Mitochondria Near Glutamate Transporters

    PubMed Central

    Jackson, Joshua G.; O'Donnell, John C.; Takano, Hajime; Coulter, Douglas A.

    2014-01-01

    Within neurons, mitochondria are nonuniformly distributed and are retained at sites of high activity and metabolic demand. Glutamate transport and the concomitant activation of the Na+/K+-ATPase represent a substantial energetic demand on astrocytes. We hypothesized that mitochondrial mobility within astrocytic processes might be regulated by neuronal activity and glutamate transport. We imaged organotypic hippocampal slice cultures of rat, in which astrocytes maintain their highly branched morphologies and express glutamate transporters. Using time-lapse confocal microscopy, the mobility of mitochondria within individual astrocytic processes and neuronal dendrites was tracked. Within neurons, a greater percentage of mitochondria were mobile than in astrocytes. Furthermore, they moved faster and farther than in astrocytes. Inhibiting neuronal activity with tetrodotoxin (TTX) increased the percentage of mobile mitochondria in astrocytes. Mitochondrial movement in astrocytes was inhibited by vinblastine and cytochalasin D, demonstrating that this mobility depends on both the microtubule and actin cytoskeletons. Inhibition of glutamate transport tripled the percentage of mobile mitochondria in astrocytes. Conversely, application of the transporter substrate d-aspartate reversed the TTX-induced increase in the percentage of mobile mitochondria. Inhibition of reversed Na+/Ca2+ exchange also increased the percentage of mitochondria that were mobile. Last, we demonstrated that neuronal activity increases the probability that mitochondria appose GLT-1 particles within astrocyte processes, without changing the proximity of GLT-1 particles to VGLUT1. These results imply that neuronal activity and the resulting clearance of glutamate by astrocytes regulate the movement of astrocytic mitochondria and suggest a mechanism by which glutamate transporters might retain mitochondria at sites of glutamate uptake. PMID:24478345

  16. [Molecular Mechanisms of Functional Activity Decreasing of the Skin Cells With Its Aging].

    PubMed

    Khavinson, V Kh; Linkova, N S; Kukanova, E O; Orlova, O A

    2016-01-01

    The article discusses the pool of signaling molecules that regulate the functional activity of the skin cells. Molecules of apoptosis and cells skin aging are p53, p21, p15, Cdk 4/6 and Bcl-2. Inflammation in skin fibroblasts are realized through the cytokines TNF-α, TGF-β, IL-1, ICAM-1, matrix metalloproteinase MMP-1,2,3,9, transcription factor NF-κB and activator protein AP-1. An important role in the aging of skin cells play neuroimmunoendocrine signaling molecules--melatonin, serotonin, skin fibroblast proliferation marker chromogranin A and CD98hc. Age-related changes in the activity of immune cells of the skin is associated with impaired expression of cluster of differentiation of T-lymphocytes (CD3, CD4, CD5, CD8, CD11) and dendritic cells (CD83⁺). These signaling molecules produced by the fibroblasts of the skin, regulate the activity of immune cells involved in the cascade of reactions associated with inflammatory responses, proliferation, apoptosis and cell regeneration. Based on these data nowadays new highly selective approaches to the diagnosis of the skin and the creation of cosmetic agents for the prevention of aging are developed. PMID:27530044

  17. Greater Impulsivity is Associated with Decreased Brain Activation in Obese Women during a Delay Discounting Task

    PubMed Central

    Stoeckel, Luke E.; Murdaugh, Donna L.; Cox, James E.; Cook, Edwin W.; Weller, Rosalyn E.

    2012-01-01

    Impulsivity and poor inhibitory control are associated with higher rates of delay discounting (DD) or a greater preference for smaller, more immediate rewards at the expense of larger, but delayed rewards. Of the many functional magnetic resonance imaging (fMRI) studies of DD, few have investigated the correlation between individual differences in DD rate and brain activation related to DD trial difficulty, with difficult DD trials expected to activate putative executive function brain areas involved in impulse control. In the current study, we correlated patterns of brain activation as measured by fMRI during difficult vs. easy trials of a DD task with DD rate (k) in obese women. Difficulty was defined by how much a reward choice deviated from an individual’s ‘indifference point’, or the point where the subjective preference for an immediate and a delayed reward was approximately equivalent. We found that greater delay discounting was correlated with less modulation of activation in putative executive function brain areas, such as the middle and superior frontal gyri and inferior parietal lobule, in response to difficult compared to easy DD trials. These results support the suggestion that increased impulsivity is associated with deficient functioning of executive function areas of the brain. PMID:22948956

  18. [Molecular Mechanisms of Functional Activity Decreasing of the Skin Cells With Its Aging].

    PubMed

    Khavinson, V Kh; Linkova, N S; Kukanova, E O; Orlova, O A

    2016-01-01

    The article discusses the pool of signaling molecules that regulate the functional activity of the skin cells. Molecules of apoptosis and cells skin aging are p53, p21, p15, Cdk 4/6 and Bcl-2. Inflammation in skin fibroblasts are realized through the cytokines TNF-α, TGF-β, IL-1, ICAM-1, matrix metalloproteinase MMP-1,2,3,9, transcription factor NF-κB and activator protein AP-1. An important role in the aging of skin cells play neuroimmunoendocrine signaling molecules--melatonin, serotonin, skin fibroblast proliferation marker chromogranin A and CD98hc. Age-related changes in the activity of immune cells of the skin is associated with impaired expression of cluster of differentiation of T-lymphocytes (CD3, CD4, CD5, CD8, CD11) and dendritic cells (CD83⁺). These signaling molecules produced by the fibroblasts of the skin, regulate the activity of immune cells involved in the cascade of reactions associated with inflammatory responses, proliferation, apoptosis and cell regeneration. Based on these data nowadays new highly selective approaches to the diagnosis of the skin and the creation of cosmetic agents for the prevention of aging are developed.

  19. Decreased ventral anterior cingulate cortex activity is associated with reduced social pain during emotional support.

    PubMed

    Onoda, Keiichi; Okamoto, Yasumasa; Nakashima, Ken'ichiro; Nittono, Hiroshi; Ura, Mitsuhiro; Yamawaki, Shigeto

    2009-01-01

    People feel psychological pain when they are excluded, and this pain is often attenuated when emotional support is received. It is therefore likely that a specific neural mechanism underlies the detection of social exclusion. Similarly, specific neural mechanisms may underlie the beneficial effects of emotional support. Although neuroimaging researchers have recently examined the neural basis of social pain, there is presently no agreement as to which part of the anterior cingulate cortex (ACC) is involved in the perception and modulation of social pain. We hypothesized that activity in those brain regions that are associated with social pain would be correlated with decrements in social pain induced by emotional support. To examine the effects of emotional support on social pain caused by exclusion, we conducted an fMRI study in which participants played a virtual ball-tossing game. Participants were initially included and later excluded from the game. In the latter half of the session from which participants were excluded, participants received emotionally supportive text messages. We found that emotional support led to increased activity in the left lateral/medial prefrontal cortices and some temporal regions. Those individuals who experienced greater attenuation of social pain exhibited lower ventral ACC and higher left lateral prefrontal cortex activation. These results suggest that the ventral ACC underlies social pain, and that emotional support enhances prefrontal cortex activity, which in turn may lead to a weakened affective response. PMID:19562631

  20. Damage to temporo-parietal cortex decreases incidental activation of thematic relations during spoken word comprehension

    PubMed Central

    Mirman, Daniel; Graziano, Kristen M.

    2012-01-01

    Both taxonomic and thematic semantic relations have been studied extensively in behavioral studies and there is an emerging consensus that the anterior temporal lobe plays a particularly important role in the representation and processing of taxonomic relations, but the neural basis of thematic semantics is less clear. We used eye tracking to examine incidental activation of taxonomic and thematic relations during spoken word comprehension in participants with aphasia. Three groups of participants were tested: neurologically intact control participants (N=14), individuals with aphasia resulting from lesions in left hemisphere BA 39 and surrounding temporo-parietal cortex regions (N=7), and individuals with the same degree of aphasia severity and semantic impairment and anterior left hemisphere lesions (primarily inferior frontal gyrus and anterior temporal lobe) that spared BA 39 (N=6). The posterior lesion group showed reduced and delayed activation of thematic relations, but not taxonomic relations. In contrast, the anterior lesion group exhibited longer-lasting activation of taxonomic relations and did not differ from control participants in terms of activation of thematic relations. These results suggest that taxonomic and thematic semantic knowledge are functionally and neuroanatomically distinct, with the temporo-parietal cortex playing a particularly important role in thematic semantics. PMID:22571932

  1. Nitrous oxide has multiple deleterious effects on cobalamin metabolism and causes decreases in activities of both mammalian cobalamin-dependent enzymes in rats.

    PubMed Central

    Kondo, H; Osborne, M L; Kolhouse, J F; Binder, M J; Podell, E R; Utley, C S; Abrams, R S; Allen, R H

    1981-01-01

    In man, use of the general anesthetic nitrous oxide, N2O, is associated with hematologic and neurologic abnormalities that mimic those seen in cobalamin (Cbl, vitamin B12) deficiency. We have measured a number of aspects of Cbl metabolism in rts exposed to various concentrations of N2O for various periods of time. As little as 2% N2O given for 15 h resulted in 30% inhibition of methionine synthetase (MS) in rat liver. With 50% N2O, inhibition of 70% occurred with 1 h and did not change during the next 48 h. Under these conditions, no inhibition of methylmalonyl-CoA mutase (MMCoAM) was observed. The recovery of MS activity was slow and was only 80% of control values 72 h after N2O was stopped. Studies employing rats previously injected with [57Co]Cbl showed that N2O displaced [57Co]Cbl from MS in a manner that temporally and quantitatively paralleled the loss of MS activity. Recovery of MS activity paralleled the reappearance of [57Co]Cbl on MS. N2O also caused the hepatic content of CH3-[57Co]Cbl to decrease by 20-60%. When [57Co]-Cbl was extracted from liver and analyzed by paper chromatography, [57Co]Cbl analogues were present (10-40% of total [57Co]Cbl) in rats exposed to N2O, but not in control animals. When rats were exposed to 50% N2O for 33 d, the total of endogenous Cbl and Cbl analogues in liver decreased to 35% of control values and endogenous Cbl decreased to 10% of control values. At this time, MS activity was 15% of control values and MMCoAM was only 26% of control values. We conclude that N2O causes multiple defects in Cbl metabolism that include the following: (a) rapid inhibition of MS activity with a slow recovery when N2O is stopped; (b) displacement of Cbl from MS; (c) decreased CH3-Cbl; (d) conversion of Cbl to Cbl analogues; (e) the gradual development of Cbl deficiency and (f) an eventual decrease in MMCoAM activity with a further decrease in MS activity. PMID:6112240

  2. Amygdala-ventral striatum circuit activation decreases long-term fear

    PubMed Central

    Correia, Susana S; McGrath, Anna G; Lee, Allison; Graybiel, Ann M; Goosens, Ki A

    2016-01-01

    In humans, activation of the ventral striatum, a region associated with reward processing, is associated with the extinction of fear, a goal in the treatment of fear-related disorders. This evidence suggests that extinction of aversive memories engages reward-related circuits, but a causal relationship between activity in a reward circuit and fear extinction has not been demonstrated. Here, we identify a basolateral amygdala (BLA)-ventral striatum (NAc) pathway that is activated by extinction training. Enhanced recruitment of this circuit during extinction learning, either by pairing reward with fear extinction training or by optogenetic stimulation of this circuit during fear extinction, reduces the return of fear that normally follows extinction training. Our findings thus identify a specific BLA-NAc reward circuit that can regulate the persistence of fear extinction and point toward a potential therapeutic target for disorders in which the return of fear following extinction therapy is an obstacle to treatment. DOI: http://dx.doi.org/10.7554/eLife.12669.001 PMID:27671733

  3. Amygdala-ventral striatum circuit activation decreases long-term fear

    PubMed Central

    Correia, Susana S; McGrath, Anna G; Lee, Allison; Graybiel, Ann M; Goosens, Ki A

    2016-01-01

    In humans, activation of the ventral striatum, a region associated with reward processing, is associated with the extinction of fear, a goal in the treatment of fear-related disorders. This evidence suggests that extinction of aversive memories engages reward-related circuits, but a causal relationship between activity in a reward circuit and fear extinction has not been demonstrated. Here, we identify a basolateral amygdala (BLA)-ventral striatum (NAc) pathway that is activated by extinction training. Enhanced recruitment of this circuit during extinction learning, either by pairing reward with fear extinction training or by optogenetic stimulation of this circuit during fear extinction, reduces the return of fear that normally follows extinction training. Our findings thus identify a specific BLA-NAc reward circuit that can regulate the persistence of fear extinction and point toward a potential therapeutic target for disorders in which the return of fear following extinction therapy is an obstacle to treatment. DOI: http://dx.doi.org/10.7554/eLife.12669.001

  4. Male Weasels Decrease Activity and Energy Expenditure in Response to High Ambient Temperatures

    PubMed Central

    Zub, Karol; Fletcher, Quinn E.; Szafrańska, Paulina A.; Konarzewski, Marek

    2013-01-01

    The heat dissipation limit (HDL) hypothesis suggests that the capacity of endotherms to dissipate body heat may impose constraints on their energy expenditure. Specifically, this hypothesis predicts that endotherms should avoid the detrimental consequences of hyperthermia by lowering their energy expenditure and reducing their activity in response to high ambient temperatures (Ta). We used an extensive data set on the daily energy expenditure (DEE, n = 27) and the daily activity time (AT, n = 48) of male weasels (Mustela nivalis) during the spring and summer breeding season to test these predictions. We found that Ta was related in a “hump-shaped” (i.e. convex) manner to AT, DEE, resting metabolic rate (RMR) and metabolic scope (the ratio of DEE to RMR). These results support the HDL hypothesis because in response to warm Tas male weasels reduced their AT, DEE, and RMR. Although the activity and energy expenditure of large endotherms are most likely to be constrained in response to warm Tas because they are less able to dissipate heat, our results suggest that small endotherms may also experience constraints consistent with the HDL hypothesis. PMID:23977336

  5. Rapid response of a hydrologic system to volcanic activity: Masaya volcano, Nicaragua

    USGS Publications Warehouse

    Pearson, S.C.P.; Connor, C.B.; Sanford, W.E.

    2008-01-01

    Hydrologic systems change in response to volcanic activity, and in turn may be sensitive indicators of volcanic activity. Here we investigate the coupled nature of magmatic and hydrologic systems using continuous multichannel time series of soil temperature collected on the flanks of Masaya volcano, Nicaragua, one of the most active volcanoes in Central America. The soil temperatures were measured in a low-temperature fumarole field located 3.5 km down the flanks of the volcano. Analysis of these time series reveals that they respond extremely rapidly, on a time scale of minutes, to changes in volcanic activity also manifested at the summit vent. These rapid temperature changes are caused by increased flow of water vapor through flank fumaroles during volcanism. The soil temperature response, ~5 °C, is repetitive and complex, with as many as 13 pulses during a single volcanic episode. Analysis of the frequency spectrum of these temperature time series shows that these anomalies are characterized by broad frequency content during volcanic activity. They are thus easily distinguished from seasonal trends, diurnal variations, or individual rainfall events, which triggered rapid transient increases in temperature during 5% of events. We suggest that the mechanism responsible for the distinctive temperature signals is rapid change in pore pressure in response to magmatism, a response that can be enhanced by meteoric water infiltration. Monitoring of distal fumaroles can therefore provide insight into coupled volcanic-hydrologic-meteorologic systems, and has potential as an inexpensive monitoring tool.

  6. Enhanced risk of thromboembolic disease in hypertension from platelet hyperfunction and decreased fibrinolytic activity: has antihypertensive therapy any influence?

    PubMed

    Winther, K; Gleerup, G; Hedner, T

    1992-01-01

    Enhanced platelet function and a decrease in fibrinolytic activity have been reported in patients with mild hypertension after treatment with various nonselective beta-blockers. Until now, such changes have not been reported during treatment with beta 1-selective drugs or with agents that have intrinsic sympathomimetic activity. The impact of angiotensin-converting enzyme inhibitors and diuretics on platelet function and fibrinolytic activity has not been fully elucidated. Calcium antagonists of various types, however, are known to decrease platelet release in vivo whereas their effects on platelet aggregation and fibrinolytic activity are less clear. The new dihydropyridine calcium antagonist isradipine, when tested in a group of patients with mild hypertension, resulted in a decrease in platelet aggregation, a shortened euglobulin clot-lysis time, and a dramatic increase in t-PA (tissue-plasminogen activator) activity after 14 days of treatment. These changes remained stable throughout the 1-year study period. The fact that antihypertensive therapy does not always result in the hoped-for prolongation of life, despite satisfactory blood pressure reduction, may be in part due to an unfavorable impact on various components of the blood-clotting system.

  7. GC protein-derived macrophage-activating factor decreases α-N-acetylgalactosaminidase levels in advanced cancer patients

    PubMed Central

    Thyer, Lynda; Ward, Emma; Smith, Rodney; Branca, Jacopo JV; Morucci, Gabriele; Gulisano, Massimo; Noakes, David; Eslinger, Robert; Pacini, Stefania

    2013-01-01

    α-N-acetylgalactosaminidase (nagalase) accumulates in the serum of cancer patients and its activity correlates with tumor burden, aggressiveness and clinical disease progression. The administration of GC protein-derived macrophage-activating factor (GcMAF) to cancer patients with elevated levels of nagalase has been associated with a decrease of serum nagalase activity and with significant clinical benefits. Here, we report the results of the administration of GcMAF to a heterogeneous cohort of patients with histologically diverse, advanced neoplasms, generally considered as “incurable” diseases. In most cases, GcMAF therapy was initiated at late stages of tumor progression. As this is an open-label, non-controlled, retrospective analysis, caution must be employed when establishing cause-effect relationships between the administration GcMAF and disease outcome. However, the response to GcMAF was generally robust and some trends emerged. All patients (n = 20) presented with elevated serum nagalase activity, well above normal values. All patients but one showed a significant decrease of serum nagalase activity upon weekly GcMAF injections. Decreased nagalase activity was associated with improved clinical conditions and no adverse side effects were reported. The observations reported here confirm and extend previous results and pave the way to further studies aimed at assessing the precise role and indications for GcMAF-based anticancer immunotherapy. PMID:24179708

  8. GC protein-derived macrophage-activating factor decreases α-N-acetylgalactosaminidase levels in advanced cancer patients.

    PubMed

    Thyer, Lynda; Ward, Emma; Smith, Rodney; Branca, Jacopo Jv; Morucci, Gabriele; Gulisano, Massimo; Noakes, David; Eslinger, Robert; Pacini, Stefania

    2013-08-01

    α-N-acetylgalactosaminidase (nagalase) accumulates in the serum of cancer patients and its activity correlates with tumor burden, aggressiveness and clinical disease progression. The administration of GC protein-derived macrophage-activating factor (GcMAF) to cancer patients with elevated levels of nagalase has been associated with a decrease of serum nagalase activity and with significant clinical benefits. Here, we report the results of the administration of GcMAF to a heterogeneous cohort of patients with histologically diverse, advanced neoplasms, generally considered as "incurable" diseases. In most cases, GcMAF therapy was initiated at late stages of tumor progression. As this is an open-label, non-controlled, retrospective analysis, caution must be employed when establishing cause-effect relationships between the administration GcMAF and disease outcome. However, the response to GcMAF was generally robust and some trends emerged. All patients (n = 20) presented with elevated serum nagalase activity, well above normal values. All patients but one showed a significant decrease of serum nagalase activity upon weekly GcMAF injections. Decreased nagalase activity was associated with improved clinical conditions and no adverse side effects were reported. The observations reported here confirm and extend previous results and pave the way to further studies aimed at assessing the precise role and indications for GcMAF-based anticancer immunotherapy. PMID:24179708

  9. Hydroxyapatite nanocrystals functionalized with alendronate as bioactive components for bone implant coatings to decrease osteoclastic activity

    NASA Astrophysics Data System (ADS)

    Bosco, Ruggero; Iafisco, Michele; Tampieri, Anna; Jansen, John A.; Leeuwenburgh, Sander C. G.; van den Beucken, Jeroen J. J. P.

    2015-02-01

    The integration of bone implants within native bone tissue depends on periprosthetic bone quality, which is severely decreased in osteoporotic patients. In this work, we have synthesized bone-like hydroxyapatite nanocrystals (nHA) using an acid-base neutralization reaction and analysed their physicochemical properties. Subsequently, we have functionalized the nHA with alendronate (nHAALE), a well-known bisphosphonate drug used for the treatment of osteoporosis. An in vitro osteoclastogenesis test was carried out to evaluate the effect of nHAALE on the formation of osteoclast-like cells from monocytic precursor cells (i.e. RAW264.7 cell line) showing that nHAALE significantly promoted apoptosis of osteoclast-like cells. Subsequently, nHA and nHAALE were deposited on titanium disks using electrospray deposition (ESD), for which characterisation of the deposited coatings confirmed the presence of alendronate in nHAALE coatings with nanoscale thickness of about 700 nm. These results indicate that alendronate linked to hydroxyapatite nanocrystals has therapeutic potential and nHAALE can be considered as an appealing coating constituent material for orthopaedic and oral implants for application in osteoporotic patients.

  10. Heavy metal pollution decreases microbial abundance, diversity and activity within particle-size fractions of a paddy soil.

    PubMed

    Chen, Junhui; He, Feng; Zhang, Xuhui; Sun, Xuan; Zheng, Jufeng; Zheng, Jinwei

    2014-01-01

    Chemical and microbial characterisations of particle-size fractions (PSFs) from a rice paddy soil subjected to long-term heavy metal pollution (P) and nonpolluted (NP) soil were performed to investigate whether the distribution of heavy metals (Cd, Cu, Pb and Zn) regulates microbial community activity, abundance and diversity at the microenvironment scale. The soils were physically fractionated into coarse sand, fine sand, silt and clay fractions. Long-term heavy metal pollution notably decreased soil basal respiration (a measurement of the total activity of the soil microbial community) and microbial biomass carbon (MBC) across the fractions by 3-45% and 21-53%, respectively. The coarse sand fraction was more affected by pollution than the clay fraction and displayed a significantly lower MBC content and respiration and dehydrogenase activity compared with the nonpolluted soils. The abundances and diversities of bacteria were less affected within the PSFs under pollution. However, significant decreases in the abundances and diversities of fungi were noted, which may have strongly contributed to the decrease in MBC. Sequencing of denaturing gradient gel electrophoresis bands revealed that the groups Acidobacteria, Ascomycota and Chytridiomycota were clearly inhibited under pollution. Our findings suggest that long-term heavy metal pollution decreased the microbial biomass, activity and diversity in PSFs, particularly in the large-size fractions.

  11. Rapid Rather than Gradual Weight Reduction Impairs Hemorheological Parameters of Taekwondo Athletes through Reduction in RBC-NOS Activation

    PubMed Central

    Yang, Woo Hwi; Heine, Oliver; Pauly, Sebastian; Kim, Pilsang; Bloch, Wilhelm; Mester, Joachim; Grau, Marijke

    2015-01-01

    Purpose Rapid weight reduction is part of the pre-competition routine and has been shown to negatively affect psychological and physiological performance of Taekwondo (TKD) athletes. This is caused by a reduction of the body water and an electrolyte imbalance. So far, it is unknown whether weight reduction also affects hemorheological properties and hemorheology-influencing nitric oxide (NO) signaling, important for oxygen supply to the muscles and organs. Methods For this purpose, ten male TKD athletes reduced their body weight by 5% within four days (rapid weight reduction, RWR). After a recovery phase, athletes reduced body weight by 5% within four weeks (gradual weight reduction, GWR). Each intervention was preceded by two baseline measurements and followed by a simulated competition. Basal blood parameters (red blood cell (RBC) count, hemoglobin concentration, hematocrit, mean corpuscular volume, mean cellular hemoglobin and mean cellular hemoglobin concentration), RBC-NO synthase activation, RBC nitrite as marker for NO synthesis, RBC deformability and aggregation parameters were determined on a total of eight investigation days. Results Basal blood parameters were not affected by the two interventions. In contrast to GWR, RWR decreased activation of RBC-NO synthase, RBC nitrite, respective NO concentration and RBC deformability. Additionally, RWR increased RBC aggregation and disaggregation threshold. Conclusion The results point out that a rapid weight reduction negatively affects hemorheological parameters and NO signaling in RBC which might limit performance capacity. Thus, GWR should be preferred to achieve the desired weight prior to a competition to avoid these negative effects. PMID:25875585

  12. Acetylation of glucokinase regulatory protein decreases glucose metabolism by suppressing glucokinase activity

    PubMed Central

    Park, Joo-Man; Kim, Tae-Hyun; Jo, Seong-Ho; Kim, Mi-Young; Ahn, Yong-Ho

    2015-01-01

    Glucokinase (GK), mainly expressed in the liver and pancreatic β-cells, is critical for maintaining glucose homeostasis. GK expression and kinase activity, respectively, are both modulated at the transcriptional and post-translational levels. Post-translationally, GK is regulated by binding the glucokinase regulatory protein (GKRP), resulting in GK retention in the nucleus and its inability to participate in cytosolic glycolysis. Although hepatic GKRP is known to be regulated by allosteric mechanisms, the precise details of modulation of GKRP activity, by post-translational modification, are not well known. Here, we demonstrate that GKRP is acetylated at Lys5 by the acetyltransferase p300. Acetylated GKRP is resistant to degradation by the ubiquitin-dependent proteasome pathway, suggesting that acetylation increases GKRP stability and binding to GK, further inhibiting GK nuclear export. Deacetylation of GKRP is effected by the NAD+-dependent, class III histone deacetylase SIRT2, which is inhibited by nicotinamide. Moreover, the livers of db/db obese, diabetic mice also show elevated GKRP acetylation, suggesting a broader, critical role in regulating blood glucose. Given that acetylated GKRP may affiliate with type-2 diabetes mellitus (T2DM), understanding the mechanism of GKRP acetylation in the liver could reveal novel targets within the GK-GKRP pathway, for treating T2DM and other metabolic pathologies. PMID:26620281

  13. Colchicine to decrease NLRP3-activated inflammation and improve obesity-related metabolic dysregulation.

    PubMed

    Demidowich, Andrew P; Davis, Angela I; Dedhia, Nicket; Yanovski, Jack A

    2016-07-01

    Obesity is a major risk-factor for the development of insulin resistance, type 2 diabetes, and cardiovascular disease. Circulating molecules associated with obesity, such as saturated fatty acids and cholesterol crystals, stimulate the innate immune system to incite a chronic inflammatory state. Studies in mouse models suggest that suppressing the obesity-induced chronic inflammatory state may prevent or reverse obesity-associated metabolic dysregulation. Human studies, however, have been far less positive, possibly because targeted interventions were too far downstream of the inciting inflammatory events. Recently, it has been shown that, within adipose tissue macrophages, assembly of a multi-protein member of the innate immune system, the NOD-like receptor family pyrin domain containing 3 (NLRP3) inflammasome, is essential for the induction of this inflammatory state. Microtubules enable the necessary spatial arrangement of the components of the NLRP3 inflammasome in the cell, leading to its activation and propagation of the inflammatory cascade. Colchicine, a medication classically used for gout, mediates its anti-inflammatory effect by inhibiting tubulin polymerization, and has been shown to attenuate macrophage NLRP3 inflammasome arrangement and activation in vitro and in vivo. Given these findings, we hypothesize that, in at-risk individuals (those with obesity-induced inflammation and metabolic dysregulation), long-term colchicine use will lead to suppression of inflammation and thus cause improvements in insulin sensitivity and other obesity-related metabolic impairments. PMID:27241260

  14. Age related decrease of NOR activity in bone marrow metaphase chromosomes from healthy individuals.

    PubMed Central

    Pedrazzini, E; Mamaev, N; Slavutsky, I

    1998-01-01

    AIMS: To present data obtained from human bone marrow preparations from healthy individual showing that the proportion of metaphases with silver stained nucleolar organiser region (AgNOR) chromosomes is associated with the age of the donor. METHODS: Bone marrow preparations from eight Russian and 10 Argentinian healthy individuals donating bone marrow for heterologous transplantation were studied by silver staining. The Russian bone marrow preparations were used directly, while the bone marrow specimens from Argentinian donors were incubated for 24 hours at 37 degrees C in F-10 medium with 15% fetal bovine serum. The slides were silver stained by the one step method of Howell and Black with slight modifications. Thirty metaphases with clearly defined D and G group chromosomes were scored for the numbers of AgNORs. All metaphases that were adjacent to silver stained interphase nuclei were analysed to assess the percentage of AgNOR positive mitoses. The Kruskal Wallis test and Kendall's rank correlation coefficient (rK) were used to assess the relation between age and the percentage of AgNOR positive cells. RESULTS: The mean numbers (SE) of AgNORs per metaphase were 5.06 (0.17) and 5.56 (0.23) for the Russian and Argentinian groups, respectively, with no significant differences between the two groups. The common percentage of AgNOR positive cells decreased significantly as a function of age, with an rK = -0.57 (p < 0.0012). CONCLUSIONS: The percentages of AgNOR negative metaphases in bone marrow from healthy individuals is strongly associated with age and this may be related to age related telomere loss. PMID:9624419

  15. Decreased bacteria activity on Si3N4 surfaces compared with PEEK or titanium

    PubMed Central

    Gorth, Deborah J; Puckett, Sabrina; Ercan, Batur; Webster, Thomas J; Rahaman, Mohamed; Bal, B Sonny

    2012-01-01

    A significant need exists for orthopedic implants that can intrinsically resist bacterial colonization. In this study, three biomaterials that are used in spinal implants – titanium (Ti), polyether-ether-ketone (PEEK), and silicon nitride (Si3N4) – were tested to understand their respective susceptibility to bacterial infection with Staphylococcus epidermidis, Staphlococcus aureus, Pseudomonas aeruginosa, Escherichia coli and Enterococcus. Specifically, the surface chemistry, wettability, and nanostructured topography of respective biomaterials, and the effects on bacterial biofilm formation, colonization, and growth were investigated. Ti and PEEK were received with as-machined surfaces; both materials are hydrophobic, with net negative surface charges. Two surface finishes of Si3N4 were examined: as-fired and polished. In contrast to Ti and PEEK, the surface of Si3N4 is hydrophilic, with a net positive charge. A decreased biofilm formation was found, as well as fewer live bacteria on both the as-fired and polished Si3N4. These differences may reflect differential surface chemistry and surface nanostructure properties between the biomaterials tested. Because protein adsorption on material surfaces affects bacterial adhesion, the adsorption of fibronectin, vitronectin, and laminin on Ti, PEEK, and Si3N4 were also examined. Significantly greater amounts of these proteins adhered to Si3N4 than to Ti or PEEK. The findings of this study suggest that surface properties of biomaterials lead to differential adsorption of physiologic proteins, and that this phenomenon could explain the observed in-vitro differences in bacterial affinity for the respective biomaterials. Intrinsic biomaterial properties as they relate to resistance to bacterial colonization may reflect a novel strategy toward designing future orthopedic implants. PMID:22973102

  16. Decreased bacteria activity on Si₃N₄ surfaces compared with PEEK or titanium.

    PubMed

    Gorth, Deborah J; Puckett, Sabrina; Ercan, Batur; Webster, Thomas J; Rahaman, Mohamed; Bal, B Sonny

    2012-01-01

    A significant need exists for orthopedic implants that can intrinsically resist bacterial colonization. In this study, three biomaterials that are used in spinal implants--titanium (Ti), polyether-ether-ketone (PEEK), and silicon nitride (Si₃N₄)--were tested to understand their respective susceptibility to bacterial infection with Staphylococcus epidermidis, Staphlococcus aureus, Pseudomonas aeruginosa, Escherichia coli and Enterococcus. Specifically, the surface chemistry, wettability, and nanostructured topography of respective biomaterials, and the effects on bacterial biofilm formation, colonization, and growth were investigated. Ti and PEEK were received with as-machined surfaces; both materials are hydrophobic, with net negative surface charges. Two surface finishes of Si₃N₄ were examined: as-fired and polished. In contrast to Ti and PEEK, the surface of Si₃N₄ is hydrophilic, with a net positive charge. A decreased biofilm formation was found, as well as fewer live bacteria on both the as-fired and polished Si₃N₄. These differences may reflect differential surface chemistry and surface nanostructure properties between the biomaterials tested. Because protein adsorption on material surfaces affects bacterial adhesion, the adsorption of fibronectin, vitronectin, and laminin on Ti, PEEK, and Si₃N₄ were also examined. Significantly greater amounts of these proteins adhered to Si₃N₄ than to Ti or PEEK. The findings of this study suggest that surface properties of biomaterials lead to differential adsorption of physiologic proteins, and that this phenomenon could explain the observed in-vitro differences in bacterial affinity for the respective biomaterials. Intrinsic biomaterial properties as they relate to resistance to bacterial colonization may reflect a novel strategy toward designing future orthopedic implants.

  17. Osthole decreases renal ischemia-reperfusion injury by suppressing JAK2/STAT3 signaling activation

    PubMed Central

    Luo, Lin-Na; Xie, De Qiong; Zhang, Xiao Gang; Jiang, Rong

    2016-01-01

    Renal ischemia-reperfusion (I/R) injury is a major cause of acute kidney injury. The pathogenetic mechanisms underlying renal I/R injury involve inflammation, oxidative stress and apoptosis. Osthole is a coumarin derivative that exhibits potential anti-inflammatory activity. The aim of the present study was to investigate the effect of osthole in renal I/R injury and its underlying mechanism. Renal I/R injury was induced by clamping the left renal artery for 45 min followed by 24 h reperfusion with the contralateral nephrectomy. A total of 70 rats were randomly assigned to seven groups (n=10 per group): Sham; IRI; and osthole (0, 5, 10, 20 and 40 mg/kg) groups. Rats were administered intraperitoneally with osthole 45 min prior to renal ischemia. Serum and renal tissue were harvested 24 h after reperfusion. Renal function and histological changes were assessed. In addition, the mRNA and protein expression of tumor necrosis factor-α (TNF-α), interleukin-8 (IL-8) and interleukin-6 (IL-6) in renal tissue and serum were evaluated using quantitative polymerase chain reaction and ELISA assays, respectively. The protein expression levels of p65, p-p65, janus kinase 2 (JAK2), p-JAK2, signal transducer and activator of transcription 3 (STAT3) and p-STAT3 were measured using western blot analysis. The results indicate that osthole pretreatment was able to significantly attenuate the renal dysfunction in a dose-dependent manner, histological changes and the expression of TNF-α, IL-8, IL-6, p-JAK2, p-STAT3 and p-p65 induced by renal I/R injury. However, neither osthole or I/R injury affected the expression p65, JAK2 and STAT3. Osthole pretreatment is able to reduce renal I/R injury by abrogating inflammation and the mechanism is partially involved in suppressing JAK2/STAT3 activation. Thus, osthole may be a novel practical strategy for the mitigation of renal I/R injury. PMID:27698686

  18. Osthole decreases renal ischemia-reperfusion injury by suppressing JAK2/STAT3 signaling activation

    PubMed Central

    Luo, Lin-Na; Xie, De Qiong; Zhang, Xiao Gang; Jiang, Rong

    2016-01-01

    Renal ischemia-reperfusion (I/R) injury is a major cause of acute kidney injury. The pathogenetic mechanisms underlying renal I/R injury involve inflammation, oxidative stress and apoptosis. Osthole is a coumarin derivative that exhibits potential anti-inflammatory activity. The aim of the present study was to investigate the effect of osthole in renal I/R injury and its underlying mechanism. Renal I/R injury was induced by clamping the left renal artery for 45 min followed by 24 h reperfusion with the contralateral nephrectomy. A total of 70 rats were randomly assigned to seven groups (n=10 per group): Sham; IRI; and osthole (0, 5, 10, 20 and 40 mg/kg) groups. Rats were administered intraperitoneally with osthole 45 min prior to renal ischemia. Serum and renal tissue were harvested 24 h after reperfusion. Renal function and histological changes were assessed. In addition, the mRNA and protein expression of tumor necrosis factor-α (TNF-α), interleukin-8 (IL-8) and interleukin-6 (IL-6) in renal tissue and serum were evaluated using quantitative polymerase chain reaction and ELISA assays, respectively. The protein expression levels of p65, p-p65, janus kinase 2 (JAK2), p-JAK2, signal transducer and activator of transcription 3 (STAT3) and p-STAT3 were measured using western blot analysis. The results indicate that osthole pretreatment was able to significantly attenuate the renal dysfunction in a dose-dependent manner, histological changes and the expression of TNF-α, IL-8, IL-6, p-JAK2, p-STAT3 and p-p65 induced by renal I/R injury. However, neither osthole or I/R injury affected the expression p65, JAK2 and STAT3. Osthole pretreatment is able to reduce renal I/R injury by abrogating inflammation and the mechanism is partially involved in suppressing JAK2/STAT3 activation. Thus, osthole may be a novel practical strategy for the mitigation of renal I/R injury.

  19. High Fetal Estrogen Concentrations: Correlation with Increased Adult Sexual Activity and Decreased Aggression in Male Mice

    NASA Astrophysics Data System (ADS)

    Vom Saal, Frederick S.; Grant, William M.; McMullen, Carol W.; Laves, Kurt S.

    1983-06-01

    In the house mouse (Mus musculus), fetuses may develop in utero next to siblings of the same or opposite sex. The amniotic fluid of the female fetuses contains higher concentrations of estradiol than that of male fetuses. Male fetuses that developed in utero between female fetuses had higher concentrations of estradiol in their amniotic fluid than males that were located between other male fetusesw during intrauterine development. They were also more sexually active as adults, less aggressive, and had smaller seminal vesicles than males that had developed between other male fetuses in utero. These findings raise the possibility that during fetal life circulating estrogens may interact with circulating androgens both in regulating the development of sex differences between males and females and in producing variation in phenotype among males and among females.

  20. Functional Brain Activation Differences in Stuttering Identified with a Rapid fMRI Sequence

    ERIC Educational Resources Information Center

    Loucks, Torrey; Kraft, Shelly Jo; Choo, Ai Leen; Sharma, Harish; Ambrose, Nicoline G.

    2011-01-01

    The purpose of this study was to investigate whether brain activity related to the presence of stuttering can be identified with rapid functional MRI (fMRI) sequences that involved overt and covert speech processing tasks. The long-term goal is to develop sensitive fMRI approaches with developmentally appropriate tasks to identify deviant speech…

  1. 20 CFR 665.320 - May other activities be undertaken as part of rapid response?

    Code of Federal Regulations, 2014 CFR

    2014-04-01

    ... 20 Employees' Benefits 4 2014-04-01 2014-04-01 false May other activities be undertaken as part of rapid response? 665.320 Section 665.320 Employees' Benefits EMPLOYMENT AND TRAINING ADMINISTRATION... notification of a permanent closure or mass layoff, or a natural or other disaster resulting in a mass...

  2. Decreasing relapse in colorectal cancer patients treated with cetuximab by using the activating KRAS detection chip.

    PubMed

    Huang, Ming-Yii; Liu, Hsueh-Chiao; Yen, Li-Chen; Chang, Jia-Yuan; Huang, Jian-Jhang; Wang, Jaw-Yuan; Lin, Shiu-Ru

    2014-10-01

    The KRAS oncogene was among the first genetic alterations in colorectal cancer (CRC) to be discovered. Moreover, KRAS somatic mutations might be used for predicting the efficiency of anti-epidermal growth factor receptor therapeutic drugs. Because the KRAS mutations are similar in the primary CRC and/or the CRC metastasis, KRAS mutation testing can be performed on both specimen types. The purpose of this study was to investigate the clinical advantage of using a KRAS pathway-associated molecule analysis chip to analyze CRC patients treated with cetuximab. Our laboratory developed a KRAS pathway-associated molecule analysis chip and a weighted enzymatic chip array (WEnCA) technique, activating KRAS detection chip, which can detect KRAS mutation status by screening circulating cancer cells in the bloodstream. We prospectively enrolled 210 stage II-III CRC patients who received adjuvant oxaliplatin plus infusional 5-fluorouracil/leucovorin (FOLFOX)-4 chemotherapy with or without cetuximab. We compared the chip results of preoperative blood specimens with disease control status in these patients. Among the 168 CRC patients with negative chip results, 119 were treated with FOLFOX-4 plus cetuximab chemotherapy, and their relapse rate was 35.3 % (42/119). In contrast, the relapse rate was 71.4 % among the patients with negative chip results who received FOLFOX-4 treatment alone (35/49). Negative chip results were significantly correlated with better treatment outcomes in the FOLFOX-4 plus cetuximab group (P < 0.001). We suggest that the activating KRAS detection chip is a potential tool for predicting clinical outcomes in CRC patients following FOLFOX-4 treatment with or without cetuximab therapy.

  3. Inhaled nitric oxide decreases pulmonary endothelial nitric oxide synthase expression and activity in normal newborn rat lungs

    PubMed Central

    Hua-Huy, Thông; Duong-Quy, Sy; Pham, Hoa; Pansiot, Julien; Mercier, Jean-Christophe; Baud, Olivier

    2016-01-01

    Inhaled nitric oxide (iNO) is commonly used in the treatment of very ill pre-term newborns. Previous studies showed that exogenous NO could affect endothelial NO synthase (eNOS) activity and expression in vascular endothelial cell cultures or adult rat models, but this has never been fully described in newborn rat lungs. We therefore aimed to assess the effects of iNO on eNOS expression and activity in newborn rats. Rat pups, post-natal day (P) 0 to P7, and their dams were placed in a chamber containing NO at 5 ppm (iNO-5 ppm group) or 20 ppm (iNO-20 ppm group), or in room air (control group). Rat pups were sacrificed at P7 and P14 for evaluation of lung eNOS expression and activity. At P7, eNOS protein expression in total lung lysates, in bronchial and arterial sections, was significantly decreased in the iNO-20 ppm versus control group. At P14, eNOS expression was comparable among all three groups. The amounts of eNOS mRNA significantly differed at P7 between the iNO-20 ppm and control groups. NOS activity decreased in the iNO-20 ppm group at P7 and returned to normal levels at P14. There was an imbalance between superoxide dismutase and NOS activities in the iNO-20 ppm group at P7. Inhalation of NO at 20 ppm early after birth decreases eNOS gene transcription, protein expression and enzyme activity. This decrease might account for the rebound phenomenon observed in patients treated with iNO.

  4. Decreased Total Antioxidant Activity in Major Depressive Disorder Patients Non-Responsive to Antidepressant Treatment

    PubMed Central

    Baek, Song-Eun; Lee, Gyoung-Ja; Rhee, Chang-Kyu; Rho, Dae-Young; Kim, Do-Hoon; Huh, Sun

    2016-01-01

    Objective This study aimed to evaluate the total antioxidant activity (TAA) in patients with major depressive disorder (MDD) and the effect of antidepressants on TAA using a novel potentiometric method. Methods Twenty-eight patients with MDD and thirty-one healthy controls were enrolled in this study. The control group comprised 31 healthy individuals matched for gender, drinking and smoking status. We assessed symptoms of depression using the Hamilton Depression Rating Scale (HAMD) and the Beck Depression Inventory (BDI). We measured TAA using potentiometry. All measurements were made at baseline and four and eight weeks later. Results There was a significant negative correlation between BDI scores and TAA. TAA was significantly lower in the MDD group than in controls. When the MDD group was subdivided into those who showed clinical response to antidepressant therapy (response group) and those who did not (non-response group), only the non-response group showed lower TAA, while the response group showed no significant difference to controls at baseline. After eight weeks of antidepressant treatment, TAA in both the response and non-response groups was similar, and there was no significant difference among the three groups. Conclusion These results suggest that the response to antidepressant treatment in MDD patients might be predicted by measuring TAA. PMID:27081384

  5. Permafrost thaw and intense thermokarst activity decreases abundance of stream benthic macroinvertebrates.

    PubMed

    Chin, Krista S; Lento, Jennifer; Culp, Joseph M; Lacelle, Denis; Kokelj, Steven V

    2016-08-01

    Intensification of permafrost thaw has increased the frequency and magnitude of large permafrost slope disturbances (mega slumps) in glaciated terrain of northwestern Canada. Individual thermokarst disturbances up to 40 ha in area have made large volumes of previously frozen sediments available for leaching and transport to adjacent streams, significantly increasing sediment and solute loads in these systems. To test the effects of this climate-sensitive disturbance regime on the ecology of Arctic streams, we explored the relationship between physical and chemical variables and benthic macroinvertebrate communities in disturbed and undisturbed stream reaches in the Peel Plateau, Northwest Territories, Canada. Highly disturbed and undisturbed stream reaches differed with respect to taxonomic composition and invertebrate abundance. Minimally disturbed reaches were not differentiated by these variables but rather were distributed along a disturbance gradient between highly disturbed and undisturbed sites. In particular, there was evidence of a strong negative relationship between macroinvertebrate abundance and total suspended solids, and a positive relationship between abundance and the distance from the disturbance. Increases in both sediments and nutrients appear to be the proximate cause of community differences in highly disturbed streams. Declines in macroinvertebrate abundance in response to slump activity have implications for the food webs of these systems, potentially leading to negative impacts on higher trophic levels, such as fish. Furthermore, the disturbance impacts on stream health can be expected to intensify as climate change increases the frequency and magnitude of thermokarst. PMID:26766394

  6. Permafrost thaw and intense thermokarst activity decreases abundance of stream benthic macroinvertebrates.

    PubMed

    Chin, Krista S; Lento, Jennifer; Culp, Joseph M; Lacelle, Denis; Kokelj, Steven V

    2016-08-01

    Intensification of permafrost thaw has increased the frequency and magnitude of large permafrost slope disturbances (mega slumps) in glaciated terrain of northwestern Canada. Individual thermokarst disturbances up to 40 ha in area have made large volumes of previously frozen sediments available for leaching and transport to adjacent streams, significantly increasing sediment and solute loads in these systems. To test the effects of this climate-sensitive disturbance regime on the ecology of Arctic streams, we explored the relationship between physical and chemical variables and benthic macroinvertebrate communities in disturbed and undisturbed stream reaches in the Peel Plateau, Northwest Territories, Canada. Highly disturbed and undisturbed stream reaches differed with respect to taxonomic composition and invertebrate abundance. Minimally disturbed reaches were not differentiated by these variables but rather were distributed along a disturbance gradient between highly disturbed and undisturbed sites. In particular, there was evidence of a strong negative relationship between macroinvertebrate abundance and total suspended solids, and a positive relationship between abundance and the distance from the disturbance. Increases in both sediments and nutrients appear to be the proximate cause of community differences in highly disturbed streams. Declines in macroinvertebrate abundance in response to slump activity have implications for the food webs of these systems, potentially leading to negative impacts on higher trophic levels, such as fish. Furthermore, the disturbance impacts on stream health can be expected to intensify as climate change increases the frequency and magnitude of thermokarst.

  7. HIV-1 transgenic rat CD4+ T cells develop decreased CD28 responsiveness and suboptimal Lck tyrosine dephosphorylation following activation

    SciTech Connect

    Yadav, Anjana; Pati, Shibani; Nyugen, Anhthu; Barabitskaja, Oxana; Mondal, Prosanta; Anderson, Michael; Gallo, Robert C.; Huso, David L.; Reid, William . E-mail: reid@umbi.umd.edu

    2006-09-30

    Impaired CD4+ T cell responses, resulting in dysregulated T-helper 1 (Th1) effector and memory responses, are a common result of HIV-1 infection. These defects are often preceded by decreased expression and function of the {alpha}/{beta} T cell receptor (TCR)-CD3 complex and of co-stimulatory molecules including CD28, resulting in altered T cell proliferation, cytokine secretion and cell survival. We have previously shown that HIV Tg rats have defective development of T cell effector function and generation of specific effector/memory T cell subsets. Here we identify abnormalities in activated HIV-1 Tg rat CD4+ T cells that include decreased pY505 dephosphorylation of Lck (required for Lck activation), decreased CD28 function, reduced expression of the anti-apoptotic molecule Bcl-xL, decreased secretion of the mitogenic lympokine interleukin-2 (IL-2) and increased activation induced apoptosis. These events likely lead to defects in antigen-specific signaling and may help explain the disruption of Th1 responses and the generation of specific effector/memory subsets in transgenic CD4+ T cells.

  8. [On the mechanism of noopept action: decrease in activity of stress-induced kinases and increase in expression of neutrophines].

    PubMed

    Ostrovskaia, R U; Vakhitova, Iu V; Salimgareeva, M Kh; Iamidanov, R S; Sadovnikov, S V; Kapitsa, I G; Seredenin, S B

    2010-12-01

    The influence of noopept (N-phenylacetyl-L-prolylglycine ethyl ester, GVS-111)--a drug combining the nootrope and neuroprotector properties--on the activity of mitogen-activated protein kinases (MAPKs) and the level of NGF and BDNF gene and protein expression in the frontal cortex, hippocampus, and hypothalamus has been studied in rats. Under conditions of chronic administration (28 days, 0.5 mg/day, i.p.), noopept decreased the activity of stress-induced kinases (SAPK/JNK 46/54 and pERK1/2) in rat hippocampus and increases the level of mRNA of the BDNF gene in both hypothalamus and hippocampus. The content of BDNF protein in the hypothalamus was also somewhat increased. In the context of notions about the activation of stress-induced kinases, as an important factor of amyloidogenesis and tau-protein deposition in brain tissue, and the role of deficiency of the neurotrophic factors in the development of neurodegenerative processes, the observed decrease in the activity of stress-activated MAPKs and increased expression of BDNF as a result of noopept administration suggest thatthis drug hasaspecific activity withrespect to some pathogenetic mechanisms involved in the Alzheimer disease. PMID:21395007

  9. Corticosterone Blocks Ovarian Cyclicity and the LH Surge via Decreased Kisspeptin Neuron Activation in Female Mice.

    PubMed

    Luo, Elena; Stephens, Shannon B Z; Chaing, Sharon; Munaganuru, Nagambika; Kauffman, Alexander S; Breen, Kellie M

    2016-03-01

    Stress elicits activation of the hypothalamic-pituitary-adrenal axis, which leads to enhanced circulating glucocorticoids, as well as impaired gonadotropin secretion and ovarian cyclicity. Here, we tested the hypothesis that elevated, stress-levels of glucocorticoids disrupt ovarian cyclicity by interfering with the preovulatory sequence of endocrine events necessary for the LH surge. Ovarian cyclicity was monitored in female mice implanted with a cholesterol or corticosterone (Cort) pellet. Cort, but not cholesterol, arrested cyclicity in diestrus. Subsequent studies focused on the mechanism whereby Cort stalled the preovulatory sequence by assessing responsiveness to the positive feedback estradiol signal. Ovariectomized mice were treated with an LH surge-inducing estradiol implant, as well as Cort or cholesterol, and assessed several days later for LH levels on the evening of the anticipated surge. All cholesterol females showed a clear LH surge. At the time of the anticipated surge, LH levels were undetectable in Cort-treated females. In situ hybridization analyses the anteroventral periventricular nucleus revealed that Cort robustly suppressed the percentage of Kiss1 cells coexpressing cfos, as well as reduced the number of Kiss1 cells and amount of Kiss1 mRNA per cell, compared with expression in control brains. In addition, Cort blunted pituitary expression of the genes encoding the GnRH receptor and LHβ, indicating inhibition of gonadotropes during the blockage of the LH surge. Collectively, our findings support the hypothesis that physiological stress-levels of Cort disrupts ovarian cyclicity, in part, through disruption of positive feedback mechanisms at both the hypothalamic and pituitary levels which are necessary for generation of the preovulatory LH surge.

  10. An Active Area Model of Rapid Infiltration Response at Substantial Depth in the Unsaturated Zone

    NASA Astrophysics Data System (ADS)

    Mitchell, L.; Nimmo, J. R.

    2011-12-01

    In a porous medium subject to preferential flow, response to surface water infiltration can occur rapidly even at substantial depth in the unsaturated zone. In a ponding experiment at the Idaho National Laboratory (INL) the profile of undisturbed natural soil, seasonally dry at the start, was observed to approach field saturation throughout a 2 meter depth within 6 hours (Nimmo and Perkins, 2007). Traditional use of Richards' equation would require an unrealistically large unsaturated hydraulic conductivity of 40 m/day to capture the observed non-classic wetting behavior. Here we present a model for rapid flow using an active area concept similar to the active fracture model (Liu and others, 1998, WRR 34:2633-2646). The active area concept is incorporated within the preferential flow domain (which allows rapid downward movement) of a dual-domain model that also contains a diffuse-flow domain in which flow can be described by Richards' equation. Development of the active area model is motivated by observation of rapid wetting at substantial depth, as well as a phenomenon in which deep flow is observed before shallow flow. In this model water movement in the preferential domain can be physically conceptualized as laminar flow in free-surface films of constant average thickness. For a given medium, the preferential domain is characterized by an effective areal density (area per unit bulk volume) that describes the free-surface film capacity of the domain as a function of depth. The active area is defined as a portion of the effective areal density that dictates the depth and temporal distribution of domain-exchange and new infiltration within the preferential domain. With the addition of the active area concept, the model is capable of simulating non-diffusive vertical transport patterns. Advantages of the model include simulating rapid response for a variety of infiltration types, including ponding and rain events, as well as modeling relatively rapid aquifer

  11. Age-Dependent Decrease of Mitochondrial Complex II Activity in Human Skin Fibroblasts.

    PubMed

    Bowman, Amy; Birch-Machin, Mark A

    2016-05-01

    The mitochondrial theory of aging remains one of the most widely accepted aging theories and implicates mitochondrial electron transport chain dysfunction with subsequent increasing free radical generation. Recently, complex II of the electron transport chain appears to be more important than previously thought in this process, suggested predominantly by nonhuman studies. We investigated the relationship between complex II and aging using human skin as a model tissue. The rate of complex II activity per unit of mitochondria was determined in fibroblasts and keratinocytes cultured from skin covering a wide age range. Complex II activity significantly decreased with age in fibroblasts (P = 0.015) but not in keratinocytes. This was associated with a significant decline in transcript expression (P = 0.008 and P = 0.001) and protein levels (P = 0.0006 and P = 0.005) of the succinate dehydrogenase complex subunit A and subunit B catalytic subunits of complex II, respectively. In addition, there was a significant decrease in complex II activity with age (P = 0.029) that was specific to senescent skin cells. There was no decrease in complex IV activity with increasing age, suggesting possible locality to complex II. PMID:26829036

  12. Hormone-sensitive lipase activity and triacylglycerol hydrolysis are decreased in rat soleus muscle by cyclopiazonic acid.

    PubMed

    Watt, Matthew J; Steinberg, Gregory R; Heigenhauser, G J F; Spriet, Lawrence L; Dyck, David J

    2003-08-01

    Cyclopiazonic acid (CPA) is a sarcoplasmic reticulum Ca2+-ATPase inhibitor that increases intracellular calcium. The role of CPA in regulating the oxidation and esterification of palmitate, the hydrolysis of intramuscular lipids, and the activation of hormone-sensitive lipase (HSL) was examined in isolated rat soleus muscles at rest. CPA (40 micro M) was added to the incubation medium to levels that resulted in subcontraction increases in muscle tension, and lipid metabolism was monitored using the previously described pulse-chase procedure. CPA did not alter the cellular energy state, as reflected by similar muscle contents of ATP, phosphocreatine, free AMP, and free ADP. CPA increased total palmitate uptake into soleus muscle (11%, P < 0.05) and was without effect on palmitate oxidation. This resulted in greater esterification of exogenous palmitate into the triacylglycerol (18%, P < 0.05) and phospholipid (89%, P < 0.05) pools. CPA decreased (P < 0.05) intramuscular lipid hydrolysis, and this occurred as a result of reduced HSL activity (20%, P < 0.05). Incubation of muscles with 3 mM caffeine, which is also known to increase Ca2+ without affecting the cellular energy state, reduced HSL activity (24%, P < 0.05). KN-93, a calcium/calmodulin-dependent kinase inhibitor (CaMKII), blocked the effects of CPA and caffeine, and HSL activity returned to preincubation values. The results of the present study demonstrate that CPA simultaneously decreases intramuscular triacylglycerol (IMTG) hydrolysis and promotes lipid storage in isolated, intact soleus muscle. The decreased IMTG hydrolysis is likely mediated by reduced HSL activity, possibly via the CaMKII pathway. These responses are not consistent with the increased hydrolysis and decreased esterification observed in contracting muscle when substrate availability and the hormonal milieu are tightly controlled. It is possible that more powerful signals or a higher [Ca2+] may override the lipid-storage effect of the CPA

  13. Decreased prefrontal cortex dopamine activity following adolescent social defeat in male rats: role of dopamine D2 receptors

    PubMed Central

    Watt, Michael J.; Roberts, Christina L.; Scholl, Jamie L.; Meyer, Danielle L.; Miiller, Leah C.; Barr, Jeffrey L.; Novick, Andrew M.; Renner, Kenneth J.; Forster, Gina L.

    2014-01-01

    Rationale Adverse social experience in adolescence causes reduced medial prefrontal cortex (mPFC) dopamine (DA) and associated behavioral deficits in early adulthood. Objective To determine whether mPFC DA hypofunction following social stress is specific to adolescent experience, and if this results from stress-induced DA D2 receptor activation. Materials and Methods Male rats exposed to repeated social defeat during adolescence or adulthood had mPFC DA activity sampled 17 days later. Separate experiments used freely-moving microdialysis to measure mPFC DA release in response to adolescent defeat exposure. At P40, 49 and 56 mPFC DA turnover was assessed to identify when DA activity decreased in relation to the adolescent defeat experience. Finally, non-defeated adolescent rats received repeated intra-mPFC infusions of the D2 receptor agonist quinpirole, while another adolescent group received intra-mPFC infusions of the D2 antagonist amisulpride before defeat exposure. Results Long-term decreases or increases in mPFC DA turnover were observed following adolescent or adult defeat, respectively. Adolescent defeat exposure elicits sustained increases in mPFC DA release, and DA turnover remains elevated beyond the stress experience before declining to levels below normal at P56. Activation of mPFC D2 receptors in non-defeated adolescents decreases DA activity in a similar manner to that caused by adolescent defeat, while defeat-induced reductions in mPFC DA activity are prevented by D2 receptor blockade. Conclusions Both the developing and mature PFC DA systems are vulnerable to social stress, but only adolescent defeat causes DA hypofunction. This appears to result in part from stress-induced activation of mPFC D2 autoreceptors. PMID:24271009

  14. Cytochalasin E alters the cytoskeleton and decreases ENaC activity in Xenopus 2F3 cells

    PubMed Central

    Reifenberger, Matthew S.; Yu, Ling; Bao, Hui-Fang; Duke, Billie Jeanne; Liu, Bing-Chen; Ma, He-Ping; Eaton, Douglas C.; Alli, Abdel A.

    2014-01-01

    Numerous reports have linked cytoskeleton-associated proteins with the regulation of epithelial Na+ channel (ENaC) activity. The purpose of the present study was to determine the effect of actin cytoskeleton disruption by cytochalasin E on ENaC activity in Xenopus 2F3 cells. Here, we show that cytochalasin E treatment for 60 min can disrupt the integrity of the actin cytoskeleton in cultured Xenopus 2F3 cells. We show using single channel patch-clamp experiments and measurements of short-circuit current that ENaC activity, but not its density, is altered by cytochalasin E-induced disruption of the cytoskeleton. In nontreated cells, 8 of 33 patches (24%) had no measurable ENaC activity, whereas in cytochalasin E-treated cells, 17 of 32 patches (53%) had no activity. Analysis of those patches that did contain ENaC activity showed channel open probability significantly decreased from 0.081 ± 0.01 in nontreated cells to 0.043 ± 0.01 in cells treated with cytochalasin E. Transepithelial current from mpkCCD cells treated with cytochalasin E, cytochalasin D, or latrunculin B for 60 min was decreased compared with vehicle-treated cells. The subcellular expression of fodrin changed significantly, and several protein elements of the cytoskeleton decreased at least twofold after 60 min of cytochalasin E treatment. Cytochalasin E treatment disrupted the association between ENaC and myristoylated alanine-rich C-kinase substrate. The results presented here suggest disruption of the actin cytoskeleton by different compounds can attenuate ENaC activity through a mechanism involving changes in the subcellular expression of fodrin, several elements of the cytoskeleton, and destabilization of the ENaC-myristoylated alanine-rich C-kinase substrate complex. PMID:24829507

  15. Antioxidative Activity after Rosuvastatin Treatment in Patients with Stable Ischemic Heart Disease and Decreased High Density Lipoprotein Cholesterol

    PubMed Central

    Park, Do-Sim; Park, Hyun Young; Rhee, Sang Jae; Kim, Nam-Ho; Oh, Seok Kyu; Jeong, Jin-Won

    2016-01-01

    Background and Objectives The clinical significance of statin-induced high-density lipoprotein cholesterol (HDL-C) changes is not well known. We investigated whether rosuvastatin-induced HDL-C changes can influence the anti-oxidative action of high-density lipoprotein particle. Subjects and Methods A total of 240 patients with stable ischemic heart disease were studied. Anti-oxidative property was assessed by paraoxonase 1 (PON1) activity. We compared the lipid profile and PON1 activity at baseline and at 8 weeks after rosuvastatin 10 mg treatment. Results Rosuvastatin treatment increased the mean HDL-C concentration by 1.9±9.2 mg/dL (6.4±21.4%). HDL-C increased in 138 patients (57.5%), but decreased in 102 patients (42.5%) after statin treatment. PON1 activity increased to 19.1% in all patients. In both, the patients with increased HDL-C and with decreased HDL-C, PON1 activity significantly increased after rosuvastatin treatment (+19.3% in increased HDL-C responder; p=0.018, +18.8% in decreased HDL-C responder; p=0.045 by paired t-test). Baseline PON1 activity modestly correlated with HDL-C levels (r=0.248, p=0.009); however, the PON1 activity evaluated during the course of the treatment did not correlate with HDL-C levels (r=0.153, p=0.075). Conclusion Rosuvastatin treatment improved the anti-oxidative properties as assessed by PON1 activity, regardless of on-treatment HDL-C levels, in patients with stable ischemic heart disease. PMID:27275167

  16. Overexpression of Csk-binding protein decreases growth, invasion, and migration of esophageal carcinoma cells by controlling Src activation

    PubMed Central

    Zhou, Dong; Dong, Peng; Li, Yu-Min; Guo, Fa-Cai; Zhang, An-Ping; Song, Run-Ze; Zhang, Ya-Min; Li, Zhi-Yong; Yuan, Dong; Yang, Chuan

    2015-01-01

    AIM: To investigate the mechanisms by which Csk-binding protein (CBP) inhibits tumor progression in esophageal carcinoma. METHODS: A CBP overexpressing esophageal carcinoma cell line (TE-1) was established. The growth, invasion, and migration of CBP-TE-1 cells, as well as the expression of Src were then determined and compared with those in normal TE-1 cells. RESULTS: The expression of Src was decreased by the overexpression of CBP in TE-1 cells. The growth, invasion, and migration of TE-1 cells were decreased by the overexpression of CBP. CONCLUSION: This study indicates that CBP may decrease the metastasis of esophageal carcinoma by inhibiting the activation of Src. CBP may be a potential tumor suppressor and targeting the CBP gene may be an alternative strategy for the development of therapies for esophageal carcinoma. PMID:25684946

  17. The importance of space policy teaching in communicating space activities to society [rapid communication

    NASA Astrophysics Data System (ADS)

    Reibaldi, G. G.

    2003-12-01

    The governments' priority and budgets for space activities are steadily decreasing and the importance of space activities is not any longer reaching the front pages of the newspaper, as in the 1960s. On the other hand in Europe the people, at large, have shown an important interest and support for space activities. A contribution to bridge the gap between decreasing funding and important support of citizen can come from teaching space policy in universities as well as in special workshops for government, industrial and military circles. The paper will outline a course that fulfils this goal.

  18. Rapid direct methods for enumeration of specific, active bacteria in water and biofilms

    NASA Technical Reports Server (NTRS)

    McFeters, G. A.; Pyle, B. H.; Lisle, J. T.; Broadaway, S. C.

    1999-01-01

    Conventional methods for detecting indicator and pathogenic bacteria in water may underestimate the actual population due to sublethal environmental injury, inability of the target bacteria to take up nutrients and other physiological factors which reduce bacterial culturability. Rapid and direct methods are needed to more accurately detect and enumerate active bacteria. Such a methodological advance would provide greater sensitivity in assessing the microbiological safety of water and food. The principle goal of this presentation is to describe novel approaches we have formulated for the rapid and simultaneous detection of bacteria plus the determination of their physiological activity in water and other environmental samples. The present version of our method involves the concentration of organisms by membrane filtration or immunomagnetic separation and combines an intracellular fluorochrome (CTC) for assessment of respiratory activity plus fluorescent-labelled antibody detection of specific bacteria. This approach has also been successfully used to demonstrate spatial and temporal heterogeneities of physiological activities in biofilms when coupled with cryosectioning. Candidate physiological stains include those capable of determining respiratory activity, membrane potential, membrane integrity, growth rate and cellular enzymatic activities. Results obtained thus far indicate that immunomagnetic separation can provide a high degree of sensitivity in the recovery of seeded target bacteria (Escherichia coli O157:H7) in water and hamburger. The captured and stained target bacteria are then enumerated by either conventional fluorescence microscopy or ChemScan(R), a new instrument that is very sensitive and rapid. The ChemScan(R) laser scanning instrument (Chemunex, Paris, France) provides the detection of individual fluorescently labelled bacterial cells using three emission channels in less than 5 min. A high degree of correlation has been demonstrated between

  19. Rapid increases in ventilation accompany the transition from passive to active movement.

    PubMed

    Bell, Harold J; Duffin, James

    2006-06-01

    We used a novel movement transition technique to look for evidence of a rapid onset drive to breathe related to the active component of exercise in humans. Ten volunteers performed the following transitions in a specially designed tandem exercise chair apparatus: rest to passive movement, passive to active movement, and rest to active movement. The transition from rest to active exercise was accompanied by an immediate increase in ventilation, as was the transition from rest to passive leg movement (Delta = 6.06 +/- 1.09 l min(-1), p < 0.001 and Delta = 3.30 +/- 0.57 l min(-1), p = 0.002, respectively). When subjects actively assumed the leg movements, ventilation again increased immediately and significantly (Delta = 2.55 +/- 0.52 l min(-1), p = 0.032). Ventilation at the first point of active exercise was the same when started either from rest or from a background of passive leg movement (p = 1.00). We conclude that the use of a transition from passive to active leg movements in humans recruits a ventilatory drive related to the active component of exercise, and this can be discerned as a rapid increase in breathing.

  20. The Split Virus Influenza Vaccine rapidly activates immune cells through Fcγ receptors.

    PubMed

    O'Gorman, William E; Huang, Huang; Wei, Yu-Ling; Davis, Kara L; Leipold, Michael D; Bendall, Sean C; Kidd, Brian A; Dekker, Cornelia L; Maecker, Holden T; Chien, Yueh-Hsiu; Davis, Mark M

    2014-10-14

    Seasonal influenza vaccination is one of the most common medical procedures and yet the extent to which it activates the immune system beyond inducing antibody production is not well understood. In the United States, the most prevalent formulations of the vaccine consist of degraded or "split" viral particles distributed without any adjuvants. Based on previous reports we sought to determine whether the split influenza vaccine activates innate immune receptors-specifically Toll-like receptors. High-dimensional proteomic profiling of human whole-blood using Cytometry by Time-of-Flight (CyTOF) was used to compare signaling pathway activation and cytokine production between the split influenza vaccine and a prototypical TLR response ex vivo. This analysis revealed that the split vaccine rapidly and potently activates multiple immune cell types but yields a proteomic signature quite distinct from TLR activation. Importantly, vaccine induced activity was dependent upon the presence of human sera indicating that a serum factor was necessary for vaccine-dependent immune activation. We found this serum factor to be human antibodies specific for influenza proteins and therefore immediate immune activation by the split vaccine is immune-complex dependent. These studies demonstrate that influenza virus "splitting" inactivates any potential adjuvants endogenous to influenza, such as RNA, but in previously exposed individuals can elicit a potent immune response by facilitating the rapid formation of immune complexes. PMID:25203448

  1. The Split Virus Influenza Vaccine rapidly activates immune cells through Fcγ Receptors

    PubMed Central

    O’Gorman, William E.; Huang, Huang; Wei, Yu-Ling; Davis, Kara L.; Leipold, Michael D.; Bendall, Sean C.; Kidd, Brian A.; Dekker, Cornelia L.; Maecker, Holden T.; Chien, Yueh-Hsiu; Davis, Mark M.

    2014-01-01

    Seasonal influenza vaccination is one of the most common medical procedures and yet the extent to which it activates the immune system beyond inducing antibody production is not well understood. In the United States, the most prevalent formulations of the vaccine consist of degraded or “split” viral particles distributed without any adjuvants. Based on previous reports we sought to determine whether the split influenza vaccine activates innate immune receptors—specifically Toll-like receptors. High-dimensional proteomic profiling of human whole-blood using Cytometry by Time-of-Flight (CyTOF) was used to compare signaling pathway activation and cytokine production between the split influenza vaccine and a prototypical TLR response ex vivo. This analysis revealed that the split vaccine rapidly and potently activates multiple immune cell types but yields a proteomic signature quite distinct from TLR activation. Importantly, vaccine induced activity was dependent upon the presence of human sera indicating that a serum factor was necessary for vaccine-dependent immune activation. We found this serum factor to be human antibodies specific for influenza proteins and therefore immediate immune activation by the split vaccine is immune-complex dependent. These studies demonstrate that influenza virus “splitting” inactivates any potential adjuvants endogenous to influenza, such as RNA, but in previously exposed individuals can elicit a potent immune response by facilitating the rapid formation of immune complexes. PMID:25203448

  2. Activation of ERK1/2 pathway mediates oxidant-induced decreases in mitochondrial function in renal cells.

    PubMed

    Nowak, Grazyna; Clifton, Ginger L; Godwin, Malinda L; Bakajsova, Diana

    2006-10-01

    Previously, we showed that oxidant exposure in renal proximal tubular cells (RPTC) induces mitochondrial dysfunction mediated by PKC-epsilon. This study examined the role of ERK1/2 in mitochondrial dysfunction induced by oxidant injury and whether PKC-epsilon mediates its effects on mitochondrial function through the Raf-MEK1/2-ERK1/2 pathway. Sublethal injury produced by tert-butylhydroperoxide (TBHP) resulted in three- to fivefold increase in phosphorylation of ERK1/2 and p38 but not JNK. This was followed by decreases in basal and uncoupled respirations (41%), state 3 respiration and ATP production coupled to complex I (46%), and complex I activity (42%). Oxidant exposure decreased aconitase activity 30% but not pyruvate, alpha-ketoglutarate, and malate dehydrogenase activities. Inhibition of ERK1/2 restored basal and state 3 respirations, DeltaPsi(m), ATP production, and complex I activity but not aconitase activity. In contrast, activation of ERK1/2 by expression of constitutively active MEK1 suppressed basal, uncoupled, and state 3 respirations in noninjured RPTC to the levels observed in TBHP-injured RPTC. MEK1/2 inhibition did not change Akt or p38 phosphorylation, demonstrating that the protective effect of MEK1/2 inhibitor was not due to activation of Akt or inhibition of p38 pathway. Inhibition of PKC-epsilon did not block TBHP-induced ERK1/2 phosphorylation in whole RPTC or in mitochondria. We conclude that 1) oxidant-induced activation of ERK1/2 but not p38 or JNK reduces mitochondrial respiration and ATP production by decreasing complex I activity and substrate oxidation through complex I, 2) citric acid cycle dehydrogenases are not under control of the ERK1/2 pathway in oxidant-injured RPTC, 3) the protective effects of ERK1/2 inhibition are not due to activation of Akt, and 4) ERK1/2 and PKC-epsilon mediate oxidant-induced mitochondrial dysfunction through independent pathways.

  3. Sonication inhibited browning but decreased polyphenols contents and antioxidant activity of fresh apple (malus pumila mill, cv. Red Fuji) juice.

    PubMed

    Sun, Yujing; Zhong, Liezhou; Cao, Lianfei; Lin, Wenwen; Ye, Xingqian

    2015-12-01

    Enzyme browning is the main challenge in the preparation of fresh apple juice. The influence of sonication on browning, as well as polyphenols and antioxidant activity of fresh apple juice was investigated. It was found that ultrasound can inhibit the browning of fresh apple (Malus pumila Mill, cv. Red Fuji) juice, but decreased the contents of total phenolic content (TPC), total flavonoid content (TFC) and chlorogenic acid and reduced the antioxidant activity. On the whole, ultrasound technology cannot be used to the antibrowning of fresh apple (Malus pumila Mill, cv. Red Fuji) juice.

  4. Decreased succinate dehydrogenase activity of gamma and alpha motoneurons in mouse spinal cords following 13 weeks of exposure to microgravity.

    PubMed

    Ishihara, Akihiko; Nagatomo, Fumiko; Fujino, Hidemi; Kondo, Hiroyo; Ohira, Yoshinobu

    2013-10-01

    Cell body size and succinate dehydrogenase activity of motoneurons in the dorsolateral region of the ventral horn in the lumbar and cervical segments of the mouse spinal cord were assessed after long-term exposure to microgravity and compared with those of ground-based controls. Mice were housed in a mouse drawer system on the International Space Station for 13 weeks. The mice were transported to the International Space Station by the Space Shuttle Discovery and returned to Earth by the Space Shuttle Atlantis. No changes in the cell body size of motoneurons were observed in either segment after exposure to microgravity, but succinate dehydrogenase activity of small-sized (<300 μm(2)) gamma and medium-sized (300-700 μm(2)) alpha motoneurons, which have higher succinate dehydrogenase activity than large-sized (>700 μm(2)) alpha motoneurons, in both segments was lower than that of ground-based controls. We concluded that exposure to microgravity for longer than 3 months induced decreased succinate dehydrogenase activity of both gamma and slow-type alpha motoneurons. In particular, the decreased succinate dehydrogenase activity of gamma motoneurons was observed only after long-term exposure to microgravity. PMID:23943522

  5. Chronic inhibition of 11 β -hydroxysteroid dehydrogenase type 1 activity decreases hypertension, insulin resistance, and hypertriglyceridemia in metabolic syndrome.

    PubMed

    Schnackenberg, Christine G; Costell, Melissa H; Krosky, Daniel J; Cui, Jianqi; Wu, Charlene W; Hong, Victor S; Harpel, Mark R; Willette, Robert N; Yue, Tian-Li

    2013-01-01

    Metabolic syndrome is a constellation of risk factors including hypertension, dyslipidemia, insulin resistance, and obesity that promote the development of cardiovascular disease. Metabolic syndrome has been associated with changes in the secretion or metabolism of glucocorticoids, which have important functions in adipose, liver, kidney, and vasculature. Tissue concentrations of the active glucocorticoid cortisol are controlled by the conversion of cortisone to cortisol by 11 β -hydroxysteroid dehydrogenase type 1 (11 β -HSD1). Because of the various cardiovascular and metabolic activities of glucocorticoids, we tested the hypothesis that 11 β -HSD1 is a common mechanism in the hypertension, dyslipidemia, and insulin resistance in metabolic syndrome. In obese and lean SHR/NDmcr-cp (SHR-cp), cardiovascular, metabolic, and renal functions were measured before and during four weeks of administration of vehicle or compound 11 (10 mg/kg/d), a selective inhibitor of 11 β -HSD1. Compound 11 significantly decreased 11 β -HSD1 activity in adipose tissue and liver of SHR-cp. In obese SHR-cp, compound 11 significantly decreased mean arterial pressure, glucose intolerance, insulin resistance, hypertriglyceridemia, and plasma renin activity with no effect on heart rate, body weight gain, or microalbuminuria. These results suggest that 11 β -HSD1 activity in liver and adipose tissue is a common mediator of hypertension, hypertriglyceridemia, glucose intolerance, and insulin resistance in metabolic syndrome.

  6. Chronic Inhibition of 11β-Hydroxysteroid Dehydrogenase Type 1 Activity Decreases Hypertension, Insulin Resistance, and Hypertriglyceridemia in Metabolic Syndrome

    PubMed Central

    Schnackenberg, Christine G.; Costell, Melissa H.; Krosky, Daniel J.; Cui, Jianqi; Wu, Charlene W.; Hong, Victor S.; Harpel, Mark R.; Willette, Robert N.; Yue, Tian-Li

    2013-01-01

    Metabolic syndrome is a constellation of risk factors including hypertension, dyslipidemia, insulin resistance, and obesity that promote the development of cardiovascular disease. Metabolic syndrome has been associated with changes in the secretion or metabolism of glucocorticoids, which have important functions in adipose, liver, kidney, and vasculature. Tissue concentrations of the active glucocorticoid cortisol are controlled by the conversion of cortisone to cortisol by 11β-hydroxysteroid dehydrogenase type 1 (11β-HSD1). Because of the various cardiovascular and metabolic activities of glucocorticoids, we tested the hypothesis that 11β-HSD1 is a common mechanism in the hypertension, dyslipidemia, and insulin resistance in metabolic syndrome. In obese and lean SHR/NDmcr-cp (SHR-cp), cardiovascular, metabolic, and renal functions were measured before and during four weeks of administration of vehicle or compound 11 (10 mg/kg/d), a selective inhibitor of 11β-HSD1. Compound 11 significantly decreased 11β-HSD1 activity in adipose tissue and liver of SHR-cp. In obese SHR-cp, compound 11 significantly decreased mean arterial pressure, glucose intolerance, insulin resistance, hypertriglyceridemia, and plasma renin activity with no effect on heart rate, body weight gain, or microalbuminuria. These results suggest that 11β-HSD1 activity in liver and adipose tissue is a common mediator of hypertension, hypertriglyceridemia, glucose intolerance, and insulin resistance in metabolic syndrome. PMID:23586038

  7. Decreased succinate dehydrogenase activity of gamma and alpha motoneurons in mouse spinal cords following 13 weeks of exposure to microgravity.

    PubMed

    Ishihara, Akihiko; Nagatomo, Fumiko; Fujino, Hidemi; Kondo, Hiroyo; Ohira, Yoshinobu

    2013-10-01

    Cell body size and succinate dehydrogenase activity of motoneurons in the dorsolateral region of the ventral horn in the lumbar and cervical segments of the mouse spinal cord were assessed after long-term exposure to microgravity and compared with those of ground-based controls. Mice were housed in a mouse drawer system on the International Space Station for 13 weeks. The mice were transported to the International Space Station by the Space Shuttle Discovery and returned to Earth by the Space Shuttle Atlantis. No changes in the cell body size of motoneurons were observed in either segment after exposure to microgravity, but succinate dehydrogenase activity of small-sized (<300 μm(2)) gamma and medium-sized (300-700 μm(2)) alpha motoneurons, which have higher succinate dehydrogenase activity than large-sized (>700 μm(2)) alpha motoneurons, in both segments was lower than that of ground-based controls. We concluded that exposure to microgravity for longer than 3 months induced decreased succinate dehydrogenase activity of both gamma and slow-type alpha motoneurons. In particular, the decreased succinate dehydrogenase activity of gamma motoneurons was observed only after long-term exposure to microgravity.

  8. Decrease in red blood cell deformability is associated with a reduction in RBC-NOS activation during storage.

    PubMed

    Grau, Marijke; Friederichs, Petra; Krehan, Sebastian; Koliamitra, Christina; Suhr, Frank; Bloch, Wilhelm

    2015-07-16

    During storage, red blood cells (RBC) become more susceptible to hemolysis and it has also been shown that RBC deformability, which is influenced by RBC nitric oxide synthase (RBC-NOS) activity, decreases during blood storage while a correlation between these two parameters under storage conditions has not been investigated so far. Therefore, blood from 15 male volunteers was anticoagulated, leuko-reduced and stored as either concentrated RBC or RBC diluted in saline-adenine-glucose-mannitol (SAGM) for eight weeks at 4°C and results were compared to data obtained from freshly drawn blood. During storage, decrease of RBC deformability was related to increased mean cellular volume and increased cell lysis but also to a decrease in RBC-NOS activation. The changes were more pronounced in concentrated RBC than in RBC diluted in SAGM suggesting that the storage method affects the quality of blood. These data shed new light on mechanisms underlying the phenomenon of storage lesion and reveal that RBC-NOS activation and possibly nitric oxide production in RBC are key elements that are influenced by storage and in turn alter deformability. Further studies should therefore also focus on improving these parameters during storage to improve the quality of stored blood with respect to blood transfusion.

  9. Rapid activation of gill Na+,K+-ATPase in the euryhaline teleost Fundulus heteroclitus

    USGS Publications Warehouse

    Mancera, J.M.; McCormick, S.D.

    2000-01-01

    The rapid activation of gill Na+,K+-ATPase was analyzed in the mummichog (Fundulus heteroclitus) and Atlantic salmon (Salmo salar) transferred from low salinity (0.1 ppt) to high salinity (25-35 ppt). In parr and presmolt, Salmo salar gill Na+,K+-ATPase activity started to increase 3 days after transfer. Exposure of Fundulus heteroclitus to 35 ppt seawater (SW) induced a rise in gill Na+,K+-ATPase activity 3 hr after transfer. After 12 hr, the values dropped to initial levels but showed a second significant increase 3 days after transfer. The absence of detergent in the enzyme assay resulted in lower values of gill Na+,K+-ATPase, and the rapid increase after transfer to SW was not observed. Na+,K+-ATPase activity of gill filaments in vitro for 3 hr increased proportionally to the osmolality of the culture medium (600 mosm/kg > 500 mosm/kg > 300 mosm/kg). Osmolality of 800 mosm/kg resulted in lower gill Na+,K+-ATPase activity relative to 600 mosm/kg. Increasing medium osmolality to 600 mosm/kg with mannitol also increased gill Na+,K+-ATPase. Cycloheximide inhibited the increase in gill Na+,K+-ATPase activity observed in hyperosmotic medium in a dose-dependent manner (10-4 M > 10-5 M > 10-6 M). Actinomycin D or bumetanide in the culture (doses of 10-4 M, 10-5 M, and 10-6 M) did not affect gill Na+,K+-ATPase. Injection of fish with actinomycin D prior to gill organ culture, however, prevented the increase in gill Na+,K+-ATPase activity in hyperosmotic media. The results show a very rapid and transitory increase in gill Na+,K+-ATPase activity in the first hours after the transfer of Fundulus heteroclitus to SW that is dependent on translational and transcriptional processes. (C) 2000 Wiley-Liss, Inc.

  10. Rapid quantitative assessment of phagocytic activity of Indium-111 labeled leukocytes by chemiluminescence

    SciTech Connect

    Juni, J.E.; Petry, N.; Wahl, R.L.; Geatti, O.

    1985-05-01

    Indium-111 labeled leukocyte imaging is gaining widespread acceptance. A rapid method for assaying changes in leukocyte viability and phagocytic function during the labeling process would facilitate the evaluation of new labeling techniques and testing of labeled cells before pt injection. The authors have conducted preliminary investigations of chemiluminescence in the clinical evaluation of leukocyte labeling. The chemiluminescence assay may be performed in 30 minutes with only 0.1 ml of whole blood. Zymossan is rapidly introduced to the blood or cell suspension resulting in the emission of light which is then counted by photometer. The amount of light given off by the reaction reflects both the phagocytic function of the cells and the ability of activated phagocytes to generate activated oxygen species. They have evaluated the chemiluminescent activity of normal human leukocyte suspensions both before and after labeling with Indium-111 oxine. The chemiluminescence assay provides a rapid means of evaluating granulocyte function. Correlations of this activity with image quality may provides clues for optimization of labeling techniques.

  11. One-year-old fear memories rapidly activate human fusiform gyrus.

    PubMed

    Mueller, Erik M; Pizzagalli, Diego A

    2016-02-01

    Fast threat detection is crucial for survival. In line with such evolutionary pressure, threat-signaling fear-conditioned faces have been found to rapidly (<80 ms) activate visual brain regions including the fusiform gyrus on the conditioning day. Whether remotely fear conditioned stimuli (CS) evoke similar early processing enhancements is unknown. Here, 16 participants who underwent a differential face fear-conditioning and extinction procedure on day 1 were presented the initial CS 24 h after conditioning (Recent Recall Test) as well as 9-17 months later (Remote Recall Test) while EEG was recorded. Using a data-driven segmentation procedure of CS evoked event-related potentials, five distinct microstates were identified for both the recent and the remote memory test. To probe intracranial activity, EEG activity within each microstate was localized using low resolution electromagnetic tomography analysis (LORETA). In both the recent (41-55 and 150-191 ms) and remote (45-90 ms) recall tests, fear conditioned faces potentiated rapid activation in proximity of fusiform gyrus, even in participants unaware of the contingencies. These findings suggest that rapid processing enhancements of conditioned faces persist over time. PMID:26416784

  12. Thyroid-stimulating hormone rapidly stimulates inositol polyphosphate formation in FRTL-5 thyrocytes without activating phosphoinositidase C.

    PubMed Central

    Singh, J; Hunt, P; Eggo, M C; Sheppard, M C; Kirk, C J; Michell, R H

    1996-01-01

    The thyroid-stimulating hormone (TSH) receptor is widely regarded as one of a limited number of G-protein-coupled receptors that activate both adenylate cyclase and phosphoinositidase C (PIC) via G-proteins, but the existing experimental evidence for TSH-stimulated PtdIns(4,5)P2 hydrolysis remains inconclusive. We have compared the effects of TSH and of ATP (acting via P2-purinergic receptors) on the inositol lipids and polyphosphates of [2-3H]inositol-labelled FRTL-5 rat thyroid cells. ATP initiated a rapid decrease in 3H-labelled PtdIns4P and PtdIns(4,5)P2, whereas TSH did not. Stimulation with ATP and, less consistently, with noradrenaline (acting via alpha-adrenergic receptors) provoked rapid formation of Ins(1,4,5)P3, Ins(1,3,4,5)P4, Ins(1,3,4)P3 and Ins(1,4)P2, confirming activation of PtdIns(4,5)P2 hydrolysis. No concentration of TSH provoked detectable accumulation of Ins(1,4,5)P3 or Ins(1,4)P2 during the first few minutes of stimulation. However, an InsP3 [with the chromatographic properties of Ins(1,3,4)P3] and two InsP4 isomers [neither of which was Ins(1,3,4,5)P4] accumulated quickly in TSH-stimulated cells. ATP immediately provoked a large increase in intracellular calcium concentration ([Ca2+]i) in Indo 1-AM-loaded cells. TSH provoked a small and delayed [Ca2+]i elevation in only some experiments. We therefore confirm that activation of P2-purinergic receptors and alpha 1-adrenergic receptors provokes PIC activation, an accumulation of Ins(1,4,5)P3 and its metabolites and rapid [Ca2+]i mobilization in FRTL-5 cells. By contrast, TSH provokes no rapid PIC-catalysed PtdIns(4,5)P2 hydrolysis or immediate [Ca2+]i mobilization. These results fail to support the widespread view that the TSH receptor of FRTL-5 cells signals, in part, through PIC activation. Our results suggest that TSH activates another, still undefined, mechanism that causes accumulation of an InsP3 and two isomers of InsP4. PMID:8645202

  13. High-fat diet decreases activity of the oxidative phosphorylation complexes and causes nonalcoholic steatohepatitis in mice

    PubMed Central

    García-Ruiz, Inmaculada; Solís-Muñoz, Pablo; Fernández-Moreira, Daniel; Grau, Montserrat; Colina, Francisco; Muñoz-Yagüe, Teresa; Solís-Herruzo, José A.

    2014-01-01

    Nonalcoholic fatty liver disease (NAFLD) is the most frequent histological finding in individuals with abnormal liver-function tests in the Western countries. In previous studies, we have shown that oxidative phosphorylation (OXPHOS) is decreased in individuals with NAFLD, but the cause of this mitochondrial dysfunction remains uncertain. The aims of this study were to determine whether feeding mice a high-fat diet (HFD) induces any change in the activity of OXPHOS, and to investigate the mechanisms involved in the pathogenesis of this defect. To that end, 30 mice were distributed between five groups: control mice fed a standard diet, and mice on a HFD and treated with saline solution, melatonin (an antioxidant), MnTBAP (a superoxide dismutase analog) or uric acid (a scavenger of peroxynitrite) for 28 weeks intraperitoneously. In the liver of these mice, we studied histology, activity and assembly of OXPHOS complexes, levels of subunits of these complexes, gene expression of these subunits, oxidative and nitrosative stress, and oxidative DNA damage. In HFD-fed mice, we found nonalcoholic steatohepatitis, increased gene expression of TNFα, IFNγ, MCP-1, caspase-3, TGFβ1 and collagen α1(I), and increased levels of 3-tyrosine nitrated proteins. The activity and assembly of all OXPHOS complexes was decreased to about 50–60%. The amount of all studied OXPHOS subunits was markedly decreased, particularly the mitochondrial-DNA-encoded subunits. Gene expression of mitochondrial-DNA-encoded subunits was decreased to about 60% of control. There was oxidative damage to mitochondrial DNA but not to genomic DNA. Treatment of HFD-fed mice with melatonin, MnTBAP or uric acid prevented all changes observed in untreated HFD-fed mice. We conclude that a HFD decreased OXPHOS enzymatic activity owing to a decreased amount of fully assembled complexes caused by a reduced synthesis of their subunits. Antioxidants and antiperoxynitrites prevented all of these changes, suggesting

  14. High-fat diet decreases activity of the oxidative phosphorylation complexes and causes nonalcoholic steatohepatitis in mice.

    PubMed

    García-Ruiz, Inmaculada; Solís-Muñoz, Pablo; Fernández-Moreira, Daniel; Grau, Montserrat; Colina, Francisco; Muñoz-Yagüe, Teresa; Solís-Herruzo, José A

    2014-11-01

    Nonalcoholic fatty liver disease (NAFLD) is the most frequent histological finding in individuals with abnormal liver-function tests in the Western countries. In previous studies, we have shown that oxidative phosphorylation (OXPHOS) is decreased in individuals with NAFLD, but the cause of this mitochondrial dysfunction remains uncertain. The aims of this study were to determine whether feeding mice a high-fat diet (HFD) induces any change in the activity of OXPHOS, and to investigate the mechanisms involved in the pathogenesis of this defect. To that end, 30 mice were distributed between five groups: control mice fed a standard diet, and mice on a HFD and treated with saline solution, melatonin (an antioxidant), MnTBAP (a superoxide dismutase analog) or uric acid (a scavenger of peroxynitrite) for 28 weeks intraperitoneously. In the liver of these mice, we studied histology, activity and assembly of OXPHOS complexes, levels of subunits of these complexes, gene expression of these subunits, oxidative and nitrosative stress, and oxidative DNA damage. In HFD-fed mice, we found nonalcoholic steatohepatitis, increased gene expression of TNFα, IFNγ, MCP-1, caspase-3, TGFβ1 and collagen α1(I), and increased levels of 3-tyrosine nitrated proteins. The activity and assembly of all OXPHOS complexes was decreased to about 50-60%. The amount of all studied OXPHOS subunits was markedly decreased, particularly the mitochondrial-DNA-encoded subunits. Gene expression of mitochondrial-DNA-encoded subunits was decreased to about 60% of control. There was oxidative damage to mitochondrial DNA but not to genomic DNA. Treatment of HFD-fed mice with melatonin, MnTBAP or uric acid prevented all changes observed in untreated HFD-fed mice. We conclude that a HFD decreased OXPHOS enzymatic activity owing to a decreased amount of fully assembled complexes caused by a reduced synthesis of their subunits. Antioxidants and antiperoxynitrites prevented all of these changes, suggesting that

  15. Augmentation of platelet and endothelial cell eNOS activity decreases sepsis-related neutrophil-endothelial cell interactions.

    PubMed

    Khan, Raymond; Kirschenbaum, Linda A; LaRow, Catherine; Berna, Gioiamaria; Griffin, Kelly; Astiz, Mark E

    2010-03-01

    NO is an important mediator of microvascular patency and blood flow. The purpose of this study was to examine the role of enhanced eNOS activity in attenuating sepsis-induced neutrophil-endothelial cell interactions. Microslides coated with human umbilical vein endothelial cells were stimulated with plasma from patients with septic shock. Neutrophil and platelets from control subjects were also stimulated with plasma from patients in septic shock and perfused over stimulated endothelial cells. l-Arginine (LA) with and without NG-monomethyl l-arginine (LNMMA), a nonselective NOS inhibitor, and N-(3-(aminomethyl) benzyl acetamide) ethanimidamide dihydrochloride (1400W), a highly selective iNOS inhibitor, were added to the septic plasma. The number of neutrophils adherent to endothelial cells, neutrophil rolling velocity, and the number of neutrophil aggregates were determined. Cell activation and the formation of platelet-neutrophil aggregates were assessed by flow cytometry. Separate experiments were done with isolated platelets using platelet aggregometry. l-Arginine significantly decreased sepsis-related neutrophil adhesion and aggregation and increased rolling velocity. The addition of LNMMA to LA and cell suspensions reversed the effects of LA on these parameters, whereas the addition of 1400W had no effect on LA-related changes. Platelet-neutrophil aggregation, platelet aggregation, platelet activation, and neutrophil activation induced by septic plasma were also significantly decreased by LA. Again, the addition of LNMMA reversed the effects of LA on these parameters, whereas 1400W had no effect on LA-related changes. These data suggest that enhancement of platelet and endothelial cell eNOS activity decreases sepsis-induced neutrophil-endothelial cell interactions and may play a role in maintaining microvascular patency in septic shock.

  16. Secretion of three enzymes for fatty acid synthesis into mouse milk in association with fat globules, and rapid decrease of the secreted enzymes by treatment with rapamycin.

    PubMed

    Moriya, Hitomi; Uchida, Kana; Okajima, Tetsuya; Matsuda, Tsukasa; Nadano, Daita

    2011-04-01

    The mammary epithelium produces numerous lipid droplets during lactation and secretes them in plasma membrane-enclosed vesicles known as milk fat globules. The biogenesis of such fat globules is considered to provide a model for clarifying the mechanisms of lipogenesis in mammals. In the present study, we identified acetyl coenzyme A carboxylase, ATP citrate lyase, and fatty acid synthase in mouse milk. Fractionation of milk showed that these three enzymes were located predominantly in milk fat globules. The three enzymes were resistant to trypsin digestion without Triton X-100, indicating that they were not located on the outer surface of the globules and thus associated with the precursors of the globules before secretion. When a low dose of rapamycin, an inhibitor of the mammalian target of rapamycin (mTOR), was injected into lactating mice, the levels of the three enzymes in milk were decreased within 3h after injection. Since the protein levels of the three enzymes in tissues were not obviously altered by this short-term treatment, known transcriptional control by mTOR signaling was unlikely to account for this decrease in their levels in milk. Our findings suggest a new, putatively mTOR-dependent localization of the three enzymes for de novo lipogenesis. PMID:21281598

  17. Dorsomedial hypothalamic lesions counteract decreases in locomotor activity in male Syrian hamsters transferred from long to short day lengths.

    PubMed

    Jarjisian, Stephan G; Butler, Matthew P; Paul, Matthew J; Place, Ned J; Prendergast, Brian J; Kriegsfeld, Lance J; Zucker, Irving

    2015-02-01

    The dorsomedial nucleus (DMN) of the hypothalamus has been implicated in seasonal control of reproduction. Syrian hamsters with DMN lesions, unlike control hamsters, do not undergo testicular regression after transfer from a long day length (14 h of light per day; LD) to a short day length (8 h of light per day; SD). SDs also markedly reduce hamster locomotor activity (LMA). To assess whether the DMN is a component of the neural circuitry that mediates seasonal variation in LMA, neurologically intact males (controls) and hamsters that had sustained lesions of the DMN (DMNx) were housed in an LD or SD photoperiod for 26 weeks. DMNx that prevented testicular regression counteracted decreases in LMA during 8 to10 weeks of SD treatment; steroid-independent effects of SDs did not override high levels of LMA in DMNx males. As in previous studies, testosterone (T) restoration increased LMA in LD but not SD castrated control males. In the present study, T also failed to increase LMA in SD-DMNx hamsters. The DMN is not necessary to maintain decreased responsiveness of locomotor activity systems to T in SDs, which presumably is mediated by other central nervous system androgen target tissues. Finally, DMNx did not interfere with the spontaneous increase in LMA exhibited by photorefractory hamsters after 26 weeks of SD treatment. We propose that DMN is an essential part of the substrate that mediates seasonal decreases in LMA as day length decreases but is not required to sustain decreased SD responsiveness to T or for development of refractoriness to SDs.

  18. Rapid shifts in Atta cephalotes fungus-garden enzyme activity after a change in fungal substrate (Attini, Formicidae).

    PubMed

    Kooij, P W; Schiøtt, M; Boomsma, J J; De Fine Licht, H H

    2011-05-01

    Fungus gardens of the basidiomycete Leucocoprinus gongylophorus sustain large colonies of leaf-cutting ants by degrading the plant material collected by the ants. Recent studies have shown that enzyme activity in these gardens is primarily targeted toward starch, proteins and the pectin matrix associated with cell walls, rather than toward structural cell wall components such as cellulose and hemicelluloses. Substrate constituents are also known to be sequentially degraded in different sections of the fungus garden. To test the plasticity in the extracellular expression of fungus-garden enzymes, we measured the changes in enzyme activity after a controlled shift in fungal substrate offered to six laboratory colonies of Atta cephalotes. An ant diet consisting exclusively of grains of parboiled rice rapidly increased the activity of endo-proteinases and some of the pectinases attacking the backbone structure of pectin molecules, relative to a pure diet of bramble leaves, and this happened predominantly in the most recently established top sections of fungus gardens. However, fungus-garden amylase activity did not significantly increase despite the substantial increase in starch availability from the rice diet, relative to the leaf diet controls. Enzyme activity in the older, bottom sections of fungus gardens decreased, indicating a faster processing of the rice substrate compared to the leaf diet. These results suggest that leaf-cutting ant fungus gardens can rapidly adjust enzyme activity to provide a better match with substrate availability and that excess starch that is not protected by cell walls may be digested by the ants rather than by the fungus-garden symbiont. ELECTRONIC SUPPLEMENTARY MATERIAL: The online version of this article (doi:10.1007/s00040-010-0127-9) contains supplementary material, which is available to authorized users. PMID:21475686

  19. Hypothesis: Activation of Rapid Signaling by Environmental Estrogens and Epigenetic Reprogramming in Breast Cancer

    PubMed Central

    Treviño, Lindsey S.; Wang, Quan; Walker, Cheryl L.

    2015-01-01

    Environmental and lifestyle factors are considered significant components of the increasing breast cancer risk in the last 50 years. Specifically, exposure to environmental endocrine disrupting compounds is correlated with cancer susceptibility in a variety of tissues. In both human and rodent models, the exposure to ubiquitous environmental estrogens during early life has been shown to disrupt normal mammary development and cause permanent adverse effects. Recent studies indicate that environmental estrogens not only have the ability to disrupt estrogen receptor (ER) signaling, but can also reprogram the epigenome by altering DNA and histone methylation through rapid, nongenomic ER actions. We have observed xenoestrogen-mediated activation of several nongenomic signaling pathways and have identified a target for epigenetic reprogramming in MCF-7 breast cancer cells. These observations, in addition to data from the literature, support the hypothesis that activation of rapid signaling by environmental estrogens can lead to epigenetic reprogramming and contribute to the progression of breast cancer. PMID:25554384

  20. Rapid caspase-3 activation during apoptosis revealed using fluorescence-resonance energy transfer

    PubMed Central

    Tyas, Lorraine; Brophy, Victoria A.; Pope, Andrew; Rivett, A. Jennifer; Tavaré, Jeremy M.

    2000-01-01

    Caspase-3 is a crucial component of the apoptotic machinery in many cell types. Here, we report the timescale of caspase-3 activation in single living cells undergoing apoptosis. This was achieved by measuring the extent of fluorescence resonance energy transfer within a recombinant substrate containing cyan fluorescent protein (CFP) linked by a short peptide possessing the caspase-3 cleavage sequence, DEVD, to yellow fluorescent protein (YFP; i.e. CFP–DEVD–YFP). We demonstrate that, once initiated, the activation of caspase-3 is a very rapid process, taking 5 min or less to reach completion. Furthermore, this process occurs almost simultaneously with a depolarization of the mitochondrial membrane potential. These events occur just prior to the characteristic morphological changes associated with apoptosis. Our results clearly demonstrate that, once initiated, the commitment of cells to apoptosis is a remarkably rapid event when visualized at the single cell level. PMID:11256610

  1. Blocking CXCL9 Decreases HIV-1 Replication and Enhances the Activity of Prophylactic Antiretrovirals in Human Cervical Tissues

    PubMed Central

    Macura, Sherrill L.; Lathrop, Melissa J.; Gui, Jiang; Doncel, Gustavo F.; Rollenhagen, Christiane

    2016-01-01

    Objectives: The interferon-gamma–induced chemokine CXCL9 is expressed in a wide range of inflammatory conditions including those affecting the female genital tract. CXCL9 promotes immune cell recruitment, activation, and proliferation. The role of CXCL9 in modulating HIV-1 infection of cervicovaginal tissues, a main portal of viral entry, however, has not been established. We report a link between CXCL9 and HIV-1 replication in human cervical tissues and propose CXCL9 as a potential target to enhance the anti–HIV-1 activity of prophylactic antiretrovirals. Design: Using ex vivo infection of human cervical tissues as a model of mucosal HIV-1 acquisition, we described the effect of CXCL9 neutralization on HIV-1 gene expression and mucosal CD4+ T-cell activation. The anti-HIV-1 activity of tenofovir, the leading mucosal pre-exposure prophylactic microbicide, alone or in combination with CXCL9 neutralization was also studied. Methods: HIV-1 replication was evaluated by p24 ELISA. HIV-1 DNA and RNA, and CD4, CCR5, and CD38 transcription were evaluated by quantitative real-time polymerase chain reaction. Frequency of activated cervical CD4+ T cells was quantified using fluorescence-activated cell sorting. Results: Antibody blocking of CXCL9 reduced HIV-1 replication by decreasing mucosal CD4+ T-cell activation. CXCL9 neutralization in combination with suboptimal concentrations of tenofovir, possibly present in the cervicovaginal tissues of women using the drug inconsistently, demonstrated an earlier and greater decrease in HIV-1 replication compared with tissues treated with tenofovir alone. Conclusions: CXCL9 neutralization reduces HIV-1 replication and may be an effective target to enhance the efficacy of prophylactic antiretrovirals. PMID:26545124

  2. Rapid parallel flow cytometry assays of active GTPases using effector beads

    PubMed Central

    Buranda, Tione; BasuRay, Soumik; Swanson, Scarlett; Agola, Jacob; Bondu, Virginie; Wandinger-Ness, Angela

    2013-01-01

    We describe a rapid assay for measuring the cellular activity of small GTPases in response to a specific stimulus. Effector functionalized beads are used to quantify in parallel multiple, GTP-bound GTPases in the same cell lysate by flow cytometry. In a biologically relevant example, five different Ras family GTPases are shown for the first time to be involved in a concerted signaling cascade downstream of receptor ligation by Sin Nombre hantavirus. PMID:23928044

  3. Stomatal closure of Pelargonium × hortorum in response to soil water deficit is associated with decreased leaf water potential only under rapid soil drying.

    PubMed

    Boyle, Richard K A; McAinsh, Martin; Dodd, Ian C

    2016-01-01

    Soil water deficits applied at different rates and for different durations can decrease both stomatal conductance (gs ) and leaf water potential (Ψleaf ). Understanding the physiological mechanisms regulating these responses is important in sustainable irrigation scheduling. Glasshouse-grown, containerized Pelargonium × hortorum BullsEye plants were irrigated either daily at various fractions of plant evapotranspiration (100, 75 and 50% ET) for 20 days or irrigation was withheld for 4 days. Xylem sap was collected and gs and Ψleaf were measured on days 15 and 20, and on days 16-19 for the respective treatments. Xylem sap pH and NO3 (-) and Ca(2+) concentrations did not differ between irrigation treatments. Xylem abscisic acid (ABA) concentrations ([ABA]xyl ) increased within 24 h of irrigation being withheld whilst gs and Ψleaf decreased. Supplying irrigation at a fraction of daily ET produced a similar relationship between [ABA]xyl and gs , but did not change Ψleaf . Treatment differences occurred independently of whether Ψleaf was measured in whole leaves with a pressure chamber, or in the lamina with a thermocouple psychrometer. Plants that were irrigated daily showed lower [ABA]xyl than plants from which irrigation was withheld, even at comparable soil moisture content. This implies that regular re-watering attenuates ABA signaling due to maintenance of soil moisture in the upper soil levels. Crucially, detached leaves supplied with synthetic ABA showed a similar relationship between [ABA]xyl and gs as intact plants, suggesting that stomatal closure of P. hortorum in response to soil water deficit is primarily an ABA-induced response, independent of changes in Ψleaf .

  4. Stomatal closure of Pelargonium × hortorum in response to soil water deficit is associated with decreased leaf water potential only under rapid soil drying.

    PubMed

    Boyle, Richard K A; McAinsh, Martin; Dodd, Ian C

    2016-01-01

    Soil water deficits applied at different rates and for different durations can decrease both stomatal conductance (gs ) and leaf water potential (Ψleaf ). Understanding the physiological mechanisms regulating these responses is important in sustainable irrigation scheduling. Glasshouse-grown, containerized Pelargonium × hortorum BullsEye plants were irrigated either daily at various fractions of plant evapotranspiration (100, 75 and 50% ET) for 20 days or irrigation was withheld for 4 days. Xylem sap was collected and gs and Ψleaf were measured on days 15 and 20, and on days 16-19 for the respective treatments. Xylem sap pH and NO3 (-) and Ca(2+) concentrations did not differ between irrigation treatments. Xylem abscisic acid (ABA) concentrations ([ABA]xyl ) increased within 24 h of irrigation being withheld whilst gs and Ψleaf decreased. Supplying irrigation at a fraction of daily ET produced a similar relationship between [ABA]xyl and gs , but did not change Ψleaf . Treatment differences occurred independently of whether Ψleaf was measured in whole leaves with a pressure chamber, or in the lamina with a thermocouple psychrometer. Plants that were irrigated daily showed lower [ABA]xyl than plants from which irrigation was withheld, even at comparable soil moisture content. This implies that regular re-watering attenuates ABA signaling due to maintenance of soil moisture in the upper soil levels. Crucially, detached leaves supplied with synthetic ABA showed a similar relationship between [ABA]xyl and gs as intact plants, suggesting that stomatal closure of P. hortorum in response to soil water deficit is primarily an ABA-induced response, independent of changes in Ψleaf . PMID:25974219

  5. Relationship between Differential Hepatic microRNA Expression and Decreased Hepatic Cytochrome P450 3A Activity in Cirrhosis

    PubMed Central

    Goswami, Chirayu Pankaj; Nalamasu, Rohit; Li, Lang; Jones, David; Wei, Rongrong; Liu, Wanqing; Sarasani, Vishal; Janga, Sarath Chandra; Chalasani, Naga

    2013-01-01

    Background and Aim Liver cirrhosis is associated with decreased hepatic cytochrome P4503A (CYP3A) activity but the pathogenesis of this phenomenon is not well elucidated. In this study, we examined if certain microRNAs (miRNA) are associated with decreased hepatic CYP3A activity in cirrhosis. Methods Hepatic CYP3A activity and miRNA microarray expression profiles were measured in cirrhotic (n=28) and normal (n=12) liver tissue. Hepatic CYP3A activity was measured via midazolam hydroxylation in human liver microsomes. Additionally, hepatic CYP3A4 protein concentration and the expression of CYP3A4 mRNA were measured. Analyses were conducted to identify miRNAs which were differentially expressed between two groups but also were significantly associated with lower hepatic CYP3A activity. Results Hepatic CYP3A activity in cirrhotic livers was 1.7-fold lower than in the normal livers (0.28 ± 0.06 vs. 0.47 ± 0.07mL* min-1*mg protein-1 (mean ± SEM), P=0.02). Six microRNAs (miR-155, miR-454, miR-582-5p, let-7f-1*, miR-181d, and miR-500) had >1.2-fold increase in cirrhotic livers and also had significant negative correlation with hepatic CYP3A activity (range of r = -0.44 to -0.52, P <0.05). Notably, miR-155, a known regulator of liver inflammation, had the highest fold increase in cirrhotic livers (2.2-fold, P=4.16E-08) and significantly correlated with hepatic CYP3A activity (r=-0.50, P=0.017). The relative expression (2-ΔΔCt mean ± SEM) of hepatic CYP3A4 mRNA was significantly higher in cirrhotic livers (21.76 ± 2.65 vs. 5.91 ± 1.29, P=2.04E-07) but their levels did not significantly correlate with hepatic CYP3A activity (r=-0.43, P=0.08). Conclusion The strong association between certain miRNAs, notably miR-155, and lower hepatic CYP3A activity suggest that altered miRNA expression may regulate hepatic CYP3A activity. PMID:24058572

  6. Reduced Sensory Oscillatory Activity during Rapid Auditory Processing as a Correlate of Language-Learning Impairment

    PubMed Central

    Heim, Sabine; Friedman, Jennifer Thomas; Keil, Andreas; Benasich, April A.

    2010-01-01

    Successful language acquisition has been hypothesized to involve the ability to integrate rapidly presented, brief acoustic cues in sensory cortex. A body of work has suggested that this ability is compromised in language-learning impairment (LLI). The present research aimed to examine sensory integration during rapid auditory processing by means of electrophysiological measures of oscillatory brain activity using data from a larger longitudinal study. Twenty-nine children with LLI and control participants with typical language development (n=18) listened to tone doublets presented at a temporal interval that is essential for accurate speech processing (70-ms interstimulus interval). The children performed a deviant (pitch change of second tone) detection task, or listened passively. The electroencephalogram was recorded from 64 electrodes. Data were source-projected to the auditory cortices and submitted to wavelet analysis, resulting in time-frequency representations of electrocortical activity. Results show significantly reduced amplitude and phase-locking of early (45–75 ms) oscillations in the gamma-band range (29–52 Hz), specifically in the LLI group, for the second stimulus of the tone doublet. This suggests altered temporal organization of sensory oscillatory activity in LLI when processing rapid sequences. PMID:21822356

  7. Aspirin decreases systemic exposure to clopidogrel through modulation of P-glycoprotein but does not alter its antithrombotic activity.

    PubMed

    Oh, J; Shin, D; Lim, K S; Lee, S; Jung, K-H; Chu, K; Hong, K S; Shin, K-H; Cho, J-Y; Yoon, S H; Ji, S C; Yu, K-S; Lee, H; Jang, I-J

    2014-06-01

    Decreased oral clopidogrel absorption caused by induction of intestinal permeability glycoprotein (P-gp) expression after aspirin administration was observed in rats. This study evaluated the effect of aspirin coadministration on the pharmacokinetics/pharmacodynamics of clopidogrel in humans. A single 75-mg dose of clopidogrel was orally administered before and after 2 and 4 weeks of once-daily 100-mg aspirin administration in 18 healthy volunteers who were recruited based on CYP2C19 and PON1 genotypes. Plasma concentrations of clopidogrel and its active metabolite, H4, and relative platelet inhibition (RPI) were determined. The P-gp microRNA miR-27a increased by up to 7.67-fold (P = 0.004) and the clopidogrel area under the concentration-time curve (AUC) decreased by 14% (P > 0.05), but the AUC of H4 remained unchanged and RPI increased by up to 15% (P = 0.002) after aspirin administration. These findings indicate low-dose aspirin coadministration may decrease clopidogrel bioavailability but does not decrease its efficacy. PMID:24566733

  8. Salecan Enhances the Activities of β-1,3-Glucanase and Decreases the Biomass of Soil-Borne Fungi

    PubMed Central

    Chen, Yunmei; Xu, Haiyang; Zhou, Mengyi; Wang, Yang; Wang, Shiming; Zhang, Jianfa

    2015-01-01

    Salecan, a linear extracellular polysaccharide consisting of β-1,3-D-glucan, has potential applications in the food, pharmaceutical and cosmetic industries. The objective of this study was to evaluate the effects of salecan on soil microbial communities in a vegetable patch. Compositional shifts in the genetic structure of indigenous soil bacterial and fungal communities were monitored using culture-dependent dilution plating, culture-independent PCR-denaturing gradient gel electrophoresis (DGGE) and quantitative PCR. After 60 days, soil microorganism counts showed no significant variation in bacterial density and a marked decrease in the numbers of fungi. The DGGE profiles revealed that salecan changed the composition of the microbial community in soil by increasing the amount of Bacillus strains and decreasing the amount of Fusarium strains. Quantitative PCR confirmed that the populations of the soil-borne fungi Fusarium oxysporum and Trichoderma spp. were decreased approximately 6- and 2-fold, respectively, in soil containing salecan. This decrease in the amount of fungi can be explained by salecan inducing an increase in the activities of β-1,3-glucanase in the soil. These results suggest the promising application of salecan for biological control of pathogens of soil-borne fungi. PMID:26247592

  9. Saturated lipids decrease mitofusin 2 leading to endoplasmic reticulum stress activation and insulin resistance in hypothalamic cells.

    PubMed

    Diaz, Brenda; Fuentes-Mera, Lizeth; Tovar, Armando; Montiel, Teresa; Massieu, Lourdes; Martínez-Rodríguez, Herminia Guadalupe; Camacho, Alberto

    2015-11-19

    Endoplasmic reticulum (ER) and mitochondria dysfunction contribute to insulin resistance generation during obesity and diabetes. ER and mitochondria interact through Mitofusin 2 (MTF2), which anchors in the outer mitochondrial and ER membranes regulating energy metabolism. Ablation of MTF2 leads to ER stress activation and insulin resistance. Here we determine whether lipotoxic insult induced by saturated lipids decreases MTF2 expression leading to ER stress response in hypothalamus and its effects on insulin sensitivity using in vitro and in vivo models. We found that lipotoxic stimulation induced by palmitic acid, but not the monounsaturated palmitoleic acid, decreases MTF2 protein levels in hypothalamic mHypoA-CLU192 cells. Also, palmitic acid incubation activates ER stress response evidenced by increase in the protein levels of GRP78/BIP marker at later stage than MTF2 downregulation. Additionally, we found that MTF2 alterations induced by palmitic, but not palmitoleic, stimulation exacerbate insulin resistance in hypothalamic cells. Insulin resistance induced by palmitic acid is prevented by pre-incubation of the anti-inflammatory and the ER stress release reagents, sodium salicylate and 4 phenylbutirate, respectively. Finally, we demonstrated that lipotoxic insult induced by high fat feeding to mice decreases MTF2 proteins levels in arcuate nucleus of hypothalamus. Our data indicate that saturated lipids modulate MTF2 expression in hypothalamus coordinating the ER stress response and the susceptibility to insulin resistance.

  10. Progressive alopecia reveals decreasing stem cell activation probability during aging of mice with epidermal deletion of DNA methyltransferase 1.

    PubMed

    Li, Ji; Jiang, Ting-Xin; Hughes, Michael W; Wu, Ping; Yu, Juehua; Widelitz, Randall B; Fan, Guoping; Chuong, Cheng-Ming

    2012-12-01

    To examine the roles of epigenetic modulation on hair follicle regeneration, we generated mice with a K14-Cre-mediated loss of DNA methyltransferase 1 (DNMT1). The mutant shows an uneven epidermal thickness and alterations in hair follicle size. When formed, hair follicle architecture and differentiation appear normal. Hair subtypes exist but hair fibers are shorter and thinner. Hair numbers appear normal at birth but gradually decrease to <50% of control in 1-year-old mice. Sections of old mutant skin show follicles in prolonged telogen with hyperplastic sebaceous glands. Anagen follicles in mutants exhibit decreased proliferation and increased apoptosis in matrix transient-amplifying cells. Although K15-positive stem cells in the mutant bulge are comparable in number to the control, their ability to proliferate and become activated to form a hair germ is reduced. As mice age, residual DNMT activity declines further, and the probability of successful anagen reentry decreases, leading to progressive alopecia. Paradoxically, there is increased proliferation in the epidermis, which also shows aberrant differentiation. These results highlight the importance of DNA methylation in maintaining stem cell homeostasis during the development and regeneration of ectodermal organs.

  11. Genistein decreases basal hepatic cytochrome P450 1A1 protein expression and activity in Swiss Webster mice.

    PubMed

    Froyen, Erik B; Steinberg, Francene M

    2016-05-01

    Soy consumption has been associated with risk reduction for chronic diseases such as cancer. One proposed mechanism for cancer prevention by soy is through decreasing cytochrome P450 1A1 (Cyp1a1) activity. However, it is not known with certainty which soy components modulate Cyp1a1, or the characteristics or mechanisms involved in the responses after short-term (<20 days) dietary treatment without concomitant carcinogen-mediated induction. Therefore, the objective was to test the hypothesis that physiologic concentrations of dietary genistein and/or daidzein will decrease basal hepatic Cyp1a1 protein expression and activity in male and female Swiss Webster mice via inhibiting the bindings of aryl hydrocarbon receptor (AhR)-AhR nuclear translocator (ARNT) and estrogen receptor-α to the Cyp1a1 promoter region xenobiotic response element. The mice were fed the AIN-93G diet supplemented with 1500 mg/kg of genistein or daidzein for up to 1 week. Genistein, but not daidzein, significantly decreased basal hepatic microsomal Cyp1a1 protein expression and activity. AhR protein expression was not altered. Molecular mechanisms were investigated in Hepa-1c1c7 cells treated with 5 μmol/L purified aglycones genistein, daidzein, or equol. Cells treated with genistein exhibited inhibitions in ARNT and estrogen receptor-α bindings to the Cyp1a1 promoter region. This study demonstrated that genistein consumption reduced constitutive hepatic Cyp1a1 protein expression and activity, thereby contributing to the understanding of how soy isoflavone aglycones modulate cytochrome P450 biotransformation enzymes.

  12. Novel sulfonanilide analogs decrease aromatase activity in breast cancer cells: synthesis, biological evaluation, and ligand-based pharmacophore identification.

    PubMed

    Su, Bin; Tian, Ran; Darby, Michael V; Brueggemeier, Robert W

    2008-03-13

    Aromatase converts androgens to estrogens and is a particularly attractive target in the treatment of estrogen receptor positive breast cancer. Previously, the COX-2 selective inhibitor nimesulide and analogs decreased aromatase expression and enzyme activity independent of COX-2 inhibition. In this manuscript, a combinatorial approach was used to generate diversely substituted novel sulfonanilides by parallel synthesis. Their pharmacological evaluation as agents for suppression of aromatase activity in SK-BR-3 breast cancer cells was extensively explored. A ligand-based pharmacophore model was elaborated for selective aromatase modulation (SAM) using the Catalyst HipHop algorithms. The best qualitative model consisted of four features: one aromatic ring, two hydrogen bond acceptors, and one hydrophobic function. Several lead compounds have also been tested in aromatase transfected MCF-7 cells, and they significantly suppressed cellular aromatase activity. The results suggest that both genomic and nongenomic mechanisms of these compounds are involved within the aromatase suppression effect. PMID:18271519

  13. Novel sulfonanilide analogs decrease aromatase activity in breast cancer cells: synthesis, biological evaluation, and ligand-based pharmacophore identification.

    PubMed

    Su, Bin; Tian, Ran; Darby, Michael V; Brueggemeier, Robert W

    2008-03-13

    Aromatase converts androgens to estrogens and is a particularly attractive target in the treatment of estrogen receptor positive breast cancer. Previously, the COX-2 selective inhibitor nimesulide and analogs decreased aromatase expression and enzyme activity independent of COX-2 inhibition. In this manuscript, a combinatorial approach was used to generate diversely substituted novel sulfonanilides by parallel synthesis. Their pharmacological evaluation as agents for suppression of aromatase activity in SK-BR-3 breast cancer cells was extensively explored. A ligand-based pharmacophore model was elaborated for selective aromatase modulation (SAM) using the Catalyst HipHop algorithms. The best qualitative model consisted of four features: one aromatic ring, two hydrogen bond acceptors, and one hydrophobic function. Several lead compounds have also been tested in aromatase transfected MCF-7 cells, and they significantly suppressed cellular aromatase activity. The results suggest that both genomic and nongenomic mechanisms of these compounds are involved within the aromatase suppression effect.

  14. Virus-associated activation of innate immunity induces rapid disruption of Peyer's patches in mice.

    PubMed

    Heidegger, Simon; Anz, David; Stephan, Nicolas; Bohn, Bernadette; Herbst, Tina; Fendler, Wolfgang Peter; Suhartha, Nina; Sandholzer, Nadja; Kobold, Sebastian; Hotz, Christian; Eisenächer, Katharina; Radtke-Schuller, Susanne; Endres, Stefan; Bourquin, Carole

    2013-10-10

    Early in the course of infection, detection of pathogen-associated molecular patterns by innate immune receptors can shape the subsequent adaptive immune response. Here we investigate the influence of virus-associated innate immune activation on lymphocyte distribution in secondary lymphoid organs. We show for the first time that virus infection of mice induces rapid disruption of the Peyer's patches but not of other secondary lymphoid organs. The observed effect was not dependent on an active infectious process, but due to innate immune activation and could be mimicked by virus-associated molecular patterns such as the synthetic double-stranded RNA poly(I:C). Profound histomorphologic changes in Peyer's patches were associated with depletion of organ cellularity, most prominent among the B-cell subset. We demonstrate that the disruption is entirely dependent on type I interferon (IFN). At the cellular level, we show that virus-associated immune activation by IFN-α blocks B-cell trafficking to the Peyer's patches by downregulating expression of the homing molecule α4β7-integrin. In summary, our data identify a mechanism that results in type I IFN-dependent rapid but reversible disruption of intestinal lymphoid organs during systemic viral immune activation. We propose that such rerouted lymphocyte trafficking may impact the development of B-cell immunity to systemic viral pathogens. PMID:23823318

  15. Virus-associated activation of innate immunity induces rapid disruption of Peyer's patches in mice.

    PubMed

    Heidegger, Simon; Anz, David; Stephan, Nicolas; Bohn, Bernadette; Herbst, Tina; Fendler, Wolfgang Peter; Suhartha, Nina; Sandholzer, Nadja; Kobold, Sebastian; Hotz, Christian; Eisenächer, Katharina; Radtke-Schuller, Susanne; Endres, Stefan; Bourquin, Carole

    2013-10-10

    Early in the course of infection, detection of pathogen-associated molecular patterns by innate immune receptors can shape the subsequent adaptive immune response. Here we investigate the influence of virus-associated innate immune activation on lymphocyte distribution in secondary lymphoid organs. We show for the first time that virus infection of mice induces rapid disruption of the Peyer's patches but not of other secondary lymphoid organs. The observed effect was not dependent on an active infectious process, but due to innate immune activation and could be mimicked by virus-associated molecular patterns such as the synthetic double-stranded RNA poly(I:C). Profound histomorphologic changes in Peyer's patches were associated with depletion of organ cellularity, most prominent among the B-cell subset. We demonstrate that the disruption is entirely dependent on type I interferon (IFN). At the cellular level, we show that virus-associated immune activation by IFN-α blocks B-cell trafficking to the Peyer's patches by downregulating expression of the homing molecule α4β7-integrin. In summary, our data identify a mechanism that results in type I IFN-dependent rapid but reversible disruption of intestinal lymphoid organs during systemic viral immune activation. We propose that such rerouted lymphocyte trafficking may impact the development of B-cell immunity to systemic viral pathogens.

  16. Exogenous Carbon Monoxide Decreases Sepsis-Induced Acute Kidney Injury and Inhibits NLRP3 Inflammasome Activation in Rats

    PubMed Central

    Wang, Peng; Huang, Jian; Li, Yi; Chang, Ruiming; Wu, Haidong; Lin, Jiali; Huang, Zitong

    2015-01-01

    Carbon monoxide (CO) has shown various physiological effects including anti-inflammatory activity in several diseases, whereas the therapeutic efficacy of CO on sepsis-induced acute kidney injury (AKI) has not been reported as of yet. The purpose of the present study was to explore the effects of exogenous CO on sepsis-induced AKI and nucleotide-binding domain-like receptor protein 3 (NLRP3) inflammasome activation in rats. Male rats were subjected to cecal ligation and puncture (CLP) to induce sepsis and AKI. Exogenous CO delivered from CO-releasing molecule 2 (CORM-2) was used intraperitoneally as intervention after CLP surgery. Therapeutic effects of CORM-2 on sepsis-induced AKI were assessed by measuring serum creatinine (Scr) and blood urea nitrogen (BUN), kidney histology scores, apoptotic cell scores, oxidative stress, levels of cytokines TNF-α and IL-1β, and NLRP3 inflammasome expression. CORM-2 treatment protected against the sepsis-induced AKI as evidenced by reducing serum Scr/BUN levels, apoptotic cells scores, increasing survival rates, and decreasing renal histology scores. Furthermore, treatment with CORM-2 significantly reduced TNF-α and IL-1β levels and oxidative stress. Moreover, CORM-2 treatment significantly decreased NLRP3 inflammasome protein expressions. Our study provided evidence that CORM-2 treatment protected against sepsis-induced AKI and inhibited NLRP3 inflammasome activation, and suggested that CORM-2 could be a potential therapeutic candidate for treating sepsis-induced AKI. PMID:26334271

  17. Exogenous Carbon Monoxide Decreases Sepsis-Induced Acute Kidney Injury and Inhibits NLRP3 Inflammasome Activation in Rats.

    PubMed

    Wang, Peng; Huang, Jian; Li, Yi; Chang, Ruiming; Wu, Haidong; Lin, Jiali; Huang, Zitong

    2015-08-31

    Carbon monoxide (CO) has shown various physiological effects including anti-inflammatory activity in several diseases, whereas the therapeutic efficacy of CO on sepsis-induced acute kidney injury (AKI) has not been reported as of yet. The purpose of the present study was to explore the effects of exogenous CO on sepsis-induced AKI and nucleotide-binding domain-like receptor protein 3 (NLRP3) inflammasome activation in rats. Male rats were subjected to cecal ligation and puncture (CLP) to induce sepsis and AKI. Exogenous CO delivered from CO-releasing molecule 2 (CORM-2) was used intraperitoneally as intervention after CLP surgery. Therapeutic effects of CORM-2 on sepsis-induced AKI were assessed by measuring serum creatinine (Scr) and blood urea nitrogen (BUN), kidney histology scores, apoptotic cell scores, oxidative stress, levels of cytokines TNF-α and IL-1β, and NLRP3 inflammasome expression. CORM-2 treatment protected against the sepsis-induced AKI as evidenced by reducing serum Scr/BUN levels, apoptotic cells scores, increasing survival rates, and decreasing renal histology scores. Furthermore, treatment with CORM-2 significantly reduced TNF-α and IL-1β levels and oxidative stress. Moreover, CORM-2 treatment significantly decreased NLRP3 inflammasome protein expressions. Our study provided evidence that CORM-2 treatment protected against sepsis-induced AKI and inhibited NLRP3 inflammasome activation, and suggested that CORM-2 could be a potential therapeutic candidate for treating sepsis-induced AKI.

  18. 20 CFR 671.160 - What rapid response activities are required before a national emergency grant application is...

    Code of Federal Regulations, 2010 CFR

    2010-04-01

    ... workers and, in the case of declared emergencies and natural disasters, the community; and (4) The...). Under 20 CFR 665.310, rapid response encompasses, among other activities, an assessment of the general...) The rapid response activities described in 20 CFR 665.310 have been initiated and carried out, or...

  19. 20 CFR 671.160 - What rapid response activities are required before a national emergency grant application is...

    Code of Federal Regulations, 2014 CFR

    2014-04-01

    ... 20 Employees' Benefits 4 2014-04-01 2014-04-01 false What rapid response activities are required before a national emergency grant application is submitted? 671.160 Section 671.160 Employees' Benefits... elected official(s). Under 20 CFR 665.310, rapid response encompasses, among other activities,...

  20. 20 CFR 671.160 - What rapid response activities are required before a national emergency grant application is...

    Code of Federal Regulations, 2013 CFR

    2013-04-01

    ... assistance needs of the workers and, in the case of declared emergencies and natural disasters, the community... elected official(s). Under 20 CFR 665.310, rapid response encompasses, among other activities, an... must demonstrate that: (1) The rapid response activities described in 20 CFR 665.310 have...

  1. 20 CFR 671.160 - What rapid response activities are required before a national emergency grant application is...

    Code of Federal Regulations, 2012 CFR

    2012-04-01

    ... assistance needs of the workers and, in the case of declared emergencies and natural disasters, the community... elected official(s). Under 20 CFR 665.310, rapid response encompasses, among other activities, an... must demonstrate that: (1) The rapid response activities described in 20 CFR 665.310 have...

  2. The pore size of non-graminaceous plant cell walls is rapidly decreased by borate ester cross-linking of the pectic polysaccharide rhamnogalacturonan II

    SciTech Connect

    Fleischer, A.; O'Neill, M.A.; Ehwald, R.

    1999-11-01

    The walls of suspension-cultured Chenopodium album L. cells grown continually for more than 1 year on B-deficient medium contained monomeric rhamnogalacturonan (mRG-II) but not the borate ester cross-linked RG II dimer (dRG-II-B). The walls of these cells had an increased size limit for dextran permeation, which is a measure of wall pore size. Adding boric acid to growing B-deficient cells resulted in B binding to the wall, the formation of dRG-II-B from mRG-II, and a reduction in wall pore size within 10 min. The wall pore size of denatured B-grown cells was increased by treatment at pH {le} 2.0 or by treatment with Ca{sup 2+}-chelating agents. The acid-mediated increase in wall pore size was prevented by boric acid alone at pH 2.0 and by boric acid together with Ca{sup 2+}, but not by Na{sup +} or Mg{sup 2+} ions at pH 1.5. The Ca{sup 2+}-chelator-mediated increase in pore size was partially reduced by boric acid. Their results suggest that B-mediated cross-linking of RG-II in the walls of living plant cells generates a pectin network with a decreased size exclusion limit for polymers. The formation, stability, and possible functions of a borate ester cross-linked pectic network in the primary walls of nongraminaceous plant cells are discussed.

  3. The Pore Size of Non-Graminaceous Plant Cell Walls Is Rapidly Decreased by Borate Ester Cross-Linking of the Pectic Polysaccharide Rhamnogalacturonan II1

    PubMed Central

    Fleischer, Axel; O'Neill, Malcolm A.; Ehwald, Rudolf

    1999-01-01

    The walls of suspension-cultured Chenopodium album L. cells grown continually for more than 1 year on B-deficient medium contained monomeric rhamnogalacturonan II (mRG-II) but not the borate ester cross-linked RG II dimer (dRG-II-B). The walls of these cells had an increased size limit for dextran permeation, which is a measure of wall pore size. Adding boric acid to growing B-deficient cells resulted in B binding to the wall, the formation of dRG-II-B from mRG-II, and a reduction in wall pore size within 10 min. The wall pore size of denatured B-grown cells was increased by treatment at pH ≤ 2.0 or by treatment with Ca2+-chelating agents. The acid-mediated increase in wall pore size was prevented by boric acid alone at pH 2.0 and by boric acid together with Ca2+, but not by Na+ or Mg2+ ions at pH 1.5. The Ca2+-chelator-mediated increase in pore size was partially reduced by boric acid. Our results suggest that B-mediated cross-linking of RG-II in the walls of living plant cells generates a pectin network with a decreased size exclusion limit for polymers. The formation, stability, and possible functions of a borate ester cross-linked pectic network in the primary walls of nongraminaceous plant cells are discussed. PMID:10557231

  4. Minocycline increases the life span and motor activity and decreases lipid peroxidation in manganese treated Drosophila melanogaster.

    PubMed

    Bonilla, E; Contreras, R; Medina-Leendertz, S; Mora, M; Villalobos, V; Bravo, Y

    2012-03-29

    The objective of this study was to investigate the effect of Minocycline in the life span, motor activity, and lipid peroxidation of Drosophila melanogaster treated with manganese. Two days after emerging from the pupa male wild-type D. melanogaster were fed for 13 days with corn media containing 15 mM manganese. Then, they were divided in six groups of 300 flies each: group (a) remained treated with manganese (Mn group); group (b) began treatment with Minocycline (0.05 mM) (Mn-Minocycline group); group (c) received no additional treatment (Mn-no treatment group); group (d) simultaneously fed with manganese and Minocycline (Mn+Minocycline group). Additionally, a control (group e) with no treatment and another group (f) fed only with Minocycline after emerging from the pupa were added. All the manganese treated flies (group a) were dead on the 25th day. The life span in group f (101.66±1.33 days, mean S.E.M.) and of group b (97.00±3.46 days) were similar, but in both cases it was significantly higher than in group e (68.33±1.76 days), group c (67.05±2.30 days) and in those of group d (37.33±0.88). Manganese (groups a and d) decreased motor activity in D. melanogaster. In the Minocycline fed flies (groups b and f) a higher motor activity was detected. In Mn-Minocycline and Mn+Minocycline treated flies a significant decrease of MDA levels was detected when compared to the Minocycline group indicating that Minocycline and Mn appear to have a synergistic effect. In conclusion, Minocycline increased the life span and motor activity and decreased MDA formation of manganese treated D. melanogaster, probably by an inhibition of the production of reactive oxygen species. Manganese also exerted an antioxidant effect as shown by the significant decrease of MDA levels when compared to control flies.

  5. Decreased material-activation of the complement system using low-energy plasma polymerized poly(vinyl pyrrolidone) coatings.

    PubMed

    Andersen, Thomas E; Palarasah, Yaseelan; Skjødt, Mikkel-Ole; Ogaki, Ryosuke; Benter, Maike; Alei, Mojagan; Kolmos, Hans J; Koch, Claus; Kingshott, Peter

    2011-07-01

    In the current study we investigate the activation of blood complement on medical device silicone rubber and present a plasma polymerized vinyl pyrrolidone (ppVP) coating which strongly decreases surface-activation of the blood complement system. We show that uncoated silicone and polystyrene are both potent activators of the complement system, measured both as activated, deposited C3b and quantifying fluid-phase release of the cleavage fragment C3c. The ppVP coated silicone exhibits approximately 90% reduced complement activation compared to untreated silicone. Quartz crystal microbalance with dissipation (QCM-D) measurements show relatively strong adsorption of blood proteins including native C3 to the ppVP surface, indicating that reduction of complement activation on ppVP is neither a result of low protein adsorption nor lower direct C3-binding, and is therefore possibly a consequence of differences in the adsorbed protein layer composition. The alternative and classical complement pathways are barely detectable on ppVP while the lectin pathway through MBL/ficolin-2 deposition remains active on ppVP suggesting this pathway is responsible for the remaining subtle activation on the ppVP coated surface. The ppVP surface is furthermore characterized physically and chemically using scanning electron microscopy (SEM), x-ray photoelectron spectroscopy (XPS) and Fourier transform infrared (FTIR), which indicates preservation of chemical functionality by the applied plasma process. Overall, the ppVP coating shows a potential for increasing complement-compatibility of blood-contacting devices.

  6. Active Hexose Correlated Compound Activates Immune Function to Decrease Chlamydia trachomatis Shedding in a Murine Stress Model

    PubMed Central

    Belay, Tesfaye; Fu, Chih-lung; Woart, Anthony

    2016-01-01

    A cold-induced stress mouse model for investigating chlamydia genital infection and immune response analysis was established in our laboratory. Previous results showed that cold-induced stress results in suppression of the immune response and increased intensity of chlamydia genital infection in the mouse model. The purpose of the present study was to evaluate the potential therapeutic value of active hexose correlated compound (AHCC) against chlamydia genital infection in mice. AHCC is an extract of mushroom commonly used as a dietary supplement is known to boost the immune system. Mice were infected intravaginally with Chlamydia trachomatis after a 24-day cold-stress application. Oral administration of AHCC to stressed or non-stressed mice was carried out seven days before infection and during the course of infection along with cervicovaginal swabbing. Cytokine production by peritoneal and splenic T cells isolated from AHCC-fed stressed mice and non-stressed mice was measured ELISA. Splenic T cells from both animal groups were co-cultured with mouse monocyte J774.2 cell line or cultured by addition of supernatants of AHCC-treated J774.2 cell line for 24 hours. Infection studies showed that AHCC-feeding compared to phosphate buffered saline (PBS)-feeding to stressed mice resulted in reduced Chlamydia trachomatis shedding from the genital tract. Levels of tumor necrosis factor-alpha (TNF-α) and interleukin 6 (IL-6) were significantly increased in stressed mice receiving AHCC compared to stressed mice receiving PBS. Production of interferon gamma (IFN-γ) and interleukin 2 (IL-2) in the AHCC group was significantly high compared to production in PBS-fed group. Splenic T cells from stressed and non-stressed cultured with supernatants of AHCC-treated J774.2 cell line resulted in significantly increased TNF-α or IFN-γ production. Results obtained in this study show that AHCC improves the function of immune cells as indicated by the restoration of levels of cytokines

  7. Rapid hippocampal network adaptation to recurring synchronous activity – a role for calcineurin

    PubMed Central

    Casanova, Jose R.; Nishimura, M.; Le, J.; Lam, T. T.; Swann, J. W.

    2013-01-01

    Neuronal networks are thought to gradually adapt to altered neuronal activity over many hours and days. For instance, when activity is increased by suppressing synaptic inhibition, excitatory synaptic transmission is reduced. The underlying compensatory cellular and molecular mechanisms are thought to contribute in important ways to maintaining normal network operations. Seizures, due to their massive and highly synchronized discharging, probably challenge the adaptive properties of neurons, especially when seizures are frequent and intense – a condition common in early childhood. In the experiments reported here, we used hippocampal slice cultures to explore the effects that recurring seizure-like activity had on the developing hippocampus. We found that developing networks adapted rapidly to recurring synchronized activity in that the duration of seizure-like events was reduced by 42% after 4 h of activity. At the same time, the frequency of spontaneous excitatory postsynaptic currents in pyramidal cells, the expression of biochemical biomarkers for glutamatergic synapses and the branching of pyramidal cell dendrites were all dramatically reduced. Experiments also showed that the reduction in N-methyl-D-aspartate receptor subunits and postsynaptic density protein 95 expression were N-methyl-D-aspartate receptor-dependent. To explore calcium signaling mechanisms in network adaptation, we tested inhibitors of calcineurin, a protein phosphatase known to play roles in synaptic plasticity and activity-dependent dendrite remodeling. We found that FK506 was able to prevent all of the electrophysiological, biochemical, and anatomical changes produced by synchronized network activity. Our results showed that hippocampal pyramidal cells and their networks adapted rapidly to intense synchronized activity and that calcineurin played an important role in the underlying processes. PMID:23879713

  8. Treatment of SIV-infected sooty mangabeys with a type-I IFN agonist results in decreased virus replication without inducing hyperimmune activation.

    PubMed

    Vanderford, Thomas H; Slichter, Chloe; Rogers, Kenneth A; Lawson, Benton O; Obaede, Rend; Else, James; Villinger, Francois; Bosinger, Steven E; Silvestri, Guido

    2012-06-14

    A key feature differentiating nonpathogenic SIV infection of sooty mangabeys (SMs) from pathogenic HIV/SIV infections is the rapid resolution of type I IFN (IFN-I) responses and IFN-stimulated gene expression during the acute-to-chronic phase transition and the establishment of an immune quiescent state that persists throughout the chronic infection. We hypothesized that low levels of IFN-I signaling may help to prevent chronic immune activation and disease progression in SIV-infected SMs. To assess the effects of IFN-I signaling in this setting, in the present study, we administered recombinant rhesus macaque IFNα2-IgFc (rmIFNα2) to 8 naturally SIV-infected SMs weekly for 16 weeks. Gene-expression profiling revealed a strong up-regulation of IFN-stimulated genes in the blood of treated animals, confirming the reagent's bioactivity. Interestingly, we observed an approximately 1-log decrease in viral load that persisted through day 35 of treatment. Flow cytometric analysis of lymphocytes in the blood, lymph nodes, and rectal biopsies did not reveal a significant decline of CD4(+) T cells, a robust increase in lymphocyte activation, or change in the level of SIV-specific CD8(+) T cells. The results of the present study indicate that administration of type I IFNs in SIV-infected SMs induces a significant anti-viral effect that is not associated with a detectable increase in chronic immune activation.

  9. Calixarene Assisted Rapid Synthesis of Silver-Graphene Nanocomposites with Enhanced Antibacterial Activity.

    PubMed

    Kellici, Suela; Acord, John; Vaughn, Arni; Power, Nicholas P; Morgan, David J; Heil, Tobias; Facq, Sébastien P; Lampronti, Giulio I

    2016-07-27

    Demonstrated herein is a single rapid approach employed for synthesis of Ag-graphene nanocomposites, with excellent antibacterial properties and low cytotoxicity, by utilizing a continuous hydrothermal flow synthesis (CHFS) process in combination with p-hexasulfonic acid calix[6]arene (SCX6) as an effective particle stabilizer. The nanocomposites showed high activity against E. coli (Gram-negative) and S. aureus (Gram-positive) bacteria. The materials were characterized using a range of techniques including transmission electron microscopy (TEM), X-ray photoelectron spectroscopy (XPS), Raman spectroscopy, UV-vis spectrophotometry, FT-IR, and X-ray powder diffraction (XRD). This rapid, single step synthetic approach not only provides a facile means of enabling and controlling graphene reduction (under alkaline conditions) but also offers an optimal route for homogeneously producing and depositing highly crystalline Ag nanostructures into reduced graphene oxide substrate. PMID:27378104

  10. Rapid Bioorthogonal Chemistry Turn-on through Enzymatic or Long Wavelength Photocatalytic Activation of Tetrazine Ligation.

    PubMed

    Zhang, Han; Trout, William S; Liu, Shuang; Andrade, Gabriel A; Hudson, Devin A; Scinto, Samuel L; Dicker, Kevin T; Li, Yi; Lazouski, Nikifar; Rosenthal, Joel; Thorpe, Colin; Jia, Xinqiao; Fox, Joseph M

    2016-05-11

    Rapid bioorthogonal reactivity can be induced by controllable, catalytic stimuli using air as the oxidant. Methylene blue (4 μM) irradiated with red light (660 nm) catalyzes the rapid oxidation of a dihydrotetrazine to a tetrazine thereby turning on reactivity toward trans-cyclooctene dienophiles. Alternately, the aerial oxidation of dihydrotetrazines can be efficiently catalyzed by nanomolar levels of horseradish peroxidase under peroxide-free conditions. Selection of dihydrotetrazine/tetrazine pairs of sufficient kinetic stability in aerobic aqueous solutions is key to the success of these approaches. In this work, polymer fibers carrying latent dihydrotetrazines were catalytically activated and covalently modified by trans-cyclooctene conjugates of small molecules, peptides, and proteins. In addition to visualization with fluorophores, fibers conjugated to a cell adhesive peptide exhibited a dramatically increased ability to mediate contact guidance of cells.

  11. Real-time PCR for rapidly detecting aniline-degrading bacteria in activated sludge.

    PubMed

    Kayashima, Takakazu; Suzuki, Hisako; Maeda, Toshinari; Ogawa, Hiroaki I

    2013-05-01

    We developed a detection method that uses quantitative real-time PCR (qPCR) and the TaqMan system to easily and rapidly assess the population of aniline-degrading bacteria in activated sludge prior to conducting a biodegradability test on a chemical compound. A primer and probe set for qPCR was designed by a multiple alignment of conserved amino acid sequences encoding the large (α) subunit of aniline dioxygenase. PCR amplification tests showed that the designed primer and probe set targeted aniline-degrading strains such as Acidovorax sp., Gordonia sp., Rhodococcus sp., and Pseudomonas putida, thereby suggesting that the developed method can detect a wide variety of aniline-degrading bacteria. There was a strong correlation between the relative copy number of the α-aniline dioxygenase gene in activated sludge obtained with the developed qPCR method and the number of aniline-degrading bacteria measured by the Most Probable Number method, which is the conventional method, and a good correlation with the lag time of the BOD curve for aniline degradation produced by the biodegradability test in activated sludge samples collected from eight different wastewater treatment plants in Japan. The developed method will be valuable for the rapid and accurate evaluation of the activity of inocula prior to conducting a ready biodegradability test.

  12. Cyclophosphamide decreases O6-alkylguanine-DNA alkyltransferase activity in peripheral lymphocytes of patients undergoing bone marrow transplantation.

    PubMed Central

    Lee, S. M.; Crowther, D.; Scarffe, J. H.; Dougal, M.; Elder, R. H.; Rafferty, J. A.; Margison, G. P.

    1992-01-01

    O6-alkylguanine-DNA-alkyltransferase (ATase) levels were measured in extracts of peripheral blood lymphocytes taken at various times during chemotherapy from 19 patients with various haematological malignancies. Seven patients with advanced Hodgkin's disease received preparative treatment consisting of cyclophosphamide (1.5 g m-2, daily) administered on days 1 to 4 and BCNU (600 mg m-2) on day 5 prior to autologous bone marrow rescue (ABMR) delivered on day 7. Treatment in the remaining 12 patients consisted of cyclophosphamide (1.8 g m-2, daily) given on days 1 and 2 followed at day 4 with total body irradiation (TBI) administered in six fractions over the subsequent 3 days to a total dose of 1200 cGy prior to bone marrow transplantation. In the Hodgkin's group, significant decreases in ATase activity were seen during the cyclophosphamide treatment, and the median ATase nadir was 32% (range 0% to 57%) of pretreatment levels following 4 days of cyclophosphamide. In one patient, no ATase activity was detectable following the 4th cyclophosphamide treatment. ATase activities decreased further after BCNU administration to a median of 19% (range 0% to 32%) of pretreatment levels. Extensive cyclophosphamide-induced reduction of lymphocyte ATase levels was also seen in the other group of 12 patients treated with cyclophosphamide/TBI: postcyclophosphamide median ATase nadir was 35% (range 12% to 78%) of the pretreatment levels. No ATase depletion was seen when cyclophosphamide (up to 10 mM) was incubated for 2 h with pure recombinant human ATase in vitro whereas ATase activity was reduced by 90% on preincubation with 100 microns acrolein or with greater than 1 mM phosphoramide mustard. This suggests that a cyclophosphamide-induced decrease in ATase levels in human peripheral lymphocytes in vivo may be due to depletion mediated by the production of intracellular acrolein. Since ATase appears to be a principal mechanism in cellular resistance to the cytotoxic effects of BCNU

  13. Acetylsalicylic acid and salicylic acid decrease tumor cell viability and glucose metabolism modulating 6-phosphofructo-1-kinase structure and activity.

    PubMed

    Spitz, Guilherme A; Furtado, Cristiane M; Sola-Penna, Mauro; Zancan, Patricia

    2009-01-01

    The common observation that cancer cells present higher glycolytic rates when compared to control cells leads to the proposal of glycolysis as a potential target for the development of anti-tumoral agents. Anti-inflammatory drugs, such as acetylsalicylic acid (ASA) and salicylic acid (SA), present anti-tumoral properties, inducing apoptosis and altering tumor glucose utilization. The present work aims at evaluating whether ASA could directly decrease cell glycolysis through inhibition of the major regulatory enzyme within this pathway, 6-phosphofructo-1-kinase (PFK). We show that ASA and SA inhibit purified PFK in a dose-dependent manner, and that this inhibition occurs due to the modulation of the enzyme quaternary structure. ASA and SA promote the dissociation of the enzyme active tetramers into quite inactive dimers, a common regulatory mechanism of this enzyme. The inhibitory effects of ASA and SA on PFK are fully reversible and can be prevented or reverted by the binding of the enzyme to the actin filaments. Both drugs are also able to decrease glucose consumption by human breast cancer cell line MCF-7, as well as its viability, which decrease parallelly to the inhibition of PFK on these cells. In the end, we demonstrate the ability of ASA and SA to directly modulate an important regulatory intracellular enzyme, and propose that this is one of their mechanisms promoting anti-tumoral effects.

  14. Decreased number and bactericidal activity against Staphylococcus aureus of the resident cells in milk of dairy cows during early lactation.

    PubMed

    Dosogne, H; Vangroenweghe, F; Barrio, B; Rainard, P; Burvenich, C

    2001-11-01

    Phagocytic and bactericidal activity of polymorphonuclear neutrophil leukocytes (PMN) isolated from blood and milk, against Staphylococcus aureus, was compared between groups of six healthy dairy cows in early, mid- and late lactation using a bacteriological assay. PMN were isolated from blood with a high degree of purity, but the cells isolated from milk contained variable amounts of macrophages (Mphi) and lymphocytes (L). The results were therefore calculated using the percentage PMN in order to evaluate phagocytosis and killing by PMN only. Blood PMN phagocytosed 82% Staph. aureus and milk PMN 43% on average and there was no significant difference between the different stages of lactation. The bactericidal activity of blood PMN against Staph. aureus was 36+/-8% in early lactation (significantly different from mid lactation, P < 0.05), 64+/-10% in mid lactation and 53+/-6% in late lactation. Milk PMN killed only 6+/-3% Staph. aureus in early lactation (significantly different from mid lactation, P < 0.01), 27+/-3% in mid lactation and 20+/-9% Staph. aureus in late lactation. The ratio of the bactericidal activity of milk to blood PMN was 0.08, 0.43 and 0.22 in early, mid- and late lactation, respectively. In addition to the decreased function. the number of cells in milk (somatic cell count, SCC) was also 60% lower in early lactation than in mid lactation cows (P < 0.01). Our results suggest an impairment of blood and milk-resident PMN bactericidal activity against Staph. aureus and a decreased number of milk-resident PMN in dairy cows at the onset of lactation.

  15. Short-term physical activity intervention decreases femoral bone marrow adipose tissue in young children: a pilot study

    PubMed Central

    Casazza, K; Hanks, LJ; Hidalgo, B; Hu, HH; Affuso, O

    2011-01-01

    Mechanical stimulation is necessary for maximization of geometrical properties of bone mineralization contributing to long-term strength. The amount of mineralization in bones has been reciprocally related to volume of bone marrow adipose tissue and this relationship is suggested to be an independent predictor of fracture. Physical activity represents an extrinsic factor that impacts both mineralization and marrow volume exerting permissive capacity of the growing skeleton to achieve its full genetic potential. Because geometry- and shape-determining processes primarily manifest during the linear growth period, the accelerated structural changes accompanying early childhood (ages 3 to 6 y) may have profound impact on lifelong bone health. The objective of this pilot study was to determine if a short-term physical activity intervention in young children would result in augmentation of geometric properties of bone. Three days per week the intervention group (n=10) participated in 30 minutes of moderate intensity physical activity, such as jumping, hopping and running, and stretching activities, whereas controls (n=10) underwent usual activities during the 10-week intervention period. Femoral bone marrow adipose tissue volume and total body composition were assessed by magnetic resonance imaging and dual-energy X-ray absorptiometry, respectively, at baseline and after ten weeks. Although after 10-weeks, intergroup differences were not observed, a significant decrease in femoral marrow adipose tissue volume was observed in those participating in physical activity intervention. Our findings suggest physical activity may improve bone quality via antagonistic effects on femoral bone marrow adipose tissue and possibly long-term agonistic effects on bone mineralization. PMID:21939791

  16. Testing the applicability of rapid on-site enzymatic activity detection for surface water monitoring

    NASA Astrophysics Data System (ADS)

    Stadler, Philipp; Vogl, Wolfgang; Juri, Koschelnik; Markus, Epp; Maximilian, Lackner; Markus, Oismüller; Monika, Kumpan; Peter, Strauss; Regina, Sommer; Gabriela, Ryzinska-Paier; Farnleitner Andreas, H.; Matthias, Zessner

    2015-04-01

    On-site detection of enzymatic activities has been suggested as a rapid surrogate for microbiological pollution monitoring of water resources (e.g. using glucuronidases, galactosidases, esterases). Due to the possible short measuring intervals enzymatic methods have high potential as near-real time water quality monitoring tools. This presentation describes results from a long termed field test. For twelve months, two ColiMinder devices (Vienna Water Monitoring, Austria) for on-site determination of enzymatic activity were tested for stream water monitoring at the experimental catchment HOAL (Hydrological Open Air Laboratory, Center for Water Resource Systems, Vienna University of Technology). The devices were overall able to follow and reflect the diverse hydrological and microbiological conditions of the monitored stream during the test period. Continuous data in high temporal resolution captured the course of enzymatic activity in stream water during diverse rainfall events. The method also proofed sensitive enough to determine diurnal fluctuations of enzymatic activity in stream water during dry periods. The method was able to capture a seasonal trend of enzymatic activity in stream water that matches the results gained from Colilert18 analysis for E. coli and coliform bacteria of monthly grab samples. Furthermore the comparison of ColiMinder data with measurements gained at the same test site with devices using the same method but having different construction design (BACTcontrol, microLAN) showed consistent measuring results. Comparative analysis showed significant differences between measured enzymatic activity (modified fishman units and pmol/min/100ml) and cultivation based analyses (most probable number, colony forming unit). Methods of enzymatic activity measures are capable to detect ideally the enzymatic activity caused by all active target bacteria members, including VBNC (viable but nonculturable) while cultivation based methods cannot detect VBNC

  17. Cognitive deficits and decreased locomotor activity induced by single-walled carbon nanotubes and neuroprotective effects of ascorbic acid.

    PubMed

    Liu, Xudong; Zhang, Yuchao; Li, Jinquan; Wang, Dong; Wu, Yang; Li, Yan; Lu, Zhisong; Yu, Samuel C T; Li, Rui; Yang, Xu

    2014-01-01

    Single-walled carbon nanotubes (SWCNTs) have shown increasing promise in the field of biomedicine, especially in applications related to the nervous system. However, there are limited studies available on the neurotoxicity of SWCNTs used in vivo. In this study, neurobehavioral changes caused by SWCNTs in mice and oxidative stress were investigated. The results of ethological analysis (Morris water maze and open-field test), brain histopathological examination, and assessments of oxidative stress (reactive oxygen species [ROS], malondialdehyde [MDA], and glutathione [GSH]), inflammation (nuclear factor κB, tumor necrosis factor α, interleukin-1β), and apoptosis (cysteine-aspartic acid protease 3) in brains showed that 6.25 and 12.50 mg/kg/day SWCNTs in mice could induce cognitive deficits and decreased locomotor activity, brain histopathological alterations, and increased levels of oxidative stress, inflammation, and apoptosis in mouse brains; however, 3.125 mg/kg/day SWCNTs had zero or minor adverse effects in mice, and these effects were blocked by concurrent administration of ascorbic acid. Down-regulation of oxidative stress, inflammation, and apoptosis were proposed to explain the neuroprotective effects of ascorbic acid. This work suggests SWCNTs could induce cognitive deficits and decreased locomotor activity, and provides a strategy to avoid the adverse effects. PMID:24596461

  18. Carboxylation of multiwalled carbon nanotube enhanced its biocompatibility with L02 cells through decreased activation of mitochondrial apoptotic pathway.

    PubMed

    Liu, Zhenbao; Dong, Xia; Song, Liping; Zhang, Hailing; Liu, Lanxia; Zhu, Dunwan; Song, Cunxian; Leng, Xigang

    2014-03-01

    Modification of carbon nanotubes (CNTs) with carboxyl group is one of the widely used strategies to increase their water dispersibility. Various molecules can be further coupled to the surface of carboxylated CNTs for the desired applications. However, the effect of carboxylation of CNTs on their cytotoxicity is far from being completely understood. In this study, the impact of carboxylated multiwalled CNT (MWCNT-COOH) on human normal liver cell line L02 was studied and compared with pristine multiwalled CNT (p-MWCNT). The data accumulated in this study revealed that modification with carboxyl group reduced the toxicity of MWCNT on L02 cells, probably due to the decreased activation of mitochondria mediated apoptotic pathway. Both p-MWCNT and MWCNT-COOH, when reaching to certain concentration, induced significant decrease in the mitochondrial membrane potential, enhanced release of cytochrome c from the mitochondria to cytoplasm as well as activation of caspase-9, and -3. However, the changes induced by MWCNT-COOH were significantly milder than that by p-MWCNT. Our observation suggests that carboxylated MWCNTs might be safer for in vivo application as compared with p-MWCNT.

  19. Cognitive deficits and decreased locomotor activity induced by single-walled carbon nanotubes and neuroprotective effects of ascorbic acid.

    PubMed

    Liu, Xudong; Zhang, Yuchao; Li, Jinquan; Wang, Dong; Wu, Yang; Li, Yan; Lu, Zhisong; Yu, Samuel C T; Li, Rui; Yang, Xu

    2014-01-01

    Single-walled carbon nanotubes (SWCNTs) have shown increasing promise in the field of biomedicine, especially in applications related to the nervous system. However, there are limited studies available on the neurotoxicity of SWCNTs used in vivo. In this study, neurobehavioral changes caused by SWCNTs in mice and oxidative stress were investigated. The results of ethological analysis (Morris water maze and open-field test), brain histopathological examination, and assessments of oxidative stress (reactive oxygen species [ROS], malondialdehyde [MDA], and glutathione [GSH]), inflammation (nuclear factor κB, tumor necrosis factor α, interleukin-1β), and apoptosis (cysteine-aspartic acid protease 3) in brains showed that 6.25 and 12.50 mg/kg/day SWCNTs in mice could induce cognitive deficits and decreased locomotor activity, brain histopathological alterations, and increased levels of oxidative stress, inflammation, and apoptosis in mouse brains; however, 3.125 mg/kg/day SWCNTs had zero or minor adverse effects in mice, and these effects were blocked by concurrent administration of ascorbic acid. Down-regulation of oxidative stress, inflammation, and apoptosis were proposed to explain the neuroprotective effects of ascorbic acid. This work suggests SWCNTs could induce cognitive deficits and decreased locomotor activity, and provides a strategy to avoid the adverse effects.

  20. Decreased exploratory activity in a mouse model of 15q duplication syndrome; implications for disturbance of serotonin signaling.

    PubMed

    Tamada, Kota; Tomonaga, Shozo; Hatanaka, Fumiyuki; Nakai, Nobuhiro; Takao, Keizo; Miyakawa, Tsuyoshi; Nakatani, Jin; Takumi, Toru

    2010-12-15

    Autism spectrum disorders (ASDs) have garnered significant attention as an important grouping of developmental brain disorders. Recent genomic studies have revealed that inherited or de novo copy number variations (CNVs) are significantly involved in the pathophysiology of ASDs. In a previous report from our laboratory, we generated mice with CNVs as a model of ASDs, with a duplicated mouse chromosome 7C that is orthologous to human chromosome 15q11-13. Behavioral analyses revealed paternally duplicated (patDp/+) mice displayed abnormal behaviors resembling the symptoms of ASDs. In the present study, we extended these findings by performing various behavioral tests with C57BL/6J patDp/+ mice, and comprehensively measuring brain monoamine levels with ex vivo high performance liquid chromatography. Compared with wild-type controls, patDp/+ mice exhibited decreased locomotor and exploratory activities in the open field test, Y-maze test, and fear-conditioning test. Furthermore, their decreased activity levels overcame increased appetite induced by 24 hours of food deprivation in the novelty suppressed feeding test. Serotonin levels in several brain regions of adult patDp/+ mice were lower than those of wild-type control, with no concurrent changes in brain levels of dopamine or norepinephrine. Moreover, analysis of monoamines in postnatal developmental stages demonstrated reduced brain levels of serotonin in young patDp/+ mice. These findings suggest that a disrupted brain serotonergic system, especially during postnatal development, may generate the phenotypes of patDp/+ mice.

  1. MTMR3 risk allele enhances innate receptor-induced signaling and cytokines by decreasing autophagy and increasing caspase-1 activation.

    PubMed

    Lahiri, Amit; Hedl, Matija; Abraham, Clara

    2015-08-18

    Inflammatory bowel disease (IBD) is characterized by dysregulated host:microbial interactions and cytokine production. Host pattern recognition receptors (PRRs) are critical in regulating these interactions. Multiple genetic loci are associated with IBD, but altered functions for most, including in the rs713875 MTMR3/HORMAD2/LIF/OSM region, are unknown. We identified a previously undefined role for myotubularin-related protein 3 (MTMR3) in amplifying PRR-induced cytokine secretion in human macrophages and defined MTMR3-initiated mechanisms contributing to this amplification. MTMR3 decreased PRR-induced phosphatidylinositol 3-phosphate (PtdIns3P) and autophagy levels, thereby increasing PRR-induced caspase-1 activation, autocrine IL-1β secretion, NFκB signaling, and, ultimately, overall cytokine secretion. This MTMR3-mediated regulation required the N-terminal pleckstrin homology-GRAM domain and Cys413 within the phosphatase domain of MTMR3. In MTMR3-deficient macrophages, reducing the enhanced autophagy or restoring NFκB signaling rescued PRR-induced cytokines. Macrophages from rs713875 CC IBD risk carriers demonstrated increased MTMR3 expression and, in turn, decreased PRR-induced PtdIns3P and autophagy and increased PRR-induced caspase-1 activation, signaling, and cytokine secretion. Thus, the rs713875 IBD risk polymorphism increases MTMR3 expression, which modulates PRR-induced outcomes, ultimately leading to enhanced PRR-induced cytokines.

  2. MTMR3 risk allele enhances innate receptor-induced signaling and cytokines by decreasing autophagy and increasing caspase-1 activation

    PubMed Central

    Lahiri, Amit; Hedl, Matija; Abraham, Clara

    2015-01-01

    Inflammatory bowel disease (IBD) is characterized by dysregulated host:microbial interactions and cytokine production. Host pattern recognition receptors (PRRs) are critical in regulating these interactions. Multiple genetic loci are associated with IBD, but altered functions for most, including in the rs713875 MTMR3/HORMAD2/LIF/OSM region, are unknown. We identified a previously undefined role for myotubularin-related protein 3 (MTMR3) in amplifying PRR-induced cytokine secretion in human macrophages and defined MTMR3-initiated mechanisms contributing to this amplification. MTMR3 decreased PRR-induced phosphatidylinositol 3-phosphate (PtdIns3P) and autophagy levels, thereby increasing PRR-induced caspase-1 activation, autocrine IL-1β secretion, NFκB signaling, and, ultimately, overall cytokine secretion. This MTMR3-mediated regulation required the N-terminal pleckstrin homology-GRAM domain and Cys413 within the phosphatase domain of MTMR3. In MTMR3-deficient macrophages, reducing the enhanced autophagy or restoring NFκB signaling rescued PRR-induced cytokines. Macrophages from rs713875 CC IBD risk carriers demonstrated increased MTMR3 expression and, in turn, decreased PRR-induced PtdIns3P and autophagy and increased PRR-induced caspase-1 activation, signaling, and cytokine secretion. Thus, the rs713875 IBD risk polymorphism increases MTMR3 expression, which modulates PRR-induced outcomes, ultimately leading to enhanced PRR-induced cytokines. PMID:26240347

  3. IL-18BP is decreased in osteoporotic women: Prevents Inflammasome mediated IL-18 activation and reduces Th17 differentiation

    PubMed Central

    Mansoori, Mohd Nizam; Shukla, Priyanka; Kakaji, Manisha; Tyagi, Abdul M; Srivastava, Kamini; Shukla, Manoj; Dixit, Manisha; Kureel, Jyoti; Gupta, Sushil; Singh, Divya

    2016-01-01

    IL-18BP is a natural antagonist of pro-inflammatory IL-18 cytokine linked to autoimmune disorders like rheumatoid arthritis. However, its role in post menopausal osteoporosis is still unknown. In this study, we investigated the role of IL-18BP on murine osteoblasts, its effect on osteoblasts-CD4+ T cells and osteoblasts-CD11b+ macrophage co-culture. mIL-18BPd enhances osteoblast differentiation and inhibits the activation of NLRP3 inflammasome and caspase-1 which process IL-18 to its active form. Using estrogen deficient mice, we also determined the effect of mIL-18BP on various immune and skeletal parameters. Ovariectomized mice treated with mIL-18BPd exhibited decrease in Th17/Treg ratio and pro-inflammatory cytokines. mIL-18BPd treatment restored trabecular microarchitecture, preserved cortical bone parameters likely attributed to an increased number of bone lining cells and reduced osteoclastogenesis. Importantly, these results were corroborated in female osteoporotic subjects where decreased serum IL-18BP levels and enhanced serum IL-18 levels were observed. Our study forms a strong basis for using humanized IL-18BP towards the treatment of postmenopausal osteoporosis. PMID:27649785

  4. IL-18BP is decreased in osteoporotic women: Prevents Inflammasome mediated IL-18 activation and reduces Th17 differentiation.

    PubMed

    Mansoori, Mohd Nizam; Shukla, Priyanka; Kakaji, Manisha; Tyagi, Abdul M; Srivastava, Kamini; Shukla, Manoj; Dixit, Manisha; Kureel, Jyoti; Gupta, Sushil; Singh, Divya

    2016-01-01

    IL-18BP is a natural antagonist of pro-inflammatory IL-18 cytokine linked to autoimmune disorders like rheumatoid arthritis. However, its role in post menopausal osteoporosis is still unknown. In this study, we investigated the role of IL-18BP on murine osteoblasts, its effect on osteoblasts-CD4+ T cells and osteoblasts-CD11b+ macrophage co-culture. mIL-18BPd enhances osteoblast differentiation and inhibits the activation of NLRP3 inflammasome and caspase-1 which process IL-18 to its active form. Using estrogen deficient mice, we also determined the effect of mIL-18BP on various immune and skeletal parameters. Ovariectomized mice treated with mIL-18BPd exhibited decrease in Th17/Treg ratio and pro-inflammatory cytokines. mIL-18BPd treatment restored trabecular microarchitecture, preserved cortical bone parameters likely attributed to an increased number of bone lining cells and reduced osteoclastogenesis. Importantly, these results were corroborated in female osteoporotic subjects where decreased serum IL-18BP levels and enhanced serum IL-18 levels were observed. Our study forms a strong basis for using humanized IL-18BP towards the treatment of postmenopausal osteoporosis. PMID:27649785

  5. Chaperoning epigenetics: FKBP51 decreases the activity of DNMT1 and mediates epigenetic effects of the antidepressant paroxetine.

    PubMed

    Gassen, Nils C; Fries, Gabriel R; Zannas, Anthony S; Hartmann, Jakob; Zschocke, Jürgen; Hafner, Kathrin; Carrillo-Roa, Tania; Steinbacher, Jessica; Preißinger, S Nicole; Hoeijmakers, Lianne; Knop, Matthias; Weber, Frank; Kloiber, Stefan; Lucae, Susanne; Chrousos, George P; Carell, Thomas; Ising, Marcus; Binder, Elisabeth B; Schmidt, Mathias V; Rüegg, Joëlle; Rein, Theo

    2015-11-24

    Epigenetic processes, such as DNA methylation, and molecular chaperones, including FK506-binding protein 51 (FKBP51), are independently implicated in stress-related mental disorders and antidepressant drug action. FKBP51 associates with cyclin-dependent kinase 5 (CDK5), which is one of several kinases that phosphorylates and activates DNA methyltransferase 1 (DNMT1). We searched for a functional link between FKBP51 (encoded by FKBP5) and DNMT1 in cells from mice and humans, including those from depressed patients, and found that FKBP51 competed with its close homolog FKBP52 for association with CDK5. In human embryonic kidney (HEK) 293 cells, expression of FKBP51 displaced FKBP52 from CDK5, decreased the interaction of CDK5 with DNMT1, reduced the phosphorylation and enzymatic activity of DNMT1, and diminished global DNA methylation. In mouse embryonic fibroblasts and primary mouse astrocytes, FKBP51 mediated several effects of paroxetine, namely, decreased the protein-protein interactions of DNMT1 with CDK5 and FKBP52, reduced phosphorylation of DNMT1, and decreased the methylation and increased the expression of the gene encoding brain-derived neurotrophic factor (Bdnf). In human peripheral blood cells, FKBP5 expression inversely correlated with both global and BDNF methylation. Peripheral blood cells isolated from depressed patients that were then treated ex vivo with paroxetine revealed that the abundance of BDNF positively correlated and phosphorylated DNMT1 inversely correlated with that of FKBP51 in cells and with clinical treatment success in patients, supporting the relevance of this FKBP51-directed pathway that prevents epigenetic suppression of gene expression. PMID:26602018

  6. Short photoperiod-induced decrease of histamine H3 receptors facilitates activation of hypothalamic neurons in the Siberian hamster.

    PubMed

    Barrett, P; van den Top, M; Wilson, D; Mercer, J G; Song, C K; Bartness, T J; Morgan, P J; Spanswick, D

    2009-08-01

    Nonhibernating seasonal mammals have adapted to temporal changes in food availability through behavioral and physiological mechanisms to store food and energy during times of predictable plenty and conserve energy during predicted shortage. Little is known, however, of the hypothalamic neuronal events that lead to a change in behavior or physiology. Here we show for the first time that a shift from long summer-like to short winter-like photoperiod, which induces physiological adaptation to winter in the Siberian hamster, including a body weight decrease of up to 30%, increases neuronal activity in the dorsomedial region of the arcuate nucleus (dmpARC) assessed by electrophysiological patch-clamping recording. Increased neuronal activity in short days is dependent on a photoperiod-driven down-regulation of H3 receptor expression and can be mimicked in long-day dmpARC neurons by the application of the H3 receptor antagonist, clobenproprit. Short-day activation of dmpARC neurons results in increased c-Fos expression. Tract tracing with the trans-synaptic retrograde tracer, pseudorabies virus, delivered into adipose tissue reveals a multisynaptic neuronal sympathetic outflow from dmpARC to white adipose tissue. These data strongly suggest that increased activity of dmpARC neurons, as a consequence of down-regulation of the histamine H3 receptor, contributes to the physiological adaptation of body weight regulation in seasonal photoperiod.

  7. Venom of Parasitoid Pteromalus puparum Impairs Host Humoral Antimicrobial Activity by Decreasing Host Cecropin and Lysozyme Gene Expression

    PubMed Central

    Fang, Qi; Wang, Bei-Bei; Ye, Xin-Hai; Wang, Fei; Ye, Gong-Yin

    2016-01-01

    Insect host/parasitoid interactions are co-evolved systems in which host defenses are balanced by parasitoid mechanisms to disable or hide from host immune effectors. Here, we report that Pteromalus puparum venom impairs the antimicrobial activity of its host Pieris rapae. Inhibition zone results showed that bead injection induced the antimicrobial activity of the host hemolymph but that venom inhibited it. The cDNAs encoding cecropin and lysozyme were screened. Relative quantitative PCR results indicated that all of the microorganisms and bead injections up-regulated the transcript levels of the two genes but that venom down-regulated them. At 8 h post bead challenge, there was a peak in the transcript level of the cecropin gene, whereas the peak of lysozyme gene occurred at 24 h. The transcripts levels of the two genes were higher in the granulocytes and fat body than in other tissues. RNA interference decreased the transcript levels of the two genes and the antimicrobial activity of the pupal hemolymph. Venom injections similarly silenced the expression of the two genes during the first 8 h post-treatment in time- and dose-dependent manners, after which the silence effects abated. Additionally, recombinant cecropin and lysozyme had no significant effect on the emergence rate of pupae that were parasitized by P. puparum females. These findings suggest one mechanism of impairing host antimicrobial activity by parasitoid venom. PMID:26907346

  8. Allogeneic Platelet Releasate Preparations Derived via a Novel Rapid Thrombin Activation Process Promote Rapid Growth and Increased BMP-2 and BMP-4 Expression in Human Adipose-Derived Stem Cells

    PubMed Central

    McLaughlin, Michael; Gagnet, Paul; Cunningham, Elizabeth; Yeager, Randi; D'Amico, Michael; Guski, Katie; Scarpone, Michael; Kuebler, Daniel

    2016-01-01

    The administration of human adipose-derived stem cells (ASCs) represents a promising regenerative therapy for the treatment of orthopedic injuries. While ASCs can be easily isolated from liposuction-derived adipose tissue, most clinical applications will likely require in vitro culture expansion of these cells using nonxenogeneic components. In this study, platelet releasate was generated using a novel rapid thrombin activation method (tPR). ASCs grown in media supplemented with tPR proliferated much faster than ASCs grown in media supplemented with 10% fetal bovine serum. The cells also retained the ability to differentiate along chondrogenic, adipogenic, and osteogenic lineages. The tPR cultured ASCs displayed elevated expression of BMP-4 (5.7 ± 0.97-fold increase) and BMP-2 (4.7 ± 1.3-fold increase) and decreased expression of PDGF-B (4.0 ± 1.4-fold decrease) and FGF-2 (33 ± 9.0-fold decrease). No significant changes in expression were seen with TGF-β and VEGF. This pattern of gene expression was consistent across different allogeneic tPR samples and different ASC lines. The use of allogeneic rapidly activated tPR to culture ASCs is associated with both an increased cell yield and a defined gene expression profile making it an attractive option for cell expansion prior to cell-based therapy for orthopedic applications. PMID:26823671

  9. Allogeneic Platelet Releasate Preparations Derived via a Novel Rapid Thrombin Activation Process Promote Rapid Growth and Increased BMP-2 and BMP-4 Expression in Human Adipose-Derived Stem Cells.

    PubMed

    McLaughlin, Michael; Gagnet, Paul; Cunningham, Elizabeth; Yeager, Randi; D'Amico, Michael; Guski, Katie; Scarpone, Michael; Kuebler, Daniel

    2016-01-01

    The administration of human adipose-derived stem cells (ASCs) represents a promising regenerative therapy for the treatment of orthopedic injuries. While ASCs can be easily isolated from liposuction-derived adipose tissue, most clinical applications will likely require in vitro culture expansion of these cells using nonxenogeneic components. In this study, platelet releasate was generated using a novel rapid thrombin activation method (tPR). ASCs grown in media supplemented with tPR proliferated much faster than ASCs grown in media supplemented with 10% fetal bovine serum. The cells also retained the ability to differentiate along chondrogenic, adipogenic, and osteogenic lineages. The tPR cultured ASCs displayed elevated expression of BMP-4 (5.7 ± 0.97-fold increase) and BMP-2 (4.7 ± 1.3-fold increase) and decreased expression of PDGF-B (4.0 ± 1.4-fold decrease) and FGF-2 (33 ± 9.0-fold decrease). No significant changes in expression were seen with TGF-β and VEGF. This pattern of gene expression was consistent across different allogeneic tPR samples and different ASC lines. The use of allogeneic rapidly activated tPR to culture ASCs is associated with both an increased cell yield and a defined gene expression profile making it an attractive option for cell expansion prior to cell-based therapy for orthopedic applications.

  10. FRET analysis demonstrates a rapid activating of caspase-3 during PDT-induced apoptosis

    NASA Astrophysics Data System (ADS)

    Wu, Yunxia; Chen, Qun

    2006-09-01

    Apoptosis is a very important cellular event that plays a key role in pathogeny and therapy of many diseases. In this study, a recombinant caspase-3 substrate was used as a fluorescence resonance energy transfer (FRET) probe to detect the activation of caspase-3, and to monitor apoptosis in human lung adenocarcinoma (ASTC-a- 1) cells. With laser scanning confocal microscopy, we found that Photofrin were localized primarily in mitochondria, the primary targets of Photofrin-PDT. By analyzing the dynamic changes of FRET fluorescence, the results indicate that the onset and completion of caspase-3 activation induced by PDT is more rapidly than that by tumor necrosis factor-α (TNF-α). The activation of caspase-3 by PDT started 20 minutes after treatment and completed in about 15 minutes. In comparison, the onset of caspase-3 activation by TNF-a was delayed by 3 hours and the completion of caspase-3 activation required a significantly longer time (approximately 90 minutes). These results indicated that the initiation and process of caspase-3 activation are different corresponding to different treatment methods. Our data suggest that caspase-3 activation mediated by the cell surface death receptors is slower than that of the mitochondrial pathway and the mitochondria is an efficient target to induce apoptosis.

  11. Internal Porosity of Mineral Coating Supports Microbial Activity in Rapid Sand Filters for Groundwater Treatment

    PubMed Central

    Gülay, Arda; Tatari, Karolina; Musovic, Sanin; Mateiu, Ramona V.; Albrechtsen, Hans-Jørgen

    2014-01-01

    A mineral coating develops on the filter grain surface when groundwater is treated via rapid sand filtration in drinking water production. The coating changes the physical and chemical properties of the filter material, but little is known about its effect on the activity, colonization, diversity, and abundance of microbiota. This study reveals that a mineral coating can positively affect the colonization and activity of microbial communities in rapid sand filters. To understand this effect, we investigated the abundance, spatial distribution, colonization, and diversity of all and of nitrifying prokaryotes in filter material with various degrees of mineral coating. We also examined the physical and chemical characteristics of the mineral coating. The amount of mineral coating correlated positively with the internal porosity, the packed bulk density, and the biologically available surface area of the filter material. The volumetric NH4+ removal rate also increased with the degree of mineral coating. Consistently, bacterial 16S rRNA and amoA abundances positively correlated with increased mineral coating levels. Microbial colonization could be visualized mainly within the outer periphery (60.6 ± 35.6 μm) of the mineral coating, which had a thickness of up to 600 ± 51 μm. Environmental scanning electron microscopic (E-SEM) observations suggested an extracellular polymeric substance-rich matrix and submicron-sized bacterial cells. Nitrifier diversity profiles were similar irrespective of the degree of mineral coating, as indicated by pyrosequencing analysis. Overall, our results demonstrate that mineral coating positively affects microbial colonization and activity in rapid sand filters, most likely due to increased volumetric cell abundances facilitated by the large surface area of internal mineral porosity accessible for microbial colonization. PMID:25192987

  12. Rapidly activated epidermal growth factor receptor mediates lipopolysaccharide-triggered migration of microglia.

    PubMed

    Qu, Wen-Sheng; Liu, Jun-Li; Li, Chun-Yu; Li, Xiao; Xie, Min-Jie; Wang, Wei; Tian, Dai-Shi

    2015-11-01

    Previous reports have suggested that epidermal growth factor receptor (EGFR) is involved in microglia activation characterized by cell morphology changes, cytokine production and cell migration; and the biochemical regulation of the microglia migration is a potential therapeutic target following CNS inflammatory damages. However, the role of EGFR in microglia motility after inflammatory stimulation remains unknown. In the present study, lipopolysaccharide (LPS) was found to trigger rapid EGFR phosphorylation within 10 min, which was sustained during long-term stimulation in both primary microglial cells and the cultured BV2 microglial cells, furthermore, blocking EGFR phosphorylation by AG1478 significantly attenuated the LPS-induced chemotactic and chemokinetic migration of microglia. In addition, LPS could initiate calcium oscillation in microglia during live-cell recording, however, an intracellular calcium chelator and a selective inhibitor of calcium/calmodulin-dependent protein kinase II, but not an extracellular calcium chelator, remarkably suppressed the LPS-induced EGFR phosphorylation in BV2 microglia cells. As EGFR is not a traditional receptor for LPS, these findings suggest that the rapid phosphorylation of EGFR is attributed to the LPS-triggered intracellular calcium mobilization. By examining the downstream signals of EGFR, we further proved that extracellular signal-regulated kinase (ERK) is essential for EGFR-mediated microglia migration, because ERK inhibition attenuated the chemotactic and chemokinetic migration of microglia that had been induced by either LPS or EGF. Collectively, these results suggest that LPS could trigger the rapid phosphorylation of EGFR and subsequent ERK activation through mobilizing calcium activity, which underlies the microglia migration in an inflammatory condition.

  13. Polymorphism rs7278468 is associated with Age-related cataract through decreasing transcriptional activity of the CRYAA promoter

    PubMed Central

    Ma, Xiaoyin; Jiao, Xiaodong; Ma, Zhiwei; Hejtmancik, J. Fielding

    2016-01-01

    CRYAA plays critical functional roles in lens transparency and opacity, and polymorphisms near CRYAA have been associated with age-related cataract (ARC). This study examines polymorphisms in the CRYAA promoter region for association with ARC and elucidates the mechanisms of this association. Three SNPs nominally associated with ARC were identified in the promoter region of CRYAA: rs3761382 (P = 0.06, OR (Odds ratio) = 1.5), rs13053109 (P = 0.04, OR = 1.6), rs7278468 (P = 0.007, OR = 0.6). The C-G-T haplotype increased the risk for ARC overall (P = 0.005, OR = 1.8), and both alleles and haplotypes show a stronger association with cortical cataract (rs3761382, P = 0.002, OR = 2.1; rs13053109, P = 0.002, OR = 2.1; rs7278468, P = 0.0007, OR = 0.5; C-G-T haplotype, P = 0.0003, OR = 2.2). The C-G-T risk haplotype decreased transcriptional activity through rs7278468, which lies in a consensus binding site for the transcription repressor KLF10. KLF10 binding inhibited CRYAA transcription, and both binding and inhibition were greater with the T rs7278468 allele. Knockdown of KLF10 in HLE cells partially rescued the transcriptional activity of CRYAA with rs7278468 T allele, but did not affect activity with the G allele. Thus, our data suggest that the T allele of rs7278468 in the CRYAA promoter is associated with ARC through increasing binding of KLF-10 and thus decreasing CRYAA transcription. PMID:26984531

  14. Activation of the motor cortex during phasic rapid eye movement sleep

    PubMed Central

    De Carli, Fabrizio; Proserpio, Paola; Morrone, Elisa; Sartori, Ivana; Ferrara, Michele; Gibbs, Steve Alex; De Gennaro, Luigi; Lo Russo, Giorgio

    2016-01-01

    When dreaming during rapid eye movement (REM) sleep, we can perform complex motor behaviors while remaining motionless. How the motor cortex behaves during this state remains unknown. Here, using intracerebral electrodes sampling the human motor cortex in pharmacoresistant epileptic patients, we report a pattern of electroencephalographic activation during REM sleep similar to that observed during the performance of a voluntary movement during wakefulness. This pattern is present during phasic REM sleep but not during tonic REM sleep, the latter resembling relaxed wakefulness. This finding may help clarify certain phenomenological aspects observed in REM sleep behavior disorder. Ann Neurol 2016;79:326–330 PMID:26575212

  15. Rapid In-Situ Measurement of Gamma Activity in Soil for Environmental Assessment

    NASA Astrophysics Data System (ADS)

    Honeycutt, T. K.

    2003-12-01

    In-situ measurements of gamma radiation in soil are used as a rapid, low-cost, non-intrusive alternative to conventional sampling and analysis methods in the preliminary assessment of environmental impacts to watersheds at the Savannah River Site (SRS). The method resolves the ambient gamma-radiation field near ground surface into background and residual components and provides radionuclide-specific soil activity determination. The efficacy of the method has been evaluated and compares favorably with conventional gamma-PHA soil analyses and aerial survey data. The method has garnered regulatory approval and is being successfully deployed to evaluate the impact of Cs-137 contamination from CERCLA sites.

  16. Optogenetically enhanced pituitary corticotroph cell activity post-stress onset causes rapid organizing effects on behaviour.

    PubMed

    De Marco, Rodrigo J; Thiemann, Theresa; Groneberg, Antonia H; Herget, Ulrich; Ryu, Soojin

    2016-01-01

    The anterior pituitary is the major link between nervous and hormonal systems, which allow the brain to generate adequate and flexible behaviour. Here, we address its role in mediating behavioural adjustments that aid in coping with acutely threatening environments. For this we combine optogenetic manipulation of pituitary corticotroph cells in larval zebrafish with newly developed assays for measuring goal-directed actions in very short timescales. Our results reveal modulatory actions of corticotroph cell activity on locomotion, avoidance behaviours and stimulus responsiveness directly after the onset of stress. Altogether, the findings uncover the significance of endocrine pituitary cells for rapidly optimizing behaviour in local antagonistic environments. PMID:27646867

  17. Optogenetically enhanced pituitary corticotroph cell activity post-stress onset causes rapid organizing effects on behaviour

    PubMed Central

    De Marco, Rodrigo J.; Thiemann, Theresa; Groneberg, Antonia H.; Herget, Ulrich; Ryu, Soojin

    2016-01-01

    The anterior pituitary is the major link between nervous and hormonal systems, which allow the brain to generate adequate and flexible behaviour. Here, we address its role in mediating behavioural adjustments that aid in coping with acutely threatening environments. For this we combine optogenetic manipulation of pituitary corticotroph cells in larval zebrafish with newly developed assays for measuring goal-directed actions in very short timescales. Our results reveal modulatory actions of corticotroph cell activity on locomotion, avoidance behaviours and stimulus responsiveness directly after the onset of stress. Altogether, the findings uncover the significance of endocrine pituitary cells for rapidly optimizing behaviour in local antagonistic environments. PMID:27646867

  18. Neuregulin1-β decreases interleukin-1β-induced RhoA activation, myosin light chain phosphorylation, and endothelial hyperpermeability.

    PubMed

    Wu, Limin; Ramirez, Servio H; Andrews, Allison M; Leung, Wendy; Itoh, Kanako; Wu, Jiang; Arai, Ken; Lo, Eng H; Lok, Josephine

    2016-01-01

    Neuregulin-1 (NRG1) is an endogenous growth factor with multiple functions in the embryonic and postnatal brain. The NRG1 gene is large and complex, transcribing more than twenty transmembrane proteins and generating a large number of isoforms in tissue and cell type-specific patterns. Within the brain, NRG1 functions have been studied most extensively in neurons and glia, as well as in the peripheral vasculature. Recently, NRG1 signaling has been found to be important in the function of brain microvascular endothelial cells, decreasing IL-1β-induced increases in endothelial permeability. In the current experiments, we have investigated the pathways through which the NRG1-β isoform acts on IL-1β-induced endothelial permeability. Our data show that NRG1-β increases barrier function, measured by transendothelial electrical resistance, and decreases IL-1β-induced hyperpermeability, measured by dextran-40 extravasation through a monolayer of brain microvascular endothelial cells plated on transwells. An investigation of key signaling proteins suggests that the effect of NRG1-β on endothelial permeability is mediated through RhoA activation and myosin light chain phosphorylation, events which affect filamentous actin morphology. In addition, AG825, an inhibitor of the erbB2-associated tyrosine kinase, reduces the effect of NRG1-β on IL-1β-induced RhoA activation and myosin light chain phosphorylation. These data add to the evidence that NRG1-β signaling affects changes in the brain microvasculature in the setting of neuroinflammation. We propose the following events for neuregulin-1-mediated effects on Interleukin-1 β (IL-1β)-induced endothelial hyperpermeability: IL-1β leads to RhoA activation, resulting in an increase in phosphorylation of myosin light chain (MLC). Phosphorylation of MLC is known to result in actin contraction and alterations in the f-actin cytoskeletal structure. These changes are associated with increased endothelial permeability

  19. β2-Adrenoceptor is involved in connective tissue remodeling in regenerating muscles by decreasing the activity of MMP-9.

    PubMed

    Silva, Meiricris T; Nascimento, Tábata L; Pereira, Marcelo G; Siqueira, Adriane S; Brum, Patrícia C; Jaeger, Ruy G; Miyabara, Elen H

    2016-07-01

    We investigated the role of β2-adrenoceptors in the connective tissue remodeling of regenerating muscles from β2-adrenoceptor knockout (β2KO) mice. Tibialis anterior muscles from β2KO mice were cryolesioned and analyzed after 3, 10, and 21 days. Regenerating muscles from β2KO mice showed a significant increase in the area density of the connective tissue and in the amount of collagen at 10 days compared with wild-type (WT) mice. A greater increase occurred in the expression levels of collagen I, III, and IV in regenerating muscles from β2KO mice evaluated at 10 days compared with WT mice; this increase continued at 21 days, except for collagen III. Matrix metalloproteinase (MMP-2) activity increased to a similar extent in regenerating muscles from both β2KO and WT mice at 3 and 10 days. This was also the case for MMP-9 activity in regenerating muscles from both β2KO and WT mice at 3 days; however, at 10 days post-cryolesion, this activity returned to baseline levels only in WT mice. MMP-3 activity was unaltered in regenerating muscles at 10 days. mRNA levels of tumor necrosis factor-α increased in regenerating muscles from WT and β2KO mice at 3 days and, at 10 days post-cryolesion, returned to baseline only in WT mice. mRNA levels of interleukin-6 increased in muscles from WT mice at 3 days post-cryolesion and returned to baseline at 10 days post-cryolesion but were unchanged in β2KO mice. Our results suggest that the β2-adrenoceptor contributes to collagen remodeling during muscle regeneration by decreasing MMP-9 activity. PMID:26896238

  20. Serum free estradiol and estrogen receptor-α mediated activity are related to decreased incident hip fractures in older women.

    PubMed

    Lim, Vanessa W; Li, Jun; Gong, Yinhan; Yuan, Jian-Min; Wu, Tsung Sheng; Hammond, Geoffrey L; Jin, Aizhen; Koh, Woon-Puay; Yong, E L

    2012-06-01

    There is paucity of data from Asian women on the association between serum estrogens and osteoporotic hip fracture risk. We conducted a case-control study nested within a population-based prospective cohort, The Singapore Chinese Health Study, to evaluate serum estrogens levels, ERα-mediated estrogenic activity and hip fracture risk in postmenopausal Asian women. Among 35,298 women who were recruited between 1993 and 1998, 15,410 women donated blood for research between 1999 and 2004. From this subcohort, we identified 140 cases who subsequently suffered hip fracture after blood donation, and 278 age-matched controls. Serum levels of total estrone, estradiol and sex hormone binding globulin levels were measured in a blinded fashion among cases and controls. ERα-mediated estrogenic activity of serum samples was quantified using a sensitive ERα-driven cell bioassay. Women with hip fracture had lower serum estrogens than control women. Compared to the lowest quintile, women in the highest quintile of free estradiol exhibited a statistically significant 57% reduction in risk of hip fracture (95% confidence interval (CI), 6-80%), with a dose-dependent relationship (p for trend=0.021). High levels of ERα-mediated estrogenic activity were also associated with decreased risk of hip fracture (p for trend=0.048). Overall, women with relatively high levels of both free estradiol and ERα-mediated estrogenic activity had a 55% reduction in hip fracture risk (95% CI, 17-76%) compared to women with low levels of both. High levels of free estradiol and ERα-mediated estrogen activity in sera were associated with reduced hip fracture risk in Chinese postmenopausal women.

  1. Maternal Hypoxia Increases the Activity of MMPs and Decreases the Expression of TIMPs in the Brain of Neonatal Rats

    PubMed Central

    Tong, Wenni; Chen, Wanqiu; Ostrowski, Robert P.; Ma, Qingyi; Souvenir, Rhonda; Zhang, Lubo; Zhang, John H.; Tang, Jiping

    2010-01-01

    A recent study has shown that increased activity of matrix metalloproteinases-2 and metalloproteinases-9 (MMP-2 and MMP-9) has detrimental effect on the brain after neonatal hypoxia. The present study determined the effect of maternal hypoxia on neuronal survivability and the activity of MMP-2 and MMP-9, as well as the expression of tissue inhibitors of metalloproteinase 1 and 2 (TIMP-1 and TIMP-2) in the brain of neonatal rats. Pregnant rats were exposed to 10.5% oxygen for 6 days from the gestation day 15 to day 21. Pups were sacrificed at day 0, 4, 7, 14, and 21 after birth. Body weight and brain weight of the pups were measured at each time point. The activity of MMP-2 and MMP-9 and the protein abundance of TIMP-1 and TIMP-2 were determined by zymography and Western blotting, respectively. The tissue distribution of MMPs was examined by immunofluorescence staining. The neuronal death was detected by Nissl staining. Maternal hypoxia caused significant decreases in body and brain size, increased activity of MMP-2 at day 0, and increased MMP-9 at day 0 and 4. The increased activity of the MMPs was accompanied by an overall tendency towards a reduced expression of TIMPs at all ages with the significance observed for TIMPs at day 0, 4, and 7. Immunofluorescence analysis showed an increased expression of MMP-2, MMP-9 in the hippocampus at day 0 and 4. Nissl staining revealed significant cell death in the hippocampus at day 0, 4, and 7. Functional tests showed worse neurobehavioral outcomes in the hypoxic animals. PMID:20017119

  2. β2-Adrenoceptor is involved in connective tissue remodeling in regenerating muscles by decreasing the activity of MMP-9.

    PubMed

    Silva, Meiricris T; Nascimento, Tábata L; Pereira, Marcelo G; Siqueira, Adriane S; Brum, Patrícia C; Jaeger, Ruy G; Miyabara, Elen H

    2016-07-01

    We investigated the role of β2-adrenoceptors in the connective tissue remodeling of regenerating muscles from β2-adrenoceptor knockout (β2KO) mice. Tibialis anterior muscles from β2KO mice were cryolesioned and analyzed after 3, 10, and 21 days. Regenerating muscles from β2KO mice showed a significant increase in the area density of the connective tissue and in the amount of collagen at 10 days compared with wild-type (WT) mice. A greater increase occurred in the expression levels of collagen I, III, and IV in regenerating muscles from β2KO mice evaluated at 10 days compared with WT mice; this increase continued at 21 days, except for collagen III. Matrix metalloproteinase (MMP-2) activity increased to a similar extent in regenerating muscles from both β2KO and WT mice at 3 and 10 days. This was also the case for MMP-9 activity in regenerating muscles from both β2KO and WT mice at 3 days; however, at 10 days post-cryolesion, this activity returned to baseline levels only in WT mice. MMP-3 activity was unaltered in regenerating muscles at 10 days. mRNA levels of tumor necrosis factor-α increased in regenerating muscles from WT and β2KO mice at 3 days and, at 10 days post-cryolesion, returned to baseline only in WT mice. mRNA levels of interleukin-6 increased in muscles from WT mice at 3 days post-cryolesion and returned to baseline at 10 days post-cryolesion but were unchanged in β2KO mice. Our results suggest that the β2-adrenoceptor contributes to collagen remodeling during muscle regeneration by decreasing MMP-9 activity.

  3. Does decreased orographic enhancement explain declining annual streamflows and recent increases in wildfire fire activity in the Pacific Northwestern US?

    NASA Astrophysics Data System (ADS)

    Holden, Z. A.; Luce, C.; Morgan, P.; Crimmins, M.; Abatzoglou, J. T.

    2013-12-01

    The influences of changing snowpack on the hydrology of the western US have been well noted, with trends in snowpack declines, early streamflow timing and associated fire activity attributed primarily to warming temperatures. We present several lines of evidence suggesting that historical declines in high elevation precipitation have contributed to early snowmelt timing, reduced annual streamflow, and increased annual area burned in the Pacific Northwest. Using satellite-derived estimates of area burned and area burned severely, we show that annual flow, an integrator of basin-wide precipitation, explains three times as much of the variability in interannual wildfire activity as does the center of timing of annual flow absent the influence of flow variability. Precipitation and snowpack are fundamentally connected to the timing of snowmelt. Thus, while annual wildfire area burned is correlated with snowmelt timing, precipitation quantity and distribution provide a more direct mechanistic explanation of recent wildfire activity in this region. The magnitude of streamflow declines cannot be explained by either increased evapotranspiration or decreases in precipitation at low elevation weather stations, implicating declining orographic enhancement as a possible mechanism for the substantial declines in streamflow observed in recent decades.

  4. Decreased paraoxonase1 activity and increased malondialdehyde and oxidative DNA damage levels in primary open angle glaucoma

    PubMed Central

    Mumcu, Ugur Yilmaz; Kocer, Ibrahim; Ates, Orhan; Alp, H. Hakan

    2016-01-01

    To investigate the malondialdehyde (MDA) levels, paraoxonase1 (PON1) activity and 8-hydroxy 2-deoxyguanosine (8-OHdG) levels in the primary open angle glaucoma (POAG) patient. Blood samples from 52 healthy individuals and 53 patients with POAG were analyzed for MDA and 8-OHdG by HPLC (high-performance liquid chromatography) and PON1 by spectrophotometry. The data obtained were analyzed statistically. MDA levels were 10.46±8.4 and 4.70±1.79 µmol; PON1 levels were 121±39.55 and 161.62±60.22 U/mL; and 8-OHdG values were 1.32±0.53/106 dG and 0.47±0.27/106 dG in the POAG patients and the control group, respectively. The difference was significant in MDA levels, 8-OHdG levels and PON1 activity in POAG patients in comparison with controls (P<0.001). We concluded that the observed increase in MDA and 8-OHdG levels may be correlated with decreased PON1 activity. Oxidative stress plays an important role in glaucoma development. PMID:27803873

  5. Increased hepcidin in transferrin-treated thalassemic mice correlates with increased liver BMP2 expression and decreased hepatocyte ERK activation

    PubMed Central

    Chen, Huiyong; Choesang, Tenzin; Li, Huihui; Sun, Shuming; Pham, Petra; Bao, Weili; Feola, Maria; Westerman, Mark; Li, Guiyuan; Follenzi, Antonia; Blanc, Lionel; Rivella, Stefano; Fleming, Robert E.; Ginzburg, Yelena Z.

    2016-01-01

    Iron overload results in significant morbidity and mortality in β-thalassemic patients. Insufficient hepcidin is implicated in parenchymal iron overload in β-thalassemia and approaches to increase hepcidin have therapeutic potential. We have previously shown that exogenous apo-transferrin markedly ameliorates ineffective erythropoiesis and increases hepcidin expression in Hbbth1/th1 (thalassemic) mice. We utilize in vivo and in vitro systems to investigate effects of exogenous apo-transferrin on Smad and ERK1/2 signaling, pathways that participate in hepcidin regulation. Our results demonstrate that apo-transferrin increases hepcidin expression in vivo despite decreased circulating and parenchymal iron concentrations and unchanged liver Bmp6 mRNA expression in thalassemic mice. Hepatocytes from apo-transferrin-treated mice demonstrate decreased ERK1/2 pathway and increased serum BMP2 concentration and hepatocyte BMP2 expression. Furthermore, hepatocyte ERK1/2 phosphorylation is enhanced by neutralizing anti-BMP2/4 antibodies and suppressed in vitro in a dose-dependent manner by BMP2, resulting in converse effects on hepcidin expression, and hepatocytes treated with MEK/ERK1/2 inhibitor U0126 in combination with BMP2 exhibit an additive increase in hepcidin expression. Lastly, bone marrow erythroferrone expression is normalized in apo-transferrin treated thalassemic mice but increased in apo-transferrin injected wild-type mice. These findings suggest that increased hepcidin expression after exogenous apo-transferrin is in part independent of erythroferrone and support a model in which apo-transferrin treatment in thalassemic mice increases BMP2 expression in the liver and other organs, decreases hepatocellular ERK1/2 activation, and increases nuclear Smad to increase hepcidin expression in hepatocytes. PMID:26635037

  6. Human Embryonic Stem Cells have Constitutively Active Bax at the Golgi and are Primed to Undergo Rapid Apoptosis

    PubMed Central

    Dumitru, Raluca; Gama, Vivian; Fagan, B. Matthew; Bower, Jacquelyn J.; Swahari, Vijay; Pevny, Larysa H.; Deshmukh, Mohanish

    2012-01-01

    Human embryonic stem (hES) cells activate a rapid apoptotic response after DNA damage but the underlying mechanisms are unknown. A critical mediator of apoptosis is Bax, which is reported to become active and translocate to the mitochondria only after apoptotic stimuli. Here we show that undifferentiated hES cells constitutively maintain Bax in its active conformation. Surprisingly, active Bax was maintained at the Golgi rather than at the mitochondria, thus allowing hES cells to effectively minimize the risks associated with having pre-activated Bax. After DNA damage, active Bax rapidly translocated to the mitochondria by a p53-dependent mechanism. Interestingly, upon differentiation, Bax was no longer active and cells were not acutely sensitive to DNA damage. Thus, maintenance of Bax in its active form is a unique mechanism that can prime hES cells for rapid death, likely to prevent the propagation of mutations during the early critical stages of embryonic development. PMID:22560721

  7. Behavioral activation and problem-solving therapy for depressed breast cancer patients: preliminary support for decreased suicidal ideation.

    PubMed

    Hopko, D R; Funderburk, J S; Shorey, R C; McIndoo, C C; Ryba, M M; File, A A; Benson, K; Vitulano, M

    2013-11-01

    Major depressive disorder (MDD) is the most common psychiatric disorder in breast cancer patients. The prevalence of suicidal ideation in breast cancer patients is considerable, and relative to the general population, the prevalence of completed suicide is elevated, particularly in cancer patients with MDD. A major component of suicide prevention is effective treatment of MDD. Although some research has explored the utility of psychotherapy with breast cancer patients, only three trials have explored the benefits of behavior therapy in patients with well-diagnosed MDD and there has been no systematic investigation of the potential benefits of psychotherapy toward reducing suicidal ideation in breast cancer patients. As a follow-up to a recently completed randomized trial, this study examined the efficacy of 8 weeks of behavioral activation treatment for depression (BATD) and problem-solving therapy (PST) in reducing depression and suicidal ideation, as well as increasing hopefulness in breast cancer patients with MDD (n = 80). Across both treatments, GEE analyses revealed decreased depression and suicidal ideation and increased hopefulness at posttreatment, results that were maintained at 12-month follow-up. Moreover, follow-up patient contact at approximately 2 years posttreatment yielded no indication of completed suicide. Although these data are preliminary, BATD and PST may represent practical approaches to decrease suicidal ideation in depressed breast cancer patients.

  8. Impaired T cell protein kinase C delta activation decreases ERK pathway signaling in idiopathic and hydralazine-induced lupus.

    PubMed

    Gorelik, Gabriela; Fang, Jing Yuan; Wu, Ailing; Sawalha, Amr H; Richardson, Bruce

    2007-10-15

    T cells from patients with lupus or treated with the lupus-inducing drug hydralazine have defective ERK phosphorylation. The reason for the impaired signal transduction is unknown but important to elucidate, because decreased T cell ERK pathway signaling causes a lupus-like disease in animal models by decreasing DNA methyltransferase expression, leading to DNA hypomethylation and overexpression of methylation-sensitive genes with subsequent autoreactivity and autoimmunity. We therefore analyzed the PMA stimulated ERK pathway phosphorylation cascade in CD4(+) T cells from patients with lupus and in hydralazine-treated cells. The defect in these cells localized to protein kinase C (PKC)delta. Pharmacologic inhibition of PKCdelta or transfection with a dominant negative PKCdelta mutant caused demethylation of the TNFSF7 (CD70) promoter and CD70 overexpression similar to lupus and hydralazine-treated T cells. These results suggest that defective T cell PKCdelta activation may contribute to the development of idiopathic and hydralazine-induced lupus through effects on T cell DNA methylation.

  9. Activation of Mitochondrial Uncoupling Protein 4 and ATP-Sensitive Potassium Channel Cumulatively Decreases Superoxide Production in Insect Mitochondria.

    PubMed

    Slocińska, Malgorzata; Rosinski, Grzegorz; Jarmuszkiewicz, Wieslawa

    2016-01-01

    It has been evidenced that mitochondrial uncoupling protein 4 (UCP4) and ATP-regulated potassium channel (mKATP channel) of insect Gromphadorhina coqereliana mitochondria decrease superoxide anion production. We elucidated whether the two energy-dissipating systems work together on a modulation of superoxide level in cockroach mitochondria. Our data show that the simultaneous activation of UCP4 by palmitic acid and mKATP channel by pinacidil revealed a cumulative effect on weakening mitochondrial superoxide formation. The inhibition of UCP4 by GTP (and/or ATP) and mKATP channel by ATP elevated superoxide production. These results suggest a functional cooperation of both energy-dissipating systems in protection against oxidative stress in insects.

  10. Jumihaidokuto (Shi-Wei-Ba-Du-Tang), a Kampo Formula, Decreases the Disease Activity of Palmoplantar Pustulosis

    PubMed Central

    Mizawa, Megumi; Makino, Teruhiko; Inami, Chieko; Shimizu, Tadamichi

    2016-01-01

    Palmoplantar pustulosis (PPP) is a chronic skin disease characterized by sterile intraepidermal pustules associated with erythematous scaling on the palms and soles. Jumihaidokuto is a traditional herbal medicine composed of ten medical plants and has been given to patients with suppurative skin disease in Japan. This study investigated the effect of jumihaidokuto on the disease activity in PPP patients (n = 10). PPP patients were given jumihaidokuto (EKT-6; 6.0 g per day) for 4 to 8 weeks in addition to their prescribed medications. The results showed that the palmoplantar pustular psoriasis area and severity index (PPPASI) was decreased after the administration of jumihaidokuto (p < 0.05). Therefore, Jumihaidokuto is seemingly effective against PPP. PMID:27143961

  11. Inhibition of acetylcholinesterase activity by rivastigmine decreases lipopolysaccharide-induced IL-1β expression in the hypothalamus of ewes.

    PubMed

    Herman, A P; Krawczyńska, A; Bochenek, J; Haziak, K; Antushevitch, H; Herman, A; Tomaszewska-Zaremba, D

    2013-04-01

    The present study was designed to determine the effect of subcutaneous rivastigmine treatment on IL-1β expression and IL-1 type I receptor (IL-1R1) gene expression in the hypothalamic structures (preoptic area [POA], anterior hypothalamus [AHA], and medial basal hypothalamus [MBH]) of ewes after lipopolysaccharide (LPS) treatment. Endotoxin treatment increased (P ≤ 0.01) both IL-1β and IL-1R1 gene expression in the POA, AHA, and MBH compared with the control group, whereas concomitant rivastigmine and LPS injection abolished this stimulatory effect. It was also found that LPS elevated (P ≤ 0.01) IL-1β concentration in the hypothalamus (71.0 ± 2.3 pg/mg) compared with controls (16.1 ± 3.6 pg/mg). The simultaneous injection of LPS and rivastigmine did not increase IL-1β concentration in the hypothalamus (24.6 ± 13.0 pg/mg). This central change in IL-1β synthesis seems to be an effect of acetylcholinesterase (AChE) inhibition by rivastigmine, which decreases (P ≤ 0.01) the activity of this enzyme from 78.5 ± 15.0 μmol · min(-1) · g(-1) of total protein in the control and 68.8 ± 9.8 μmol · min(-1) · g(-1) of total protein in LPS-treated animals to 45.2 ± 5.6 μmol · min(-1) · g(-1) of total protein in the rivastigmine and LPS-treated group. Our study showed that rivastigmine could effectively reverse the stimulatory effect of immune stress induced by LPS injection on IL-1β synthesis through a decrease in AChE activity in the hypothalamic area of sheep. Our results also proved that the cholinergic anti-inflammatory pathway could directly modulate the central response to endotoxin.

  12. Plasma membrane aquaporin activity can affect the rate of apoptosis but is inhibited after apoptotic volume decrease.

    PubMed

    Jablonski, Elizabeth M; Webb, Ashley N; McConnell, Nisha A; Riley, Marcus C; Hughes, Francis M

    2004-04-01

    Apoptosis is characterized by a conserved series of morphological events beginning with the apoptotic volume decrease (AVD). This study investigated a role for aquaporins (AQPs) during the AVD. Inhibition of AQPs blocked the AVD in ovarian granulosa cells undergoing growth factor withdrawal and blocked downstream apoptotic events such as cell shrinkage, changes in the mitochondrial membrane potential, DNA degradation, and caspase-3 activation. The effects of AQP inhibition on the AVD and DNA degradation were consistent in thymocytes and with two additional apoptotic signals, thapsigargin and C(6)-ceramide. Overexpression of AQP-1 in Chinese hamster ovary (CHO-AQP-1) cells enhanced their rate of apoptosis. The AVD is driven by loss of K(+) from the cell, and we hypothesize that after the AVD, AQPs become inactive, which halts further water loss and allows K(+) concentrations to decrease to levels necessary for apoptotic enzyme activation. Swelling assays on granulosa cells, thymocytes, and CHO-AQP-1 cells revealed that indeed, the shrunken (apoptotic) subpopulation has very low water permeability compared with the normal-sized (nonapoptotic) subpopulation. In thymocytes, AQP-1 is present and was shown to colocalize with the plasma membrane receptor tumor necrosis factor receptor-1 (TNF-R1) both before and after the AVD, which suggests that this protein is not proteolytically cleaved and remains on the cell membrane. Overall, these data indicate that AQP-mediated water loss is important for the AVD and downstream apoptotic events, that the water permeability of the plasma membrane can control the rate of apoptosis, and that inactivation after the AVD may help create the low K(+) concentration that is essential in apoptotic cells. Furthermore, inactivation of AQPs after the AVD does not appear to be through degradation or removal from the cell membrane.

  13. Active TGF-β signaling and decreased expression of PTEN separates angiosarcoma of bone from its soft tissue counterpart.

    PubMed

    Verbeke, Sofie L J; Bertoni, Franco; Bacchini, Patrizia; Oosting, Jan; Sciot, Raf; Krenács, Tibor; Bovée, Judith V M G

    2013-09-01

    Angiosarcomas constitute a heterogeneous group of highly malignant vascular tumors. Angiosarcoma of bone is rare and poorly characterized. For angiosarcoma of soft tissue, some pathways seem to be involved in tumor development. Our aim was to evaluate the role of these pathways in angiosarcoma of bone. We collected 37 primary angiosarcomas of bone and used 20 angiosarcomas of soft tissue for comparison. Immunohistochemistry was performed on constructed tissue microarrays to evaluate expression of CDKN2A, TP53, PTEN, BCL2, CDK4, MDM2, cyclin D1, β-catenin, transforming growth factor-β (TGF-β), CD105, phospho-Smad1, phospho-Smad2, hypoxia-inducible factor-1α, plasminogen activator inhibitor type 1 (PAI-1), VEGF, CD117 and glucose transporter--1. PIK3CA was screened for hotspot mutations in 19 angiosarcomas. In nearly 55% of the angiosarcoma of bone, the retinoblastoma (Rb) pathway was affected. Loss of CDKN2A expression was associated with a significantly worse prognosis. No overexpression of TP53 or MDM2 was found, suggesting that the TP53 pathway is not important in angiosarcoma of bone. Angiosarcoma of bone showed highly active TGF-β signaling with immunoreactivity for phospho-Smad2 and PAI-1. Although the phosphatidylinositol 3-kinase (PI3K)/Akt pathway seems to be active in both tumor groups, different mechanisms were involved: 41% of angiosarcoma of bone showed a decrease in expression of PTEN, whereas in angiosarcoma of soft tissue overexpression of KIT was found (90%). PIK3CA hotspot mutations were absent. In conclusion, the Rb pathway is involved in tumorigenesis of angiosarcoma of bone. The PI3K/Akt pathway is activated in both angiosarcoma of bone and soft tissue, however, with a different cause; PTEN expression is decreased in angiosarcoma of bone, whereas angiosarcomas of soft tissue show overexpression of KIT. Our findings support that angiosarcomas are a heterogeneous group of vascular malignancies. Both angiosarcoma of bone and soft tissue may

  14. Rapid diagnosis of active tuberculosis by detecting antibodies from lymphocyte secretions.

    PubMed

    Raqib, Rubhana; Rahman, Jubayer; Kamaluddin, A K M; Kamal, S M Mostafa; Banu, Fauzia A; Ahmed, Shakeel; Rahim, Zeaur; Bardhan, Pradip K; Andersson, Jan; Sack, David A

    2003-08-01

    In the present study, we investigated the tuberculosis (TB) diagnostic performance of an assay on the basis of detection of TB-specific antibodies from peripheral blood mononuclear cells (PBMCs), to determine whether antibodies in lymphocyte secretions obtained from PBMCs would better reflect active disease than antibodies in serum. PBMCs from patients with and without TB cultured in various concentrations for different times were assessed. Immunoglobulin G (IgG) specific for antigen (bacille Calmette-Guérin [BCG] vaccine and purified protein derivative [PPD]) was measured in lymphocyte secretions. Patients with active TB had higher BCG- or PPD-specific IgG antibody responses than patients without TB or healthy subjects (P=.001). This method can be used as a quick diagnostic aid to facilitate rapid detection of TB cases.

  15. Rapid reverse phase-HPLC assay of HMG-CoA reductase activity

    PubMed Central

    Mozzicafreddo, Matteo; Cuccioloni, Massimiliano; Eleuteri, Anna Maria; Angeletti, Mauro

    2010-01-01

    Radioisotope-based and mass spectrometry coupled to chromatographic techniques are the conventional methods for monitoring HMG-CoA reductase (HMGR) activity. Irrespective of offering adequate sensitivity, these methods are often cumbersome and time-consuming, requiring the handling of radiolabeled chemicals or elaborate ad-hoc derivatizing procedures. We propose a rapid and versatile reverse phase-HPLC method for assaying HMGR activity capable of monitoring the levels of both substrates (HMG-CoA and NADPH) and products (CoA, mevalonate, and NADP+) in a single 20 min run with no pretreatment required. The linear dynamic range was 10–26 pmol for HMG-CoA, 7–27 nmol for NADPH, 0.5–40 pmol for CoA and mevalonate, and 2–27 nmol for NADP+, and limit of detection values were 2.67 pmol, 2.77 nmol, 0.27 pmol, and 1.3 nmol, respectively. PMID:20418539

  16. Trypsin-Sensitive, Rapid Inactivation of a Calcium-Activated Potassium Channel

    NASA Astrophysics Data System (ADS)

    Solaro, Christopher R.; Lingle, Christopher J.

    1992-09-01

    Most calcium-activated potassium channels couple changes in intracellular calcium to membrane excitability by conducting a current with a probability that depends directly on submembrane calcium concentration. In rat adrenal chromaffin cells, however, a large conductance, voltage- and calcium-activated potassium channel (BK) undergoes rapid inactivation, suggesting that this channel has a physiological role different than that of other BK channels. The inactivation of the BK channel, like that of the voltage-gated Shaker B potassium channel, is removed by trypsin digestion and channels are blocked by the Shaker B amino-terminal inactivating domain. Thus, this BK channel shares functional and possibly structural homologies with other inactivating voltage-gated potassium channels.

  17. mRNA 5'-cap binding activity in purified influenza virus detected by simple, rapid assay.

    PubMed Central

    Kroath, H; Shatkin, A J

    1982-01-01

    Reovirus mRNA 5'-terminal caps were 3'-radiolabeled with pCp and as affinity probes for proteins with cap binding activity. A rapid, simple, and sensitive blot assay was devised that could detect cellular cap binding protein in a complex polypeptide mixture. By using this method, cap binding activity was found in detergent-treated influenza virus but not in reovirus or vaccinia virus. Preincubation of capped reovirus mRNA with purified cellular cap binding protein reduced its primer effect on influenza transcriptase, whereas priming by ApG was not affected. The results indicate that influenza transcriptase complexes include cap-recognizing proteins that are involved in the formation of chimeric mRNAs. Images PMID:7097854

  18. Rapid laser nephelometric determination of amylase activity in serum and urine.

    PubMed

    Liu, T Z; Wei, J S

    1991-03-01

    We describe herein a rapid and sensitive laser nephelometric method for the determination of serum and urinary amylase activities. Our data showed that the change in relative light scattering (RLS) of an amylopectin substrate measured by a laser nephelometer related directly with amylolytic activity of amylase from 50 to 600 IU/L. Within-run variations at 293 and 769 IU/L sera showed CV's of 5.0% and 3.1%, respectively. Day-to-day variation for the same sera showed CV's of 7.2% and 4.7%, respectively. Correlation studies using the manual Phadebas dye-starch complex method and with the Roche amylochrome method showed correlation coefficients of 0.99 and 0.95, respectively. Using urine specimens, the correlation studies also showed a correlation coefficient of 0.98. These studies indicated that the proposed method was sensitive, fast, economical and easily adaptable to emergency and routine applications.

  19. Rapid in situ assessment of physiological activities in bacterial biofilms using fluorescent probes

    NASA Technical Reports Server (NTRS)

    Yu, F. P.; McFeters, G. A.

    1994-01-01

    Two rapid in situ enumeration methods using fluorescent probes were used to assess the physiological activities of Klebsiella pneumoniae biofilms on stainless steel. Fluorescent dyes, 5-cyano-2,3-ditolyl tetrazolium chloride (CTC) and rhodamine 123 (Rh 123), were chosen to perform this study. CTC is a soluble redox indicator which can be reduced by respiring bacteria to fluorescent CTC-formazan crystals. Rh 123 is incorporated into bacteria with respect to cellular proton motive force. The intracellular accumulation of these fluorescent dyes can be determined using epifluorescence microscopy. The results obtained with these two fluorescent probes in situ were compared to the plate count (PC) and in situ direct viable count (DVC) methods. Viable cell densities within biofilms determined by the three in situ methods were comparable and always showed approximately 2-fold higher values than those obtained with the PC method. As an additional advantage, the results were observed after 2 h, which was shorter than the 4 h incubation time required for the DVC method and 24 h for colony formation. The results indicate that staining with CTC and Rh 123 provides rapid information regarding cell numbers and physiological activities of bacteria within biofilms.

  20. Rapid Synthesis and Screening of Chemically Activated Transcription Factors with GFP-based Reporters

    PubMed Central

    Botstein, David; Noyes, Marcus B.

    2013-01-01

    Synthetic biology aims to rationally design and build synthetic circuits with desired quantitative properties, as well as provide tools to interrogate the structure of native control circuits. In both cases, the ability to program gene expression in a rapid and tunable fashion, with no off-target effects, can be useful. We have constructed yeast strains containing the ACT1 promoter upstream of a URA3 cassette followed by the ligand-binding domain of the human estrogen receptor and VP16. By transforming this strain with a linear PCR product containing a DNA binding domain and selecting against the presence of URA3, a constitutively expressed artificial transcription factor (ATF) can be generated by homologous recombination. ATFs engineered in this fashion can activate a unique target gene in the presence of inducer, thereby eliminating both the off-target activation and nonphysiological growth conditions found with commonly used conditional gene expression systems. A simple method for the rapid construction of GFP reporter plasmids that respond specifically to a native or artificial transcription factor of interest is also provided. PMID:24300440

  1. Glycoprotein D actively induces rapid internalization of two nectin-1 isoforms during herpes simplex virus entry

    SciTech Connect

    Stiles, Katie M.; Krummenacher, Claude

    2010-03-30

    Entry of herpes simplex virus (HSV) occurs either by fusion at the plasma membrane or by endocytosis and fusion with an endosome. Binding of glycoprotein D (gD) to a receptor such as nectin-1 is essential in both cases. We show that virion gD triggered the rapid down-regulation of nectin-1 with kinetics similar to those of virus entry. In contrast, nectin-1 was not constitutively recycled from the surface of uninfected cells. Both the nectin-1alpha and beta isoforms were internalized in response to gD despite having different cytoplasmic tails. However, deletion of the nectin-1 cytoplasmic tail slowed down-regulation of nectin-1 and internalization of virions. These data suggest that nectin-1 interaction with a cytoplasmic protein is not required for its down-regulation. Overall, this study shows that gD binding actively induces the rapid internalization of various forms of nectin-1. We suggest that HSV activates a nectin-1 internalization pathway to use for endocytic entry.

  2. LY303366 exhibits rapid and potent fungicidal activity in flow cytometric assays of yeast viability.

    PubMed

    Green, L J; Marder, P; Mann, L L; Chio, L C; Current, W L

    1999-04-01

    LY303366 is a semisynthetic analog of the antifungal lipopeptide echinocandin B that inhibits (1,3)-beta-D-glucan synthase and exhibits efficacy in animal models of human fungal infections. In this study, we utilized flow cytometric analysis of propidium iodide uptake, single-cell sorting, and standard microbiological plating methods to study the antifungal effect of LY303366 on Saccharomyces cerevisiae and Candida albicans. Our data indicate that an initial 5-min pulse treatment with LY303366 caused yeasts to take up propidium iodide and lose their ability to grow. Amphotericin B and cilofungin required longer exposure periods (30 and 180 min, respectively) and higher concentrations to elicit these fungicidal effects. These two measurements of fungicidal activity by LY303366 were highly correlated (r > 0.99) in concentration response and time course experiments. As further validation, LY303366-treated yeasts that stained with propidium iodide were unable to grow in single-cell-sorted cultures. Our data indicate that LY303366 is potent and rapidly fungicidal for actively growing yeasts. The potency and rapid action of this new fungicidal compound suggest that LY303366 may be useful for antifungal therapy. PMID:10103187

  3. Activation of glutamate transport evokes rapid glutamine release from perisynaptic astrocytes

    PubMed Central

    Uwechue, Nneka M; Marx, Mari-Carmen; Chevy, Quentin; Billups, Brian

    2012-01-01

    Stimulation of astrocytes by neuronal activity and the subsequent release of neuromodulators is thought to be an important regulator of synaptic communication. In this study we show that astrocytes juxtaposed to the glutamatergic calyx of Held synapse in the rat medial nucleus of the trapezoid body (MNTB) are stimulated by the activation of glutamate transporters and consequently release glutamine on a very rapid timescale. MNTB principal neurones express electrogenic system A glutamine transporters, and were exploited as glutamine sensors in this study. By simultaneous whole-cell voltage clamping astrocytes and neighbouring MNTB neurones in brainstem slices, we show that application of the excitatory amino acid transporter (EAAT) substrate d-aspartate stimulates astrocytes to rapidly release glutamine, which is detected by nearby MNTB neurones. This release is significantly reduced by the toxins l-methionine sulfoximine and fluoroacetate, which reduce glutamine concentrations specifically in glial cells. Similarly, glutamine release was also inhibited by localised inactivation of EAATs in individual astrocytes, using internal dl-threo-β-benzyloxyaspartic acid (TBOA) or dissipating the driving force by modifying the patch-pipette solution. These results demonstrate that astrocytes adjacent to glutamatergic synapses can release glutamine in a temporally precise, controlled manner in response to glial glutamate transporter activation. Since glutamine can be used by neurones as a precursor for glutamate and GABA synthesis, this represents a potential feedback mechanism by which astrocytes can respond to synaptic activation and react in a way that sustains or enhances further communication. This would therefore represent an additional manifestation of the tripartite relationship between synapses and astrocytes. PMID:22411007

  4. A model for the rapid evaluation of active magnetic shielding designs

    NASA Astrophysics Data System (ADS)

    Washburn, Scott Allen

    The use of active magnetic radiation shielding designs has the potential to reduce the radiation exposure received by astronauts on deep-space missions at a significantly lower mass penalty than designs that utilize only passive shielding. One of the common techniques for assessing the effectiveness of active or passive shielding designs is the use of Monte Carlo analysis to determine crew radiation exposure. Unfortunately, Monte Carlo analysis is a lengthy and computationally intensive process, and the associated time requirements to generate results make a broad analysis of the active magnetic shield design trade space impractical using this method. The ability to conduct a broad analysis of system design variables would allow the selection of configurations suited to specific mission goals, including mission radiation exposure limits, duration, and destination. Therefore, a rapid analysis method is required in order to effectively assess active shielding design parameters, and this body of work was developed in order to address this need. Any shielding analysis should also use complete representations of the radiation environment and detailed transport analyses to account for secondary particle production mechanisms. This body of work addresses both of these issues by utilizing the full Galactic Cosmic Radiation GCR flux spectrum and a detailed transport analysis to account for secondary particle effects due to mass interactions. Additionally, there is a complex relationship between the size and strength of an active shielding design and the amount and type of mass required to create it. This mass can significantly impact the resulting flux and radiation exposures inside the active shield, and any shielding analysis should not only include passive mass, but should attempt to provide a reasonable estimate of the actual mass associated with a given design. Therefore, a survey of active shielding systems is presented so that reasonable mass quantity and composition

  5. Activation of initiation factor 2 by ligands and mutations for rapid docking of ribosomal subunits.

    PubMed

    Pavlov, Michael Y; Zorzet, Anna; Andersson, Dan I; Ehrenberg, Måns

    2011-01-19

    We previously identified mutations in the GTPase initiation factor 2 (IF2), located outside its tRNA-binding domain, compensating strongly (A-type) or weakly (B-type) for initiator tRNA formylation deficiency. We show here that rapid docking of 30S with 50S subunits in initiation of translation depends on switching 30S subunit-bound IF2 from its inactive to active form. Activation of wild-type IF2 requires GTP and formylated initiator tRNA (fMet-tRNA(i)). In contrast, extensive activation of A-type IF2 occurs with only GTP or with GDP and fMet-tRNA(i), implying a passive role for initiator tRNA as activator of IF2 in subunit docking. The theory of conditional switching of GTPases quantitatively accounts for all our experimental data. We find that GTP, GDP, fMet-tRNA(i) and A-type mutations multiplicatively increase the equilibrium ratio, K, between active and inactive forms of IF2 from a value of 4 × 10(-4) for wild-type apo-IF2 by factors of 300, 8, 80 and 20, respectively. Functional characterization of the A-type mutations provides keys to structural interpretation of conditional switching of IF2 and other multidomain GTPases. PMID:21151095

  6. Spatial patterns of neuronal activity in rat cerebral cortex during non-rapid eye movement sleep.

    PubMed

    Wanger, Tim; Wetzel, Wolfram; Scheich, Henning; Ohl, Frank W; Goldschmidt, Jürgen

    2015-11-01

    It is commonly assumed that cortical activity in non-rapid eye movement sleep (NREMS) is spatially homogeneous on the mesoscopic scale. This is partly due to the limited observational scope of common metabolic or imaging methods in sleep. We used the recently developed technique of thallium-autometallography (TlAMG) to visualize mesoscopic patterns of activity in the sleeping cortex with single-cell resolution. We intravenously injected rats with the lipophilic chelate complex thallium diethyldithiocarbamate (TlDDC) during spontaneously occurring periods of NREMS and mapped the patterns of neuronal uptake of the potassium (K+) probe thallium (Tl+). Using this method, we show that cortical activity patterns are not spatially homogeneous during discrete 5-min episodes of NREMS in unrestrained rats-rather, they are complex and spatially diverse. Along with a relative predominance of infragranular layer activation, we find pronounced differences in metabolic activity of neighboring neuronal assemblies, an observation which lends support to the emerging paradigm that sleep is a distributed process with regulation on the local scale.

  7. Rapid and quantitative measuring of telomerase activity using an electrochemiluminescent sensor

    NASA Astrophysics Data System (ADS)

    Zhou, Xiaoming; Xing, Da; Zhu, Debin; Jia, Li

    2007-11-01

    Telomerase, a ribonucleoprotein enzyme that adds telomeric repeats to the 3'end of chromosomal DNA for maintaining chromosomal integrity and stability. This strong association of telomerase activity with tumors establishing it is the most widespread cancer marker. A number of assays based on the polymerase chain reaction (PCR) have been developed for the evaluation of telomerase activity. However, those methods require gel electrophoresis and some staining procedures. We developed an electrochemiluminescent (ECL) sensor for the measuring of telomerase activity to overcome these problems such as troublesome post-PCR procedures and semi-quantitative assessment in the conventional method. In this assay 5'-biotinylated telomerase synthesis (TS) primer serve as the substrate for the extension of telomeric repeats under telomerase. The extension products were amplified with this TS primer and a tris-(2'2'-bipyridyl) ruthenium (TBR)-labeled reversed primer. The amplified products was separated and enriched in the surface of electrode by streptavidin-coated magnetic beads, and detected by measuring the ECL signals of the TBR labeled. Measuring telomerase activity use the sensor is easy, sensitive, rapid, and applicable to quantitative analysis, should be clinically useful for the detection and monitoring of telomerase activity.

  8. Oral progestin induces rapid, reversible suppression of ovarian activity in the cat.

    PubMed

    Stewart, R A; Pelican, K M; Brown, J L; Wildt, D E; Ottinger, M A; Howard, J G

    2010-04-01

    The influence of oral progestin (altrenogest; ALT) on cat ovarian activity was studied using non-invasive fecal steroid monitoring. Queens were assigned to various ALT dosages: (1) 0mg/kg (control; n=5 cats); (2) 0.044 mg/kg (LOW; n=5); (3) 0.088 mg/kg (MID; n=6); or (4) 0.352 mg/kg (HIGH; n=6). Fecal estrogen and progestagen concentrations were quantified using enzyme immunoassays for 60 days before, 38 days during and 60 days after ALT treatment. Initiation of follicular activity was suppressed in all cats during progestin treatment, whereas controls continued to cycle normally. Females (n=6) with elevated fecal estrogens at treatment onset completed a normal follicular phase before returning to baseline and remained suppressed until treatment withdrawal. All cats receiving oral progestin re-initiated follicular activity after treatment, although MID cats experienced the most synchronized return (within 10-16 days). Mean baseline fecal estrogens and progestagens were higher (P<0.05) after treatment in HIGH, but not in LOW or MID cats compared to pre-treatment values. The results demonstrate that: (1) oral progestin rapidly suppresses initiation of follicular activity in the cat, but does not influence a follicular phase that exists before treatment initiation; and (2) queens return to normal follicular activity after progestin withdrawal. This study provides foundational information for research aimed at using progestin priming to improve ovarian response in felids scheduled for ovulation induction and assisted breeding. PMID:20051246

  9. Daytime spikes in dopaminergic activity drive rapid mood-cycling in mice

    PubMed Central

    Sidor, Michelle M.; Spencer, Sade M.; Dzirasa, Kafui; Parekh, Puja K.; Tye, Kay M.; Warden, Melissa R.; Arey, Rachel N.; Enwright, John F; Jacobsen, Jacob PR; Kumar, Sunil; Remillard, Erin M; Caron, Marc G.; Deisseroth, Karl; McClung, Colleen A

    2014-01-01

    Disruptions in circadian rhythms and dopaminergic activity are involved in the pathophysiology of bipolar disorder, though their interaction remains unclear. Moreover, a lack of animal models that display spontaneous cycling between mood states has hindered our mechanistic understanding of mood switching. Here we find that mice with a mutation in the circadian Clock gene (ClockΔ19) exhibit rapid mood-cycling, with a profound manic-like phenotype emerging during the day following a period of euthymia at night. Mood cycling coincides with abnormal daytime spikes in ventral tegmental area (VTA) dopaminergic activity, tyrosine hydroxylase (TH) levels, and dopamine synthesis. To determine the significance of daytime increases in VTA dopamine activity to manic behaviors, we developed a novel optogenetic stimulation paradigm that produces a sustained increase in dopamine neuronal activity and find that this induces a manic-like behavioral state. Time-dependent dampening of TH activity during the day reverses manic-related behaviours in ClockΔ19 mice. Finally, we show that CLOCK acts as a negative regulator of TH transcription, revealing a novel molecular mechanism underlying cyclic changes in mood-related behaviour. Taken together, these studies have identified a mechanistic connection between circadian gene disruption and the precipitation of manic episodes in bipolar disorder. PMID:25560763

  10. Methyl-donor supplementation in obese mice prevents the progression of NAFLD, activates AMPK and decreases acyl-carnitine levelsa

    PubMed Central

    Dahlhoff, Christoph; Worsch, Stefanie; Sailer, Manuela; Hummel, Björn A.; Fiamoncini, Jarlei; Uebel, Kirsten; Obeid, Rima; Scherling, Christian; Geisel, Jürgen; Bader, Bernhard L.; Daniel, Hannelore

    2014-01-01

    Non-alcoholic fatty liver disease (NAFLD) results from increased hepatic lipid accumulation and steatosis, and is closely linked to liver one-carbon (C1) metabolism. We assessed in C57BL6/N mice whether NAFLD induced by a high-fat (HF) diet over 8 weeks can be reversed by additional 4 weeks of a dietary methyl-donor supplementation (MDS). MDS in the obese mice failed to reverse NAFLD, but prevented the progression of hepatic steatosis associated with major changes in key hepatic C1-metabolites, e.g. S-adenosyl-methionine and S-adenosyl-homocysteine. Increased phosphorylation of AMPK-α together with enhanced β-HAD activity suggested an increased flux through fatty acid oxidation pathways. This was supported by concomitantly decreased hepatic free fatty acid and acyl-carnitines levels. Although HF diet changed the hepatic phospholipid pattern, MDS did not. Our findings suggest that dietary methyl-donors activate AMPK, a key enzyme in fatty acid β-oxidation control, that mediates increased fatty acid utilization and thereby prevents further hepatic lipid accumulation. PMID:25061561

  11. Lactobacillus rhamnosus GG decreases TNF-alpha production in lipopolysaccharide-activated murine macrophages by a contact-independent mechanism.

    PubMed

    Peña, Jeremy Andrew; Versalovic, James

    2003-04-01

    Animal studies and human clinical trials have shown that Lactobacillus can prevent or ameliorate inflammation in chronic colitis. However, molecular mechanisms for this effect have not been clearly elucidated. We hypothesize that lactobacilli are capable of downregulating pro-inflammatory cytokine responses induced by the enteric microbiota. We investigated whether lactobacilli diminish production of tumour necrosis factor alpha (TNF-alpha) by the murine macrophage line, RAW 264.7 gamma (NO-), and alter the TNF-alpha/interleukin-10 (IL-10) balance, in vitro. When media conditioned by Lactobacillus rhamnosus GG (LGG) are co-incubated with lipopolysaccharide (LPS) or lipoteichoic acid (LTA), TNF-alpha production is significantly inhibited compared to controls, whereas IL-10 synthesis is unaffected. Interestingly, LGG-conditioned media also decreases TNF-alpha production of Helicobacter-conditioned media-activated peritoneal macrophages. Lactobacillus species may be capable of producing soluble molecules that inhibit TNF-alpha production in activated macrophages. As overproduction of pro-inflammatory cytokines, especially TNF-alpha, is implicated in pathogenesis of chronic intestinal inflammation, enteric Lactobacillus-mediated inhibition of pro-inflammatory cytokine production and alteration of cytokine profiles may highlight an important immunomodulatory role for commensal bacteria in the gastrointestinal tract.

  12. Rare variants in PPARG with decreased activity in adipocyte differentiation are associated with increased risk of type 2 diabetes.

    PubMed

    Majithia, Amit R; Flannick, Jason; Shahinian, Peter; Guo, Michael; Bray, Mark-Anthony; Fontanillas, Pierre; Gabriel, Stacey B; Rosen, Evan D; Altshuler, David

    2014-09-01

    Peroxisome proliferator-activated receptor gamma (PPARG) is a master transcriptional regulator of adipocyte differentiation and a canonical target of antidiabetic thiazolidinedione medications. In rare families, loss-of-function (LOF) mutations in PPARG are known to cosegregate with lipodystrophy and insulin resistance; in the general population, the common P12A variant is associated with a decreased risk of type 2 diabetes (T2D). Whether and how rare variants in PPARG and defects in adipocyte differentiation influence risk of T2D in the general population remains undetermined. By sequencing PPARG in 19,752 T2D cases and controls drawn from multiple studies and ethnic groups, we identified 49 previously unidentified, nonsynonymous PPARG variants (MAF < 0.5%). Considered in aggregate (with or without computational prediction of functional consequence), these rare variants showed no association with T2D (OR = 1.35; P = 0.17). The function of the 49 variants was experimentally tested in a novel high-throughput human adipocyte differentiation assay, and nine were found to have reduced activity in the assay. Carrying any of these nine LOF variants was associated with a substantial increase in risk of T2D (OR = 7.22; P = 0.005). The combination of large-scale DNA sequencing and functional testing in the laboratory reveals that approximately 1 in 1,000 individuals carries a variant in PPARG that reduces function in a human adipocyte differentiation assay and is associated with a substantial risk of T2D.

  13. mTOR inhibition decreases SOX2-SOX9 mediated glioma stem cell activity and temozolomide resistance

    PubMed Central

    Garros-Regulez, Laura; Aldaz, Paula; Arrizabalaga, Olatz; Moncho-Amor, Veronica; Carrasco-Garcia, Estefania; Manterola, Lorea; Moreno-Cugnon, Leire; Barrena, Cristina; Villanua, Jorge; Ruiz, Irune; Pollard, Steven; Lovell-Badge, Robin; Sampron, Nicolas; Garcia, Idoia; Matheu, Ander

    2016-01-01

    ABSTRACT Background: SOX2 and SOX9 are commonly overexpressed in glioblastoma, and regulate the activity of glioma stem cells (GSCs). Their specific and overlapping roles in GSCs and glioma treatment remain unclear. Methods: SOX2 and SOX9 levels were examined in human biopsies. Gain and loss of function determined the impact of altering SOX2 and SOX9 on cell proliferation, senescence, stem cell activity, tumorigenesis and chemoresistance. Results: SOX2 and SOX9 expression correlates positively in glioma cells and glioblastoma biopsies. High levels of SOX2 bypass cellular senescence and promote resistance to temozolomide. Mechanistic investigations revealed that SOX2 acts upstream of SOX9. mTOR genetic and pharmacologic (rapamycin) inhibition decreased SOX2 and SOX9 expression, and reversed chemoresistance. Conclusions: Our findings reveal SOX2-SOX9 as an oncogenic axis that regulates stem cell properties and chemoresistance. We identify that rapamycin abrogate SOX protein expression and provide evidence that a combination of rapamycin and temozolomide inhibits tumor growth in cells with high SOX2/SOX9. PMID:26878385

  14. TGFβ1 rapidly activates Src through a non-canonical redox signaling mechanism

    PubMed Central

    Zhang, Hongqiao; Davies, Kelvin J. A.; Forman, Henry Jay

    2015-01-01

    Transforming growth factor-β1 (TGF-β) is involved in multiple cellular processes through Src activation. In the canonical pathway, Src activation is initiated by pTyr530 dephosphorylation followed by a conformational change allowing Tyr419 auto-phosphorylation. A non-canonical pathway in which oxidation of cysteine allows bypassing of pTyr530 dephosphorylation has been reported. Here, we examined how TGF-β activates Src in H358 cells, a small cell lung carcinoma cell line. TGF-β increased Src Tyr419 phosphorylation, but surprisingly, Tyr530 phosphorylation was increased rather than decreased. Vanadate, a protein tyrosine phosphatase inhibitor, stimulated Src activation itself, but rather than inhibiting Src activation by TGF-β, activation by vanadate was additive with TGF-β showing that pTyr530 dephosphorylation was not required. Thus, the involvement of the non-canonical oxidative activation was suspected. TGF-β increased extracellular H2O2 transiently while GSH-ester and catalase abrogated Src activation by TGF-β. Apocynin, a NADPH oxidase inhibitor, inhibited TGF-β-stimulated H2O2 production. Furthermore, mutation of cysteines to alanine, 248C/A, 277C/A, or 501C/A abrogated, while 490C/A significantly reduced, TGF-β-mediated Src activation. Taken together, the results indicate that TGF-β-mediated Src activation operates largely through a redox dependent mechanism, resulting from enhanced H2O2 production through an NADPH oxidase and that cysteines 248, 277, 490, and 501 are critical for this activation. PMID:25585026

  15. Rapid, specific, no-wash, far-red fluorogen activation in subcellular compartments by targeted fluorogen activating proteins.

    PubMed

    Telmer, Cheryl A; Verma, Richa; Teng, Haibing; Andreko, Susan; Law, Leann; Bruchez, Marcel P

    2015-05-15

    Live cell imaging requires bright photostable dyes that can target intracellular organelles and proteins with high specificity in a no-wash protocol. Organic dyes possess the desired photochemical properties and can be covalently linked to various protein tags. The currently available fluorogenic dyes are in the green/yellow range where there is high cellular autofluorescence and the near-infrared (NIR) dyes need to be washed out. Protein-mediated activation of far-red fluorogenic dyes has the potential to address these challenges because the cell-permeant dye is small and nonfluorescent until bound to its activating protein, and this binding is rapid. In this study, three single chain variable fragment (scFv)-derived fluorogen activating proteins (FAPs), which activate far-red emitting fluorogens, were evaluated for targeting, brightness, and photostability in the cytosol, nucleus, mitochondria, peroxisomes, and endoplasmic reticulum with a cell-permeant malachite green analog in cultured mammalian cells. Efficient labeling was achieved within 20-30 min for each protein upon the addition of nM concentrations of dye, producing a signal that colocalized significantly with a linked mCerulean3 (mCer3) fluorescent protein and organelle specific dyes but showed divergent photostability and brightness properties dependent on the FAP. These FAPs and the ester of malachite green dye (MGe) can be used as specific, rapid, and wash-free labels for intracellular sites in live cells with far-red excitation and emission properties, useful in a variety of multicolor experiments. PMID:25650487

  16. Peroxisome-proliferator activator receptor-gamma activation decreases attachment of endometrial cells to peritoneal mesothelial cells in an in vitro model of the early endometriotic lesion.

    PubMed

    Kavoussi, S K; Witz, C A; Binkley, P A; Nair, A S; Lebovic, D I

    2009-10-01

    The aim of this study was to investigate whether peroxisome proliferator-activated receptor (PPAR)-gamma activation has an effect on the attachment of endometrial cells to peritoneal mesothelial cells in a well-established in vitro model of the early endometriotic lesion. The endometrial epithelial cell line EM42 and mesothelial cell line LP9 were used for this study. EM42 cells, LP9 cells or both were treated with the PPAR-gamma agonist ciglitazone (CTZ) at varying concentrations (10, 20 and 40 microM) x 48 h with subsequent co-culture of EM42 and LP9 cells. The rate of EM42 attachment and invasion through LP9 cells was then assessed and compared with control (EM42 and LP9 cells co-cultured without prior treatment with CTZ). Next, attachment of CTZ-treated and untreated EM42 cells to hyaluronic acid (HA), a cell adhesion molecule (CAM) on peritoneal mesothelial cells, were assessed. Although there was no difference in EM42 attachment when LP9 cells alone were treated with CTZ, treatment of EM42 cells with 40 microM CTZ decreased EM42 attachment to LP9 cells by 27% (P < 0.01). Treatment of both EM42 and LP9 cells with 40 microM CTZ decreased EM42 attachment to LP9 by 37% (P < 0.01). Treatment of EM42 cells with 40 microM CTZ decreased attachment to HA by 66% (P = 0.056). CTZ did not decrease invasion of EM42 cells through the LP9 monolayer. CTZ may inhibit EM42 cell proliferation. In conclusion, CTZ significantly decreased EM42 attachment to LP9 cells and HA in an in vitro model of the early endometriotic lesion. PMID:19643817

  17. Elevated nuclear sphingoid base-1-phosphates and decreased histone deacetylase activity after fumonisin B1 treatment in mouse embryonic fibroblasts.

    PubMed

    Gardner, Nicole M; Riley, Ronald T; Showker, Jency L; Voss, Kenneth A; Sachs, Andrew J; Maddox, Joyce R; Gelineau-van Waes, Janee B

    2016-05-01

    Fumonisin B1 (FB1) is a mycotoxin produced by a common fungal contaminant of corn. Administration of FB1 to pregnant LM/Bc mice induces exencephaly in embryos, and ingestion of FB1-contaminated food during early pregnancy is associated with increased risk for neural tube defects (NTDs) in humans. FB1 inhibits ceramide synthase enzymes in sphingolipid biosynthesis, causing sphinganine (Sa) and bioactive sphinganine-1-phosphate (Sa1P) accumulation in blood, cells, and tissues. Sphingosine kinases (Sphk) phosphorylate Sa to form Sa1P. Upon activation, Sphk1 associates primarily with the plasma membrane, while Sphk2 is found predominantly in the nucleus. In cells over-expressing Sphk2, accumulation of Sa1P in the nuclear compartment inhibits histone deacetylase (HDAC) activity, causing increased acetylation of histone lysine residues. In this study, FB1 treatment in LM/Bc mouse embryonic fibroblasts (MEFs) resulted in significant accumulation of Sa1P in nuclear extracts relative to cytoplasmic extracts. Elevated nuclear Sa1P corresponded to decreased histone deacetylase (HDAC) activity and increased histone acetylation at H2BK12, H3K9, H3K18, and H3K23. Treatment of LM/Bc MEFs with a selective Sphk1 inhibitor, PF-543, or with ABC294640, a selective Sphk2 inhibitor, significantly reduced nuclear Sa1P accumulation after FB1, although Sa1P levels remained significantly increased relative to basal levels. Concurrent treatment with both PF-543 and ABC294640 prevented nuclear accumulation of Sa1P in response to FB1. Other HDAC inhibitors are known to cause NTDs, so these results suggest that FB1-induced disruption of sphingolipid metabolism leading to nuclear Sa1P accumulation, HDAC inhibition, and histone hyperacetylation is a potential mechanism for FB1-induced NTDs. PMID:26905748

  18. TM-25659-Induced Activation of FGF21 Level Decreases Insulin Resistance and Inflammation in Skeletal Muscle via GCN2 Pathways

    PubMed Central

    Jung, Jong Gab; Yi, Sang-A; Choi, Sung-E; Kang, Yup; Kim, Tae Ho; Jeon, Ja Young; Bae, Myung Ae; Ahn, Jin Hee; Jeong, Hana; Hwang, Eun Sook; Lee, Kwan-Woo

    2015-01-01

    The TAZ activator 2-butyl-5-methyl-6-(pyridine-3-yl)-3-[2′-(1H-tetrazole-5-yl)-biphenyl-4-ylmethyl]-3H-imidazo[4,5-b]pyridine] (TM-25659) inhibits adipocyte differentiation by interacting with peroxisome proliferator-activated receptor gamma. TM-25659 was previously shown to decrease weight gain in a high fat (HF) diet-induced obesity (DIO) mouse model. However, the fundamental mechanisms underlying the effects of TM-25659 remain unknown. Therefore, we investigated the effects of TM-25659 on skeletal muscle functions in C2 myotubes and C57BL/6J mice. We studied the molecular mechanisms underlying the contribution of TM-25659 to palmitate (PA)-induced insulin resistance in C2 myotubes. TM-25659 improved PA-induced insulin resistance and inflammation in C2 myotubes. In addition, TM-25659 increased FGF21 mRNA expression, protein levels, and FGF21 secretion in C2 myotubes via activation of GCN2 pathways (GCN2-phosphoeIF2α-ATF4 and FGF21). This beneficial effect of TM-25659 was diminished by FGF21 siRNA. C57BL/6J mice were fed a HF diet for 30 weeks. The HF-diet group was randomly divided into two groups for the next 14 days: the HF-diet and HF-diet + TM-25659 groups. The HF diet + TM-25659-treated mice showed improvements in their fasting blood glucose levels, insulin sensitivity, insulin-stimulated Akt phosphorylation, and inflammation, but neither body weight nor food intake was affected. The HF diet + TM-25659-treated mice also exhibited increased expression of both FGF21 mRNA and protein. These data indicate that TM-25659 may be beneficial for treating insulin resistance by inducing FGF21 in models of PA-induced insulin resistance and HF diet-induced insulin resistance. PMID:26537193

  19. Regional activation of rapid onset vasodilatation in mouse skeletal muscle: regulation through α-adrenoreceptors.

    PubMed

    Moore, Alex W; Bearden, Shawn E; Segal, Steven S

    2010-09-01

    Exercise onset entails motor unit recruitment and the initiation of vasodilatation. Dilatation can ascend the arteriolar network to encompass proximal feed arteries but is opposed by sympathetic nerve activity, which promotes vasoconstriction and inhibits ascending vasodilatation through activating α-adrenoreceptors. Whereas contractile activity can antagonize sympathetic vasoconstriction, more subtle aspects of this interaction remain to be defined. We tested the hypothesis that constitutive activation of α-adrenoreceptors governs blood flow distribution within individual muscles. The mouse gluteus maximus muscle (GM) consists of Inferior and Superior regions. Each muscle region is supplied by its own motor nerve and feed artery with an anastomotic arteriole (resting diameter 25 microm) that spans both muscle regions. In anaesthetized male C57BL/6J mice (3-5 months old), the GM was exposed and superfused with physiological saline solution (35 degrees C; pH 7.4). Stimulating the inferior gluteal motor nerve (0.1 ms pulse, 100 Hz for 500 ms) evoked a brief tetanic contraction and produced rapid (<1 s) onset vasodilatation (ROV; diameter change, 10 +/- 1 μm) of the anastomotic arteriole along the active (Inferior) muscle region but not along the inactive (Superior) region (n = 8). In contrast, microiontophoresis of acetylcholine (1 μm micropipette tip, 1 μA, 500 ms) initiated dilatation that travelled along the anastomotic arteriole from the Inferior into the Superior muscle region (diameter change, 5 +/- 2 μm). Topical phentolamine (1 μm) had no effect on resting diameter but this inhibition of α-adrenoreceptors enabled ROV to spread along the anastomotic arteriole into the inactive muscle region (dilatation, 7 +/- 1 μm; P < 0.05), where remote dilatation to acetylcholine then doubled (P < 0.05). These findings indicate that constitutive activation of α-adrenoreceptors in skeletal muscle can restrict the spread of dilatation within microvascular resistance

  20. Rapid ester biosynthesis screening reveals a high activity alcohol-O-acyltransferase (AATase) from tomato fruit.

    PubMed

    Lin, Jyun-Liang; Zhu, Jie; Wheeldon, Ian

    2016-05-01

    Ethyl and acetate esters are naturally produced in various yeasts, plants, and bacteria. The biosynthetic pathways that produce these esters share a common reaction step, the condensation of acetyl/acyl-CoA with an alcohol by alcohol-O-acetyl/acyltransferase (AATase). Recent metabolic engineering efforts exploit AATase activity to produce fatty acid ethyl esters as potential diesel fuel replacements as well as short- and medium-chain volatile esters as fragrance and flavor compounds. These efforts have been limited by the lack of a rapid screen to quantify ester biosynthesis. Enzyme engineering efforts have also been limited by the lack of a high throughput screen for AATase activity. Here, we developed a high throughput assay for AATase activity and used this assay to discover a high activity AATase from tomato fruit, Solanum lycopersicum (Atf-S.l). Atf1-S.l exhibited broad specificity towards acyl-CoAs with chain length from C4 to C10 and was specific towards 1-pentanol. The AATase screen also revealed new acyl-CoA substrate specificities for Atf1, Atf2, Eht1, and Eeb1 from Saccharomyces cerevisiae, and Atf-C.m from melon fruit, Cucumis melo, thus increasing the pool of characterized AATases that can be used in ester biosynthesis of ester-based fragrance and flavor compounds as well as fatty acid ethyl ester biofuels. PMID:26814045

  1. Rapid maxillary expansion causes neuronal activation in brain structures of rats.

    PubMed

    Joviliano, P; Junqueira, A A; Stabile, A C; Leite-Panissi, C R A; Rocha, M J A

    2008-07-01

    A correlation between pain sensation and neuronal c-fos expression has been analyzed following experimental rapid maxillar expansion (RME). Adult male Wistar rats were anaesthetized and divided into three groups: animals that received an orthodontic apparatus, which was immediately removed after the insertion (control), animals that received an inactivated orthodontic apparatus (without force), and animals that received an orthodontic apparatus previously activated (140 g force). After 6, 24, 48, or 72 h, the animals were re-anaesthetized, and perfused with 4% paraformaldehyde. The brains were removed, fixed, and sections containing brain structures related to nociception were processed for Fos protein immunohistochemistry (IHC). The insertion of the orthodontic apparatus with 140 g was able to cause RME that could be seen by radiography. The IHC results showed that the number of activated neurons in the different nuclei changed according to the duration of appliance insertion and followed a temporal pattern similar to that of sensations described in clinics. The animals that received the orthodontic apparatus without force did not show RME but a smaller c-fos expression in the same brain structures. In conclusion, we demonstrate that orthodontic force used for palate disjunction activates brain structures that are related to nociception, and that this activation is related to the pain sensation described during orthodontic treatment.

  2. P2X7 receptor activation regulates rapid unconventional export of transglutaminase-2.

    PubMed

    Adamczyk, Magdalena; Griffiths, Rhiannon; Dewitt, Sharon; Knäuper, Vera; Aeschlimann, Daniel

    2015-12-15

    Transglutaminases (denoted TG or TGM) are externalized from cells via an unknown unconventional secretory pathway. Here, we show for the first time that purinergic signaling regulates active secretion of TG2 (also known as TGM2), an enzyme with a pivotal role in stabilizing extracellular matrices and modulating cell-matrix interactions in tissue repair. Extracellular ATP promotes TG2 secretion by macrophages, and this can be blocked by a selective antagonist against the purinergic receptor P2X7 (P2X7R, also known as P2RX7). Introduction of functional P2X7R into HEK293 cells is sufficient to confer rapid, regulated TG2 export. By employing pharmacological agents, TG2 release could be separated from P2X7R-mediated microvesicle shedding. Neither Ca(2+) signaling alone nor membrane depolarization triggered TG2 secretion, which occurred only upon receptor membrane pore formation and without pannexin channel involvement. A gain-of-function mutation in P2X7R associated with autoimmune disease caused enhanced TG2 externalization from cells, and this correlated with increased pore activity. These results provide a mechanistic explanation for a link between active TG2 secretion and inflammatory responses, and aberrant enhanced TG2 activity in certain autoimmune conditions.

  3. P2X7 receptor activation regulates rapid unconventional export of transglutaminase-2

    PubMed Central

    Adamczyk, Magdalena; Griffiths, Rhiannon; Dewitt, Sharon; Knäuper, Vera; Aeschlimann, Daniel

    2015-01-01

    ABSTRACT Transglutaminases (denoted TG or TGM) are externalized from cells via an unknown unconventional secretory pathway. Here, we show for the first time that purinergic signaling regulates active secretion of TG2 (also known as TGM2), an enzyme with a pivotal role in stabilizing extracellular matrices and modulating cell–matrix interactions in tissue repair. Extracellular ATP promotes TG2 secretion by macrophages, and this can be blocked by a selective antagonist against the purinergic receptor P2X7 (P2X7R, also known as P2RX7). Introduction of functional P2X7R into HEK293 cells is sufficient to confer rapid, regulated TG2 export. By employing pharmacological agents, TG2 release could be separated from P2X7R-mediated microvesicle shedding. Neither Ca2+ signaling alone nor membrane depolarization triggered TG2 secretion, which occurred only upon receptor membrane pore formation and without pannexin channel involvement. A gain-of-function mutation in P2X7R associated with autoimmune disease caused enhanced TG2 externalization from cells, and this correlated with increased pore activity. These results provide a mechanistic explanation for a link between active TG2 secretion and inflammatory responses, and aberrant enhanced TG2 activity in certain autoimmune conditions. PMID:26542019

  4. Rapid fluctuations in extracellular brain glucose levels induced by natural arousing stimuli and intravenous cocaine: fueling the brain during neural activation

    PubMed Central

    Lenoir, Magalie

    2012-01-01

    Glucose, a primary energetic substrate for neural activity, is continuously influenced by two opposing forces that tend to either decrease its extracellular levels due to enhanced utilization in neural cells or increase its levels due to entry from peripheral circulation via enhanced cerebral blood flow. How this balance is maintained under physiological conditions and changed during neural activation remains unclear. To clarify this issue, enzyme-based glucose sensors coupled with high-speed amperometry were used in freely moving rats to evaluate fluctuations in extracellular glucose levels induced by brief audio stimulus, tail pinch (TP), social interaction with another rat (SI), and intravenous cocaine (1 mg/kg). Measurements were performed in nucleus accumbens (NAcc) and substantia nigra pars reticulata (SNr), which drastically differ in neuronal activity. In NAcc, where most cells are powerfully excited after salient stimulation, glucose levels rapidly (latency 2–6 s) increased (30–70 μM or 6–14% over baseline) by all stimuli; the increase differed in magnitude and duration for each stimulus. In SNr, where most cells are transiently inhibited by salient stimuli, TP, SI, and cocaine induced a biphasic glucose response, with the initial decrease (−20–40 μM or 5–10% below baseline) followed by a reboundlike increase. The critical role of neuronal activity in mediating the initial glucose response was confirmed by monitoring glucose currents after local microinjections of glutamate (GLU) or procaine (PRO). While intra-NAcc injection of GLU transiently increased glucose levels in this structure, intra-SNr PRO injection resulted in rapid, transient decreases in SNr glucose. Therefore, extracellular glucose levels in the brain change very rapidly after physiological and pharmacological stimulation, the response is structure specific, and the pattern of neuronal activity appears to be a critical factor determining direction and magnitude of physiological

  5. A high isoflavone diet decreases 5' adenosine monophosphate-activated protein kinase activation and does not correct selenium-induced elevations in fasting blood glucose in mice.

    PubMed

    Stallings, Michael T; Cardon, Brandon R; Hardman, Jeremy M; Bliss, Tyler A; Brunson, Scott E; Hart, Chris M; Swiss, Maria D; Hepworth, Squire D; Christensen, Merrill J; Hancock, Chad R

    2014-04-01

    Selenium (Se) has been implicated as a micronutrient that decreases adenosine monophosphate-activated protein kinase (AMPK) signaling and may increase diabetes risk by reducing insulin sensitivity. Soy isoflavones (IF) are estrogen-like compounds that have been shown to attenuate insulin resistance, hyperglycemia, adiposity, and increased AMPK activation. We hypothesized that a high IF (HIF) diet would prevent the poor metabolic profile associated with high Se intake. The purpose of this study was to examine changes in basal glucose metabolism and AMPK signaling in response to an HIF diet and/or supplemental Se in a mouse model. Male FVB mice were divided into groups receiving either a control diet with minimal IF (low IF) or an HIF diet. Each dietary group was further subdivided into groups receiving either water or Se at a dose of 3 mg Se/kg body weight daily, as Se-methylselenocysteine (SMSC). After 5 months, mice receiving SMSC had elevated fasting glucose (P < .05) and a tendency for glucose intolerance (P = .08). The increase in dietary IF did not result in improved fasting blood glucose. Interestingly, after 6 months, HIF-fed mice had decreased basal AMPK activation in liver and skeletal muscle tissue (P < .05). Basal glucose metabolism was changed by SMSC supplementation as evidenced by increased fasting blood glucose and glucose intolerance. High dietary IF levels did not protect against aberrant blood glucose. In FVB mice, decreased basal AMPK activation is not the mechanism through which Se exerts its effect. These results suggest that more research must be done to elucidate the role of Se and IF in glucose metabolism.

  6. Rapid screening of membrane protein activity: electrophysiological analysis of OmpF reconstituted in proteoliposomes.

    PubMed

    Kreir, Mohamed; Farre, Cecilia; Beckler, Matthias; George, Michael; Fertig, Niels

    2008-04-01

    Solvent-free planar lipid bilayers were formed in an automatic manner by bursting of giant unilamellar vesicles (GUVs) after gentle suction application through micron-sized apertures in a borosilicate glass substrate. Incubation of GUVs with the purified ion channel protein of interest yielded proteoliposomes. These proteoliposomes allow for immediate recording of channel activity after GUV sealing. This approach reduces the time-consuming, laborious and sometimes difficult protein reconstitution processes normally performed after bilayer formation. Bilayer recordings are attractive for investigations of membrane proteins not accessible to patch clamp analysis, like e.g. proteins from organelles. In the presented work, we show the example of the outer membrane protein OmpF from Escherichia coli. We reconstituted OmpF in proteoliposomes and observed the characteristic trimeric conductance levels and the typical gating induced by pH and transmembrane voltage. Moreover, OmpF is the main entrance for beta-lactam antibiotics and we investigated translocation processes of antibiotics and modulation of OmpF by spermine. We suggest that the rapid formation of porin containing lipid bilayers is of potential for the efficient electrophysiological characterization of the OmpF protein, for studying membrane permeation processes and for the rapid screening of antibiotics. PMID:18369514

  7. NIR rapid assessments of Chinese material medica: simultaneous determination of three major active components of licorice

    NASA Astrophysics Data System (ADS)

    Wu, Zhisheng; Zhou, Xiangzhen; Yu, Fulai; Shi, Xinyuan; Wang, Wenquan; Qiao, Yanjiang

    2014-11-01

    Objective: A rapid and nondestructive method was used to quantitatively predict the content of three main active components (glycyrrhizin, liquiritin and isoliquiritin) in licorice by near infrared spectroscopy (NIRS). Methods: Diffuse reflectance spectra of licorice powder were obtained, the contents of glycyrrhizin, liquiritin and isoliquiritin were analyzed simultaneously by high-performance liquid chromatography (HPLC). The partial least squares (PLS) regression algorithm was used to establish the quantitative models. Several pretreatments such as multiplicative scatter correction (MSC), first derivative, second derivative and Savitzky-Golay (SG) smoothing were utilized to correct the scattering effect and eliminate the baseline shift in all spectra. The calibration equations produced the highest determination of coefficient values (R2), the lowest root mean square error of calibration (RMSEC) and the lowest root mean square error of prediction (RMSEP) were used for the determination of glycyrrhizin, liquiritin and isoliquiritin. Results: The R2 of glycyrrhizin, liquiritin and isoliquiritin were 0.999, 0.996 and 0.999, respectively. The RMSEC of glycyrrhizin, liquiritin and isoliquiritin were 1.14 mg/g, 0.77 mg/g and 0.068 mg/g respectively. The RMSEP of glycyrrhizin, liquiritin and isoliquiritin were 4.92 mg/g, 2.06 mg/g and 0.35 mg/g respectively. Conclusions: The results indicated that the NIRS method could be used for the rapid assessment of licorice.

  8. Daptomycin exerts rapid bactericidal activity against Bacillus anthracis without disrupting membrane integrity

    PubMed Central

    Xing, Yu-hua; Wang, Wei; Dai, Su-qin; Liu, Ti-yan; Tan, Jun-jie; Qu, Guo-long; Li, Yu-xia; Ling, Yan; Liu, Gang; Fu, Xue-qi; Chen, Hui-peng

    2014-01-01

    Aim: To examine whether the novel cyclic lipopeptide antibiotic daptomycin could be used to treat anthrax and to study the mechanisms underlying its bactericidal action against Bacillus anthracis. Methods: Spore-forming B anthracis AP422 was tested. MIC values of antibiotics were determined. Cell membrane potential was measured using flow cytometric assays with membrane potential-sensitive fluorescent dyes. Cell membrane integrity was detected using To-Pro-3 iodide staining and transmission electron microscopy. K+ efflux and Na+ influx were measured using the fluorescent probes PBFI and SBFI-AM, respectively. Results: Daptomycin exhibited rapid bactericidal activity against vegetative B anthracis with a MIC value of 0.78 μg/mL, which was comparable to those of ciprofloxacin and penicillin G. Furthermore, daptomycin prevented the germinated spores from growing into vegetative bacteria. Daptomycin concentration-dependently dissipated the membrane potential of B anthracis and caused K+ efflux and Na+ influx without disrupting membrane integrity. In contrast, both ciprofloxacin and penicillin G did not change the membrane potential of vegetative bacteria or spores. Penicillin G disrupted membrane integrity of B anthracis, whereas ciprofloxacin had no such effect. Conclusion: Daptomycin exerts rapid bactericidal action against B anthracis via reducing membrane potential without disrupting membrane integrity. This antibiotic can be used as an alternate therapy for B anthracis infections. PMID:24362329

  9. Rapid Response Team activation in New Zealand hospitals-a multicentre prospective observational study.

    PubMed

    Psirides, A J; Hill, J; Jones, D

    2016-05-01

    We aimed to describe the epidemiology of Rapid Response Team (RRT) activation in New Zealand public hospitals. We undertook a prospective multicentre observational study of RRT activations in 11 hospitals for consecutive 14-day periods during October-December 2014. A standardised case report form was used to collect data on patient demographics, RRT activation criteria and timing, vital signs on RRT arrival, team composition and intervention, treatment limitation and patient outcome at day 30. Three hundred and thirteen patients received 351 RRT calls during the study period. Patients were admitted under a medical specialty in 177 (56.5%) instances. Median duration from hospital admission to first RRT call was two days. Eighty-six percent of RRT calls were to inpatient wards. A total of 43.4% of RRT calls occurred between 0800 and 1700 hours (38% of the day) and 75.5% of RRT calls were activated by ward nurses. A median of three staff attended each call. Common triggers for RRT activation were increased Early Warning Score (56.2%) and staff concern (25.7%). During the RRT call, 2.8% of patients died; 19.8% died by day 30. New 'Not For Resuscitation' orders were written in 22.5% of RRT calls. By day 30, 56.2% of patients had been discharged home alive. In conclusion, RRTs in New Zealand are multidisciplinary, mostly nurse-activated and predominantly respond to deteriorating medical (rather than surgical) patients. Most patients remain on the ward. The RRT frequently implements treatment limitations. Given almost one in five patients die within 30 days, over half of whom die within 72 hours of RRT review, surviving the RRT call may provide false reassurance that the patient will subsequently do well. PMID:27246940

  10. Modification of carbonic anhydrase II with acetaldehyde, the first metabolite of ethanol, leads to decreased enzyme activity

    PubMed Central

    Bootorabi, Fatemeh; Jänis, Janne; Valjakka, Jarkko; Isoniemi, Sari; Vainiotalo, Pirjo; Vullo, Daniela; Supuran, Claudiu T; Waheed, Abdul; Sly, William S; Niemelä, Onni; Parkkila, Seppo

    2008-01-01

    Background Acetaldehyde, the first metabolite of ethanol, can generate covalent modifications of proteins and cellular constituents. However, functional consequences of such modification remain poorly defined. In the present study, we examined acetaldehyde reaction with human carbonic anhydrase (CA) isozyme II, which has several features that make it a suitable target protein: It is widely expressed, its enzymatic activity can be monitored, its structural and catalytic properties are known, and it contains 24 lysine residues, which are accessible sites for aldehyde reaction. Results Acetaldehyde treatment in the absence and presence of a reducing agent (NaBH3(CN)) caused shifts in the pI values of CA II. SDS-PAGE indicated a shift toward a slightly higher molecular mass. High-resolution mass spectra of CA II, measured with and without NaBH3(CN), indicated the presence of an unmodified protein, as expected. Mass spectra of CA II treated with acetaldehyde revealed a modified protein form (+26 Da), consistent with a "Schiff base" formation between acetaldehyde and one of the primary NH2 groups (e.g., in lysine side chain) in the protein structure. This reaction was highly specific, given the relative abundance of over 90% of the modified protein. In reducing conditions, each CA II molecule had reacted with 9–19 (14 on average) acetaldehyde molecules (+28 Da), consistent with further reduction of the "Schiff bases" to substituted amines (N-ethyllysine residues). The acetaldehyde-modified protein showed decreased CA enzymatic activity. Conclusion The acetaldehyde-derived modifications in CA II molecule may have physiological consequences in alcoholic patients. PMID:19036170

  11. 19-Substituted Benzoquinone Ansamycin Heat Shock Protein-90 Inhibitors: Biological Activity and Decreased Off-Target Toxicity

    PubMed Central

    Chang, Chuan-Hsin; Drechsel, Derek A.; Kitson, Russell R. A.; Siegel, David; You, Qiang; Backos, Donald S.; Ju, Cynthia; Moody, Christopher J.

    2014-01-01

    The benzoquinone ansamycins (BQAs) are a valuable class of antitumor agents that serve as inhibitors of heat shock protein (Hsp)-90. However, clinical use of BQAs has resulted in off-target toxicities, including concerns of hepatotoxicity. Mechanisms underlying the toxicity of quinones include their ability to redox cycle and/or arylate cellular nucleophiles. We have therefore designed 19-substituted BQAs to prevent glutathione conjugation and nonspecific interactions with protein thiols to minimize off-target effects and reduce hepatotoxicity. 19-Phenyl– and 19-methyl–substituted versions of geldanamycin and its derivatives, 17-allylamino-17-demethoxygeldanamycin and 17-(dimethylaminoethylamino)-17-demethoxygeldanamycin (17-DMAG), did not react with glutathione, whereas marked reactivity was observed using parent BQAs. Importantly, although 17-DMAG induced cell death in primary and cultured mouse hepatocytes, 19-phenyl and 19-methyl DMAG showed reduced toxicity, validating the overall approach. Furthermore, our data suggest that arylation reactions, rather than redox cycling, are a major mechanism contributing to BQA hepatotoxicity. 19-Phenyl BQAs inhibited purified Hsp90 in a NAD(P)H:quinone oxidoreductase 1 (NQO1)–dependent manner, demonstrating increased efficacy of the hydroquinone ansamycin relative to its parent quinone. Molecular modeling supported increased stability of the hydroquinone form of 19-phenyl-DMAG in the active site of human Hsp90. In human breast cancer cells, 19-phenyl BQAs induced growth inhibition also dependent upon metabolism via NQO1 with decreased expression of client proteins and compensatory induction of Hsp70. These data demonstrate that 19-substituted BQAs are unreactive with thiols, display reduced hepatotoxicity, and retain Hsp90 and growth-inhibitory activity in human breast cancer cells, although with diminished potency relative to parent BQAs. PMID:24682466

  12. Short-term oral exposure to aluminium decreases glutathione intestinal levels and changes enzyme activities involved in its metabolism.

    PubMed

    Orihuela, Daniel; Meichtry, Verónica; Pregi, Nicolás; Pizarro, Manuel

    2005-09-01

    To study the effects of aluminium (Al) on glutathione (GSH) metabolism in the small intestine, adult male Wistar rats were orally treated with AlCl3.6H2O at doses of 30, 60, 120 and 200 mg/kg body weight (b.w.) per day, during seven days. Controls received deionized water. At doses above 120 mg/kg b.w., Al produced both a significant reduction of GSH content and an increase of oxidized/reduced glutathione ratio (P < 0.05). The index of oxidative stress of the intestine mucosa in terms of lipid peroxidation evaluated by thiobarbituric acid reactive substances was significantly increased (52%) at higher Al dose used. The duodenal expression of the multidrug resistance-associated protein 2 in brush border membranes, determined by Western blot technique, was increased 2.7-fold in rats treated with 200mg AlCl3/kg b.w (P < 0.01). Intestine activities of both GSH-synthase (from 60 mg/kg b.w.) and GSSG-reductase (from 120 mg/kg b.w.) were significantly reduced (26% and 31%, respectively) while glutathione-S-transferase showed to be slightly modified in the Al-treated groups. Conversely, gamma-glutamyltranspeptidase activity was significantly increased (P < 0.05) due to the Al treatment. Al reduced in vitro mucosa-to-lumen GSH efflux (P < 0.05). A positive linear correlation between the intestine GSH depletion and reduction of in situ 45Ca intestinal absorption, both produced by Al, was found (r = 0.923, P = 0.038). Taking as a whole, these results show that Al would alter GSH metabolism in small intestine by decreasing its turnover, leading to an unbalance of redox state in the epithelial cells, thus contributing to deteriorate GSH-dependent absorptive functions. PMID:16084594

  13. Short-term oral exposure to aluminium decreases glutathione intestinal levels and changes enzyme activities involved in its metabolism.

    PubMed

    Orihuela, Daniel; Meichtry, Verónica; Pregi, Nicolás; Pizarro, Manuel

    2005-09-01

    To study the effects of aluminium (Al) on glutathione (GSH) metabolism in the small intestine, adult male Wistar rats were orally treated with AlCl3.6H2O at doses of 30, 60, 120 and 200 mg/kg body weight (b.w.) per day, during seven days. Controls received deionized water. At doses above 120 mg/kg b.w., Al produced both a significant reduction of GSH content and an increase of oxidized/reduced glutathione ratio (P < 0.05). The index of oxidative stress of the intestine mucosa in terms of lipid peroxidation evaluated by thiobarbituric acid reactive substances was significantly increased (52%) at higher Al dose used. The duodenal expression of the multidrug resistance-associated protein 2 in brush border membranes, determined by Western blot technique, was increased 2.7-fold in rats treated with 200mg AlCl3/kg b.w (P < 0.01). Intestine activities of both GSH-synthase (from 60 mg/kg b.w.) and GSSG-reductase (from 120 mg/kg b.w.) were significantly reduced (26% and 31%, respectively) while glutathione-S-transferase showed to be slightly modified in the Al-treated groups. Conversely, gamma-glutamyltranspeptidase activity was significantly increased (P < 0.05) due to the Al treatment. Al reduced in vitro mucosa-to-lumen GSH efflux (P < 0.05). A positive linear correlation between the intestine GSH depletion and reduction of in situ 45Ca intestinal absorption, both produced by Al, was found (r = 0.923, P = 0.038). Taking as a whole, these results show that Al would alter GSH metabolism in small intestine by decreasing its turnover, leading to an unbalance of redox state in the epithelial cells, thus contributing to deteriorate GSH-dependent absorptive functions.

  14. A rapid bioluminescence assay for measuring myeloperoxidase activity in human plasma.

    PubMed

    Goiffon, Reece J; Martinez, Sara C; Piwnica-Worms, David

    2015-02-10

    Myeloperoxidase (MPO) is a circulating cardiovascular disease (CVD) biomarker used to estimate clinical risk and patient prognosis. Current enzyme-linked immunosorbent assays (ELISA) for MPO concentration are costly and time-intensive. Here we report a novel bioluminescence assay, designated MPO activity on a polymer surface (MAPS), for measuring MPO activity in human plasma samples using the bioluminescent substrate L-012. The method delivers a result in under an hour and is resistant to confounding effects from endogenous MPO inhibitors. In a pilot clinical study, we compared MAPS and two clinical ELISAs using 72 plasma samples from cardiac catheterization patients. Results from parallel MAPS and ELISAs were concordant within 2±11 μg l(-1) MPO with similar uncertainty and reproducibility. Results between parallel MAPS and ELISA were in better agreement than those between independent ELISAs. MAPS may provide an inexpensive and rapid assay for determining MPO activity in plasma samples from patients with CVD or potentially other immune and inflammatory disorders.

  15. Rapid estimation of compost enzymatic activity by spectral analysis method combined with machine learning.

    PubMed

    Chakraborty, Somsubhra; Das, Bhabani S; Ali, Md Nasim; Li, Bin; Sarathjith, M C; Majumdar, K; Ray, D P

    2014-03-01

    The aim of this study was to investigate the feasibility of using visible near-infrared (VisNIR) diffuse reflectance spectroscopy (DRS) as an easy, inexpensive, and rapid method to predict compost enzymatic activity, which traditionally measured by fluorescein diacetate hydrolysis (FDA-HR) assay. Compost samples representative of five different compost facilities were scanned by DRS, and the raw reflectance spectra were preprocessed using seven spectral transformations for predicting compost FDA-HR with six multivariate algorithms. Although principal component analysis for all spectral pretreatments satisfactorily identified the clusters by compost types, it could not separate different FDA contents. Furthermore, the artificial neural network multilayer perceptron (residual prediction deviation=3.2, validation r(2)=0.91 and RMSE=13.38 μg g(-1) h(-1)) outperformed other multivariate models to capture the highly non-linear relationships between compost enzymatic activity and VisNIR reflectance spectra after Savitzky-Golay first derivative pretreatment. This work demonstrates the efficiency of VisNIR DRS for predicting compost enzymatic as well as microbial activity.

  16. Muscle activity patterns during quick increase of movement amplitude in rapid elbow extensions.

    PubMed

    Takatoku, Nozomi; Fujiwara, Motoko

    2010-04-01

    In this study, we investigated a motor strategy for increasing the amplitude of movement in rapid extensions at the elbow joint. This study focused on the changes in a triphasic electromyographic (EMG) pattern, i.e., the first agonist burst (AG1), the second agonist burst (AG2) and the antagonist burst (ANT), for increasing the amplitude of movement required after the initiation of movement. Subjects performed 40 degrees (Basic task) and 80 degrees of extension (Wide task). These tasks were performed under two conditions; performing a predetermined task (SF condition) and performing a task in response to a visual stimulus immediately after movement commencement (ST condition). Kinematic parameters and EMG activity from the agonist (triceps brachii) and the antagonist (biceps brachii) muscles were recorded. As a result, the onset latency of AG1 and AG2 and the duration of AG1 were longer under the ST condition than the SF condition. No difference was observed between the SF and ST condition with respect to ANT activity. It is concluded that the motor strategy for increasing the amplitude of movement after the initiation of movement was to control the movement velocity and the timing to stop movement by the coactivation duration of AG1 and ANT and to stop the desired position accurately by AG2 activity.

  17. A rapid bioluminescence assay for measuring myeloperoxidase activity in human plasma

    PubMed Central

    Goiffon, Reece J.; Martinez, Sara C.; Piwnica-Worms, David

    2015-01-01

    Myeloperoxidase (MPO) is a circulating cardiovascular disease (CVD) biomarker used to estimate clinical risk and patient prognosis. Current enzyme-linked immunosorbent assays (ELISA) for MPO concentration are costly and time-intensive. Here we report a novel bioluminescence assay, designated MPO activity on a polymer surface (MAPS), for measuring MPO activity in human plasma samples using the bioluminescent substrate L-012. The method delivers a result in under an hour and is resistant to confounding effects from endogenous MPO inhibitors. In a pilot clinical study, we compared MAPS and two clinical ELISAs using 72 plasma samples from cardiac catheterization patients. Results from parallel MAPS and ELISAs were concordant within 2±11 μg l−1 MPO with similar uncertainty and reproducibility. Results between parallel MAPS and ELISA were in better agreement than those between independent ELISAs. MAPS may provide an inexpensive and rapid assay for determining MPO activity in plasma samples from patients with CVD or potentially other immune and inflammatory disorders. PMID:25666092

  18. Rapid estimation of compost enzymatic activity by spectral analysis method combined with machine learning.

    PubMed

    Chakraborty, Somsubhra; Das, Bhabani S; Ali, Md Nasim; Li, Bin; Sarathjith, M C; Majumdar, K; Ray, D P

    2014-03-01

    The aim of this study was to investigate the feasibility of using visible near-infrared (VisNIR) diffuse reflectance spectroscopy (DRS) as an easy, inexpensive, and rapid method to predict compost enzymatic activity, which traditionally measured by fluorescein diacetate hydrolysis (FDA-HR) assay. Compost samples representative of five different compost facilities were scanned by DRS, and the raw reflectance spectra were preprocessed using seven spectral transformations for predicting compost FDA-HR with six multivariate algorithms. Although principal component analysis for all spectral pretreatments satisfactorily identified the clusters by compost types, it could not separate different FDA contents. Furthermore, the artificial neural network multilayer perceptron (residual prediction deviation=3.2, validation r(2)=0.91 and RMSE=13.38 μg g(-1) h(-1)) outperformed other multivariate models to capture the highly non-linear relationships between compost enzymatic activity and VisNIR reflectance spectra after Savitzky-Golay first derivative pretreatment. This work demonstrates the efficiency of VisNIR DRS for predicting compost enzymatic as well as microbial activity. PMID:24398221

  19. [Preparing ourselves for cholera: a rapid evaluation of the quality of oral rehydration activities in Guatemala].

    PubMed

    Hermida, J

    1993-01-01

    The directorate of the North Health Area of Guatemala along with the National Nutrition Institute of Centroamérica and Panama in 1991 carried out a rapid evaluation of the quality of care provided to the population for oral rehydration, acute diarrhea and cholera. The purpose was to collect data to facilitate the implementation of efficacious activities to improve quality and optimize the use of resources. The current article contains the results of the evaluation of twenty health centers of the North Health Area of Guatemala, and the consequent activities to improve the process of care. The main failures in performance where: deficient distribution of inputs; errors in the performance of physical exams of the children in the determination of the severity of dehydration; poor use of antibiotics and in the treatment of those with severe dehydration; and specially the failure to educate the mother about the proper feeding for a sick child. The delivery of inputs improved as a outcome of the actions product of the evaluation. Another activity was a workshop, combining theory and practice, of the treatment of cholera. Currently, local authorities prepare and carry out longer term interventions taking into account the results of the evaluation.

  20. Rapid Temperature Changes and the Early Activity on Comet 67P/Churyumov-Gerasimenko

    NASA Astrophysics Data System (ADS)

    Alí-Lagoa, V.; Delbo', M.; Libourel, G.

    2015-09-01

    The so-called “early activity” of comet 67P/Churyumov-Gerasimenko has been observed to originate mostly in parts of the concave region or “neck” between its two lobes. Since activity is driven by the sublimation of volatiles, this is a puzzling result because this area is less exposed to the Sun and is therefore expected to be cooler on average. We used a thermophysical model that takes into account thermal inertia, global self-heating, and shadowing, to compute surface temperatures of the comet. We found that, for every rotation in the 2014 August-December period, some parts of the neck region undergo the fastest temperature variations of the comet’s surface precisely because they are shadowed by their surrounding terrains. Our work suggests that these fast temperature changes are correlated to the early activity of the comet, and we put forward the hypothesis that erosion related to thermal cracking is operating at a high rate on the neck region due to these rapid temperature variations. This may explain why the neck contains some ice—as opposed to most other parts of the surface—and why it is the main source of the comet’s early activity. In a broader context, these results indicate that thermal cracking can operate faster on atmosphereless bodies with significant concavities than implied by currently available estimates.

  1. A Rapid and Sensitive Method to Measure the Functional Activity of Shiga Toxins in Human Serum

    PubMed Central

    Arfilli, Valentina; Carnicelli, Domenica; Ardissino, Gianluigi; Torresani, Erminio; Scavia, Gaia; Brigotti, Maurizio

    2015-01-01

    Shiga toxins (Stx) have a definite role in the development of hemolytic uremic syndrome in children with hemorrhagic colitis caused by pathogenic Stx-producing Escherichia coli (STEC) strains. The dramatic effects of these toxins on the microvasculature of different organs, particularly of the kidney, are well known, whereas there is no consensus on the mechanism by which Stx reach the endothelia of target organs and/or indirectly injure these body sites. We hereby describe a quick (4 h), radioactive, Raji cell-based method designed for the detection of Stx in human sera. The assay monitors the translation impairment induced by these powerful inhibitors of protein synthesis, which are identified properly by neutralizing their activity with specific monoclonal antibodies. By this method, we detected for the first time the functional activity of Stx in sera of STEC-infected patients during hemorrhagic colitis. Recent research has pointed to a dynamic process of Stx-induced renal intoxication in which concurrent and interactive steps are involved. Our rapid and specific method could be useful for studying the kinetics of Stx during the natural course of STEC infection and the interplay between Stx activity in serum and Stx presence in different blood fractions (neutrophils, monocytes, platelets, leukocyte-platelet aggregates, microvesicles, lipoproteins). PMID:26556372

  2. Cold or calculating? Reduced activity in the subgenual cingulate cortex reflects decreased emotional aversion to harming in counterintuitive utilitarian judgment.

    PubMed

    Wiech, Katja; Kahane, Guy; Shackel, Nicholas; Farias, Miguel; Savulescu, Julian; Tracey, Irene

    2013-03-01

    Recent research on moral decision-making has suggested that many common moral judgments are based on immediate intuitions. However, some individuals arrive at highly counterintuitive utilitarian conclusions about when it is permissible to harm other individuals. Such utilitarian judgments have been attributed to effortful reasoning that has overcome our natural emotional aversion to harming others. Recent studies, however, suggest that such utilitarian judgments might also result from a decreased aversion to harming others, due to a deficit in empathic concern and social emotion. The present study investigated the neural basis of such indifference to harming using functional neuroimaging during engagement in moral dilemmas. A tendency to counterintuitive utilitarian judgment was associated both with 'psychoticism', a trait associated with a lack of empathic concern and antisocial tendencies, and with 'need for cognition', a trait reflecting preference for effortful cognition. Importantly, only psychoticism was also negatively correlated with activation in the subgenual cingulate cortex (SCC), a brain area implicated in empathic concern and social emotions such as guilt, during counterintuitive utilitarian judgments. Our findings suggest that when individuals reach highly counterintuitive utilitarian conclusions, this need not reflect greater engagement in explicit moral deliberation. It may rather reflect a lack of empathic concern, and diminished aversion to harming others.

  3. Multiphoton microscopy can visualize zonal damage and decreased cellular metabolic activity in hepatic ischemia-reperfusion injury in rats

    NASA Astrophysics Data System (ADS)

    Thorling, Camilla A.; Liu, Xin; Burczynski, Frank J.; Fletcher, Linda M.; Gobe, Glenda C.; Roberts, Michael S.

    2011-11-01

    Ischemia-reperfusion (I/R) injury is a common occurrence in liver surgery. In orthotopic transplantation, the donor liver is exposed to periods of ischemia and when oxygenated blood is reintroduced to the liver, oxidative stress may develop and lead to graft failure. The aim of this project was to investigate whether noninvasive multiphoton and fluorescence lifetime imaging microscopy, without external markers, were useful in detecting early liver damage caused by I/R injury. Localized hepatic ischemia was induced in rats for 1 h followed by 4 h reperfusion. Multiphoton and fluorescence lifetime imaging microscopy was conducted prior to ischemia and up to 4 h of reperfusion and compared to morphological and biochemical assessment of liver damage. Liver function was significantly impaired at 2 and 4 h of reperfusion. Multiphoton microscopy detected liver damage at 1 h of reperfusion, manifested by vacuolated cells and heterogeneous spread of damage over the liver. The damage was mainly localized in the midzonal region of the liver acinus. In addition, fluorescence lifetime imaging showed a decrease in cellular metabolic activity. Multiphoton and fluorescence lifetime imaging microscopy detected evidence of early I/R injury both structurally and functionally. This provides a simple noninvasive technique useful for following progressive liver injury without external markers.

  4. Cold or calculating? Reduced activity in the subgenual cingulate cortex reflects decreased emotional aversion to harming in counterintuitive utilitarian judgment

    PubMed Central

    Wiech, Katja; Kahane, Guy; Shackel, Nicholas; Farias, Miguel; Savulescu, Julian; Tracey, Irene

    2013-01-01

    Recent research on moral decision-making has suggested that many common moral judgments are based on immediate intuitions. However, some individuals arrive at highly counterintuitive utilitarian conclusions about when it is permissible to harm other individuals. Such utilitarian judgments have been attributed to effortful reasoning that has overcome our natural emotional aversion to harming others. Recent studies, however, suggest that such utilitarian judgments might also result from a decreased aversion to harming others, due to a deficit in empathic concern and social emotion. The present study investigated the neural basis of such indifference to harming using functional neuroimaging during engagement in moral dilemmas. A tendency to counterintuitive utilitarian judgment was associated both with ‘psychoticism’, a trait associated with a lack of empathic concern and antisocial tendencies, and with ‘need for cognition’, a trait reflecting preference for effortful cognition. Importantly, only psychoticism was also negatively correlated with activation in the subgenual cingulate cortex (SCC), a brain area implicated in empathic concern and social emotions such as guilt, during counterintuitive utilitarian judgments. Our findings suggest that when individuals reach highly counterintuitive utilitarian conclusions, this need not reflect greater engagement in explicit moral deliberation. It may rather reflect a lack of empathic concern, and diminished aversion to harming others. PMID:23280149

  5. Cold or calculating? Reduced activity in the subgenual cingulate cortex reflects decreased emotional aversion to harming in counterintuitive utilitarian judgment.

    PubMed

    Wiech, Katja; Kahane, Guy; Shackel, Nicholas; Farias, Miguel; Savulescu, Julian; Tracey, Irene

    2013-03-01

    Recent research on moral decision-making has suggested that many common moral judgments are based on immediate intuitions. However, some individuals arrive at highly counterintuitive utilitarian conclusions about when it is permissible to harm other individuals. Such utilitarian judgments have been attributed to effortful reasoning that has overcome our natural emotional aversion to harming others. Recent studies, however, suggest that such utilitarian judgments might also result from a decreased aversion to harming others, due to a deficit in empathic concern and social emotion. The present study investigated the neural basis of such indifference to harming using functional neuroimaging during engagement in moral dilemmas. A tendency to counterintuitive utilitarian judgment was associated both with 'psychoticism', a trait associated with a lack of empathic concern and antisocial tendencies, and with 'need for cognition', a trait reflecting preference for effortful cognition. Importantly, only psychoticism was also negatively correlated with activation in the subgenual cingulate cortex (SCC), a brain area implicated in empathic concern and social emotions such as guilt, during counterintuitive utilitarian judgments. Our findings suggest that when individuals reach highly counterintuitive utilitarian conclusions, this need not reflect greater engagement in explicit moral deliberation. It may rather reflect a lack of empathic concern, and diminished aversion to harming others. PMID:23280149

  6. Complement activation on platelets correlates with a decrease in circulating immature platelets in patients with immune thrombocytopenic purpura.

    PubMed

    Peerschke, Ellinor I B; Andemariam, Biree; Yin, Wei; Bussel, James B

    2010-02-01

    The role of the complement system in immune thrombocytopenic purpura (ITP) is not well defined. We examined plasma from 79 patients with ITP, 50 healthy volunteers, and 25 patients with non-immune mediated thrombocytopenia, to investigate their complement activation/fixation capacity (CAC) on immobilized heterologous platelets. Enhanced CAC was found in 46 plasma samples (59%) from patients with ITP, but no samples from patients with non-immune mediated thrombocytopenia. Plasma from healthy volunteers was used for comparison. In patients with ITP, an enhanced plasma CAC was associated with a decreased circulating absolute immature platelet fraction (A-IPF) (<15 x 10(9)/l) (P = 0.027) and thrombocytopenia (platelet count < 100 x 10(9)/l) (P = 0.024). The positive predictive value of an enhanced CAC for a low A-IPF was 93%, with a specificity of 77%. The specificity and positive predictive values increased to 100% when plasma CAC was defined strictly by enhanced C1q and/or C4d deposition on test platelets. Although no statistically significant correlation emerged between CAC and response to different pharmacological therapies, an enhanced response to splenectomy was noted (P < 0.063). Thus, complement fixation may contribute to the thrombocytopenia of ITP by enhancing clearance of opsonized platelets from the circulation, and/or directly damaging platelets and megakaryocytes. PMID:19925495

  7. Rapid recovery from spontaneous and simultaneous bilateral quadriceps tendon rupture in an active, healthy individual.

    PubMed

    Gaheer, Rajinder Singh; Hawkins, Amanda

    2010-07-13

    Bilateral spontaneous quadriceps rupture is an uncommon injury that is usually seen in association with multiple medical conditions and is frequently misdiagnosed. It is rarely seen in healthy, active individuals. This article presents a case of bilateral simultaneous and spontaneous rupture of the quadriceps tendon in a healthy, athletic, active and highly motivated patient with rapid recovery from injury and return to full sport activity within a relatively short period of time. A 65-year-old healthy man felt both knees give way while walking down stairs at home and collapsed, unable to bear weight. He was fit and well, not on any medications and basic laboratory screening was within normal limits. He was an active sportsman, horse rider, swimmer, and long-distance cyclist, and had completed a half marathon 1 month before his injury. He was diagnosed with bilateral quadriceps tendon ruptures. An ultrasound of both knees confirmed the diagnosis of full-thickness rupture. Surgical repair of both quadriceps tendons was performed 3 days after the injury. Bilateral locking brace in 10 degrees of flexion was used to immobilize both knees and protect the repair for 6 weeks. The patient remained nonweight bearing for 2 weeks, then gradual weight bearing was commenced, with full weight bearing at 6 weeks. Intensive isometric quadriceps exercises were started on the second postoperative day. Immobilization of both knees was maintained for 6 weeks, after which full active range of motion (ROM) was initiated. At 16 weeks after the injury he had bilateral ROM from 0 degrees to 120 degrees flexion, with no extension lag. He was horse riding, playing golf, swimming, and walking distances up to 2 miles at that time.

  8. 20 CFR 665.320 - May other activities be undertaken as part of rapid response?

    Code of Federal Regulations, 2011 CFR

    2011-04-01

    ... labor organizations: (1) Develop prospective strategies for addressing dislocation events, that ensure rapid access to the broad range of allowable assistance; (2) Identify strategies for the aversion of... potential dislocations, available adjustment assistance, and the effectiveness of rapid response...

  9. Mercuric reductase activity and evidence of broad-spectrum mercury resistance among clinical isolates of rapidly growing mycobacteria

    SciTech Connect

    Steingrube, V.A.; Wallace, R.J. Jr.; Steele, L.C.; Pang, Y.J. )

    1991-05-01

    Resistance to mercury was evaluated in 356 rapidly growing mycobacteria belonging to eight taxonomic groups. Resistance to inorganic Hg2+ ranged from 0% among the unnamed third biovariant complex of Mycobacterium fortuitum to 83% among M. chelonae-like organisms. With cell extracts and 203Hg(NO3)2 as the substrate, mercuric reductase (HgRe) activity was demonstrable in six of eight taxonomic groups. HgRe activity was inducible and required NADPH or NADH and a thiol donor for optimai activity. Species with HgRe activity were also resistant to organomercurial compounds, including phenylmercuric acetate. Attempts at intraspecies and intragenus transfer of HgRe activity by conjugation or transformation were unsuccessful. Mercury resistance is common in rapidly growing mycobacteria and appears to function via the same inducible enzyme systems already defined in other bacterial species. This system offers potential as a strain marker for epidemiologic investigations and for studying genetic systems in rapidly growing mycobacteria.

  10. Vital Signs Predict Rapid-Response Team Activation Within Twelve Hours of Emergency Department Admission

    PubMed Central

    Walston, James M.; Cabrera, Daniel; Bellew, Shawna D.; Olive, Marc N.; Lohse, Christine M.; Bellolio, M. Fernanda

    2016-01-01

    Introduction Rapid-response teams (RRTs) are interdisciplinary groups created to rapidly assess and treat patients with unexpected clinical deterioration marked by decline in vital signs. Traditionally emergency department (ED) disposition is partially based on the patients’ vital signs (VS) at the time of hospital admission. We aimed to identify which patients will have RRT activation within 12 hours of admission based on their ED VS, and if their outcomes differed. Methods We conducted a case-control study of patients presenting from January 2009 to December 2012 to a tertiary ED who subsequently had RRT activations within 12 hours of admission (early RRT activations). The medical records of patients 18 years and older admitted to a non-intensive care unit (ICU) setting were reviewed to obtain VS at the time of ED arrival and departure, age, gender and diagnoses. Controls were matched 1:1 on age, gender, and diagnosis. We evaluated VS using cut points (lowest 10%, middle 80% and highest 10%) based on the distribution of VS for all patients. Our study adheres to the STROBE (Strengthening the Reporting of Observational Studies in Epidemiology) guidelines for reporting observational studies. Results A total of 948 patients were included (474 cases and 474 controls). Patients who had RRT activations were more likely to be tachycardic (odds ratio [OR] 2.02, 95% CI [1.25–3.27]), tachypneic (OR 2.92, 95% CI [1.73–4.92]), and had lower oxygen saturations (OR 2.25, 95% CI [1.42–3.56]) upon arrival to the ED. Patients who had RRT activations were more likely to be tachycardic at the time of disposition from the ED (OR 2.76, 95% CI [1.65–4.60]), more likely to have extremes of systolic blood pressure (BP) (OR 1.72, 95% CI [1.08–2.72] for low BP and OR 1.82, 95% CI [1.19–2.80] for high BP), higher respiratory rate (OR 4.15, 95% CI [2.44–7.07]) and lower oxygen saturation (OR 2.29, 95% CI [1.43–3.67]). Early RRT activation was associated with increased

  11. A single and rapid calcium wave at egg activation in Drosophila

    PubMed Central

    York-Andersen, Anna H.; Parton, Richard M.; Bi, Catherine J.; Bromley, Claire L.; Davis, Ilan; Weil, Timothy T.

    2015-01-01

    Activation is an essential process that accompanies fertilisation in all animals and heralds major cellular changes, most notably, resumption of the cell cycle. While activation involves wave-like oscillations in intracellular Ca2+ concentration in mammals, ascidians and polychaete worms and a single Ca2+ peak in fish and frogs, in insects, such as Drosophila, to date, it has not been shown what changes in intracellular Ca2+ levels occur. Here, we utilise ratiometric imaging of Ca2+ indicator dyes and genetically encoded Ca2+ indicator proteins to identify and characterise a single, rapid, transient wave of Ca2+ in the Drosophila egg at activation. Using genetic tools, physical manipulation and pharmacological treatments we demonstrate that the propagation of the Ca2+ wave requires an intact actin cytoskeleton and an increase in intracellular Ca2+ can be uncoupled from egg swelling, but not from progression of the cell cycle. We further show that mechanical pressure alone is not sufficient to initiate a Ca2+ wave. We also find that processing bodies, sites of mRNA decay and translational regulation, become dispersed following the Ca2+ transient. Based on this data we propose the following model for egg activation in Drosophila: exposure to lateral oviduct fluid initiates an increase in intracellular Ca2+ at the egg posterior via osmotic swelling, possibly through mechano-sensitive Ca2+ channels; a single Ca2+ wave then propagates in an actin dependent manner; this Ca2+ wave co-ordinates key developmental events including resumption of the cell cycle and initiation of translation of mRNAs such as bicoid. PMID:25750438

  12. Rapid Detection of Thrombin and Other Protease Activity Directly in Whole Blood

    NASA Astrophysics Data System (ADS)

    Yu, Johnson Chung Sing

    Thrombin is a serine protease that plays a key role in the clotting cascade to promote hemostasis following injury to the endothelium. From a clinical diagnostic perspective, in-vivo thrombin activity is linked to various blood clotting disorders, as well as cardiovascular disease (DVT, arteriosclerosis, etc). Thus, the ability to rapidly measure protease activity directly in whole blood will provide important new diagnostics, and clinical researchers with a powerful tool to further elucidate the relationship between circulating protease levels and disease. The ultimate goal is to design novel point of care (POC) diagnostic devices that are capable of monitoring protease activities directly in whole blood and biological sample. A charge-changing substrate specific to the thrombin enzyme was engineered and its functionality was confirmed by a series of experiments. This led to the preliminary design, construction, and testing of two device platforms deemed fully functional for the electrophoretic separation and focusing of charged peptide fragments. The concept of using the existing charge-changing substrate platform for bacterial protease detection was also investigated. Certain strains of E coli are associated with severe symptoms such as abdominal cramps, bloody diarrhea, and vomiting. The OmpT protease is expressed on the outer membrane of E coli and plays a role in the cleavage of antimicrobial peptides, the degradation of recombinant heterologous proteins, and the activation of plasminogen in the host. Thus, a synthetic peptide substrate specific to the OmpT protease was designed and modeled for the purpose of detecting E coli in biological sample.

  13. Analytical-HZETRN Model for Rapid Assessment of Active Magnetic Radiation Shielding

    NASA Technical Reports Server (NTRS)

    Washburn, S. A.; Blattnig, S. R.; Singleterry, R. C.; Westover, S. C.

    2014-01-01

    The use of active radiation shielding designs has the potential to reduce the radiation exposure received by astronauts on deep-space missions at a significantly lower mass penalty than designs utilizing only passive shielding. Unfortunately, the determination of the radiation exposure inside these shielded environments often involves lengthy and computationally intensive Monte Carlo analysis. In order to evaluate the large trade space of design parameters associated with a magnetic radiation shield design, an analytical model was developed for the determination of flux inside a solenoid magnetic field due to the Galactic Cosmic Radiation (GCR) radiation environment. This analytical model was then coupled with NASA's radiation transport code, HZETRN, to account for the effects of passive/structural shielding mass. The resulting model can rapidly obtain results for a given configuration and can therefore be used to analyze an entire trade space of potential variables in less time than is required for even a single Monte Carlo run. Analyzing this trade space for a solenoid magnetic shield design indicates that active shield bending powers greater than 15 Tm and passive/structural shielding thicknesses greater than 40 g/cm2 have a limited impact on reducing dose equivalent values. Also, it is shown that higher magnetic field strengths are more effective than thicker magnetic fields at reducing dose equivalent.

  14. Analytical-HZETRN model for rapid assessment of active magnetic radiation shielding

    NASA Astrophysics Data System (ADS)

    Washburn, S. A.; Blattnig, S. R.; Singleterry, R. C.; Westover, S. C.

    2014-01-01

    The use of active radiation shielding designs has the potential to reduce the radiation exposure received by astronauts on deep-space missions at a significantly lower mass penalty than designs utilizing only passive shielding. Unfortunately, the determination of the radiation exposure inside these shielded environments often involves lengthy and computationally intensive Monte Carlo analysis. In order to evaluate the large trade space of design parameters associated with a magnetic radiation shield design, an analytical model was developed for the determination of flux inside a solenoid magnetic field due to the Galactic Cosmic Radiation (GCR) radiation environment. This analytical model was then coupled with NASA's radiation transport code, HZETRN, to account for the effects of passive/structural shielding mass. The resulting model can rapidly obtain results for a given configuration and can therefore be used to analyze an entire trade space of potential variables in less time than is required for even a single Monte Carlo run. Analyzing this trade space for a solenoid magnetic shield design indicates that active shield bending powers greater than ∼15 Tm and passive/structural shielding thicknesses greater than 40 g/cm2 have a limited impact on reducing dose equivalent values. Also, it is shown that higher magnetic field strengths are more effective than thicker magnetic fields at reducing dose equivalent.

  15. Detection of sodium channel activators by a rapid fluorimetric microplate assay.

    PubMed

    Louzao, M C; Vieytes, M R; Yasumoto, T; Botana, L M

    2004-04-01

    Marine toxins such as brevetoxins and ciguatoxins are produced by dinoflagellates and can accumulate in seafood. These toxins affect humans through seafood consumption. Intoxication is mainly characterized by gastrointestinal and neurological disorders and, in most severe cases, by cardiovascular problems. To prevent the consumption of food contaminated with these toxins, shellfish have been tested by mouse bioassay. However, this method is expensive, time-consuming, and ethically questionable. The objective of this study was to use a recently developed fluorimetric microplate assay to rapidly detect brevetoxins and ciguatoxins. The method is based on the pharmacological effect of brevetoxins and ciguatoxins known to activate sodium channels and involves (i). the incubation of excitable cells in 96 well microtiter plates with the fluorescent dye bis-oxonol, whose distribution across the membrane is potential-dependent, and (ii). dose-dependent cell depolarization by the toxins. Our findings demonstrate that measuring changes in membrane potential induced by brevetoxins and ciguatoxins allowed their quantitation. Active toxins could be reliably detected at concentrations in the nanomolar range. The simplicity, sensitivity, and possibility of being automated provide the basis for development of a practical alternative to conventional testing for brevetoxins and ciguatoxins.

  16. Active salt deformation and rapid, transient incision along the Colorado River near Moab, Utah

    NASA Astrophysics Data System (ADS)

    Jochems, Andrew P.; Pederson, Joel L.

    2015-04-01

    In certain settings, erosion is driven by and balanced with tectonic uplift, but the evolution of many landscapes is dominated by other factors such as geologic substrate, drainage history, and transient incision. The Colorado Plateau is an example where these controls are debated and where salt deformation is hypothesized to be locally active and driven by differential unloading, although this is unconfirmed and unquantified in most places. We use luminescence-dated Colorado River terraces upstream of Moab, Utah, to quantify rates of salt-driven subsidence and uplift at the local scale. Active deformation in the study area is also supported by patterns of concavity along tributary drainages crossing salt structures. Subsidence in Professor Valley at a time-averaged rate of ~500 m/Myr (meters/million years) is superimposed upon rapid bedrock incision rates that increase from ~600 to ~900 m/Myr upstream through the study area. Such high rates are unexpected given the absence of sources of regional tectonic uplift here. Instead, the incision rate pattern across the greater area is consistent with a transient signal, perhaps still from ancient drainage integration through Grand Canyon far downstream, and then amplified by unloading at both the broad regional scale and at the local canyon scale.

  17. Directed evolution can rapidly improve the activity of chimeric assembly-line enzymes

    PubMed Central

    Fischbach, Michael A.; Lai, Jonathan R.; Roche, Eric D.; Walsh, Christopher T.; Liu, David R.

    2007-01-01

    Nonribosomal peptides (NRPs) are produced by NRP synthetase (NRPS) enzymes that function as molecular assembly lines. The modular architecture of NRPSs suggests that a domain responsible for activating a building block could be replaced with a domain from a foreign NRPS to create a chimeric assembly line that produces a new variant of a natural NRP. However, such chimeric NRPS modules are often heavily impaired, impeding efforts to create novel NRP variants by swapping domains from different modules or organisms. Here we show that impaired chimeric NRPSs can be functionally restored by directed evolution. Using rounds of mutagenesis coupled with in vivo screens for NRP production, we rapidly isolated variants of two different chimeric NRPSs with ≈10-fold improvements in enzyme activity and product yield, including one that produces new derivatives of the potent NRP/polyketide antibiotic andrimid. Because functional restoration in these examples required only modest library sizes (103 to 104 clones) and three or fewer rounds of screening, our approach may be widely applicable even for NRPSs from genetically challenging hosts. PMID:17620609

  18. Continued Development of the Rapid Cycle Amine (RCA) System for Advanced Extravehicular Activity Systems

    NASA Technical Reports Server (NTRS)

    Papale, William; Chullen, Cinda; Campbell, Colin; Conger, Bruce; McMillin, Summer; Jeng, Frank

    2014-01-01

    Development activities related to the Rapid Cycle Amine (RCA) Carbon Dioxide (CO2) and Humidity control system have progressed to the point of integrating the RCA into an advanced Primary Life Support System (PLSS 2.0) to evaluate the interaction of the RCA among other PLSS components in a ground test environment. The RCA 2.0 assembly (integrated into PLSS 2.0) consists of a valve assembly with commercial actuator motor, a sorbent canister, and a field-programmable gate array (FPGA)-based process node controller. Continued design and development activities for RCA 3.0 have been aimed at optimizing the canister size and incorporating greater fidelity in the valve actuator motor and valve position feedback design. Further, the RCA process node controller is envisioned to incorporate a higher degree of functionality to support a distributed PLSS control architecture. This paper will describe the progression of technology readiness levels of RCA 1.0, 2.0 and 3.0 along with a review of the design and manufacturing successes and challenges for 2.0 and 3.0 units. The anticipated interfaces and interactions with the PLSS 2.0/2.5/3.0 assemblies will also be discussed.

  19. Rapid diagnostic test that uses isocitrate lyase activity for identification of Yersinia pestis.

    PubMed

    Hillier, S L; Charnetzky, W T

    1981-04-01

    The presence of high levels of isocitrate lyase activity in Yersinia pestis grown on blood agar base medium, as compared with low levels of this enzyme in Yersinia pseudotuberculosis and Yersinia enterocolitica, suggested that the differences in the levels of this enzyme could be used for the presumptive identification of Y. pestis. A modified, semiquantitative assay for isocitrate lyase activity is described which requires no expensive instrumentation, utilizes readily available chemicals and substrates, and requires only 20 min for completion. This test yielded positive results with all 108 isolates of Y. pestis tested and negative results with all strains of Y. pseudotuberculosis (68 isolates) and Y. enterocolitica (202 isolates) tested. Less than 2% of the approximately 1,300 non-Yersinia isolates from the family Enterobacteriaceae and none of the 93 isolates from the family Pseudomonadaceae yielded positive results. We conclude that this test provides for rapid identification of Y. pestis and should be useful in the initial screening of isolates from rodent and flea populations and in the presumptive identification of this organism from suspected cases of human plague.

  20. ISOTROPIC HEATING OF GALAXY CLUSTER CORES VIA RAPIDLY REORIENTING ACTIVE GALACTIC NUCLEUS JETS

    SciTech Connect

    Babul, Arif; Sharma, Prateek; Reynolds, Christopher S.

    2013-05-01

    Active galactic nucleus (AGN) jets carry more than sufficient energy to stave off catastrophic cooling of the intracluster medium (ICM) in the cores of cool-core clusters. However, in order to prevent catastrophic cooling, the ICM must be heated in a near-isotropic fashion and narrow bipolar jets with P{sub jet} = 10{sup 44-45} erg s{sup -1}, typical of radio AGNs at cluster centers, are inefficient in heating the gas in the transverse direction to the jets. We argue that due to existent conditions in cluster cores, the supermassive black holes (SMBHs) will, in addition to accreting gas via radiatively inefficient flows, experience short stochastic episodes of enhanced accretion via thin disks. In general, the orientation of these accretion disks will be misaligned with the spin axis of the black holes (BHs) and the ensuing torques will cause the BH's spin axis (and therefore the jet axis) to slew and rapidly change direction. This model not only explains recent observations showing successive generations of jet-lobes-bubbles in individual cool-core clusters that are offset from each other in the angular direction with respect to the cluster center, but also shows that AGN jets can heat the cluster core nearly isotropically on the gas cooling timescale. Our model does require that the SMBHs at the centers of cool-core clusters be spinning relatively slowly. Torques from individual misaligned disks are ineffective at tilting rapidly spinning BHs by more than a few degrees. Additionally, since SMBHs that host thin accretion disks will manifest as quasars, we predict that roughly 1-2 rich clusters within z < 0.5 should have quasars at their centers.

  1. Bamboo Vinegar Decreases Inflammatory Mediator Expression and NLRP3 Inflammasome Activation by Inhibiting Reactive Oxygen Species Generation and Protein Kinase C-α/δ Activation

    PubMed Central

    Ka, Shuk-Man; Chen, Ann; Tasi, Yu-Ling; Liu, May-Lan; Chiu, Yi-Chich; Hua, Kuo-Feng

    2013-01-01

    Bamboo vinegar (BV), a natural liquid derived from the condensation produced during bamboo charcoal production, has been used in agriculture and as a food additive, but its application to immune modulation has not been reported. Here, we demonstrated that BV has anti-inflammatory activities both in vitro and in vivo. BV reduced inducible nitric oxide synthase expression and nitric oxide levels in, and interleukin-6 secretion by, lipopolysaccharide-activated macrophages without affecting tumor necrosis factor-α secretion and cyclooxygenase-2 expression. The mechanism for the anti-inflammatory effect of BV involved decreased reactive oxygen species production and protein kinase C-α/δ activation. Furthermore, creosol (2-methoxy-4-methylphenol) was indentified as the major anti-inflammatory compound in BV. Impaired cytokine expression and NLR family, pyrin domain-containing 3 (NLRP3) inflammasome activation was seen in mice treated with creosol. These findings provide insights into how BV regulates inflammation and suggest that it may be a new source for the development of anti-inflammatory agents or a healthy supplement for preventing and ameliorating inflammation- and NLRP3 inflammasome-related diseases, including metabolic syndrome. PMID:24124509

  2. Nitrergic ventro-medial medullary neurons activated during cholinergically induced active (rapid eye movement) sleep in the cat.

    PubMed

    Pose, I; Sampogna, S; Chase, M H; Morales, F R

    2011-01-13

    The rostral ventro-medial medullary reticular formation is a complex structure that is involved with a variety of motor functions. It contains glycinergic neurons that are activated during active (rapid eye movement (REM)) sleep (AS); these neurons appear to be responsible for the postsynaptic inhibition of motoneurons that occurs during this state. We have reported that neurons in this same region contain nitric oxide (NO) synthase and that they innervate brainstem motor pools. In the present study we examined the c-fos expression of these neurons after carbachol-induced active sleep (C-AS). Three control and four experimental cats were employed to identify c-fos expressing nitrergic neurons using immunocytochemical techniques to detect the Fos protein together with neuronal nitric oxide synthase (nNOS) or nicotinamide adenine dinucleotide phosphate (NADPH)-diaphorase activity. The classical neurotransmitter content of the nitrergic cells in this region was examined through the combination of immunocytochemical techniques for the detection of glutamate, glycine, choline acetyltransferase (ChAT), tyrosine hydroxilase (TH) or GABA together with nNOS. During C-AS, there was a 1074% increase in the number of nitrergic neurons that expressed c-fos. These neurons did not contain glycine, ChAT, TH or GABA, but a subpopulation (15%) of them displayed glutamate-like immunoreactivity. Therefore, some of these neurons contain both an excitatory neurotransmitter (glutamate) and an excitatory neuromodulator (NO); the neurotransmitter content of the rest of them remains to be determined. Because some of the nitrergic neurons innervate brainstem motoneurons it is possible that they participate in the generation of tonic and excitatory phasic motor events that occur during AS. We also suggest that these nitrergic neurons may be involved in autonomic regulation during this state. In addition, because NO has trophic effects on target neurons, the present findings represent the

  3. Optogenetic activation of GABAergic neurons in the nucleus accumbens decreases the activity of the ventral pallidum and the expression of cocaine-context-associated memory.

    PubMed

    Wang, Li; Shen, Minjie; Yu, Yongchun; Tao, Yezheng; Zheng, Ping; Wang, Feifei; Ma, Lan

    2014-05-01

    GABAergic medium-sized spiny neurons (MSNs) in the nucleus accumbens (NAc) differentially express D1 and D2 dopamine receptors. Both D2- and D1-MSNs in the NAc form projections into the ventral pallidum, whereas only D1-MSNs directly project into midbrain neurons. They are critical in rewarding and aversive learning, and understanding the function of these NAc efferents and the alteration of their targeted brain regions in responding to a reward-associated context is important. In this study, we activated the GABAergic neurons in the NAc of mice expressing channelrhodopsin-2 under the control of the vesicular GABA transporter promoter by an optogenetic approach, and examined its effects on the expression of cocaine-context-associated memory. In vivo optogenetic activation of the NAc GABAergic neurons inhibited the expression of cocaine-conditioned place preference (CPP). When tested 24 h later, these mice exhibited normal cocaine-induced CPP, indicating that the inhibitory effect on the expression of CPP was transient and reversible. Activation of the NAc GABAergic neurons also attenuated the learning of cocaine-induced reinforcement, as indicated by the results of behavioural sensitization. To explore how the cocaine-context-associated information was processed and integrated, we assessed the activity of NAc MSN-targeted brain nuclei and found that the activation of NAc GABAergic neurons during CPP expression resulted in a decrease of c-Fos+ cells in the ventral palladium. Our data suggested that the NAc GABAergic efferents inhibit the ventral palladium activity and negatively regulate the expression of motivational effects induced by cocaine-context-associated cues.

  4. Colorimetry and SERS dual-mode detection of telomerase activity: combining rapid screening with high sensitivity

    NASA Astrophysics Data System (ADS)

    Zong, Shenfei; Wang, Zhuyuan; Chen, Hui; Hu, Guohua; Liu, Min; Chen, Peng; Cui, Yiping

    2014-01-01

    As an important biomarker and therapeutic target, telomerase has attracted considerable attention concerning its detection and monitoring. Here, we present a colorimetry and surface enhanced Raman scattering (SERS) dual-mode telomerase activity detection method, which has several distinctive advantages. First, colorimetric functionality allows rapid preliminary discrimination of telomerase activity by the naked eye. Second, the employment of SERS technique results in greatly improved detection sensitivity. Third, the combination of colorimetry and SERS into one detection system can ensure highly efficacious and sensitive screening of numerous samples. Besides, the avoidance of polymerase chain reaction (PCR) procedures further guarantees fine reliability and simplicity. Generally, the presented method is realized by an ``elongate and capture'' procedure. To be specific, gold nanoparticles modified with Raman molecules and telomeric repeat complementary oligonucleotide are employed as the colorimetric-SERS bifunctional reporting nanotag, while magnetic nanoparticles functionalized with telomerase substrate oligonucleotide are used as the capturing substrate. Telomerase can synthesize and elongate telomeric repeats onto the capturing substrate. The elongated telomeric repeats subsequently facilitate capturing of the reporting nanotag via hybridization between telomeric repeat and its complementary strand. The captured nanotags can cause a significant difference in the color and SERS intensity of the magnetically separated sediments. Thus both the color and SERS can be used as indicators of the telomerase activity. With fast screening ability and outstanding sensitivity, we anticipate that this method would greatly promote practical application of telomerase-based early-stage cancer diagnosis.As an important biomarker and therapeutic target, telomerase has attracted considerable attention concerning its detection and monitoring. Here, we present a colorimetry and

  5. Nebulization of active pharmaceutical ingredients with the eFlow(®) rapid: impact of formulation variables on aerodynamic characteristics.

    PubMed

    Beck-Broichsitter, Moritz; Prüfer, Nadine; Oesterheld, Nina; Seeger, Werner; Schmehl, Thomas

    2014-08-01

    Nebulization of active pharmaceutical ingredient (API) solutions is a well-established means to achieve pulmonary drug deposition. The current study identified the impact of formulation variables on the aerosolization performance of the eFlow(®) rapid with special respect to optimized lung application. API formulations (including excipient-supplemented samples) were investigated for physicochemical properties, then nebulized using vibrating-mesh technology. The generated aerosol clouds were analyzed by laser diffraction. Aerosol deposition characteristics in the human respiratory tract were estimated using an algebraic model. Remarkable effects on aerosolization performance [i.e., mass median aerodynamic diameter (MMAD)] of API solutions were obtained when the sample conductivity (by API concentration and type, sodium chloride addition) and dynamic viscosity (by application of sucrose and poly(ethylene glycol) 200) were elevated. A similar influence was observed for a decline in surface tension (by ethanol addition). Thus, a defined adjustment of formulation parameters allowed for a decrease of the MMAD from ∼ 8.0 μm to values as small as ∼ 3.5 μm. Consequently, the pattern and efficiency of aerosol deposition in the human respiratory tract were improved. In conclusion, identification of physicochemical variables and their way of influencing vibrating-mesh nebulization has been provided to deliver a platform for tailoring aerosol characteristics and thus, advancing pulmonary therapy.

  6. Rapid mass spectrometric DNA diagnostics for assessing microbial community activity during bioremediation. 1997 annual progress report

    SciTech Connect

    Benner, W.H.; Hunter-Cevera, J.

    1997-01-01

    'The effort of the past year''s activities, which covers the first year of the project, was directed at developing DNA-based diagnostic procedures for implementation in high through-put analytical instrumentation. The diagnostic procedures under evaluation are designed to identify specific genes in soil microorganisms that code for pollutant-degrading enzymes. Current DNA-based diagnostic procedures, such as the ligase chain reaction (LCR) and the polymerase chain reaction (PCR), rely on gel electrophoresis as a way to score a diagnostic test. The authors are attempting to implement time-of-flight (TOF) mass spectrometry as a replacement for gel separations because of its speed advantage and potential for sample automation. The authors anticipate that if TOF techniques can be implemented in the procedures, then a very large number of microorganisms and soil samples can be screened for the presence of specific pollutant-degrading genes. The use of DNA-based procedures for the detection of biodegrading organisms or genes that code for pollutant-degrading enzymes constitutes a critical technology for following biochemical transformation and substantiating the impact of bioremediation. DNA-based technology has been demonstrated to be a sensitive technique for tracking micro-organism activity at the molecular level. These procedures can be tuned to identify groups of organisms, specific organisms, and activity at the molecular level. They are developing a P-monitoring strategy that relies on the combined use of DNA diagnostics with mass spectrometry as the detection scheme. The intent of this work is a two-fold evaluation of (1) the feasibility of replacing the use of gel separations for identifying polymerase chain reaction (PCR) products with a rapid and automatable form of electrospray mass spectrometry and (2) the use of matrix-assisted-laser-desorption-ionization mass spectrometry (MALDI-MS) as a tool to score oligonucleotide ligation assays (OLA).'

  7. A single administration of methamphetamine to mice early in the light period decreases running wheel activity observed during the dark period.

    PubMed

    Kitanaka, Nobue; Kitanaka, Junichi; Hall, F Scott; Uhl, George R; Watabe, Kaname; Kubo, Hitoshi; Takahashi, Hitoshi; Tatsuta, Tomohiro; Morita, Yoshio; Takemura, Motohiko

    2012-01-01

    Repeated intermittent administration of amphetamines acutely increases appetitive and consummatory aspects of motivated behaviors as well as general activity and exploratory behavior, including voluntary running wheel activity. Subsequently, if the drug is withdrawn, the frequency of these behaviors decreases, which is thought to be indicative of dysphoric symptoms associated with amphetamine withdrawal. Such decreases may be observed after chronic treatment or even after single drug administrations. In the present study, the effect of acute methamphetamine (METH) on running wheel activity, horizontal locomotion, appetitive behavior (food access), and consummatory behavior (food and water intake) was investigated in mice. A multi-configuration behavior apparatus designed to monitor the five behaviors was developed, where combined measures were recorded simultaneously. In the first experiment, naïve male ICR mice showed gradually increasing running wheel activity over three consecutive days after exposure to a running wheel, while mice without a running wheel showed gradually decreasing horizontal locomotion, consistent with running wheel activity being a positively motivated form of natural motor activity. In experiment 2, increased horizontal locomotion and food access, and decreased food intake, were observed for the initial 3h after acute METH challenge. Subsequently, during the dark phase period decreased running wheel activity and horizontal locomotion were observed. The reductions in running wheel activity and horizontal locomotion may be indicative of reduced dopaminergic function, although it remains to be seen if these changes may be more pronounced after more prolonged METH treatments. PMID:22079320

  8. A single administration of methamphetamine to mice early in the light period decreases running wheel activity observed during the dark period.

    PubMed

    Kitanaka, Nobue; Kitanaka, Junichi; Hall, F Scott; Uhl, George R; Watabe, Kaname; Kubo, Hitoshi; Takahashi, Hitoshi; Tatsuta, Tomohiro; Morita, Yoshio; Takemura, Motohiko

    2012-01-01

    Repeated intermittent administration of amphetamines acutely increases appetitive and consummatory aspects of motivated behaviors as well as general activity and exploratory behavior, including voluntary running wheel activity. Subsequently, if the drug is withdrawn, the frequency of these behaviors decreases, which is thought to be indicative of dysphoric symptoms associated with amphetamine withdrawal. Such decreases may be observed after chronic treatment or even after single drug administrations. In the present study, the effect of acute methamphetamine (METH) on running wheel activity, horizontal locomotion, appetitive behavior (food access), and consummatory behavior (food and water intake) was investigated in mice. A multi-configuration behavior apparatus designed to monitor the five behaviors was developed, where combined measures were recorded simultaneously. In the first experiment, naïve male ICR mice showed gradually increasing running wheel activity over three consecutive days after exposure to a running wheel, while mice without a running wheel showed gradually decreasing horizontal locomotion, consistent with running wheel activity being a positively motivated form of natural motor activity. In experiment 2, increased horizontal locomotion and food access, and decreased food intake, were observed for the initial 3h after acute METH challenge. Subsequently, during the dark phase period decreased running wheel activity and horizontal locomotion were observed. The reductions in running wheel activity and horizontal locomotion may be indicative of reduced dopaminergic function, although it remains to be seen if these changes may be more pronounced after more prolonged METH treatments.

  9. Aggravation of nonalcoholic steatohepatitis by moderate alcohol consumption is associated with decreased SIRT1 activity in rats

    Technology Transfer Automated Retrieval System (TEKTRAN)

    Chronic alcohol intake decreases adiponectin and sirtuin 1 (SIRT1) expressions, both of which have been implicated in various biological processes including inflammation, apoptosis and metabolism. We have previously shown that moderate consumption of alcohol aggravates liver inflammation and apoptos...

  10. Rapid Diminution in the Level and Activity of DNA-Dependent Protein Kinase in Cancer Cells by a Reactive Nitro-Benzoxadiazole Compound

    PubMed Central

    Silva, Viviane A. O.; Lafont, Florian; Benhelli-Mokrani, Houda; Breton, Magali Le; Hulin, Philippe; Chabot, Thomas; Paris, François; Sakanyan, Vehary; Fleury, Fabrice

    2016-01-01

    The expression and activity of DNA-dependent protein kinase (DNA-PK) is related to DNA repair status in the response of cells to exogenous and endogenous factors. Recent studies indicate that Epidermal Growth Factor Receptor (EGFR) is involved in modulating DNA-PK. It has been shown that a compound 4-nitro-7-[(1-oxidopyridin-2-yl)sulfanyl]-2,1,3-benzoxadiazole (NSC), bearing a nitro-benzoxadiazole (NBD) scaffold, enhances tyrosine phosphorylation of EGFR and triggers downstream signaling pathways. Here, we studied the behavior of DNA-PK and other DNA repair proteins in prostate cancer cells exposed to compound NSC. We showed that both the expression and activity of DNA-PKcs (catalytic subunit of DNA-PK) rapidly decreased upon exposure of cells to the compound. The decline in DNA-PKcs was associated with enhanced protein ubiquitination, indicating the activation of cellular proteasome. However, pretreatment of cells with thioglycerol abolished the action of compound NSC and restored the level of DNA-PKcs. Moreover, the decreased level of DNA-PKcs was associated with the production of intracellular hydrogen peroxide by stable dimeric forms of Cu/Zn SOD1 induced by NSC. Our findings indicate that reactive oxygen species and electrophilic intermediates, generated and accumulated during the redox transformation of NBD compounds, are primarily responsible for the rapid modulation of DNA-PKcs functions in cancer cells. PMID:27187356

  11. Rapid method for measuring protease activity in milk using radiolabeled casein

    SciTech Connect

    Christen, G.L.

    1987-09-01

    A rapid means to detect the presence of protease activity in raw milk could be useful in predicting keeping ability of products made from that milk. A 30-min assay has been developed and compared with three other methods of detecting protease. Casein, (methyl-/sup 14/C)-methylated-alpha was purchased from a radioisotope supplier. Concentrations of substrate from 2 to 20 nCi gave counts per minute, which increased linearly when counted with the Charm analyzer. There was not a significant difference in counting times of 10, 20, or 30 min. A mixture of sodium acetate and acetic acid precipitated nonhydrolyzed substrate with an efficiency of 97%. Comparison of the (/sup 14/C) casein assay, a casein fluorescein isothiocyanate assay, trinitrobenzenesulfonic acid procedure, and the Hull procedure using protease from psychrotrophic bacteria revealed that the (/sup 14/C) casein and casein fluorescein isothiocyanate methods were roughly equivalent and that the radiometric procedure was 10 times more sensitive than the trinitrobenzenesulfonic acid assay. The radiometric procedure was approximately 10(4) times more sensitive than the Hull procedure. The (/sup 14/C) casein and casein fluorescein isothiocyanate methods were similar in time required, about 30 min, while the trinitrobenzenesulfonic acid assay and Hull method required about 1 h plus reagent preparation time. The (/sup 14/C) casein procedure was most expensive per test; the other three were cheaper and similar to each other in cost.

  12. Activity-Dependent Rapid Local RhoA Synthesis Is Required for Hippocampal Synaptic Plasticity

    PubMed Central

    Briz, Victor; Zhu, Guoqi; Wang, Yubin; Liu, Yan; Avetisyan, Mariam; Bi, Xiaoning

    2015-01-01

    Dendritic protein synthesis and actin cytoskeleton reorganization are important events required for the consolidation of hippocampal LTP and memory. However, the temporal and spatial relationships between these two processes remain unclear. Here, we report that treatment of adult rat hippocampal slices with BDNF or with tetraethylammonium (TEA), which induces a chemical form of LTP, produces a rapid and transient increase in RhoA protein levels. Changes in RhoA were restricted to dendritic spines of CA3 and CA1 and require de novo protein synthesis regulated by mammalian target of rapamycin (mTOR). BDNF-mediated stimulation of RhoA activity, cofilin phosphorylation, and actin polymerization were completely suppressed by protein synthesis inhibitors. Furthermore, intrahippocampal injections of RhoA antisense oligodeoxynucleotides inhibited theta burst stimulation (TBS)-induced RhoA upregulation