Science.gov

Sample records for activity relationship 3d-qsar

  1. Structure-based and multiple potential three-dimensional quantitative structure-activity relationship (SB-MP-3D-QSAR) for inhibitor design.

    PubMed

    Du, Qi-Shi; Gao, Jing; Wei, Yu-Tuo; Du, Li-Qin; Wang, Shu-Qing; Huang, Ri-Bo

    2012-04-23

    The inhibitions of enzymes (proteins) are determined by the binding interactions between ligands and targeting proteins. However, traditional QSAR (quantitative structure-activity relationship) is a one-side technique, only considering the structures and physicochemical properties of inhibitors. In this study, the structure-based and multiple potential three-dimensional quantitative structure-activity relationship (SB-MP-3D-QSAR) is presented, in which the structural information of host protein is involved in the QSAR calculations. The SB-MP-3D-QSAR actually is a combinational method of docking approach and QSAR technique. Multiple docking calculations are performed first between the host protein and ligand molecules in a training set. In the targeting protein, the functional residues are selected, which make the major contribution to the binding free energy. The binding free energy between ligand and targeting protein is the summation of multiple potential energies, including van der Waals energy, electrostatic energy, hydrophobic energy, and hydrogen-bond energy, and may include nonthermodynamic factors. In the foundational QSAR equation, two sets of weighting coefficients {aj} and {bp} are assigned to the potential energy terms and to the functional residues, respectively. The two coefficient sets are solved by using iterative double least-squares (IDLS) technique in the training set. Then, the two sets of weighting coefficients are used to predict the bioactivities of inquired ligands. In an application example, the new developed method obtained much better results than that of docking calculations.

  2. A Structure-Activity Relationship Study of Imidazole-5-Carboxylic Acid Derivatives as Angiotensin II Receptor Antagonists Combining 2D and 3D QSAR Methods.

    PubMed

    Sharma, Mukesh C

    2016-03-01

    Two-dimensional (2D) and three-dimensional (3D) quantitative structure-activity relationship (QSAR) studies were performed for correlating the chemical composition of imidazole-5-carboxylic acid analogs and their angiotensin II [Formula: see text] receptor antagonist activity using partial least squares and k-nearest neighbor, respectively. For comparing the three different feature selection methods of 2D-QSAR, k-nearest neighbor models were used in conjunction with simulated annealing (SA), genetic algorithm and stepwise coupled with partial least square (PLS) showed variation in biological activity. The statistically significant best 2D-QSAR model having good predictive ability with statistical values of [Formula: see text] and [Formula: see text] was developed by SA-partial least square with the descriptors like [Formula: see text]count, 5Chain count, SdsCHE-index, and H-acceptor count, showing that increase in the values of these descriptors is beneficial to the activity. The 3D-QSAR studies were performed using the SA-PLS. A leave-one-out cross-validated correlation coefficient [Formula: see text] and predicate activity [Formula: see text] = 0.7226 were obtained. The information rendered by QSAR models may lead to a better understanding of structural requirements of substituted imidazole-5-carboxylic acid derivatives and also aid in designing novel potent antihypertensive molecules.

  3. Docking-based three-dimensional quantitative structure-activity relationship (3D-QSAR) predicts binding affinities to aryl hydrocarbon receptor for polychlorinated dibenzodioxins, dibenzofurans, and biphenyls.

    PubMed

    Yuan, Jintao; Pu, Yuepu; Yin, Lihong

    2013-07-01

    Polychlorinated dibenzodioxins (PCDDs), polychlorinated dibenzofurans (PCDFs), and polychlorinated biphenyls (PCBs) cause toxic effects after binding to an intracellular cytosolic receptor called the aryl hydrocarbon receptor (AhR). Thymic atrophy, weight loss, immunotoxicity, acute lethality, and induction of cytochrome P4501A1 have all been correlated with the binding affinity to AhR. To study the key molecular features for determining binding affinity to AhR, a homology model of AhR ligand-binding domains was developed, a molecular docking approach was employed to obtain docking-based conformations of all molecules in the whole set, and 3-dimensional quantitative structure-activity relationship (3D-QSAR) methodology, namely, comparative molecular field analysis (CoMFA), was applied. A partial least square analysis was performed, and QSAR models were generated for a training set of 59 compounds. The generated QSAR model showed good internal and external statistical reliability, and in a comparison with other reported CoMFA models using different alignment methods, the docking-based CoMFA model showed some advantages.

  4. Study on the activity of non-purine xanthine oxidase inhibitor by 3D-QSAR modeling and molecular docking

    NASA Astrophysics Data System (ADS)

    Li, Peizhen; Tian, Yueli; Zhai, Honglin; Deng, Fangfang; Xie, Meihong; Zhang, Xiaoyun

    2013-11-01

    Non-purine derivatives have been shown to be promising novel drug candidates as xanthine oxidase inhibitors. Based on three-dimensional quantitative structure-activity relationship (3D-QSAR) methods including comparative molecular field analysis (CoMFA) and comparative molecular similarity indices analysis (CoMSIA), two 3D-QSAR models for a series of non-purine xanthine oxidase (XO) inhibitors were established, and their reliability was supported by statistical parameters. Combined 3D-QSAR modeling and the results of molecular docking between non-purine xanthine oxidase inhibitors and XO, the main factors that influenced activity of inhibitors were investigated, and the obtained results could explain known experimental facts. Furthermore, several new potential inhibitors with higher activity predicted were designed, which based on our analyses, and were supported by the simulation of molecular docking. This study provided some useful information for the development of non-purine xanthine oxidase inhibitors with novel structures.

  5. 3D QSAR investigations on locomotor activity of 5-cyano-N1,6-disubstituted 2-thiouracil derivatives.

    PubMed

    Kuchekar, B S; Pore, Y V

    2010-06-01

    Three dimensional quantitative structure activity relationship (3D QSAR) investigations were carried out on a series of 5-cyano-N1,6-disubstituted 2-thiouracil derivatives for their locomotor activity. The structures of all compounds were built on a workspace of VlifeMDS3.5 molecular modeling software and 3D QSAR models were generated by applying a partial least square (PLS) linear regression analysis coupled with a stepwise variable selection method. Both derived models were found to be statistically significant in terms of regression and internal and external predictive ability (r(2) = 0.9414 and 0.8511, q(2) = 0.8582 and 0.6222, pred_r(2) = 0.5142 and 0.7917). The QSAR models indicated that both electrostatic and steric interaction energies were contributing significantly to locomotor activity of thiouracil derivatives. PMID:22491179

  6. Comparison of Different 2D and 3D-QSAR Methods on Activity Prediction of Histamine H3 Receptor Antagonists

    PubMed Central

    Dastmalchi, Siavoush; Hamzeh-Mivehroud, Maryam; Asadpour-Zeynali, Karim

    2012-01-01

    Histamine H3 receptor subtype has been the target of several recent drug development programs. Quantitative structure-activity relationship (QSAR) methods are used to predict the pharmaceutically relevant properties of drug candidates whenever it is applicable. The aim of this study was to compare the predictive powers of three different QSAR techniques, namely, multiple linear regression (MLR), artificial neural network (ANN), and HASL as a 3D QSAR method, in predicting the receptor binding affinities of arylbenzofuran histamine H3 receptor antagonists. Genetic algorithm coupled partial least square as well as stepwise multiple regression methods were used to select a number of calculated molecular descriptors to be used in MLR and ANN-based QSAR studies. Using the leave-group-out cross-validation technique, the performances of the MLR and ANN methods were evaluated. The calculated values for the mean absolute percentage error (MAPE), ranging from 2.9 to 3.6, and standard deviation of error of prediction (SDEP), ranging from 0.31 to 0.36, for both MLR and ANN methods were statistically comparable, indicating that both methods perform equally well in predicting the binding affinities of the studied compounds toward the H3 receptors. On the other hand, the results from 3D-QSAR studies using HASL method were not as good as those obtained by 2D methods. It can be concluded that simple traditional approaches such as MLR method can be as reliable as those of more advanced and sophisticated methods like ANN and 3D-QSAR analyses. PMID:25317190

  7. 3D-QSAR Study of 7,8-Dialkyl-1,3-diaminopyrrolo-[3,2-f] Quinazolines with Anticancer Activity as DHFR Inhibitors

    NASA Astrophysics Data System (ADS)

    Chen, Jin-can; Chen, Lan-mei; Liao, Si-yan; Qian, Li; Zheng, Kang-cheng

    2009-06-01

    A three-dimensional quantitative structure-activity relationship (3D-QSAR) study of a series of 7,8-dialkyl-1,3-diaminopyrrolo-[3,2-f] quinazolines with anticancer activity as dihydrofolate reductase (DHFR) inhibitors was carried out by using the comparative molecular field analysis (CoMFA), on the basis of our reported 2D-QSAR of these compounds. The established 3D-QSAR model has good quality of statistics and good prediction ability; the non cross-validation correlation coefficient and the cross-validation value of this model are 0.993 and 0.619, respectively, the F value is 193.4, and the standard deviation SD is 0.208. This model indicates that the steric field factor plays a much more important role than the electrostatic one, in satisfying agreement with the published 2D-QSAR model. However, the 3D-QSAR model offers visual images of the steric field and the electrostatic field. The 3D-QSAR study further suggests the following: to improve the activity, the substituent R' should be selected to be a group with an adaptive bulk like Et or i-Pr, and the substituent R should be selected to be a larger alkyl. In particular, based on our present 3D-QSAR as well as the published 2D-QSAR, the experimentally-proposed hydrophobic binding mechanism on the receptor-binding site of the DHFR can be further explained in theory. Therefore, the QSAR studies help to further understand the “hydrophobic binding" action mechanism of this kind of compounds, and to direct the molecular design of new drugs with higher activity.

  8. 3D-QSAR Studies on a Series of Dihydroorotate Dehydrogenase Inhibitors: Analogues of the Active Metabolite of Leflunomide

    PubMed Central

    Li, Shun-Lai; He, Mao-Yu; Du, Hong-Guang

    2011-01-01

    The active metabolite of the novel immunosuppressive agent leflunomide has been shown to inhibit the enzyme dihydroorotate dehydrogenase (DHODH). This enzyme catalyzes the fourth step in de novo pyrimidine biosynthesis. Self-organizing molecular field analysis (SOMFA), a simple three-dimensional quantitative structure-activity relationship (3D-QSAR) method is used to study the correlation between the molecular properties and the biological activities of a series of analogues of the active metabolite. The statistical results, cross-validated rCV2 (0.664) and non cross-validated r2 (0.687), show a good predictive ability. The final SOMFA model provides a better understanding of DHODH inhibitor-enzyme interactions, and may be useful for further modification and improvement of inhibitors of this important enzyme. PMID:21686163

  9. Prediction and evaluation of the lipase inhibitory activities of tea polyphenols with 3D-QSAR models

    PubMed Central

    Li, Yi-Fang; Chang, Yi-Qun; Deng, Jie; Li, Wei-Xi; Jian, Jie; Gao, Jia-Suo; Wan, Xin; Gao, Hao; Kurihara, Hiroshi; Sun, Ping-Hua; He, Rong-Rong

    2016-01-01

    The extraordinary hypolipidemic effects of polyphenolic compounds from tea have been confirmed in our previous study. To gain compounds with more potent activities, using the conformations of the most active compound revealed by molecular docking, a 3D-QSAR pancreatic lipase inhibitor model with good predictive ability was established and validated by CoMFA and CoMISA methods. With good statistical significance in CoMFA (r2cv = 0.622, r2 = 0.956, F = 261.463, SEE = 0.096) and CoMISA (r2cv = 0.631, r2 = 0.932, F = 75.408, SEE = 0.212) model, we summarized the structure-activity relationship between polyphenolic compounds and pancreatic lipase inhibitory activities and find the bulky substituents in R2, R4 and R5, hydrophilic substituents in R1 and electron withdrawing groups in R2 are the key factors to enhance the lipase inhibitory activities. Under the guidance of the 3D-QSAR results, (2R,3R,2′R,3′R)-desgalloyloolongtheanin-3,3′-O-digallate (DOTD), a potent lipase inhibitor with an IC50 of 0.08 μg/ml, was obtained from EGCG oxidative polymerization catalyzed by crude polyphenol oxidase. Furthermore, DOTD was found to inhibit lipid absorption in olive oil-loaded rats, which was related with inhibiting the activities of lipase in the intestinal mucosa and contents. PMID:27694956

  10. Molecular docking and 3D-QSAR studies on the glucocorticoid receptor antagonistic activity of hydroxylated polychlorinated biphenyls.

    PubMed

    Liu, S; Luo, Y; Fu, J; Zhou, J; Kyzas, G Z

    2016-01-01

    The glucocorticoid receptor (GR) antagonistic activities of hydroxylated polychlorinated biphenyls (HO-PCBs) were recently characterised. To further explore the interactions between HO-PCBs and the GR, and to elucidate structural characteristics that influence the GR antagonistic activity of HO-PCBs, molecular docking and three-dimensional quantitative structure-activity relationship (3D-QSAR) studies were performed. Comparative molecular similarity indices analysis (CoMSIA) was performed using both ligand- and receptor-based alignment schemes. Results generated from the receptor-based model were found to be more satisfactory, with q(2) of 0.632 and r(2) of 0.931 compared with those from the ligand-based model. Some internal validation strategies (e.g. cross-validation analysis, bootstrapping analysis and Y-randomisation) and an external validation method were used respectively to further assess the stability and predictive ability of the derived model. Graphical interpretation of the model provided some insights into the structural features that affected the GR antagonistic activity of HO-PCBs. Molecular docking studies revealed that some key residues were critical for ligand-receptor interactions by forming hydrogen bonds (Glu540) and hydrophobic interactions with ligands (Ile539, Val543 and Trp577). Although CoMSIA sometimes depends on the alignment of the molecules, the information provided is beneficial for predicting the GR antagonistic activities of HO-PCB homologues and is helpful for understanding the binding mechanisms of HO-PCBs to GR. PMID:26848875

  11. Compound profiling and 3D-QSAR studies of hydrazone derivatives with activity against intracellular Trypanosoma cruzi.

    PubMed

    Costa, Lívia Bandeira; Cardoso, Marcos Veríssimo de Oliveira; de Oliveira Filho, Gevanio Bezerra; de Moraes Gomes, Paulo André Teixeira; Espíndola, José Wanderlan Pontes; de Jesus Silva, Thays Gabrielle; Torres, Pedro Henrique Monteiro; Silva Junior, Floriano Paes; Martin, Julio; de Figueiredo, Regina Célia Bressan Queiroz; Leite, Ana Cristina Lima

    2016-04-15

    Chagas disease is a tropical disease caused by the parasite Trypanosoma cruzi, which is endemic in Central and South America. Few treatments are available with effectiveness limited to the early (acute) stage of disease, significant toxicity and widespread drug resistance. In this work we report the outcome of a HTS-ready assay chemical library screen to identify novel, nontoxic, small-molecule inhibitors of T. cruzi. We have selected 50 compounds that possess hydrazone as a common group. The compounds were screened using recombinant T. cruzi (Tulahuen strain) expressing beta-galactosidase. A 3D quantitative structure-activity relationship (QSAR) analysis was performed using descriptors calculated from comparative molecular field analysis (CoMFA). Our findings show that of the fifty selected hydrazones, compounds LpQM-19, 28 and 31 displayed the highest activity against T. cruzi, leading to a selectivity index (SI) of 20-fold. The 3D-QSAR analysis indicates that a particular electrostatic arrangement, where electron-deficient atoms are aligned along the molecule main axis positively correlates with compound biological activity. These results provide new candidate molecules for the development of treatments against Chagas disease. PMID:26964673

  12. 3D-QSAR - Applications, Recent Advances, and Limitations

    NASA Astrophysics Data System (ADS)

    Sippl, Wolfgang

    Three-dimensional quantitative structure-activity relationship (3D-QSAR) techniques are the most prominent computational means to support chemistry within drug design projects where no three-dimensional structure of the macromolecular target is available. The primary aim of these techniques is to establish a correlation of biological activities of a series of structurally and biologically characterized compounds with the spatial fingerprints of numerous field properties of each molecule, such as steric demand, lipophilicity, and electrostatic interactions. The number of 3D-QSAR studies has exponentially increased over the last decade, since a variety of methods are commercially available in user-friendly, graphically guided software. In this chapter, we will review recent advances, known limitations, and the application of receptor-based 3D-QSAR

  13. Constrained NBMPR Analogue Synthesis, Pharmacophore Mapping and 3D-QSAR Modeling of Equilibrative nucleoside Transporter 1 (ENT1) Inhibitory Activity

    PubMed Central

    Zhu, Zhengxiang; Buolamwini, John K.

    2009-01-01

    Conformationally constrained analogue synthesis was undertaken to aid in pharmacophore mapping and 3D QSAR analysis of nitrobenzylmercaptopurine riboside (NBMPR) congeners as equilibriative nucleoside transporter 1 (ENT1) inhibitors. In our previous study (Zhu et al., J. Med. Chem. 46, 831–837, 2003), novel regioisomeric nitro-1, 2, 3, 4-tetrahydroisoquinoline conformationally constrained analogues of NBMPR were synthesized and evaluated as ENT1 ligands. 7-NO2-1, 2, 3, 4-tetrahydroisoquino-2-yl purine riboside was identified as the analogue with the nitro group in the best orientation at the NBMPR binding site of ENT1. In the present study, further conformational constraining was introduced by synthesizing 5′-O, 8-cyclo derivatives. The flow cytometrically determined binding affinities indicated that the additional 5′-O, 8-cyclo constraining was unfavorable for binding to the ENT1 transporter. The structure-activity relationship (SAR) acquired was applied to pharmacophore mapping using the PHASE program. The best pharmacophore hypothesis obtained embodied an anti-conformation with three H-bond acceptors, one hydrophobic center, and two aromatic rings involving the 3′-OH, 4′-oxygen, the NO2 group, the benzyl phenyl and the imidazole and pyrimidine portions of the purine ring, respectively. A PHASE 3D-QSAR model derived with this pharmacophore yielded an r2 of 0.916 for four (4) PLS components, and an excellent external test set predictive r2 of 0.78 for 39 compounds. This pharmacophore was used for molecular alignment in a comparative molecular field analysis (CoMFA) 3D-QSAR study that also afforded a predictive model with external test set validation predictive r2 of 0.73. Thus, although limited, this study suggests that the bioactive conformation for NBMPR at the ENT1 transporter could be anti. The study has also suggested an ENT1 inhibitory pharmacophore, and established a predictive CoMFA 3D-QSAR model that might be useful for novel ENT1 inhibitor

  14. Molecular docking, molecular dynamics simulation, and structure-based 3D-QSAR studies on the aryl hydrocarbon receptor agonistic activity of hydroxylated polychlorinated biphenyls.

    PubMed

    Cao, Fu; Li, Xiaolin; Ye, Li; Xie, Yuwei; Wang, Xiaoxiang; Shi, Wei; Qian, Xiangping; Zhu, Yongliang; Yu, Hongxia

    2013-09-01

    The binding interactions between hydroxylated polychlorinated biphenyls (HO-PCBs) and the aryl hydrocarbon receptor (AhR) are suspected of causing toxic effects. To understand the binding mode between HO-PCBs and AhR, and to explore the structural characteristics that influence the AhR agonistic activities of HO-PCBs, the combination of molecular docking, three-dimensional quantitative structure-activity relationship (3D-QSAR), and molecular dynamics (MD) simulations was performed. Using molecular docking, the HO-PCBs were docked into the binding pocket of AhR, which was generated by homology modeling. Comparative molecular similarity index analysis (CoMSIA) models were subsequently developed from three different alignment rules. The optimum 3D-QSAR model showed good predictive ability (q(2)=0.583, R(2)=0.913) and good mechanism interpretability. The statistical reliability of the CoMSIA model was also validated. In addition, molecular docking and MD simulations were applied to explore the binding modes between the ligands and AhR. The results obtained from this study may lead to a better understanding of the interaction mechanism between HO-PCBs and AhR.

  15. Molecular determinants of ligand binding modes in the histamine H(4) receptor: linking ligand-based three-dimensional quantitative structure-activity relationship (3D-QSAR) models to in silico guided receptor mutagenesis studies.

    PubMed

    Istyastono, Enade P; Nijmeijer, Saskia; Lim, Herman D; van de Stolpe, Andrea; Roumen, Luc; Kooistra, Albert J; Vischer, Henry F; de Esch, Iwan J P; Leurs, Rob; de Graaf, Chris

    2011-12-01

    The histamine H(4) receptor (H(4)R) is a G protein-coupled receptor (GPCR) that plays an important role in inflammation. Similar to the homologous histamine H(3) receptor (H(3)R), two acidic residues in the H(4)R binding pocket, D(3.32) and E(5.46), act as essential hydrogen bond acceptors of positively ionizable hydrogen bond donors in H(4)R ligands. Given the symmetric distribution of these complementary pharmacophore features in H(4)R and its ligands, different alternative ligand binding mode hypotheses have been proposed. The current study focuses on the elucidation of the molecular determinants of H(4)R-ligand binding modes by combining (3D) quantitative structure-activity relationship (QSAR), protein homology modeling, molecular dynamics simulations, and site-directed mutagenesis studies. We have designed and synthesized a series of clobenpropit (N-(4-chlorobenzyl)-S-[3-(4(5)-imidazolyl)propyl]isothiourea) derivatives to investigate H(4)R-ligand interactions and ligand binding orientations. Interestingly, our studies indicate that clobenpropit (2) itself can bind to H(4)R in two distinct binding modes, while the addition of a cyclohexyl group to the clobenpropit isothiourea moiety allows VUF5228 (5) to adopt only one specific binding mode in the H(4)R binding pocket. Our ligand-steered, experimentally supported protein modeling method gives new insights into ligand recognition by H(4)R and can be used as a general approach to elucidate the structure of protein-ligand complexes.

  16. Receptor-based 3D-QSAR in Drug Design: Methods and Applications in Kinase Studies.

    PubMed

    Fang, Cheng; Xiao, Zhiyan

    2016-01-01

    Receptor-based 3D-QSAR strategy represents a superior integration of structure-based drug design (SBDD) and three-dimensional quantitative structure-activity relationship (3D-QSAR) analysis. It combines the accurate prediction of ligand poses by the SBDD approach with the good predictability and interpretability of statistical models derived from the 3D-QSAR approach. Extensive efforts have been devoted to the development of receptor-based 3D-QSAR methods and two alternative approaches have been exploited. One associates with computing the binding interactions between a receptor and a ligand to generate structure-based descriptors for QSAR analyses. The other concerns the application of various docking protocols to generate optimal ligand poses so as to provide reliable molecular alignments for the conventional 3D-QSAR operations. This review highlights new concepts and methodologies recently developed in the field of receptorbased 3D-QSAR, and in particular, covers its application in kinase studies.

  17. Understanding the Structural Requirements of Hybrid (S)-6-((2-(4-Phenylpiperazin-1-yl)ethyl)(propyl)amino)-5,6,7,8-tetrahydronaphthalen-1-ol and its Analogs as D2/D3 Receptor Ligands: A Three-Dimensional Quantitative Structure-Activity Relationship (3D QSAR) Investigation

    PubMed Central

    Modi, Gyan; Sharma, Horrick; Kharkar, Prashant S.; Dutta, Aloke K.

    2014-01-01

    To gain insights into the structural requirements for dopamine D2 and D3 agonists in the treatment of Parkinson’s disease (PD) and to elucidate the basis of selectivity for D3 over D2 (D2/D3), 3D quantitative structure-activity relationship (3D QSAR) investigations using CoMFA (comparative molecular field analysis) and CoMSIA (comparative molecular similarity indices analysis) methods were performed on a series of 45 structurally related D2 and D3 dopaminergic ligands. Two alignment methods (atom-based and flexible) and two charge calculation methods (Gasteiger-Hückel and AM1) were used in the present study. Overall, D2 affinity and selectivity (D2/D3) models performed better with r2cv values of 0.71 and 0.63 for CoMFA and 0.71 and 0.79 for CoMSIA, respectively. The corresponding predictive r2 values for the CoMFA and CoMSIA models were 0.92 and 0.86 and 0.91 and 0.78, respectively. The CoMFA models generated using flexible alignment outperformed the models with the atom-based alignment in terms of relevant statistics and interpretability of the generated contour maps while CoMSIA models obtained using atom-based alignment showed superiority in terms of internal and external predictive abilities. The presence of carbonyl group (C=O) attached to the piperazine ring and the hydrophobic biphenyl ring were found to be the most important features responsible for the D3 selectivity over D2. This study can be further utilized to design and develop selective and potent dopamine agonists to treat PD. PMID:25221669

  18. Understanding the Structural Requirements of Hybrid (S)-6-((2-(4-Phenylpiperazin-1-yl)ethyl)(propyl)amino)-5,6,7,8-tetrahydronaphthalen-1-ol and its Analogs as D2/D3 Receptor Ligands: A Three-Dimensional Quantitative Structure-Activity Relationship (3D QSAR) Investigation.

    PubMed

    Modi, Gyan; Sharma, Horrick; Kharkar, Prashant S; Dutta, Aloke K

    2014-09-01

    To gain insights into the structural requirements for dopamine D2 and D3 agonists in the treatment of Parkinson's disease (PD) and to elucidate the basis of selectivity for D3 over D2 (D2/D3), 3D quantitative structure-activity relationship (3D QSAR) investigations using CoMFA (comparative molecular field analysis) and CoMSIA (comparative molecular similarity indices analysis) methods were performed on a series of 45 structurally related D2 and D3 dopaminergic ligands. Two alignment methods (atom-based and flexible) and two charge calculation methods (Gasteiger-Hückel and AM1) were used in the present study. Overall, D2 affinity and selectivity (D2/D3) models performed better with r(2)cv values of 0.71 and 0.63 for CoMFA and 0.71 and 0.79 for CoMSIA, respectively. The corresponding predictive r(2) values for the CoMFA and CoMSIA models were 0.92 and 0.86 and 0.91 and 0.78, respectively. The CoMFA models generated using flexible alignment outperformed the models with the atom-based alignment in terms of relevant statistics and interpretability of the generated contour maps while CoMSIA models obtained using atom-based alignment showed superiority in terms of internal and external predictive abilities. The presence of carbonyl group (C=O) attached to the piperazine ring and the hydrophobic biphenyl ring were found to be the most important features responsible for the D3 selectivity over D2. This study can be further utilized to design and develop selective and potent dopamine agonists to treat PD.

  19. Energy-Based Pharmacophore and Three-Dimensional Quantitative Structure--Activity Relationship (3D-QSAR) Modeling Combined with Virtual Screening To Identify Novel Small-Molecule Inhibitors of Silent Mating-Type Information Regulation 2 Homologue 1 (SIRT1).

    PubMed

    Pulla, Venkat Koushik; Sriram, Dinavahi Saketh; Viswanadha, Srikant; Sriram, Dharmarajan; Yogeeswari, Perumal

    2016-01-25

    Silent mating-type information regulation 2 homologue 1 (SIRT1), being the homologous enzyme of silent information regulator-2 gene in yeast, has multifaceted functions. It deacetylates a wide range of histone and nonhistone proteins; hence, it has good therapeutic importance. SIRT1 was believed to be overexpressed in many cancers (prostate, colon) and inflammatory disorders (rheumatoid arthritis). Hence, designing inhibitors against SIRT1 could be considered valuable. Both structure-based and ligand-based drug design strategies were employed to design novel inhibitors utilizing high-throughput virtual screening of chemical databases. An energy-based pharmacophore was generated using the crystal structure of SIRT1 bound with a small molecule inhibitor and compared with a ligand-based pharmacophore model that showed four similar features. A three-dimensional quantitative structure-activity relationship (3D-QSAR) model was developed and validated to be employed in the virtual screening protocol. Among the designed compounds, Lead 17 emerged as a promising SIRT1 inhibitor with IC50 of 4.34 μM and, at nanomolar concentration (360 nM), attenuated the proliferation of prostate cancer cells (LnCAP). In addition, Lead 17 significantly reduced production of reactive oxygen species, thereby reducing pro inflammatory cytokines such as IL6 and TNF-α. Furthermore, the anti-inflammatory potential of the compound was ascertained using an animal paw inflammation model induced by carrageenan. Thus, the identified SIRT1 inhibitors could be considered as potent leads to treat both cancer and inflammation.

  20. Energy-Based Pharmacophore and Three-Dimensional Quantitative Structure--Activity Relationship (3D-QSAR) Modeling Combined with Virtual Screening To Identify Novel Small-Molecule Inhibitors of Silent Mating-Type Information Regulation 2 Homologue 1 (SIRT1).

    PubMed

    Pulla, Venkat Koushik; Sriram, Dinavahi Saketh; Viswanadha, Srikant; Sriram, Dharmarajan; Yogeeswari, Perumal

    2016-01-25

    Silent mating-type information regulation 2 homologue 1 (SIRT1), being the homologous enzyme of silent information regulator-2 gene in yeast, has multifaceted functions. It deacetylates a wide range of histone and nonhistone proteins; hence, it has good therapeutic importance. SIRT1 was believed to be overexpressed in many cancers (prostate, colon) and inflammatory disorders (rheumatoid arthritis). Hence, designing inhibitors against SIRT1 could be considered valuable. Both structure-based and ligand-based drug design strategies were employed to design novel inhibitors utilizing high-throughput virtual screening of chemical databases. An energy-based pharmacophore was generated using the crystal structure of SIRT1 bound with a small molecule inhibitor and compared with a ligand-based pharmacophore model that showed four similar features. A three-dimensional quantitative structure-activity relationship (3D-QSAR) model was developed and validated to be employed in the virtual screening protocol. Among the designed compounds, Lead 17 emerged as a promising SIRT1 inhibitor with IC50 of 4.34 μM and, at nanomolar concentration (360 nM), attenuated the proliferation of prostate cancer cells (LnCAP). In addition, Lead 17 significantly reduced production of reactive oxygen species, thereby reducing pro inflammatory cytokines such as IL6 and TNF-α. Furthermore, the anti-inflammatory potential of the compound was ascertained using an animal paw inflammation model induced by carrageenan. Thus, the identified SIRT1 inhibitors could be considered as potent leads to treat both cancer and inflammation. PMID:26636371

  1. Combined 3D-QSAR, molecular docking and molecular dynamics study on thyroid hormone activity of hydroxylated polybrominated diphenyl ethers to thyroid receptors β

    SciTech Connect

    Li, Xiaolin; Ye, Li; Wang, Xiaoxiang; Wang, Xinzhou; Liu, Hongling; Zhu, Yongliang; Yu, Hongxia

    2012-12-15

    Several recent reports suggested that hydroxylated polybrominated diphenyl ethers (HO-PBDEs) may disturb thyroid hormone homeostasis. To illuminate the structural features for thyroid hormone activity of HO-PBDEs and the binding mode between HO-PBDEs and thyroid hormone receptor (TR), the hormone activity of a series of HO-PBDEs to thyroid receptors β was studied based on the combination of 3D-QSAR, molecular docking, and molecular dynamics (MD) methods. The ligand- and receptor-based 3D-QSAR models were obtained using Comparative Molecular Similarity Index Analysis (CoMSIA) method. The optimum CoMSIA model with region focusing yielded satisfactory statistical results: leave-one-out cross-validation correlation coefficient (q{sup 2}) was 0.571 and non-cross-validation correlation coefficient (r{sup 2}) was 0.951. Furthermore, the results of internal validation such as bootstrapping, leave-many-out cross-validation, and progressive scrambling as well as external validation indicated the rationality and good predictive ability of the best model. In addition, molecular docking elucidated the conformations of compounds and key amino acid residues at the docking pocket, MD simulation further determined the binding process and validated the rationality of docking results. -- Highlights: ► The thyroid hormone activities of HO-PBDEs were studied by 3D-QSAR. ► The binding modes between HO-PBDEs and TRβ were explored. ► 3D-QSAR, molecular docking, and molecular dynamics (MD) methods were performed.

  2. Active site characterization and structure based 3D-QSAR studies on non-redox type 5-lipoxygenase inhibitors.

    PubMed

    Ul-Haq, Zaheer; Khan, Naveed; Zafar, Syed Kashif; Moin, Syed Tarique

    2016-06-10

    Structure-based 3D-QSAR study was performed on a class of 5-benzylidene-2-phenylthiazolinones non-redox type 5-LOX inhibitors. In this study, binding pocket of 5-Lipoxygenase (pdb id 3o8y) was identified by manual docking using 15-LOX (pdb id 2p0m) as a reference structure. Additionally, most of the binding site residues were found conserved in both structures. These non-redox inhibitors were then docked into the binding site of 5-LOX. To generate reliable CoMFA and CoMSIA models, atom fit data base alignment method using docked conformation of the most active compound was employed. The q(2)cv and r(2)ncv values for CoMFA model were found to be 0.549 and 0.702, respectively. The q(2)cv and r(2)ncv values for the selected CoMSIA model comprised four descriptors steric, electrostatic, hydrophobic and hydrogen bond donor fields were found to be 0.535 and 0.951, respectively. Obtained results showed that our generated model was statistically reliable. Furthermore, an external test set validates the reliability of the predicted model by calculating r(2)pred i.e.0.787 and 0.571 for CoMFA and CoMSIA model, respectively. 3D contour maps generated from CoMFA and CoMSIA models were utilized to determine the key structural features of ligands responsible for biological activities. The applied protocol will be helpful to design more potent and selective inhibitors of 5-LOX. PMID:27044904

  3. QSAR and 3D QSAR of inhibitors of the epidermal growth factor receptor

    NASA Astrophysics Data System (ADS)

    Pinto-Bazurco, Mariano; Tsakovska, Ivanka; Pajeva, Ilza

    This article reports quantitative structure-activity relationships (QSAR) and 3D QSAR models of 134 structurally diverse inhibitors of the epidermal growth factor receptor (EGFR) tyrosine kinase. Free-Wilson analysis was used to derive the QSAR model. It identified the substituents in aniline, the polycyclic system, and the substituents at the 6- and 7-positions of the polycyclic system as the most important structural features. Comparative molecular field analysis (CoMFA) and comparative molecular similarity indices analysis (CoMSIA) were used in the 3D QSAR modeling. The steric and electrostatic interactions proved the most important for the inhibitory effect. Both QSAR and 3D QSAR models led to consistent results. On the basis of the statistically significant models, new structures were proposed and their inhibitory activities were predicted.

  4. Molecular docking, molecular dynamics simulation, and structure-based 3D-QSAR studies on estrogenic activity of hydroxylated polychlorinated biphenyls.

    PubMed

    Li, Xiaolin; Ye, Li; Wang, Xiaoxiang; Wang, Xinzhou; Liu, Hongling; Qian, Xiangping; Zhu, Yongliang; Yu, Hongxia

    2012-12-15

    Hydroxylated polychlorinated biphenyls (HO-PCBs), major metabolites of PCBs, have been reported to present agonist or antagonist interactions with estrogen receptor α (ERα) and induce ER-mediated responses. In this work, a multistep framework combining molecular docking, molecular dynamics (MD) simulations, and structure-based three-dimensional quantitative structure-activity relationship (3D-QSAR) studies were performed to explore the influence of structural features on the estrogenic activities of HO-PCBs, and to investigate the molecular mechanism of ERα-ligand interactions. The CoMSIA (comparative molecular similarity indices analysis) model was developed from the conformations obtained from molecular docking. The model exhibited statistically significant results as the cross-validated correlation coefficient q² was 0.648, the non-cross-validated correlation coefficient r² was 0.968, and the external predictive correlation coefficient r(pred)² was 0.625. The key amino acid residues were identified by molecular docking, and the detailed binding modes of the compounds with different activities were determined by MD simulations. The binding free energies correlated well with the experimental activity. An energetic analysis, MM-GBSA energy decomposition, revealed that the van der Waals interaction was the major driving force for the binding of compounds to ERα. The hydrogen bond interactions between the ligands and residue His524 help to stabilize the conformation of ligands at the binding pocket. These results are expected to be beneficial to predict estrogenic activities of other HO-PCB congeners and helpful for understanding the binding mechanism of HO-PCBs and ERα. PMID:23137989

  5. 3D-QSAR modelling dataset of bioflavonoids for predicting the potential modulatory effect on P-glycoprotein activity.

    PubMed

    Wongrattanakamon, Pathomwat; Lee, Vannajan Sanghiran; Nimmanpipug, Piyarat; Jiranusornkul, Supat

    2016-12-01

    The data is obtained from exploring the modulatory activities of bioflavonoids on P-glycoprotein function by ligand-based approaches. Multivariate Linear-QSAR models for predicting the induced/inhibitory activities of the flavonoids were created. Molecular descriptors were initially used as independent variables and a dependent variable was expressed as pFAR. The variables were then used in MLR analysis by stepwise regression calculation to build the linear QSAR data. The entire dataset consisted of 23 bioflavonoids was used as a training set. Regarding the obtained MLR QSAR model, R of 0.963, R (2)=0.927, [Formula: see text], SEE=0.197, F=33.849 and q (2)=0.927 were achieved. The true predictabilities of QSAR model were justified by evaluation with the external dataset (Table 4). The pFARs of representative flavonoids were predicted by MLR QSAR modelling. The data showed that internal and external validations may generate the same conclusion. PMID:27626051

  6. 3D-QSAR modelling dataset of bioflavonoids for predicting the potential modulatory effect on P-glycoprotein activity.

    PubMed

    Wongrattanakamon, Pathomwat; Lee, Vannajan Sanghiran; Nimmanpipug, Piyarat; Jiranusornkul, Supat

    2016-12-01

    The data is obtained from exploring the modulatory activities of bioflavonoids on P-glycoprotein function by ligand-based approaches. Multivariate Linear-QSAR models for predicting the induced/inhibitory activities of the flavonoids were created. Molecular descriptors were initially used as independent variables and a dependent variable was expressed as pFAR. The variables were then used in MLR analysis by stepwise regression calculation to build the linear QSAR data. The entire dataset consisted of 23 bioflavonoids was used as a training set. Regarding the obtained MLR QSAR model, R of 0.963, R (2)=0.927, [Formula: see text], SEE=0.197, F=33.849 and q (2)=0.927 were achieved. The true predictabilities of QSAR model were justified by evaluation with the external dataset (Table 4). The pFARs of representative flavonoids were predicted by MLR QSAR modelling. The data showed that internal and external validations may generate the same conclusion.

  7. Identification of potential influenza virus endonuclease inhibitors through virtual screening based on the 3D-QSAR model.

    PubMed

    Kim, J; Lee, C; Chong, Y

    2009-01-01

    Influenza endonucleases have appeared as an attractive target of antiviral therapy for influenza infection. With the purpose of designing a novel antiviral agent with enhanced biological activities against influenza endonuclease, a three-dimensional quantitative structure-activity relationships (3D-QSAR) model was generated based on 34 influenza endonuclease inhibitors. The comparative molecular similarity index analysis (CoMSIA) with a steric, electrostatic and hydrophobic (SEH) model showed the best correlative and predictive capability (q(2) = 0.763, r(2) = 0.969 and F = 174.785), which provided a pharmacophore composed of the electronegative moiety as well as the bulky hydrophobic group. The CoMSIA model was used as a pharmacophore query in the UNITY search of the ChemDiv compound library to give virtual active compounds. The 3D-QSAR model was then used to predict the activity of the selected compounds, which identified three compounds as the most likely inhibitor candidates.

  8. Investigation of antigen-antibody interactions of sulfonamides with a monoclonal antibody in a fluorescence polarization immunoassay using 3D-QSAR models

    Technology Transfer Automated Retrieval System (TEKTRAN)

    A three-dimensional quantitative structure-activity relationship (3D-QSAR) model of sulfonamide analogs binding a monoclonal antibody (MAbSMR) produced against sulfamerazine was carried out by Distance Comparison (DISCOtech), comparative molecular field analysis (CoMFA), and comparative molecular si...

  9. Molecular docking and 3D-QSAR studies on inhibitors of DNA damage signaling enzyme human PARP-1.

    PubMed

    Fatima, Sabiha; Bathini, Raju; Sivan, Sree Kanth; Manga, Vijjulatha

    2012-08-01

    Poly (ADP-ribose) polymerase-1 (PARP-1) operates in a DNA damage signaling network. Molecular docking and three dimensional-quantitative structure activity relationship (3D-QSAR) studies were performed on human PARP-1 inhibitors. Docked conformation obtained for each molecule was used as such for 3D-QSAR analysis. Molecules were divided into a training set and a test set randomly in four different ways, partial least square analysis was performed to obtain QSAR models using the comparative molecular field analysis (CoMFA) and comparative molecular similarity indices analysis (CoMSIA). Derived models showed good statistical reliability that is evident from their r², q²(loo) and r²(pred) values. To obtain a consensus for predictive ability from all the models, average regression coefficient r²(avg) was calculated. CoMFA and CoMSIA models showed a value of 0.930 and 0.936, respectively. Information obtained from the best 3D-QSAR model was applied for optimization of lead molecule and design of novel potential inhibitors.

  10. More effective antimicrobial mastoparan derivatives, generated by 3D-QSAR-Almond and computational mutagenesis.

    PubMed

    Avram, Speranta; Buiu, Catalin; Borcan, Florin; Milac, Adina-Luminita

    2012-02-01

    Antimicrobial peptides are drugs used against a wide range of pathogens which present a great advantage: in contrast with antibiotics they do not develop resistance. The wide spectrum of antimicrobial peptides advertises them in the research and pharmaceutical industry as attractive starting points for obtaining new, more effective analogs. Here we predict the antimicrobial activity against Bacillus subtilis (expressed as minimal inhibitory concentration values) for 33 mastoparan analogs and their new derivatives by a non-aligned 3D-QSAR (quantitative structure-activity relationship) method. We establish the contribution to antimicrobial activity of molecular descriptors (hydrophobicity, hydrogen bond donor and steric), correlated with contributions from the membrane environment (sodium, potassium, chloride). Our best QSAR models show significant cross-validated correlation q(2) (0.55-0.75), fitted correlation r(2) (greater than 0.90) coefficients and standard error of prediction SDEP (less than 0.250). Moreover, based on our most accurate 3D-QSAR models, we propose nine new mastoparan analogs, obtained by computational mutagenesis, some of them predicted to have significantly improved antimicrobial activity compared to the parent compound.

  11. Combinatorial Pharmacophore-Based 3D-QSAR Analysis and Virtual Screening of FGFR1 Inhibitors

    PubMed Central

    Zhou, Nannan; Xu, Yuan; Liu, Xian; Wang, Yulan; Peng, Jianlong; Luo, Xiaomin; Zheng, Mingyue; Chen, Kaixian; Jiang, Hualiang

    2015-01-01

    The fibroblast growth factor/fibroblast growth factor receptor (FGF/FGFR) signaling pathway plays crucial roles in cell proliferation, angiogenesis, migration, and survival. Aberration in FGFRs correlates with several malignancies and disorders. FGFRs have proved to be attractive targets for therapeutic intervention in cancer, and it is of high interest to find FGFR inhibitors with novel scaffolds. In this study, a combinatorial three-dimensional quantitative structure-activity relationship (3D-QSAR) model was developed based on previously reported FGFR1 inhibitors with diverse structural skeletons. This model was evaluated for its prediction performance on a diverse test set containing 232 FGFR inhibitors, and it yielded a SD value of 0.75 pIC50 units from measured inhibition affinities and a Pearson’s correlation coefficient R2 of 0.53. This result suggests that the combinatorial 3D-QSAR model could be used to search for new FGFR1 hit structures and predict their potential activity. To further evaluate the performance of the model, a decoy set validation was used to measure the efficiency of the model by calculating EF (enrichment factor). Based on the combinatorial pharmacophore model, a virtual screening against SPECS database was performed. Nineteen novel active compounds were successfully identified, which provide new chemical starting points for further structural optimization of FGFR1 inhibitors. PMID:26110383

  12. Combinatorial Pharmacophore-Based 3D-QSAR Analysis and Virtual Screening of FGFR1 Inhibitors.

    PubMed

    Zhou, Nannan; Xu, Yuan; Liu, Xian; Wang, Yulan; Peng, Jianlong; Luo, Xiaomin; Zheng, Mingyue; Chen, Kaixian; Jiang, Hualiang

    2015-06-11

    The fibroblast growth factor/fibroblast growth factor receptor (FGF/FGFR) signaling pathway plays crucial roles in cell proliferation, angiogenesis, migration, and survival. Aberration in FGFRs correlates with several malignancies and disorders. FGFRs have proved to be attractive targets for therapeutic intervention in cancer, and it is of high interest to find FGFR inhibitors with novel scaffolds. In this study, a combinatorial three-dimensional quantitative structure-activity relationship (3D-QSAR) model was developed based on previously reported FGFR1 inhibitors with diverse structural skeletons. This model was evaluated for its prediction performance on a diverse test set containing 232 FGFR inhibitors, and it yielded a SD value of 0.75 pIC50 units from measured inhibition affinities and a Pearson's correlation coefficient R2 of 0.53. This result suggests that the combinatorial 3D-QSAR model could be used to search for new FGFR1 hit structures and predict their potential activity. To further evaluate the performance of the model, a decoy set validation was used to measure the efficiency of the model by calculating EF (enrichment factor). Based on the combinatorial pharmacophore model, a virtual screening against SPECS database was performed. Nineteen novel active compounds were successfully identified, which provide new chemical starting points for further structural optimization of FGFR1 inhibitors.

  13. Biological Evaluation and 3D-QSAR Studies of Curcumin Analogues as Aldehyde Dehydrogenase 1 Inhibitors

    PubMed Central

    Wang, Hui; Du, Zhiyun; Zhang, Changyuan; Tang, Zhikai; He, Yan; Zhang, Qiuyan; Zhao, Jun; Zheng, Xi

    2014-01-01

    Aldehyde dehydrogenase 1 (ALDH1) is reported as a biomarker for identifying some cancer stem cells, and down-regulation or inhibition of the enzyme can be effective in anti-drug resistance and a potent therapeutic for some tumours. In this paper, the inhibitory activity, mechanism mode, molecular docking and 3D-QSAR (three-dimensional quantitative structure activity relationship) of curcumin analogues (CAs) against ALDH1 were studied. Results demonstrated that curcumin and CAs possessed potent inhibitory activity against ALDH1, and the CAs compound with ortho di-hydroxyl groups showed the most potent inhibitory activity. This study indicates that CAs may represent a new class of ALDH1 inhibitor. PMID:24840575

  14. Design, Synthesis, Antifungal Activities and 3D-QSAR of New N,N′-Diacylhydrazines Containing 2,4-Dichlorophenoxy Moiety

    PubMed Central

    Sun, Na-Bo; Shi, Yan-Xia; Liu, Xing-Hai; Ma, Yi; Tan, Cheng-Xia; Weng, Jian-Quan; Jin, Jian-Zhong; Li, Bao-Ju

    2013-01-01

    A series of new N,N′-diacylhydrazine derivatives were designed and synthesized. Their structures were verified by 1H-NMR, mass spectra (MS) and elemental analysis. The antifungal activities of these N,N′-diacylhydrazines were evaluated. The bioassay results showed that most of these N,N′-diacylhydrazines showed excellent antifungal activities against Cladosporium cucumerinum, Corynespora cassiicola, Sclerotinia sclerotiorum, Erysiphe cichoracearum, and Colletotrichum orbiculare in vivo. The half maximal effective concentration (EC50) of one of the compounds was also determined, and found to be comparable with a commercial drug. To further investigate the structure–activity relationship, comparative molecular field analysis (CoMFA) was performed on the basis of antifungal activity data. Both the steric and electronic field distributions of CoMFA are in good agreement in this study. PMID:24189221

  15. Multiple receptor conformation docking, dock pose clustering and 3D QSAR studies on human poly(ADP-ribose) polymerase-1 (PARP-1) inhibitors.

    PubMed

    Fatima, Sabiha; Jatavath, Mohan Babu; Bathini, Raju; Sivan, Sree Kanth; Manga, Vijjulatha

    2014-10-01

    Poly(ADP-ribose) polymerase-1 (PARP-1) functions as a DNA damage sensor and signaling molecule. It plays a vital role in the repair of DNA strand breaks induced by radiation and chemotherapeutic drugs; inhibitors of this enzyme have the potential to improve cancer chemotherapy or radiotherapy. Three-dimensional quantitative structure activity relationship (3D QSAR) models were developed using comparative molecular field analysis, comparative molecular similarity indices analysis and docking studies. A set of 88 molecules were docked into the active site of six X-ray crystal structures of poly(ADP-ribose)polymerase-1 (PARP-1), by a procedure called multiple receptor conformation docking (MRCD), in order to improve the 3D QSAR models through the analysis of binding conformations. The docked poses were clustered to obtain the best receptor binding conformation. These dock poses from clustering were used for 3D QSAR analysis. Based on MRCD and QSAR information, some key features have been identified that explain the observed variance in the activity. Two receptor-based QSAR models were generated; these models showed good internal and external statistical reliability that is evident from the [Formula: see text], [Formula: see text] and [Formula: see text]. The identified key features enabled us to design new PARP-1 inhibitors. PMID:25046176

  16. Multiple receptor conformation docking, dock pose clustering and 3D QSAR studies on human poly(ADP-ribose) polymerase-1 (PARP-1) inhibitors.

    PubMed

    Fatima, Sabiha; Jatavath, Mohan Babu; Bathini, Raju; Sivan, Sree Kanth; Manga, Vijjulatha

    2014-10-01

    Poly(ADP-ribose) polymerase-1 (PARP-1) functions as a DNA damage sensor and signaling molecule. It plays a vital role in the repair of DNA strand breaks induced by radiation and chemotherapeutic drugs; inhibitors of this enzyme have the potential to improve cancer chemotherapy or radiotherapy. Three-dimensional quantitative structure activity relationship (3D QSAR) models were developed using comparative molecular field analysis, comparative molecular similarity indices analysis and docking studies. A set of 88 molecules were docked into the active site of six X-ray crystal structures of poly(ADP-ribose)polymerase-1 (PARP-1), by a procedure called multiple receptor conformation docking (MRCD), in order to improve the 3D QSAR models through the analysis of binding conformations. The docked poses were clustered to obtain the best receptor binding conformation. These dock poses from clustering were used for 3D QSAR analysis. Based on MRCD and QSAR information, some key features have been identified that explain the observed variance in the activity. Two receptor-based QSAR models were generated; these models showed good internal and external statistical reliability that is evident from the [Formula: see text], [Formula: see text] and [Formula: see text]. The identified key features enabled us to design new PARP-1 inhibitors.

  17. A Combined Pharmacophore Modeling, 3D QSAR and Virtual Screening Studies on Imidazopyridines as B-Raf Inhibitors

    PubMed Central

    Xie, Huiding; Chen, Lijun; Zhang, Jianqiang; Xie, Xiaoguang; Qiu, Kaixiong; Fu, Jijun

    2015-01-01

    B-Raf kinase is an important target in treatment of cancers. In order to design and find potent B-Raf inhibitors (BRIs), 3D pharmacophore models were created using the Genetic Algorithm with Linear Assignment of Hypermolecular Alignment of Database (GALAHAD). The best pharmacophore model obtained which was used in effective alignment of the data set contains two acceptor atoms, three donor atoms and three hydrophobes. In succession, comparative molecular field analysis (CoMFA) and comparative molecular similarity indices analysis (CoMSIA) were performed on 39 imidazopyridine BRIs to build three dimensional quantitative structure-activity relationship (3D QSAR) models based on both pharmacophore and docking alignments. The CoMSIA model based on the pharmacophore alignment shows the best result (q2 = 0.621, r2pred = 0.885). This 3D QSAR approach provides significant insights that are useful for designing potent BRIs. In addition, the obtained best pharmacophore model was used for virtual screening against the NCI2000 database. The hit compounds were further filtered with molecular docking, and their biological activities were predicted using the CoMSIA model, and three potential BRIs with new skeletons were obtained. PMID:26035757

  18. 3D-QSAR and molecular fragment replacement study on diaminopyrimidine and pyrrolotriazine ALK inhibitors

    NASA Astrophysics Data System (ADS)

    Ke, Zhipeng; Lu, Tao; Liu, Haichun; Yuan, Haoliang; Ran, Ting; Zhang, Yanmin; Yao, Sihui; Xiong, Xiao; Xu, Jinxing; Xu, Anyang; Chen, Yadong

    2014-06-01

    Over expression of anaplastic lymphoma kinase (ALK) has been found in many types of cancer, and ALK is a promising therapeutic target for the treatment of cancer. To obtain new potent inhibitors of ALK, we conducted lead optimization using 3D-QSAR modeling and molecular docking investigation of 2,4-diaminopyrimidines and 2,7-disubstituted-pyrrolo[2,1-f][1,2,4]triazine-based compounds. Three favorable 3D-QSAR models (CoMFA with q2, 0.555; r2, 0.939; CoMSIA with q2, 0.625; r2, 0.974; Topomer CoMFA with q2, 0.557; r2 0.756) have been developed to predict the biological activity of novel compounds. Topomer Search was utilized for virtual screening to obtain suitable fragments. The novel compounds generated by molecular fragment replacement (MFR) were evaluated by Topomer CoMFA prediction, Glide (docking) and further evaluated with CoMFA and CoMSIA prediction. 25 novel 2,7-disubstituted-pyrrolo[2,1-f][1,2,4]triazine derivatives as potential ALK inhibitors were finally obtained. In this paper, a combination of CoMFA, CoMSIA and Topomer CoMFA could obtain favorable 3D-QSAR models and suitable fragments for ALK inhibitors optimization. The work flow which comprised 3D-QSAR modeling, Topomer Search, MFR, molecular docking and evaluating criteria could be applied to de novo drug design and the resulted compounds initiate us to further optimize and design new potential ALK inhibitors.

  19. 3D-QSAR studies on chromone derivatives as HIV-1 protease inhibitors

    NASA Astrophysics Data System (ADS)

    Ungwitayatorn, Jiraporn; Samee, Weerasak; Pimthon, Jutarat

    2004-02-01

    The three-dimensional quantitative structure-activity relationship (3D-QSAR) approach using comparative molecular field analysis (CoMFA) and comparative molecular similarity indices analysis (CoMSIA) was applied to a series of 30 chromone derivatives, a new class of HIV-1 protease inhibitors. The best predictive CoMFA model gives cross-validated r2 ( q2)=0.763, non-cross-validated r2=0.967, standard error of estimate ( S)=5.092, F=90.701. The best CoMSIA model has q2=0.707, non-cross-validated r2=0.943, S=7.018, F=51.734, included steric, electrostatic, hydrophobic, and hydrogen bond donor fields. The predictive ability of these models was validated by a set of five compounds that were not included in the training set. The calculated (predicted) and experimental inhibitory activities were well correlated. The contour maps obtained from CoMFA and CoMSIA models were in agreement with the previous docking study for this chromone series.

  20. Molecular modeling, quantum polarized ligand docking and structure-based 3D-QSAR analysis of the imidazole series as dual AT1 and ETA receptor antagonists

    PubMed Central

    Singh, Khuraijam Dhanachandra; Muthusamy, Karthikeyan

    2013-01-01

    Aim: Both endothelin ETA receptor antagonists and angiotensin AT1 receptor antagonists lower blood pressure in hypertensive patients. A dual AT1 and ETA receptor antagonist may be more efficacious antihypertensive drug. In this study we identified the mode and mechanism of binding of imidazole series of compounds as dual AT1 and ETA receptor antagonists. Methods: Molecular modeling approach combining quantum-polarized ligand docking (QPLD), MM/GBSA free-energy calculation and 3D-QSAR analysis was used to evaluate 24 compounds as dual AT1 and ETA receptor antagonists and to reveal their binding modes and structural basis of the inhibitory activity. Pharmacophore-based virtual screening and docking studies were performed to identify more potent dual antagonists. Results: 3D-QSAR models of the imidazole compounds were developed from the conformer generated by QPLD, and the resulting models showed a good correlation between the predicted and experimental activity. The visualization of the 3D-QSAR model in the context of the compounds under study revealed the details of the structure-activity relationship: substitution of methoxymethyl and cyclooctanone might increase the activity against AT1 receptor, while substitution of cyclohexone and trimethylpyrrolidinone was important for the activity against ETA receptor; addition of a trimethylpyrrolidinone to compound 9 significantly reduced its activity against AT1 receptor but significantly increased its activity against ETA receptor, which was likely due to the larger size and higher intensities of the H-bond donor and acceptor regions in the active site of ETA receptor. Pharmacophore-based virtual screening followed by subsequent Glide SP, XP, QPLD and MM/GBSA calculation identified 5 potential lead compounds that might act as dual AT1 and ETA receptor antagonists. Conclusion: This study may provide some insights into the development of novel potent dual ETA and AT1 receptor antagonists. As a result, five compounds are

  1. Development of 3D-QSAR Model for Acetylcholinesterase Inhibitors Using a Combination of Fingerprint, Molecular Docking, and Structure-Based Pharmacophore Approaches.

    PubMed

    Lee, Sehan; Barron, Mace G

    2015-11-01

    Acetylcholinesterase (AChE), a serine hydrolase vital for regulating the neurotransmitter acetylcholine in animals, has been used as a target for drugs and pesticides. With the increasing availability of AChE crystal structures, with or without ligands bound, structure-based approaches have been successfully applied to AChE inhibitors (AChEIs). The major limitation of these approaches has been the small applicability domain due to the lack of structural diversity in the training set. In this study, we developed a 3 dimensional quantitative structure-activity relationship (3D-QSAR) for inhibitory activity of 89 reversible and irreversible AChEIs including drugs and insecticides. A 3D-fingerprint descriptor encoding protein-ligand interactions was developed using molecular docking and structure-based pharmacophore to rationalize the structural requirements responsible for the activity of these compounds. The obtained 3D-QSAR model exhibited high correlation value (R(2) = 0.93) and low mean absolute error (MAE = 0.32 log units) for the training set (n = 63). The model was predictive across a range of structures as shown by the leave-one-out cross-validated correlation coefficient (Q(2) = 0.89) and external validation results (n = 26, R(2) = 0.89, and MAE = 0.38 log units). The model revealed that the compounds with high inhibition potency had proper conformation in the active site gorge and interacted with key amino acid residues, in particular Trp84 and Phe330 at the catalytic anionic site, Trp279 at the peripheral anionic site, and Gly118, Gly119, and Ala201 at the oxyanion hole. The resulting universal 3D-QSAR model provides insight into the multiple molecular interactions determining AChEI potency that may guide future chemical design and regulation of toxic AChEIs.

  2. Development of 3D-QSAR Model for Acetylcholinesterase Inhibitors Using a Combination of Fingerprint, Molecular Docking, and Structure-Based Pharmacophore Approaches.

    PubMed

    Lee, Sehan; Barron, Mace G

    2015-11-01

    Acetylcholinesterase (AChE), a serine hydrolase vital for regulating the neurotransmitter acetylcholine in animals, has been used as a target for drugs and pesticides. With the increasing availability of AChE crystal structures, with or without ligands bound, structure-based approaches have been successfully applied to AChE inhibitors (AChEIs). The major limitation of these approaches has been the small applicability domain due to the lack of structural diversity in the training set. In this study, we developed a 3 dimensional quantitative structure-activity relationship (3D-QSAR) for inhibitory activity of 89 reversible and irreversible AChEIs including drugs and insecticides. A 3D-fingerprint descriptor encoding protein-ligand interactions was developed using molecular docking and structure-based pharmacophore to rationalize the structural requirements responsible for the activity of these compounds. The obtained 3D-QSAR model exhibited high correlation value (R(2) = 0.93) and low mean absolute error (MAE = 0.32 log units) for the training set (n = 63). The model was predictive across a range of structures as shown by the leave-one-out cross-validated correlation coefficient (Q(2) = 0.89) and external validation results (n = 26, R(2) = 0.89, and MAE = 0.38 log units). The model revealed that the compounds with high inhibition potency had proper conformation in the active site gorge and interacted with key amino acid residues, in particular Trp84 and Phe330 at the catalytic anionic site, Trp279 at the peripheral anionic site, and Gly118, Gly119, and Ala201 at the oxyanion hole. The resulting universal 3D-QSAR model provides insight into the multiple molecular interactions determining AChEI potency that may guide future chemical design and regulation of toxic AChEIs. PMID:26202430

  3. 3D-QSAR and Docking Studies of Pyrido[2,3-d]pyrimidine Derivatives as Wee1 Inhibitors

    NASA Astrophysics Data System (ADS)

    Zeng, Guo-hua; Wu, Wen-juan; Zhang, Rong; Sun, Jun; Xie, Wen-guo; Shen, Yong

    2012-06-01

    In order to investigate the inhibiting mechanism and obtain some helpful information for designing functional inhibitors against Wee1, three-dimensional quantitative structure-activity relationship (3D-QSAR) and docking studies have been performed on 45 pyrido[2,3-d] pyrimidine derivatives acting as Wee1 inhibitors. Two optimal 3D-QSAR models with significant statistical quality and satisfactory predictive ability were established, including the CoMFA model (q2=0.707, R2=0.964) and CoMSIA model (q2=0.645, R2=0.972). The external validation indicated that both CoMFA and CoMSIA models were quite robust and had high predictive power with the predictive correlation coefficient values of 0.707 and 0.794, essential parameter rm2 values of 0.792 and 0.826, the leave-one-out r2m(LOO) values of 0.781 and 0.809, r2m(overall) values of 0.787 and 0.810, respectively. Moreover, the appropriate binding orientations and conformations of these compounds interacting with Wee1 were revealed by the docking studies. Based on the CoMFA and CoMSIA contour maps and docking analyses, several key structural requirements of these compounds responsible for inhibitory activity were identified as follows: simultaneously introducing high electropositive groups to the substituents R1 and R5 may increase the activity, the substituent R2 should be smaller bulky and higher electronegative, moderate-size and strong electron-withdrawing groups for the substituent R3 is advantageous to the activity, but the substituent X should be medium-size and hydrophilic. These theoretical results help to understand the action mechanism and design novel potential Wee1 inhibitors.

  4. Molecular docking and 3D-QSAR studies on triazolinone and pyridazinone, non-nucleoside inhibitor of HIV-1 reverse transcriptase.

    PubMed

    Sivan, Sree Kanth; Manga, Vijjulatha

    2010-06-01

    Nonnucleoside reverse transcriptase inhibitors (NNRTIs) are allosteric inhibitors of the HIV-1 reverse transcriptase. Recently a series of Triazolinone and Pyridazinone were reported as potent inhibitors of HIV-1 wild type reverse transcriptase. In the present study, docking and 3D quantitative structure activity relationship (3D QSAR) studies involving comparative molecular field analysis (CoMFA) and comparative molecular similarity indices analysis (CoMSIA) were performed on 31 molecules. Ligands were built and minimized using Tripos force field and applying Gasteiger-Hückel charges. These ligands were docked into protein active site using GLIDE 4.0. The docked poses were analyzed; the best docked poses were selected and aligned. CoMFA and CoMSIA fields were calculated using SYBYL6.9. The molecules were divided into training set and test set, a PLS analysis was performed and QSAR models were generated. The model showed good statistical reliability which is evident from the r2 nv, q2 loo and r2 pred values. The CoMFA model provides the most significant correlation of steric and electrostatic fields with biological activities. The CoMSIA model provides a correlation of steric, electrostatic, acceptor and hydrophobic fields with biological activities. The information rendered by 3D QSAR model initiated us to optimize the lead and design new potential inhibitors.

  5. Searching for anthranilic acid-based thumb pocket 2 HCV NS5B polymerase inhibitors through a combination of molecular docking, 3D-QSAR and virtual screening.

    PubMed

    Vrontaki, Eleni; Melagraki, Georgia; Mavromoustakos, Thomas; Afantitis, Antreas

    2016-01-01

    A combination of the following computational methods: (i) molecular docking, (ii) 3-D Quantitative Structure Activity Relationship Comparative Molecular Field Analysis (3D-QSAR CoMFA), (iii) similarity search and (iv) virtual screening using PubChem database was applied to identify new anthranilic acid-based inhibitors of hepatitis C virus (HCV) replication. A number of known inhibitors were initially docked into the "Thumb Pocket 2" allosteric site of the crystal structure of the enzyme HCV RNA-dependent RNA polymerase (NS5B GT1b). Then, the CoMFA fields were generated through a receptor-based alignment of docking poses to build a validated and stable 3D-QSAR CoMFA model. The proposed model can be first utilized to get insight into the molecular features that promote bioactivity, and then within a virtual screening procedure, it can be used to estimate the activity of novel potential bioactive compounds prior to their synthesis and biological tests.

  6. 3D QSAR studies of hydroxylated polychlorinated biphenyls as potential xenoestrogens.

    PubMed

    Ruiz, Patricia; Ingale, Kundan; Wheeler, John S; Mumtaz, Moiz

    2016-02-01

    Mono-hydroxylated polychlorinated biphenyls (OH-PCBs) are found in human biological samples and lack of data on their potential estrogenic activity has been a source of concern. We have extended our previous in silico 2D QSAR study through the application of advance techniques such as docking and 3D QSAR to gain insights into their estrogen receptor (ERα) binding. The results support our earlier findings that the hydroxyl group is the most important feature on the compounds; its position, orientation and surroundings in the structure are influential for the binding of OH-PCBs to ERα. This study has also revealed the following additional interactions that influence estrogenicity of these chemicals (a) the aromatic interactions of the biphenyl moieties with the receptor, (b) hydrogen bonding interactions of the p-hydroxyl group with key amino acids ARG394 and GLU353, (c) low or no electronegative substitution at para-positions of the p-hydroxyl group, (d) enhanced electrostatic interactions at the meta position on the B ring, and (e) co-planarity of the hydroxyl group on the A ring. In combination the 2D and 3D QSAR approaches have led us to the support conclusion that the hydroxyl group is the most important feature on the OH-PCB influencing the binding to estrogen receptors, and have enhanced our understanding of the mechanistic details of estrogenicity of this class of chemicals. Such in silico computational methods could serve as useful tools in risk assessment of chemicals. PMID:26598992

  7. 3D-QSAR study of benzotriazol-1-yl carboxamide scaffold as monoacylglycerol lipase inhibitors

    PubMed Central

    Afzal, Obaid; Kumar, Suresh; Kumar, Rajiv; Jaggi, Manu; Bawa, Sandhya

    2014-01-01

    Purpose: The purpose of this study is to build up the 3D pharmacophore of Monoacylglycerol lipase (MAGL) inhibitor and to provide the basis to design the novel and potent MAGL inhibitors. Material and Method: A 3D-QSAR study on benztriazol-1-yl carboxamide derivatives as monoacylglycerol lipase (MAGL) inhibitors was successfully performed by means of pharmacophore mapping using PHASE 3.5 module of Schrφdinger-9.4. Result: The 3D-QSAR obtained from APRRR-105 hypothesis was found to be statistically good with r2 = 0.9228 and q2 = 0.871, taking PLS factor 4. The statistical significance of the model was also confirmed by a high value of Fisher's ratio of 82.8 and a very low value of root-mean-square error (RMSE) 0.2564. Another parameter which signifies the model predictivity is Pearson R. Its value of 0.9512 showed that the correlation between predicted and observed activities for the test set compounds is excellent. Conclusion: The study suggested that one H-bond acceptor, one positive center, and proper positioning of hydrophobic groups near the distal aromatic ring C are the crucial determinants for MAGL inhibition. Thus, it can be assumed that the present QSAR analysis is enough to demonstrate MAGL inhibition with the help of APRRR-105 hypothesis and will be helpful in designing novel and potent MAGL inhibitors. PMID:25400409

  8. 3D QSAR Studies, Pharmacophore Modeling and Virtual Screening on a Series of Steroidal Aromatase Inhibitors

    PubMed Central

    Xie, Huiding; Qiu, Kaixiong; Xie, Xiaoguang

    2014-01-01

    Aromatase inhibitors are the most important targets in treatment of estrogen-dependent cancers. In order to search for potent steroidal aromatase inhibitors (SAIs) with lower side effects and overcome cellular resistance, comparative molecular field analysis (CoMFA) and comparative molecular similarity indices analysis (CoMSIA) were performed on a series of SAIs to build 3D QSAR models. The reliable and predictive CoMFA and CoMSIA models were obtained with statistical results (CoMFA: q2 = 0.636, r2ncv = 0.988, r2pred = 0.658; CoMSIA: q2 = 0.843, r2ncv = 0.989, r2pred = 0.601). This 3D QSAR approach provides significant insights that can be used to develop novel and potent SAIs. In addition, Genetic algorithm with linear assignment of hypermolecular alignment of database (GALAHAD) was used to derive 3D pharmacophore models. The selected pharmacophore model contains two acceptor atoms and four hydrophobic centers, which was used as a 3D query for virtual screening against NCI2000 database. Six hit compounds were obtained and their biological activities were further predicted by the CoMFA and CoMSIA models, which are expected to design potent and novel SAIs. PMID:25405729

  9. A 3D-QSAR model based screen for dihydropyridine-like compound library to identify inhibitors of amyloid beta (Aβ) production.

    PubMed

    Mathura, Venkatarajan S; Patel, Nikunj; Bachmeier, Corbin; Mullan, Michael; Paris, Daniel

    2010-01-01

    Abnormal accumulation of amyloid beta peptide (Aβ) is one of the hallmarks of Alzheimer's disease progression. Practical limitations such as cost , poor hit rates and a lack of well characterized targets are a major bottle neck in the in vitro screening of a large number of chemical libraries and profiling them to identify Aβ inhibitors. We used a limited set of 1,4 dihydropyridine (DHP)-like compounds from our model set (MS) of 24 compounds which inhibit Aβ as a training set and built 3D-QSAR (Three-dimensional Quantitative Structure-Activity Relationship) models using the Phase program (SchrÖdinger, USA). We developed a 3D-QSAR model that showed the best prediction for Aβ inhibition in the test set of compounds and used this model to screen a 1,043 DHP-like small library set of (LS) compounds. We found that our model can effectively predict potent hits at a very high rate and result in significant cost savings when screening larger libraries. We describe here our in silico model building strategy, model selection parameters and the chemical features that are useful for successful screening of DHP and DHP-like chemical libraries for Aβ inhibitors. PMID:21364791

  10. Investigation of Antigen-Antibody Interactions of Sulfonamides with a Monoclonal Antibody in a Fluorescence Polarization Immunoassay Using 3D-QSAR Models

    PubMed Central

    Wang, Zhanhui; Kai, Zhenpeng; Beier, Ross C.; Shen, Jianzhong; Yang, Xinling

    2012-01-01

    A three-dimensional quantitative structure-activity relationship (3D-QSAR) model of sulfonamide analogs binding a monoclonal antibody (MAbSMR) produced against sulfamerazine was carried out by Distance Comparison (DISCOtech), comparative molecular field analysis (CoMFA), and comparative molecular similarity indices analysis (CoMSIA). The affinities of the MAbSMR, expressed as Log10IC50, for 17 sulfonamide analogs were determined by competitive fluorescence polarization immunoassay (FPIA). The results demonstrated that the proposed pharmacophore model containing two hydrogen-bond acceptors, two hydrogen-bond donors and two hydrophobic centers characterized the structural features of the sulfonamides necessary for MAbSMR binding. Removal of two outliers from the initial set of 17 sulfonamide analogs improved the predictability of the models. The 3D-QSAR models of 15 sulfonamides based on CoMFA and CoMSIA resulted in q2 cv values of 0.600 and 0.523, and r2 values of 0.995 and 0.994, respectively, which indicates that both methods have significant predictive capability. Connolly surface analysis, which mainly focused on steric force fields, was performed to complement the results from CoMFA and CoMSIA. This novel study combining FPIA with pharmacophore modeling demonstrates that multidisciplinary research is useful for investigating antigen-antibody interactions and also may provide information required for the design of new haptens. PMID:22754368

  11. In silico screening for identification of novel β-1,3-glucan synthase inhibitors using pharmacophore and 3D-QSAR methodologies.

    PubMed

    Meetei, Potshangbam Angamba; Rathore, R S; Prabhu, N Prakash; Vindal, Vaibhav

    2016-01-01

    The enzyme β-1,3-glucan synthase, which catalyzes the synthesis of β-1,3-glucan, an essential and unique structural component of the fungal cell wall, has been considered as a promising target for the development of less toxic anti-fungal agents. In this study, a robust pharmacophore model was developed and structure activity relationship analysis of 42 pyridazinone derivatives as β-1,3-glucan synthase inhibitors were carried out. A five-point pharmacophore model, consisting of two aromatic rings (R) and three hydrogen bond acceptors (A) was generated. Pharmacophore based 3D-QSAR model was developed for the same reported data sets. The generated 3D-QSAR model yielded a significant correlation coefficient value (R (2) = 0.954) along with good predictive power confirmed by the high value of cross-validated correlation coefficient (Q (2) = 0.827). Further, the pharmacophore model was employed as a 3D search query to screen small molecules database retrieved from ZINC to select new scaffolds. Finally, ADME studies revealed the pharmacokinetic efficiency of these compounds. PMID:27429875

  12. A combined 3D-QSAR and docking studies for the In-silico prediction of HIV-protease inhibitors

    PubMed Central

    2013-01-01

    Background Tremendous research from last twenty years has been pursued to cure human life against HIV virus. A large number of HIV protease inhibitors are in clinical trials but still it is an interesting target for researchers due to the viral ability to get mutated. Mutated viral strains led the drug ineffective but still used to increase the life span of HIV patients. Results In the present work, 3D-QSAR and docking studies were performed on a series of Danuravir derivatives, the most potent HIV- protease inhibitor known so far. Combined study of 3D-QSAR was applied for Danuravir derivatives using ligand-based and receptor-based protocols and generated models were compared. The results were in good agreement with the experimental results. Additionally, docking analysis of most active 32 and least active 46 compounds into wild type and mutated protein structures further verified our results. The 3D-QSAR and docking results revealed that compound 32 bind efficiently to the wild and mutated protein whereas, sufficient interactions were lost in compound 46. Conclusion The combination of two computational techniques would helped to make a clear decision that compound 32 with well inhibitory activity bind more efficiently within the binding pocket even in case of mutant virus whereas compound 46 lost its interactions on mutation and marked as least active compound of the series. This is all due to the presence or absence of substituents on core structure, evaluated by 3D-QSAR studies. This set of information could be used to design highly potent drug candidates for both wild and mutated form of viruses. PMID:23683267

  13. Amino substituted benzimidazo[1,2-a]quinolines: Antiproliferative potency, 3D QSAR study and DNA binding properties.

    PubMed

    Perin, Nataša; Nhili, Raja; Cindrić, Maja; Bertoša, Branimir; Vušak, Darko; Martin-Kleiner, Irena; Laine, William; Karminski-Zamola, Grace; Kralj, Marijeta; David-Cordonnier, Marie-Hélène; Hranjec, Marijana

    2016-10-21

    We describe the synthesis, 3D-derived quantitative structure-activity relationship (QSAR), antiproliferative activity and DNA binding properties of a series of 2-amino, 5-amino and 2,5-diamino substituted benzimidazo[1,2-a]quinolines prepared by environmentally friendly uncatalyzed microwave assisted amination. The antiproliferative activities were assessed in vitro against colon, lung and breast carcinoma cell lines; activities ranged from submicromolar to micromolar. The strongest antiproliferative activity was demonstrated by 2-amino-substituted analogues, whereas 5-amino and or 2,5-diamino substituted derivatives resulted in much less activity. Derivatives bearing 4-methyl- or 3,5-dimethyl-1-piperazinyl substituents emerged as the most active. DNA binding properties and the mode of interaction of chosen substituted benzimidazo[1,2-a]quinolines prepared herein were studied using melting temperature studies, a series of spectroscopic studies (UV/Visible, fluorescence, and circular dichroism), and biochemical experiments (topoisomerase I-mediated DNA relaxation and DNase I footprinting experiments). Both compound 36 and its bis-quaternary iodide salt 37 intercalate between adjacent base pairs of the DNA helix while compound 33 presented a very weak topoisomerase I poisoning activity. A 3D-QSAR analysis was performed to identify hydrogen bonding properties, hydrophobicity, molecular flexibility and distribution of hydrophobic regions as these molecular properties had the highest impact on the antiproliferative activity against the three cell lines. PMID:27448912

  14. Amino substituted benzimidazo[1,2-a]quinolines: Antiproliferative potency, 3D QSAR study and DNA binding properties.

    PubMed

    Perin, Nataša; Nhili, Raja; Cindrić, Maja; Bertoša, Branimir; Vušak, Darko; Martin-Kleiner, Irena; Laine, William; Karminski-Zamola, Grace; Kralj, Marijeta; David-Cordonnier, Marie-Hélène; Hranjec, Marijana

    2016-10-21

    We describe the synthesis, 3D-derived quantitative structure-activity relationship (QSAR), antiproliferative activity and DNA binding properties of a series of 2-amino, 5-amino and 2,5-diamino substituted benzimidazo[1,2-a]quinolines prepared by environmentally friendly uncatalyzed microwave assisted amination. The antiproliferative activities were assessed in vitro against colon, lung and breast carcinoma cell lines; activities ranged from submicromolar to micromolar. The strongest antiproliferative activity was demonstrated by 2-amino-substituted analogues, whereas 5-amino and or 2,5-diamino substituted derivatives resulted in much less activity. Derivatives bearing 4-methyl- or 3,5-dimethyl-1-piperazinyl substituents emerged as the most active. DNA binding properties and the mode of interaction of chosen substituted benzimidazo[1,2-a]quinolines prepared herein were studied using melting temperature studies, a series of spectroscopic studies (UV/Visible, fluorescence, and circular dichroism), and biochemical experiments (topoisomerase I-mediated DNA relaxation and DNase I footprinting experiments). Both compound 36 and its bis-quaternary iodide salt 37 intercalate between adjacent base pairs of the DNA helix while compound 33 presented a very weak topoisomerase I poisoning activity. A 3D-QSAR analysis was performed to identify hydrogen bonding properties, hydrophobicity, molecular flexibility and distribution of hydrophobic regions as these molecular properties had the highest impact on the antiproliferative activity against the three cell lines.

  15. Synthesis, 3D-QSAR analysis and biological evaluation of quinoxaline 1,4-di-N-oxide derivatives as antituberculosis agents.

    PubMed

    Pan, Yuanhu; Li, Panpan; Xie, Shuyu; Tao, Yanfei; Chen, Dongmei; Dai, Menghong; Hao, Haihong; Huang, Lingli; Wang, Yulian; Wang, Liye; Liu, Zhenli; Yuan, Zonghui

    2016-08-15

    A series of quinoxaline 1,4-di-N-oxide derivatives variously substituted at C-2 position were synthesized and evaluated for in vitro antimycobacterial activity. Seventeen compounds exhibited potential activity (MIC ⩽6.25μg/mL) against Mycobacterium tuberculosis (H37Rv), in particular the compounds 3d and 3j having an MIC value of 0.39μg/mL. None of the compounds exhibited cytotoxicity when using an MTT assay in VERO cells. To further investigate the structure-activity relationship, CoMFA (q(2)=0.507, r(2)=0.923) and CoMSIA (q(2)=0.665, r(2)=0.977) models were performed on the basis of antimycobacterial activity data. The 3D-QSAR study of these compounds can provide useful information for further rational design of novel quinoxaline 1,4-di-N-oxides for treatment of tuberculosis. PMID:27426298

  16. Synthesis, 3D-QSAR analysis and biological evaluation of quinoxaline 1,4-di-N-oxide derivatives as antituberculosis agents.

    PubMed

    Pan, Yuanhu; Li, Panpan; Xie, Shuyu; Tao, Yanfei; Chen, Dongmei; Dai, Menghong; Hao, Haihong; Huang, Lingli; Wang, Yulian; Wang, Liye; Liu, Zhenli; Yuan, Zonghui

    2016-08-15

    A series of quinoxaline 1,4-di-N-oxide derivatives variously substituted at C-2 position were synthesized and evaluated for in vitro antimycobacterial activity. Seventeen compounds exhibited potential activity (MIC ⩽6.25μg/mL) against Mycobacterium tuberculosis (H37Rv), in particular the compounds 3d and 3j having an MIC value of 0.39μg/mL. None of the compounds exhibited cytotoxicity when using an MTT assay in VERO cells. To further investigate the structure-activity relationship, CoMFA (q(2)=0.507, r(2)=0.923) and CoMSIA (q(2)=0.665, r(2)=0.977) models were performed on the basis of antimycobacterial activity data. The 3D-QSAR study of these compounds can provide useful information for further rational design of novel quinoxaline 1,4-di-N-oxides for treatment of tuberculosis.

  17. 3D-QSAR and docking studies on 1-hydroxypyridin-2-one compounds as mutant isocitrate dehydrogenase 1 inhibitors

    NASA Astrophysics Data System (ADS)

    Wang, Zhenya; Chang, Yiqun; Han, Yushui; Liu, Kangjia; Hou, Jinsong; Dai, Chengli; Zhai, Yuanhao; Guo, Jialiang; Sun, Pinghua; Lin, Jing; Chen, Weimin

    2016-11-01

    Mutation of isocitrate dehydrogenase 1 (IDH1) which is frequently found in certain cancers such as glioma, sarcoma and acute myeloid leukemia, has been proven to be a potent drug target for cancer therapy. In silico methodologies such as 3D-QSAR and molecular docking were performed to explore compounds with better mutant isocitrate dehydrogenase 1 (MIDH1) inhibitory activity using a series of 40 newly reported 1-hydroxypyridin-2-one compounds as MIDH1 inhibitors. The satisfactory CoMFA and CoMSIA models obtained after internal and external cross-validation gave q2 values of 0.691 and 0.535, r2 values of 0.984 and 0.936, respectively. 3D contour maps generated from CoMFA and CoMSIA along with the docking results provided information about the structural requirements for better MIDH1 inhibitory activity. Based on the structure-activity relationship, 17 new potent molecules with better predicted activity than the most active compound in the literature have been designed.

  18. Molecular Determinants of Juvenile Hormone Action as Revealed by 3D QSAR Analysis in Drosophila

    PubMed Central

    Beňo, Milan; Farkaš, Robert

    2009-01-01

    Background Postembryonic development, including metamorphosis, of many animals is under control of hormones. In Drosophila and other insects these developmental transitions are regulated by the coordinate action of two principal hormones, the steroid ecdysone and the sesquiterpenoid juvenile hormone (JH). While the mode of ecdysone action is relatively well understood, the molecular mode of JH action remains elusive. Methodology/Principal Findings To gain more insights into the molecular mechanism of JH action, we have tested the biological activity of 86 structurally diverse JH agonists in Drosophila melanogaster. The results were evaluated using 3D QSAR analyses involving CoMFA and CoMSIA procedures. Using this approach we have generated both computer-aided and species-specific pharmacophore fingerprints of JH and its agonists, which revealed that the most active compounds must possess an electronegative atom (oxygen or nitrogen) at both ends of the molecule. When either of these electronegative atoms are replaced by carbon or the distance between them is shorter than 11.5 Å or longer than 13.5 Å, their biological activity is dramatically decreased. The presence of an electron-deficient moiety in the middle of the JH agonist is also essential for high activity. Conclusions/Significance The information from 3D QSAR provides guidelines and mechanistic scope for identification of steric and electrostatic properties as well as donor and acceptor hydrogen-bonding that are important features of the ligand-binding cavity of a JH target protein. In order to refine the pharmacophore analysis and evaluate the outcomes of the CoMFA and CoMSIA study we used pseudoreceptor modeling software PrGen to generate a putative binding site surrogate that is composed of eight amino acid residues corresponding to the defined molecular interactions. PMID:19547707

  19. 3D-QSAR, molecular docking and molecular dynamics studies of a series of RORγt inhibitors.

    PubMed

    Wang, Fangfang; Yang, Wei; Shi, Yonghui; Le, Guowei

    2015-09-01

    The discovery of clinically relevant inhibitors of retinoic acid receptor-related orphan receptor-gamma-t (RORγt) for autoimmune diseases therapy has proven to be a challenging task. In the present work, to find out the structural features required for the inhibitory activity, we show for the first time a three-dimensional quantitative structure-activity relationship (3D-QSAR), molecular docking and molecular dynamics (MD) simulations for a series of novel thiazole/thiophene ketone amides with inhibitory activity at the RORγt receptor. The optimum CoMFA and CoMSIA models, derived from ligand-based superimposition I, exhibit leave-one-out cross-validated correlation coefficient (R(2)cv) of .859 and .805, respectively. Furthermore, the external predictive abilities of the models were evaluated by a test set, producing the predicted correlation coefficient (R(2)pred) of .7317 and .7097, respectively. In addition, molecular docking analysis was applied to explore the binding modes between the inhibitors and the receptor. MD simulation and MM/PBSA method were also employed to study the stability and rationality of the derived conformations, and the binding free energies in detail. The QSAR models and the results of molecular docking, MD simulation, binding free energies corroborate well with each other and further provide insights regarding the development of novel RORγt inhibitors with better activity.

  20. 3D-QSAR-aided design, synthesis, in vitro and in vivo evaluation of dipeptidyl boronic acid proteasome inhibitors and mechanism studies.

    PubMed

    Lei, Meng; Feng, Huayun; Wang, Cheng; Li, Hailing; Shi, Jingmiao; Wang, Jia; Liu, Zhaogang; Chen, Shanshan; Hu, Shihe; Zhu, Yongqiang

    2016-06-01

    Proteasome had been clinically validated as an effective target for the treatment of cancers. Up to now, many structurally diverse proteasome inhibitors were discovered. And two of them were launched to treat multiple myeloma (MM) and mantle cell lymphoma (MCL). Based on our previous biological results of dipeptidyl boronic acid proteasome inhibitors, robust 3D-QSAR models were developed and structure-activity relationship (SAR) was summarized. Several structurally novel compounds were designed based on the theoretical models and finally synthesized. Biological results showed that compound 12e was as active as the standard bortezomib in enzymatic and cellular activities. In vivo pharmacokinetic profiles suggested compound 12e showed a long half-life, which indicated that it could be administered intravenously. Cell cycle analysis indicated that compound 12e inhibited cell cycle progression at the G2M stage. PMID:27117691

  1. Identification of the Structural Features of Guanine Derivatives as MGMT Inhibitors Using 3D-QSAR Modeling Combined with Molecular Docking.

    PubMed

    Sun, Guohui; Fan, Tengjiao; Zhang, Na; Ren, Ting; Zhao, Lijiao; Zhong, Rugang

    2016-01-01

    DNA repair enzyme O⁶-methylguanine-DNA methyltransferase (MGMT), which plays an important role in inducing drug resistance against alkylating agents that modify the O⁶ position of guanine in DNA, is an attractive target for anti-tumor chemotherapy. A series of MGMT inhibitors have been synthesized over the past decades to improve the chemotherapeutic effects of O⁶-alkylating agents. In the present study, we performed a three-dimensional quantitative structure activity relationship (3D-QSAR) study on 97 guanine derivatives as MGMT inhibitors using comparative molecular field analysis (CoMFA) and comparative molecular similarity indices analysis (CoMSIA) methods. Three different alignment methods (ligand-based, DFT optimization-based and docking-based alignment) were employed to develop reliable 3D-QSAR models. Statistical parameters derived from the models using the above three alignment methods showed that the ligand-based CoMFA (Qcv² = 0.672 and Rncv² = 0.997) and CoMSIA (Qcv² = 0.703 and Rncv² = 0.946) models were better than the other two alignment methods-based CoMFA and CoMSIA models. The two ligand-based models were further confirmed by an external test-set validation and a Y-randomization examination. The ligand-based CoMFA model (Qext² = 0.691, Rpred² = 0.738 and slope k = 0.91) was observed with acceptable external test-set validation values rather than the CoMSIA model (Qext² = 0.307, Rpred² = 0.4 and slope k = 0.719). Docking studies were carried out to predict the binding modes of the inhibitors with MGMT. The results indicated that the obtained binding interactions were consistent with the 3D contour maps. Overall, the combined results of the 3D-QSAR and the docking obtained in this study provide an insight into the understanding of the interactions between guanine derivatives and MGMT protein, which will assist in designing novel MGMT inhibitors with desired activity. PMID:27347909

  2. Identification of the Structural Features of Guanine Derivatives as MGMT Inhibitors Using 3D-QSAR Modeling Combined with Molecular Docking.

    PubMed

    Sun, Guohui; Fan, Tengjiao; Zhang, Na; Ren, Ting; Zhao, Lijiao; Zhong, Rugang

    2016-06-23

    DNA repair enzyme O⁶-methylguanine-DNA methyltransferase (MGMT), which plays an important role in inducing drug resistance against alkylating agents that modify the O⁶ position of guanine in DNA, is an attractive target for anti-tumor chemotherapy. A series of MGMT inhibitors have been synthesized over the past decades to improve the chemotherapeutic effects of O⁶-alkylating agents. In the present study, we performed a three-dimensional quantitative structure activity relationship (3D-QSAR) study on 97 guanine derivatives as MGMT inhibitors using comparative molecular field analysis (CoMFA) and comparative molecular similarity indices analysis (CoMSIA) methods. Three different alignment methods (ligand-based, DFT optimization-based and docking-based alignment) were employed to develop reliable 3D-QSAR models. Statistical parameters derived from the models using the above three alignment methods showed that the ligand-based CoMFA (Qcv² = 0.672 and Rncv² = 0.997) and CoMSIA (Qcv² = 0.703 and Rncv² = 0.946) models were better than the other two alignment methods-based CoMFA and CoMSIA models. The two ligand-based models were further confirmed by an external test-set validation and a Y-randomization examination. The ligand-based CoMFA model (Qext² = 0.691, Rpred² = 0.738 and slope k = 0.91) was observed with acceptable external test-set validation values rather than the CoMSIA model (Qext² = 0.307, Rpred² = 0.4 and slope k = 0.719). Docking studies were carried out to predict the binding modes of the inhibitors with MGMT. The results indicated that the obtained binding interactions were consistent with the 3D contour maps. Overall, the combined results of the 3D-QSAR and the docking obtained in this study provide an insight into the understanding of the interactions between guanine derivatives and MGMT protein, which will assist in designing novel MGMT inhibitors with desired activity.

  3. 3D-QSAR study and design of 4-hydroxyamino α-pyranone carboxamide analogues as potential anti-HCV agents

    NASA Astrophysics Data System (ADS)

    Li, Wenlian; Xiao, Faqi; Zhou, Mingming; Jiang, Xuejin; Liu, Jun; Si, Hongzong; Xie, Meng; Ma, Xiuting; Duan, Yunbo; Zhai, Honglin

    2016-09-01

    The three dimensional-quantitative structure activity relationship (3D-QSAR) study was performed on a series of 4-hydroxyamino α-pyranone carboxamide analogues using comparative molecular similarity indices analysis (COMSIA). The purpose of the present study was to develop a satisfactory model providing a reliable prediction based on 4-hydroxyamino α-pyranone carboxamide analogues as anti-HCV (hepatitis C virus) inhibitors. The statistical results and the results of validation of this optimum COMSIA model were satisfactory. Furthermore, analysis of the contour maps helped to provide guidelines for finding structural requirement. Therefore, the satisfactory results from this study may provide useful guidelines for drug development of anti-HCV inhibitors.

  4. Studies on [5,6]-Fused Bicyclic Scaffolds Derivatives as Potent Dual B-RafV600E/KDR Inhibitors Using Docking and 3D-QSAR Approaches

    PubMed Central

    Liu, Hai-Chun; Tang, San-Zhi; Lu, Shuai; Ran, Ting; Wang, Jian; Zhang, Yan-Min; Xu, An-Yang; Lu, Tao; Chen, Ya-Dong

    2015-01-01

    Research and development of multi-target inhibitors has attracted increasing attention as anticancer therapeutics. B-RafV600E synergistically works with vascular endothelial growth factor receptor 2 (KDR) to promote the occurrence and progression of cancers, and the development of dual-target drugs simultaneously against these two kinds of kinase may offer a better treatment advantage. In this paper, docking and three-dimensional quantitative structure activity relationship (3D-QSAR) studies were performed on a series of dual B-Raf/KDR inhibitors with a novel hinge-binding group, [5,6]-fused bicyclic scaffold. Docking studies revealed optimal binding conformations of these compounds interacting with both B-Raf and KDR. Based on these conformations, comparative molecular field analysis (CoMFA) and comparative molecular similarity indices analysis (CoMSIA) 3D-QSAR models were constructed, and the best CoMFA (q2 = 0.542, r2 = 0.989 for B-Raf; q2 = 0.768, r2 = 0.991 for KDR) and CoMSIA models (q2 = 0.519, r2 = 0.992 for B-Raf; q2 = 0.849, r2 = 0.993 for KDR) were generated. Further external validations confirmed their predictability, yielding satisfactory correlation coefficients (r2pred = 0.764 (CoMFA), r2pred = 0.841 (CoMSIA) for B-Raf, r2pred = 0.912 (CoMFA), r2pred = 0.846 (CoMSIA) for KDR, respectively). Through graphical analysis and comparison on docking results and 3D-QSAR contour maps, key amino acids that affect the ligand-receptor interactions were identified and structural features influencing the activities were discussed. New potent derivatives were designed, and subjected to preliminary pharmacological evaluation. The study may offer useful references for the modification and development of novel dual B-Raf/KDR inhibitors. PMID:26501259

  5. Multi-conformation 3D QSAR study of benzenesulfonyl-pyrazol-ester compounds and their analogs as cathepsin B inhibitors

    PubMed Central

    Zhou, Zhigang; Wang, Yanli; Bryant, Stephen H.

    2011-01-01

    Cathepsin B has been found being responsible for many human diseases. Inhibitors of cathepsin B, a ubiquitous lysosomal cysteine protease, have been developed as a promising treatment for human diseases resulting from malfunction and over-expression of this enzyme. Through a high throughput screening assay, a set of compounds were found able to inhibit the enzymatic activity of cathepsin B. The binding structures of these active compounds were modeled through docking simulation. Three-dimensional (3D) quantitative structure-activity relationship (QSAR) models were constructed using comparative molecular field analysis (CoMFA) and comparative molecular similarity indices analysis (CoMSIA) based on the docked structures of the compounds. Strong correlations were obtained for both CoMFA and CoMSIA models with cross-validated correlation coefficients (q2) of 0.605 and 0.605 and the regression correlation coefficients (r2) of 0.999 and 0.997, respectively. The robustness of these models was further validated using leave-one-out (LOO) method and training-test set method. The activities of eight (8) randomly selected compounds were predicted using models built from training set of compounds with prediction errors of less than 1 unit for most compounds in CoMFA and CoMSIA models. Structural features for compounds with improved activity are suggested based on the analysis of the CoMFA and CoMSIA contour maps and the property map of the protein ligand binding site. These results may help to provide better understanding of the structure-activity relationship of cathepsin B inhibitors and to facilitate lead optimization and novel inhibitor design. The multi-conformation method to build 3D QSAR is very effective approach to obtain satisfactory models with high correlation with experimental results and high prediction power for unknown compounds. PMID:21798778

  6. 3D-QSAR and 3D-QSSR studies of thieno[2,3-d]pyrimidin-4-yl hydrazone analogues as CDK4 inhibitors by CoMFA analysis

    PubMed Central

    Cai, Bao-qin; Jin, Hai-xiao; Yan, Xiao-jun; Zhu, Peng; Hu, Gui-xiang

    2014-01-01

    Aim: To investigate the structural basis underlying potency and selectivity of a series of novel analogues of thieno[2,3-d]pyrimidin-4-yl hydrazones as cyclin-dependent kinase 4 (CDK4) inhibitors and to use this information for drug design strategies. Methods: Three-dimensional quantitative structure-activity relationship (3D-QSAR) and three-dimensional quantitative structure-selectivity relationship (3D-QSSR) models using comparative molecular field analysis (CoMFA) were conducted on a training set of 48 compounds. Partial least squares (PLS) analysis was employed. External validation was performed with a test set of 9 compounds. Results: The obtained 3D-QSAR model (q2=0.724, r2=0.965, r2pred=0.945) and 3D-QSSR model (q2=0.742, r2=0.923, r2pred=0.863) were robust and predictive. Contour maps with good compatibility to active binding sites provided insight into the potentially important structural features required to enhance activity and selectivity. The contour maps indicated that bulky groups at R1 position could potentially enhance CDK4 inhibitory activity, whereas bulky groups at R3 position have the opposite effect. Appropriate incorporation of bulky electropositive groups at R4 position is favorable and could improve both potency and selectivity to CDK4. Conclusion: These two models provide useful information to guide drug design strategies aimed at obtaining potent and selective CDK4 inhibitors. PMID:24122012

  7. Target Based Designing of Anthracenone Derivatives as Tubulin Polymerization Inhibiting Agents: 3D QSAR and Docking Approach

    PubMed Central

    Naffaa, Moawiah M.; Bakht, Mohammed Afroz; Malhotra, Manav; Ganaie, Majid A.

    2014-01-01

    Novel anthracenone derivatives were designed through in silico studies including 3D QSAR, pharmacophore mapping, and molecular docking approaches. Tubulin protein was explored for the residues imperative for activity by analyzing the binding pattern of colchicine and selected compounds of anthracenone derivatives in the active domain. The docking methodology applied in the study was first validated by comparative evaluation of the predicted and experimental inhibitory activity. Furthermore, the essential features responsible for the activity were established by carrying out pharmacophore mapping studies. 3D QSAR studies were carried out for a series of 1,5- and 1,8-disubstituted10-benzylidene-10H-anthracen-9-ones and 10-(2-oxo-2-phenylethylidene)-10H-anthracen-9-one derivatives for their antiproliferation activity. Based on the pattern recognition studies obtained from QSAR results, ten novel compounds were designed and docked in the active domain of tubulin protein. One of the novel designed compounds “N1” exhibited binding energy −9.69 kcal/mol and predicted Ki 78.32 nM which was found to be better than colchicine. PMID:25383219

  8. 3D-QSAR AND CONTOUR MAP ANALYSIS OF TARIQUIDAR ANALOGUES AS MULTIDRUG RESISTANCE PROTEIN-1 (MRP1) INHIBITORS

    PubMed Central

    Kakarla, Prathusha; Inupakutika, Madhuri; Devireddy, Amith R.; Gunda, Shravan Kumar; Willmon, Thomas Mark; Ranjana, KC; Shrestha, Ugina; Ranaweera, Indrika; Hernandez, Alberto J.; Barr, Sharla; Varela, Manuel F.

    2016-01-01

    One of the major obstacles to the successful chemotherapy towards several cancers is multidrug resistance of human cancer cells to anti-cancer drugs. An important contributor to multidrug resistance is the human multidrug resistance protein-1 transporter (MRP1), which is an efflux pump of the ABC (ATP binding cassette) superfamily. Thus, highly efficacious, third generation MRP1 inhibitors, like tariquidar analogues, are promising inhibitors of multidrug resistance and are under clinical trials. To maximize the efficacy of MRP1 inhibitors and to reduce systemic toxicity, it is important to limit the exposure of MRP1 inhibitors and anticancer drugs to normal tissues and to increase their co-localization with tumor cells. Comparative Molecular Field Analysis (CoMFA) and Comparative Molecular Similarity Indices Analysis (CoMSIA) associated with 3D-Quantitiative structure-activity relationship (3D-QSAR) studies were performed on a series of tariquidar analogues, as selective MDR modulators. Best predictability was obtained with CoMFA model r2(non-cross-validated square of correlation coefficient) = 0.968, F value = 151.768 with five components, standard error of estimate = 0.107 while the CoMSIA yielded r2 = 0.982, F value = 60.628 with six components, and standard error of estimate = 0.154. These results indicate that steric, electrostatic, hydrophobic (lipophilic), and hydrogen bond donor substituents play significant roles in multidrug resistance modulation of tariquidar analogues upon MRP1. The tariquidar analogue and MRP1 binding and stability data generated from CoMFA and CoMSIA based 3D–contour maps may further aid in study and design of tariquidar analogues as novel, potent and selective MDR modulator drug candidates. PMID:26913287

  9. Alignment-independent technique for 3D QSAR analysis.

    PubMed

    Wilkes, Jon G; Stoyanova-Slavova, Iva B; Buzatu, Dan A

    2016-04-01

    Molecular biochemistry is controlled by 3D phenomena but structure-activity models based on 3D descriptors are infrequently used for large data sets because of the computational overhead for determining molecular conformations. A diverse dataset of 146 androgen receptor binders was used to investigate how different methods for defining molecular conformations affect the performance of 3D-quantitative spectral data activity relationship models. Molecular conformations tested: (1) global minimum of molecules' potential energy surface; (2) alignment-to-templates using equal electronic and steric force field contributions; (3) alignment using contributions "Best-for-Each" template; (4) non-energy optimized, non-aligned (2D > 3D). Aggregate predictions from models were compared. Highest average coefficients of determination ranged from R Test (2) = 0.56 to 0.61. The best model using 2D > 3D (imported directly from ChemSpider) produced R Test (2) = 0.61. It was superior to energy-minimized and conformation-aligned models and was achieved in only 3-7 % of the time required using the other conformation strategies. Predictions averaged from models built on different conformations achieved a consensus R Test (2) = 0.65. The best 2D > 3D model was analyzed for underlying structure-activity relationships. For the compound strongest binding to the androgen receptor, 10 substructural features contributing to binding were flagged. Utility of 2D > 3D was compared for two other activity endpoints, each modeling a medium sized data set. Results suggested that large scale, accurate predictions using 2D > 3D SDAR descriptors may be produced for interactions involving endocrine system nuclear receptors and other data sets in which strongest activities are produced by fairly inflexible substrates.

  10. 3D QSAR and molecular docking studies of benzimidazole derivatives as hepatitis C virus NS5B polymerase inhibitors.

    PubMed

    Patel, Pallav D; Patel, Maulik R; Kaushik-Basu, Neerja; Talele, Tanaji T

    2008-01-01

    The urgent need for novel HCV antiviral agents has provided an impetus for understanding the structural requisites of NS5B polymerase inhibitors at the molecular level. Toward this objective, comparative molecular field analysis (CoMFA) and comparative molecular similarity indices analysis (CoMSIA) of 67 HCV NS5B polymerase inhibitors were performed using two methods. First, ligand-based 3D QSAR studies were performed based on the lowest energy conformations employing the atom fit alignment method. Second, receptor-based 3D QSAR models were derived from the predicted binding conformations obtained by docking all NS5B inhibitors at the allosteric binding site of NS5B (PDB ID: 2dxs). Results generated from the ligand-based model were found superior (r2cv values of 0.630 for CoMFA and 0.668 for CoMSIA) to those obtained by the receptor-based model (r2cv values of 0.536 and 0.561 for CoMFA and CoMSIA, respectively). The predictive ability of the models was validated using a structurally diversified test set of 22 compounds that had not been included in a preliminary training set of 45 compounds. The predictive r2 values for the ligand-based CoMFA and CoMSIA models were 0.734 and 0.800, respectively, while the corresponding predictive r2 values for the receptor-based CoMFA and CoMSIA models were 0.538 and 0.639, respectively. The greater potency of the tryptophan derivatives over that of the tyrosine derivatives was interpreted based on CoMFA steric and electrostatic contour maps. The CoMSIA results revealed that for a NS5B inhibitor to have appreciable inhibitory activity it requires hydrogen bond donor and acceptor groups at the 5-position of the indole ring and an R substituent at the chiral carbon, respectively. Interpretation of the CoMFA and CoMSIA contour maps in context of the topology of the allosteric binding site of NS5B provided insight into NS5B-inhibitor interactions. Taken together, the present 3D QSAR models were found to accurately predict the HCV NS5B

  11. Benzimidazole derivatives. 3. 3D-QSAR/CoMFA model and computational simulation for the recognition of 5-HT(4) receptor antagonists.

    PubMed

    López-Rodríguez, María L; Murcia, Marta; Benhamú, Bellinda; Viso, Alma; Campillo, Mercedes; Pardo, Leonardo

    2002-10-24

    A three-dimensional quantitative structure-affinity relationship study (3D-QSAR), using the comparative molecular field analysis (CoMFA) method, and subsequent computational simulation of ligand recognition have been successfully applied to explain the binding affinities for the 5-HT(4) receptor (5-HT(4)R) of a series of benzimidazole-4-carboxamides and carboxylates derivatives 1-24. The K(i) values of these compounds are in the range from 0.11 to 10 000 nM. The derived 3D-QSAR model shows high predictive ability (q(2) = 0.789 and r(2) = 0.997). Steric (contribution of 43.5%) and electrostatic (50.3%) fields and solvation energy (6.1%) of this novel class of 5-HT(4)R antagonists are relevant descriptors for structure-activity relationships. Computational simulation of the complexes between the benzimidazole-4-carboxamide UCM-21195 (5) and the carboxylate UCM-26995 (21) and a 3D model of the transmembrane domain of the 5-HT(4)R, constructed using the reported crystal structure of rhodopsin, have allowed us to define the molecular details of the ligand-receptor interaction that includes (i) the ionic interaction between the NH group of the protonated piperidine of the ligand and the carboxylate group of Asp(3.32), (ii) the hydrogen bond between the carbonyl oxygen of the ligand and the hydroxyl group of Ser(5.43), (iii) the hydrogen bond between the NH group of Asn(6.55) and the aromatic ring of carboxamides or the ether oxygen of carboxylates, (iv) the interaction of the electron-rich clouds of the aromatic ring of Phe(6.51) and the electron-poor hydrogens of the carbon atoms adjacent to the protonated piperidine nitrogen of the ligand, and (v) the pi-sigma stacking interaction between the benzimidazole system of the ligand and the benzene ring of Tyr(5.38). Moreover, the noticeable increase in potency at the 5-HT(4)R sites, by the introduction of a chloro or bromo atom at the 6-position of the aromatic ring, is attributed to the additional electrostatic and van der

  12. 3D-QSAR and molecular docking study of LRRK2 kinase inhibitors by CoMFA and CoMSIA methods.

    PubMed

    Pourbasheer, E; Aalizadeh, R

    2016-05-01

    Three-dimensional quantitative structure-activity relationship (3D-QSAR) modelling was conducted on a series of leucine-rich repeat kinase 2 (LRRK2) antagonists using CoMFA and CoMSIA methods. The data set, which consisted of 37 molecules, was divided into training and test subsets by using a hierarchical clustering method. Both CoMFA and CoMSIA models were derived using a training set on the basis of the common substructure-based alignment. The optimum PLS model built by CoMFA and CoMSIA provided satisfactory statistical results (q(2) = 0.589 and r(2) = 0.927 and q(2) = 0.473 and r(2) = 0.802, respectively). The external predictive ability of the models was evaluated by using seven compounds. Moreover, an external evaluation set with known experimental data was used to evaluate the external predictive ability of the porposed models. The statistical parameters indicated that CoMFA (after region focusing) has high predictive ability in comparison with standard CoMFA and CoMSIA models. Molecular docking was also performed on the most active compound to investigate the existence of interactions between the most active inhibitor and the LRRK2 receptor. Based on the obtained results and CoMFA contour maps, some features were introduced to provide useful insights for designing novel and potent LRRK2 inhibitors. PMID:27228480

  13. Synthesis, antitumor evaluation and 3D-QSAR studies of [1,2,4]triazolo[4,3-b][1,2,4,5]tetrazine derivatives.

    PubMed

    Xu, Feng; Yang, Zhen-Zhen; Ke, Zhong-Lu; Xi, Li-Min; Yan, Qi-Dong; Yang, Wei-Qiang; Zhu, Li-Qing; Lin, Fei-Lei; Lv, Wei-Ke; Wu, Han-Gui; Wang, John; Li, Hai-Bo

    2016-10-01

    A series of [1,2,4]triazolo[4,3-b][1,2,4,5]tetrazine derivatives have been synthesized and their structures were confirmed by single-crystal X-ray diffraction. Compared to some reported structures of 1,6-dihydro-1,2,4,5-tetrazine, these compounds can't be considered as having homoaromaticity. Their antiproliferative activities were evaluated against MCF-7, Bewo and HL-60 cells in vitro. Two compounds were highly effective against MCF-7, Bewo and HL-60 cells with IC50 values in 0.63-13.12μM. Three-dimensional quantitative structure-activity relationship (3D-QSAR) studies of comparative molecular field analysis (CoMFA) and comparative molecular similarity indices analysis (CoMSIA) were carried out on 51 [1,2,4]triazolo[4,3-b][1,2,4,5]tetrazine derivatives with antiproliferative activity against MCF-7 cell. Models with good predictive abilities were generated with the cross validated q(2) values for CoMFA and CoMSIA being 0.716 and 0.723, respectively. Conventional r(2) values were 0.985 and 0.976, respectively. The results provide the tool for guiding the design and synthesis of novel and more potent tetrazine derivatives. PMID:27597251

  14. Pharmacophore modeling, virtual screening and 3D-QSAR studies of 5-tetrahydroquinolinylidine aminoguanidine derivatives as sodium hydrogen exchanger inhibitors.

    PubMed

    Bhatt, Hardik G; Patel, Paresh K

    2012-06-01

    Sodium hydrogen exchanger (SHE) inhibitor is one of the most important targets in treatment of myocardial ischemia. In the course of our research into new types of non-acylguanidine, SHE inhibitory activities of 5-tetrahydroquinolinylidine aminoguanidine derivatives were used to build pharmacophore and 3D-QSAR models. Genetic Algorithm Similarity Program (GASP) was used to derive a 3D pharmacophore model which was used in effective alignment of data set. Eight molecules were selected on the basis of structure diversity to build 10 different pharmacophore models. Model 1 was considered as the best model as it has highest fitness score compared to other nine models. The obtained model contained two acceptor sites, two donor atoms and one hydrophobic region. Pharmacophore modeling was followed by substructure searching and virtual screening. The best CoMFA model, representing steric and electrostatic fields, obtained for 30 training set molecules was statistically significant with cross-validated coefficient (q(2)) of 0.673 and conventional coefficient (r(2)) of 0.988. In addition to steric and electrostatic fields observed in CoMFA, CoMSIA also represents hydrophobic, hydrogen bond donor and hydrogen bond acceptor fields. CoMSIA model was also significant with cross-validated coefficient (q(2)) and conventional coefficient (r(2)) of 0.636 and 0.986, respectively. Both models were validated by an external test set of eight compounds and gave satisfactory prediction (r(pred)(2)) of 0.772 and 0.701 for CoMFA and CoMSIA models, respectively. This pharmacophore based 3D-QSAR approach provides significant insights that can be used to design novel, potent and selective SHE inhibitors. PMID:22546667

  15. 3D-QSAR Studies on Barbituric Acid Derivatives as Urease Inhibitors and the Effect of Charges on the Quality of a Model

    PubMed Central

    Ul-Haq, Zaheer; Ashraf, Sajda; Al-Majid, Abdullah Mohammed; Barakat, Assem

    2016-01-01

    Urease enzyme (EC 3.5.1.5) has been determined as a virulence factor in pathogenic microorganisms that are accountable for the development of different diseases in humans and animals. In continuance of our earlier study on the helicobacter pylori urease inhibition by barbituric acid derivatives, 3D-QSAR (three dimensional quantitative structural activity relationship) advance studies were performed by Comparative Molecular Field Analysis (CoMFA) and Comparative Molecular Similarity Indices Analysis (CoMSIA) methods. Different partial charges were calculated to examine their consequences on the predictive ability of the developed models. The finest developed model for CoMFA and CoMSIA were achieved by using MMFF94 charges. The developed CoMFA model gives significant results with cross-validation (q2) value of 0.597 and correlation coefficients (r2) of 0.897. Moreover, five different fields i.e., steric, electrostatic, and hydrophobic, H-bond acceptor and H-bond donors were used to produce a CoMSIA model, with q2 and r2 of 0.602 and 0.98, respectively. The generated models were further validated by using an external test set. Both models display good predictive power with r2pred ≥ 0.8. The analysis of obtained CoMFA and CoMSIA contour maps provided detailed insight for the promising modification of the barbituric acid derivatives with an enhanced biological activity. PMID:27144563

  16. 3D-QSAR Studies on Barbituric Acid Derivatives as Urease Inhibitors and the Effect of Charges on the Quality of a Model.

    PubMed

    Ul-Haq, Zaheer; Ashraf, Sajda; Al-Majid, Abdullah Mohammed; Barakat, Assem

    2016-01-01

    Urease enzyme (EC 3.5.1.5) has been determined as a virulence factor in pathogenic microorganisms that are accountable for the development of different diseases in humans and animals. In continuance of our earlier study on the helicobacter pylori urease inhibition by barbituric acid derivatives, 3D-QSAR (three dimensional quantitative structural activity relationship) advance studies were performed by Comparative Molecular Field Analysis (CoMFA) and Comparative Molecular Similarity Indices Analysis (CoMSIA) methods. Different partial charges were calculated to examine their consequences on the predictive ability of the developed models. The finest developed model for CoMFA and CoMSIA were achieved by using MMFF94 charges. The developed CoMFA model gives significant results with cross-validation (q²) value of 0.597 and correlation coefficients (r²) of 0.897. Moreover, five different fields i.e., steric, electrostatic, and hydrophobic, H-bond acceptor and H-bond donors were used to produce a CoMSIA model, with q² and r² of 0.602 and 0.98, respectively. The generated models were further validated by using an external test set. Both models display good predictive power with r²pred ≥ 0.8. The analysis of obtained CoMFA and CoMSIA contour maps provided detailed insight for the promising modification of the barbituric acid derivatives with an enhanced biological activity. PMID:27144563

  17. In Silico Exploration of 1,7-Diazacarbazole Analogs as Checkpoint Kinase 1 Inhibitors by Using 3D QSAR, Molecular Docking Study, and Molecular Dynamics Simulations.

    PubMed

    Gao, Xiaodong; Han, Liping; Ren, Yujie

    2016-01-01

    Checkpoint kinase 1 (Chk1) is an important serine/threonine kinase with a self-protection function. The combination of Chk1 inhibitors and anti-cancer drugs can enhance the selectivity of tumor therapy. In this work, a set of 1,7-diazacarbazole analogs were identified as potent Chk1 inhibitors through a series of computer-aided drug design processes, including three-dimensional quantitative structure-activity relationship (3D-QSAR) modeling, molecular docking, and molecular dynamics simulations. The optimal QSAR models showed significant cross-validated correlation q² values (0.531, 0.726), fitted correlation r² coefficients (higher than 0.90), and standard error of prediction (less than 0.250). These results suggested that the developed models possess good predictive ability. Moreover, molecular docking and molecular dynamics simulations were applied to highlight the important interactions between the ligand and the Chk1 receptor protein. This study shows that hydrogen bonding and electrostatic forces are key interactions that confer bioactivity. PMID:27164065

  18. Three dimensional quantitative structure-activity relationships of sulfonamides binding monoclonal antibody by comparative molecular field analysis

    Technology Transfer Automated Retrieval System (TEKTRAN)

    The three-dimensional quantitative structure-activity relationship (3D-QSAR) model of sulfonamide analogs, binding a monoclonal antibody (MabSMR) produced against sulfamerazine was carried out by comparative molecular field analysis (CoMFA). The affinities of MabSMR, expressed as Log10IC50, for 17 ...

  19. Pharmacophore and 3D-QSAR characterization of 6-arylquinazolin-4-amines as Cdc2-like kinase 4 (Clk4) and dual specificity tyrosine-phosphorylation-regulated kinase 1A (Dyrk1A) inhibitors.

    PubMed

    Pan, Yongmei; Wang, Yanli; Bryant, Stephen H

    2013-04-22

    Cdc2-like kinase 4 (Clk4) and dual specificity tyrosine-phosphorylation-regulated kinase 1A (Dyrk1A) are protein kinases that are promising targets for treatment of diseases caused by abnormal gene splicing. 6-Arylquinazolin-4-amines have been recently identified as potent Clk4 and Dyrk1A inhibitors. In order to understand the structure-activity correlation of these analogs, we have applied ligand-based pharmacophore and 3D-QSAR modeling combined with structure-based homology modeling and docking. The high R(2) and Q(2) (0.88 and 0.79 for Clk4, 0.85 and 0.82 for Dyrk1A, respectively) based on validation with training and test set compounds suggested that the generated 3D-QSAR models are reliable in predicting novel ligand activities against Clk4 and Dyrk1A. The binding mode identified through docking ligands to the ATP binding domain of Clk4 was consistent with the structural properties and energy field contour maps characterized by pharmacophore and 3D-QSAR models and gave valuable insights into the structure-activity profile of 6-arylquinazolin-4-amine analogs. The obtained 3D-QSAR and pharmacophore models in combination with the binding mode between inhibitor and residues of Clk4 will be helpful for future lead compound identification and optimization to design potent and selective Clk4 and Dyrk1A inhibitors. PMID:23496085

  20. In silico exploration of c-KIT inhibitors by pharmaco-informatics methodology: pharmacophore modeling, 3D QSAR, docking studies, and virtual screening.

    PubMed

    Chaudhari, Prashant; Bari, Sanjay

    2016-02-01

    c-KIT is a component of the platelet-derived growth factor receptor family, classified as type-III receptor tyrosine kinase. c-KIT has been reported to be involved in, small cell lung cancer, other malignant human cancers, and inflammatory and autoimmune diseases associated with mast cells. Available c-KIT inhibitors suffer from tribulations of growing resistance or cardiac toxicity. A combined in silico pharmacophore and structure-based virtual screening was performed to identify novel potential c-KIT inhibitors. In the present study, five molecules from the ZINC database were retrieved as new potential c-KIT inhibitors, using Schrödinger's Maestro 9.0 molecular modeling suite. An atom-featured 3D QSAR model was built using previously reported c-KIT inhibitors containing the indolin-2-one scaffold. The developed 3D QSAR model ADHRR.24 was found to be significant (R2 = 0.9378, Q2 = 0.7832) and instituted to be sufficiently robust with good predictive accuracy, as confirmed through external validation approaches, Y-randomization and GH approach [GH score 0.84 and Enrichment factor (E) 4.964]. The present QSAR model was further validated for the OECD principle 3, in that the applicability domain was calculated using a "standardization approach." Molecular docking of the QSAR dataset molecules and final ZINC hits were performed on the c-KIT receptor (PDB ID: 3G0E). Docking interactions were in agreement with the developed 3D QSAR model. Model ADHRR.24 was explored for ligand-based virtual screening followed by in silico ADME prediction studies. Five molecules from the ZINC database were obtained as potential c-KIT inhibitors with high in -silico predicted activity and strong key binding interactions with the c-KIT receptor.

  1. 3D-QSAR and docking studies of 3-Pyridine heterocyclic derivatives as potent PI3K/mTOR inhibitors

    NASA Astrophysics Data System (ADS)

    Yang, Wenjuan; Shu, Mao; Wang, Yuanqiang; Wang, Rui; Hu, Yong; Meng, Lingxin; Lin, Zhihua

    2013-12-01

    Phosphoinosmde-3-kinase/ mammalian target of rapamycin (PI3K/mTOR) dual inhibitors have attracted a great deal of interest as antitumor drugs research. In order to design and optimize these dual inhibitors, two types of 3D-quantitative structure-activity relationship (3D-QSAR) studies based on the ligand alignment and receptor alignment were applied using the comparative molecular field analysis (CoMFA) and comparative molecular similarity indices analysis (CoMSIA). In the study based on ligands alignment, models of PI3K (CoMFA with r2, 0.770; q2, 0.622; CoMSIA with r2, 0.945; q2, 0.748) and mTOR (CoMFA with r2, 0.850; q2, 0.654; CoMSIA with r2, 0.983; q2, 0.676) have good predictability. And in the study based on receptor alignment, models of PI3K (CoMFA with r2, 0.745; q2, 0.538; CoMSIA with r2, 0.938; q2, 0.630) and mTOR (CoMFA with r2, 0.977; q2, 0.825; CoMSIA with r2, 0.985; q2, 0.728) also have good predictability. 3D contour maps and docking results suggested different groups on the core parts of the compounds could enhance the biological activities. Finally, ten derivatives as potential candidates of PI3K/mTOR inhibitors with good predicted activities were designed.

  2. Combined 3D-QSAR, molecular docking, and molecular dynamics study of tacrine derivatives as potential acetylcholinesterase (AChE) inhibitors of Alzheimer's disease.

    PubMed

    Zhou, An; Hu, Jianping; Wang, Lirong; Zhong, Guochen; Pan, Jian; Wu, Zeyu; Hui, Ailing

    2015-10-01

    Acetylcholinesterase (AChE) is one of the key targets of drugs for treating Alzheimer's disease (AD). Tacrine is an approved drug with AChE-inhibitory activity. In this paper, 3D-QSAR, molecular docking, and molecular dynamics were carried out in order to study 60 tacrine derivatives and their AChE-inhibitory activities. 3D-QSAR modeling resulted in an optimal CoMFA model with q(2) = 0.552 and r(2) = 0.983 and an optimal CoMSIA model with q(2) = 0.581 and r(2) = 0.989. These QSAR models also showed that the steric and H-bond fields of these compounds are important influences on their activities. The interactions between these inhibitors and AChE were further explored through molecular docking and molecular dynamics simulation. A few key residues (Tyr70, Trp84, Tyr121, Trp279, and Phe330) at the binding site of AChE were identified. The results of this study improve our understanding of the mechanisms of AChE inhibitors and afford valuable information that should aid the design of novel potential AChE inhibitors. Graphical Abstract Superposition of backbone atoms of the lowest-energy structure obtained from MD simulation (magenta) onto those of the structure of the initial molecular docking model (green).

  3. A combination of pharmacophore modeling, atom-based 3D-QSAR, molecular docking and molecular dynamics simulation studies on PDE4 enzyme inhibitors.

    PubMed

    Tripuraneni, Naga Srinivas; Azam, Mohammed Afzal

    2016-11-01

    Phosphodiesterases 4 enzyme is an attractive target for the design of anti-inflammatory and bronchodilator agents. In the present study, pharmacophore and atom-based 3D-QSAR studies were carried out for pyrazolopyridine and quinoline derivatives using Schrödinger suite 2014-3. A four-point pharmacophore model was developed using 74 molecules having pIC50 ranging from 10.1 to 4.5. The best four feature model consists of one hydrogen bond acceptor, two aromatic rings, and one hydrophobic group. The pharmacophore hypothesis yielded a statistically significant 3D-QSAR model, with a high correlation coefficient (R(2 )= .9949), cross validation coefficient (Q(2 )= .7291), and Pearson-r (.9107) at six component partial least square factor. The external validation indicated that our QSAR model possessed high predictive power with R(2) value of .88. The generated model was further validated by enrichment studies using the decoy test. Molecular docking, free energy calculation, and molecular dynamics (MD) simulation studies have been performed to explore the putative binding modes of these ligands. A 10-ns MD simulation confirmed the docking results of both stability of the 1XMU-ligand complex and the presumed active conformation. Outcomes of the present study provide insight in designing novel molecules with better PDE4 inhibitory activity.

  4. Integrated computational tools for identification of CCR5 antagonists as potential HIV-1 entry inhibitors: homology modeling, virtual screening, molecular dynamics simulations and 3D QSAR analysis.

    PubMed

    Moonsamy, Suri; Dash, Radha Charan; Soliman, Mahmoud E S

    2014-04-23

    Using integrated in-silico computational techniques, including homology modeling, structure-based and pharmacophore-based virtual screening, molecular dynamic simulations, per-residue energy decomposition analysis and atom-based 3D-QSAR analysis, we proposed ten novel compounds as potential CCR5-dependent HIV-1 entry inhibitors. Via validated docking calculations, binding free energies revealed that novel leads demonstrated better binding affinities with CCR5 compared to maraviroc, an FDA-approved HIV-1 entry inhibitor and in clinical use. Per-residue interaction energy decomposition analysis on the averaged MD structure showed that hydrophobic active residues Trp86, Tyr89 and Tyr108 contributed the most to inhibitor binding. The validated 3D-QSAR model showed a high cross-validated rcv2 value of 0.84 using three principal components and non-cross-validated r2 value of 0.941. It was also revealed that almost all compounds in the test set and training set yielded a good predicted value. Information gained from this study could shed light on the activity of a new series of lead compounds as potential HIV entry inhibitors and serve as a powerful tool in the drug design and development machinery.

  5. How to Deal with Low-Resolution Target Structures: Using SAR, Ensemble Docking, Hydropathic Analysis, and 3D-QSAR to Definitively Map the αβ-Tubulin Colchicine Site

    PubMed Central

    Da, Chenxiao; Mooberry, Susan L.; Gupton, John T.; Kellogg, Glen E.

    2013-01-01

    αβ-tubulin colchicine site inhibitors (CSIs) from four scaffolds that we previously tested for antiproliferative activity were modeled to better understand their effect on microtubules. Docking models, constructed by exploiting the SAR of a pyrrole subset and HINT scoring, guided ensemble docking of all 59 compounds. This conformation set and two variants having progressively less structure knowledge were subjected to CoMFA, CoMFA+HINT, and CoMSIA 3D-QSAR analyses. The CoMFA+HINT model (docked alignment) showed the best statistics: leave-one-out q2 of 0.616, r2 of 0.949 and r2pred (internal test set) of 0.755. An external (tested in other laboratories) collection of 24 CSIs from eight scaffolds were evaluated with the 3D-QSAR models, which correctly ranked their activity trends in 7/8 scaffolds for CoMFA+HINT (8/8 for CoMFA). The combination of SAR, ensemble docking, hydropathic analysis and 3D-QSAR provides an atomic-scale colchicine site model more consistent with a target structure resolution much higher than the ~3.6 Å available for αβ-tubulin. PMID:23961916

  6. Alignment independent 3D-QSAR, quantum calculations and molecular docking of Mer specific tyrosine kinase inhibitors as anticancer drugs

    PubMed Central

    Shiri, Fereshteh; Pirhadi, Somayeh; Ghasemi, Jahan B.

    2015-01-01

    Mer receptor tyrosine kinase is a promising novel cancer therapeutic target in many human cancers, because abnormal activation of Mer has been implicated in survival signaling and chemoresistance. 3D-QSAR analyses based on alignment independent descriptors were performed on a series of 81 Mer specific tyrosine kinase inhibitors. The fractional factorial design (FFD) and the enhanced replacement method (ERM) were applied and tested as variable selection algorithms for the selection of optimal subsets of molecular descriptors from a much greater pool of such regression variables. The data set was split into 65 molecules as the training set and 16 compounds as the test set. All descriptors were generated by using the GRid INdependent descriptors (GRIND) approach. After variable selection, GRIND were correlated with activity values (pIC50) by PLS regression. Of the two applied variable selection methods, ERM had a noticeable improvement on the statistical parameters of PLS model, and yielded a q2 value of 0.77, an rpred2 of 0.94, and a low RMSEP value of 0.25. The GRIND information contents influencing the affinity on Mer specific tyrosine kinase were also confirmed by docking studies. In a quantum calculation study, the energy difference between HOMO and LUMO (gap) implied the high interaction of the most active molecule in the active site of the protein. In addition, the molecular electrostatic potential energy at DFT level confirmed results obtained from the molecular docking. The identified key features obtained from the molecular modeling, enabled us to design novel kinase inhibitors. PMID:27013913

  7. Novel chemical scaffolds of the tumor marker AKR1B10 inhibitors discovered by 3D QSAR pharmacophore modeling

    PubMed Central

    Kumar, Raj; Son, Minky; Bavi, Rohit; Lee, Yuno; Park, Chanin; Arulalapperumal, Venkatesh; Cao, Guang Ping; Kim, Hyong-ha; Suh, Jung-keun; Kim, Yong-seong; Kwon, Yong Jung; Lee, Keun Woo

    2015-01-01

    Aim: Recent evidence suggests that aldo-keto reductase family 1 B10 (AKR1B10) may be a potential diagnostic or prognostic marker of human tumors, and that AKR1B10 inhibitors offer a promising choice for treatment of many types of human cancers. The aim of this study was to identify novel chemical scaffolds of AKR1B10 inhibitors using in silico approaches. Methods: The 3D QSAR pharmacophore models were generated using HypoGen. A validated pharmacophore model was selected for virtual screening of 4 chemical databases. The best mapped compounds were assessed for their drug-like properties. The binding orientations of the resulting compounds were predicted by molecular docking. Density functional theory calculations were carried out using B3LYP. The stability of the protein-ligand complexes and the final binding modes of the hit compounds were analyzed using 10 ns molecular dynamics (MD) simulations. Results: The best pharmacophore model (Hypo 1) showed the highest correlation coefficient (0.979), lowest total cost (102.89) and least RMSD value (0.59). Hypo 1 consisted of one hydrogen-bond acceptor, one hydrogen-bond donor, one ring aromatic and one hydrophobic feature. This model was validated by Fischer's randomization and 40 test set compounds. Virtual screening of chemical databases and the docking studies resulted in 30 representative compounds. Frontier orbital analysis confirmed that only 3 compounds had sufficiently low energy band gaps. MD simulations revealed the binding modes of the 3 hit compounds: all of them showed a large number of hydrogen bonds and hydrophobic interactions with the active site and specificity pocket residues of AKR1B10. Conclusion: Three compounds with new structural scaffolds have been identified, which have stronger binding affinities for AKR1B10 than known inhibitors. PMID:26051108

  8. Synthesis, biological evaluation and 3D-QSAR studies of novel 4,5-dihydro-1H-pyrazole niacinamide derivatives as BRAF inhibitors.

    PubMed

    Li, Cui-Yun; Li, Qing-Shan; Yan, Li; Sun, Xiao-Guang; Wei, Ran; Gong, Hai-Bin; Zhu, Hai-Liang

    2012-06-15

    A series of novel 4,5-dihydropyrazole derivatives containing niacinamide moiety as potential V600E mutant BRAF kinase (BRAF(V600E)) inhibitors were designed and synthesized. Results of the bioassays against BRAF(V600E) and WM266.4 human melanoma cell line showed several compounds to be endowed potent activities with IC(50) and GI(50) value in low micromolar range, among which compound 27e, (5-(4-Chlorophenyl)-3-(4-methoxyphenyl)-4,5-dihydro-1H-pyrazol-1-yl)6-methylpyridin-3-yl methanone (IC(50)=0.20 μM, GI(50)=0.89 μM) was bearing the best bioactivity comparable with the positive control Sorafenib. Docking simulation was performed to determine the probable binding model and 3D-QSAR model was built to provide more pharmacophore understanding that could use to design new agents with more potent BRAF(V600E) inhibitory activity.

  9. The 3D-QSAR study of 110 diverse, dual binding, acetylcholinesterase inhibitors based on alignment independent descriptors (GRIND-2). The effects of conformation on predictive power and interpretability of the models.

    PubMed

    Vitorović-Todorović, Maja D; Cvijetić, Ilija N; Juranić, Ivan O; Drakulić, Branko J

    2012-09-01

    The 3D-QSAR analysis based on alignment independent descriptors (GRIND-2) was performed on the set of 110 structurally diverse, dual binding AChE reversible inhibitors. Three separate models were built, based on different conformations, generated following next criteria: (i) minimum energy conformations, (ii) conformation most similar to the co-crystalized ligand conformation, and (iii) docked conformation. We found that regardless on conformation used, all the three models had good statistic and predictivity. The models revealed the importance of protonated pyridine nitrogen of tacrine moiety for anti AChE activity, and recognized HBA and HBD interactions as highly important for the potency. This was revealed by the variables associated with protonated pyridinium nitrogen, and the two amino groups of the linker. MIFs calculated with the N1 (pyridinium nitrogen) and the DRY GRID probes in the AChE active site enabled us to establish the relationship between amino acid residues within AChE active site and the variables having high impact on models. External predictive power of the models was tested on the set of 40 AChE reversible inhibitors, most of them structurally different from the training set. Some of those compounds were tested on the different enzyme source. We found that external predictivity was highly sensitive on conformations used. Model based on docked conformations had superior predictive ability, emphasizing the need for the employment of conformations built by taking into account geometrical restrictions of AChE active site gorge.

  10. Docking and 3-D QSAR studies on the binding of tetrahydropyrimid-2-one HIV-1 protease inhibitors

    NASA Astrophysics Data System (ADS)

    Rao, Shashidhar N.; Balaji, Govardhan A.; Balaji, Vitukudi N.

    2013-06-01

    We present molecular docking and 3-D QSAR studies on a series of tetrahydropyrimid-2-one HIV-1 protease inhibitors whose binding affinities to the enzyme span nearly 6 orders of magnitude. The docking investigations have been carried out with Surflex (GEOM, GEOMX) and Glide (SP and XP) methodologies available through Tripos and Schrodinger suite of tools in the context of Sybyl-X and Maestro interfaces, respectively. The alignments for 3-D QSAR studies were obtained by using the automated Surflex-SIM methodology in Sybyl-X and the analyses were performed using the CoMFA and CoMSIA methods. Additionally, the top-ranked poses obtained from various docking protocols were also employed to generate CoMFA and CoMSIA models to evaluate the qualitative consistency of the docked models with experimental data. Our studies demonstrate that while there are a number of common features in the docked models obtained from Surflex-dock and Glide methodologies, the former sets of models are generally better correlated with deduced experimental binding modes based on the X-ray structures of known HIV-1 protease complexes with cyclic ureas. The urea moiety common to all the ligands are much more tightly aligned in Surflex docked structures than in the models obtained from Glide SP and XP dockings. The 3-D QSAR models are qualitatively and quantitatively similar to those previously reported, suggesting the utility of automatically generated alignments from Surflex-SIM methodology.

  11. A combined CoMFA and CoMSIA 3D-QSAR study of benzamide type antibacterial inhibitors of the FtsZ protein in drug-resistant Staphylococcus aureus.

    PubMed

    Andrades, J; Campanini, J; Vásquez, D; Silvestri, C; Morales, C; Romero, J; Mella, J

    2015-01-01

    A major problem today is bacterial resistance to antibiotics and the small number of new therapeutic agents approved in recent years. The development of new antibiotics capable of acting on new targets is urgently required. The filamenting temperature-sensitive Z (FtsZ) bacterial protein is a key biomolecule for bacterial division and survival. This makes FtsZ an attractive new pharmacological target for the development of antibacterial agents. There have been several attempts to develop ligands able to inhibit FtsZ. Despite the large number of synthesized compounds that inhibit the FtsZ protein, there are no quantitative structure-activity relationships (QSAR) that allow for the rational design and synthesis of promising new molecules. We present the first 3D-QSAR study of a large and diverse set of molecules that are able to inhibit the FtsZ bacterial protein. We summarize a set of chemical changes that can be made in the steric, electrostatic, hydrophobic and donor/acceptor hydrogen-bonding properties of the pharmacophore, to generate new bioactive molecules against FtsZ. These results provide a rational guide for the design and synthesis of promising new antibacterial agents, supported by the strong statistical parameters obtained from CoMFA (r(2)(pred) = 0.974) and CoMSIA (r(2)(pred) = 0.980) analyses. PMID:26505124

  12. Quantitative structure-activity relationship study on BTK inhibitors by modified multivariate adaptive regression spline and CoMSIA methods.

    PubMed

    Xu, A; Zhang, Y; Ran, T; Liu, H; Lu, S; Xu, J; Xiong, X; Jiang, Y; Lu, T; Chen, Y

    2015-01-01

    Bruton's tyrosine kinase (BTK) plays a crucial role in B-cell activation and development, and has emerged as a new molecular target for the treatment of autoimmune diseases and B-cell malignancies. In this study, two- and three-dimensional quantitative structure-activity relationship (2D and 3D-QSAR) analyses were performed on a series of pyridine and pyrimidine-based BTK inhibitors by means of genetic algorithm optimized multivariate adaptive regression spline (GA-MARS) and comparative molecular similarity index analysis (CoMSIA) methods. Here, we propose a modified MARS algorithm to develop 2D-QSAR models. The top ranked models showed satisfactory statistical results (2D-QSAR: Q(2) = 0.884, r(2) = 0.929, r(2)pred = 0.878; 3D-QSAR: q(2) = 0.616, r(2) = 0.987, r(2)pred = 0.905). Key descriptors selected by 2D-QSAR were in good agreement with the conclusions of 3D-QSAR, and the 3D-CoMSIA contour maps facilitated interpretation of the structure-activity relationship. A new molecular database was generated by molecular fragment replacement (MFR) and further evaluated with GA-MARS and CoMSIA prediction. Twenty-five pyridine and pyrimidine derivatives as novel potential BTK inhibitors were finally selected for further study. These results also demonstrated that our method can be a very efficient tool for the discovery of novel potent BTK inhibitors.

  13. Discovery of potent and selective urea-based ROCK inhibitors: Exploring the inhibitor's potency and ROCK2/PKA selectivity by 3D-QSAR, molecular docking and molecular dynamics simulations.

    PubMed

    Mei, Ding; Yin, Yan; Wu, Fanhong; Cui, Jiaxing; Zhou, Hong; Sun, Guofeng; Jiang, Yu; Feng, Yangbo

    2015-05-15

    An activity model and a selectivity model from 3D-QSAR studies were established by CoMFA and CoMSIA to explore the SAR. Then docking was used to study the binding modes between ligand and kinases (ROCK2 and PKA), and the molecular docking results were further validated by MD simulations. Computational results suggested that substitution containing positive charge attached to the middle phenyl ring, or electropositive group in urea linker was favored for both activity and ROCK2/PKA selectivity. Finally, three compounds were designed, and biological evaluation demonstrated that these molecular models were effective for guiding the design of potent and selective ROCK inhibitors.

  14. A combined pharmacophore modeling, 3D-QSAR and molecular docking study of substituted bicyclo-[3.3.0]oct-2-enes as liver receptor homolog-1 (LRH-1) agonists

    NASA Astrophysics Data System (ADS)

    Lalit, Manisha; Gangwal, Rahul P.; Dhoke, Gaurao V.; Damre, Mangesh V.; Khandelwal, Kanchan; Sangamwar, Abhay T.

    2013-10-01

    A combined pharmacophore modelling, 3D-QSAR and molecular docking approach was employed to reveal structural and chemical features essential for the development of small molecules as LRH-1 agonists. The best HypoGen pharmacophore hypothesis (Hypo1) consists of one hydrogen-bond donor (HBD), two general hydrophobic (H), one hydrophobic aromatic (HYAr) and one hydrophobic aliphatic (HYA) feature. It has exhibited high correlation coefficient of 0.927, cost difference of 85.178 bit and low RMS value of 1.411. This pharmacophore hypothesis was cross-validated using test set, decoy set and Cat-Scramble methodology. Subsequently, validated pharmacophore hypothesis was used in the screening of small chemical databases. Further, 3D-QSAR models were developed based on the alignment obtained using substructure alignment. The best CoMFA and CoMSIA model has exhibited excellent rncv2 values of 0.991 and 0.987, and rcv2 values of 0.767 and 0.703, respectively. CoMFA predicted rpred2 of 0.87 and CoMSIA predicted rpred2 of 0.78 showed that the predicted values were in good agreement with the experimental values. Molecular docking analysis reveals that π-π interaction with His390 and hydrogen bond interaction with His390/Arg393 is essential for LRH-1 agonistic activity. The results from pharmacophore modelling, 3D-QSAR and molecular docking are complementary to each other and could serve as a powerful tool for the discovery of potent small molecules as LRH-1 agonists.

  15. Combined 3D-QSAR and Molecular Docking Study for Identification of Diverse Natural Products as Potent Pf ENR Inhibitors.

    PubMed

    Wadhwa, Preeti; Saha, Debasmita; Sharma, Anuj

    2015-01-01

    An in-house library of 200 molecules from natural plant products was designed in order to evaluate their binding to Plasmodium ACP enoyl reductase (ENR), a promising biological target for antimalarial chemotherapeutics. The binding site of PfENR was explored computationally and the molecules were docked using AutoDock. Furthermore, the top-ranked scaffolds from docking studies were also compared with known PfENR inhibitors using 3D-QSAR. To this effect, a 3D-QSAR model was derived from a set of experimentally established PfENR inhibitors, using Comparative Molecular Force Field Analysis (CoMFA) and Comparative Molecular Similarity Indices Analysis (CoMSIA). The best optimum CoMFA model exhibited a leave-one-out correlation coefficient (q2) and a noncross- validated correlation coefficient (r2) of 0.630 and 0.911, respectively. The result of this cumulative approach proposed five structurally distinct natural products as potent PfENR inhibitors. This study may lay a stepping stone towards Functional oriented synthesis (FOS) of novel PfENR inhibitors in future. PMID:26517356

  16. Design, biological evaluation and 3D QSAR studies of novel dioxin-containing triaryl pyrazoline derivatives as potential B-Raf inhibitors.

    PubMed

    Yang, Yu-Shun; Yang, Bing; Zou, Yan; Li, Guigen; Zhu, Hai-Liang

    2016-07-01

    A series of novel dioxin-containing triaryl pyrazoline derivatives C1-C20 have been synthesized. Their B-Raf inhibitory and anti-proliferation activities were evaluated. Compound C6 displayed the most potent biological activity against B-Raf(V600E) and WM266.4 human melanoma cell line with corresponding IC50 value of 0.04μM and GI50 value of 0.87μM, being comparable with the positive controls and more potent than our previous best compounds. Moreover, C6 was selective for B-Raf(V600E) from B-Raf(WT), C-Raf and EGFR and low toxic. The docking simulation suggested the potent bioactivity might be caused by breaking the limit of previous binding pattern. A new 3D QSAR model was built with the activity data and binding conformations to conduct visualized SAR discussion as well as to introduce new directions. Stretching the backbone to outer space or totally reversing the backbone are both potential orientations for future researches. PMID:27238841

  17. The discovery of a novel and selective inhibitor of PTP1B over TCPTP: 3D QSAR pharmacophore modeling, virtual screening, synthesis, and biological evaluation.

    PubMed

    Ma, Ying; Jin, Yuan-Yuan; Wang, Ye-Liu; Wang, Run-Ling; Lu, Xin-Hua; Kong, De-Xin; Xu, Wei-Ren

    2014-06-01

    Given the special role of insulin and leptin signaling in various biological responses, protein-tyrosine phosphatase-1B (PTP1B) was regarded as a novel therapeutic target for treating type 2 diabetes and obesity. However, owing to the highly conserved (sequence identity of about 74%) in active pocket, targeting PTP1B for drug discovery is a great challenge. In this study, we employed the software package Discovery Studio to develop 3D QSAR pharmacophore models for PTP1B and TCPTP inhibitors. It was further validated by three methods (cost analysis, test set prediction, and Fisher's test) to show that the models can be used to predict the biological activities of compounds without costly and time-consuming synthesis. The criteria for virtual screening were also validated by testing the selective PTP1B inhibitors. Virtual screening experiments and subsequent in vitro evaluation of promising hits revealed a novel and selective inhibitor of PTP1B over TCPTP. After that, a most likely binding mode was proposed. Thus, the findings reported here may provide a new strategy in discovering selective PTP1B inhibitors.

  18. Structure-based approach to pharmacophore identification, in silico screening, and three-dimensional quantitative structure-activity relationship studies for inhibitors of Trypanosoma cruzi dihydrofolate reductase function

    SciTech Connect

    Schormann, N.; Senkovich, O.; Walker, K.; Wright, D.L.; Anderson, A.C.; Rosowsky, A.; Ananthan, S.; Shinkre, B.; Velu, S.; Chattopadhyay, D.

    2009-07-10

    We have employed a structure-based three-dimensional quantitative structure-activity relationship (3D-QSAR) approach to predict the biochemical activity for inhibitors of T. cruzi dihydrofolate reductase-thymidylate synthase (DHFR-TS). Crystal structures of complexes of the enzyme with eight different inhibitors of the DHFR activity together with the structure in the substrate-free state (DHFR domain) were used to validate and refine docking poses of ligands that constitute likely active conformations. Structural information from these complexes formed the basis for the structure-based alignment used as input for the QSAR study. Contrary to indirect ligand-based approaches the strategy described here employs a direct receptor-based approach. The goal is to generate a library of selective lead inhibitors for further development as antiparasitic agents. 3D-QSAR models were obtained for T. cruzi DHFR-TS (30 inhibitors in learning set) and human DHFR (36 inhibitors in learning set) that show a very good agreement between experimental and predicted enzyme inhibition data. For crossvalidation of the QSAR model(s), we have used the 10% leave-one-out method. The derived 3D-QSAR models were tested against a few selected compounds (a small test set of six inhibitors for each enzyme) with known activity, which were not part of the learning set, and the quality of prediction of the initial 3D-QSAR models demonstrated that such studies are feasible. Further refinement of the models through integration of additional activity data and optimization of reliable docking poses is expected to lead to an improved predictive ability.

  19. Combined 3D-QSAR, molecular docking, molecular dynamics simulation, and binding free energy calculation studies on the 5-hydroxy-2H-pyridazin-3-one derivatives as HCV NS5B polymerase inhibitors.

    PubMed

    Yu, Haijing; Fang, Yu; Lu, Xia; Liu, Yongjuan; Zhang, Huabei

    2014-01-01

    The NS5B RNA-dependent RNA polymerase (RdRP) is a promising therapeutic target for developing novel anti-hepatitis C virus (HCV) drugs. In this work, a combined molecular modeling study was performed on a series of 193 5-hydroxy-2H-pyridazin-3-one derivatives as inhibitors of HCV NS5B Polymerase. The best 3D-QSAR models, including CoMFA and CoMSIA, are based on receptor (or docking). Furthermore, a 40-ns molecular dynamics (MD) simulation and binding free energy calculations using docked structures of NS5B with ten compounds, which have diverse structures and pIC50 values, were employed to determine the detailed binding process and to compare the binding modes of the inhibitors with different activities. On one side, the stability and rationality of molecular docking and 3D-QSAR results were validated by MD simulation. The binding free energies calculated by the MM-PBSA method gave a good correlation with the experimental biological activity. On the other side, by analyzing some differences between the molecular docking and the MD simulation results, we can find that the MD simulation could also remedy the defects of molecular docking. The analyses of the combined molecular modeling results have identified that Tyr448, Ser556, and Asp318 are the key amino acid residues in the NS5B binding pocket. The results from this study can provide some insights into the development of novel potent NS5B inhibitors.

  20. Elucidating the structural basis of diphenyl ether derivatives as highly potent enoyl-ACP reductase inhibitors through molecular dynamics simulations and 3D-QSAR study.

    PubMed

    Kamsri, Pharit; Punkvang, Auradee; Saparpakorn, Patchareenart; Hannongbua, Supa; Irle, Stephan; Pungpo, Pornpan

    2014-07-01

    Diphenyl ether derivatives are good candidates for anti-tuberculosis agents that display a promising potency for inhibition of InhA, an essential enoyl-acyl carrier protein (ACP) reductase involved in fatty acid biosynthesis pathways in Mycobacterium tuberculosis. In this work, key structural features for the inhibition were identified by 3D-QSAR CoMSIA models, constructed based on available experimental binding properties of diphenyl ether inhibitors, and a set of four representative compounds was subjected to MD simulations of inhibitor-InhA complexes for the calculation of binding free energies. The results show that bulky groups are required for the R1 substituent on the phenyl A ring of the inhibitors to favor a hydrophobic pocket formed by residues Phe149, Met155, Pro156, Ala157, Tyr158, Pro193, Met199, Val203, Leu207, Ile215, and Leu218. Small substituents with a hydrophilic property are required at the R3 and R4 positions of the inhibitor phenyl B rings to form hydrogen bonds with the backbones of Gly96 and Met98, respectively. For the R2 substituent, small substituents with simultaneous hydrophilic or hydrophobic properties are required to favor the interaction with the pyrophosphate moiety of NAD(+) and the methyl side chain of Ala198, respectively. The reported data provide structural guidance for the design of new and potent diphenyl ether-based inhibitors with high inhibitory activities against M. tuberculosis InhA. PMID:24935113

  1. Elucidating the structural basis of diphenyl ether derivatives as highly potent enoyl-ACP reductase inhibitors through molecular dynamics simulations and 3D-QSAR study.

    PubMed

    Kamsri, Pharit; Punkvang, Auradee; Saparpakorn, Patchareenart; Hannongbua, Supa; Irle, Stephan; Pungpo, Pornpan

    2014-07-01

    Diphenyl ether derivatives are good candidates for anti-tuberculosis agents that display a promising potency for inhibition of InhA, an essential enoyl-acyl carrier protein (ACP) reductase involved in fatty acid biosynthesis pathways in Mycobacterium tuberculosis. In this work, key structural features for the inhibition were identified by 3D-QSAR CoMSIA models, constructed based on available experimental binding properties of diphenyl ether inhibitors, and a set of four representative compounds was subjected to MD simulations of inhibitor-InhA complexes for the calculation of binding free energies. The results show that bulky groups are required for the R1 substituent on the phenyl A ring of the inhibitors to favor a hydrophobic pocket formed by residues Phe149, Met155, Pro156, Ala157, Tyr158, Pro193, Met199, Val203, Leu207, Ile215, and Leu218. Small substituents with a hydrophilic property are required at the R3 and R4 positions of the inhibitor phenyl B rings to form hydrogen bonds with the backbones of Gly96 and Met98, respectively. For the R2 substituent, small substituents with simultaneous hydrophilic or hydrophobic properties are required to favor the interaction with the pyrophosphate moiety of NAD(+) and the methyl side chain of Ala198, respectively. The reported data provide structural guidance for the design of new and potent diphenyl ether-based inhibitors with high inhibitory activities against M. tuberculosis InhA.

  2. De novo design of N-(pyridin-4-ylmethyl)aniline derivatives as KDR inhibitors: 3D-QSAR, molecular fragment replacement, protein-ligand interaction fingerprint, and ADMET prediction.

    PubMed

    Zhang, Yanmin; Liu, Haichun; Jiao, Yu; Yuan, Haoliang; Wang, Fengxiao; Lu, Shuai; Yao, Sihui; Ke, Zhipeng; Tai, Wenting; Jiang, Yulei; Chen, Yadong; Lu, Tao

    2012-11-01

    Vascular endothelial growth factor (VEGF) and its receptor tyrosine kinase VEGFR-2 or kinase insert domain receptor (KDR) have been identified as promising targets for novel anticancer agents. To achieve new potent inhibitors of KDR, we conducted molecular fragment replacement (MFR) studies for the understanding of 3D-QSAR modeling and the docking investigation of arylphthalazines and 2-((1H-Azol-1-yl)methyl)-N-arylbenzamides-based KDR inhibitors. Two favorable 3D-QSAR models (CoMFA with q(2), 0.671; r(2), 0.969; CoMSIA with q(2), 0.608; r(2), 0.936) have been developed to predict the biological activity of new compounds. The new molecular database generated by MFR was virtually screened using Glide (docking) and further evaluated with CoMFA prediction, protein-ligand interaction fingerprint (PLIF) and ADMET analysis. 44 N-(pyridin-4-ylmethyl)aniline derivatives as novel potential KDR inhibitors were finally obtained. In this paper, the work flow developed could be applied to de novo drug design and virtual screening potential KDR inhibitors, and use hit compounds to further optimize and design new potential KDR inhibitors.

  3. Combined 3D-QSAR modeling and molecular docking study on azacycles CCR5 antagonists

    NASA Astrophysics Data System (ADS)

    Ji, Yongjun; Shu, Mao; Lin, Yong; Wang, Yuanqiang; Wang, Rui; Hu, Yong; Lin, Zhihua

    2013-08-01

    The beta chemokine receptor 5 (CCR5) is an attractive target for pharmaceutical industry in the HIV-1, inflammation and cancer therapeutic areas. In this study, we have developed quantitative structure activity relationship (QSAR) models for a series of 41 azacycles CCR5 antagonists using comparative molecular field analysis (CoMFA), comparative molecular similarity indices analysis (CoMSIA), and Topomer CoMFA methods. The cross-validated coefficient q2 values of 3D-QASR (CoMFA, CoMSIA, and Topomer CoMFA) methods were 0.630, 0.758, and 0.852, respectively, the non-cross-validated R2 values were 0.979, 0.978, and 0.990, respectively. Docking studies were also employed to determine the most probable binding mode. 3D contour maps and docking results suggested that bulky groups and electron-withdrawing groups on the core part would decrease antiviral activity. Furthermore, docking results indicated that H-bonds and π bonds were favorable for antiviral activities. Finally, a set of novel derivatives with predicted activities were designed.

  4. 3D-QSAR and docking studies of flavonoids as potent Escherichia coli inhibitors

    PubMed Central

    Fang, Yajing; Lu, Yulin; Zang, Xixi; Wu, Ting; Qi, XiaoJuan; Pan, Siyi; Xu, Xiaoyun

    2016-01-01

    Flavonoids are potential antibacterial agents. However, key substituents and mechanism for their antibacterial activity have not been fully investigated. The quantitative structure-activity relationship (QSAR) and molecular docking of flavonoids relating to potent anti-Escherichia coli agents were investigated. Comparative molecular field analysis (CoMFA) and comparative molecular similarity indices analysis (CoMSIA) were developed by using the pIC50 values of flavonoids. The cross-validated coefficient (q2) values for CoMFA (0.743) and for CoMSIA (0.708) were achieved, illustrating high predictive capabilities. Selected descriptors for the CoMFA model were ClogP (logarithm of the octanol/water partition coefficient), steric and electrostatic fields, while, ClogP, electrostatic and hydrogen bond donor fields were used for the CoMSIA model. Molecular docking results confirmed that half of the tested flavonoids inhibited DNA gyrase B (GyrB) by interacting with adenosine-triphosphate (ATP) pocket in a same orientation. Polymethoxyl flavones, flavonoid glycosides, isoflavonoids changed their orientation, resulting in a decrease of inhibitory activity. Moreover, docking results showed that 3-hydroxyl, 5-hydroxyl, 7-hydroxyl and 4-carbonyl groups were found to be crucial active substituents of flavonoids by interacting with key residues of GyrB, which were in agreement with the QSAR study results. These results provide valuable information for structure requirements of flavonoids as antibacterial agents. PMID:27049530

  5. 3D-QSAR and docking studies of flavonoids as potent Escherichia coli inhibitors.

    PubMed

    Fang, Yajing; Lu, Yulin; Zang, Xixi; Wu, Ting; Qi, XiaoJuan; Pan, Siyi; Xu, Xiaoyun

    2016-01-01

    Flavonoids are potential antibacterial agents. However, key substituents and mechanism for their antibacterial activity have not been fully investigated. The quantitative structure-activity relationship (QSAR) and molecular docking of flavonoids relating to potent anti-Escherichia coli agents were investigated. Comparative molecular field analysis (CoMFA) and comparative molecular similarity indices analysis (CoMSIA) were developed by using the pIC50 values of flavonoids. The cross-validated coefficient (q(2)) values for CoMFA (0.743) and for CoMSIA (0.708) were achieved, illustrating high predictive capabilities. Selected descriptors for the CoMFA model were ClogP (logarithm of the octanol/water partition coefficient), steric and electrostatic fields, while, ClogP, electrostatic and hydrogen bond donor fields were used for the CoMSIA model. Molecular docking results confirmed that half of the tested flavonoids inhibited DNA gyrase B (GyrB) by interacting with adenosine-triphosphate (ATP) pocket in a same orientation. Polymethoxyl flavones, flavonoid glycosides, isoflavonoids changed their orientation, resulting in a decrease of inhibitory activity. Moreover, docking results showed that 3-hydroxyl, 5-hydroxyl, 7-hydroxyl and 4-carbonyl groups were found to be crucial active substituents of flavonoids by interacting with key residues of GyrB, which were in agreement with the QSAR study results. These results provide valuable information for structure requirements of flavonoids as antibacterial agents. PMID:27049530

  6. 3D QSAR based design of novel oxindole derivative as 5HT7 inhibitors.

    PubMed

    Chitta, Aparna; Sivan, Sree Kanth; Manga, Vijjulatha

    2014-06-01

    To understand the structural requirements of 5-hydroxytryptamine (5HT7) receptor inhibitors and to design new ligands against 5HT7 receptor with enhanced inhibitory potency, a three-dimensional quantitative structure-activity relationship study with comparative molecular field analysis (CoMFA) and comparative molecular similarity indices analysis (CoMSIA) for a data set of 56 molecules consisting of oxindole, tetrahydronaphthalene, aryl ketone substituted arylpiperazinealkylamide derivatives was performed. Derived model showed good statistical reliability in terms of predicting 5HT7 inhibitory activity of the molecules, based on molecular property fields like steric, electrostatic, hydrophobic, hydrogen bond donor and hydrogen bond acceptor fields. This is evident from statistical parameters like conventional r2 and a cross validated (q2) values of 0.985, 0.743 for CoMFA and 0.970, 0.608 for CoMSIA, respectively. Predictive ability of the models to determine 5HT7 antagonistic activity is validated using a test set of 16 molecules that were not included in the training set. Predictive r2 obtained for the test set was 0.560 and 0.619 for CoMFA and CoMSIA, respectively. Steric, electrostatic fields majorly contributed toward activity which forms the basis for design of new molecules. Absorption, distribution, metabolism and elimination (ADME) calculation using QikProp 2.5 (Schrodinger 2010, Portland, OR) reveals that the molecules confer to Lipinski's rule of five in majority of the cases.

  7. Pharmacophore modeling and atom-based 3D-QSAR studies on amino derivatives of indole as potent isoprenylcysteine carboxyl methyltransferase (Icmt) inhibitors

    NASA Astrophysics Data System (ADS)

    Bhadoriya, Kamlendra Singh; Sharma, Mukesh C.; Jain, Shailesh V.

    2015-02-01

    Icmt enzymes are of particular importance in the post-translational modification of proteins that are involved in the regulation of cell growth. Thus, effective Icmt inhibitors may be of significant therapeutic importance in oncogenesis. To determine the structural requirements responsible for high affinity of previously reported amino derivatives of indole as Icmt inhibitors, a successful pharmacophore generation and atom-based 3D-QSAR analysis have been carried out. The best four-point pharmacophore model with four features HHRR: two hydrophobic groups (H) and two aromatic rings (R) as pharmacophore features was developed by PHASE module of Schrodinger suite. In this study, highly predictive 3D-QSAR models have been developed for Icmt inhibition using HHRR.191 hypothesis. The pharmacophore hypothesis yielded a 3D-QSAR model with good partial least-square (PLS) statistics results. The validation of the PHASE model was done by dividing the dataset into training and test set. The statistically significant the four-point pharmacophore hypothesis yielded a 3D-QSAR model with good PLS statistics results (R2 = 0.9387, Q2 = 0.8132, F = 114.8, SD = 0.1567, RMSE = 0.2682, Pearson-R = 0.9147). The generated model showed excellent predictive power, with a correlation coefficient of Q2 = 0.8132. The results of ligand-based pharmacophore hypothesis and atom-based 3D-QSAR provide detailed structural insights as well as highlights important binding features of novel amino derivatives of indole as Icmt inhibitors which can afford guidance for the rational drug design of novel, potent and promising Icmt inhibitors with enhanced potencies and may prove helpful for further lead optimization and virtual screening.

  8. A group center overlap based approach for "3D QSAR" studies on TIBO derivatives.

    PubMed

    Sapre, Nitin S; Gupta, Swagata; Pancholi, Nilanjana; Sapre, Neelima

    2009-04-30

    Current challenges in drug designing and lead optimization has reached a bottle neck where the main onus lies on rigorous validation to afford robust and predictive models. In the present study, we have suggested that predictive structure-activity relationship (SAR) models based on robust statistical analyses can serve as effective screening tools for large volume of compounds present either in chemical databases or in virtual libraries. 3D descriptors derived from the similarity-based alignment of molecules with respect to group center overlap from each individual template point and other "alignment averaged," but significant descriptors (ClogP, molar refractivity, connolly accessible area) were used to generate QSAR models. The results indicated that the artificial neural network method (r(2) = 0.902) proved to be superior to the multiple linear regression method (r(2) = 0.810). Cross validation of the models with an external set was reasonably satisfactory. Screening PubChem compound database based on the models obtained, yielded 14 newer modified compounds belonging to the TIBO class of inhibitors, as well as, two novel scaffolds, with enhanced binding efficacy as hits. These hits may be targeted toward potent lead-optimization and help in designing and synthesizing new compounds with potential therapeutic utility. PMID:18785154

  9. Comparison of steroid substrates and inhibitors of P-glycoprotein by 3D-QSAR analysis

    NASA Astrophysics Data System (ADS)

    Li, Yan; Wang, Yong-Hua; Yang, Ling; Zhang, Shu-Wei; Liu, Chang-Hou; Yang, Sheng-Li

    2005-01-01

    Steroid derivatives show a complex interaction with P-glycoprotein (Pgp). To determine the essential structural requirements of a series of structurally related and functionally diverse steroids for Pgp-mediated transport or inhibition, a three-dimensional quantitative structure activity relationship study was performed by comparative similarity index analysis modeling. Twelve models have been explored to well correlate the physiochemical features with their biological functions with Pgp on basis of substrate and inhibitor datasets, in which the best predictive model for substrate gave cross-validated q2=0.720, non-cross-validated r2=0.998, standard error of estimate SEE=0.012, F=257.955, and the best predictive model for inhibitor gave q2=0.536, r2=0.950, SEE=1.761 and F=45.800. The predictive ability of all models was validated by a set of compounds that were not included in the training set. The physiochemical similarities and differences of steroids as Pgp substrate and inhibitor, respectively, were analyzed to be helpful in developing new steroid-like compounds.

  10. Molecular modeling studies on series of Btk inhibitors using docking, structure-based 3D-QSAR and molecular dynamics simulation: a combined approach.

    PubMed

    Balasubramanian, Pavithra K; Balupuri, Anand; Cho, Seung Joo

    2016-03-01

    Bruton tyrosine kinase (Btk) is a non-receptor tyrosine kinase. It is a crucial component in BCR pathway and expressed only in hematopoietic cells except T cells and Natural killer cells. BTK is a promising target because of its involvement in signaling pathways and B cell diseases such as autoimmune disorders and lymphoma. In this work, a combined molecular modeling study of molecular docking, 3D-QSAR and molecular dynamic (MD) simulation were performed on a series of 2,5-diaminopyrimidine compounds as inhibitors targeting Btk kinase to understand the interaction and key residues involved in the inhibition. A structure based CoMFA (q (2) = 0.675, NOC = 5, r (2) = 0.961) and COMSIA (q (2) = 0.704, NOC = 6, r (2) = 0.962) models were developed from the conformation obtained by docking. The developed models were subjected to various validation techniques such as leave-five-out, external test set, bootstrapping, progressive sampling and rm (2) metrics and found to have a good predictive ability in both internal and external validation. Our docking results showed the important residues that interacts in the active site residues in inhibition of Btk kinase. Furthermore, molecular dynamics simulation was employed to study the stability of the docked conformation and to investigate the binding interactions in detail. The MD simulation analyses identified several important hydrogen bonds with Btk, including the gatekeeper residue Thr474 and Met477 at the hinge region. Hydrogen bond with active site residues Leu408 and Arg525 were also recognized. A good correlation between the MD results, docking studies and the contour map analysis are observed. This indicates that the developed models are reliable. Our results from this study can provide insights in the designing and development of more potent Btk kinase inhibitors.

  11. Neuronal nicotinic acetylcholine receptor agonists: pharmacophores, evolutionary QSAR and 3D-QSAR models.

    PubMed

    Nicolotti, Orazio; Altomare, Cosimo; Pellegrini-Calace, Marialuisa; Carotti, Angelo

    2004-01-01

    Neuronal nicotinic acetylcholine ion channel receptors (nAChRs) exist as several subtypes and are involved in a variety of functions and disorders of the central nervous system (CNS), such as Alzheimer's and Parkinson's diseases. The lack of reliable information on the 3D structure of nAChRs prompted us to focus efforts on pharmacophore and structure-affinity relationships (SAFIRs). The use of DISCO (DIStance COmparison) and Catalyst/HipHop led to the formulation of a pharmacophore that is made of three geometrically unrelated features: (i) an ammonium head involved in coulombic and/or H-bond interactions, (ii) a lone pair of a pyridine nitrogen or a carbonyl oxygen, as H-bond acceptor site, and (iii) a hydrophobic molecular region generally constituted by aliphatic cycles. The quantitative SAFIR (QSAFIR) study was carried out on about three hundred nicotinoid agonists, and coherent results were obtained from classical Hansch-type approach, 3D QSAFIRs, based on Comparative Molecular Field Analysis (CoMFA), and trade-off models generated by Multi-objective Genetic QSAR (MoQSAR), a novel evolutionary software that makes use of Genetic Programming (GP) and multi-objective optimization (MO). Within each congeneric series, Hansch-type equations revealed detrimental steric effects as the major factors modulating the receptor affinity, whereas CoMFA allowed us to merge progressively single-class models in a more global one, whose robustness was supported by crossvalidation, high prediction statistics and satisfactory predictions of the affinity data of a true external ligand set (r(2)(pred) = 0.796). Next, MoQSAR was used to analyze a data set of 58 highly active nicotinoids characterized by 56 descriptors, that are log P, MR and 54 low inter-correlated WHIM (Weighted Holistic Invariant Molecular) indices. Equivalent QSAFIR models, that represent different compromises between structural model complexity, fitting and internal model complexity, were found. Our attention was

  12. Neuronal nicotinic acetylcholine receptor agonists: pharmacophores, evolutionary QSAR and 3D-QSAR models.

    PubMed

    Nicolotti, Orazio; Altomare, Cosimo; Pellegrini-Calace, Marialuisa; Carotti, Angelo

    2004-01-01

    Neuronal nicotinic acetylcholine ion channel receptors (nAChRs) exist as several subtypes and are involved in a variety of functions and disorders of the central nervous system (CNS), such as Alzheimer's and Parkinson's diseases. The lack of reliable information on the 3D structure of nAChRs prompted us to focus efforts on pharmacophore and structure-affinity relationships (SAFIRs). The use of DISCO (DIStance COmparison) and Catalyst/HipHop led to the formulation of a pharmacophore that is made of three geometrically unrelated features: (i) an ammonium head involved in coulombic and/or H-bond interactions, (ii) a lone pair of a pyridine nitrogen or a carbonyl oxygen, as H-bond acceptor site, and (iii) a hydrophobic molecular region generally constituted by aliphatic cycles. The quantitative SAFIR (QSAFIR) study was carried out on about three hundred nicotinoid agonists, and coherent results were obtained from classical Hansch-type approach, 3D QSAFIRs, based on Comparative Molecular Field Analysis (CoMFA), and trade-off models generated by Multi-objective Genetic QSAR (MoQSAR), a novel evolutionary software that makes use of Genetic Programming (GP) and multi-objective optimization (MO). Within each congeneric series, Hansch-type equations revealed detrimental steric effects as the major factors modulating the receptor affinity, whereas CoMFA allowed us to merge progressively single-class models in a more global one, whose robustness was supported by crossvalidation, high prediction statistics and satisfactory predictions of the affinity data of a true external ligand set (r(2)(pred) = 0.796). Next, MoQSAR was used to analyze a data set of 58 highly active nicotinoids characterized by 56 descriptors, that are log P, MR and 54 low inter-correlated WHIM (Weighted Holistic Invariant Molecular) indices. Equivalent QSAFIR models, that represent different compromises between structural model complexity, fitting and internal model complexity, were found. Our attention was

  13. Template CoMFA Generates Single 3D-QSAR Models that, for Twelve of Twelve Biological Targets, Predict All ChEMBL-Tabulated Affinities

    PubMed Central

    Cramer, Richard D.

    2015-01-01

    The possible applicability of the new template CoMFA methodology to the prediction of unknown biological affinities was explored. For twelve selected targets, all ChEMBL binding affinities were used as training and/or prediction sets, making these 3D-QSAR models the most structurally diverse and among the largest ever. For six of the targets, X-ray crystallographic structures provided the aligned templates required as input (BACE, cdk1, chk2, carbonic anhydrase-II, factor Xa, PTP1B). For all targets including the other six (hERG, cyp3A4 binding, endocrine receptor, COX2, D2, and GABAa), six modeling protocols applied to only three familiar ligands provided six alternate sets of aligned templates. The statistical qualities of the six or seven models thus resulting for each individual target were remarkably similar. Also, perhaps unexpectedly, the standard deviations of the errors of cross-validation predictions accompanying model derivations were indistinguishable from the standard deviations of the errors of truly prospective predictions. These standard deviations of prediction ranged from 0.70 to 1.14 log units and averaged 0.89 (8x in concentration units) over the twelve targets, representing an average reduction of almost 50% in uncertainty, compared to the null hypothesis of “predicting” an unknown affinity to be the average of known affinities. These errors of prediction are similar to those from Tanimoto coefficients of fragment occurrence frequencies, the predominant approach to side effect prediction, which template CoMFA can augment by identifying additional active structural classes, by improving Tanimoto-only predictions, by yielding quantitative predictions of potency, and by providing interpretable guidance for avoiding or enhancing any specific target response. PMID:26065424

  14. Exploration of Novel Inhibitors for Bruton’s Tyrosine Kinase by 3D QSAR Modeling and Molecular Dynamics Simulation

    PubMed Central

    Choi, Light; Woo Lee, Keun

    2016-01-01

    Bruton’s tyrosine kinase (BTK) is a cytoplasmic, non-receptor tyrosine kinase which is expressed in most of the hematopoietic cells and plays an important role in many cellular signaling pathways. B cell malignancies are dependent on BCR signaling, thus making BTK an efficient therapeutic target. Over the last few years, significant efforts have been made in order to develop BTK inhibitors to treat B-cell malignancies, and autoimmunity or allergy/hypersensitivity but limited success has been achieved. Here in this study, 3D QSAR pharmacophore models were generated for Btk based on known IC50 values and experimental energy scores with extensive validations. The five features pharmacophore model, Hypo1, includes one hydrogen bond acceptor lipid, one hydrogen bond donor, and three hydrophobic features, which has the highest correlation coefficient (0.98), cost difference (112.87), and low RMS (1.68). It was further validated by the Fisher’s randomization method and test set. The well validated Hypo1 was used as a 3D query to search novel Btk inhibitors with different chemical scaffold using high throughput virtual screening technique. The screened compounds were further sorted by applying ADMET properties, Lipinski’s rule of five and molecular docking studies to refine the retrieved hits. Furthermore, molecular dynamic simulation was employed to study the stability of docked conformation and to investigate the binding interactions in detail. Several important hydrogen bonds with Btk were revealed, which includes the gatekeeper residues Glu475 and Met 477 at the hinge region. Overall, this study suggests that the proposed hits may be more effective inhibitors for cancer and autoimmune therapy. PMID:26784025

  15. Chemical proteomic tool for ligand mapping of CYP antitargets: an NMR-compatible 3D QSAR descriptor in the Heme-Based Coordinate System.

    PubMed

    Yao, Huili; Costache, Aurora D; Sem, Daniel S

    2004-01-01

    Chemical proteomic strategies strive to probe and understand protein-ligand interactions across gene families. One gene family of particular interest in drug and xenobiotic metabolism are the cytochromes P450 (CYPs), the topic of this article. Although numerous tools exist to probe affinity of CYP-ligand interactions, fewer exist for the rapid experimental characterization of the structural nature of these interactions. As a complement to recent advances in X-ray crystallography, NMR methods are being developed that allow for fairly high throughput characterization of protein-ligand interactions. One especially promising NMR approach involves the use of paramagnetic induced relaxation effects to measure distances of ligand atoms from the heme iron in CYP enzymes. Distances obtained from these T(1) relaxation measurements can be used as a direct source of 1-dimensional structural information or to restrain a ligand docking to generate a 3-dimensional data set. To facilitate such studies, we introduce the concept of the Heme-Based Coordinate System and present how it can be used in combination with NMR T(1) relaxation data to derive 3D QSAR descriptors directly or in combination with in silico docking. These descriptors should have application in defining the binding preferences of CYP binding sites using 3D QSAR models. They are especially well-suited for the biasing of fragment assembly and combinatorial chemistry drug design strategies, to avoid fragment or reagent combinations with enhanced affinity for CYP antitargets.

  16. 3D-QSAR studies and shape based virtual screening for identification of novel hits to inhibit MbtA in Mycobacterium tuberculosis.

    PubMed

    Maganti, Lakshmi; Ghoshal, Nanda

    2015-01-01

    Mycobacterium tuberculosis, the pathogen responsible for tuberculosis, uses various strategies to survive in a variety of host lesions. The re-emergence of multi-drug-resistant strains of M. tuberculosis underlines the necessity to discover new molecules. Inhibitors of aryl acid adenylating enzyme, MbtA, involved in siderophore biosynthesis in M. tuberculosis, are being explored as potential anti tubercular agents. In this study, we have used 3D-QSAR models and shape based virtual screening to identify novel MbtA inhibitors. 3D-QSAR studies were carried out on nucleoside bisubstrate derivatives. Both Comparative Molecular Field Analysis (r(2) = .944 and r(2)(pred) = .938) and Comparative Molecular Similarity Indices Analysis (r(2) = .892 and r(2)(pred) = .842) models, developed using Gasteiger charges with all fields, predicted efficiently. A total of 13 hits were identified as novel prospective inhibitors for MbtA by utilizing an insilico workflow. Out of 13 hits, five top ranked hits were used for further molecular dynamics studies to gain more insights about the stability of the complexes. PMID:24417439

  17. 3D-QSAR and molecular docking studies on designing inhibitors of the hepatitis C virus NS5B polymerase

    NASA Astrophysics Data System (ADS)

    Li, Wenlian; Si, Hongzong; Li, Yang; Ge, Cuizhu; Song, Fucheng; Ma, Xiuting; Duan, Yunbo; Zhai, Honglin

    2016-08-01

    Viral hepatitis C infection is one of the main causes of the hepatitis after blood transfusion and hepatitis C virus (HCV) infection is a global health threat. The HCV NS5B polymerase, an RNA dependent RNA polymerase (RdRp) and an essential role in the replication of the virus, has no functional equivalent in mammalian cells. So the research and development of efficient NS5B polymerase inhibitors provides a great strategy for antiviral therapy against HCV. A combined three-dimensional quantitative structure-activity relationship (QSAR) modeling was accomplished to profoundly understand the structure-activity correlation of a train of indole-based inhibitors of the HCV NS5B polymerase to against HCV. A comparative molecular similarity indices analysis (COMSIA) model as the foundation of the maximum common substructure alignment was developed. The optimum model exhibited statistically significant results: the cross-validated correlation coefficient q2 was 0.627 and non-cross-validated r2 value was 0.943. In addition, the results of internal validations of bootstrapping and Y-randomization confirmed the rationality and good predictive ability of the model, as well as external validation (the external predictive correlation coefficient rext2 = 0.629). The information obtained from the COMSIA contour maps enables the interpretation of their structure-activity relationship. Furthermore, the molecular docking study of the compounds for 3TYV as the protein target revealed important interactions between active compounds and amino acids, and several new potential inhibitors with higher activity predicted were designed basis on our analyses and supported by the simulation of molecular docking. Meanwhile, the OSIRIS Property Explorer was introduced to help select more satisfactory compounds. The satisfactory results from this study may lay a reliable theoretical base for drug development of hepatitis C virus NS5B polymerase inhibitors.

  18. Modifying tetramethyl–nitrophenyl–imidazoline with amino acids: design, synthesis, and 3D-QSAR for improving inflammatory pain therapy

    PubMed Central

    Jiang, Xueyun; Wang, Yuji; Zhu, Haimei; Wang, Yaonan; Zhao, Ming; Zhao, Shurui; Wu, Jianhui; Li, Shan; Peng, Shiqi

    2015-01-01

    With the help of pharmacophore analysis and docking investigation, 15 novel 1-(4,4,5,5-tetramethyl-2-(3-nitrophenyl)-4,5-dihydroimidazol-1-yl)-oxyacetyl-L-amino acids (6a–o) were designed, synthesized, and assayed. On tail-flick and xylene-induced ear edema models, 10 μmol/kg 6a–o exhibited excellent oral anti-inflammation and analgesic activity. The dose-dependent assay of their representative 6f indicates that the effective dose should be 3.3 μmol/kg. The correlation of the three-dimensional quantitative structure–activity relationship with the docking analysis provides a basis for the rational design of drugs to treat inflammatory pain. PMID:25960636

  19. Development of a credible 3D-QSAR CoMSIA model and docking studies for a series of triazoles and tetrazoles containing 11β-HSD1 inhibitors.

    PubMed

    Murumkar, P R; Shinde, A C; Sharma, M K; Yamaguchi, H; Miniyar, P B; Yadav, M R

    2016-04-01

    Type 2 diabetes mellitus is described by insulin resistance and high fasting blood glucose. Increased levels of 11β-hydroxysteroid dehydrogenase type 1 (11β-HSD1) enzyme result in insulin resistance and metabolic syndrome. Inhibition of 11β-HSD1 decreases glucose production and increases hepatic insulin sensitivity. Use of selective 11β-HSD1 inhibitors could prove to be an effective strategy for the treatment of the disease. It was decided to identify the essential structural features required by any compound to possess 11β-HSD1 inhibitory activity. A dataset of 139 triazoles and tetrazoles having 11β-HSD1 inhibitory activity was used for the development of a 3D-QSAR model. The best comparative molecular field analysis (CoMFA) model was generated with databased alignment, which was further used for comparative molecular similarity indices analysis (CoMSIA). The optimal CoMSIA model showed [Formula: see text] = 0.809 with five components, [Formula: see text] = 0.931, SEE = 0.323 and F-value = 249.126. The CoMSIA model offered better prediction than the CoMFA model with [Formula: see text] = 0.522 and 0.439, respectively, indicating that the CoMSIA model appeared to be a better one for the prediction of activity for the newly designed 11β-HSD1 inhibitors. The selectivity aspect of 11β-HSD1 over 11β-HSD2 was studied with the help of docking studies. PMID:27094303

  20. Identification of Potent Virtual Leads Specific to S1' Loop of ADAMTS4: Pharmacophore Modeling, 3D-QSAR, Molecular Docking and Dynamic Studies.

    PubMed

    Suganya, P Rathi; Kalva, Sukesh; Saleena, Lilly M

    2016-01-01

    ADAMTS4 (Aggrecanase-1) is an important enzyme, which belongs to ADAMTS family. Aggrecanase-1 is involved in aggrecan degradation of articular cartilage in osteoarthritis and rheumatoid arthritis. Overall variability of S1' domain of ADAMTS4 has been the main selectivity determinant to design the unique inhibitors. 34 inhibitors from Binding database and literature were used to develop the pharmacophore model. The five featured pharmacophore model AHHRR had the best survival score of 3.493 and post-hoc score of 2.545, indicating that the model is highly reliable. The 3D-QSAR acquired had excellent r(2) value of 0.99 and GH score of 0.839. The validated pharmacophore model was used for insilico screening of Asinex and ZINC database for finding the potential lead compounds. ZINC00987406 and ASN04459656 which pose high glide score i.e >7 Kcal/mol and H-bond and hydrophobic interactions in the S1'loop residues of ADAMTS4 were subjected to Molecular Dynamics Simulation studies. Molecular dynamic simulation result indicates that the RMSD and RMSF of backbone atoms for the above complexes were within the limit of 2.0 A˚. These compounds can be potential candidates for osteoarthritis by inhibiting ADAMTS4. PMID:26813685

  1. MOLECULAR MODELLING, 3D-QSAR, AND DRUG DOCKING STUDIES ON THE ROLE OF NATURAL ANTICOAGULANT COMPOUNDS IN ANTITHROMBOTIC THERAPY

    PubMed Central

    Kakarla, Prathusha; Devireddy, Amith R.; Inupakutika, Madhuri A.; Cheeti, Upender R.; Floyd, Jared T.; Mun, Mukherjee M.; Vigil, Raelyn N.; Hunter, Russell P.; Varela, Manuel F.

    2015-01-01

    Thromboembolic disorders are the leading cause of human mortality. Therefore, development of effective anticoagulant therapy is critical. Factor XIIIA (FXIIIA) protein is a crucial factor in the blood coagulation cascade, and hence it is a vital target for evolution of new antithrombotic agents. Structure-function studies of clotting factor active sites, clot formation, and thrombus structure have gained prominence in the efforts to develop novel anticoagulants. Factor XIIIA was homology modelled with the human transglutaminase-2 crystal structure as a base template for BLAST analysis. Docking and comparative binding site analysis revealed active site residue conservation and inhibitor-protein interactions. Nineteen small molecules possessing suspected anticoagulant properties were successfully docked into the FXIIIA active site following the best CoMFA and CoMSIA prediction values. Dabigatran etexilate was anticipated to be the best FXIIIA inhibitor among the nineteen anticoagulants with the highest binding affinity for the FXIIIA protein and the highest FlexX dock score of −29.8 KJ/mol. Structural properties of FXIIIA inhibitors with increased antithrombotic activity were predicted by this docking study. PMID:25750914

  2. Identification of novel histone deacetylase 1 inhibitors by combined pharmacophore modeling, 3D-QSAR analysis, in silico screening and Density Functional Theory (DFT) approaches

    NASA Astrophysics Data System (ADS)

    Choubey, Sanjay K.; Mariadasse, Richard; Rajendran, Santhosh; Jeyaraman, Jeyakanthan

    2016-12-01

    Overexpression of HDAC1, a member of Class I histone deacetylase is reported to be implicated in breast cancer. Epigenetic alteration in carcinogenesis has been the thrust of research for few decades. Increased deacetylation leads to accelerated cell proliferation, cell migration, angiogenesis and invasion. HDAC1 is pronounced as the potential drug target towards the treatment of breast cancer. In this study, the biochemical potential of 6-aminonicotinamide derivatives was rationalized. Five point pharmacophore model with one hydrogen-bond acceptor (A3), two hydrogen-bond donors (D5, D6), one ring (R12) and one hydrophobic group (H8) was developed using 6-aminonicotinamide derivatives. The pharmacophore hypothesis yielded a 3D-QSAR model with correlation-coefficient (r2 = 0.977, q2 = 0.801) and it was externally validated with (r2pred = 0.929, r2cv = 0.850 and r2m = 0.856) which reveals the statistical significance of the model having high predictive power. The model was then employed as 3D search query for virtual screening against compound libraries (Zinc, Maybridge, Enamine, Asinex, Toslab, LifeChem and Specs) in order to identify novel scaffolds which can be experimentally validated to design future drug molecule. Density Functional Theory (DFT) at B3LYP/6-31G* level was employed to explore the electronic features of the ligands involved in charge transfer reaction during receptor ligand interaction. Binding free energy (ΔGbind) calculation was done using MM/GBSA which defines the affinity of ligands towards the receptor.

  3. Drug Design for CNS Diseases: Polypharmacological Profiling of Compounds Using Cheminformatic, 3D-QSAR and Virtual Screening Methodologies.

    PubMed

    Nikolic, Katarina; Mavridis, Lazaros; Djikic, Teodora; Vucicevic, Jelica; Agbaba, Danica; Yelekci, Kemal; Mitchell, John B O

    2016-01-01

    HIGHLIGHTS Many CNS targets are being explored for multi-target drug designNew databases and cheminformatic methods enable prediction of primary pharmaceutical target and off-targets of compoundsQSAR, virtual screening and docking methods increase the potential of rational drug design The diverse cerebral mechanisms implicated in Central Nervous System (CNS) diseases together with the heterogeneous and overlapping nature of phenotypes indicated that multitarget strategies may be appropriate for the improved treatment of complex brain diseases. Understanding how the neurotransmitter systems interact is also important in optimizing therapeutic strategies. Pharmacological intervention on one target will often influence another one, such as the well-established serotonin-dopamine interaction or the dopamine-glutamate interaction. It is now accepted that drug action can involve plural targets and that polypharmacological interaction with multiple targets, to address disease in more subtle and effective ways, is a key concept for development of novel drug candidates against complex CNS diseases. A multi-target therapeutic strategy for Alzheimer's disease resulted in the development of very effective Multi-Target Designed Ligands (MTDL) that act on both the cholinergic and monoaminergic systems, and also retard the progression of neurodegeneration by inhibiting amyloid aggregation. Many compounds already in databases have been investigated as ligands for multiple targets in drug-discovery programs. A probabilistic method, the Parzen-Rosenblatt Window approach, was used to build a "predictor" model using data collected from the ChEMBL database. The model can be used to predict both the primary pharmaceutical target and off-targets of a compound based on its structure. Several multi-target ligands were selected for further study, as compounds with possible additional beneficial pharmacological activities. Based on all these findings, it is concluded that multipotent ligands

  4. Drug Design for CNS Diseases: Polypharmacological Profiling of Compounds Using Cheminformatic, 3D-QSAR and Virtual Screening Methodologies

    PubMed Central

    Nikolic, Katarina; Mavridis, Lazaros; Djikic, Teodora; Vucicevic, Jelica; Agbaba, Danica; Yelekci, Kemal; Mitchell, John B. O.

    2016-01-01

    HIGHLIGHTS Many CNS targets are being explored for multi-target drug designNew databases and cheminformatic methods enable prediction of primary pharmaceutical target and off-targets of compoundsQSAR, virtual screening and docking methods increase the potential of rational drug design The diverse cerebral mechanisms implicated in Central Nervous System (CNS) diseases together with the heterogeneous and overlapping nature of phenotypes indicated that multitarget strategies may be appropriate for the improved treatment of complex brain diseases. Understanding how the neurotransmitter systems interact is also important in optimizing therapeutic strategies. Pharmacological intervention on one target will often influence another one, such as the well-established serotonin-dopamine interaction or the dopamine-glutamate interaction. It is now accepted that drug action can involve plural targets and that polypharmacological interaction with multiple targets, to address disease in more subtle and effective ways, is a key concept for development of novel drug candidates against complex CNS diseases. A multi-target therapeutic strategy for Alzheimer‘s disease resulted in the development of very effective Multi-Target Designed Ligands (MTDL) that act on both the cholinergic and monoaminergic systems, and also retard the progression of neurodegeneration by inhibiting amyloid aggregation. Many compounds already in databases have been investigated as ligands for multiple targets in drug-discovery programs. A probabilistic method, the Parzen-Rosenblatt Window approach, was used to build a “predictor” model using data collected from the ChEMBL database. The model can be used to predict both the primary pharmaceutical target and off-targets of a compound based on its structure. Several multi-target ligands were selected for further study, as compounds with possible additional beneficial pharmacological activities. Based on all these findings, it is concluded that multipotent

  5. Three-dimensional quantitative structure-activity relationship study on anti-cancer activity of 3,4-dihydroquinazoline derivatives against human lung cancer A549 cells

    NASA Astrophysics Data System (ADS)

    Cho, Sehyeon; Choi, Min Ji; Kim, Minju; Lee, Sunhoe; Lee, Jinsung; Lee, Seok Joon; Cho, Haelim; Lee, Kyung-Tae; Lee, Jae Yeol

    2015-03-01

    A series of 3,4-dihydroquinazoline derivatives with anti-cancer activities against human lung cancer A549 cells were subjected to three-dimensional quantitative structure-activity relationship (3D-QSAR) studies using the comparative molecular similarity indices analysis (CoMSIA) approaches. The most potent compound, 1 was used to align the molecules. As a result, the best prediction was obtained with CoMSIA combined the steric, electrostatic, hydrophobic, hydrogen bond donor, and hydrogen bond acceptor fields (q2 = 0.720, r2 = 0.897). This model was validated by an external test set of 6 compounds giving satisfactory predictive r2 value of 0.923 as well as the scrambling stability test. This model would guide the design of potent 3,4-dihydroquinazoline derivatives as anti-cancer agent for the treatment of human lung cancer.

  6. Three-dimensional quantitative structure-activity relationship analysis for human pregnane X receptor for the prediction of CYP3A4 induction in human hepatocytes: structure-based comparative molecular field analysis.

    PubMed

    Handa, Koichi; Nakagome, Izumi; Yamaotsu, Noriyuki; Gouda, Hiroaki; Hirono, Shuichi

    2015-01-01

    The pregnane X receptor [PXR (NR1I2)] induces the expression of xenobiotic metabolic genes and transporter genes. In this study, we aimed to establish a computational method for quantifying the enzyme-inducing potencies of different compounds via their ability to activate PXR, for the application in drug discovery and development. To achieve this purpose, we developed a three-dimensional quantitative structure-activity relationship (3D-QSAR) model using comparative molecular field analysis (CoMFA) for predicting enzyme-inducing potencies, based on computer-ligand docking to multiple PXR protein structures sampled from the trajectory of a molecular dynamics simulation. Molecular mechanics-generalized born/surface area scores representing the ligand-protein-binding free energies were calculated for each ligand. As a result, the predicted enzyme-inducing potencies for compounds generated by the CoMFA model were in good agreement with the experimental values. Finally, we concluded that this 3D-QSAR model has the potential to predict the enzyme-inducing potencies of novel compounds with high precision and therefore has valuable applications in the early stages of the drug discovery process.

  7. The discovery of novel histone lysine methyltransferase G9a inhibitors (part 1): molecular design based on a series of substituted 2,4-diamino-7- aminoalkoxyquinazoline by molecular-docking-guided 3D quantitative structure-activity relationship studies.

    PubMed

    Feng, Taotao; Wang, Hai; Zhang, Xiaojin; Sun, Haopeng; You, Qidong

    2014-06-01

    Protein lysine methyltransferase G9a, which catalyzes methylation of lysine 9 of histone H3 (H3K9) and lysine 373 (K373) of p53, is overexpressed in human cancers. This suggests that small molecular inhibitors of G9a might be attractive antitumor agents. Herein we report our efforts on the design of novel G9a inhibitor based on the 3D quantitative structure-activity relationship (3D-QSAR) analysis of a series of 2,4-diamino-7-aminoalkoxyquinazolineas G9a inhibitors. The 3D-QSAR model was generated from 47 compounds using docking based molecular alignment. The best predictions were obtained with CoMFA standard model (q2 =0.700, r2 = 0.952) and CoMSIA model combined with steric, electrostatic, hydrophobic, hydrogen bond donor and acceptor fields (q2 = 0.724, r2 =0.960). The structural requirements for substituted 2,4-diamino-7-aminoalkoxyquinazoline for G9a inhibitory activity can be obtained by analysing the COMSIA plots. Based on the information, six novel follow-up analogs were designed.

  8. Synthesis, biological activities, and quantitative structure-activity relationship (QSAR) study of novel camptothecin analogues.

    PubMed

    Wu, Dan; Zhang, Shao-Yong; Liu, Ying-Qian; Wu, Xiao-Bing; Zhu, Gao-Xiang; Zhang, Yan; Wei, Wei; Liu, Huan-Xiang; Chen, An-Liang

    2015-05-13

    In continuation of our program aimed at the development of natural product-based pesticidal agents, three series of novel camptothecin derivatives were designed, synthesized, and evaluated for their biological activities against T. Cinnabarinus, B. brassicae, and B. xylophilus. All of the derivatives showed good-to-excellent activity against three insect species tested, with LC50 values ranging from 0.00761 to 0.35496 mmol/L. Remarkably, all of the compounds were more potent than CPT against T. Cinnabarinus, and compounds 4d and 4c displayed superior activity (LC50 0.00761 mmol/L and 0.00942 mmol/L, respectively) compared with CPT (LC50 0.19719 mmol/L) against T. Cinnabarinus. Based on the observed bioactivities, preliminary structure-activity relationship (SAR) correlations were also discussed. Furthermore, a three-dimensional quantitative structure-activity relationship (3D-QSAR) model using comparative molecular field analysis (CoMFA) was built. The model gave statistically significant results with the cross-validated q2 values of 0.580 and correlation coefficient r2 of 0.991 and  of 0.993. The QSAR analysis indicated that the size of the substituents play an important in the activity of 7-modified camptothecin derivatives. These findings will pave the way for further design, structural optimization, and development of camptothecin-derived compounds as pesticidal agents.

  9. Structure-activity relationships for hydroxylated polychlorinated biphenyls as inhibitors of the sulfation of dehydroepiandrosterone catalyzed by human hydroxysteroid sulfotransferase SULT2A1.

    PubMed

    Ekuase, Edugie J; Liu, Yungang; Lehmler, Hans-Joachim; Robertson, Larry W; Duffel, Michael W

    2011-10-17

    Polychlorinated biphenyls (PCBs) are persistent worldwide pollutants that are of concern due to their bioaccumulation and health effects. Metabolic oxidation of PCBs results in the formation of hydroxylated metabolites (OHPCBs). Among their biological effects, OHPCBs have been shown to alter the metabolism of endocrine hormones, including inhibition of mammalian cytosolic sulfotransferases (SULTs) that are responsible for the inactivation of thyroid hormones and phenolic steroids (i.e., hSULT1A1, hSULT1B1, and hSULT1E1). OHPCBs also interact with a human hydroxysteroid sulfotransferase that plays a role in the sulfation of endogenous alcohol-containing steroid hormones and bile acids (i.e., hSULT2A1). The objectives of our current study were to examine the effects of a series of OHPCB congeners on the activity of hSULT2A1 and to develop a three-dimensional quantitative structure-activity relationship (3D-QSAR) model for OHPCBs as inhibitors of the enzyme. A total of 15 OHPCBs were examined, and the sulfation of 1 μM [(3)H] dehydroepiandrosterone (DHEA) was utilized as a model reaction catalyzed by the enzyme. All 15 OHPCBs inhibited the sulfation of DHEA, with IC(50) values ranging from 0.6 μM to 96 μM, and eight of these OHPCBs were also substrates for the enzyme. Comparative molecular field analysis (CoMFA) provided a predictive 3D-QSAR model with a q(2) value of 0.697 and an r(2) value of 0.949. The OHPCBs that had the highest potency as inhibitors of DHEA sulfation were those with a 3, 5-dichloro-4-hydroxy substitution pattern on the biphenyl ring system, and these congeners were also substrates for sulfation catalyzed by hSULT2A1.

  10. 2D- and 3D-QSAR of tocainide and mexiletine analogues acting as Na(v)1.4 channel blockers.

    PubMed

    Carrieri, Antonio; Muraglia, Marilena; Corbo, Filomena; Pacifico, Concetta

    2009-04-01

    Enantiomeric forms of Tocainide, Mexiletine, and structurally related local anaesthetic compounds, were analyzed with respect to their potency in blocking Na(v)1.4 channel. Structure-activity relationships based on in vitro pharmacological assays, suggested that an increase in terms of lipophilicity and/or molecular surface as well as the presence of specific polar spacers might be determinant for receptor interactions. QSAR and pharmacophore models were then used to support at 3D level this hypothesis. PMID:19027197

  11. Structural requirements of 3-carboxyl-4(1H)-quinolones as potential antimalarials from 2D and 3D QSAR analysis.

    PubMed

    Li, Jiazhong; Li, Shuyan; Bai, Chongliang; Liu, Huanxiang; Gramatica, Paola

    2013-07-01

    Malaria is a fatal tropical and subtropical disease caused by the protozoal species Plasmodium. Many commonly available antimalarial drugs and therapies are becoming ineffective because of the emergence of multidrug resistant Plasmodium falciparum, which drives the need for the development of new antimalarial drugs. Recently, a series of 3-carboxyl-4(1H)-quinolone analogs, derived from the famous compound endochin, were reported as promising candidates for orally efficacious antimalarials. In this study, to analyze the structure-activity relationships (SAR) of these quinolones and investigate the structural requirements for antimalarial activity, the 2D multiple linear regressions (MLR) method and 3D comparative molecular field analysis (CoMFA) and comparative molecular similarity indices analysis (CoMSIA) methods are employed to evolve different QSAR models. All these models give satisfactory results with highly accurate fitting and strong external predictive abilities for chemicals not used in model development. Furthermore, the contour maps from 3D models can provide an intuitive understanding of the key structure features responsible for the antimalarial activities. In conclusion, we summarize the detailed position-specific structural requirements of these derivatives accordingly. All these results are helpful for the rational design of new compounds with higher antimalarial bioactivities.

  12. Quantitative structure-activity relationships and the prediction of MHC supermotifs.

    PubMed

    Doytchinova, Irini A; Guan, Pingping; Flower, Darren R

    2004-12-01

    The underlying assumption in quantitative structure-activity relationship (QSAR) methodology is that related chemical structures exhibit related biological activities. We review here two QSAR methods in terms of their applicability for human MHC supermotif definition. Supermotifs are motifs that characterise binding to more than one allele. Supermotif definition is the initial in silico step of epitope-based vaccine design. The first QSAR method we review here--the additive method--is based on the assumption that the binding affinity of a peptide depends on contributions from both amino acids and the interactions between them. The second method is a 3D-QSAR method: comparative molecular similarity indices analysis (CoMSIA). Both methods were applied to 771 peptides binding to 9 HLA alleles. Five of the alleles (A*0201, A*0202, A*0203, A*0206 and A*6802) belong to the HLA-A2 superfamily and the other four (A*0301, A*1101, A*3101 and A*6801) to the HLA-A3 superfamily. For each superfamily, supermotifs defined by the two QSAR methods agree closely and are supported by many experimental data. PMID:15542370

  13. Benzo[d]thiazol-2-yl(piperazin-1-yl)methanones as new anti-mycobacterial chemotypes: Design, synthesis, biological evaluation and 3D-QSAR studies.

    PubMed

    Pancholia, Sahaj; Dhameliya, Tejas M; Shah, Parth; Jadhavar, Pradeep S; Sridevi, Jonnalagadda Padma; Yogeshwari, Perumal; Sriram, Dharmarajan; Chakraborti, Asit K

    2016-06-30

    The benzo[d]thiazol-2-yl(piperazin-1-yl)methanones scaffold has been identified as new anti-mycobacterial chemotypes. Thirty-six structurally diverse benzo[d]thiazole-2-carboxamides have been prepared and subjected to assessment of their potential anti-tubercular activity through in vitro testing against Mycobacterium tuberculosis H37Rv strain and evaluation of cytotoxicity against RAW 264.7 cell lines. Seventeen compounds showed anti-mycobacterial potential having MICs in the low (1-10) μM range. The 5-trifluoromethyl benzo[d]thiazol-2-yl(piperazin-1-yl)methanones emerged to be the most promising resulting in six positive hits (2.35-7.94 μM) and showed low-cytotoxicity (<50% inhibition at 50 μg/mL). The therapeutic index of these hits is 8-64. The quantitative structure activity relationship has been established adopting a statistically reliable CoMFA model showing high prediction (rpred(2)=0.718,rncv(2)=0.995). PMID:27061982

  14. A mechanism-based 3D-QSAR approach for classification and prediction of acetylcholinesterase inhibitory potency of organophosphate and carbamate analogs.

    PubMed

    Lee, Sehan; Barron, Mace G

    2016-04-01

    Organophosphate (OP) and carbamate esters can inhibit acetylcholinesterase (AChE) by binding covalently to a serine residue in the enzyme active site, and their inhibitory potency depends largely on affinity for the enzyme and the reactivity of the ester. Despite this understanding, there has been no mechanism-based in silico approach for classification and prediction of the inhibitory potency of ether OPs or carbamates. This prompted us to develop a three dimensional prediction framework for OPs, carbamates, and their analogs. Inhibitory structures of a compound that can form the covalent bond were identified through analysis of docked conformations of the compound and its metabolites. Inhibitory potencies of the selected structures were then predicted using a previously developed three dimensional quantitative structure-active relationship. This approach was validated with a large number of structurally diverse OP and carbamate compounds encompassing widely used insecticides and structural analogs including OP flame retardants and thio- and dithiocarbamate pesticides. The modeling revealed that: (1) in addition to classical OP metabolic activation, the toxicity of carbamate compounds can be dependent on biotransformation, (2) OP and carbamate analogs such as OP flame retardants and thiocarbamate herbicides can act as AChEI, (3) hydrogen bonds at the oxyanion hole is critical for AChE inhibition through the covalent bond, and (4) π-π interaction with Trp86 is necessary for strong inhibition of AChE. Our combined computation approach provided detailed understanding of the mechanism of action of OP and carbamate compounds and may be useful for screening a diversity of chemical structures for AChE inhibitory potency. PMID:27055524

  15. Structural and chemical basis for enhanced affinity and potency for a large series of estrogen receptor ligands: 2D and 3D QSAR studies.

    PubMed

    Salum, Lívia de B; Polikarpov, Igor; Andricopulo, Adriano D

    2007-09-01

    The estrogen receptor (ER) is an important drug target for the development of novel therapeutic agents for the treatment of breast cancer. Progress towards the design of more potent and selective ER modulators requires the optimization of multiple ligand-receptor interactions. Comparative molecular field analyses (CoMFA) and hologram quantitative structure-activity relationships (HQSAR) were conducted on a large set of ERalpha modulators. Two training sets containing either 127 or 69 compounds were used to generate QSAR models for in vitro binding affinity and potency, respectively. Significant correlation coefficients (affinity models, CoMFA, r(2)=0.93 and q(2)=0.79; HQSAR, r(2)=0.92 and q(2)=0.71; potency models, CoMFA, r(2)=0.94 and q(2)=0.72; HQSAR, r(2)=0.92 and q(2)=0.74) were obtained, indicating the potential of the models for untested compounds. The generated models were validated using external test sets, and the predicted values were in good agreement with the experimental results. The final QSAR models as well as the information gathered from 3D contour maps should be useful for the design of novel ERalpha modulators having improved affinity and potency.

  16. Design, biological evaluation and 3D QSAR studies of novel dioxin-containing pyrazoline derivatives with thiourea skeleton as selective HER-2 inhibitors

    NASA Astrophysics Data System (ADS)

    Yang, Bing; Yang, Yu-Shun; Yang, Na; Li, Guigen; Zhu, Hai-Liang

    2016-06-01

    A series of novel dioxin-containing pyrazoline derivatives with thiourea skeleton have been designed, synthesized and evaluated for their EGFR/HER-2 inhibitory and anti-proliferation activities. A majority of them displayed selective HER-2 inhibitory activity against EGFR inhibitory activity. Compound C20 displayed the most potent activity against HER-2 and MDA-MB-453 human breast cancer cell line (IC50 = 0.03 μM and GI50 = 0.15 μM), being slightly more potent than the positive control Erlotinib (IC50 = 0.16 μM and GI50 = 1.56 μM) and comparable with Lapatinib (IC50 = 0.01 μM and GI50 = 0.03 μM). It is a more exciting result that C20 was over 900 times more potent against HER-2 than against EGFR while this value was 0.19 for Erlotinib and 1.00 for Lapatinib, indicating high selectivity. The results of docking simulation indicate that the dioxin moiety occupied the exit of the active pocket and pushed the carbothioamide deep into the active site. QSAR models have been built with activity data and binding conformations to begin our work in this paper as well as to provide a reliable tool for reasonable design of EGFR/HER-2 inhibitors in future.

  17. Design, biological evaluation and 3D QSAR studies of novel dioxin-containing pyrazoline derivatives with thiourea skeleton as selective HER-2 inhibitors

    PubMed Central

    Yang, Bing; Yang, Yu-Shun; Yang, Na; Li, Guigen; Zhu, Hai-Liang

    2016-01-01

    A series of novel dioxin-containing pyrazoline derivatives with thiourea skeleton have been designed, synthesized and evaluated for their EGFR/HER-2 inhibitory and anti-proliferation activities. A majority of them displayed selective HER-2 inhibitory activity against EGFR inhibitory activity. Compound C20 displayed the most potent activity against HER-2 and MDA-MB-453 human breast cancer cell line (IC50 = 0.03 μM and GI50 = 0.15 μM), being slightly more potent than the positive control Erlotinib (IC50 = 0.16 μM and GI50 = 1.56 μM) and comparable with Lapatinib (IC50 = 0.01 μM and GI50 = 0.03 μM). It is a more exciting result that C20 was over 900 times more potent against HER-2 than against EGFR while this value was 0.19 for Erlotinib and 1.00 for Lapatinib, indicating high selectivity. The results of docking simulation indicate that the dioxin moiety occupied the exit of the active pocket and pushed the carbothioamide deep into the active site. QSAR models have been built with activity data and binding conformations to begin our work in this paper as well as to provide a reliable tool for reasonable design of EGFR/HER-2 inhibitors in future. PMID:27273260

  18. Design, biological evaluation and 3D QSAR studies of novel dioxin-containing pyrazoline derivatives with thiourea skeleton as selective HER-2 inhibitors.

    PubMed

    Yang, Bing; Yang, Yu-Shun; Yang, Na; Li, Guigen; Zhu, Hai-Liang

    2016-01-01

    A series of novel dioxin-containing pyrazoline derivatives with thiourea skeleton have been designed, synthesized and evaluated for their EGFR/HER-2 inhibitory and anti-proliferation activities. A majority of them displayed selective HER-2 inhibitory activity against EGFR inhibitory activity. Compound C20 displayed the most potent activity against HER-2 and MDA-MB-453 human breast cancer cell line (IC50 = 0.03 μM and GI50 = 0.15 μM), being slightly more potent than the positive control Erlotinib (IC50 = 0.16 μM and GI50 = 1.56 μM) and comparable with Lapatinib (IC50 = 0.01 μM and GI50 = 0.03 μM). It is a more exciting result that C20 was over 900 times more potent against HER-2 than against EGFR while this value was 0.19 for Erlotinib and 1.00 for Lapatinib, indicating high selectivity. The results of docking simulation indicate that the dioxin moiety occupied the exit of the active pocket and pushed the carbothioamide deep into the active site. QSAR models have been built with activity data and binding conformations to begin our work in this paper as well as to provide a reliable tool for reasonable design of EGFR/HER-2 inhibitors in future. PMID:27273260

  19. A Mechanism-based 3D-QSAR Approach for Classification and Prediction of Acetylcholinesterase Inhibitory Potency of Organophosphate and Carbamate Analogs

    EPA Science Inventory

    Organophosphate (OP) and carbamate esters can inhibit acetylcholinesterase (AChE) by binding covalently to a serine residue in the enzyme active site, and their inhibitory potency depends largely on affinity for the enzyme and the reactivity of the ester. Despite this understandi...

  20. Rigorous Treatment of Multi-species Multi-mode Ligand-Receptor Interactions in 3D-QSAR: CoMFA Analysis of Thyroxine Analogs Binding to Transthyretin

    PubMed Central

    Natesan, Senthil; Wang, Tiansheng; Lukacova, Viera; Bartus, Vladimir; Khandelwal, Akash; Balaz, Stefan

    2011-01-01

    For a rigorous analysis of the receptor-ligand binding, speciation of the ligands caused by ionization, tautomerism, covalent hydration, and dynamic stereoisomerism needs to be considered. Each species may bind in several orientations or conformations (modes), especially for flexible ligands and receptors. A thermodynamic description of the multi-species (MS), multi-mode (MM) binding events shows that the overall association constant is equal to the weighted sum of the sums of microscopic association constants of individual modes for each species, with the weights given by the unbound fractions of individual species. This expression is a prerequisite for a precise quantitative characterization of the ligand-receptor interactions in both structure-based and ligand-based structure-activity analyses. We have implemented the MS-MM correlation expression into the Comparative Molecular Field Analysis (CoMFA), which deduces a map of the binding site from structures and binding affinities of a ligand set, in the absence of experimental structural information on the receptor. The MS-MM CoMFA approach was applied to published data for binding to transthyretin of 28 thyroxine analogs, each forming up to four ionization species under physiological conditions. The published X-ray structures of several analogs, exhibiting multiple binding modes, served as templates for the MS-MM superposition of thyroxine analogs. Additional modes were generated for compounds with flexible alkyl substituents, to identify bound conformations. The results demonstrate that the MS-MM modification improved predictive abilities of the CoMFA models, even for the standard procedure with MS-MM selected species and modes. The predicted prevalences of individual modes and the generated receptor site model are in reasonable agreement with the available X-ray data. The calibrated model can help in the design of inhibitors of transthyretin amyloid fibril formation. PMID:21476521

  1. Complementary three-dimensional quantitative structure-activity relationship modeling of binding affinity and functional potency: a study on alpha4beta2 nicotinic ligands.

    PubMed

    Tosco, Paolo; Ahring, Philip K; Dyhring, Tino; Peters, Dan; Harpsøe, Kasper; Liljefors, Tommy; Balle, Thomas

    2009-04-23

    Complementary 3D-QSAR modeling of binding affinity and functional potency is proposed as a tool to pinpoint the molecular features of the ligands, and the corresponding amino acids in the receptor, responsible for high affinity binding vs those driving agonist behavior and receptor activation. This approach proved successful on a series of nicotinic alpha(4)beta(2) ligands, whose partial/full agonist profile could be linked to the size of the scaffold as well as to the nature of the substituents.

  2. Investigation of an Immunoassay with Broad Specificity to Quinolone Drugs by Genetic Algorithm with Linear Assignment of Hypermolecular Alignment of Data Sets and Advanced Quantitative Structure-Activity Relationship Analysis.

    PubMed

    Chen, Jiahong; Lu, Ning; Shen, Xing; Tang, Qiushi; Zhang, Chijian; Xu, Jun; Sun, Yuanming; Huang, Xin-An; Xu, Zhenlin; Lei, Hongtao

    2016-04-01

    A polyclonal antibody against the quinolone drug pazufloxacin (PAZ) but with surprisingly broad specificity was raised to simultaneously detect 24 quinolones (QNs). The developed competitive indirect enzyme-linked immunosorbent assay (ciELISA) exhibited limits of detection (LODs) for the 24 QNs ranging from 0.45 to 15.16 ng/mL, below the maximum residue levels (MRLs). To better understand the obtained broad specificity, a genetic algorithm with linear assignment of hypermolecular alignment of data sets (GALAHAD) was used to generate the desired pharmacophore model and superimpose the QNs, and then advanced comparative molecular field analysis (CoMFA) and advanced comparative molecular similarity indices analysis (CoMSIA) models were employed to study the three-dimensional quantitative structure-activity relationship (3D QSAR) between QNs and the antibody. It was found that the QNs could interact with the antibody with different binding poses, and cross-reactivity was mainly positively correlated with the bulky substructure containing electronegative atom at the 7-position, while it was negatively associated with the large bulky substructure at the 1-position of QNs.

  3. Hologram quantitative structure-activity relationship and comparative molecular field analysis studies within a series of tricyclic phthalimide HIV-1 integrase inhibitors.

    PubMed

    Magalhães, Uiaran de Oliveira; Souza, Alessandra Mendonça Teles de; Albuquerque, Magaly Girão; Brito, Monique Araújo de; Bello, Murilo Lamim; Cabral, Lucio Mendes; Rodrigues, Carlos Rangel

    2013-01-01

    Acquired immunodeficiency syndrome is a public health problem worldwide caused by the Human immunodeficiency virus (HIV). Treatment with antiretroviral drugs is the best option for viral suppression, reducing morbidity and mortality. However, viral resistance in HIV-1 therapy has been reported. HIV-1 integrase (IN) is an essential enzyme for effective viral replication and an attractive target for the development of new inhibitors. In the study reported here, two- and three-dimensional quantitative structure-activity relationship (2D/3D-QSAR) studies, applying hologram quantitative structure-activity relationship (HQSAR) and comparative molecular field analysis (CoMFA) methods, respectively, were performed on a series of tricyclic phthalimide HIV-1 IN inhibitors. The best HQSAR model (q (2) = 0.802, r (2) = 0.972) was obtained using atoms, bonds, and connectivity as the fragment distinction, a fragment size of 2-5 atoms, hologram length of 61 bins, and six components. The best CoMFA model (q (2) = 0.748, r (2) = 0.974) was obtained with alignment of all atoms of the tricyclic phthalimide moiety (alignment II). The HQSAR contribution map identified that the carbonyl-hydroxy-aromatic nitrogen motif made a positive contribution to the activity of the compounds. Furthermore, CoMFA contour maps suggested that bulky groups in meta and para positions in the phenyl ring would increase the biological activity of this class. The conclusions of this work may lead to a better understanding of HIV-1 IN inhibition and contribute to the design of new and more potent derivatives.

  4. Hologram quantitative structure–activity relationship and comparative molecular field analysis studies within a series of tricyclic phthalimide HIV-1 integrase inhibitors

    PubMed Central

    de Oliveira Magalhães, Uiaran; de Souza, Alessandra Mendonça Teles; Albuquerque, Magaly Girão; de Brito, Monique Araújo; Bello, Murilo Lamim; Cabral, Lucio Mendes; Rodrigues, Carlos Rangel

    2013-01-01

    Acquired immunodeficiency syndrome is a public health problem worldwide caused by the Human immunodeficiency virus (HIV). Treatment with antiretroviral drugs is the best option for viral suppression, reducing morbidity and mortality. However, viral resistance in HIV-1 therapy has been reported. HIV-1 integrase (IN) is an essential enzyme for effective viral replication and an attractive target for the development of new inhibitors. In the study reported here, two- and three-dimensional quantitative structure–activity relationship (2D/3D-QSAR) studies, applying hologram quantitative structure–activity relationship (HQSAR) and comparative molecular field analysis (CoMFA) methods, respectively, were performed on a series of tricyclic phthalimide HIV-1 IN inhibitors. The best HQSAR model (q2 = 0.802, r2 = 0.972) was obtained using atoms, bonds, and connectivity as the fragment distinction, a fragment size of 2–5 atoms, hologram length of 61 bins, and six components. The best CoMFA model (q2 = 0.748, r2 = 0.974) was obtained with alignment of all atoms of the tricyclic phthalimide moiety (alignment II). The HQSAR contribution map identified that the carbonyl-hydroxy-aromatic nitrogen motif made a positive contribution to the activity of the compounds. Furthermore, CoMFA contour maps suggested that bulky groups in meta and para positions in the phenyl ring would increase the biological activity of this class. The conclusions of this work may lead to a better understanding of HIV-1 IN inhibition and contribute to the design of new and more potent derivatives. PMID:24039405

  5. Improving quantitative structure-activity relationships through multiobjective optimization.

    PubMed

    Nicolotti, Orazio; Giangreco, Ilenia; Miscioscia, Teresa Fabiola; Carotti, Angelo

    2009-10-01

    A multiobjective optimization algorithm was proposed for the automated integration of structure- and ligand-based molecular design. Driven by a genetic algorithm, the herein proposed approach enabled the detection of a number of trade-off QSAR models accounting simultaneously for two independent objectives. The first was biased toward best regressions among docking scores and biological affinities; the second minimized the atom displacements from a properly established crystal-based binding topology. Based on the concept of dominance, 3D QSAR equivalent models profiled the Pareto frontier and were, thus, designated as nondominated solutions of the search space. K-means clustering was, then, operated to select a representative subset of the available trade-off models. These were effectively subjected to GRID/GOLPE analyses for quantitatively featuring molecular determinants of ligand binding affinity. More specifically, it was demonstrated that a) diverse binding conformations occurred on the basis of the ligand ability to profitably contact different part of protein binding site; b) enzyme selectivity was better approached and interpreted by combining diverse equivalent models; and c) trade-off models were successful and even better than docking virtual screening, in retrieving at high sensitivity active hits from a large pool of chemically similar decoys. The approach was tested on a large series, very well-known to QSAR practitioners, of 3-amidinophenylalanine inhibitors of thrombin and trypsin, two serine proteases having rather different biological actions despite a high sequence similarity. PMID:19785453

  6. Structural investigations of T854A mutation in EGFR and identification of novel inhibitors using structure activity relationships

    PubMed Central

    2015-01-01

    Background The epidermal growth factor receptor (EGFR) is a member of the ErbB family that is involved in a number of processes responsible for cancer development and progression such as angiogenesis, apoptosis, cell proliferation and metastatic spread. Malfunction in activation of protein tyrosine kinases has been shown to result in uncontrolled cell growth. The EGFR TK domain has been identified as suitable target in cancer therapy and tyrosine kinase inhibitors such as erlotinib have been used for treatment of cancer. Mutations in the region of the EGFR gene encoding the tyrosine kinase (TK) domain causes altered responses to EGFR TK inhibitors (TKI). In this paper we perform molecular dynamics simulations and PCA analysis on wild-type and mutant (T854A) structures to gain insight into the structural changes observed in the target protein upon mutation. We also report two novel inhibitors identified by combined approach of QSAR model development. Results The wild-type and mutant structure was observed to be stable for 26 ns and 24 ns respectively. In PCA analysis, the mutant structure proved to be more flexible than wild-type. We developed a 3D-QSAR model using 38 thiazolyl-pyrazoline compounds which was later used for prediction of inhibitory activity of natural compounds of ZINC library. The 3D-QSAR model was proved to be robust by the statistical parameters such as r2 (0.9751), q2(0.9491) and pred_r2(0.9525). Conclusion Analysis of molecular dynamics simulations results indicate stability loss and increased flexibility in the mutant structure. This flexibility results in structural changes which render the mutant protein drug resistant against erlotinib. We report two novel compounds having high predicted inhibitory activity to EGFR TK domain with both wild-type and mutant structure. PMID:26041145

  7. Modification, Biological Evaluation and 3D QSAR Studies of Novel 2-(1,3-Diaryl- 4,5-Dihydro-1H-Pyrazol-5-yl)Phenol Derivatives as Inhibitors of B-Raf Kinase

    PubMed Central

    Tang, Dan-Jie; Yang, Yong-Hua; Zhu, Hai-Liang

    2014-01-01

    A series of novel 2-(1,3-diaryl- 4,5-dihydro-1H-pyrazol-5-yl)phenol derivatives (C1–C24) have been synthesized. The B-Raf inhibitory activity and anti-proliferation activity of these compounds have been tested. Compound C6 displayed the most potent biological activity against B-RafV600E (IC50 = 0.15 µM) and WM266.4 human melanoma cell line (GI50 = 1.75 µM), being comparable with the positive control (Vemurafenib and Erlotinib) and more potent than our previous best compounds. The docking simulation was performed to analyze the probable binding models and poses while the QSAR model was built to check the previous work as well as to introduce new directions. This work aimed at seeking more potent inhibitors as well as discussing some previous findings. As a result, the introduction of ortho-hydroxyl group on 4,5-dihydro-1H-pyrazole skeleton did reinforce the anti-tumor activity while enlarging the group on N-1 of pyrazoline was also helpful. PMID:24827980

  8. A COMPUTATIONALLY BASED IDENTIFICATION ALGORITHM FOR ESTROGEN RECEPTOR LIGANDS: PART 2. EVALUATION OF A HERA BINDING AFFINITY MODEL

    EPA Science Inventory

    The common reactivity pattern (CORE{A) approach is a 3-dimensional, quantitative structure activity relationship (3-D QSAR) technique that permits identification and quantification of specific global and local stereoelectronic characteristics associated with a chemical's biologic...

  9. Hepatoprotection of sesquiterpenoids: a quantitative structure-activity relationship (QSAR) approach.

    PubMed

    Vinholes, Juliana; Rudnitskaya, Alisa; Gonçalves, Pedro; Martel, Fátima; Coimbra, Manuel A; Rocha, Sílvia M

    2014-03-01

    The relative hepatoprotection effect of fifteen sesquiterpenoids, commonly found in plants and plant-derived foods and beverages was assessed. Endogenous lipid peroxidation (assay A) and induced lipid peroxidation (assay B) were evaluated in liver homogenates from Wistar rats by the thiobarbituric acid reactive species test. Sesquiterpenoids with different chemical structures were tested: trans,trans-farnesol, cis-nerolidol, (-)-α-bisabolol, trans-β-farnesene, germacrene D, α-humulene, β-caryophyllene, isocaryophyllene, (+)-valencene, guaiazulene, (-)-α-cedrene, (+)-aromadendrene, (-)-α-neoclovene, (-)-α-copaene, and (+)-cyclosativene. Ascorbic acid was used as a positive antioxidant control. With the exception of α-humulene, all the sesquiterpenoids under study (1mM) were effective in reducing the malonaldehyde levels in both endogenous and induced lipid peroxidation up to 35% and 70%, respectively. The 3D-QSAR models developed, relating the hepatoprotection activity with molecular properties, showed good fit (Radj(2) 0.819 and 0.972 for the assays A and B, respectively) with good prediction power (Q(2)>0.950 and SDEP<2%, for both models A and B). A network of effects associated with structural and chemical features of sesquiterpenoids such as shape, branching, symmetry, and presence of electronegative fragments, can modulate the hepatoprotective activity observed for these compounds.

  10. Editorial: Current status and perspective on drug targets in tubercle bacilli and drug design of antituberculous agents based on structure-activity relationship.

    PubMed

    Tomioka, Haruaki

    2014-01-01

    Worldwide, tuberculosis (TB) remains the most frequent and important infectious disease causing morbidity and death. However, the development of new drugs for the treatment and prophylaxis of TB, particularly those truly active against dormant and persistent types of tubercle bacilli, has been slow, although some promising drugs, such as diarylquinoline TMC207, nitroimidazopyran PA-824, nitroimidazo-oxazole Delamanid (OPC-67683), oxazolidinone PNU-100480, ethylene diamine SQ-109, and pyrrole derivative LL3858, are currently under phase 1 to 3 clinical trials. Therefore, novel types of antituberculous drug, which act on unique drug targets in Mycobacterium tuberculosis (MTB) pathogens, particularly drug targets related to the establishment of mycobacterial dormancy in the host's macrophages, are urgently needed. In this context, it should be noted that current anti-TB drugs mostly target the metabolic reactions and proteins which are essential for the growth of MTB in extracellular milieus. It may also be promising to develop another type of drug that exerts an inhibitory action against bacterial virulence factors which cross-talk and interfere with signaling pathways of MTB-infected immunocompetent host cells, such as lymphocytes, macrophages, and NK cells, thereby changing the intracellular milieus that are favorable to intramacrophage survival and the growth of infected bacilli. This special issue contains ten review articles, dealing with recent approaches to identify and establish novel drug targets in MTB for the development of new and unique antitubercular drugs, including those related to mycobacterial dormancy and crosstalk with cellular signaling pathways. In addition, this special issue contains some review papers with special reference to the drug design based on quantitative structure-activity relationship (QSAR) analysis, especially three-dimensional (3D)-QSAR. New, critical information on the entire genome of MTB and mycobacterial virulence genes is

  11. Evaluation of the Therapeutic Properties of Mastoparan- and Sifuvirtide- Derivative Antimicrobial Peptides Using Chemical Structure-Function Relationship - in vivo and in silico Approaches.

    PubMed

    Avram, Speranta; Mernea, Maria; Borcan, Florin; Mihailescu, Dan

    2016-01-01

    Antimicrobial peptides, also called body defense peptides, are chemical structures widely distributed across the animal and vegetal kingdoms that have a fundamental role as part of the immune system. These peptides are used against a wide range of pathogens, such as Gram-negative and - positive bacteria, fungi and viruses, etc. Their action spectrum makes them important for the pharmaceutical industry, as they could represent templates for the design of new and more potent structures by using drug design and drug delivery systems. Here we present the antimicrobial activity against Bacillus subtilis (expressed as minimal inhibitory concentration values) for 33 mastoparan analogs and their new derivatives by quantitative structure-activity relationship method (2D, aligned and also non-aligned 3D-QSAR). We establish the contribution to antimicrobial activity of molecular descriptors like hydrophobicity, hydrogen bond donor and steric hindrance, correlated with contributions from the membrane environment (sodium, potassium, chloride ions). Also the studies of HIV-1 fusion inhibitor sifuvirtide and its analogs are presented in context of interaction with lipid structures during fusion and delivery of these drugs.

  12. Artificial neural networks from MATLAB in medicinal chemistry. Bayesian-regularized genetic neural networks (BRGNN): application to the prediction of the antagonistic activity against human platelet thrombin receptor (PAR-1).

    PubMed

    Caballero, Julio; Fernández, Michael

    2008-01-01

    Artificial neural networks (ANNs) have been widely used for medicinal chemistry modeling. In the last two decades, too many reports used MATLAB environment as an adequate platform for programming ANNs. Some of these reports comprise a variety of applications intended to quantitatively or qualitatively describe structure-activity relationships. A powerful tool is obtained when there are combined Bayesian-regularized neural networks (BRANNs) and genetic algorithm (GA): Bayesian-regularized genetic neural networks (BRGNNs). BRGNNs can model complicated relationships between explanatory variables and dependent variables. Thus, this methodology is regarded as useful tool for QSAR analysis. In order to demonstrate the use of BRGNNs, we developed a reliable method for predicting the antagonistic activity of 5-amino-3-arylisoxazole derivatives against Human Platelet Thrombin Receptor (PAR-1), using classical 3D-QSAR methodologies: Comparative Molecular Field Analysis (CoMFA) and Comparative Molecular Similarity Indices Analysis (CoMSIA). In addition, 3D vectors generated from the molecular structures were correlated with antagonistic activities by multivariate linear regression (MLR) and Bayesian-regularized neural networks (BRGNNs). All models were trained with 34 compounds, after which they were evaluated for predictive ability with additional 6 compounds. CoMFA and CoMSIA were unable to describe this structure-activity relationship, while BRGNN methodology brings the best results according to validation statistics.

  13. Virulence Factor-activity Relationships: Workshop Summary

    EPA Science Inventory

    The concept or notion of virulence factor–activity relationships (VFAR) is an approach for identifying an analogous process to the use of qualitative structure–activity relationships (QSAR) for identifying new microbial contaminants. In QSAR, it is hypothesized that, for new chem...

  14. A 3-D QSAR-BASED IDENTIFICATION ALGORITHM FOR POTENTIAL ESTROGEN RECEPTOR LIGANDS

    EPA Science Inventory

    Recent reports concerning the lethal effects of solar ultraviolet-B (UV-B) radiation on amphibians suggest that this stressor has the potential to impact some amphibian populations. In this study embryos and larvae of three anuran species, Rana pipiens, R. clamitans, and R. septe...

  15. Relationships between solar activity and climate change

    NASA Technical Reports Server (NTRS)

    Roberts, W. O.

    1975-01-01

    The relationship between recurrent droughts in the High Plains of the United States and the double sunspot cycle is discussed in detail. It is suggested that high solar activity is generally related to an increase in meridional circulation and blocking patterns at high and intermediate latitudes, especially in winter, and the effect is related to the sudden formation of cirrus clouds during strong geomagnetic activity that originates in the solar corpuscular emission.

  16. Relationship between potential platelet activation and LCS

    NASA Astrophysics Data System (ADS)

    Shadden, Shawn

    2010-11-01

    In the study of blood flow, emphasis is often directed at understanding shear stress at the vessel wall due to its potentially disruptive influence on the endothelium. However, it is also known that shear stress has a potent effect on platelet activation. Platelet activation is a precursor for blood clotting, which in turn is the cause of most forms of death. Since most platelets are contained in the flow domain, it is important to consider stresses acting on the platelet as they are convected. Locations of high stress can correspond to boundaries between different dynamic regions and locations of hyperbolic points in the Eulerian sense. In the computation of LCS, strain in typically considered in the Lagrangian sense. In this talk we discuss the relationship between locations of potential platelet activation due to increased stress and locations of LCS marking increase Lagrangian deformation.

  17. Ligand-based identification of environmental estrogens

    SciTech Connect

    Waller, C.L.; Oprea, T.I.; Chae, K.

    1996-12-01

    Comparative molecular field analysis (CoMFA), a three-dimensional quantitative structure-activity relationship (3D-QSAR) paradigm, was used to examine the estrogen receptor (ER) binding affinities of a series of structurally diverse natural, synthetic, and environmental chemicals of interest. The CoMFA/3D-QSAR model is statistically robust and internally consistent, and successfully illustrates that the overall steric and electrostatic properties of structurally diverse ligands for the estrogen receptor are both necessary and sufficient to describe the binding affinity. The ability of the model to accurately predict the ER binding affinity of an external test set of molecules suggests that structure-based 3D-QSAR models may be used to supplement the process of endocrine disrupter identification through prioritization of novel compounds for bioassay. The general application of this 3D-QSAR model within a toxicological framework is, at present, limited only by the quantity and quality of biological data for relevant biomarkers of toxicity and hormonal responsiveness. 28 refs., 12 figs., 9 tabs.

  18. Jak2 inhibitor--a jackpot for pharmaceutical industries: a comprehensive computational method in the discovery of new potent Jak2 inhibitors.

    PubMed

    Singh, Kh Dhanachandra; Naveena, Queen; Karthikeyan, Muthusamy

    2014-08-01

    A potent Jak2 inhibitor could solve numerous diseases including hypertension and cardiovascular diseases, myeloproliferative neoplasms, polycythemia vera, essential thrombocythemia, primary myelofibrosis, psoriasis and rheumatoid arthritis. So, identifying potent Jak2 inhibitors is of great interest to researchers and pharmaceutical companies. Virtual screening and molecular docking are important tools for structure based drug discovery but selecting an appropriate method to calculate the electrostatic potential is critical. In this study, four semi empirical (AM1, RM1, PM3, and MNDO) and two empirical (DFT, HF) charges were investigated for their performance on the prediction of docking pose using Glide XP. The result shows that AM1 has the best charge model for our study. Further, we performed a 3D-quantitative structure-activity relationship (3D-QSAR) study of 76 decaene derivatives. Since 3D-QSAR methods are known to be highly sensitive to ligand conformation and alignment method, we did a comparative 3D-QSAR study of AM1 charge docked pose alignment based QSAR (structure based) and pharmacophore based QSAR. We found a better QSAR model in the structure based method. Hence, the results clearly demonstrate that selecting an appropriate method to calculate the electrostatic potential for docking studies and a good alignment of the ligand for 3D-QSAR is critical. Finally, extensive pharmacophore and e-pharmacophore based virtual screening followed by subsequent docking studies identified 27 lead molecules which could be potent Jak2 inhibitors.

  19. Peptide Bacteriocins--Structure Activity Relationships.

    PubMed

    Etayash, Hashem; Azmi, Sarfuddin; Dangeti, Ramana; Kaur, Kamaljit

    2015-01-01

    With the growing concerns in the scientific and health communities over increasing levels of antibiotic resistance, antimicrobial peptide bacteriocins have emerged as promising alternatives to conventional small molecule antibiotics. A substantial attention has recently focused on the utilization of bacteriocins in food preservation and health safety. Despite the fact that a large number of bacteriocins have been reported, only a few have been fully characterized and structurally elucidated. Since knowledge of the molecular structure is a key for understanding the mechanism of action and therapeutic effects of peptide, we centered our focus in this review on the structure-activity relationships of bacteriocins with a particular focus in seven bacteriocins, namely, nisin, microcin J25, microcin B17, microcin C, leucocin A, sakacin P, and pediocin PA-1. Significant structural changes responsible for the altered activity of the recent bacteriocin analogues are discussed here. PMID:26265354

  20. Obstacles to activity pacing: assessment, relationship to activity and functioning.

    PubMed

    Cane, Douglas; McCarthy, Mary; Mazmanian, Dwight

    2016-07-01

    Activity pacing is frequently included among the strategies provided to individuals with chronic pain to manage pain and improve functioning. Individuals with chronic pain may, however, limit their use of activity pacing because they perceive significant obstacles to its use. This study describes the development of a measure to assess obstacles to activity pacing and examines the relationship of this measure to activity patterns and functioning. A sample of 637 individuals with chronic pain completed items describing potential obstacles to activity pacing as part of their pretreatment assessment. Item analyses were used to construct a 14-item measure of obstacles to activity pacing. A subset of these individuals completed the measure again after completion of a group treatment program. The resulting measure demonstrated excellent internal consistency and was minimally affected by social desirability. Correlations with measures of activity and psychosocial functioning provided initial construct validity for the measure. Sex differences were found with women initially identifying more obstacles to activity pacing. Fewer obstacles were identified by both men and women after treatment, and these changes were related to modest changes in activity patterns and functioning. The present results identify a number of obstacles that may limit the use of activity pacing by individuals with chronic pain. Treatment may result in a decrease in the number of obstacles identified, and this change is related to changes in the individual's activity pattern and psychosocial functioning. PMID:26963845

  1. Cationic phospholipids: structure transfection activity relationships

    SciTech Connect

    Koynova, Rumiana; Tenchov, Boris

    2010-01-18

    Synthetic cationic lipids are presently the most widely used non-viral gene carriers. Examined here is a particularly attractive cationic lipid class, triester phosphatidylcholines (PCs) exhibiting low toxicities and good transfection efficiency. Similarly to other cationic lipids, they form stable complexes (lipoplexes) with the polyanionic nucleic acids. A summary of studies on a set of {approx}30 cationic PCs reveals the existence of a strong, systematic dependence of their transfection efficiency on the lipid hydrocarbon chain structure: transfection activity increases with increase of chain unsaturation from 0 to 2 double bonds per lipid and decreases with increase of chain length in the range {approx}30-50 total number of chain carbon atoms. Maximum transfection was observed for ethyl phosphate PCs (EPCs) with monounsaturated 14:1 chains (total of 2 double bonds and 30 chain carbon atoms). Lipid phase behavior is known to depend strongly on the chain molecular structure and the above relationships thus substantiate a view that cationic PC phase propensities are an important determinant of their activity. Indeed, X-ray structural studies show that the rate of DNA release from lipoplexes as well as transfection activity well correlate with non-lamellar phase progressions observed in cationic PC mixtures with membrane lipids. These findings appear to be of considerable interest because, according to current views, key processes in lipid-mediated transfection such as lipoplex disassembly and DNA release within the cells are believed to take place upon cationic lipid mixing with cellular lipids.

  2. Friend Flips: A Story Activity about Relationships

    ERIC Educational Resources Information Center

    Szucs, Leigh; Reyes, Jovanni V.; Farmer, Jennifer; Wilson, Kelly L.; McNeill, Elisa Beth

    2015-01-01

    Adolescents are influenced by the type, length and quality of the connections shared with different people throughout their lifespan. Relationships with peers, friends, and adults help to shape knowledge, attitudes, and beliefs related to health. Recognizing healthy or unhealthy characteristics allow youth to strengthen relationships and…

  3. Brief Report: Activities in Heterosexual Romantic Relationships--Grade Differences and Associations with Relationship Satisfaction

    ERIC Educational Resources Information Center

    Carlson, Wendy; Rose, Amanda J.

    2012-01-01

    Whereas much research addresses relations of youths' heterosexual romantic relationships with sexual and/or delinquent activities, less attention has been paid to youths' more normative, day-to-day activities with romantic partners. This gap in the literature is problematic given that these activities define the substance of the relationships and…

  4. Ligand Biological Activity Predictions Using Fingerprint-Based Artificial Neural Networks (FANN-QSAR)

    PubMed Central

    Myint, Kyaw Z.; Xie, Xiang-Qun

    2015-01-01

    This chapter focuses on the fingerprint-based artificial neural networks QSAR (FANN-QSAR) approach to predict biological activities of structurally diverse compounds. Three types of fingerprints, namely ECFP6, FP2, and MACCS, were used as inputs to train the FANN-QSAR models. The results were benchmarked against known 2D and 3D QSAR methods, and the derived models were used to predict cannabinoid (CB) ligand binding activities as a case study. In addition, the FANN-QSAR model was used as a virtual screening tool to search a large NCI compound database for lead cannabinoid compounds. We discovered several compounds with good CB2 binding affinities ranging from 6.70 nM to 3.75 μM. The studies proved that the FANN-QSAR method is a useful approach to predict bioactivities or properties of ligands and to find novel lead compounds for drug discovery research. PMID:25502380

  5. THE PRACTICE OF STRUCTURE ACTIVITY RELATIONSHIPS (SAR) IN TOXICOLOGY

    EPA Science Inventory

    Both qualitative and quantitative modeling methods relating chemical structure to biological activity, called structure-activity relationship analyses or SAR, are applied to the prediction and characterization of chemical toxicity. This minireview will discuss some generic issue...

  6. The relationship between chitotriosidase activity and tuberculosis.

    PubMed

    Chen, M; Deng, J; Li, W; Su, C; Xia, Y; Wang, M; Li, X; Abuaku, B K; Tan, H; Wen, S W

    2015-11-01

    Chitotriosidase, secreted by activated macrophages, is a biomarker of activated macrophages. In this study, we explored whether chitotriosidase could be adopted as a biomarker to evaluate the curative effect on tuberculosis (TB). Five counties were randomly selected out of 122 counties/cities/districts in Hunan Province, China. Our cases were all TB patients who were newly diagnosed or had been receiving treatment at the Centers for Disease Control (CDCs) of these five counties between April and August in 2009. Healthy controls were selected from a community health facility in the Kaifu district of Changsha City after frequency-matching of gender and age with the cases. Chitotriosidase activity was evaluated by a fluorometric assay. Categorical variables were analysed with the χ 2 test. Measurement data in multiple groups were tested with analysis of variance and least significant difference (LSD). Correlation between chitotriosidase activity and the degree of radiological extent (DRE) was examined by Spearman's rank correlation test. The average chitotriosidase activity levels of new TB cases, TB cases with different periods of treatment (6 months) and the control group were 54·47, 34·77, 21·54, 12·73 and 10·53 nmol/h.ml, respectively. Chitotriosidase activity in TB patients declined along with the continuity of treatment. The chitotriosidase activity of both smear-positive and the smear-negative pulmonary TB patients decreased after 6 months' treatment to normal levels (P < 0·05). Moreover, chitotriosidase activity was positively correlated with DRE (r = 0·607, P < 0·001). Our results indicate that chitotriosidase might be a marker of TB treatment effects. However, further follow-up study of TB patients is needed in the future. PMID:26418349

  7. Design, synthesis and anti-HIV activity of novel quinoxaline derivatives.

    PubMed

    Patel, Saloni B; Patel, Bhumika D; Pannecouque, Christophe; Bhatt, Hardik G

    2016-07-19

    In order to design novel anti-HIV agents, pharmacophore modelling, virtual screening, 3D-QSAR and molecular docking studies were performed. Pharmacophore model was generated using 17 structurally diverse molecules using DISCOtech followed by refinement with GASP module of Sybyl X. The best model containing four features; two donor sites, one acceptor atom and one hydrophobic region; was used as a query for virtual screening in NCI database and 6 compounds with Qfit value ≥98 were retrieved. The quinoxaline ring which is the bio-isostere of pteridine ring, retrieved as a hit in virtual screening, was selected as a core moiety. 3D-QSAR was carried on thirty five 5-hydroxy-6-oxo-1,6-dihydropyrimidine-4-carboxamide derivatives. Contour map analysis of best CoMFA and CoMSIA model suggested incorporation of hydrophobic, bulky and electronegative groups to increase potency of the designed compounds. 50 quinoxaline derivatives with different substitutions were designed on basis of both ligand based drug design approaches and were mapped on the best pharmacophore model. From this, best 32 quinoxaline derivatives were docked onto the active site of integrase enzyme and in-silico ADMET properties were also predicted. From this data, synthesis of top 7 quinoxaline derivatives was carried out and were characterized using Mass, (1)H-NMR and (13)C-NMR spectroscopy. Purity of compounds were checked using HPLC. These derivatives were evaluated for anti-HIV activity on III-B strain of HIV-1 and cytotoxicity studies were performed on VERO cell line. Two quinoxaline derivatives (7d and 7e) showed good results, which can be further explored to develop novel anti-HIV agents.

  8. Design, synthesis and anti-HIV activity of novel quinoxaline derivatives.

    PubMed

    Patel, Saloni B; Patel, Bhumika D; Pannecouque, Christophe; Bhatt, Hardik G

    2016-07-19

    In order to design novel anti-HIV agents, pharmacophore modelling, virtual screening, 3D-QSAR and molecular docking studies were performed. Pharmacophore model was generated using 17 structurally diverse molecules using DISCOtech followed by refinement with GASP module of Sybyl X. The best model containing four features; two donor sites, one acceptor atom and one hydrophobic region; was used as a query for virtual screening in NCI database and 6 compounds with Qfit value ≥98 were retrieved. The quinoxaline ring which is the bio-isostere of pteridine ring, retrieved as a hit in virtual screening, was selected as a core moiety. 3D-QSAR was carried on thirty five 5-hydroxy-6-oxo-1,6-dihydropyrimidine-4-carboxamide derivatives. Contour map analysis of best CoMFA and CoMSIA model suggested incorporation of hydrophobic, bulky and electronegative groups to increase potency of the designed compounds. 50 quinoxaline derivatives with different substitutions were designed on basis of both ligand based drug design approaches and were mapped on the best pharmacophore model. From this, best 32 quinoxaline derivatives were docked onto the active site of integrase enzyme and in-silico ADMET properties were also predicted. From this data, synthesis of top 7 quinoxaline derivatives was carried out and were characterized using Mass, (1)H-NMR and (13)C-NMR spectroscopy. Purity of compounds were checked using HPLC. These derivatives were evaluated for anti-HIV activity on III-B strain of HIV-1 and cytotoxicity studies were performed on VERO cell line. Two quinoxaline derivatives (7d and 7e) showed good results, which can be further explored to develop novel anti-HIV agents. PMID:27105027

  9. Possible relationships between solar activity and meteorological phenomena

    NASA Technical Reports Server (NTRS)

    Bandeen, W. R. (Editor); Maran, S. P. (Editor)

    1975-01-01

    A symposium was conducted in which the following questions were discussed: (1) the evidence concerning possible relationships between solar activity and meteorological phenomena; (2) plausible physical mechanisms to explain these relationships; and (3) kinds of critical measurements needed to determine the nature of solar/meteorological relationships and/or the mechanisms to explain them, and which of these measurements can be accomplished best from space.

  10. Active Ageing: Intergenerational Relationships and Social Generativity.

    PubMed

    Rossi, Giovanna; Boccacin, Lucia; Bramanti, Donatella; Meda, Stefania G

    2014-01-01

    This contribution is a reflection on the concept of active ageing from the perspective of relational sociology. At the same time, it offers practical implications and outlines possible future courses of action, in the face of demographic and relational scenarios rapidly changing, and the challenges that each day people of all generations are called to cope with. Active ageing is quite a recent concept and indicates an attitude towards ageing that enhances the quality of life as people become older. The goal of active ageing is to enable people to realise their potential for physical, social and mental well-being and to participate in social life also in the last stage of the life cycle. In this phase, the presence of a network of support, security and care adequate to the possible onset of problems and criticalities is crucial. Relational sociology frames the phenomenon of an ageing population in a dense network of social relations, primarily at the level of family and community. For this reason, as supported by the most recent sociological literature and evidence from studies conducted in Italy and abroad (cf. SHARE), it is extremely important to investigate the link between active ageing, intergenerational orientation (solidarity and exchanges) and practices of prosociality (i.e. engagement in third-sector activities and volunteering in later life).

  11. Attachment relationships and physical activity motivation of college students.

    PubMed

    Ullrich-French, Sarah; Smith, Alan L; Cox, Anne E

    2011-08-01

    This study was designed to assess the link of attachment relationships with physical activity motivation. Potential mediators of this link were examined in a cross-sectional study targeting college student physical activity motivation and behaviour. Participants completed self-reports of attachment relationships (with mother, father and best friend), self-determined motivation for physical activity, physical activity behaviour and the hypothesised mediator variables of perceived competence, autonomy and relatedness. The results provide support for the mediating role of these variables in the association of father attachment with self-determined motivation. Meaningful variance in self-determined motivation for physical activity and physical activity behaviour was explained. Overall, attachment relationships appear to be relevant, albeit modestly, to physical activity motivation of college students. The findings support continued efforts to integrate attachment and motivational perspectives in the study of college student health behaviour.

  12. Structure activity relationships of selected naphthalene derivatives

    SciTech Connect

    Schultz, T.W.; Dumont, J.N.; Sankey, F.D.; Schmoyer, R.L. Jr.

    1983-01-01

    Twenty-two derivatives of naphthalene were assayed under an acute static regime with biological activity being monitored as population growth of Tetrahymena pyriformis. Activity varied over one log unit. Substituent constant structure-activity analyses revealed the model, log BR = 0.282Ha + 0.352..pi.. + 0.692F + 0.334/sup 1/X/sub sub//sup v/ - 0.326R + 0.027, to be best and to account for 85% of the variation in log BR (BR, biological response; Ha, hydrogen acceptance; ..pi.., hydrophobic substituent constant; F, polar electronic substituent constant, /sup 1/X/sub sub//sup v/, substituent molar connectivity index; R, resonance electronic substituent constant). The Ha and ..pi.. parameters are the most important, accounting for 71% of the log BR variability. 21 references, 1 figure, 7 tables.

  13. Young Adolescents' Perceptions of Romantic Relationships and Sexual Activity

    ERIC Educational Resources Information Center

    Royer, Heather R.; Keller, Mary L.; Heidrich, Susan M.

    2009-01-01

    The purpose of this article is to describe young adolescents' perceptions of romantic relationships, ratings of important romantic partner characteristics, and acceptability of sexual activity with romantic relationships. Fifty-seven eighth-grade participants (average age = 13.8 years) from one urban US public middle school completed an anonymous…

  14. Relationships between Reading Activities and Language Use.

    ERIC Educational Resources Information Center

    Gordon, Sandra L.; Van Dongen, Richard

    1988-01-01

    Noting that the ways children encounter and use print in the classroom can be examined as surface and organizing content of curriculum, this article provides descriptions of innovative uses of print in the kindergarten and elementary school classroom. Curriculum "surface content" includes activities, use of classroom space, display, and materials…

  15. Social Relationships, Leisure Activity, and Health in Older Adults

    PubMed Central

    Chang, Po-Ju; Wray, Linda; Lin, Yeqiang

    2015-01-01

    Objective Although the link between enhanced social relationships and better health has generally been well established, few studies have examined the role of leisure activity in this link. This study examined how leisure influences the link between social relationships and health in older age. Methods Using data from the 2006 and 2010 waves of the nationally representative U.S. Health and Retirement Study and structural equation modelling analyses, we examined data on 2,965 older participants to determine if leisure activities mediated the link between social relationships and health in 2010, controlling for race, education level, and health in 2006. Results The results demonstrated that leisure activities mediate the link between social relationships and health in these age groups. Perceptions of positive social relationships were associated with greater involvement in leisure activities, and greater involvement in leisure activities was associated with better health in older age. Discussion & Conclusions The contribution of leisure to health in these age groups is receiving increasing attention, and the results of this study add to the literature on this topic, by identifying the mediating effect of leisure activity on the link between social relationships and health. Future studies aimed at increasing leisure activity may contribute to improved health outcomes in older adults. PMID:24884905

  16. Relationships between Interlibrary Loan and Research Activity in Canada

    ERIC Educational Resources Information Center

    Duy, Joanna; Larivière, Vincent

    2014-01-01

    Interlibrary Loan borrowing rates in academic libraries are influenced by an array of factors. This article explores the relationship between interlibrary loan borrowing activity and research activity at 42 Canadian academic institutions. A significant positive correlation was found between interlibrary loan borrowing activity and measures of…

  17. Antiproliferative and Structure Activity Relationships of Amaryllidaceae Alkaloids.

    PubMed

    Cedrón, Juan C; Ravelo, Ángel G; León, Leticia G; Padrón, José M; Estévez-Braun, Ana

    2015-07-30

    The antiproliferative activity of a set of seven natural Amaryllidaceae alkaloids and 32 derivatives against four cancer cell lines (A2780, SW1573, T47-D and WiDr) was determined. The best antiproliferative activities were achieved with alkaloids derived from pancracine (2), haemanthamine (6) and haemantidine (7). For each skeleton, some structure-activity relationships were outlined.

  18. QSAR study and conformational analysis of 4-arylthiazolylhydrazones derived from 1-indanones with anti-Trypanosoma cruzi activity.

    PubMed

    Noguera, Guido J; Fabian, Lucas E; Lombardo, Elisa; Finkielsztein, Liliana

    2015-10-12

    A set of 4-arylthiazolylhydrazones derived from 1-indanones (TZHs) previously synthesized and assayed against Trypanosoma cruzi, the causative agent of Chagas disease, were explored in terms of conformational analysis. We found that TZHs can adopt four minimum energy conformations: cis (A, B and C) and trans. The possible bioactive conformation was selected by a 3D-QSAR model. Different molecular parameters were calculated to produce QSAR second-generation models. These QSAR results are discussed in conjunction with conformational analysis from molecular modeling studies. The main factor to determine the activity of the compounds was the partial charge at the N(3) atom (qN3). The predictive ability of the QSAR equations proposed was experimentally validated. The QSAR models developed in this study will be helpful to design novel potent TZHs.

  19. 3-D QSAR ANALYSIS OF INHIBITION OF MURINE SOLUBLE EPOXIDE HYDROLASE (MSEH) BY BENZOYLUREAS, ARYLUREAS, AND THEIR ANALOGUES. (R825433)

    EPA Science Inventory

    Two hundred and seventy-one compounds including benzoylureas, arylureas and related compounds were assayed using recombinant murine soluble epoxide hydrolase (MsEH) produced from a baculovirus expression system. Among all the insect growth regulators assayed, 18 benzoylphenylu...

  20. QSAR and Molecular Docking Studies of Oxadiazole-Ligated Pyrrole Derivatives as Enoyl-ACP (CoA) Reductase Inhibitors

    PubMed Central

    Asgaonkar, Kalyani D.; Mote, Ganesh D.; Chitre, Trupti S.

    2014-01-01

    A quantitative structure-activity relationship model was developed on a series of compounds containing oxadiazole-ligated pyrrole pharmacophore to identify key structural fragments required for anti-tubercular activity. Two-dimensional (2D) and three-dimensional (3D) QSAR studies were performed using multiple linear regression (MLR) analysis and k-nearest neighbour molecular field analysis (kNN-MFA), respectively. The developed QSAR models were found to be statistically significant with respect to training, cross-validation, and external validation. New chemical entities (NCEs) were designed based on the results of the 2D- and 3D-QSAR. NCEs were subjected to Lipinski’s screen to ensure the drug-like pharmacokinetic profile of the designed compounds in order to improve their bioavailability. Also, the binding ability of the NCEs with enoyl-ACP (CoA) reductase was assessed by docking. PMID:24634843

  1. Structure-Activity Relationship of Azaindole-Based Glucokinase Activators.

    PubMed

    Paczal, Attila; Bálint, Balázs; Wéber, Csaba; Szabó, Zoltán B; Ondi, Levente; Theret, Isabelle; De Ceuninck, Frédéric; Bernard, Catherine; Ktorza, Alain; Perron-Sierra, Francoise; Kotschy, András

    2016-01-28

    7-Azaindole has been identified as a novel bidentate anchor point for allosteric glucokinase activators. A systematic investigation around three principal parts of the new small molecule glucokinase activators led to a robust SAR in agreement with structural data that also helped to assess the conformational flexibility of the allosteric activation site. The increase in glucose uptake resulting from glucokinase activation in hepatocytes in vitro translated into the efficient lowering of glucose levels in vivo with the best compounds. PMID:26685731

  2. Recent Advances in Ligand-Based Drug Design: Relevance and Utility of the Conformationally Sampled Pharmacophore Approach

    PubMed Central

    Acharya, Chayan; Coop, Andrew; Polli, James E.; MacKerell, Alexander D.

    2010-01-01

    In the absence of three-dimensional (3D) structures of potential drug targets, ligand-based drug design is one of the popular approaches for drug discovery and lead optimization. 3D structure-activity relationships (3D QSAR) and pharmacophore modeling are the most important and widely used tools in ligand-based drug design that can provide crucial insights into the nature of the interactions between drug target and ligand molecule and provide predictive models suitable for lead compound optimization. This review article will briefly discuss the features and potential application of recent advances in ligand-based drug design, with emphasis on a detailed description of a novel 3D QSAR method based on the conformationally sample pharmacophore (CSP) approach (denoted CSP-SAR). In addition, data from a published study is used to compare the CSP-SAR approach to the Catalyst method, emphasizing the utility of the CSP approach for ligand-based model development. PMID:20807187

  3. Molecular modeling studies, synthesis and biological evaluation of dabigatran analogues as thrombin inhibitors.

    PubMed

    Dong, Ming-Hui; Chen, Hai-Feng; Ren, Yu-Jie; Shao, Fang-Ming

    2016-01-15

    In this work, 48 thrombin inhibitors based on the structural scaffold of dabigatran were analyzed using a combination of molecular modeling techniques. We generated three-dimensional quantitative structure-activity relationship (3D-QSAR) models based on three alignments for both comparative molecular field analysis (CoMFA) and comparative molecular similarity index analysis (CoMSIA) to highlight the structural requirements for thrombin protein inhibition. In addition to the 3D-QSAR study, Topomer CoMFA model also was established with a higher leave-one-out cross-validation q(2) and a non-cross-validation r(2), which suggest that the three models have good predictive ability. The results indicated that the steric, hydrophobic and electrostatic fields play key roles in QSAR model. Furthermore, we employed molecular docking and re-docking simulation explored the binding relationship of the ligand and the receptor protein in detail. Molecular docking simulations identified several key interactions that were also indicated through 3D-QSAR analysis. On the basis of the obtained results, two compounds were designed and predicted by three models, the biological evaluation in vitro (IC50) demonstrated that these molecular models were effective for the development of novel potent thrombin inhibitors.

  4. Quantitative structure-activity relationships for fluoroelastomer/chlorofluorocarbon systems

    SciTech Connect

    Paciorek, K.J.L.; Masuda, S.R.; Nakahara, J.H. ); Snyder, C.E. Jr.; Warner, W.M. )

    1991-12-01

    This paper reports on swell, tensile, and modulus data that were determined for a fluoroelastomer after exposure to a series of chlorofluorocarbon model fluids. Quantitative structure-activity relationships (QSAR) were developed for the swell as a function of the number of carbons and chlorines and for tensile strength as a function of carbon number and chlorine positions in the chlorofluorocarbons.

  5. Theoretical studies on QSAR and mechanism of 2-indolinone derivatives as tubulin inhibitors

    NASA Astrophysics Data System (ADS)

    Liao, Si Yan; Qian, Li; Miao, Ti Fang; Lu, Hai Liang; Zheng, Kang Cheng

    The theoretical studies on three-dimensional quantitative structure activity relationship (3D-QSAR) and action mechanism of a series of 2-indolinone derivatives as tubulin inhibitors against human breast cancer cell line MDA-MB-231 have been carried out. The established 3D-QSAR model from the comparative molecular field analysis (CoMFA) shows not only significant statistical quality but also predictive ability, with high correlation coefficient (R2 = 0.986) and cross-validation coefficient (q2 = 0.683). In particular, the appropriate binding orientations and conformations of these 2-indolinone derivatives interacting with tubulin are located by docking study, and it is very interesting to find that the plot of the energy scores of these compounds in DOCK versus the corresponding experimental pIC50 values exhibits a considerable linear correlation. Therefore, the inhibition mechanism that 2-indolinone derivatives were regarded as tubulin inhibitors can be theoretically confirmed. Based on such an inhibition mechanism along with 3D-QSAR results, some important factors improving the activities of these compounds were discussed in detail. These factors can be summarized as follows: the H atom adopted as substituent R1, the substituent R2 with higher electropositivity and smaller bulk, the substituents R4-R6 (on the phenyl ring) with higher electropositivity and larger bulk, and so on. These results can offer useful theoretical references for understanding the action mechanism, designing more potent inhibitors, and predicting their activities prior to synthesis.

  6. Structure-Activity Relationships in Nitro-Aromatic Compounds

    NASA Astrophysics Data System (ADS)

    Vogt, R. A.; Rahman, S.; Crespo-Hernández, C. E.

    Many nitro-aromatic compounds show mutagenic and carcinogenic properties, posing a potential human health risk. Despite this potential health hazard, nitro-aromatic compounds continue to be emitted into ambient air from municipal incinerators, motor vehicles, and industrial power plants. As a result, understanding the structural and electronic factors that influence mutagenicity in nitro-aromatic compounds has been a long standing objective. Progress toward this goal has accelerated over the years, in large part due to the synergistic efforts among toxicology, computational chemistry, and statistical modeling of toxicological data. The concerted influence of several structural and electronic factors in nitro-aromatic compounds makes the development of structure-activity relationships (SARs) a paramount challenge. Mathematical models that include a regression analysis show promise in predicting the mutagenic activity of nitro-aromatic compounds as well as in prioritizing compounds for which experimental data should be pursued. A major challenge of the structure-activity models developed thus far is their failure to apply beyond a subset of nitro-aromatic compounds. Most quantitative structure-activity relationship papers point to statistics as the most important confirmation of the validity of a model. However, the experimental evidence shows the importance of the chemical knowledge in the process of generating models with reasonable applicability. This chapter will concisely summarize the structural and electronic factors that influence the mutagenicity in nitro-aromatic compounds and the recent efforts to use quantitative structure-activity relationships to predict those physicochemical properties.

  7. Using theoretical descriptors in structure activity relationships: Validating toxicity predictions

    SciTech Connect

    Famini, G.R.; Wilson, L.Y.; Chester, N.A.; Sterling, P.A.

    1995-12-01

    Quantitative Structure Activity Relationships (QSAR) and Linear Free Energy Relationships (LFER) are very useful for correlating toxicological data, and in characterizating trends in terms of structural and electronic effects. Several years ago, we developed a series of equations correlating a number of toxicity tests with theoretically determined descriptors. One of these tests was the Microtox test, using the degradation in light from Photobacteriurn phosphoreum. Recently, several new compounds have been tested in our laboratory using the Microtox test, and compared against the predicted values. The agreement between experimental and theoretical results will be discussed, as will reasons for {open_quotes}good{close_quotes} or {open_quotes}poor{close_quotes} predictions.

  8. Understanding the comparative molecular field analysis (CoMFA) in terms of molecular quantum similarity and DFT-based reactivity descriptors.

    PubMed

    Morales-Bayuelo, Alejandro; Matute, Ricardo A; Caballero, Julio

    2015-06-01

    The three-dimensional quantitative structure-activity relationship (3D QSAR) models have many applications, although the inherent complexity to understand the results coming from 3D-QSAR arises the necessity of new insights in the interpretation of them. Hence, the quantum similarity field as well as reactivity descriptors based on the density functional theory were used in this work as a consistent approach to better understand the 3D-QSAR studies in drug design. For this purpose, the quantification of steric and electrostatic effects on a series of bicycle [4.1.0] heptane derivatives as melanin-concentrating hormone receptor 1 antagonists were performed on the basis of molecular quantum similarity measures. The maximum similarity superposition and the topo-geometrical superposition algorithms were used as molecular alignment methods to deal with the problem of relative molecular orientation in quantum similarity. In addition, a chemical reactivity analysis using global and local descriptors such as chemical hardness, softness, electrophilicity, and Fukui functions, was developed. Overall, our results suggest that the application of this methodology in drug design can be useful when the receptor is known or even unknown. PMID:26016942

  9. Understanding the comparative molecular field analysis (CoMFA) in terms of molecular quantum similarity and DFT-based reactivity descriptors.

    PubMed

    Morales-Bayuelo, Alejandro; Matute, Ricardo A; Caballero, Julio

    2015-06-01

    The three-dimensional quantitative structure-activity relationship (3D QSAR) models have many applications, although the inherent complexity to understand the results coming from 3D-QSAR arises the necessity of new insights in the interpretation of them. Hence, the quantum similarity field as well as reactivity descriptors based on the density functional theory were used in this work as a consistent approach to better understand the 3D-QSAR studies in drug design. For this purpose, the quantification of steric and electrostatic effects on a series of bicycle [4.1.0] heptane derivatives as melanin-concentrating hormone receptor 1 antagonists were performed on the basis of molecular quantum similarity measures. The maximum similarity superposition and the topo-geometrical superposition algorithms were used as molecular alignment methods to deal with the problem of relative molecular orientation in quantum similarity. In addition, a chemical reactivity analysis using global and local descriptors such as chemical hardness, softness, electrophilicity, and Fukui functions, was developed. Overall, our results suggest that the application of this methodology in drug design can be useful when the receptor is known or even unknown.

  10. Quantitative Structure-Antifungal Activity Relationships for cinnamate derivatives.

    PubMed

    Saavedra, Laura M; Ruiz, Diego; Romanelli, Gustavo P; Duchowicz, Pablo R

    2015-12-01

    Quantitative Structure-Activity Relationships (QSAR) are established with the aim of analyzing the fungicidal activities of a set of 27 active cinnamate derivatives. The exploration of more than a thousand of constitutional, topological, geometrical and electronic molecular descriptors, which are calculated with Dragon software, leads to predictions of the growth inhibition on Pythium sp and Corticium rolfsii fungi species, in close agreement to the experimental values extracted from the literature. A set containing 21 new structurally related cinnamate compounds is prepared. The developed QSAR models are applied to predict the unknown fungicidal activity of this set, showing that cinnamates like 38, 28 and 42 are expected to be highly active for Pythium sp, while this is also predicted for 28 and 34 in C. rolfsii. PMID:26410195

  11. A novel algorithm for QSAR (quantitative structure-activity relationships)

    SciTech Connect

    Carter, S. ); Nikolic, S.; Trinajstic, N. )

    1989-01-01

    A novel approach to quantitative structure-activity relationships (QSAR) is proposed. It is based on the molecular descriptor named the stereo-identification (SID) number. The applicability of this approach to QSAR studies is tested on aquatic toxicities of phenols against fathead minnows (Phimephales promelas). Our approach reproduced successfully the bioactivities of phenols and is superior to the Hall-Kier model based on Randic's connectivity index.

  12. (Quantitative structure-activity relationships in environmental toxicology)

    SciTech Connect

    Turner, J.E.

    1990-10-04

    The traveler attended the Fourth International Workshop on QSAR (Quantitative Structure-Activity Relationships) in Environmental Toxicology. He was an author or co-author on one platform and two poster presentations. The subject of the workshop offers a framework for analyzing and predicting the fate of chemical pollutants in organisms and the environment. QSAR is highly relevant to the ORNL program on the physicochemical characterization of chemical pollutants for health protection.

  13. What do sexually active adolescent females say about relationship issues?

    PubMed

    Bralock, Anita; Koniak-Griffin, Deborah

    2009-04-01

    Many sexually active teenagers face risk for contracting sexually transmitted infections (STIs) including HIV. The purpose of our study was to gain an understanding about influences on condom use among sexually active adolescents in relationships. Data were collected through semi-structured openended interviews. The findings of this study suggest that many adolescents desired the love of a male partner, and were willing to concede to his request of practicing unprotected sex. Findings support the urgent need for interventions that will promote skill-building techniques to negotiate safer sex behaviors among youth who are most likely to be exposed to STIs through risky behaviors.

  14. What do sexually active adolescent females say about relationship issues?

    PubMed

    Bralock, Anita; Koniak-Griffin, Deborah

    2009-04-01

    Many sexually active teenagers face risk for contracting sexually transmitted infections (STIs) including HIV. The purpose of our study was to gain an understanding about influences on condom use among sexually active adolescents in relationships. Data were collected through semi-structured openended interviews. The findings of this study suggest that many adolescents desired the love of a male partner, and were willing to concede to his request of practicing unprotected sex. Findings support the urgent need for interventions that will promote skill-building techniques to negotiate safer sex behaviors among youth who are most likely to be exposed to STIs through risky behaviors. PMID:19268234

  15. STRUCTURE-ACTIVITY RELATIONSHIP STUIDES AND THEIR ROLE IN PREDICTING AND INVESTIGATING CHEMICAL TOXICITY

    EPA Science Inventory

    Structure-Activity Relationship Studies and their Role in Predicting and Investigating Chemical Toxicity

    Structure-activity relationships (SAR) represent attempts to generalize chemical information relative to biological activity for the twin purposes of generating insigh...

  16. Relationships between coordination, active drag and propelling efficiency in crawl.

    PubMed

    Seifert, Ludovic; Schnitzler, Christophe; Bideault, Gautier; Alberty, Morgan; Chollet, Didier; Toussaint, Huub Martin

    2015-02-01

    This study examines the relationships between the index of coordination (IdC) and active drag (D) assuming that at constant average speed, average drag equals average propulsion. The relationship between IdC and propulsive efficiency (ep) was also investigated at maximal speed. Twenty national swimmers completed two incremental speed tests swimming front crawl with arms only in free condition and using a measurement of active drag system. Each test was composed of eight 25-m bouts from 60% to 100% of maximal intensity whereby each lap was swum at constant speed. Different regression models were tested to analyse IdC-D relationship. Correlation between IdC and ep was calculated. IdC was linked to D by linear regression (IdC=0.246·D-27.06; R(2)=0.88, P<.05); swimmers switched from catch-up to superposition coordination mode at a speed of ∼1.55ms(-1) where average D is ∼110N. No correlation between IdC and ep at maximal speed was found. The intra-individual analysis revealed that coordination plays an important role in scaling propulsive forces with higher speed levels such that these are adapted to aquatic resistance. Inter-individual analysis showed that high IdC did not relate to a high ep suggesting an individual optimization of force and power generation is at play to reach high speeds.

  17. Relationships between sleep, physical activity and human health

    PubMed Central

    Atkinson, Greg; Davenne, Damien

    2009-01-01

    Although sleep and exercise may seem to be mediated by completely different physiological mechanisms, there is growing evidence for clinically important relationships between these two behaviors. It is known that passive body heating facilitates the nocturnal sleep of healthy elderly people with insomnia. This finding supports the hypothesis that changes in body temperature trigger somnogenic brain areas to initiate sleep. Nevertheless, little is known about how the core and distal thermoregulatory responses to exercise fit into this hypothesis. Such knowledge could also help in reducing sleep problems associated with nocturnal shiftwork. It is difficult to incorporate physical activity into a shiftworker's lifestyle, since it is already disrupted in terms of family commitments and eating habits. A multi-research strategy is needed to identify what the optimal amounts and timing of physical activity are for reducing shiftwork-related sleep problems. The relationships between sleep, exercise and diet are also important, given the recently reported associations between short sleep length and obesity. The cardiovascular safety of exercise timing should also be considered, since recent data suggest that the reactivity of blood pressure to a change in general physical activity is highest during the morning. This time is associated with an increased risk in general of a sudden cardiac event, but more research work is needed to separate the influences of light, posture and exercise per se on the haemodynamic responses to sleep and physical activity following sleep taken at night and during the day as a nap. PMID:17067643

  18. Relationships between sleep, physical activity and human health.

    PubMed

    Atkinson, Greg; Davenne, Damien

    2007-02-28

    Although sleep and exercise may seem to be mediated by completely different physiological mechanisms, there is growing evidence for clinically important relationships between these two behaviors. It is known that passive body heating facilitates the nocturnal sleep of healthy elderly people with insomnia. This finding supports the hypothesis that changes in body temperature trigger somnogenic brain areas to initiate sleep. Nevertheless, little is known about how the core and distal thermoregulatory responses to exercise fit into this hypothesis. Such knowledge could also help in reducing sleep problems associated with nocturnal shiftwork. It is difficult to incorporate physical activity into a shiftworker's lifestyle, since it is already disrupted in terms of family commitments and eating habits. A multi-research strategy is needed to identify what the optimal amounts and timing of physical activity are for reducing shiftwork-related sleep problems. The relationships between sleep, exercise and diet are also important, given the recently reported associations between short sleep length and obesity. The cardiovascular safety of exercise timing should also be considered, since recent data suggest that the reactivity of blood pressure to a change in general physical activity is highest during the morning. This time is associated with an increased risk in general of a sudden cardiac event, but more research work is needed to separate the influences of light, posture and exercise per se on the haemodynamic responses to sleep and physical activity following sleep taken at night and during the day as a nap.

  19. The relationship between memory complaints, activity and perceived health status.

    PubMed

    Lee, P-L

    2014-04-01

    Subjective memory complaints (SMC) is a possible symptom of mild cognitive impairment which may progress to dementia. The present study examines the relationship of physical activity (PA), cognitive activity (CA), social activity (SA), and perceived health status (HS) with SMC for middle age and older adults. Participants were from the MIDUS II study (Midlife in the United States) recruited in 2004-2006 (Mean age = 55.99; N = 3030). Hierarchical multiple regression was performed with SMC as the dependent variable, along with PA, CA, SA, and HS as the independent variables. The study revealed that SMC was strongly related to PA, CA, and HS, while controlling covariates. Further, HS had the strongest link with SMC among these predictors while interaction effects (PA × HS, CA × HS, and SA × HS) were insignificant. In addition, different results were achieved in younger versus older groups. Participants with more CA, PA and perception of better health had lower frequency of memory complaints. PMID:24646046

  20. Structure-activity relationship studies of pyrrolone antimalarial agents.

    PubMed

    Murugesan, Dinakaran; Kaiser, Marcel; White, Karen L; Norval, Suzanne; Riley, Jennifer; Wyatt, Paul G; Charman, Susan A; Read, Kevin D; Yeates, Clive; Gilbert, Ian H

    2013-09-01

    Previously reported pyrrolones, such as TDR32570, exhibited potential as antimalarial agents; however, while these compounds have potent antimalarial activity, they suffer from poor aqueous solubility and metabolic instability. Here, further structure-activity relationship studies are described that aimed to solve the developability issues associated with this series of compounds. In particular, further modifications to the lead pyrrolone, involving replacement of a phenyl ring with a piperidine and removal of a potentially metabolically labile ester by a scaffold hop, gave rise to derivatives with improved in vitro antimalarial activities against Plasmodium falciparum K1, a chloroquine- and pyrimethamine-resistant parasite strain, with some derivatives exhibiting good selectivity for parasite over mammalian (L6) cells. Three representative compounds were selected for evaluation in a rodent model of malaria infection, and the best compound showed improved ability to decrease parasitaemia and a slight increase in survival.

  1. Relationship between ankle stiffness structure and muscle activation.

    PubMed

    Lee, Hyunglae; Wang, Shuo; Hogan, Neville

    2012-01-01

    This paper presents a characterization of the structure of ankle stiffness under multiple levels of muscle activation and the relationship between them. A multi-variable impedance estimation method using a wearable ankle robot enabled clear identification of ankle stiffness structure in the space consisting of the sagittal and frontal planes. With visual feedback showing current and target muscle activation levels, all subjects could successfully maintain multiple target levels (5%∼30% of the maximum voluntary contraction level). Stiffness increased with muscle activation, but the increase was more pronounced in the dorsiflexion-plantarflexion direction than in the inversion-eversion direction, which resulted in a characteristic "peanut" shape. The relation between measured muscle activation level and ankle stiffness was evaluated. All subjects showed a highly linear relation not only for the two principal axis directions of the ankle, i.e., dorsiflexion-plantarflexion and inversion-eversion, but also for the average stiffness value of all directions. These major findings were consistent both for the tibialis anterior and triceps surae activation.

  2. Conformation-Activity Relationships of Polyketide Natural Products

    PubMed Central

    Larsen, Erik M.; Wilson, Matthew R.; Taylor, Richard E.

    2015-01-01

    Polyketides represent an important class of secondary metabolites that interact with biological targets connected to a variety of disease-associated pathways. Remarkably, nature’s assembly lines, polyketide synthases, manufacture these privileged structures through a combinatorial mixture of just a few structural units. This review highlights the role of these structural elements in shaping a polyketide’s conformational preferences, the use of computer-based molecular modeling and solution NMR studies in the identification of low-energy conformers, and the importance of conformational analogues in probing the bound conformation. In particular, this review covers several examples wherein conformational analysis complements classic structure-activity relationships in the design of biologically active natural product analogues. PMID:25974024

  3. Thapsigargin, Origin, Chemistry, Structure-Activity Relationships and Prodrug Development.

    PubMed

    Quynh Doan, Nhu Thi; Christensen, Soren Brogger

    2015-01-01

    Thapsigargin was originally isolated from the roots of the Mediterranean umbelliferous plant Thapsia garganica in order to characterize the skin irritant principle. Characteristic chemical properties and semi-syntheses are reviewed. The biological activity was related to the subnanomolar affinity for the sarco/endoplasmic reticulum calcium ATPase. Prolonged inhibition of the pump afforded collapse of the calcium homeostasis and eventually apoptosis. Structure-activity relationships enabled design of an equipotent analogue containing a linker. Conjugation of the analogue containing the linker with peptides, which only are substrates for either prostate specific antigen (PSA) or prostate specific membrane antigen (PSMA) enabled design of prodrugs targeting a number of cancer diseases including prostate cancer (G115) and hepatocellular carcinoma (G202). Prodrug G202 has under the name of mipsagargin in phase II clinical trials shown promising properties against hepatocellular carcinoma.

  4. Possible Relationship of the Solar Activity and Earthquakes

    NASA Astrophysics Data System (ADS)

    Gonzalez-Trejo, J. I.; Cervantes, F.; Real-Ramírez, C. A.; Hoyos-Reyes, L. F.; Miranda-Tello, R.; Area de Sistemas Computacionales

    2013-05-01

    Several authors have recently argued that there is a relationship between solar activity and big earthquakes. This work compares Dst index fluctuations along 2012 and 2013, with the earthquake activity near La Paz, Baja California, Mexico. The earthquakes measurements at this place were divided according its deep focus. It was observed that the frequency of the deeper earthquakes increases shortly after considerable fluctuations in the Dst index are registered. We assume that the number of deep earthquakes increases because the interaction of the tectonic plate below that place and the tectonic plates in contact with it increases. This work also shows that the frequency of shallowest minor and light earthquakes increases shortly before a strongest earthquake takes place in the vicinity.

  5. Thapsigargin, Origin, Chemistry, Structure-Activity Relationships and Prodrug Development.

    PubMed

    Quynh Doan, Nhu Thi; Christensen, Soren Brogger

    2015-01-01

    Thapsigargin was originally isolated from the roots of the Mediterranean umbelliferous plant Thapsia garganica in order to characterize the skin irritant principle. Characteristic chemical properties and semi-syntheses are reviewed. The biological activity was related to the subnanomolar affinity for the sarco/endoplasmic reticulum calcium ATPase. Prolonged inhibition of the pump afforded collapse of the calcium homeostasis and eventually apoptosis. Structure-activity relationships enabled design of an equipotent analogue containing a linker. Conjugation of the analogue containing the linker with peptides, which only are substrates for either prostate specific antigen (PSA) or prostate specific membrane antigen (PSMA) enabled design of prodrugs targeting a number of cancer diseases including prostate cancer (G115) and hepatocellular carcinoma (G202). Prodrug G202 has under the name of mipsagargin in phase II clinical trials shown promising properties against hepatocellular carcinoma. PMID:26429715

  6. Research Data Management and Libraries: Relationships, Activities, Drivers and Influences

    PubMed Central

    Pinfield, Stephen; Cox, Andrew M.; Smith, Jen

    2014-01-01

    The management of research data is now a major challenge for research organisations. Vast quantities of born-digital data are being produced in a wide variety of forms at a rapid rate in universities. This paper analyses the contribution of academic libraries to research data management (RDM) in the wider institutional context. In particular it: examines the roles and relationships involved in RDM, identifies the main components of an RDM programme, evaluates the major drivers for RDM activities, and analyses the key factors influencing the shape of RDM developments. The study is written from the perspective of library professionals, analysing data from 26 semi-structured interviews of library staff from different UK institutions. This is an early qualitative contribution to the topic complementing existing quantitative and case study approaches. Results show that although libraries are playing a significant role in RDM, there is uncertainty and variation in the relationship with other stakeholders such as IT services and research support offices. Current emphases in RDM programmes are on developments of policies and guidelines, with some early work on technology infrastructures and support services. Drivers for developments include storage, security, quality, compliance, preservation, and sharing with libraries associated most closely with the last three. The paper also highlights a ‘jurisdictional’ driver in which libraries are claiming a role in this space. A wide range of factors, including governance, resourcing and skills, are identified as influencing ongoing developments. From the analysis, a model is constructed designed to capture the main aspects of an institutional RDM programme. This model helps to clarify the different issues involved in RDM, identifying layers of activity, multiple stakeholders and drivers, and a large number of factors influencing the implementation of any initiative. Institutions may usefully benchmark their activities against

  7. Research data management and libraries: relationships, activities, drivers and influences.

    PubMed

    Pinfield, Stephen; Cox, Andrew M; Smith, Jen

    2014-01-01

    The management of research data is now a major challenge for research organisations. Vast quantities of born-digital data are being produced in a wide variety of forms at a rapid rate in universities. This paper analyses the contribution of academic libraries to research data management (RDM) in the wider institutional context. In particular it: examines the roles and relationships involved in RDM, identifies the main components of an RDM programme, evaluates the major drivers for RDM activities, and analyses the key factors influencing the shape of RDM developments. The study is written from the perspective of library professionals, analysing data from 26 semi-structured interviews of library staff from different UK institutions. This is an early qualitative contribution to the topic complementing existing quantitative and case study approaches. Results show that although libraries are playing a significant role in RDM, there is uncertainty and variation in the relationship with other stakeholders such as IT services and research support offices. Current emphases in RDM programmes are on developments of policies and guidelines, with some early work on technology infrastructures and support services. Drivers for developments include storage, security, quality, compliance, preservation, and sharing with libraries associated most closely with the last three. The paper also highlights a 'jurisdictional' driver in which libraries are claiming a role in this space. A wide range of factors, including governance, resourcing and skills, are identified as influencing ongoing developments. From the analysis, a model is constructed designed to capture the main aspects of an institutional RDM programme. This model helps to clarify the different issues involved in RDM, identifying layers of activity, multiple stakeholders and drivers, and a large number of factors influencing the implementation of any initiative. Institutions may usefully benchmark their activities against the

  8. Research data management and libraries: relationships, activities, drivers and influences.

    PubMed

    Pinfield, Stephen; Cox, Andrew M; Smith, Jen

    2014-01-01

    The management of research data is now a major challenge for research organisations. Vast quantities of born-digital data are being produced in a wide variety of forms at a rapid rate in universities. This paper analyses the contribution of academic libraries to research data management (RDM) in the wider institutional context. In particular it: examines the roles and relationships involved in RDM, identifies the main components of an RDM programme, evaluates the major drivers for RDM activities, and analyses the key factors influencing the shape of RDM developments. The study is written from the perspective of library professionals, analysing data from 26 semi-structured interviews of library staff from different UK institutions. This is an early qualitative contribution to the topic complementing existing quantitative and case study approaches. Results show that although libraries are playing a significant role in RDM, there is uncertainty and variation in the relationship with other stakeholders such as IT services and research support offices. Current emphases in RDM programmes are on developments of policies and guidelines, with some early work on technology infrastructures and support services. Drivers for developments include storage, security, quality, compliance, preservation, and sharing with libraries associated most closely with the last three. The paper also highlights a 'jurisdictional' driver in which libraries are claiming a role in this space. A wide range of factors, including governance, resourcing and skills, are identified as influencing ongoing developments. From the analysis, a model is constructed designed to capture the main aspects of an institutional RDM programme. This model helps to clarify the different issues involved in RDM, identifying layers of activity, multiple stakeholders and drivers, and a large number of factors influencing the implementation of any initiative. Institutions may usefully benchmark their activities against the

  9. Structure-activity relationship of cyanine tau aggregation inhibitors

    PubMed Central

    Chang, Edward; Congdon, Erin E.; Honson, Nicolette S.; Duff, Karen E.; Kuret, Jeff

    2009-01-01

    A structure-activity relationship for symmetrical cyanine inhibitors of human tau aggregation was elaborated using a filter trap assay. Antagonist activity depended on cyanine heterocycle, polymethine bridge length, and the nature of meso- and N-substituents. One potent member of the series, 3,3’-diethyl-9-methylthiacarbocyanine iodide (compound 11), retained submicromolar potency and had calculated physical properties consistent with blood-brain barrier and cell membrane penetration. Exposure of organotypic slices prepared from JNPL3 transgenic mice (which express human tau harboring the aggregation prone P301L tauopathy mutation) to compound 11 for one week revealed a biphasic dose response relationship. Low nanomolar concentrations decreased insoluble tau aggregates to half those observed in slices treated with vehicle alone. In contrast, high concentrations (≥300 nM) augmented tau aggregation and produced abnormalities in tissue tubulin levels. These data suggest that certain symmetrical carbocyanine dyes can modulate tau aggregation in the slice biological model at concentrations well below those associated with toxicity. PMID:19432420

  10. Mechanistic insights into mode of action of novel natural cathepsin L inhibitors

    PubMed Central

    2013-01-01

    Background Development of a cancerous cell takes place when it ceases to respond to growth-inhibiting signals and multiplies uncontrollably and can detach and move to other parts of the body; the process called as metastasis. A particular set of cysteine proteases are very active during cancer metastasis, Cathepsins being one of them. They are involved in tumor growth and malignancy and have also been reported to be overexpressed in tumor cell lines. In the present study, a combinatorial approach comprising three-dimensional quantitative structure-activity relationship (3D QSAR), ligand-based pharmacophore modelling and search followed by cathepsin L structure-based high throughput screening was carried out using an initial set of 28 congeneric thiosemicarbazone derivatives as cathepsin L inhibitors. A 3D QSAR was derived using the alignment of a common thiosemicarbazone substructure. Essential structural features responsible for biological activity were taken into account for development of a pharmacophore model based on 29 congeneric thiosemicarbazone derivatives. This model was used to carry out an exhaustive search on a large dataset of natural compounds. A further cathepsin L structure-based screen identified two top scoring compounds as potent anti-cancer leads. Results The generated 3D QSAR model showed statistically significant results with an r2 value of 0.8267, cross-validated correlation coefficient q2 of 0.7232, and a pred_r2 (r2 value for test set) of 0.7460. Apart from these, a high F test value of 30.2078 suggested low probability of the model's failure. The pharmacophoric hypothesis chosen for searching the natural compound libraries was identified as DDHRR, where two Ds denote 2 hydrogen donors, H represents a hydrophobic group and two Rs represent aromatic rings, all of which are essential for the biological activity. We report two potential drug leads ZINC08764437 (NFP) and ZINC03846634 (APQ) obtained after a combined approach of pharmacophore

  11. Method for the evaluation of structure-activity relationship information associated with coordinated activity cliffs.

    PubMed

    Dimova, Dilyana; Stumpfe, Dagmar; Bajorath, Jürgen

    2014-08-14

    Activity cliffs are generally defined as pairs of active compounds having a large difference in potency. Although this definition of activity cliffs focuses on compound pairs, the vast majority of cliffs are formed in a coordinated manner. This means that multiple highly and weakly potent compounds form series of activity cliffs, which often overlap. In activity cliff networks, coordinated cliffs emerge as disjoint activity cliff clusters. Recently, we have identified all cliff clusters from current bioactive compounds and analyzed their topologies. For structure-activity relationship (SAR) analysis, activity cliff clusters are of high interest, since they contain more SAR information than cliffs that are individually considered. For medicinal chemistry applications, a key question becomes how to best extract SAR information from activity cliff clusters. This represents a challenging problem, given the complexity of many activity cliff configurations. Herein we introduce a generally applicable methodology to organize activity cliff clusters on the basis of structural relationships, prioritize clusters, and systematically extract SAR information from them. PMID:25014781

  12. 49 CFR 173.434 - Activity-mass relationships for uranium and natural thorium.

    Code of Federal Regulations, 2013 CFR

    2013-10-01

    ... 49 Transportation 2 2013-10-01 2013-10-01 false Activity-mass relationships for uranium and....434 Activity-mass relationships for uranium and natural thorium. The table of activity-mass relationships for uranium and natural thorium are as follows: Thorium and uranium enrichment 1(Wt% 235 U...

  13. 49 CFR 173.434 - Activity-mass relationships for uranium and natural thorium.

    Code of Federal Regulations, 2012 CFR

    2012-10-01

    ... 49 Transportation 2 2012-10-01 2012-10-01 false Activity-mass relationships for uranium and....434 Activity-mass relationships for uranium and natural thorium. The table of activity-mass relationships for uranium and natural thorium are as follows: Thorium and uranium enrichment 1(Wt% 235 U...

  14. 49 CFR 173.434 - Activity-mass relationships for uranium and natural thorium.

    Code of Federal Regulations, 2011 CFR

    2011-10-01

    ... 49 Transportation 2 2011-10-01 2011-10-01 false Activity-mass relationships for uranium and....434 Activity-mass relationships for uranium and natural thorium. The table of activity-mass relationships for uranium and natural thorium are as follows: Thorium and uranium enrichment 1(Wt% 235 U...

  15. 49 CFR 173.434 - Activity-mass relationships for uranium and natural thorium.

    Code of Federal Regulations, 2010 CFR

    2010-10-01

    ... 49 Transportation 2 2010-10-01 2010-10-01 false Activity-mass relationships for uranium and....434 Activity-mass relationships for uranium and natural thorium. The table of activity-mass relationships for uranium and natural thorium are as follows: Thorium and uranium enrichment 1(Wt% 235 U...

  16. 49 CFR 173.434 - Activity-mass relationships for uranium and natural thorium.

    Code of Federal Regulations, 2014 CFR

    2014-10-01

    ... 49 Transportation 2 2014-10-01 2014-10-01 false Activity-mass relationships for uranium and....434 Activity-mass relationships for uranium and natural thorium. The table of activity-mass relationships for uranium and natural thorium are as follows: Thorium and uranium enrichment 1(Wt% 235 U...

  17. Trypanocidal nitroimidazole derivatives: relationships among chemical structure and genotoxic activity.

    PubMed

    Buschini, Annamaria; Giordani, Federica; de Albuquerque, Cristina Northfleet; Pellacani, Claudia; Pelosi, Giorgio; Rossi, Carlo; Zucchi, Tânia Maria Araújo Domingues; Poli, Paola

    2007-05-15

    Human American trypanosomiasis is resurgent in Latin Americans, and new drugs are urgently required as current medications suffer from a number of drawbacks. Some nitroheterocycles have been demonstrated to exert a potent activity against trypanosomes. However, host toxicity issues halted their development as trypanocides. As part of the efforts to develop new compounds in order to treat parasitic infections, it is important to define their structure-activity relationship. In this study, 5-nitromegazol and two of its analogues, 4-nitromegazol, and 1-methyl-5-nitro-2-imidazolecarboxaldehyde 5-nitroimidazole-thiosemicarbazone, were tested and compared for in vitro induction of DNA damage in human leukocytes by the comet assay, performed at different pHs to better identify the types of damage. Specific oxidatively generated damage to DNA was also measured by using the comet assay with endonucleases. DNA damage was found in 5-nitromegazol-treated cells: oxidative stress appeared as the main source of DNA damage. 4-Nitromegazol did not produce any significant effect, thus confirming that 4-nitroimidazoles isomers have no important biological activity. The 5-nitroimidazole-thiosemicarbazone induced DNA damage with a higher efficiency than 5-nitromegazol. The central role in the reduction process played by the acidic hydrazine proton present in the thiosemicarbazone group but not in the cyclic (thiadiazole) form can contribute to rationalise our results. Given its versatility, thiosemicarbazone moiety could be involved in different reactions with nitrogenous bases (nucleophilic and/or electrophilic attacks).

  18. Structure activity relationships: their function in biological prediction

    SciTech Connect

    Schultz, T.W.

    1982-01-01

    Quantitative structure activity relationships provide a means of ranking or predicting biological effects based on chemical structure. For each compound used to formulate a structure activity model two kinds of quantitative information are required: (1) biological activity and (2) molecular properties. Molecular properties are of three types: (1) molecular shape, (2) physiochemical parameters, and (3) abstract quantitations of molecular structure. Currently the two best descriptors are the hydrophobic parameter, log 1-octanol/water partition coefficient (log P), and the /sup 1/X/sup v/(one-chi-v) molecular connectivity index. Biological responses can be divided into three main categories: (1) non-specific effects due to membrane perturbation, (2) non-specific effects due to interaction with functional groups of proteins, and (3) specific effects due to interaction with receptors. Twenty-six synthetic fossil fuel-related nitrogen-containing aromatic compounds were examined to determine the quantitative correlation between log P and /sup 1/X/sup v/ and population growth impairment of Tetrahymena pyriformis. Nitro-containing compounds are the most active, followed by amino-containing compounds and azaarenes. Within each analog series activity increases with alkyl substitution and ring addition. The planar model log BR = 0.5564 log P + 0.3000 /sup 1/X/sup v/ -2.0138 was determined using mono-nitrogen substituted compounds. Attempts to extrapolate this model to dinitrogen-containing molecules were, for the most part, unsuccessful because of a change in mode of action from membrane perturbation to uncoupling of oxidative phosphoralation.

  19. Synthesis and Structural Activity Relationship Study of Antitubercular Carboxamides

    PubMed Central

    Ugwu, D. I.; Ezema, B. E.; Eze, F. U.; Ugwuja, D. I.

    2014-01-01

    The unusual structure and chemical composition of the mycobacterial cell wall, the tedious duration of therapy, and resistance developed by the microorganism have made the recurrence of the disease multidrug resistance and extensive or extreme drug resistance. The prevalence of tuberculosis in synergy with HIV/AIDS epidemic augments the risk of developing the disease by 100-fold. The need to synthesize new drugs that will shorten the total duration of effective treatment and/or significantly reduce the dosage taken under DOTS supervision, improve on the treatment of multidrug-resistant tuberculosis which defies the treatment with isoniazid and rifampicin, and provide effective treatment for latent TB infections which is essential for eliminating tuberculosis prompted this review. In this review, we considered the synthesis and structure activity relationship study of carboxamide derivatives with antitubercular potential. PMID:25610646

  20. Capsaicin and its analogues: structure-activity relationship study.

    PubMed

    Huang, X-F; Xue, J-Y; Jiang, A-Q; Zhu, H-L

    2013-01-01

    Capsaicin, the main ingredient responsible for the hot pungent taste of chilli peppers, is an alkaloid found in the Capsicum family. Capsaicin was traditionally used for muscular pain, headaches, to improve circulation and for its gastrointestinal protective effects. It was also commonly added to herbal formulations because it acts as a catalyst for other herbs and aids in their absorption. In addition, capsaicin and other capsaicinoid compounds showed strong evidence of having promising potential in the fight against many types of cancer. The mechanism of action of capsaicin has been extensively studied over the past decade. It has been established that capsaicin binds to the transient receptor potential vanilloid 1 receptor which was expressed predominantly by sensory neurons. And many analogues of capsaicin have been synthesized and evaluated for diverse bioactivities. In this review, we will attempt to summarize the biology and structure-activity relationship of capsaicinoids.

  1. The relationships between active extensibility, and passive and active stiffness of the knee flexors.

    PubMed

    Blackburn, J Troy; Padua, Darin A; Riemann, Bryan L; Guskiewicz, Kevin M

    2004-12-01

    Insufficient active knee flexor stiffness may predispose the anterior cruciate ligament to injury. Insufficient passive stiffness may result in insufficient active stiffness. Similarly, higher levels of musculotendinous extensibility may inhibit active and passive muscle stiffness, potentially contributing to an increased risk of injury. The literature is both limited and inconsistent concerning relationships between extensibility, passive stiffness, and active stiffness. Extensibility was measured as the maximal active knee extension angle from a supine position with the hip flexed to 90 degrees . Passive stiffness was calculated as the slope of the moment-angle curve resulting from passive knee extension. Active stiffness was assessed via acceleration associated with damped oscillatory motion about the knee. Stepwise multiple regression indicated that passive stiffness accounted for 25% of active muscle stiffness variance. The linear combination of extensibility and passive stiffness explained only 2% more variance compared to passive stiffness alone. Musculotendinous extensibility was moderately related to passive muscle stiffness, and weakly related to active muscle stiffness. The moderate relationship observed between active and passive stiffness emphasizes the dependence of active muscle stiffness on cross-bridge formation, and the relatively smaller contribution from parallel elastic tissues. Additionally, heightened extensibility does not appear to be a predisposing factor for reduced muscle stiffness. PMID:15491843

  2. Antioxidant, cytotoxic activities, and structure-activity relationship of gallic acid-based indole derivatives.

    PubMed

    Khaledi, Hamid; Alhadi, Abeer A; Yehye, Wagee A; Ali, Hapipah Mohd; Abdulla, Mahmood A; Hassandarvish, Pouya

    2011-11-01

    A new series of gallic hydrazones containing an indole moiety was synthesized through the reaction of gallic hydrazide and different indole carboxaldehydes. Their antioxidant activities were determined on DPPH radical scavenging and inhibition of lipid peroxidation. The in-vitro cytotoxic activities of the compounds were evaluated against HCT-116 (human colon cancer cell line) and MCF-7 (estrogen-dependent human breast cancer cell line) by the MTT method. An attempt to correlate the biological results with their structural characteristics has been done. A limited positive structure activity relationship was found between cytotoxic and antioxidant activities.

  3. Structure activity relationship, cytotoxicity and evaluation of antioxidant activity of curcumin derivatives.

    PubMed

    Sahu, Pramod K; Sahu, Praveen K; Sahu, Puran L; Agarwal, Dau D

    2016-02-15

    Series of curcumin derivatives/analogues were designed and efficient method for synthesis thereof is described. All the synthesized compounds have been screened for their cytotoxicity and evaluated their antioxidant activity. Cytotoxicity effect has been evaluated against three cell lines Hep-G2, HCT-116 and QG-56 by MTT assay method. Structure activity relationship has revealed that particularly, compound 3c, (IC50 value 6.25 μM) has shown better cytotoxicity effect against three cell lines. According to results of SAR study, it was found that 4H-pyrimido[2,1-b]benzothiazole derivatives (2e and 2f), pyrazoles (3a, 3b, 3c and 3d) benzylidenes (4d) exhibited better antioxidant activity than curcumin. A correlation of structure and activities relationship of these compounds with respect to drug score profiles and other physico-chemical properties of drugs are described and verified experimentally. PMID:26810315

  4. NEW 3D TECHNIQUES FOR RANKING AND PRIORITIZATION OF CHEMICAL INVENTORIES

    EPA Science Inventory

    New three-dimensional quantitative structure activity (3-D QSAR) techniques for prioritizing chemical inventories for endocrine activity will be presented. The Common Reactivity Pattern (COREPA) approach permits identification of common steric and/or electronic patterns associate...

  5. The Tempo of Sexual Activity and Later Relationship Quality

    ERIC Educational Resources Information Center

    Sassler, Sharon; Addo, Fenaba R.; Lichter, Daniel T.

    2012-01-01

    Rapid sexual involvement may have adverse long-term implications for relationship quality. This study examined the tempo of sexual intimacy and subsequent relationship quality in a sample of married and cohabiting men and women. Data come from the Marital and Relationship Survey, which provides information on nearly 600 low- to moderate-income…

  6. Quantitative structure-activity relationships for organophosphates binding to acetylcholinesterase.

    PubMed

    Ruark, Christopher D; Hack, C Eric; Robinson, Peter J; Anderson, Paul E; Gearhart, Jeffery M

    2013-02-01

    Organophosphates are a group of pesticides and chemical warfare nerve agents that inhibit acetylcholinesterase, the enzyme responsible for hydrolysis of the excitatory neurotransmitter acetylcholine. Numerous structural variants exist for this chemical class, and data regarding their toxicity can be difficult to obtain in a timely fashion. At the same time, their use as pesticides and military weapons is widespread, which presents a major concern and challenge in evaluating human toxicity. To address this concern, a quantitative structure-activity relationship (QSAR) was developed to predict pentavalent organophosphate oxon human acetylcholinesterase bimolecular rate constants. A database of 278 three-dimensional structures and their bimolecular rates was developed from 15 peer-reviewed publications. A database of simplified molecular input line entry notations and their respective acetylcholinesterase bimolecular rate constants are listed in Supplementary Material, Table I. The database was quite diverse, spanning 7 log units of activity. In order to describe their structure, 675 molecular descriptors were calculated using AMPAC 8.0 and CODESSA 2.7.10. Orthogonal projection to latent structures regression, bootstrap leave-random-many-out cross-validation and y-randomization were used to develop an externally validated consensus QSAR model. The domain of applicability was assessed by the William's plot. Six external compounds were outside the warning leverage indicating potential model extrapolation. A number of compounds had residuals >2 or <-2, indicating potential outliers or activity cliffs. The results show that the HOMO-LUMO energy gap contributed most significantly to the binding affinity. A mean training R (2) of 0.80, a mean test set R (2) of 0.76 and a consensus external test set R (2) of 0.66 were achieved using the QSAR. The training and external test set RMSE values were found to be 0.76 and 0.88. The results suggest that this QSAR model can be used in

  7. Antibacterial activity of xanthones from Garcinia mangostana (L.) and their structure-activity relationship studies.

    PubMed

    Dharmaratne, H R W; Sakagami, Yoshikazu; Piyasena, K G P; Thevanesam, Vasanthi

    2013-01-01

    Antibacterial activities of prenylated xanthones from Garcinia mangostana and their synthetic analogues were investigated, and their structure-activity relationships have been studied. γ-Mangostin has shown antibacterial activity against methicillin-resistant Staphylococcus aureus (MRSA), methicillin sensitive Staphylococcus aureus (MSSA), vancomycin-resistant Enterococcus (VRE) and vancomycin-sensitive Enterococcus (VSE) strains at MICs 3.13, 6.25, 6.25 and 6.25 µg mL(-1), respectively. In these experiments, gentamicin was used as the positive control. Further, some analogues of γ-mangostin and α-mangostin were synthesised and their activity was tested against MRSA and VRE strains. The analysis of the bioassay results above indicated that, the combination of C-6 and C-3 hydroxyl groups along with the prenyl side chain at C-2 in the 1,3,6,7-tetraoxygenated xanthones from G. mangostana is essential to have a high antibacterial activity.

  8. The structure-activity relationship in herbicidal monosubstituted sulfonylureas

    SciTech Connect

    Li, Zheng-Ming; Ma, Yi; Guddat, Luke; Cheng, Pei-Quan; Wang, Jian-Guo; Pang, Siew S; Dong, Yu-Hui; Lai, Cheng-Ming; Wang, Ling-Xiu; Jia, Guo-Feng; Li, Yong-Hong; Wang, Su-Hua; Liu, Jie; Zhao, Wei-Guang; Wang, Bao-Lei

    2012-05-24

    The herbicide sulfonylurea (SU) belongs to one of the most important class of herbicides worldwide. It is well known for its ecofriendly, extreme low toxicity towards mammals and ultralow dosage application. The original inventor, G Levitt, set out structure-activity relationship (SAR) guidelines for SU structural design to attain superhigh bioactivity. A new approach to SU molecular design has been developed. After the analysis of scores of SU products by X-ray diffraction methodology and after greenhouse herbicidal screening of 900 novel SU structures synthesized in the authors laboratory, it was found that several SU structures containing a monosubstituted pyrimidine moiety retain excellent herbicidal characteristics, which has led to partial revision of the Levitt guidelines. Among the novel SU molecules, monosulfuron and monosulfuron-ester have been developed into two new herbicides that have been officially approved for field application and applied in millet and wheat fields in China. A systematic structural study of the new substrate-target complex and the relative mode of action in comparison with conventional SU has been carried out. A new mode of action has been postulated.

  9. Structure-Activity Relationship Study of Hydroxycoumarins and Mushroom Tyrosinase.

    PubMed

    Asthana, Shailendra; Zucca, Paolo; Vargiu, Attilio V; Sanjust, Enrico; Ruggerone, Paolo; Rescigno, Antonio

    2015-08-19

    The structure-activity relationships of four hydroxycoumarins, two with the hydroxyl group on the aromatic ring of the molecule and two with the hydroxyl group replacing hydrogen of the pyrone ring, and their interactions with mushroom tyrosinase were studied. These compounds displayed different behaviors upon action of the enzyme. The two compounds, ar-hydroxylated 6-hydroxycoumarin and 7-hydroxycoumarin, were both weak substrates of the enzyme. Interestingly, in both cases, the product of the catalysis was the 6,7-hydroxycoumarin, although 5,6- and 7,8-isomers could also theoretically be formed. Additionally, both were able to reduce the formation of dopachrome when tyrosinase acted on its typical substrate, L-tyrosine. Although none of the compounds that contained a hydroxyl group on the pyrone ring were substrates of tyrosinase, the 3-hydroxycoumarin was a potent inhibitor of the enzyme, and the 4-hydroxycoumarin was not an inhibitor. These results were compared with those obtained by in silico molecular docking predictions to obtain potentially useful information for the synthesis of new coumarin-based inhibitors that resemble the structure of the 3-hydroxycoumarin.

  10. Determining cleanup levels in bioremediation: Quantitative structure activity relationship techniques

    SciTech Connect

    Arulgnanendran, V.R.J.; Nirmalakhandan, N.

    1995-12-31

    An important feature in the process of planning and initiating bioremediation is the quantification of the toxicity of either an individual chemical or a group of chemicals when multiple chemicals are involved. A laboratory protocol was developed to test the toxicity of single chemicals and mixtures of organic chemicals in a soil medium. Portions of these chemicals are used as a training set to develop Quantitative Structure Activity Relationship (QSAR) models. These predictive models are tested using the chemicals in the testing set, i.e., the remaining chemicals. Moreover mixtures with 10 contaminants in each mixture are tested experimentally to determine joint toxicity for mixtures of chemicals. Using the concepts of Toxic Units, Additivity Index, and Mixture Toxicity Index, the laboratory results are tested for additive, synergistic, or antagonistic effects of the contaminants. These concepts are further validated on mixtures containing eight chemicals that are tested in the laboratory. In addition to the use of the predictive models in evaluating cleanup levels for hazardous waste locations, they are useful to predict microbial toxicity in soils of new chemicals from a congeneric group acting by the same mode of toxicity. These models are applicable when the contaminants act singly or jointly in a mixture.

  11. Structure activity relationships to assess new chemicals under TSCA

    SciTech Connect

    Auletta, A.E.

    1990-12-31

    Under Section 5 of the Toxic Substances Control Act (TSCA), manufacturers must notify the US Environmental Protection Agency (EPA) 90 days before manufacturing, processing, or importing a new chemical substance. This is referred to as a premanufacture notice (PMN). The PMN must contain certain information including chemical identity, production volume, proposed uses, estimates of exposure and release, and any health or environmental test data that are available to the submitter. Because there is no explicit statutory authority that requires testing of new chemicals prior to their entry into the market, most PMNs are submitted with little or no data. As a result, EPA has developed special techniques for hazard assessment of PMN chemicals. These include (1) evaluation of available data on the chemical itself, (2) evaluation of data on analogues of the PMN, or evaluation of data on metabolites or analogues of metabolites of the PMN, (3) use of quantitative structure activity relationships (QSARs), and (4) knowledge and judgement of scientific assessors in the interpretation and integration of the information developed in the course of the assessment. This approach to evaluating potential hazards of new chemicals is used to identify those that are most in need of addition review of further testing. It should not be viewed as a replacement for testing. 4 tabs.

  12. Prediction of activated carbon adsorption capacities for organic vapors using quantitative structure-activity relationship methods

    SciTech Connect

    Nirmalakhandan, N.N. ); Speece, R.E. )

    1993-08-01

    Quantitative structure-activity relationship (QSAR) methods were used to develop models to estimate and predict activated carbon adsorption capacities for organic vapors. Literature isothermal data from two sources for 22 organic contaminants on six different carbons were merged to form a training set of 75 data points. Two different QSAR approaches were evaluated: the molecular connectivity approach and the linear solvation energy relationship approach. The QSAR model developed in this study using the molecular connectivity approach was able to fit the experimental data with r = 0.96 and standard error of 0.09. The utility of the model was demonstrated by using predicted k values to calculate adsorption capacities of 12 chemicals on two different carbons and comparing them with experimentally determined values. 9 refs., 1 fig., 3 tabs.

  13. Relationship between participation in leisure activities and constraints on Taiwanese breastfeeding mothers during leisure activities

    PubMed Central

    2013-01-01

    Background Participation in leisure activities strongly associates with health and well-being. Little research has explored the relationship between participation in leisure activities and constraints on breastfeeding mothers during leisure activities. The purposes of this study are: 1) to investigate constraints on breastfeeding mothers during leisure activities and participation in leisure activities; 2) to investigate the differences between preferences for leisure activities and actual participation by breastfeeding mothers; 3) to segment breastfeeding mothers with similar patterns, using a cluster analysis based on the delineated participation in leisure activities and leisure preferences; 4) to explore any differences between clusters of breastfeeding mothers with respect to socio-demographic characteristics, breastfeeding behaviours and leisure constraints. Methods This study has a cross-sectional design using an online survey conducted among mothers having breastfeeding experiences of more than four months. The questionnaire includes demographic variables, breastfeeding behaviours, preferences for leisure activities participation, and constraints on leisure activities. Collection of data occurred between March and July 2011, producing 415 valid responses for analysis. Results For breastfeeding mothers, this study identifies constraints on breastfeeding related to leisure activities in addition to the three traditional factors for constraints in the model. This study demonstrates that reports of constraints related to children, family, and nursing environments are the most frequent. Breastfeeding mothers in Taiwan participate regularly in family activities or activities related to their children. Cluster analysis classified breastfeeding mothers into Action and Contemplation groups, and found that mothers within the latter group participate less in leisure activities and experienced more constraints related to breastfeeding. Conclusions Implications provide

  14. Synthesis, biological activity, and quantitative structure-activity relationship study of azanaphthalimide and arylnaphthalimide derivatives.

    PubMed

    Braña, Miguel F; Gradillas, Ana; Gómez, Angel; Acero, Nuria; Llinares, Francisco; Muñoz-Mingarro, Dolores; Abradelo, Cristina; Rey-Stolle, Fernanda; Yuste, Mercedes; Campos, Joaquín; Gallo, Miguel A; Espinosa, Antonio

    2004-04-22

    A series of quinoline derivatives as aza analogues of the naphthalene chromophore and a series of "nonfused" tricyclic aromatic systems, in particular 5-arylquinolines and 5- or 6-aryl and heteroaryl naphthalene systems, were synthesized and evaluated for growth-inhibitory properties in several human cell lines. The analysis of quantitative structure-antitumor activity relationships for the growth-inhibitory properties is also reported. Findings suggest that these compounds may not express their cytotoxicity via interaction on DNA. PMID:15084122

  15. Relationship between balance and physical activity measured by an activity monitor in elderly COPD patients

    PubMed Central

    Iwakura, Masahiro; Okura, Kazuki; Shibata, Kazuyuki; Kawagoshi, Atsuyoshi; Sugawara, Keiyu; Takahashi, Hitomi; Shioya, Takanobu

    2016-01-01

    Background Little is known regarding the relationship between balance impairments and physical activity in COPD. There has been no study investigating the relationship between balance and objectively measured physical activity. Here we investigated the association between balance and physical activity measured by an activity monitor in elderly COPD patients. Materials and methods Twenty-two outpatients with COPD (mean age, 72±7 years; forced expiratory volume in 1 second, 53%±21% predicted) and 13 age-matched healthy control subjects (mean age, 72±6 years) participated in the study. We assessed all 35 subjects’ balance (one-leg standing test [OLST] times, Short Physical Performance Battery total scores, standing balance test scores, 4 m gait speed, and five-times sit-to-stand test [5STST]) and physical activity (daily steps and time spent in moderate-to-vigorous physical activity per day [MV-PA]). Possible confounders were assessed in the COPD group. The between-group differences in balance test scores and physical activity were analyzed. A correlation analysis and multivariate regression analysis were conducted in the COPD group. Results The COPD patients exhibited significant reductions in OLST times (P=0.033), Short Physical Performance Battery scores (P=0.013), 4 m gait speed (P<0.001), five-times sit-to-stand times (P=0.002), daily steps (P=0.003), and MV-PA (P=0.022) compared to the controls; the exception was the standing balance test scores. The correlation and multivariate regression analyses revealed significant independent associations between OLST times and daily steps (P<0.001) and between OLST times and MV-PA (P=0.014) in the COPD group after adjusting for possible confounding factors. Conclusion Impairments in balance and reductions in physical activity were observed in the COPD group. Deficits in balance are independently associated with physical inactivity. PMID:27445470

  16. Development of structure-activity relationship for metal oxide nanoparticles

    NASA Astrophysics Data System (ADS)

    Liu, Rong; Zhang, Hai Yuan; Ji, Zhao Xia; Rallo, Robert; Xia, Tian; Chang, Chong Hyun; Nel, Andre; Cohen, Yoram

    2013-05-01

    Nanomaterial structure-activity relationships (nano-SARs) for metal oxide nanoparticles (NPs) toxicity were investigated using metrics based on dose-response analysis and consensus self-organizing map clustering. The NP cellular toxicity dataset included toxicity profiles consisting of seven different assays for human bronchial epithelial (BEAS-2B) and murine myeloid (RAW 264.7) cells, over a concentration range of 0.39-100 mg L-1 and exposure time up to 24 h, for twenty-four different metal oxide NPs. Various nano-SAR building models were evaluated, based on an initial pool of thirty NP descriptors. The conduction band energy and ionic index (often correlated with the hydration enthalpy) were identified as suitable NP descriptors that are consistent with suggested toxicity mechanisms for metal oxide NPs and metal ions. The best performing nano-SAR with the above two descriptors, built with support vector machine (SVM) model and of validated robustness, had a balanced classification accuracy of ~94%. An applicability domain for the present data was established with a reasonable confidence level of 80%. Given the potential role of nano-SARs in decision making, regarding the environmental impact of NPs, the class probabilities provided by the SVM nano-SAR enabled the construction of decision boundaries with respect to toxicity classification under different acceptance levels of false negative relative to false positive predictions.Nanomaterial structure-activity relationships (nano-SARs) for metal oxide nanoparticles (NPs) toxicity were investigated using metrics based on dose-response analysis and consensus self-organizing map clustering. The NP cellular toxicity dataset included toxicity profiles consisting of seven different assays for human bronchial epithelial (BEAS-2B) and murine myeloid (RAW 264.7) cells, over a concentration range of 0.39-100 mg L-1 and exposure time up to 24 h, for twenty-four different metal oxide NPs. Various nano-SAR building models were

  17. The Structure-Activity Relationship between Marine Algae Polysaccharides and Anti-Complement Activity

    PubMed Central

    Jin, Weihua; Zhang, Wenjing; Liang, Hongze; Zhang, Quanbin

    2015-01-01

    In this study, 33 different polysaccharides were prepared to investigate the structure-activity relationships between the polysaccharides, mainly from marine algae, and anti-complement activity in the classical pathway. Factors considered included extraction methods, fractionations, molecular weight, molar ratio of galactose to fucose, sulfate, uronic acid (UA) content, linkage, branching, and the type of monosaccharide. It was shown that the larger the molecular weights, the better the activities. The molar ratio of galactose (Gal) to fucose (Fuc) was a positive factor at a concentration lower than 10 µg/mL, while it had no effect at a concentration more than 10 µg/mL. In addition, sulfate was necessary; however, the sulfate content, the sulfate pattern, linkage and branching had no effect at a concentration of more than 10 µg/mL. Moreover, the type of monosaccharide had no effect. Laminaran and UA fractions had no activity; however, they could reduce the activity by decreasing the effective concentration of the active composition when they were mixed with the active compositions. The effect of the extraction methods could not be determined. Finally, it was observed that sulfated galactofucan showed good anti-complement activity after separation. PMID:26712768

  18. Synthesis, Structure-Activity Relationships (SAR) and in Silico Studies of Coumarin Derivatives with Antifungal Activity

    PubMed Central

    de Araújo, Rodrigo S. A.; Guerra, Felipe Q. S.; de O. Lima, Edeltrudes; de Simone, Carlos A.; Tavares, Josean F.; Scotti, Luciana; Scotti, Marcus T.; de Aquino, Thiago M.; de Moura, Ricardo O.; Mendonça, Francisco J. B.; Barbosa-Filho, José M.

    2013-01-01

    The increased incidence of opportunistic fungal infections, associated with greater resistance to the antifungal drugs currently in use has highlighted the need for new solutions. In this study twenty four coumarin derivatives were screened in vitro for antifungal activity against strains of Aspergillus. Some of the compounds exhibited significant antifungal activity with MICs values ranging between 16 and 32 μg/mL. The structure-activity relationships (SAR) study demonstrated that O-substitutions are essential for antifungal activity. It also showed that the presence of a short aliphatic chain and/or electron withdrawing groups (NO2 and/or acetate) favor activity. These findings were confirmed using density functional theory (DFT), when calculating the LUMO density. In Principal Component Analysis (PCA), two significant principal components (PCs) explained more than 60% of the total variance. The best Partial Least Squares Regression (PLS) model showed an r2 of 0.86 and q2cv of 0.64 corroborating the SAR observations as well as demonstrating a greater probe N1 interaction for active compounds. Descriptors generated by TIP correlogram demonstrated the importance of the molecular shape for antifungal activity. PMID:23306152

  19. A comparative structure-function analysis of active-site inhibitors of Vibrio cholerae cholix toxin.

    PubMed

    Lugo, Miguel R; Merrill, A Rod

    2015-09-01

    Cholix toxin from Vibrio cholerae is a novel mono-ADP-ribosyltransferase (mART) toxin that shares structural and functional properties with Pseudomonas aeruginosa exotoxin A and Corynebacterium diphtheriae diphtheria toxin. Herein, we have used the high-resolution X-ray structure of full-length cholix toxin in the apo form, NAD(+) bound, and 10 structures of the cholix catalytic domain (C-domain) complexed with several strong inhibitors of toxin enzyme activity (NAP, PJ34, and the P-series) to study the binding mode of the ligands. A pharmacophore model based on the active pose of NAD(+) was compared with the active conformation of the inhibitors, which revealed a cationic feature in the side chain of the inhibitors that may determine the active pose. Moreover, a conformational search was conducted for the missing coordinates of one of the main active-site loops (R-loop). The resulting structural models were used to evaluate the interaction energies and for 3D-QSAR modeling. Implications for a rational drug design approach for mART toxins were derived.

  20. Quantitative Structure Activity Relationship Models for the Antioxidant Activity of Polysaccharides

    PubMed Central

    Nie, Kaiying; Wang, Zhaojing

    2016-01-01

    In this study, quantitative structure activity relationship (QSAR) models for the antioxidant activity of polysaccharides were developed with 50% effective concentration (EC50) as the dependent variable. To establish optimum QSAR models, multiple linear regressions (MLR), support vector machines (SVM) and artificial neural networks (ANN) were used, and 11 molecular descriptors were selected. The optimum QSAR model for predicting EC50 of DPPH-scavenging activity consisted of four major descriptors. MLR model gave EC50 = 0.033Ara-0.041GalA-0.03GlcA-0.025PC+0.484, and MLR fitted the training set with R = 0.807. ANN model gave the improvement of training set (R = 0.96, RMSE = 0.018) and test set (R = 0.933, RMSE = 0.055) which indicated that it was more accurately than SVM and MLR models for predicting the DPPH-scavenging activity of polysaccharides. 67 compounds were used for predicting EC50 of the hydroxyl radicals scavenging activity of polysaccharides. MLR model gave EC50 = 0.12PC+0.083Fuc+0.013Rha-0.02UA+0.372. A comparison of results from models indicated that ANN model (R = 0.944, RMSE = 0.119) was also the best one for predicting the hydroxyl radicals scavenging activity of polysaccharides. MLR and ANN models showed that Ara and GalA appeared critical in determining EC50 of DPPH-scavenging activity, and Fuc, Rha, uronic acid and protein content had a great effect on the hydroxyl radicals scavenging activity of polysaccharides. The antioxidant activity of polysaccharide usually was high in MW range of 4000–100000, and the antioxidant activity could be affected simultaneously by other polysaccharide properties, such as uronic acid and Ara. PMID:27685320

  1. KNApSAcK Metabolite Activity Database for retrieving the relationships between metabolites and biological activities.

    PubMed

    Nakamura, Yukiko; Afendi, Farit Mochamad; Parvin, Aziza Kawsar; Ono, Naoaki; Tanaka, Ken; Hirai Morita, Aki; Sato, Tetsuo; Sugiura, Tadao; Altaf-Ul-Amin, Md; Kanaya, Shigehiko

    2014-01-01

    Databases (DBs) are required by various omics fields because the volume of molecular biology data is increasing rapidly. In this study, we provide instructions for users and describe the current status of our metabolite activity DB. To facilitate a comprehensive understanding of the interactions between the metabolites of organisms and the chemical-level contribution of metabolites to human health, we constructed a metabolite activity DB known as the KNApSAcK Metabolite Activity DB. It comprises 9,584 triplet relationships (metabolite-biological activity-target species), including 2,356 metabolites, 140 activity categories, 2,963 specific descriptions of biological activities and 778 target species. Approximately 46% of the activities described in the DB are related to chemical ecology, most of which are attributed to antimicrobial agents and plant growth regulators. The majority of the metabolites with antimicrobial activities are flavonoids and phenylpropanoids. The metabolites with plant growth regulatory effects include plant hormones. Over half of the DB contents are related to human health care and medicine. The five largest groups are toxins, anticancer agents, nervous system agents, cardiovascular agents and non-therapeutic agents, such as flavors and fragrances. The KNApSAcK Metabolite Activity DB is integrated within the KNApSAcK Family DBs to facilitate further systematized research in various omics fields, especially metabolomics, nutrigenomics and foodomics. The KNApSAcK Metabolite Activity DB could also be utilized for developing novel drugs and materials, as well as for identifying viable drug resources and other useful compounds.

  2. A quantitative structure-activity relationship model for radical scavenging activity of flavonoids.

    PubMed

    Om, A; Kim, J H

    2008-03-01

    A quantitative structure-activity relationship (QSAR) study has been carried out for a training set of 29 flavonoids to correlate and predict the 1,1-diphenyl-2-picrylhydrazyl radical scavenging activity (RSA) values obtained from published data. Genetic algorithm and multiple linear regression were employed to select the descriptors and to generate the best prediction model that relates the structural features to the RSA activities using (1) three-dimensional (3D) Dragon (TALETE srl, Milan, Italy) descriptors and (2) semi-empirical descriptor calculations. The predictivity of the models was estimated by cross-validation with the leave-one-out method. The result showed that a significant improvement of the statistical indices was obtained by deleting outliers. Based on the data for the compounds used in this study, our results suggest a QSAR model of RSA that is based on the following descriptors: 3D-Morse, WHIM, and GETAWAY. Therefore, satisfactory relationships between RSA and the semi-empirical descriptors were found, demonstrating that the energy of the highest occupied molecular orbital, total energy, and energy of heat of formation contributed more significantly than all other descriptors.

  3. Synthesis, insecticidal activity, and structure-activity relationship (SAR) of anthranilic diamides analogs containing oxadiazole rings.

    PubMed

    Li, Yuhao; Zhu, Hongjun; Chen, Kai; Liu, Rui; Khallaf, Abdalla; Zhang, Xiangning; Ni, Jueping

    2013-06-28

    A series of anthranilic diamides analogs (3–11, 16–24) containing 1,2,4- or 1,3,4-oxadiazole rings were synthesized and characterized by (1)H NMR, MS and elemental analyses. The structure of 3-bromo-N-(2-(3-(4-bromophenyl)-1,2,4-oxadiazol-5-yl)-4-chloro-6-methylphenyl)-1-(3-chloropyridin-2-yl)-1H-pyrazole-5-carboxamide (18, CCDC-) was determined by X-ray diffraction crystallography. The insecticidal activities against Plutella xylostella and Spodoptera exigua were evaluated. The results showed that most of title compounds displayed good larvicidal activities against P. xylostella, especially compound 3-bromo-N-(4-chloro-2-methyl-6-(5-(methylthio)-1,3,4-oxadiazol-2-yl)phenyl)-1-(3-chloropyridin-2-yl)-1H-pyrazole-5-carboxamide (6), which displayed 71.43% activity against P. xylostella at 0.4 μg mL(-1) and 33.33% against S. exigua at 1 μg mL(-1). The structure-activity relationship showed that compounds decorated with a 1,3,4-oxadiazole were more potent than compounds decorated with a 1,2,4-oxadiazole, and different substituents attached to the oxadiazole ring also affected the insecticidal activity. This work provides some hints for further structure modification and the enhancement of insecticidal activity.

  4. Structure-activity relationships for antioxidant activities of a series of flavonoids in a liposomal system.

    PubMed

    Arora, A; Nair, M G; Strasburg, G M

    1998-06-01

    Structurally diverse plant phenolics were examined for their abilities to inhibit lipid peroxidation induced either by Fe(II) and Fe(III) metal ions or by azo-derived peroxyl radicals in a liposomal membrane system. The antioxidant abilities of flavonoids were compared with those of coumarin and tert-butylhydroquinone (TBHQ). The antioxidant efficacies of these compounds were evaluated on the basis of their abilities to inhibit the fluorescence intensity decay of an extrinsic probe, 3-(p-(6-phenyl)-I,3,5-hexatrienyl)phenylpropionic acid (DPH-PA), caused by the free radicals generated during lipid peroxidation. All the flavonoids tested exhibited higher antioxidant efficacies against metal-ion-induced peroxidations than peroxyl-radical-induced peroxidation, suggesting that metal chelation may play a larger role in determining the antioxidant activities of these compounds than has previously been believed. Distinct structure-activity relationships were also revealed for the antioxidant abilities of the flavonoids. Presence of hydroxyl substituents on the flavonoid nucleus enhanced activity, whereas substitution by methoxy groups diminished antioxidant activity. Substitution patterns on the B-ring especially affected antioxidant potencies of the flavonoids. In cases where the B-ring could not contribute to the antioxidant activities of flavonoids, hydroxyl substituents in an catechol structure on the A-ring were able to compensate and become a larger determinant of flavonoid antioxidant activity. PMID:9641252

  5. Synthesis, insecticidal activity, and structure-activity relationship (SAR) of anthranilic diamides analogs containing oxadiazole rings.

    PubMed

    Li, Yuhao; Zhu, Hongjun; Chen, Kai; Liu, Rui; Khallaf, Abdalla; Zhang, Xiangning; Ni, Jueping

    2013-06-28

    A series of anthranilic diamides analogs (3–11, 16–24) containing 1,2,4- or 1,3,4-oxadiazole rings were synthesized and characterized by (1)H NMR, MS and elemental analyses. The structure of 3-bromo-N-(2-(3-(4-bromophenyl)-1,2,4-oxadiazol-5-yl)-4-chloro-6-methylphenyl)-1-(3-chloropyridin-2-yl)-1H-pyrazole-5-carboxamide (18, CCDC-) was determined by X-ray diffraction crystallography. The insecticidal activities against Plutella xylostella and Spodoptera exigua were evaluated. The results showed that most of title compounds displayed good larvicidal activities against P. xylostella, especially compound 3-bromo-N-(4-chloro-2-methyl-6-(5-(methylthio)-1,3,4-oxadiazol-2-yl)phenyl)-1-(3-chloropyridin-2-yl)-1H-pyrazole-5-carboxamide (6), which displayed 71.43% activity against P. xylostella at 0.4 μg mL(-1) and 33.33% against S. exigua at 1 μg mL(-1). The structure-activity relationship showed that compounds decorated with a 1,3,4-oxadiazole were more potent than compounds decorated with a 1,2,4-oxadiazole, and different substituents attached to the oxadiazole ring also affected the insecticidal activity. This work provides some hints for further structure modification and the enhancement of insecticidal activity. PMID:23657615

  6. Anthocyanidins inhibit activator protein 1 activity and cell transformation: structure-activity relationship and molecular mechanisms.

    PubMed

    Hou, De-Xing; Kai, Keiko; Li, Jian-Jian; Lin, Shigang; Terahara, Norihiko; Wakamatsu, Mika; Fujii, Makoto; Young, Mattew R; Colburn, Nancy

    2004-01-01

    Anthocyanins are the chemical components that give the intense color to many fruits and vegetables, such as blueberries, red cabbages and purple sweet potatoes. Extensive studies have indicated that anthocyanins have strong antioxidant activities. To investigate the mechanism of anthocyanidins as an anticancer food source, six kinds of anthocyanidins representing the aglycons of most anthocyanins, were used to examine their effects on tumor promotion in mouse JB6 cells, a validated model for screening cancer chemopreventive agents and elucidating the molecular mechanisms. Of the six anthocyanins tested, only those with an ortho-dihydroxyphenyl structure on the B-ring suppressed 12-O-tetradecanoylphorbol-13-acetate (TPA)-induced cell transformation and activator protein-1 transactivation, suggesting that the ortho-dihydroxyphenyl may contribute to the inhibitory action. Delphinidin, but not peonidin, blocked the phosphorylation of protein kinases in the extracellular signal-regulated protein kinase (ERK) pathway at early times and the c-Jun N-terminal kinase (JNK) signaling pathway at later times. p38 kinase was not inhibited by delphinidin. Furthermore, two mitogen-activated protein kinase (MAPK) specific inhibitors (SP600125 for JNK and UO126 for ERK) could specifically block the activation of JNK and ERK and cell transformation. Those results demonstrate that anthocyanidins contribute to the inhibition of tumorigenesis by blocking activation of the MAPK pathway. These findings provide the first molecular basis for the anticarcinogenic action of anthocyanidins. PMID:14514663

  7. Anthocyanidins inhibit activator protein 1 activity and cell transformation: structure-activity relationship and molecular mechanisms.

    PubMed

    Hou, De-Xing; Kai, Keiko; Li, Jian-Jian; Lin, Shigang; Terahara, Norihiko; Wakamatsu, Mika; Fujii, Makoto; Young, Mattew R; Colburn, Nancy

    2004-01-01

    Anthocyanins are the chemical components that give the intense color to many fruits and vegetables, such as blueberries, red cabbages and purple sweet potatoes. Extensive studies have indicated that anthocyanins have strong antioxidant activities. To investigate the mechanism of anthocyanidins as an anticancer food source, six kinds of anthocyanidins representing the aglycons of most anthocyanins, were used to examine their effects on tumor promotion in mouse JB6 cells, a validated model for screening cancer chemopreventive agents and elucidating the molecular mechanisms. Of the six anthocyanins tested, only those with an ortho-dihydroxyphenyl structure on the B-ring suppressed 12-O-tetradecanoylphorbol-13-acetate (TPA)-induced cell transformation and activator protein-1 transactivation, suggesting that the ortho-dihydroxyphenyl may contribute to the inhibitory action. Delphinidin, but not peonidin, blocked the phosphorylation of protein kinases in the extracellular signal-regulated protein kinase (ERK) pathway at early times and the c-Jun N-terminal kinase (JNK) signaling pathway at later times. p38 kinase was not inhibited by delphinidin. Furthermore, two mitogen-activated protein kinase (MAPK) specific inhibitors (SP600125 for JNK and UO126 for ERK) could specifically block the activation of JNK and ERK and cell transformation. Those results demonstrate that anthocyanidins contribute to the inhibition of tumorigenesis by blocking activation of the MAPK pathway. These findings provide the first molecular basis for the anticarcinogenic action of anthocyanidins.

  8. Structure-activity relationship of synthetic branched-chain distearoylglycerol (distearin) as protein kinase C activators

    SciTech Connect

    Zhou, Qingzhong; Raynor, R.L.; Wood, M.G. Jr.; Menger, F.M.; Kuo, J.F. )

    1988-09-20

    Several representative branched-chain analogues of distearin (DS) were synthesized and tested for their abilities to activate protein kinase C (PKC) and to compete for the binding of ({sup 3}H)phorbol 12,13-dibutyrate (PDBu) to the enzyme. Substitutions of stearoyl moieties at sn-1 and sn-2 with 8-methylstearate decreased activities on these parameters, relative to those of the parental diacylglycerol DS, a weak PKC activator. Substitutions with 8-butyl, 4-butyl, or 8-phenyl derivatives, on the other hand, increased activities of the resulting analogues to levels comparable to those seen for diolein (DO), a diacylglycerol prototype shown to be a potent PKC activator. Kinetic analysis indicated that 8-methyldistearin (8-MeDS) acted by decreasing, whereas 8-butyldistearin (8-BuDS) and 8-phenyldistearin (8-PhDS) acted by increasing, the affinities of PKC for phosphatidylserine (PS, a phospholipid cofactor) and Ca{sup 2+} compared to the values seen in the absence or presence of DS. The stimulatory effect of 8-BuDS and 8-PhDS on PKC, as DO, was additive to that of 1,2-(8-butyl)distearoylphosphatidylcholine (1,2(8-Bu)DSPC) and, moreover, they abolished the marked inhibition of the enzyme activity caused by high concentrations of 1,2(8-Bu)DSPC. The present findings demonstrated a structure-activity relationship of the branched-chain DS analogues in the regulation of PKC, perhaps related to their abilities to specifically modify interactions of PKC with PS and/or Ca{sup 2+} critically involved in enzyme activation/inactivation.

  9. The First Structure–Activity Relationship Studies for Designer Receptors Exclusively Activated by Designer Drugs

    PubMed Central

    2016-01-01

    Over the past decade, two independent technologies have emerged and been widely adopted by the neuroscience community for remotely controlling neuronal activity: optogenetics which utilize engineered channelrhodopsin and other opsins, and chemogenetics which utilize engineered G protein-coupled receptors (Designer Receptors Exclusively Activated by Designer Drugs (DREADDs)) and other orthologous ligand–receptor pairs. Using directed molecular evolution, two types of DREADDs derived from human muscarinic acetylcholine receptors have been developed: hM3Dq which activates neuronal firing, and hM4Di which inhibits neuronal firing. Importantly, these DREADDs were not activated by the native ligand acetylcholine (ACh), but selectively activated by clozapine N-oxide (CNO), a pharmacologically inert ligand. CNO has been used extensively in rodent models to activate DREADDs, and although CNO is not subject to significant metabolic transformation in mice, a small fraction of CNO is apparently metabolized to clozapine in humans and guinea pigs, lessening the translational potential of DREADDs. To effectively translate the DREADD technology, the next generation of DREADD agonists are needed and a thorough understanding of structure–activity relationships (SARs) of DREADDs is required for developing such ligands. We therefore conducted the first SAR studies of hM3Dq. We explored multiple regions of the scaffold represented by CNO, identified interesting SAR trends, and discovered several compounds that are very potent hM3Dq agonists but do not activate the native human M3 receptor (hM3). We also discovered that the approved drug perlapine is a novel hM3Dq agonist with >10 000-fold selectivity for hM3Dq over hM3. PMID:25587888

  10. Moderators of the Relationship between Physical Activity and Alcohol Consumption in College Students

    ERIC Educational Resources Information Center

    Buscemi, Joanna; Martens, Matthew P.; Murphy, James G.; Yurasek, Ali M.; Smith, Ashley E.

    2011-01-01

    Objective: Among college students, several studies have found a positive relationship between physical activity and alcohol use. The current study tested gender, Greek status, and ethnicity as potential moderators of the physical activity-alcohol use relationship. Participants: Participants were college freshmen (n = 310) endorsing alcohol/drug…

  11. Adolescents' Perception of the Relationship between Movement Skills, Physical Activity and Sport

    ERIC Educational Resources Information Center

    Barnett, Lisa; Cliff, Ken; Morgan, Philip; van Beurden, Eric

    2013-01-01

    Movement skill competence is important to organised youth physical activity participation, but it is unclear how adolescents view this relationship. The primary aim of this study was to explore adolescents' perception of the relationship between movement skills, physical activity and sport, and whether their perceptions differed according to…

  12. Relationship Status and Activated Kin Support: The Role of Need and Norms

    ERIC Educational Resources Information Center

    Mazelis, Joan Maya; Mykyta, Laryssa

    2011-01-01

    Using data from the Fragile Families and Child Wellbeing Study, we examined whether mothers' (N = 4,127) and fathers' (N = 3,405) relationship status influenced their activation of financial support from relatives over time. We found that relationship status influenced the activation of financial support from relatives but that the effects…

  13. An Examination of the Relationship between Enjoyment, Physical Education, Physical Activity and Health in Irish Adolescents

    ERIC Educational Resources Information Center

    Woods, Catherine B.; Tannehill, Deborah; Walsh, Julia

    2012-01-01

    Enjoyment of physical activity (EPA) is positively correlated with activity, yet little is known of its relationship with enjoyment of physical education (EPE). This study's purpose was to explore EPE and its relationship to EPA. Cross-sectional data (N = 4122, average age 14.5 plus or minus 1.7 years, 48% male) were collected as part of the CSPPA…

  14. The Relationship between Traits of Creativity and Physical Activity in the Elderly.

    ERIC Educational Resources Information Center

    Malone, Harry Nevin

    The purpose of this study was to determine if a relationship exists between traits of creativity in the elderly and their level of physical activity. Another purpose was to determine if there was a relationship between traits of creativity focusing on arousal, sensation-seeking, and playfulness and activity. The study used an ex post facto…

  15. Relationship between Frequency and Intensity of Physical Activity and Health Behaviors of Adolescents

    ERIC Educational Resources Information Center

    Delisle, Tony T.; Werch, Chudley E.; Wong, Alvin H.; Bian, Hui; Weiler, Robert

    2010-01-01

    Background: While studies have determined the importance of physical activity in advancing health outcomes, relatively few have explored the relationship between exercise and various health behaviors of adolescents. The purpose of this study is to examine the relationship between frequency and intensity of physical activity and both health risk…

  16. Study of the relationship between solar activity and terrestrial weather

    NASA Technical Reports Server (NTRS)

    Sturrock, P. A.; Brueckner, G. E.; Dickinson, R. E.; Fukuta, N.; Lanzerotti, L. J.; Lindzen, R. S.; Park, C. G.; Wilcox, J. M.

    1976-01-01

    Evidence for some connection between weather and solar related phenomena is presented. Historical data of world wide temperature variations with relationship to change in solar luminosity are examined. Several test methods for estimating the statistical significance of such phenomena are discussed in detail.

  17. Structure-activity relationship of caffeoylquinic acids on the accelerating activity on ATP production.

    PubMed

    Miyamae, Yusaku; Kurisu, Manami; Han, Junkyu; Isoda, Hiroko; Shigemori, Hideyuki

    2011-01-01

    Caffeoylquinic acid (CQA) is one of the phenylpropanoids which have various bioactivities such as antioxidant, antibacterial, anticancer, antihistamic, and other biological effects. We previously reported that 3,5-di-O-caffeoylquinic acid inhibited amyloid β(1-42)-induced cellular toxicity on human neuroblastoma SH-SY5Y cells and increased the mRNA expression level of glycolytic enzymes and the intracellular ATP level. To investigate structure-activity relationship on the accelerating activity on ATP production, we synthesized 1,4,5-tri-O-caffeoylquinic acid, 4,5-di-O-caffeoylquinic acid, 3,4,5-tri-O-caffeoylquinic acid, and other derivatives. Additionally, we evaluated intracellular ATP level in SH-SY5Y treated with each CQA derivative. As a result, 3,4,5-tri-O-caffeoylquinic acid showed the highest accelerating activity on ATP production among tested compounds. It was suggested that caffeoyl groups bound to quinic acid are important for activity and the more caffeoyl groups are bound to quinic acid, the higher accelerating activity on ATP production exhibits.

  18. Quantitative structure-activity relationship of antifungal activity of rosin derivatives.

    PubMed

    Wang, Hui; Nguyen, Thi Thanh Hien; Li, Shujun; Liang, Tao; Zhang, Yuanyuan; Li, Jian

    2015-01-15

    To develop new rosin-based wood preservatives with good antifungal activity, 24 rosin derivatives were synthesized, bioassay tested with Trametes versicolor and Gloeophyllum trabeum, and subjected to analysis of their quantitative structure-activity relationships (QSAR). A QSAR analysis using Ampac 9.2.1 and Codessa 2.7.16 software built two QSAR models of antifungal ratio for T. versicolor and G. trabeum with values of R(2)=0.9740 and 0.9692, respectively. Based on the models, tri-N-(3-hydroabietoxy-2-hydroxy) propyl-triethyl ammonium chloride was designed and the bioassay test result proved its better inhibitory effect against the two selected fungi as expected.

  19. Quantitative structure-activity relationship of antifungal activity of rosin derivatives.

    PubMed

    Wang, Hui; Nguyen, Thi Thanh Hien; Li, Shujun; Liang, Tao; Zhang, Yuanyuan; Li, Jian

    2015-01-15

    To develop new rosin-based wood preservatives with good antifungal activity, 24 rosin derivatives were synthesized, bioassay tested with Trametes versicolor and Gloeophyllum trabeum, and subjected to analysis of their quantitative structure-activity relationships (QSAR). A QSAR analysis using Ampac 9.2.1 and Codessa 2.7.16 software built two QSAR models of antifungal ratio for T. versicolor and G. trabeum with values of R(2)=0.9740 and 0.9692, respectively. Based on the models, tri-N-(3-hydroabietoxy-2-hydroxy) propyl-triethyl ammonium chloride was designed and the bioassay test result proved its better inhibitory effect against the two selected fungi as expected. PMID:25466709

  20. Quantitative structure-activity relationship (QSAR) for insecticides: development of predictive in vivo insecticide activity models.

    PubMed

    Naik, P K; Singh, T; Singh, H

    2009-07-01

    Quantitative structure-activity relationship (QSAR) analyses were performed independently on data sets belonging to two groups of insecticides, namely the organophosphates and carbamates. Several types of descriptors including topological, spatial, thermodynamic, information content, lead likeness and E-state indices were used to derive quantitative relationships between insecticide activities and structural properties of chemicals. A systematic search approach based on missing value, zero value, simple correlation and multi-collinearity tests as well as the use of a genetic algorithm allowed the optimal selection of the descriptors used to generate the models. The QSAR models developed for both organophosphate and carbamate groups revealed good predictability with r(2) values of 0.949 and 0.838 as well as [image omitted] values of 0.890 and 0.765, respectively. In addition, a linear correlation was observed between the predicted and experimental LD(50) values for the test set data with r(2) of 0.871 and 0.788 for both the organophosphate and carbamate groups, indicating that the prediction accuracy of the QSAR models was acceptable. The models were also tested successfully from external validation criteria. QSAR models developed in this study should help further design of novel potent insecticides.

  1. Shared social and emotional activities within adolescent romantic and non-romantic sexual relationships.

    PubMed

    Williams, Lela Rankin; Russell, Stephen T

    2013-05-01

    Typically, "non-romantic" sexual relationships are assumed to be casual; however, the emotional and social distinctions between romantic and non-romantic contexts are not well understood, particularly in adolescence. Data from the National Longitudinal Study of Adolescent Health (Add Health) was used to compare shared emotional (e.g., telling partner that they love her/him) and social (e.g., going out in a group) activities within romantic and non-romantic sexual relationships. Adolescents who reported exclusively romantic sexual relationships (n = 1,891) shared more emotional, but not social, activities with their partners than adolescents who were in non-romantic sexual relationships (n = 315; small effect size, r = .07-.13), akin to adolescents who experienced both relationship types (n = 519; small-to-medium effect size, r = .18-.38). Girls shared more emotional and social activities with their partners than boys when in romantic relationships (small effect size, r = .06-.10); there were no significant gender differences within non-romantic sexual relationships. Findings suggest that gendered scripts remain for sexual relationships that are romantic but not for those that are non-romantic. Notably, for the majority of adolescents, non-romantic relationships still held many emotional and social dimensions typical of romantic relationships and differences between relationship types were small. Although non-romantic relationships were less intimate than romantic sexual relationships, there was remarkable heterogeneity within this relationship type. Caution is advised when working with adolescents engaged in "casual" sexual relationships. Understanding the complexity of adolescent sexual relationships is critical for the advancement of effective sex education programming.

  2. Relationship between anticoagulant activities and polyanionic properties of rabbit thrombomodulin.

    PubMed

    Bourin, M C; Ohlin, A K; Lane, D A; Stenflo, J; Lindahl, U

    1988-06-15

    Rabbit thrombomodulin displays three distinct blood anticoagulant activities: it promotes the activation of protein C by thrombin (protein C activation cofactor activity); it promotes the inactivation of thrombin by thrombin (direct anticoagulant activity). The effects on these activities of mouse anti-thrombomodulin monoclonal antibodies and of the heparin-neutralizing proteins, platelet factor 4, histidine-rich glycoprotein, and S-protein, were investigated. One of the antibodies, which did not influence the functional properties of thrombomodulin, was used as an immunoaffinity ligand for purification of the protein. Two other antibodies, which were found to abrogate the protein C activation cofactor activity of the purified thrombomodulin, also abolished the antithrombin-dependent and the direct anticoagulant activities. The heparin-neutralizing proteins all inhibited the two latter activities, albeit to a varying extent, but did not appreciably affect the activation of protein C. These results are interpreted in relation to our previous finding that rabbit thrombomodulin contains an acidic domain, tentatively identified as a sulfated glycosaminoglycan (Bourin, M.-C., Boffa, M.-C., Björk, I., and Lindahl, U. (1986) Proc. Natl. Acad. Sci. U.S.A. 83, 5924-5928). It is proposed that the acidic domain interacts with thrombin at the protein C activation site and that this interaction is a prerequisite to the expression of direct as well as antithrombin-dependent anticoagulant activity. The interaction is not essential to, but compatible with, the activation of protein C. Experiments involving treatment of thrombomodulin with various glycanases or with nitrous acid, followed by measurement of anticoagulant activities, indicated that the acidic domain is constituted by a sulfated galactosaminoglycan and not by a heparin-related polysaccharide as previously suggested.

  3. 3D-QSAR, molecular dynamics simulations and molecular docking studies of benzoxazepine moiety as mTOR inhibitor for the treatment of lung cancer.

    PubMed

    Chaube, Udit; Chhatbar, Dhara; Bhatt, Hardik

    2016-02-01

    According to WHO statistics, lung cancer is one of the leading causes of death among all other types of cancer. Many genes get mutated in lung cancer but involvement of EGFR and KRAS are more common. Unavailability of drugs or resistance to the available drugs is the major problem in the treatment of lung cancer. In the present research, mTOR was selected as an alternative target for the treatment of lung cancer which involves PI3K/AKT/mTOR pathway. 28 synthetic mTOR inhibitors were selected from the literature. Ligand based approach (CoMFA and CoMSIA) and structure based approach (molecular dynamics simulations assisted molecular docking study) were applied for the identification of important features of benzoxazepine moiety, responsible for mTOR inhibition. Three different alignments were tried to obtain best QSAR model, of which, distil was found to be the best method, as it gave good statistical results. In CoMFA, Leave One Out (LOO) cross validated coefficients (q(2)), conventional coefficient (r(2)) and predicted correlation coefficient (r(2)pred) values were found to be 0.615, 0.990 and 0.930, respectively. Similarly in CoMSIA, q(2), r(2)ncv and r(2)pred values were found to be 0.748, 0.986 and 0.933, respectively. Molecular dynamics and simulations study revealed that B-chain of mTOR protein was stable at and above 500 FS with respect to temperature (at and above 298 K), Potential energy (at and above 7669.72 kJ/mol) and kinetic energy (at and above 4009.77 kJ/mol). Molecular docking study was performed on simulated protein of mTOR which helped to correlate interactions of amino acids surrounded to the ligand with contour maps generated by QSAR method. Important features of benzoxazepine were identified by contour maps and molecular docking study which would be useful to design novel molecules as mTOR inhibitors for the treatment of lung cancer.

  4. Development of 3D-QSAR model for acetylcholinesterase inhibitors using a combination of fingerprint, molecular docking, and structure-based pharmacophore approaches

    EPA Science Inventory

    Acetylcholinesterase (AChE), a serine hydrolase vital for regulating the neurotransmitter acetylcholine in animals, has been used as a target for drugs and pesticides. With the increasing availability of AChE crystal structures, with or without ligands bound, structure-based appr...

  5. Development of a 3D-QSAR model for acetylcholinesterase inhibitors using a combination of fingerprint, docking, and structure-based pharmacophore approaches - Conference Abstract

    EPA Science Inventory

    Acetylcholinesterase (AChE), a serine hydrolase vital for regulating the neurotransmitter acetylcholine in animals, has been used as a target for drugs and pesticides. With the increasing availability of AChE crystal structures, with or without ligands bound, structure-based appr...

  6. Inhibition of Angiotensin-Converting Enzyme Activity by Flavonoids: Structure-Activity Relationship Studies

    PubMed Central

    Guerrero, Ligia; Castillo, Julián; Quiñones, Mar; Garcia-Vallvé, Santiago; Arola, Lluis; Pujadas, Gerard; Muguerza, Begoña

    2012-01-01

    Previous studies have demonstrated that certain flavonoids can have an inhibitory effect on angiotensin-converting enzyme (ACE) activity, which plays a key role in the regulation of arterial blood pressure. In the present study, 17 flavonoids belonging to five structural subtypes were evaluated in vitro for their ability to inhibit ACE in order to establish the structural basis of their bioactivity. The ACE inhibitory (ACEI) activity of these 17 flavonoids was determined by fluorimetric method at two concentrations (500 µM and 100 µM). Their inhibitory potencies ranged from 17 to 95% at 500 µM and from 0 to 57% at 100 µM. In both cases, the highest ACEI activity was obtained for luteolin. Following the determination of ACEI activity, the flavonoids with higher ACEI activity (i.e., ACEI >60% at 500 µM) were selected for further IC50 determination. The IC50 values for luteolin, quercetin, rutin, kaempferol, rhoifolin and apigenin K were 23, 43, 64, 178, 183 and 196 µM, respectively. Our results suggest that flavonoids are an excellent source of functional antihypertensive products. Furthermore, our structure-activity relationship studies show that the combination of sub-structures on the flavonoid skeleton that increase ACEI activity is made up of the following elements: (a) the catechol group in the B-ring, (b) the double bond between C2 and C3 at the C-ring, and (c) the cetone group in C4 at the C-ring. Protein-ligand docking studies are used to understand the molecular basis for these results. PMID:23185345

  7. Design, structure activity relationship, cytotoxicity and evaluation of antioxidant activity of curcumin derivatives/analogues.

    PubMed

    Sahu, Pramod K

    2016-10-01

    New fourteen 3,4-dihydropyrimidine derivatives/analogues of curcumin (2a-2n) were designed, synthesized and biologically evaluated for their cytotoxicity and antioxidant activity. Cytotoxicity effect has been evaluated against three cell lines HeLa, HCT-116 and QG-56 by MTT assay method. From SAR study, it has been revealed that particularly, compound 2e and 2j (IC50 value 12.5 μM) have shown better cytotoxicity effect against three cell lines. According to results of SAR study, it was found that 3,4-dihydropyrimidines of curcumin, 2c, 2d, 2j and 2n exhibited better antioxidant activity than curcumin. A correlation of structure and activities relationship of these compounds with respect to drug score profiles and other physico-chemical properties of drugs are described and verified experimentally. Therefore, we conclude that physico-chemical analyses may prove structural features of curcumin analogues with their promising combined cytotoxicity/antioxidant activity and it is also concluded from virtual and practical screening that the compounds were varied to possess a broad range of lipophilic character, revealed by Log P values. PMID:27318975

  8. Classical Nuclear Hormone Receptor Activity as a Mediator of Complex Concentration Response Relationships for Endocrine Active Compounds

    PubMed Central

    Cookman, Clifford J.; Belcher, Scott M.

    2014-01-01

    Nonmonotonic concentration response relationships are frequently observed for endocrine active ligands that act via nuclear receptors. The curve of best fit for nonmonotonic concentration response relationships are often inverted U-shaped with effects at intermediate concentrations that are different from effects at higher or lower concentrations. Cytotoxicity is a major mode of action responsible for inverted U-shaped concentration response relationships. However, evidence suggests that ligand selectivity, activation of multiple molecular targets, concerted regulation of multiple opposing endpoints, and multiple ligand binding sites within nuclear receptors also contribute to nonmonotonic concentration response relationships of endocrine active ligands. This review reports the current understanding of mechanisms involved in classical nuclear receptor mediated nonmonotonic concentration response relationships with a focus on studies published between 2012 and 2014. PMID:25299165

  9. Structural Investigation for Optimization of Anthranilic Acid Derivatives as Partial FXR Agonists by in Silico Approaches

    PubMed Central

    Chen, Meimei; Yang, Xuemei; Lai, Xinmei; Kang, Jie; Gan, Huijuan; Gao, Yuxing

    2016-01-01

    In this paper, a three level in silico approach was applied to investigate some important structural and physicochemical aspects of a series of anthranilic acid derivatives (AAD) newly identified as potent partial farnesoid X receptor (FXR) agonists. Initially, both two and three-dimensional quantitative structure activity relationship (2D- and 3D-QSAR) studies were performed based on such AAD by a stepwise technology combined with multiple linear regression and comparative molecular field analysis. The obtained 2D-QSAR model gave a high predictive ability (R2train = 0.935, R2test = 0.902, Q2LOO = 0.899). It also uncovered that number of rotatable single bonds (b_rotN), relative negative partial charges (RPC−), oprea's lead-like (opr_leadlike), subdivided van der Waal’s surface area (SlogP_VSA2) and accessible surface area (ASA) were important features in defining activity. Additionally, the derived3D-QSAR model presented a higher predictive ability (R2train = 0.944, R2test = 0.892, Q2LOO = 0.802). Meanwhile, the derived contour maps from the 3D-QSAR model revealed the significant structural features (steric and electronic effects) required for improving FXR agonist activity. Finally, nine newly designed AAD with higher predicted EC50 values than the known template compound were docked into the FXR active site. The excellent molecular binding patterns of these molecules also suggested that they can be robust and potent partial FXR agonists in agreement with the QSAR results. Overall, these derived models may help to identify and design novel AAD with better FXR agonist activity. PMID:27070594

  10. 'Sum of activities' as dependent parameter: a new CoMFA-based approach for the design of pan PPAR agonists.

    PubMed

    Sundriyal, Sandeep; Bharatam, Prasad V

    2009-01-01

    A 'sum-model' (3D QSAR - CoMFA) has been developed to design PPAR(alpha/gamma/delta) (peroxisome proliferator activated receptor) pan agonists by using the sum of activities (EC(50)) of compounds against individual subtypes as a dependent parameter. In addition, the three subtype specific CoMFA models were also generated using the identical training set molecules (N=28). All four models were validated using the popular 'leave-one-out' (LOO) method and with a test set of 9 molecules. The generated models were found to be statistically significant with r(cv)(2)>0.5 and r(ncv)(2)>0.9 and the lower values of standard error of estimation (SEE) ranging from 0.097 to 0.160. From the contour map analyses the 'sum-model' was found to represent the three subtype specific models and also predicted the sum of activities of the training set molecules with reasonable accuracy. The new molecules were designed based on the 'sum-model' and were found to dock well in the PPARgamma active site. This approach may find wider applications in the research related to other classes of 'designed multiple ligands'. PMID:18448203

  11. Neuroprotective and Antioxidant Activities of 4-Methylcoumarins: Development of Structure-Activity Relationships.

    PubMed

    Malhotra, Shashwat; Tavakkoli, Marjan; Edraki, Najmeh; Miri, Ramin; Sharma, Sunil Kumar; Prasad, Ashok Kumar; Saso, Luciano; Len, Christophe; Parmar, Virinder Singh; Firuzi, Omidreza

    2016-01-01

    Coumarins are a major class of polyphenols that are abundantly present in many dietary plants and possess different biological activities. Neuroprotective effect of 28 variously substituted 4-methylcoumarins was evaluated in a cell model of oxidative stress-induced neurodegeneration, which measures viability in PC12 cells challenged with hydrogen peroxide by 3-(4,5-dimethylthiazol-2-yl)-2,5-diphenyltetrazolium bromide (MTT) assay. The inhibitory activity of these compounds against intracellular reactive oxygen species (ROS) formation was also determined by 2',7'-dichlorofluorescein diacetate method in the same cells. Chemical redox-based assays including 2,2-diphenyl-1-picrylhydrazyl (DPPH) and ferric reducing antioxidant power (FRAP) tests were employed to explore structure-antioxidant activity relationships in a cell-free environment. The results demonstrated that 4-methylcoumarins containing ortho-dihydroxy or ortho-diacetoxy substituents on the benzenoid ring possess considerable neuroprotective effects. ortho-Dihydroxy compounds inhibited cytotoxicity (44.7-62.9%) and ROS formation (41.6-71.1%) at 50 µM and showed considerable antioxidant effects. We conclude that 4-methylcoumarins are promising neuroprotective and antioxidant scaffolds potentially usefull for management of neurodegenerative diseases. PMID:27582333

  12. Relationships

    ERIC Educational Resources Information Center

    Circle, David

    2006-01-01

    The author of this brief article asserts that one of the keys to being successful--whether one is a music teacher, a college professor, a business owner, a doctor, a lawyer, or in any other career--is his or her relationship with people. Music educators are in the people business. They do not make a tangible product. Instead, they provide a…

  13. Synthesis and structure-activity relationship of trimebutine derivatives.

    PubMed

    Sai, H; Ozaki, Y; Hayashi, K; Onoda, Y; Yamada, K

    1996-06-01

    Trimebutine derivatives were synthesized by utilizing alkylation or acylation of isonitriles and nitrile as a key step. The colonic contractile effects of these compounds were examined, and T-1815 was found to have strong colonic propulsive activity. PMID:8814947

  14. Androgen receptor antagonists (antiandrogens): structure-activity relationships.

    PubMed

    Singh, S M; Gauthier, S; Labrie, F

    2000-02-01

    Prostate cancer, acne, seborrhea, hirsutism, and androgenic alopecia are well recognized to depend upon an excess or increased sensitivity to androgens or to be at least sensitive to androgens. It thus seems logical to use antiandrogens as therapeutic agents to prevent androgens from binding to the androgen receptor. The two predominant naturally occurring androgens are testosterone (T) and dihydrotestosterone (DHT). DHT is the more potent androgen in vivo and in vitro. All androgen-responsive genes are activated by androgen receptor (AR) bound to either T or DHT and it is believed that AR is more transcriptionally active when bound to DHT than T. The two classes of antiandrogens, presently available, are the steroidal derivatives, all of which possess mixed agonistic and antagonistic activities, and the pure non-steroidal antiandrogens of the class of flutamide and its derivatives. The intrinsic androgenic, estrogenic and glucocorticoid activities of steroidal derivatives have limited their use in the treatment of prostate cancer. The non-steroidal flutamide and its derivatives display pure antiandrogenic activity, without exerting agonistic or any other hormonal activity. Flutamide (89) and its derivatives, Casodex (108) and Anandron (114), are highly effective in the treatment of prostate cancer. The combination of flutamide and Anandron with castration has shown prolongation of life in prostate cancer. Furthermore, combined androgen blockade in association with radical prostatectomy or radiotherapy are very effective in the treatment of localized prostate cancer. Such an approach certainly raises the hope of a further improvement in prostate cancer therapy. However, all antiandrogens, developed so-far display moderate affinity for the androgen receptor, and thus moderate efficacy in vitro and in vivo. There is thus a need for next-generation antiandrogens, which could display an equal or even higher affinity for AR compared to the natural androgens, and at the

  15. Predicting anti-androgenic activity of bisphenols using molecular docking and quantitative structure-activity relationships.

    PubMed

    Yang, Xianhai; Liu, Huihui; Yang, Qian; Liu, Jining; Chen, Jingwen; Shi, Lili

    2016-11-01

    Both in vivo and in vitro assay indicated that bisphenols can inhibit the androgen receptor. However, the underlying antagonistic mechanism is unclear. In this study, molecular docking was employed to probe the interaction mechanism between bisphenols and human androgen receptor (hAR). The binding pattern of ligands in hAR crystal structures was also analyzed. Results show that hydrogen bonding and hydrophobic interactions are the dominant interactions between the ligands and hAR. The critical amino acid residues involved in forming hydrogen bonding between bisphenols and hAR is Asn 705 and Gln 711. Furthermore, appropriate molecular structural descriptors were selected to characterize the non-bonded interactions. Stepwise multiple linear regressions (MLR) analysis was employed to develop quantitative structure-activity relationship (QSAR) models for predicting the anti-androgenic activity of bisphenols. Based on the QSAR development and validation guideline issued by OECD, the goodness-of-fit, robustness and predictive ability of constructed QSAR model were assessed. The model application domain was characterized by the Euclidean distance and Williams plot. The mechanisms of the constructed model were also interpreted based on the selected molecular descriptors i.e. the number of hydroxyl groups (nROH), the most positive values of the molecular surface potential (Vs,max) and the lowest unoccupied molecular orbital energy (ELUMO). Finally, based on the model developed, the data gap for other twenty-six bisphenols on their anti-androgenic activity was filled. The predicted results indicated that the anti-androgenic activity of seven bisphenols was higher than that of bisphenol A. PMID:27561732

  16. Quantitative structure-antifungal activity relationships of some benzohydrazides against Botrytis cinerea.

    PubMed

    Reino, José L; Saiz-Urra, Liane; Hernandez-Galan, Rosario; Aran, Vicente J; Hitchcock, Peter B; Hanson, James R; Gonzalez, Maykel Perez; Collado, Isidro G

    2007-06-27

    Fourteen benzohydrazides have been synthesized and evaluated for their in vitro antifungal activity against the phytopathogenic fungus Botrytis cinerea. The best antifungal activity was observed for the N',N'-dibenzylbenzohydrazides 3b-d and for the N-aminoisoindoline-derived benzohydrazide 5. A quantitative structure-activity relationship (QSAR) study has been developed using a topological substructural molecular design (TOPS-MODE) approach to interpret the antifungal activity of these synthetic compounds. The model described 98.3% of the experimental variance, with a standard deviation of 4.02. The influence of an ortho substituent on the conformation of the benzohydrazides was investigated by X-ray crystallography and supported by QSAR study. Several aspects of the structure-activity relationships are discussed in terms of the contribution of different bonds to the antifungal activity, thereby making the relationships between structure and biological activity more transparent.

  17. Initial insights into structure-activity relationships of avian defensins.

    PubMed

    Derache, Chrystelle; Meudal, Hervé; Aucagne, Vincent; Mark, Kevin J; Cadène, Martine; Delmas, Agnès F; Lalmanach, Anne-Christine; Landon, Céline

    2012-03-01

    Numerous β-defensins have been identified in birds, and the potential use of these peptides as alternatives to antibiotics has been proposed, in particular to fight antibiotic-resistant and zoonotic bacterial species. Little is known about the mechanism of antibacterial activity of avian β-defensins, and this study was carried out to obtain initial insights into the involvement of structural features or specific residues in the antimicrobial activity of chicken AvBD2. Chicken AvBD2 and its enantiomeric counterpart were chemically synthesized. Peptide elongation and oxidative folding were both optimized. The similar antimicrobial activity measured for both L- and D-proteins clearly indicates that there is no chiral partner. Therefore, the bacterial membrane is in all likelihood the primary target. Moreover, this work indicates that the three-dimensional fold is required for an optimal antimicrobial activity, in particular for gram-positive bacterial strains. The three-dimensional NMR structure of chicken AvBD2 defensin displays the structural three-stranded antiparallel β-sheet characteristic of β-defensins. The surface of the molecule does not display any amphipathic character. In light of this new structure and of the king penguin AvBD103b defensin structure, the consensus sequence of the avian β-defensin family was analyzed. Well conserved residues were highlighted, and the potential strategic role of the lysine 31 residue of AvBD2 was emphasized. The synthetic AvBD2-K31A variant displayed substantial N-terminal structural modifications and a dramatic decrease in activity. Taken together, these results demonstrate the structural as well as the functional role of the critical lysine 31 residue in antimicrobial activity. PMID:22205704

  18. Activities and Accomplishments in Various Domains: Relationships with Creative Personality and Creative Motivation in Adolescence

    ERIC Educational Resources Information Center

    Hong, Eunsook; Peng, Yun; O'Neil, Harold F., Jr.

    2014-01-01

    This study examined relationships between five personal traits and adolescents' creative activities and accomplishments in five domains--music, visual arts, creative writing, science, and technology. Participants were 439 tenth graders (220 males and 219 females) in China. The relationships were examined using confirmatory factor analysis.…

  19. Adolescents Online: The Importance of Internet Activity Choices to Salient Relationships

    ERIC Educational Resources Information Center

    Blais, Julie J.; Craig, Wendy M.; Pepler, Debra; Connolly, Jennifer

    2008-01-01

    The purpose of this study was to determine whether using the Internet for different activities affects the quality of close adolescent relationships (i.e., best friendships and romantic relationships). In a one-year longitudinal study of 884 adolescents (Mean age = 15, 46% male), we examined whether visiting chat rooms, using ICQ, using the…

  20. Does Physical Activity Intensity Moderate Social Cognition and Behavior Relationships?

    ERIC Educational Resources Information Center

    Scott, Felicity; Rhodes, Ryan E.; Downs, Danielle Symons

    2009-01-01

    Objective: Public health messaging about physical activity (PA) sometimes combines moderate and vigorous intensity, but the variance/invariance of the motives for PA by intensity has received scant attention. Thus, the purpose of this study was to examine the beliefs and motivations associated with regular moderate- and vigorous-intensity PA in a…

  1. The Relationship among Faculty Appointments and Scholarly Activities

    ERIC Educational Resources Information Center

    Gonzalez, Lynn Passmore

    2010-01-01

    The mission of higher education and the activities of faculty are often described in terms of teaching, research, and service. Additionally, tenure has been the standard model for employment in American college and universities since 1940. The traditional model of faculty earning tenure through high standards of teaching, research, and service is…

  2. Instructional Transaction Theory: Knowledge Relationships among Processes, Entities, and Activities.

    ERIC Educational Resources Information Center

    Merrill, M. David; And Others

    1993-01-01

    Discussion of instructional transaction theory focuses on knowledge representation in an automated instructional design expert system. A knowledge structure called PEA-Net (processes, entities, and activities) is explained; the refrigeration process is used as an example; text resources and graphic resources are described; and simulations are…

  3. Prospective relationships of physical activity with quality of life among colorectal cancer survivors

    Technology Transfer Automated Retrieval System (TEKTRAN)

    Physical activity can enhance quality of life for cancer survivors. However, few longitudinal studies have examined whether physical activity has a sustained effect on improvements in quality of life. The present study aims to examine the relationships between physical activity and quality of life o...

  4. Brief Report: Relationships between Physical Activity and Depressive Symptoms in Adolescent Girls

    ERIC Educational Resources Information Center

    Raudsepp, Lennart; Neissaar, Inga

    2012-01-01

    This study examined the relationships between changes in physical activity and depressive symptoms in adolescent girls. Participants were 277 urban adolescent girls. Physical activity was measured using the 3-Day Physical Activity Recall and depressive symptoms were assessed using questionnaire. Data were collected on three occasions over a 3-year…

  5. The Relationship between Aerobic Capacity and Physical Activity in Blind and Sighted Adolescents.

    ERIC Educational Resources Information Center

    Kobberling, G.; And Others

    1991-01-01

    This study investigated the relationship between habitual physical activity and aerobic capacity in 30 blind and 30 sighted adolescents. Both physical activity and maximal oxygen consumption were significantly higher among the sighted adolescents. A minimum of 30 minutes of daily activity at a minimal oxygen consumption of 8 METs (resting…

  6. Structure-activity relationships for selected fragrance allergens.

    PubMed

    Patlewicz, G Y; Wright, Z M; Basketter, D A; Pease, C K; Lepoittevin, J-P; Arnau, E Giménez

    2002-10-01

    Fragrance substances represent a very diverse group of chemicals, a proportion of them providing not only desirable aroma characteristics, but also being associated with adverse effects, notably the ability to cause allergic reactions in the skin. However, efforts to find substitute materials are hampered by the need to undertake animal testing to evaluate both the presence and the degree of skin sensitization hazard. One potential route to avoid such testing is to understand the relationships between chemical structure and skin sensitization. In the present work we have evaluated two groups of fragrance chemicals, saturated aldehydes (aryl substituted and aliphatic aldehydes) and alpha,beta-unsaturated aldehydes. Data on their skin sensitization potency defined using the local lymph node assay has been evaluated in relation to their physicochemical properties. The initial outcome has been consistent with the concept that alpha,beta-unsaturated aldehydes react largely via Michael addition, whilst the group of saturated aldehydes form Schiff bases with proteins. Simple models of chemical reactivity based on these mechanisms suggest that it may be possible to predict allergenic potency. Accordingly, the evaluation of an additional group of similar aldehydes is now underway to assess the robustness of these models, with some emphasis being based on ensuring a wider spread of chemical reactivity.

  7. Relationships Between Vocal Activity and Perception of Communicators in Small Group Interaction

    ERIC Educational Resources Information Center

    Daley, John A.; And Others

    1977-01-01

    Discusses a study designed to investigate the relationships between vocal activity level and interpersonal attraction, perceived credibility, perceived homophily or interpersonal similarity and perceived power or ability to influence. (MH)

  8. MOLECULAR INTERACTION POTENTIALS FOR THE DEVELOPMENT OF STRUCTURE-ACTIVITY RELATIONSHIPS

    EPA Science Inventory

    Abstract
    One reasonable approach to the analysis of the relationships between molecular structure and toxic activity is through the investigation of the forces and intermolecular interactions responsible for chemical toxicity. The interaction between the xenobiotic and the bio...

  9. PREDICTING TOXICOLOGICAL ENDPOINTS OF CHEMICALS USING QUANTITATIVE STRUCTURE-ACTIVITY RELATIONSHIPS (QSARS)

    EPA Science Inventory

    Quantitative structure-activity relationships (QSARs) are being developed to predict the toxicological endpoints for untested chemicals similar in structure to chemicals that have known experimental toxicological data. Based on a very large number of predetermined descriptors, a...

  10. Quantitative Structure--Activity Relationship Modeling of Rat Acute Toxicity by Oral Exposure

    EPA Science Inventory

    Background: Few Quantitative Structure-Activity Relationship (QSAR) studies have successfully modeled large, diverse rodent toxicity endpoints. Objective: In this study, a combinatorial QSAR approach has been employed for the creation of robust and predictive models of acute toxi...

  11. Application of the quantum mechanical IEF/PCM-MST hydrophobic descriptors to selectivity in ligand binding.

    PubMed

    Ginex, Tiziana; Muñoz-Muriedas, Jordi; Herrero, Enric; Gibert, Enric; Cozzini, Pietro; Luque, F Javier

    2016-06-01

    We have recently reported the development and validation of quantum mechanical (QM)-based hydrophobic descriptors derived from the parametrized IEF/PCM-MST continuum solvation model for 3D-QSAR studies within the framework of the Hydrophobic Pharmacophore (HyPhar) method. In this study we explore the applicability of these descriptors to the analysis of selectivity fields. To this end, we have examined a series of 88 compounds with inhibitory activities against thrombin, trypsin and factor Xa, and the HyPhar results have been compared with 3D-QSAR models reported in the literature. The quantitative models obtained by combining the electrostatic and non-electrostatic components of the octanol/water partition coefficient yield results that compare well with the predictive potential of standard CoMFA and CoMSIA techniques. The results also highlight the potential of HyPhar descriptors to discriminate the selectivity of the compounds against thrombin, trypsin, and factor Xa. Moreover, the graphical representation of the hydrophobic maps provides a direct linkage with the pattern of interactions found in crystallographic structures. Overall, the results support the usefulness of the QM/MST-based hydrophobic descriptors as a complementary approach for disclosing structure-activity relationships in drug design and for gaining insight into the molecular determinants of ligand selectivity. Graphical Abstract Quantum Mechanical continuum solvation calculations performed with the IEF/PCM-MST method are used to derived atomic hydrophobic descriptors, which are then used to discriminate the selectivity of ligands against thrombin, trypsin and factor Xa. The descriptors provide complementary view to standard 3D-QSAR analysis, leading to a more comprehensive understanding of ligand recognition. PMID:27188723

  12. Relationship of gonadal activity and chemotherapy-induced gonadal damage

    SciTech Connect

    Rivkees, S.A.; Crawford, J.D.

    1988-04-08

    The authors tested the hypothesis that chemotherapy-induced gonadal damage is proportional to the degree of gonadal activity during treatment. Thirty studies that evaluated gonadal function after cyclophosphamide therapy for renal disease or combination chemotherapy for Hodgkin's disease or acute lymphocytic leukemia provided data for analysis. Data were stratified according to sex, illness, chemotherapeutic regimen and dose, and pubertal stage at the time of treatment. Chemotherapy-induced damage was more likely to occur in patients who were treated when sexually mature compared with those who were treated when prepubertal. Males were significantly more frequently affected than females when treated for renal disease of Hodgkin's disease. Chemotherapy-induced damage was also more likely to occur when patients were treated with large doses of alkylating agents. These data suggest that chemotherapy-induced damage is proportional to gonadal activity. Further efforts are needed to test whether induced gonadal quiescence during chemotherapy will reduce the strikingly high incidence of gonadal failure following chemotherapy.

  13. Time-activity relationships to VOC personal exposure factors

    NASA Astrophysics Data System (ADS)

    Edwards, Rufus D.; Schweizer, Christian; Llacqua, Vito; Lai, Hak Kan; Jantunen, Matti; Bayer-Oglesby, Lucy; Künzli, Nino

    Social and demographic factors have been found to play a significant role in differences between time-activity patterns of population subgroups. Since time-activity patterns largely influence personal exposure to compounds as individuals move across microenvironments, exposure subgroups within the population may be defined by factors that influence daily activity patterns. Socio-demographic and environmental factors that define time-activity subgroups also define quantifiable differences in VOC personal exposures to different sources and individual compounds in the Expolis study. Significant differences in exposures to traffic-related compounds ethylbenzene, m- and p-xylene and o-xylene were observed in relation to gender, number of children and living alone. Categorization of exposures further indicated time exposed to traffic at work and time in a car as important determinants. Increased exposures to decane, nonane and undecane were observed for males, housewives and self-employed. Categorization of exposures indicated exposure subgroups related to workshop use and living downtown. Higher exposures to 3-carene and α-pinene commonly found in household cleaning products and fragrances were associated with more children, while exposures to traffic compounds ethylbenzene, m- and p-xylene and o-xylene were reduced with more children. Considerable unexplained variation remained in categorization of exposures associated with home product use and fragrances, due to individual behavior and product choice. More targeted data collection methods in VOC exposure studies for these sources should be used. Living alone was associated with decreased exposures to 2-methyl-1-propanol and 1-butanol, and traffic-related compounds. Identification of these subgroups may help to reduce the large amount of unexplained variation in VOC exposure studies. Further they may help in assessing impacts of urban planning that result in changes in behavior of individuals, resulting in shifts in

  14. Structure-Activity Relationship of Chlorotoxin-Like Peptides

    PubMed Central

    Ali, Syed Abid; Alam, Mehtab; Abbasi, Atiya; Undheim, Eivind A. B.; Fry, Bryan Grieg; Kalbacher, Hubert; Voelter, Wolfgang

    2016-01-01

    Animal venom (e.g., scorpion) is a rich source of various protein and peptide toxins with diverse physio-/pharmaco-logical activities, which generally exert their action via target-specific modulation of different ion channel functions. Scorpion venoms are among the most widely-known source of peptidyl neurotoxins used for callipering different ion channels, such as; Na+, K+, Ca+, Cl−, etc. A new peptide of the chlorotoxin family (i.e., Bs-Tx7) has been isolated, sequenced and synthesized from scorpion Buthus sindicus (family Buthidae) venom. This peptide demonstrates 66% with chlorotoxin (ClTx) and 82% with CFTR channel inhibitor (GaTx1) sequence identities reported from Leiurus quinquestriatus hebraeus venom. The toxin has a molecular mass of 3821 Da and possesses four intra-chain disulphide bonds. Amino acid sequence analysis of Bs-Tx7 revealed the presence of a scissile peptide bond (i.e., Gly-Ile) for human MMP2, whose activity is increased in the case of tumour malignancy. The effect of hMMP2 on Bs-Tx7, or vice versa, observed using the FRET peptide substrate with methoxycoumarin (Mca)/dinitrophenyl (Dnp) as fluorophore/quencher, designed and synthesized to obtain the lowest Km value for this substrate, showed approximately a 60% increase in the activity of hMMP2 upon incubation of Bs-Tx7 with the enzyme at a micromolar concentration (4 µM), indicating the importance of this toxin in diseases associated with decreased MMP2 activity. PMID:26848686

  15. Structure-Activity Relationship of Chlorotoxin-Like Peptides.

    PubMed

    Ali, Syed Abid; Alam, Mehtab; Abbasi, Atiya; Undheim, Eivind A B; Fry, Bryan Grieg; Kalbacher, Hubert; Voelter, Wolfgang

    2016-02-02

    Animal venom (e.g., scorpion) is a rich source of various protein and peptide toxins with diverse physio-/pharmaco-logical activities, which generally exert their action via target-specific modulation of different ion channel functions. Scorpion venoms are among the most widely-known source of peptidyl neurotoxins used for callipering different ion channels, such as; Na⁺, K⁺, Ca⁺, Cl(-), etc. A new peptide of the chlorotoxin family (i.e., Bs-Tx7) has been isolated, sequenced and synthesized from scorpion Buthus sindicus (family Buthidae) venom. This peptide demonstrates 66% with chlorotoxin (ClTx) and 82% with CFTR channel inhibitor (GaTx1) sequence identities reported from Leiurus quinquestriatus hebraeus venom. The toxin has a molecular mass of 3821 Da and possesses four intra-chain disulphide bonds. Amino acid sequence analysis of Bs-Tx7 revealed the presence of a scissile peptide bond (i.e., Gly-Ile) for human MMP2, whose activity is increased in the case of tumour malignancy. The effect of hMMP2 on Bs-Tx7, or vice versa, observed using the FRET peptide substrate with methoxycoumarin (Mca)/dinitrophenyl (Dnp) as fluorophore/quencher, designed and synthesized to obtain the lowest Km value for this substrate, showed approximately a 60% increase in the activity of hMMP2 upon incubation of Bs-Tx7 with the enzyme at a micromolar concentration (4 µM), indicating the importance of this toxin in diseases associated with decreased MMP2 activity.

  16. Structure-activity relationship of buffalo antibacterial hepcidin analogs.

    PubMed

    Chanu, Khangembam Victoria; Kumar, Ashok; Kumar, Satish

    2011-10-01

    Hepcidin is an anti-microbial peptide expressed predominantly in the liver of many species. Based on the amino acid sequence deduced from buffalo (Bubalus bubalis) hepcidin cDNA (Accession no. EU399814), six peptides Hepc(1-25), Hepc(6-25), Hepc(7-25), Hepc(9-25), Hepc(11-25) and Hepc(15-25) were synthesized using solid-phase fluorenylmethoxycarbonyl (Fmoc) chemistry. CD spectroscopy revealed different spectra of the peptides in different solvents and in all the cases beta-structure was found to be dominant with less alpha-helix as predicted. Quantitation of secondary structure indicated the highest beta-structure for all the six peptides in SDS solution, when used as mimetic for membrane-like environment. The CD spectra of all the peptides taken in water showed that degree of randomness decreased with increase in chain length of the peptide. Out of the six peptides, only Hepc(1-25), Hepc(6-25) and Hepc(7-25) showed antibacterial activity against Staphylococcus aureus (Gram-positive bacteria). The peptides did not show any sensitivity toward E. coli (Gram-negative bacteria). Minimum inhibitory concentration (MIC) showed the lowest value for Hepc(7-25) as an antibacterial agent, followed by Hepc(6-25) and Hepc(1-25). The peptides Hepc(9-25), Hepc(11-25) and Hepc(15-25) with more random structure did not show any antimicrobial activity The study demonstrated that 5 amino acids at N-terminal in buffalo hepcidin can be truncated without loss of antimicrobial activity and further reduction of length of the analog from 20 to 19 amino acids resulted increase in the activity because of increase in beta-structure of the peptide shown by CD spectroscopy.

  17. Entrepreneurship education: relationship between education and entrepreneurial activity.

    PubMed

    Raposo, Mário; do Paço, Arminda

    2011-08-01

    The importance of entrepreneurial activity for the economic growth of countries is now well established. The relevant literature suggests important links between education, venture creation and entrepreneurial performance, as well as between entrepreneurial education and entrepreneurial activity. The primary purpose of this paper is to provide some insights about entrepreneurship education. The meaning of entrepreneurship education is explained, and the significant increase of these educational programmes is highlighted. Literature has been suggesting that the most suitable indicator to evaluate the results of entrepreneurship education is the rate of new business creation. However, some studies indicate that the results of such programmes are not immediate. Therefore, many researchers try to understand the precursors of venture creation, concluding that is necessary to carry out longitudinal studies. Based on an overview of the research published about the existing linkage of entrepreneurship education and entrepreneurial activity, the main topics studied by different academics are addressed. For the authors, the positive impact of entrepreneurship education puts a double challenge on governments in the future: the increased need of financial funds to support entrepreneurship education and the choice of the correct educational programme.

  18. Muscular activity and its relationship to biomechanics and human performance

    NASA Technical Reports Server (NTRS)

    Ariel, Gideon

    1994-01-01

    The purpose of this manuscript is to address the issue of muscular activity, human motion, fitness, and exercise. Human activity is reviewed from the historical perspective as well as from the basics of muscular contraction, nervous system controls, mechanics, and biomechanical considerations. In addition, attention has been given to some of the principles involved in developing muscular adaptations through strength development. Brief descriptions and findings from a few studies are included. These experiments were conducted in order to investigate muscular adaptation to various exercise regimens. Different theories of strength development were studied and correlated to daily human movements. All measurement tools used represent state of the art exercise equipment and movement analysis. The information presented here is only a small attempt to understand the effects of exercise and conditioning on Earth with the objective of leading to greater knowledge concerning human responses during spaceflight. What makes life from nonliving objects is movement which is generated and controlled by biochemical substances. In mammals. the controlled activators are skeletal muscles and this muscular action is an integral process composed of mechanical, chemical, and neurological processes resulting in voluntary and involuntary motions. The scope of this discussion is limited to voluntary motion.

  19. Pharmacological activities in thermal proteins: relationships in molecular evolution

    NASA Technical Reports Server (NTRS)

    Fox, S. W.; Hefti, F.; Hartikka, J.; Junard, E.; Przybylski, A. T.; Vaughan, G.

    1987-01-01

    The model of protobiological events that has been presented in these pages has increasing relevance to pharmacological research. The thermal proteins that function as key substances in the proteinoid theory have recently been found to prolong the survival of rat forebrain neurons in culture and to stimulate the growth of neurites. A search for such activity in thermal proteins added to cultures of modern neurons was suggested by the fact that some of the microspheres assembled from proteinoids rich in hydrophobic amino acids themselves generate fibrous outgrowths.

  20. Pharmacological activities in thermal proteins: relationships in molecular evolution.

    PubMed

    Fox, S W; Hefti, F; Hartikka, J; Junard, E; Przybylski, A T; Vaughan, G

    1987-01-01

    The model of protobiological events that has been presented in these pages has increasing relevance to pharmacological research. The thermal proteins that function as key substances in the proteinoid theory have recently been found to prolong the survival of rat forebrain neurons in culture and to stimulate the growth of neurites. A search for such activity in thermal proteins added to cultures of modern neurons was suggested by the fact that some of the microspheres assembled from proteinoids rich in hydrophobic amino acids themselves generate fibrous outgrowths.

  1. Immunomodulatory assays to study structure-activity relationships of thalidomide.

    PubMed

    Shannon, E J; Morales, M J; Sandoval, F

    1997-01-01

    Thalidomide, which has a long history of tragedy because of its ability to cause severe birth defects, is very effective in alleviating erythema nodosum leprosum in leprosy patients and aphthous ulcers in AIDS patients. The causes of these inflammatory diseases and the mechanism by which thalidomide diminishes them are unknown. It has been suggested that modulation of the immune response plays an important role. We found that thalidomide exerts immunomodulatory activity in three bioassays. It suppresses an IgM plaque forming cell response in mice injected with sheep erythrocytes: it inhibits TNF-alpha production by LPS stimulated human mononuclear cells: and it enhances IL-2 production by Con-A stimulated human mononuclear cells. We employed these bioassays to compare the activity of 15 analogs of thalidomide with thalidomide itself. Eight of the compounds were derivatives of the glutarimide moiety of thalidomide and the others were phthalimide or derivatives of the phthalimide moiety of thalidomide. N-hydroxyphthalimide, a simple derivative of phthalimide, was more effective than thalidomide and was also the most effective of the compounds assayed in suppressing the IgM plaque and TNF-alpha responses, but it did not enhance the IL-2 response, instead, it significantly suppressed it.

  2. Bradykinin actively modulates pulmonary vascular pressure-cardiac index relationships.

    PubMed

    Nyhan, D P; Clougherty, P W; Goll, H M; Murray, P A

    1987-07-01

    Our objectives were to investigate the pulmonary vascular effects of exogenously administered bradykinin at normal and reduced levels of cardiac index in intact conscious dogs and to assess the extent to which the pulmonary vascular response to bradykinin is the result of either cyclooxygenase pathway activation or reflex activation of sympathetic beta-adrenergic and -cholinergic receptors. Multipoint pulmonary vascular pressure-cardiac index (P/Q) plots were constructed during normoxia in conscious dogs by step-wise constriction of the thoracic inferior vena cava to reduce Q. In intact dogs, bradykinin (2 micrograms X kg-1 X min-1 iv) caused systemic vasodilation, i.e., systemic arterial pressure was slightly decreased (P less than 0.05), Q was markedly increased (P less than 0.01), and mixed venous PO2 and oxygen saturation (SO2) were increased (P less than 0.01). Bradykinin decreased (P less than 0.01) the pulmonary vascular pressure gradient (pulmonary arterial pressure-pulmonary capillary wedge pressure) over the entire range of Q studied (140-60 ml X min-1 X kg-1) in intact dogs. During cyclooxygenase pathway inhibition with indomethacin, bradykinin again decreased (P less than 0.05) pulmonary arterial pressure-pulmonary capillary wedge pressure at every level of Q, although the magnitude of the vasodilator response was diminished at lower levels of Q (60 ml X min-1 X kg-1). Following combined administration of sympathetic beta-adrenergic and -cholinergic receptor antagonists, bradykinin still decreased (P less than 0.01) pulmonary arterial pressure-pulmonary capillary wedge pressure over the range of Q from 160 to 60 ml X min-1 X kg-1.(ABSTRACT TRUNCATED AT 250 WORDS) PMID:3114215

  3. Validation of Quantitative Structure-Activity Relationship (QSAR) Model for Photosensitizer Activity Prediction

    PubMed Central

    Frimayanti, Neni; Yam, Mun Li; Lee, Hong Boon; Othman, Rozana; Zain, Sharifuddin M.; Rahman, Noorsaadah Abd.

    2011-01-01

    Photodynamic therapy is a relatively new treatment method for cancer which utilizes a combination of oxygen, a photosensitizer and light to generate reactive singlet oxygen that eradicates tumors via direct cell-killing, vasculature damage and engagement of the immune system. Most of photosensitizers that are in clinical and pre-clinical assessments, or those that are already approved for clinical use, are mainly based on cyclic tetrapyrroles. In an attempt to discover new effective photosensitizers, we report the use of the quantitative structure-activity relationship (QSAR) method to develop a model that could correlate the structural features of cyclic tetrapyrrole-based compounds with their photodynamic therapy (PDT) activity. In this study, a set of 36 porphyrin derivatives was used in the model development where 24 of these compounds were in the training set and the remaining 12 compounds were in the test set. The development of the QSAR model involved the use of the multiple linear regression analysis (MLRA) method. Based on the method, r2 value, r2 (CV) value and r2 prediction value of 0.87, 0.71 and 0.70 were obtained. The QSAR model was also employed to predict the experimental compounds in an external test set. This external test set comprises 20 porphyrin-based compounds with experimental IC50 values ranging from 0.39 μM to 7.04 μM. Thus the model showed good correlative and predictive ability, with a predictive correlation coefficient (r2 prediction for external test set) of 0.52. The developed QSAR model was used to discover some compounds as new lead photosensitizers from this external test set. PMID:22272096

  4. Structure-activity relationship studies on cholecystokinin: Analogues with partial agonist activity

    SciTech Connect

    Galas, M.C.; Lignon, M.F.; Rodriguez, M.; Mendre, C.; Fulcrand, P.; Laur, J.; Martinez, J. )

    1988-02-01

    In the present study, hepta- and octapeptide analogues of the C-terminal part of cholecystokinin, modified on the C-terminal phenylalanine residue, were synthesized. CCK analogues were prepared in which the peptide bond between aspartic acid and phenylalanine had or had not been modified and were lacking the C-terminal primary amide function. These CCK derivatives were able to cause full stimulation of amylase release from rat pancreatic acini but without a decrease in amylase release at supramaximal concentrations. There was a close relationship between the abilities of these derivatives to stimulate amylase release and their abilities to inhibit binding of {sup 125}I-BH-CCK-9 to CCK receptors on rat and guinea pig pancreatic acini. These CCK analogues were also able to recognize the guinea pig brain CCK receptors, some of them being particularly potent. The findings indicate that the aromatic ring of phenylalanine is important for the binding to brain and pancreatic CCK receptors, whereas the C-terminal primary amide function is not essential for the binding to pancreatic CCK receptors but is crucial for biological activity of rat pancreatic acini.

  5. Antiproliferative Pt(IV) complexes: synthesis, biological activity, and quantitative structure-activity relationship modeling.

    PubMed

    Gramatica, Paola; Papa, Ester; Luini, Mara; Monti, Elena; Gariboldi, Marzia B; Ravera, Mauro; Gabano, Elisabetta; Gaviglio, Luca; Osella, Domenico

    2010-09-01

    Several Pt(IV) complexes of the general formula [Pt(L)2(L')2(L'')2] [axial ligands L are Cl-, RCOO-, or OH-; equatorial ligands L' are two am(m)ine or one diamine; and equatorial ligands L'' are Cl- or glycolato] were rationally designed and synthesized in the attempt to develop a predictive quantitative structure-activity relationship (QSAR) model. Numerous theoretical molecular descriptors were used alongside physicochemical data (i.e., reduction peak potential, Ep, and partition coefficient, log Po/w) to obtain a validated QSAR between in vitro cytotoxicity (half maximal inhibitory concentrations, IC50, on A2780 ovarian and HCT116 colon carcinoma cell lines) and some features of Pt(IV) complexes. In the resulting best models, a lipophilic descriptor (log Po/w or the number of secondary sp3 carbon atoms) plus an electronic descriptor (Ep, the number of oxygen atoms, or the topological polar surface area expressed as the N,O polar contribution) is necessary for modeling, supporting the general finding that the biological behavior of Pt(IV) complexes can be rationalized on the basis of their cellular uptake, the Pt(IV)-->Pt(II) reduction, and the structure of the corresponding Pt(II) metabolites. Novel compounds were synthesized on the basis of their predicted cytotoxicity in the preliminary QSAR model, and were experimentally tested. A final QSAR model, based solely on theoretical molecular descriptors to ensure its general applicability, is proposed.

  6. The relationship between trunk muscle activation and trunk stiffness: examining a non-constant stiffness gain.

    PubMed

    Brown, Stephen H M; McGill, Stuart M

    2010-12-01

    The relationship between muscle activation, force and stiffness needs to be known to interpret the stability state of the spine. To test the relationship between these variables, a quick release approach was used to match quantified torso stiffness with an EMG activation-based estimate of individual muscle stiffnesses. The relationship between activation, force and stiffness was modelled as k = q x F/l, where k, F and l are muscle stiffness, force and length, respectively, and q is the dimensionless stiffness gain relating these variables. Under the tested experimental scenario, the 'stiffness gain', q, which linked activation with stiffness, demonstrated a decreasing trend with increasing levels of torso muscle activation. This highlights the likelihood that the choice of a single q value may be over simplistic to relate force to stiffness in muscles that control the spine. This has implications for understanding the potential for spine instability in situations requiring high muscular demand.

  7. Relationship between ionospheric electric fields and magnetic activity indices

    NASA Astrophysics Data System (ADS)

    Shirapov, D. Sh.

    2012-02-01

    The relations between electric fields in the daytime and nighttime sectors of the polar ionosphere and magnetic activity indices of auroral region (AL) and northern polar cap (PCN) are studied. It is found that the above relations do exist and are described by: a) equations U {pc/(1)} (kV) = 27.62 + 21.43PCN with a correlation coefficient R = 0.87 and U {pc/(1)} (kV) = 4.06 + 49.21PCN - 6.24 PCN2 between the difference in the electric potentials across the polar cap in the daytime sector U {pc/(1)} and PCN and b) regression equation U {pc/(2)} (kV) = 23.33 + 0.08|AL| with R = 0.86 between the difference in the electric potentials across the polar cap in the nighttime sector U {pc/(2)} and |AL|. It is shown that: a) it is possible to use the AL and PCN indices for real-time diagnostics of instantaneous values of the electric fields in the daytime and nighttime sectors of the polar ionosphere in the process of a substorm development; b) at the expansion phase of a substorm, due to calibration of PCN values by the values of the solar wind electric field E sw, the PCN index does not feel the contribution of the western electrojet and, accordingly, the contribution of the nighttime ionospheric electric field U {pc/(2)}, governed by the reconnection in the magnetospheric tail.

  8. Oxazolidinone structure-activity relationships leading to linezolid.

    PubMed

    Barbachyn, Michael R; Ford, Charles W

    2003-05-01

    The development of bacterial resistance to currently available antibacterial agents is a growing global health problem. Of particular concern are infections caused by multidrug-resistant Gram-positive pathogens which are responsible for significant morbidity and mortality in both the hospital and community settings. A number of solutions to the problem of bacterial resistance are possible. The most common approach is to continue modifying existing classes of antibacterial agents to provide new analogues with improved attributes. Other successful strategies are to combine existing antibacterial agents with other drugs as well as the development of improved diagnostic procedures that may lead to rapid identification of the causative pathogen and permit the use of antibacterial agents with a narrow spectrum of activity. Finally, and most importantly, the discovery of novel classes of antibacterial agents employing new mechanisms of action has considerable promise. Such agents would exhibit a lack of cross-resistance with existing antimicrobial drugs. This review describes the work leading to the discovery of linezolid, the first clinically useful oxazolidinone antibacterial agent.

  9. Structure-activity relationships of ketolides vs. macrolides.

    PubMed

    Douthwaite, S

    2001-01-01

    's activity against MLS(B)-resistant respiratory pathogens.

  10. Relationship between Vitamin D Status and Autonomic Nervous System Activity.

    PubMed

    Burt, Morton G; Mangelsdorf, Brenda L; Stranks, Stephen N; Mangoni, Arduino A

    2016-01-01

    Vitamin D deficiency is associated with increased arterial stiffness. However, the mechanisms underlying this association have not been clarified. The aim was to investigate whether changes in autonomic nervous system activity could underlie an association between 25 hydroxy vitamin D and arterial stiffness. A total of 49 subjects (age = 60 ± 8 years, body mass index = 26.7 ± 4.6 kg/m², 25 hydroxy vitamin D = 69 ± 22 nmol/L) underwent measurements of pulse wave velocity (PWV) and augmentation index (AIx), spontaneous baroreflex sensitivity, plasma metanephrines and 25 hydroxy vitamin D. Subjects with 25 hydroxy vitamin D ≤ 50 nmol/L were restudied after 200,000 International Units 25 hydroxy vitamin D. Plasma metanephrine was positively associated with AIx (p = 0.02) independent of age, sex, smoking and cholesterol and negatively associated with 25 hydroxy vitamin D (p = 0.002) independent of age, sex and season. In contrast, there was no association between baroreflex sensitivity and 25 hydroxy vitamin D (p = 0.54). Treatment with vitamin D increased 25 hydroxy vitamin D from 43 ± 5 to 96 ± 24 nmol/L (p < 0.0001) but there was no significant change in plasma metanephrine (115 ± 25 vs. 99 ± 39 pmol/L, p = 0.12). We conclude that as plasma metanephrine was negatively associated with 25 hydroxy vitamin D and positively with AIx, it could mediate an association between these two variables. This hypothesis should be tested in larger interventional studies. PMID:27649235

  11. Relationship between Vitamin D Status and Autonomic Nervous System Activity

    PubMed Central

    Burt, Morton G.; Mangelsdorf, Brenda L.; Stranks, Stephen N.; Mangoni, Arduino A.

    2016-01-01

    Vitamin D deficiency is associated with increased arterial stiffness. However, the mechanisms underlying this association have not been clarified. The aim was to investigate whether changes in autonomic nervous system activity could underlie an association between 25 hydroxy vitamin D and arterial stiffness. A total of 49 subjects (age = 60 ± 8 years, body mass index = 26.7 ± 4.6 kg/m2, 25 hydroxy vitamin D = 69 ± 22 nmol/L) underwent measurements of pulse wave velocity (PWV) and augmentation index (AIx), spontaneous baroreflex sensitivity, plasma metanephrines and 25 hydroxy vitamin D. Subjects with 25 hydroxy vitamin D ≤ 50 nmol/L were restudied after 200,000 International Units 25 hydroxy vitamin D. Plasma metanephrine was positively associated with AIx (p = 0.02) independent of age, sex, smoking and cholesterol and negatively associated with 25 hydroxy vitamin D (p = 0.002) independent of age, sex and season. In contrast, there was no association between baroreflex sensitivity and 25 hydroxy vitamin D (p = 0.54). Treatment with vitamin D increased 25 hydroxy vitamin D from 43 ± 5 to 96 ± 24 nmol/L (p < 0.0001) but there was no significant change in plasma metanephrine (115 ± 25 vs. 99 ± 39 pmol/L, p = 0.12). We conclude that as plasma metanephrine was negatively associated with 25 hydroxy vitamin D and positively with AIx, it could mediate an association between these two variables. This hypothesis should be tested in larger interventional studies. PMID:27649235

  12. The Relationship between Occupational Status and Physical Activity in Korea.

    PubMed

    So, Wi-Young; Yoo, Byoung-Wook; Sung, Dong Jun

    2016-10-01

    This study examined the association between occupational status and physical activity (PA) in Korea. A total of 9,000 Koreans age 10 to 89 years participated in the Korean Survey of Citizens' Sports Participation project in 2012. However, 3,851 participants were excluded from the analysis (housewives, students, and the jobless), providing a sample size of 5,149 participants (3,165 men and 1,984 women) for this study. The association between occupational status and PA was then evaluated using multivariate logistic regression analysis. The odds ratios (ORs; 95% confidence interval [CI]) for reporting at least weekly PA according to job intensity, after adjusting for sex and age, were as follows: moderate-intensity jobs, 1.164 [1.026, 1.320], p = .018; and vigorous-intensity jobs, 1.591 [1.318, 1.921], p < .001, compared with low-intensity jobs as a reference category. For PA intensity in low- and moderate-intensity jobs, after adjusting for sex and age, the ORs (95% CI) were as follows: low-intensity PA, 1.355 [1.033, 1.778], p = .028, moderate PA, 1.227 [1.096, 1.487], p = .002, and vigorous PA, 1.570 [1.213, 2.032], p < .001, compared with sedentary as a reference category. For the intensity of PA among participants with low- or vigorous-intensity jobs, after adjusting for sex and age, the ORs (95% CI) were as follows: low-intensity PA, 1.015 [0.649, 1.586], p = .948, moderate-intensity PA, 1.890 [1.416, 2.522], p < .001, and vigorous-intensity PA, 2.403 [1.395, 4.139], p = .002, compared with sedentary as a reference category. For the intensity of PA between moderate-intensity and vigorous-intensity jobs, after adjusting for sex and age, the ORs (95% CI) were as follows: low-intensity PA, 1.010 [0.759, 1.344], p = .945, moderate-intensity PA, 1.381 [1.136, 1.678], p = .001, and vigorous-intensity PA, 1.595 [1.023, 2.486], p = .039, compared to sedentary as a reference category. The presented findings show a strong association between

  13. Relationship between cefamandole and cefuroxime activity against oxacillin-resistant Staphylococcus epidermidis and oxacillin resistance phenotype.

    PubMed

    Woods, G L; Knapp, C C; Washington, J A

    1987-09-01

    The activity of cefamandole and cefuroxime against oxacillin-resistant staphylococcus epidermidis was studied in vitro to determine whether there was any relationship between oxacillin resistance phenotypes and cephalosporin activity. Oxacillin resistance phenotypes were determined by efficiency-of-plating studies on Mueller-Hinton agar containing oxacillin, with and without NaCl, and incubated at 30 and 35 degrees C. On the basis of MIC and MBC determinations, cefamandole was more active than cefuroxime against oxacillin-resistant S. epidermidis. Although temperature had minimal effect on the activity of either cefamandole or cefuroxime, NaCl significantly decreased the activity of cefuroxime but not of cefamandole. Neither cephalosporin consistently produced greater than or equal to 99.9% bactericidal activity within 24 h in timed killing-curve studies. No consistent relationship was observed between cefamandole or cefuroxime activity and oxacillin resistance phenotype.

  14. Relationship between cefamandole and cefuroxime activity against oxacillin-resistant Staphylococcus epidermidis and oxacillin resistance phenotype.

    PubMed

    Woods, G L; Knapp, C C; Washington, J A

    1987-09-01

    The activity of cefamandole and cefuroxime against oxacillin-resistant staphylococcus epidermidis was studied in vitro to determine whether there was any relationship between oxacillin resistance phenotypes and cephalosporin activity. Oxacillin resistance phenotypes were determined by efficiency-of-plating studies on Mueller-Hinton agar containing oxacillin, with and without NaCl, and incubated at 30 and 35 degrees C. On the basis of MIC and MBC determinations, cefamandole was more active than cefuroxime against oxacillin-resistant S. epidermidis. Although temperature had minimal effect on the activity of either cefamandole or cefuroxime, NaCl significantly decreased the activity of cefuroxime but not of cefamandole. Neither cephalosporin consistently produced greater than or equal to 99.9% bactericidal activity within 24 h in timed killing-curve studies. No consistent relationship was observed between cefamandole or cefuroxime activity and oxacillin resistance phenotype. PMID:3674845

  15. Relationships between fundamental movement skills and objectively measured physical activity in preschool children.

    PubMed

    Cliff, Dylan P; Okely, Anthony D; Smith, Leif M; McKeen, Kim

    2009-11-01

    Gender differences in cross-sectional relationships between fundamental movement skill (FMS) subdomains (locomotor skills, object-control skills) and physical activity were examined in preschool children. Forty-six 3- to 5-year-olds (25 boys) had their FMS video assessed (Test of Gross Motor Development II) and their physical activity objectively monitored (Actigraph 7164 accelerometers). Among boys, object-control skills were associated with physical activity and explained 16.9% (p = .024) and 13.7% (p = .049) of the variance in percent of time in moderate-to-vigorous physical activity (MVPA) and total physical activity, respectively, after controlling for age, SES and z-BMI. Locomotor skills were inversely associated with physical activity among girls, and explained 19.2% (p = .023) of the variance in percent of time in MVPA after controlling for confounders. Gender and FMS subdomain may influence the relationship between FMS and physical activity in preschool children. PMID:20128363

  16. Relationships between Writing Motivation, Writing Activity, and Writing Performance: Effects of Grade, Sex, and Ability

    ERIC Educational Resources Information Center

    Troia, Gary A.; Harbaugh, Allen G.; Shankland, Rebecca K.; Wolbers, Kimberly A.; Lawrence, Ann M.

    2013-01-01

    A convenience sample of 618 children and adolescents in grades 4 through 10, excluding grade 8, were asked to complete a writing motivation and activity scale and to provide a timed narrative writing sample to permit an examination of the relationships between writing motivation, writing activity, writing performance, and the student…

  17. Relationships between Childhood and Adult Physical Activity Patterns in a Community Sample.

    ERIC Educational Resources Information Center

    Lamarine, Roland J.; Polkinghorne, Ori

    This study examined the relationship between adult physical activity levels and patterns of activity that were established during childhood. A random digit telephone survey was conducted of noninstitutionalized residents in a medium sized California city. Subjects ages 18 and over who volunteered to participate were questioned about their…

  18. Relationship of lactate dehydrogenase activity to body measurements of Angus x Charolais cows and calves

    Technology Transfer Automated Retrieval System (TEKTRAN)

    Objectives were to examine 1) relationships between lactate dehydrogenase (LDH) activity and body measurements of grazing beef cows, and 2) the association between maternal LDH activity in late gestation and subsequent calf birth weight (BRW), hip height (HH) at weaning, and adjusted weaning weight ...

  19. RELATIONSHIPS BETWEEN GIS ENVIRONMENTAL FEATURES AND ADOLESCENT MALE PHYSICAL ACTIVITY: GIS CODING DIFFERENCES

    Technology Transfer Automated Retrieval System (TEKTRAN)

    Background: It is not clear if relationships between GIS obtained environmental features and physical activity differ according to the method used to code GIS data. Methods: Physical activity levels of 210 Boy Scouts were measured by accelerometer. Numbers of parks, trails, gymnasia, bus stops, groc...

  20. Is Father-Child Rough-and-Tumble Play Associated with Attachment or Activation Relationships?

    ERIC Educational Resources Information Center

    Paquette, Daniel; Dumont, Caroline

    2013-01-01

    The activation relationship theory, primarily focused on parental stimulation of risk-taking along with parental control during exploration, predicts that boys will be activated more than girls by their fathers. This theory may explain why fathers engage in rough-and-tumble play (RTP) with children more frequently than mothers, especially with…

  1. The Relationship between Engagement in Cocurricular Activities and Academic Performance: Exploring Gender Differences

    ERIC Educational Resources Information Center

    Zacherman, Avi; Foubert, John

    2014-01-01

    The effects of time spent in cocurricular activities on academic performance was tested. A curvilinear relationship between hours per week spent involved in cocurricular activities and grade point average was discovered such that a low amount of cocurricular involvement was beneficial to grades, while a high amount can potentially hurt academic…

  2. High School Counselors' Perceived Self-Efficacy and Relationships with Actual and Preferred Job Activities

    ERIC Educational Resources Information Center

    Jellison, Vickie Dawn

    2013-01-01

    The purpose of this research was to explore the relationship between School Counselor self-efficacy, role definition and actual and preferred school counseling activities in a sample drawn from a population of school counselors. To measure these variables, the School Counselor Self-Efficacy Scale (SCSE) and the School Counselor Activity Rating…

  3. Relationship between skin temperature and muscle activation during incremental cycle exercise.

    PubMed

    Priego Quesada, Jose I; Carpes, Felipe P; Bini, Rodrigo R; Salvador Palmer, Rosario; Pérez-Soriano, Pedro; Cibrián Ortiz de Anda, Rosa M

    2015-02-01

    While different studies showed that better fitness level adds to the efficiency of the thermoregulatory system, the relationship between muscular effort and skin temperature is still unknown. Therefore, the present study assessed the relationship between neuromuscular activation and skin temperature during cycle exercise. Ten physically active participants performed an incremental workload cycling test to exhaustion while neuromuscular activations were recorded (via surface electromyography - EMG) from rectus femoris, vastus lateralis, biceps femoris and gastrocnemius medialis. Thermographic images were recorded before, immediately after and 10 min after finishing the cycling test, at four body regions of interest corresponding to the muscles where neuromuscular activations were monitored. Frequency band analysis was conducted to assess spectral properties of EMG signals in order to infer on priority in recruitment of motor units. Significant inverse relationship between changes in skin temperature and changes in overall neuromuscular activation for vastus lateralis was observed (r<-0.5 and p<0.04). Significant positive relationship was observed between skin temperature and low frequency components of neuromuscular activation from vastus lateralis (r>0.7 and p<0.01). Participants with larger overall activation and reduced low frequency component for vastus lateralis activation presented a better adaptive response of their thermoregulatory system by showing fewer changes in skin temperature after incremental cycling test.

  4. Developing sensor activity relationships for the JPL electronic nose sensors using molecular modeling and QSAR techniques

    NASA Technical Reports Server (NTRS)

    Shevade, A. V.; Ryan, M. A.; Homer, M. L.; Jewell, A. D.; Zhou, H.; Manatt, K.; Kisor, A. K.

    2005-01-01

    We report a Quantitative Structure-Activity Relationships (QSAR) study using Genetic Function Approximations (GFA) to describe the polymer-carbon composite sensor activities in the JPL Electronic Nose, when exposed to chemical vapors at parts-per-million concentration levels.

  5. A Qualitative Investigation of the Relationship between Consumption, Physical Activity, Eating Disorders, and Weight Consciousness

    ERIC Educational Resources Information Center

    Piazza-Gardner, Anna K.; Barry, Adam E.

    2014-01-01

    Background: Previous research has identified a positive relationship between alcohol consumption and disordered eating, alcohol consumption and physical activity, and physical activity and disordered eating. However, there is a paucity of published research examining the interrelatedness of all 3 behaviors together. Purpose: This study examines…

  6. The Relationship Between Passive and Active Vocabularies: Effects of Language Learning Context.

    ERIC Educational Resources Information Center

    Laufer, Batia; Paribakht, T. Sima

    1998-01-01

    Investigated the relationships among three types of vocabulary knowledge (passive, controlled active, and free active) within the same individuals, taking four variables into consideration: passive vocabulary size, language learning context, second (L2) for foreign (FL), length of residence in L2 context, and, among the Canadians, knowledge of…

  7. Structural Relationships between Social Activities and Longitudinal Trajectories of Depression among Older Adults

    ERIC Educational Resources Information Center

    Hong, Song-Iee; Hasche, Leslie; Bowland, Sharon

    2009-01-01

    Purpose: This study examines the structural relationships between social activities and trajectories of late-life depression. Design and Methods: Latent class analysis was used with a nationally representative sample of older adults (N = 5,294) from the Longitudinal Study on Aging II to classify patterns of social activities. A latent growth curve…

  8. The Risky Situation: A Procedure for Assessing the Father-Child Activation Relationship

    ERIC Educational Resources Information Center

    Paquette, Daniel; Bigras, Marc

    2010-01-01

    Initial validation data are presented for the Risky Situation (RS), a 20-minute observational procedure designed to assess the father-child activation relationship with children aged 12-18 months. The coding grid, which is simple and easy to use, allows parent-child dyads to be classified into three categories and provides an activation score. By…

  9. Australian Adolescents' Extracurricular Activity Participation and Positive Development: Is the Relationship Mediated by Peer Attributes?

    ERIC Educational Resources Information Center

    Blomfield, Corey; Barber, Bonnie

    2010-01-01

    Adolescent participation in extracurricular activities is associated with numerous positive outcomes, yet the mechanisms underlying this relationship are largely unknown. This study had two goals: to investigate the association between participation in extracurricular activities and indicators of positive and negative development for Australian…

  10. A review of the global relationship among freshwater fish, autotrophic activity, and regional climate

    USGS Publications Warehouse

    Deines, Andrew M.; Bunnell, David B.; Rogers, Mark W.; Beard, T. Douglas; Taylor, William W.

    2015-01-01

    The relationship between autotrophic activity and freshwater fish populations is an important consideration for ecologists describing trophic structure in aquatic communities, fisheries managers tasked with increasing sustainable fisheries development, and fish farmers seeking to maximize production. Previous studies of the empirical relationships of autotrophic activity and freshwater fish yield have found positive relationships but were limited by small sample sizes, small geographic scopes, and the inability to compare patterns among many types of measurement techniques. Individual studies and reviews have also lacked consistent consideration of regional climate factors which may inform relationships between fisheries and autotrophic activity. We compiled data from over 700 freshwater systems worldwide and used meta-analysis and linear models to develop a comprehensive global synthesis between multiple metrics of autotrophic activity, fisheries, and climate indicators. Our results demonstrate that multiple metrics of fish (i.e., catch per unit effort, yield, and production) increase with autotrophic activity across a variety of fisheries. At the global scale additional variation in this positive relationship can be ascribed to regional climate differences (i.e., temperature and precipitation) across systems. Our results provide a method and proof-of-concept for assessing inland fisheries production at the global scale, where current estimates are highly uncertain, and may therefore inform the continued sustainable use of global inland fishery resources.

  11. Developmental relationships as the active ingredient: a unifying working hypothesis of "what works" across intervention settings.

    PubMed

    Li, Junlei; Julian, Megan M

    2012-04-01

    Developmental relationships are characterized by reciprocal human interactions that embody an enduring emotional attachment, progressively more complex patterns of joint activity, and a balance of power that gradually shifts from the developed person in favor of the developing person. The working hypothesis of this article is that developmental relationships constitute the active ingredient of effective interventions serving at-risk children and youth across settings. In the absence of developmental relationships, other intervention elements yield diminished or minimal returns. Scaled-up programs and policies serving children and youth often fall short of their potential impact when their designs or implementation drift toward manipulating other "inactive" ingredients (e.g., incentive, accountability, curricula) instead of directly promoting developmental relationships. Using empirical studies as case examples, this study demonstrates that the presence or absence of developmental relationships distinguishes effective and ineffective interventions for diverse populations across developmental settings. The conclusion is that developmental relationships are the foundational metric with which to judge the quality and forecast the impact of interventions for at-risk children and youth. It is both critical and possible to give foremost considerations to whether program, practice, and policy decisions promote or hinder developmental relationships among those who are served and those who serve.

  12. The Structure-Activity Relationship of the Antioxidant Peptides from Natural Proteins.

    PubMed

    Zou, Tang-Bin; He, Tai-Ping; Li, Hua-Bin; Tang, Huan-Wen; Xia, En-Qin

    2016-01-12

    Peptides derived from dietary proteins, have been reported to display significant antioxidant activity, which may exert notably beneficial effects in promoting human health and in food processing. Recently, much research has focused on the generation, separation, purification and identification of novel peptides from various protein sources. Some researchers have tried to discover the structural characteristics of antioxidant peptides in order to lessen or avoid the tedious and aimless work involving the ongoing generated peptide preparation schemes. This review aims to summarize the current knowledge on the relationship between the structural features of peptides and their antioxidant activities. The relationship between the structure of the precursor proteins and their abilities to release antioxidant fragments will also be summarized and inferred. The preparation methods and antioxidant capacity evaluation assays of peptides and a prediction scheme of quantitative structure-activity relationship (QSAR) will also be pointed out and discussed.

  13. ON THE SCATTER IN THE RADIUS-LUMINOSITY RELATIONSHIP FOR ACTIVE GALACTIC NUCLEI

    SciTech Connect

    Kilerci Eser, E.; Vestergaard, M.; Peterson, B. M.; Denney, K. D.; Bentz, M. C. E-mail: vester@dark-cosmology.dk E-mail: peterson@astronomy.ohio-state.edu

    2015-03-01

    We investigate and quantify the observed scatter in the empirical relationship between the broad line region size R and the luminosity of the active galactic nucleus, in order to better understand its origin. This study is motivated by the indispensable role of this relationship in the mass estimation of cosmologically distant black holes, but may also be relevant to the recently proposed application of this relationship for measuring cosmic distances. We study six nearby reverberation-mapped active galactic nuclei (AGNs) for which simultaneous UV and optical monitoring data exist. We also examine the long-term optical luminosity variations of the Seyfert 1 galaxy NGC 5548 and employ Monte Carlo simulations to study the effects of the intrinsic variability of individual objects on the scatter in the global relationship for a sample of ∼40 AGNs. We find the scatter in this relationship has a correctable dependence on color. For individual AGNs, the size of the Hβ emitting region has a steeper dependence on the nuclear optical luminosity than on the UV luminosity, which can introduce a scatter of ∼0.08 dex into the global relationship, due the nonlinear relationship between the variations in the ionizing continuum and those in the optical continuum. Also, our analysis highlights the importance of understanding and minimizing the scatter in the relationship traced by the intrinsic variability of individual AGNs since it propagates directly into the global relationship. We find that using the UV luminosity as a substitute for the ionizing luminosity can reduce a sizable fraction of the current observed scatter of ∼0.13 dex.

  14. Synthesis and Structure activity relationships of EGCG Analogues, A Recently Identified Hsp90 Inhibitor

    PubMed Central

    Khandelwal, Anuj; Hall, Jessica

    2014-01-01

    Epigallocatechin-3-gallate (EGCG), the principal polyphenol isolated from green tea, was recently shown to inhibit Hsp90, however structure-activity relationships for this natural product have not yet been produced. Herein, we report the synthesis and biological evaluation of EGCG analogues to establish structure-activity relationships between EGCG and Hsp90. All four rings as well as the linker connecting the C- and the D-rings were systematically investigated, which led to the discovery of compounds that inhibit Hs90 and display improvement in efficacy over EGCG. Anti-proliferative activity of all the analogues was determined against MCF-7 and SKBr3 cell lines and Hsp90 inhibitory activity of four most potent analogues was further evaluated by western blot analyses and degradation of Hsp90-dependent client proteins. Prenyl substituted aryl ester of 3,5-dihydroxychroman-3-ol ring system was identified as novel scaffold that exhibit Hsp90 inhibitory activity. PMID:23834230

  15. Synthesis and structure-activity relationships of EGCG analogues, a recently identified Hsp90 inhibitor.

    PubMed

    Khandelwal, Anuj; Hall, Jessica A; Blagg, Brian S J

    2013-08-16

    Epigallocatechin-3-gallate (EGCG), the principal polyphenol isolated from green tea, was recently shown to inhibit Hsp90; however, structure-activity relationships for this natural product have not yet been produced. Herein, we report the synthesis and biological evaluation of EGCG analogues to establish structure-activity relationships between EGCG and Hsp90. All four rings as well as the linker connecting the C- and the D-rings were systematically investigated, which led to the discovery of compounds that inhibit Hs90 and display improvement in efficacy over EGCG. Antiproliferative activity of all the analogues was determined against MCF-7 and SKBr3 cell lines and Hsp90 inhibitory activity of the four most potent analogues was further evaluated by Western blot analyses and degradation of Hsp90-dependent client proteins. The prenyl-substituted aryl ester of 3,5-dihydroxychroman-3-ol ring system was identified as a novel scaffold that exhibits Hsp90 inhibitory activity. PMID:23834230

  16. Macrolide-Based Microtubule-Stabilizing Agents - Chemistry and Structure-Activity Relationships

    NASA Astrophysics Data System (ADS)

    Pfeiffer, B.; Kuzniewski, C. N.; Wullschleger, C.; Altmann, K.-H.

    This article provides an overview on the chemistry and structure-activity relationships of macrolide-based microtubule-stabilizing agents. The primary focus will be on the total synthesis or examples thereof, but a brief summary of the current state of knowledge on the structure-activity relationships of epothilones, laulimalide, dictyostatin, and peloruside A will also be given. This macrolide class of compounds, over the last decade, has become the subject of growing interest due to their ability to inhibit human cancer cell proliferation through a taxol-like mechanism of action.

  17. Passion for an activity and quality of interpersonal relationships: the mediating role of emotions.

    PubMed

    Philippe, Frederick L; Vallerand, Robert J; Houlfort, Nathalie; Lavigne, Geneviève L; Donahue, Eric G

    2010-06-01

    Our purpose in this research was to investigate the role of passion (Vallerand et al., 2003) for a given activity in the quality of interpersonal relationships experienced within the context of that activity in 4 studies. Study 1 demonstrated that a harmonious passion was positively associated with the quality of interpersonal relationships within the context of the passionate activity, whereas an obsessive passion was unrelated to it. Furthermore, in line with the broaden-and-build theory (Fredrickson, 2001), results also showed that positive emotions experienced at work fully mediated the relation between harmonious passion and quality of interpersonal relationships. Obsessive passion was not associated with positive emotions. Study 2 replicated the results from Study 1 while controlling for trait extraversion. Also, in Study 2, we examined the negative mediating role of negative emotions between obsessive passion and quality of interpersonal relationships. Finally, Studies 3 and 4 replicated the results of Study 2 with prospective designs and with objective ratings of interpersonal relationships quality. Implications for the dualistic model of passion and the broaden-and-build theory are discussed.

  18. THE USE OF STRUCTURE-ACTIVITY RELATIONSHIPS IN INTEGRATING THE CHEMISTRY AND TOXICOLOGY OF ENDOCRINE DISRUPTING CHEMICALS

    EPA Science Inventory

    Structure activity relationships (SARs) are based on the principle that structurally similar chemicals should have similar biological activity. SARs relate specifically-defined toxicological activity of chemicals to their molecular structure and physico-chemical properties. To de...

  19. Oxidative Dehydrogenation on Nanocarbon: Intrinsic Catalytic Activity and Structure-Function Relationships.

    PubMed

    Qi, Wei; Liu, Wei; Guo, Xiaoling; Schlögl, Robert; Su, Dangsheng

    2015-11-01

    Physical and chemical insights into the nature and quantity of the active sites and the intrinsic catalytic activity of nanocarbon materials in alkane oxidative dehydrogenation (ODH) reactions are reported using a novel in situ chemical titration process. A study on the structure-function relationship reveals that the active sites are identical both in nature and function on various nanocarbon catalysts. Additionally, the quantity of the active sites could be used as a metric to normalize the reaction rates, and thus to evaluate the intrinsic activity of nanocarbon catalysts. The morphology of the nanocarbon catalysts at the microscopic scale exhibits a minor influence on their intrinsic ODH catalytic activity. The number of active sites calculated from the titration process indicates the number of catalytic centers that are active (that is, working) under the reaction conditions. PMID:26388451

  20. Flavonoids promoting HaCaT migration: I. Hologram quantitative structure-activity relationships.

    PubMed

    Cho, Moonjae; Yoon, Hyuk; Park, Mijoo; Kim, Young Hwa; Lim, Yoongho

    2014-03-15

    Cell migration plays an important role in multicellular development and preservation. Because wound healing requires cell migration, compounds promoting cell migration can be used for wound repair therapy. Several plant-derived polyphenols are known to promote cell migration, which improves wound healing. Previous studies of flavonoids on cell lines have focused on their inhibitory effects and not on wound healing. In addition, studies of flavonoids on wound healing have been performed using mixtures. In this study, individual flavonoids were used for cellular migration measurements. Relationships between the cell migration effects of flavonoids and their structural properties have never been reported. Here, we investigated the migration of keratinocytes caused by 100 flavonoids and examined their relationships using hologram quantitative structure-activity relationships. The structural conditions responsible for efficient cell migration on keratinocyte cell lines determined from the current study will facilitate the design of flavonoids with improved activity.

  1. Quantitative structure-activity relationships of antimicrobial fatty acids and derivatives against Staphylococcus aureus *

    PubMed Central

    Zhang, Hui; Zhang, Lu; Peng, Li-juan; Dong, Xiao-wu; Wu, Di; Wu, Vivian Chi-Hua; Feng, Feng-qin

    2012-01-01

    Fatty acids and derivatives (FADs) are resources for natural antimicrobials. In order to screen for additional potent antimicrobial agents, the antimicrobial activities of FADs against Staphylococcus aureus were examined using a microplate assay. Monoglycerides of fatty acids were the most potent class of fatty acids, among which monotridecanoin possessed the most potent antimicrobial activity. The conventional quantitative structure-activity relationship (QSAR) and comparative molecular field analysis (CoMFA) were performed to establish two statistically reliable models (conventional QSAR: R 2=0.942, Q 2 LOO=0.910; CoMFA: R 2=0.979, Q 2=0.588, respectively). Improved forecasting can be achieved by the combination of these two models that provide a good insight into the structure-activity relationships of the FADs and that may be useful to design new FADs as antimicrobial agents. PMID:22302421

  2. The Relationship between Physical Activity and Bone during Adolescence Differs according to Sex and Biological Maturity.

    PubMed

    Weeks, Benjamin K; Beck, Belinda R

    2010-01-01

    This study examines the relationships between bone mass, physical activity, and maturational status in healthy adolescent boys and girls. Methods. Ninety-nine early high-school (Year 9) students were recruited. Physical activity and other lifestyle habits were recorded via questionnaire. Anthropometrics, muscle power, calcaneal broadband ultrasound attenuation (BUA), bone mineral content (BMC), and lean tissue mass were measured. Maturity was determined by Tanner stage and estimated age of peak height velocity (APHV). Results. Boys had greater APHV, weight, height, muscle power, and dietary calcium than girls (P < .05). Boys exhibited greater femoral neck BMC and trochanteric BMC while girls had higher BUA and spine BMAD (P < .05). Physical activity and vertical jump predicted BMAD and BUA most strongly for boys whereas years from APHV were the strongest predictor for girls. Conclusion. Sex-specific relationships exist between physical activity, maturity and bone mass during adolescence.

  3. Discovery of novel glitazones incorporated with phenylalanine and tyrosine: synthesis, antidiabetic activity and structure-activity relationships.

    PubMed

    Prashantha Kumar, B R; Baig, Nasir R; Sudhir, Sai; Kar, Koyal; Kiranmai, M; Pankaj, M; Joghee, Nanjan M

    2012-12-01

    We report a series of new glitazones incorporated with phenylalanine and tyrosine. All the compounds were tested for their in vitro glucose uptake activity using rat-hemidiaphragm, both in presence and absence of insulin. Six of the most active compounds from the in vitro screening were taken forward for their in vivo triglyceride and glucose lowering activity against dexamethazone induced hyperlipidemia and insulin resistance in Wistar rats. The liver samples of rats that received the most active compounds, 23 and 24, in the in vivo studies, were subjected to histopathological examination to assess their short term hepatotoxicity. The investigations on the in vitro glucose uptake, in vivo triglyceride and glucose lowering activity are described here along with the quantitative structure-activity relationships.

  4. Structure-activity relationship study of dibenzocyclooctadiene lignans isolated from Schisandra chinensis on lipopolysaccharide-induced microglia activation.

    PubMed

    Hu, Di; Han, Na; Yao, Xuechun; Liu, Zhihui; Wang, Yu; Yang, Jingyu; Yin, Jun

    2014-06-01

    To explore the relationship of the dibenzocyclooctadiene lignans from Schisandra chinensis to their anti-inflammatory activities, series of dibenzocyclooctadiene lignans were isolated and assessed by testing their inhibitory effects on nitric oxide production in lipopolysaccharide-induced BV2 mouse microglia. It was found, for the first time, that dibenzocyclooctadiene lignans which have S-biphenyl and methylenedioxy groups strongly inhibited LPS-induced microglia activation. The methoxy group on the cyclooctadiene introduced more effectiveness, but the presence of an acetyl group on the cyclooctadiene or hydroxyl group on C-7 decreased the inhibitory activity.

  5. Relationship between Motivation and Learning in Physical Education and After-School Physical Activity

    ERIC Educational Resources Information Center

    Chen, Senlin; Sun, Haichun; Zhu, Xihe; Chen, Ang

    2014-01-01

    Purpose: A primary goal of physical education is to develop physically literate individuals with the knowledge, skills, and confidence necessary for a physically active lifestyle. Guided by the expectancy-value and interest motivation theories, the purpose of this study was to identify the relationship between students' motivation and…

  6. The Relationship between Students' Small Group Activities, Time Spent on Self-Study, and Achievement

    ERIC Educational Resources Information Center

    Kamp, Rachelle J. A.; Dolmans, Diana H. J. M.; van Berkel, Henk J. M.; Schmidt, Henk G.

    2012-01-01

    The purpose of this study was to investigate the relationship between the contributions students make to the problem-based tutorial group process as observed by their peers, self-study time and achievement. To that end, the Maastricht Peer Activity Rating Scale was administered to students participating in Problem-Based Learning tutorial groups.…

  7. Roles and Relationships in Student Teaching: A Role-Play Activity.

    ERIC Educational Resources Information Center

    Moses, Jeewa R.

    This role-play activity is designed for use by teacher educators in a general or content area methods class to help education majors become knowledgeable of role expectations in the student teaching experience and build good interpersonal role relationships. Students conduct library research and interviews concerning role expectations, use the…

  8. Structure-reactivity relationships between fluorescent chromophores and antioxidant activity of grain and sweet sorghum seeds

    Technology Transfer Automated Retrieval System (TEKTRAN)

    Polyphenolic structures, such as tannins, are the putative cause of a variety of seed functions including bird/insect resistance and antioxidant activity. Structure-reactivity relationships are necessary to understand the influence of polyphenolic chromophore structures on the tannin content and fr...

  9. Physical Activity Behaviors and Emotional Self-Efficacy: Is There a Relationship for Adolescents?

    ERIC Educational Resources Information Center

    Valois, Robert F.; Umstattd, M. Renee; Zullig, Keith J.; Paxton, Raheem J.

    2008-01-01

    Background: This study explored relationships between physical activity (PA) behaviors and emotional self-efficacy (ESE) in a statewide sample of public high school adolescents in South Carolina (n = 3836). Methods: The Center for Disease Control Youth Risk Behavior Survey PA items and an adolescent ESE scale were used. Logistic regression…

  10. Sexually Active Adolescent Women: Assessing Family and Peer Relationships Using Event History Calendars

    ERIC Educational Resources Information Center

    Saftner, Melissa Ann; Martyn, Kristy Kiel; Lori, Jody Rae

    2011-01-01

    The purpose of this qualitative study is to explore family and peer relationships (including support and influence on risk behavior) among sexually active European American and African American adolescent girls in the context of risk behaviors documented on retrospective event history calendars (EHCs) and in interviews. The EHCs were completed by…

  11. Exploring the Relationship between Situated Activity and CALL Learning in Teacher Education

    ERIC Educational Resources Information Center

    McNeil, Levi

    2013-01-01

    Situated learning is often proposed as a model for CALL teacher education. However, we know little about how students perceive situated CALL coursework and activities, and the nature of the relationship between situated learning and CALL learning. This exploratory case study addresses these issues. Survey, questionnaire, and open-ended data were…

  12. The Relationship between Class Size and Online Activity Patterns in Asynchronous Computer Conferencing Environments

    ERIC Educational Resources Information Center

    Hewitt, Jim; Brett, Clare

    2007-01-01

    This study analyzes the relationship between class size and student online activity patterns in a series of 28 graduate level computer conferencing courses. Quantitative analyses of note production, average note size, note opening and note reading percentages found a significant positive correlation between class size and mean number of notes…

  13. The Relationships among Anomia, Attitude toward Adult Education, and Nonparticipation in Formal Adult Education Activities.

    ERIC Educational Resources Information Center

    Garry, Mark W.

    A study was conducted to explore the relationship between anomia (a feeling of alienation, of being cut off from society), attitude toward adult education, and nonparticipation in formal adult education activities. The subjects of the study were adults who lived in a specific area in Milwaukee, Wisconsin, which had the following characteristics:…

  14. DETERMINING THE STRUCTURE-ACTIVITY RELATIONSHIPS OF AMINOBIPHENYL AND BENZIDINE ANALOGS

    EPA Science Inventory

    Determining the structure-activity relationships of aminobiphenyl and benzidine analogues

    Benzidine is a confirmed human carcinogen causing bladder and other types of cancer in humans and animals. Many of the benzidine and related aminobiphenyl compounds are mutagenic in t...

  15. Total Synthesis and Structure-Activity Relationship of Glycoglycerolipids from Marine Organisms

    PubMed Central

    Zhang, Jun; Li, Chunxia; Yu, Guangli; Guan, Huashi

    2014-01-01

    Glycoglycerolipids occur widely in natural products, especially in the marine species. Glycoglycerolipids have been shown to possess a variety of bioactivities. This paper will review the different methodologies and strategies for the synthesis of biological glycoglycerolipids and their analogs for bioactivity assay. In addition, the bioactivities and structure-activity relationship of the glycoglycerolipids are also briefly outlined. PMID:24945415

  16. Adolescent Sexual Activity and the Development of Delinquent Behavior: The Role of Relationship Context

    ERIC Educational Resources Information Center

    Harden, K. Paige; Mendle, Jane

    2011-01-01

    Despite the well-established association between adolescent sexual activity and delinquent behavior, little research has examined the potential importance of relationship contexts in moderating this association. The current study used longitudinal, behavioral genetic data on 519 same-sex twin pairs (48.6% female) divided into two age cohorts…

  17. Relationship Between Kernel Moisture Content and Water Activity in Different Maturity Stages of Peanut

    Technology Transfer Automated Retrieval System (TEKTRAN)

    The water activity (aw) and moisture content (KMC) of individual peanut kernels representing five different maturity stages were measured during a period of late-season drought stress leading up to normal harvest time. Curves were generated describing the relationship between aw and KMC for yellow 1...

  18. The Relationship between Physical Activity Level and Healthy Life-Style Behaviors of Distance Education Students

    ERIC Educational Resources Information Center

    Özkan, Ali

    2015-01-01

    The purpose of the study was to determine the relationship between physical activity levels and healthy life-style behaviors in distance education students in Hoca Ahmet Yesevi University. In total, 526 distance education students in Hoca Ahmet Yesevi University participated in this study voluntarily. The short form of International Physical…

  19. Exploring the Relationship between Adolescent Activities and Choice of Graduate School Discipline: Implications for Creativity Development

    ERIC Educational Resources Information Center

    Hartzell, Stephanie A.; Hong, Eunsook

    2016-01-01

    The relationship between adolescent extra-curricular activities and choice of graduate-education field was examined among students from three fields of study, science (n = 12), art (n = 12), and education (n = 14), using qualitative and quantitative methods. Results of profile analysis indicated that the different majors participated in…

  20. What Are the Contributory and Compensatory Relationships between Physical Education and Physical Activity in Children?

    ERIC Educational Resources Information Center

    Morgan, Charles F.; Beighle, Aaron; Pangrazi, Robert P.

    2007-01-01

    Limited data are available on the contributory and compensatory relationships between physical education and physical activity in children. Four hundred eighty-five (280 girls) children in first through sixth grades wore sealed pedometers during waking hours, including normally scheduled physical education lessons. The least, moderately, and most…

  1. A Systematic Review of the Relationship between Socio-Economic Position and Physical Activity

    ERIC Educational Resources Information Center

    Gidlow, Christopher; Johnston, Lynne Halley; Crone, Diane; Ellis, Naomi; James, David

    2006-01-01

    Objective: The aim of the present review was to examine epidemiological evidence to determine if there is strong evidence of a positive gradient of increasing physical activity across the socio-economic strata, and how relationships are affected by socio-economic measurement. Design: Systematic review. Method: A search of major databases was…

  2. [A clinical study on the relationship between chewing movements and masticatory muscle activities].

    PubMed

    Higashi, K

    1989-06-01

    Chewing movement is one of the most important functional and physiological jaw movements, and it is coordinated by the three elements of the functional occlusion system (teeth, TMJs and masticatory muscles). However, the relationship between chewing movement and these elements has not been clarified. The purpose of this study was to investigate the relationship between chewing movement and the activity of the masticatory muscles which directly control jaw movements. 25 subjects with normal stomatognathic function, 5 patients with MPD syndrome (muscle dysfunction group) and 5 patients with unilateral TMJ internal derangement (TMJ dysfunction group) were selected. 6 gums with different hardness were used as the test bolus. Sirognathograph Electromyograph Analysing System was used to simultaneously record chewing movements and electromyograms of the right and left masseter, anterior temporal, posterior temporal and anterior belly of digastric muscles. Using the analysing software which was developed for this study, chewing movements and muscle activities were analysed. The results were as follow; A. In normal subjects 1. Gum hardness influenced durations of the closing and occluding phases, maximum opening and closing speed, opening degree and deviation of opening and closing path. 2. Gum hardness influenced muscle activities except of the time factors of digastric bursts. 3. Durations of the closing and occluding phases were found to be related with the elevator muscle activities. Maximum closing speed was related with the masseter and anterior temporal muscle activities. Deviation of closing path was related with the anterior and posterior temporal muscle activities. B. In abnormal subjects 1. The changes mainly observed in the muscle activities were found to be significantly different between the muscle dysfunction group and normal group. Similarly, the changes mainly observed in the chewing movements were different between the TMJ dysfunction group and normal

  3. Relationship between physical activity and markers of oxidative stress in independent community-living elderly individuals.

    PubMed

    Fraile-Bermúdez, A B; Kortajarena, M; Zarrazquin, I; Maquibar, A; Yanguas, J J; Sánchez-Fernández, C E; Gil, J; Irazusta, A; Ruiz-Litago, F

    2015-10-01

    The aim of the present study was to examine the relationship between objective data of physical activity and markers of oxidative stress in older men and women. Participants were old adults, aged≥60years (61 women and 34 men) who were all capable of performing basic daily activities by themselves and lived on their own. To describe physical activity we used objective data measured by accelerometers which record active and sedentary periods during everyday life for five days. Determination of oxidative stress was conducted from three perspectives: determination plasma total antioxidant status (TAS), plasma antioxidant enzyme activities, i.e., glutathione peroxidase (GPx), catalase (CAT) and superoxide dismutase (SOD), and membrane lipid peroxidation (TBARS). In the group of women, those who met physical activity recommendations (WR) had lower level of TAS. In addition, the moderate to vigorous physical activity (MVPA) was negatively correlated with TAS. Simultaneously, MVPA was correlated with increase in the GPx antioxidant enzyme activity, and the counts per minute were positively correlated with CAT activity. In the group of men, the cpm and the MVPA were negatively correlated with lipid peroxidation while lifestyle physical activity was positively correlated with CAT activity. These findings suggest that MVPA in the elderly although it is related to a decrease in the TAS in women, induces adaptive increase in antioxidant enzyme activity and decreases lipid peroxidation in both women and men. These results suggest that at this time of life, it is not only the amount of physical activity performed that is important but also its intensity.

  4. The quality of dyadic relationships, leisure activities and health among older women.

    PubMed

    Fitzpatrick, Tanya R

    2009-12-01

    We examined the combined influence of dyadic relationships and leisure activities on health. We used self-administered survey to collect data at senior centers from French and English older women (N = 257) in Montreal, Quebec. Multiple regression analyses (OLS) were used to examine the main effects of dyadic quality and leisure activities on physical and mental health. Despite controlling for specific dyadic groups, meals, and bingo, we find that the quality of dyadic relationships has a strong influence on mental health measured by spirit, happiness, and an interesting life. Leisure activities are also a significant predictor and appear to improve physical health measured by self-reported health and the number of chronic conditions. Implications for gerontology practitioners in the United States, Canada, and other Western cultures, along with research strategies, are discussed.

  5. Structural interpretation of activity cliffs revealed by systematic analysis of structure-activity relationships in analog series.

    PubMed

    Sisay, Mihiret T; Peltason, Lisa; Bajorath, Jürgen

    2009-10-01

    Discontinuity in structure-activity relationships (SARs) is caused by so-called activity cliffs and represents one of the major caveats in SAR modeling and lead optimization. At activity cliffs, small structural modifications of compounds lead to substantial differences in potency that are essentially unpredictable using quantitative structure-activity relationship (QSAR) methods. In order to better understand SAR discontinuity at the molecular level of detail, we have analyzed different compound series in combinatorial analog graphs and determined substitution patterns that introduce activity cliffs of varying magnitude. So identified SAR determinants were then analyzed on the basis of complex crystal structures to enable a structural interpretation of SAR discontinuity and underlying activity cliffs. In some instances, SAR discontinuity detected within analog series could be well rationalized on the basis of structural data, whereas in others a structural explanation was not possible. This reflects the intrinsic complexity of small molecule SARs and suggests that the analysis of short-range receptor-ligand interactions seen in X-ray structures is insufficient to comprehensively account for SAR discontinuity. However, in other cases, SAR information extracted from ligands was incomplete but could be deduced taking X-ray data into account. Thus, taken together, these findings illustrate the complementarity of ligand-based SAR analysis and structural information. PMID:19761254

  6. Relationship status as an influence on cybersex activity: cybersex, youth, and steady partner.

    PubMed

    Ballester-Arnal, Rafael; Castro-Calvo, Jesús; Gil-Llario, Maria Dolores; Giménez-García, Cristina

    2014-01-01

    The authors focus on the influence of participants' having or not having a steady partner when reference to cybersex use. Participants were 1,239 young, Spanish individuals who completed the Internet Sex Screening Test. Results showed the influence of being in a relationship on certain consumption dimensions of cybersex; the influence was found to be greater in men than in women. In general, cybersex activity was higher for single participants, although it was also significant for participants with a steady partner. The authors' findings facilitate the comprehension of the effect of new technologies in intimate human relationships.

  7. Mining functional relationships in feature subspaces from gene expression profiles and drug activity profiles.

    PubMed

    Bao, Lei; Guo, Tao; Sun, Zhirong

    2002-04-10

    In an effort to determine putative functional relationships between gene expression patterns and drug activity patterns of 60 human cancer cell lines, a novel method was developed to discover local associations within cell line subsets. The association of drug-gene pairs is an explorative way of discovering gene markers that predict clinical tumor sensitivity to therapy. Nine drug-gene networks were discovered, as well as dozens of gene-gene and drug-drug networks. Three drug-gene networks with well studied members were discussed and the literature shows that hypothetical functional relationships exist. Therefore, this method enables the gathering of new information beyond global associations.

  8. A new protocol for predicting novel GSK-3β ATP competitive inhibitors.

    PubMed

    Fang, Jiansong; Huang, Dane; Zhao, Wenxia; Ge, Hu; Luo, Hai-Bin; Xu, Jun

    2011-06-27

    Glycogen synthase kinase 3β (GSK-3β) is a potential therapeutic target for cancer, type-2 diabetes, and Alzheimer's disease. This paper proposes a new lead identification protocol that predicts new GSK-3β ATP competitive inhibitors with topologically diverse scaffolds. First, three-dimensional quantitative structure-activity relationship (3D QSAR) models were built and validated. These models are based upon known GSK-3β inhibitors, benzofuran-3-yl-(indol-3-yl) maleimides, by means of comparative molecular field analysis (CoMFA) and comparative molecular similarity indices analysis (CoMSIA). Second, 28 826 maleimide derivatives were selected from the PubChem database. After filtration via Lipinski's rules, 10 429 maleimide derivatives were left. Third, the FlexX-dock program was employed to virtually screen the 10 429 compounds against GSK-3β. This resulted in 617 virtual hits. Fourth, the 3D QSAR models predicted that from the 617 virtual hits, 93 compounds would have GSK-3β inhibition values of less than 15 nM. Finally, from the 93 predicted active hits, 23 compounds were confirmed as GSK-3β inhibitors from literatures; their GSK-3β inhibition ranged from 1.3 to 480 nM. Therefore, the hits rate of our virtual screening protocol is greater than 25%. The protocol combines ligand- and structure-based approaches and therefore validates both approaches and is capable of identifying new hits with topologically diverse scaffolds.

  9. QSAR and molecular docking studies on oxindole derivatives as VEGFR-2 tyrosine kinase inhibitors.

    PubMed

    Kang, Cong-Min; Liu, Dong-Qing; Zhao, Xu-Hao; Dai, Ying-Jie; Cheng, Jia-Gao; Lv, Ying-Tao

    2016-01-01

    The three-dimensional quantitative structure-activity relationships (3D-QSAR) were established for 30 oxindole derivatives as vascular endothelial growth factor receptor-2 (VEGFR-2) tyrosine kinase inhibitors by using comparative molecular field analysis (CoMFA) and comparative similarity indices analysis comparative molecular similarity indices analysis (CoMSIA) techniques. With the CoMFA model, the cross-validated value (q(2)) was 0.777, the non-cross-validated value (R(2)) was 0.987, and the external cross-validated value ([Formula: see text]) was 0.72. And with the CoMSIA model, the corresponding q(2), R(2) and [Formula: see text] values were 0.710, 0.988 and 0.78, respectively. Docking studies were employed to bind the inhibitors into the active site to determine the probable binding conformation. The binding mode obtained by molecular docking was in good agreement with the 3D-QSAR results. Based on the QSAR models and the docking binding mode, a set of new VEGFR-2 tyrosine kinase inhibitors were designed, which showed excellent predicting inhibiting potencies. The result revealed that both QSAR models have good predictive capability to guide the design and structural modification of homologic compounds. It is also helpful for further research and development of new VEGFR-2 tyrosine kinase inhibitors.

  10. Discovery of dihydroxylated 2,4-diphenyl-6-thiophen-2-yl-pyridine as a non-intercalative DNA-binding topoisomerase II-specific catalytic inhibitor.

    PubMed

    Jun, Kyu-Yeon; Kwon, Hanbyeol; Park, So-Eun; Lee, Eunyoung; Karki, Radha; Thapa, Pritam; Lee, Jun-Ho; Lee, Eung-Seok; Kwon, Youngjoo

    2014-06-10

    We describe our rationale for designing specific catalytic inhibitors of topoisomerase II (topo II) over topoisomerase I (topo I). Based on 3D-QSAR studies of previously published dihydroxylated 2,4-diphenyl-6-aryl pyridine derivatives, 9 novel dihydroxylated 2,4-diphenyl-6-thiophen-2-yl pyridine compounds were designed, synthesized, and their biological activities were evaluated. These compounds have 2-thienyl ring substituted on the R(3) group on the pyridine ring and they all showed excellent specificity toward topo II compared to topo I. In vitro experiments were performed for compound 13 to determine the mechanism of action for this series of compounds. Compound 13 inhibited topoisomerase II specifically by non-intercalative binding to DNA and did not stabilize enzyme-cleavable DNA complex. Compound 13 efficiently inhibited cell viability, cell migration, and induced G1 arrest. Also from 3D-QSAR studies, the results were compared with other previously published dihydroxylated 2,4-diphenyl-6-aryl pyridine derivatives to explain the structure-activity relationships. PMID:24796883

  11. Thermally Activated Martensite: Its Relationship to Non-Thermally Activated (Athermal) Martensite

    SciTech Connect

    Laughlin, D E; Jones, N J; Schwartz, A J; Massalski, T B

    2008-10-21

    The classification of martensitic displacive transformations into athermal, isothermal or anisothermal is discussed. Athermal does not mean 'no temperature dependence' as is often thought, but is best considered to be short for the notion of no thermal activation. Processes with no thermal activation do not depend on time, as there is no need to wait for sufficient statistical fluctuations in some specific order parameter to overcome an activation barrier to initiate the process. Clearly, this kind of process contrasts with those that are thermally activated. In the literature, thermally activated martensites are usually termed isothermal martensites, suggesting a constant temperature. Actually such martensites also typically occur with continuous cooling. The important distinctive feature of these martensites is that they are thermally activated and hence are distinguishable in principle from athermal martensites. A third type of process, anisothermal, has been introduced to account for those transformations which are thought to be thermally activated but which occur on continuous cooling. They may occur so rapidly that they do not appear to have an incubation time, and hence could be mistakenly called an athermal transformation. These designations will be reviewed and discussed in terms of activation energies and kinetic processes of the various martensitic transformations.

  12. Structure-activity relationships for in vitro diuretic activity of CAP2b in the housefly

    Technology Transfer Automated Retrieval System (TEKTRAN)

    A series of truncated and Ala-replacement analogs of the peptide Manse-CAP2b (pELYAFPRV-NH2) were assayed for diuretic activity on Malpighian tubules of the housefly Musca domestica. The C-terminal hexapeptide proved to be the active core, the minimum sequence required to retain significant diureti...

  13. Alzheimer Disease Alters the Relationship of Cardiorespiratory Fitness With Brain Activity During the Stroop Task

    PubMed Central

    Gayed, Matthew R.; Honea, Robyn A.; Savage, Cary R.; Hobbs, Derek; Burns, Jeffrey M.

    2013-01-01

    Background Despite mounting evidence that physical activity has positive benefits for brain and cognitive health, there has been little characterization of the relationship between cardiorespiratory (CR) fitness and cognition-associated brain activity as measured by functional magnetic resonance imaging (fMRI). The lack of evidence is particularly glaring for diseases such as Alzheimer disease (AD) that degrade cognitive and functional performance. Objective The aim of this study was to describe the relationship between regional brain activity during cognitive tasks and CR fitness level in people with and without AD. Design A case-control, single-observation study design was used. Methods Thirty-four individuals (18 without dementia and 16 in the earliest stages of AD) completed maximal exercise testing and performed a Stroop task during fMRI. Results Cardiorespiratory fitness was inversely associated with anterior cingulate activity in the participants without dementia (r=−.48, P=.05) and unassociated with activation in those with AD (P>.7). Weak associations of CR fitness and middle frontal cortex were noted. Limitations The wide age range and the use of a single task in fMRI rather than multiple tasks challenging different cognitive capacities were limitations of the study. Conclusions The results offer further support of the relationship between CR fitness and regional brain activity. However, this relationship may be attenuated by disease. Future work in this area may provide clinicians and researchers with interpretable and dependable regional fMRI biomarker signatures responsive to exercise intervention. It also may shed light on mechanisms by which exercise can support cognitive function. PMID:23559521

  14. Structure–Activity Relationships for Side Chain Oxysterol Agonists of the Hedgehog Signaling Pathway

    PubMed Central

    2012-01-01

    Oxysterols (OHCs) are byproducts of cholesterol oxidation that are known to activate the Hedeghog (Hh) signaling pathway. While OHCs that incorporate hydroxyl groups throughout the scaffold are known, those that act as agonists of Hh signaling primarily contain a single hydroxyl on the alkyl side chain. We sought to further explore how side chain hydroxylation patterns affect oxysterol-mediated Hh activation, by performing a structure–activity relationship study on a series of synthetic OHCs. The most active analogue, 23(R)-OHC (35), demonstrated potent activation of Hh signaling in two Hh-dependent cell lines (EC50 values 0.54–0.65 μM). In addition, OHC 35 was approximately 3-fold selective for the Hh pathway as compared to the liver X receptor, a nuclear receptor that is also activated by endogenous OHCs. Finally, 35 induced osteogenic differentiation and osteoblast formation in cultured cells, indicating functional agonism of the Hh pathway. PMID:24900386

  15. A computational quantitative structure-activity relationship study of carbamate anticonvulsants using quantum pharmacological methods.

    PubMed

    Knight, J L; Weaver, D F

    1998-10-01

    A pattern recognition quantitative structure-activity relationship (QSAR) study has been performed to determine the molecular features of carbamate anticonvulsants which influence biological activity. Although carbamates, such as felbamate, have been used to treat epilepsy, their mechanisms of efficacy and toxicity are not completely understood. Quantum and classical mechanics calculations have been exploited to describe 46 carbamate drugs. Employing a principal component analysis and multiple linear regression calculations, five crucial structural descriptors were identified which directly relate to the bioactivity of the carbamate family. With the resulting mathematical model, the biological activity of carbamate analogues can be predicted with 85-90% accuracy.

  16. Iridium Oxide Coatings with Templated Porosity as Highly Active Oxygen Evolution Catalysts: Structure-Activity Relationships.

    PubMed

    Bernicke, Michael; Ortel, Erik; Reier, Tobias; Bergmann, Arno; Ferreira de Araujo, Jorge; Strasser, Peter; Kraehnert, Ralph

    2015-06-01

    Iridium oxide is the catalytic material with the highest stability in the oxygen evolution reaction (OER) performed under acidic conditions. However, its high cost and limited availability demand that IrO2 is utilized as efficiently as possible. We report the synthesis and OER performance of highly active mesoporous IrO2 catalysts with optimized surface area, intrinsic activity, and pore accessibility. Catalytic layers with controlled pore size were obtained by soft-templating with micelles formed from amphiphilic block copolymers poly(ethylene oxide)-b-poly(butadiene)-b-poly(ethylene oxide). A systematic study on the influence of the calcination temperature and film thickness on the morphology, phase composition, accessible surface area, and OER activity reveals that the catalytic performance is controlled by at least two independent factors, that is, accessible surface area and intrinsic activity per accessible site. Catalysts with lower crystallinity show higher intrinsic activity. The catalyst surface area increases linearly with film thickness. As a result of the templated mesopores, the pore surface remains fully active and accessible even for thick IrO2 films. Even the most active multilayer catalyst does not show signs of transport limitations at current densities as high as 75 mA cm(-2) . PMID:25958795

  17. Iridium Oxide Coatings with Templated Porosity as Highly Active Oxygen Evolution Catalysts: Structure-Activity Relationships.

    PubMed

    Bernicke, Michael; Ortel, Erik; Reier, Tobias; Bergmann, Arno; Ferreira de Araujo, Jorge; Strasser, Peter; Kraehnert, Ralph

    2015-06-01

    Iridium oxide is the catalytic material with the highest stability in the oxygen evolution reaction (OER) performed under acidic conditions. However, its high cost and limited availability demand that IrO2 is utilized as efficiently as possible. We report the synthesis and OER performance of highly active mesoporous IrO2 catalysts with optimized surface area, intrinsic activity, and pore accessibility. Catalytic layers with controlled pore size were obtained by soft-templating with micelles formed from amphiphilic block copolymers poly(ethylene oxide)-b-poly(butadiene)-b-poly(ethylene oxide). A systematic study on the influence of the calcination temperature and film thickness on the morphology, phase composition, accessible surface area, and OER activity reveals that the catalytic performance is controlled by at least two independent factors, that is, accessible surface area and intrinsic activity per accessible site. Catalysts with lower crystallinity show higher intrinsic activity. The catalyst surface area increases linearly with film thickness. As a result of the templated mesopores, the pore surface remains fully active and accessible even for thick IrO2 films. Even the most active multilayer catalyst does not show signs of transport limitations at current densities as high as 75 mA cm(-2) .

  18. Statistical analysis of the relationships of solar, geomagnetic and human activities

    NASA Astrophysics Data System (ADS)

    Gil, Agnieszka; Alania, Michael; Modzelewska, Renata

    Data of galactic cosmic rays, solar and geomagnetic activities, solar wind parameters and car accident events (CAE) in Poland have been analyzed in order to reveal the statistical relationships among them for the period of 1990- 2007. Cross correlation, cross spectrum and filters method have been used to analyze data of the galactic cosmic ray intensity, the solar wind (SW) velocity, DST, Kp index of geomagnetic activity and CAE in Poland. For some epochs of the above-mentioned period there is found a consistent relationship between CAE, parameters of solar and geomagnetic activities in various periodicities; e.g. the periodicity of 7 days is clearly revealed in CAE, in galactic cosmic rays, SW, solar and geomagnetic activities, especially for the minimum epoch of solar activity. We suppose that there is not excluded that the 7 day periodicity is partially related with the human social activities. The periodicity of 3.5 days, generally found only in the series of CAE data, more or less should be ascribed to the social activities, besides we have not an explicit physical-biological explanation of this effect.

  19. Structure-activity relationships of fatty acid amide ligands in activating and desensitizing G protein-coupled receptor 119

    PubMed Central

    Kumar, Pritesh; Kumar, Akhilesh; Song, Zhao-Hui

    2016-01-01

    The purpose of the current study was to apply a high throughput assay to investigate the structure-activity relationships of fatty acid amides for activating and desensitizing G protein-coupled receptor 119, a promising therapeutic target for both type 2 diabetes and obesity. A cell-based, homogenous time resolved fluorescence (HTRF) method for measuring G protein-coupled receptor 119-mediated increase of cyclic adenosine monophosphate (cAMP) levels was validated and applied in this study. Using novel fatty acid amides and detailed potency and efficacy analyses, we have demonstrated that degree of saturation in acyl chain and charged head groups of fatty acid amides have profound effects on the ability of these compounds to activate G protein-coupled receptor 119. In addition, we have demonstrated for the first time that pretreatments with G protein-coupled receptor 119 agonists desensitize the receptor and the degrees of desensitization caused by fatty acid amides correlate well with their structure-activity relationships in activating the receptor. PMID:24184668

  20. Peptidomimetics Based On Dehydroepiandrosterone Scaffold: Synthesis, Antiproliferation Activity, Structure-Activity Relationship, and Mechanisms

    NASA Astrophysics Data System (ADS)

    Wang, Xiaohui; Su, Haihuan; Wang, Wenda; Chen, Changshui; Cao, Xiufang

    2016-09-01

    A series of novel peptidomimetics bearing dehydroepiandrosterone moiety were designed, synthesized, and evaluated for their inhibition activities against cell proliferation. According to the preliminary studies on inhibitory activities, some of the newly prepared compounds indicated significantly inhibition activities against human hepatoma cancer (HepG2), human lung cancer (A549), human melanoma (A875) cell lines compared with the control 5-fluorouracil. Especially, compounds Ii (IC50 < 14 μM) and Ik (IC50 < 13 μM) exhibited obvious inhibition activities against all tested cell lines. The highly potential compound Ik induced apoptosis in HepG2 cells were analyzed by flow cytometry, and the apoptotic effects of compound Ik were further evaluated using Annexin V-FITC/propidium iodide dual staining assay, which revealed these highly potential compounds induced cell death in HepG2 cells at least partly by apoptosis.

  1. Peptidomimetics Based On Dehydroepiandrosterone Scaffold: Synthesis, Antiproliferation Activity, Structure-Activity Relationship, and Mechanisms

    PubMed Central

    Wang, Xiaohui; Su, Haihuan; Wang, Wenda; Chen, Changshui; Cao, Xiufang

    2016-01-01

    A series of novel peptidomimetics bearing dehydroepiandrosterone moiety were designed, synthesized, and evaluated for their inhibition activities against cell proliferation. According to the preliminary studies on inhibitory activities, some of the newly prepared compounds indicated significantly inhibition activities against human hepatoma cancer (HepG2), human lung cancer (A549), human melanoma (A875) cell lines compared with the control 5-fluorouracil. Especially, compounds Ii (IC50 < 14 μM) and Ik (IC50 < 13 μM) exhibited obvious inhibition activities against all tested cell lines. The highly potential compound Ik induced apoptosis in HepG2 cells were analyzed by flow cytometry, and the apoptotic effects of compound Ik were further evaluated using Annexin V-FITC/propidium iodide dual staining assay, which revealed these highly potential compounds induced cell death in HepG2 cells at least partly by apoptosis. PMID:27585479

  2. Peptidomimetics Based On Dehydroepiandrosterone Scaffold: Synthesis, Antiproliferation Activity, Structure-Activity Relationship, and Mechanisms.

    PubMed

    Wang, Xiaohui; Su, Haihuan; Wang, Wenda; Chen, Changshui; Cao, Xiufang

    2016-01-01

    A series of novel peptidomimetics bearing dehydroepiandrosterone moiety were designed, synthesized, and evaluated for their inhibition activities against cell proliferation. According to the preliminary studies on inhibitory activities, some of the newly prepared compounds indicated significantly inhibition activities against human hepatoma cancer (HepG2), human lung cancer (A549), human melanoma (A875) cell lines compared with the control 5-fluorouracil. Especially, compounds Ii (IC50 < 14 μM) and Ik (IC50 < 13 μM) exhibited obvious inhibition activities against all tested cell lines. The highly potential compound Ik induced apoptosis in HepG2 cells were analyzed by flow cytometry, and the apoptotic effects of compound Ik were further evaluated using Annexin V-FITC/propidium iodide dual staining assay, which revealed these highly potential compounds induced cell death in HepG2 cells at least partly by apoptosis. PMID:27585479

  3. Design, synthesis and structure-activity relationship of phthalimides endowed with dual antiproliferative and immunomodulatory activities.

    PubMed

    Cardoso, Marcos Veríssimo de Oliveira; Moreira, Diogo Rodrigo Magalhães; Oliveira Filho, Gevanio Bezerra; Cavalcanti, Suellen Melo Tiburcio; Coelho, Lucas Cunha Duarte; Espíndola, José Wanderlan Pontes; Gonzalez, Laura Rubio; Rabello, Marcelo Montenegro; Hernandes, Marcelo Zaldini; Ferreira, Paulo Michel Pinheiro; Pessoa, Cláudia; Alberto de Simone, Carlos; Guimarães, Elisalva Teixeira; Soares, Milena Botelho Pereira; Leite, Ana Cristina Lima

    2015-01-01

    The present work reports the synthesis and evaluation of the antitumour and immunomodulatory properties of new phthalimides derivatives designed to explore molecular hybridization and bioisosterism approaches between thalidomide, thiosemicarbazone, thiazolidinone and thiazole series. Twenty-seven new molecules were assessed for their immunosuppressive effect toward TNFα, IFNγ, IL-2 and IL-6 production and antiproliferative activity. The best activity profile was observed for the (6a-f) series, which presents phthalyl and thiazolidinone groups.

  4. Relationship Between Cortical Thickness and Functional Activation in the Early Blind

    PubMed Central

    Anurova, Irina; Renier, Laurent A.; De Volder, Anne G.; Carlson, Synnöve; Rauschecker, Josef P.

    2015-01-01

    Early blindness results in both structural and functional changes of the brain. However, these changes have rarely been studied in relation to each other. We measured alterations in cortical thickness (CT) caused by early visual deprivation and their relationship with cortical activity. Structural and functional magnetic resonance imaging was performed in 12 early blind (EB) humans and 12 sighted controls (SC). Experimental conditions included one-back tasks for auditory localization and pitch identification, and a simple sound-detection task. Structural and functional data were analyzed in a whole-brain approach and within anatomically defined regions of interest in sensory areas of the spared (auditory) and deprived (visual) modalities. Functional activation during sound-localization or pitch-identification tasks correlated negatively with CT in occipital areas of EB (calcarine sulcus, lingual gyrus, superior and middle occipital gyri, and cuneus) and in nonprimary auditory areas of SC. These results suggest a link between CT and activation and demonstrate that the relationship between cortical structure and function may depend on early sensory experience, probably via selective pruning of exuberant connections. Activity-dependent effects of early sensory deprivation and long-term practice are superimposed on normal maturation and aging. Together these processes shape the relationship between brain structure and function over the lifespan. PMID:24518755

  5. The relationship between gluteal muscle activation and throwing kinematics in baseball and softball catchers.

    PubMed

    Plummer, Hillary A; Oliver, Gretchen D

    2014-01-01

    The purpose of this study was to determine the relationship between gluteal muscle activation and pelvis and trunk kinematics when catchers throw to second base. Forty-two baseball and softball catchers (14.74 ± 4.07 years; 161.85 ± 15.24 cm; 63.38 ± 19.98 kg) participated in this study. Muscle activity of the bilateral gluteus maximus and medius as well as pelvis and trunk kinematics throughout the throwing motion were analyzed. It was discovered that at foot contact, there were 2 significant inverse relationships between stride leg gluteus maximus activity and pelvis axial rotation (r = -0.31, r2 = 0.10, p = 0.05), and between trunk axial rotation and pelvis lateral flexion (r = -0.34, r2= 0.12, p = 0.03). In addition, at foot contact, a significant positive relationship between the drive leg (throwing arm side) and trunk flexion (r = 0.33, r2 = 0.11, p = 0.04) was present. The results of this study provide evidence of gluteal activation both concentrically and eccentrically, in attempt to control the pelvis and trunk during the throwing motion of catchers. The gluteal muscles play a direct role in maintaining the stability of the pelvis, and catchers should incorporate strengthening of the entire lumbopelvic-hip complex into their training regimen. Incorporating concentric and eccentric gluteal exercises will help to improve musculoskeletal core stability, thereby assisting in upper extremity injury prevention.

  6. Quantitative structure-activity relationships and docking studies of calcitonin gene-related peptide antagonists.

    PubMed

    Kyani, Anahita; Mehrabian, Mohadeseh; Jenssen, Håvard

    2012-02-01

    Defining the role of calcitonin gene-related peptide in migraine pathogenesis could lead to the application of calcitonin gene-related peptide antagonists as novel migraine therapeutics. In this work, quantitative structure-activity relationship modeling of biological activities of a large range of calcitonin gene-related peptide antagonists was performed using a panel of physicochemical descriptors. The computational studies evaluated different variable selection techniques and demonstrated shuffling stepwise multiple linear regression to be superior over genetic algorithm-multiple linear regression. The linear quantitative structure-activity relationship model revealed better statistical parameters of cross-validation in comparison with the non-linear support vector regression technique. Implementing only five peptide descriptors into this linear quantitative structure-activity relationship model resulted in an extremely robust and highly predictive model with calibration, leave-one-out and leave-20-out validation R(2) of 0.9194, 0.9103, and 0.9214, respectively. We performed docking of the most potent calcitonin gene-related peptide antagonists with the calcitonin gene-related peptide receptor and demonstrated that peptide antagonists act by blocking access to the peptide-binding cleft. We also demonstrated the direct contact of residues 28-37 of the calcitonin gene-related peptide antagonists with the receptor. These results are in agreement with the conclusions drawn from the quantitative structure-activity relationship model, indicating that both electrostatic and steric factors should be taken into account when designing novel calcitonin gene-related peptide antagonists. PMID:21974743

  7. The Effect of Nano Confinement on the C-H Activation and its Corresponding Structure-Activity Relationship

    NASA Astrophysics Data System (ADS)

    Shao, Jing; Yuan, Linghua; Hu, Xingbang; Wu, Youting; Zhang, Zhibing

    2014-11-01

    The C-H activation of methane, ethane, and t-butane on inner and outer surfaces of nitrogen-doped carbon nanotube (NCNTs) are investigated using density functional theory. It includes NCNTs with different diameters, different N and O concentrations, and different types (armchair and zigzag). A universal structure-reactivity relationship is proposed to characterize the C-H activation occurring both on the inner and outer surfaces of the nano channel. The C-O bond distance, spin density and charge carried by active oxygen are found to be highly related to the C-H activation barriers. Based on these theoretical results, some useful strategies are suggested to guide the rational design of more effective catalysts by nano channel confinement.

  8. Phomentrioloxin, a fungal phytotoxin with potential herbicidal activity, and its derivatives: a structure-activity relationship study.

    PubMed

    Cimmino, Alessio; Andolfi, Anna; Zonno, Maria Chiara; Boari, Angela; Troise, Ciro; Motta, Andrea; Vurro, Maurizio; Ash, Gavin; Evidente, Antonio

    2013-10-01

    Phomentrioloxin is a phytotoxic geranylcyclohexenetriol produced in liquid culture by Phomopsis sp. (teleomorph: Diaporthe gulyae), a potential mycoherbicide proposed for the control of the annual weed Carthamus lanatus. In this study, seven derivatives obtained by chemical modifications of the toxin were assayed for phytotoxic, antimicrobial, and zootoxic activities, and the structure-activity relationships were examined. Each compound was tested on nonhost weedy and agrarian plants, fungi, Gram+ and Gram- bacteria, and on brine shrimp larvae. The results provide insights into an investigation of the structural requirements for activity. The hydroxy groups at C-2 and C-4 appeared to be important features for the phytotoxicity, as well as an unchanged cyclohexentriol ring. A role seemed also to be played by the unsaturations of the geranyl side chain. These findings could be useful for understanding the mechanisms of action of new natural products, for identifying the active sites, and possibly in devising new herbicides of natural origin. PMID:24083323

  9. The Effect of Nano Confinement on the C–H Activation and its Corresponding Structure-Activity Relationship

    PubMed Central

    Shao, Jing; Yuan, Linghua; Hu, Xingbang; Wu, Youting; Zhang, Zhibing

    2014-01-01

    The C–H activation of methane, ethane, and t-butane on inner and outer surfaces of nitrogen-doped carbon nanotube (NCNTs) are investigated using density functional theory. It includes NCNTs with different diameters, different N and O concentrations, and different types (armchair and zigzag). A universal structure-reactivity relationship is proposed to characterize the C–H activation occurring both on the inner and outer surfaces of the nano channel. The C–O bond distance, spin density and charge carried by active oxygen are found to be highly related to the C–H activation barriers. Based on these theoretical results, some useful strategies are suggested to guide the rational design of more effective catalysts by nano channel confinement. PMID:25428459

  10. THE LOW-LUMINOSITY END OF THE RADIUS-LUMINOSITY RELATIONSHIP FOR ACTIVE GALACTIC NUCLEI

    SciTech Connect

    Bentz, Misty C.; Denney, Kelly D.; Vestergaard, Marianne; Grier, Catherine J.; Peterson, Bradley M.; De Rosa, Gisella; Pogge, Richard W.; Barth, Aaron J.; Bennert, Vardha N.; Canalizo, Gabriela; Filippenko, Alexei V.; Li Weidong; Gates, Elinor L.; Malkan, Matthew A.; Stern, Daniel; Treu, Tommaso; Woo, Jong-Hak

    2013-04-20

    We present an updated and revised analysis of the relationship between the H{beta} broad-line region (BLR) radius and the luminosity of the active galactic nucleus (AGN). Specifically, we have carried out two-dimensional surface brightness decompositions of the host galaxies of nine new AGNs imaged with the Hubble Space Telescope Wide Field Camera 3. The surface brightness decompositions allow us to create ''AGN-free'' images of the galaxies, from which we measure the starlight contribution to the optical luminosity measured through the ground-based spectroscopic aperture. We also incorporate 20 new reverberation-mapping measurements of the H{beta} time lag, which is assumed to yield the average H{beta} BLR radius. The final sample includes 41 AGNs covering four orders of magnitude in luminosity. The additions and updates incorporated here primarily affect the low-luminosity end of the R{sub BLR}-L relationship. The best fit to the relationship using a Bayesian analysis finds a slope of {alpha}= 0.533{sup +0.035}{sub -0.033}, consistent with previous work and with simple photoionization arguments. Only two AGNs appear to be outliers from the relationship, but both of them have monitoring light curves that raise doubt regarding the accuracy of their reported time lags. The scatter around the relationship is found to be 0.19 {+-} 0.02 dex, but would be decreased to 0.13 dex by the removal of these two suspect measurements. A large fraction of the remaining scatter in the relationship is likely due to the inaccurate distances to the AGN host galaxies. Our results help support the possibility that the R{sub BLR}-L relationship could potentially be used to turn the BLRs of AGNs into standardizable candles. This would allow the cosmological expansion of the universe to be probed by a separate population of objects, and over a larger range of redshifts.

  11. Structure-activity relationships for organometallic osmium arene phenylazopyridine complexes with potent anticancer activity.

    PubMed

    Fu, Ying; Habtemariam, Abraha; Basri, Aida M B H; Braddick, Darren; Clarkson, Guy J; Sadler, Peter J

    2011-10-28

    We report the synthesis and characterisation of 32 half sandwich phenylazopyridine Os(II) arene complexes [Os(η(6)-arene)(phenylazopyridine)X](+) in which X is chloride or iodide, the arene is p-cymene or biphenyl and the pyridine and phenyl rings contain a variety of substituents (F, Cl, Br, I, CF(3), OH or NO(2)). Ten X-ray crystal structures have been determined. Cytotoxicity towards A2780 human ovarian cancer cells ranges from high potency at nanomolar concentrations to inactivity. In general the introduction of an electron-withdrawing group (e.g. F, Cl, Br or I) at specific positions on the pyridine ring significantly increases cytotoxic activity and aqueous solubility. Changing the arene from p-cymene to biphenyl and the monodentate ligand X from chloride to iodide also increases the activity significantly. Activation by hydrolysis and DNA binding appears not to be the major mechanism of action since both the highly active complex [Os(η(6)-bip)(2-F-azpy)I]PF(6) (9) and the moderately active complex [Os(η(6)-bip)(3-Cl-azpy)I]PF(6) (23) are very stable and inert towards aquation. Studies of octanol-water partition coefficients (log P) and subcellular distributions of osmium in A2780 human ovarian cancer cells suggested that cell uptake and targeting to cellular organelles play important roles in determining activity. Although complex 9 induced the production of reactive oxygen species (ROS) in A2780 cells, the ROS level did not appear to play a role in the mechanism of anticancer activity. This class of organometallic osmium complexes has new and unusual features worthy of further exploration for the design of novel anticancer drugs.

  12. Synthesis, Structure-Activity Relationship, and Mechanistic Investigation of Lithocholic Acid Amphiphiles for Colon Cancer Therapy

    PubMed Central

    Bhargava, Priyanshu; Singh, Ashima; Motiani, Rajender K.; Shyam, Radhey; Sreekanth, Vedagopuram; Sengupta, Sagar; Bajaj, Avinash

    2014-01-01

    We report a structure-activity relationship of lithocholic acid amphiphiles for their anticancer activities against colon cancer. We synthesized ten cationic amphiphiles differing in nature of cationic charged head groups using lithocholic acid. We observed that anticancer activities of these amphiphiles against colon cancer cell lines are contingent on nature of charged head group. Lithocholic acid based amphiphile possessing piperidine head group (LCA-PIP1) is ~10 times more cytotoxic as compared to its precursor. Biochemical studies revealed that enhanced activity of LCA-PIP1 as compared to lithocholic acid is due to greater activation of apoptosis.LCA-PIP1 induces sub G0 arrest and causes cleavage of caspases. A single dose of lithocholic acid-piperidine derivative is enough to reduce the tumor burden by 75% in tumor xenograft model. PMID:25685308

  13. Design, synthesis and exploring the quantitative structure-activity relationship of some antioxidant flavonoid analogues.

    PubMed

    Das, Sreeparna; Mitra, Indrani; Batuta, Shaikh; Niharul Alam, Md; Roy, Kunal; Begum, Naznin Ara

    2014-11-01

    A series of flavonoid analogues were synthesized and screened for the in vitro antioxidant activity through their ability to quench 1,1-diphenyl-2-picryl hydrazyl (DPPH) radical. The activity of these compounds, measured in comparison to the well-known standard antioxidants (29-32), their precursors (38-42) and other bioactive moieties (38-42) resembling partially the flavone skeleton was analyzed further to develop Quantitative Structure-Activity Relationship (QSAR) models using the Genetic Function Approximation (GFA) technique. Based on the essential structural requirements predicted by the QSAR models, some analogues were designed, synthesized and tested for activity. The predicted and experimental activities of these compounds were well correlated. Flavone analogue 20 was found to be the most potent antioxidant.

  14. Quantitative approaches to computational vaccinology.

    PubMed

    Doytchinova, Irini A; Flower, Darren R

    2002-06-01

    This article reviews the newly released JenPep database and two new powerful techniques for T-cell epitope prediction: (i) the additive method; and (ii) a 3D-Quantitative Structure Activity Relationships (3D-QSAR) method, based on Comparative Molecular Similarity Indices Analysis (CoMSIA). The JenPep database is a family of relational databases supporting the growing need of immunoinformaticians for quantitative data on peptide binding to major histocompatibility complexes and to the Transporters associated with Antigen Processing (TAP). It also contains an annotated list of T-cell epitopes. The database is available free via the Internet (http://www.jenner.ac.uk/JenPep). The additive prediction method is based on the assumption that the binding affinity of a peptide depends on the contributions from each amino acid as well as on the interactions between the adjacent and every second side-chain. In the 3D-QSAR approach, the influence of five physicochemical properties (steric bulk, electrostatic potential, local hydrophobicity, hydrogen-bond donor and hydrogen-bond acceptor abilities) on the affinity of peptides binding to MHC molecules were considered. Both methods were exemplified through their application to the well-studied problem of peptides binding to the human class I MHC molecule HLA-A*0201. PMID:12067414

  15. Computational vaccinology: quantitative approaches.

    PubMed

    Flower, Darren R; McSparron, Helen; Blythe, Martin J; Zygouri, Christianna; Taylor, Debra; Guan, Pingping; Wan, Shouzhan; Coveney, Peter V; Walshe, Valerie; Borrow, Persephone; Doytchinova, Irini A

    2003-01-01

    The immune system is hierarchical and has many levels, exhibiting much emergent behaviour. However, at its heart are molecular recognition events that are indistinguishable from other types of biomacromolecular interaction. These can be addressed well by quantitative experimental and theoretical biophysical techniques, and particularly by methods from drug design. We review here our approach to computational immunovaccinology. In particular, we describe the JenPep database and two new techniques for T cell epitope prediction. One is based on quantitative structure-activity relationships (a 3D-QSAR method based on CoMSIA and another 2D method based on the Free-Wilson approach) and the other on atomistic molecular dynamic simulations using high performance computing. JenPep (http://www.jenner.ar.uk/ JenPep) is a relational database system supporting quantitative data on peptide binding to major histocompatibility complexes, TAP transporters, TCR-pMHC complexes, and an annotated list of B cell and T cell epitopes. Our 2D-QSAR method factors the contribution to peptide binding from individual amino acids as well as 1-2 and 1-3 residue interactions. In the 3D-QSAR approach, the influence of five physicochemical properties (volume, electrostatic potential, hydrophobicity, hydrogen-bond donor and acceptor abilities) on peptide affinity were considered. Both methods are exemplified through their application to the well-studied problem of peptide binding to the human class I MHC molecule HLA-A*0201. PMID:14712934

  16. Synthesis, antifungal activity and structure-activity relationships of vanillin oxime-N-O-alkanoates.

    PubMed

    Ahluwalia, Vivek; Garg, Nandini; Kumar, Birendra; Walia, Suresh; Sati, Om P

    2012-12-01

    Vanillin oxime-N-O-alkanoates were synthesized following reaction of vanillin with hydroxylamine hydrochloride, followed by reaction of the resultant oxime with acyl chlorides. The structures of the compounds were confirmed by IR, 1H, 13C NMR and mass spectral data. The test compounds were evaluated for their in vitro antifungal activity against three phytopathogenic fungi Macrophomina phaseolina, Rhizoctonia solani and Sclerotium rolfsii by the poisoned food technique. The moderate antifungal activity of vanillin was slightly increased following its conversion to vanillin oxime, but significantly increased after conversion of the oxime to oxime-N-O-alkanoates. While vanillin oxime-N-O-dodecanoate with an EC50 value 73.1 microg/mL was most active against M. phaseolina, vanillin oxime-N-O-nonanoate with EC50 of value 66.7 microg/mL was most active against R. solani. The activity increased with increases in the acyl chain length and was maximal with an acyl chain length of nine carbons.

  17. Biological activity, design, synthesis and structure activity relationship of some novel derivatives of curcumin containing sulfonamides.

    PubMed

    Lal, Jaggi; Gupta, Sushil K; Thavaselvam, D; Agarwal, Dau D

    2013-06-01

    Five series of curcumin derivatives with sulfonamides 3a-3e, 4a-4e, 5a-5e, 6a-6e and 7a-7e have been synthesized and evaluated for in vitro antibacterial activity against selected medically important gram-(+) and gram-(-) bacterial species viz. Staphylococcus aureus, Bacillus cereus, Salmonella typhi, Pseudomonas aeruginosa and Escherichia coli, and antifungal activity against few pathogenic fungal species viz. Aspergillus niger, Aspergillus flavus, Trichoderma viride and Curvularia lunata. The cytotoxicity has been determined by measuring IC50 values against human cell lines HeLa, Hep G-2, QG-56 and HCT-116. Among the compounds screened, 3a-3e showed the most potent biological activity against tested bacteria and fungi. Compounds 3a-3e displayed higher cytotoxicity than curcumin. The curcumin derivatives were also evaluated for in vivo anti-inflammatory activity. In contrast, the compounds 6a-6e and 7a-7e showed dramatically decrease in biological activity. PMID:23685942

  18. An investigation into the relationship between age and physiological function in highly active older adults

    PubMed Central

    Pollock, Ross D; Carter, Scott; Velloso, Cristiana P; Duggal, Niharika A; Lord, Janet M; Lazarus, Norman R; Harridge, Stephen D R

    2015-01-01

    Despite extensive research, the relationship between age and physiological function remains poorly characterised and there are currently no reliable markers of human ageing. This is probably due to a number of confounding factors, particularly in studies of a cross-sectional nature. These include inter-subject genetic variation, as well as inter-generational differences in nutrition, healthcare and insufficient levels of physical activity as well as other environmental factors. We have studied a cohort of highly and homogeneously active older male (n = 84) and female (n = 41) cyclists aged 55–79 years who it is proposed represent a model for the study of human ageing free from the majority of confounding factors, especially inactivity. The aim of the study was to identify physiological markers of ageing by assessing the relationship between function and age across a wide range of indices. Each participant underwent a detailed physiological profiling which included measures of cardiovascular, respiratory, neuromuscular, metabolic, endocrine and cognitive functions, bone strength, and health and well-being. Significant associations between age and function were observed for many functions. The maximal rate of oxygen consumption ( showed the closest association with age (r = −0.443 to −0.664; P < 0.001), but even here the variance in age for any given level was high, precluding the clear identification of the age of any individual. The results of this cross-sectional study suggest that even when many confounding variables are removed the relationship between function and healthy ageing is complex and likely to be highly individualistic and that physical activity levels must be taken into account in ageing studies. Key Points The relationship between age and physiological function remains poorly defined and there are no physiological markers that can be used to reliably predict the age of an individual. This could be due to a variety of confounding

  19. Effect of voluntary vs. artificial activation on the relationship of muscle torque to speed

    NASA Technical Reports Server (NTRS)

    Dudley, Gary A.; Harris, Robert T.; Duvoisin, Marc R.; Hather, Bruce M.; Buchanan, Paul

    1990-01-01

    The suggestion by Phillips and Petrofsky (1980) and Wickiewicz et al. (1984) that artificial activation of the knee extensor muscles should result in greater relative changes in torque than those evident with maximal voluntary activation is examined by investigating the speed-torque relationship of the right knee extensor muscle group in eight human subjects in whom activation was achieved by 'maximal' voluntary effort or by electrical stimulation. Torque was measured at a specific knee angle during isokinetic concentric or eccentric actions at velocities between 0.17 and 3.66 rad/s and during isometric actions. It is shown that, with artificial activation, the relative changes in both eccentric and concentric torque were greater as the speed increased; the speed-torque relationship was independed of the extent of activation and was similar to that of an isolated muscle. On the other hand, activation by the central nervous system during maximal effort depended on the speed and the type of muscle action performed.

  20. Relationships Among Goal Contents, Exercise Motivations, Physical Activity, and Aerobic Fitness in University Physical Education Courses.

    PubMed

    Sibley, Benjamin A; Bergman, Shawn M

    2016-04-01

    The current research examined the relationships among exercise goal contents, behavioral regulation, physical activity, and aerobic fitness within the context of eight-week university physical education courses. Participants were undergraduate students (M age = 20.2 year, SD = 2.3) enrolled in activity courses (N = 461) during the 2010 Fall semester. At pretest, participants completed a demographic survey, Behavioral Regulation in Exercise Questionnaire and the Goal Contents in Exercise Questionnaire. At eight-week posttest, participants completed the Physical Activity Questionnaire for Adults and the PACER aerobic fitness test. Relative intrinsic goal content was found to predict physical activity indirectly and aerobic fitness via behavioral regulation. Specific goal contents related to health management and skill development were found to predict physical activity and aerobic fitness via a fully mediated path through identified and intrinsic regulation. Results supported the efficacy of goal contents and self-determination theory in describing physical activity behavior and fitness. Examining specific types of goal contents and behavioral regulations revealed relationships that were masked by the utilization of omnibus scoring protocols.

  1. The perceived impacts of monitoring activities on intergovernmental relationships: some lessons from the Ecological Monitoring Network and Water in Focus.

    PubMed

    de Kool, Dennis

    2015-11-01

    An increasing stream of monitoring activities is entering the public sector. This article analyzes the perceived impacts of monitoring activities on intergovernmental relationships. Our theoretical framework is based on three approaches to monitoring and intergovernmental relationships, namely, a rational, a political, and a cultural perspective. Our empirical insights are based on two Dutch case studies, namely, the Ecological Monitoring Network and the Water in Focus reports. The conclusion is that monitoring activities have an impact on intergovernmental relationships in terms of standardizing working processes and methods, formalizing information relationships, ritualizing activities, and developing shared concepts ("common grammar"). An important challenge is to deal with the politicization of intergovernmental relationships, because monitoring reports can also stimulate political discussions about funding, the design of the instrument, administrative burdens, and supervisory relationships.

  2. Relationships Between Muscle Activity and Anteroposterior Ground Reaction Forces in Hemiparetic Walking

    PubMed Central

    Turns, Lindsey J.; Neptune, Richard R.; Kautz, Steven A.

    2008-01-01

    Objective To determine relationships between muscle activity and propulsive impulse in hemiparetic walking. Design Cross-sectional. Setting Gait analysis laboratory. Participants Forty-nine poststroke patients with chronic hemiparesis, stratified into hemiparetic severity subgroups based on Brunnstrom stages of motor recovery, walking at their self-selected speed. Interventions Not applicable. Main Outcome Measures Percent of muscle activity in the paretic and nonparetic legs and net anteroposterior (AP) ground reaction force impulse (ie, the time integral of the AP ground reaction force) within 4 regions of the stance phase (first double support, first and second halves of single support, and second double support). Results Medial gastrocnemius and soleus muscle activity correlated positively with paretic propulsion in the second half of single support and double support across all subjects and subjects grouped by hemiparetic severity. Tibialis anterior correlated negatively with paretic propulsion during preswing across all subjects and for subjects with moderate and severe hemiparesis. Rectus femoris activity also correlated negatively with preswing propulsion for the severe group. Uniarticular knee extensor activity correlated only with increased paretic braking in the first double-support phase for the severe hemiparesis group. Nonparetic leg muscle activity correlated with propulsive impulses across all subjects, but not within the severe group exclusively. Conclusions Paretic propulsion is strongly associated with increased plantarflexor activity and also negatively associated with increased leg flexor activity, especially in the severe hemiparesis group. These results suggest that exaggerated flexor muscle activity may counteract the effects of the plantarflexors by offloading the leg and interfering with the limb’s ability to generate appropriate AP ground reaction forces. There is also evidence for specific relationships between paretic braking and

  3. Cytotoxic, antioxidant activities and structure activity relationship of some newly synthesized terpenoidal oxaliplatin analogs.

    PubMed

    Amr, Abd El-Galil E; Ali, Korany A; Abdalla, Mohamed M

    2009-02-01

    The terpenoidal oxaliplatin derivatives (6) and (12) were newly synthesized using 2beta,3alpha-dihydroxy-11-oxo-18beta-olean-12-ene-30-oic acid (1) and 2alpha,2beta-dihydroxy-18beta-ursan-12-ene-28-oic acid (7) as starting materials. The synthesized compounds were evaluated for their cytotoxicity and antioxidant activities and were compared to Oxaliplatin and vitamin C as positive controls. Some of the compounds exhibited better cytotoxicity and antioxidant activities than the reference controls. The detailed synthesis, spectroscopic data, toxicity (LD(50)) and pharmacological screening for the synthesized compounds were reported.

  4. The relationship between built park environments and physical activity in four park locations.

    PubMed

    Shores, Kindal A; West, Stephanie T

    2008-01-01

    Despite widespread knowledge that physical activity is a valuable mechanism for preventing many lifestyle diseases, data from the 2001 Behavioral Risk Factor Surveillance System indicate that less than half of the US population met activity recommendations established by the Centers for Disease Control and Prevention. To increase physical activity levels, community officials around the United States have identified public parks as a convenient, low-cost resource to enable active living. However, the amenities of the built park environment that best facilitate active park visits are unknown. The current article describes the relationship of micro-level environmental components and park visitors' physical activity. Using the System for Observing Play and Recreation in Communities, park visitation patterns are documented and described according to user demographics. Broadly, visitors who were observed in park environments, which contained playgrounds, sport courts, and paths, were significantly more active than visitors in settings without these features. Furthermore, six types of built features were able to explain 58% of the variance in observed activity intensity among park visitors. Findings suggest that built features that support physical activity across the life span (paths and courts in particular) may be considered by community leaders seeking relatively low-cost mechanisms to promote physical activity among residents.

  5. Structure activity relationship studies on chemically non-reactive glycine sulfonamide inhibitors of diacylglycerol lipase.

    PubMed

    Chupak, Louis S; Zheng, Xiaofan; Hu, Shuanghua; Huang, Yazhong; Ding, Min; Lewis, Martin A; Westphal, Ryan S; Blat, Yuval; McClure, Andrea; Gentles, Robert G

    2016-04-01

    N-Benzylic-substituted glycine sulfonamides that reversibly inhibit diacylglycerol (DAG) lipases are reported. Detailed herein are the structure activity relationships, profiling characteristics and physico-chemical properties for the first reported series of DAG lipase (DAGL) inhibitors that function without covalent attachment to the enzyme. Highly potent examples are presented that represent valuable tool compounds for studying DAGL inhibition and constitute important leads for future medicinal chemistry efforts.

  6. American Time Use Survey: Sleep Time and Its Relationship to Waking Activities

    PubMed Central

    Basner, Mathias; Fomberstein, Kenneth M.; Razavi, Farid M.; Banks, Siobhan; William, Jeffrey H.; Rosa, Roger R.; Dinges, David F.

    2007-01-01

    Study Objectives: To gain some insight into how various behavioral (lifestyle) factors influence sleep duration, by investigation of the relationship of sleep time to waking activities using the American Time Use Survey (ATUS). Design: Cross-sectional data from ATUS, an annual telephone survey of a population sample of US citizens who are interviewed regarding how they spent their time during a 24-hour period between 04:00 on the previous day and 04:00 on the interview day. Participants: Data were pooled from the 2003, 2004, and 2005 ATUS databases involving N=47,731 respondents older than 14 years of age. Interventions: N/A Results: Adjusted multiple linear regression models showed that the largest reciprocal relationship to sleep was found for work time, followed by travel time, which included commute time. Only shorter than average sleepers (<7.5 h) spent more time socializing, relaxing, and engaging in leisure activities, while both short (<5.5 h) and long sleepers (≥8.5 h) watched more TV than the average sleeper. The extent to which sleep time was exchanged for waking activities was also shown to depend on age and gender. Sleep time was minimal while work time was maximal in the age group 45–54 yr, and sleep time increased both with lower and higher age. Conclusions: Work time, travel time, and time for socializing, relaxing, and leisure are the primary activities reciprocally related to sleep time among Americans. These activities may be confounding the frequently observed association between short and long sleep on one hand and morbidity and mortality on the other hand and should be controlled for in future studies. Citation: Basner M; Fomberstein KM; Razavi FM; Banks S; William JH; Rosa RR; Dinges DF. American time use survey: sleep time and its relationship to waking activities. SLEEP 2007;30(9):1085-1095. PMID:17910380

  7. Exploring the structure-activity relationships of ABCC2 modulators using a screening approach.

    PubMed

    Wissel, Gloria; Kudryavtsev, Pavel; Ghemtio, Leo; Tammela, Päivi; Wipf, Peter; Yliperttula, Marjo; Finel, Moshe; Urtti, Arto; Kidron, Heidi; Xhaard, Henri

    2015-07-01

    ABCC2 is a transporter with key influence on liver and kidney pharmacokinetics. In order to explore the structure-activity relationships of compounds that modulate ABCC2, and by doing so gain insights into drug-drug interactions, we screened a library of 432 compounds for modulators of radiolabeled β-estradiol 17-(β-d-glucuronide) (EG) and fluorescent 5(6)-carboxy-2',7'-dichlorofluorescein transport (CDCF) in membrane vesicles. Following the primary screen at 80μM, dose-response curves were used to investigate in detail 86 compounds, identifying 16 low μM inhibitors and providing data about the structure-activity relationships in four series containing 19, 24, 10, and eight analogues. Measurements with the CDCF probe were consistently more robust than for the EG probe. Only one compound was clearly probe-selective with a 50-fold difference in the IC50s obtained by the two assays. We built 24 classification models using the SVM and fused-XY Kohonen methods, revealing molecular descriptors related to number of rings, solubility and lipophilicity as important to distinguish inhibitors from inactive compounds. This study is to the best of our knowledge the first to provide details about structure-activity relationships in ABCC2 modulation. PMID:25935289

  8. Structure-activity relationship studies of the tricyclic indoline resistance-modifying agent.

    PubMed

    Chang, Le; Podoll, Jessica D; Wang, Wei; Walls, Shane; O'Rourke, Courtney P; Wang, Xiang

    2014-05-01

    Previously we discovered a tricyclic indoline, N-[2-(6-bromo-4-methylidene-2,3,4,4a,9,9a-hexahydro-1H-carbazol-4a-yl)ethyl]-4-chlorobenzene-1-sulfonamide (1, Of1), from bioinspired synthesis of a highly diverse polycyclic indoline alkaloid library, that selectively resensitizes methicillin-resistant Staphylococcus aureus strains to β-lactam antibiotics. Herein, we report a thorough structure-activity relationship investigation of 1, which identified regions of 1 that tolerate modifications without compromising activity and afforded the discovery of a more potent analogue with reduced mammalian toxicity. PMID:24694192

  9. Synthesis and structure-activity relationships of potent 4-fluoro-2-cyanopyrrolidine dipeptidyl peptidase IV inhibitors.

    PubMed

    Fukushima, Hiroshi; Hiratate, Akira; Takahashi, Masato; Mikami, Ayako; Saito-Hori, Masako; Munetomo, Eiji; Kitano, Kiyokazu; Chonan, Sumi; Saito, Hidetaka; Suzuki, Akio; Takaoka, Yuji; Yamamoto, Koji

    2008-04-01

    Dipeptidyl peptidase IV (DPP-IV) inhibitors are promising antidiabetic drugs, and several drugs are in the developmental stage. We previously reported that the introduction of fluorine to the 4-position of 2-cyanopyrrolidine enhanced the DPP-IV inhibitory effect. In the present report, we examined the structure-activity relationship (SAR) of 2-cyano-4-fluoropyrrolidine with N-substituted glycine at the 1-position. We report the identification of a potent and stable DPP-IV inhibitor (TS-021) with a long-term persistent plasma drug concentration and a potent antihyperglycemic activity.

  10. Relationship between volatility, hygroscopicity, and CCN activity of winter aerosols: Kanpur, Indo-Gangetic Basin

    NASA Astrophysics Data System (ADS)

    Bhattu, Deepika; Tripathi, Sachchida

    2016-04-01

    Aerosol volatility is one of the key property in deciding their lifetime and fate. The volatile species have the potential to affect SOA estimation, so their characterization and establishment of relationship with mass loading, chemical composition, hygroscopicity and CCN activity is required. A 42 days long winter campaign was conducted in an anthropogenically polluted location (Kanpur, India) where CCN activity of both ambient and thermally treated aerosols was characterized. Enhanced partitioning of semi-volatile molecules into particle phase at higher loading conditions was observed. Unexpectedly, the most oxidized organic factor was observed both least volatile and hygroscopic in nature. Lower

  11. Antibacterial structure–activity relationship studies of several tricyclic sulfur-containing flavonoids

    PubMed Central

    Bahrin, Lucian G; Hopf, Henning; Jones, Peter G; Sarbu, Laura G; Babii, Cornelia; Mihai, Alina C

    2016-01-01

    Summary A structure–activity relationship study concerning the antibacterial properties of several halogen-substituted tricyclic sulfur-containing flavonoids has been performed. The compounds have been synthesized by cyclocondensation of the corresponding 3-dithiocarbamic flavanones under acidic conditions. The influence of different halogen substituents on the antibacterial properties has been tested against Staphylococcus aureus and Escherichia coli. Amongst the N,N-dialkylamino-substituted flavonoids, those having an N,N-diethylamino moiety exhibited good to excellent antimicrobial properties against both pathogens. Fluorine-substituted flavonoids were found to be less active than those bearing other halogen atoms. PMID:27340492

  12. Antibacterial structure-activity relationship studies of several tricyclic sulfur-containing flavonoids.

    PubMed

    Bahrin, Lucian G; Hopf, Henning; Jones, Peter G; Sarbu, Laura G; Babii, Cornelia; Mihai, Alina C; Stefan, Marius; Birsa, Lucian M

    2016-01-01

    A structure-activity relationship study concerning the antibacterial properties of several halogen-substituted tricyclic sulfur-containing flavonoids has been performed. The compounds have been synthesized by cyclocondensation of the corresponding 3-dithiocarbamic flavanones under acidic conditions. The influence of different halogen substituents on the antibacterial properties has been tested against Staphylococcus aureus and Escherichia coli. Amongst the N,N-dialkylamino-substituted flavonoids, those having an N,N-diethylamino moiety exhibited good to excellent antimicrobial properties against both pathogens. Fluorine-substituted flavonoids were found to be less active than those bearing other halogen atoms. PMID:27340492

  13. Perceived consequences of casual online sexual activities on heterosexual relationships: a u.s. Online survey.

    PubMed

    Grov, Christian; Gillespie, Brian Joseph; Royce, Tracy; Lever, Janet

    2011-04-01

    Some researchers have illustrated how the Internet can provide users with an ideal atmosphere to explore sexuality; however, most have stressed the Internet's negative impact on intimate relationships. Notably, much of this research has focused on the small minority of men who compulsively engage in online sexual activities (OSA), overlooking the majority of men and women who use OSA recreationally (either individually or with a partner). Addressing these limitations, data on heterosexual adults in committed relationships were taken from the 2004 "ELLE/msnbc.com Cyber-sex and Romance Survey" (n = 8,376). In quantitative analyses, men were less likely than women to express concerns and more likely to hold favorable attitudes about their partner's OSA. With regard to the impact of OSA on intimate relationships, men and women did not differ in becoming "more open to new things," and finding it easier "to talk about what [they] want sexually." Negative impacts were also identified, with women more likely to indicate they had less sex as a result of a partner's OSA, and men more likely to indicate they were less aroused by real sex as a result of their own OSA. Generally, qualitative results mirrored quantitative ones. Additionally, qualitative data suggested that moderate or light amounts of OSA yield relationship benefits for both female and male users, including increases in the quality and frequency of sex, and increased intimacy with real partners. In addition, men who used the Internet moderately, and men and women who reported being light users, stated that engaging in tandem OSA fostered better sexual communication with partners. Findings underscore the need to explore further the impact that online sexual activities can have on real-life committed relationships.

  14. Perceived consequences of casual online sexual activities on heterosexual relationships: a u.s. Online survey.

    PubMed

    Grov, Christian; Gillespie, Brian Joseph; Royce, Tracy; Lever, Janet

    2011-04-01

    Some researchers have illustrated how the Internet can provide users with an ideal atmosphere to explore sexuality; however, most have stressed the Internet's negative impact on intimate relationships. Notably, much of this research has focused on the small minority of men who compulsively engage in online sexual activities (OSA), overlooking the majority of men and women who use OSA recreationally (either individually or with a partner). Addressing these limitations, data on heterosexual adults in committed relationships were taken from the 2004 "ELLE/msnbc.com Cyber-sex and Romance Survey" (n = 8,376). In quantitative analyses, men were less likely than women to express concerns and more likely to hold favorable attitudes about their partner's OSA. With regard to the impact of OSA on intimate relationships, men and women did not differ in becoming "more open to new things," and finding it easier "to talk about what [they] want sexually." Negative impacts were also identified, with women more likely to indicate they had less sex as a result of a partner's OSA, and men more likely to indicate they were less aroused by real sex as a result of their own OSA. Generally, qualitative results mirrored quantitative ones. Additionally, qualitative data suggested that moderate or light amounts of OSA yield relationship benefits for both female and male users, including increases in the quality and frequency of sex, and increased intimacy with real partners. In addition, men who used the Internet moderately, and men and women who reported being light users, stated that engaging in tandem OSA fostered better sexual communication with partners. Findings underscore the need to explore further the impact that online sexual activities can have on real-life committed relationships. PMID:20174862

  15. Structure-activity relationship for Fe(III)-salen-like complexes as potent anticancer agents.

    PubMed

    Ghanbari, Zahra; Housaindokht, Mohammad R; Izadyar, Mohammad; Bozorgmehr, Mohammad R; Eshtiagh-Hosseini, Hossein; Bahrami, Ahmad R; Matin, Maryam M; Khoshkholgh, Maliheh Javan

    2014-01-01

    Quantitative structure activity relationship (QSAR) for the anticancer activity of Fe(III)-salen and salen-like complexes was studied. The methods of density function theory (B3LYP/LANL2DZ) were used to optimize the structures. A pool of descriptors was calculated: 1497 theoretical descriptors and quantum-chemical parameters, shielding NMR, and electronic descriptors. The study of structure and activity relationship was performed with multiple linear regression (MLR) and artificial neural network (ANN). In nonlinear method, the adaptive neuro-fuzzy inference system (ANFIS) was applied in order to choose the most effective descriptors. The ANN-ANFIS model with high statistical significance (R (2) train = 0.99, RMSE = 0.138, and Q (2) LOO = 0.82) has better capability to predict the anticancer activity of the new compounds series of this family. Based on this study, anticancer activity of this compound is mainly dependent on the geometrical parameters, position, and the nature of the substituent of salen ligand. PMID:24955417

  16. Structure-Activity Relationship for Fe(III)-Salen-Like Complexes as Potent Anticancer Agents

    PubMed Central

    Ghanbari, Zahra; Housaindokht, Mohammad R.; Izadyar, Mohammad; Bozorgmehr, Mohammad R.; Eshtiagh-Hosseini, Hossein; Bahrami, Ahmad R.; Matin, Maryam M.; Khoshkholgh, Maliheh Javan

    2014-01-01

    Quantitative structure activity relationship (QSAR) for the anticancer activity of Fe(III)-salen and salen-like complexes was studied. The methods of density function theory (B3LYP/LANL2DZ) were used to optimize the structures. A pool of descriptors was calculated: 1497 theoretical descriptors and quantum-chemical parameters, shielding NMR, and electronic descriptors. The study of structure and activity relationship was performed with multiple linear regression (MLR) and artificial neural network (ANN). In nonlinear method, the adaptive neuro-fuzzy inference system (ANFIS) was applied in order to choose the most effective descriptors. The ANN-ANFIS model with high statistical significance (R2train = 0.99, RMSE = 0.138, and Q2LOO = 0.82) has better capability to predict the anticancer activity of the new compounds series of this family. Based on this study, anticancer activity of this compound is mainly dependent on the geometrical parameters, position, and the nature of the substituent of salen ligand. PMID:24955417

  17. Abnormal Frontostriatal Activity During Unexpected Reward Receipt in Depression and Schizophrenia: Relationship to Anhedonia

    PubMed Central

    Segarra, Nuria; Metastasio, Antonio; Ziauddeen, Hisham; Spencer, Jennifer; Reinders, Niels R; Dudas, Robert B; Arrondo, Gonzalo; Robbins, Trevor W; Clark, Luke; Fletcher, Paul C; Murray, Graham K

    2016-01-01

    Alterations in reward processes may underlie motivational and anhedonic symptoms in depression and schizophrenia. However it remains unclear whether these alterations are disorder-specific or shared, and whether they clearly relate to symptom generation or not. We studied brain responses to unexpected rewards during a simulated slot-machine game in 24 patients with depression, 21 patients with schizophrenia, and 21 healthy controls using functional magnetic resonance imaging. We investigated relationships between brain activation, task-related motivation, and questionnaire rated anhedonia. There was reduced activation in the orbitofrontal cortex, ventral striatum, inferior temporal gyrus, and occipital cortex in both depression and schizophrenia in comparison with healthy participants during receipt of unexpected reward. In the medial prefrontal cortex both patient groups showed reduced activation, with activation significantly more abnormal in schizophrenia than depression. Anterior cingulate and medial frontal cortical activation predicted task-related motivation, which in turn predicted anhedonia severity in schizophrenia. Our findings provide evidence for overlapping hypofunction in ventral striatal and orbitofrontal regions in depression and schizophrenia during unexpected reward receipt, and for a relationship between unexpected reward processing in the medial prefrontal cortex and the generation of motivational states. PMID:26708106

  18. Abnormal Frontostriatal Activity During Unexpected Reward Receipt in Depression and Schizophrenia: Relationship to Anhedonia.

    PubMed

    Segarra, Nuria; Metastasio, Antonio; Ziauddeen, Hisham; Spencer, Jennifer; Reinders, Niels R; Dudas, Robert B; Arrondo, Gonzalo; Robbins, Trevor W; Clark, Luke; Fletcher, Paul C; Murray, Graham K

    2016-07-01

    Alterations in reward processes may underlie motivational and anhedonic symptoms in depression and schizophrenia. However it remains unclear whether these alterations are disorder-specific or shared, and whether they clearly relate to symptom generation or not. We studied brain responses to unexpected rewards during a simulated slot-machine game in 24 patients with depression, 21 patients with schizophrenia, and 21 healthy controls using functional magnetic resonance imaging. We investigated relationships between brain activation, task-related motivation, and questionnaire rated anhedonia. There was reduced activation in the orbitofrontal cortex, ventral striatum, inferior temporal gyrus, and occipital cortex in both depression and schizophrenia in comparison with healthy participants during receipt of unexpected reward. In the medial prefrontal cortex both patient groups showed reduced activation, with activation significantly more abnormal in schizophrenia than depression. Anterior cingulate and medial frontal cortical activation predicted task-related motivation, which in turn predicted anhedonia severity in schizophrenia. Our findings provide evidence for overlapping hypofunction in ventral striatal and orbitofrontal regions in depression and schizophrenia during unexpected reward receipt, and for a relationship between unexpected reward processing in the medial prefrontal cortex and the generation of motivational states.

  19. Relationship between Salivary Alkaline Phosphatase Enzyme Activity and The Concentrations of Salivary Calcium and Phosphate Ions

    PubMed Central

    Jazaeri, Mina; Malekzadeh, Hosein; Abdolsamadi, Hamidreza; Rezaei-Soufi, Loghman; Samami, Mohammad

    2015-01-01

    Although salivary alkaline phosphatase (ALP) can balance deand remineralization processes of enamel, there is no evidence regarding its effects on the concentrations of calcium and phosphate in saliva. The present study aims to determine the relationship between salivary ALP activity and the concentrations of calcium and phosphate in saliva. In this cross-sectional study, we evaluated salivary markers in 120 males, ages 19 to 44 years. All participants provided 5 mL of unstimulated whole saliva and the level of enzyme activity as well as calcium and phosphate concentrations were measured using a colorimetric method. Data were gathered and analyzed by statistical package for social sciences (SPSS) 13.00 using Pearson correlation test. A p value of <0.05 was considered statistically significant. The mean age of participants in the present study was 32.95 ± 8.09 years. The mean pH of saliva was 6.65 ± 0.62. Salivary parameters included average ALP activity (5.04 ± 1.866 U/dL), calcium (4.77 ± 0.877 mg/dL) and phosphate (10.38 ± 2.301 mg/dL). Pearson correlation test showed no significant relationship between ALP activity and calcium and phosphate concentrations in saliva (p>0.05). According to the results of the present study, there was no significant relation between salivary ALP activity and calcium and phosphate concentrations in saliva. However, further research is highly recommended. PMID:25870846

  20. Modeling structure-activity relationships of prodiginines with antimalarial activity using GA/MLR and OPS/PLS.

    PubMed

    de Campos, Luana Janaína; de Melo, Eduardo Borges

    2014-11-01

    In the present study, we performed a multivariate quantitative structure-activity relationship (QSAR) analysis of 52 prodiginines with antimalarial activity. Variable selection was based on the genetic algorithm (GA) and ordered predictor selection (OPS) approaches, and the models were built using the multiple linear regression (MLR) and partial least squares (PLS) regression methods. The leave-N-out crossvalidation and y-randomization tests showed that the models were robust and free from chance correlation. The mechanistic interpretation of the results was supported by earlier findings. In addition, the comparison of our models with those previously described indicated that the OPS/PLS-based model had a higher quality of external prediction. Thus, this study provides a comprehensive approach to the evaluation of the antimalarial activity of prodiginines, which may be used as a support tool in designing new therapeutic agents for malaria.

  1. Design, synthesis, and structure-activity relationship studies of benzothiazole derivatives as antifungal agents.

    PubMed

    Zhao, Shizhen; Zhao, Liyu; Zhang, Xiangqian; Liu, Chunchi; Hao, Chenzhou; Xie, Honglei; Sun, Bin; Zhao, Dongmei; Cheng, Maosheng

    2016-11-10

    A series of compounds with benzothiazole and amide-imidazole scaffolds were designed and synthesized to combat the increasing incidence of drug-resistant fungal infections. The antifungal activity of these compounds was evaluated in vitro, and their structure-activity relationships (SARs) were evaluated. The synthesized compounds showed excellent inhibitory activity against Candida albicans and Cryptococcus neoformans. The most potent compounds 14o, 14p, and 14r exhibited potent activity, with minimum inhibitory concentration (MIC) values in the range of 0.125-2 μg/mL. Preliminary mechanism studies revealed that the compound 14p might act by inhibiting the CYP51 of Candida albicans. The SARs and binding mode established in this study are useful for further lead optimization. PMID:27494168

  2. Exploration of the structure-activity relationship of 1,2,4-oxadiazole antibiotics.

    PubMed

    Ding, Derong; Boudreau, Marc A; Leemans, Erika; Spink, Edward; Yamaguchi, Takao; Testero, Sebastian A; O'Daniel, Peter I; Lastochkin, Elena; Chang, Mayland; Mobashery, Shahriar

    2015-11-01

    We have recently disclosed the discovery of the class of 1,2,4-oxadiazole antibiotics, which emerged from in silico docking and scoring efforts. This class of antibacterials exhibits Gram-positive activity, particularly against Staphylococcus aureus. We define the structure-activity relationship (SAR) of this class of antibiotics with the synthesis and evaluation of a series of 59 derivatives with variations in the C ring or C and D rings. A total of 17 compounds showed activity against S. aureus. Four derivatives were evaluated against a panel of 16 Gram-positive strains, inclusive of several methicillin-resistant S. aureus strains. These compounds are broadly active against Gram-positive bacteria.

  3. Structure-activity relationships of 1'-acetoxychavicol acetate homologues as new nuclear export signal inhibitors.

    PubMed

    Liu, Y; Murakami, N; Zhang, S; Xu, T

    2007-09-01

    Bioassay-guided separation use of the fission yeast expressing NES of Rev, a HIV-1 viral regulatory protein, resulted in isolation of 1'-acetoxychavicol acetate (ACA) from Alpinia galanga as a new Rev-transport inhibitor from the nucleus to cytoplasm. Rational design and synthesis of eleven ACA derivatives containing systematic chemical variations were made, biological evaluation of inhibitory activities of these analogues provides the basis to formulate the structure-activity relationship (SAR). The key elements observed were: (1) The para substitution of the acetoxyl and 1'-acetoxypropenyl groups at the benzene ring was essential, (2) linear ethyl and propyl chain carbonates were more active than branching chain carbonates, (3) the substitution of acetoxyl groups with alkyl carbamate groups lost or reduced the activities. This study revealed a new salient pharmacophore features as potential drug leads against the HIV virus.

  4. The relationship between brain cortical activity and brain oxygenation in the prefrontal cortex during hypergravity exposure.

    PubMed

    Smith, Craig; Goswami, Nandu; Robinson, Ryan; von der Wiesche, Melanie; Schneider, Stefan

    2013-04-01

    Artificial gravity has been proposed as a method to counteract the physiological deconditioning of long-duration spaceflight; however, the effects of hypergravity on the central nervous system has had little study. The study aims to investigate whether there is a relationship between prefrontal cortex brain activity and prefrontal cortex oxygenation during exposure to hypergravity. Twelve healthy participants were selected to undergo hypergravity exposure aboard a short-arm human centrifuge. Participants were exposed to hypergravity in the +Gz axis, starting from 0.6 +Gz for women, and 0.8 +Gz for men, and gradually increasing by 0.1 +Gz until the participant showed signs of syncope. Brain cortical activity was measured using electroencephalography (EEG) and localized to the prefrontal cortex using standard low-resolution brain electromagnetic tomography (LORETA). Prefrontal cortex oxygenation was measured using near-infrared spectroscopy (NIRS). A significant increase in prefrontal cortex activity (P < 0.05) was observed during hypergravity exposure compared with baseline. Prefrontal cortex oxygenation was significantly decreased during hypergravity exposure, with a decrease in oxyhemoglobin levels (P < 0.05) compared with baseline and an increase in deoxyhemoglobin levels (P < 0.05) with increasing +Gz level. No significant correlation was found between prefrontal cortex activity and oxy-/deoxyhemoglobin. It is concluded that the increase in prefrontal cortex activity observed during hypergravity was most likely not the result of increased +Gz values resulting in a decreased oxygenation produced through hypergravity exposure. No significant relationship between prefrontal cortex activity and oxygenation measured by NIRS concludes that brain activity during exposure to hypergravity may be difficult to measure using NIRS. Instead, the increase in prefrontal cortex activity might be attributable to psychological stress, which could pose a problem for the use of a

  5. Different roles and different results: how activity orientations correspond to relationship quality and student outcomes in school-based mentoring.

    PubMed

    Keller, Thomas E; Pryce, Julia M

    2012-02-01

    This prospective, mixed-methods study investigated how the nature of joint activities between volunteer mentors and student mentees corresponded to relationship quality and youth outcomes. Focusing on relationships in school-based mentoring programs in low-income urban elementary schools, data were obtained through pre-post assessments, naturalistic observations, and in-depth interviews with mentors and mentees. Adopting an exploratory approach, the study employed qualitative case study methods to inductively identify distinctive patterns reflecting the focus of mentoring activities. The activity orientations of relationships were categorized according to the primary functional role embodied by the mentor and the general theme of interactions: teaching assistant/tutoring, friend/engaging, sage/counseling, acquaintance/floundering. Next, these categories were corroborated by comparing the groups on quantitative assessments of relationship quality and change in child outcomes over time. Relationships characterized by sage mentoring, which balanced amicable engagement with adult guidance, were rated most favorably by mentees on multiple measures of relationship quality. Furthermore, students involved in sage mentoring relationships showed declines in depressive symptoms and aggressive behaviors. For disconnected pairs (acquaintances), students reported more negative relationship experiences. Findings suggest effective mentoring relationships represent a hybrid between the friendly mutuality of horizontal relationships and the differential influence of vertical relationships.

  6. Relationship between inter-stimulus-intervals and intervals of autonomous activities in a neuronal network.

    PubMed

    Ito, Hidekatsu; Minoshima, Wataru; Kudoh, Suguru N

    2015-08-01

    To investigate relationships between neuronal network activity and electrical stimulus, we analyzed autonomous activity before and after electrical stimulus. Recordings of autonomous activity were performed using dissociated culture of rat hippocampal neurons on a multi-electrodes array (MEA) dish. Single stimulus and pared stimuli were applied to a cultured neuronal network. Single stimulus was applied every 1 min, and paired stimuli was performed by two sequential stimuli every 1 min. As a result, the patterns of synchronized activities of a neuronal network were changed after stimulus. Especially, long range synchronous activities were induced by paired stimuli. When 1 s inter-stimulus-intervals (ISI) and 1.5 s ISI paired stimuli are applied to a neuronal network, relatively long range synchronous activities expressed in case of 1.5 s ISI. Temporal synchronous activity of neuronal network is changed according to inter-stimulus-intervals (ISI) of electrical stimulus. In other words, dissociated neuronal network can maintain given information in temporal pattern and a certain type of an information maintenance mechanism was considered to be implemented in a semi-artificial dissociated neuronal network. The result is useful toward manipulation technology of neuronal activity in a brain system.

  7. The relationship between nociceptive brain activity, spinal reflex withdrawal and behaviour in newborn infants.

    PubMed

    Hartley, Caroline; Goksan, Sezgi; Poorun, Ravi; Brotherhood, Kelly; Mellado, Gabriela Schmidt; Moultrie, Fiona; Rogers, Richard; Adams, Eleri; Slater, Rebeccah

    2015-07-31

    Measuring infant pain is complicated by their inability to describe the experience. While nociceptive brain activity, reflex withdrawal and facial grimacing have been characterised, the relationship between these activity patterns has not been examined. As cortical and spinally mediated activity is developmentally regulated, it cannot be assumed that they are predictive of one another in the immature nervous system. Here, using a new experimental paradigm, we characterise the nociceptive-specific brain activity, spinal reflex withdrawal and behavioural activity following graded intensity noxious stimulation and clinical heel lancing in 30 term infants. We show that nociceptive-specific brain activity and nociceptive reflex withdrawal are graded with stimulus intensity (p < 0.001), significantly correlated (r = 0.53, p = 0.001) and elicited at an intensity that does not evoke changes in clinical pain scores (p = 0.55). The strong correlation between reflex withdrawal and nociceptive brain activity suggests that movement of the limb away from a noxious stimulus is a sensitive indication of nociceptive brain activity in term infants. This could underpin the development of new clinical pain assessment measures.

  8. The relationship between nociceptive brain activity, spinal reflex withdrawal and behaviour in newborn infants.

    PubMed

    Hartley, Caroline; Goksan, Sezgi; Poorun, Ravi; Brotherhood, Kelly; Mellado, Gabriela Schmidt; Moultrie, Fiona; Rogers, Richard; Adams, Eleri; Slater, Rebeccah

    2015-01-01

    Measuring infant pain is complicated by their inability to describe the experience. While nociceptive brain activity, reflex withdrawal and facial grimacing have been characterised, the relationship between these activity patterns has not been examined. As cortical and spinally mediated activity is developmentally regulated, it cannot be assumed that they are predictive of one another in the immature nervous system. Here, using a new experimental paradigm, we characterise the nociceptive-specific brain activity, spinal reflex withdrawal and behavioural activity following graded intensity noxious stimulation and clinical heel lancing in 30 term infants. We show that nociceptive-specific brain activity and nociceptive reflex withdrawal are graded with stimulus intensity (p < 0.001), significantly correlated (r = 0.53, p = 0.001) and elicited at an intensity that does not evoke changes in clinical pain scores (p = 0.55). The strong correlation between reflex withdrawal and nociceptive brain activity suggests that movement of the limb away from a noxious stimulus is a sensitive indication of nociceptive brain activity in term infants. This could underpin the development of new clinical pain assessment measures. PMID:26228435

  9. Phytotoxic activity and metabolism of Botrytis cinerea and structure-activity relationships of isocaryolane derivatives.

    PubMed

    Ascari, Jociani; Boaventura, Maria Amélia Diamantino; Takahashi, Jacqueline Aparecida; Durán-Patrón, Rosa; Hernández-Galán, Rosario; Macías-Sánchez, Antonio J; Collado, Isidro G

    2013-06-28

    Research has been conducted on the biotransformation of (8S,9R)-isocaryolan-9-ol (4a) and (1S,2S,5R,8S)-8-methylene-1,4,4-trimethyltricyclo[6.2.1.0(2,5)]undecan-12-ol (5a) by the fungal phytopathogen Botrytis cinerea. The biotransformation of compound 4a yielded compounds 6-9, while the biotransformation of compound 5a yielded compounds 10-13. The activity of compounds 4a and 5a against B. cinerea has been evaluated. (8R,9R)-Isocaryolane-8,9-diol (6), a major metabolite of compound 4a, shows activity compared to its parent compound 4a, which is inactive. The effect of isocaryolanes 3, 4a, and 5a, together with their biotransformation products 6-8, 10, and 14-17, on the germination and radicle and shoot growth of Lactuca sativa (lettuce) has also been determined. Compounds 7-13 are described for the first time.

  10. Use of selected toxicology information resources in assessing relationships between chemical structure and biological activity

    SciTech Connect

    Wassom, J.S.

    1985-09-01

    This paper addresses the subject of the use of the selected toxicology information resources in assessing relationships between chemical structure and specific end points. To assist the researcher in how to access the primary literature of genetic toxicology, teratogenesis, and carcinogenesis, three specific specialized information centers are discussed - Environmental Mutagen Information Center, Environmental Teratology Information Center, and Environmental Carcinogenesis Information Center. Also included are descriptions of information resources that contain evaluated (peer-reviewed) biological research results. The US Environmental Protection Agency Genetic Toxicology Program, the International Agency for Research on Cancer Monographs, and the Toxicology Data Bank are the best sources currently available to obtain peer-reviewed results for compounds tested for genotoxicity, carcinogenicity, and other toxicological end points. The value of published information lies in its use. It has become evident that most information cannot be accepted at face value for interpretation and analysis when subjected to stringent quality evaluation criteria. This deficit can be corrected by rigid editorship and the cognizance of authors. Increased interest in alternative methods to in vivo animal testing will be exemplified by use of short-term bioassays and in structure-activity relationship studies. With respect to this latter area, it must be remembered that mechanically (computer generated) derived data cannot substitute, at least at this stage, for data obtained from actual animal testing. The future of structure-activity relationship studies will rest only in their use as a predictive tool.

  11. Revisiting a possible relationship between solar activity and Earth rotation variability

    NASA Astrophysics Data System (ADS)

    Abarca del Rio, R.; Gambis, D.

    2011-10-01

    A variety of studies have searched to establish a possible relationship between the solar activity and earth variations (Danjon, 1958-1962; Challinor, 1971; Currie, 1980, Gambis, 1990). We are revisiting previous studies (Bourget et al, 1992, Abarca del Rio et al, 2003, Marris et al, 2004) concerning the possible relationship between solar activity variability and length of day (LOD) variations at decadal time scales. Assuming that changes in AAM for the entire atmosphere are accompanied by equal, but opposite, changes in the angular momentum of the earth it is possible to infer changes in LOD from global AAM time series, through the relation : delta (LOD) (ms) = 1.68 10^29 delta(AAM) (kgm2/s) (Rosen and Salstein, 1983), where δ(LOD) is given in milliseconds. Given the close relationship at seasonal to interannual time's scales between LOD and the Atmospheric Angular Momentum (AAM) (see Abarca del Rio et al., 2003) it is possible to infer from century long atmospheric simulations what may have been the variability in the associated LOD variability throughout the last century. In the absence of a homogeneous century long LOD time series, we take advantage of the recent atmospheric reanalyzes extending since 1871 (Compo, Whitaker and Sardeshmukh, 2006). The atmospheric data (winds) of these reanalyzes allow computing AAM up to the top of the atmosphere; though here only troposphere data (up to 100 hPa) was taken into account.

  12. Uncoupling the Structure-Activity Relationships of β2 Adrenergic Receptor Ligands from Membrane Binding.

    PubMed

    Dickson, Callum J; Hornak, Viktor; Velez-Vega, Camilo; McKay, Daniel J J; Reilly, John; Sandham, David A; Shaw, Duncan; Fairhurst, Robin A; Charlton, Steven J; Sykes, David A; Pearlstein, Robert A; Duca, Jose S

    2016-06-23

    Ligand binding to membrane proteins may be significantly influenced by the interaction of ligands with the membrane. In particular, the microscopic ligand concentration within the membrane surface solvation layer may exceed that in bulk solvent, resulting in overestimation of the intrinsic protein-ligand binding contribution to the apparent/measured affinity. Using published binding data for a set of small molecules with the β2 adrenergic receptor, we demonstrate that deconvolution of membrane and protein binding contributions allows for improved structure-activity relationship analysis and structure-based drug design. Molecular dynamics simulations of ligand bound membrane protein complexes were used to validate binding poses, allowing analysis of key interactions and binding site solvation to develop structure-activity relationships of β2 ligand binding. The resulting relationships are consistent with intrinsic binding affinity (corrected for membrane interaction). The successful structure-based design of ligands targeting membrane proteins may require an assessment of membrane affinity to uncouple protein binding from membrane interactions. PMID:27239696

  13. Quantitative structure-activity relationship correlation between molecular structure and the Rayleigh enantiomeric enrichment factor.

    PubMed

    Jammer, S; Rizkov, D; Gelman, F; Lev, O

    2015-08-01

    It was recently demonstrated that under environmentally relevant conditions the Rayleigh equation is valid to describe the enantiomeric enrichment - conversion relationship, yielding a proportional constant called the enantiomeric enrichment factor, εER. In the present study we demonstrate a quantitative structure-activity relationship model (QSAR) that describes well the dependence of εER on molecular structure. The enantiomeric enrichment factor can be predicted by the linear Hansch model, which correlates biological activity with physicochemical properties. Enantioselective hydrolysis of sixteen derivatives of 2-(phenoxy)propionate (PPMs) have been analyzed during enzymatic degradation by lipases from Pseudomonas fluorescens (PFL), Pseudomonas cepacia (PCL), and Candida rugosa (CRL). In all cases the QSAR relationships were significant with R(2) values of 0.90-0.93, and showed high predictive abilities with internal and external validations providing QLOO(2) values of 0.85-0.87 and QExt(2) values of 0.8-0.91. Moreover, it is demonstrated that this model enables differentiation between enzymes with different binding site shapes. The enantioselectivity of PFL and PCL was dictated by electronic properties, whereas the enantioselectivity of CRL was determined by lipophilicity and steric factors. The predictive ability of the QSAR model demonstrated in the present study may serve as a helpful tool in environmental studies, assisting in source tracking of unstudied chiral compounds belonging to a well-studied homologous series.

  14. Use of selected toxicology information resources in assessing relationships between chemical structure and biological activity.

    PubMed Central

    Wassom, J S

    1985-01-01

    This paper addresses the subject of the use of selected toxicology information resources in assessing relationships between chemical structure and specific biological end points. To assist the researcher in how to access the primary literature of genetic toxicology, teratogenesis, and carcinogenesis, three specific specialized information centers are discussed--Environmental Mutagen Information Center, Environmental Teratology Information Center, and Environmental Carcinogenesis Information Center. Also included are descriptions of information resources that contain evaluated (peer-reviewed) biological research results. The U.S. Environmental Protection Agency Genetic Toxicology Program, the International Agency for Research on Cancer Monographs, and the Toxicology Data Bank are the best sources currently available to obtain peer-reviewed results for compounds tested for genotoxicity, carcinogenicity, and other toxicological end points. The value of published information lies in its use. It has become evident that most information cannot be accepted at face value for interpretation and analysis when subjected to stringent quality evaluation criteria. This deficit can be corrected by rigid editorship and the cognizance of authors. Increased interest in alternative methods to in vivo animal testing will be exemplified by use of short-term bioassays and in structure-activity relationship studies. With respect to this latter area, it must be remembered that mechanically (computer generated) derived data cannot substitute, at least at this stage, for data obtained from actual animal testing. The future of structure-activity relationship studies will rest only in their use as a predictive tool. PMID:4065070

  15. The relationship between prevalence of active trachoma, water availability and its use in a Tanzanian village.

    PubMed

    Polack, Sarah; Kuper, Hannah; Solomon, Anthony W; Massae, Patrick A; Abuelo, Carolina; Cameron, Ewen; Valdmanis, Vivian; Mahande, Michael; Foster, Allen; Mabey, David

    2006-11-01

    This study aimed to establish the relationship between the prevalence of active trachoma in children, water availability and household water use in a village in Tanzania. Nine hundred and fourteen children aged 1-9 years were examined for signs of trachoma. Data were collected on time taken to collect water, amount of water collected and other trachoma risk factors. In a sub-study, 99 randomly selected households were visited twice daily on two consecutive days to document patterns of water use. The prevalence of active trachoma in the children examined was 18.4% (95% CI 15.9-20.9). Active trachoma prevalence increased with increasing water collection time (OR 2.25; 95% CI 1.13-4.46) but was unrelated to the amount of water collected. In the sub-study, active trachoma prevalence was substantially lower in children from households where more water was used for personal hygiene (P for trend < or =0.01), independent of the total amount of water used. The allocation of water to hygiene was predicted by lower water collection time. The key element in the relationship between water availability and trachoma is the allocation of water within households. Collection time may influence both the quantity of water collected and its allocation within the household.

  16. Analysis of Relationship between the Body Mass Composition and Physical Activity with Body Posture in Children

    PubMed Central

    Baran, Joanna; Czenczek-Lewandowska, Ewelina; Leszczak, Justyna; Mazur, Artur

    2016-01-01

    Introduction. Excessive body mass in turn may contribute to the development of many health disorders including disorders of musculoskeletal system, which still develops intensively at that time. Aim. The aim of this study was to assess the relationship between children's body mass composition and body posture. The relationship between physical activity level of children and the parameters characterizing their posture was also evaluated. Material and Methods. 120 school age children between 11 and 13 years were enrolled in the study, including 61 girls and 59 boys. Each study participant had the posture evaluated with the photogrammetric method using the projection moiré phenomenon. Moreover, body mass composition and the level of physical activity were evaluated. Results. Children with the lowest content of muscle tissue showed the highest difference in the height of the inferior angles of the scapulas in the coronal plane. Children with excessive body fat had less slope of the thoracic-lumbar spine, greater difference in the depth of the inferior angles of the scapula, and greater angle of the shoulder line. The individuals with higher level of physical activity have a smaller angle of body inclination. Conclusion. The content of muscle tissue, adipose tissue, and physical activity level determines the variability of the parameter characterizing the body posture. PMID:27761467

  17. Antioxidant Activity and Glucose Diffusion Relationship of Traditional Medicinal Antihyperglycemic Plant Extracts

    PubMed Central

    Asgharpour, Fariba; Pouramir, Mahdi; Khalilpour, Asieh; Asgharpour Alamdar, Sobgol; Rezaei, Mehrasa

    2013-01-01

    Plants with hypoglycemic properties are important in the treatment of diabetes. One of the mechanisms in reducing blood glucose is preventing the digestive absorption of glucose. The aim of this study was to evaluate the antioxidant properties of some traditional medicinal plants collected from different regions of Iran and their effects on glucose diffusion decrease. The amounts of phenolic compounds, total flavonoids, total polysaccharides, antioxidant activity and lipid peroxidation were determined respectively by folin ciocalteu, querceting, sulfuric acid, FRAP and thiobarbituric acid - reactive substanses (TBARS) in eleven confirmed traditional antihyperglycemic medicinal plants prepared at 50g/l concentrations using the boiling method. Phenolic compounds of Eucalyptus globules (100.8± 0.01 mg /g), total flavonoids content of Juglans regia (16.9± 0.01 mg /g) and total polysaccharide amount of Allium satirum (0.28± 0.05) were the highest. Significant relationship was observed between the polyphenols and flavonoids (p <0.05). The grape seed extract showed the highest antioxidant activity (133± 0.02 mg/g) together with decreased glucose diffusion as well as increased polyphenols (p <0.05), but the increase in antioxidant activity was not related to glucose diffusion. Antihyperglycemic plant extracts containing higher polyphenols showed more efficiently in vitro glucose diffusion decrease, but no significant relationship was observed between antioxidant activity increase and glucose diffusion. PMID:24551809

  18. Quantitative Structure-Cytotoxic Activity Relationship 1-(Benzoyloxy)urea and Its Derivative.

    PubMed

    Hardjono, Suko; Siswodihardjo, Siswandono; Pramono, Purwanto; Darmanto, Win

    2016-01-01

    Drug development is originally carried out on a trial and error basis and it is cost-prohibitive. To minimize the trial and error risks, drug design is needed. One of the compound development processes to get a new drug is by designing a structure modification of the mother compound whose activities are recognized. A substitution of the mother compounds alters the physicochemical properties: lipophilic, electronic and steric properties. In Indonesia, one of medical treatments to cure cancer is through chemotherapy and hydroxyurea. Some derivatives, phenylthiourea, phenylurea, benzoylurea, thiourea and benzoylphenylurea, have been found to be anticancer drug candidates. To predict the activity of the drug compound before it is synthesized, the in-silico test is required. From the test, Rerank Score which is the energy of interaction between the receptor and the ligand molecule is then obtained. Hydroxyurea derivatives were synthesized by modifying Schotten-Baumann's method by the addition of benzoyl group and its homologs resulted in the increase of lipophilic, electronic and steric properties, and cytotoxic activity. Synthesized compounds were 1-(benzoyloxy)urea and its derivatives. Structure characterization was obtained by the spectrum of UV, IR, H NMR, C NMR and Mass Spectrometer. Anticancer activity was carried out using MTT method on HeLa cells. The Quantitative Structure-Cytotoxic Activity Relationships of 1-(benzoyloxy)urea compound and its derivatives was calculated using SPSS. The chemical structure was described, namely: ClogP, π, σ, RS, CMR and Es; while, the cytotoxic activity was indicated by log (1 / IC50). The results show that the best equation of Quantitative Structure-Cytotoxic Activity Relationships (QSAR) of 1- (benzoyloxy)urea compound and its derivatives is Log 1/IC50 = - 0.205 (+ 0.068) σ - 0.051 (+ 0.022) Es - 1.911 (+ 0.020). PMID:27222144

  19. Dose–response relationship between sports activity and musculoskeletal pain in adolescents

    PubMed Central

    Kamada, Masamitsu; Abe, Takafumi; Kitayuguchi, Jun; Imamura, Fumiaki; Lee, I-Min; Kadowaki, Masaru; Sawada, Susumu S.; Miyachi, Motohiko; Matsui, Yuzuru; Uchio, Yuji

    2016-01-01

    Abstract Physical activity has multiple health benefits but may also increase the risk of developing musculoskeletal pain (MSP). However, the relationship between physical activity and MSP has not been well characterized. This study examined the dose–response relationship between sports activity and MSP among adolescents. Two school-based serial surveys were conducted 1 year apart in adolescents aged 12 to 18 years in Unnan, Japan. Self-administered questionnaires were completed by 2403 students. Associations between time spent in organized sports activity and MSP were analyzed cross-sectionally (n = 2403) and longitudinally (n = 374, students free of pain and in seventh or 10th grade at baseline) with repeated-measures Poisson regression and restricted cubic splines, with adjustment for potential confounders. The prevalence of overall pain, defined as having pain recently at least several times a week in at least one part of the body, was 27.4%. In the cross-sectional analysis, sports activity was significantly associated with pain prevalence. Each additional 1 h/wk of sports activity was associated with a 3% higher probability of having pain (prevalence ratio = 1.03, 95% confidence interval = 1.02-1.04). Similar trends were found across causes (traumatic and nontraumatic pain) and anatomic locations (upper limbs, lower back, and lower limbs). In longitudinal analysis, the risk ratio for developing pain at 1-year follow-up per 1 h/wk increase in baseline sports activity was 1.03 (95% confidence interval = 1.02-1.05). Spline models indicated a linear association (P < 0.001) but not a nonlinear association (P ≥ 0.45). The more the adolescents played sports, the more likely they were to have and develop pain. PMID:26894915

  20. A Three-Dimensional Human Atrial Model with Fiber Orientation. Electrograms and Arrhythmic Activation Patterns Relationship

    PubMed Central

    Tobón, Catalina; Ruiz-Villa, Carlos A.; Heidenreich, Elvio; Romero, Lucia; Hornero, Fernando; Saiz, Javier

    2013-01-01

    The most common sustained cardiac arrhythmias in humans are atrial tachyarrhythmias, mainly atrial fibrillation. Areas of complex fractionated atrial electrograms and high dominant frequency have been proposed as critical regions for maintaining atrial fibrillation; however, there is a paucity of data on the relationship between the characteristics of electrograms and the propagation pattern underlying them. In this study, a realistic 3D computer model of the human atria has been developed to investigate this relationship. The model includes a realistic geometry with fiber orientation, anisotropic conductivity and electrophysiological heterogeneity. We simulated different tachyarrhythmic episodes applying both transient and continuous ectopic activity. Electrograms and their dominant frequency and organization index values were calculated over the entire atrial surface. Our simulations show electrograms with simple potentials, with little or no cycle length variations, narrow frequency peaks and high organization index values during stable and regular activity as the observed in atrial flutter, atrial tachycardia (except in areas of conduction block) and in areas closer to ectopic activity during focal atrial fibrillation. By contrast, cycle length variations and polymorphic electrograms with single, double and fragmented potentials were observed in areas of irregular and unstable activity during atrial fibrillation episodes. Our results also show: 1) electrograms with potentials without negative deflection related to spiral or curved wavefronts that pass over the recording point and move away, 2) potentials with a much greater proportion of positive deflection than negative in areas of wave collisions, 3) double potentials related with wave fragmentations or blocking lines and 4) fragmented electrograms associated with pivot points. Our model is the first human atrial model with realistic fiber orientation used to investigate the relationship between different

  1. The multifaceted nature of the relationship between performance and brain activity in motor sequence learning.

    PubMed

    Orban, Pierre; Peigneux, Philippe; Lungu, Ovidiu; Albouy, Geneviève; Breton, Estelle; Laberenne, Frédéric; Benali, Habib; Maquet, Pierre; Doyon, Julien

    2010-01-01

    The 'learning and performance' conundrum has for a long time puzzled the field of cognitive neuroscience. Deciphering the genuine functional neuroanatomy of motor sequence learning, among that of other skills, has thereby been hampered. The main caveat is that changes in neural activity that inherently accompany task practice may not only reflect the learning process per se, but also the basic motor implementation of improved performance. Previous research has attempted to control for a performance confound in brain activity by adopting methodologies that prevent changes in performance. However, blocking the expression of performance is likely to distort the very nature of the motor sequence learning process, and may thus represent a major confound in itself. In the present study, we postulated that both learning-dependent plasticity mechanisms and learning-independent implementation processes are nested within the relationship that exists between performance and brain activity. Functional magnetic resonance imaging (fMRI) was used to map brain responses in healthy volunteers while they either (a) learned a novel sequence, (b) produced a highly automatized sequence or (c) executed non-sequential movements matched for speed frequency. In order to dissociate between qualitatively distinct, but intertwined, relationships between performance and neural activity, our analyses focused on correlations between variations in performance and brain activity, and how this relationship differs or shares commonalities between conditions. Results revealed that activity in the putamen and contralateral lobule VI of the cerebellum most strongly correlated with performance during learning per se, suggesting their key role in this process. By contrast, activity in a parallel cerebellar network, as well as in motor and premotor cortical areas, was modulated by performance during learning and during one or both control condition(s), suggesting the primary contribution of these areas in

  2. Using avian radar to examine relationships among avian activity, bird strikes, and meteorological factors

    USGS Publications Warehouse

    Coates, Peter S.; Casazza, Michael L.; Halstead, Brian J.; Fleskes, Joseph P.; Laughlin, James A.

    2011-01-01

    Radar systems designed to detect avian activity at airfields are useful in understanding factors that influence the risk of bird and aircraft collisions (bird strikes). We used an avian radar system to measure avian activity at Beale Air Force Base, California, USA, during 2008 and 2009. We conducted a 2-part analysis to examine relationships among avian activity, bird strikes, and meteorological and time-dependent factors. We found that avian activity around the airfield was greater at times when bird strikes occurred than on average using a permutation resampling technique. Second, we developed generalized linear mixed models of an avian activity index (AAI). Variation in AAI was first explained by seasons that were based on average migration dates of birds at the study area. We then modeled AAI by those seasons to further explain variation by meteorological factors and daily light levels within a 24-hour period. In general, avian activity increased with decreased temperature, wind, visibility, precipitation, and increased humidity and cloud cover. These effects differed by season. For example, during the spring bird migration period, most avian activity occurred before sunrise at twilight hours on clear days with low winds, whereas during fall migration, substantial activity occurred after sunrise, and birds generally were more active at lower temperatures. We report parameter estimates (i.e., constants and coefficients) averaged across models and a relatively simple calculation for safety officers and wildlife managers to predict AAI and the relative risk of bird strike based on time, date, and meteorological values. We validated model predictability and assessed model fit. These analyses will be useful for general inference of avian activity and risk assessment efforts. Further investigation and ongoing data collection will refine these inference models and improve our understanding of factors that influence avian activity, which is necessary to inform

  3. The relationship between housing status and HIV risk among active drug users: a qualitative analysis.

    PubMed

    Dickson-Gomez, Julia; Hilario, Helena; Convey, Mark; Corbett, A Michelle; Weeks, Margaret; Martinez, Maria

    2009-01-01

    This paper examines the relationship between housing status and HIV risk using longitudinal, qualitative data collected in 2004-2005, from a purposeful sample of 65 active drug users in a variety of housed and homeless situations in Hartford, Connecticut. These data were supplemented with observations and in-depth interviews regarding drug use behavior collected in 2001-2005 to evaluate a peer-led HIV prevention intervention. Data reveal differences in social context within and among different housing statuses that affect HIV risk or protective behaviors including the ability to carry drug paraphernalia and HIV prevention materials, the amount of drugs in the immediate environment, access to subsidized and supportive housing, and relationships with those with whom drug users live. Policy implications of the findings, limitations to the data, and future research are discussed.

  4. The Relationship between Housing Status and HIV Risk among Active Drug Users: A Qualitative Analysis

    PubMed Central

    Dickson-Gomez, Julia; Hilario, Helena; Convey, Mark; Corbett, A. Michelle; Weeks, Margaret; Martinez, Maria

    2009-01-01

    This paper examines the relationship between housing status and HIV risk using longitudinal, qualitative data collected in 2004-2005, from a purposeful sample of 65 active drug users in a variety of housed and homeless situations in Hartford, Connecticut. These data were supplemented with observations and in-depth interviews regarding drug use behavior collected in 2001-2005 to evaluate a peer-led HIV prevention intervention. Data reveal differences in social context within and among different housing statuses that affect HIV risky or protective behaviors including the ability to carry drug paraphernalia and HIV prevention materials, the amount of drugs in the immediate environment, access to subsidized and supportive housing, and relationships with others with whom drug users live. Policy implications of the findings, limitations to the data and future research are discussed. PMID:19142817

  5. The possible relationship between the antiheparin activity of serum and thrombosis.

    PubMed

    POLLER, L

    1960-05-01

    Stored serum reduces the anticoagulant effect of heparin on the clotting times of normal plasma. This is also well marked with sera from patients with Christmas (factor IX) deficiency, with factor VII-deficient sera, and in sera derived from patients treated with phenindione with a gross defect in thromboplastin generation. The possible relationship between antiheparin activity of serum and heparin resistance in recent thrombosis is discussed. The antiheparin agent resembles factor VII and Christmas factor in being present in excess in serum, adsorbed and subsequently eluted from alumina. Unlike these, however, it does not appear to be appreciably reduced by phenindione treatment. It appears to have some properties in common with those described for the thrombotic agent of serum described by Wessler and his colleagues. It may play a part in the increased coagulability associated with thrombosis from the release of serum products into the circulation, although its relationship to the production of thrombosis in man remains to be established.

  6. Structure-activity relationship of sulfated hetero/galactofucan polysaccharides on dopaminergic neuron.

    PubMed

    Wang, Jing; Liu, Huaide; Jin, Weihua; Zhang, Hong; Zhang, Quanbin

    2016-01-01

    Parkinson's disease (PD) is associated with progressive loss of dopaminergic neurons and more-widespread neuronal changes that cause complex symptoms. The aim of this study was to investigate the structure-activity relationship of sulfated hetero-polysaccharides (DF1) and sulfated galactofucan polysaccharides (DF2) on dopaminergic neuron in vivo and in vitro. Treatment with samples significantly ameliorated the depletion of both DA and TH-, Bcl-2- and Bax-positive neurons in MPTP-induced PD mice, DF1 showed the highest activity. The in vitro results found that DF1 and DF2 could reverse the decreased mitochondrial activity and the increased LDL release induced by MPP(+) (P<0.01 or P<0.001) which provides further evidence that DF1 and DF2 also exerts a direct protection against the neuronal injury caused by MPP(+). Furthermore, the administration of samples effectively decreased lipid peroxidation and increased the level/activities of GSH, GSH-PX, MDA and CAT in MPTP mice. Thus, the neuron protective effect may be mediated, in part, through antioxidant activity and the prevention of cell apoptosis. The chemical composition of DF1, DF2 and DF differed markedly, the DF1 fraction had the most complex chemical composition and showed the highest neuron protective activity. These results suggest that diverse monosaccharides and uronic acid might contribute to neuron protective activity.

  7. Relationship between methanogenic cofactor content and maximum specific methanogenic activity of anaerobic granular sludges

    SciTech Connect

    Gorris, L.G.; de Kok, T.M.; Kroon, B.M.; van der Drift, C.; Vogels, G.D.

    1988-05-01

    In this study we investigated whether a relationship exists between the methanogenic activity and the content of specific methanogenic cofactors of granular sludges cultured on different combinations of volatile fatty acids in upflow anaerobic sludge blanket or fluidized-bed reactors. Significant correlations were measured in both cases between the contents of coenzyme F/sub 420/-2 or methanopterin and the maximum specific methanogenic activities on propionate, butyrate, and hydrogen, but not acetate. For both sludges the content of sarcinapterin appeared to be correlated with methanogenic activities on propionate, butyrate, and acetate, but not hydrogen. Similar correlations were measured with regard to the total content of coenzyme F/sub 420/-4 and F/sub 420/-5 sludges from fluidized-bed reactors. The results indicate that the contents of specific methanogenic cofactors measured in anaerobic granular sludges can be used to estimate the hydrogenotrophic or acetotrophic methanogenic potential of these sludges.

  8. Design, synthesis and structure-activity relationship of novel diphenylamine derivatives.

    PubMed

    Li, Huichao; Guan, Aiying; Huang, Guang; Liu, Chang-Ling; Li, Zhinian; Xie, Yong; Lan, Jie

    2016-02-01

    Diphenylamine derivatives have been reported with good fungicidal, insecticidal, acaricidal, rodenticidal and/or herbicidal activities. To find new lead compound of this kind, a series of novel diphenylamine derivatives were designed and synthesized by the approach of Intermediate Derivatization Methods. All compounds were identified by (1)H NMR and elemental analysis. Bioassays demonstrated that some compounds substituted at 2,4,6-positions or 2,4,5-positions of phenyl ring B exhibited excellent fungicidal activities. The optimal compounds P30 and P33 showed 80% and 85% control respectively against cucumber downy mildew at 12.5mgL(-1), both 100% control against rice blast at 0.3mgL(-1) and both 100% control against cucumber gray mold at 0.9mgL(-1). The relationship between structure and fungicidal activities was discussed as well.

  9. Isoxazole analogues bind the system xc- transporter: structure-activity relationship and pharmacophore model.

    PubMed

    Patel, Sarjubhai A; Rajale, Trideep; O'Brien, Erin; Burkhart, David J; Nelson, Jared K; Twamley, Brendan; Blumenfeld, Alex; Szabon-Watola, Monika I; Gerdes, John M; Bridges, Richard J; Natale, Nicholas R

    2010-01-01

    Analogues of amino methylisoxazole propionic acid (AMPA), were prepared from a common intermediate 12, including lipophilic analogues using lateral metalation and electrophilic quenching, and were evaluated at System xc-. Both the 5-naphthylethyl-(16) and 5-naphthylmethoxymethyl-(17) analogues adopt an E-conformation in the solid state, yet while the former has robust binding at System xc-, the latter is virtually devoid of activity. The most potent analogues were amino acid naphthyl-ACPA 7g, and hydrazone carboxylic acid, 11e Y=Y'=3,5-(CF(3))(2), which both inhibited glutamate uptake by the System xc- transporter with comparable potency to the endogenous substrate cystine, whereas in contrast the closed isoxazolo[3,4-d] pyridazinones 13 have significantly lower activity. A preliminary pharmacophore model has been constructed to provide insight into the analogue structure-activity relationships.

  10. Structure–Activity Relationship for the 4(3H)-Quinazolinone Antibacterials

    PubMed Central

    2016-01-01

    We recently reported on the discovery of a novel antibacterial (2) with a 4(3H)-quinazolinone core. This discovery was made by in silico screening of 1.2 million compounds for binding to a penicillin-binding protein and the subsequent demonstration of antibacterial activity against Staphylococcus aureus. The first structure–activity relationship for this antibacterial scaffold is explored in this report with evaluation of 77 variants of the structural class. Eleven promising compounds were further evaluated for in vitro toxicity, pharmacokinetics, and efficacy in a mouse peritonitis model of infection, which led to the discovery of compound 27. This new quinazolinone has potent activity against methicillin-resistant (MRSA) strains, low clearance, oral bioavailability and shows efficacy in a mouse neutropenic thigh infection model. PMID:27088777

  11. Structure-Activity Relationships of Novel Tryptamine-Based Inhibitors of Bacterial Transglycosylase.

    PubMed

    Sosič, Izidor; Anderluh, Marko; Sova, Matej; Gobec, Martina; Mlinarič Raščan, Irena; Derouaux, Adeline; Amoroso, Ana; Terrak, Mohammed; Breukink, Eefjan; Gobec, Stanislav

    2015-12-24

    Penicillin-binding proteins represent well-established, validated, and still very promising targets for the design and development of new antibacterial agents. The transglycosylase domain of penicillin-binding proteins is especially important, as it catalyzes polymerization of glycan chains, using the peptidoglycan precursor lipid II as a substrate. On the basis of the previous discovery of a noncovalent small-molecule inhibitor of transglycosylase activity, we systematically explored the structure-activity relationships of these tryptamine-based inhibitors. The main aim was to reduce the nonspecific cytotoxic properties of the initial hit compound and concurrently to retain the mode of its inhibition. A focused library of tryptamine-based compounds was synthesized, characterized, and evaluated biochemically. The results presented here show the successful reduction of the nonspecific cytotoxicity, and the retention of the inhibition of transglycosylase enzymatic activity, as well as the ability of these compounds to bind to lipid II and to have antibacterial actions. PMID:26588190

  12. Design, synthesis and structure-activity relationship of novel diphenylamine derivatives.

    PubMed

    Li, Huichao; Guan, Aiying; Huang, Guang; Liu, Chang-Ling; Li, Zhinian; Xie, Yong; Lan, Jie

    2016-02-01

    Diphenylamine derivatives have been reported with good fungicidal, insecticidal, acaricidal, rodenticidal and/or herbicidal activities. To find new lead compound of this kind, a series of novel diphenylamine derivatives were designed and synthesized by the approach of Intermediate Derivatization Methods. All compounds were identified by (1)H NMR and elemental analysis. Bioassays demonstrated that some compounds substituted at 2,4,6-positions or 2,4,5-positions of phenyl ring B exhibited excellent fungicidal activities. The optimal compounds P30 and P33 showed 80% and 85% control respectively against cucumber downy mildew at 12.5mgL(-1), both 100% control against rice blast at 0.3mgL(-1) and both 100% control against cucumber gray mold at 0.9mgL(-1). The relationship between structure and fungicidal activities was discussed as well. PMID:26432603

  13. [Relationship among soil enzyme activities, vegetation state, and soil chemical properties of coal cinder yard].

    PubMed

    Wang, Youbao; Zhang, Li; Liu, Dengyi

    2003-01-01

    From field investigation and laboratory analysis, the relationships among soil enzyme activities, vegetation state and soil chemical properties of coal cinder yard in thermal power station were studied. The results showed that vegetation on coal cinder yard was distributed in scattered patch mainly with single species of plant, and herbs were the dominant species. At the same time, the activity of three soil enzymes had a stronger relativity to environment conditions, such as vegetation state and soil chemical properties. The sensitivity of three soil enzymes to environmental stress was in order of urease > sucrase > catalase. The relativity of three soil enzymes to environmental factor was in order of sucrase > urease > catalase. Because of urease being the most susceptible enzyme to environmental conditions, and it was marked or utmost marked interrelated with vegetation state and soil chemical properties, urease activity could be used as an indicator for the reclamation of wasteland.

  14. Inhibition of Cancer-Associated Mutant Isocitrate Dehydrogenases: Synthesis, Structure–Activity Relationship, and Selective Antitumor Activity

    PubMed Central

    2015-01-01

    Mutations of isocitrate dehydrogenase 1 (IDH1) are frequently found in certain cancers such as glioma. Different from the wild-type (WT) IDH1, the mutant enzymes catalyze the reduction of α-ketoglutaric acid to d-2-hydroxyglutaric acid (D2HG), leading to cancer initiation. Several 1-hydroxypyridin-2-one compounds were identified to be inhibitors of IDH1(R132H). A total of 61 derivatives were synthesized, and their structure–activity relationships were investigated. Potent IDH1(R132H) inhibitors were identified with Ki values as low as 140 nM, while they possess weak or no activity against WT IDH1. Activities of selected compounds against IDH1(R132C) were found to be correlated with their inhibitory activities against IDH1(R132H), as well as cellular production of D2HG, with R2 of 0.83 and 0.73, respectively. Several inhibitors were found to be permeable through the blood–brain barrier in a cell-based model assay and exhibit potent and selective activity (EC50 = 0.26–1.8 μM) against glioma cells with the IDH1 R132H mutation. PMID:25271760

  15. Antileishmanial Activity and Structure-Activity Relationship of Triazolic Compounds Derived from the Neolignans Grandisin, Veraguensin, and Machilin G.

    PubMed

    Costa, Eduarda C; Cassamale, Tatiana B; Carvalho, Diego B; Bosquiroli, Lauriane S S; Ojeda, Mariáh; Ximenes, Thalita V; Matos, Maria F C; Kadri, Mônica C T; Baroni, Adriano C M; Arruda, Carla C P

    2016-01-01

    Sixteen 1,4-diaryl-1,2,3-triazole compounds 4-19 derived from the tetrahydrofuran neolignans veraguensin 1, grandisin 2, and machilin G 3 were tested against Leishmania (Leishmania) amazonensis intracellular amastigotes. Triazole compounds 4-19 were synthetized via Click Chemistry strategy by 1,3-dipolar cycloaddition between terminal acetylenes and aryl azides containing methoxy and methylenedioxy groups as substituents. Our results suggest that most derivatives were active against intracellular amastigotes, with IC50 values ranging from 4.4 to 32.7 µM. The index of molecular hydrophobicity (ClogP) ranged from 2.8 to 3.4, reflecting a lipophilicity/hydrosolubility rate suitable for transport across membranes, which may have resulted in the potent antileishmanial activity observed. Regarding structure-activity relationship (SAR), compounds 14 and 19, containing a trimethoxy group, were the most active (IC50 values of 5.6 and 4.4 µM, respectively), with low cytotoxicity on mammalian cells (SI = 14.1 and 10.6). These compounds induced nitric oxide production by the host macrophage cells, which could be suggested as the mechanism involved in the intracellular killing of parasites. These results would be useful for the planning of new derivatives with higher antileishmanial activities. PMID:27331807

  16. Antileishmanial Activity and Structure-Activity Relationship of Triazolic Compounds Derived from the Neolignans Grandisin, Veraguensin, and Machilin G.

    PubMed

    Costa, Eduarda C; Cassamale, Tatiana B; Carvalho, Diego B; Bosquiroli, Lauriane S S; Ojeda, Mariáh; Ximenes, Thalita V; Matos, Maria F C; Kadri, Mônica C T; Baroni, Adriano C M; Arruda, Carla C P

    2016-06-20

    Sixteen 1,4-diaryl-1,2,3-triazole compounds 4-19 derived from the tetrahydrofuran neolignans veraguensin 1, grandisin 2, and machilin G 3 were tested against Leishmania (Leishmania) amazonensis intracellular amastigotes. Triazole compounds 4-19 were synthetized via Click Chemistry strategy by 1,3-dipolar cycloaddition between terminal acetylenes and aryl azides containing methoxy and methylenedioxy groups as substituents. Our results suggest that most derivatives were active against intracellular amastigotes, with IC50 values ranging from 4.4 to 32.7 µM. The index of molecular hydrophobicity (ClogP) ranged from 2.8 to 3.4, reflecting a lipophilicity/hydrosolubility rate suitable for transport across membranes, which may have resulted in the potent antileishmanial activity observed. Regarding structure-activity relationship (SAR), compounds 14 and 19, containing a trimethoxy group, were the most active (IC50 values of 5.6 and 4.4 µM, respectively), with low cytotoxicity on mammalian cells (SI = 14.1 and 10.6). These compounds induced nitric oxide production by the host macrophage cells, which could be suggested as the mechanism involved in the intracellular killing of parasites. These results would be useful for the planning of new derivatives with higher antileishmanial activities.

  17. Resorcylic Acid Lactones with Cytotoxic and NF-κB Inhibitory Activities and Their Structure-activity Relationships

    PubMed Central

    Ayers, Sloan; Graf, Tyler N.; Adcock, Audrey F.; Kroll, David J.; Matthew, Susan; Carcache de Blanco, Esperanza J.; Shen, Qi; Swanson, Steven M.; Wani, Mansukh C.; Pearce, Cedric J.; Oberlies, Nicholas H.

    2011-01-01

    As part of our ongoing investigation of filamentous fungi for anticancer leads, an active fungal extract was identified from the Mycosynthetix library (MSX 63935; related to Phoma sp.). The initial extract exhibited cytotoxic activity against the H460 (human non-small cell lung carcinoma) and SF268 (human astrocytoma) cell lines and was selected for further study. Bioactivity-directed fractionation yielded resorcylic acid lactones (RALs) 1 (a new natural product) and 3 (a new compound) and the known RALs zeaenol (2), 5E-7-oxozeaenol (4), 5Z-7-oxozeaenol (5) and LL-Z1640-1 (6). Reduction of 5E-7-oxozeaenol (4) with sodium borohydride produced 3, which allowed assignment of the absolute configuration of 3. Other known resorcylic acid lactones (7–12) were purchased and assayed in parallel for cytotoxicity with isolated 1–6 to investigate structure-activity relationships in the series. Moreover, the isolated compounds (1–6) were examined for activity in a suite of biological assays, including antibacterial, mitochondria transmembrane potential, and NF-κB. In the latter assay, compounds 1 and 5 displayed sub-micromolar activities that were on par with the positive control, and as such, these compounds may serve as a lead scaffold for future medicinal chemistry studies. PMID:21513293

  18. [Mind control with optogenetic mice: exploring the causal relationships between brain activity and the mind].

    PubMed

    Matsui, Ko

    2013-06-01

    Every scientific endeavor starts with observation. However, observation alone can only lead to an analysis of correlations. Experimental perturbations are required to understand the causal relationships between the components that constitute the system under study. Our current understanding of the function of the brain, which is a complex multicellular organ, suggests that communication between cells underlies the formation of the mind. This has been mainly deduced from studies of correlations between cell activity and animal behavior. Recently developed tools have enabled the specific control of cell activity. For example, light-sensitive proteins, such as channelrhodopsin-2, that are found in microorganisms can now be genetically expressed in mammalian brain cells, allowing experimenters to optically control cell activity at will. In this review, I introduce the recently established method, Knockin-mediated ENhanced Gene Expression by the improved tetracycline-controlled gene induction (KENGE-tet) method, which has generated a repertoire of transgenic mice that express levels of the highly light-sensitive channelrhodopsin-2 mutant that are sufficient to stimulate multiple cell types. In addition to neurons, manipulations of the activities of nonexcitable glial cells in vivo have also proved possible. A recent report that used the KENGE-tet has shown that the selective optogenetic stimulation of glia can lead to the release of glutamate as a gliotransmitter, synaptic plasticity, and the acceleration of cerebellar-modulated motor learning. These findings have suggested that glia also participate in brain information processing, a function once thought to be solely mediated by neuronal activity. These reports have demonstrated the use of optogenetic tools in exploring the causal relationships between brain activity and the mind.

  19. In vitro-in vivo activity relationship of substituted benzimidazole cell division inhibitors with activity against Mycobacteria tuberculosis

    PubMed Central

    Knudson, Susan E.; Kumar, Kunal; Awasthi, Divya; Ojima, Iwao; Slayden, Richard A.

    2014-01-01

    Structure based drug design was used to develop a compound library of novel 2,5,6- and 2,5,7-trisubstituted benzimidazoles. Three structural analogs, SB-P1G10, SB-P8B2 and SB-P3G2 were selected from this library based on previous studies for advanced study. In vitro studies revealed that SB-P8B2 and SB-P3G2 had sigmoidal kill-curves while in contrast SB-P1G10 showed a narrow zonal susceptibility. The in vitro studies also demonstrated that exposure to SB-P8B2 or SB-P3G2 was bactericidal, while SB-P1G10 treatment never resulted in complete killing. The dose curves for the three compounds against clinical isolates were comparable to their respective dose curves in the laboratory strain of M. tuberculosis. SB-P8B2 and SB-P3G2 exhibited antibacterial activity against non-replicating bacilli under low oxygen conditions. SB-P3G2 and SB-P1G10 were assessed in acute short-term animal models of tuberculosis, which showed that SB-P3G2 treatment demonstrated activity against M. tuberculosis. Together, these studies reveal an in vitro- in vivo relationship of the 2,5,6-trisubstituted benzimidazoles that serves as a criterion for advancing this class of cell division inhibitors into more resource intensive in vivo efficacy models such as the long-term murine model of tuberculosis and Pre-IND PK/PD studies. Specifically, these studies are the first demonstration of efficacy and an in vitro–in vivo activity relationship for 2,5,6-trisubstituted benzimidazoles. The in vivo activity presented in this manuscript substantiates this class of cell division inhibitors as having potency and efficacy against M. tuberculosis. PMID:24746463

  20. Early and current physical activity: relationship with intima-media thickness and metabolic variables in adulthood

    PubMed Central

    Lima, Manoel C. S.; Barbosa, Maurício F.; Diniz, Tiego A.; Codogno, Jamile S.; Freitas, Ismael F.; Fernandes, Rômulo A.

    2014-01-01

    Background: It is unclear whether early physical activity has a greater influence on intima-media thickness and metabolic variables than current physical activity. Objective: To analyze the relationship between current and early physical activity, metabolic variables, and intima-media thickness measures in adults. Method: The sample was composed of 55 healthy subjects of both sexes (33 men and 22 women). Total body fat and trunk fat were estimated by dual-energy X-ray absorptiometry. Carotid and femoral intima-media thickness were measured using a Doppler ultrasound device. A 12-hour fasting blood sample collection was taken (fasting glucose and lipid profile). Early physical activity was assessed through face-to-face interview, and the current physical activity was assessed by pedometer (Digi-Walker Yamax, SW200), which was used for a period of seven days. Results: Current physical activity was negatively related to total cholesterol (rho=-0.31), while early physical activity was negatively related to triglycerides (rho=-0.42), total cholesterol (rho=-0.28), very low density lipoprotein (rho=-0.44), and carotid intima-media thickness (rho=-0.50). In the multivariate model, subjects engaged in sports activities during early life had lower values of very low density lipoprotein (b=-8.74 [b=-16.1; -1.47]) and carotid intima-media thickness (b=-0.17 [95%CI: -0.28; -0.05]). Conclusion: Early 95%CI physical activity has a significant influence on carotid intima-media thickness, regardless of the current physical activity. PMID:25372009

  1. 30-year Dynamics of Terrestrial Vegetation Activity and the Relationship with Climatologies

    NASA Astrophysics Data System (ADS)

    de Jong, R.; Schaepman, M. E.; Furrer, R.; de Bruin, S.; Verburg, P. H.

    2013-12-01

    The climate governs the seasonal activity of terrestrial vegetation while humankind influences it. The relative role of these drivers in changing vegetation activity is crucial information for accurate modeling of vegetation and climate dynamics and for adaptation and mitigation strategies. Disentangling the two, however, is an ongoing scientific challenge, because of limited data availability, mainly regarding non-climatic drivers, and complex biosphere-atmosphere feedback mechanisms. Here, we contribute to this quest by modeling the spatial relationship between climatologies and changes in global vegetation activity (de Jong et al., 2013a). Vegetation activity is commonly quantified using remotely sensed vegetation indices (VI). Extensive reports on temporal trends over the past decades in time series of such indices can be found in literature, including the detection of shifts (de Jong et al., 2013b), which may be related to climate (e.g. Zhao & Running, 2010). However, little remains known about the exact processes underlying vegetation change at large spatial scales. Depending on eco-region, three climatologies potentially constrain plant growth (Churkina and Running, 1998). In the humid mid-latitudes, for example, temperature is the largest influencing factor; in (semi) arid regions it is the availability of water and in the tropics incident solar radiation. Based on this logic, we developed a mixed-effect model to relate changes in these climatologies to changes in vegetation activity and to quantify the spatial process underlying the other drivers, including human land use. Little over 50% of the spatial variation in vegetation change could be attributed to changes in climatologies; conspicuously, many of the global ';greening' trends and the ';browning' hotspots in Argentina and Australia. Browning hotspots in the non-climatic component were especially located in subequatorial Africa (e.g. parts of Zimbabwe and Tanzania), where human drivers may be

  2. Assessing the relationships between hospital resources and activities: a systematic review.

    PubMed

    Hadji, Brahim; Meyer, Rodolphe; Melikeche, Samir; Escalon, Sylvie; Degoulet, Patrice

    2014-10-01

    Face the challenge of minimizing their resource utilization without reducing the quality of healthcare. Achieving this aim requires precise analysis and optimization of various inputs and outputs. This paper presents a systematic review of the relationships between hospital resources (considered productivity inputs) and financial and activity outcomes (considered productivity outputs). Several electronic bibliographic databases and the Internet were searched for articles published between January 1990 and December 2013 that examined the relationships between hospital resources and financial and activity outcomes. We assessed the quality of the study design, the nature of the sample, input and output indicators, and the statistical methods used for each selected study. Thirty-eight original papers were selected. Data Envelopment Analysis (DEA) and Stochastic Frontier Analysis (SFA) were the most statistical methods used. Based on our analysis, we retained 18 input and 19 output indicators that could constitute the basis for hospital productivity benchmarking. Selecting a small set of shared economic and activity indicators is relevant for assessing the productivity of a hospital, measuring trends and performing national or international benchmarking. Such indicators should be combined with quality measures for a comprehensive evaluation approach.

  3. Bilateral Limb Phase Relationship and Its Potential to Alter Muscle Activity Phasing During Locomotion

    PubMed Central

    López-Ortiz, Citlali; Walter, Charles B.; Brown, David A.

    2009-01-01

    It is well established that the sensorimotor state of one limb can influence another limb and therefore bilateral somatosensory inputs make an important contribution to interlimb coordination patterns. However, the relative contribution of interlimb pathways for modifying muscle activation patterns in terms of phasing is less clear. Here we studied adaptation of muscle activity phasing to the relative angular positions of limbs using a split-crank ergometer, where the cranks could be decoupled to allow different spatial angular position relationships. Twenty neurologically healthy individuals performed the specified pedaling tasks at different relative angular positions while surface electromyographic (EMG) signals were recorded bilaterally from eight lower extremity muscles. During each experiment, the relative angular crank positions were altered by increasing or decreasing their difference by randomly ordered increments of 30° over the complete cycle [0° (in phase pedaling); 30, 60, 90, 120, 150, and 180° (standard pedaling); and 210, 240, 270, 300, and 330° out of phase pedaling]. We found that manipulating the relative angular positions of limbs in a pedaling task caused muscle activity phasing changes that were either delayed or advanced, dependent on the relative spatial position of the two cranks and this relationship is well-explained by a sine curve. Further, we observed that the magnitude of phasing changes in biarticular muscles (like rectus femoris) was significantly greater than those of uniarticular muscles (like vastus medialis). These results are important because they provide new evidence that muscle phasing can be systematically influenced by interlimb pathways. PMID:19741107

  4. The Relationship Between Outdoor Activity and Health in Older Adults Using GPS

    PubMed Central

    Kerr, Jacqueline; Marshall, Simon; Godbole, Suneeta; Neukam, Suvi; Crist, Katie; Wasilenko, Kari; Golshan, Shahrokh; Buchner, David

    2012-01-01

    Physical activity (PA) provides health benefits in older adults. Research suggests that exposure to nature and time spent outdoors may also have effects on health. Older adults are the least active segment of our population, and are likely to spend less time outdoors than other age groups. The relationship between time spent in PA, outdoor time, and various health outcomes was assessed for 117 older adults living in retirement communities. Participants wore an accelerometer and GPS device for 7 days. They also completed assessments of physical, cognitive, and emotional functioning. Analyses of variance were employed with a main and interaction effect tested for ±30 min PA and outdoor time. Significant differences were found for those who spent >30 min in PA or outdoors for depressive symptoms, fear of falling, and self-reported functioning. Time to complete a 400 m walk was significantly different by PA time only. QoL and cognitive functioning scores were not significantly different. The interactions were also not significant. This study is one of the first to demonstrate the feasibility of using accelerometer and GPS data concurrently to assess PA location in older adults. Future analyses will shed light on potential causal relationships and could inform guidelines for outdoor activity. PMID:23330225

  5. Identification of New Nonsteroidal RORα Ligands; Related Structure–Activity Relationships and Docking Studies

    PubMed Central

    2013-01-01

    A high throughput screen was developed to identify novel, nonsteroidal RORα agonists. Among the validated hit compounds, the 4-(4-(benzyloxy)phenyl)-5-carbonyl-2-oxo-1,2,3,4-tetrahydropyrimidine scaffold was the most prominent. Among the numerous analogues tested, compounds 8 and 9 showed the highest activity. Key structure–activity relationships (SAR) were established, where benzyl and urea moieties were both identified as very important elements to maintain the activity. Most notably, the SAR were consistent with the binding mode of the compound 8 (S-isomer) in the RORα docking model that was developed in this program. As predicted by the model, the urea moiety is engaged in the formation of key hydrogen bonds with the backbone of Tyr380 and Asp382. The benzyl group is located in a wide hydrophobic pocket. The structural relationships reported in this letter will help in further optimization of this compound series and will provide novel synthetic probes helpful for elucidation of complex RORα physiopathology. PMID:24900700

  6. Identification of New Nonsteroidal RORα Ligands; Related Structure-Activity Relationships and Docking Studies.

    PubMed

    Dubernet, Mathieu; Duguet, Nicolas; Colliandre, Lionel; Berini, Christophe; Helleboid, Stéphane; Bourotte, Marilyne; Daillet, Matthieu; Maingot, Lucie; Daix, Sébastien; Delhomel, Jean-François; Morin-Allory, Luc; Routier, Sylvain; Walczak, Robert

    2013-06-13

    A high throughput screen was developed to identify novel, nonsteroidal RORα agonists. Among the validated hit compounds, the 4-(4-(benzyloxy)phenyl)-5-carbonyl-2-oxo-1,2,3,4-tetrahydropyrimidine scaffold was the most prominent. Among the numerous analogues tested, compounds 8 and 9 showed the highest activity. Key structure-activity relationships (SAR) were established, where benzyl and urea moieties were both identified as very important elements to maintain the activity. Most notably, the SAR were consistent with the binding mode of the compound 8 (S-isomer) in the RORα docking model that was developed in this program. As predicted by the model, the urea moiety is engaged in the formation of key hydrogen bonds with the backbone of Tyr380 and Asp382. The benzyl group is located in a wide hydrophobic pocket. The structural relationships reported in this letter will help in further optimization of this compound series and will provide novel synthetic probes helpful for elucidation of complex RORα physiopathology.

  7. The Relationship between Active Trachoma and Ocular Chlamydia trachomatis Infection before and after Mass Antibiotic Treatment

    PubMed Central

    Ramadhani, Athumani M.; Derrick, Tamsyn; Macleod, David; Holland, Martin J.; Burton, Matthew J.

    2016-01-01

    Background Trachoma is a blinding disease, initiated in early childhood by repeated conjunctival infection with the obligate intracellular bacterium Chlamydia trachomatis. The population prevalence of the clinical signs of active trachoma; ‘‘follicular conjunctivitis” (TF) and/or ‘‘intense papillary inflammation” (TI), guide programmatic decisions regarding the initiation and cessation of mass drug administration (MDA). However, the persistence of TF following resolution of infection at both the individual and population level raises concerns over the suitability of this clinical sign as a marker for C. trachomatis infection. Methodology/Principle Findings We systematically reviewed the literature for population-based studies and those including randomly selected individuals, which reported the prevalence of the clinical signs of active trachoma and ocular C. trachomatis infection by nucleic acid amplification test. We performed a meta-analysis to assess the relationship between active trachoma and C. trachomatis infection before and after MDA. TF and C. trachomatis infection were strongly correlated prior to MDA (r = 0.92, 95%CI 0.83 to 0.96, p<0.0001); the relationship was similar when the analysis was limited to children. A moderate correlation was found between TI and prevalence of infection. Following MDA, the relationship between TF and infection prevalence was weaker (r = 0.60, 95%CI 0.25 to 0.81, p = 0.003) and there was no correlation between TI and C. trachomatis infection. Conclusions/Significance Prior to MDA, TF is a good indicator of the community prevalence of C. trachomatis infection. Following MDA, the prevalence of TF tends to overestimate the underlying infection prevalence. In order to prevent unnecessary additional rounds of MDA and to accurately ascertain when elimination goals have been reached, a cost-effective test for C. trachomatis that can be administered in low-resource settings remains desirable. PMID:27783678

  8. Antioxidant activity of 45 Chinese herbs and the relationship with their TCM characteristics

    PubMed Central

    Banbury, Linda K.; Leach, David N.

    2008-01-01

    Here, 45 Chinese herbs that regulate blood circulation were analyzed for antioxidant activity using the oxygen radical absorbance capacity (ORAC) assay. A recent publication by Ou et al. identified a close relationship between in vitro antioxidant activity and classification of Chinese herbs as yin or yang. The 45 Chinese herbs in this study could be assigned the traditional characteristics of natures (cold, cool, hot and warm), flavors (pungent, sweet, sour, bitter and salty) and functions (arresting bleeding, promoting blood flow to relieve stasis, nourishing blood and clearing away heat from blood). These characteristics are generalized according to the theory of yin and yang. We identified a broad range, 40–1990 µmol Trolox Equivalent/g herbs, of antioxidant activity in water extracts. There was no significant correlation between ORAC values and natures or functions of the herbs. There was a significant relationship between flavors and ORAC values. Bitter and/or sour herbs had the highest ORAC values, pungent and/or sweet herbs the lowest. Other flavors had intermediate values. Flavors also correspond with the yin/yang relationship and our results are supportive of the earlier publication. We reported for the first time antioxidant properties of many Chinese herbs. High antioxidant herbs were identified as Spatholobus suberectus vine (1990 µmol TE/g), Sanguisorba officinalis root (1940 µmol TE/g), Agrimonia pilosa herb (1440 µmol TE/g), Artemisia anomala herb (1400 µmol TE/g), Salvia miltiorrhiza root (1320 µmol TE/g) and Nelembo nucifera leaf (1300 µmol TE/g). Antioxidant capacity appears to correlate with the flavors of herbs identified within the formal TCM classification system and may be a useful guide in describing their utility and biochemical mechanism of action. PMID:18955214

  9. The relationship between redox enzyme activity and electrochemical potential-cellular and mechanistic implications from protein film electrochemistry.

    PubMed

    Gates, Andrew J; Kemp, Gemma L; To, Chun Yip; Mann, James; Marritt, Sophie J; Mayes, Andrew G; Richardson, David J; Butt, Julea N

    2011-05-01

    In protein film electrochemistry a redox protein of interest is studied as an electroactive film adsorbed on an electrode surface. For redox enzymes this configuration allows quantification of the relationship between catalytic activity and electrochemical potential. Considered as a function of enzyme environment, i.e., pH, substrate concentration etc., the activity-potential relationship provides a fingerprint of activity unique to a given enzyme. Here we consider the nature of the activity-potential relationship in terms of both its cellular impact and its origin in the structure and catalytic mechanism of the enzyme. We propose that the activity-potential relationship of a redox enzyme is tuned to facilitate cellular function and highlight opportunities to test this hypothesis through computational, structural, biochemical and cellular studies.

  10. The relationship between redox enzyme activity and electrochemical potential-cellular and mechanistic implications from protein film electrochemistry.

    PubMed

    Gates, Andrew J; Kemp, Gemma L; To, Chun Yip; Mann, James; Marritt, Sophie J; Mayes, Andrew G; Richardson, David J; Butt, Julea N

    2011-05-01

    In protein film electrochemistry a redox protein of interest is studied as an electroactive film adsorbed on an electrode surface. For redox enzymes this configuration allows quantification of the relationship between catalytic activity and electrochemical potential. Considered as a function of enzyme environment, i.e., pH, substrate concentration etc., the activity-potential relationship provides a fingerprint of activity unique to a given enzyme. Here we consider the nature of the activity-potential relationship in terms of both its cellular impact and its origin in the structure and catalytic mechanism of the enzyme. We propose that the activity-potential relationship of a redox enzyme is tuned to facilitate cellular function and highlight opportunities to test this hypothesis through computational, structural, biochemical and cellular studies. PMID:21423952

  11. Victim-Offender Relationship Status Moderates the Relationships of Peritraumatic Emotional Responses, Active Resistance, and Posttraumatic Stress Symptomatology in Female Rape Survivors

    PubMed Central

    Feinstein, Brian A.; Humphreys, Kathryn L.; Bovin, Michelle J.; Marx, Brian P.; Resick, Patricia A.

    2010-01-01

    This study examined whether the level of victim-offender relationship (VOR) moderated the relationship between peritraumatic fear and active resistance as well as the relationship between peritraumatic fear and posttraumatic stress symptom severity in a community sample of female rape survivors. One hundred thirty-five participants were interviewed about their emotional and behavioral responses during the rape and assessed for posttraumatic stress symptomatology within one month of the assault. Results indicated that peritraumatic fear was positively associated with active resistance, but only among survivors of acquaintance rape. Additionally, peritraumatic fear was positively associated with posttraumatic stress symptom severity, but only among survivors of intimate partner rape. These results suggest that VOR may be an important contextual factor that influences emotional and behavioral responses during rape as well as posttraumatic stress symptomatology in its aftermath. PMID:21731797

  12. Synthesis and antioxidant evaluation of isochroman-derivatives of hydroxytyrosol: structure-activity relationship.

    PubMed

    Mateos, Raquel; Madrona, Andrés; Pereira-Caro, Gema; Domínguez, Vanessa; Cert, Rosa M A; Parrado, Juan; Sarriá, Beatriz; Bravo, Laura; Espartero, José Luis

    2015-04-15

    Isochroman-derivatives of the natural olive oil phenol hydroxytyrosol (HT) have been synthesised via Oxa-Pictet-Spengler reaction in high yields. Lipophilicity and antioxidant activity were determined to establish the structure-activity relationship of isochromans compared to HT, BHT and α-tocopherol. Antioxidant capacity was tested in two different media: bulk oils, using the Rancimat test, and brain homogenates, by measuring malondialdehyde (MDA) levels as a lipoperoxidation biomarker. In addition, other antioxidant assays (FRAP, ABTS and ORAC) were carried out. Rancimat and MDA results show that antioxidant activity was related with lipophilicity, directly in brain homogenates and inversely in the oils, in agreement with the polar paradox. Free o-diphenolic groups positively determined the activity in the oils, whereas reducing and radical-scavenging activities were related to the number of free hydroxyl moieties. BHT and α-tocopherol showed lower antioxidant activity than isochromans and HT. We conclude that HT-isochromans present significant potential as bioactive compounds.

  13. Synthesis and antioxidant evaluation of isochroman-derivatives of hydroxytyrosol: structure-activity relationship.

    PubMed

    Mateos, Raquel; Madrona, Andrés; Pereira-Caro, Gema; Domínguez, Vanessa; Cert, Rosa M A; Parrado, Juan; Sarriá, Beatriz; Bravo, Laura; Espartero, José Luis

    2015-04-15

    Isochroman-derivatives of the natural olive oil phenol hydroxytyrosol (HT) have been synthesised via Oxa-Pictet-Spengler reaction in high yields. Lipophilicity and antioxidant activity were determined to establish the structure-activity relationship of isochromans compared to HT, BHT and α-tocopherol. Antioxidant capacity was tested in two different media: bulk oils, using the Rancimat test, and brain homogenates, by measuring malondialdehyde (MDA) levels as a lipoperoxidation biomarker. In addition, other antioxidant assays (FRAP, ABTS and ORAC) were carried out. Rancimat and MDA results show that antioxidant activity was related with lipophilicity, directly in brain homogenates and inversely in the oils, in agreement with the polar paradox. Free o-diphenolic groups positively determined the activity in the oils, whereas reducing and radical-scavenging activities were related to the number of free hydroxyl moieties. BHT and α-tocopherol showed lower antioxidant activity than isochromans and HT. We conclude that HT-isochromans present significant potential as bioactive compounds. PMID:25466028

  14. Red Wine Tannin Structure-Activity Relationships during Fermentation and Maceration.

    PubMed

    Yacco, Ralph S; Watrelot, Aude A; Kennedy, James A

    2016-02-01

    The correlation between tannin structure and corresponding activity was investigated by measuring the thermodynamics of interaction between tannins isolated from commercial red wine fermentations and a polystyrene divinylbenzene HPLC column. Must and/or wine samples were collected throughout fermentation/maceration from five Napa Valley wineries. By varying winery, fruit source, maceration time, and cap management practice, it was considered that a reasonably large variation in commercially relevant tannin structure would result. Tannins were isolated from samples collected using low pressure chromatography and were then characterized by gel permeation chromatography and acid-catalyzed cleavage in the presence of excess phloroglucinol (phloroglucinolysis). Corresponding tannin activity was determined using HPLC by measuring the thermodynamics of interaction between isolated tannin and a polystyrene divinylbenzene HPLC column. This measurement approach was designed to determine the ability of tannins to hydrophobically interact with a hydrophobic surface. The results of this study indicate that tannin activity is primarily driven by molecular size. Compositionally, tannin activity was positively associated with seed tannins and negatively associated with skin and pigmented tannins. Although measured indirectly, the extent of tannin oxidation as determined by phloroglucinolysis conversion yield suggests that tannin oxidation at this stage of production reduces tannin activity. Based upon maceration time, this study indicates that observed increases in perceived astringency quality, if related to tannin chemistry, are driven by tannin molecular mass as opposed to pigmented tannin formation or oxidation. Overall, the results of this study give new insight into tannin structure-activity relationships which dominate during extraction.

  15. A structure-activity relationship for induction of meningeal inflammation by muramyl peptides.

    PubMed Central

    Burroughs, M; Rozdzinski, E; Geelen, S; Tuomanen, E

    1993-01-01

    Components of bacterial peptidoglycans have potent biological activities, including adjuvant effects, cytotoxicity, and induction of sleep. Mixtures of peptidoglycan components also induce inflammation in the lung, subarachnoid space, and joint, but the structural requirements for activity are unknown. Using a rabbit model for meningitis, we determined the biological activities of 14 individual muramyl peptides constituting > 90% of the peptidoglycan of the gram-negative pediatric pathogen Haemophilus influenzae. Upon intracisternal inoculation, most of the muropeptides induced leukocytosis in cerebrospinal fluid (CSF), influx of protein into CSF, or brain edema, alone or in combination. The disaccharide-tetrapeptide, the major component of all gram-negative peptidoglycans, induced CSF leukocytosis and protein influx at doses as low as 0.4 microgram (0.42 nM). Modification of the N-acetyl muramic acid or substitution of the alanine at position four in the peptide side chain decreased leukocytosis but enhanced brain edema. As the size of the muropeptide increased, the inflammatory activity decreased. Muropeptide carrying the diaminopimelyl-diaminopimelic acid cross-link specifically induced cytotoxic brain edema. These findings significantly expand the spectrum of biological activities of natural muramyl peptides and provide the basis for a structure-activity relationship for the inflammatory properties of bacterial muropeptides. PMID:8325996

  16. Longitudinal relationships of executive cognitive function and parent influence to child substance use and physical activity.

    PubMed

    Pentz, Mary Ann; Riggs, Nathaniel R

    2013-06-01

    Considered a set of neuro-cognitive skills, executive cognitive function (ECF) may serve to protect children from initiating substance use, although its role relative to other protective influences that parents and physical activity might provide is not known. As part of a large multiple health risk behavior trial for prevention of substance use and obesity, Pathways, the present study evaluated the relative impact of ECF on lifetime substance use (tobacco and alcohol) and physical activity in a panel of fourth grade children over a 6-month period (N = 1005; 51 % female; 25 % on free/reduced lunch; 60 % Hispanic/Latino or multi-racial; 28 elementary schools). A self-report survey included measures of ECF, lifetime tobacco and alcohol use, out-of-school physical activity, exercising with parents, and parent rules about food/sedentary behavior, monitoring, and arguing, was adapted for use with children. A path analysis demonstrated that ECF was the major predictor of lower substance use and higher physical activity and exercising with parents. Physical activity and exercising with parents showed reciprocal positive relationships. Findings suggest that promoting ECF skills should be a major focus of child health promotion and substance use prevention programs, although the potential protective effects of physical activity and exercise with parents on substance use in this young age group are not yet clear. PMID:23345012

  17. Red Wine Tannin Structure-Activity Relationships during Fermentation and Maceration.

    PubMed

    Yacco, Ralph S; Watrelot, Aude A; Kennedy, James A

    2016-02-01

    The correlation between tannin structure and corresponding activity was investigated by measuring the thermodynamics of interaction between tannins isolated from commercial red wine fermentations and a polystyrene divinylbenzene HPLC column. Must and/or wine samples were collected throughout fermentation/maceration from five Napa Valley wineries. By varying winery, fruit source, maceration time, and cap management practice, it was considered that a reasonably large variation in commercially relevant tannin structure would result. Tannins were isolated from samples collected using low pressure chromatography and were then characterized by gel permeation chromatography and acid-catalyzed cleavage in the presence of excess phloroglucinol (phloroglucinolysis). Corresponding tannin activity was determined using HPLC by measuring the thermodynamics of interaction between isolated tannin and a polystyrene divinylbenzene HPLC column. This measurement approach was designed to determine the ability of tannins to hydrophobically interact with a hydrophobic surface. The results of this study indicate that tannin activity is primarily driven by molecular size. Compositionally, tannin activity was positively associated with seed tannins and negatively associated with skin and pigmented tannins. Although measured indirectly, the extent of tannin oxidation as determined by phloroglucinolysis conversion yield suggests that tannin oxidation at this stage of production reduces tannin activity. Based upon maceration time, this study indicates that observed increases in perceived astringency quality, if related to tannin chemistry, are driven by tannin molecular mass as opposed to pigmented tannin formation or oxidation. Overall, the results of this study give new insight into tannin structure-activity relationships which dominate during extraction. PMID:26766301

  18. Theoretical study of nitrodibenzofurans: A possible relationship between molecular properties and mutagenic activity.

    PubMed

    Stanković, B; Ostojić, B D; Popović, A; Gruden, M А; Đorđević, D S

    2016-11-15

    In this study we present a theoretical investigation of the molecular properties of nitrodibenzofurans (NDFs) and dinitrodibenzofurans (DNDFs) and their relation to mutagenic activity. Equilibrium geometries, relative energies, vertical ionization potentials (IP), vertical electron activities (EA), electronic dipole polarizabilities, and dipole moments of all NDFs and three DNDFs calculated by Density Functional Theory (DFT) methods are reported. The Ziegler/Rauk Energy Decomposition Analysis (EDA) is employed for a direct estimate of the variations of the orbital interaction and steric repulsion terms corresponding to the nitro group and the oxygen of the central ring of NDFs. The results indicate differences among NDF isomers for the cleavage of the related bonds and steric effects in the active site. The results show a good linear relationship between polarizability (<α>), anisotropy of polarizability (Δα), the summation of IR intensities (ΣIIR) and the summation of Raman activities (ΣARaman) over all 3N-6 vibrational modes and experimental mutagenic activities of NDF isomers in Salmonella typhimurium TA98 strain. The polarizability changes with respect to the νsNO+CN vibrational mode are in correlation with the mutagenic activities of NDFs and suggest that intermolecular interactions are favoured along this coordinate. PMID:27475460

  19. Curating and Preparing High-Throughput Screening Data for Quantitative Structure-Activity Relationship Modeling.

    PubMed

    Kim, Marlene T; Wang, Wenyi; Sedykh, Alexander; Zhu, Hao

    2016-01-01

    Publicly available bioassay data often contains errors. Curating massive bioassay data, especially high-throughput screening (HTS) data, for Quantitative Structure-Activity Relationship (QSAR) modeling requires the assistance of automated data curation tools. Using automated data curation tools are beneficial to users, especially ones without prior computer skills, because many platforms have been developed and optimized based on standardized requirements. As a result, the users do not need to extensively configure the curation tool prior to the application procedure. In this chapter, a freely available automatic tool to curate and prepare HTS data for QSAR modeling purposes will be described.

  20. Molecular Vibration-Activity Relationship in the Agonism of Adenosine Receptors

    PubMed Central

    Chee, Hyun Keun

    2013-01-01

    The molecular vibration-activity relationship in the receptor-ligand interaction of adenosine receptors was investigated by structure similarity, molecular vibration, and hierarchical clustering in a dataset of 46 ligands of adenosine receptors. The resulting dendrogram was compared with those of another kind of fingerprint or descriptor. The dendrogram result produced by corralled intensity of molecular vibrational frequency outperformed four other analyses in the current study of adenosine receptor agonism and antagonism. The tree that was produced by clustering analysis of molecular vibration patterns showed its potential for the functional classification of adenosine receptor ligands. PMID:24465242

  1. The current status and future applicability of quantitative structure-activity relationships (QSARs) in predicting toxicity.

    PubMed

    Cronin, Mark T D

    2002-12-01

    The current status of quantitative structure-activity relationships (QSARs) in predicting toxicity is assessed. Widespread use of these methods to predict toxicity from chemical structure is possible, both by industry to develop new compounds, and also by regulatory agencies. The current use of QSARs is restricted by the lack of suitable toxicity data available for modelling, the suitability of simplistic modelling approaches for the prediction of certain endpoints, and the poor definition and utilisation of the applicability domain of models. Suggestions to resolve these issues are made.

  2. Curating and Preparing High-Throughput Screening Data for Quantitative Structure-Activity Relationship Modeling.

    PubMed

    Kim, Marlene T; Wang, Wenyi; Sedykh, Alexander; Zhu, Hao

    2016-01-01

    Publicly available bioassay data often contains errors. Curating massive bioassay data, especially high-throughput screening (HTS) data, for Quantitative Structure-Activity Relationship (QSAR) modeling requires the assistance of automated data curation tools. Using automated data curation tools are beneficial to users, especially ones without prior computer skills, because many platforms have been developed and optimized based on standardized requirements. As a result, the users do not need to extensively configure the curation tool prior to the application procedure. In this chapter, a freely available automatic tool to curate and prepare HTS data for QSAR modeling purposes will be described. PMID:27518634

  3. Structure-activity relationships: quantitative techniques for predicting the behavior of chemicals in the ecosystem

    SciTech Connect

    Nirmalakhandan, N.; Speece, R.E.

    1988-06-01

    Quantitative Structure-Activity Relationships (QSARs) are used increasingly to screen and predict the toxicity and the fate of chemicals released into the environment. The impetus to use QSAR methods in this area has been the large number of synthetic chemicals introduced into the ecosystem via intensive agriculture and industrialization. Because of the costly and time-consuming nature of environmental fate testing, QSARs have been effectively used to screen large classes of chemical compounds and flag those that appear to warrant more thorough testing.

  4. Potent complement C3a receptor agonists derived from oxazole amino acids: Structure-activity relationships.

    PubMed

    Singh, Ranee; Reed, Anthony N; Chu, Peifei; Scully, Conor C G; Yau, Mei-Kwan; Suen, Jacky Y; Durek, Thomas; Reid, Robert C; Fairlie, David P

    2015-12-01

    Potent ligands for the human complement C3a receptor (C3aR) were developed from the almost inactive tripeptide Leu-Ala-Arg corresponding to the three C-terminal residues of the endogenous peptide agonist C3a. The analogous Leu-Ser-Arg was modified by condensing the serine side chain with the leucine carbonyl with elimination of water to form leucine-oxazole-arginine. Subsequent elaboration with a variety of N-terminal amide capping groups produced agonists as potent as human C3a itself in stimulating Ca(2+) release from human macrophages. Structure-activity relationships are discussed.

  5. Design, synthesis, and structure-activity relationship of novel aniline derivatives of chlorothalonil.

    PubMed

    Guan, Ai-Ying; Liu, Chang-Ling; Huang, Guang; Li, Hui-Chao; Hao, Shu-Lin; Xu, Ying; Li, Zhi-Nian

    2013-12-11

    Chlorothalonil with both low cost and low toxicity is a popularly used fungicide in the agrochemical field. The presence of nucleophilic groups on this compound allows further chemical modifications to obtain novel chlorothalonil derivatives. Fluazinam, another commercially available agent with a broad fungicidal spectrum, has a scaffold of diaryl amine structure. To mimic this backbone structure, a variety of (un)substituted phenyl amines was used as nucleophilic agents to react with chlorothalonil to obtain compounds with a diphenyl amine structure. Via an elegant design, two leads, 2,4,5-trichloro-6-(2,4-dichlorophenylamino)isophthalonitrile (7) and 2,4,5-trichloro-6-(2,4,6-trichlorophenylamino)isophthalonitrile (11), with potential fungicidal activity were discovered after a preliminary bioassay screen. These two leads were further modified to obtain final products by replacing the chlorine groups in the phenyl ring in phenyl amine with other functional groups. These functional groups with various electronic properties and spatial characteristics were considered to explore the relationship between structure and fungicidal activity. The results indicate that the electron-withdrawing group NO2 on the 4 position on the right phenyl ring plays a unique role on enhancing the fungicidal activity. The compounds were identified by proton nuclear magnetic resonance and elemental analysis. Bioassays demonstrated that some of the title compounds exhibited excellent fungicidal activities against cucumber downy mildew at 25 mg/L. Compound 20 has been shown as the optimal structure with 85% control against cucumber downy mildew at 6.25 mg/L concentration. The relationship between structure and fungicidal activity is reported. The present work demonstrates that chlorothalonil derivatives can be used as possible lead compounds for developing novel fungicides.

  6. Structure-activity relationship of Garcinia xanthones analogues: Potent Hsp90 inhibitors with cytotoxicity and antiangiogenesis activity.

    PubMed

    Xu, Xiaoli; Wu, Yue; Hu, Mingyang; Li, Xiang; Gu, Congying; You, Qidong; Zhang, Xiaojin

    2016-10-01

    Hsp90 has long been recognized as an attractive and crucial molecular target for cancer therapy. Gambogic acid (GA), the main active compound of Gamboge hanburyi, has been reported as a natural inhibitor of Hsp90. Here, we present the structure-activity relationship of Garcinia xanthones analogues as Hsp90 inhibitors and identify that compound 25, with a simplified skeleton, had an improved inhibitory effect toward Hsp90. Compound 25 inhibited the ATPase activity of Hsp90 with an IC50 value of 3.68±0.18μM. It also exhibited potent antiproliferative activities in some solid tumor cells. In SK-BR-3 cells with high Hsp90 expression, compound 25 induced the degradation of Hsp90 client proteins including Akt and Erk1/2 without causing the heat shock response. Additionally, compound 25 inhibited angiogenesis in HUVEC cells through Hsp90 regulation of the HIF-1α pathway. These results demonstrate that compound 25 as an Hsp90 inhibitor with a new structure could be further studied for the development of tumor therapy. PMID:27527413

  7. The relationship between active ghrelin levels and human obesity involves alterations in resting energy expenditure.

    PubMed

    Marzullo, Paolo; Verti, Barbara; Savia, Giulio; Walker, Gillian E; Guzzaloni, Gabriele; Tagliaferri, Mariantonella; Di Blasio, Annamaria; Liuzzi, Antonio

    2004-02-01

    Ghrelin is a gastric hormone that exerts a stimulatory effect on appetite and fat accumulation. Ser(3) octanoylation is regarded as a prerequisite for ghrelin biological activity, although des-octanoylated forms may retain biological functions in vitro. Circulating ghrelin levels are usually low in obesity and in states of positive energy balance. Hence, the aim of our study was to analyze plasma active and serum total ghrelin levels in 20 obese (ages, 22-42 yr; body mass index, 41.3 +/- 1.1 kg/m(2)) and 20 lean subjects (ages, 22-43 yr; body mass index, 22.4 +/- 0.6 kg/m(2)) as well as their relationship to measures of glucose homeostasis, body fat, and resting energy expenditure (REE). The measured/predicted REE percentage ratio was calculated to subdivide groups into those with positive (> or = 100% ) and negative (<100%) ratio values. In obese patients, plasma active (180 +/- 18 vs. 411 +/- 57 pg/ml; P < 0.001) and serum total ghrelin levels (3650 +/- 408 vs. 5263 +/- 643 pg/ml; P < 0.05) were significantly lower when compared with lean subjects. Hence, ghrelin activity, defined as the proportion of active over total ghrelin levels, was similarly reduced in the obese state (6.1 +/- 0.9% vs. 8.4 +/- 1%; P < 0.05). There was a significant correlation between active and total ghrelin (r = 0.62; P < 0.001), and between total ghrelin and insulin (r = -0.53; P < 0.001) or insulin resistance using the homeostatis model of assessment-insulin resistance (r = -0.49; P < 0.001) approach. Significantly higher active ghrelin levels (214 +/- 22 vs. 159 +/- 30 pg/ml; P < 0.05) and ghrelin activity (8 +/- 1.7% vs. 4.9 +/- 0.9%; P < 0.05) were observed in patients with positive compared with negative measured/predicted REE ratio values. Our study shows that obesity is associated with an impairment of the entire ghrelin system. The observation that ghrelin is further decreased in cases of abnormal energy profit adds new evidence to the relationship between ghrelin activity and

  8. Identification, Nomenclature, and Evolutionary Relationships of Mitogen-Activated Protein Kinase (MAPK) Genes in Soybean

    PubMed Central

    Neupane, Achal; Nepal, Madhav P.; Piya, Sarbottam; Subramanian, Senthil; Rohila, Jai S.; Reese, R. Neil; Benson, Benjamin V.

    2013-01-01

    Mitogen-activated protein kinase (MAPK) genes in eukaryotes regulate various developmental and physiological processes including those associated with biotic and abiotic stresses. Although MAPKs in some plant species including Arabidopsis have been identified, they are yet to be identified in soybean. Major objectives of this study were to identify GmMAPKs, assess their evolutionary relationships, and analyze their functional divergence. We identified a total of 38 MAPKs, eleven MAPKKs, and 150 MAPKKKs in soybean. Within the GmMAPK family, we also identified a new clade of six genes: four genes with TEY and two genes with TQY motifs requiring further investigation into possible legume-specific functions. The results indicated the expansion of the GmMAPK families attributable to the ancestral polyploidy events followed by chromosomal rearrangements. The GmMAPK and GmMAPKKK families were substantially larger than those in other plant species. The duplicated GmMAPK members presented complex evolutionary relationships and functional divergence when compared to their counterparts in Arabidopsis. We also highlighted existing nomenclatural issues, stressing the need for nomenclatural consistency. GmMAPK identification is vital to soybean crop improvement, and novel insights into the evolutionary relationships will enhance our understanding about plant genome evolution. PMID:24137047

  9. Structure-Activity Relationships of the Human Immunodeficiency Virus Type 1 Maturation Inhibitor PF-46396

    PubMed Central

    Murgatroyd, Christopher; Pirrie, Lisa; Tran, Fanny; Smith, Terry K.

    2016-01-01

    ABSTRACT HIV-1 maturation inhibitors are a novel class of antiretroviral compounds that consist of two structurally distinct chemical classes: betulinic acid derivatives and the pyridone-based compound PF-46396. It is currently believed that both classes act by similar modes of action to generate aberrant noninfectious particles via inhibition of CA-SP1 cleavage during Gag proteolytic processing. In this study, we utilized a series of novel analogues with decreasing similarity to PF-46396 to determine the chemical groups within PF-46396 that contribute to antiviral activity, Gag binding, and the relationship between these essential properties. A spectrum of antiviral activity (active, intermediate, and inactive) was observed across the analogue series with respect to CA-SP1 cleavage and HIV-1 (NL4-3) replication kinetics in Jurkat T cells. We demonstrate that selected inactive analogues are incorporated into wild-type (WT) immature particles and that one inactive analogue is capable of interfering with PF-46396 inhibition of CA-SP1 cleavage. Mutations that confer PF-46396 resistance can impose a defective phenotype on HIV-1 that can be rescued in a compound-dependent manner. Some inactive analogues retained the capacity to rescue PF-46396-dependent mutants (SP1-A3V, SP1-A3T, and CA-P157S), implying that they can also interact with mutant Gag. The structure-activity relationships observed in this study demonstrate that (i) the tert-butyl group is essential for antiviral activity but is not an absolute requirement for Gag binding, (ii) the trifluoromethyl group is optimal but not essential for antiviral activity, and (iii) the 2-aminoindan group is important for antiviral activity and Gag binding but is not essential, as its replacement is tolerated. IMPORTANCE Combinations of antiretroviral drugs successfully treat HIV/AIDS patients; however, drug resistance problems make the development of new mechanistic drug classes an ongoing priority. HIV-1 maturation

  10. Antibacterial activities and structure-activity relationships of a panel of 48 compounds from Kenyan plants against multidrug resistant phenotypes.

    PubMed

    Omosa, Leonidah K; Midiwo, Jacob O; Mbaveng, Armelle T; Tankeo, Simplice B; Seukep, Jackson A; Voukeng, Igor K; Dzotam, Joachim K; Isemeki, John; Derese, Solomon; Omolle, Ruth A; Efferth, Thomas; Kuete, Victor

    2016-01-01

    In the current study forty eight compounds belonging to anthraquinones, naphthoquinones, benzoquinones, flavonoids (chalcones and polymethoxylated flavones) and diterpenoids (clerodanes and kauranes) were explored for their antimicrobial potential against a panel of sensitive and multi-drug resistant Gram-negative and Gram-positive bacteria. The minimal inhibitory concentration (MIC) determinations on the tested bacteria were conducted using modified rapid INT colorimetric assay. To evaluate the role of efflux pumps in the susceptibility of Gram-negative bacteria to the most active compounds, they were tested in the presence of phenylalanine arginine β-naphthylamide (PAβN) (at 30 µg/mL) against selected multidrug resistance (MDR) bacteria. The anthraquinone, emodin, naphthaquinone, plumbagin and the benzoquinone, rapanone were active against methicillin resistant Staphylococcus aureus (MRSA) strains of bacteria with MIC values ranging from 2 to 128 μg/mL. The structure activity relationships of benzoquinones against the MDR Gram-negative phenotype showed antibacterial activities increasing with increase in side chain length. In the chalcone series the presence of a hydroxyl group at C3' together with a methoxy group and a second hydroxyl group in meta orientation in ring B of the chalcone skeleton appeared to be necessary for minimal activities against MRSA. In most cases, the optimal potential of the active compounds were not attained as they were extruded by bacterial efflux pumps. However, the presence of the PAβN significantly increased the antibacterial activities of emodin against Gram-negative MDR E. coli AG102, 100ATet; K. pneumoniae KP55 and KP63 by >4-64 g/mL. The antibacterial activities were substantially enhanced and were higher than those of the standard drug, chloramphenicol. These data clearly demonstrate that the active compounds, having the necessary pharmacophores for antibacterial activities, including some quinones and chalcones are

  11. Different Roles and Different Results: How Activity Orientations Correspond to Relationship Quality and Student Outcomes in School-Based Mentoring

    ERIC Educational Resources Information Center

    Keller, Thomas E.; Pryce, Julia M.

    2012-01-01

    This prospective, mixed-methods study investigated how the nature of joint activities between volunteer mentors and student mentees corresponded to relationship quality and youth outcomes. Focusing on relationships in school-based mentoring programs in low-income urban elementary schools, data were obtained through pre-post assessments,…

  12. Quorum Sensing Inhibition and Structure-Activity Relationships of β-Keto Esters.

    PubMed

    Forschner-Dancause, Stephanie; Poulin, Emily; Meschwitz, Susan

    2016-07-25

    Traditional therapeutics to treat bacterial infections have given rise to multi-drug resistant pathogens, which pose a major threat to human and animal health. In several pathogens, quorum sensing (QS)-a cell-cell communication system in bacteria-controls the expression of genes responsible for pathogenesis, thus representing a novel target in the fight against bacterial infections. Based on the structure of the autoinducers responsible for QS activity and other QS inhibitors, we hypothesize that β-keto esters with aryl functionality could possess anti-QS activity. A panel of nineteen β-keto ester analogs was tested for the inhibition of bioluminescence (a QS-controlled phenotype) in the marine pathogen Vibrio harveyi. Initial screening demonstrated the need of a phenyl ring at the C-3 position for antagonistic activity. Further additions to the phenyl ring with 4-substituted halo groups or a 3- or 4-substituted methoxy group resulted in the most active compounds with IC50 values ranging from 23 µM to 53 µM. The compounds additionally inhibit green fluorescent protein production by E. coli JB525. Evidence is presented that aryl β-keto esters may act as antagonists of bacterial quorum sensing by competing with N-acyl homoserine lactones for receptor binding. Expansion of the β-keto ester panel will enable us to obtain more insight into the structure-activity relationships needed to allow for the development of novel anti-virulence agents.

  13. Structure-Activity Relationships in Toll-like Receptor-2 agonistic Diacylthioglycerol Lipopeptides

    PubMed Central

    Wu, Wenyan; Li, Rongti; Malladi, Subbalakshmi S.; Warshakoon, Hemamali J.; Kimbrell, Matthew R.; Amolins, Michael W.; Ukani, Rehman; Datta, Apurba; David, Sunil A.

    2010-01-01

    The N-termini of bacterial lipoproteins are acylated with a (S)-(2,3-bisacyloxypropyl)cysteinyl residue. Lipopeptides derived from lipoproteins activate innate immune responses by engaging Toll-like receptor 2 (TLR2), and are highly immunostimulatory and yet without apparent toxicity in animal models. The lipopeptides may therefore be useful as potential immunotherapeutic agents. Previous structure-activity relationships in such lipopeptides have largely been obtained using murine cells and it is now clear that significant species-specific differences exist between human and murine TLR responses. We have examined in detail the role of the highly conserved Cys residue as well as the geometry and stereochemistry of the Cys-Ser dipeptide unit. (R)-diacylthioglycerol analogues are maximally active in reporter gene assays using human TLR2. The Cys-Ser dipeptide unit represents the minimal part-structure, but its stereochemistry was found not to be a critical determinant of activity. The thioether bridge between the diacyl and dipeptide units is crucial, and replacement by an oxoether bridge results in a dramatic decrease in activity. PMID:20302301

  14. Quorum Sensing Inhibition and Structure-Activity Relationships of β-Keto Esters.

    PubMed

    Forschner-Dancause, Stephanie; Poulin, Emily; Meschwitz, Susan

    2016-01-01

    Traditional therapeutics to treat bacterial infections have given rise to multi-drug resistant pathogens, which pose a major threat to human and animal health. In several pathogens, quorum sensing (QS)-a cell-cell communication system in bacteria-controls the expression of genes responsible for pathogenesis, thus representing a novel target in the fight against bacterial infections. Based on the structure of the autoinducers responsible for QS activity and other QS inhibitors, we hypothesize that β-keto esters with aryl functionality could possess anti-QS activity. A panel of nineteen β-keto ester analogs was tested for the inhibition of bioluminescence (a QS-controlled phenotype) in the marine pathogen Vibrio harveyi. Initial screening demonstrated the need of a phenyl ring at the C-3 position for antagonistic activity. Further additions to the phenyl ring with 4-substituted halo groups or a 3- or 4-substituted methoxy group resulted in the most active compounds with IC50 values ranging from 23 µM to 53 µM. The compounds additionally inhibit green fluorescent protein production by E. coli JB525. Evidence is presented that aryl β-keto esters may act as antagonists of bacterial quorum sensing by competing with N-acyl homoserine lactones for receptor binding. Expansion of the β-keto ester panel will enable us to obtain more insight into the structure-activity relationships needed to allow for the development of novel anti-virulence agents. PMID:27463706

  15. Flavonoids as CDK1 Inhibitors: Insights in Their Binding Orientations and Structure-Activity Relationship.

    PubMed

    Navarro-Retamal, Carlos; Caballero, Julio

    2016-01-01

    In the last years, the interactions of flavonoids with protein kinases (PKs) have been described by using crystallographic experiments. Interestingly, different orientations have been found for one flavonoid inside different PKs and different chemical substitutions lead to different orientations of the flavonoid scaffold inside one PK. Accordingly, orientation predictions of novel analogues could help to the design of flavonoids with high PK inhibitory activities. With this in mind, we studied the binding modes of 37 flavonoids (flavones and chalcones) inside the cyclin-dependent PK CDK1 using docking experiments. We found that the compounds under study adopted two different orientations into the active site of CDK1 (orientations I and II in the manuscript). In addition, quantitative structure-activity relationship (QSAR) models using CoMFA and CoMSIA methodologies were constructed to explain the trend of the CDK1 inhibitory activities for the studied flavonoids. Template-based and docking-based alignments were used. Models developed starting from docking-based alignment were applied for describing the whole dataset and compounds with orientation I. Adequate R2 and Q2 values were obtained by each method; interestingly, only hydrophobic and hydrogen bond donor fields describe the differential potency of the flavonoids as CDK1 inhibitors for both defined alignments and subsets. Our current application of docking and QSAR together reveals important elements to be drawn for the design of novel flavonoids with increased PK inhibitory activities. PMID:27517610

  16. Structure-hepatoprotective activity relationship study of sesquiterpene lactones: A QSAR analysis

    NASA Astrophysics Data System (ADS)

    Paukku, Yuliya; Rasulev, Bakhtiyor; Syrov, Vladimir; Khushbaktova, Zainab; Leszczynski, Jerzy

    This study has been carried out using quantitative structure-activity relationship analysis (QSAR) for 22 sesquiterpene lactones to correlate and predict their hepatoprotective activity. Sesquiterpenoids, the largest class of terpenoids, are a widespread group of substances occurring in various plant organisms. QSAR analysis was carried out using methods such as genetic algorithm for variables selection among generated and calculated descriptors and multiple linear regression analysis. Quantum-chemical calculations have been performed by density functional theory at B3LYP/6-311G(d, p) level for evaluation of electronic properties using reference geometries optimized by semi-empirical AM1 approach. Three models describing hepatoprotective activity values for series of sesquiterpene lactones are proposed. The obtained models are useful for description of sesquiterpene lactones hepatoprotective activity and can be used to estimate the hepatoprotective activity of new substituted sesquiterpene lactones. The models obtained in our study show not only statistical significance, but also good predictive ability. The estimated predictive ability (rtest2) of these models lies within 0.942-0.969.

  17. Further Studies on Structure-Cardiac Activity Relationships of Diterpenoid Alkaloids.

    PubMed

    Zhang, Zhong-Tang; Jian, Xi-Xian; Ding, Jia-Yu; Deng, Hong-Ying; Chao, Ruo-Bing; Chen, Qiao-Hong; Chen, Dong-Lin; Wang, Feng-Peng

    2015-12-01

    The cardiac effect of thirty-eight diterpenoid alkaloids was evaluated on the isolated bullfrog heart model. Among them, twelve compounds exhibited appreciable cardiac activity, with compounds 3 and 35 being more active than the reference drug lanatoside. The structure-cardiac activity relationships of the diterpenoid alkaloids were summarized based on our present and previous studies [2]: i) 1α-OMe or 1α-OH, 8-OH, 14-OH, and NH (or NMe) are key structural features important for the cardiac effect of the aconitine-type C19-diterpenoid alkaloids without any esters. C18-diterpenoid alkaloids, lycoctonine-type C19-diterpenoid alkaloids, and the veatchine- and denudatine-type C20-diterpenoid alkaloids did not show any cardiac activity; ii) the presence of 3α-OH is beneficial to the cardiac activity; iii) the effect on the cardiac action of 6α-OMe, 13-OH, 15α-OH, and 16-demethoxy or a double bond between C-15 and C-16 depends on the substituent pattern on the nitrogen atom.

  18. On the relationship between persistent delay activity, repetition enhancement and priming

    PubMed Central

    Tartaglia, Elisa M.; Mongillo, Gianluigi; Brunel, Nicolas

    2015-01-01

    Human efficiency in processing incoming stimuli (in terms of speed and/or accuracy) is typically enhanced by previous exposure to the same, or closely related stimuli—a phenomenon referred to as priming. In spite of the large body of knowledge accumulated in behavioral studies about the conditions conducive to priming, and its relationship with other forms of memory, the underlying neuronal correlates of priming are still under debate. The idea has repeatedly been advanced that a major neuronal mechanism supporting behaviorally-expressed priming is repetition suppression, a widespread reduction of spiking activity upon stimulus repetition which has been routinely exposed by single-unit recordings in non-human primates performing delayed-response, as well as passive fixation tasks. This proposal is mainly motivated by the observation that, in human fMRI studies, priming is associated to a significant reduction of the BOLD signal (widely interpreted as a proxy of the level of spiking activity) upon stimulus repetition. Here, we critically re-examine a large part of the electrophysiological literature on repetition suppression in non-human primates and find that repetition suppression is systematically accompanied by stimulus-selective delay period activity, together with repetition enhancement, an increase of spiking activity upon stimulus repetition in small neuronal populations. We argue that repetition enhancement constitutes a more viable candidate for a putative neuronal substrate of priming, and propose a minimal framework that links together, mechanistically and functionally, repetition suppression, stimulus-selective delay activity and repetition enhancement. PMID:25657630

  19. Docking and quantitative structure-activity relationship of oxadiazole derivates as inhibitors of GSK3β.

    PubMed

    Quesada-Romero, Luisa; Caballero, Julio

    2014-02-01

    The binding modes of 42 oxadiazole derivates inside glycogen synthase kinase 3 beta (GSK3β were determined using docking experiments; thus, the preferred active conformations of these inhibitors are proposed. We found that these compounds adopt a scorpion-shaped conformation and they accept a hydrogen bond (HB) from the residue Val135 of the GSK3β ATP-binding site hinge region. In addition, quantitative structure-activity relationship (QSAR) models were constructed to explain the trend of the GSK3β inhibitory activities for the studied compounds. In a first approach, three-dimensional (3D) vectors were calculated using docking conformations and, by using multiple-linear regression, we assessed that GETAWAY vectors were able to describe the reported biological activities. In other QSAR approach, SMILES-based optimal descriptors were calculated. The best model included three-SMILES elements SSSβ leading to the identification of key molecular features that contribute to a high GSK3β inhibitory activity.

  20. The study of a spatial relationship between the Equatorial coronal hole and the Active region

    NASA Astrophysics Data System (ADS)

    Karna, Mahendra; Karna, Nishu

    2016-05-01

    The 11-year solar cycle is characterized by the periodic change in the solar activity like sunspot numbers, coronal holes, active regions, eruptions such as flares and coronal mass ejections. We study the relationship between equatorial coronal holes (ECH) and the active regions (AR) as coronal hole positions and sizes change with the solar cycle. We made a detailed study for two solar maximum: Solar Cycle 23 (1999, 2000, 2001 and 2002) and Solar Cycle 24 (2011, 2012 and 2013). We used publically available Heliophysics Feature Catalogue and NOAA Solar Geophysical data for. Moreover, we used daily Solar Region Summary (SRS) data from SWPC/NOAA website. We examined the position of ECH and AR and noted that during a maximum of 23, the majority of ECH were not near active regions. However, in cycle 24 coronal holes and equatorial holes were more close to each other. Moreover, we noticed the asymmetry in AR migrations towards the lower latitude in both Northern and Southern hemisphere in cycle 23. While, no such notable asymmetrical behavior was observed in a maximum of cycle 24. Our goal is to extend the study with cycle 21 and 22 and examine the correlation between equatorial holes, the active regions, and the flares. This combined study will shed light in determining the distribution of flares.